Sample records for electrochemical degradation ecd

  1. ELECTROCHEMICAL DEGRADATION OF PERSISTANCE POLLUTANTS IN GROUNDWATER AND SEDIMENTS

    EPA Science Inventory

    Electrochemical Degradation (ECD) utilizes redox potential at the anode and the cathode to oxidize and/or reduce organic contaminants. ECD of environmentally persistence pollutants such chlorinate solvents, PCBs, and PAHs, although theoretically possible, has not been experimenta...

  2. ELECTROCHEMICAL DEGRADATION OF ORGANIC CONTAMINANTS IN WATER AND SEDIMENTS

    EPA Science Inventory

    Electrochemical degradation (ECD) utilizes high redox potential at the anode and low redox potential at the cathode to oxidize and/or reduce organic and inorganic contaminants. EDC of Trichloroethylene (TCE), although theoretically possible, has not been experimentally proven. Th...

  3. Assessment Of The Functionality Of A Pilot-Scale Reactor And Its Potential For Electrochemical Degradation Of Calmagite, A Sulfonated Azo-Dye

    EPA Science Inventory

    Electrochemical degradation (ECD) is a promising technology for in situ remediation of diversely contaminated environmental matrices by application of a low level electric potential gradient. This investigation, prompted by successful bench-scale ECD of trichloroethylene,...

  4. DECHLORINATION OF TRICHLOROETHYLENE USING ELECTROCHEMICAL METHODS

    EPA Science Inventory

    Electrochemical degradation (ECD) is used to decontaminate organic and inorganic contaminants through oxidative or reductive processes. The ECD of Trichloroethylene (TCE) dechlorinates TCE through electric reduction. TCE dechlorination presented in the literature utilized electro...

  5. PILOT SCALE REACTOR FOR ELECTROCHEMICAL DECHLORINATION OF MODEL CHLORINATED CONTAMINANTS

    EPA Science Inventory

    Electrochemical degradation (ECD) is a promising technology for in-situ remediation of diversely contaminated submarine matrices, by the application of low level DC electric fields. This study, prompted by successful bench-scale electrochemical dechlorination of Trichloroe...

  6. ELECTROCHEMICAL DECHLORINATION OF TRICHLOROETHYLENE USING GRANULAR-GRAPHITE ELECTRODES: IDENTIFICATION AND QUANTIFICATION OF DECHLORINATION PRODUCTS

    EPA Science Inventory

    Electrochemical degradation (ECD) utilizes high redox potential at the anode and low redox potential at the cathode to oxidize and/or reduce organic and inorganic contaminants. ECD of Trichloroethylene (TCE), although theoretically possible, has not been experimentally proven. Th...

  7. Direct Determination of ECD in ECD Kit: A Solid Sample Quantitation Method for Active Pharmaceutical Ingredient in Drug Product

    PubMed Central

    Chao, Ming-Yu; Liu, Kung-Tien; Hsia, Yi-Chih; Liao, Mei-Hsiu; Shen, Lie-Hang

    2011-01-01

    Technetium-99m ethyl cysteinate dimer (Tc-99m-ECD) is an essential imaging agent used in evaluating the regional cerebral blood flow in patients with cerebrovascular diseases. Determination of active pharmaceutical ingredient, that is, L-Cysteine, N, N′-1,2-ethanediylbis-, diethyl ester, dihydrochloride (ECD) in ECD Kit is a relevant requirement for the pharmaceutical quality control in processes of mass fabrication. We here presented a direct solid sample determination method of ECD in ECD Kit without sample dissolution to avoid the rapid degradation of ECD. An elemental analyzer equipped with a nondispersive infrared detector and a calibration curve of coal standard was used for the quantitation of sulfur in ECD Kit. No significant matrix effect was found. The peak area of coal standard against the amount of sulfur was linear over the range of 0.03–0.10 mg, with a correlation coefficient (r) of 0.9993. Method validation parameters were achieved to demonstrate the potential of this method. PMID:21687539

  8. Topics in electrochemical degradation of photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Mon, G. R.

    1984-01-01

    Electrochemical degradation of photovoltaic modules was examined. It is found that the extent of electrochemical damage is dependent on the integrated leakage current. The PV electrochemical degradation mechanisms in the two polarities are different: (1) degradation rates in the two polarities are of the same order of magnitude; (2) center tapped grounded arrays are a preferred system configuration to minimize electrochemical degradation. The use of thicker pottant layers and polymer substrate films to reduce equilibrium leakage current values is suggested. A metallized substrate layer, if used, should be isolated from the pottant and the frame by polyester layers, and EVA modules appear to be consistent with 30 year life allocation levels for electrochemical damage. Temperature acceleration factors are well behaved and moderately well understood; humidity acceleration factors vary radically with module construction and materials and require additional research.

  9. Efficient electrochemical degradation of multiwall carbon nanotubes.

    PubMed

    Reipa, Vytas; Hanna, Shannon K; Urbas, Aaron; Sander, Lane; Elliott, John; Conny, Joseph; Petersen, Elijah J

    2018-07-15

    As the production mass of multiwall carbon nanotubes (MWCNT) increases, the potential for human and environmental exposure to MWCNTs may also increase. We have shown that exposing an aqueous suspension of pristine MWCNTs to an intense oxidative treatment in an electrochemical reactor, equipped with an efficient hydroxyl radical generating Boron Doped Diamond (BDD) anode, leads to their almost complete mineralization. Thermal optical transmittance analysis showed a total carbon mass loss of over two orders of magnitude due to the electrochemical treatment, a result consistent with measurements of the degraded MWCNT suspensions using UV-vis absorbance. Liquid chromatography data excludes substantial accumulation of the low molecular weight reaction products. Therefore, up to 99% of the initially suspended MWCNT mass is completely mineralized into gaseous products such as CO 2 and volatile organic carbon. Scanning electron microscopy (SEM) images show sporadic opaque carbon clusters suggesting the remaining nanotubes are transformed into structure-less carbon during their electrochemical mineralization. Environmental toxicity of pristine and degraded MWCNTs was assessed using Caenorhabditis elegans nematodes and revealed a major reduction in the MWCNT toxicity after treatment in the electrochemical flow-by reactor. Published by Elsevier B.V.

  10. THE EFFECT OF VOLTAGE ON ELECTROCHEMICAL DEGRADATION OF TRICHLOROETHYLENE

    EPA Science Inventory

    This study investigates electrochemical degradation of Trichloroethylene (TCE) using granular graphite as electrodes in a flow-through reactor system. The experiments were conducted to obtain information on the effect of voltage and flow rates on the degradation rates of TCE. The...

  11. Microchip Capillary Electrophoresis with Electrochemical Detection for Monitoring Environmental Pollutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Gang; Lin, Yuehe; Wang, Joseph

    2006-01-15

    This invited paper reviews recent advances and the key strategies in microchip capillary electrophoresis (CE) with electrochemical detection (ECD) for separating and detecting a variety of environmental pollutants. The subjects covered include the fabrication of microfluidic chips, sample pretreatments, ECD, typical applications of microchip CE with ECD in environmental analysis, and future prospects. It is expected that microchip CE-ECD will become a powerful tool in the environmental field and will lead to the creation of truly portable devices.

  12. Electrochemical degradation and mineralization of glyphosate herbicide.

    PubMed

    Tran, Nam; Drogui, Patrick; Doan, Tuan Linh; Le, Thanh Son; Nguyen, Hoai Chau

    2017-12-01

    The presence of herbicide is a concern for both human and ecological health. Glyphosate is occasionally detected as water contaminants in agriculture areas where the herbicide is used extensively. The removal of glyphosate in synthetic solution using advanced oxidation process is a possible approach for remediation of contaminated waters. The ability of electrochemical oxidation for the degradation and mineralization of glyphosate herbicide was investigated using Ti/PbO 2 anode. The current intensity, treatment time, initial concentration and pH of solution are the influent parameters on the degradation efficiency. An experimental design methodology was applied to determine the optimal condition (in terms of cost/effectiveness) based on response surface methodology. Glyphosate concentration (C 0  = 16.9 mg L -1 ) decreased up to 0.6 mg L -1 when the optimal conditions were imposed (current intensity of 4.77 A and treatment time of 173 min). The removal efficiencies of glyphosate and total organic carbon were 95 ± 16% and 90.31%, respectively. This work demonstrates that electrochemical oxidation is a promising process for degradation and mineralization of glyphosate.

  13. Degradation Mechanisms and Mechanical Property Variation of Epdm Rubbers for Automotive Radiator Hosess

    NASA Astrophysics Data System (ADS)

    Kwak, Eung-Bum; Choi, Nak-Sam

    The degradation behaviors of EPDM (ethylene-propylene diene monomer) rubbers used for automotive radiator hoses subjected to thermo-oxidative and electrochemical stresses were studied. As a result of the thermo-oxidative aging tests, the IRHD (international rubber hardness degrees) hardness of the rubber specimens increased, while their elongation at break decreased much. A slight increase in crosslink density indicated that changes in the properties were caused by the concentration of carbonyl groups in the skin layer. For the electrochemical degradation (ECD), the weight of rubber specimens increased whereas their elongation and hardness much decreased because water solution penetrated into the skin part. There was little change in crosslink density. Formation of many chain scissions and thus microvoid networks in the skin layer induced the swelling behavior leading to a linear reduction of hardness versus the weight increase.

  14. MEMS/ECD Method for Making Bi(2-x)Sb(x)Te3 Thermoelectric Devices

    NASA Technical Reports Server (NTRS)

    Lim, James; Huang, Chen-Kuo; Ryan, Margaret; Snyder, G. Jeffrey; Herman, Jennifer; Fleurial, Jean-Pierre

    2008-01-01

    A method of fabricating Bi(2-x)Sb(x)Te3-based thermoelectric microdevices involves a combination of (1) techniques used previously in the fabrication of integrated circuits and of microelectromechanical systems (MEMS) and (2) a relatively inexpensive MEMS-oriented electrochemical-deposition (ECD) technique. The present method overcomes the limitations of prior MEMS fabrication techniques and makes it possible to satisfy requirements.

  15. Monitoring environmental pollutants by microchip capillary electrophoresis with electrochemical detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Gang; Lin, Yuehe; Wang, Joseph

    2006-01-15

    This is a review article. During the past decade, significant progress in the development of miniaturized microfluidic systems has Occurred due to the numerous advantages of microchip analysis. This review focuses on recent advances and the key strategies in microchip capillary electrophoresis (CE) with electrochemical detection (ECD) for separating and detecting a variety of environmental pollutants. The subjects covered include the fabrication of microfluidic chips, ECD, typical applications of microchip CE with ECD in environmental analysis, and future prospects. It is expected that microchip CE-ECD will become a powerful tool in the environmental field and will lead to the creationmore » of truly portable devices.« less

  16. Nanoscale Protection Layers To Mitigate Degradation in High-Energy Electrochemical Energy Storage Systems.

    PubMed

    Lin, Chuan-Fu; Qi, Yue; Gregorczyk, Keith; Lee, Sang Bok; Rubloff, Gary W

    2018-01-16

    In the pursuit of energy storage devices with higher energy and power, new ion storage materials and high-voltage battery chemistries are of paramount importance. However, they invite-and often enhance-degradation mechanisms, which are reflected in capacity loss with charge/discharge cycling and sometimes in safety problems. Degradation mechanisms are often driven by fundamentals such as chemical and electrochemical reactions at electrode-electrolyte interfaces, volume expansion and stress associated with ion insertion and extraction, and profound inhomogeneity of electrochemical behavior. While it is important to identify and understand these mechanisms at some reasonable level, it is even more critical to design strategies to mitigate these degradation pathways and to develop means to implement and validate the strategies. A growing set of research highlights the mitigation benefits achievable by forming thin protection layers (PLs) intentionally created as artificial interphase regions at the electrode-electrolyte interface. These advances illustrate a promising-perhaps even generic-pathway for enabling higher-energy and higher-voltage battery configurations. In this Account, we summarize examples of such PLs that serve as mitigation strategies to avoid degradation in lithium metal anodes, conversion-type electrode materials, and alloy-type electrodes. Examples are chosen from a larger body of electrochemical degradation research carried out in Nanostructures for Electrical Energy Storage (NEES), our DOE Energy Frontier Research Center. Overall, we argue on the basis of experimental and theoretical evidence that PLs effectively stabilize the electrochemical interfaces to prevent parasitic chemical and electrochemical reactions and mitigate the structural, mechanical, and compositional degradation of the electrode materials at the electrode-electrolyte interfaces. The evidenced improvement in performance metrics is accomplished by (1) establishing a homogeneous

  17. Degradation of conazole fungicides in water by electrochemical oxidation.

    PubMed

    Urzúa, J; González-Vargas, C; Sepúlveda, F; Ureta-Zañartu, M S; Salazar, R

    2013-11-01

    The electrochemical oxidation (EO) treatment in water of three conazole fungicides, myclobutanil, triadimefon and propiconazole, has been carried out at constant current using a BDD/SS system. First, solutions of each fungicide were electrolyzed to assess the effect of the experimental parameters such as current, pH and fungicide concentration on the decay of each compound and total organic carbon abatement. Then a careful analysis of the degradation by-products was made by high performance liquid chromatography, ion chromatography and gas chromatography coupled with mass spectrometry in order to provide a detailed discussion on the original reaction pathways. Thus, during the degradation of conazole fungicides by the electrochemical oxidation process, aromatic intermediates, aliphatic carboxylic acids and Cl(-) were detected prior to their complete mineralization to CO2 while NO3(-) anions remained in the treated solution. This is an essential preliminary step towards the applicability of the EO processes for the treatment of wastewater containing conazole fungicides. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Electrochemical Degradation of Rhodamine B over Ti/SnO2-Sb Electrode.

    PubMed

    Maharana, Dusmant; Niu, Junfeng; Gao, Ding; Xu, Zesheng; Shi, Jianghong

    2015-04-01

    Electrochemical degradation of rhodamine B (C28H31ClN2O3) over Ti/SnO2-Sb anode was investigated in a rectangular cell. The degradation reaction follows pseudo-first-order kinetics. The degradation efficiency of rhodamine B attained >90.0% after 20 minutes of electrolysis at initial concentrations of 5 to 200 mg/L at a constant current density of 20 mA/cm2 with a 10 mmol/L Na2SO4 supporting electrolyte solution. Rhodamine B (50 mg/L) degradation and total organic carbon (TOC) removal ratio achieved 99.9 and 86.7%, respectively, at the optimal conditions after 30 minutes of electrolysis. The results showed that the energy efficiency of rhodamine B (50 mg/L) degradation at the optimal current densities from 2 to 30 mA/cm2 were 23.2 to 84.6 Wh/L, whereas the electrolysis time for 90% degradation of rhodamine B with Ti/SnO2-Sb anode was 36.6 and 7.3 minutes, respectively. The electrochemical method can be an advisable option for the treatment of dyes such as rhodamine B in wastewater.

  19. Electrochemical degradation, kinetics & performance studies of solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Das, Debanjan

    Linear and Non-linear electrochemical characterization techniques and equivalent circuit modelling were carried out on miniature and sub-commercial Solid Oxide Fuel Cell (SOFC) stacks as an in-situ diagnostic approach to evaluate and analyze their performance under the presence of simulated alternative fuel conditions. The main focus of the study was to track the change in cell behavior and response live, as the cell was generating power. Electrochemical Impedance Spectroscopy (EIS) was the most important linear AC technique used for the study. The distinct effects of inorganic components usually present in hydrocarbon fuel reformates on SOFC behavior have been determined, allowing identification of possible "fingerprint" impedance behavior corresponding to specific fuel conditions and reaction mechanisms. Critical electrochemical processes and degradation mechanisms which might affect cell performance were identified and quantified. Sulfur and siloxane cause the most prominent degradation and the associated electrochemical cell parameters such as Gerisher and Warburg elements are applied respectively for better understanding of the degradation processes. Electrochemical Frequency Modulation (EFM) was applied for kinetic studies in SOFCs for the very first time for estimating the exchange current density and transfer coefficients. EFM is a non-linear in-situ electrochemical technique conceptually different from EIS and is used extensively in corrosion work, but rarely used on fuel cells till now. EFM is based on exploring information obtained from non-linear higher harmonic contributions from potential perturbations of electrochemical systems, otherwise not obtained by EIS. The baseline fuel used was 3 % humidified hydrogen with a 5-cell SOFC sub-commercial planar stack to perform the analysis. Traditional methods such as EIS and Tafel analysis were carried out at similar operating conditions to verify and correlate with the EFM data and ensure the validity of the

  20. A Novel Interaction of Ecdysoneless (ECD) Protein with R2TP Complex Component RUVBL1 Is Required for the Functional Role of ECD in Cell Cycle Progression.

    PubMed

    Mir, Riyaz A; Bele, Aditya; Mirza, Sameer; Srivastava, Shashank; Olou, Appolinaire A; Ammons, Shalis A; Kim, Jun Hyun; Gurumurthy, Channabasavaiah B; Qiu, Fang; Band, Hamid; Band, Vimla

    2015-12-28

    Ecdysoneless (ECD) is an evolutionarily conserved protein whose germ line deletion is embryonic lethal. Deletion of Ecd in cells causes cell cycle arrest, which is rescued by exogenous ECD, demonstrating a requirement of ECD for normal mammalian cell cycle progression. However, the exact mechanism by which ECD regulates cell cycle is unknown. Here, we demonstrate that ECD protein levels and subcellular localization are invariant during cell cycle progression, suggesting a potential role of posttranslational modifications or protein-protein interactions. Since phosphorylated ECD was recently shown to interact with the PIH1D1 adaptor component of the R2TP cochaperone complex, we examined the requirement of ECD phosphorylation in cell cycle progression. Notably, phosphorylation-deficient ECD mutants that failed to bind to PIH1D1 in vitro fully retained the ability to interact with the R2TP complex and yet exhibited a reduced ability to rescue Ecd-deficient cells from cell cycle arrest. Biochemical analyses demonstrated an additional phosphorylation-independent interaction of ECD with the RUVBL1 component of the R2TP complex, and this interaction is essential for ECD's cell cycle progression function. These studies demonstrate that interaction of ECD with RUVBL1, and its CK2-mediated phosphorylation, independent of its interaction with PIH1D1, are important for its cell cycle regulatory function. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. A Novel Interaction of Ecdysoneless (ECD) Protein with R2TP Complex Component RUVBL1 Is Required for the Functional Role of ECD in Cell Cycle Progression

    PubMed Central

    Mir, Riyaz A.; Bele, Aditya; Mirza, Sameer; Srivastava, Shashank; Olou, Appolinaire A.; Ammons, Shalis A.; Kim, Jun Hyun; Gurumurthy, Channabasavaiah B.; Qiu, Fang; Band, Hamid

    2015-01-01

    Ecdysoneless (ECD) is an evolutionarily conserved protein whose germ line deletion is embryonic lethal. Deletion of Ecd in cells causes cell cycle arrest, which is rescued by exogenous ECD, demonstrating a requirement of ECD for normal mammalian cell cycle progression. However, the exact mechanism by which ECD regulates cell cycle is unknown. Here, we demonstrate that ECD protein levels and subcellular localization are invariant during cell cycle progression, suggesting a potential role of posttranslational modifications or protein-protein interactions. Since phosphorylated ECD was recently shown to interact with the PIH1D1 adaptor component of the R2TP cochaperone complex, we examined the requirement of ECD phosphorylation in cell cycle progression. Notably, phosphorylation-deficient ECD mutants that failed to bind to PIH1D1 in vitro fully retained the ability to interact with the R2TP complex and yet exhibited a reduced ability to rescue Ecd-deficient cells from cell cycle arrest. Biochemical analyses demonstrated an additional phosphorylation-independent interaction of ECD with the RUVBL1 component of the R2TP complex, and this interaction is essential for ECD's cell cycle progression function. These studies demonstrate that interaction of ECD with RUVBL1, and its CK2-mediated phosphorylation, independent of its interaction with PIH1D1, are important for its cell cycle regulatory function. PMID:26711270

  2. Solar-driven thermo- and electrochemical degradation of nitrobenzene in wastewater: Adaptation and adoption of solar STEP concept.

    PubMed

    Gu, Di; Shao, Nan; Zhu, Yanji; Wu, Hongjun; Wang, Baohui

    2017-01-05

    The STEP concept has successfully been demonstrated for driving chemical reaction by utilization of solar heat and electricity to minimize the fossil energy, meanwhile, maximize the rate of thermo- and electrochemical reactions in thermodynamics and kinetics. This pioneering investigation experimentally exhibit that the STEP concept is adapted and adopted efficiently for degradation of nitrobenzene. By employing the theoretical calculation and thermo-dependent cyclic voltammetry, the degradation potential of nitrobenzene was found to be decreased obviously, at the same time, with greatly lifting the current, while the temperature was increased. Compared with the conventional electrochemical methods, high efficiency and fast degradation rate were markedly displayed due to the co-action of thermo- and electrochemical effects and the switch of the indirect electrochemical oxidation to the direct one for oxidation of nitrobenzene. A clear conclusion on the mechanism of nitrobenzene degradation by the STEP can be schematically proposed and discussed by the combination of thermo- and electrochemistry based the analysis of the HPLC, UV-vis and degradation data. This theory and experiment provide a pilot for the treatment of nitrobenzene wastewater with high efficiency, clean operation and low carbon footprint, without any other input of energy and chemicals from solar energy. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Influence of engine coolant composition on the electrochemical degradation behavior of EPDM radiator hoses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vroomen, G.L.M.; Lievens, S.S.; Maes, J.P.

    1999-08-01

    EPDM (ethylene-propylene rubber) has been used for more than 25 years as the main elastomer in radiator hoses because it offers a well-balanced price/performance ratio in this field of application. Some years ago the automotive and rubber industry became aware of a problem called electrochemical degradation and cracking. Cooling systems broke down due to a typical cracking failure of some radiator hoses. Different test methods were developed to simulate and solve the problem on laboratory scale. The influence of different variables with respect to the electrochemical degradation and cracking. Cooling systems broke down due to a typical cracking failure ofmore » some radiator hoses. Different test methods were developed to simulate and solve the problem on laboratory scale. The influence of different variables with respect to the electrochemical degradation process has been investigated, but until recently the influence of the engine coolant was ignored. Using a test method developed by DSM elastomers, the influence of the composition of the engine coolant as well as of the EPDM composition has now been evaluated. This paper gives an overview of test results with different coolant technologies and offers a plausible explanation of the degradation mechanisms as a function of the elastomer composition.« less

  4. Degradation of all-vanadium redox flow batteries (VRFB) investigated by electrochemical impedance and X-ray photoelectron spectroscopy: Part 2 electrochemical degradation

    NASA Astrophysics Data System (ADS)

    Derr, Igor; Bruns, Michael; Langner, Joachim; Fetyan, Abdulmonem; Melke, Julia; Roth, Christina

    2016-09-01

    Electrochemical degradation (ED) of carbon felt electrodes was investigated by cycling of a flow through all-vanadium redox flow battery (VRFB) and conducting half-cell measurements with two reference electrodes inside the test bench. ED was detected using half-cell and full-cell electrochemical impedance spectroscopy (EIS) at different states of charge (SOC). Reversing the polarity of the battery to recover cell performance was performed with little success. Renewing the electrolyte after a certain amount of cycles restored the capacity of the battery. X-ray photoelectron spectroscopy (XPS) reveals that the amount of surface functional increases by more than a factor of 3 for the negative side as well as for the positive side. Scanning electron microscope (SEM) images show a peeling of the fiber surface after cycling the felts, which leads to a loss of electrochemically active surface area (ECSA). Long term cycling shows that ED has a stronger impact on the negative half-cell [V(II)/V(III)] than the positive half-cell [V(IV)/V(V)] and that the negative half-cell is the rate-determining half-cell for the VRFB.

  5. Preparation of RuO2-TiO2/Nano-graphite composite anode for electrochemical degradation of ceftriaxone sodium.

    PubMed

    Li, Dong; Guo, Xiaolei; Song, Haoran; Sun, Tianyi; Wan, Jiafeng

    2018-06-05

    Graphite-like material is widely used for preparing various electrodes for wastewater treatment. To enhance the electrochemical degradation efficiency of Nano-graphite (Nano-G) anode, RuO 2 -TiO 2 /Nano-G composite anode was prepared through the sol-gel method and hot-press technology. RuO 2 -TiO 2 /Nano-G composite was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and N 2 adsorption-desorption. Results showed that RuO 2 , TiO 2 and Nano-G were composited successfully, and RuO 2 and TiO 2 nanoparticles were distributed uniformly on the surface of Nano-G sheet. Specific surface area of RuO 2 -TiO 2 /Nano-G composite was higher than that of TiO 2 /Nano-G composite and Nano-G. Electrochemical performances of RuO 2 -TiO 2 /Nano-G anode were investigated by cyclic voltammetry, electrochemical impedance spectroscopy. RuO 2 -TiO 2 /Nano-G anode was applied to electrochemical degradation of ceftriaxone. The generation of hydroxyl radical (OH) was measured. Results demonstrated that RuO 2 -TiO 2 /Nano-G anode displayed enhanced electrochemical degradation efficiency towards ceftriaxone and yield of OH, which is derived from the synergetic effect between RuO 2 , TiO 2 and Nano-G, which enhance the specific surface area, improve the electrochemical oxidation activity and lower the charge transfer resistance. Besides, the possible degradation intermediates and pathways of ceftriaxone sodium were identified. This study may provide a viable and promising prospect for RuO 2 -TiO 2 /Nano-G anode towards effective electrochemical degradation of antibiotics from wastewater. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. The application of exfoliated graphite electrode in the electrochemical degradation of p-nitrophenol in water.

    PubMed

    Ntsendwana, Bulelwa; Peleyeju, Moses G; Arotiba, Omotayo A

    2016-01-01

    We report the application of exfoliated graphite (EG) as an electrode material in the electrochemical degradation of p-nitrophenol in water. Bulk electrolysis (degradation) of p-nitrophenol was carried out at a potential of 2.0 V (vs. Ag/AgCl) in the presence of 0.1 M Na2SO4 supporting electrolyte, while UV-Vis spectrophotometry was used to monitor the degradation efficiency. An initial p-nitrophenol load concentration of 0.2 mM for 3 h electrolysis time was studied under the optimized conditions of pH 7, and 10 mAcm(-2) current density. The electro-degradation reaction displayed a pseudo-first-order kinetic behavior with a rate constant (k(r)) of 11×10(-3) min(-1). The removal efficiency was found to be 91.5%. Chromatography coupled with time of flight mass spectrometry revealed p-benzoquinone as a major intermediate product. These results demonstrate the potential and viability of electrochemical technology as an alternative approach to water treatment using a low cost graphite electrode.

  7. Artificial Solid Electrolyte Interphase to Address the Electrochemical Degradation of Silicon Electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudney, Nancy J; Nanda, Jagjit; Liang, Chengdu

    2014-01-01

    Electrochemical degradation on Si anodes prevents them from being successfully used in lithium-ion full cells. Unlike the case of graphite anodes, natural solid electrolyte interphase (SEI) films generated from carbonate electrolyte do not self-passivate on Si and causes continuous electrolyte decomposition. In this work we aim at solving the issue of electrochemical degradation by fabricating artificial SEI films using a solid electrolyte material, lithium phosphor oxynitride (Lipon), that conducts Li ions and blocks electrons. For Si anodes coated with Lipon of 50 nm or thicker, significant effect is observed in suppressing the electrolyte decomposition, while Lipon of thinner than 40more » nm has little effect. Ionic and electronic conductivity measurement reveals that the artificial SEI is effective when it is a pure ionic conductor, and the electrolyte decomposition is not suppressed when the artificial SEI is a mixed electronic-ionic conductor. The critical thickness for this transition in conducting behavior is found to be 40~50 nm. This work provides guidance for designing artificial SEI for high capacity lithium-ion battery electrodes using solid electrolyte materials.« less

  8. [Studies on the degradation of paracetamol in sono-electrochemical oxidation].

    PubMed

    Dai, Qi-Zhou; Ma, Wen-Jiao; Shen, Hong; Chen, Jun; Chen, Jian-Meng

    2012-07-01

    A novel lead dioxide electrodes co-doped with rare earth and polytetrafluoroethylene (PTFE) were prepared by the electrode position method and applied as anodes in sono-electrochemical oxidation for pharmaceutical wastewater degradation. The results showed that the APAP removal and the mineralization efficiency reached an obvious increase, which meant that the catalytic efficiency showed a significant improvement in the use of rare-earth doped electrode. The effects of process factors showed that the condition of the electrode had the best degradation efficiency with doped with Ce2O3 under electrolyte concentration of 14.2 g x L(-1), 49.58 W x cm(-2), 50 Hz, pH = 3, 71.43 mA x cm(-2). The APAP of 500 mg x L(-1) removal rate reached 92.20% and its COD and TOC values declined to 79.95% and 58.04%, the current efficiency reached 45.83% after degradation process for 2.0 h. The intermediates were monitored by the methods of GC-MS, HPLC, and IC. The main intermediates of APAP were p-benzoquinone, benzoic acid, acetic acid, maleic acid, oxalic acid, formic acid etc, and the final products were carbon dioxide and water. The goal of completely degradation of pollutant was achieved and a possible degradation way was proposed.

  9. Hydrophobic networked PbO2 electrode for electrochemical oxidation of paracetamol drug and degradation mechanism kinetics.

    PubMed

    He, Yapeng; Wang, Xue; Huang, Weimin; Chen, Rongling; Zhang, Wenli; Li, Hongdong; Lin, Haibo

    2018-02-01

    A hydrophobic networked PbO 2 electrode was deposited on mesh titanium substrate and utilized for the electrochemical elimination towards paracetamol drug. Three dimensional growth mechanism of PbO 2 layer provided more loading capacity of active materials and network structure greatly reduced the mass transfer for the electrochemical degradation. The active electrochemical surface area based on voltammetric charge quantity of networked PbO 2 electrode is about 2.1 times for traditional PbO 2 electrode while lower charge transfer resistance (6.78 Ω cm 2 ) could be achieved on networked PbO 2 electrode. The electrochemical incineration kinetics of paracetamol drug followed a pseudo first-order behavior and the corresponding rate constant were 0.354, 0.658 and 0.880 h -1 for traditional, networked PbO 2 and boron doped diamond electrode. Higher electrochemical elimination kinetics could be achieved on networked PbO 2 electrode and the performance can be equal to boron doped diamond electrode in result. Based on the quantification of reactive oxidants (hydroxyl radicals), the utilization rate of hydroxyl radicals could reach as high as 90% on networked PbO 2 electrode. The enhancement of excellent electrochemical oxidation capacity towards paracetamol drug was related to the properties of higher loading capacity, enhanced mass transfer and hydrophobic surface. The possible degradation mechanism and pathway of paracetamol on networked PbO 2 electrode were proposed in details accordingly based on the intermediate products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Electrochemical degradation of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in groundwater.

    PubMed

    Trautmann, A M; Schell, H; Schmidt, K R; Mangold, K-M; Tiehm, A

    2015-01-01

    Perfluoroalkyl and polyfluoroalkyl substances (PFASs) represent hazardous pollutants and are frequently detected in the environment, e.g. in contaminated groundwater. PFASs are persistent to biodegradation and conventional oxidation processes such as ozonation. In this study electrochemical degradation of PFASs on boron-doped diamond (BDD) electrodes is demonstrated. Experiments were performed with model solutions and contaminated groundwater with a dissolved organic carbon (DOC) content of 13 mg/L. The perfluorinated carboxylic acids (PFCAs) perfluorobutanoate, perfluoropentanoate, perfluorohexanoate, perfluoroheptanoate and perfluorooctanoate, and the perfluorinated sulfonic acids (PFSAs) perfluorobutane sulfonate, perfluorohexane sulfonate, perfluorooctane sulfonate and 6:2 fluorotelomer sulfonate were detected in the groundwater samples. At PFAS concentrations ranging from 0.26 to 34 mg/L (0.7 to 79 μM), the degradation of PFASs was achieved despite of the high DOC background. Pseudo first-order kinetic constants of PFSA degradation increased with the increase of carbon chain length. Fluoride formation as well as the generation of PFCAs with shortened chain lengths was observed. Inorganic byproducts such as perchlorate were also formed and have to be considered in further process optimization.

  11. Artificial solid electrolyte interphase to address the electrochemical degradation of silicon electrodes.

    PubMed

    Li, Juchuan; Dudney, Nancy J; Nanda, Jagjit; Liang, Chengdu

    2014-07-09

    Electrochemical degradation on silicon (Si) anodes prevents them from being successfully used in lithium (Li)-ion battery full cells. Unlike the case of graphite anodes, the natural solid electrolyte interphase (SEI) films generated from carbonate electrolytes do not self-passivate on Si, causing continuous electrolyte decomposition and loss of Li ions. In this work, we aim at solving the issue of electrochemical degradation by fabricating artificial SEI films using a solid electrolyte material, lithium phosphorus oxynitride (Lipon), which conducts Li ions and blocks electrons. For Si anodes coated with Lipon of 50 nm or thicker, a significant effect is observed in suppressing electrolyte decomposition, while Lipon of thinner than 40 nm has a limited effect. Ionic and electronic conductivity measurements reveal that the artificial SEI is effective when it is a pure ionic conductor, but electrolyte decomposition is only partially suppressed when the artificial SEI is a mixed electronic-ionic conductor. The critical thickness for this transition in conducting behavior is found to be 40-50 nm. This work provides guidance for designing artificial SEI films for high-capacity Li-ion battery electrodes using solid electrolyte materials.

  12. Electrochemical detection and degradation of ibuprofen from water on multi-walled carbon nanotubes-epoxy composite electrode.

    PubMed

    Motoc, Sorina; Remes, Adriana; Pop, Aniela; Manea, Florica; Schoonman, Joop

    2013-04-01

    This work describes the electrochemical behaviour of ibuprofen on two types of multi-walled carbon nanotubes based composite electrodes, i.e., multi-walled carbon nanotubes-epoxy (MWCNT) and silver-modified zeolite-multi-walled carbon nanotubes-epoxy (AgZMWCNT) composites electrodes. The composite electrodes were obtained using two-roll mill procedure. SEM images of surfaces of the composites revealed a homogeneous distribution of the composite components within the epoxy matrix. AgZMWCNT composite electrode exhibited the better electrical conductivity and larger electroactive surface area. The electrochemical determination of ibuprofen (IBP) was achieved using AgZMWCNT by cyclic voltammetry, differential-pulsed voltammetry, square-wave voltammetry and chronoamperometry. The IBP degradation occurred on both composite electrodes under controlled electrolysis at 1.2 and 1.75 V vs. Ag/AgCl, and IBP concentration was determined comparatively by differential-pulsed voltammetry, under optimized conditions using AgZMWCNT electrode and UV-Vis spectrophotometry methods to determine the IBP degradation performance for each electrode. AgZMWCNT electrode exhibited a dual character allowing a double application in IBP degradation process and its control.

  13. Mammalian ECD Protein Is a Novel Negative Regulator of the PERK Arm of the Unfolded Protein Response

    PubMed Central

    Olou, Appolinaire A.; Sarkar, Aniruddha; Bele, Aditya; Gurumurthy, C. B.; Mir, Riyaz A.; Ammons, Shalis A.; Mirza, Sameer; Saleem, Irfana; Urano, Fumihiko; Band, Hamid

    2017-01-01

    ABSTRACT Mammalian Ecdysoneless (ECD) is a highly conserved ortholog of the Drosophila Ecd gene product whose mutations impair the synthesis of Ecdysone and produce cell-autonomous survival defects, but the mechanisms by which ECD functions are largely unknown. Here we present evidence that ECD regulates the endoplasmic reticulum (ER) stress response. ER stress induction led to a reduced ECD protein level, but this effect was not seen in PKR-like ER kinase knockout (PERK-KO) or phosphodeficient eukaryotic translation initiation factor 2α (eIF2α) mouse embryonic fibroblasts (MEFs); moreover, ECD mRNA levels were increased, suggesting impaired ECD translation as the mechanism for reduced protein levels. ECD colocalizes and coimmunoprecipitates with PERK and GRP78. ECD depletion increased the levels of both phospho-PERK (p-PERK) and p-eIF2α, and these effects were enhanced upon ER stress induction. Reciprocally, overexpression of ECD led to marked decreases in p-PERK, p-eIF2α, and ATF4 levels but robust increases in GRP78 protein levels. However, GRP78 mRNA levels were unchanged, suggesting a posttranscriptional event. Knockdown of GRP78 reversed the attenuating effect of ECD overexpression on PERK signaling. Significantly, overexpression of ECD provided a survival advantage to cells upon ER stress induction. Taken together, our data demonstrate that ECD promotes survival upon ER stress by increasing GRP78 protein levels to enhance the adaptive folding protein in the ER to attenuate PERK signaling. PMID:28652267

  14. Preparation of Carbon-Chitosan-Polyvinyl Chloride (CC-PVC) Material and its Application to Electrochemical Degradation of Methylene Blue in Sodium Chloride Solution

    NASA Astrophysics Data System (ADS)

    Riyanto; Prawidha, A. D.

    2018-01-01

    Electrochemical degradation of methylene blue using Carbon-Chitosan-Polyvinyl Chloride (CC-PVC) electrode in sodium chloride have been done. The aim of this work was to degradation of methylene blue using Carbon-Chitosan-Polyvinyl Chloride (CC-PVC). Carbon chitosan composite electrode was preparing by Carbon and Chitosan powder and PVC in 4 mL tetrahydrofuran (THF) solvent and swirled flatly to homogeneous followed by drying in an oven at 100 °C for 3 h. The mixture was placed in stainless steel mould and pressed at 10 ton/cm2. Sodium chloride was used electrolyte solution. The effects of the current and electrolysis time were investigated using spectrophotometer UV-Visible. The experimental results showed that the carbon-chitosan composite electrode have higher effect in the electrochemical degradation of methylene blue in sodium chloride. Based on UV-visible spectra analysis shows current and electrolysis time has high effect to degradation of methylene blue in sodium chloride. Chitosan and polyvinyl chloride can strengthen the bond between the carbons so that the material has the high stability and conductivity. As conclusions is Carbon-Chitosan-Polyvinyl Chloride (CC-PVC) electrode have a high electrochemical activity for degradation of methylene blue in sodium chloride.

  15. 78 FR 52412 - Airworthiness Directives; Eurocopter Deutschland GmbH (ECD) Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-23

    ... Airworthiness Directives; Eurocopter Deutschland GmbH (ECD) Helicopters AGENCY: Federal Aviation Administration... new airworthiness directive (AD): 2013-16-20 Eurocopter Deutschland GmbH (ECD): Amendment 39-17558... the EASA AD at http://www.regulations.gov in Docket No. FAA-2013-0020. (h) Subject Joint Aircraft...

  16. Mammalian ECD Protein Is a Novel Negative Regulator of the PERK Arm of the Unfolded Protein Response.

    PubMed

    Olou, Appolinaire A; Sarkar, Aniruddha; Bele, Aditya; Gurumurthy, C B; Mir, Riyaz A; Ammons, Shalis A; Mirza, Sameer; Saleem, Irfana; Urano, Fumihiko; Band, Hamid; Band, Vimla

    2017-09-15

    Mammalian Ecdysoneless (ECD) is a highly conserved ortholog of the Drosophila Ecd gene product whose mutations impair the synthesis of Ecdysone and produce cell-autonomous survival defects, but the mechanisms by which ECD functions are largely unknown. Here we present evidence that ECD regulates the endoplasmic reticulum (ER) stress response. ER stress induction led to a reduced ECD protein level, but this effect was not seen in PKR-like ER kinase knockout (PERK-KO) or phosphodeficient eukaryotic translation initiation factor 2α (eIF2α) mouse embryonic fibroblasts (MEFs); moreover, ECD mRNA levels were increased, suggesting impaired ECD translation as the mechanism for reduced protein levels. ECD colocalizes and coimmunoprecipitates with PERK and GRP78. ECD depletion increased the levels of both phospho-PERK (p-PERK) and p-eIF2α, and these effects were enhanced upon ER stress induction. Reciprocally, overexpression of ECD led to marked decreases in p-PERK, p-eIF2α, and ATF4 levels but robust increases in GRP78 protein levels. However, GRP78 mRNA levels were unchanged, suggesting a posttranscriptional event. Knockdown of GRP78 reversed the attenuating effect of ECD overexpression on PERK signaling. Significantly, overexpression of ECD provided a survival advantage to cells upon ER stress induction. Taken together, our data demonstrate that ECD promotes survival upon ER stress by increasing GRP78 protein levels to enhance the adaptive folding protein in the ER to attenuate PERK signaling. Copyright © 2017 Olou et al.

  17. Ferrocene-oligonucleotide conjugates for electrochemical probing of DNA.

    PubMed Central

    Ihara, T; Maruo, Y; Takenaka, S; Takagi, M

    1996-01-01

    Toward the development of a universal, sensitive and convenient method of DNA (or RNA) detection, electrochemically active oligonucleotides were prepared by covalent linkage of a ferrocenyl group to the 5'-aminohexyl-terminated synthetic oligonucleotides. Using these electrochemically active probes, we have been able to demonstrate the detection of DNA and RNA at femtomole levels by HPLC equipped with an ordinary electrochemical detector (ECD) [Takenaka,S., Uto,Y., Kondo,H., Ihara,T. and Takagi,M. (1994) Anal. Biochem., 218, 436-443]. Thermodynamic and electrochemical studies of the interaction between the probes and the targets are presented here. The thermodynamics obtained revealed that the conjugation stabilizes the triple-helix complexes by 2-3 kcal mol-1 (1-2 orders increment in binding constant) at 298 K, which corresponds to the effect of elongation of additional several base triplets. The main cause of this thermodynamic stabilization by the conjugation is likely to be the overall conformational change of whole structure of the conjugate rather than the additional local interaction. The redox potential of the probe was independent of the target structure, which is either single- or double stranded. However, the potential is slightly dependent (with a 10-30 mV negative shift on complexation) on the extra sequence in the target, probably because the individual sequence is capable of contacting or interacting with the ferrocenyl group in a slightly different way from each other. This small potential shift itself, however, does not cause any inconvenience on practical applications in detecting the probes by using ECD. These results lead to the conclusion that the redox-active probes are very useful for the microanalysis of nucleic acids due to the stability of the complexes, high detection sensitivity and wide applicability to the target structures (DNA and RNA; single- and double strands) and the sequences. PMID:8932383

  18. Mathematical modeling and hydrodynamics of Electrochemical deburring process

    NASA Astrophysics Data System (ADS)

    Prabhu, Satisha; Abhishek Kumar, K., Dr

    2018-04-01

    The electrochemical deburring (ECD) is a variation of electrochemical machining is considered as one of the efficient methods for deburring of intersecting features and internal parts. Since manual deburring costs are comparatively high one can potentially use this method in both batch production and flow production. The other advantage of this process is that time of deburring as is on the order of seconds as compared to other methods. In this paper, the mathematical modeling of Electrochemical deburring is analysed from its deburring time and base metal removal point of view. Simultaneously material removal rate is affected by electrolyte temperature and bubble formation. The mathematical model and hydrodynamics of the process throw limelight upon optimum velocity calculations which can be theoretically determined. The analysis can be the powerful tool for prediction of the above-mentioned parameters by experimentation.

  19. The role of upstream distal electrodes in mitigating electrochemical degradation of ionic liquid ion sources

    NASA Astrophysics Data System (ADS)

    Brikner, Natalya; Lozano, Paulo C.

    2012-11-01

    Ionic liquid ion sources produce molecular ions from micro-tip emitters wetted with room-temperature molten salts. When a single ion polarity is extracted, counterions accumulate and generate electrochemical reactions that limit the source lifetime. The dynamics of double layer formation are reviewed and distal electrode contacts are introduced to resolve detrimental electrochemical decomposition effects at the micro-tip apex. By having the emitter follow the ionic liquid potential, operation can be achieved for an extended period of time with no apparent degradation of the material, indicating that electrochemistry can be curtailed and isolated to the upstream distal electrode.

  20. Fabrication and characterization of PbO2 electrode modified with [Fe(CN)6](3-) and its application on electrochemical degradation of alkali lignin.

    PubMed

    Hao, Xu; Quansheng, Yuan; Dan, Shao; Honghui, Yang; Jidong, Liang; Jiangtao, Feng; Wei, Yan

    2015-04-09

    PbO2 electrode modified by [Fe(CN)6](3-) (marked as FeCN-PbO2) was prepared by electro-deposition method and used for the electrochemical degradation of alkali lignin (AL). The surface morphology and the structure of the electrodes were characterized by scanning electronic microscopy (SEM) and X-ray diffraction (XRD), respectively. The stability and electrochemical activity of FeCN-PbO2 electrode were characterized by accelerated life test, linear sweep voltammetry, electrochemical impedance spectrum (EIS) and AL degradation. The results showed that [Fe(CN)6](3-) increased the average grain size of PbO2 and formed a compact surface coating. The service lifetime of FeCN-PbO2 electrode was 287.25 h, which was longer than that of the unmodified PbO2 electrode (100.5h). The FeCN-PbO2 electrode showed higher active surface area and higher oxygen evolution potential than that of the unmodified PbO2 electrode. In electrochemical degradation tests, the apparent kinetics coefficient of FeCN-PbO2 electrode was 0.00609 min(-1), which was higher than that of unmodified PbO2 electrode (0.00419 min(-1)). The effects of experimental parameters, such as applied current density, initial AL concentration, initial pH value and solution temperature, on electrochemical degradation of AL by FeCN-PbO2 electrode were evaluated. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. 78 FR 37150 - Airworthiness Directives; Eurocopter Deutschland GmbH (ECD) Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-20

    ... Deutschland GmbH (ECD) Helicopters AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of...): Eurocopter Deutschland GmbH (ECD): Docket No. FAA-2013-0519; Directorate Identifier 2010-SW-068-AD. (a... European Aviation Safety Agency AD No. 2010-0128, dated June 25, 2010. (h) Subject Joint Aircraft Service...

  2. Degradation Mechanisms of Electrochemically Cycled Graphite Anodes in Lithium-ion Cells

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Sandeep

    This research is aimed at developing advanced characterization methods for studying the surface and subsurface damage in Li-ion battery anodes made of polycrystalline graphite and identifying the degradation mechanisms that cause loss of electrochemical capacity. Understanding microstructural aspects of the graphite electrode degradation mechanisms during charging and discharging of Li-ion batteries is of key importance in order to design durable anodes with high capacity. An in-situ system was constructed using an electrochemical cell with an observation window, a large depth-of-field digital microscope and a micro-Raman spectrometer. It was revealed that electrode damage by removal of the surface graphite fragments of 5-10 mum size is the most intense during the first cycle that led to a drastic capacity drop. Once a solid electrolyte interphase (SEI) layer covered the electrode surface, the rate of graphite particle loss decreased. Yet, a gradual loss of capacity continued by the formation of interlayer cracks adjacent to SEI/graphite interfaces. Deposition of co-intercalation compounds, LiC6, Li2CO3 and Li2O, near the crack tips caused partial closure of propagating graphite cracks during cycling and reduced the crack growth rate. Bridging of crack faces by delaminated graphite layers also retarded crack propagation. The microstructure of the SEI layer, formed by electrochemical reduction of the ethylene carbonate based electrolyte, consisted of ˜5-20 nm sized crystalline domains (containing Li2CO3, Li2O 2 and nano-sized graphite fragments) dispersed in an amorphous matrix. During the SEI formation, two regimes of Li-ion diffusion were identified at the electrode/electrolyte interface depending on the applied voltage scan rate (dV/dt). A low Li-ion diffusion coefficient ( DLi+) at dV/dt < 0.05 mVs-1 produced a tubular SEI that uniformly covered the graphite surface and prevented damage at 25°C. At 60°C, a high D Li+ formed a Li2CO3-enriched SEI and ensued a

  3. Mechanism and kinetics of electrochemical degradation of uric acid using conductive-diamond anodes.

    PubMed

    Dbira, Sondos; Bensalah, Nasr; Bedoui, Ahmed

    2016-12-01

    Uric acid (UA) is one of the principal effluents of urine wastewaters, widely used in agriculture as fertilizer, which is potentially dangerous and biorefractory. Hence, the degradation of UA (2,6,8-trihydroxy purine) in aqueous solution of pH 3.0 has been studied by conductive-diamond electrochemical oxidation. Hydroxyl radicals formed from water oxidation at the surface of boron-doped diamond anodes were the main oxidizing agents. Effects of current density and supporting electrolyte on the degradation rate and process efficiency are assessed. Results show that the increase of current density from 20 to 60 mA cm(-2) leads to a decrease in the efficiency of the electrochemical process. In addition, the best degradation occurred in the presence of NaCl as conductive electrolyte. Interestingly, an almost total mineralization of 50 ppm UA was obtained when anodic oxidation was performed at low current densities (20 mA cm(-2)) and in the presence of NaCl. This result confirmed that the electrolysis using diamond anodes is a very interesting technology for the treatment of UA. The identification of UA transformation products was performed by high-performance liquid chromatography (HPLC). HPLC analysis of treated solutions revealed that oxalic acid and urea were the two intermediates found. Oxalic acid was the most persistent product. Based on detected intermediates and bibliographic research, a mechanism of UA mineralization by anodic oxidation has been proposed. Ionic chromatography analysis confirmed the release of [Formula: see text] and [Formula: see text] ions during UA mineralization.

  4. ELECTROCHEMICAL DEGRADATION OF POLYCHLOROBIPHENYLS

    EPA Science Inventory

    Granular graphite is an ideal conductive material for electrochemical reduction technology applications in the field. Granular graphite was used to enhance the transfer of chlorinated aliphatic compounds in saturated, low permeability soils by electroosmosis. It was also used to ...

  5. Photo-assisted electrochemical degradation of polychlorinated biphenyls with boron-doped diamond electrodes.

    PubMed

    Gutiérrez-Hernández, Rubén F; Bello-Mendoza, Ricardo; Hernández-Ramírez, Aracely; Malo, Edi A; Nájera-Aguilar, Hugo A

    2017-09-19

    The capacity of the photo electro-Fenton (PEF) process to degrade a mixture of seven polychlorinated biphenyl (PCB) congeners was studied. Boron-doped diamond (BDD) sheets were used as anode and cathode in the experimental electrolytic cell that contained Na 2 SO 4 0.05 M at pH 3 as supporting electrolyte for the electro generation of H 2 O 2 at the cathode. The effects of UV light intensity (254 and 365 nm), current density (8, 16 and 24 mA cm -2 ) and ferrous ion dosage (0.1, 0.2 and 0.3 mM) on PCB (C 0 = 50 μg L -1 ) degradation were evaluated. The highest level of PCB degradation (97%) was achieved with 16 mA cm -2 of current density, 0.1 mM of ferrous ion and UV light at 365 nm as irradiation source after 6 h of reaction. PCB28, PCB52 and PCB101 were not detected after 0.5, 1.5 and 3 h of reaction, respectively. The degradation of PCB138, PCB153, PCB180 and PCB209 was also high (>95%). The PEF system outperformed other oxidation processes (electro-Fenton, anodic oxidation, Fenton, photo-Fenton and UV photolysis) in terms of reaction rate and degradation efficiency. These results demonstrate for the first time the degradation of PCB209, the most highly chlorinated PCB congener, by an advanced electrochemical oxidation process.

  6. Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: a review.

    PubMed

    Sirés, Ignasi; Brillas, Enric

    2012-04-01

    In the last years, the decontamination and disinfection of waters by means of direct or integrated electrochemical processes are being considered as a very appealing alternative due to the significant improvement of the electrode materials and the coupling with low-cost renewable energy sources. Many electrochemical technologies are currently available for the remediation of waters contaminated by refractory organic pollutants such as pharmaceutical micropollutants, whose presence in the environment has become a matter of major concern. Recent reviews have focused on the removal of pharmaceutical residues upon the application of other important methods like ozonation and advanced oxidation processes. Here, we present an overview on the electrochemical methods devised for the treatment of pharmaceutical residues from both, synthetic solutions and real pharmaceutical wastewaters. Electrochemical separation technologies such as membrane technologies, electrocoagulation and internal micro-electrolysis, which only isolate the pollutants from water, are firstly introduced. The fundamentals and experimental set-ups involved in technologies that allow the degradation of pharmaceuticals, like anodic oxidation, electro-oxidation with active chlorine, electro-Fenton, photoelectro-Fenton and photoelectrocatalysis among others, are further discussed. Progress on the promising solar photoelectro-Fenton process devised and further developed in our laboratory is especially highlighted and documented. The abatement of total organic carbon or reduction of chemical oxygen demand from contaminated waters allows the comparison between the different methods and materials. The routes for the degradation of the some pharmaceuticals are also presented. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Electrochemical degradation of trichloroacetic acid in aqueous media: influence of the electrode material.

    PubMed

    Esclapez, M D; Díez-García, M I; Sàez, V; Bonete, P; González-García, José

    2013-01-01

    The electrochemical degradation of trichloroacetic acid (TCAA) in water has been analysed through voltammetric studies with a rotating disc electrode and controlled-potential bulk electrolyses. The influence of the mass-transport conditions and initial concentration of TCAA for titanium, stainless steel and carbon electrodes has been studied. It is shown that the electrochemical reduction of TCAA takes place prior to the massive hydrogen evolution in the potential window for all electrode materials studied. The current efficiency is high (> 18%) compared with those normally reported in the literature, and the fractional conversion is above 50% for all the electrodes studied. Only dichloroacetic acid (DCAA) and chloride anions were routinely detected as reduction products for any of the electrodes, and reasonable values of mass balance error were obtained. Of the three materials studied, the titanium cathode gave the best results.

  8. Fast electrochemical deposition of Ni(OH)2 precursor involving water electrolysis for fabrication of NiO thin films

    NASA Astrophysics Data System (ADS)

    Koyama, Miki; Ichimura, Masaya

    2018-05-01

    Ni(OH)2 precursor films were deposited by galvanostatic electrochemical deposition (ECD), and NiO thin films were fabricated by annealing in air. The effects of the deposition current densities were studied in a range that included current densities high enough to electrolyze water and generate hydrogen bubbles. The films fabricated by ECD involving water electrolysis had higher transparency and smoother surface morphology than those deposited with lower current densities. In addition, the annealed NiO films clearly had preferred (111) orientation when the deposition was accompanied by water electrolysis. p-type conduction was confirmed for the annealed films.

  9. Enhanced electrochemical degradation of ibuprofen in aqueous solution by PtRu alloy catalyst.

    PubMed

    Chang, Chiung-Fen; Chen, Tsan-Yao; Chin, Ching-Ju Monica; Kuo, Yu-Tsun

    2017-05-01

    Electrochemical advanced oxidation processes (EAOPs) regarded as a green technology for aqueous ibuprofen treatment was investigated in this study. Multi-walled carbon nanotubes (MWCNTs), Pt nanoparticles (Pt NPs), and PtRu alloy, of which physicochemical properties were characterized by XRD and X-ray absorption spectroscopy, were used to synthesize three types of cheap and effective anodes based on commercial conductive glass. Furthermore, the operating parameters, such as the current densities, initial concentrations, and solution pH were also investigated. The intermediates determined by a UPLC-Q-TOF/MS system were used to evaluate the possible reaction pathway of ibuprofen (IBU). The results revealed that the usage of MWCNTs and PtRu alloy can effectively reduce the grain size of electrocatalysts and increase the surface activity from the XRD and XANES analysis. The results of CV analysis, degradation and mineralization efficiencies revealed that the EAOPs with PtRu-FTO anode were very effective due to advantages of the higher capacitance, CO tolerance, catalytic ability at less positive voltage and stability. The concentration trend of intermediates indicated that the potential cytotoxic to human caused by 1-(1-hydroxyenthyl)-4-isobutylbenzene was completely eliminated as the reaction time reaches 60 min. Therefore, EAOPs combined with synthesized anodes can be feasibly applied on the electrochemical degradation of ibuprofen. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. AAV-expressed eCD4-Ig provides durable protection from multiple SHIV challenges

    PubMed Central

    Gardner, Matthew R.; Kattenhorn, Lisa M.; Kondur, Hema R.; von Schaewen, Markus; Dorfman, Tatyana; Chiang, Jessica J.; Haworth, Kevin G.; Decker, Julie M.; Alpert, Michael D.; Bailey, Charles C.; Neale, Ernest S.; Fellinger, Christoph H.; Joshi, Vinita R.; Fuchs, Sebastian P.; Martinez-Navio, Jose M.; Quinlan, Brian D.; Yao, Annie Y.; Mouquet, Hugo; Gorman, Jason; Zhang, Baoshan; Poignard, Pascal; Nussenzweig, Michel C.; Burton, Dennis R.; Kwong, Peter D.; Piatak, Michael; Lifson, Jeffrey D.; Gao, Guangping; Desrosiers, Ronald C.; Evans, David T.; Hahn, Beatrice H.; Ploss, Alexander; Cannon, Paula M.; Seaman, Michael S.; Farzan, Michael

    2015-01-01

    Long-term in vivo expression of a broad and potent entry inhibitor could circumvent the need for a conventional vaccine for HIV-1. Adeno-associated virus (AAV) vectors can stably express HIV-1 broadly neutralizing antibodies (bNAbs)1,2. However even the best bNAbs neutralize 10–50% of HIV-1 isolates inefficiently (IC80 > 5 μg/ml), suggesting that high concentrations of these antibodies would be necessary to achieve general protection3–6. Here we show that eCD4-Ig, a fusion of CD4-Ig with a small CCR5-mimetic sulfopeptide, binds avidly and cooperatively to the HIV-1 envelope glycoprotein (Env) and is more potent than the best bNAbs (geometric mean IC50 < 0.05 μg/ml). Because eCD4-Ig binds only conserved regions of Env, it is also much broader than any bNAb. For example, eCD4-Ig efficiently neutralized 100% of a diverse panel of neutralization-resistant HIV-1, HIV-2, and SIV isolates, including a comprehensive set of isolates resistant to the CD4-binding site bNAbs VRC01, NIH45-46, and 3BNC117. Rhesus macaques inoculated with an AAV vector stably expressed 17 to 77 μg/ml of fully functional rhesus eCD4-Ig for 40 weeks, and these macaques were protected from multiple infectious challenges with SHIV-AD8. Rhesus eCD4-Ig was also markedly less immunogenic than rhesus forms of four well characterized bNAbs. Our data suggest that AAV-delivered eCD4-Ig can function like an effective HIV-1 vaccine. PMID:25707797

  11. Minimizing thermal degradation in gas chromatographic quantitation of pentaerythritol tetranitrate.

    PubMed

    Lubrano, Adam L; Field, Christopher R; Newsome, G Asher; Rogers, Duane A; Giordano, Braden C; Johnson, Kevin J

    2015-05-15

    An analytical method for establishing calibration curves for the quantitation of pentaerythriol tetranitrate (PETN) from sorbent-filled thermal desorption tubes by gas chromatography with electron capture detection (TDS-GC-ECD) was developed. As PETN has been demonstrated to thermally degrade under typical GC instrument conditions, peaks corresponding to both PETN degradants and molecular PETN are observed. The retention time corresponding to intact PETN was verified by high-resolution mass spectrometry with a flowing atmospheric pressure afterglow (FAPA) ionization source, which enabled soft ionization of intact PETN eluting the GC and subsequent accurate-mass identification. The GC separation parameters were transferred to a conventional GC-ECD instrument where analytical method-induced PETN degradation was further characterized and minimized. A method calibration curve was established by direct liquid deposition of PETN standard solutions onto the glass frit at the head of sorbent-filled thermal desorption tubes. Two local, linear relationships between detector response and PETN concentration were observed, with a total dynamic range of 0.25-25ng. Published by Elsevier B.V.

  12. Decolorization and degradation of reactive yellow HF aqueous solutions by electrochemical advanced oxidation processes.

    PubMed

    Bedolla-Guzman, A; Feria-Reyes, R; Gutierrez-Granados, S; Peralta-Hernández, Juan M

    2017-05-01

    Textile manufacturing is the one responsible for water bodies' contamination through the discharge of colored wastes. This work presents the study of reactive yellow HF (RYHF) dye degradation under two different electrochemical advanced oxidation processes (EAOP), namely anodic oxidation (AO) and electro-Fenton (EF)/boron-doped diamond (BDD) process. For the AO, 100 and 300 mg/L solutions using Pt and BDD as anodes in a 100 mL stirred tank cell were used, with a supporting electrolyte of 0.05 mol/L of Na 2 SO 4 at pH 3 under 30 and 50 mA/cm 2 current density. The EF/BDD process was carried out in a flow reactor at 4 and 7 L/min to degrade 100, 200, and 300 mg/L RYHF solutions under 50 and 80 mA/cm 2 . UV-Vis determinations were used for decolorization evaluation, while high-performance liquid chromatography (HPLC) method provided information on dye degradation rate.

  13. Characterization of a low-level unknown isomeric degradation product using an integrated online-offline top-down tandem mass spectrometry platform.

    PubMed

    Yu, Xiang; Warme, Christopher; Lee, Dinah; Zhang, Jing; Zhong, Wendy

    2013-10-01

    An integrated online-offline platform was developed combining automated online LC-MS fraction collection, continuous accumulation of selected ions (CASI), and offline top-down electron capture dissociation (ECD) tandem mass spectrometry experiments to identify a low-level, unknown isomeric degradant in a formulated drug product during an accelerated stability study. By identifying the diagnostic ions of the isoaspartic acid (isoAsp), the top-down ECD experiment showed that the Asp9 in exenatide was converted to isoAsp9 to form the unknown isomeric degradant. The platform described here provides an accurate, straightforward, and low limit of detection method for the analysis of Asp isomerization as well as other potential low-level degradants in therapeutic polypeptides and proteins. It is especially useful for unstable and time-sensitive degradants and impurities.

  14. Enantioselective degradation of Myclobutanil and Famoxadone in grape.

    PubMed

    Lin, Chunmian; Zhang, Lijun; Zhang, Hu; Wang, Qiang; Zhu, Jiahong; Wang, Jianmei; Qian, Mingrong

    2018-01-01

    The enantioselective degradation of myclobutanil and famoxadone enantiomers in grape under open field was investigated in this study. The absolute configuration of myclobutanil and famoxadone enantiomers was determined by the combination of experimental electronic circular dichroism (ECD) and calculated ECD spectra. The enantiomers residues of myclobutanil and famoxadone in grape were measured by sensitive high-performance liquid chromatography/tandem mass spectrometry (HPLC-MS/MS). The linearity, precision, accuracy, matrix effect, and stability were assessed. And the limit of quantification (LOQ) for each enantiomer of myclobutanil and famoxadone in grape was evaluated to be 1.5 and 2 μg kg -1 . The myclobutanil and famoxadone showed the enantioselective degradation in grape, and the enantioselectivity of degradation for myclobutanil was more pronounced than that for famoxadone. The half-lives were 13.1 days and 25.7 days for S-(+)-myclobutanil and R-(-)-myclobutanil in grape, separately. The half-life of S-(+)-famoxadone was 31.5 days slightly shorter than that of R-(-)-famoxadone with half-life being 38.5 days in grape. The probable reasons for the enantioselective degradation behavior of these two fungicides were also discussed. The results in the article might provide a reference to better assess the risks of myclobutanil and famoxadone enantiomers in grapes to human and environment. Graphical abstract The enantioselective analysis of myclobutanil and famoxadone in grape.

  15. Further evidence of psychological factors underlying choice of elective cesarean delivery (ECD) by primigravidae.

    PubMed

    Matinnia, Nasrin; Haghighi, Mohammad; Jahangard, Leila; Ibrahim, Faisal B; Rahman, Hejar A; Ghaleiha, Ali; Holsboer-Trachsler, Edith; Brand, Serge

    2018-01-01

    Requests for elective cesarean delivery (ECD) have increased in Iran. While some sociodemographic and fear-related factors have been linked with this choice, psychological factors such as self-esteem, stress, and health beliefs are under-researched. A total of 342 primigravidae (mean age = 25 years) completed questionnaires covering psychological dimensions such as self-esteem, perceived stress, marital relationship quality, perceived social support, and relevant health-related beliefs. Of the sample, 214 (62.6%) chose to undergo ECD rather than vaginal delivery (VD). This choice was associated with lower self-esteem, greater perceived stress, belief in higher susceptibility to problematic birth and barriers to an easy birth, along with lower perceived severity of ECD, fewer perceived benefits from VD, lower self-efficacy and a lower feeling of preparedness. No differences were found for marital relationship quality or perceived social support. The pattern suggests that various psychological factors such as self-esteem, self-efficacy, and perceived stress underpin the decision by primigravidae to have an ECD.

  16. Electrochemical degradation of 5-FU using a flow reactor with BDD electrode: Comparison of two electrochemical systems.

    PubMed

    Ochoa-Chavez, A S; Pieczyńska, A; Fiszka Borzyszkowska, A; Espinoza-Montero, P J; Siedlecka, E M

    2018-06-01

    In this study, the electrochemical degradation process of 5-fluorouracil (5-FU) in aqueous media was performed using a continuous flow reactor in an undivided cell (system I), and in a divided cell with a cationic membrane (Nafion ® 424) (system II). In system I, 75% of 5-FU degradation was achieved (50 mg L -1 ) with a applied current density j app  = 150 A m -2 , volumetric flow rate qv = 13 L h -1 , after 6 h of electrolysis (k app  = 0.004 min -1 ). The removal efficiency of 5-FU was higher (95%) when the concentration was 5 mg L -1 under the same conditions. Nitrates (22% of initial amount of N), fluorides (27%) and ammonium (10%) were quantified after 6 h of electrolysis. System II, 77% of 5-FU degradation was achieved (50 mg L -1 ) after 6 h of electrolysis (k app  = 0.004 min -1 ). The degradation rate of 5-FU was complete when the concentration was 5 mg L -1 under the same conditions. Nitrates (29% of initial amount of N), fluorides (25%) and ammonium (5%) were quantified after 6 h of electrolysis. In addition, the main organic byproducts identified by mass spectroscopy were aliphatic compound with carbonyl and carboxyl functionalities. Due to, the mineralization of 5-FU with acceptable efficiency of 88% found in system II (j app of 200 A m -2 ), this system seems to be more promising in the cytostatic drug removal. Moreover the efficiency of 5-FU removal in diluted solutions is better in system II than in system I. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Structure dependent antioxidant capacity of phlorotannins from Icelandic Fucus vesiculosus by UHPLC-DAD-ECD-QTOFMS.

    PubMed

    Hermund, Ditte B; Plaza, Merichel; Turner, Charlotta; Jónsdóttir, Rosa; Kristinsson, Hordur G; Jacobsen, Charlotte; Nielsen, Kristian Fog

    2018-02-01

    Brown algae are rich in polyphenolic compounds, phlorotannins, which have been found to possess high in vitro antioxidant capacity, especially DPPH radical scavenging activity, due to the high number of hydroxyl groups. Whereas, the overall antioxidant capacity of brown algae extracts has been widely studied, the antioxidant capacity of individual phlorotannins has been rarely explored. The aim of this study was to determine the structure dependant antioxidant capacity of phlorotannins from Icelandic brown algae, Fucus vesiculosus. The antioxidant capacity of individual phlorotannins was determined by an on-line method using liquid chromatography and an electrochemical detector followed by quadrupole Time of Flight mass spectrometry (UHPLC-DAD-ECD-QTOFMS). Tentative structural elucidation of 13 phlorotannin isomers from EAF was obtained by LC-DAD-QTOFMS, ranging from 374 to 870Da. On-line determination of antioxidant capacity of the individual phlorotannins generally showed that low molecular phlorotannins exhibited higher antioxidant capacity and that the capacity decreased with polymerisation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Role of 99mTc-ECD SPECT in the Management of Children with Craniosynostosis

    PubMed Central

    Barik, Mayadhar; Bajpai, Minu; Das, Rashmi Ranajn; Malhotra, Arun; Panda, Shasanka Shekhar; Sahoo, Manas Kumar; Dwivedi, Sadanand

    2014-01-01

    Purpose of the Report. There is a paucity of data on correlation of various imaging modalities with clinical findings in craniosynostosis. Moreover, no study has specifically reported the role of 99mTc-ECD SPECT in a large number of subjects with craniosynostosis. Materials and Methods. We prospectively analyzed a cohort of 85 patients with craniosynostosis from year 2007 to 2012. All patients underwent evaluation with 99mTc-ECD SPECT and the results were correlated with radiological and surgical findings. Results. 99mTc-ECD SPECT revealed regional perfusion abnormalities in the cerebral hemisphere corresponding to the fused sutures preoperatively that disappeared postoperatively in all the cases. Corresponding to this, the mean mental performance quotient (MPQ) increased significantly (P < 0.05) postoperatively only in those children with absent perfusion defect postoperatively. Conclusions. Our study suggests that early surgery and release of craniosynostosis in patients with preoperative perfusion defects (absent on 99mTc-ECD SPECT study) are beneficial, as theylead to improved MPQ after surgery. PMID:24987670

  19. Electrochemical monitoring of high-temperature molten-salt corrosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, G.; Stott, F.H.; Dawson, J.L.

    1990-02-01

    Hot molten-salt corrosion can cause serious metal degradation in boiler plant, incinerators, and furnaces. In this research, electrochemical-impedance and electrochemical-noise techniques have been evaluated for the monitoring of hot-corrosion processes in such plants. Tests have been carried out on Ni-1% Co and Alloy 800, a commercial material of interest to operators of industrial plants. Electrochemical-impedance and electrochemical-noise data were compared with the results of metallographic examination of the test alloys and showed reasonable correlation between the electrochemical data and the actual degradation processes. This preliminary work indicated that the electrochemical techniques show considerable promise as instruments for the monitoring ofmore » high-temperature corrosion processes.« less

  20. Bio-inspired materials for electrochemical devices

    NASA Astrophysics Data System (ADS)

    Pawlicka, A.; Firmino, A.; Sentanin, F.; Sabadini, R. C.; Jimenez, D. E. Q.; Jayme, C. C.; Mindroiu, M.; Zgarian, R. G.; Tihan, G. T.; Rau, I.; Silva, M. M.; Nogueira, A. F.; Kanicki, J.; Kajzar, F.

    2015-10-01

    Natural macromolecules are very promising row materials to be used in modern technology including security and defense. They are abundant in nature, easy to extract and possess biocompatibility and biodegradability properties. These materials can be modified throughout chemical or physical processes, and can be doped with lithium and rare earth salts, ionic liquids, organic and inorganic acids. In this communication samples of DNA and modified DNA were doped with Prussian Blue (PB), poly(ethylene dioxythiophene) (PEDOT), europium and erbium triflate and organic dyes such as Nile Blue (NB), Disperse Red 1 (DR1) and Disperse Orange 3 (DO3). The colored or colorless membranes were characterized by electrochemical and spectroscopic measurements, and they were applied in electrochromic devices (ECDs) and dye sensitized solar cells (DSSC). ECDs change the color under applied potential, so they can modulate the intensity of transmitted light of 15 to 35%. As the electrochromic materials, WO3 or Prussian blue (PB), are usually blue colored, the color change is from transparent to blue. DNA, and the complexes: DNA-CTMA, DNA-DODA and DNAPEDOT: PSS were also investigated as either hole carrier material (HTM) or polymer electrolyte in dye-sensitized solar cells (DSSC). The DNA-based samples as HTM in small DSSCs revealed a solar energy conversion efficiency of 0.56%. Polymer electrolytes of DNA-CTMA and DNA-DODA, both with 10 wt% of LiI/I2, applied in small DSSC, exhibited the efficiencies of 0.18 and 0.66%, respectively. The obtained results show that natural macromolecules-based membranes are not only environmentally friendly but are also promising materials to be investigated for several electrochemical devices. However, to obtain better performances more research is still needed.

  1. Diagnostics and Degradation Investigations of Li-Ion Battery Electrodes using Single Nanowire Electrochemical Cells

    NASA Astrophysics Data System (ADS)

    Palapati, Naveen Kumar Reddy

    understand the performance of the material system. The NW size changes due to lithiation were measured using an Atomic Force Microscope (AFM) in the tapping mode. Electronic conductivity changes as a function of lithiation was also studied in the model alpha-MnO 2 NWs and was found to decrease substantially with lithium loading. In other measurements involving a comparison between the alpha and todorokite phases of this material system, it was observed that the rate capability of these materials is limited not by the electronic but, by the ionic conductivity. Mechanical degradation of a battery cathode represents an important failure mode, which results in an irreversible loss of capacity with cycling. To analyze and understand these degradation mechanisms, this thesis has tested the evolution of nanomechanical properties of a battery cathode. Specifically, contact-mode AFM measurements have focused on the SOC-dependent changes in the Young's modulus and fracture strength of an alpha-MnO2 NW electrode, which are critical parameters that determine its mechanical stability. These changes have been studied at the end of the first discharge step, 1 full electrochemical cycle, and 20 cycles. The observations show an increase in Young's modulus at low concentrations of lithium loading and this is attributed to the formation of new Li-O bonds within the tunnel-structured cathode. As the lithium loading increases further, the Young's modulus was observed to reduce and this is hypothesized to occur due to the distortions of the crystal at high lithium concentrations. The experimental-to-theoretical fracture strength ratio, which points to the defect density in the crystal at a given stoichiometry, was observed to reduce with electrochemical lithium insertion / cycling. This capability has demonstrated lithiation-dependent mechanical property measurements for the first time and represents an important contribution since degradation models, which are currently in use for materials at

  2. Sequestration of latent TGF-β binding protein 1 into CADASIL-related Notch3-ECD deposits.

    PubMed

    Kast, Jessica; Hanecker, Patrizia; Beaufort, Nathalie; Giese, Armin; Joutel, Anne; Dichgans, Martin; Opherk, Christian; Haffner, Christof

    2014-08-13

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) represents the most common hereditary form of cerebral small vessel disease characterized by early-onset stroke and premature dementia. It is caused by mutations in the transmembrane receptor Notch3, which promote the aggregation and accumulation of the Notch3 extracellular domain (Notch3-ECD) within blood vessel walls. This process is believed to mediate the abnormal recruitment and dysregulation of additional factors including extracellular matrix (ECM) proteins resulting in brain vessel dysfunction. Based on recent evidence indicating a role for the transforming growth factor-β (TGF-β) pathway in sporadic and familial small vessel disease we studied fibronectin, fibrillin-1 and latent TGF-β binding protein 1 (LTBP-1), three ECM constituents involved in the regulation of TGF-β bioavailability, in post-mortem brain tissue from CADASIL patients and control subjects. Fibronectin and fibrillin-1 were found to be enriched in CADASIL vessels without co-localizing with Notch3-ECD deposits, likely as a result of fibrotic processes secondary to aggregate formation. In contrast, LTBP-1 showed both an accumulation and a striking co-localization with Notch3-ECD deposits suggesting specific recruitment into aggregates. We also detected increased levels of the TGF-β prodomain (also known as latency-associated peptide, LAP) indicating dysregulation of the TGF-β pathway in CADASIL development. In vitro analyses revealed a direct interaction between LTBP-1 and Notch3-ECD and demonstrated a specific co-aggregation of LTBP-1 with mutant Notch3. We propose LTBP-1 as a novel component of Notch3-ECD deposits and suggest its involvement in pathological processes triggered by Notch3-ECD aggregation.

  3. Determination of 3-hydroxypropylmercapturic acid in urine by three column-switching high-performance liquid chromatography with electrochemical detection using a diamond electrode.

    PubMed

    Higashi, Kyohei; Shibasaki, Mana; Kuni, Kyoshiro; Uemura, Takeshi; Waragai, Masaaki; Uemura, Kenichi; Igarashi, Kazuei; Toida, Toshihiko

    2017-09-29

    A three column-switching high-performance liquid chromatography (HPLC) using an electrochemical detector (ECD) equipped with a diamond electrode was established to determine 3-hydroxypropylmercapturic acid (3-HPMA) in urine. An extracted urine sample was consecutively fractionated using a strong anion-exchange column (first column) and a C8 column (second column) via a switching valve before application on an Octa Decyl Silyl (ODS) column (third column), followed by ECD analysis. The% recovery of 3-HPMA standard throughout the three-column process and limit of detection (LOD) were 94±1% and 0.1pmol, respectively. A solid phase extraction step is required for the sensitive analysis of 3-HPMA in urine by column-switching HPLC-ECD despite a decreased% recovery (55%) of urine sample spiked with 100pmol of 3-HPMA. To test the utility of our column-switching HPLC-ECD method, 3-HPMA levels of 27 urine samples were determined, and the correlation between HPLC-ECD and LC-Electrospray ionization (ESI)-MS/MS method was examined. As a result, the median values of μmol 3-HPMA/g Creatinine (Cre) in urine obtained by column-switching HPLC-ECD and LC-MS/MS were 2.19±2.12μmol/g Cre and 2.13±3.38μmol/g Cre, respectively, and the calibration curve (y=1.5171x-1.007) exhibited good linearity within a defined range (r 2 =0.907). These results indicate that the combination of column-switching HPLC and ECD is a powerful tool for the specific, reliable detection of 3-HPMA in urine. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Combining a hydrogel and an electrochemical biosensor to determine the extent of degradation of paper artworks.

    PubMed

    Micheli, Laura; Mazzuca, Claudia; Palleschi, Antonio; Palleschi, Giuseppe

    2012-06-01

    Paper-based artworks are among the most valuable assets for transmission of knowledge. Historical paper is composed of different polysaccharides (e.g. cellulose), binders, and glues. During aging all of these components undergo several degradation processes, as a result of external and intrinsic causes, and these can compromise the state of conservation of the document. In this work, application of a new biotechnological strategy for paper artefact preservation is reported. By making use of innovative and non-invasive materials, for example appropriate hydrogels, in combination with selective electrochemical biosensors, it is possible to simultaneously verify the degradation condition of the paper artwork and then to efficiently clean it, while monitoring the process of removal of both pollution and degradation products. In this paper, we focus on specific examples in which such techniques have been applied to paper artworks and that illustrate the advantages and potential of this biotechnology compared with the traditional paper-cleaning methods currently in use.

  5. Degradation of caffeine by conductive diamond electrochemical oxidation.

    PubMed

    Indermuhle, Chloe; Martín de Vidales, Maria J; Sáez, Cristina; Robles, José; Cañizares, Pablo; García-Reyes, Juan F; Molina-Díaz, Antonio; Comninellis, Christos; Rodrigo, Manuel A

    2013-11-01

    The use of Conductive-Diamond Electrochemical Oxidation (CDEO) and Sonoelectrochemical Oxidation (CDSEO) has been evaluated for the removal of caffeine of wastewater. Effects of initial concentration, current density and supporting electrolyte on the process efficiency are assessed. Results show that caffeine is very efficiently removed with CDEO and that depletion of caffeine has two stages depending on its concentration. At low concentrations, opposite to what it is expected in a mass-transfer controlled process, the efficiency increases with current density very significantly, suggesting a very important role of mediated oxidation processes on the removal of caffeine. In addition, the removal of caffeine is faster than TOC, indicating the formation of reaction intermediates. The number and relative abundance of them depend on the operating conditions and supporting electrolyte used. In chloride media, removal of caffeine is faster and more efficiently, although the occurrence of more intermediates takes place. CDSEO does not increase the efficiency of caffeine removal, but it affects to the formation of intermediates. A detailed characterization of intermediates by liquid chromatography time-of-flight mass spectrometry seems to indicate that the degradation of caffeine by CDEO follows an oxidation pathway similar to mechanism proposed by other advanced oxidation processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Comparative studies in electrochemical degradation of sulfamethoxazole and diclofenac in water by using various electrodes and phosphate and sulfate supporting electrolytes.

    PubMed

    Sifuna, Fred W; Orata, Francis; Okello, Veronica; Jemutai-Kimosop, Selly

    2016-09-18

    In this study, the electro-oxidation capacities of Na2SO4 and potassium phosphate buffer supporting electrolytes were tested and compared for destruction of the sulfamethoxazole (SMX) and diclofenac (DCF) on platinum (Pt) electrode and graphite carbon electrode in aqueous medium. The suitability of pharmaceutical active compounds (PhACs) for electrochemical oxidation was tested by cyclic voltammetry (CV) technique performed in the potential range -1.5 to +1.5 V versus Ag/AgCl, which confirmed the electro-activity of the selected PhACs. The degradation and mineralization were monitored by ultraviolet (UV)-Vis spectrophotometry and HPLC. 0.1 M Na2SO4 supporting electrolyte was found to be more effective for mineralization of SMX and DCF, with efficiency of 15-30% more than the 0.1 M phosphate buffer supporting electrolyte on the platinum (Pt) and carbon electrodes. The Pt electrode showed better performance in the degradation of the two PhACs while under the same conditions than the carbon electrode for both 0.1 M Na2SO4 and 0.1 M potassium phosphate buffer supporting electrolytes. The SMX and DCF degradation kinetics best fitted the second-order reaction, with rate constants ranging between 0.000389 and 0.006 mol(2) L(-2) min(-1) and correlation coefficient (R(2)) above 0.987. The second-order degradation kinetics indicated that the rate-determining step in the degradation could be a chemical process, thus suggesting the active involvement of electrolyte radical species in the degradation of SMX and DCF. Results obtained from a real field sample showed a more than 98% removal of the PhACs from the wastewater by electrochemical degradation.

  7. Evaluating the potential of (188)Re-ECD/lipiodol as a therapeutic radiopharmaceutical by intratumoral injection for hepatoma treatment.

    PubMed

    Luo, Tsai-Yueh; Shih, Ying-Hsia; Chen, Chiung-Yu; Tang, I-Chung; Wu, Yu-Long; Kung, Hong-Chang; Lin, Wuu-Jyh; Lin, Xi-Zhang

    2009-10-01

    Intratumoral injection of a radiopharmaceutical is a potential modality to treat liver tumors. Rhenium-188 ((188)Re) was used to chelate with ethyl cysteinate dimer (ECD) in lipiodol solution to form (188)Re-ECD/lipiodol, which was then evaluated for its therapeutic potential in a rodent hepatoma model. Male Sprague-Dawley rats were implanted with N1-S1 hepatoma cells orthotopically and randomly divided into two groups. Group 1 (n = 29) and group 2 (n = 10) received (188)Re-ECD/lipiodol (30.4 +/- 21.8 MBq/0.1 mL) and 0.1 mL of normal saline by intratumoral injection, respectively. Three rats in group 1 were imaged by micro-single-photon emission computed tomography/computed tomography scan to evaluate the biodistribution pattern. All rats were monitored for change of tumor size and survival rate after 2 months. The in vitro stability test showed that (188)Re-ECD was well-retained in the lipiodol phase for 48 hours. The biodistribution image revealed that radioactivity was retained well in hepatomas 24 hours postinjection. Long-term studies demonstrated that rats treated with (188)Re-ECD/Lipiodol had smaller tumor volumes and a better survival rate, compared to the control group. At the end of observation, the survival rates in groups 1 and 2 were 62% and 20%, respectively (p < 0.05). (188)Re-ECD/lipiodol via direct intratumoral injection shows potential for treating hepatoma and warrants further clinical trials.

  8. Comparative study for degradation of industrial dyes by electrochemical advanced oxidation processes with BDD anode in a laboratory stirred tank reactor.

    PubMed

    Alcocer, Salvador; Picos, Alain; Uribe, Agustín R; Pérez, Tzayam; Peralta-Hernández, Juan M

    2018-08-01

    Comparative degradation of the industrial dyes Blue BR, Violet SBL and Brown MF 50 mg L -1 has been studied by the electrochemical oxidation (EOx), electro-Fenton (EF), photoelectro-Fenton (PEF) process based on BDD electrode. Each dye was tested in 0.05 mM Na 2 SO 4 with 0.5 mM Fe 2+ at pH 3.0, and electrolyzed in a stirred tank reactor under galvanostatic conditions with 2.0, 5.0, 7.0, 11.0 and 18.0 mA cm -2 . Dyes were oxidized via hydroxyl radicals (OH) formed at the BDD anode from water oxidation coupled with Fenton's reaction cathodically produced hydrogen peroxide (H 2 O 2 ). Under Na 2 SO 4 medium close to 100% the decolorization was achieved. Through the color abatement rate the dyes behavior was analyzed at the beginning of the oxidation process. Dissolved Organic Carbon (DOC) was tested to evaluate the degradation. From DOC removal, it was established an increasing relative oxidation power of the EOx < EF < PEF, according with their decolorization trend. This study highlights the potential of the electrochemical/BDD process for the degradation of industrial dyes found in wastewaters under appropriate experimental conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Two-dimensional on-line detection of brominated and iodinated volatile organic compounds by ECD and ICP-MS after GC separation.

    PubMed

    Schwarz, A; Heumann, K G

    2002-09-01

    Inductively coupled plasma-mass spectrometry (ICP-MS) was coupled to a gas chromatographic (GC) system with electron capture detector (ECD), which enables relatively easy characterization and quantification of brominated and iodinated (halogenated) volatile organic compounds (HVOCs) in aquatic and air samples. The GC-ECD system is connected in series with an ICP-MS by a directly heated transfer line and an outlet port-hole for elimination of the ECD make-up gas during ignition of the plasma. The hyphenated GC-ECD/ICP-MS system provides high selectivity and sensitivity for monitoring individual HVOCs under fast chromatographic conditions. The ECD is most sensitive for the detection of chlorinated and brominated but the ICP-MS for iodinated compounds. The greatest advantage of the use of an ICP-MS is its element-specific detection, which allows clear identification of compounds in most cases. The absolute detection limits for ICP-MS are 0.5 pg for iodinated, 10 pg for brominated, and 50 pg for chlorinated HVOCs with the additional advantage that calibration is almost independent on different compounds of the same halogen. In contrast to that detection limits for ECD vary for the different halogenated compounds and lie in the range of 0.03-11 pg. The two-dimensional GC-ECD/ICP-MS instrumentation is compared with electron impact mass spectrometry (EI-MS) and microwave induced plasma atomic emission detection (MIP-AED). Even if EI-MS has additional power in identifying unknown peaks by its scan mode, the detection limits are much higher compared with GC-ECD/ICP-MS, whereas the selective ion monitoring mode (SIM) reaches similar detection limits. The MIP-AED detection limits are at the same level as EI-MS in the scan mode.

  10. Effects of complexing agents on electrochemical deposition of FeS x O y in ZnO/FeS x O y heterostructures

    NASA Astrophysics Data System (ADS)

    Supee, A.; Ichimura, M.

    2017-12-01

    Heterostructures which consist of ZnO and FeS x O y were deposited via electrochemical deposition (ECD) for application to solar cells. Galvanostatic ECD was used in FeS x O y deposition with a solution containing 100 mM Na2S2O3 and 30 mM FeSO4. To alter the film properties, L(+)-tartaric acid (C4H6O6) and lactic acid [CH3CH(OH)COOH] were introduced as the complexing agents into the FeS x O y deposition solution. Larger film thickness and smaller oxygen content were obtained for the films deposited with the complexing agents. ZnO was deposited on FeS x O y by two-step pulse ECD from a solution containing Zn(NO3)2. For the ZnO/FeS x O y heterostructures fabricated with/without complexing agents, rectifying properties were confirmed in the current density-voltage ( J- V) characteristics. However, photovoltaic properties were not improved with addition of both complexing agents.

  11. Electrochemical synthesis, characterization and electrochromic properties of a copolymer based on 1,4-bis(2-thienyl)naphthalene and pyrene

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Zhao, Jinsheng; Cui, Chuansheng; Wang, Min; Wang, Zhong; He, Qingpeng

    2012-05-01

    Electrochemical copolymerization of 1,4-bis(2-thienyl)naphthalene (BTN) with pyrene is carried out in acetonitrile (ACN) solution containing sodium perchlorate (NaClO4) as a supporting electrolyte. Characterizations of the resulting copolymer P(BTN-co-pyrene) are performed by cyclic voltammetry (CV), UV-vis spectroscopy, Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The P(BTN-co-pyrene) film has distinct electrochromic properties and exhibits three different colors (yellowish green, green and blue) under various potentials. Maximum contrast (ΔT%) and response time of the copolymer film are measured as 37.8% and 1.71 s at 687 nm. An electrochromic device (ECD) based on P(BTN-co-pyrene) and poly(3,4-ethylenedioxythiophene) (PEDOT) is constructed and characterized. Neutral state of device shows green color while oxidized state reveals blue color. This ECD shows a maximum optical contrast (ΔT%) of 24.4% with a response time of 0.43 s at 635 nm. The coloration efficiency (CE) of the device is calculated to be 349 cm2 C-1 at 635 nm. In addition, the ECD also has satisfactory optical memories and redox stability.

  12. MEASUREMENT OF DIBROMOACETIC ACID IN RAT BLOOD BY GC/ECD

    EPA Science Inventory

    Measurement of Dibromoacetic Acid in Rat Blood by GC/ECD

    M. Leonard Mole, MD 67, Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, USEPA, Research Triangle Park, NC 27711; Phone: 919-541-2680, FAX: 919-541-4017, e-mail: mole.l...

  13. Stimulation effect of electric current density (ECD) on microbial community of a three dimensional particle electrode coupled with biological aerated filter reactor (TDE-BAF).

    PubMed

    Feng, Yan; Li, Xing; Song, Ting; Yu, Yanzhen; Qi, Jingyao

    2017-11-01

    Improving the stimulation effect of electric current density (ECD) on microbial community is critical in designing and operating TDE-BAF. This study investigated the effect of ECD at 0.00, 4.08, 6.12, 12.20, 14.25, 16.30 and 20.20A·m -2 on the removal performance, diversity and structure of microbial community in TDE-BAF. Results indicated that the ECD of 14.25A·m -2 exhibited the highest COD, TOC and NH 4 + -N average removal rates with 93.33%, 91.26% and 93.87%, respectively; Under high ECD, especially exceeding 14.25A·m -2 , the inhibition of growth and activity because of plasmatorrhexis was in agreement with the sharp biomass decline; there was no significant relation between community richness and diversity and removal efficiency below optimum ECD, while above optimal ECD, it was just the opposite; Microbial communities mainly including Hydrogenophaga, Saprospiraceae_uncultured, Delftia, Enterobacter, Pseudomonas, Pseudoxanthomonas, and Nitrosospira and physicochemical properties well explained the excellent removal performance at the optimum ECD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Ti/IrO2/SnO2 anode for electrochemical degradation of chlorpyrifos in water: optimization and degradation performances

    NASA Astrophysics Data System (ADS)

    Pathiraja, G. C.; Wijesingha, M. S.; Nanayakkara, N.

    2017-05-01

    Chlorpyrifos, a widely used organophosphate pesticide which can be found in surface water bodies, is harmful for human body. Thus, treating water contaminated with chlorpyrifos is important. In our previous studies, novel Ti/IrO2-SnO2 anode was successfully developed for electrochemical degradation of chlorpyrifos in chloride free water. In this study, optimization of previously developed Ti/IrO2-SnO2 anode for mineralization of chlorpyrifos was successfully performed through response surface methodology. During the optimization study, two-level factorial design was used to determine the optimal coating solutions concentration for developing the Ti/IrO2-SnO2 anode. Cyclic voltammetry and open circuit potential were performed to investigate the electrochemically active surface area and stability of these anodes. The response surface and contour plots show that 0.3 M of [Ir] and 7.5 mM of [Sn] coated electrode has both highest anodic charge and stability. Scanning Electron Microscopic (SEM) images show the evidence of having both compact and porous regions in the surface of the thin film, resulting larger surface area. Within 6 h, the best result for mineralization (55.56%) of chlorpyrifos was obtained with 0.3 M of [Ir] and 7.5 mM of [Sn] coated anode using Total organic Carbon (TOC) analyzer. Therefore, the optimum coating concentration was found as 0.3 M of [Ir] and 7.5 mM of [Sn]. It would require an energy consumption of 6 kWhm-3.

  15. Degradation of pentachlorophenol by hydroxyl radicals and sulfate radicals using electrochemical activation of peroxomonosulfate, peroxodisulfate and hydrogen peroxide.

    PubMed

    Govindan, Kadarkarai; Raja, Mohan; Noel, Michael; James, E J

    2014-05-15

    The present study is to investigate the reactivity of free radicals (SO4(-) and HO) generated from common oxidants (peroxomonosulfate (PMS), peroxodisulfate (PDS) and hydrogen peroxide (HP)) activated by electrochemically generated Fe(2+)/Fe(3+) ions which furthermore are evaluated to destroy pentachlorophenol (PCP) in aqueous solution. The effect of solution pH and amount of oxidants (PMS, PDS and HP) in electrocoagulation (EC) on PCP degradation is analyzed in detail. The experimental results reveal that, optimum initial solution pH is 4.5 and PMS is more efficient oxidant addition in EC. 75% PCP degradation is achieved at 60min electrolysis time from PMS assisted EC. According to the first order rate constant, faster PCP degradation rate is obtained by PMS assisted EC. The PCP degradation rate by oxidant assisted EC is observed in the following order: EC/PMS>EC/PDS>EC/HP>EC. Further to identify the influences of experimental factors involved in PCP degradation by oxidant assisted EC, an experimental design based on an orthogonal array (OA) L9 (3(3)) is proposed using Taguchi method. The factors that most significantly affect the process robustness are identified as A (oxidant) and B (pH) which together account for nearly 86% of the variance. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. The influence of cathode material on electrochemical degradation of trichloroethylene in aqueous solution.

    PubMed

    Rajic, Ljiljana; Fallahpour, Noushin; Podlaha, Elizabeth; Alshawabkeh, Akram

    2016-03-01

    In this study, different cathode materials were evaluated for electrochemical degradation of aqueous phase trichloroethylene (TCE). A cathode followed by an anode electrode sequence was used to support reduction of TCE at the cathode via hydrodechlorination (HDC). The performance of iron (Fe), copper (Cu), nickel (Ni), aluminum (Al) and carbon (C) foam cathodes was evaluated. We tested commercially available foam materials, which provide large electrode surface area and important properties for field application of the technology. Ni foam cathode produced the highest TCE removal (68.4%) due to its high electrocatalytic activity for hydrogen generation and promotion of HDC. Different performances of the cathode materials originate from differences in the bond strength between atomic hydrogen and the material. With a higher electrocatalytic activity than Ni, Pd catalyst (used as cathode coating) increased TCE removal from 43.5% to 99.8% for Fe, from 56.2% to 79.6% for Cu, from 68.4% to 78.4% for Ni, from 42.0% to 63.6% for Al and from 64.9% to 86.2% for C cathode. The performance of the palladized Fe foam cathode was tested for degradation of TCE in the presence of nitrates, as another commonly found groundwater species. TCE removal decreased from 99% to 41.2% in presence of 100 mg L(-1) of nitrates due to the competition with TCE for HDC at the cathode. The results indicate that the cathode material affects TCE removal rate while the Pd catalyst significantly enhances cathode activity to degrade TCE via HDC. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. [In-situ measurement of background atmospheric HCFC-142b using GC-MS and GC-ECD method].

    PubMed

    Guo, Li-feng; Yao, Bo; Zhou, Ling-xi; Li, Pei-chang; Xu, Lin

    2013-05-01

    Custom-made GC-MS and GC-ECD in-situ measurement systems were established at the Shangdianzi GAW Regional station. From May 2010 to May 2011, the precisions for GC-MS and GC-ECD systems were 0.23% and 0.88%, respectively, and the HCFC-142b mole fraction during the observation period ranged from 21 x 10(-12) to 355 x 10(-12). The result of the independent-sample T test was P > 0.05, and there was no significant difference in HCFC-142b mole fraction measured by the two systems. The small difference of HCFC-142b mole fraction measured by GC-MS and GC-ECD might be associated with the different sampling time and precision of the two systems. A statistical filter of "robust local regression" was applied to separate HCFC-142b background and pollution data. The mean difference, median difference, 25 and 75 percent difference of background data measured by GC-MS and GC-ECD were all within the precisions. The pollution events captured by the two systems showed similar characters. Results from both systems showed a higher HCFC-142b level in summer and autumn than in winter. The pollution mole fraction of the two systems showed similar seasonal changes.

  18. Degradation of ampicillin antibiotic by electrochemical processes: evaluation of antimicrobial activity of treated water.

    PubMed

    Vidal, Jorge; Huiliñir, Cesar; Santander, Rocío; Silva-Agredo, Javier; Torres-Palma, Ricardo A; Salazar, Ricardo

    2018-05-17

    Ampicillin (AMP) is an antibiotic widely used in hospitals and veterinary clinics around the world for treating infections caused by bacteria. Therefore, it is common to find traces of this antibiotic in wastewater from these entities. In this work, we studied the mineralization of this antibiotic in solution as well as the elimination of its antimicrobial activity by comparing different electrochemical advanced oxidation processes (EAOPs), namely electro-oxidation with hydrogen peroxide (EO-H 2 O 2 ), electro-Fenton (EF), and photo electro-Fenton (PEF). With PEF process, a high degradation, mineralization, and complete elimination of antimicrobial activity were achieved in 120-min electrolysis with high efficiency. In the PEF process, fast mineralization rate is caused by hydroxyl radicals (·OH) that are generated in the bulk, on the anode surface, by UV radiation, and most importantly, by the direct photolysis of complexes formed between Fe 3+ and some organic intermediates. Moreover, some products and intermediates formed during the degradation of the antibiotic Ampicillin, such as inorganic ions, carboxylic acids, and aromatic compounds, were determined by photometric and chromatographic methods. An oxidation pathway is proposed for the complete conversion to CO 2 .

  19. Electrochemical and/or microbiological treatment of pyrolysis wastewater.

    PubMed

    Silva, José R O; Santos, Dara S; Santos, Ubiratan R; Eguiluz, Katlin I B; Salazar-Banda, Giancarlo R; Schneider, Jaderson K; Krause, Laiza C; López, Jorge A; Hernández-Macedo, Maria L

    2017-10-01

    Electrochemical oxidation may be used as treatment to decompose partially or completely organic pollutants (wastewater) from industrial processes such as pyrolysis. Pyrolysis is a thermochemical process used to obtain bio-oil from biomasses, generating a liquid waste rich in organic compounds including aldehydes and phenols, which can be submitted to biological and electrochemical treatments in order to minimize its environmental impact. Thus, electrochemical systems employing dimensionally stable anodes (DSAs) have been proposed to enable biodegradation processes in subsurface environments. In order to investigate the organic compound degradation from residual coconut pyrolysis wastewater, ternary DSAs containing ruthenium, iridium and cerium synthetized by the 'ionic liquid method' at different calcination temperatures (500, 550, 600 and 700 °C) for the pretreatment of these compounds, were developed in order to allow posterior degradation by Pseudomonas sp., Bacillus sp. or Acinetobacter sp. bacteria. The electrode synthesized applying 500 °C displayed the highest voltammetric charge and was used in the pretreatment of pyrolysis effluent prior to microbial treatment. Regarding biological treatment, the Pseudomonas sp. exhibited high furfural degradation in wastewater samples electrochemically pretreated at 2.0 V. On the other hand, the use of Acinetobacter efficiently degraded phenolic compounds such as phenol, 4-methylphenol, 2,5-methylphenol, 4-ethylphenol and 3,5-methylphenol in both wastewater samples, with and without electrochemical pretreatment. Overall, the results indicate that the combination of both processes used in this study is relevant for the treatment of pyrolysis wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Performance of electrochemical oxidation and photocatalysis in terms of kinetics and energy consumption. New insights into the p-cresol degradation.

    PubMed

    Escudero, Carlos J; Iglesias, Olalla; Dominguez, Sara; Rivero, Maria J; Ortiz, Inmaculada

    2017-06-15

    This work reports the comparative performance of two Advanced Oxidation Processes (AOPs), electrochemical oxidation and photocatalysis, as individual technological alternatives for the treatment of effluents containing p-cresol. First, the influence of operating parameters in the oxidation and mineralization yield was carried out together with kinetic analysis. Boron Doped Diamond (BDD), RuO 2 and Pt as anodic materials, Na 2 SO 4 and NaCl as supporting electrolytes and different current densities were evaluated in electrochemical oxidation whereas the effect of TiO 2 concentration and radiation was studied in the photocatalytic degradation. Then, the parameter Electrical Energy per Order (E EO ) was calculated to compare the energy consumption in both AOPs, concluding that under the studied conditions the electrochemical treatment with BDD, Na 2 SO 4 and 125 A m -2 showed the best energy efficiency, with an E EO of 5.83 kW h m -3 order -1 for p-cresol and 58.05 kW h m -3 order -1 for DOC removal, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Photocatalytic and Photoelectrochemically Degradation of Chlorsulfuron herbicide

    NASA Astrophysics Data System (ADS)

    Guo, Xu; Liu, Hongwei; Miao, Jinjie; Ma, Zhen

    2017-12-01

    Photocatalytic and photo electrochemical (PEC) degradation of chlorsulfuron herbicide were studied. Two novel PEC electrodes Ti/IrO2-Pt-WO3 (TIW) and Ti/IrO2-Pt-Ag3PO4 (TIA) were designed and some important factors were studied. Lower current density showed lower removal efficiency than higher conditions by electrochemical method. Furthermore, PEC showed higher degradation efficiency than the sum of individual EO and photocatalytic methode.

  2. Electrochemical deposition of layered copper thin films based on the diffusion limited aggregation

    PubMed Central

    Wei, Chenhuinan; Wu, Guoxing; Yang, Sanjun; Liu, Qiming

    2016-01-01

    In this work layered copper films with smooth surface were successfully fabricated onto ITO substrate by electrochemical deposition (ECD) and the thickness of the films was nearly 60 nm. The resulting films were characterized by SEM, TEM, AFM, XPS, and XRD. We have investigated the effects of potential and the concentration of additives and found that 2D dendritic-like growth process leaded the formation of films. A suitable growth mechanism based on diffusion limited aggregation (DLA) mechanism for the copper films formation is presented, which are meaningful for further designing homogeneous and functional films. PMID:27734900

  3. Ultrasound extracted flavonoids from four varieties of Portuguese red grape skins determined by reverse-phase high-performance liquid chromatography with electrochemical detection.

    PubMed

    Novak, Ivana; Janeiro, Patricia; Seruga, Marijan; Oliveira-Brett, Ana Maria

    2008-12-23

    Several flavonoids present in red grape skins from four varieties of Portuguese grapes were determined by reverse-phase high-performance liquid chromatography (RP-HPLC) with electrochemical detection (ECD). Extraction of flavonoids from red grape skins was performed by ultrasonication, and hydrochloric acid in methanol was used as extraction solvent. The developed RP-HPLC method used combined isocratic and gradient elution with amperometric detection with a glassy carbon-working electrode. Good peak resolution was obtained following direct injection of a sample of red grape extract in a pH 2.20 mobile phase. Eleven different flavonoids: cyanidin-3-O-glucoside (kuromanin), delphinidin-3-O-glucoside (myrtillin), petunidin-3-O-glucoside, peonidin-3-O-glucoside, malvidin-3-O-glucoside (oenin), (+)-catechin, rutin, fisetin, myricetin, morin and quercetin, can be separated in a single run by direct injection of sample solution. The limit of detection obtained for these compounds by ECD was 20-90 pg/L, 1000 times lower when compared with photodiode array (PDA) limit of detection of 12-55 ng/L. RP-HPLC-ECD was characterized by an excellent sensitivity and selectivity, and appropriate for the simultaneous determination of these electroactive phenolic compounds present in red grape skins.

  4. Systems, methods and computer readable media for estimating capacity loss in rechargeable electrochemical cells

    DOEpatents

    Gering, Kevin L.

    2013-06-18

    A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware periodically samples charge characteristics of the electrochemical cell. The computing system periodically determines cell information from the charge characteristics of the electrochemical cell. The computing system also periodically adds a first degradation characteristic from the cell information to a first sigmoid expression, periodically adds a second degradation characteristic from the cell information to a second sigmoid expression and combines the first sigmoid expression and the second sigmoid expression to develop or augment a multiple sigmoid model (MSM) of the electrochemical cell. The MSM may be used to estimate a capacity loss of the electrochemical cell at a desired point in time and analyze other characteristics of the electrochemical cell. The first and second degradation characteristics may be loss of active host sites and loss of free lithium for Li-ion cells.

  5. Electrochemical inactivation of cyanobacteria and microcystin degradation using a boron-doped diamond anode - A potential tool for cyanobacterial bloom control.

    PubMed

    Meglič, Andrej; Pecman, Anja; Rozina, Tinkara; Leštan, Domen; Sedmak, Bojan

    2017-03-01

    Cyanobacterial blooms are global phenomena that can occur in calm and nutrient-rich (eutrophic) fresh and marine waters. Human exposure to cyanobacteria and their biologically active products is possible during water sports and various water activities, or by ingestion of contaminated water. Although the vast majority of harmful cyanobacterial products are confined to the interior of the cells, these are eventually released into the surrounding water following natural or artificially induced cell death. Electrochemical oxidation has been used here to damage cyanobacteria to halt their proliferation, and for microcystin degradation under in-vitro conditions. Partially spent Jaworski growth medium with no addition of supporting electrolytes was used. Electrochemical treatment resulted in the cyanobacterial loss of cell-buoyancy regulation, cell proliferation arrest, and eventual cell death. Microcystin degradation was studied separately in two basic modes of treatment: batch-wise flow, and constant flow, for electrolytic-cell exposure. Batch-wise exposure simulates treatment under environmental conditions, while constant flow is more appropriate for the study of boron-doped diamond electrode efficacy under laboratory conditions. The effectiveness of microcystin degradation was established using high-performance liquid chromatography-photodiode array detector analysis, while the biological activities of the products were estimated using a colorimetric protein phosphatase-1 inhibition assay. The results indicate potential for the application of electro-oxidation methods for the control of bloom events by taking advantage of specific intrinsic ecological characteristics of bloom-forming cyanobacteria. The applicability of the use of boron-doped diamond electrodes in remediation of water exposed to cyanobacteria bloom events is discussed. Copyright © 2016. Published by Elsevier B.V.

  6. 78 FR 67020 - Airworthiness Directives; Eurocopter Deutschland GmbH (ECD) Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ... Airworthiness Directives; Eurocopter Deutschland GmbH (ECD) Helicopters AGENCY: Federal Aviation Administration... the AD Docket at http://www.regulations.gov . (h) Subject Joint Aircraft Service Component (JASC) Code..., of Eurocopter Deutschland GmbH Flight Manual BO 105 C/CS, Revision 5, dated March 12, 2010. (ii...

  7. Simultaneous determination of quinolones for veterinary use by high-performance liquid chromatography with electrochemical detection.

    PubMed

    Rodríguez Cáceres, M I; Guiberteau Cabanillas, A; Galeano Díaz, T; Martínez Cañas, M A

    2010-02-01

    A selective method based on high-performance liquid chromatography with electrochemical detection (HPLC-ECD) has been developed to enable simultaneous determination of three fluoroquinolones (FQs), namely danofloxacin (DANO), difloxacin (DIFLO) and sarafloxacin (SARA). The fluoroquinolones are separated on a Novapack C-18 column and detected in a high sensitivity amperometric cell at a potential of +0.8 V. Solid-phase extraction was used for the extraction of the analytes in real samples. The range of concentration examined varied from 10 to 150 ng g(-1) for danofloxacin, from 25 to 100 ng g(-1) for sarafloxacin and from 50 to 315 ng g(-1) for difloxacin, respectively. The method presents detection limits under 10 ng g(-1) and recoveries around 90% for the three analytes have been obtained in the experiments with fortified samples. This HPLC-ECD approach can be useful in the routine analysis of antibacterial residues being less expensive and less complicated than other more powerful tools as hyphenated techniques. 2009 Elsevier B.V. All rights reserved.

  8. Degradation of graphene coated copper in simulated proton exchange membrane fuel cell environment: Electrochemical impedance spectroscopy study

    NASA Astrophysics Data System (ADS)

    Ren, Y. J.; Anisur, M. R.; Qiu, W.; He, J. J.; Al-Saadi, S.; Singh Raman, R. K.

    2017-09-01

    Metallic materials are most suitable for bipolar plates of proton exchange membrane fuel cell (PEMFC) because they possess the required mechanical strength, durability, gas impermeability, acceptable cost and are suitable for mass production. However, metallic bipolar plates are prone to corrosion or they can passivate under PEMFC environment and interrupt the fuel cell operation. Therefore, it is highly attractive to develop corrosion resistance coating that is also highly conductive. Graphene fits these criteria. Graphene coating is developed on copper by chemical vapor deposition (CVD) with an aim to improving corrosion resistance of copper under PEMFC condition. The Raman Spectroscopy shows the graphene coating to be multilayered. The electrochemical degradation of graphene coated copper is investigated by electrochemical impedance spectroscopy (EIS) in 0.5 M H2SO4 solution at room temperature. After exposure to the electrolyte for up to 720 h, the charge transfer resistance (Rt) of the graphene coated copper is ∼3 times greater than that of the bare copper, indicating graphene coatings could improve the corrosion resistance of copper bipolar plates.

  9. Circuits and methods for determination and control of signal transition rates in electrochemical cells

    DOEpatents

    Jamison, David Kay

    2016-04-12

    A charge/discharge input is for respectively supplying charge to, or drawing charge from, an electrochemical cell. A transition modifying circuit is coupled between the charge/discharge input and a terminal of the electrochemical cell and includes at least one of an inductive constituent, a capacitive constituent and a resistive constituent selected to generate an adjusted transition rate on the terminal sufficient to reduce degradation of a charge capacity characteristic of the electrochemical cell. A method determines characteristics of the transition modifying circuit. A degradation characteristic of the electrochemical cell is analyzed relative to a transition rate of the charge/discharge input applied to the electrochemical cell. An adjusted transition rate is determined for a signal to be applied to the electrochemical cell that will reduce the degradation characteristic. At least one of an inductance, a capacitance, and a resistance is selected for the transition modifying circuit to achieve the adjusted transition rate.

  10. Fabrication of potato-like silver molybdate microstructures for photocatalytic degradation of chronic toxicity ciprofloxacin and highly selective electrochemical detection of H2O2

    NASA Astrophysics Data System (ADS)

    Kumar, J. Vinoth; Karthik, R.; Chen, Shen-Ming; Muthuraj, V.; Karuppiah, Chelladurai

    2016-09-01

    In the present work, potato-like silver molybdate (Ag2MoO4) microstructures were synthesized through a simple hydrothermal method. The microstructures of Ag2MoO4 were characterized by various analytical and spectroscopic techniques such as XRD, FTIR, Raman, SEM, EDX and XPS. Interestingly, the as-prepared Ag2MoO4 showed excellent photocatalytic and electrocatalytic activity for the degradation of ciprofloxacin (CIP) and electrochemical detection of hydrogen peroxide (H2O2), respectively. The ultraviolet-visible (UV-Vis) spectroscopy results revealed that the potato-like Ag2MoO4 microstructures could offer a high photocatalytic activity towards the degradation of CIP under UV-light illumination, leads to rapid degradation within 40 min with a degradation rate of above 98%. In addition, the cyclic voltammetry (CV) and amperometry studies were realized that the electrochemical performance of Ag2MoO4 modified electrode toward H2O2 detection. Our H2O2 sensor shows a wide linear range and lower detection limit of 0.04-240 μM and 0.03 μM, respectively. The Ag2MoO4 modified electrode exhibits a high selectivity towards the detection of H2O2 in the presence of different biological interferences. These results suggested that the development of potato-like Ag2MoO4 microstructure could be an efficient photocatalyst as well as electrocatalyst in the potential application of environmental, biomedical and pharmaceutical samples.

  11. Research priority setting for integrated early child development and violence prevention (ECD+) in low and middle income countries: An expert opinion exercise.

    PubMed

    Tomlinson, Mark; Jordans, Mark; MacMillan, Harriet; Betancourt, Theresa; Hunt, Xanthe; Mikton, Christopher

    2017-10-01

    Child development in low and middle income countries (LMIC) is compromised by multiple risk factors. Reducing children's exposure to harmful events is essential for early childhood development (ECD). In particular, preventing violence against children - a highly prevalent risk factor that negatively affects optimal child development - should be an intervention priority. We used the Child Health and Nutrition Initiative (CHNRI) method for the setting of research priorities in integrated Early Childhood Development and violence prevention programs (ECD+). An expert group was identified and invited to systematically list and score research questions. A total of 186 stakeholders were asked to contribute five research questions each, and contributions were received from 81 respondents. These were subsequently evaluated using a set of five criteria: answerability; effectiveness; feasibility and/or affordability; applicability and impact; and equity. Of the 400 questions generated, a composite group of 50 were scored by 55 respondents. The highest scoring research questions related to the training of Community Health Workers (CHW's) to deliver ECD+ interventions effectively and whether ECD+ interventions could be integrated within existing delivery platforms such as HIV, nutrition or mental health platforms. The priority research questions can direct new research initiatives, mainly in focusing on the effectiveness of an ECD+ approach, as well as on service delivery questions. To the best of our knowledge, this is the first systematic exercise of its kind in the field of ECD+. The findings from this research priority setting exercise can help guide donors and other development actors towards funding priorities for important future research related to ECD and violence prevention. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. The Impact of Seed Layer Structure on the Recrystallization of ECD Cu and its Alloys

    NASA Astrophysics Data System (ADS)

    O'Brien, Brendan B.

    Despite the significant improvements originally offered by the use of Cu over Al as the interconnect material for semiconductor devices, the continued down-scaling of interconnects has presented significant challenges for semiconductor engineers. As the metal line widths shrink, both the conductivity and reliability of lines decrease due to a stubbornly fine-grained microstructure in narrow lines. Understanding microstructural transformation of the ECD Cu in narrow features which leads to this polygranular microstructure is the first focus of this dissertation. As in the case of Cu films, the underlying seed layer strongly influences progress of transformation. Unlike films, however, the seed layer is not homogenous in patterned substrates, but differs according to the size of the trench and the location within the trench (field, bottom, and sidewall). Based on these findings, and the known influence of texture on the transformation of ECD Cu, a rapid trench initiated transformation process was posited for narrow interconnect lines. Time-resolved TEM observation of the ECD Cu in 48 nm lines during the transformation process confirmed the hypothesis. In fact, the TEM images revealed that the transformation was even faster than anticipated, and that the microstructure of the Cu inside the lines was stagnant after a mere 1.5 hours at room temperature. Studies of the transformation at elevated temperatures found that, despite anneals at 250°C for up to an hour, the grain size distribution for the Cu in narrow lines for all times converged, whether annealed at room temperature or 250°C. These data suggest that process was being driven by the 'consumable' internal energy stored in the as-plated microstructure. This is different than the transformation of the overburden, which is driven by a competition between surface energy and internal stress buildup due to film densification and relief due to the secondary growth of a 200 texture component. Based on these findings

  13. Cascade degradation of organic matters in brewery wastewater using a continuous stirred microbial electrochemical reactor and analysis of microbial communities

    PubMed Central

    Wang, Haiman; Qu, Youpeng; Li, Da; Ambuchi, John J.; He, Weihua; Zhou, Xiangtong; Liu, Jia; Feng, Yujie

    2016-01-01

    A continuous stirred microbial electrochemical reactor (CSMER), comprising of a complete mixing zone (CMZ) and microbial electrochemical zone (MEZ), was used for brewery wastewater treatment. The system realized 75.4 ± 5.7% of TCOD and 64.9 ± 4.9% of TSS when fed with brewery wastewater concomitantly achieving an average maximum power density of 304 ± 31 m W m−2. Cascade utilization of organic matters made the CSMER remove a wider range of substrates compared with a continuous stirred tank reactor (CSTR), in which process 79.1 ± 5.6% of soluble protein and 86.6 ± 2.2% of soluble carbohydrates were degraded by anaerobic digestion in the CMZ and short-chain volatile fatty acids were further decomposed and generated current in the MEZ. Co-existence of fermentative bacteria (Clostridium and Bacteroides, 19.7% and 5.0%), acetogenic bacteria (Syntrophobacter, 20.8%), methanogenic archaea (Methanosaeta and Methanobacterium, 40.3% and 38.4%) and exoelectrogens (Geobacter, 12.4%) as well as a clear spatial distribution and syntrophic interaction among them contributed to the cascade degradation process in CSMER. The CSMER shows great promise for practical wastewater treatment application due to high pre-hydrolysis and acidification rate, high energy recovery and low capital cost. PMID:27270788

  14. Electrochemical properties of the erbium-chitosan-fluorine-modified PbO2 electrode for the degradation of 2,4-dichlorophenol in aqueous solution.

    PubMed

    Wang, Ying; Shen, Zhenyao; Li, Yang; Niu, Junfeng

    2010-05-01

    The erbium (Er)-chitosan-fluorine (F) modified PbO(2) electrode was prepared by electrodeposition method, and its use for adsorption and electrochemical degradation of 2,4-dichlorophenol (2,4-DCP) in aqueous solution was compared with F-PbO(2) and Er-F-PbO(2) electrodes in a batch experiment. The electrodes were characterized by scanning electron microscopy, X-ray diffraction and cyclic voltammetry. Degradation of 2,4-DCP depending on Er and chitosan contents was discussed. The results showed that Er(2)O(3) and chitosan were scattered between the prevailing crystal structure of beta-PbO(2) and thus decreased the internal stress of PbO(2) film. Prior to each electrolysis, the modified PbO(2) anode was first pre-saturated with 2,4-DCP solution for 360 min to preclude the 2,4-DCP decrease due to adsorption. Among the electrodes examined in our study, the highest adsorption and electrochemical degradation for 2,4-DCP and TOC removals that are due to oxidation and adsorption of the organic products onto the chitosan was observed on Er-chitosan-F-PbO(2) electrode. At an applied current density of 5 mAcm(-2), the removal percentages of 2,4-DCP and TOC (solution volume: 180 mL, initial 2,4-DCP concentration: 90 mgL(-1)) were 95% after 120 min and 53% after 360 min, respectively. At Er amount of 10mM in the precursor coating solution, the degradation and mineralization removal for 2,4-DCP on the Er-F-PbO(2) electrode reached a maximum. At chitosan amount of 5 gL(-1), the highest TOC removal on the Er-chitosan-F-PbO(2) electrode was observed. Intermediates mainly including aliphatic carboxylic acids were examined and a possible degradation pathway for 2,4-DCP in aqueous solution involving dechlorination and hydroxylation reactions was proposed. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. Acetaminophen degradation by electro-Fenton and photoelectro-Fenton using a double cathode electrochemical cell.

    PubMed

    de Luna, Mark Daniel G; Veciana, Mersabel L; Su, Chia-Chi; Lu, Ming-Chun

    2012-05-30

    Acetaminophen is a widely used drug worldwide and is one of the most frequently detected in bodies of water making it a high priority trace pollutant. This study investigated the applicability of the electro-Fenton and photoelectro-Fenton processes using a double cathode electrochemical cell in the treatment of acetaminophen containing wastewater. The Box-Behnken design was used to determine the effects of initial Fe(2+) and H(2)O(2) concentrations and applied current density. Results showed that all parameters positively affected the degradation efficiency of acetaminophen with the initial Fe(2+) concentration being the most significant parameter for both processes. The acetaminophen removal efficiency for electro-Fenton was 98% and chemical oxygen demand (COD) removal of 43% while a 97% acetaminophen removal and 42% COD removal were observed for the photoelectro-Fenton method operated at optimum conditions. The electro-Fenton process was only able to obtain 19% total organic carbon (TOC) removal while the photoelectro-Fenton process obtained 20%. Due to negligible difference between the treatment efficiencies of the two processes, the electro-Fenton method was proven to be more economically advantageous. The models obtained from the study were applicable to a wide range of acetaminophen concentrations and can be used in scale-ups. Thirteen different types of intermediates were identified and a degradation pathway was proposed. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Evaluation of different electrochemical methods on the oxidation and degradation of Reactive Blue 4 in aqueous solution.

    PubMed

    Carneiro, Patricia A; Osugi, Marly E; Fugivara, Cecílio S; Boralle, Nivaldo; Furlan, Maysa; B Zanoni, Maria Valnice

    2005-04-01

    The oxidation of a reactive dye, Reactive Blue 4, RB4, (C.I. 61205), widely used in the textile industries to color natural fibers, was studied by electrochemical techniques. The oxidation on glassy carbon electrode and reticulated vitreous carbon electrode occurs in only one step at 2.0 < pH < 12 involving a two-electron transfer to the amine group leading to the imide derivative. Dye solution was not decolorized effectively in this electrolysis process. Nevertheless, the oxidation of this dye on Ti/SnO2/SbO(x) (3% mol)/RuO2 (1% mol) electrode showed 100% of decolorization and 60% of total organic carbon removal in Na2SO4 0.2 M at pH 2.2 and potential of +2.4V. Experiments on degradation photoelectrocatalytic were also carried out for RB4 degradation in Na2SO4 0.1 M, pH 12, using a Ti/TiO2 photoanode biased at +1.0 V and UV light. After 1h of electrolysis the results indicated total color removal and 37% of mineralization.

  17. Using the ECD Framework to Support Evidentiary Reasoning in the Context of a Simulation Study for Detecting Learner Differences in Epistemic Games

    ERIC Educational Resources Information Center

    Sweet, Shauna J.; Rupp, Andre A.

    2012-01-01

    The "evidence-centered design" (ECD) framework is a powerful tool that supports careful and critical thinking about the identification and accumulation of evidence in assessment contexts. In this paper, we demonstrate how the ECD framework provides critical support for designing simulation studies to investigate statistical methods…

  18. The levels of bone alkaline phosphatase (BALP) and soluble epidermal growth factor receptor-2 (ECD/HER-2) in pediatric patients with osteosarcoma during clinical treatment.

    PubMed

    Rychłowska-Pruszyńska, Magdalena; Gajewska, Joanna; Ambroszkiewicz, Jadwiga; Karwacki, Marek; Szamotulska, Katarzyna

    2018-01-01

    Aim: The aim of this study was to assess the usefulness of bone-specific alkaline phosphatase (BALP) and the extracelluar domain of human epidermal growth factor receptor 2 (ECD/HER-2) measurements in pediatric patients with osteosarcoma as prospective prognostic and predictive markers for monitoring the treatment and early detection of disease recurrence. Material and methods: We studied 22 patients (5 girls, 17 boys) aged 7-20 years with osteosarcoma (OS) treated at the Institute of Mother and Child in Warsaw. All the patients were evaluated for the serum levels of BALP and ECD/HER-2 before treatment, during pre- and postoperative chemotherapy and after the completion of treatment. Healthy children (n=22) were the reference group. The levels of BALP and ECD/HER-2 were measured using immunoenzymatic methods. Results: The values of BALP and ECD/HER-2 proteins were higher (p<0.01; p<0.05, respectively) in patients with osteosarcoma at the time of diagnosis compared with the control group. The values of both markers significantly decreased during chemotherapy in most patients with remission. In contrast to ECD/HER-2, the value of BALP after therapy was higher in patients with progression than with remission (p<0.001). Conclusions: Our results demonstrate the different pattern of BALP and ECD/HER-2 proteins during clinical treatment in patients with osteosarcoma. Higher values of BALP may characterize the progression of the disease and unfavourable prognosis. Further longitudinal studies are necessary to confirm the prognostic values of BALP and ECD/HER-2 proteins in this group of patients.

  19. Hypothermic oxygenated machine perfusion (HOPE) for orthotopic liver transplantation of human liver allografts from extended criteria donors (ECD) in donation after brain death (DBD): a prospective multicentre randomised controlled trial (HOPE ECD-DBD).

    PubMed

    Czigany, Zoltan; Schöning, Wenzel; Ulmer, Tom Florian; Bednarsch, Jan; Amygdalos, Iakovos; Cramer, Thorsten; Rogiers, Xavier; Popescu, Irinel; Botea, Florin; Froněk, Jiří; Kroy, Daniela; Koch, Alexander; Tacke, Frank; Trautwein, Christian; Tolba, Rene H; Hein, Marc; Koek, Ger H; Dejong, Cornelis H C; Neumann, Ulf Peter; Lurje, Georg

    2017-10-10

    Orthotopic liver transplantation (OLT) has emerged as the mainstay of treatment for end-stage liver disease. In an attempt to improve the availability of donor allografts and reduce waiting list mortality, graft acceptance criteria were extended increasingly over the decades. The use of extended criteria donor (ECD) allografts is associated with a higher incidence of primary graft non-function and/or delayed graft function. As such, several strategies have been developed aiming at reconditioning poor quality ECD liver allografts. Hypothermic oxygenated machine perfusion (HOPE) has been successfully tested in preclinical experiments and in few clinical series of donation after cardiac death OLT. HOPE ECD-DBD is an investigator-initiated, open-label, phase-II, prospective multicentre randomised controlled trial on the effects of HOPE on ECD allografts in donation after brain death (DBD) OLT. Human whole organ liver grafts will be submitted to 1-2 hours of HOPE (n=23) via the portal vein before implantation and are going to be compared with a control group (n=23) of patients transplanted after conventional cold storage. Primary (peak and Δ peak alanine aminotransferase within 7 days) and secondary (aspartate aminotransferase, bilirubin and international normalised ratio, postoperative complications, early allograft dysfunction, duration of hospital and intensive care unit stay, 1-year patient and graft survival) endpoints will be analysed within a 12-month follow-up. Extent of ischaemia-reperfusion (I/R) injury will be assessed using liver tissue, perfusate, bile and serum samples taken during the perioperative phase of OLT. The study was approved by the institutional review board of the RWTH Aachen University, Aachen, Germany (EK 049/17). The current paper represent the pre-results phase. First results are expected in 2018. NCT03124641. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No

  20. Evaluating tetracycline degradation pathway and intermediate toxicity during the electrochemical oxidation over a Ti/Ti4O7 anode.

    PubMed

    Wang, Jianbing; Zhi, Dan; Zhou, Hao; He, Xuwen; Zhang, Dayi

    2018-06-15

    min due to further transformation of TC and intermediates. By comprehensively analyzing the influential factors and complete degradation pathway of TC electrochemical oxidation on the Ti/Ti 4 O 7 anode, our research provides deeper insights into the risk assessment of intermediates and their toxicity, assigning new perspectives for practical electrochemical oxidation to effectively eliminate the amount and toxicity of TC and other antibiotics in wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Iodinated contrast media electro-degradation: process performance and degradation pathways.

    PubMed

    Del Moro, Guido; Pastore, Carlo; Di Iaconi, Claudio; Mascolo, Giuseppe

    2015-02-15

    The electrochemical degradation of six of the most widely used iodinated contrast media was investigated. Batch experiments were performed under constant current conditions using two DSA® electrodes (titanium coated with a proprietary and patented mixed metal oxide solution of precious metals such as iridium, ruthenium, platinum, rhodium and tantalum). The degradation removal never fell below 85% (at a current density of 64 mA/cm(2) with a reaction time of 150 min) when perchlorate was used as the supporting electrolyte; however, when sulphate was used, the degradation performance was above 80% (at a current density of 64 mA/cm(2) with a reaction time of 150 min) for all of the compounds studied. Three main degradation pathways were identified, namely, the reductive de-iodination of the aromatic ring, the reduction of alkyl aromatic amides to simple amides and the de-acylation of N-aromatic amides to produce aromatic amines. However, as amidotrizoate is an aromatic carboxylate, this is added via the decarboxylation reaction. The investigation did not reveal toxicity except for the lower current density used, which has shown a modest toxicity, most likely for some reaction intermediates that are not further degraded. In order to obtain total removal of the contrast media, it was necessary to employ a current intensity between 118 and 182 mA/cm(2) with energy consumption higher than 370 kWh/m(3). Overall, the electrochemical degradation was revealed to be a reliable process for the treatment of iodinated contrast media that can be found in contaminated waters such as hospital wastewater or pharmaceutical waste-contaminated streams. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Strontium coating by electrochemical deposition improves implant osseointegration in osteopenic models

    PubMed Central

    LIANG, YONGQIANG; LI, HAOYAN; XU, JIANG; LI, XIN; LI, XINCHANG; YAN, YUTING; QI, MENGCHUN; HU, MIN

    2015-01-01

    Osteopenia, a preclinical state of osteoporosis, restricts the application of adult orthodontic implant anchorage and tooth implantation. Strontium (Sr) is able to promote bone formation and inhibit bone absorption. The aim of the present study was to evaluate a new method for improving the success rate of dental implantation. In this study, an electrochemical deposition (ECD) method was used to prepare a Sr coating on a titanium implant. The coating composition was investigated by energy dispersive X-ray spectroscopy and X-ray diffraction, and the surface morphology of the coating was studied using scanning electron microscopy. A total of 24 Sprague-Dawley rats received bilateral ovariectomy (OVX) and an additional 12 rats underwent a sham surgery. All rats were then implanted in the bilateral tibiae with titanium mini-implants with or without a Sr coating. The results of histological examination and a fluorescence double labeling assay showed strong new bone formation with a wider zone between the double labels, a higher rate of bone mineralization and better osseointegration in the OVX rats that received Sr-coated implants compared with the OVX rats that received uncoated implants. The study indicates that Sr coatings are easily applied by an ECD method, and that Sr coatings have a promoting effect on implant osseointegration in animals with osteopenia. PMID:25452797

  3. OAT3-mediated extrusion of the 99mTc-ECD metabolite in the mouse brain

    PubMed Central

    Kikuchi, Tatsuya; Okamura, Toshimitsu; Wakizaka, Hidekatsu; Okada, Maki; Odaka, Kenichi; Yui, Joji; Tsuji, Atsushi B; Fukumura, Toshimitsu; Zhang, Ming-Rong

    2014-01-01

    After administration of the 99mTc complex with N,N'-1,2-ethylenediylbis-L-cysteine diethyl ester (99mTc-ECD), a brain perfusion imaging agent, the radioactive metabolite is trapped in primate brain, but not in mouse and rat. Here, we investigate the involvement of metabolite extrusion by organic anion transporter 3 (OAT3), which is highly expressed at the blood–brain barrier in mice, in this species difference. The efflux rate of radioactivity in the cerebrum of Oat3−/− mice at later phase was 20% of that of control mice. Thus, organic anion transporters in mouse brain would be involved in the low brain retention of radioactivity after 99mTc-ECD administration. PMID:24496177

  4. hEcd, A Novel Regulator of Mammary Epithelial Cell Survival

    DTIC Science & Technology

    2009-09-01

    theYeast Two hybrid analysis with human papilloma virus oncogene E6 (the most efficient oncogene to immortalize hMECs in vitro) as a bait and mammary...transformation. We have identified a novel protein us ing the Yeast Two hybrid analysis with human papilloma virus oncogene E6 (the most efficient...epithelial cell cDNA library, we identified hEcd ( human orthologue of Drosophila Ecdysoneless) as a novel E6 binding partner. To study the cellular

  5. Degradation characteristics of 2,4-dichlorophenoxyacetic acid in electro-biological system.

    PubMed

    Zhang, Jingli; Cao, Zhanping; Zhang, Hongwei; Zhao, Lianmei; Sun, Xudong; Mei, Feng

    2013-11-15

    The reductive degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) was studied in an electro-biological system, a biological system and an electric catalytic system, respectively. Electrochemical characteristics were monitored by cyclic voltammetry and the intermediate products of 2,4-D degradation were determined by high speed liquid chromatography (HPLC). The results showed that all 2,4-D degradations in the three systems conformed to the kinetics characteristics of one-order reaction, and the degradation kinetics constants were 28.74 × 10(-2) h(-1), 19.73 × 10(-2) h(-1) and 3.54 × 10(-2) h(-1), respectively. The kinetics constant in the electro-biological system was higher than the sum in the other two systems by 19%. The electrochemical assistance provided the electrons and accelerated the electron transfer rate in the microbial degradation of 2,4-D. The degradation resulted from the microbial reduction strengthened by the electrochemical assistance. The electron transfer existed between the electrode, cytochrome, NAD and the pollutants. A long-range electron transfer process could be achieved on the multi-phase interfaces between the electrode, bacteria and the pollutants. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Mineralization of pyrrole, a recalcitrant heterocyclic compound, by electrochemical method: Multi-response optimization and degradation mechanism.

    PubMed

    Hiwarkar, Ajay Devidas; Singh, Seema; Srivastava, Vimal Chandra; Mall, Indra Deo

    2017-08-01

    In this study, the electrochemical (EC) oxidation of a recalcitrant heterocyclic compound namely pyrrole has been reported using platinum coated titanium (Pt/Ti) electrodes. Response surface methodology (RSM) comprising of full factorial central composite design (CCD) with four factors and five levels has been used to examine the effects of different operating parameters such as current density (j), aqueous solution pH, conductivity (k) and treatment time (t) in an EC batch reactor. Pyrrole mineralization in aqueous solution was examined with multiple responses such as chemical oxygen demand (COD) (response, Y 1 ) and specific energy consumption (SEC) in kWh/kg of COD removed (response, Y 2 ). During multiple response optimization, the desirability function approach was employed to concurrently maximize Y 1 and minimize Y 2 . At the optimum condition, 82.9% COD removal and 7.7 kWh/kg of COD removed were observed. Degradation mechanism of pyrrole in wastewater was elucidated at the optimum condition of treatment by using UV-visible spectroscopy, Fourier transformed infra-red spectroscopy (FTIR), cyclic voltammetry (CV), ion chromatography (IC), higher performance liquid chromatography (HPLC) and gas chromatography-mass spectroscopy (GC-MS). The degradation pathway of pyrrole was proposed on the basis of the various analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. PAHs soil decontamination in two steps: desorption and electrochemical treatment.

    PubMed

    Alcántara, M Teresa; Gómez, Jose; Pazos, Marta; Sanromán, M Angeles

    2009-07-15

    The presence of carcinogenic polycyclic aromatic hydrocarbons (PAHs) in soils poses a potential threat to human health if exposure levels are too high. Nevertheless, the removal of these contaminants presents a challenge to scientists and engineers. The high hydrophobic nature of PAHs enables their strong sorption onto soil or sediments. Thus, the use of surfactants could favour the release of sorbed hydrophobic organic compounds from contaminated soils. In this work, five surfactants, namely Brij 35, Tergitol NP10, Tween 20, Tween 80 and Tyloxapol, are evaluated on the desorption of PAHs [benzanthracene (BzA), fluoranthene (FLU), and pyrene (PYR), single and in mixture] from a model sample such as kaolin. In all cases, the best results were obtained when Tween 80 was employed. In order to obtain the global decontamination of PAHs, their electrochemical degradation is investigated. It is concluded that the order of increasing degradation for single compounds is BzA>FLU>PYR when they are subject to the same electrochemical treatment. In addition, there is a direct relationship between the ionization potential and the electrochemical degradation of PAH.

  8. On the behavior of reduced graphene oxide based electrodes coated with dispersed platinum by alternate current methods in the electrochemical degradation of reactive dyes.

    PubMed

    Del Río, A I; García, C; Molina, J; Fernández, J; Bonastre, J; Cases, F

    2017-09-01

    The electrochemical behavior of different carbon-based electrodes with and without nanoparticles of platinum electrochemically dispersed on their surface has been studied. Among others, reduced graphene oxide based electrodes was used to determine the best conditions for the decolorization/degradation of the reactive dye C.I. Reactive Orange 4 in sulfuric medium. Firstly, the electrochemical behavior was evaluated by cyclic voltammetry. Secondly, different electrolyses were performed using two cell configurations: cell with anodic and cathodic compartments separated (divided configuration) and without any separation (undivided configuration). The best results were obtained when reduced graphene oxide based anodes were used. The degree of decolorization was monitored by spectroscopic methods and high performance liquid chromatography. It was found that all of them followed pseudo-first order kinetics. When reduced graphene oxide-based electrodes coated with dispersed platinum by alternate current methods electrodes were used, the lowest energy consumption and the higher decolorization kinetics rate were obtained. Scanning Electronic Microscopy was used to observe the morphological surface differences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Native MS and ECD Characterization of a Fab-Antigen Complex May Facilitate Crystallization for X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Cui, Weidong; Wecksler, Aaron T.; Zhang, Hao; Molina, Patricia; Deperalta, Galahad; Gross, Michael L.

    2016-07-01

    Native mass spectrometry (MS) and top-down electron-capture dissociation (ECD) combine as a powerful approach for characterizing large proteins and protein assemblies. Here, we report their use to study an antibody Fab (Fab-1)-VEGF complex in its near-native state. Native ESI with analysis by FTICR mass spectrometry confirms that VEGF is a dimer in solution and that its complex with Fab-1 has a binding stoichiometry of 2:2. Applying combinations of collisionally activated dissociation (CAD), ECD, and infrared multiphoton dissociation (IRMPD) allows identification of flexible regions of the complex, potentially serving as a guide for crystallization and X-ray diffraction analysis.

  10. Nonradical oxidation from electrochemical activation of peroxydisulfate at Ti/Pt anode: Efficiency, mechanism and influencing factors.

    PubMed

    Song, Haoran; Yan, Linxia; Ma, Jun; Jiang, Jin; Cai, Guangqiang; Zhang, Wenjuan; Zhang, Zhongxiang; Zhang, Jiaming; Yang, Tao

    2017-06-01

    Electrochemical activation of peroxydisulfate (PDS) at Ti/Pt anode was systematically investigated for the first time in this work. The synergistic effect produced from the combination of electrolysis and the addition of PDS demonstrates that PDS can be activated at Ti/Pt anode. The selective oxidation towards carbamazepine (CBZ), sulfamethoxazole (SMX), propranolol (PPL), benzoic acid (BA) rather than atrazine (ATZ) and nitrobenzene (NB) was observed in electrochemical activation of PDS process. Moreover, addition of excess methanol or tert-butanol had negligible impact on CBZ (model compound) degradation, demonstrating that neither sulfate radical (SO 4 - ) nor hydroxyl radical (HO) was produced in electrochemical activation of PDS process. Direct oxidation (PDS oxidation alone and electrolysis) and nonradical oxidation were responsible for the degradation of contaminants. The results of linear sweep voltammetry (LSV) and chronoamperometry suggest that electric discharge may integrate PDS molecule with anode surface into a unique transition state structure, which is responsible for the nonradical oxidation in electrochemical activation of PDS process. Adjustment of the solution pH from 1.0 to 7.0 had negligible effect on CBZ degradation. Increase of either PDS concentration or current density facilitated the degradation of CBZ. The presence of chloride ion (Cl - ) significantly enhanced CBZ degradation, while addition of bicarbonate (HCO 3 - ), phosphate (PO 4 3- ) and humic acid (HA) all inhibited CBZ degradation with the order of HA > HCO 3 -  > PO 4 3- . The degradation products of CBZ and chlorinated products were also identified. Electrochemical activation of PDS at Ti/Pt anode may serve as a novel technology for selective oxidation of organic contaminants in water and soil. Copyright © 2017. Published by Elsevier Ltd.

  11. Removal of antibiotic cloxacillin by means of electrochemical oxidation, TiO2 photocatalysis, and photo-Fenton processes: analysis of degradation pathways and effect of the water matrix on the elimination of antimicrobial activity.

    PubMed

    Serna-Galvis, Efraim A; Giraldo-Aguirre, Ana L; Silva-Agredo, Javier; Flórez-Acosta, Oscar A; Torres-Palma, Ricardo A

    2017-03-01

    This study evaluates the treatment of the antibiotic cloxacillin (CLX) in water by means of electrochemical oxidation, TiO 2 photocatalysis, and the photo-Fenton system. The three treatments completely removed cloxacillin and eliminated the residual antimicrobial activity from synthetic pharmaceutical wastewater containing the antibiotic, commercial excipients, and inorganic ions. However, significant differences in the degradation routes were found. In the photo-Fenton process, the hydroxyl radical was involved in the antibiotic removal, while in the TiO 2 photocatalysis process, the action of both the holes and the adsorbed hydroxyl radicals degraded the pollutant. In the electrochemical treatment (using a Ti/IrO 2 anode in sodium chloride as supporting electrolyte), oxidation via HClO played the main role in the removal of CLX. The analysis of initial by-products showed five different mechanistic pathways: oxidation of the thioether group, opening of the central β-lactam ring, breakdown of the secondary amide, hydroxylation of the aromatic ring, and decarboxylation. All the oxidation processes exhibited the three first pathways. Moreover, the aromatic ring hydroxylation was found in both photochemical treatments, while the decarboxylation of the pollutant was only observed in the TiO 2 photocatalysis process. As a consequence of the degradation routes and mechanistic pathways, the elimination of organic carbon was different. After 480 and 240 min, the TiO 2 photocatalysis and photo-Fenton processes achieved ∼45 and ∼15 % of mineralization, respectively. During the electrochemical treatment, 100 % of the organic carbon remained even after the antibiotic was treated four times the time needed to degrade it. In contrast, in all processes, a natural matrix (mineral water) did not considerably inhibit pollutant elimination. However, the presence of glucose in the water significantly affected the degradation of CLX by means of TiO 2 photocatalysis.

  12. Comparison of technetium-99m-HMPAO and technetium-99m-ECD cerebral SPECT images in Alzheimer`s disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyck, C.H. van; Lin, C.H.; Smith, E.O.

    1996-11-01

    SPECT has shown increasing promise as a diagnostic tool in Alzheimer`s disease (AD). Recently, a new SPECT brain perfusion agent, {sup 99m}Tc-ethyl cysteinate dimer ({sup 99m}Tc-ECD) has emerged with purported advantages in image quality over the established tracer, {sup 99m}Tc-hexamethylpropyleneamine oxime ({sup 99m}Tc-HMPAO). This research aimed to compare cerebral images for ({sup 99m}Tc-HMPAO). This research aimed to compare cerebral images for {sup 99}mTc-HMPAO and {sup 99m}Tc-ECD in discriminating patients with AD form control subjects. 51 refs., 5 figs., 3 tabs.

  13. Assessing corrosion problems in photovoltaic cells via electrochemical stress testing

    NASA Technical Reports Server (NTRS)

    Shalaby, H.

    1985-01-01

    A series of accelerated electrochemical experiments to study the degradation properties of polyvinylbutyral-encapsulated silicon solar cells has been carried out. The cells' electrical performance with silk screen-silver and nickel-solder contacts was evaluated. The degradation mechanism was shown to be electrochemical corrosion of the cell contacts; metallization elements migrate into the encapsulating material, which acts as an ionic conducting medium. The corrosion products form a conductive path which results in a gradual loss of the insulation characteristics of the encapsulant. The precipitation of corrosion products in the encapsulant also contributes to its discoloration which in turn leads to a reduction in its transparency and the consequent optical loss. Delamination of the encapsulating layers could be attributed to electrochemical gas evolution reactions. The usefulness of the testing technique in qualitatively establishing a reliability difference between metallizations and antireflection coating types is demonstrated.

  14. Study of degradation intermediates formed during electrochemical oxidation of pesticide residue 2,6-dichlorobenzamide (BAM) in chloride medium at boron doped diamond (BDD) and platinum anodes.

    PubMed

    Madsen, Henrik Tækker; Søgaard, Erik Gydesen; Muff, Jens

    2015-02-01

    For electrochemical oxidation to become applicable in water treatment outside of laboratories, a number of challenges must be elucidated. One is the formation and fate of degradation intermediates of targeted organics. In this study the degradation of the pesticide residue 2,6-dichlorobenzamide, an important groundwater pollutant, was investigated in a chloride rich solution with the purpose of studying the effect of active chlorine on the degradation pathway. To study the relative importance of the anodic oxidation and active chlorine oxidation in the bulk solution, a non-active BDD and an active Pt anode were compared. Also, the effect of the active chlorine oxidation on the total amount of degradation intermediates was investigated. We found that for 2,6-dichlorobenzamide, active chlorine oxidation was determining for the initial step of the degradation, and therefore yielded a completely different set of degradation intermediates compared to an inert electrolyte. For the Pt anode, the further degradation of the intermediates was also largely dependent on active chlorine oxidation, while for the BDD anode anodic oxidation was most important. It was also found that the presence of active chlorine led to fewer degradation intermediates compared to treatment in an inert electrolyte. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Concordance between (99m)Tc-ECD SPECT and 18F-FDG PET interpretations in patients with cognitive disorders diagnosed according to NIA-AA criteria.

    PubMed

    Ito, Kimiteru; Shimano, Yasumasa; Imabayashi, Etsuko; Nakata, Yasuhiro; Omachi, Yoshie; Sato, Noriko; Arima, Kunimasa; Matsuda, Hiroshi

    2014-10-01

    The purpose of this study was to clarify the concordance of diagnostic abilities and interobserver agreement between 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) and brain perfusion single photon-emission computed tomography (SPECT) in patients with Alzheimer's disease (AD) who were diagnosed according to the research criteria of the National Institute of Aging-Alzheimer's Association Workshop. Fifty-five patients with "AD and mild cognitive impairment (MCI)" (n = 40) and "non-AD" (n = 15) were evaluated with 18F-FDG PET and (99m)Tc-ethyl cysteinate dimer (ECD) SPECT during an 8-week period. Three radiologists independently graded the regional uptake in the frontal, temporal, parietal, and occipital lobes as well as the precuneus/posterior cingulate cortex in both images. Kappa values were used to determine the interobserver reliability regarding regional uptake. The regions with better interobserver reliability between 18F-FDG PET and (99m)Tc-ECD SPECT were the frontal, parietal, and temporal lobes. The (99m)Tc-ECD SPECT agreement in the occipital lobes was not significant. The frontal, temporal, and parietal lobes showed good correlations between 18F-FDG PET and (99m)Tc-ECD SPECT in the degree of uptake, but the occipital lobe and precuneus/posterior cingulate cortex did not show good correlations. The diagnostic accuracy rates of "AD and MCI" ranged from 60% to 70% in both of the techniques. The degree of uptake on 18F-FDG PET and (99m)Tc-ECD SPECT showed significant correlations in the frontal, temporal, and parietal lobes. The diagnostic abilities of 18F-FDG PET and (99m)Tc-ECD SPECT for "AD and MCI," when diagnosed according to the National Institute of Aging-Alzheimer's Association Workshop criteria, were nearly identical. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Ce3+-ion-induced visible-light photocatalytic degradation and electrochemical activity of ZnO/CeO2 nanocomposite

    PubMed Central

    Rajendran, Saravanan; Khan, Mohammad Mansoob; Gracia, F.; Qin, Jiaqian; Gupta, Vinod Kumar; Arumainathan, Stephen

    2016-01-01

    In this study, pure ZnO, CeO2 and ZnO/CeO2 nanocomposites were synthesized using a thermal decomposition method and subsequently characterized using different standard techniques. High-resolution X-ray photoelectron spectroscopy measurements confirmed the oxidation states and presence of Zn2+, Ce4+, Ce3+ and different bonded oxygen species in the nanocomposites. The prepared pure ZnO and CeO2 as well as the ZnO/CeO2 nanocomposites with various proportions of ZnO and CeO2 were tested for photocatalytic degradation of methyl orange, methylene blue and phenol under visible-light irradiation. The optimized and highly efficient ZnO/CeO2 (90:10) nanocomposite exhibited enhanced photocatalytic degradation performance for the degradation of methyl orange, methylene blue, and phenol as well as industrial textile effluent compared to ZnO, CeO2 and the other investigated nanocomposites. Moreover, the recycling results demonstrate that the ZnO/CeO2 (90:10) nanocomposite exhibited good stability and long-term durability. Furthermore, the prepared ZnO/CeO2 nanocomposites were used for the electrochemical detection of uric acid and ascorbic acid. The ZnO/CeO2 (90:10) nanocomposite also demonstrated the best detection, sensitivity and performance among the investigated materials in this application. These findings suggest that the synthesized ZnO/CeO2 (90:10) nanocomposite could be effectively used in various applications. PMID:27528264

  17. Analysis of Cocoa Proanthocyanidins Using Reversed Phase High-Performance Liquid Chromatography and Electrochemical Detection: Application to Studies on the Effect of Alkaline Processing.

    PubMed

    Stanley, Todd H; Smithson, Andrew T; Neilson, Andrew P; Anantheswaran, Ramaswamy C; Lambert, Joshua D

    2015-07-01

    Flavan-3-ols and proanthocyanidins play a key role in the health beneficial effects of cocoa. Here, we developed a new reversed phased high-performance liquid chromatography-electrochemical detection (HPLC-ECD) method for the analysis of flavan-3-ols and proanthocyanidins of degree of polymerization (DP) 2-7. We used this method to examine the effect of alkalization on polyphenol composition of cocoa powder. Treatment of cocoa powder with NaOH (final pH 8.0) at 92 °C for up to 1 h increased catechin content by 40%, but reduced epicatechin and proanthocyanidins by 23-66%. Proanthocyanidin loss could be modeled using a two-phase exponential decay model (R(2) > 0.7 for epicatchin and proanthocyanidins of odd DP). Alkalization resulted in a significant color change and 20% loss of total polyphenols. The present work demonstrates the first use of HPLC-ECD for the detection of proanthocyanidins up to DP 7 and provides an initial predictive model for the effect of alkali treatment on cocoa polyphenols.

  18. Determination of Nitroaromatic, Nitramine, and Nitrate Ester Explosives in Soils Using GC-ECD

    DTIC Science & Technology

    1999-08-01

    for supplying soils from minefields; and Dr. Paul H. Miyares, CRREL, for HPLC analysis of Fort Leonard Wood soil extracts. ii CONTENTS P reface...42 ILLUSTRATIONS Figure 1. Correlation analysis of GC-ECD concentration (mg/kg) estimates with those from HPLC -UV...kg) estimates with those from HPLC -UV analysis using splits of the same acetonitrile extract from archived soils

  19. Employing the FITT framework to explore HIV case managers' perceptions of two electronic clinical data (ECD) summary systems.

    PubMed

    Schnall, Rebecca; Smith, Ann B; Sikka, Manik; Gordon, Peter; Camhi, Eli; Kanter, Timothy; Bakken, Suzanne

    2012-10-01

    Case managers facilitate continuity of care for persons living with HIV (PLWH) by coordination of resources and referrals to social services and medical care. The complexity of HIV care and associated comorbidities drives the need for medical and psychosocial care coordination, which may be achieved through health information exchange (HIE) systems. However, the use of HIE has not been well studied in the context of HIV services. The purpose of this descriptive qualitative study is to explore factors influencing case managers' adoption of electronic clinical data (ECD) summaries as an HIE strategy in HIV care through application of the "fit between individuals, task and technology" (FITT) framework. Focus group methodology was used to gather perceptions from 48 participants who provided direct case management services for PLWH in New York City. Questions addressed current quality and efficiency challenges to HIE utilization in the context of case management of PLWH as well as barriers and enablers to use of an ECD summary. Analysis of the data was guided by the FITT framework. Major themes by interaction type were: (1) task-technology fit - resources, time and workflow; (2) individual-task fit - training and technical support; and 3) individual-technology fit - ECD summary functionality, technical difficulties and the need of a computer for each end-user. Our findings provide evidence for the applicability of the FITT framework to explore case managers' perceptions of factors influencing the adoption of ECD summary systems for HIV care prior to actual implementation. Assessment of fit among individual, task, and technology and addressing the concerns identified prior to implementation is critical to successful adoption of health information technology as a strategy to improve quality and efficiency in health care. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Influence of humic substances on electrochemical degradation of trichloroethylene in limestone aquifers

    PubMed Central

    Rajic, Ljiljana; Fallahpour, Noushin; Nazari, Roya; Alshawabkeh, Akram N.

    2015-01-01

    In this study we investigate the influence of humic substances (HS) on electrochemical transformation of trichloroethylene (TCE) in groundwater from limestone aquifers. A laboratory flow-through column with an electrochemical reactor that consists of a palladized iron foam cathode followed by a MMO anode was used to induce TCE electro-reduction in groundwater. Up to 82.9% TCE removal was achieved in the absence of HS. Presence of 1, 2, 5, and 10 mgTOC L−1 reduced TCE removal to 70.9%, 61.4%, 51.8% and 19.5%, respectively. The inverse correlation between HS content and TCE removal was linear. Total organic carbon (TOC), dissolved organic carbon (DOC) and absorption properties (A=254 nm, 365 nm and 436 nm) normalized to DOC, were monitored during treatment to understand the behavior and impacts of HS under electrochemical processes. Changes in all parameters occurred mainly after contact with the cathode, which implies that the HS are reacting either directly with electrons from the cathode or with H2 formed at the cathode surface. Since hydrodechlorination is the primary TCE reduction mechanism in this setup, reactions of the HS with the cathode limit transformation of TCE. The presence of limestone gravel reduced the impact of HS on TCE removal. The study concludes that presence of humic substances adversely affects TCE removal from contaminated groundwater by electrochemical reduction using palladized cathodes. PMID:26549889

  1. Electrochemical Oxidation of EDTA in Nuclear Wastewater Using Platinum Supported on Activated Carbon Fibers

    PubMed Central

    Zhao, Bo; Zhu, Wenkun; Mu, Tao; Hu, Zuowen; Duan, Tao

    2017-01-01

    A novel Pt/ACF (Pt supported on activated carbon fibers) electrode was successfully prepared with impregnation and electrodeposition method. Characterization of the electrodes indicated that the Pt/ACF electrode had a larger effective area and more active sites. Electrochemical degradation of ethylenediaminetetra-acetic acid (EDTA) in aqueous solution with Pt/ACF electrodes was investigated. The results showed that the 3% Pt/ACF electrode had a better effect on EDTA removal. The operational parameters influencing the electrochemical degradation of EDTA with 3% Pt/ACF electrode were optimized and the optimal removal of EDTA and chemical oxygen demand (COD) were 94% and 60% after 100 min on condition of the electrolyte concentration, initial concentration of EDTA, current density and initial value of pH were 0.1 mol/L, 300 mg/L, 40 mA/cm2 and 5.0, respectively. The degradation intermediates of EDTA in electrochemical oxidation with 3% Pt/ACF electrode were identified by gas chromatography-mass spectrum (GC-MS). PMID:28754016

  2. The influence of the electrochemical stressing (potential step and potential-static holding) on the degradation of polymer electrolyte membrane fuel cell electrocatalysts

    NASA Astrophysics Data System (ADS)

    Shao, Yuyan; Kou, Rong; Wang, Jun; Viswanathan, Vilayanur V.; Kwak, Ja Hun; Liu, Jun; Wang, Yong; Lin, Yuehe

    The understanding of the degradation mechanisms of electrocatalysts is very important for developing durable electrocatalysts for polymer electrolyte membrane (PEM) fuel cells. The degradation of Pt/C electrocatalysts under potential-static holding conditions (at 1.2 V and 1.4 V vs. RHE) and potential step conditions with the upper potential of 1.4 V for 150 s and lower potential limits (0.85 V and 0.60 V) for 30 s in each period [denoted as Pstep(1.4V_150s-0.85V_30s) and Pstep(1.4V_150s-0.60V_30s), respectively] were investigated. The electrocatalysts and support were characterized with electrochemical voltammetry, transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). Pt/C degrades much faster under Pstep conditions than that under potential-static holding conditions. Pt/C degrades under the Pstep(1.4V_150s-0.85V_30s) condition mainly through the coalescence process of Pt nanoparticles due to the corrosion of carbon support, which is similar to that under the conditions of 1.2 V- and 1.4 V-potential-static holding; however, Pt/C degrades mainly through the dissolution/loss and dissolution/redeposition process if stressed under Pstep(1.4V_150s-0.60V_30s). The difference in the degradation mechanisms is attributed to the chemical states of Pt nanoparticles: Pt dissolution can be alleviated by the protective oxide layer under the Pstep(1.4V_150s-0.85V_30s) condition and the potential-static holding conditions. These findings are very important for understanding PEM fuel cell electrode degradation and are also useful for developing fast test protocol for screening durable catalyst support materials.

  3. Electrochemical treatment of iopromide under conditions of reverse osmosis concentrates--elucidation of the degradation pathway.

    PubMed

    Lütke Eversloh, C; Henning, N; Schulz, M; Ternes, T A

    2014-01-01

    Application of reverse osmosis for the reuse of treated wastewater on the one hand offers a way to provide high quality effluent waters. On the other hand reverse osmosis concentrates exhibiting highly concentrated contaminants are produced simultaneously. Electrochemical treatment of those concentrates is regarded as one possible answer to the problem of their disposal into surface waters. Nevertheless, due to the diversity of direct and indirect degradation processes during electrolysis, special care has to be taken about the formation of toxic transformation products (TPs). In this study the electrochemical transformation of the X-ray contrast medium iopromide was investigated as a representative of biologically persistent compounds. For this purpose, anodic oxidation at boron doped diamond as well as cathodic reduction using a platinum electrode were considered. Kinetic analyses revealed a transformation of 100 μM iopromide with first order kinetic constants between 0.6 and 1.6 × 10(-4) s(-1) at the beginning and a subsequent increase of the reaction order due to the influence of secondary oxidants formed during electrolysis. Mineralization up to 96% was achieved after about 7.5 h. At shorter treatment times several oxidatively and reductively formed transformation products were detected, whereas deiodinated iopromide represented the major fraction. Nevertheless, the latter exhibited negligible toxicological relevance according to tests on vibrio fisheri. Additional experiments utilizing a divided cell setup enabled the elucidation of the transformation pathway, whereas emerging TPs could be identified by means of high resolution mass spectrometry and MS(n)-fragmentations. During electrolysis the iodine released from Iopromide was found to 90% as iodide and to 10% as iodate even in the open cell experiments, limiting the potential formation of toxic iodo-disinfection by-products. Chlorinated TPs were not found. Copyright © 2013. Published by Elsevier Ltd.

  4. Electrochemically modified dissolved organic matter accelerates the combining photodegradation and biodegradation of 17α-ethinylestradiol in natural aquatic environment.

    PubMed

    He, Huan; Huang, Bin; Fu, Gen; Xiong, Dan; Xu, Zhixiang; Wu, Xinhao; Pan, Xuejun

    2018-06-15

    The photochemical conversion and microbial transformation of pollutants mediated by dissolved organic matter (DOM), including 17α-ethinylestradiol (EE2), are often accompanied in natural water. However, there are few studies to explore the connection and mechanism between the two processes. This research aims to investigate the mechanism of DOM after electrochemically modification mediated EE2 combining photodegradation and biodegradation in the environment and it want to explain the natural phenomena of DOM after electrochemical advanced treatment entering the water environment mediated EE2 natural degradation. The results showed that combining photodegradation with biodegradation rates of EE2 mediated by DOM and electrochemically modified DOM (E-DOM) were promoted obviously. The efficiency of EE2 biodegradation was shown to be strongly correlated with electron accepting capacity (EAC) of DOM. Electrochemical modification can increase the EAC of DOM leading to EE2 biodegradation accelerated, and it also can form more triplet-state DOM moieties to promote the EE2 photodegradation in irradiation conditions, due to the increasing of quinone-type structures in DOM. Moreover, cell polymeric secretion (CPS) secreted from the microorganism could be stimulated to an excited state by irradiation, and that also accelerated EE2 degradation. Photolysis combined with biochemical degradation yielded less toxic degradation products. This study shows that the emission of DOM in wastewater after electrochemical treatment could accelerate estrogen degradation and play a positive role on the pollutant transformation in the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Zincblende to Wurtzite phase shift of CdSe thin films prepared by electrochemical deposition

    NASA Astrophysics Data System (ADS)

    Bai, Rekha; Chaudhary, Sujeet; Pandya, Dinesh K.

    2018-04-01

    Cadmium selenide (CdSe) nanostructured thin films have been deposited on conducting glass substrates by potentiostatic electrochemical deposition (ECD) technique. The effect of electrolyte bath pH on the structural, morphological and optical properties of CdSe films has been investigated. Crystal structure of these films is characterized by X-ray diffraction and Raman spectroscopy which reveal polycrystalline nature of CdSe films exhibiting phase shift from zincblende to wurtzite structure with increase in bath pH. Optical studies reveal that the CdSe thin films have good absorbance in visible spectral region and they possess direct optical band gap which increases from 1.68 to 1.97 eV with increase in bath pH. The results suggest CdSe is an efficient absorber material for next generation solar cells.

  6. Electrochemical cell utilizing molten alkali metal electrode-reactant

    DOEpatents

    Virkar, Anil V.; Miller, Gerald R.

    1983-11-04

    An improved electrochemical cell comprising an additive-modified molten alkali metal electrode-reactant and/or electrolyte is disclosed. Various electrochemical cells employing a molten alkali metal, e.g., sodium, electrode in contact with a cationically conductive ceramic membrane experience a lower resistance and a lower temperature coefficient of resistance whenever small amounts of selenium are present at the interface of the electrolyte and the molten alkali metal. Further, cells having small amounts of selenium present at the electrolyte-molten metal interface exhibit less degradation of the electrolyte under long term cycling conditions.

  7. Single-Nanowire Electrochemical Probe Detection for Internally Optimized Mechanism of Porous Graphene in Electrochemical Devices.

    PubMed

    Hu, Ping; Yan, Mengyu; Wang, Xuanpeng; Han, Chunhua; He, Liang; Wei, Xiujuan; Niu, Chaojiang; Zhao, Kangning; Tian, Xiaocong; Wei, Qiulong; Li, Zijia; Mai, Liqiang

    2016-03-09

    Graphene has been widely used to enhance the performance of energy storage devices due to its high conductivity, large surface area, and excellent mechanical flexibility. However, it is still unclear how graphene influences the electrochemical performance and reaction mechanisms of electrode materials. The single-nanowire electrochemical probe is an effective tool to explore the intrinsic mechanisms of the electrochemical reactions in situ. Here, pure MnO2 nanowires, reduced graphene oxide/MnO2 wire-in-scroll nanowires, and porous graphene oxide/MnO2 wire-in-scroll nanowires are employed to investigate the capacitance, ion diffusion coefficient, and charge storage mechanisms in single-nanowire electrochemical devices. The porous graphene oxide/MnO2 wire-in-scroll nanowire delivers an areal capacitance of 104 nF/μm(2), which is 4.0 and 2.8 times as high as those of reduced graphene oxide/MnO2 wire-in-scroll nanowire and MnO2 nanowire, respectively, at a scan rate of 20 mV/s. It is demonstrated that the reduced graphene oxide wrapping around the MnO2 nanowire greatly increases the electronic conductivity of the active materials, but decreases the ion diffusion coefficient because of the shielding effect of graphene. By creating pores in the graphene, the ion diffusion coefficient is recovered without degradation of the electron transport rate, which significantly improves the capacitance. Such single-nanowire electrochemical probes, which can detect electrochemical processes and behavior in situ, can also be fabricated with other active materials for energy storage and other applications in related fields.

  8. Cation Recombination Energy/Coulomb Repulsion Effects in ETD/ECD as Revealed by Variation of Charge per Residue at Fixed Total Charge

    PubMed Central

    Mentinova, Marija; Crizer, David M.; Baba, Takashi; McGee, William M.; Glish, Gary L.; McLuckey, Scott A.

    2013-01-01

    Electron capture dissociation (ECD) and electron transfer dissociation (ETD) experiments in electrodynamic ion traps operated in the presence of a bath gas in the 1–10 mTorr range have been conducted on a common set of doubly protonated model peptides of the form X(AG)nX (X = lysine, arginine, or histidine, n=1, 2, or 4). The partitioning of reaction products was measured using thermal electrons, anions of azobenzene, and anions of 1,3-dinitrobenzene as reagents. Variation of n alters the charge per residue of the peptide cation, which affects recombination energy. The ECD experiments showed that H-atom loss is greatest for the n=1 peptides and decreases as n increases. Proton transfer in ETD, on the other hand, is expected to increase as charge per residue decreases (i.e., as n increases). These opposing tendencies were apparent in the data for the K(AG)nK peptides. H-atom loss appeared to be more prevalent in ECD than in ETD and is rationalized on the basis of either internal energy differences, differences in angular momentum transfer associated with the electron capture versus electron transfer processes, or a combination of the two. The histidine peptides showed the greatest extent of charge reduction without dissociation, the arginine peptides showed the greatest extent of side-chain cleavages, and the lysine peptides generally showed the greatest extent of partitioning into the c/z•-product ion channels. The fragmentation patterns for the complementary c- and z•-ions for ETD and ECD were found to be remarkably similar, particularly for the peptides with X = lysine. PMID:23568028

  9. On Instructional Utility, Statistical Methodology, and the Added Value of ECD: Lessons Learned from the Special Issue

    ERIC Educational Resources Information Center

    Nelson, Brian; Nugent, Rebecca; Rupp, Andre A.

    2012-01-01

    This special issue of "JEDM" was dedicated to bridging work done in the disciplines of "educational and psychological assessment" and "educational data mining" (EDM) via the assessment design and implementation framework of "evidence-centered design" (ECD). It consisted of a series of five papers: one…

  10. Understanding of carbon-based supercapacitors ageing mechanisms by electrochemical and analytical methods

    NASA Astrophysics Data System (ADS)

    Liu, Yinghui; Soucaze-Guillous, Benoît; Taberna, Pierre-Louis; Simon, Patrice

    2017-10-01

    In order to shed light on ageing mechanisms of Electrochemical Double Layer Capacitor (EDLC), two kinds of activated carbons are studied in tetraethyl ammonium tetrafluoroborate (Et4NBF4) in acetonitrile. In floating mode, it turns out that two different ageing mechanisms are observed, depending on the activated carbon electrode materials used. On one hand, carbon A exhibits a continuous capacitance and series resistance fall-off; on the other hand, for carbon B, only the series resistance degrades after ageing while the capacitance keeps unchanged. Additional electrochemical characterizations (Electrochemical Impedance Spectroscopy - EIS - and diffusion coefficient calculations) were carried out showing that carbon A's ageing behavior is suspected to be primarily related to the carbon degradation while for carbon B a passivation occurs leading to the formation of a Solid Electrolyte Interphase-Like (SEI-L) film. These hypotheses are supported by TG-IR and Raman spectroscopy analysis. The outcome forms the latter is an increase of carbon defects on carbon A on positive electrode.

  11. [Simultaneous determination of four compounds in Sanjing Shuanghuanglian Oral Liquid by high performance liquid chromatography-diode array detection-electrochemical detection].

    PubMed

    Liu, Lin; Suo, Zhirong; Zheng, Jianbin

    2006-05-01

    Chlorogenic acid, caffeic acid, baicalin and luteolin in Sanjing Shuanghuanglian Oral Liquid were simultaneously detected and identified using a high performance liquid chromatography coupled with diode array detection and electrochemical detection (HPLC-DAD-ECD). The separation was performed on a Zorbax SB-C18 column (150 mm x 4.6 mm i. d., 5.0 microm). The mobile phase consisted of (A) methanol and (B) methanol-water-acetic acid (50: 50: 1, v/v/v) using a linear gradient elution of 2%A-3%A at 0-3 min, 3%A-25%A at 3-15 min, 25%A-80%A at 15-20 min. The flow rate was 0.8 mL/min. The DAD detection was used at 275 nm. The ECD detection was done at 0.7 V. The column thermostat set at 30 degrees C. The limits of detection of the 4 compounds were 1 mg/L for chlorogenic acid, 0.2 mg/L for caffeic acid, 9 mg/L for baicalin, 7 mg/L for luteolin. The average recoveries were between 96.6%-99.6% with relative standard deviations (RSDs) of 2.5%-4.1%. The method is simple, rapid, reproducible and accurate. It can be used for the routine analysis of the four compounds in Shuanghuanglian Oral Liquid.

  12. Discrimination of magnoliae officinalis cortex based on the quantitative profiles of magnolosides by two-channel liquid chromatography with electrochemical detection.

    PubMed

    Xue, Zhenzhen; Kotani, Akira; Yang, Bin; Hakamata, Hideki

    2018-05-31

    A two-channel liquid chromatography with electrochemical detection system (2LC-ECD) was newly designed for the simultaneous determination of magnolosides A, B, F, H, and L in the first channel and other magnolosides D and M in the second channel, respectively. Peak heights had linear relationships to the magnoloside concentrations in a range of 0.02-16 μmol/L for H, 0.01-12 μmol/L for A, 0.02-12 μmol/L for F and L, 0.01-8 μmol/L for B, 0.002-6 μmol/L for D, and 0.002-4 μmol/L for M, respectively. Seven magnolosides in magnoliae officinalis cortex (MOC) were determined by the 2LC-ECD, and the obtained quantitative profiles of magnolosides were applied to the discrimination between the MOC samples harvested from Hubei and Sichuan (called Chuan po) and from Zhejiang and Fujian (called Wen po). By principal component analysis (PCA) and supervised partial least squares discriminant analysis (PLS-DA) based on the quantitative profiles of the magnolosides, Chuan po were clearly discriminated from Wen po on the plots obtained from our multivariable analyses. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Temperature aspect of degradation of electrochemical double-layer capacitors (EDLC)

    NASA Astrophysics Data System (ADS)

    Baek, Dong-Cheon; Kim, Hyun-Ho; Lee, Soon-Bok

    2015-03-01

    Electric double layer capacitors (EDLC) cells have a process variation and temperature dependency in capacitance so that balancing is required when they are connected in series, which includes electronic voltage management based on capacitance monitoring. This paper measured temperature aspect of capacitance periodically to monitor health and degradation behavior of EDLC stressed under high temperatures and zero below temperatures respectively, which enables estimation of the state of health (SOH) regardless of temperature. At high temperature, capacitance saturation and delayed expression of degradation was observed. After cyclic stress at zero below temperature, less effective degradation and time recovery phenomenon were occurred.

  14. Structural and optical properties of nanostructured CdSe thin films prepared by electrochemical deposition

    NASA Astrophysics Data System (ADS)

    Bai, Rekha; Chaudhary, Sujeet; Pandya, Dinesh K.

    2018-05-01

    Cadmium selenide (CdSe) nanostructured thin films have been grown on fluorine doped tin oxide (FTO) coated glass substrates by potentiostatic electrochemical deposition (ECD) technique for use in solar energy conversion devices. The effect of bath temperature on the structural, morphological and optical properties of prepared CdSe films has been explored. X-ray diffraction (XRD) and Raman spectroscopy clearly show that the CdSe films are polycrystalline and exhibit phase transformation from wurtzite to zincblende structure with increase in bath temperature. Optical spectra reveal that the nanostructured CdSe films have high absorbance in visible region and the films show a red shift in direct optical energy band gap from 1.90 to 1.65 eV with increase in bath temperature due to change in phase and bandgap tuning related to quantum confinement effect.

  15. Putting ECD into Practice: The Interplay of Theory and Data in Evidence Models within a Digital Learning Environment

    ERIC Educational Resources Information Center

    Rupp, Andre A.; Levy, Roy; Dicerbo, Kristen E.; Sweet, Shauna J.; Crawford, Aaron V.; Calico, Tiago; Benson, Martin; Fay, Derek; Kunze, Katie L.; Mislevy, Robert J.; Behrens, John T.

    2012-01-01

    In this paper we describe the development and refinement of "evidence rules" and "measurement models" within the "evidence model" of the "evidence-centered design" (ECD) framework in the context of the "Packet Tracer" digital learning environment of the "Cisco Networking Academy." Using…

  16. Application of spectroscopic methods (FT-IR, Raman, ECD and NMR) in studies of identification and optical purity of radezolid

    NASA Astrophysics Data System (ADS)

    Michalska, Katarzyna; Gruba, Ewa; Mizera, Mikołaj; Lewandowska, Kornelia; Bednarek, Elżbieta; Bocian, Wojciech; Cielecka-Piontek, Judyta

    2017-08-01

    In the presented study, N-{[(5S)-3-(2-fluoro-4‧-{[(1H-1,2,3-triazol-5-ylmethyl)amino]methyl}biphenyl-4-yl)-2-oxo-1,3-oxazolidin-5-yl]methyl}acetamide (radezolid) was synthesized and characterized using FT-IR, Raman, ECD and NMR. The aim of this work was to assess the possibility of applying classical spectral methods such as FT-IR, Raman, ECD and NMR spectroscopy for studies on the identification and optical purity of radezolid. The experimental interpretation of FT-IR and Raman spectra of radezolid was conducted in combination with theoretical studies. Density functional theory (DFT) with the B3LYP hybrid functional was used for obtaining radezolid spectra. Full identification was carried out by COSY, 1H {13C} HSQC and 1H {13C} HMBC experiments. The experimental NMR chemical shifts and spin-spin coupling constants were compared with theoretical calculations using the DFT method and B3LYP functional employing the 6-311 ++G(d,p) basis set and the solvent polarizable continuum model (PCM). The experimental ECD spectra of synthesized radezolid were compared with experimental spectra of the reference standard of radezolid. Theoretical calculations enabled us to conduct HOMO and LUMO analysis and molecular electrostatic potential maps were used to determine the active sites of microbiologically active form of radezolid enantiomer. The relationship between results of ab initio calculations and knowledge about chemical-biological properties of S-radezolid and other oxazolidinone derivatives are also discussed.

  17. Matrix-enhanced degradation of p,p'-DDT during gas chromatographic analysis: A consideration

    USGS Publications Warehouse

    Foreman, W.T.; Gates, Paul M.

    1997-01-01

    Analysis of p,p‘-DDT in environmental samples requires monitoring the GC-derived breakdown of this insecticide, which produces p,p‘-DDD and/or p,p‘-DDE, both also primary environmental degradation products. A performance evaluation standard (PES) containing p,p‘-DDT but notp,p‘-DDD or p,p‘-DDE can be injected at regular intervals throughout an analytical sequence to monitor GC degradation. Some U.S. EPA methods limit GC breakdown of DDT in the PES to ≤20%. GC/MS analysis of large-volume natural water samples fortified with deuterium- and 13C-labeled p,p‘-DDT exhibited up to 65% DDT breakdown by the GC inlet. These matrix-enhanced GC degradation amounts substantially exceeded the <20% breakdown levels indicated by bracketing injections of the PES containing unlabeled and labeled DDT. Substantial matrix-enhanced GC degradation was not observed during analysis of a limited number of fractionated bed-sediment extracts containing labeled DDT. Use of isotopically labeled DDT seems to provide an effective tool for monitoring sample-specific DDT breakdown during GC/MS analysis. However, analyte co-elutions render impractical their use in GC/ECD analysis. The oc currence of matrix-enhanced GC degradation might have important implications on data quality and the resultant interpretations of the environmental degradation of DDT and other thermolabile contaminants.

  18. Study of the interaction of 6-mercaptopurine with protein by microdialysis coupled with LC and electrochemical detection based on functionalized multi-wall carbon nanotubes modified electrode.

    PubMed

    Cao, Xu-Ni; Lin, Li; Zhou, Yu-Yan; Zhang, Wen; Shi, Guo-Yue; Yamamoto, Katsunobu; Jin, Li-Tong

    2003-07-14

    Microdialysis sampling coupled with liquid chromatography and electrochemical detection (LC-ECD) was developed and applied to study the interaction of 6-Mercaptopurine (6-MP) with bovine serum albumin (BSA). In the LC-ECD, the multi-wall carbon nanotubes fuctionalized with carboxylic groups modified electrode (MWNT-COOH CME) was used as the working electrode for the determination of 6-MP. The results indicated that this chemically modified electrode (CME) exhibited efficiently electrocatalytic oxidation for 6-MP with relatively high sensitivity, stability and long-life. The peak currents of 6-MP were linear to its concentrations ranging from 4.0 x 10(-7) to 1.0 x 10(-4) mol l(-1) with the calculated detection limit (S/N = 3) of 2.0 x 10(-7) mol l(-1). The method had been successfully applied to assess the association constant (K) and the number of the binding sites (n) on a BSA molecular, which calculated by Scatchard equation, were 3.97 x 10(3) mol(-1) l and 1.51, respectively. This method provided a fast, sensible and simple technique for the study of drug-protein interactions.

  19. A simplified approach to predict performance degradation of a solid oxide fuel cell anode

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Zubair; Mehran, Muhammad Taqi; Song, Rak-Hyun; Lee, Jong-Won; Lee, Seung-Bok; Lim, Tak-Hyoung

    2018-07-01

    The agglomeration of nickel (Ni) particles in a Ni-cermet anode is a significant degradation phenomenon for solid oxide fuel cells (SOFCs). This work aims to predict the performance degradation of SOFCs due to Ni grain growth by using a simplified approach. Accelerated aging of Ni-scandia stabilized zirconia (SSZ) as an SOFC anode is carried out at 900 °C and subsequent microstructural evolution is investigated every 100 h up to 1000 h using scanning electron microscopy (SEM). The resulting morphological changes are quantified using a two-dimensional image analysis technique that yields the particle size, phase proportion, and triple phase boundary (TPB) point distribution. The electrochemical properties of an anode-supported SOFC are characterized using electrochemical impedance spectroscopy (EIS). The changes of particle size and TPB length in the anode as a function of time are in excellent agreement with the power-law coarsening model. This model is further combined with an electrochemical model to predict the changes in the anode polarization resistance. The predicted polarization resistances are in good agreement with the experimentally obtained values. This model for prediction of anode lifetime provides deep insight into the time-dependent Ni agglomeration behavior and its impact on the electrochemical performance degradation of the SOFC anode.

  20. Aging Degradation of Austenitic Stainless Steel Weld Probed by Electrochemical Method and Impact Toughness Evaluation

    NASA Astrophysics Data System (ADS)

    Singh, Raghuvir; Das, Goutam; Mahato, B.; Singh, P. K.

    2017-03-01

    The present study discriminates the spinodal decomposition and G-phase precipitation in stainless steel welds by double loop electrochemical potentio-kinetic reactivation method and correlates it with the degradation in toughness property. The welds produced with different heat inputs were aged up to 10,000 hours at 673 K to 723 K (400 to 450 °C) and evaluated subsequently for the degree of sensitization (DOS) and impact toughness. The DOS values obtained were attributed to the spinodal decomposition and precipitation of G-phase. Study shows that the DOS correlates well with the impact toughness of the 304LN weld. Prolonged aging at 673 K and 723 K (400 °C and 450 °C) increased the DOS values while the impact toughness was decreased. The weld fabricated at 1 kJ/mm of heat input, produced higher DOS, compared to that at 3 kJ/mm. The geometrical location along the weld is shown to influence the DOS; higher values were obtained at the root than at the topside of the weld. Vermicular and columnar microstructure, in addition to the spinodal decomposition and G-phase precipitation, observed in the root side of the weld appear risky for the impact toughness.

  1. Destination of organic pollutants during electrochemical oxidation of biologically-pretreated dye wastewater using boron-doped diamond anode.

    PubMed

    Zhu, Xiuping; Ni, Jinren; Wei, Junjun; Xing, Xuan; Li, Hongna

    2011-05-15

    Electrochemical oxidation of biologically-pretreated dye wastewater was performed in a boron-doped diamond (BDD) anode system. After electrolysis of 12h, the COD was decreased from 532 to 99 mg L(-1) (<100 mg L(-1), the National Discharge Standard of China). More importantly, the destination of organic pollutants during electrochemical oxidation process was carefully investigated by molecular weight distribution measurement, resin fractionation, ultraviolet-visible spectroscopy, HPLC and GC-MS analysis, and toxicity test. As results, most organic pollutants were completely removed by electrochemical oxidation and the rest was primarily degraded to simpler compounds (e.g., carboxylic acids and short-chain alkanes) with less toxicity, which demonstrated that electrochemical oxidation of biologically-pretreated dye wastewater with BDD anode was very effective and safe. Especially, the performance of BDD anode system in degradation of large molecular organics such as humic substances makes it very promising in practical applications as an advanced treatment of biologically-pretreated wastewaters. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Analysis of a bio-electrochemical reactor containing carbon fiber textiles for the anaerobic digestion of tomato plant residues.

    PubMed

    Hirano, Shin-Ichi; Matsumoto, Norio

    2018-02-01

    A bio-electrochemical system packed with supporting material can promote anaerobic digestion for several types of organic waste. To expand the target organic matters of a BES, tomato plant residues (TPRs), generated year-round as agricultural and cellulosic waste, were treated using three methanogenic reactors: a continuous stirred tank reactor (CSTR), a carbon fiber textile (CFT) reactor, and a bio-electrochemical reactor (BER) including CFT with electrochemical regulation (BER + CFT). CFT had positive effects on methane fermentation and methanogen abundance. The microbial population stimulated by electrochemical regulation, including hydrogenotrophic methanogens, cellulose-degrading bacteria, and acetate-degrading bacteria, suppressed acetate accumulation, as evidenced by the low acetate concentration in the suspended fraction in the BER + CFT. These results indicated that the microbial community in the BER + CFT facilitated the efficient decomposition of TPR and its intermediates such as acetate to methane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Stereochemical and conformational study on fenoterol by ECD spectroscopy and TD-DFT calculations.

    PubMed

    Tedesco, Daniele; Zanasi, Riccardo; Wainer, Irving W; Bertucci, Carlo

    2014-03-01

    Fenoterol and its derivatives are selective β2-adrenergic receptor (β2-AR) agonists whose stereoselective biological activities have been extensively investigated in the past decade; a complete stereochemical characterization of fenoterol derivatives is therefore crucial for a better understanding of the effects of stereochemistry on β2-AR binding. In the present project, the relationship between chiroptical properties and absolute stereochemistry of the stereoisomers of fenoterol (1) was investigated by experimental ECD spectroscopy and time-dependent density functional theory (TD-DFT). DFT geometry optimizations were carried out at the RI-B97D/TZVP/IEFPCM(MeOH) level and subsequent TD-DFT calculations were performed using the PBE0 hybrid functional. Despite the large pool of equilibrium conformers found for the investigated compounds and the known limitations of the level of theory employed, the computational protocol was able to reproduce the experimental ECD spectra of the stereoisomers of 1. The main contribution to the overall chiroptical properties was found to arise from the absolute configuration of the chiral center in α-position to the resorcinol moiety. Based on this evidence, a thorough conformational analysis was performed on the optimized DFT conformers, which revealed the occurrence of a different equilibrium between conformational patterns for the diastereomers of fenoterol: the (R,R')/(S,S') enantiomeric pair showed a higher population of folded conformations than the (R,S')/(S,R') pair. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Quantitative comparison of caffeoylquinic acids and flavonoids in Chrysanthemum morifolium flowers and their sulfur-fumigated products by three-channel liquid chromatography with electrochemical detection.

    PubMed

    Chen, Liangmian; Kotani, Akira; Kusu, Fumiyo; Wang, Zhimin; Zhu, Jingjing; Hakamata, Hideki

    2015-01-01

    For the determination of seven caffeoylquinic acids [neochlorogenic acid (NcA), cryptochlorogenic acid (CcA), chlorogenic acid (CA), caffeic acid (CfA), isochlorogenic acid A (Ic A), isochlorogenic acid B (Ic B), isochlorogenic acid C (Ic C)] and two flavonoids [luteolin 7-O-glucoside (LtG) and luteolin (Lt)], a three-channel liquid chromatography with electrochemical detection (LC-3ECD) method was established. Chromatographic peak heights were proportional to each concentration, ranging from 2.5 to 100 ng/mL for NcA, CA, CcA, and CfA, and ranging from 2.5 to 250 ng/mL for LtG, Ic B, Ic A, Ic C, and Lt, respectively. The present LC-3ECD method was applied to the quantitative analysis of caffeoylquinic acids and flavonoids in four cultivars of Chrysanthemum morifolium flowers and their sulfur-fumigated products. It was found that 60% of LtG and more than 47% of caffeoylquinic acids were lost during the sulfur fumigation processing. Sulfur fumigation showed a destructive effect on the C. morifolium flowers. In addition, principle component analyses (PCA) were performed using the results of the quantitative analysis of caffeoylquinic acids and flavonoids to compare the "sameness" and "differences" of these analytes in C. morifolium flowers and the sulfur-fumigated products. PCA score plots showed that the four cultivars of C. morifolium flowers were clearly classified into four groups, and that significant differences were also found between the non-fumigated C. morifolium flowers and the sulfur-fumigated products. Therefore, it was demonstrated that the present LC-3ECD method coupled with PCA is applicable to the variation analysis of different C. morifolium flower samples.

  5. The application of electrochemistry to pharmaceutical stability testing--comparison with in silico prediction and chemical forced degradation approaches.

    PubMed

    Torres, Susana; Brown, Roland; Szucs, Roman; Hawkins, Joel M; Zelesky, Todd; Scrivens, Garry; Pettman, Alan; Taylor, Mark R

    2015-11-10

    The aim of this study was to evaluate the use of electrochemistry to generate oxidative degradation products of a model pharmaceutical compound. The compound was oxidized at different potentials using an electrochemical flow-cell fitted with a glassy carbon working electrode, a Pd/H2 reference electrode and a titanium auxiliary electrode. The oxidative products formed were identified and structurally characterized by LC-ESI-MS/MS using a high resolution Q-TOF mass spectrometer. Results from electrochemical oxidation using electrolytes of different pH were compared to those from chemical oxidation and from accelerated stability studies. Additionally, oxidative degradation products predicted using an in silico commercially available software were compared to those obtained from the various experimental methods. The electrochemical approach proved to be useful as an oxidative stress test as all of the final oxidation products observed under accelerated stability studies could be generated; previously reported reactive intermediate species were not observed most likely because the electrochemical mechanism differs from the oxidative pathway followed under accelerated stability conditions. In comparison to chemical degradation tests electrochemical degradation has the advantage of being much faster and does not require the use of strong oxidizing agents. Moreover, it enables the study of different operating parameters in short periods of time and optimisation of the reaction conditions (pH and applied potential) to achieve different oxidative products mixtures. This technique may prove useful as a stress test condition for the generation of oxidative degradation products and may help accelerate structure elucidation and development of stability indicating analytical methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Solar-mediated thermo-electrochemical oxidation of sodium dodecyl benzene sulfonate by modulating the effective oxidation potential and pathway for green remediation of wastewater.

    PubMed

    Gu, Di; Gao, Simeng; Jiang, TingTing; Wang, Baohui

    2017-03-15

    To match the relentless pursuit of three research hot points - efficient solar utilization, green and sustainable remediation of wastewater and advanced oxidation processes, solar-mediated thermo-electrochemical oxidation of surfactant was proposed and developed for green remediation of surfactant wastewater. The solar thermal electrochemical process (STEP), fully driven with solar energy to electric energy and heat and without an input of other energy, sustainably serves as efficient thermo-electrochemical oxidation of surfactant, exemplified by SDBS, in wastewater with the synergistic production of hydrogen. The electrooxidation-resistant surfactant is thermo-electrochemically oxidized to CO 2 while hydrogen gas is generated by lowing effective oxidation potential and suppressing the oxidation activation energy originated from the combination of thermochemical and electrochemical effect. A clear conclusion on the mechanism of SDBS degradation can be proposed and discussed based on the theoretical analysis of electrochemical potential by quantum chemical method and experimental analysis of the CV, TG, GC, FT-IR, UV-vis, Fluorescence spectra and TOC. The degradation data provide a pilot for the treatment of SDBS wastewater that appears to occur via desulfonation followed by aromatic-ring opening. The solar thermal utilization that can initiate the desulfonation and activation of SDBS becomes one key step in the degradation process.

  7. Solar-mediated thermo-electrochemical oxidation of sodium dodecyl benzene sulfonate by modulating the effective oxidation potential and pathway for green remediation of wastewater

    PubMed Central

    Gu, Di; Gao, Simeng; Jiang, TingTing; Wang, Baohui

    2017-01-01

    To match the relentless pursuit of three research hot points - efficient solar utilization, green and sustainable remediation of wastewater and advanced oxidation processes, solar-mediated thermo-electrochemical oxidation of surfactant was proposed and developed for green remediation of surfactant wastewater. The solar thermal electrochemical process (STEP), fully driven with solar energy to electric energy and heat and without an input of other energy, sustainably serves as efficient thermo-electrochemical oxidation of surfactant, exemplified by SDBS, in wastewater with the synergistic production of hydrogen. The electrooxidation-resistant surfactant is thermo-electrochemically oxidized to CO2 while hydrogen gas is generated by lowing effective oxidation potential and suppressing the oxidation activation energy originated from the combination of thermochemical and electrochemical effect. A clear conclusion on the mechanism of SDBS degradation can be proposed and discussed based on the theoretical analysis of electrochemical potential by quantum chemical method and experimental analysis of the CV, TG, GC, FT-IR, UV-vis, Fluorescence spectra and TOC. The degradation data provide a pilot for the treatment of SDBS wastewater that appears to occur via desulfonation followed by aromatic-ring opening. The solar thermal utilization that can initiate the desulfonation and activation of SDBS becomes one key step in the degradation process. PMID:28294180

  8. Solar-mediated thermo-electrochemical oxidation of sodium dodecyl benzene sulfonate by modulating the effective oxidation potential and pathway for green remediation of wastewater

    NASA Astrophysics Data System (ADS)

    Gu, Di; Gao, Simeng; Jiang, Tingting; Wang, Baohui

    2017-03-01

    To match the relentless pursuit of three research hot points - efficient solar utilization, green and sustainable remediation of wastewater and advanced oxidation processes, solar-mediated thermo-electrochemical oxidation of surfactant was proposed and developed for green remediation of surfactant wastewater. The solar thermal electrochemical process (STEP), fully driven with solar energy to electric energy and heat and without an input of other energy, sustainably serves as efficient thermo-electrochemical oxidation of surfactant, exemplified by SDBS, in wastewater with the synergistic production of hydrogen. The electrooxidation-resistant surfactant is thermo-electrochemically oxidized to CO2 while hydrogen gas is generated by lowing effective oxidation potential and suppressing the oxidation activation energy originated from the combination of thermochemical and electrochemical effect. A clear conclusion on the mechanism of SDBS degradation can be proposed and discussed based on the theoretical analysis of electrochemical potential by quantum chemical method and experimental analysis of the CV, TG, GC, FT-IR, UV-vis, Fluorescence spectra and TOC. The degradation data provide a pilot for the treatment of SDBS wastewater that appears to occur via desulfonation followed by aromatic-ring opening. The solar thermal utilization that can initiate the desulfonation and activation of SDBS becomes one key step in the degradation process.

  9. Efficient photo-catalytic degradation of malachite green using nickel tungstate material as photo-catalyst.

    PubMed

    Helaïli, N; Boudjamaa, A; Kebir, M; Bachari, K

    2017-03-01

    The present study focused on the evaluation of photo-catalytic and photo-electrochemical properties of the photo-catalyst based on nickel tungstate material prepared by a nitrate method through the degradation of malachite green (MG) dye's. The effect of catalyst loading and dye concentration was examined. Physico-chemical, optical, electrical, electrochemical, and photo-electrochemical properties of the prepared material were analyzed by X-ray diffraction (XRD), fourier transform-infrared spectroscopy (FTIR), BET analysis, optical reflectance diffuse (DR), scanning electron microscopy (SEM/EDX), electrical conductivity, cyclic voltammetry (CV), current intensity, mott-shottky, and nyquist. XRD revealed the formation of monoclinic structure with a small particle size. BET surface area of the sample was around 10 m 2 /g. The results show that the degradation of MG was more than 80%, achieved after 3 h of irradiation at pH 4.6 and with a catalyst loading of 75 mg. Also, it was found that the dye photo-degradation obeyed the pseudo-first order kinetic via Langmuir Hinshelwood model.

  10. The Influence of MgH2 on the Assessment of Electrochemical Data to Predict the Degradation Rate of Mg and Mg Alloys

    PubMed Central

    Mueller, Wolf-Dieter; Hornberger, Helga

    2014-01-01

    Mg and Mg alloys are becoming more and more of interest for several applications. In the case of biomaterial applications, a special interest exists due to the fact that a predictable degradation should be given. Various investigations were made to characterize and predict the corrosion behavior in vitro and in vivo. Mostly, the simple oxidation of Mg to Mg2+ ions connected with adequate hydrogen development is assumed, and the negative difference effect (NDE) is attributed to various mechanisms and electrochemical results. The aim of this paper is to compare the different views on the corrosion pathway of Mg or Mg alloys and to present a neglected pathway based on thermodynamic data as a guideline for possible reactions combined with experimental observations of a delay of visible hydrogen evolution during cyclic voltammetry. Various reaction pathways are considered and discussed to explain these results, like the stability of the Mg+ intermediate state, the stability of MgH2 and the role of hydrogen overpotential. Finally, the impact of MgH2 formation is shown as an appropriate base for the prediction of the degradation behavior and calculation of the corrosion rate of Mg and Mg alloys. PMID:24972140

  11. A Comparison between Electrochemical Impedance Spectroscopy and Incremental Capacity-Differential Voltage as Li-ion Diagnostic Techniques to Identify and Quantify the Effects of Degradation Modes within Battery Management Systems

    NASA Astrophysics Data System (ADS)

    Pastor-Fernández, Carlos; Uddin, Kotub; Chouchelamane, Gael H.; Widanage, W. Dhammika; Marco, James

    2017-08-01

    Degradation of Lithium-ion batteries is a complex process that is caused by a variety of mechanisms. For simplicity, ageing mechanisms are often grouped into three degradation modes (DMs): conductivity loss (CL), loss of active material (LAM) and loss of lithium inventory (LLI). State of Health (SoH) is typically the parameter used by the Battery Management System (BMS) to quantify battery degradation based on the decrease in capacity and the increase in resistance. However, the definition of SoH within a BMS does not currently include an indication of the underlying DMs causing the degradation. Previous studies have analysed the effects of the DMs using incremental capacity and differential voltage (IC-DV) and electrochemical impedance spectroscopy (EIS). The aim of this study is to compare IC-DV and EIS on the same data set to evaluate if both techniques provide similar insights into the causes of battery degradation. For an experimental case of parallelized cells aged differently, the effects due to LAM and LLI were found to be the most pertinent, outlining that both techniques are correlated. This approach can be further implemented within a BMS to quantify the causes of battery ageing which would support battery lifetime control strategies and future battery designs.

  12. Removal of bisphenol A by electrochemical carbon-nanotube filter: Influential factors and degradation pathway.

    PubMed

    Bakr, Ahmed Refaat; Rahaman, Md Saifur

    2017-10-01

    Bisphenol A is a chemical with hazardous health effects that is largely used in the manufacture of extensively used products including adhesives, plastics, powder paints, thermal paper and paper coatings, and epoxy resin, and is reported to exist in nature in an accumulative manner. In this study, both pristine and boron-doped multiwalled carbon nanotubes (MWNTs) were employed as filtration and electrochemical filtration materials, resulting in a significant removal of bisphenol A with identical performance for both MWNTs types. It was shown that the presence of salt is not critical for the greatest contaminant removal efficiency, likely due to the vital role of other electroactive species (e.g. reactive oxygen species). Near complete removal of 1 mg L -1 bisphenol A at 2 and 3 V of applied DC potentials was achieved, indicating that the electrochemical filtration process is voltage dependent at both 2 and 3 V. Increasing the residence time by 7.4 fold (from 2.0 to 14.9 s) resulted in a significant removal of bisphenol A and its toxic byproducts, up to 424 min of electrochemical filtration time at 3 V of applied potential. Based on these results, electrochemical filtration using MWNTs is considered a promising technology for the removal of the accumulative bisphenol A and the reduction of its hazardous effects in waters. Copyright © 2017. Published by Elsevier Ltd.

  13. Effect of black clay soil moisture on the electrochemical behavior of API X70 pipeline steel

    NASA Astrophysics Data System (ADS)

    Hendi, R.; Saifi, H.; Belmokre, K.; Ouadah, M.; Smili, B.; Talhi, B.

    2018-03-01

    The effect of moisture content variation (20–100 wt.%) on the electrochemical behavior of API X70 pipeline steel buried in the soil of Skikda (East of Algeria) was studied using electrochemical techniques, scanning electron microscopy (SEM), X ray diffraction analysis (XRD) and weight loss measurement. The electrochemical measurements showed that the corrosion current Icorr is directly proportional to the moisture content up to 50 wt.%, beyond this content, this value becomes almost constant. The result were confirmed by electrochemical impedance spectroscopy; the capacitance of the double layer formed on the surface is the highest at 50 wt.%. A single time constant was detected by plotting the Bode diagrams. The steel surface degradation has been appreciated using the scanning electron microscopy observations. A few pitting corrosion at 20 wt.% moisture, followed by more degradation at 50 wt.% have been revealed. However, when the moisture amount exceeded 50 wt.%, the surface became entirely covered by a corrosion product. XRD analysis revealed the dominance of FeOOH and Fe3O4 phases on steel surface for a moisture content of 50 wt.%.

  14. The quantification of short-chain chlorinated paraffins in sediment samples using comprehensive two-dimensional gas chromatography with μECD detection.

    PubMed

    Muscalu, Alina M; Morse, Dave; Reiner, Eric J; Górecki, Tadeusz

    2017-03-01

    The analysis of persistent organic pollutants in environmental samples is a challenge due to the very large number of compounds with varying chemical and physical properties. Chlorinated paraffins (CPs) are complex mixtures of chlorinated n-alkanes with varying chain lengths (C 10 to C 30 ) and degree of chlorination (30 to 70% by weight). Their physical-chemical properties make these compounds persistent in the environment and able to bioaccumulate in living organisms. Comprehensive two-dimensional gas chromatography (GC × GC) coupled with micro-electron capture detection (μECD) was used to separate and quantify short-chain chlorinated paraffins (SCCP) in sediment samples. Distinct ordered bands were observed in the GC × GC chromatograms pointing to group separation. Using the Classification function of the ChromaTOF software, summary tables were generated to determine total area counts to set up multilevel-calibration curves for different technical mixes. Fortified sediment samples were analyzed by GC × GC-μECD with minimal extraction and cleanup. Recoveries ranged from 120 to 130%. To further validate the proposed method for the analysis of SCCPs, the laboratory participated in interlaboratory studies for the analysis of standards and sediment samples. The results showed recoveries between 75 and 95% and z-score values <2, demonstrating that the method is suitable for the analysis of SCCPs in soil/sediment samples. Graphical abstract Quantification of SCCPs by 2D-GC-μECD.

  15. The application of electrochemical impedance spectroscopy for characterizing the degradation of Ni(OH)2/NiOOH electrodes

    NASA Technical Reports Server (NTRS)

    Macdonald, D. D.; Pound, B. G.; Lenhart, S. J.

    1989-01-01

    Electrochemical impedance spectra of rolled and bonded and sintered porous nickel battery electrodes were recorded periodically during charge/discharge cycling in concentrated KOH solution at various temperatures. A transmission line model (TLM) was adopted to represent the impedance of the porous electrodes, and various model parameters were adjusted in a curve fitting routine to reproduce the experimental impedances. Degradation processes for rolled and bonded electrodes were deduced from changes in model parameters with electrode cycling time. In developing the TLM, impedance spectra of planar (non-porous) electrodes were used to represent the pore wall and backing plate interfacial impedances. These data were measured over a range of potentials and temperatures, and an equivalent circuit model was adopted to represent the planar electrode data. Cyclic voltammetry was used to study the characteristics of the oxygen evolution reaction on planar nickel electrodes during charging, since oxygen evolution can affect battery electrode charging efficiency and ultimately electrode cycle life if the overpotential for oxygen evolution is sufficiently low. Transmission line modeling results suggest that porous rolled and bonded nickel electrodes undergo restructuring during charge/discharge cycling prior to failure.

  16. Integrating electrochemical oxidation into forward osmosis process for removal of trace antibiotics in wastewater.

    PubMed

    Liu, Pengxiao; Zhang, Hanmin; Feng, Yujie; Shen, Chao; Yang, Fenglin

    2015-10-15

    During the rejection of trace pharmaceutical contaminants from wastewater by forward osmosis (FO), disposal of the FO concentrate was still an unsolved issue. In this study, by integrating the advantages of forward osmosis and electrochemical oxidation, a forward osmosis process with the function of electrochemical oxidation (FOwEO) was established for the first time to achieve the aim of rejection of trace antibiotics from wastewater and treatment of the concentrate at the same time. Results demonstrated that FOwEO (current density J=1 mA cm(-2)) exhibited excellent rejections of antibiotics (>98%) regardless of different operation conditions, and above all, antibiotics in the concentrate were well degraded (>99%) at the end of experiment (after 3h). A synergetic effect between forward osmosis and electrochemical oxidation was observed in FOwEO, which lies in that antibiotic rejections by FO were enhanced due to the degradation of antibiotics in the concentrate, while the electrochemical oxidation capacity was improved in the FOwEO channel, of which good mass transfer and the assist of indirect oxidation owing to the reverse NaCl from draw solution were supposed to be the mechanism. This study demonstrated that the FOwEO has the capability to thoroughly remove trace antibiotics from wastewater. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Hydroxide based Benzyltrimethylammonium degradation: Quantification of rates and degradation technique development

    DOE PAGES

    Sturgeon, Matthew R.; Macomber, Clay S.; Engtrakul, Chaiwat; ...

    2015-01-21

    Anion exchange membranes (AEMs) are of interest as hydroxide conducting polymer electrolytes in electrochemical devices like fuel cells and electrolyzers. AEMs require hydroxide stable covalently tetherable cations to ensure required conductivity. Benzyltrimethylammonium (BTMA) has been the covalently tetherable cation that has been most often employed in anion exchange membranes because it is reasonably basic, compact (limited number of atoms per charge), and easily/cheaply synthesized. Several reports exist that have investigated hydroxide stability of BTMA under specific conditions, but consistency within these reports and comparisons between them have not yet been made. While the hydroxide stability of BTMA has been believedmore » to be a limitation for AEMs, this stability has not been thoroughly reported. In this paper, we have found that several methods reported have inherent flaws in their findings due to the difficulty of performing degradation experiments at high temperature and high pH. In order to address these shortcomings, we have developed a reliable, standardized method of determining cation degradation under conditions similar/relevant to those expected in electrochemical devices. The experimental method has been employed to determine BTMA stabilities at varying cation concentrations and elevated temperatures, and has resulted in improved experimental accuracy and reproducibility. Finally and most notably, these results have shown that BTMA is quite stable at 80°C (half-life of ~4 years), a significant increase in stability over what had been reported previously.« less

  18. Brain perfusion abnormalities in Rett syndrome: a qualitative and quantitative SPET study with 99Tc(m)-ECD.

    PubMed

    Burroni, L; Aucone, A M; Volterrani, D; Hayek, Y; Bertelli, P; Vella, A; Zappella, M; Vattimo, A

    1997-06-01

    Rett syndrome is a progressive neurological paediatric disorder associated with severe mental deficiency, which affects only girls. The aim of this study was to determine if brain blood flow abnormalities detected with 99Tc(m)-ethyl-cysteinate-dimer (99Tc[m]-ECD) single photon emission tomography (SPET) can explain the clinical manifestation and progression of the disease. Qualitative and quantitative global and regional brain blood flow was evaluated in 12 girls with Rett syndrome and compared with an aged-matched reference group of children. In comparison with the reference group, SPET revealed a considerable global reduction in cerebral perfusion in the groups of girls with Rett syndrome. A large statistical difference was noted, which was more evident when comparing the control group with girls with stage IV Rett syndrome than girls with stage III Rett syndrome. The reduction in cerebral perfusion reflects functional disturbance in the brain of children with Rett syndrome. These data confirm that 99Tc(m)-ECD brain SPET is sensitive in detecting hypoperfused areas in girls with Rett syndrome that may be associated with brain atrophy, even when magnetic resonance imaging appears normal.

  19. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR ANALYSIS OF PESTICIDE SAMPLES BY GC/ECD (BCO-L-24.0)

    EPA Science Inventory

    The purpose of this SOP is to describe the methods used for detection and quantification by gas chromatography electron capture detector (GC/ECD) of pesticides in a variety of matrices, including air, house dust, soil, handwipes, and surface wipes. Other SOP's detail the extract...

  20. Effect of nitro substituent on electrochemical oxidation of phenols at boron-doped diamond anodes.

    PubMed

    Jiang, Yi; Zhu, Xiuping; Li, Hongna; Ni, Jinren

    2010-02-01

    In order to investigate nitro-substitutent's effect on degradation of phenols at boron-doped diamond (BDD) anodes, cyclic voltammetries of three nitrophenol isomers: 2-nitrophenol (2NP), 3-nitrophenol (3NP) and 4-nitrophenol (4NP) were studied, and their bulk electrolysis results were compared with phenol's (Ph) under alkaline condition. The voltammetric study showed nitrophenols could be attacked by hydroxyl radicals and nitro-group was released from the aromatic ring. Results of bulk electrolysis showed degradation of all phenols were fit to a pseudo first-order equation and followed in this order: 2NP>4NP>3NP>Ph. Molecular structures, especially carbon atom charge, significantly influenced the electrochemical oxidation of these isomers. Intermediates were analyzed during the electrolysis process, and were mainly catechol, resorcinol, hydroquinone, and carboxylic acids, such as acetic acid and oxalic acid. A simple degradation pathway was proposed. Moreover, a linear increasing relationship between degradation rates and Hammett constants of the studied phenols was observed, which demonstrated that electrochemical oxidation of these phenols was mainly initiated by electrophilic attack of hydroxyl radicals at BDD anodes. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  1. Electrochemical hydrogenation of a homogeneous nickel complex to form a surface adsorbed hydrogen-evolving species

    DOE PAGES

    Martin, Daniel J.; McCarthy, Brian D.; Donley, Carrie L.; ...

    2014-12-04

    Here, a Ni(ii) complex with nitrogen and sulfur donor ligands degrades electrochemically in the presence of acid in acetonitrile to form an electrode adsorbed film that catalytically evolves hydrogen.

  2. Investigation of electrolyte leaching in the performance degradation of phosphoric acid-doped polybenzimidazole membrane-based high temperature fuel cells

    NASA Astrophysics Data System (ADS)

    Jeong, Yeon Hun; Oh, Kyeongmin; Ahn, Sungha; Kim, Na Young; Byeon, Ayeong; Park, Hee-Young; Lee, So Young; Park, Hyun S.; Yoo, Sung Jong; Jang, Jong Hyun; Kim, Hyoung-Juhn; Ju, Hyunchul; Kim, Jin Young

    2017-09-01

    Precise monitoring of electrolyte leaching in high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC) devices during lifetime tests is helpful in making a diagnosis of their quality changes and analyzing their electrochemical performance degradation. Here, we investigate electrolyte leaching in the performance degradation of phosphoric acid (PA)-doped polybenzimidazole (PBI) membrane-based HT-PEMFCs. We first perform quantitative analyses to measure PA leakage during cell operation by spectrophotometric means, and a higher PA leakage rate is detected when the current density is elevated in the cell. Second, long-term degradation tests under various current densities of the cells and electrochemical impedance spectroscopy (EIS) analysis are performed to examine the influence of PA loss on the membrane and electrodes during cell performance degradation. The combined results indicate that PA leakage affect cell performance durability, mostly due to an increase in charge transfer resistance and a decrease in the electrochemical surface area (ECSA) of the electrodes. Additionally, a three-dimensional (3-D) HT-PEMFC model is applied to a real-scale experimental cell, and is successfully validated against the polarization curves measured during various long-term experiments. The simulation results highlight that the PA loss from the cathode catalyst layer (CL) is a significant contributor to overall performance degradation.

  3. An electrochemical study of a liquid crystal used in information displays

    NASA Technical Reports Server (NTRS)

    Oglesby, D. M.; Kern, J. B.; Robertson, J. B.

    1974-01-01

    The operational lifetime of liquid crystal displays were investigated. Electrochemical reaction at the electrodes of the display can cause failure after 2000 to 3000 hours of operation. Studies using cyclic voltametry of electrochemical reactions of N (p-methoxybenzilidene p-butylaniline (MBBA), a nematic liquid crystal were made. These studies indicate the presence of a reversible reduction of MBBA at the cathode, and that the reduction product undergoes a further reaction leading to products which are not reversibly oxidized. It is concluded that the degradation of the liquid crystal in displays can be reduced with a suitable frequency of alternating voltage.

  4. Application and stability of cathodes with manganese dioxide nanoflowers supported on Vulcan by Fenton systems for the degradation of RB5 azo dye.

    PubMed

    Aveiro, L R; Da Silva, A G M; Candido, E G; Antonin, V S; Parreira, L S; Papai, R; Gaubeur, I; Silva, Fernando L; Lanza, M R V; Camargo, P H C; Santos, M C

    2018-05-21

    This work describes the electrochemical degradation of Reactive Black 5 (RB5) by two methods: electrochemical and photo-assisted electrochemical degradation with and without a Fenton reagent. Two anodes were used, Pt and boron-doped diamond (BDD, 2500 ppm), and the cathode was 3% MnO 2 nanoflowers (NFMnO 2 ) on a carbon gas diffusion electrode (GDE). An electrochemical cell without a divider with a GDE with 3% w/w NFMnO 2 /C supported on carbon Vulcan XC72 was used. The decolorization efficiency was monitored by UV-vis spectroscopy, and the degradation was monitored by Total Organic Carbon (TOC) analysis. For dissolution monitoring, aliquots (1 mL) were collected during the degradation. After 6 h of H 2 O 2 electrogeneration, the manganese concentration in the RB5 solution was only 23.1 ± 1.2 μg L -1 . It was estimated that approximately 60 μg L -1 (<0.2%) of manganese migrated from the GDE to the solution after 12 h of electrolysis, which indicated the good stability of the GDE. The photoelectro-Fenton-BDD (PEF-BDD) processes showed both the best color removal percentage (∼93%) and 91% of mineralization. The 3% NFMnO 2 /C GDE is promising for RB5 degradation. Copyright © 2018. Published by Elsevier Ltd.

  5. Electrochemical sensors and biosensors based on less aggregated graphene.

    PubMed

    Bo, Xiangjie; Zhou, Ming; Guo, Liping

    2017-03-15

    As a novel single-atom-thick sheet of sp 2 hybridized carbon atoms, graphene (GR) has attracted extensive attention in recent years because of its unique and remarkable properties, such as excellent electrical conductivity, large theoretical specific surface area, and strong mechanical strength. However, due to the π-π interaction, GR sheets are inclined to stack together, which may seriously degrade the performance of GR with the unique single-atom layer. In recent years, an increasing number of GR-based electrochemical sensors and biosensors are reported, which may reflect that GR has been considered as a kind of hot and promising electrode material for electrochemical sensor and biosensor construction. However, the active sites on GR surface induced by the irreversible GR aggregations would be deeply secluded inside the stacked GR sheets and therefore are not available for the electrocatalysis. So the alleviation or the minimization of the aggregation level for GR sheets would facilitate the exposure of active sites on GR and effectively upgrade the performance of GR-based electrochemical sensors and biosensors. Less aggregated GR with low aggregation and high dispersed structure can be used in improving the electrochemical activity of GR-based electrochemical sensors or biosensors. In this review, we summarize recent advances and new progress for the development of electrochemical sensors based on less aggregated GR. To achieve such goal, many strategies (such as the intercalation of carbon materials, surface modification, and structural engineering) have been applied to alleviate the aggregation level of GR in order to enhance the performance of GR-based electrochemical sensors and biosensors. Finally, the challenges associated with less aggregated GR-based electrochemical sensors and biosensors as well as related future research directions are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. ssDNA degradation along capillary electrophoresis process using a Tris buffer.

    PubMed

    Ric, Audrey; Ong-Meang, Varravaddheay; Poinsot, Verena; Martins-Froment, Nathalie; Chauvet, Fabien; Boutonnet, Audrey; Ginot, Frédéric; Ecochard, Vincent; Paquereau, Laurent; Couderc, François

    2017-06-01

    Tris-Acetate buffer is currently used in the selection and the characterization of ssDNA by capillary electrophoresis (CE). By applying high voltage, the migration of ionic species into the capillary generates a current that induces water electrolysis. This phenomenon is followed by the modification of the pH and the production of Tris derivatives. By injecting ten times by capillary electrophoresis ssDNA (50 nM), the whole oligonucleotide was degraded. In this paper, we will show that the Tris buffer in the running vials is modified along the electrophoretic process by electrochemical reactions. We also observed that the composition of the metal ions changes in the running buffer vials. This phenomenon, never described in CE, is important for fluorescent ssDNA analysis using Tris buffer. The oligonucleotides are degraded by electrochemically synthesized species (present in the running Tris vials) until it disappears, even if the separation buffer in the capillary is clean. To address these issues, we propose to use a sodium phosphate buffer that we demonstrate to be electrochemically inactive. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Donor-estimated GFR as an appropriate criterion for allocation of ECD kidneys into single or dual kidney transplantation.

    PubMed

    Snanoudj, R; Rabant, M; Timsit, M O; Karras, A; Savoye, E; Tricot, L; Loupy, A; Hiesse, C; Zuber, J; Kreis, H; Martinez, F; Thervet, E; Méjean, A; Lebret, T; Legendre, C; Delahousse, M

    2009-11-01

    It has been suggested that dual kidney transplantation (DKT) improves outcomes for expanded criteria donor (ECD) kidneys. However, no criteria for allocation to single or dual transplantation have been assessed prospectively. The strategy of DKT remains underused and potentially eligible kidneys are frequently discarded. We prospectively compared 81 DKT and 70 single kidney transplant (SKT) receiving grafts from ECD donors aged >65 years, allocated according to donor estimated glomerular filtration rate (eGFR): DKT if eGFR between 30 and 60 mL/min, SKT if eGFR greater than 60 mL/min. Patient and graft survival were similar in the two groups. In the DKT group, 13/81 patients lost one of their two kidneys due to hemorrhage, arterial or venous thrombosis. Mean eGFR at month 12 was similar in the DKT and SKT groups (47.8 mL/min and 46.4 mL/min, respectively). Simulated allocation of kidneys according to criteria based on day 0 donor parameters such as those described by Remuzzi et al., Andres et al. and UNOS, did not indicate an improvement in 12-month eGFR compared to our allocation based on donor eGFR.

  8. Multivariate Optimization for Extraction of Pyrethroids in Milk and Validation for GC-ECD and CG-MS/MS Analysis

    PubMed Central

    Zanchetti Meneghini, Leonardo; Rübensam, Gabriel; Claudino Bica, Vinicius; Ceccon, Amanda; Barreto, Fabiano; Flores Ferrão, Marco; Bergold, Ana Maria

    2014-01-01

    A simple and inexpensive method based on solvent extraction followed by low temperature clean-up was applied for determination of seven pyrethroids residues in bovine raw milk using gas chromatography coupled to tandem mass spectrometry (GC-MS/MS) and gas chromatography with electron-capture detector (GC-ECD). Sample extraction procedure was established through the evaluation of seven different extraction protocols, evaluated in terms of analyte recovery and cleanup efficiency. Sample preparation optimization was based on Doehlert design using fifteen runs with three different variables. Response surface methodologies and polynomial analysis were used to define the best extraction conditions. Method validation was carried out based on SANCO guide parameters and assessed by multivariate analysis. Method performance was considered satisfactory since mean recoveries were between 87% and 101% for three distinct concentrations. Accuracy and precision were lower than ±20%, and led to no significant differences (p < 0.05) between results obtained by GC-ECD and GC-MS/MS techniques. The method has been applied to routine analysis for determination of pyrethroid residues in bovine raw milk in the Brazilian National Residue Control Plan since 2013, in which a total of 50 samples were analyzed. PMID:25380457

  9. Scanning electron microscopy analysis of corrosion degradation on tinplate substrates.

    PubMed

    Zumelzu, E; Cabezas, C; Vera, A

    2003-01-01

    The degradation of electrolytic tinplate used in food containers was analysed and evaluated, using scanning electron microscopy and electrochemical measurements of microcorrosion and ion dissolution by atomic absorption to prevent food contamination caused by metal traces and to increase the durability of such tinplates.

  10. Optimization of the electrochemical degradation process of the antibiotic ciprofloxacin using a double-sided β-PbO2 anode in a flow reactor: kinetics, identification of oxidation intermediates and toxicity evaluation.

    PubMed

    Wachter, Naihara; Aquino, José M; Denadai, Marina; Barreiro, Juliana C; Silva, Adilson J; Cass, Quezia B; Rocha-Filho, Romeu C; Bocchi, Nerilso

    2018-06-06

    The electrochemical degradation of ciprofloxacin-CIP (50 mg L -1 in 0.10 mol L -1 Na 2 SO 4 ) was investigated using a double-sided Ti-Pt/β-PbO 2 anode in a filter-press flow reactor, with identification of oxidation intermediates and follow-up of antimicrobial activity against Escherichia coli. The effect of solution pH, flow rate, current density, and temperature on the CIP removal rate was evaluated. All of these parameters did affect the CIP removal performance; thus, optimized electrolysis conditions were further explored: pH = 10, q V  = 6.5 L min -1 , j = 30 mA cm -2 , and θ = 25 °C. Therefore, CIP was removed within 2 h, whereas ~75% of the total organic carbon concentration (TOC) was removed after 5 h and then, the solution no longer presented antimicrobial activity. When the electrochemical degradation of CIP was investigated using a single-sided boron-doped diamond (BDD) anode, its performance in TOC removal was similar to that of the Ti-Pt/β-PbO 2 anode; considering the higher oxidation power of BDD, the surprisingly good comparative performance of the Ti-Pt/β-PbO 2 anode was ascribed to significantly better hydrodynamic conditions attained in the filter-press reactor used with this electrode. Five initial oxidation intermediates were identified by LC-MS/MS and completely removed after 4 h of electrolysis; since they have also been determined in other degradation processes, there must be similarities in the involved oxidation mechanisms. Five terminal oxidation intermediates (acetic, formic, oxamic, propionic, and succinic acids) were identified by LC-UV and all of them (except acetic acid) were removed after 10 h of electrolysis.

  11. Spectroscopic evidence for intermediate species formed during aniline polymerization and polyaniline degradation.

    PubMed

    Planes, G A; Rodríguez, J L; Miras, M C; García, G; Pastor, E; Barbero, C A

    2010-09-21

    Spectroscopic methods are used to investigate the formation of low molecular mass intermediates during aniline (ANI) oxidation and polyaniline (PANI) degradation. Studying ANI anodic oxidation by in situ Fourier transform infrared spectroscopy (FTIRS) it is possible to obtain, for the first time, spectroscopic evidence for ANI dimers produced by head-to-tail (4-aminodiphenylamine, 4ADA) and tail-to-tail (benzidine, BZ) coupling of ANI cation radicals. The 4ADA dimer is adsorbed on the electrode surface during polymerization, as proved by cyclic voltammetry of thin PANI films and its infrared spectrum. This method also allows, with the help of computational simulations, to assign characteristic vibration frequencies for the different oxidation states of PANI. The presence of 4ADA retained inside thin polymer layers is established too. On the other hand, FTIRS demonstrates that the electrochemically promoted degradation of PANI renders p-benzoquinone as its main product. This compound, retained inside the film, is apparent in the cyclic voltammogram in the same potential region previously observed for 4ADA dimer. Therefore, applying in situ FTIRS is possible to distinguish between different chemical species (4ADA or p-benzoquinone) which give rise to voltammetric peaks in the same potential region. Indophenol and CO(2) are also detected by FTIRS during ANI oxidation and polymer degradation. The formation of CO(2) during degradation is confirmed by differential electrochemical mass spectroscopy. To the best of our knowledge, this is the first evidence of the oxidation of a conducting polymer to CO(2) by electrochemical means. The relevance of the production of different intermediate species towards PANI fabrication and applications is discussed.

  12. Evaluation of Fuel Cell Operation and Degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Mark; Gemmen, Randall; Richards, George

    The concepts of area specific resistance (ASR) and degradation are developed for different fuel cell operating modes. The concepts of exergetic efficiency and entropy production were applied to ASR and degradation. It is shown that exergetic efficiency is a time-dependent function useful describing the thermal efficiency of a fuel cell and the change in thermal efficiency of a degrading fuel cell. Entropy production was evaluated for the cases of constant voltage operation and constant current operation of the fuel cell for a fuel cell undergoing ohmic degradation. It was discovered that the Gaussian hypergeometric function describes the cumulative entropy andmore » electrical work produced by fuel cells operating at constant voltage. The Gaussian hypergeometric function is found in many applications in modern physics. This paper builds from and is an extension of several papers recently published by the authors in the Journal of The Electrochemical Society (ECS), ECS Transactions, Journal of Power Sources, and the Journal of Fuel Cell Science and Technology.« less

  13. Electrochemical synthesis of poly(pyrrole-co-o-anisidine)/chitosan composite films

    NASA Astrophysics Data System (ADS)

    Yalçınkaya, Süleyman; Çakmak, Didem

    2017-05-01

    In this study, poly(pyrrole-co-o-anisidine)/chitosan composite films were electrochemically synthesized in various monomers feed ratio (pyrrole: o-anisidine; 9:1, 7:3, 1:1, 3:7 and 1:9) of pyrrole and o-anisidine on the platinum electrode. Electrochemical synthesis of the composite films was carried out via cyclic voltammetry technique. They were characterized by FT-IR, cyclic voltammetry, SEM micrographs, digital images, TGA and DSC techniques. The SEM results indicated that the particle size of the composite decreased with increasing o-anisidine ratio and the films became more likely to be smooth morphology. The TGA results proved that the film of the composite with 1:1 ratio showed highest final degradation temperature and lowest weight loss (83%) compared to copolymer and 9:1 1:9 composite films. The 1:1 composite film had higher thermal stability than copolymer and the other composite films (9:1 1:9). Meanwhile, electrochemical studies exhibited that the 1/9 composite film had good electrochemical stability as well.

  14. [Accumulation and degradation of organochorine pesticides in shellfish culture environment in Xiamen sea area].

    PubMed

    Zhong, Shuo-liang; Dong, Li-ming

    2011-09-01

    By using GC-ECD, the concentrations of organochlorine pesticides hexachlorocyclohexane (HCH) and dichlorodiphenyltrichloroethane (DDT) in the shellfish culture environment (sea water, sediments, and culture-shellfishes) in Xiamen sea area were analyzed, and the accumulation and degradation patterns of the HCH and DDT were preliminarily approached. In the sea area, there existed remarkable differences in the accumulation and degradation of HCH and DDT among different shellfish culture environments, being mostly associated with the habitation environment and physiological life habits of shellfish. The accumulated HCH isomers (Rx > 1) were mainly beta-HCH, delta-HCH, and gamma-HCH, whereas the degraded HCH isomers (Rx < 1) were mainly alpha-HCH. The ratio of alpha-HCH to gamma-HCH was less than or equal to 1.0, suggesting that the HCH was come from industrial HCH and lindane, most of the HCH had remained in the culture environment for a longer time, and a small amount of lindane was imported. The DDT in the sea water was aerobically degraded, its main degradation product was DDE, and the ratios of (DDD+DDE) to DDTs (p,p-DDE+p,p-DDD+o,p-DDT+p,p-DDT) was less than 0.5, whereas the DDT in sediments and shellfishes was anaerobically degraded, its main degradation product was DDD, and the ratios of (DDD+DDE) to DDTs was greater than 0.5, suggesting that there was a small amount of DDT newly imported in the sea water, and most DDT in sediments and shellfishes were already degraded and transformed into DDD and DDE. There were definite differences in the degradation rates of HCH isomers in the culture environment, suggesting the conformational change of HCH in its transformation processes in the shellfish culture ecosystem.

  15. Novel method of determination of D9-tetrahydrocannabinol(THC) in human serum by high-performance liquid chromatography with electrochemical detection.

    PubMed

    Kokubun, Hideya; Uezono, Yasuhito; Matoba, Motohiro

    2014-04-01

    In Europe and the United States, D9-tetrahydrocannabinol(THC, dronabinol), one of the psychoactive constituents of cannabis, has been used for both its anti-emetic and orexigenic effects in cancer patient receiving chemotherapy.However, dronabinol has not yet been launched in the market in Japan.In the future, it is necessary to ascertain the pharmacokinetics of dronabinol in cancer paitient.Therefore, we developed an HPLC procedure using electrochemical detection(ECD)for quan- titation of the concentrations of dronabinol in blood.An eluent of 50mM KH2PO4/CH3CN(9:16)was used as the mobile phase.The column was used the XTerra®RP18, and the voltage of the electrochemical detector in dronabinol was set at 400 mV.As a result, the calibration curve was linear in the range of 10 ng/mL to 100 ng/mL(y=964.85x -3,419, r=0.997).The lower limit of quantification was 0.5 ng/mL(S/N=3).The relative within-runs and between-runs standard deviations for the assay dronabinol were less than 4.7%. The method reported here is superior to previously reported methods in cancer patient.

  16. Correlation of surface site formation to nanoisland growth in the electrochemical roughening of Pt(111)

    NASA Astrophysics Data System (ADS)

    Jacobse, Leon; Huang, Yi-Fan; Koper, Marc T. M.; Rost, Marcel J.

    2018-03-01

    Platinum plays a central role in a variety of electrochemical devices and its practical use depends on the prevention of electrode degradation. However, understanding the underlying atomic processes under conditions of repeated oxidation and reduction inducing irreversible surface structure changes has proved challenging. Here, we examine the correlation between the evolution of the electrochemical signal of Pt(111) and its surface roughening by simultaneously performing cyclic voltammetry and in situ electrochemical scanning tunnelling microscopy (EC-STM). We identify a `nucleation and early growth' regime of nanoisland formation, and a `late growth' regime after island coalescence, which continues up to at least 170 cycles. The correlation analysis shows that each step site that is created in the `late growth' regime contributes equally strongly to both the electrochemical and the roughness evolution. In contrast, in the `nucleation and early growth' regime, created step sites contribute to the roughness, but not to the electrochemical signal.

  17. Degradation of the commercial surfactant nonylphenol ethoxylate by advanced oxidation processes.

    PubMed

    da Silva, Salatiel Wohlmuth; Klauck, Cláudia Regina; Siqueira, Marco Antônio; Bernardes, Andréa Moura

    2015-01-23

    Four different oxidation process, namely direct photolysis (DP) and three advanced oxidation processes (heterogeneous photocatalysis - HP, eletrochemical oxidation - EO and photo-assisted electrochemical oxidation - PEO) were applied in the treatment of wastewater containing nonylphenol ethoxylate (NPnEO). The objective of this work was to determine which treatment would be the best option in terms of degradation of NPnEO without the subsequent generation of toxic compounds. In order to investigate the degradation of the surfactant, the processes were compared in terms of UV/Vis spectrum, mineralization (total organic carbon), reaction kinetics, energy efficiency and phytotoxicity. A solution containing NPnEO was prepared as a surrogate of the degreasing wastewater, was used in the processes. The results showed that the photo-assisted processes degrade the surfactant, producing biodegradable intermediates in the reaction. On the other hand, the electrochemical process influences the mineralization of the surfactant. The process of PEO carried out with a 250W lamp and a current density of 10mA/cm(2) showed the best results in terms of degradation, mineralization, reaction kinetics and energy consumption, in addition to not presenting phytotoxicity. Based on this information, this process can be a viable alternative for treating wastewater containing NPnEO, avoiding the contamination of water resources. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Electrochemical degradation of the antihypertensive losartan in aqueous medium by electro-oxidation with boron-doped diamond electrode.

    PubMed

    Salazar, Claudio; Contreras, Nicole; Mansilla, Héctor D; Yáñez, Jorge; Salazar, Ricardo

    2016-12-05

    In this work the electrochemical oxidation of losartan, an emerging pharmaceutical pollutant, was studied. Electrochemical oxidation was carried out in batch mode, in an open and undivided cell of 100cm(3) using a boron-doped diamond (BDD)/stainless steel system. With Cl(-) medium 56% of mineralization was registered, while with the trials containing SO4(2-) as supporting electrolyte a higher mineralization yield of 67% was reached, even obtaining a total removal of losartan potassium at 80mAcm(-2) and 180min of reaction time at pH 7.0. Higher losartan potassium concentrations enhanced the mineralization degree and the efficiency of the electrochemical oxidation process. During the mineralization up to 4 aromatic intermediates were identified by ultra high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). Moreover, short-linear carboxylic acids, like oxalic, succinic and oxamic were detected and quantified by ion-exclusion HPLC. Finally, the ability of the electrochemical oxidation process to mineralize dissolved commercial tablets containing losartan was achieved, obtaining TOC removal up to 71% under optimized conditions (10mAcm(-2), 0.05M Na2SO4, pH 7.0 and 25°C and 360min of electrolysis). Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Electrochemical reduction of hexahydro-1,3,5-trinitro-1,3,5-triazine in aqueous solutions.

    PubMed

    Bonin, Pascale M L; Bejan, Dorin; Schutt, Leah; Hawari, Jalal; Bunce, Nigel J

    2004-03-01

    Electrochemical reduction of RDX, hexahydro-1,3,5-trinitro-1,3,5-triazine, a commercial and military explosive, was examined as a possible remediation technology for treating RDX-contaminated groundwater. A cascade of divided flow-through cells was used, with reticulated vitreous carbon cathodes and IrO2/Ti dimensionally stable anodes, initially using acetonitrile/water solutions to increase the solubility of RDX. The major degradation pathway involved reduction of RDX to the corresponding mononitroso compound, followed by ring cleavage to yield formaldehyde and methylenedinitramine. The reaction intermediates underwent further reduction and/or hydrolysis, the net result being the complete transformation of RDX to small molecules. The rate of degradation increased with current density, but the current efficiency was highest at low current densities. The technique was extended successfully both to 100% aqueous solutions of RDX and to an undivided electrochemical cell.

  20. Enantioselective determination of the organochlorine pesticide bromocyclen in spiked fish tissue using solid-phase microextraction coupled to gas chromatography with ECD and ICP-MS detection.

    PubMed

    Fidalgo-Used, Natalia; Montes-Bayón, Maria; Blanco-González, Elisa; Sanz-Medel, Alfredo

    2008-05-15

    A method for enantioselective determination of bromocyclen enantiomers in fish tissue has been developed. The enantiomers were resolved by capillary gas chromatography (GC) using a commercial chiral column (CP-Chirasil-Dex CB) and a temperature program from 50 degrees C (held for 1 min), raised to 140 degrees C at 40 degrees C min(-1) and then raised at 0.2 degrees C min(-1) to 155 degrees C. This enantioselective gas chromatographic separation was combined with a clean-up/enrichment procedure based on solid-phase microextraction (SPME). Under SPME optimized conditions, precision, linearity range and detection limits of the developed SPME-enantioselective GC procedure were evaluated and compared using two different detection systems: a classical electron-capture detection (ECD) and an element specific detection using inductively coupled plasma mass spectrometry (ICP-MS). The SPME-GC-ECD method exhibited an excellent sensitivity, with detection limits of 0.2 ng L(-1) for each enantiomer of bromocyclen. Although ICP-MS offered poorer detection limits (7 ng L(-1) as Br, equivalent to 36 ng L(-1) of each enantiomer) than conventional ECD detector, it proved to be clearly superior in terms of selectivity. The relative potential and performance of the two compared methods for real-life analysis has been illustrated by the determination of enantiomers of bromocyclen in spiked tissue extracts of trout.

  1. Controllable preparation of a nano-hydroxyapatite coating on carbon fibers by electrochemical deposition and chemical treatment.

    PubMed

    Wang, Xudong; Zhao, Xueni; Wang, Wanying; Zhang, Jing; Zhang, Li; He, Fuzhen; Yang, Jianjun

    2016-06-01

    A nano-hydroxyapatite (HA) coating with appropriate thickness and morphology similar to that of human bone tissue was directly prepared onto the surfaces of carbon fibers (CFs). A mixed solution of nitric acid, hydrochloric acid, sulfuric acid, and hydrogen peroxide (NHSH) was used in the preparation process. The coating was fabricated by combining NHSH treatment and electrochemical deposition (ECD). NHSH treatment is easy to operate, produces rapid reaction, and highly effective. This method was first used to induce the nucleation and growth of HA crystals on the CF surfaces. Numerous O-containing functional groups, such as hydroxyl (-OH) and carboxyl (-COOH) groups, were grafted onto the CF surfaces by NHSH treatment (NHSH-CFs); as such, the amounts of these groups on the functionalized CFs increased by nearly 8- and 12-fold, respectively, compared with those on untreated CFs. After treatment, the NHSH-CFs not only acquired larger specific surface areas but retained surfaces free from serious corrosion or breakage. Hence, NHSH-CFs are ideal depositional substrates of HA coating during ECD. ECD was successfully used to prepare a nano-rod-like HA coating on the NHSH-CF surfaces. The elemental composition, structure, and morphology of the HA coating were effectively controlled by adjusting various technological parameters, such as the current density, deposition time, and temperature. The average central diameter of HA crystals and the coating density increased with increasing deposition time. The average central diameter of most HA crystals on the NHSH-CFs varied from approximately 60 nm to 210 nm as the deposition time increased from 60 min to 180 min. Further studies on a possible deposition mechanism revealed that numerous O-containing functional groups on the NHSH-CF surfaces could associate with electrolyte ions (Ca(2+)) to form special chemical bonds. These bonds can induce HA coating deposition and improve the interfacial bonding strength between the HA

  2. ELECTROCHEMICAL DEGRADATION OF TRICHLOROETHYLENE USING GRANULAR-GRAPHITE ELECTRODES: IDENTIFICATION AND QUALIFICATION OF DECHLORINATION PRODUCTS

    EPA Science Inventory

    TCE was successfully dechlorinated in aqueous solution using granular graphite as the cathode in a mixed electrochemical reactor. In experiments with an initial TCE concentration of less than 100 mg/l, TCE was reduced approximately by 75% in the reactor under an applied cell volt...

  3. Pulsed Electrochemical Mass Spectrometry for Operando Tracking of Interfacial Processes in Small-Time-Constant Electrochemical Devices such as Supercapacitors.

    PubMed

    Batisse, Nicolas; Raymundo-Piñero, Encarnación

    2017-11-29

    A more detailed understanding of the electrode/electrolyte interface degradation during the charging cycle in supercapacitors is of great interest for exploring the voltage stability range and therefore the extractable energy. The evaluation of the gas evolution during the charging, discharging, and aging processes is a powerful tool toward determining the stability and energy capacity of supercapacitors. Here, we attempt to fit the gas analysis resolution to the time response of a low-gas-generation power device by adopting a modified pulsed electrochemical mass spectrometry (PEMS) method. The pertinence of the method is shown using a symmetric carbon/carbon supercapacitor operating in different aqueous electrolytes. The differences observed in the gas levels and compositions as a function of the cell voltage correlate to the evolution of the physicochemical characteristics of the carbon electrodes and to the electrochemical performance, giving a complete picture of the processes taking place at the electrode/electrolyte interface.

  4. Structural elucidation of transmembrane domain zero (TMD0) of EcdL: A multidrug resistance-associated protein (MRP) family of ATP-binding cassette transporter protein revealed by atomistic simulation.

    PubMed

    Bera, Krishnendu; Rani, Priyanka; Kishor, Gaurav; Agarwal, Shikha; Kumar, Antresh; Singh, Durg Vijay

    2017-09-20

    ATP-Binding cassette (ABC) transporters play an extensive role in the translocation of diverse sets of biologically important molecules across membrane. EchnocandinB (antifungal) and EcdL protein of Aspergillus rugulosus are encoded by the same cluster of genes. Co-expression of EcdL and echinocandinB reflects tightly linked biological functions. EcdL belongs to Multidrug Resistance associated Protein (MRP) subfamily of ABC transporters with an extra transmembrane domain zero (TMD0). Complete structure of MRP subfamily comprising of TMD0 domain, at atomic resolution is not known. We hypothesized that the transportation of echonocandinB is mediated via EcdL protein. Henceforth, it is pertinent to know the topological arrangement of TMD0, with other domains of protein and its possible role in transportation of echinocandinB. Absence of effective template for TMD0 domain lead us to model by I-TASSER, further structure has been refined by multiple template modelling using homologous templates of remaining domains (TMD1, NBD1, TMD2, NBD2). The modelled structure has been validated for packing, folding and stereochemical properties. MD simulation for 0.1 μs has been carried out in the biphasic environment for refinement of modelled protein. Non-redundant structures have been excavated by clustering of MD trajectory. The structural alignment of modelled structure has shown Z-score -37.9; 31.6, 31.5 with RMSD; 2.4, 4.2, 4.8 with ABC transporters; PDB ID 4F4C, 4M1 M, 4M2T, respectively, reflecting the correctness of structure. EchinocandinB has been docked to the modelled as well as to the clustered structures, which reveals interaction of echinocandinB with TMD0 and other TM helices in the translocation path build of TMDs.

  5. Biocompatible hydrogel membranes for the protection of RNA aptamer-based electrochemical sensors

    NASA Astrophysics Data System (ADS)

    Schoukroun-Barnes, Lauren R.; Wagan, Samiullah; Liu, Juan; Leach, Jennie B.; White, Ryan J.

    2013-05-01

    Electrochemical-aptamer based (E-AB) sensors represent a universal specific, selective, and sensitive sensing platform for the detection of small molecule targets. Their specific detection abilities are afforded by oligonucleotide (RNA or DNA) aptamers employed as electrode-bound biorecognition elements. Sensor signaling is predicated on bindinginduced changes in conformation and/or flexibility of the aptamer that is readily measurable electrochemically. While sensors fabricated using DNA aptamers can achieve specific and selective detection even in unadulterated sample matrices, such as blood serum, RNA-based sensors fail when challenged in the same sample matrix without significant sample pretreatment. This failure is at least partially a result of enzymatic degradation of the RNA sensing element. This degradation destroys the sensing aptamer inhibiting the quantitative measurement of the target analyte and thus limits the application of E-AB sensors constructed with RNA aptamer. To circumvent this, we demonstrate that a biocompatible hydrogel membrane protects the RNA aptamer sensor surface from enzymatic degradation for at least 3 hours - a remarkable improvement over the rapid (~minutes) degradation of unprotected sensors. To demonstrate this, we characterize the response of sensors fabricated with representative DNA and RNA aptamers directed against the aminoglycoside antibiotic, tobramycin in blood serum both protected and unprotected by a polyacrylamide membrane. Furthermore, we find encapsulation of the sensor surface with the hydrogel does not significantly impede the detection ability of aptamer-based sensors. This hydrogel-aptamer interface will thus likely prove useful for the long-term monitoring of therapeutics in complex biological media.

  6. Degradation of modified carbon black/epoxy nanocomposite coatings under ultraviolet exposure

    NASA Astrophysics Data System (ADS)

    Ghasemi-Kahrizsangi, Ahmad; Shariatpanahi, Homeira; Neshati, Jaber; Akbarinezhad, Esmaeil

    2015-10-01

    Degradation of epoxy coatings with and without Carbon Black (CB) nanoparticles under ultraviolet (UV) radiation were investigated using electrochemical impedance spectroscopy (EIS). Sodium dodecyl sulfate (SDS) was used to obtain a good dispersion of CB nanoparticles in a polymer matrix. TEM analysis proved a uniform dispersion of modified CB nanoparticles in epoxy coating. The coatings were subjected to UV radiation to study the degradation behavior and then immersed in 3.5 wt% NaCl. The results showed that the electrochemical behavior of neat epoxy coating was related to the formation and development of microcracks on the surface. The occurrence of microcracks on the surface of the coatings and consequently the penetration of ionic species reduced by adding CB nanoparticles into the formulation of the coatings. CB nanoparticles decreased degradation of CB coatings by absorbing UV irradiation. The ATR-FTIR results showed that decrease in the intensity of methyl group as main peak in presence of 2.5 wt% CB was lower than neat epoxy. In addition, the reduction in impedance of neat epoxy coating under corrosive environment was larger than CB coatings. The CB coating with 2.5 wt% nanoparticles had the highest impedance to corrosive media after 2000 h UV irradiation and 24 h immersion in 3.5 wt% NaCl.

  7. N-type organic electrochemical transistors with stability in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giovannitti, Alexander; Nielsen, Christian B.; Sbircea, Dan -Tiberiu

    Organic electrochemical transistors (OECTs) are receiving significant attention due to their ability to efficiently transduce biological signals. A major limitation of this technology is that only p-type materials have been reported, which precludes the development of complementary circuits, and limits sensor technologies. Here, we report the first ever n-type OECT, with relatively balanced ambipolar charge transport characteristics based on a polymer that supports both hole and electron transport along its backbone when doped through an aqueous electrolyte and in the presence of oxygen. This new semiconducting polymer is designed specifically to facilitate ion transport and promote electrochemical doping. Stability measurementsmore » in water show no degradation when tested for 2 h under continuous cycling. Furthermore, this demonstration opens the possibility to develop complementary circuits based on OECTs and to improve the sophistication of bioelectronic devices.« less

  8. N-type organic electrochemical transistors with stability in water

    DOE PAGES

    Giovannitti, Alexander; Nielsen, Christian B.; Sbircea, Dan -Tiberiu; ...

    2016-10-07

    Organic electrochemical transistors (OECTs) are receiving significant attention due to their ability to efficiently transduce biological signals. A major limitation of this technology is that only p-type materials have been reported, which precludes the development of complementary circuits, and limits sensor technologies. Here, we report the first ever n-type OECT, with relatively balanced ambipolar charge transport characteristics based on a polymer that supports both hole and electron transport along its backbone when doped through an aqueous electrolyte and in the presence of oxygen. This new semiconducting polymer is designed specifically to facilitate ion transport and promote electrochemical doping. Stability measurementsmore » in water show no degradation when tested for 2 h under continuous cycling. Furthermore, this demonstration opens the possibility to develop complementary circuits based on OECTs and to improve the sophistication of bioelectronic devices.« less

  9. The mechanical and electrochemical properties of bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Morrison, Mark Lee

    The objectives of this study were to define and model the electrochemical and mechanical behaviors of BMGs, in addition to the interactions between these. The electrochemical behaviors of Zr-, Ti-, and Ca-based BMGs have been studied in various environments. Moreover, the electrochemical behaviors of several common, crystalline materials have also been characterized in the same environments to facilitate comparisons. Mechanical characterization of the Vitreloy 105 alloy was conducted through four-point bend fatigue testing, as well as tensile testing with in situ thermography. After the electrochemical and mechanical behaviors of the Vit 105 BMG alloy were defined separately, the corrosion-fatigue behavior of this alloy was studied. Corrosion-fatigue tests were conducted in a 0.6 M NaCl electrolyte, identical to one of the environments in which the electrochemical behavior was previously defined. The environmental effect was found to be significant at most stress levels, with decreasing effects at higher stress levels due to decreasing time in the detrimental environment, and severely depressed the corrosion-fatigue endurance limit. Cyclic-anodic-polarization tests were conducted during cyclic loading to elucidate the effect of cyclic stresses on the electrochemical behavior. It was found that a stress range of 900 MPa resulted in active pitting at the open-circuit potentials. The degradation mechanism was determined to be stress-assisted dissolution, not hydrogen embrittlement. Finally, tensile tests were conducted with the Vit 105 BMG alloy with in situ infrared (IR) thermography to observe the evolution of shear bands during deformation. More importantly, the length, location, sequence, temperature evolution, and velocity of individual shear bands have been quantified through the use of IR thermography. Based upon all of these studies on a variety of BMG alloy systems, the most important factor in the mechanical and electrochemical behavior was found to be

  10. Electrochemical oxidation of 2,4,5-trichlorophenoxyacetic acid by metal-oxide-coated Ti electrodes.

    PubMed

    Maharana, Dusmant; Xu, Zesheng; Niu, Junfeng; Rao, Neti Nageswara

    2015-10-01

    Electrochemical oxidation of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) over metal-oxide-coated Ti anodes, i.e., Ti/SnO2-Sb/Ce-PbO2, Ti/SnO2-Sb and Ti/RuO2, was examined. The degradation efficiency of over 90% was attained at 20 min at different initial concentrations (0.5-20 mg L(-1)) and initial pH values (3.1-11.2). The degradation efficiencies of 2,4,5-T on Ti/SnO2-Sb/Ce-PbO2, Ti/SnO2-Sb and Ti/RuO2 anodes were higher than 99.9%, 97.2% and 91.5% at 30 min, respectively, and the respective total organic carbon removal ratios were 65.7%, 54.6% and 37.2%. The electrochemical degradation of 2,4,5-T in aqueous solution followed pseudo-first-order kinetics. The compounds, i.e., 2,5-dichlorohydroquinone and 2,5-dihydroxy-p-benzoquinone, have been identified as the main aromatic intermediates by liquid chromatography-mass spectrometry. The results showed that the energy efficiencies of 2,4,5-T (20 mg L(-1)) degradation with Ti/SnO2-Sb/Ce-PbO2 anode at the optimal current densities from 2 to 16 mA cm(-2) ranged from 8.21 to 18.73 kWh m(-3). Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment.

    PubMed

    Xin, Yunchang; Huo, Kaifu; Tao, Hu; Tang, Guoyi; Chu, Paul K

    2008-11-01

    Various electrochemical approaches, including potentiodynamic polarization, open circuit potential evolution and electrochemical impedance spectroscopy (EIS), are employed to investigate the degradation behavior of biomedical magnesium alloy under the influence of aggressive ions, such as chloride, phosphate, carbonate and sulfate, in a physiological environment. The synergetic effects and mutual influence of these ions on the degradation behavior of Mg are revealed. Our results demonstrate that chloride ions can induce porous pitting corrosion. In the presence of phosphates, the corrosion rate decreases and the formation of pitting corrosion is significantly delayed due to precipitation of magnesium phosphate. Hydrogen carbonate ions are observed to stimulate the corrosion of magnesium alloy during the early immersion stage but they can also induce rapid passivation on the surface. This surface passivation behavior mainly results from the fast precipitation of magnesium carbonate in the corrosion product layer that can subsequently inhibit pitting corrosion completely. Sulfate ions are also found to stimulate magnesium dissolution. These results improve our understanding on the degradation mechanism of surgical magnesium in the physiological environment.

  12. Photocatalytic studies of electrochemically synthesized polysaccharide-functionalized ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Kaur, Simranjeet; Kaur, Harpreet

    2018-05-01

    The present work reports the electrochemical synthesis of polysaccharide-functionalized ZnO nanoparticles using sodium hydroxide, starch, and zinc electrodes for the degradation of cationic dye (Rhodamine-B) under sunlight. Physiochemical properties of synthesized sample have been characterized by different techniques such as XRD, TEM, FESEM, EDS, IR, and UV-visible spectroscopic techniques. The influence of various factors such as effect of dye concentration, contact time, amount of photocatalyst, and pH has been studied. The results obtained from the photodegradation study showed that degradation rate of Rhodamine-B dye has been increased with increase of amount of photocatalyst and decreased with increase in initial dye concentration. Furthermore, the kinetics of the degradation has been investigated. It has been found that the photodegradation of Rhodamine-B dye follows pseudo-first-order kinetics and prepared photocatalyst can effectively degrade the cationic dye. Thus, this ecofriendly and efficient photocatalyst can be used for the treatment of dye-contaminated water. This catalyst also showed the antibacterial activity against Bacillus pumilus and Escherichia coli bacterial strains, so the synthesized nanoparticles also have the pharmaceutical properties.

  13. Microfluidic electrochemical reactors

    DOEpatents

    Nuzzo, Ralph G [Champaign, IL; Mitrovski, Svetlana M [Urbana, IL

    2011-03-22

    A microfluidic electrochemical reactor includes an electrode and one or more microfluidic channels on the electrode, where the microfluidic channels are covered with a membrane containing a gas permeable polymer. The distance between the electrode and the membrane is less than 500 micrometers. The microfluidic electrochemical reactor can provide for increased reaction rates in electrochemical reactions using a gaseous reactant, as compared to conventional electrochemical cells. Microfluidic electrochemical reactors can be incorporated into devices for applications such as fuel cells, electrochemical analysis, microfluidic actuation, pH gradient formation.

  14. Electrochemical decolorization of dye wastewater by surface-activated boron-doped nanocrystalline diamond electrode.

    PubMed

    Chen, Chienhung; Nurhayati, Ervin; Juang, Yaju; Huang, Chihpin

    2016-07-01

    Complex organics contained in dye wastewater are difficult to degrade and often require electrochemical advanced oxidation processes (EAOPs) to treat it. Surface activation of the electrode used in such treatment is an important factor determining the success of the process. The performance of boron-doped nanocrystalline diamond (BD-NCD) film electrode for decolorization of Acid Yellow (AY-36) azo dye with respect to the surface activation by electrochemical polarization was studied. Anodic polarization found to be more suitable as electrode pretreatment compared to cathodic one. After anodic polarization, the originally H-terminated surface of BD-NCD was changed into O-terminated, making it more hydrophilic. Due to the oxidation of surface functional groups and some portion of sp(2) carbon in the BD-NCD film during anodic polarization, the electrode was successfully being activated showing lower background current, wider potential window and considerably less surface activity compared to the non-polarized one. Consequently, electrooxidation (EO) capability of the anodically-polarized BD-NCD to degrade AY-36 dye was significantly enhanced, capable of nearly total decolorization and chemical oxygen demand (COD) removal even after several times of re-using. The BD-NCD film electrode favored acidic condition for the dye degradation; and the presence of chloride ion in the solution was found to be more advantageous than sulfate active species. Copyright © 2016. Published by Elsevier B.V.

  15. Research trends in electrochemical technology for water and wastewater treatment

    NASA Astrophysics Data System (ADS)

    Zheng, Tianlong; Wang, Juan; Wang, Qunhui; Meng, Huimin; Wang, Lihong

    2017-03-01

    It is difficult to completely degrade wastewater containing refractory pollutants without secondary pollution by biological treatment, as well as physical-chemical process. Therefore, electrochemical technology has attracted much attention for its environmental compatibility, high removal efficiency, and potential cost effectiveness, especially on the industrial wastewater treatment. An effective bibliometric analysis based on the Science Citation Index Core Collection database was conducted to evaluate electrochemical technology for water and wastewater treatment related research from 1994 to 2013. The amount of publications significantly increased in the last two decades. Journal of the Electrochemical Society published the most articles in this field with a top h-index of 90, taking 5.8 % of all, followed by Electrochimica Acta and Journal of Electroanalytical Chemistry. The researchers focused on categories of chemistry, electrochemistry, and materials science. China and Chinese Academy of Sciences were the most productive country and institution, respectively, while the USA, with the most international collaborative articles and highest h-index of 130, was the major collaborator with 15 other countries in top 20 most productive countries. Moreover, based on the analysis of author keywords, title, abstract, and `KeyWords Plus', a new method named "word cluster analysis" was successfully applied to trace the research hotspot. Nowadays, researchers mainly focused on novel anodic electrode, especially on its physiochemical and electrochemical properties.

  16. Corrosion protection of copper by polypyrrole film studied by electrochemical impedance spectroscopy and the electrochemical quartz microbalance

    NASA Astrophysics Data System (ADS)

    Lei, Yanhua; Ohtsuka, Toshiaki; Sheng, Nan

    2015-12-01

    Polypyrrole (PPy) films were synthesized on copper in solution of sodium di-hydrogen phosphate and phytate for corrosion protection. The protection properties of PPy films were comparatively investigated in NaCl solution. During two months immersion, the PPy film doped with phytate anions, working as a cationic perm-selective membrane, inhibited the dissolution of copper to 1% of bare copper. Differently, the PPy film doped with di-hydrogen phosphate anions, possessing anionic perm-selectivity, was gradually reduced, and inhibited the dissolution to 7.8% of bare copper. Degradation of the PPy films was studied by comparing the electrochemical impedance spectroscopy change at different immersion time and Raman spectra change after immersion.

  17. Influence of albumin and inorganic ions on electrochemical corrosion behavior of plasma electrolytic oxidation coated magnesium for surgical implants

    NASA Astrophysics Data System (ADS)

    Wan, Peng; Lin, Xiao; Tan, LiLi; Li, Lugee; Li, WeiRong; Yang, Ke

    2013-10-01

    Magnesium and its alloys are of great interest for biodegradable metallic devices. However, the degradation behavior and mechanisms of magnesium treated with coating in physiological environment in the presence of organic compound such as albumin have not been elucidated. In this study, the plasma electrolytic oxidation coated magnesium immersed in four different simulated body fluids: NaCl, PBS and with the addition of albumin to investigate the influence of protein and inorganic ions on degradation behavior by electrochemical methods. The results of electrochemical tests showed that aggressive corrosion took place in 0.9 wt.% NaCl solution; whereas albumin can act as an inhibitor, its adsorption impeded further dissolution of the coating. The mechanism was attributed to the synergistic effect of protein adsorption and precipitation of insoluble salts.

  18. Impact of Polymer Electrolyte Membrane Degradation Products on Oxygen Reduction Reaction Activity for Platinum Electrocatalysts

    DOE PAGES

    Christ, J. M.; Neyerlin, K. C.; Wang, H.; ...

    2014-10-30

    The impact of model membrane degradation compounds on the relevant electrochemical parameters for the oxygen reduction reaction (i.e. electrochemical surface area and catalytic activity), was studied for both polycrystalline Pt and carbon supported Pt electrocatalysts. Model compounds, representing previously published, experimentally determined polymer electrolyte membrane degradation products, were in the form of perfluorinated organic acids that contained combinations of carboxylic and/or sulfonic acid functionality. Perfluorinated carboxylic acids of carbon chain length C1 – C6 were found to have an impact on electrochemical surface area (ECA). The longest chain length acid also hindered the observed oxygen reduction reaction (ORR) performance, resultingmore » in a 17% loss in kinetic current (determined at 0.9 V). Model compounds containing sulfonic acid functional groups alone did not show an effect on Pt ECA or ORR activity. Lastly, greater than a 44% loss in ORR activity at 0.9V was observed for diacid model compounds DA-Naf (perfluoro(2-methyl-3-oxa-5-sulfonic pentanoic) acid) and DA-3M (perfluoro(4-sulfonic butanoic) acid), which contained both sulfonic and carboxylic acid functionalities.« less

  19. Photoelectrochemical Degradation of Organic Compounds Coupled with Molecular Hydrogen Generation Using Electrochromic TiO2 Nanotube Arrays.

    PubMed

    Koo, Min Seok; Cho, Kangwoo; Yoon, Jeyong; Choi, Wonyong

    2017-06-06

    Vertically aligned TiO 2 nanotube arrays (TNTs) were prepared by electrochemical anodization, and then cathodically polarized with dark blue coloration for the dual-functional photoelectrochemical water treatment of organic substrates degradation and accompanying H 2 generation. The resulting Blue-TNTs (inner diameter: ∼40 nm; length: ∼9 μm) showed negligible shift in X-ray diffraction pattern compared with the intact TNTs, but the X-ray photoelectron spectra indicated a partial reduction of Ti 4+ to Ti 3+ on the surface. The electrochemical analyses of Blue-TNTs revealed a marked enhancement in donor density and electrical conductivity by orders of magnitude. Degradations of test organic substrates on Blue-TNTs were compared with the intact TNTs in electrochemical (EC), photocatalytic (PC), and photoelectrochemical (PEC) conditions (potential bias: 1.64 V NHE ; λ > 320 nm). The degradation of 4-chlorophenol was greatly enhanced on Blue-TNTs particularly in PEC condition, whereas the PC activities of the Blue- and intact TNTs were similar. The potential bias of 1.64 V NHE did not induce any noticeable activity in EC condition. Similar trends were observed for the degradation of humic acid and fulvic acid, where main working oxidants were found to be the surface hydroxyl radical as confirmed by hydroxyl radical probe and scavenger tests. H 2 generation coupled with the organic degradation was observed only in PEC condition, where the H 2 generation rate with Blue-TNTs was more than doubled from that of intact TNTs. Such superior PEC activity was not observed when a common TiO 2 nanoparticle film was used as a photoanode. The enhanced electric conductivity of Blue-TNTs coupled with a proper band bending in PEC configuration seemed to induce a highly synergic enhancement.

  20. Control of electro-chemical processes using energy harvesting materials and devices.

    PubMed

    Zhang, Yan; Xie, Mengying; Adamaki, Vana; Khanbareh, Hamideh; Bowen, Chris R

    2017-12-11

    Energy harvesting is a topic of intense interest that aims to convert ambient forms of energy such as mechanical motion, light and heat, which are otherwise wasted, into useful energy. In many cases the energy harvester or nanogenerator converts motion, heat or light into electrical energy, which is subsequently rectified and stored within capacitors for applications such as wireless and self-powered sensors or low-power electronics. This review covers the new and emerging area that aims to directly couple energy harvesting materials and devices with electro-chemical systems. The harvesting approaches to be covered include pyroelectric, piezoelectric, triboelectric, flexoelectric, thermoelectric and photovoltaic effects. These are used to influence a variety of electro-chemical systems such as applications related to water splitting, catalysis, corrosion protection, degradation of pollutants, disinfection of bacteria and material synthesis. Comparisons are made between the range harvesting approaches and the modes of operation are described. Future directions for the development of electro-chemical harvesting systems are highlighted and the potential for new applications and hybrid approaches are discussed.

  1. Buffered Electrochemical Polishing of Niobium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gianluigi Ciovati; Tian, Hui; Corcoran, Sean

    The standard preparation of superconducting radio-frequency (SRF) cavities made of pure niobium include the removal of a 'damaged' surface layer, by buffered chemical polishing (BCP) or electropolishing (EP), after the cavities are formed. The performance of the cavities is characterized by a sharp degradation of the quality factor when the surface magnetic field exceeds about 90 mT, a phenomenon referred to as 'Q-drop.' In cavities made of polycrystalline fine grain (ASTM 5) niobium, the Q-drop can be significantly reduced by a low-temperature (? 120 °C) 'in-situ' baking of the cavity if the chemical treatment was EP rather than BCP. Asmore » part of the effort to understand this phenomenon, we investigated the effect of introducing a polarization potential during buffered chemical polishing, creating a process which is between the standard BCP and EP. While preliminary results on the application of this process to Nb cavities have been previously reported, in this contribution we focus on the characterization of this novel electrochemical process by measuring polarization curves, etching rates, surface finish, electrochemical impedance and the effects of temperature and electrolyte composition. In particular, it is shown that the anodic potential of Nb during BCP reduces the etching rate and improves the surface finish.« less

  2. Conductivity degradation of polyvinylidene fluoride composite binder during cycling: Measurements and simulations for lithium-ion batteries

    DOE PAGES

    Grillet, Anne M.; Humplik, Thomas; Stirrup, Emily K.; ...

    2016-07-02

    The polymer-composite binder used in lithium-ion battery electrodes must both hold the electrodes together and augment their electrical conductivity while subjected to mechanical stresses caused by active material volume changes due to lithiation and delithiation. We have discovered that cyclic mechanical stresses cause significant degradation in the binder electrical conductivity. After just 160 mechanical cycles, the conductivity of polyvinylidene fluoride (PVDF):carbon black binder dropped between 45–75%. This degradation in binder conductivity has been shown to be quite general, occurring over a range of carbon black concentrations, with and without absorbed electrolyte solvent and for different polymer manufacturers. Mechanical cycling ofmore » lithium cobalt oxide (LiCoO2) cathodes caused a similar degradation, reducing the effective electrical conductivity by 30–40%. Mesoscale simulations on a reconstructed experimental cathode geometry predicted the binder conductivity degradation will have a proportional impact on cathode electrical conductivity, in qualitative agreement with the experimental measurements. Lastly, ohmic resistance measurements were made on complete batteries. Direct comparisons between electrochemical cycling and mechanical cycling show consistent trends in the conductivity decline. This evidence supports a new mechanism for performance decline of rechargeable lithium-ion batteries during operation – electrochemically-induced mechanical stresses that degrade binder conductivity, increasing the internal resistance of the battery with cycling.« less

  3. Electrochemical oxidation coupled with liquid chromatography and mass spectrometry to study the oxidative stability of active pharmaceutical ingredients in solution: A comparison of off-line and on-line approaches.

    PubMed

    Torres, Susana; Brown, Roland; Zelesky, Todd; Scrivens, Garry; Szucs, Roman; Hawkins, Joel M; Taylor, Mark R

    2016-11-30

    Stability studies of pharmaceutical drug products and pharmaceutical active substances are important to research and development in order to fully understand and maintain product quality and safety throughout its shelf-life. Oxidative forced degradation studies are among the different types of stability studies performed by the pharmaceutical industry in order to understand the intrinsic stability of drug molecules. We have been comparing the use of electrochemistry as an alternative oxidative forced degradation method to traditional forced degradation and accelerated stability studies. Using the electrochemical degradation approach the substrate oxidation takes place in a commercially available electrochemical cell and the effluent of the cell can be either a) directly infused into the mass spectrometer or b) injected in a chromatographic column for separation of the different products formed prior to the mass spectrometry analysis. To enable the study of large numbers of different experimental conditions and molecules we developed a new dual pump automated electrochemical screening platform. This system used a HPLC pump and autosampler to load and wash the electrochemical cell and deliver the oxidized sample plug to a second injection loop. This system enabled the automatic sequential analyses of large numbers of different solutions under varied experimental conditions without need for operator intervention during the run sequence. Here we describe the system and evaluate its performance using a test molecule with well characterized stability and compare results to those obtained using an off-line electrochemistry approach. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Efficient fluorescence "turn-on" sensing of dissolved oxygen by electrochemical switching.

    PubMed

    Shin, Ik-Soo; Hirsch, Thomas; Ehrl, Benno; Jang, Dong-Hak; Wolfbeis, Otto S; Hong, Jong-In

    2012-11-06

    We report on a novel method for sensing oxygen that is based on the use of a perylene diimide dye (1) which is electrochemically reduced to its nonfluorescent dianion form (1(2-)). In the presence of oxygen, the dianion is oxidized to its initial form via an electron-transfer reaction with oxygen upon which fluorescence is recovered. As a result, the fluorescence intensity of the dianion solution increases upon the addition of oxygen gas. Results demonstrate that high sensitivity is obtained, and the emission intensity shows a linear correlation with oxygen content (0.0-4.0% v/v) at ambient barometric pressure. In addition, using electrochemical reduction, oxygen determination becomes regenerative, and no significant degradation is observed over several turnovers. The limit of detection is 0.4% oxygen in argon gas.

  5. Effect of biochar on bio-electrochemical dye degradation and energy production.

    PubMed

    Sophia Ayyappan, Carmalin; Bhalambaal, V M; Kumar, Sunil

    2018-03-01

    The effect of coconut shell biochar on dye degradation in a microbial fuel cell (MFC) was investigated in the present study. Two different doses of biochar (0.5 g and 1 g) and one control without bio-char were studied. The highest COD removal efficiency was about 77.7% (0.5 g biochar), maximum current (1.07 mA) and voltage (722 mV) were obtained with 1 g biochar. Biofilm optical microscopy characterization revealed the micro colonies intricate plate-like structures. High adsorbent dosage might provide a high surface area for biofilm to generate electricity. BET results of coconut shell biochar showed the maximum surface area of 0.9669 m 2 /g and macroporosity (0.0032 cm 3 /g). The overall results highlighted the possibility of using biochar as an additive in MFC for efficient dye degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Conductive diamond electrochemical oxidation of caffeine-intensified biologically treated urban wastewater.

    PubMed

    Martín de Vidales, María J; Millán, María; Sáez, Cristina; Pérez, José F; Rodrigo, Manuel A; Cañizares, Pablo

    2015-10-01

    In this work, the usefulness of Conductive Diamond Electrochemical Oxidation (CDEO) to degrade caffeine in real urban wastewater matrixes was assessed. The oxidation of actual wastewater intensified with caffeine (from 1 to 100 mg L(-1)) was studied, paying particular attention to the influence of the initial load of caffeine and the differences observed during the treatment of caffeine in synthetic wastewater. The results showed that CDEO is a technology that is capable of efficiently degrading this compound even at very low concentrations and that it can even be completely depleted. Profiles of the ionic species of S (SO4(2-)), N (NH4(+), NO3(-)) and Cl (ClO(-), ClO3(-) and ClO4(-)) were monitored and explained for plausible oxidation mechanisms. It was observed that the efficiency achieved is higher in the treatment of real wastewater than in the oxidation of synthetic wastewater because of the contribution of electrogenerated oxidant species such as hypochlorite. The formation of chlorate and perchlorate during electrochemical processes was observed, and a combined strategy to prevent this important drawback was successfully tested based on the application of low current densities with the simultaneous dosing of hydrogen peroxide. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Electrochemical performance and interfacial investigation on Si composite anode for lithium ion batteries in full cell

    NASA Astrophysics Data System (ADS)

    Shobukawa, Hitoshi; Alvarado, Judith; Yang, Yangyuchen; Meng, Ying Shirley

    2017-08-01

    Lithium ion batteries (LIBs) containing silicon (Si) as a negative electrode have gained much attention recently because they deliver high energy density. However, the commercialization of LIBs with Si anode is limited due to the unstable electrochemical performance associated with expansion and contraction during electrochemical cycling. This study investigates the electrochemical performance and degradation mechanism of a full cell containing Si composite anode and LiFePO4 (lithium iron phosphate (LFP)) cathode. Enhanced electrochemical cycling performance is observed when the full cell is cycled with fluoroethylene carbonate (FEC) additive compared to the standard electrolyte. To understand the improvement in the electrochemical performance, x-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM) are used. Based on the electrochemical behavior, FEC improves the reversibility of lithium ion diffusion into the solid electrolyte interphase (SEI) on the Si composite anode. Moreover, XPS analysis demonstrates that the SEI composition generated from the addition of FEC consists of a large amount of LiF and less carbonate species, which leads to better capacity retention over 40 cycles. The effective SEI successively yields more stable capacity retention and enhances the reversibility of lithium ion diffusion through the interphase of the Si anode, even at higher discharge rate. This study contributes to a basic comprehension of electrochemical performance and SEI formation of LIB full cells with a high loading Si composite anode.

  8. Detection of cephradine through the electrochemical study of the degradation product of cephradine

    NASA Astrophysics Data System (ADS)

    Jiang, Qingfeng; Ying, Yibin; Wang, Jianping; Ye, Zunzhong; Li, Yanbin

    2005-11-01

    The degradation product of cephradine(CEP), a broad spectrum antibiotic, with NaOH was studied in solution by Cyclic Voltammetry and Differential Pulse Voltammetry at a three electrode system (Gold working electrode, Hg/HgCl reference electrode and Platinum counter electrode). Our experiment was based on that the R-SH in degradation product could cause a deoxidization peak at gold working electrode. The response was optimized with respect to accumulation time, ionic strength, drug concentration, reproducibility and other variables. We found that the degradation product of CEP in Na2HPO4-NaH2PO4 buffer could cause a sensitive deoxidization peak at -0.68V. A linear dependence of peak currents on the concentration was observed in the range of 10-7 - 10-6 mol/L, with a detection limit of 0.5*10-7mol/L. This method can achieve satisfactory results in the application of detecting human-made CEP.

  9. In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid.

    PubMed

    Kannan, M Bobby; Raman, R K Singh

    2008-05-01

    The successful applications of magnesium-based alloys as degradable orthopaedic implants are mainly inhibited due to their high degradation rates in physiological environment and consequent loss in the mechanical integrity. This study examines the degradation behaviour and the mechanical integrity of calcium-containing magnesium alloys using electrochemical techniques and slow strain rate test (SSRT) method, respectively, in modified-simulated body fluid (m-SBF). Potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) results showed that calcium addition enhances the general and pitting corrosion resistances of magnesium alloys significantly. The corrosion current was significantly lower in AZ91Ca alloy than that in AZ91 alloy. Furthermore, AZ91Ca alloy exhibited a five-fold increase in the surface film resistance than AZ91 alloy. The SSRT results showed that the ultimate tensile strength and elongation to fracture of AZ91Ca alloy in m-SBF decreased only marginally (approximately 15% and 20%, respectively) in comparison with these properties in air. The fracture morphologies of the failed samples are discussed in the paper. The in vitro study suggests that calcium-containing magnesium alloys to be a promising candidate for their applications in degradable orthopaedic implants, and it is worthwhile to further investigate the in vivo corrosion behaviour of these alloys.

  10. Degradation of the insecticide propoxur by electrochemical advanced oxidation processes using a boron-doped diamond/air-diffusion cell.

    PubMed

    Guelfi, Diego Roberto Vieira; Gozzi, Fábio; Sirés, Ignasi; Brillas, Enric; Machulek, Amílcar; de Oliveira, Silvio César

    2017-03-01

    A solution with 0.38 mM of the pesticide propoxur (PX) at pH 3.0 has been comparatively treated by electrochemical oxidation with electrogenerated H 2 O 2 (EO-H 2 O 2 ), electro-Fenton (EF), and photoelectro-Fenton (PEF). The trials were carried out with a 100-mL boron-doped diamond (BDD)/air-diffusion cell. The EO-H 2 O 2 process had the lowest oxidation ability due to the slow reaction of intermediates with • OH produced from water discharge at the BDD anode. The EF treatment yielded quicker mineralization due to the additional • OH formed between added Fe 2+ and electrogenerated H 2 O 2 . The PEF process was the most powerful since it led to total mineralization by the combined oxidative action of hydroxyl radicals and UVA irradiation. The PX decay agreed with a pseudo-first-order kinetics in EO-H 2 O 2 , whereas in EF and PEF, it obeyed a much faster pseudo-first-order kinetics followed by a much slower one, which are related to the oxidation of its Fe(II) and Fe(III) complexes, respectively. EO-H 2 O 2 showed similar oxidation ability within the pH range 3.0-9.0. The effect of current density and Fe 2+ and substrate contents on the performance of the EF process was examined. Two primary aromatic products were identified by LC-MS during PX degradation.

  11. Intermediate stages of electrochemical oxidation of single-crystalline platinum revealed by in situ Raman spectroscopy

    PubMed Central

    Huang, Yi-Fan; Kooyman, Patricia J.; Koper, Marc T. M.

    2016-01-01

    Understanding the atomistic details of how platinum surfaces are oxidized under electrochemical conditions is of importance for many electrochemical devices such as fuel cells and electrolysers. Here we use in situ shell-isolated nanoparticle-enhanced Raman spectroscopy to identify the intermediate stages of the electrochemical oxidation of Pt(111) and Pt(100) single crystals in perchloric acid. Density functional theory calculations were carried out to assist in assigning the experimental Raman bands by simulating the vibrational frequencies of possible intermediates and products. The perchlorate anion is suggested to interact with hydroxyl phase formed on the surface. Peroxo-like and superoxo-like two-dimensional (2D) surface oxides and amorphous 3D α-PtO2 are sequentially formed during the anodic polarization. Our measurements elucidate the process of the electrochemical oxidation of platinum single crystals by providing evidence for the structure-sensitive formation of a 2D platinum-(su)peroxide phase. These results may contribute towards a fundamental understanding of the mechanism of degradation of platinum electrocatalysts. PMID:27514695

  12. Analysis of phenolic acids by ionic liquid-in-water microemulsion liquid chromatography coupled with ultraviolet and electrochemical detector.

    PubMed

    Peng, Li-Qing; Cao, Jun; Du, Li-Jing; Zhang, Qi-Dong; Shi, Yu-Tin; Xu, Jing-Jing

    2017-05-26

    An environmentally friendly ionic liquid-in-water (IL/W) microemulsion was established and applied as mobile phase in microemulsion liquid chromatography (MELC) with ultraviolet (UV) detection or electrochemical detector (ECD) for analysis of phenolic compounds in real samples. The optimal condition of the method was using the best composition of microemulsion (0.2% w/v [HMIM]PF 6 , 1.0% w/v SDS, 3.0% w/v n-butanol, 95.8% v/v water, pH 2.5) with UV detection. The validation results indicated that the method provided high degree of sensitivity, precision and accuracy with the low limit of detections ranged from 17.9-238ng/mL, satisfactory mean recovery values in the range of 80.1-105% and good linearity (r 2 >0.9994). Additionally, this method exhibited high selectivity and resolution for the analytes and was more eco-friendly compared with traditional MELC method. Consequently, the established IL/W MELC method was successfully applied to simultaneously separate and determine target compounds in Danshen sample and its preparation. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Evidence of α-, β- and γ-HCH mixture aerobic degradation by the native actinobacteria Streptomyces sp. M7.

    PubMed

    Sineli, P E; Tortella, G; Dávila Costa, J S; Benimeli, C S; Cuozzo, S A

    2016-05-01

    The organochlorine insecticide γ-hexachlorocyclohexane (γ-HCH, lindane) and its non-insecticidal α- and β-isomers continue to pose serious environmental and health concerns, although their use has been restricted or completely banned for decades. In this study we report the first evidence of the growth ability of a Streptomyces strain in a mineral salt medium containing high doses of α- and β-HCH (16.6 mg l(-1)) as a carbon source. Degradation of HCH isomers by Streptomyces sp. M7 was investigated after 1, 4, and 7 days of incubation, determining chloride ion release, and residues in the supernatants by GC with µECD detection. The results show that both the α- and β-HCH isomers were effectively metabolized by Streptomyces sp. M7, with 80 and 78 % degradation respectively, after 7 days of incubation. Moreover, pentachlorocyclohexenes and tetrachlorocyclohexenes were detected as metabolites. In addition, the formation of possible persistent compounds such as chlorobenzenes and chlorophenols were studied by GC-MS, while no phenolic compounds were detected. In conclusion, we have demonstrated for the first time that Streptomyces sp. M7 can degrade α- and β-isomers individually or combined with γ-HCH and could be considered as a potential agent for bioremediation of environments contaminated by organochlorine isomers.

  14. RESEARCH NOTE: INTERFERENCES DUE TO OZONE-SCAVENGING REAGENTS IN THE GC-ECD DETERMINATION OF ALDEHYDES AND KETONS AS THE O-(2,3,4,5,6-PENTAFLUOROBENZYL)OXIMES

    EPA Science Inventory

    Six potential ozone-scavenging reagents were tested for possible interference in the GC-ECD determination of aldehydes and ketones after derivatization with O-(2,3,4,5,6-pentafluorobenzyl)oxylamine (PFBOA). All six-nitrite, cynaide, methanoate (formate), indigo-55'-disulfonate d...

  15. Degradation of anti-inflammatory drug ketoprofen by electro-oxidation: comparison of electro-Fenton and anodic oxidation processes.

    PubMed

    Feng, Ling; Oturan, Nihal; van Hullebusch, Eric D; Esposito, Giovanni; Oturan, Mehmet A

    2014-01-01

    The electrochemical degradation of the nonsteroidal anti-inflammatory drug ketoprofen in tap water has been studied using electro-Fenton (EF) and anodic oxidation (AO) processes with platinium (Pt) and boron-doped diamond (BDD) anodes and carbon felt cathode. Fast degradation of the parent drug molecule and its degradation intermediates leading to complete mineralization was achieved by BDD/carbon felt, Pt/carbon felt, and AO with BDD anode. The obtained results showed that oxidative degradation rate of ketoprofen and mineralization of its aqueous solution increased by increasing applied current. Degradation kinetics fitted well to a pseudo-first-order reaction. Absolute rate constant of the oxidation of ketoprofen by electrochemically generated hydroxyl radicals was determined to be (2.8 ± 0.1) × 10(9) M(-1) s(-1) by using competition kinetic method. Several reaction intermediates such as 3-hydroxybenzoic acid, pyrogallol, catechol, benzophenone, benzoic acid, and hydroquinone were identified by high-performance liquid chromatography (HPLC) analyses. The formation, identification, and evolution of short-chain aliphatic carboxylic acids like formic, acetic, oxalic, glycolic, and glyoxylic acids were monitored with ion exclusion chromatography. Based on the identified aromatic/cyclic intermediates and carboxylic acids as end products before mineralization, a plausible mineralization pathway was proposed. The evolution of the toxicity during treatments was also monitored using Microtox method, showing a faster detoxification with higher applied current values.

  16. Selective Electrocatalytic Degradation of Odorous Mercaptans Derived from S-Au Bond Recongnition on a Dendritic Gold/Boron-Doped Diamond Composite Electrode.

    PubMed

    Chai, Shouning; Wang, Yujing; Zhang, Ya-Nan; Liu, Meichuan; Wang, Yanbin; Zhao, Guohua

    2017-07-18

    To improve selectivity of electrocatalytic degradation of toxic, odorous mercaptans, the fractal-structured dendritic Au/BDD (boron-doped diamond) anode with molecular recognition is fabricated through a facile replacement method. SEM and TEM characterizations show that the gold dendrites are single crystals and have high population of the Au (111) facet. The distinctive structure endows the electrode with advantages of low resistivity, high active surface area, and prominent electrocatalytic activity. To evaluate selectivity, the dendritic Au/BDD is applied in degrading two groups of synthetic wastewater containing thiophenol/2-mercaptobenzimidazole (targets) and phenol/2-hydroxybenzimidazole (interferences), respectively. Results show that targets removals reach 91%/94%, while interferences removals are only 58%/48% in a short time. The corresponding degradation kinetic constants of targets are 3.25 times and 4.1 times that of interferences in the same group, demonstrating modification of dendritic gold on BDD could effectively enhance electrocatalytic target-selectivity. XPS and EXAFS further reveal that the selective electrocatalytic degradation derives from preferential recognition and fast adsorption to thiophenol depending on strong Au-S bond. The efficient, selective degradation is attributed to the synergetic effects between accumulative behavior and outstanding electrochemical performances. This work provides a new strategy for selective electrochemical degradation of contaminants for actual wastewater treatment.

  17. Electrochemical Quantification of Extracellular Local H2O2 Kinetics Originating from Single Cells.

    PubMed

    Bozem, Monika; Knapp, Phillip; Mirčeski, Valentin; Slowik, Ewa J; Bogeski, Ivan; Kappl, Reinhard; Heinemann, Christian; Hoth, Markus

    2017-05-15

    H 2 O 2 is produced by all eukaryotic cells under physiological and pathological conditions. Due to its enormous relevance for cell signaling at low concentrations and antipathogenic function at high concentrations, precise quantification of extracellular local H 2 O 2 concentrations ([H 2 O 2 ]) originating from single cells is required. Using a scanning electrochemical microscope and bare platinum disk ultramicroelectrodes, we established sensitive long-term measurements of extracellular [H 2 O 2 ] kinetics originating from single primary human monocytes (MCs) ex vivo. For the electrochemical techniques square wave voltammetry, cyclic and linear scan voltammetry, and chronoamperometry, detection limits for [H 2 O 2 ] were determined to be 5, 50, and 500 nM, respectively. Following phorbol ester stimulation, local [H 2 O 2 ] 5-8 μm above a single MC increased by 3.4 nM/s within the first 10 min before reaching a plateau. After extracellular addition of H 2 O 2 to an unstimulated MC, the local [H 2 O 2 ] decreased on average by 4.2 nM/s due to degradation processes of the cell. Using the scanning mode of the setup, we found that H 2 O 2 is evenly distributed around the producing cell and can still be detected up to 30 μm away from the cell. The electrochemical single-cell measurements were validated in MC populations using electron spin resonance spectroscopy and the Amplex ® UltraRed assay. Innovation and Conclusion: We demonstrate a highly sensitive, spatially, and temporally resolved electrochemical approach to monitor dynamics of production and degradation processes for H 2 O 2 separately. Local extracellular [H 2 O 2 ] kinetics originating from single cells is quantified in real time. Antioxid. Redox Signal. 00, 000-000.

  18. Electrochemical devices utilizing molten alkali metal electrode-reactant

    DOEpatents

    Hitchcock, David C.; Mailhe, Catherine C.; De Jonghe, Lutgard C.

    1986-01-01

    Electrochemical cells are provided with a reactive metal to reduce the oxide of the alkali metal electrode-reactant. Cells employing a molten alkali metal electrode, e.g., sodium, in contact with a ceramic electrolyte, which is a conductor of the ions of the alkali metal forming the electrode, exhibit a lower resistance when a reactive metal, e.g., vanadium, is allowed to react with and reduce the alkali metal oxide. Such cells exhibit less degradation of the electrolyte and of the glass seals often used to joining the electrolyte to the other components of the cell under cycling conditions.

  19. Electrochemical devices utilizing molten alkali metal electrode-reactant

    DOEpatents

    Hitchcock, D.C.; Mailhe, C.C.; De Jonghe, L.C.

    1985-07-10

    Electrochemical cells are provided with a reactive metal to reduce the oxide of the alkali metal electrode-reactant. Cells employing a molten alkali metal electrode, e.g., sodium, in contact with a ceramic electrolyte, which is a conductor of the ions of the alkali metal forming the electrode, exhibit a lower resistance when a reactive metal, e.g., vanadium, is allowed to react with and reduce the alkali metal oxide. Such cells exhibit less degradation of the electrolyte and of the glass seals often used to joining the electrolyte to the other components of the cell under cycling conditions.

  20. Electrochemical production and use of free chlorine for pollutant removal: an experimental design approach.

    PubMed

    Antonelli, Raissa; de Araújo, Karla Santos; Pires, Ricardo Francisco; Fornazari, Ana Luiza de Toledo; Granato, Ana Claudia; Malpass, Geoffroy Roger Pointer

    2017-10-28

    The present paper presents the study of (1) the optimization of electrochemical-free chlorine production using an experimental design approach, and (2) the application of the optimum conditions obtained for the application in photo-assisted electrochemical degradation of simulated textile effluent. In the experimental design the influence of inter-electrode gap, pH, NaCl concentration and current was considered. It was observed that the four variables studied are significant for the process, with NaCl concentration and current being the most significant variables for free chlorine production. The maximum free chlorine production was obtained at a current of 2.33 A and NaCl concentrations in 0.96 mol dm -3 . The application of the optimized conditions with simultaneous UV irradiation resulted in up to 83.1% Total Organic Carbon removal and 100% of colour removal over 180 min of electrolysis. The results indicate that a systematic (statistical) approach to the electrochemical treatment of pollutants can save time and reagents.

  1. Electrochemical oxidation of nitrogen-heterocyclic compounds at boron-doped diamond electrode.

    PubMed

    Xing, Xuan; Zhu, Xiuping; Li, Hongna; Jiang, Yi; Ni, Jinren

    2012-01-01

    Nitrogen-heterocyclic compounds (NHCs) are toxic and bio-refractory contaminants widely spread in environment. This study investigated electrochemical degradation of NHCs at boron-doped diamond (BDD) anode with particular attention to the effect of different number and position of nitrogen atoms in molecular structure. Five classical NHCs with similar structures including indole (ID), quinoline (QL), isoquinoline (IQL), benzotriazole (BT) and benzimidazole (BM) were selected as the target compounds. Results of bulk electrolysis showed that degradation of all NHCs was fit to a pseudo first-order equation. The five compounds were degraded with the following sequence: ID>QL>IQL>BT>BM in terms of their rates of oxidation. Quantum chemical calculation was combined with experimental results to describe the degradation character of NHCs at BDD anode. A linear relationship between degradation rate and delocalization energy was observed, which demonstrated that electronic charge was redistributed through the conjugation system and accumulated at the active sites under the attack of hydroxyl radicals produced at BDD anode. Moreover, atom charge was calculated by semi empirical PM3 method and active sites of NHCs were identified respectively. Analysis of intermediates by GC-MS showed agreement with calculation results. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Toward a general mixed quantum/classical method for the calculation of the vibronic ECD of a flexible dye molecule with different stable conformers: Revisiting the case of 2,2,2-trifluoro-anthrylethanol.

    PubMed

    Cerezo, Javier; Aranda, Daniel; Avila Ferrer, Francisco J; Prampolini, Giacomo; Mazzeo, Giuseppe; Longhi, Giovanna; Abbate, Sergio; Santoro, Fabrizio

    2018-06-01

    We extend a recently proposed mixed quantum/classical method for computing the vibronic electronic circular dichroism (ECD) spectrum of molecules with different conformers, to cases where more than one hindered rotation is present. The method generalizes the standard procedure, based on the simple Boltzmann average of the vibronic spectra of the stable conformers, and includes the contribution of structures that sample all the accessible conformational space. It is applied to the simulation of the ECD spectrum of (S)-2,2,2-trifluoroanthrylethanol, a molecule with easily interconvertible conformers, whose spectrum exhibits a pattern of alternating positive and negative vibronic peaks. Results are in very good agreement with experiment and show that spectra averaged over all the sampled conformational space can deviate significantly from the simple average of the contributions of the stable conformers. The present mixed quantum/classical method is able to capture the effect of the nonlinear dependence of the rotatory strength on the molecular structure and of the anharmonic couplings among the modes responsible for molecular flexibility. Despite its computational cost, the procedure is still affordable and promises to be useful in all cases where the ECD shape arises from a subtle balance between vibronic effects and conformational variety. © 2018 Wiley Periodicals, Inc.

  3. Influence of dynamic compressive loading on the in vitro degradation behavior of pure PLA and Mg/PLA composite.

    PubMed

    Li, Xuan; Qi, Chenxi; Han, Linyuan; Chu, Chenglin; Bai, Jing; Guo, Chao; Xue, Feng; Shen, Baolong; Chu, Paul K

    2017-12-01

    The effects of dynamic compressive loading on the in vitro degradation behavior of pure poly-lactic acid (PLA) and PLA-based composite unidirectionally reinforced with micro-arc oxidized magnesium alloy wires (Mg/PLA) are investigated. Dynamic compressive loading is shown to accelerate degradation of pure PLA and Mg/PLA. As the applied stress is increased from 0.1MPa to 0.9MPa or frequency from 0.5Hz to 2.5Hz, the overall degradation rate goes up. After immersion for 21days at 0.9MPa and 2.5Hz, the bending strength retention of the composite and pure PLA is 60.1% and 50%, respectively. Dynamic loading enhances diffusion of small acidic molecules resulting in significant pH decrease in the immersion solution. The synergistic reaction between magnesium alloy wires and PLA in the composite is further clarified by electrochemical tests. The degradation behavior of the pure PLA and PLA matrix in the composite under dynamic conditions obey the first order degradation kinetics and a numerical model is postulated to elucidate the relationship of the bending strength, stress, frequency, and immersion time under dynamic conditions. We systematically study the influence of dynamic loading on the degradation behavior of pure PLA and Mg/PLA. Dynamic compressive loading is shown to accelerate degradation of pure PLA and Mg/PLA. The synergistic reaction between magnesium alloy wires and PLA in the composite is firstly clarified by electrochemical tests. The degradation behavior of the pure PLA and PLA matrix in the composite under dynamic conditions obey the first order degradation kinetics. Then, a numerical model is postulated to elucidate the relationship of the bending strength, stress, frequency, and immersion time under dynamic conditions. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Composition and stability of phytochemicals in five varieties of black soybeans (glycine max)

    USDA-ARS?s Scientific Manuscript database

    Phytochemical compositions of five varieties of black soybeans (Glycine max) and their stabilities at room temperature, 4 deg.C and -80 deg.C over 14 months were determined by HPLC systems with electrochemical (HPLC-ECD) and UV detectors. Polyphenol profiling was carried out by liquid chromatography...

  5. Degradation of chloroacetanilide herbicides by anodic fenton treatment.

    PubMed

    Friedman, Carey L; Lemley, Ann T; Hay, Anthony

    2006-04-05

    Anodic Fenton treatment (AFT) is an electrochemical treatment employing the Fenton reaction for the generation of hydroxyl radicals, strong oxidants that can degrade organic compounds via hydrogen abstraction. AFT has potential use for the remediation of aqueous pesticide waste. The degradation rates of chloroacetanilides by AFT were investigated in this work, which demonstrates that AFT can be used to rapidly and completely remove chloroacetanilide herbicides from aqueous solutions. Acetochlor, alachlor, butachlor, metolachlor, and propachlor were treated by AFT, and parent compound concentrations were analyzed over the course of the treatment time. Degradation curves were plotted and fitted by the AFT kinetic model for each herbicide, and AFT model kinetic parameters were used to calculate degradation rate constants. The reactivity order of these five active ingredients toward hydroxyl radical was acetochlor approximately metolachlor > butachlor approximately alachlor > propachlor. Treatment of the chloroacetanilides by AFT removed the parent compounds but did not completely mineralize them. However, AFT did result in an increase in the biodegradability of chloroacetanilide aqueous solutions, as evidenced by an increase in the 5-day biochemical oxygen demand to chemical oxygen demand ratio (BOD5/COD) to >0.3, indicating completely biodegradable solutions. Several degradation products were formed and subsequently degraded, although not always completely. Some of these were identified by mass spectral analyses. Among the products, isomers of phenolic and carbonyl derivatives of parent compounds were common to each of the herbicides analyzed. More extensively oxidized products were not detected. Degradation pathways are proposed for each of the parent compounds and identified products.

  6. Photocatalytic, antimicrobial activities of biogenic silver nanoparticles and electrochemical degradation of water soluble dyes at glassy carbon/silver modified past electrode using buffer solution.

    PubMed

    Khan, Zia Ul Haq; Khan, Amjad; Shah, Afzal; Chen, Yongmei; Wan, Pingyu; Khan, Arif Ullah; Tahir, Kamran; Muhamma, Nawshad; Khan, Faheem Ullah; Shah, Hidayat Ullah

    2016-03-01

    In the present research work a novel, nontoxic and ecofriendly procedure was developed for the green synthesis of silver nano particle (AgNPs) using Caruluma edulis (C. edulis) extract act as reductant as well as stabilizer agents. The formation of AgNPs was confirmed by UV/Vis spectroscopy. The small and spherical sizes of AgNPs were conformed from high resolution transmission electron microscopy (HRTEM) analysis and were found in the range of 2-10nm, which were highly dispersion without any aggregation. The crystalline structure of AgNPs was conformed from X-ray diffraction (XRD) analysis. For the elemental composition EDX was used and FTIR helped to determine the type of organic compounds in the extract. The potential electrochemical property of modified silver electrode was also studied. The AgNPs showed prominent antibacterial motion with MIC values of 125 μg/mL against Bacillus subtilis and Staphylococcus aureus while 250 μg/mL against Escherichia coli. High cell constituents' release was exhibited by B. subtilis with 2 × MIC value of silver nanoparticles. Silver nanoparticles also showed significant DPPH free radical scavenging activity. This research would have an important implication for the synthesis of more efficient antimicrobial and antioxidant agent. The AgNP modified electrode (GC/AgNPs) exhibited an excellent electro-catalytic activity toward the redox reaction of phenolic compounds. The AgNPs were evaluated for electrochemical degradation of bromothymol blue (BTB) dyes which showed a significant activity. From the strong reductive properties it is obvious that AgNPs can be used in water sanitization and converting some organic perilous in to non-hazardous materials. The AgNPs showed potential applications in the field of electro chemistry, sensor, catalyst, nano-devices and medical. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Mercury Underpotential Deposition to Determine Iridium and Iridium Oxide Electrochemical Surface Areas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alia, Shaun M.; Hurst, Katherine E.; Kocha, Shyam S.

    Determining the surface areas of electrocatalysts is critical for separating the key properties of area-specific activity and electrochemical surface area from mass activity. Hydrogen underpotential deposition and carbon monoxide oxidation are typically used to evaluate iridium (Ir) surface areas, but are ineffective on oxides and can be sensitive to surface oxides formed on Ir metals. Mercury underpotential deposition is presented in this study as an alternative, able to produce reasonable surface areas on Ir and Ir oxide nanoparticles, and able to produce similar surface areas prior to and following characterization in oxygen evolution. Reliable electrochemical surface areas allow for comparativemore » studies of different catalyst types and the characterization of advanced oxygen evolution catalysts. Lastly, they also enable the study of catalyst degradation in durability testing, both areas of increasing importance within electrolysis and electrocatalysis.« less

  8. Mercury Underpotential Deposition to Determine Iridium and Iridium Oxide Electrochemical Surface Areas

    DOE PAGES

    Alia, Shaun M.; Hurst, Katherine E.; Kocha, Shyam S.; ...

    2016-06-02

    Determining the surface areas of electrocatalysts is critical for separating the key properties of area-specific activity and electrochemical surface area from mass activity. Hydrogen underpotential deposition and carbon monoxide oxidation are typically used to evaluate iridium (Ir) surface areas, but are ineffective on oxides and can be sensitive to surface oxides formed on Ir metals. Mercury underpotential deposition is presented in this study as an alternative, able to produce reasonable surface areas on Ir and Ir oxide nanoparticles, and able to produce similar surface areas prior to and following characterization in oxygen evolution. Reliable electrochemical surface areas allow for comparativemore » studies of different catalyst types and the characterization of advanced oxygen evolution catalysts. Lastly, they also enable the study of catalyst degradation in durability testing, both areas of increasing importance within electrolysis and electrocatalysis.« less

  9. Fungal degradation of fiber-reinforced composite materials

    NASA Technical Reports Server (NTRS)

    Gu, J. D.; Lu, C.; Mitchell, R.; Thorp, K.; Crasto, A.

    1997-01-01

    As described in a previous report, a fungal consortium isolated from degraded polymeric materials was capable of growth on presterilized coupons of five composites, resulting in deep penetration into the interior of all materials within five weeks. Data describing the utilization of composite constituents as nutrients for the microflora are described in this article. Increased microbial growth was observed when composite extract was incubated with the fungal inoculum at ambient temperatures. Scanning electron microscopic observation of carbon fibers incubated with a naturally developed population of microorganisms showed the formation of bacterial biofilms on the fiber surfaces, suggesting possible utilization of the fiber chemical sizing as carbon and energy sources. Electrochemical impedance spectroscopy was used to monitor the phenomena occurring at the fiber-matrix interfaces. Significant differences were observed between inoculated and sterile panels of the composite materials. A progressive decline in impedance was detected in the inoculated panels. Several reaction steps may be involved in the degradation process. Initial ingress of water into the resin matrix appeared to be followed by degradation of fiber surfaces, and separation of fibers from the resin matrix. This investigation suggested that composite materials are susceptible to microbial attack by providing nutrients for growth.

  10. Nanomaterials for Electrochemical Immunosensing

    PubMed Central

    Pan, Mingfei; Gu, Ying; Yun, Yaguang; Li, Min; Jin, Xincui; Wang, Shuo

    2017-01-01

    Electrochemical immunosensors resulting from a combination of the traditional immunoassay approach with modern biosensors and electrochemical analysis constitute a current research hotspot. They exhibit both the high selectivity characteristics of immunoassays and the high sensitivity of electrochemical analysis, along with other merits such as small volume, convenience, low cost, simple preparation, and real-time on-line detection, and have been widely used in the fields of environmental monitoring, medical clinical trials and food analysis. Notably, the rapid development of nanotechnology and the wide application of nanomaterials have provided new opportunities for the development of high-performance electrochemical immunosensors. Various nanomaterials with different properties can effectively solve issues such as the immobilization of biological recognition molecules, enrichment and concentration of trace analytes, and signal detection and amplification to further enhance the stability and sensitivity of the electrochemical immunoassay procedure. This review introduces the working principles and development of electrochemical immunosensors based on different signals, along with new achievements and progress related to electrochemical immunosensors in various fields. The importance of various types of nanomaterials for improving the performance of electrochemical immunosensor is also reviewed to provide a theoretical basis and guidance for the further development and application of nanomaterials in electrochemical immunosensors. PMID:28475158

  11. Repeated oxidative degradation of methyl orange through bio-electro-Fenton in bioelectrochemical system (BES).

    PubMed

    Ling, Ting; Huang, Bin; Zhao, Mingxing; Yan, Qun; Shen, Wei

    2016-03-01

    Composite Fe2O3/ACF electrode facilitated methyl orange (MO) oxidative degradation using bio-electro-Fenton in bioelectrochemical system (BES) was investigated. Characterized by both XPS and FT-IR techniques, it was found that the composite Fe2O3/ACF electrode with highest Fe loading capacity of 11.02% could be prepared after the carbon felt was oxidized with nitric acid. Moreover, hydrogen peroxide production reached steadily at 88.63 μmol/L with the external resistance as 100 Ω, cathodic aeration rate at 750 mL/min, and the pH of the bio-electro-Fenton system adjusted to 2. Significantly, not only the electrochemical profiles of the BES reactor as electrochemical impedance spectroscopy (EIS) was bettered, but the MO oxidative degradation could be accomplished for eight repeated batches, with the MO removal efficiency varied slightly from 73.9% to 86.7%. It indicated that the bio-electro-Fenton might be a promising eco-friendly AOP method for Azo-dye wastewater treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Relationship between anode material, supporting electrolyte and current density during electrochemical degradation of organic compounds in water.

    PubMed

    Guzmán-Duque, Fernando L; Palma-Goyes, Ricardo E; González, Ignacio; Peñuela, Gustavo; Torres-Palma, Ricardo A

    2014-08-15

    Taking crystal violet (CV) dye as pollutant model, the electrode, electrolyte and current density (i) relationship for electro-degrading organic molecules is discussed. Boron-doped diamond (BDD) or Iridium dioxide (IrO2) used as anode materials were tested with Na2SO4 or NaCl as electrolytes. CV degradation and generated oxidants showed that degradation pathways and efficiency are strongly linked to the current density-electrode-electrolyte interaction. With BDD, the degradation pathway depends on i: If idegraded by OH radicals, whereas if i>i(lim), generated oxidants play a major role in the CV elimination. When IrO2 was used, CV removal was not dependent on i, but on the electrolyte. Pollutant degradation in Na2SO4 on IrO2 seems to occur via IrO3; however, in the presence of NaCl, degradation was dependent on the chlorinated oxidative species generated. In terms of efficiency, the Na2SO4 electrolyte showed better results than NaCl when BDD anodes were employed. On the contrary, NaCl was superior when combined with IrO2. Thus, the IrO2/Cl(-) and BDD/SO4(2-) systems were better at removing the pollutant, being the former the most effective. On the other hand, pollutant degradation with the BDD/SO4(2-) and IrO2/Cl(-) systems is favored at low and high current densities, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. An intertemporal decision framework for electrochemical energy storage management

    NASA Astrophysics Data System (ADS)

    He, Guannan; Chen, Qixin; Moutis, Panayiotis; Kar, Soummya; Whitacre, Jay F.

    2018-05-01

    Dispatchable energy storage is necessary to enable renewable-based power systems that have zero or very low carbon emissions. The inherent degradation behaviour of electrochemical energy storage (EES) is a major concern for both EES operational decisions and EES economic assessments. Here, we propose a decision framework that addresses the intertemporal trade-offs in terms of EES degradation by deriving, implementing and optimizing two metrics: the marginal benefit of usage and the average benefit of usage. These metrics are independent of the capital cost of the EES system, and, as such, separate the value of EES use from the initial cost, which provides a different perspective on storage valuation and operation. Our framework is proved to produce the optimal solution for EES life-cycle profit maximization. We show that the proposed framework offers effective ways to assess the economic values of EES, to make investment decisions for various applications and to inform related subsidy policies.

  14. Enhanced tolerance to stretch-induced performance degradation of stretchable MnO2-based supercapacitors.

    PubMed

    Huang, Yan; Huang, Yang; Meng, Wenjun; Zhu, Minshen; Xue, Hongtao; Lee, Chun-Sing; Zhi, Chunyi

    2015-02-04

    The performance of many stretchable electronics, such as energy storage devices and strain sensors, is highly limited by the structural breakdown arising from the stretch imposed. In this article, we focus on a detailed study on materials matching between functional materials and their conductive substrate, as well as enhancement of the tolerance to stretch-induced performance degradation of stretchable supercapacitors, which are essential for the design of a stretchable device. It is revealed that, being widely utilized as the electrode material of the stretchable supercapacitor, metal oxides such as MnO2 nanosheets have serious strain-induced performance degradation due to their rigid structure. In comparison, with conducting polymers like a polypyrrole (PPy) film as the electrochemically active material, the performance of stretchable supercapacitors can be well preserved under strain. Therefore, a smart design is to combine PPy with MnO2 nanosheets to achieve enhanced tolerance to strain-induced performance degradation of MnO2-based supercapacitors, which is realized by fabricating an electrode of PPy-penetrated MnO2 nanosheets. The composite electrodes exhibit a remarkable enhanced tolerance to strain-induced performance degradation with well-preserved performance over 93% under strain. The detailed morphology and electrochemical impedance variations are investigated for the mechanism analyses. Our work presents a systematic investigation on the selection and matching of electrode materials for stretchable supercapacitors to achieve high performance and great tolerance to strain, which may guide the selection of functional materials and their substrate materials for the next-generation of stretchable electronics.

  15. Electrochemical incineration of omeprazole in neutral aqueous medium using a platinum or boron-doped diamond anode: degradation kinetics and oxidation products.

    PubMed

    Cavalcanti, Eliane Bezerra; Garcia-Segura, Sergi; Centellas, Francesc; Brillas, Enric

    2013-04-01

    The electrochemical incineration of omeprazole, a widely prescribed gastrointestinal drug which is detected in natural waters, has been studied in a phosphate buffer of pH 7.0 by anodic oxidation with electrogenerated H(2)O(2) (AO-H(2)O(2)) operating at constant current density (j). The experiments were carried out in a cell equipped with either a Pt or a boron-doped diamond (BDD) anode and an air-diffusion cathode to continuously produce H(2)O(2). In these systems, organics are mainly oxidized by hydroxyl radicals formed at the Pt or BDD surface from water oxidation. A partial total organic carbon (TOC) abatement close to 78% for omeprazole was achieved by AO-H(2)O(2) with a BDD anode after consumption of 18 Ah L(-1) at 100 mA cm(-2), whereas the alternative use of Pt did not allow mineralizing the drug. However, the drug was totally removed using both anodes, although it decayed more rapidly using BDD. In this latter system, increasing j accelerated the degradation process, but lowering the mineralization current efficiency. Greater drug content also enhanced the degradation rate with higher mineralization degree and current efficiency. The kinetics for omeprazole decay always followed a pseudo-first-order reaction and its rate constant increased with increasing j and with decreasing its concentration. Seven heteroaromatic intermediates and four hydroxylated derivatives were detected by LC-MS, while nine short-linear carboxylic acids were identified and quantified by ion-exclusion HPLC. These acids were largely accumulated using Pt and rapidly removed using BDD, thus explaining the partial mineralization of omeprazole achieved by AO-H(2)O(2) with the latter anode. The release of inorganic ions such as NO(3)(-), NH(4)(+) and SO(4)(2-) was followed by ionic chromatography. A plausible reaction sequence for omeprazole mineralization involving all intermediates detected is proposed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Immunization with a novel chimeric peptide representing B and T cell epitopes from HER2 extracellular domain (HER2 ECD) for breast cancer.

    PubMed

    Mahdavi, Manijeh; Keyhanfar, Mehrnaz; Jafarian, Abbas; Mohabatkar, Hassan; Rabbani, Mohammad

    2014-12-01

    Because of direct stimulating immune system against disease, vaccination or active immunotherapy is preferable compared to passive immunotherapy. For this purpose, a newly designed chimeric peptide containing epitopes for both B and T cells from HER2 ECD subdomain III was proposed. To evaluate the effects of the active immunization, a discontinuous B cell epitope peptide was selected based on average antigenicity by bioinformatics analysis. The selected peptide was collinearly synthesized as a chimera with a T helper epitope from the protein sequence of measles virus fusion (208-302) using the GPSL linker. Three mice were immunized with the chimeric peptide. Reactive antibodies with HER2 protein in ELISA and immunofluorescence assays with no cross-reactivity were generated. The 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay indicated that the anti-peptide sera had inhibitory effects on proliferation of SK-BR-3 cells. Hence, the newly designed, discontinuous chimeric peptide representing B and T cell epitopes from subdomain III of HER2-ECD can form the basis for future vaccines design, where these data can be applied for monoclonal antibody production targeting the distinct epitope of HER2 receptor compared to the two broadly used anti-HER2 monoclonal antibodies, Herceptin and pertuzumab.

  17. Electrochemical Characterization of Riboflavin-Enhanced Reduction of Trinitrotoluene

    PubMed Central

    Sumner, James J.; Chu, Kevin

    2011-01-01

    There is great interest in understanding trinitrotoluene (TNT) and dinitrotoluene (DNT) contamination, detection and remediation in the environment due to TNT’s negative health effects and security implications. Numerous publications have focused on detecting TNT in groundwater using multiple techniques, including electrochemistry. The main degradation pathway of nitrotoluenes in the environment is reduction, frequently with biological and/or photolytic assistance. Riboflavin has also been noted to aid in TNT remediation in soils and groundwater when exposed to light. This report indicates that adding riboflavin to a TNT or DNT solution enhances redox currents in electrochemical experiments. Here AC voltammetry was performed and peak currents compared with and without riboflavin present. Results indicated that TNT, DNT and riboflavin could be detected using AC voltammetry on modified gold electrodes and the addition of riboflavin affected redox peaks of TNT and DNT. Poised potential experiments indicated that it is possible to enhance reduction of TNT in the presence of riboflavin and light. These results were dramatic enough to explain long term enhancement of bioremediation in environments containing high levels of riboflavin and enhance the limit of detection in electrochemically-based nitrotoluene sensing. PMID:22346674

  18. High Power Electrochemical Capacitors

    DTIC Science & Technology

    2012-03-23

    electrochemical properties of vanadium oxide aerogels prepared by a freeze-drying process. Journal of the Electrochemical Society, 2004. 151(5): p...Electrochemical Society, 2002. 149(1): p. A26-A30. 12. Rolison, D.R. and B. Dunn, Electrically conductive oxide aerogels : new materials in...surface area vanadium oxide aerogels . Electrochemical and Solid-State Letters, 2000. 3(10): p. 457-459. 14. Shembel, E., et al., Synthesis, investigation

  19. Electrochemical methane sensor

    DOEpatents

    Zaromb, S.; Otagawa, T.; Stetter, J.R.

    1984-08-27

    A method and instrument including an electrochemical cell for the detection and measurement of methane in a gas by the oxidation of methane electrochemically at a working electrode in a nonaqueous electrolyte at a voltage about 1.4 volts vs R.H.E. (the reversible hydrogen electrode potential in the same electrolyte), and the measurement of the electrical signal resulting from the electrochemical oxidation.

  20. The use of experimental design in the development of an HPLC-ECD method for the analysis of captopril.

    PubMed

    Khamanga, Sandile M; Walker, Roderick B

    2011-01-15

    An accurate, sensitive and specific high performance liquid chromatography-electrochemical detection (HPLC-ECD) method that was developed and validated for captopril (CPT) is presented. Separation was achieved using a Phenomenex(®) Luna 5 μm (C(18)) column and a mobile phase comprised of phosphate buffer (adjusted to pH 3.0): acetonitrile in a ratio of 70:30 (v/v). Detection was accomplished using a full scan multi channel ESA Coulometric detector in the "oxidative-screen" mode with the upstream electrode (E(1)) set at +600 mV and the downstream (analytical) electrode (E(2)) set at +950 mV, while the potential of the guard cell was maintained at +1050 mV. The detector gain was set at 300. Experimental design using central composite design (CCD) was used to facilitate method development. Mobile phase pH, molarity and concentration of acetonitrile (ACN) were considered the critical factors to be studied to establish the retention time of CPT and cyclizine (CYC) that was used as the internal standard. Twenty experiments including centre points were undertaken and a quadratic model was derived for the retention time for CPT using the experimental data. The method was validated for linearity, accuracy, precision, limits of quantitation and detection, as per the ICH guidelines. The system was found to produce sharp and well-resolved peaks for CPT and CYC with retention times of 3.08 and 7.56 min, respectively. Linear regression analysis for the calibration curve showed a good linear relationship with a regression coefficient of 0.978 in the concentration range of 2-70 μg/mL. The linear regression equation was y=0.0131x+0.0275. The limits of detection (LOQ) and quantitation (LOD) were found to be 2.27 and 0.6 μg/mL, respectively. The method was used to analyze CPT in tablets. The wide range for linearity, accuracy, sensitivity, short retention time and composition of the mobile phase indicated that this method is better for the quantification of CPT than the

  1. Study of the electrochemical oxidation and reduction of C.I. Reactive Orange 4 in sodium sulphate alkaline solutions.

    PubMed

    del Río, A I; Molina, J; Bonastre, J; Cases, F

    2009-12-15

    Synthetic solutions of hydrolysed C.I. Reactive Orange 4, a monoazo textile dye commercially named Procion Orange MX-2R (PMX2R) and colour index number C.I. 18260, was exposed to electrochemical treatment under galvanostatic conditions and Na2SO4 as electrolyte. The influence of the electrochemical process as well as the applied current density was evaluated. Ti/SnO2-Sb-Pt and stainless steel electrodes were used as anode and cathode, respectively, and the intermediates generated on the cathode during electrochemical reduction were investigated. Aliquots of the solutions treated were analysed by UV-visible and FTIR-ATR spectroscopy confirming the presence of aromatic structures in solution when an electro-reduction was carried out. Electro-oxidation degraded both the azo group and aromatic structures. HPLC measures revealed that all processes followed pseudo-first order kinetics and decolourisation rates showed a considerable dependency on the applied current density. CV experiments and XPS analyses were carried out to study the behaviour of both PMX2R and intermediates and to analyse the state of the cathode after the electrochemical reduction, respectively. It was observed the presence of a main intermediate in solution after an electrochemical reduction whose chemical structure is similar to 2-amino-1,5-naphthalenedisulphonic acid. Moreover, the analysis of the cathode surface after electrochemical reduction reveals the presence of a coating layer with organic nature.

  2. Identical Location Transmission Electron Microscopy Imaging of Site-Selective Pt Nanocatalysts: Electrochemical Activation and Surface Disordering.

    PubMed

    Arán-Ais, Rosa M; Yu, Yingchao; Hovden, Robert; Solla-Gullón, Jose; Herrero, Enrique; Feliu, Juan M; Abruña, Héctor D

    2015-12-02

    We have employed identical location transmission electron microscopy (IL-TEM) to study changes in the shape and morphology of faceted Pt nanoparticles as a result of electrochemical cycling; a procedure typically employed for activating platinum surfaces. We find that the shape and morphology of the as-prepared hexagonal nanoparticles are rapidly degraded as a result of potential cycling up to +1.3 V. As few as 25 potential cycles are sufficient to cause significant degradation, and after about 500-1000 cycles the particles are dramatically degraded. We also see clear evidence of particle migration during potential cycling. These finding suggest that great care must be exercised in the use and study of shaped Pt nanoparticles (and related systems) as electrocatlysts, especially for the oxygen reduction reaction where high positive potentials are typically employed.

  3. Electrochemical enhanced heterogeneous activation of peroxydisulfate by Fe-Co/SBA-15 catalyst for the degradation of Orange II in water.

    PubMed

    Cai, Chun; Zhang, Hui; Zhong, Xin; Hou, Liwei

    2014-12-01

    Mesoporous silica SBA-15 supported iron and cobalt catalysts (Fe-Co/SBA-15) were prepared and used in the electrochemical (EC) enhanced heterogeneous activation of peroxydisulfate (PDS, S2O8(2-)) process for the removal of Orange II. The effects of some important reaction parameters such as initial pH, current density, PDS concentration and dosage of Fe-Co/SBA-15 catalysts were investigated. The results showed that the decolorization efficiency was not significantly affected by the initial pH value, and it did increase with the higher PDS concentration, current density and Fe-Co/SBA-15 dosage. Both the sulfate radical (SO4(·-)) and the hydroxyl radical (OH) are considered as the primary reactive oxidants for the Orange II decolorization. The Fe-Co/SBA-15 catalyst maintained its high activity during repeated batch experiments. The intermediate products were identified by GC-MS analysis and a plausible degradation pathway is proposed accordingly. The removal efficiencies of chemical oxygen demand (COD) and total organic carbon (TOC) were 52.1% and 31.9%, respectively after 60 min of reaction time but reached 82.9% and 51.5%, respectively when the reaction time was extended to 24 h. Toxicity tests with activated sludge indicated that the toxicity of the solution increased during the first 30 min and then decreased as the oxidation proceeded. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Electrochemical characteristics of calcium-phosphatized AZ31 magnesium alloy in 0.9 % NaCl solution.

    PubMed

    Hadzima, Branislav; Mhaede, Mansour; Pastorek, Filip

    2014-05-01

    Magnesium alloys suffer from their high reactivity in common environments. Protective layers are widely created on the surface of magnesium alloys to improve their corrosion resistance. This article evaluates the influence of a calcium-phosphate layer on the electrochemical characteristics of AZ31 magnesium alloy in 0.9 % NaCl solution. The calcium phosphate (CaP) layer was electrochemically deposited in a solution containing 0.1 M Ca(NO3)2, 0.06 M NH4H2PO4 and 10 ml l(-1) of H2O2. The formed surface layer was composed mainly of brushite [(dicalcium phosphate dihidrate (DCPD)] as proved by energy-dispersive X-ray analysis. The surface morphology was observed by scanning electron microscopy. Immersion test was performed in order to observe degradation of the calcium phosphatized surfaces. The influence of the phosphate layer on the electrochemical characteristics of AZ31, in 0.9 % NaCl solution, was evaluated by potentiodynamic measurements and electrochemical impedance spectroscopy. The obtained results were analysed by the Tafel-extrapolation method and equivalent circuits method. The results showed that the polarization resistance of the DCPD-coated surface is about 25 times higher than that of non-coated surface. The CaP electro-deposition process increased the activation energy of corrosion process.

  5. Investigation of some biologically relevant redox reactions using electrochemical mass spectrometry interfaced by desorption electrospray ionization.

    PubMed

    Lu, Mei; Wolff, Chloe; Cui, Weidong; Chen, Hao

    2012-04-01

    Recently we have shown that, as a versatile ionization technique, desorption electrospray ionization (DESI) can serve as a useful interface to combine electrochemistry (EC) with mass spectrometry (MS). In this study, the EC/DESI-MS method has been further applied to investigate some aqueous phase redox reactions of biological significance, including the reduction of peptide disulfide bonds and nitroaromatics as well as the oxidation of phenothiazines. It was found that knotted/enclosed disulfide bonds in the peptides apamin and endothelin could be electrochemically cleaved. Subsequent tandem MS analysis of the resulting reduced peptide ions using collision-induced dissociation (CID) and electron-capture dissociation (ECD) gave rise to extensive fragment ions, providing a fast protocol for sequencing peptides with complicated disulfide bond linkages. Flunitrazepam and clonazepam, a class of nitroaromatic drugs, are known to undergo reduction into amines which was proposed to involve nitroso and N-hydroxyl intermediates. Now in this study, these corresponding intermediate ions were successfully intercepted and their structures were confirmed by CID. This provides mass spectrometric evidence for the mechanism of the nitro to amine conversion process during nitroreduction, an important redox reaction involved in carcinogenesis. In addition, the well-known oxidation reaction of chlorpromazine was also examined. The putative transient one-electron transfer product, the chlorpromazine radical cation (m/z 318), was captured by MS, for the first time, and its structure was also verified by CID. In addition to these observations, some features of the DESI-interfaced electrochemical mass spectrometry were discussed, such as simple instrumentation and the lack of background signal. These results further demonstrate the feasibility of EC/DESI-MS for the study of the biology-relevant redox chemistry and would find applications in proteomics and drug development research.

  6. Determination of the Electrochemical Area of Screen-Printed Electrochemical Sensing Platforms.

    PubMed

    García-Miranda Ferrari, Alejandro; Foster, Christopher W; Kelly, Peter J; Brownson, Dale A C; Banks, Craig E

    2018-06-08

    Screen-printed electrochemical sensing platforms, due to their scales of economy and high reproducibility, can provide a useful approach to translate laboratory-based electrochemistry into the field. An important factor when utilising screen-printed electrodes (SPEs) is the determination of their real electrochemical surface area, which allows for the benchmarking of these SPEs and is an important parameter in quality control. In this paper, we consider the use of cyclic voltammetry and chronocoulometry to allow for the determination of the real electrochemical area of screen-printed electrochemical sensing platforms, highlighting to experimentalists the various parameters that need to be diligently considered and controlled in order to obtain useful measurements of the real electroactive area.

  7. Electrochemical and AFM Characterization of G-Quadruplex Electrochemical Biosensors and Applications

    PubMed Central

    2018-01-01

    Guanine-rich DNA sequences are able to form G-quadruplexes, being involved in important biological processes and representing smart self-assembling nanomaterials that are increasingly used in DNA nanotechnology and biosensor technology. G-quadruplex electrochemical biosensors have received particular attention, since the electrochemical response is particularly sensitive to the DNA structural changes from single-stranded, double-stranded, or hairpin into a G-quadruplex configuration. Furthermore, the development of an increased number of G-quadruplex aptamers that combine the G-quadruplex stiffness and self-assembling versatility with the aptamer high specificity of binding to a variety of molecular targets allowed the construction of biosensors with increased selectivity and sensitivity. This review discusses the recent advances on the electrochemical characterization, design, and applications of G-quadruplex electrochemical biosensors in the evaluation of metal ions, G-quadruplex ligands, and other small organic molecules, proteins, and cells. The electrochemical and atomic force microscopy characterization of G-quadruplexes is presented. The incubation time and cations concentration dependence in controlling the G-quadruplex folding, stability, and nanostructures formation at carbon electrodes are discussed. Different G-quadruplex electrochemical biosensors design strategies, based on the DNA folding into a G-quadruplex, the use of G-quadruplex aptamers, or the use of hemin/G-quadruplex DNAzymes, are revisited. PMID:29666699

  8. Electrochemical heat engine

    DOEpatents

    Elliott, Guy R. B.; Holley, Charles E.; Houseman, Barton L.; Sibbitt, Jr., Wilmer L.

    1978-01-01

    Electrochemical heat engines produce electrochemical work, and mechanical motion is limited to valve and switching actions as the heat-to-work cycles are performed. The electrochemical cells of said heat engines use molten or solid electrolytes at high temperatures. One or more reactions in the cycle will generate a gas at high temperature which can be condensed at a lower temperature with later return of the condensate to electrochemical cells. Sodium, potassium, and cesium are used as the working gases for high temperature cells (above 600 K) with halogen gases or volatile halides being used at lower temperature. Carbonates and halides are used as molten electrolytes and the solid electrolyte in these melts can also be used as a cell separator.

  9. Moisture-temperature degradation in module encapsulants: The general problem of moisture in photovoltaic encapsulants

    NASA Technical Reports Server (NTRS)

    Mon, G. R.

    1985-01-01

    A general research approach was outlined toward understanding water-module interactions and the influence of temperature involving the need to: quantify module performance loss versus level of accumulated degradation, establish the dependence of the degradation reaction rate on module moisture and temperature levels, and determine module moisture and temperature levels in field environments. These elements were illustrated with examples drawn from studies of the now relatively well understood module electrochemical degradation process. Research data presented include temperature and humidity-dependent equilibrium leakage current values for multiparameter module material and design configurations. The contributions of surface, volume, and interfacial conductivities was demonstrated. Research directions were suggested to more fully understand the contributions to overall module conductivity of surface, volume, and interfacial conductivities over ranges of temperature and relative humidity characteristic of field environments.

  10. A novel approach for supercapacitors degradation characterization

    NASA Astrophysics Data System (ADS)

    Oz, Alon; Gelman, Danny; Goren, Emanuelle; Shomrat, Neta; Baltianski, Sioma; Tsur, Yoed

    2017-07-01

    A novel approach to analyze electrochemical impedance spectroscopy (EIS), based on evolutionary programming, has been utilized to characterize supercapacitors operation mechanism and degradation processes. This approach poses the ability of achieving a comprehensive study of supercapacitors via solely AC measurements. Commercial supercapacitors were examined during accelerated degradation. The microstructure of the electrode-electrolyte interface changes upon degradation; electrolyte parasitic reactions yield the formation of precipitates on the porous surface, which limit the access of the electrolyte ions to the active area and thus reduces performance. EIS analysis using Impedance Spectroscopy Genetic Programming (ISGP) technique enables identifying how the changing microstructure is affecting the operation mechanism of supercapacitors, in terms of each process effective capacitance and time constant. The most affected process is the transport of electrolyte ions at the porous electrode. Their access to the whole active area is hindered, which is shown in our analysis by the decrease of the capacitance gained in the transport and the longer time it takes to penetrate the entire pores depth. Early failure detection is also demonstrated, in a way not readily possible via conventional indicators. ISGP advanced analysis method has been verified using conventional and proven techniques: cyclic voltammetry and post mortem measurements.

  11. A novel electrocatalytic approach for effective degradation of Rh-B in water using carbon nanotubes and agarose.

    PubMed

    Liu, Haiyang; Ren, Miao; Zhang, Zhaocheng; Qu, Jiao; Ma, Ying; Lu, Nan

    2018-05-01

    Carbon nanotubes (CNTs)/agarose (AG) membrane on the ITO (indium tin oxide) conductive glass, with high efficiency of electrocatalytic degradation for rhodamine B (Rh-B) in water, was prepared using an easy and green method. The prepared CNTs/AG membrane was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectra (EDS), infrared spectroscopy (IR), and electrochemical impedance spectroscopy (EIS). The results revealed that CNTs were dispersed in the AG membrane. Additionally, the electrocatalytic activities for Rh-B were conducted on the electrochemical workstation with a three-electrode system. Both initial pH and potential played an important role in the process of electrocatalytic degradation. At pH 3 and potential reaching 4 V, the removal rate of Rh-B (10 mg/L) in water achieved 96% within 20 min. The stability of the prepared CNTs/AG membrane was also investigated. Besides, the toxicities of the main intermediates from the electrocatalytic degradation for Rh-B were calculated using the ECOSAR program and EPIWIN software, and results indicated that the toxicities of some intermediates were higher than those of the parent pollutant (Rh-B). These findings provided a light-spot to simplify the preparation of efficient working electrode and emphasized the possible potential risks from intermediates at the same time.

  12. Nanosensing of Pesticides by Zinc Oxide Quantum Dot: An Optical and Electrochemical Approach for the Detection of Pesticides in Water.

    PubMed

    Sahoo, Dibakar; Mandal, Abhishek; Mitra, Tapas; Chakraborty, Kaushik; Bardhan, Munmun; Dasgupta, Anjan Kumar

    2018-01-17

    Present study reveals the low concentrations (∼4 ppm) of pesticide sensing vis-à-vis degradation of pesticides with the help of nontoxic zinc oxide quantum dots (QD). In our study, we have taken four different pesticides viz., aldrin, tetradifon, glyphosate, and atrazine, which are widely used in agriculture and have structural dissimilarities/diversity. By using optical sensing techniques such as steady state and time-resolved fluorescence, we have analyzed the detailed exciton dynamics of QD in the presence of different pesticides. It has been found that the pesticide containing good leaving groups (-Cl) can interact with QD promptly and has high binding affinity (∼10 7 M -1 ). The different binding signatures of QD with different pesticides enable us to differentiate between the pesticides. Time resolved fluorescence spectroscopy provides significant variance (∼150-300 ns) for different pesticides. Furthermore, a large variation (10 5 Ω to 7 × 10 4 Ω) in the resistance of QD in the presence of different pesticides was revealed by electrochemical sensing technique. Moreover, during the interaction with pesticides, QD can also act as a photocatalyst to degrade pesticides. Present investigation explored the fact that the rate of degradation is positively affected by the binding affinity, i.e., the greater the binding, the greater is the degradation. What is more, both optical and electrochemical measurements of QD, in tandem, as described in our study could be utilized as the pattern recognition sensor for detection of several pesticides.

  13. Electrochemically-driven large amplitude pH cycling for acid-base driven DNA denaturation and renaturation.

    PubMed

    Wang, Yong-Chun; Lin, Cong-Bin; Su, Jian-Jia; Ru, Ying-Ming; Wu, Qiao; Chen, Zhao-Bin; Mao, Bing-Wei; Tian, Zhao-Wu

    2011-06-15

    In this paper, we present an electrochemically driven large amplitude pH alteration method based on a serial electrolytic cell involving a hydrogen permeable bifacial working electrode such as Pd thin foil. The method allows solution pH to be changed periodically up to ±4~5 units without additional alteration of concentration and/or composition of the system. Application to the acid-base driven cyclic denaturation and renaturation of 290 bp DNA fragments is successfully demonstrated with in situ real-time UV spectroscopic characterization. Electrophoretic analysis confirms that the denaturation and renaturation processes are reversible without degradation of the DNA. The serial electrolytic cell based electrochemical pH alteration method presented in this work would promote investigations of a wide variety of potential-dependent processes and techniques.

  14. Enhanced Mass Defect Filtering To Simplify and Classify Complex Mixtures of Lignin Degradation Products.

    PubMed

    Dier, Tobias K F; Egele, Kerstin; Fossog, Verlaine; Hempelmann, Rolf; Volmer, Dietrich A

    2016-01-19

    High resolution mass spectrometry was utilized to study the highly complex product mixtures resulting from electrochemical breakdown of lignin. As most of the chemical structures of the degradation products were unknown, enhanced mass defect filtering techniques were implemented to simplify the characterization of the mixtures. It was shown that the implemented ionization techniques had a major impact on the range of detectable breakdown products, with atmospheric pressure photoionization in negative ionization mode providing the widest coverage in our experiments. Different modified Kendrick mass plots were used as a basis for mass defect filtering, where Kendrick mass defect and the mass defect of the lignin-specific guaiacol (C7H7O2) monomeric unit were utilized, readily allowing class assignments independent of the oligomeric state of the product. The enhanced mass defect filtering strategy therefore provided rapid characterization of the sample composition. In addition, the structural similarities between the compounds within a degradation sequence were determined by comparison to a tentatively identified product of this compound series. In general, our analyses revealed that primarily breakdown products with low oxygen content were formed under electrochemical conditions using protic ionic liquids as solvent for lignin.

  15. Electrochemical thermodynamic measurement system

    DOEpatents

    Reynier, Yvan [Meylan, FR; Yazami, Rachid [Los Angeles, CA; Fultz, Brent T [Pasadena, CA

    2009-09-29

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  16. Degradation of aniline by electrochemical activation of peroxydisulfate at MWCNT cathode: The proofed concept of nonradical oxidation process.

    PubMed

    Nie, Chunyang; Ao, Zhimin; Duan, Xiaoguang; Wang, Chengying; Wang, Shaobin; An, Taicheng

    2018-05-07

    Enhanced elimination of aniline in aqueous solution was achieved by coupling electrosorption of aniline and electrochemical activation of peroxydisulfate (PDS) at multi-walled carbon nanotube (MWCNT) cathode, in which a synergistic effect occurred. It was found that PDS could be effectively activated under a small voltage at MWCNT cathode owing to the specific pore structures of MWCNTs. A nonradical oxidation pathway instead of radical-based oxidation was proposed from the cathodic activation of PDS, wherein PDS molecules with a modified electronic structure was suggested to be the principal reactive species. Meanwhile, the influences of various operation parameters such as electrode potential, PDS concentration, presence of chloride ions on the elimination efficiency, and the stability of MWCNT electrode were also attempted. Therefore, the electrochemical activation of PDS by MWCNT cathode is a promising energy-saving method for the treatment of organic pollutants in wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Electrochemical estrogen screen method based on the electrochemical behavior of MCF-7 cells.

    PubMed

    Li, Jinlian; Song, Jia; Bi, Sheng; Zhou, Shi; Cui, Jiwen; Liu, Jiguang; Wu, Dongmei

    2016-08-05

    It was an urgent task to develop quick, cheap and accurate estrogen screen method for evaluating the estrogen effect of the booming chemicals. In this study, the voltammetric behavior between the estrogen-free and normal fragmented MCF-7 cell suspensions were compared, and the electrochemical signal (about 0.68V attributed by xanthine and guanine) of the estrogen-free fragmented MCF-7 cell suspension was obviously lower than that of the normal one. The electrochemistry detection of ex-secretion purines showed that the ability of ex-secretion purines of cells sharp decreased due to the removing of endogenous estrogen. The results indicated that the electrochemical signal of MCF-7 cells was related to the level of intracellular estrogen. When the level of intracellular estrogen was down-regulated, the concentrations of the xanthine and hypoxanthine decreased, which led to the electrochemical signal of MCF-7 cells fall. Based on the electrochemical signal, the electrochemical estrogen screen method was established. The estrogen effect of estradiol, nonylphenol and bisphenol A was evaluated with the electrochemical method, and the result was accordant with that of MTT assay. The electrochemical estrogen screen method was simple, quickly, cheap, objective, and it exploits a new way for the evaluation of estrogenic effects of chemicals. Copyright © 2016. Published by Elsevier B.V.

  18. Quantification of the degradation of Ni-YSZ anodes upon redox cycling

    NASA Astrophysics Data System (ADS)

    Song, Bowen; Ruiz-Trejo, Enrique; Bertei, Antonio; Brandon, Nigel P.

    2018-01-01

    Ni-YSZ anodes for Solid Oxide Fuel Cells are vulnerable to microstructural damage during redox cycling leading to a decrease in the electrochemical performance. This study quantifies the microstructural changes as a function of redox cycles at 800 °C and associates it to the deterioration of the mechanical properties and polarisation resistance. A physically-based model is used to estimate the triple-phase boundary (TPB) length from impedance spectra, and satisfactorily matches the TPB length quantified by FIB-SEM tomography: within 20 redox cycles, the TPB density decreases from 4.63 μm-2 to 1.06 μm-2. Although the polarisation resistance increases by an order of magnitude after 20 cycles, after each re-reduction the electrode polarisation improves consistently due to the transient generation of Ni nanoparticles around the TPBs. Nonetheless, the long-term degradation overshadows this transient improvement due to the nickel agglomeration. In addition, FIB-SEM tomography reveals fractures along YSZ grain boundaries, Ni-YSZ detachment and increased porosity in the composite that lead to irreversible mechanical damage: the elastic modulus diminishes from 36.4 GPa to 20.2 GPa and the hardness from 0.40 GPa to 0.15 GPa. These results suggest that microstructural, mechanical and electrochemical properties are strongly interdependent in determining the degradation caused by redox cycling.

  19. Electrochemical wastewater treatment directly powered by photovoltaic panels: electrooxidation of a dye-containing wastewater.

    PubMed

    Valero, David; Ortiz, Juan M; Expósito, Eduardo; Montiel, Vicente; Aldaz, Antonio

    2010-07-01

    Electrochemical technologies have proved to be useful for the treatment of wastewater, but to enhance their green characteristics it seems interesting to use a green electric energy such as that provided by photovoltaic (PV) cells, which are actually under active research to decrease the economic cost of solar kW. The aim of this work is to demonstrate the feasibility and utility of using an electrooxidation system directly powered by a photovoltaic array for the treatment of a wastewater. The experimental system used was an industrial electrochemical filter press reactor and a 40-module PV array. The influence on the degradation of a dye-containing solution (Remazol RB 133) of different experimental parameters such as the PV array and electrochemical reactor configurations has been studied. It has been demonstrated that the electrical configuration of the PV array has a strong influence on the optimal use of the electric energy generated. The optimum PV array configuration changes with the intensity of the solar irradiation, the conductivity of the solution, and the concentration of pollutant in the wastewater. A useful and effective methodology to adjust the EO-PV system operation conditions to the wastewater treatment is proposed.

  20. A distributed real-time model of degradation in a solid oxide fuel cell, part I: Model characterization

    NASA Astrophysics Data System (ADS)

    Zaccaria, V.; Tucker, D.; Traverso, A.

    2016-04-01

    Despite the high efficiency and flexibility of fuel cells, which make them an attractive technology for the future energy generation, their economic competitiveness is still penalized by their short lifetime, due to multiple degradation phenomena. As a matter of fact, electrochemical performance of solid oxide fuel cells (SOFCs) is reduced because of different degradation mechanisms, which depend on operating conditions, fuel and air contaminants, impurities in materials, and others. In this work, a real-time, one dimensional (1D) model of a SOFC is used to simulate the effects of voltage degradation in the cell. Different mechanisms are summarized in a simple empirical expression that relates degradation rate to cell operating parameters (current density, fuel utilization and temperature), on a localized basis. Profile distributions of different variables during cell degradation are analyzed. In particular, the effect of degradation on current density, temperature, and total resistance of the cell are investigated. An analysis of localized degradation effects shows how different parts of the cell degrade at a different time rate, and how the various profiles are redistributed along the cell as consequence of different degradation rates.

  1. Electrochemical systems configured to harvest heat energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seok Woo; Yang, Yuan; Ghasemi, Hadi

    Electrochemical systems for harvesting heat energy, and associated electrochemical cells and methods, are generally described. The electrochemical cells can be configured, in certain cases, such that at least a portion of the regeneration of the first electrochemically active material is driven by a change in temperature of the electrochemical cell. The electrochemical cells can be configured to include a first electrochemically active material and a second electrochemically active material, and, in some cases, the absolute value of the difference between the first thermogalvanic coefficient of the first electrochemically active material and the second thermogalvanic coefficient of the second electrochemically activemore » material is at least about 0.5 millivolts/Kelvin.« less

  2. Effect of ZnO core electrodeposition conditions on electrochemical and photocatalytic properties of polypyrrole-graphene oxide shelled nanoarrays

    NASA Astrophysics Data System (ADS)

    Pruna, A.; Shao, Q.; Kamruzzaman, M.; Li, Y. Y.; Zapien, J. A.; Pullini, D.; Busquets Mataix, D.; Ruotolo, A.

    2017-01-01

    Novel hybrid core-shell nanoarchitectures were fabricated by a simple two-step electrochemical approach: first ZnO nanorod core was electrodeposited from Zn(NO3)2 solution; further, the core nanoarray was coated with a shell based on polypyrrole hybridized with graphene oxide by electropolymerization. The properties of the core/shell nanoarchitectures were studied as a function of the core properties induced by electrodeposition parameters. The ZnO nanostructures showed improved crystallinity and c-axis preferred orientation with increasing cathodic deposition potential while the increased deposition duration resulted in a morphology transition from nanorod to pyramidal shape. The electrochemical activity of the core/shell arrays was found to increase with the deposition potential of ZnO core but decreased when morphology changed from nanorod to pyramid shape. The photocatalytic results showed improved activity for the core/hybrid shell nanoarrays with respect to ZnO and ZnO/PPy ones. The degradation rate for methylene blue decreased with prolonged deposition duration of the core. The obtained results highlight the importance of electrochemical tuning of ZnO-based core/shell nanoarrays for improved performance in electrochemical and photocatalytic applications.

  3. Short stack modeling of degradation in solid oxide fuel cells. Part II. Sensitivity and interaction analysis

    NASA Astrophysics Data System (ADS)

    Gazzarri, J. I.; Kesler, O.

    In the first part of this two-paper series, we presented a numerical model of the impedance behaviour of a solid oxide fuel cell (SOFC) aimed at simulating the change in the impedance spectrum induced by contact degradation at the interconnect-electrode, and at the electrode-electrolyte interfaces. The purpose of that investigation was to develop a non-invasive diagnostic technique to identify degradation modes in situ. In the present paper, we appraise the predictive capabilities of the proposed method in terms of its robustness to uncertainties in the input parameters, many of which are very difficult to measure independently. We applied this technique to the degradation modes simulated in Part I, in addition to anode sulfur poisoning. Electrode delamination showed the highest robustness to input parameter variations, followed by interconnect oxidation and interconnect detachment. The most sensitive degradation mode was sulfur poisoning, due to strong parameter interactions. In addition, we simulate several simultaneous two-degradation-mode scenarios, assessing the method's capabilities and limitations for the prediction of electrochemical behaviour of SOFC's undergoing multiple simultaneous degradation modes.

  4. Effect of surface roughness on the in vitro degradation behaviour of a biodegradable magnesium-based alloy

    NASA Astrophysics Data System (ADS)

    Walter, R.; Kannan, M. Bobby; He, Y.; Sandham, A.

    2013-08-01

    In this study, the in vitro degradation behaviour of AZ91 magnesium alloy with two different surface finishes was investigated using electrochemical impedance spectroscopy (EIS) in simulated body fluid (SBF). The polarisation resistance (Rp) of the rough surface alloy immersed in SBF for 3 h was ~30% lower as compared to that of the smooth surface alloy. After 12 h immersion in SBF, the Rp values for both the surface finishes decreased and were also similar. However, localised degradation occurred sooner, and to a noticeably higher severity in the rough surface alloy as compared to the smooth surface alloy.

  5. Electrochemical sensor for monitoring electrochemical potentials of fuel cell components

    DOEpatents

    Kunz, Harold R.; Breault, Richard D.

    1993-01-01

    An electrochemical sensor comprised of wires, a sheath, and a conduit can be utilized to monitor fuel cell component electric potentials during fuel cell shut down or steady state. The electrochemical sensor contacts an electrolyte reservoir plate such that the conduit wicks electrolyte through capillary action to the wires to provide water necessary for the electrolysis reaction which occurs thereon. A voltage is applied across the wires of the electrochemical sensor until hydrogen evolution occurs at the surface of one of the wires, thereby forming a hydrogen reference electrode. The voltage of the fuel cell component is then determined with relation to the hydrogen reference electrode.

  6. Effects of Small Polar Molecules (MA+ and H2O) on Degradation Processes of Perovskite Solar Cells.

    PubMed

    Ma, Chunqing; Shen, Dong; Qing, Jian; Thachoth Chandran, Hrisheekesh; Lo, Ming-Fai; Lee, Chun-Sing

    2017-05-03

    Degradation mechanisms of methylammonium lead halide perovskite solar cells (PSCs) have drawn much attention recently. Herein, the bulk and surface degradation processes of the perovskite were differentiated for the first time by employing combinational studies using electrochemical impedance spectroscopy (EIS), capacitance frequency (CF), and X-ray diffraction (XRD) studies with particular attention on the roles of small polar molecules (MA + and H 2 O). CF study shows that short-circuit current density of the PSCs is increased by H 2 O at the beginning of the degradation process coupled with an increased surface capacitance. On the basis of EIS and XRD analysis, we show that the bulk degradation of PSCs involves a lattice expansion process, which facilitates MA + ion diffusion by creating more efficient channels. These results provide a better understanding of the roles of small polar molecules on degradation processes in the bulk and on the surface of the perovskite film.

  7. Experimental analysis of performance degradation of micro-tubular solid oxide fuel cells fed by different fuel mixtures

    NASA Astrophysics Data System (ADS)

    Calise, F.; Restucccia, G.; Sammes, N.

    This paper analyzes the thermodynamic and electrochemical dynamic performance of an anode supported micro-tubular solid oxide fuel cell (SOFC) fed by different types of fuel. The micro-tubular SOFC used is anode supported, consisting of a NiO and Gd 0.2Ce 0.8O 2- x (GDC) cermet anode, thin GDC electrolyte, and a La 0.6Sr 0.4Co 0.2Fe 0.8O 3- y (LSCF) and GDC cermet cathode. The fabrication of the cells under investigation is briefly summarized, with emphasis on the innovations with respect to traditional techniques. Such micro-tubular cells were tested using a Test Stand consisting of: a vertical tubular furnace, an electrical load, a galvanostast, a bubbler, gas pipelines, temperature, pressure and flow meters. The tests on the micro-SOFC were performed using H 2, CO, CH 4 and H 2O in different combinations at 550 °C, to determine the cell polarization curves under several load cycles. Long-term experimental tests were also performed in order to assess degradation of the electrochemical performance of the cell. Results of the tests were analyzed aiming at determining the sources of the cell performance degradation. Authors concluded that the cell under investigation is particularly sensitive to the carbon deposition which significantly reduces cell performance, after few cycles, when fed by light hydrocarbons. A significant performance degradation is also detected when hydrogen is used as fuel. In this case, the authors ascribe the degradation to the micro-cracks, the change in materials crystalline structure and problems with electrical connections.

  8. Degradation of enoxacin antibiotic by the electro-Fenton process: Optimization, biodegradability improvement and degradation mechanism.

    PubMed

    Annabi, Cyrine; Fourcade, Florence; Soutrel, Isabelle; Geneste, Florence; Floner, Didier; Bellakhal, Nizar; Amrane, Abdeltif

    2016-01-01

    This study aims to investigate the effectiveness of the electro-Fenton process on the removal of a second generation of fluoroquinolone, enoxacin. The electrochemical reactor involved a carbon-felt cathode and a platinum anode. The influence of some experimental parameters, namely the initial enoxacin concentration, the applied current intensity and the Fe(II) amount, was examined. The degradation of the target molecule was accompanied by an increase of the biodegradability, assessed from the BOD5 on COD ratio, which increased from 0 before treatment until 0.5 after 180 min of electrolysis at 50 mg L(-1) initial enoxacin concentration, 0.2 mmol L(-1) Fe(II) concentration and 300 mA applied current intensity. TOC and COD time-courses were also evaluated during electrolysis and reached maximum residual yields of 54% and 43% after 120 min of treatment, respectively. Moreover, a simultaneous generation of inorganic ions (fluorides, ammonium and nitrates) were observed and 3 short chain carboxylic acids (formic, acetic and oxalic acids) were identified and monitored during 180 min of electrolysis. By-products were identified according to UPLC-MS/MS results and a degradation pathway was proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Electrochemical cell

    DOEpatents

    Redey, Laszlo I.; Vissers, Donald R.; Prakash, Jai

    1994-01-01

    An electrochemical cell having a bimodal positive electrode, a negative electrode of an alkali metal, and a compatible electrolyte including an alkali metal salt molten at the cell operating temperature. The positive electrode has an electrochemically active layer of at least one transition metal chloride at least partially present as a charging product, and additives of bromide and/or iodide and sulfur in the positive electrode or the electrolyte. Electrode volumetric capacity is in excess of 400 Ah/cm.sup.3 ; the cell can be 90% recharged in three hours and can operate at temperatures below 160.degree. C. There is also disclosed a method of reducing the operating temperature and improving the overall volumetric capacity of an electrochemical cell and for producing a positive electrode having a BET area greater than 6.times.10.sup.4 cm.sup.2 /g of Ni.

  10. Electrochemical cell

    DOEpatents

    Redey, Laszlo I.; Vissers, Donald R.; Prakash, Jai

    1996-01-01

    An electrochemical cell having a bimodal positive electrode, a negative electrode of an alkali metal, and a compatible electrolyte including an alkali metal salt molten at the cell operating temperature. The positive electrode has an electrochemically active layer of at least one transition metal chloride at least partially present as a charging product, and additives of bromide and/or iodide and sulfur in the positive electrode or the electrolyte. Electrode volumetric capacity is in excess of 400 Ah/cm.sup.3 ; the cell can be 90% recharged in three hours and can operate at temperatures below 160.degree. C. There is also disclosed a method of reducing the operating temperature and improving the overall volumetric capacity of an electrochemical cell and for producing a positive electrode having a BET area greater than 6.times.10.sup.4 cm.sup.2 /g of Ni.

  11. Electrochemical Capture and Release of CO2 in Aqueous Electrolytes Using an Organic Semiconductor Electrode

    PubMed Central

    2017-01-01

    Developing efficient methods for capture and controlled release of carbon dioxide is crucial to any carbon capture and utilization technology. Herein we present an approach using an organic semiconductor electrode to electrochemically capture dissolved CO2 in aqueous electrolytes. The process relies on electrochemical reduction of a thin film of a naphthalene bisimide derivative, 2,7-bis(4-(2-(2-ethylhexyl)thiazol-4-yl)phenyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (NBIT). This molecule is specifically tailored to afford one-electron reversible and one-electron quasi-reversible reduction in aqueous conditions while not dissolving or degrading. The reduced NBIT reacts with CO2 to form a stable semicarbonate salt, which can be subsequently oxidized electrochemically to release CO2. The semicarbonate structure is confirmed by in situ IR spectroelectrochemistry. This process of capturing and releasing carbon dioxide can be realized in an oxygen-free environment under ambient pressure and temperature, with uptake efficiency for CO2 capture of ∼2.3 mmol g–1. This is on par with the best solution-phase amine chemical capture technologies available today. PMID:28378994

  12. Discrimination of smokeless powders by headspace SPME-GC-MS and SPME-GC-ECD, and the potential implications upon training canine detection of explosives

    NASA Astrophysics Data System (ADS)

    Harper, Ross J.; Almirall, Jose R.; Furton, Kenneth G.

    2005-05-01

    This presentation will provide an odour analysis of a variety of smokeless powders & communicate the rapid SPME-GC-ECD method utilized. This paper will also discuss the implications of the headspace analysis of Smokeless Powders upon the choice of training aids for Explosives Detection Canines. Canine detection of explosives relies upon the dogs" ability to equate finding a given explosive odour with a reward, usually in the form of praise or play. The selection of explosives upon which the dogs are trained thus determines which explosives the canines can and potentially cannot find. Commonly, the training is focussed towards high explosives such as TNT and Composition 4, and the low explosives such as Black and Smokeless Powders are added often only for completeness. Powder explosives constitute a major component of explosive incidents throughout the US, and canines trained to detect explosives must be trained across the entire range of powder products. Given the variability in the manufacture and product make-up many smokeless powders do not share common odour chemicals, giving rise to concerns over the extensiveness of canine training. Headspace analysis of a selection of Smokeless Powders by Solid Phase Microextraction Gas Chromatography using Mass Spectrometry (SPME-GC-MS) and Electron Capture Detectors (SPME-GC-ECD) has highlighted significant differences in the chemical composition of the odour available from different brands. This suggests that greater attention should be paid towards the choice of Powder Explosives when assigning canine training aids.

  13. Flexible Pillared Graphene-Paper Electrodes for High-Performance Electrochemical Supercapacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Gongkai; Sun, Xiang; Lu, Fengyuan

    2011-12-08

    Flexible graphene paper (GP) pillared by carbon black (CB) nanoparticles using a simple vacuum filtration method is developed as a high-performance electrode material for supercapacitors. Through the introduction of CB nanoparticles as spacers, the self-restacking of graphene sheets during the filtration process is mitigated to a great extent. The pillared GP-based supercapacitors exhibit excellent electrochemical performances and cyclic stabilities compared with GP without the addition of CB nanoparticles. At a scan rate of 10 mV s -1, the specific capacitance of the pillared GP is 138 F g -1 and 83.2 F g -1 with negligible 3.85% and 4.35% capacitancemore » degradation after 2000 cycles in aqueous and organic electrolytes, respectively. At an extremely fast scan rate of 500 mV s -1, the specific capacitance can reach 80 F g -1 in aqueous electrolyte. No binder is needed for assembling the supercapacitor cells and the pillared GP itself may serve as a current collector due to its intrinsic high electrical conductivity. Finally, the pillared GP has great potential in the development of promising flexible and ultralight-weight supercapacitors for electrochemical energy storage.« less

  14. Investigation of the degradation of different nickel anode types for alkaline fuel cells (AFCs)

    NASA Astrophysics Data System (ADS)

    Gülzow, E.; Schulze, M.; Steinhilber, G.

    Alkaline fuel cells (AFCs) have the opportunity of becoming important for mobile energy systems as, in contrast to other low temperature fuel cells, the alkaline type requires neither noble metal catalysts nor an expensive polymer electrolyte. In AFCs, nickel is used as anode catalyst in gas diffusion electrodes. The metal catalyst was mixed with polytetraflourethylene (PTFE) as organic binder in a knife mile and rolled onto a metal web in a calendar to prepare the electrode. After an activation process with hydrogen evolution at 5 mA/cm 2 for 18 h, the electrodes were stressed at constant loading in a half cell equipment. During the fuel cell operation, the electrochemical performance decreased due to changes of the polymer (PTFE) and of the metal particles in the electrode, which is described in detail in another paper. In this study, three types of electrodes were investigated. The first type of electrode is composed of pure Raney-nickel and PTFE powder, the nickel particles in the second electrode type were selected according to particle size and in the third electrode copper powder was added to the nickel powder not selected by size. The size selected nickel particles show a better electrochemical performance related to the non-selected catalyst, but due to the electrochemically induced disintegration of the nickel particles the electrochemical performance decreases stronger. The copper powder in the third electrode is added to improve the electronic conductivity of the nickel catalyst, but the copper is not stable under the electrochemical conditions in fuel cell operation. With all three anode types long-term experiments have been performed. The electrodes have been characterized after the electrochemical stressing to investigate the degradation processes.

  15. Electrochemical advanced oxidation for cold incineration of the pharmaceutical ranitidine: mineralization pathway and toxicity evolution.

    PubMed

    Olvera-Vargas, Hugo; Oturan, Nihal; Brillas, Enric; Buisson, Didier; Esposito, Giovanni; Oturan, Mehmet A

    2014-12-01

    Ranitidine (RNTD) is a widely prescribed histamine H2-receptor antagonist whose unambiguous presence in water sources appointed it as an emerging pollutant. Here, the degradation of 0.1 mM of this drug in aqueous medium was studied by electrochemical advanced oxidation processes (EAOPs) like anodic oxidation with electrogenerated H2O2 and electro-Fenton using Pt/carbon-felt, BDD/carbon-felt and DSA-Ti/RuO2–IrO2/carbon-felt cells. The higher oxidation power of the electro-Fenton process using a BDD anode was demonstrated. The oxidative degradation of RNTD by the electrochemically generated OH radicals obeyed a pseudo-first order kinetics. The absolute rate constant for its hydroxylation reaction was 3.39 × 109 M−1 s−1 as determined by the competition kinetics method. Almost complete mineralization of the RNTN solution was reached by using a BDD anode in both anodic oxidation with electrogenerated H2O2 and electro-Fenton processes. Up to 11 cyclic intermediates with furan moiety were detected from the degradation of RNTD, which were afterwards oxidized to short-chain carboxylic acids before their mineralization to CO2 and inorganic ions such as NH4+, NO3− and SO42−. Based on identified products, a plausible reaction pathway was proposed for RNTD mineralization. Toxicity assessment by the Microtox® method revealed that some cyclic intermediates are more toxic than the parent molecule. Toxicity was quickly removed following the almost total mineralization of the treated solution. Overall results confirm the effectiveness of EAOPs for the efficient removal of RNTD and its oxidation by-products from water.

  16. Electrochemical force microscopy

    DOEpatents

    Kalinin, Sergei V.; Jesse, Stephen; Collins, Liam F.; Rodriguez, Brian J.

    2017-01-10

    A system and method for electrochemical force microscopy are provided. The system and method are based on a multidimensional detection scheme that is sensitive to forces experienced by a biased electrode in a solution. The multidimensional approach allows separation of fast processes, such as double layer charging, and charge relaxation, and slow processes, such as diffusion and faradaic reactions, as well as capturing the bias dependence of the response. The time-resolved and bias measurements can also allow probing both linear (small bias range) and non-linear (large bias range) electrochemical regimes and potentially the de-convolution of charge dynamics and diffusion processes from steric effects and electrochemical reactivity.

  17. Electrochemical cell

    DOEpatents

    Redey, L.I.; Vissers, D.R.; Prakash, J.

    1994-02-01

    An electrochemical cell is described having a bimodal positive electrode, a negative electrode of an alkali metal, and a compatible electrolyte including an alkali metal salt molten at the cell operating temperature. The positive electrode has an electrochemically active layer of at least one transition metal chloride at least partially present as a charging product, and additives of bromide and/or iodide and sulfur in the positive electrode or the electrolyte. Electrode volumetric capacity is in excess of 400 Ah/cm[sup 3]; the cell can be 90% recharged in three hours and can operate at temperatures below 160 C. There is also disclosed a method of reducing the operating temperature and improving the overall volumetric capacity of an electrochemical cell and for producing a positive electrode having a BET area greater than 6[times]10[sup 4] cm[sup 2]/g of Ni. 8 figures.

  18. Electrochemical cell

    DOEpatents

    Redey, L.I.; Vissers, D.R.; Prakash, J.

    1996-07-16

    An electrochemical cell is described having a bimodal positive electrode, a negative electrode of an alkali metal, and a compatible electrolyte including an alkali metal salt molten at the cell operating temperature. The positive electrode has an electrochemically active layer of at least one transition metal chloride at least partially present as a charging product, and additives of bromide and/or iodide and sulfur in the positive electrode or the electrolyte. Electrode volumetric capacity is in excess of 400 Ah/cm{sup 3}; the cell can be 90% recharged in three hours and can operate at temperatures below 160 C. There is also disclosed a method of reducing the operating temperature and improving the overall volumetric capacity of an electrochemical cell and for producing a positive electrode having a BET area greater than 6{times}10{sup 4}cm{sup 2}/g of Ni. 6 figs.

  19. Improved blackwater disinfection using potentiodynamic methods with oxidized boron-doped diamond electrodes.

    PubMed

    Thostenson, J O; Mourouvin, R; Hawkins, B T; Ngaboyamahina, E; Sellgren, K L; Parker, C B; Deshusses, M A; Stoner, B R; Glass, J T

    2018-09-01

    Electrochemical disinfection (ECD) has become an important blackwater disinfection technology. ECD is a promising solution for the 2 billion people without access to conventional sanitation practices and in areas deficient in basic utilities (e.g., sewers, electricity, waste treatment). Here, we report on the disinfection of blackwater using potential cycling compared to potentiostatic treatment methods in chloride-containing and chloride-free solutions of blackwater (i.e., untreated wastewater containing feces, urine, and flushwater from a toilet). Potentiodynamic treatment is demonstrated to improve disinfection energy efficiency of blackwater by 24% and 124% compared to static oxidation and reduction methods, respectively. The result is shown to be caused by electrochemical advanced oxidation processes (EAOP) and regeneration of sp 2 -surface-bonded carbon functional groups that serve the dual purpose of catalysts and adsorption sites of oxidant intermediates. Following 24 h electrolysis in blackwater, electrode fouling is shown to be minimized by the potential cycling method when compared to equivalent potentiostatic methods. The potential cycling current density is 40% higher than both the static oxidative and reductive methods. This work enhances the understanding of oxygen reduction catalysts using functionalized carbon materials and electrochemical disinfection anodes, both of which have the potential to bring a cost-effective, energy efficient, and practical solution to the problem of disinfecting blackwater. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Materials for electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Simon, Patrice; Gogotsi, Yury

    2008-11-01

    Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. The discovery that ion desolvation occurs in pores smaller than the solvated ions has led to higher capacitance for electrochemical double layer capacitors using carbon electrodes with subnanometre pores, and opened the door to designing high-energy density devices using a variety of electrolytes. Combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries. The use of carbon nanotubes has further advanced micro-electrochemical capacitors, enabling flexible and adaptable devices to be made. Mathematical modelling and simulation will be the key to success in designing tomorrow's high-energy and high-power devices.

  1. Materials for electrochemical capacitors.

    PubMed

    Simon, Patrice; Gogotsi, Yury

    2008-11-01

    Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. The discovery that ion desolvation occurs in pores smaller than the solvated ions has led to higher capacitance for electrochemical double layer capacitors using carbon electrodes with subnanometre pores, and opened the door to designing high-energy density devices using a variety of electrolytes. Combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries. The use of carbon nanotubes has further advanced micro-electrochemical capacitors, enabling flexible and adaptable devices to be made. Mathematical modelling and simulation will be the key to success in designing tomorrow's high-energy and high-power devices.

  2. Electrochemical removal of biofilms from titanium dental implant surfaces.

    PubMed

    Schneider, Sebastian; Rudolph, Michael; Bause, Vanessa; Terfort, Andreas

    2018-06-01

    The infection of dental implants may cause severe inflammation of tissue and even bone degradation if not treated. For titanium implants, a new, minimally invasive approach is the electrochemical removal of the biofilms including the disinfection of the metal surface. In this project, several parameters, such as electrode potentials and electrolyte compositions, were varied to understand the underlying mechanisms. Optimal electrolytes contained iodide as well as lactic acid. Electrochemical experiments, such as cyclic voltammetry or measurements of open circuit potentials, were performed in different cell set-ups to distinguish between different possible reactions. At the applied potentials of E < -1.4 V, the hydrogen evolution reaction dominated at the implant surface, effectively lifting off the bacterial films. In addition, several disinfecting species are formed at the anode, such as triiodide and hydrogen peroxide. Ex situ tests with model biofilms of E. coli clearly demonstrated the effectiveness of the respective anolytes in killing the bacteria, as determined by the LIVE/DEAD™ assay. Using optimized electrolysis parameters of 30 s at 7.0 V and 300 mA, a 14-day old wildtype biofilm could be completely removed from dental implants in vitro. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Improving the packing density of calcium phosphate coating on a magnesium alloy for enhanced degradation resistance.

    PubMed

    Kannan, M Bobby

    2013-05-01

    In this study, an attempt was made to improve the packing density of calcium phosphate (CaP) coating on a magnesium alloy by tailoring the coating solution for enhanced degradation resistance of the alloy for implant applications. An organic solvent, ethanol, was added to the coating solution to decrease the conductivity of the coating solution so that hydrogen bubble formation/bursting reduces during the CaP coating process. Experimental results confirmed that ethanol addition to the coating solution reduces the conductivity of the solution and also decreases the hydrogen evolution/bubble bursting. In vitro electrochemical experiments, that is, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization showed that CaP coating produced in 30% (v/v) ethanol containing coating solution (3E) exhibits significantly higher degradation resistance (i.e., ~50% higher polarization resistance and ~60% lower corrosion current) than the aqueous solution coating. Scanning electron microscope (SEM) analysis of the coatings revealed that the packing of 3E coating was denser than that of aqueous coating, which can be attributed to the lower hydrogen evolution in the former than in the latter. Further increase in the ethanol content in the coating solution was not beneficial; in fact, the coating produced in 70% (v/v) ethanol containing solution (7E) showed degradation resistance much inferior to that of the aqueous coating, which is due to low thickness of 7E coating. Copyright © 2012 Wiley Periodicals, Inc.

  4. Electrochemical mineralization of perfluorocarboxylic acids (PFCAs) by ce-doped modified porous nanocrystalline PbO2 film electrode.

    PubMed

    Niu, Junfeng; Lin, Hui; Xu, Jiale; Wu, Hao; Li, Yangyang

    2012-09-18

    The Ce-doped modified porous nanocrystalline PbO(2) film electrode prepared by electrodeposition technology was used for electrochemical mineralization of environmentally persistent perfluorinated carboxylic acids (PFCAs) (~C(4)-C(8)), i.e., perfluorobutanoic acid (PFBA), perfluopentanoic acid (PFPeA), perfluorohexanoic acid (PFHxA), perfluoheptanoic acid (PFHpA), and perfluorooctanoic acid (PFOA) in aqueous solution (100 mL of 100 mg L(-1)). The degradation of PFCAs follows pseudo-first-order kinetics, and the values of the relative rate constant (k) depend upon chain length k(PFHpA) (4.1 × 10(-2) min(-1); corresponding half-life 16.8 min) ≈ 1.1k(PFOA) ≈ 2.5k(PFHxA)≈ 6.9k(PFPeA) ≈ 9.7k(PFBA). The carbon mineralization indices [i.e., 1 - (TOC(insolution)/TOC(inPFCA,degraded))] were 0.49, 0.70, 0.84, 0.91, and 0.95 for PFBA, PFPeA, PFHxA, PFHpA, and PFOA, respectively, after 90 min electrolysis. The major mineralization product, F(-), as well as low amount of intermediate PFCAs with shortened chain lengths were detected in aqueous solution. By observing the intermediates and tracking the concentration change, a possible pathway of electrochemical mineralization is proposed as follows: Kolbe decarboxylation reaction occurs first at the anode to form the perfluoroalkyl radical, followed by reaction with hydroxyl radicals to form the perfluoroalkyl alcohol which then undergoes intramolecular rearrangement to form the perfluoroalkyl fluoride. After this, the perfluoroalkyl fluoride reforms perfluorinated carboxylic with shorter chain length than its origin by hydrolysis. This electrochemical technique could be employed to treat PFCAs (~C(4)-C(8)) in contaminated wastewater.

  5. Renewable-reagent electrochemical sensor

    DOEpatents

    Wang, Joseph; Olsen, Khris B.

    1999-01-01

    A new electrochemical probe(s) design allowing for continuous (renewable) reagent delivery. The probe comprises an integrated membrane-sampling/electrochemical sensor that prevents interferences from surface-active materials and greatly extends the linear range. The probe(s) is useful for remote or laboratory-based monitoring in connection with microdialysis sampling and electrochemical measurements of metals and organic compounds that are not readily detected in the absence of reacting with the compound. Also disclosed is a method of using the probe(s).

  6. Elimination of ethanethiol released from municipal wastes by absorption sequencing electrochemical oxidation.

    PubMed

    Gong, Xiao; Yang, Xu; Zheng, Haoyue; Wu, Zucheng

    2017-07-01

    As a typical municipal waste landfill gas, ethanethiol can become an air pollutant because of its low odor threshold concentration and toxicity to human beings. A hybrid process of absorption combined with electrochemical oxidation to degrade ethanethiol was investigated. The ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF 4 ) was employed as an absorbent to capture ethanethiol from the air stream. Electrochemical oxidation demonstrated that ethanethiol could be oxidized on a β-PbO 2 anode modified with fluoride, while [BMIM]BF 4 was used as an electrolyte. After a reaction time of 90 min under a current density of 50 mA/cm 2 , ethanethiol could be thoroughly destructed by the successive attack of hydroxyl radicals (·OH) electrogenerated on the surface of the β-PbO 2 anode, while the sulfur atoms in ethanethiol were ultimately converted to sulfate ions [Formula: see text]. The reaction mechanism is proposed, and the operating condition is also estimated with a kinetic model. This hybrid process could be a promising way to remove thiol compounds from municipal waste landfill gases.

  7. Maltodextrin enhances biofilm elimination by electrochemical scaffold

    PubMed Central

    Sultana, Sujala T.; Call, Douglas R.; Beyenal, Haluk

    2016-01-01

    Electrochemical scaffolds (e-scaffolds) continuously generate low concentrations of H2O2 suitable for damaging wound biofilms without damaging host tissue. Nevertheless, retarded diffusion combined with H2O2 degradation can limit the efficacy of this potentially important clinical tool. H2O2 diffusion into biofilms and bacterial cells can be increased by damaging the biofilm structure or by activating membrane transportation channels by exposure to hyperosmotic agents. We hypothesized that e-scaffolds would be more effective against Acinetobacter baumannii and Staphylococcus aureus biofilms in the presence of a hyperosmotic agent. E-scaffolds polarized at −600 mVAg/AgCl were overlaid onto preformed biofilms in media containing various maltodextrin concentrations. E-scaffold alone decreased A. baumannii and S. aureus biofilm cell densities by (3.92 ± 0.15) log and (2.31 ± 0.12) log, respectively. Compared to untreated biofilms, the efficacy of the e-scaffold increased to a maximum (8.27 ± 0.05) log reduction in A. baumannii and (4.71 ± 0.12) log reduction in S. aureus biofilm cell densities upon 10 mM and 30 mM maltodextrin addition, respectively. Overall ~55% decrease in relative biofilm surface coverage was achieved for both species. We conclude that combined treatment with electrochemically generated H2O2 from an e-scaffold and maltodextrin is more effective in decreasing viable biofilm cell density. PMID:27782161

  8. Development of the electrochemically regenerable carbon dioxide absorber for portable life support system application

    NASA Technical Reports Server (NTRS)

    Woods, R. R.; Heppner, D. B.; Marshall, R. D.; Quattrone, P. D.

    1979-01-01

    As the length of manned space missions increase, more ambitious extravehicular activities (EVAs) are required. For the projected longer mission the use of expendables in the portable life support system (PLSS) will become prohibited due to high launch weight and volume requirements. Therefore, the development of a regenerable CO2 absorber for the PLSS application is highly desirable. The paper discusses the concept, regeneration mechanism, performance, system design, and absorption/regeneration cycle testing of a most promising concept known as ERCA (Electrochemically Regenerable CO2 Absorber). This concept is based on absorbing CO2 into an alkaline absorbent similar to LiOH. The absorbent is an aqueous solution supported in a porous matrix which can be electrochemically regenerated on board the primary space vehicle. With the metabolic CO2 recovery the ERCA concept results in a totally regenerable CO2 scrubber. The ERCA test hardware has passed 200 absorption/regeneration cycles without performance degradation.

  9. Flow accelerated organic coating degradation

    NASA Astrophysics Data System (ADS)

    Zhou, Qixin

    Applying organic coatings is a common and the most cost effective way to protect metallic objects and structures from corrosion. Water entry into coating-metal interface is usually the main cause for the deterioration of organic coatings, which leads to coating delamination and underfilm corrosion. Recently, flowing fluids over sample surface have received attention due to their capability to accelerate material degradation. A plethora of works has focused on the flow induced metal corrosion, while few studies have investigated the flow accelerated organic coating degradation. Flowing fluids above coating surface affect corrosion by enhancing the water transport and abrading the surface due to fluid shear. Hence, it is of great importance to understand the influence of flowing fluids on the degradation of corrosion protective organic coatings. In this study, a pigmented marine coating and several clear coatings were exposed to the laminar flow and stationary immersion. The laminar flow was pressure driven and confined in a flow channel. A 3.5 wt% sodium chloride solution and pure water was employed as the working fluid with a variety of flow rates. The corrosion protective properties of organic coatings were monitored inline by Electrochemical Impedance Spectroscopy (EIS) measurement. Equivalent circuit models were employed to interpret the EIS spectra. The time evolution of coating resistance and capacitance obtained from the model was studied to demonstrate the coating degradation. Thickness, gloss, and other topography characterizations were conducted to facilitate the assessment of the corrosion. The working fluids were characterized by Fourier Transform Infrared Spectrometer (FTIR) and conductivity measurement. The influence of flow rate, fluid shear, fluid composition, and other effects in the coating degradation were investigated. We conclude that flowing fluid on the coating surface accelerates the transport of water, oxygen, and ions into the coating, as

  10. Improved electrochemical properties of amorphous Mg 65Ni 27La 8 electrodes: Surface modification using graphite

    NASA Astrophysics Data System (ADS)

    Wu, D. C.; Li, Lu; Liang, G. Y.; Guo, Y. L.; Wu, H. B.

    Amorphous Mg 65Ni 27La 8 alloy is prepared by melt-spinning. The alloy surface is modified using different contents of graphite to improve the performances of the Mg 65Ni 27La 8 electrodes. In detail, the electrochemical properties of (Mg 65Ni 27La 8) + xC (x = 0-0.4) electrodes are studied systematically, where x is the mass ratio of graphite to alloy. Experimental results reveal that the discharge capacity, cycle life, discharge potential characteristics and electrochemical kinetics of the electrodes are all improved. The surface modification enhances the electrocatalytic activity of the alloy, reduces the contact resistance of the electrodes and obstructs the formation of Mg(OH) 2 on the alloy surface. An optimal content of graphite has been obtained. The (Mg 65Ni 27La 8) + 0.25 C electrode has the largest discharge capacity of 827 mA h g -1, which is 1.47 times as large as that of the electrode without graphite, and the best electrochemical kinetics. Further increasing of graphite content will lead to the increase of contact resistance and activation energy for charge-transfer reaction of the electrode, resulting in the degradation of electrode performance.

  11. Characterization of physiochemical properties of polymeric and electrochemical materials for aerospace flight

    NASA Technical Reports Server (NTRS)

    Rock, M.; Kunigahalli, V.; Khan, S.; Mcnair, A.

    1984-01-01

    Nickel-cadmium rechargeable batteries are a vital and reliable energy storage source for aerospace applications. As the demand for longer life and more reliable space batteries increases, the understanding and solving of cell aging factors and mechanisms become essential. Over the years, many cell designs and manufacturing process changes have been developed and implemented. Cells fabricated with various design features were life cycled in a simulated low-Earth orbit regime. Following the test program, a comprehensive electrochemical analysis of cell components was undertaken to study cell degradation mechanisms. Discharge voltage degradation or voltage plateau has been observed during orbit cycling, but, its cause and explanation have been the subject of much discussion. A Hg/HgO reference electrode was used to monitor the reference versus each electrode potential during the discharge of a cycled cell. The results indicate that the negative electrode was responsible for the voltage plateau. Cell analysis revealed large crystals of cadmium hydroxide on the surface of the negative electrode and throughout the separator.

  12. Renewable-reagent electrochemical sensor

    DOEpatents

    Wang, J.; Olsen, K.B.

    1999-08-24

    A new electrochemical probe(s) design allowing for continuous (renewable) reagent delivery is described. The probe comprises an integrated membrane sampling/electrochemical sensor that prevents interferences from surface-active materials and greatly extends the linear range. The probe(s) is useful for remote or laboratory-based monitoring in connection with microdialysis sampling and electrochemical measurements of metals and organic compounds that are not readily detected in the absence of reacting with the compound. Also disclosed is a method of using the probe(s). 19 figs.

  13. Electrochemical Sensors for Clinic Analysis

    PubMed Central

    Wang, You; Xu, Hui; Zhang, Jianming; Li, Guang

    2008-01-01

    Demanded by modern medical diagnosis, advances in microfabrication technology have led to the development of fast, sensitive and selective electrochemical sensors for clinic analysis. This review addresses the principles behind electrochemical sensor design and fabrication, and introduces recent progress in the application of electrochemical sensors to analysis of clinical chemicals such as blood gases, electrolytes, metabolites, DNA and antibodies, including basic and applied research. Miniaturized commercial electrochemical biosensors will form the basis of inexpensive and easy to use devices for acquiring chemical information to bring sophisticated analytical capabilities to the non-specialist and general public alike in the future. PMID:27879810

  14. Preparation of IrO2-Ta2O5|Ti electrodes by immersion, painting and electrophoretic deposition for the electrochemical removal of hydrocarbons from water.

    PubMed

    Herrada, Rosa Alhelí; Medel, Alejandro; Manríquez, Federico; Sirés, Ignasi; Bustos, Erika

    2016-12-05

    After intense years of great development, the electrochemical technologies have become very suitable alternatives in niche markets like industrial wastewater reclamation and soil remediation. A key role to achieve a high efficiency in such treatments is played by the characteristics of the coating of the electrodes employed. This paper compares three techniques, namely immersion, painting and electrophoresis, for the preparation of IrO2-Ta2O5ǀTi, so-called dimensionally stable anodes (DSA(®)). The quality of the coatings has been investigated by means of surface and electrochemical analysis. Their ability to generate hydroxyl radicals and degrade aqueous solutions of hydrocarbons like phenanthrene, naphthalene and fluoranthene has been thoroughly assessed. Among the synthesis techniques, electrophoretic deposition yielded the best results, with DSA(®) electrodes exhibiting a homogeneous surface coverage that led to a good distribution of active sites, thus producing hydroxyl radicals that were able to accelerate the degradation of hydrocarbons. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Electrochemical biosensors for hormone analyses.

    PubMed

    Bahadır, Elif Burcu; Sezgintürk, Mustafa Kemal

    2015-06-15

    Electrochemical biosensors have a unique place in determination of hormones due to simplicity, sensitivity, portability and ease of operation. Unlike chromatographic techniques, electrochemical techniques used do not require pre-treatment. Electrochemical biosensors are based on amperometric, potentiometric, impedimetric, and conductometric principle. Amperometric technique is a commonly used one. Although electrochemical biosensors offer a great selectivity and sensitivity for early clinical analysis, the poor reproducible results, difficult regeneration steps remain primary challenges to the commercialization of these biosensors. This review summarizes electrochemical (amperometric, potentiometric, impedimetric and conductometric) biosensors for hormone detection for the first time in the literature. After a brief description of the hormones, the immobilization steps and analytical performance of these biosensors are summarized. Linear ranges, LODs, reproducibilities, regenerations of developed biosensors are compared. Future outlooks in this area are also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Mechanism for the degradation of MmNi3.9Co0.6Mn0.3Al0.2 electrode and effects of additives on electrode degradation for Ni-MH secondary batteries

    NASA Astrophysics Data System (ADS)

    Jang, In-Su; Kalubarme, R. S.; Yang, Dong-Cheol; Kim, Tae-Sin; Park, Choong-Nyeon; Ryu, Hyun-Wook; Park, Chan-Jin

    2011-12-01

    Electrode degradation can affect the lifetime and safety of Ni-MH secondary batteries. This study examined the factors responsible for the degradation of metal hydride (MH) electrodes. The charge-discharge characteristics and cycle life of an MmNi3.9Co0.6Mn0.3Al0.2 (Mm: misch metal) type MH electrode were examined in a cell with a KOH electrolyte. After the charge-discharge cycles, the surface morphology of the electrodes was analyzed to monitor the extent of degradation. Electrochemical impedance spectroscopy provided information on the conductivity of the electrode. X-ray photon spectroscopy (XPS) was used to quantify the degradation of the electrode in terms of its composition. The MH electrodes degraded with cycling. This phenomenon was more prominent at higher C-rates and temperatures. The electrode degradation was attributed to the loss of active material from the current collector by the repeated absorption and desorption of hydrogen and the formation of an Al2O3 oxide layer on the electrode surface with cycling. In addition, the effects of the addition of Co nano and Y2O3 powder on the degradation of the MmNi3.9Co0.6Mn0.3Al0.2 electrode were examined. The addition of the Y2O3 and Co nano powder significantly improved the performance of the MH electrode by increasing the cycle life and initial activation rate.

  17. Immobilization free electrochemical biosensor for folate receptor in cancer cells based on terminal protection.

    PubMed

    Ni, Jiancong; Wang, Qingxiang; Yang, Weiqiang; Zhao, Mengmeng; Zhang, Ying; Guo, Longhua; Qiu, Bin; Lin, Zhenyu; Yang, Huang-Hao

    2016-12-15

    The determination of folate receptor (FR) that over expressed in vast quantity of cancerous cells frequently is significant for the clinical diagnosis and treatment of cancers. Many DNA-based electrochemical biosensors have been developed for FR detection with high selectivity and sensitivity, but most of them need complicated immobilization of DNA on the electrode surface firstly, which is tedious and therefore results in the poor reproducibility. In this study, a simple, sensitive, and selective electrochemical FR biosensor in cancer cells has been proposed, which combines the advantages of the convenient immobilization-free homogeneous indium tin oxide (ITO)-based electrochemical detection strategy and the high selectivity of the terminal protection of small molecule linked DNA. The small molecule of folic acid (FA) and an electroactive molecule of ferrocence (Fc) were tethered to 3'- and 5'-end of an arbitrary single-stranded DNA (ssDNA), respectively, forming the FA-ssDNA-Fc complex. In the absence of the target FR, the FA-ssDNA-Fc was degraded by exonuclease I (Exo I) from 3'-end and produced a free Fc, diffusing freely to the ITO electrode surface and resulting in strong electrochemical signal. When the target FR was present, the FA-ssDNA-Fc was bound to FR through specific interaction with FA anchored at the 3'-end, effectively protecting the ssDNA strand from hydrolysis by Exo I. The FR-FA-ssDNA-Fc could not diffuse easily to the negatively charged ITO electrode surface due to the electrostatic repulsion between the DNA strand and the negatively charged ITO electrode, so electrochemical signal reduced. The decreased electrochemical signal has a linear relationship with the logarithm of FR concentration in range of 10fM to 10nM with a detection limit of 3.8fM (S/N=3). The proposed biosensor has been applied to detect FR in HeLa cancer cells, and the decreased electrochemical signal has a linear relationship with the logarithm of cell concentration ranging

  18. Porous TiO2-ZrO2 thin film formed by electrochemical technique to improve the biocompatibility of titanium alloy in physiological environment

    NASA Astrophysics Data System (ADS)

    Benea, L.; Dănăilă, E.; Ponthiaux, P.

    2017-02-01

    Porous Ti and Ti alloys have received increasing research interest for bone tissue engineering, especially for dental and orthopaedic implants because they provide cell ingrowths and vascularization, improving of adhesion and osseointegration. The tribocorrosion process is encountered in orthopaedic and dentistry applications, since it is known that the implants are often exposed to simultaneous chemical/electrochemical and mechanical stresses. The purpose of this study was to carry out a systematic investigation of the tribo-electrochemical performance of porous TiO2-ZrO2 thin film formed by anodization of Ti-10Zr alloy surface in an artificial saliva solution and to compare the resulted performance with that of the untreated Ti-10Zr alloy surface in order to be applied for biomedical use. The in situ electrochemical technique used for investigation of tribo-electrochemical degradation was the open circuit potential (OCP) measurement performed before, during and after sliding tests. The results presented herein show that controlled anodic oxidation method can significantly improve the tribocorrosion and friction performances of Ti-10Zr alloy surface intended for biomedical applications.

  19. Electrochemical nitridation of metal surfaces

    DOEpatents

    Wang, Heli; Turner, John A.

    2015-06-30

    Electrochemical nitridation of metals and the produced metals are disclosed. An exemplary method of electrochemical nitridation of metals comprises providing an electrochemical solution at low temperature. The method also comprises providing a three-electrode potentiostat system. The method also comprises stabilizing the three-electrode potentiostat system at open circuit potential. The method also comprises applying a cathodic potential to a metal.

  20. A high-performance flexible fibre-shaped electrochemical capacitor based on electrochemically reduced graphene oxide.

    PubMed

    Li, Yingru; Sheng, Kaixuan; Yuan, Wenjing; Shi, Gaoquan

    2013-01-11

    A fibre-shaped solid electrochemical capacitor based on electrochemically reduced graphene oxide has been fabricated, exhibiting high specific capacitance and rate capability, long cycling life and attractive flexibility.

  1. Electrochemically Driven Deactivation and Recovery in PrBaCo2 O5+δ Oxygen Electrodes for Reversible Solid Oxide Fuel Cells.

    PubMed

    Zhu, Lin; Wei, Bo; Wang, Zhihong; Chen, Kongfa; Zhang, Haiwu; Zhang, Yaohui; Huang, Xiqiang; Lü, Zhe

    2016-09-08

    The understanding of surface chemistry changes on oxygen electrodes is critical for the development of reversible solid oxide fuel cell (RSOFC). Here, we report for the first time that the electrochemical potentials can drastically affect the surface composition and hence the electrochemical activity and stability of PrBaCo2 O5+δ (PBCO) electrodes. Anodic polarization degrades the activity of the PBCO electrode, whereas the cathodic bias could recover its performance. Alternating anodic/cathodic polarization for 180 h confirms this behavior. Microstructure and chemical analysis clearly show that anodic bias leads to the accumulation and segregation of insulating nanosized BaO on the electrode surface, whereas cathodic polarization depletes the surface species. Therefore, a mechanism based on the segregation and incorporation of BaO species under electrochemical potentials is considered to be responsible for the observed deactivation and recovery process, respectively. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Space Electrochemical Research and Technology

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The proceedings of NASA's third Space Electrochemical Research and Technology (SERT) conference are presented. The objective of the conference was to assess the present status and general thrust of research and development in those areas of electrochemical technology required to enable NASA missions in the next century. The conference provided a forum for the exchange of ideas and opinions of those actively involved in the field, in order to define new opportunities for the application of electrochemical processes in future NASA missions. Papers were presented in three technical areas: the electrochemical interface, the next generation in aerospace batteries and fuel cells, and electrochemistry for nonenergy storage applications.

  3. UV/chlorine as an advanced oxidation process for the degradation of benzalkonium chloride: Synergistic effect, transformation products and toxicity evaluation.

    PubMed

    Huang, Nan; Wang, Ting; Wang, Wen-Long; Wu, Qian-Yuan; Li, Ang; Hu, Hong-Ying

    2017-05-01

    Benzalkonium chlorides (BACs), as typical cationic surfactants and biocides widely applied in household and industrial products, have been frequently detected as micropollutants in many aquatic environments. In this study, the combination of UV irradiation and chlorine (UV/chlorine), a newly interested advanced oxidation process, was used to degrade dodecylbenzyldimethylammonium chloride (DDBAC). UV/chlorine showed synergistic effects on DDBAC degradation comparing to UV irradiation or chlorination alone. Radical quenching experiments indicated that degradation of DDBAC by UV/chlorine involved both UV photolysis and radical species oxidation, which accounted for 48.4% and 51.6%, respectively. Chlorine dosage and pH are essential parameters affecting the treatment efficiency of UV/chlorine. The pseudo first order rate constant (k obs, DDBAC ) increased from 0.046 min -1 to 0.123 min -1 in response to chlorine dosage at 0-150 mg/L, and the degradation percentage of DDBAC within 12 min decreased from 81.4% to 56.6% at pH 3.6-9.5. Five main intermediates were identified and semi-quantified using HPLC-MS/MS and a possible degradation pathway was proposed. The degradation mechanisms of DDBAC by UV/chlorine included cleavage of the benzyl-nitrogen bond and hydrogen abstraction of the alkyl chain. Trichloromethane (TCM), chloral hydrate (CH), trichloropropanone (TCP), dichloropropanone (DCP) and dichloroacetonitrile (DCAN) were detected using GC-ECD. The formation of chlorinated products increased rapidly initially, then decreased (TCM, TCP, DCP and DCAN) or remained stable (CH) with extended treatment. The actual formation of TCM peaked at 30 min (50.3 μg/L), while other chlorinated products did not exceed 10 μg/L throughout the process. Based on the luminescent bacterial assay, DDBAC solution underwent almost complete detoxification subjected to UV/chlorine treatment for 120 min, which is more effective than UV irradiation or chlorination alone. Copyright

  4. Shock-activated electrochemical power supplies

    DOEpatents

    Benedick, William B.; Graham, Robert A.; Morosin, Bruno

    1988-01-01

    A shock-activated electrochemical power supply is provided which is initiated extremely rapidly and which has a long shelf life. Electrochemical power supplies of this invention are initiated much faster than conventional thermal batteries. Power supplies of this invention comprise an inactive electrolyte and means for generating a high-pressure shock wave such that the shock wave is propagated through the electrolytes rendering the electrolyte electrochemically active.

  5. Electrochemical models for the radical annihilation reactions in organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Armstrong, Neal R.; Anderson, Jeffrey D.; Lee, Paul A.; McDonald, Erin; Wightman, R. M.; Hall, Hank K.; Hopkins, Tracy; Padias, Anne; Thayumanavan, Sankaran; Barlow, Stephen; Marder, Seth R.

    1998-12-01

    Bilayer organic light emitting diodes (OLEDs), based upon vacuum deposited molecules, or single layer OLEDs, based upon spin-cast polymeric materials, doped with these same molecules, produce light from emissive states of the lumophores which are created through annihilation reactions of radical species, which can be modeled through solution electrochemistry. Difference seen in solution reduction and oxidation potentials of molecular components of OLEDs are a lower limit estimate to the differences in energy of these same radical species in the condensed phase environmental. The light emitted from an aluminum quinolate (Alq3)/triarylamine (TPD)-based OLED, or an Alq3/PVK single layers OLED, can be reproduce from solution cross reactions of Alq3/TPD+. The efficiency of this process increases as the oxidation potential of the TPD increases, due to added substituents. Radical cations and anions of solubilized version of quinacridone dopants (DIQA) which have been used to enhance efficiencies in these OLEDs, are shown to be electrochemically more stable than Alq3 and Alq3, and DIQA radical annihilation reactions produce the same emissive state as in the quinacridone-doped OLEDs. Electrochemical studies demonstrate the ways in which other dopants might enhance the efficiency and shift the color output of OLEDs, across the entire visible and near-IR spectrum. Chemical degradation pathways of these same molecular components, which they may undergo during OLED operation, are also revealed by these electrochemical studies.

  6. Performance and long term degradation of 7 W micro-tubular solid oxide fuel cells for portable applications

    NASA Astrophysics Data System (ADS)

    Torrell, M.; Morata, A.; Kayser, P.; Kendall, M.; Kendall, K.; Tarancón, A.

    2015-07-01

    Micro-tubular SOFCs have shown an astonishing thermal shock resistance, many orders of magnitude larger than planar SOFCs, opening the possibility of being used in portable applications. However, only few studies have been devoted to study the degradation of large-area micro-tubular SOFCs. This work presents microstructural, electrochemical and long term degradation studies of single micro-tubular cells fabricated by high shear extrusion, operating in the intermediate range of temperatures (T∼700 °C). A maximum power of 7 W per cell has been measured in a wide range of fuel utilizations between 10% and 60% at 700 °C. A degradation rate of 360 mW/1000 h (8%) has been observed for cells operated over more than 1500 h under fuel utilizations of 40%. Higher fuel utilizations lead to strong degradations associated to nickel oxidation/reduction processes. Quick thermal cycling with heating ramp rates of 30 °C /min yielded degradation rates of 440 mW/100 cycles (9%). These reasonable values of degradation under continuous and thermal cycling operation approach the requirements for many portable applications including auxiliary power units or consumer electronics opening this typically forbidden market to the SOFC technology.

  7. Electrochemical Analysis of Neurotransmitters

    NASA Astrophysics Data System (ADS)

    Bucher, Elizabeth S.; Wightman, R. Mark

    2015-07-01

    Chemical signaling through the release of neurotransmitters into the extracellular space is the primary means of communication between neurons. More than four decades ago, Ralph Adams and his colleagues realized the utility of electrochemical methods for the study of easily oxidizable neurotransmitters, such as dopamine, norepinephrine, and serotonin and their metabolites. Today, electrochemical techniques are frequently coupled to microelectrodes to enable spatially resolved recordings of rapid neurotransmitter dynamics in a variety of biological preparations spanning from single cells to the intact brain of behaving animals. In this review, we provide a basic overview of the principles underlying constant-potential amperometry and fast-scan cyclic voltammetry, the most commonly employed electrochemical techniques, and the general application of these methods to the study of neurotransmission. We thereafter discuss several recent developments in sensor design and experimental methodology that are challenging the current limitations defining the application of electrochemical methods to neurotransmitter measurements.

  8. [Application of fingerprint chromatogram in quality assessment of apple cider].

    PubMed

    Xu, Kangzhen; Song, Jirong; Ren, Yinghui; Ma, Haixia; Huang, Jie; Du, Xiaodan

    2007-01-01

    Fingerprints of 14 apple cider samples from different manufacturers were studied using high performance liquid chromatography (HPLC) with an electrochemical detector (ECD). The analysis was carried out on a Zorbax SB-C18 column at 30 degrees C with 2% (v/v) methanol aqueous solution-4% (v/v) acetic acid aqueous solution as mobile phase at a flow rate of 0.8 mL/min. The electrochemical detector was set at 0.7 V. By calculating the relative retention times of certain peaks with chlorogenic acid as the reference standard, 8 common peaks in the samples were analyzed. Relative retention times for the common peaks of various samples were calculated, and the similarities of all the samples were figured out through each peak area with the vectorial angle cosine method and correlative coefficient method. The results indicated that apple cider products of the same manufacturer have good similarity, with the similarities greater than 92.7%. According to this experiment, effectual microcosmic information for apple cider analysis was gained through HPLC and ECD. Moreover, this test method will help the analysis and the control of product quality, the development of new products and the establishment of trade standard.

  9. Mussel-inspired functionalization of electrochemically exfoliated graphene: Based on self-polymerization of dopamine and its suppression effect on the fire hazards and smoke toxicity of thermoplastic polyurethane.

    PubMed

    Cai, Wei; Wang, Junling; Pan, Ying; Guo, Wenwen; Mu, Xiaowei; Feng, Xiaming; Yuan, Bihe; Wang, Xin; Hu, Yuan

    2018-06-15

    The suppression effect of graphene in the fire hazards and smoke toxicity of polymer composites has been seriously limited by both mass production and weak interfacial interaction. Though the electrochemical preparation provides an available approach for mass production, exfoliated graphene could not strongly bond with polar polymer chains. Herein, mussel-inspired functionalization of electrochemically exfoliated graphene was successfully processed and added into polar thermoplastic polyurethane matrix (TPU). As confirmed by SEM patterns of fracture surface, functionalized graphene possessing abundant hydroxyl could constitute a forceful chains interaction with TPU. By the incorporation of 2.0 wt % f-GNS, peak heat release rate (pHRR), total heat release (THR), specific extinction area (SEA), as well as smoke produce rate (SPR) of TPU composites were approximately decreased by 59.4%, 27.1%, 31.9%, and 26.7%, respectively. A probable mechanism of fire retardant was hypothesized: well-dispersed f-GNS constituted tortuous path and hindered the exchange process of degradation product with barrier function. Large quantities of degradation product gathered round f-GNS and reacted with flame retardant to produce the cross-linked and high-degree graphited residual char. The simple functionalization for electrochemically exfoliated graphene impels the application of graphene in the fields of flame retardant composites. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Shock-activated electrochemical power supplies

    DOEpatents

    Benedick, W.B.; Graham, R.A.; Morosin, B.

    1988-11-08

    A shock-activated electrochemical power supply is provided which is initiated extremely rapidly and which has a long shelf life. Electrochemical power supplies of this invention are initiated much faster than conventional thermal batteries. Power supplies of this invention comprise an inactive electrolyte and means for generating a high-pressure shock wave such that the shock wave is propagated through the electrolytes rendering the electrolyte electrochemically active. 2 figs.

  11. Electrochemical cell

    DOEpatents

    Redey, Laszlo I.; Myles, Kevin M.; Vissers, Donald R.; Prakash, Jai

    1996-01-01

    An electrochemical cell with a positive electrode having an electrochemically active layer of at least one transition metal chloride. A negative electrode of an alkali metal and a compatible electrolyte including an alkali metal salt molten at cell operating temperature is included in the cell. The electrolyte is present at least partially as a corrugated .beta." alumina tube surrounding the negative electrode interior to the positive electrode. The ratio of the volume of liquid electrolyte to the volume of the positive electrode is in the range of from about 0.1 to about 3. A plurality of stacked electrochemical cells is disclosed each having a positive electrode, a negative electrode of an alkali metal molten at cell operating temperature, and a compatible electrolyte. The electrolyte is at least partially present as a corrugated .beta." alumina sheet separating the negative electrode and interior to the positive electrodes. The alkali metal is retained in a porous electrically conductive ceramic, and seals for sealing the junctures of the electrolyte and the adjacent electrodes at the peripheries thereof.

  12. Electrochemical cell

    DOEpatents

    Redey, L.I.; Myles, K.M.; Vissers, D.R.; Prakash, J.

    1996-07-02

    An electrochemical cell is described with a positive electrode having an electrochemically active layer of at least one transition metal chloride. A negative electrode of an alkali metal and a compatible electrolyte including an alkali metal salt molten at cell operating temperature is included in the cell. The electrolyte is present at least partially as a corrugated {beta}{double_prime} alumina tube surrounding the negative electrode interior to the positive electrode. The ratio of the volume of liquid electrolyte to the volume of the positive electrode is in the range of from about 0.1 to about 3. A plurality of stacked electrochemical cells is disclosed each having a positive electrode, a negative electrode of an alkali metal molten at cell operating temperature, and a compatible electrolyte. The electrolyte is at least partially present as a corrugated {beta}{double_prime} alumina sheet separating the negative electrode and interior to the positive electrodes. The alkali metal is retained in a porous electrically conductive ceramic, and seals for sealing the junctures of the electrolyte and the adjacent electrodes at the peripheries thereof. 8 figs.

  13. Flexible pillared graphene-paper electrodes for high-performance electrochemical supercapacitors.

    PubMed

    Wang, Gongkai; Sun, Xiang; Lu, Fengyuan; Sun, Hongtao; Yu, Mingpeng; Jiang, Weilin; Liu, Changsheng; Lian, Jie

    2012-02-06

    Flexible graphene paper (GP) pillared by carbon black (CB) nanoparticles using a simple vacuum filtration method is developed as a high-performance electrode material for supercapacitors. Through the introduction of CB nanoparticles as spacers, the self-restacking of graphene sheets during the filtration process is mitigated to a great extent. The pillared GP-based supercapacitors exhibit excellent electrochemical performances and cyclic stabilities compared with GP without the addition of CB nanoparticles. At a scan rate of 10 mV s(-1) , the specific capacitance of the pillared GP is 138 F g(-1) and 83.2 F g(-1) with negligible 3.85% and 4.35% capacitance degradation after 2000 cycles in aqueous and organic electrolytes, respectively. At an extremely fast scan rate of 500 mV s (-1) , the specific capacitance can reach 80 F g(-1) in aqueous electrolyte. No binder is needed for assembling the supercapacitor cells and the pillared GP itself may serve as a current collector due to its intrinsic high electrical conductivity. The pillared GP has great potential in the development of promising flexible and ultralight-weight supercapacitors for electrochemical energy storage. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A novel mechanistic modeling framework for analysis of electrode balancing and degradation modes in commercial lithium-ion cells

    NASA Astrophysics Data System (ADS)

    Schindler, Stefan; Danzer, Michael A.

    2017-03-01

    Aiming at a long-term stable and safe operation of rechargeable lithium-ion cells, elementary design aspects and degradation phenomena have to be considered depending on the specific application. Among the degrees of freedom in cell design, electrode balancing is of particular interest and has a distinct effect on useable capacity and voltage range. Concerning intrinsic degradation modes, understanding the underlying electrochemical processes and tracing the overall degradation history are the most crucial tasks. In this study, a model-based, minimal parameter framework for combined elucidation of electrode balancing and degradation pathways in commercial lithium-ion cells is introduced. The framework rests upon the simulation of full cell voltage profiles from the superposition of equivalent, artificially degraded half-cell profiles and allows to separate aging contributions from loss of available lithium and active materials in both electrodes. A physically meaningful coupling between thermodynamic and kinetic degradation modes based on the correlation between altered impedance features and loss of available lithium as well as loss of active material is proposed and validated by a low temperature degradation profile examined in one of our recent publications. The coupled framework is able to determine the electrode balancing within an error range of < 1% and the projected cell degradation is qualitatively and quantitatively in line with experimental observations.

  15. Design of aqueous redox-enhanced electrochemical capacitors with high specific energies and slow self-discharge.

    PubMed

    Chun, Sang-Eun; Evanko, Brian; Wang, Xingfeng; Vonlanthen, David; Ji, Xiulei; Stucky, Galen D; Boettcher, Shannon W

    2015-08-04

    Electrochemical double-layer capacitors exhibit high power and long cycle life but have low specific energy compared with batteries, limiting applications. Redox-enhanced capacitors increase specific energy by using redox-active electrolytes that are oxidized at the positive electrode and reduced at the negative electrode during charging. Here we report characteristics of several redox electrolytes to illustrate operational/self-discharge mechanisms and the design rules for high performance. We discover a methyl viologen (MV)/bromide electrolyte that delivers a high specific energy of ∼14 Wh kg(-1) based on the mass of electrodes and electrolyte, without the use of an ion-selective membrane separator. Substituting heptyl viologen for MV increases stability, with no degradation over 20,000 cycles. Self-discharge is low, due to adsorption of the redox couples in the charged state to the activated carbon, and comparable to cells with inert electrolyte. An electrochemical model reproduces experiments and predicts that 30-50 Wh kg(-1) is possible with optimization.

  16. Design of aqueous redox-enhanced electrochemical capacitors with high specific energies and slow self-discharge

    PubMed Central

    Chun, Sang-Eun; Evanko, Brian; Wang, Xingfeng; Vonlanthen, David; Ji, Xiulei; Stucky, Galen D.; Boettcher, Shannon W.

    2015-01-01

    Electrochemical double-layer capacitors exhibit high power and long cycle life but have low specific energy compared with batteries, limiting applications. Redox-enhanced capacitors increase specific energy by using redox-active electrolytes that are oxidized at the positive electrode and reduced at the negative electrode during charging. Here we report characteristics of several redox electrolytes to illustrate operational/self-discharge mechanisms and the design rules for high performance. We discover a methyl viologen (MV)/bromide electrolyte that delivers a high specific energy of ∼14 Wh kg−1 based on the mass of electrodes and electrolyte, without the use of an ion-selective membrane separator. Substituting heptyl viologen for MV increases stability, with no degradation over 20,000 cycles. Self-discharge is low, due to adsorption of the redox couples in the charged state to the activated carbon, and comparable to cells with inert electrolyte. An electrochemical model reproduces experiments and predicts that 30–50 Wh kg−1 is possible with optimization. PMID:26239891

  17. Validation of a multi-residue method to determine deltamethrin and alpha-cypermethrin in mosquito nets by gas chromatography with electron capture detection (GC-μECD)

    PubMed Central

    2013-01-01

    Background Nowadays long-lasting insecticidal mosquito nets (LNs) are frequently used around the world to protect people against malaria vectors. As they contain insecticide, laboratory control is needed to check whether the content of the active ingredient follows the conditions of the manufacturer and also if the active ingredient is still present after some time of use. For this purpose, an analytical method had to be developed. The fact that LNs include a range of polymers for the yarn and use coated or incorporated technologies for the active ingredient, it is a challenge to find only one analytical method determining the active ingredient in LNs, which takes into account both impregnation technologies. Some methods are provided by international organizations but are limited by the determination of only one pesticide per method. The aim of this study was to optimize a short time extraction method for deltamethrin and alpha-cypermethrin from coated and incorporated mosquito nets and also to detect both insecticides in one analytical run, using gas chromatography with electron capture detection (GC-μECD). Methods Based on the literature, the most suitable solvent and the adequate extraction process for the insecticides used for net making were identified and adapted for the new multi-residue method. Results The validation data of the multi-residue method to determine deltamethrin and alpha-cypermethrin in mosquito nets by GC-μECD are given. Depending on the concentration of the active ingredient spiked on the nets, the mean recovery for alpha-cypermethrin ranged between 86% and 107% with a relative standard deviation below 3.5%. For deltamethrin it ranged between 90% and 108% with a relative standard deviation also below 3.5%. The limit of detection is 0.009 g.a.i/kg of net (0.3 mg a.i./m2 of net) both for alpha-cypermethrin and deltamethrin. Conclusions Data obtained are excellent. A 30 minutes reflux extraction method with xylene was developed to determine

  18. Electrolytic trichloroethene degradation using mixed metal oxide coated titanium mesh electrodes.

    PubMed

    Petersen, Matthew A; Sale, Thomas C; Reardon, Kenneth F

    2007-04-01

    Electrochemical systems provide a low cost, versatile, and controllable platform to potentially treat contaminants in water, including chlorinated solvents. Relative to bare metal or noble metal amended materials, dimensionally stable electrode materials such as mixed metal oxide coated titanium (Ti/MMO) have advantages in terms of stability and cost, important factors for sustainable remediation solutions. Here, we report the use of Ti/MMO as an effective cathode substrate for treatment of trichloroethene (TCE). TCE degradation in a batch reactor was measured as the decrease of TCE concentration over time and the corresponding evolution of chloride; notably, this occurred without the formation of commonly encountered chlorinated intermediates. The reaction was initiated when Ti/MMO cathode potentials were less than -0.8 V vs. the standard hydrogen electrode, and the rate of TCE degradation increased linearly with progressively more negative potentials. The maximum pseudo-first-order heterogeneous rate constant was approximately 0.05 cm min(-1), which is comparable to more commonly used cathode materials such as nickel. In laboratory-scale flow-though column reactors designed to simulate permeable reactive barriers (PRBs), TCE concentrations were reduced by 80-90%. The extent of TCE flux reduction increased with the applied potential difference across the electrodes and was largely insensitive to the spacing distance between the electrodes. This is the first report of the electrochemical reduction of a chlorinated organic contaminant at a Ti/MMO cathode, and these results support the use of this material in PRBs as a possible approach to manage TCE plume migration.

  19. Fluoxetine and Norfluoxetine Revisited: New Insights into the Electrochemical and Spectroscopic Properties

    NASA Astrophysics Data System (ADS)

    Garrido, E. Manuela; Garrido, Jorge; Calheiros, Rita; Marques, M. Paula M.; Borges, Fernanda

    2009-08-01

    The extent to which humans and wildlife are exposed to the vast array of anthropogenic chemicals and their degradation products, along with related naturally occurring compounds, is nowadays an important issue. The study of the physical-chemical properties of the compounds and/or degradation products is an important subject because some of them are intrinsically related to its resistance to degradation and/or bioaccumulation. Accordingly, the study of the electrochemical behavior of the selective serotonin reuptake inhibitor fluoxetine and its main metabolite norfluoxetine was investigated. The identification of the oxidation processes was done via two fluoxetine analogues, 1-(benzyloxy)-4-(trifluoromethyl)benzene and N-methyl-3-phenylpropan-1-amine hydrochloride. The oxidative processes occurring in fluoxetine are pH-dependent and were ascribed to the chemical moieties present in the molecule: the secondary amine group and the substituted aromatic nucleus. To perform an unequivocal ascription, the structural preferences of the drug and metabolite were also determined, by Raman spectroscopy coupled to quantum mechanical calculations (at the DFT level). The analytical data obtained in this work will allow the development of a rapid and unequivocal spectroscopic procedure suitable for fluoxetine identification, as well as to distinguish between the drug and its main metabolite.

  20. Electrochemical Analysis of Neurotransmitters

    PubMed Central

    Bucher, Elizabeth S.; Wightman, R. Mark

    2016-01-01

    Chemical signaling through the release of neurotransmitters into the extracellular space is the primary means of communication between neurons. More than four decades ago, Ralph Adams and his colleagues realized the utility of electrochemical methods for the study of easily oxidizable neurotransmitters, such as dopamine, norepinephrine, and serotonin and their metabolites. Today, electrochemical techniques are frequently coupled to microelectrodes to enable spatially resolved recordings of rapid neurotransmitter dynamics in a variety of biological preparations spanning from single cells to the intact brain of behaving animals. In this review, we provide a basic overview of the principles underlying constant-potential amperometry and fast-scan cyclic voltammetry, the most commonly employed electrochemical techniques, and the general application of these methods to the study of neurotransmission. We thereafter discuss several recent developments in sensor design and experimental methodology that are challenging the current limitations defining the application of electrochemical methods to neurotransmitter measurements. PMID:25939038

  1. Synthesis and characterization of zinc-molybdenum oxide photocatalysts using an electrochemical-thermal process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goveas, J. J., E-mail: jenicegoveas@gmail.com; Gonsalves, R. A.; Rao, P.

    2016-05-23

    Dyes act as major pollutants in water and can be degraded by photocatalysis. This paper establishes the role of electrochemically generated nanostructures of Zinc-Molybdenum oxides (ZMO) as photocatalysts by degrading EBT (Eriochrome Black- T) taken as a model pollutant under UV light. A facile, rapid and low cost process to synthesize these nanostructures (ZMO) is presented. Various factors that affect the synthesis and photocatalytic activity of these nanostructures are discussed. The role of calcination temperature and pulverization on the photocatalytic action has also been established. Particles have been synthesized in pure form as well as using surfactants such as cetrimidemore » (cetyl trimethyl ammonium bromide), polyethylene glycol (PEG) and SDS (sodium dodecyl sulphate) to enhance their photocatalytic action. This paper also discusses the characterization of these nanoparticles by powder XRD, SEM, FT-IR and UV-Visible spectroscopy. Decolourisation was achieved to completion under optimum experimental conditions at room temperature ascertaining the application of these nanostructures as effective photocatalysts.« less

  2. Electrochemical oxidation of tetracycline antibiotics using a Ti/IrO2 anode for wastewater treatment of animal husbandry.

    PubMed

    Miyata, M; Ihara, I; Yoshid, G; Toyod, K; Umetsu, K

    2011-01-01

    In animal husbandry, antibiotics are widely used to treat and prevent diseases or to promote growth. The use of antibiotics for domestic animals enables to promote safety of livestock products and enhance productivity. Tetracycline antibiotics (TCs) are one of the primarily used groups of antibiotics for cattle and swine. However, the unintentional spreading of antibiotics from animal waste to the environment may leave out drug residues, promoting resistant strains of bacteria, and will adversely affect the ecosystem and human health. To prevent the spread of veterinary antibiotics in the environment, it is required to treat residual antibiotics in livestock wastewater. In this study, we investigated the electrochemical oxidation of TCs to treat livestock wastewater. The concentrations of TCs in aqueous solutions were reduced from 100 mg/L to less than 0.6 mg/L by 6 h of electrochemical treatment using a Ti/IrO2 anode with Na2SO4 electrolyte. The concentration of oxytetracycline (OTC) in livestock wastewater was also reduced from 100 mg/L to less than 0.7 mg/L by the same treatment. Thus, the electrochemical oxidation using a Ti/IrO2 anode with Na2SO4 electrolyte was found to be effective for degradation of TCs. The results suggest that the electrochemical oxidation method is a promising treatment for TCs in livestock wastewater.

  3. 3D Microstructure Effects in Ni-YSZ Anodes: Influence of TPB Lengths on the Electrochemical Performance.

    PubMed

    Pecho, Omar M; Mai, Andreas; Münch, Beat; Hocker, Thomas; Flatt, Robert J; Holzer, Lorenz

    2015-10-21

    3D microstructure-performance relationships in Ni-YSZ anodes for electrolyte-supported cells are investigated in terms of the correlation between the triple phase boundary (TPB) length and polarization resistance ( R pol ). Three different Ni-YSZ anodes of varying microstructure are subjected to eight reduction-oxidation (redox) cycles at 950 °C. In general the TPB lengths correlate with anode performance . However, the quantitative results also show that there is no simplistic relationship between TPB and R pol . The degradation mechanism strongly depends on the initial microstructure. Finer microstructures exhibit lower degradation rates of TPB and R pol . In fine microstructures, TPB loss is found to be due to Ni coarsening, while in coarse microstructures reduction of active TPB results mainly from loss of YSZ percolation. The latter is attributed to weak bottlenecks associated with lower sintering activity of the coarse YSZ. The coarse anode suffers from complete loss of YSZ connectivity and associated drop of TPB active by 93%. Surprisingly, this severe microstructure degradation did not lead to electrochemical failure. Mechanistic scenarios are discussed for different anode microstructures. These scenarios are based on a model for coupled charge transfer and transport, which allows using TPB and effective properties as input. The mechanistic scenarios describe the microstructure influence on current distributions, which explains the observed complex relationship between TPB lengths and anode performances. The observed loss of YSZ percolation in the coarse anode is not detrimental because the electrochemical activity is concentrated in a narrow active layer. The anode performance can be predicted reliably if the volume-averaged properties (TPB active , effective ionic conductivity) are corrected for the so-called short-range effect, which is particularly important in cases with a narrow active layer.

  4. 3D Microstructure Effects in Ni-YSZ Anodes: Influence of TPB Lengths on the Electrochemical Performance

    PubMed Central

    Pecho, Omar M.; Mai, Andreas; Münch, Beat; Hocker, Thomas; Flatt, Robert J.; Holzer, Lorenz

    2015-01-01

    3D microstructure-performance relationships in Ni-YSZ anodes for electrolyte-supported cells are investigated in terms of the correlation between the triple phase boundary (TPB) length and polarization resistance (Rpol). Three different Ni-YSZ anodes of varying microstructure are subjected to eight reduction-oxidation (redox) cycles at 950 °C. In general the TPB lengths correlate with anode performance. However, the quantitative results also show that there is no simplistic relationship between TPB and Rpol. The degradation mechanism strongly depends on the initial microstructure. Finer microstructures exhibit lower degradation rates of TPB and Rpol. In fine microstructures, TPB loss is found to be due to Ni coarsening, while in coarse microstructures reduction of active TPB results mainly from loss of YSZ percolation. The latter is attributed to weak bottlenecks associated with lower sintering activity of the coarse YSZ. The coarse anode suffers from complete loss of YSZ connectivity and associated drop of TPBactive by 93%. Surprisingly, this severe microstructure degradation did not lead to electrochemical failure. Mechanistic scenarios are discussed for different anode microstructures. These scenarios are based on a model for coupled charge transfer and transport, which allows using TPB and effective properties as input. The mechanistic scenarios describe the microstructure influence on current distributions, which explains the observed complex relationship between TPB lengths and anode performances. The observed loss of YSZ percolation in the coarse anode is not detrimental because the electrochemical activity is concentrated in a narrow active layer. The anode performance can be predicted reliably if the volume-averaged properties (TPBactive, effective ionic conductivity) are corrected for the so-called short-range effect, which is particularly important in cases with a narrow active layer. PMID:28793624

  5. Electrochemical imaging of cells and tissues

    PubMed Central

    Lin, Tzu-En; Rapino, Stefania; Girault, Hubert H.

    2018-01-01

    The technological and experimental progress in electrochemical imaging of biological specimens is discussed with a view on potential applications for skin cancer diagnostics, reproductive medicine and microbial testing. The electrochemical analysis of single cell activity inside cell cultures, 3D cellular aggregates and microtissues is based on the selective detection of electroactive species involved in biological functions. Electrochemical imaging strategies, based on nano/micrometric probes scanning over the sample and sensor array chips, respectively, can be made sensitive and selective without being affected by optical interference as many other microscopy techniques. The recent developments in microfabrication, electronics and cell culturing/tissue engineering have evolved in affordable and fast-sampling electrochemical imaging platforms. We believe that the topics discussed herein demonstrate the applicability of electrochemical imaging devices in many areas related to cellular functions. PMID:29899947

  6. Degradation of Zr-based bulk metallic glasses used in load-bearing implants: A tribocorrosion appraisal.

    PubMed

    Zhao, Guo-Hua; Aune, Ragnhild E; Mao, Huahai; Espallargas, Nuria

    2016-07-01

    Owing to the amorphous structure, Bulk Metallic Glasses (BMGs) have been demonstrating attractive properties for potential biomedical applications. In the present work, the degradation mechanisms of Zr-based BMGs with nominal compositions Zr55Cu30Ni5Al10 and Zr65Cu18Ni7Al10 as potential load-bearing implant material were investigated in a tribocorrosion environment. The composition-dependent micro-mechanical and tribological properties of the two BMGs were evaluated prior to the tribocorrosion tests. The sample Zr65-BMG with a higher Zr content exhibited increased plasticity but relatively reduced wear resistance during the ball-on-disc tests. Both BMGs experienced abrasive wear after the dry wear test under the load of 2N. The cross-sectional subsurface structure of the wear track was examined by Focused Ion Beam (FIB). The electrochemical properties of the BMGs in simulated body fluid were evaluated by means of potentiodynamic polarization and X-ray Photoelectron Spectroscopy (XPS). The spontaneous passivation of Zr-based BMGs in Phosphate Buffer Saline solution was mainly attributed to the highly concentrated zirconium cation (Zr(4+)) in the passive film. The tribocorrosion performance of the BMGs was investigated using a reciprocating tribometer equipped with an electrochemical cell. The more passive nature of the Zr65-BMG had consequently a negative influence on its tribocorrosion resistance, which induced the wear-accelerated corrosion and eventually speeded-up the degradation process. It has been revealed the galvanic coupling was established between the depassivated wear track and the surrounding passive area, which is the main degradation mechanism for the passive Zr65-BMG subjected to the tribocorrosion environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. The Sodium Exposure Test Cell to determine operating parameters for AMTEC electrochemical cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, M.A.; Williams, R.M.; Lara, L.

    1998-07-01

    The Sodium Exposure Test Cell (SETC) is a non-power producing cell which has been developed to evaluate and test components of the electrochemical cell in an Alkali Metal Thermal to Electric Converter. Performance and time dependence of performance of the electrode and the electrolyte in AMTEC cells can be tested in an SETC, and performance parameters which correlate with those taken from AMTEC operation can be calculated from data taken in an SETC. The components of the AMTEC electrochemical cell which are evaluated in an SETC are the electrode, {beta}{double{underscore}prime}-alumina solid electrolyte (BASE), the current collection network, and the containment.more » The components are held in low pressure sodium vapor at a temperature which reflects their operating conditions in an AMTEC device, and operating parameters determined. Electrodes and BASE are evaluated by measuring current-voltage (IV) characteristics and using Electrochemical Impedance Spectroscopy (EIS). Using these techniques, electrode performance parameters such as the exchange current (B), the morphology factor (G), and contact resistance between electrode and current collection network can be determined. The ionic conductivity (s) of BASE can also be determined. IV curves and EIS measurements are made at intervals over periods of several hundreds of hours in order to evaluate degradation of AMTEC electrochemical cell components. Electrode and BASE are analyzed after an SETC experiment using Scanning Electron Microscopy, Electron Dispersive Spectroscopy, and X-Ray Diffraction. These techniques allow evaluation of interaction of materials and changes in the composition and structure of materials. The purpose of these experiments is determination of the changes of operating parameters as a function of time in order to predict the operating lifetime of AMTEC cells.« less

  8. High damage tolerance of electrochemically lithiated silicon

    PubMed Central

    Wang, Xueju; Fan, Feifei; Wang, Jiangwei; Wang, Haoran; Tao, Siyu; Yang, Avery; Liu, Yang; Beng Chew, Huck; Mao, Scott X.; Zhu, Ting; Xia, Shuman

    2015-01-01

    Mechanical degradation and resultant capacity fade in high-capacity electrode materials critically hinder their use in high-performance rechargeable batteries. Despite tremendous efforts devoted to the study of the electro–chemo–mechanical behaviours of high-capacity electrode materials, their fracture properties and mechanisms remain largely unknown. Here we report a nanomechanical study on the damage tolerance of electrochemically lithiated silicon. Our in situ transmission electron microscopy experiments reveal a striking contrast of brittle fracture in pristine silicon versus ductile tensile deformation in fully lithiated silicon. Quantitative fracture toughness measurements by nanoindentation show a rapid brittle-to-ductile transition of fracture as the lithium-to-silicon molar ratio is increased to above 1.5. Molecular dynamics simulations elucidate the mechanistic underpinnings of the brittle-to-ductile transition governed by atomic bonding and lithiation-induced toughening. Our results reveal the high damage tolerance in amorphous lithium-rich silicon alloys and have important implications for the development of durable rechargeable batteries. PMID:26400671

  9. High damage tolerance of electrochemically lithiated silicon

    NASA Astrophysics Data System (ADS)

    Wang, Xueju; Fan, Feifei; Wang, Jiangwei; Wang, Haoran; Tao, Siyu; Yang, Avery; Liu, Yang; Beng Chew, Huck; Mao, Scott X.; Zhu, Ting; Xia, Shuman

    2015-09-01

    Mechanical degradation and resultant capacity fade in high-capacity electrode materials critically hinder their use in high-performance rechargeable batteries. Despite tremendous efforts devoted to the study of the electro-chemo-mechanical behaviours of high-capacity electrode materials, their fracture properties and mechanisms remain largely unknown. Here we report a nanomechanical study on the damage tolerance of electrochemically lithiated silicon. Our in situ transmission electron microscopy experiments reveal a striking contrast of brittle fracture in pristine silicon versus ductile tensile deformation in fully lithiated silicon. Quantitative fracture toughness measurements by nanoindentation show a rapid brittle-to-ductile transition of fracture as the lithium-to-silicon molar ratio is increased to above 1.5. Molecular dynamics simulations elucidate the mechanistic underpinnings of the brittle-to-ductile transition governed by atomic bonding and lithiation-induced toughening. Our results reveal the high damage tolerance in amorphous lithium-rich silicon alloys and have important implications for the development of durable rechargeable batteries.

  10. High damage tolerance of electrochemically lithiated silicon

    DOE PAGES

    Wang, Xueju; Fan, Feifei; Wang, Jiangwei; ...

    2015-09-24

    Mechanical degradation and resultant capacity fade in high-capacity electrode materials critically hinder their use in high-performance rechargeable batteries. Despite tremendous efforts devoted to the study of the electro–chemo–mechanical behaviours of high-capacity electrode materials, their fracture properties and mechanisms remain largely unknown. In this paper, we report a nanomechanical study on the damage tolerance of electrochemically lithiated silicon. Our in situ transmission electron microscopy experiments reveal a striking contrast of brittle fracture in pristine silicon versus ductile tensile deformation in fully lithiated silicon. Quantitative fracture toughness measurements by nanoindentation show a rapid brittle-to-ductile transition of fracture as the lithium-to-silicon molar ratiomore » is increased to above 1.5. Molecular dynamics simulations elucidate the mechanistic underpinnings of the brittle-to-ductile transition governed by atomic bonding and lithiation-induced toughening. Finally, our results reveal the high damage tolerance in amorphous lithium-rich silicon alloys and have important implications for the development of durable rechargeable batteries.« less

  11. Synthesis and electrochemical performance of polyaniline @MnO2/graphene ternary composites for electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Pan, Chao; Gu, Haiteng; Dong, Li

    2016-01-01

    We introduce a facile method to construct new ternary hierarchical nanocomposites by combining MnO2 coated one dimensional (1D) conducting polyaniline (PANI) nanowires with 2D graphene sheets (GNs). The hierarchical nanocomposite structures of PANI@MnO2/GNs (PMGNs) are further proved by X-ray diffraction (XRD), FT-IR, field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). The electrochemical characteristics of the electrodes made of the hierarchical structured PMGNs materials are determined by the CV and galvanostatic measurements. These electrochemical tests indicate that electrodes made of the nanostructured PMGNs exhibit an improved reversible capacitance of 695 F g-1 after 1000 cycles at a high current density of 4 A g-1. The ternary composites possess higher electrochemical capacitance than each individual component as supercapacitor electrode materials. Such intriguing electrochemical performance is mainly attributed to the synergistic effects of MnO2, PANI and graphene. The hierarchical ternary nanocomposites show excellent electrochemical properties for energy storage applications, which evidence their potential application as supercapacitors.

  12. Kinetic mechanism for modeling of electrochemical reactions.

    PubMed

    Cervenka, Petr; Hrdlička, Jiří; Přibyl, Michal; Snita, Dalimil

    2012-04-01

    We propose a kinetic mechanism of electrochemical interactions. We assume fast formation and recombination of electron donors D- and acceptors A+ on electrode surfaces. These mediators are continuously formed in the electrode matter by thermal fluctuations. The mediators D- and A+, chemically equivalent to the electrode metal, enter electrochemical interactions on the electrode surfaces. Electrochemical dynamics and current-voltage characteristics of a selected electrochemical system are studied. Our results are in good qualitative agreement with those given by the classical Butler-Volmer kinetics. The proposed model can be used to study fast electrochemical processes in microsystems and nanosystems that are often out of the thermal equilibrium. Moreover, the kinetic mechanism operates only with the surface concentrations of chemical reactants and local electric potentials, which facilitates the study of electrochemical systems with indefinable bulk.

  13. Enhanced Electrochemical Activity and Chromium Tolerance of the Nucleation-Agent-Free La2Ni0.9Fe0.1O4+δ Cathode by Gd0.1Ce0.9O1.95 Incorporation

    NASA Astrophysics Data System (ADS)

    Ling, Yihan; Xie, Huixin; Liu, Zijing; Du, Xiaoni; Chen, Hui; Ou, Xuemei; Zhao, Ling; Budiman, Riyan Achmad

    2018-07-01

    For the sake of improving the electrochemical activity and chromium tolerance of the K2NiF4-type oxide, La2NiO4+δ (LNO), with nonnucleation agents like Mn and Sr elements, the electrochemical performance and degradation were comparatively studied at two cathodes La2Ni0.9Fe0.1O4+δ (LNF) and LNF-40wt%Gd0.1Ce0.9O1.95 (LNF-GDC) on the GDC electrolyte, where 5wt%Cr2O3 incorporation provides Cr-containing atmosphere. Compared with non-doped LNO, LNF shows a higher interstitial oxygen concentration (δ = 0.298) and a lower electrical conductivity, where bivalent Ni ion, {Ni}_{Ni}^{ × }, and trivalent Ni ion, {Ni}_{Ni}^{ \\cdot }, and trivalent Fe ion on Ni-site, {Fe}_{Ni}^{ \\cdot }, were observed from the XPS measurements. LNF-GDC shows greatly reduced interfacial polarization resistances (Rp), which are only half of those of LNF, indicating a better electrochemical performance. More importantly, no significant degradation of LNF-GDC in performance has been observed under exposure of Cr-containing atmosphere at 700 °C for 350 h, while Rp of LNF increased by nearly 20%, suggesting LNF by GDC incorporation can enhance the electrochemical performance as well as chromium tolerance for intermediate temperature solid oxide fuel cells (IT-SOFCs).

  14. Enhanced Electrochemical Activity and Chromium Tolerance of the Nucleation-Agent-Free La2Ni0.9Fe0.1O4+δ Cathode by Gd0.1Ce0.9O1.95 Incorporation

    NASA Astrophysics Data System (ADS)

    Ling, Yihan; Xie, Huixin; Liu, Zijing; Du, Xiaoni; Chen, Hui; Ou, Xuemei; Zhao, Ling; Budiman, Riyan Achmad

    2018-03-01

    For the sake of improving the electrochemical activity and chromium tolerance of the K2NiF4-type oxide, La2NiO4+δ (LNO), with nonnucleation agents like Mn and Sr elements, the electrochemical performance and degradation were comparatively studied at two cathodes La2Ni0.9Fe0.1O4+δ (LNF) and LNF-40wt%Gd0.1Ce0.9O1.95 (LNF-GDC) on the GDC electrolyte, where 5wt%Cr2O3 incorporation provides Cr-containing atmosphere. Compared with non-doped LNO, LNF shows a higher interstitial oxygen concentration (δ = 0.298) and a lower electrical conductivity, where bivalent Ni ion, {Ni}_{Ni}^{ × } , and trivalent Ni ion, {Ni}_{Ni}^{ \\cdot } , and trivalent Fe ion on Ni-site, {Fe}_{Ni}^{ \\cdot } , were observed from the XPS measurements. LNF-GDC shows greatly reduced interfacial polarization resistances (Rp), which are only half of those of LNF, indicating a better electrochemical performance. More importantly, no significant degradation of LNF-GDC in performance has been observed under exposure of Cr-containing atmosphere at 700 °C for 350 h, while Rp of LNF increased by nearly 20%, suggesting LNF by GDC incorporation can enhance the electrochemical performance as well as chromium tolerance for intermediate temperature solid oxide fuel cells (IT-SOFCs).

  15. CMOS Electrochemical Instrumentation for Biosensor Microsystems: A Review.

    PubMed

    Li, Haitao; Liu, Xiaowen; Li, Lin; Mu, Xiaoyi; Genov, Roman; Mason, Andrew J

    2016-12-31

    Modern biosensors play a critical role in healthcare and have a quickly growing commercial market. Compared to traditional optical-based sensing, electrochemical biosensors are attractive due to superior performance in response time, cost, complexity and potential for miniaturization. To address the shortcomings of traditional benchtop electrochemical instruments, in recent years, many complementary metal oxide semiconductor (CMOS) instrumentation circuits have been reported for electrochemical biosensors. This paper provides a review and analysis of CMOS electrochemical instrumentation circuits. First, important concepts in electrochemical sensing are presented from an instrumentation point of view. Then, electrochemical instrumentation circuits are organized into functional classes, and reported CMOS circuits are reviewed and analyzed to illuminate design options and performance tradeoffs. Finally, recent trends and challenges toward on-CMOS sensor integration that could enable highly miniaturized electrochemical biosensor microsystems are discussed. The information in the paper can guide next generation electrochemical sensor design.

  16. CMOS Electrochemical Instrumentation for Biosensor Microsystems: A Review

    PubMed Central

    Li, Haitao; Liu, Xiaowen; Li, Lin; Mu, Xiaoyi; Genov, Roman; Mason, Andrew J.

    2016-01-01

    Modern biosensors play a critical role in healthcare and have a quickly growing commercial market. Compared to traditional optical-based sensing, electrochemical biosensors are attractive due to superior performance in response time, cost, complexity and potential for miniaturization. To address the shortcomings of traditional benchtop electrochemical instruments, in recent years, many complementary metal oxide semiconductor (CMOS) instrumentation circuits have been reported for electrochemical biosensors. This paper provides a review and analysis of CMOS electrochemical instrumentation circuits. First, important concepts in electrochemical sensing are presented from an instrumentation point of view. Then, electrochemical instrumentation circuits are organized into functional classes, and reported CMOS circuits are reviewed and analyzed to illuminate design options and performance tradeoffs. Finally, recent trends and challenges toward on-CMOS sensor integration that could enable highly miniaturized electrochemical biosensor microsystems are discussed. The information in the paper can guide next generation electrochemical sensor design. PMID:28042860

  17. Evaluation of an integrated continuous stirred microbial electrochemical reactor: Wastewater treatment, energy recovery and microbial community.

    PubMed

    Wang, Haiman; Qu, Youpeng; Li, Da; Zhou, Xiangtong; Feng, Yujie

    2015-11-01

    A continuous stirred microbial electrochemical reactor (CSMER) was developed by integrating anaerobic digestion (AD) and microbial electrochemical system (MES). The system was capable of treating high strength artificial wastewater and simultaneously recovering electric and methane energy. Maximum power density of 583±9, 562±7, 533±10 and 572±6 mW m(-2) were obtained by each cell in a four-independent circuit mode operation at an OLR of 12 kg COD m(-3) d(-1). COD removal and energy recovery efficiency were 87.1% and 32.1%, which were 1.6 and 2.5 times higher than that of a continuous stirred tank reactor (CSTR). Larger amount of Deltaproteobacteria (5.3%) and hydrogenotrophic methanogens (47%) can account for the better performance of CSMER, since syntrophic associations among them provided more degradation pathways compared to the CSTR. Results demonstrate the CSMER holds great promise for efficient wastewater treatment and energy recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Electrode for electrochemical cell

    DOEpatents

    Kaun, T.D.; Nelson, P.A.; Miller, W.E.

    1980-05-09

    An electrode structure for a secondary electrochemical cell includes an outer enclosure defining a compartment containing electrochemical active material. The enclosure includes a rigid electrically conductive metal sheet with perforated openings over major side surfaces. The enclosure can be assembled as first and second trays each with a rigid sheet of perforated electrically conductive metal at major side surfaces and normally extending flanges at parametric margins. The trays can be pressed together with moldable active material between the two to form an expandable electrode. A plurality of positive and negative electrodes thus formed are arranged in an alternating array with porous frangible interelectrode separators within the housing of the secondary electrochemical cell.

  19. Electrode for electrochemical cell

    DOEpatents

    Kaun, Thomas D.; Nelson, Paul A.; Miller, William E.

    1981-01-01

    An electrode structure for a secondary electrochemical cell includes an outer enclosure defining a compartment containing electrochemical active material. The enclosure includes a rigid electrically conductive metal sheet with perforated openings over major side surfaces. The enclosure can be assembled as first and second trays each with a rigid sheet of perforated electrically conductive metal at major side surfaces and normally extending flanges at parametric margins. The trays can be pressed together with moldable active material between the two to form an expandable electrode. A plurality of positive and negative electrodes thus formed are arranged in an alternating array with porous frangible interelectrode separators within the housing of the secondary electrochemical cell.

  20. Electroporation followed by electrochemical measurement of quantal transmitter release from single cells using a patterned microelectrode.

    PubMed

    Ghosh, Jaya; Liu, Xin; Gillis, Kevin D

    2013-06-07

    An electrochemical microelectrode located immediately adjacent to a single neuroendocrine cell can record spikes of amperometric current that result from exocytosis of oxidizable transmitter from individual vesicles, i.e., quantal exocytosis. Here, we report the development of an efficient method where the same electrochemical microelectrode is used to electropermeabilize an adjacent chromaffin cell and then measure the consequent quantal catecholamine release using amperometry. Trains of voltage pulses, 5-7 V in amplitude and 0.1-0.2 ms in duration, were used to reliably trigger release from cells using gold electrodes. Amperometric spikes induced by electropermeabilization had similar areas, peak heights and durations as amperometric spikes elicited by depolarizing high K(+) solutions, therefore release occurs from individual secretory granules. Uptake of trypan blue stain into cells demonstrated that the plasma membrane is permeabilized by the voltage stimulus. Voltage pulses did not degrade the electrochemical sensitivity of the electrodes assayed using a test analyte. Surprisingly, robust quantal release was elicited upon electroporation in the absence of Ca(2+) in the bath solution (0 Ca(2+)/5 mM EGTA). In contrast, electropermeabilization-induced transmitter release required Cl(-) in the bath solution in that bracketed experiments demonstrated a steep dependence of the rate of electropermeabilization-induced transmitter release on [Cl(-)] between 2 and 32 mM. Using the same electrochemical electrode to electroporate and record quantal release of catecholamines from an individual chromaffin cell allows precise timing of the stimulus, stimulation of a single cell at a time, and can be used to load membrane-impermeant substances into a cell.

  1. Electrochemical biofilm control: a review.

    PubMed

    Sultana, Sujala T; Babauta, Jerome T; Beyenal, Haluk

    2015-01-01

    One of the methods of controlling biofilms that has widely been discussed in the literature is to apply a potential or electrical current to a metal surface on which the biofilm is growing. Although electrochemical biofilm control has been studied for decades, the literature is often conflicting, as is detailed in this review. The goals of this review are: (1) to present the current status of knowledge regarding electrochemical biofilm control; (2) to establish a basis for a fundamental definition of electrochemical biofilm control and requirements for studying it; (3) to discuss current proposed mechanisms; and (4) to introduce future directions in the field. It is expected that the review will provide researchers with guidelines on comparing datasets across the literature and generating comparable datasets. The authors believe that, with the correct design, electrochemical biofilm control has great potential for industrial use.

  2. Bussing Structure In An Electrochemical Cell

    DOEpatents

    Romero, Antonio L.

    2001-06-12

    A bussing structure for bussing current within an electrochemical cell. The bussing structure includes a first plate and a second plate, each having a central aperture therein. Current collection tabs, extending from an electrode stack in the electrochemical cell, extend through the central aperture in the first plate, and are then sandwiched between the first plate and second plate. The second plate is then connected to a terminal on the outside of the case of the electrochemical cell. Each of the first and second plates includes a second aperture which is positioned beneath a safety vent in the case of the electrochemical cell to promote turbulent flow of gasses through the vent upon its opening. The second plate also includes protrusions for spacing the bussing structure from the case, as well as plateaus for connecting the bussing structure to the terminal on the case of the electrochemical cell.

  3. Electrochemical components employing polysiloxane-derived binders

    DOEpatents

    Delnick, Frank M.

    2013-06-11

    A processed polysiloxane resin binder for use in electrochemical components and the method for fabricating components with the binder. The binder comprises processed polysiloxane resin that is partially oxidized and retains some of its methyl groups following partial oxidation. The binder is suitable for use in electrodes of various types, separators in electrochemical devices, primary lithium batteries, electrolytic capacitors, electrochemical capacitors, fuel cells and sensors.

  4. Electrochemical ion separation in molten salts

    DOEpatents

    Spoerke, Erik David; Ihlefeld, Jon; Waldrip, Karen; Wheeler, Jill S.; Brown-Shaklee, Harlan James; Small, Leo J.; Wheeler, David R.

    2017-12-19

    A purification method that uses ion-selective ceramics to electrochemically filter waste products from a molten salt. The electrochemical method uses ion-conducting ceramics that are selective for the molten salt cations desired in the final purified melt, and selective against any contaminant ions. The method can be integrated into a slightly modified version of the electrochemical framework currently used in pyroprocessing of nuclear wastes.

  5. Electrochemical cell

    DOEpatents

    Nagy, Z.; Yonco, R.M.; You, H.; Melendres, C.A.

    1992-08-25

    An electrochemical cell has a layer-type or sandwich configuration with a Teflon center section that houses working, reference and counter electrodes and defines a relatively narrow electrolyte cavity. The center section is surrounded on both sides with thin Teflon membranes. The membranes are pressed in place by a pair of Teflon inner frames which are in turn supported by a pair of outer metal frames. The pair of inner and outer frames are provided with corresponding, appropriately shaped slits that are in plane generally transverse to the plane of the working electrode and permit X-ray beams to enter and exit the cell through the Teflon membranes that cover the slits so that the interface between the working electrode and the electrolyte within the cell may be analyzed by transmission geometry. In one embodiment, the center section consists of two parts, one on top of the other. Alternatively, the center section of the electrochemical cell may consist of two intersliding pieces or may be made of a single piece of Teflon sheet material. The electrolyte cavity is shaped so that the electrochemical cell can be rotated 90[degree] in either direction while maintaining the working and counter electrodes submerged in the electrolyte. 5 figs.

  6. Electrochemical cell

    DOEpatents

    Nagy, Zoltan; Yonco, Robert M.; You, Hoydoo; Melendres, Carlos A.

    1992-01-01

    An electrochemical cell has a layer-type or sandwich configuration with a Teflon center section that houses working, reference and counter electrodes and defines a relatively narrow electrolyte cavity. The center section is surrounded on both sides with thin Teflon membranes. The membranes are pressed in place by a pair of Teflon inner frames which are in turn supported by a pair of outer metal frames. The pair of inner and outer frames are provided with corresponding, appropriately shaped slits that are in plane generally transverse to the plane of the working electrode and permit X-ray beams to enter and exit the cell through the Teflon membranes that cover the slits so that the interface between the working electrode and the electrolyte within the cell may be analyzed by transmission geometry. In one embodiment, the center section consists of two parts, one on top of the other. Alternatively, the center section of the electrochemical cell may consist of two intersliding pieces or may be made of a single piece of Teflon sheet material. The electrolyte cavity is shaped so that the electrochemical cell can be rotated 90.degree. in either direction while maintaining the working and counter electrodes submerged in the electrolyte.

  7. A Corona Discharge Initiated Electrochemical Electrospray Ionization Technique

    PubMed Central

    Lloyd, John R.; Hess, Sonja

    2009-01-01

    We report here the development of a corona discharge (CD) initiated electrochemical (EC) electrospray ionization (ESI) technique using a standard electrospray ion source. This is a new ionization technique distinct from ESI, electrochemistry inherent to ESI, APCI, and techniques using hydroxyl radicals produced under atmospheric pressure conditions. By maximizing the observable CD at the tip of a stainless steel ESI capillary, efficient electrochemical oxidation of electrochemically active compounds is observed. For electrochemical oxidation to be observed, the ionization potential of the analyte must be lower than Fe. Ferrocene labeled compounds were chosen as the electrochemically active moiety. The electrochemical cell in the ESI source was robust and generated ions with selectivity according to the ionization potential of the analytes and up to zeptomolar sensitivity. Our results indicate that CD initiated electrochemical ionization has the potential to become a powerful technique to increase the dynamic range, sensitivity and selectivity of ESI experiments. Synopsis Using a standard ESI source a corona discharge initiated electrochemical ionization technique was established resulting from the electrochemistry occurring at the CD electrode surface. PMID:19747843

  8. Improving optimal control of grid-connected lithium-ion batteries through more accurate battery and degradation modelling

    NASA Astrophysics Data System (ADS)

    Reniers, Jorn M.; Mulder, Grietus; Ober-Blöbaum, Sina; Howey, David A.

    2018-03-01

    The increased deployment of intermittent renewable energy generators opens up opportunities for grid-connected energy storage. Batteries offer significant flexibility but are relatively expensive at present. Battery lifetime is a key factor in the business case, and it depends on usage, but most techno-economic analyses do not account for this. For the first time, this paper quantifies the annual benefits of grid-connected batteries including realistic physical dynamics and nonlinear electrochemical degradation. Three lithium-ion battery models of increasing realism are formulated, and the predicted degradation of each is compared with a large-scale experimental degradation data set (Mat4Bat). A respective improvement in RMS capacity prediction error from 11% to 5% is found by increasing the model accuracy. The three models are then used within an optimal control algorithm to perform price arbitrage over one year, including degradation. Results show that the revenue can be increased substantially while degradation can be reduced by using more realistic models. The estimated best case profit using a sophisticated model is a 175% improvement compared with the simplest model. This illustrates that using a simplistic battery model in a techno-economic assessment of grid-connected batteries might substantially underestimate the business case and lead to erroneous conclusions.

  9. The Effect of Platinum Electrocatalyst on Membrane Degradation in Polymer Electrolyte Fuel Cells.

    PubMed

    Bodner, Merit; Cermenek, Bernd; Rami, Mija; Hacker, Viktor

    2015-12-08

    Membrane degradation is a severe factor limiting the lifetime of polymer electrolyte fuel cells. Therefore, obtaining a deeper knowledge is fundamental in order to establish fuel cells as competitive product. A segmented single cell was operated under open circuit voltage with alternating relative humidity. The influence of the catalyst layer on membrane degradation was evaluated by measuring a membrane without electrodes and a membrane-electrode-assembly under identical conditions. After 100 h of accelerated stress testing the proton conductivity of membrane samples near the anode and cathode was investigated by means of ex situ electrochemical impedance spectroscopy. The membrane sample near the cathode inlet exhibited twofold lower membrane resistance and a resulting twofold higher proton conductivity than the membrane sample near the anode inlet. The results from the fluoride ion analysis have shown that the presence of platinum reduces the fluoride emission rate; which supports conclusions drawn from the literature.

  10. Antitumor effects of electrochemical treatment

    PubMed Central

    González, Maraelys Morales; Zamora, Lisset Ortíz; Cabrales, Luis Enrique Bergues; Sierra González, Gustavo Victoriano; de Oliveira, Luciana Oliveira; Zanella, Rodrigo; Buzaid, Antonio Carlos; Parise, Orlando; Brito, Luciana Macedo; Teixeira, Cesar Augusto Antunes; Gomes, Marina das Neves; Moreno, Gleyce; Feo da Veiga, Venicio; Telló, Marcos; Holandino, Carla

    2013-01-01

    Electrochemical treatment is an alternative modality for tumor treatment based on the application of a low intensity direct electric current to the tumor tissue through two or more platinum electrodes placed within the tumor zone or in the surrounding areas. This treatment is noted for its great effectiveness, minimal invasiveness and local effect. Several studies have been conducted worldwide to evaluate the antitumoral effect of this therapy. In all these studies a variety of biochemical and physiological responses of tumors to the applied treatment have been obtained. By this reason, researchers have suggested various mechanisms to explain how direct electric current destroys tumor cells. Although, it is generally accepted this treatment induces electrolysis, electroosmosis and electroporation in tumoral tissues. However, action mechanism of this alternative modality on the tumor tissue is not well understood. Although the principle of Electrochemical treatment is simple, a standardized method is not yet available. The mechanism by which Electrochemical treatment affects tumor growth and survival may represent more complex process. The present work analyzes the latest and most important research done on the electrochemical treatment of tumors. We conclude with our point of view about the destruction mechanism features of this alternative therapy. Also, we suggest some mechanisms and strategies from the thermodynamic point of view for this therapy. In the area of Electrochemical treatment of cancer this tool has been exploited very little and much work remains to be done. Electrochemical treatment constitutes a good therapeutic option for patients that have failed the conventional oncology methods. PMID:23592904

  11. Characterization of Electrochemically Generated Silver

    NASA Technical Reports Server (NTRS)

    Adam, Niklas; Martinez, James; Carrier, Chris

    2014-01-01

    Silver biocide offers a potential advantage over iodine, the current state of the art in US spacecraft disinfection technology, in that silver can be safely consumed by the crew. Low concentrations of silver (<500 ppb) have been shown to kill bacteria in water systems and keep it safe for potability. Silver does not require hardware to remove it from a water system, and therefore can provide a simpler means for disinfecting water. The Russian segment of the International Space Station has utilized an electrochemically generated silver solution, which is colloidal in nature. To be able to reliably provide a silver biocide to drinking water by electrochemical means would reduce mass required for removing another biocide such as iodine from the water. This would also aid in crew time required to replace iodine removal cartridges. Future long term missions would benefit from electrochemically produced silver as the biocide could be produced on demand and requires only a small concentration to be effective. Since it can also be consumed safely, there is less mass in removal hardware and little consumables required for production. The goal of this project initially is to understand the nature of the electrochemically produced silver, the particle sizes produced by the electrochemical cell and the effect that voltage adjustment has on the particle size. In literature, it has been documented that dissolved oxygen and pH have an effect on the ionization of the electrochemical silver so those parameters would be measured and possibly adjusted to understand their effect on the silver.

  12. Enhanced photocatalytic performance of ZnO nanostructures by electrochemical hybridization with graphene oxide

    NASA Astrophysics Data System (ADS)

    Pruna, A.; Wu, Z.; Zapien, J. A.; Li, Y. Y.; Ruotolo, A.

    2018-05-01

    Synthesis of zinc oxide (ZnO) nanostructures is reported by electrochemical deposition from an aqueous electrolyte in presence of graphene oxide (GO) with varying oxidation degree. The properties of hybrids were investigated by scanning electron microscopy, X-ray diffraction, Raman, Fourier-Transform Infrared and X-ray photoelectron spectroscopy techniques and photocatalytic measurements. The results indicated the electrodeposition of ZnO in presence of GO with increased oxygen content led to marked differences in the morphology while Raman measurements indicated an increased defect level both in the ZnO and the electrochemically reduced GO (ErGO) within the hybrids. The decrease in C/O atomic ratio of GO (from 0.79 to 0.71) employed for the electrodeposition of ZnO resulted in an increase in photocatalytic efficiency for methylene blue degradation under UV irradiation from 4-folds to 10-folds with respect to non-hybridized ZnO. The observed synergetic effect of cathodic deposition potential and oxygen content in GO towards improving the photocatalytic activity of immobilized ZnO is expected to contribute to further development of more effective deposition approaches for the preparation of high performance hybrid nanostructures.

  13. Petrophilic, Fe(III) Reducing Exoelectrogen Citrobacter sp. KVM11, Isolated From Hydrocarbon Fed Microbial Electrochemical Remediation Systems

    PubMed Central

    Venkidusamy, Krishnaveni; Hari, Ananda Rao; Megharaj, Mallavarapu

    2018-01-01

    Exoelectrogenic biofilms capable of extracellular electron transfer are important in advanced technologies such as those used in microbial electrochemical remediation systems (MERS) Few bacterial strains have been, nevertheless, obtained from MERS exoelectrogenic biofilms and characterized for bioremediation potential. Here we report the identification of one such bacterial strain, Citrobacter sp. KVM11, a petrophilic, iron reducing bacterial strain isolated from hydrocarbon fed MERS, producing anodic currents in microbial electrochemical systems. Fe(III) reduction of 90.01 ± 0.43% was observed during 5 weeks of incubation with Fe(III) supplemented liquid cultures. Biodegradation screening assays showed that the hydrocarbon degradation had been carried out by metabolically active cells accompanied by growth. The characteristic feature of diazo dye decolorization was used as a simple criterion for evaluating the electrochemical activity in the candidate microbe. The electrochemical activities of the strain KVM11 were characterized in a single chamber fuel cell and three electrode electrochemical cells. The inoculation of strain KVM11 amended with acetate and citrate as the sole carbon and energy sources has resulted in an increase in anodic currents (maximum current density) of 212 ± 3 and 359 ± mA/m2 with respective coulombic efficiencies of 19.5 and 34.9% in a single chamber fuel cells. Cyclic voltammetry studies showed that anaerobically grown cells of strain KVM11 are electrochemically active whereas aerobically grown cells lacked the electrochemical activity. Electrobioremediation potential of the strain KVM11 was investigated in hydrocarbonoclastic and dye detoxification conditions using MERS. About 89.60% of 400 mg l-1 azo dye was removed during the first 24 h of operation and it reached below detection limits by the end of the batch operation (60 h). Current generation and biodegradation capabilities of strain KVM11 were examined using an initial

  14. Petrophilic, Fe(III) Reducing Exoelectrogen Citrobacter sp. KVM11, Isolated From Hydrocarbon Fed Microbial Electrochemical Remediation Systems.

    PubMed

    Venkidusamy, Krishnaveni; Hari, Ananda Rao; Megharaj, Mallavarapu

    2018-01-01

    Exoelectrogenic biofilms capable of extracellular electron transfer are important in advanced technologies such as those used in microbial electrochemical remediation systems (MERS) Few bacterial strains have been, nevertheless, obtained from MERS exoelectrogenic biofilms and characterized for bioremediation potential. Here we report the identification of one such bacterial strain, Citrobacter sp. KVM11, a petrophilic, iron reducing bacterial strain isolated from hydrocarbon fed MERS, producing anodic currents in microbial electrochemical systems. Fe(III) reduction of 90.01 ± 0.43% was observed during 5 weeks of incubation with Fe(III) supplemented liquid cultures. Biodegradation screening assays showed that the hydrocarbon degradation had been carried out by metabolically active cells accompanied by growth. The characteristic feature of diazo dye decolorization was used as a simple criterion for evaluating the electrochemical activity in the candidate microbe. The electrochemical activities of the strain KVM11 were characterized in a single chamber fuel cell and three electrode electrochemical cells. The inoculation of strain KVM11 amended with acetate and citrate as the sole carbon and energy sources has resulted in an increase in anodic currents (maximum current density) of 212 ± 3 and 359 ± mA/m 2 with respective coulombic efficiencies of 19.5 and 34.9% in a single chamber fuel cells. Cyclic voltammetry studies showed that anaerobically grown cells of strain KVM11 are electrochemically active whereas aerobically grown cells lacked the electrochemical activity. Electrobioremediation potential of the strain KVM11 was investigated in hydrocarbonoclastic and dye detoxification conditions using MERS. About 89.60% of 400 mg l -1 azo dye was removed during the first 24 h of operation and it reached below detection limits by the end of the batch operation (60 h). Current generation and biodegradation capabilities of strain KVM11 were examined using an initial

  15. Electrochemical cell stack assembly

    DOEpatents

    Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.

    2010-06-22

    Multiple stacks of tubular electrochemical cells having a dense electrolyte disposed between an anode and a cathode preferably deposited as thin films arranged in parallel on stamped conductive interconnect sheets or ferrules. The stack allows one or more electrochemical cell to malfunction without disabling the entire stack. Stack efficiency is enhanced through simplified gas manifolding, gas recycling, reduced operating temperature and improved heat distribution.

  16. Electrochemical photovoltaic cells and electrodes

    DOEpatents

    Skotheim, Terje A.

    1984-01-01

    Improved electrochemical photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  17. Asymmetric pathways in the electrochemical conversion reaction of NiO as battery electrode with high storage capacity

    PubMed Central

    Boesenberg, Ulrike; Marcus, Matthew A.; Shukla, Alpesh K.; Yi, Tanghong; McDermott, Eamon; Teh, Pei Fen; Srinivasan, Madhavi; Moewes, Alexander; Cabana, Jordi

    2014-01-01

    Electrochemical conversion reactions of transition metal compounds create opportunities for large energy storage capabilities exceeding modern Li-ion batteries. However, for practical electrodes to be envisaged, a detailed understanding of their mechanisms is needed, especially vis-à-vis the voltage hysteresis observed between reduction and oxidation. Here, we present such insight at scales from local atomic arrangements to whole electrodes. NiO was chosen as a simple model system. The most important finding is that the voltage hysteresis has its origin in the differing chemical pathways during reduction and oxidation. This asymmetry is enabled by the presence of small metallic clusters and, thus, is likely to apply to other transition metal oxide systems. The presence of nanoparticles also influences the electrochemical activity of the electrolyte and its degradation products and can create differences in transport properties within an electrode, resulting in localized reactions around converted domains that lead to compositional inhomogeneities at the microscale. PMID:25410966

  18. Asymmetric pathways in the electrochemical conversion reaction of NiO as battery electrode with high storage capacity

    DOE PAGES

    Boesenberg, Ulrike; Marcus, Matthew A.; Shukla, Alpesh K.; ...

    2014-11-20

    Electrochemical conversion reactions of transition metal compounds create opportunities for large energy storage capabilities exceeding modern Li-ion batteries. However, for practical electrodes to be envisaged, a detailed understanding of their mechanisms is needed, especially vis-à-vis the voltage hysteresis observed between reduction and oxidation. Here, we present such insight at scales from local atomic arrangements to whole electrodes. NiO was chosen as a simple model system. The most important finding is that the voltage hysteresis has its origin in the differing chemical pathways during reduction and oxidation. This asymmetry is enabled by the presence of small metallic clusters and, thus, ismore » likely to apply to other transition metal oxide systems. Lastly, the presence of nanoparticles also influences the electrochemical activity of the electrolyte and its degradation products and can create differences in transport properties within an electrode, resulting in localized reactions around converted domains that lead to compositional inhomogeneities at the microscale.« less

  19. Process for electrochemically gasifying coal

    DOEpatents

    Botts, T.E.; Powell, J.R.

    1985-10-25

    A process is claimed for electrochemically gasifying coal by establishing a flowing stream of coal particulate slurry, electrolyte and electrode members through a transverse magnetic field that has sufficient strength to polarize the electrode members, thereby causing them to operate in combination with the electrolyte to electrochemically reduce the coal particulate in the slurry. Such electrochemical reduction of the coal produces hydrogen and carbon dioxide at opposite ends of the polarized electrode members. Gas collection means are operated in conjunction with the process to collect the evolved gases as they rise from the slurry and electrolyte solution. 7 figs.

  20. Single bead-based electrochemical biosensor.

    PubMed

    Liu, Changchun; Schrlau, Michael G; Bau, Haim H

    2009-12-15

    A simple, robust, single bead-based electrochemical biosensor was fabricated and characterized. The sensor's working electrode consists of an electrochemically etched platinum wire, with a nominal diameter of 25 microm, hermetically heat-fusion sealed in a pulled glass capillary (micropipette). The sealing process does not require any epoxy or glue. A commercially available, densely functionalized agarose bead was mounted on the tip of the etched platinum wire. The use of a pre-functionalized bead eliminates the tedious and complicated surface functionalization process that is often the bottleneck in the development of electrochemical biosensors. We report on the use of a biotin agarose bead-based, micropipette, electrochemical (Bio-BMP) biosensor to monitor H(2)O(2) concentration and the use of a streptavidin bead-based, micropipette, electrochemical (SA-BMP) biosensor to detect DNA amplicons. The Bio-BMP biosensor's response increased linearly as the H(2)O(2) concentration increased in the range from 1 x 10(-6) to 1.2 x10(-4)M with a detection limit of 5 x 10(-7)M. The SA-BMP was able to detect the amplicons of 1pg DNA template of B. Cereus bacteria, thus providing better detection sensitivity than conventional gel-based electropherograms.

  1. Microfluidic electrochemical device and process for chemical imaging and electrochemical analysis at the electrode-liquid interface in-situ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Xiao-Ying; Liu, Bingwen; Yang, Li

    2016-03-01

    A microfluidic electrochemical device and process are detailed that provide chemical imaging and electrochemical analysis under vacuum at the surface of the electrode-sample or electrode-liquid interface in-situ. The electrochemical device allows investigation of various surface layers including diffuse layers at selected depths populated with, e.g., adsorbed molecules in which chemical transformation in electrolyte solutions occurs.

  2. Plasmonic Imaging of Electrochemical Reactions of Single Nanoparticles.

    PubMed

    Fang, Yimin; Wang, Hui; Yu, Hui; Liu, Xianwei; Wang, Wei; Chen, Hong-Yuan; Tao, N J

    2016-11-15

    Electrochemical reactions are involved in many natural phenomena, and are responsible for various applications, including energy conversion and storage, material processing and protection, and chemical detection and analysis. An electrochemical reaction is accompanied by electron transfer between a chemical species and an electrode. For this reason, it has been studied by measuring current, charge, or related electrical quantities. This approach has led to the development of various electrochemical methods, which have played an essential role in the understanding and applications of electrochemistry. While powerful, most of the traditional methods lack spatial and temporal resolutions desired for studying heterogeneous electrochemical reactions on electrode surfaces and in nanoscale materials. To overcome the limitations, scanning probe microscopes have been invented to map local electrochemical reactions with nanometer resolution. Examples include the scanning electrochemical microscope and scanning electrochemical cell microscope, which directly image local electrochemical reaction current using a scanning electrode or pipet. The use of a scanning probe in these microscopes provides high spatial resolution, but at the expense of temporal resolution and throughput. This Account discusses an alternative approach to study electrochemical reactions. Instead of measuring electron transfer electrically, it detects the accompanying changes in the reactant and product concentrations on the electrode surface optically via surface plasmon resonance (SPR). SPR is highly surface sensitive, and it provides quantitative information on the surface concentrations of reactants and products vs time and electrode potential, from which local reaction kinetics can be analyzed and quantified. The plasmonic approach allows imaging of local electrochemical reactions with high temporal resolution and sensitivity, making it attractive for studying electrochemical reactions in biological

  3. Urea degradation by electrochemically generated reactive chlorine species: products and reaction pathways.

    PubMed

    Cho, Kangwoo; Hoffmann, Michael R

    2014-10-07

    This study investigated the transformation of urea by electrochemically generated reactive chlorine species (RCS). Solutions of urea with chloride ions were electrolyzed using a bismuth doped TiO2 (BiOx/TiO2) anode coupled with a stainless steel cathode at applied anodic potentials (Ea) of either +2.2 V or +3.0 V versus the normal hydrogen electrode. In NaCl solution, the current efficiency of RCS generation was near 30% at both potentials. In divided cell experiments, the pseudo-first-order rate of total nitrogen decay was an order of magnitude higher at Ea of +3.0 V than at +2.2 V, presumably because dichlorine radical (Cl2(-)·) ions facilitate the urea transformation primary driven by free chlorine. Quadrupole mass spectrometer analysis of the reactor headspace revealed that N2 and CO2 are the primary gaseous products of the oxidation of urea, whose urea-N was completely transformed into N2 (91%) and NO3(-) (9%). The higher reaction selectivity with respect to N2 production can be ascribed to a low operational ratio of free available chlorine to N. The mass-balance analysis recovered urea-C as CO2 at 77%, while CO generation most likely accounts for the residual carbon. In light of these results, we propose a reaction mechanism involving chloramines and chloramides as reaction intermediates, where the initial chlorination is the rate-determining step in the overall sequence of reactions.

  4. Rational Design of a Hierarchical Tin Dendrite Electrode for Efficient Electrochemical Reduction of CO2.

    PubMed

    Won, Da Hye; Choi, Chang Hyuck; Chung, Jaehoon; Chung, Min Wook; Kim, Eun-Hee; Woo, Seong Ihl

    2015-09-21

    Catalysis is a key technology for the synthesis of renewable fuels through electrochemical reduction of CO2 . However, successful CO2 reduction still suffers from the lack of affordable catalyst design and understanding the factors governing catalysis. Herein, we demonstrate that the CO2 conversion selectivity on Sn (or SnOx /Sn) electrodes is correlated to the native oxygen content at the subsurface. Electrochemical analyses show that the reduced Sn electrode with abundant oxygen species effectively stabilizes a CO2 (.-) intermediate rather than the clean Sn surface, and consequently results in enhanced formate production in the CO2 reduction. Based on this design strategy, a hierarchical Sn dendrite electrode with high oxygen content, consisting of a multi-branched conifer-like structure with an enlarged surface area, was synthesized. The electrode exhibits a superior formate production rate (228.6 μmol h(-1)  cm(-2) ) at -1.36 VRHE without any considerable catalytic degradation over 18 h of operation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Electrochemical alternatives for drinking water disinfection.

    PubMed

    Martínez-Huitle, Carlos A; Brillas, Enric

    2008-01-01

    Chlorination is the most common method worldwide for the disinfection of drinking water. However, the identification of potentially toxic products from this method has encouraged the development of alternative disinfection technologies. Among them, electrochemical disinfection has emerged as one of the more feasible alternatives to chlorination. This article reviews electrochemical systems that can contribute to drinking water disinfection and underscores the efficiency of recently developed diamond films in chlorine-free electrochemical systems.

  6. Rechargeable thin-film electrochemical generator

    DOEpatents

    Rouillard, Roger; Domroese, Michael K.; Hoffman, Joseph A.; Lindeman, David D.; Noel, Joseph-Robert-Gaetan; Radewald, Vern E.; Ranger, Michel; Sudano, Anthony; Trice, Jennifer L.; Turgeon, Thomas A.

    2000-09-15

    An improved electrochemical generator is disclosed. The electrochemical generator includes a thin-film electrochemical cell which is maintained in a state of compression through use of an internal or an external pressure apparatus. A thermal conductor, which is connected to at least one of the positive or negative contacts of the cell, conducts current into and out of the cell and also conducts thermal energy between the cell and thermally conductive, electrically resistive material disposed on a vessel wall adjacent the conductor. The thermally conductive, electrically resistive material may include an anodized coating or a thin sheet of a plastic, mineral-based material or conductive polymer material. The thermal conductor is fabricated to include a resilient portion which expands and contracts to maintain mechanical contact between the cell and the thermally conductive material in the presence of relative movement between the cell and the wall structure. The electrochemical generator may be disposed in a hermetically sealed housing.

  7. In Situ Investigation of Electrochemically Mediated Surface-Initiated Atom Transfer Radical Polymerization by Electrochemical Surface Plasmon Resonance.

    PubMed

    Chen, Daqun; Hu, Weihua

    2017-04-18

    Electrochemically mediated atom transfer radical polymerization (eATRP) initiates/controls the controlled/living ATRP chain propagation process by electrochemically generating (regenerating) the activator (lower-oxidation-state metal complex) from deactivator (higher-oxidation-state metal complex). Despite successful demonstrations in both of the homogeneous polymerization and heterogeneous systems (namely, surface-initiated ATRP, SI-ATRP), the eATRP process itself has never been in situ investigated, and important information regarding this process remains unrevealed. In this work, we report the first investigation of the electrochemically mediated SI-ATRP (eSI-ATRP) by rationally combining the electrochemical technique with real-time surface plasmon resonance (SPR). In the experiment, the potential of a SPR gold chip modified by the self-assembled monolayer of the ATRP initiator was controlled to electrochemically reduce the deactivator to activator to initiate the SI-ATRP, and the whole process was simultaneously monitored by SPR with a high time resolution of 0.1 s. It is found that it is feasible to electrochemically trigger/control the SI-ATRP and the polymerization rate is correlated to the potential applied to the gold chip. This work reveals important kinetic information for eSI-ATRP and offers a powerful platform for in situ investigation of such complicated processes.

  8. Silica nanoparticle based techniques for extraction, detection, and degradation of pesticides.

    PubMed

    Bapat, Gandhali; Labade, Chaitali; Chaudhari, Amol; Zinjarde, Smita

    2016-11-01

    Silica nanoparticles (SiNPs) find applications in the fields of drug delivery, catalysis, immobilization and sensing. Their synthesis can be mediated in a facile manner and they display broad range compatibility and stability. Their existence in the form of spheres, wires and sheets renders them suitable for varied purposes. This review summarizes the use of silica nanostructures in developing techniques for extraction, detection and degradation of pesticides. Silica nanostructures on account of their sorbent properties, porous nature and increased surface area allow effective extraction of pesticides. They can be modified (with ionic liquids, silanes or amines), coated with molecularly imprinted polymers or magnetized to improve the extraction of pesticides. Moreover, they can be altered to increase their sensitivity and stability. In addition to the analysis of pesticides by sophisticated techniques such as High Performance Liquid Chromatography or Gas chromatography, silica nanoparticles related simple detection methods are also proving to be effective. Electrochemical and optical detection based on enzymes (acetylcholinesterase and organophosphate hydrolase) or antibodies have been developed. Pesticide sensors dependent on fluorescence, chemiluminescence or Surface Enhanced Raman Spectroscopic responses are also SiNP based. Moreover, degradative enzymes (organophosphate hydrolases, carboxyesterases and laccases) and bacterial cells that produce recombinant enzymes have been immobilized on SiNPs for mediating pesticide degradation. After immobilization, these systems show increased stability and improved degradation. SiNP are significant in developing systems for effective extraction, detection and degradation of pesticides. SiNPs on account of their chemically inert nature and amenability to surface modifications makes them popular tools for fabricating devices for 'on-site' applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Improved Electrochemical Detection of Zinc Ions Using Electrode Modified with Electrochemically Reduced Graphene Oxide

    PubMed Central

    Kudr, Jiri; Richtera, Lukas; Nejdl, Lukas; Xhaxhiu, Kledi; Vitek, Petr; Rutkay-Nedecky, Branislav; Hynek, David; Kopel, Pavel; Adam, Vojtech; Kizek, Rene

    2016-01-01

    Increasing urbanization and industrialization lead to the release of metals into the biosphere, which has become a serious issue for public health. In this paper, the direct electrochemical reduction of zinc ions is studied using electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode (GCE). The graphene oxide (GO) was fabricated using modified Hummers method and was electrochemically reduced on the surface of GCE by performing cyclic voltammograms from 0 to −1.5 V. The modification was optimized and properties of electrodes were determined using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The determination of Zn(II) was performed using differential pulse voltammetry technique, platinum wire as a counter electrode, and Ag/AgCl/3 M KCl reference electrode. Compared to the bare GCE the modified GCE/ERGO shows three times better electrocatalytic activity towards zinc ions, with an increase of reduction current along with a negative shift of reduction potential. Using GCE/ERGO detection limit 5 ng·mL−1 was obtained. PMID:28787832

  10. Role of PF6- in the radiolytical and electrochemical degradation of propylene carbonate solutions

    NASA Astrophysics Data System (ADS)

    Ortiz, Daniel; Jimenez Gordon, Isabel; Legand, Solène; Dauvois, Vincent; Baltaze, Jean-Pierre; Marignier, Jean-Louis; Martin, Jean-Frédéric; Belloni, Jacqueline; Mostafavi, Mehran; Le Caër, Sophie

    2016-09-01

    The behavior under irradiation of neat propylene carbonate (PC), a co-solvent usually used in Li-ion batteries (LIB), and also of Li salt solutions is investigated. The decomposition of neat PC is studied using radiolysis in the pulse and steady state regime and is assigned to the ultrafast formation, in the reducing channel, of the radical anion PCrad - by electron attachment, followed by the ring cleavage, leading to CO. In the oxidative channel, the PC(sbnd H)rad radical is formed, generating CO2. The CO2 and CO yields are both close to the ionization yield of PC. The CO2 and CO productions in LiClO4, LiBF4 and LiN(CF3)2(SO2)2 solutions are similar as in neat PC. In contrast, in LiPF6/PC a strong impact on PC degradation is measured with a doubling of the CO2 yield due to the high reactivity of the electron towards PF6- observed in the picosecond range. A small number of oxide phosphine molecules are detected among the various products of the irradiated solutions, suggesting that most of them, observed in carbonate mixtures used in LIBs, arise from linear rather than from cyclical molecules. The similarity between the degradation by radiolysis or electrolysis highlights the interest of radiolysis as an accelerated aging method.

  11. Degradation of microcystin-RR using boron-doped diamond electrode.

    PubMed

    Zhang, Chunyong; Fu, Degang; Gu, Zhongze

    2009-12-30

    Microcystins (MCs), produced by blue-green algae, are one of the most common naturally occurring toxins found in natural environment. The presence of MCs in drinking water sources poses a great threat to people's health. In this study, the degradation behavior of microcystin-RR on boron-doped diamond (BDD) electrode was investigated under galvanostatic conditions. Such parameters as reaction time, supporting electrolyte and applied current density were varied in order to determine their effects on this oxidation process. The experimental results revealed the suitability of electrochemical processes employing BDD electrode for removing MC-RR from the solution. However, the efficient removal of MC-RR only occurred in the presence of sodium chloride that acted as redox mediators and the reaction was mainly affected by the chloride concentration (c(NaCl)) and applied current density (I(appl)). Full and quick removal of 0.50 microg/ml MC-RR in solution was achieved when the operating conditions of c(NaCl) and I(appl) were 20mM and 46.3 mA/cm(2), or 35 mM and 18.2 mA/cm(2) respectively. The kinetics for MC-RR degradation followed a pesudo-first order reaction in most cases, indicating the process was under mass transfer control. As a result of its excellent performance, the BDD technology could be considered as a promising alternative to promote the degradation of MC-RR than chlorination in drinking water supplies.

  12. A new sono-electrochemical method for enhanced detoxification of hydrophilic chloroorganic pollutants in water.

    PubMed

    Yasman, Yakov; Bulatov, Valery; Gridin, Vladimir V; Agur, Sabina; Galil, Noah; Armon, Robert; Schechter, Israel

    2004-09-01

    A new method for detoxification of hydrophilic chloroorganic pollutants in effluent water was developed, using a combination of ultrasound waves, electrochemistry and Fenton's reagent. The advantages of the method are exemplified using two target compounds: the common herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) and its derivative 2,4-dichlorophenol (2,4-DCP). The high degradation power of this process is due to the large production of oxidizing hydroxyl radicals and high mass transfer due to sonication. Application of this sono-electrochemical Fenton process (SEF) treatment (at 20 kHz) with quite a small current density, accomplished almost 50% oxidation of 2,4-D solution (300 ppm, 1.2 mM) in just 60 s. Similar treatments ran for 600 s resulted in practically full degradation of the herbicide; sizable oxidation of 2,4-DCP also occurs. The main intermediate compounds produced in the SEF process were identified. Their kinetic profile was measured and a chemical reaction scheme was suggested. The efficiency of the SEF process is tentatively much higher than the reference degradation methods and the time required for full degradation is considerably shorter. The SEF process maintains high performance up to concentrations which are higher than reference methods. The optimum concentration of Fe2+ ions required for this process was found to be of about 2 mM, which is lower than that in reference techniques. These findings indicate that SEF process may be an effective method for detoxification of environmental water.

  13. Fundamental Studies Connected with Electrochemical Energy Storage

    NASA Technical Reports Server (NTRS)

    Buck, E.; Sen, R.

    1974-01-01

    Papers are presented which deal with electrochemical research activities. Emphasis is placed on electrochemical energy storage devices. Topics discussed include: adsorption of dendrite inhibitors on zinc; proton discharge process; electron and protron transfer; quantum mechanical formulation of electron transfer rates; and theory of electrochemical kinetics in terms of two models of activation; thermal and electrostatic.

  14. Degradation of pharmaceutical beta-blockers by electrochemical advanced oxidation processes using a flow plant with a solar compound parabolic collector.

    PubMed

    Isarain-Chávez, Eloy; Rodríguez, Rosa María; Cabot, Pere Lluís; Centellas, Francesc; Arias, Conchita; Garrido, José Antonio; Brillas, Enric

    2011-08-01

    The degradation of the beta-blockers atenolol, metoprolol tartrate and propranolol hydrochloride was studied by electro-Fenton (EF) and solar photoelectro-Fenton (SPEF). Solutions of 10 L of 100 mg L⁻¹ of total organic carbon of each drug in 0.1 M Na₂SO₄ with 0.5 mM Fe²⁺ of pH 3.0 were treated in a recirculation flow plant with an electrochemical reactor coupled with a solar compound parabolic collector. Single Pt/carbon felt (CF) and boron-doped diamond (BDD)/air-diffusion electrode (ADE) cells and combined Pt/ADE-Pt/CF and BDD/ADE-Pt/CF cells were used. SPEF treatments were more potent with the latter cell, yielding 95-97% mineralization with 100% of maximum current efficiency and energy consumptions of about 0.250 kWh g TOC⁻¹. However, the Pt/ADE-Pt/CF cell gave much lower energy consumptions of about 0.080 kWh g TOC⁻¹ with slightly lower mineralization of 88-93%, then being more useful for its possible application at industrial level. The EF method led to a poorer mineralization and was more potent using the combined cells by the additional production of hydroxyl radicals (•OH) from Fenton's reaction from the fast Fe²⁺ regeneration at the CF cathode. Organics were also more rapidly destroyed at BDD than at Pt anode. The decay kinetics of beta-blockers always followed a pseudo first-order reaction, although in SPEF, it was accelerated by the additional production of •OH from the action of UV light of solar irradiation. Aromatic intermediates were also destroyed by hydroxyl radicals. Ultimate carboxylic acids like oxalic and oxamic remained in the treated solutions by EF, but their Fe(III) complexes were photolyzed by solar irradiation in SPEF, thus explaining its higher oxidation power. NO₃⁻ was the predominant inorganic ion lost in EF, whereas the SPEF process favored the production of NH₄⁺ ion and volatile N-derivatives. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Wide electrochemical window of supercapacitors from coffee bean-derived phosphorus-rich carbons.

    PubMed

    Huang, Congcong; Sun, Ting; Hulicova-Jurcakova, Denisa

    2013-12-01

    Phosphorus-rich carbons (PCs) were prepared by phosphoric acid activation of waste coffee grounds in different impregnation ratios. PCs were characterized by nitrogen and carbon dioxide adsorption and X-ray photoelectron spectroscopy. The results indicate that the activation step not only creates a porous structure, but also introduces various phosphorus and oxygen functional groups to the surface of carbons. As evidenced by cyclic voltammetry, galvanostatic charge/discharge, and wide potential window tests, a supercapacitor constructed from PC-2 (impregnation ratio of 2), with the highest phosphorus content, can operate very stably in 1 M H2 SO4 at 1.5 V with only 18 % degradation after 10 000 cycles at a current density of 5 A g(-1) . Due to the wide electrochemical window, a supercapacitor assembled with PC-2 has a high energy density of 15 Wh kg(-1) at a power density of 75 W kg(-1) . The possibility of widening the potential window above the theoretical potential for the decomposition of water is attributed to reversible electrochemical hydrogen storage in narrow micropores and the positive effect of phosphorus-rich functional groups, particularly the polyphosphates on the carbon surface. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Constructing the magnetic bifunctional graphene/titania nanosheet-based composite photocatalysts for enhanced visible-light photodegradation of MB and electrochemical ORR from polluted water.

    PubMed

    Zhang, Qian; Zhang, Yihe; Meng, Zilin; Tong, Wangshu; Yu, Xuelian; An, Qi

    2017-09-25

    Photocatalysis is a promising strategy to address the global environmental and energy challenges. However, the studies on the application of the photocatalytically degraded dye-polluted water and the multi-purpose use of one type of catalyst have remained sparse. In this report, we try to demonstrate a concept of multiple and cyclic application of materials and resources in environmentally relevant catalyst reactions. A magnetic composite catalyst prepared from exfoliated titania nanosheets, graphene, the magnetic iron oxide nanoparticles, and a polyelectrolyte enabled such a cyclic application. The composite catalyst decomposed a methylene blue-polluted water under visible light, and then the catalyst was collected and removed from the treated water using a magnet. The photocatalytically treated water was then used to prepare the electrolyte in electrochemical reductive reactions and presented superior electrochemical performance compared with the dye-polluted water. The composite catalyst was once again used as the cathode catalyst in the electrochemical reaction. Each component in the composite catalyst was indispensable in its catalytic activity, but each component played different roles in the photochemical, magnetic recycling, and electrochemical processes. We expect the report inspire the study on the multi-functional catalyst and cyclic use of the catalytically cleaned water, which should contribute for the environmental and energy remedy from a novel perspective.

  17. Combined process of electrocoagulation and photocatalytic degradation for the treatment of olive washing wastewater.

    PubMed

    Ates, Hasan; Dizge, Nadir; Yatmaz, H Cengiz

    2017-01-01

    In this study, an electrocoagulation reactor (ECR) and photocatalytic reactor (PCR) were tested to understand the performance of combined electrocoagulation and photocatalytic-degradation of olive washing wastewater (OWW). The effects of initial pH (6.0, 6.9, 8.0, 9.0), applied voltage (10.0, 12.5, 15.0 V), and operating time (30, 60, 90, 120 min) were investigated in the electrocoagulation reactor when aluminum electrodes were used as both anode and cathode. The pH, conductivity, color, chemical oxygen demand (COD), and phenol were measured versus time to determine the efficiency of the ECR and PCR process. It was observed that electrocoagulation as a single treatment process supplied the COD removal of 62.5%, color removal of 98.1%, and total phenol removal of 87% at optimum conditions as pH 6.9, applied voltage of 12.5 V, and operating time of 120 min. Moreover, final pH and conductivity were 7.7 and 980 μS/cm, respectively. On the other hand, the effect of semiconductor catalyst type (TiO 2 and ZnO) and loading (1, 2, 3 g/L) were tested using PCR as a stand-alone technique. It was found that photocatalytic degradation as a single treatment process when using 1 g/L ZnO achieved the COD removal of 46%, color removal of 99% with a total phenol removal of 41% at optimum conditions. Final pH and conductivity were 6.2 and 915 μS/cm, respectively. Among semiconductor catalysts, TiO 2 and ZnO performed identical efficiencies for both COD and total phenol removal. Moreover, combination in which electrochemical degradation was employed as a pre-treatment to the photocatalytic degradation process obtained high COD removal of 88% and total phenol, as well as color removal of 100% for the OWW. The electrochemical treatment alone was not effective, but in combination with the photocatalytic process, led to a high-quality effluent. Finally, sludge collected from the electrocoagulation process was characterized by attenuated total reflection Fourier transform infrared and X

  18. Novel nanoarchitectures for electrochemical biosensing

    NASA Astrophysics Data System (ADS)

    Archibald, Michelle M.

    Sensitive, real-time detection of biomarkers is of critical importance for rapid and accurate diagnosis of disease for point-of-care (POC) technologies. Current methods, while sensitive, do not adequately allow for POC applications due to several limitations, including complex instrumentation, high reagent consumption, and cost. We have investigated two novel nanoarchitectures, the nanocoax and the nanodendrite, as electrochemical biosensors towards the POC detection of infectious disease biomarkers to overcome these limitations. The nanocoax architecture is composed of vertically-oriented, nanoscale coaxial electrodes, with coax cores and shields serving as integrated working and counter electrodes, respectively. The dendritic structure consists of metallic nanocrystals extending from the working electrode, increasing sensor surface area. Nanocoaxial- and nanodendritic-based electrochemical sensors were fabricated and developed for the detection of bacterial toxins using an electrochemical enzyme-linked immunosorbent assay (ELISA) and differential pulse voltammetry (DPV). Proof-of-concept was demonstrated for the detection of cholera toxin (CT). Both nanoarchitectures exhibited levels of sensitivity that are comparable to the standard optical ELISA used widely in clinical applications. In addition to matching the detection profile of the standard ELISA, these electrochemical nanosensors provide a simple electrochemical readout and a miniaturized platform with multiplexing capabilities toward POC implementation. Further development as suggested in this thesis may lead to increases in sensitivity, enhancing the attractiveness of the architectures for future POC devices.

  19. Electrochemical hydrogenation of thiophene on SPE electrodes

    NASA Astrophysics Data System (ADS)

    Huang, Haiyan; Yuan, Penghui; Yu, Ying; Chung, Keng H.

    2017-01-01

    Electrochemical reduction desulfurization is a promising technology for petroleum refining which is environmental friendly, low cost and able to achieve a high degree of automation. Electrochemical hydrogenation of thiophene was performed in a three-electrode system which SPE electrode was the working electrode. The electrochemical desulfurization was studied by cyclic voltammetry and bulk electrolysis with coulometry (BEC) techniques. The results of cyclic voltammetry showed that the electrochemical hydrogenation reduction reaction occurred at -0.4V. The BEC results showed that the currents generated from thiophene hydrogenation reactions increased with temperature. According to Arrhenius equation, activation energy of thiophene electrolysis was calculated and lower activation energy value indicated it was diffusion controlled reaction. From the products of electrolytic reactions, the mechanisms of electrochemical hydrogenation of thiophene were proposed, consisting of two pathways: openingring followed by hydrogenation, and hydrogenation followed by ring opening.

  20. Space Electrochemical Research and Technology. Abstracts

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This document contains abstracts of the proceedings of NASA's fifth Space Electrochemical Research and Technology (SERT) Conference, held at the NASA Lewis Research Center on May 1-3, 1995. The objective of the conference was to assess the present status and general thrust of research and development in those areas of electrochemical technology required to enable NASA missions into the next century. The conference provided a forum for the exchange of ideas and opinions of those actively involved in the field, in order to define new opportunities for the application of electrochemical processes in future NASA missions. Papers were presented in three technical areas: (1) the electrochemical interface, (2) the next generation in aerospace batteries and fuel cells, and (3) electrochemistry for non-energy storage applications. This document contains the abstracts of the papers presented.

  1. Investigation of dynamic driving cycle effect on the degradation of proton exchange membrane fuel cell by segmented cell technology

    NASA Astrophysics Data System (ADS)

    Lin, R.; Xiong, F.; Tang, W. C.; Técher, L.; Zhang, J. M.; Ma, J. X.

    2014-08-01

    Durability is one of the most important limiting factors for the commercialization of proton exchange membrane fuel cell (PEMFC). Fuel cells are more vulnerable to degradation under operating conditions as dynamic load cycle or start up/shut down. The purpose of this study is to evaluate influences of driving cycles on the durability of fuel cells through analyzing the degradation mechanism of a segmented cell in real time. This study demonstrates that the performance of the fuel cell significantly decreases after 200 cycles. The segmented cell technology is used to measure the local current density distribution, which shows that the current density at the exit region and the inlet region declines much faster than the other parts. Meanwhile, electro-chemical impedance spectroscopy (EIS) reveals that after 200 cycles the ohmic resistance of fuel cell increases, especially at the cathode, and electro-chemical surface area (ESA) decreases from 392 to 307 cm2 mg-1. Furthermore, scanning electron microscopy (SEM) images of the membrane-electrode assembly (MEA) in cross-section demonstrate crackle flaw on the surface of the catalyst layer and the delamination of the electrodes from the membrane. Transmission electron microscope (TEM) results also show that the Pt particle size increases distinctly after driving cycles.

  2. Electrochemically formed 3D hierarchical thin films of cobalt-manganese (Co-Mn) hexacyanoferrate hybrids for electrochemical applications

    NASA Astrophysics Data System (ADS)

    Alam Venugopal, Narendra Kumar; Joseph, James

    2016-02-01

    Here we report the feasibility of forming 3D nanostructured hexacyanoferates of Cobalt and Manganese (Co-MnHCF) on GC surface by a facile electrochemical method. This 3D architecture on glassy carbon electrode characterised systematically by voltammetry and other physical characterisation techniques like Field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and Fourier transform Infrared spectroscopy (FTIR) etc,. Electrochemical Quartz crystal microbalance (EQCM) studies helped out to calculate the total mass change during Co-MnHCF formation. Electrochemical studies reveal that the formal redox potentials of both Co and MnHCF films remained close to that of newly formed Co-MnHCF hybrid films. These 3D modified films were successfully applied for two different electrochemical applications i) For pseudocapacitor studies in KNO3 medium ii) Investigated the electrocatalytic behaviour of redox film towards water oxidation reaction in alkaline medium. Electrochemical performances of newly formed Co-MnHCF are compared with their individual transition metal (Co, Mn) hexacyanoferrates. The resulting material shows a specific capacitance of 350 F g-1 through its fast reversible redox reaction of electrochemically formed Co-MnHCF modified film. Interestingly we showed the overpotential of 450 mV (from its thermodynamic voltage 1.2 V) to attain its optimum current density of 10 mA cm-2 for O2 evolution in alkaline medium.

  3. Highly selective dopamine electrochemical sensor based on electrochemically pretreated graphite and nafion composite modified screen printed carbon electrode.

    PubMed

    Ku, Shuhao; Palanisamy, Selvakumar; Chen, Shen-Ming

    2013-12-01

    Herein, we report a highly selective dopamine electrochemical sensor based on electrochemically pretreated graphite/nafion composite modified screen printed carbon (SPC) electrode. Electrochemically activated graphite/nafion composite was prepared by using a simple electrochemical method. Scanning electron microscope (SEM) used to characterize the surface morphology of the fabricated composite electrode. The SEM result clearly indicates that the graphitic basal planes were totally disturbed and leads to the formation of graphite nanosheets. The composite modified electrode showed an enhanced electrocatalytic activity toward the oxidation of DA when compared with either electrochemical pretreated graphite or nafion SPC electrodes. The fabricated composite electrode exhibits a good electrocatalytic oxidation toward DA in the linear response range from 0.5 to 70 μM with the detection limit of 0.023 μM. The proposed sensor also exhibits very good selectivity and stability, with the appreciable sensitivity. In addition, the proposed sensor showed satisfactory recovery results toward the commercial pharmaceutical DA samples. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures

    DOE PAGES

    Zhu, Chengzhou; Yang, Guohai; Li, He; ...

    2014-10-29

    We report that considerable attention has been devoted to the integration of recognition elements with electronic elements to develop electrochemical sensors and biosensors.Various electrochemical devices, such as amperometric sensors, electrochemical impedance sensors, and electrochemical luminescence sensors as well as photoelectrochemical sensors, provide wide applications in the detection of chemical and biological targets in terms of electrochemical change of electrode interfaces. Here, this review focuses on recent advances in electrochemical sensors and biosensors based on nanomaterials and nanostructures during 2013 to 2014. The aim of this effort is to provide the reader with a clear and concise view of new advancesmore » in areas ranging from electrode engineering, strategies for electrochemical signal amplification, and novel electroanalytical techniques used in the miniaturization and integration of the sensors. Moreover, the authors have attempted to highlight areas of the latest and significant development of enhanced electrochemical nanosensors and nanobiosensors that inspire broader interests across various disciplines. Electrochemical sensors for small molecules, enzyme-based biosensors, genosensors, immunosensors, and cytosensors are reviewed herein (Figure 1). Such novel advances are important for the development of electrochemical sensors that open up new avenues and methods for future research. In conclusion, we recommend readers interested in the general principles of electrochemical sensors and electrochemical methods to refer to other excellent literature for a broad scope in this area.(3, 4) However, due to the explosion of publications in this active field, we do not claim that this Review includes all of the published works in the past two years and we apologize to the authors of excellent work, which is unintentionally left out.« less

  5. The Effect of Platinum Electrocatalyst on Membrane Degradation in Polymer Electrolyte Fuel Cells

    PubMed Central

    Bodner, Merit; Cermenek, Bernd; Rami, Mija; Hacker, Viktor

    2015-01-01

    Membrane degradation is a severe factor limiting the lifetime of polymer electrolyte fuel cells. Therefore, obtaining a deeper knowledge is fundamental in order to establish fuel cells as competitive product. A segmented single cell was operated under open circuit voltage with alternating relative humidity. The influence of the catalyst layer on membrane degradation was evaluated by measuring a membrane without electrodes and a membrane-electrode-assembly under identical conditions. After 100 h of accelerated stress testing the proton conductivity of membrane samples near the anode and cathode was investigated by means of ex situ electrochemical impedance spectroscopy. The membrane sample near the cathode inlet exhibited twofold lower membrane resistance and a resulting twofold higher proton conductivity than the membrane sample near the anode inlet. The results from the fluoride ion analysis have shown that the presence of platinum reduces the fluoride emission rate; which supports conclusions drawn from the literature. PMID:26670258

  6. Electrochemical Affinity Biosensors Based on Disposable Screen-Printed Electrodes for Detection of Food Allergens.

    PubMed

    Vasilescu, Alina; Nunes, Gilvanda; Hayat, Akhtar; Latif, Usman; Marty, Jean-Louis

    2016-11-05

    Food allergens are proteins from nuts and tree nuts, fish, shellfish, wheat, soy, eggs or milk which trigger severe adverse reactions in the human body, involving IgE-type antibodies. Sensitive detection of allergens in a large variety of food matrices has become increasingly important considering the emergence of functional foods and new food manufacturing technologies. For example, proteins such as casein from milk or lysozyme and ovalbumin from eggs are sometimes used as fining agents in the wine industry. Nonetheless, allergen detection in processed foods is a challenging endeavor, as allergen proteins are degraded during food processing steps involving heating or fermentation. Detection of food allergens was primarily achieved via Enzyme-Linked Immuno Assay (ELISA) or by chromatographic methods. With the advent of biosensors, electrochemical affinity-based biosensors such as those incorporating antibodies and aptamers as biorecognition elements were also reported in the literature. In this review paper, we highlight the success achieved in the design of electrochemical affinity biosensors based on disposable screen-printed electrodes towards detection of protein allergens. We will discuss the analytical figures of merit for various disposable screen-printed affinity sensors in relation to methodologies employed for immobilization of bioreceptors on transducer surface.

  7. Nucleic acid-based electrochemical nanobiosensors.

    PubMed

    Abi, Alireza; Mohammadpour, Zahra; Zuo, Xiaolei; Safavi, Afsaneh

    2018-04-15

    The detection of biomarkers using sensitive and selective analytical devices is critically important for the early stage diagnosis and treatment of diseases. The synergy between the high specificity of nucleic acid recognition units and the great sensitivity of electrochemical signal transductions has already shown promise for the development of efficient biosensing platforms. Yet nucleic-acid based electrochemical biosensors often rely on target amplification strategies (e.g., polymerase chain reactions) to detect analytes at clinically relevant concentration ranges. The complexity and time-consuming nature of these amplification methods impede moving nucleic acid-based electrochemical biosensors from laboratory-based to point-of-care test settings. Fortunately, advancements in nanotechnology have provided growing evidence that the recruitment of nanoscaled materials and structures can enhance the biosensing performance (particularly in terms of sensitivity and response time) to the level suitable for use in point-of-care diagnostic tools. This Review highlights the significant progress in the field of nucleic acid-based electrochemical nanobiosensing with the focus on the works published during the last five years. Copyright © 2017. Published by Elsevier B.V.

  8. Space Electrochemical Research and Technology

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This document contains the proceedings of NASA's fourth Space Electrochemical Research and Technology (SERT) Conference, held at the NASA Lewis Research Center on April 14-15, 1993. The objective of the conference was to assess the present status and general thrust of research and development in those areas of electrochemical technology required to enable NASA missions into the next century. The conference provided a forum for the exchange of ideas and opinions of those actively involved in the field, in order to define new opportunities for the application of electrochemical processes in future NASA missions. Papers were presented in three technical areas: advanced secondary batteries, fuel cells, and advanced concepts for space power. This document contains the papers presented.

  9. Investigation and Mitigation of Degradation in Hydrogen Fuel Cells

    NASA Astrophysics Data System (ADS)

    Mandal, Pratiti

    The ever increasing demand of petroleum in the transport sector has led to depletion of low cost/low risk reserves, increased level of pollution, and greenhouse gas emissions that take a heavy toll on the environment as well as the national economy. There is an urgent need to utilize alternative energy resources along with an efficient and affordable energy conversion system to arrest environmental degradation. Polymer electrolyte fuel cells (PEFCs) show great promise in this regard, they use hydrogen gas as a fuel that electrochemically reacts with air to produce electrical energy and water as the by product. In a fuel cell electric vehicle (FCEV), these zero tail pipe emission systems offer high efficiency and power density for medium-heavy duty and long range transportation. However, PEFC technology is currently challenged by its limited durability when subjected to harsh and adverse operating conditions and transients that arises during the normal course of vehicle operation. The hydrogen-based fuel cell power train for electric vehicles must achieve high durability while maintaining high power efficiency and fuel economy in order to equal the range and lifetime of an internal-combustion engine vehicle. The technology also needs to meet the cost targets to make FCEVs a commercial success. In this dissertation, one of the degradation phenomena that severely impede the durability of the system has been investigated. In scenarios where the cell becomes locally starved of hydrogen fuel, "cell reversal" occurs, which causes the cell to consume itself through carbon corrosion and eventually fail. Carbon corrosion in the anode disrupts the original structure of the electrode and can cause undesirable outcomes like catalyst particle migration, aggregation, loss of structural and chemical integrity. Through a comprehensive study using advanced electrochemical diagnostics and high resolution 3D imaging, a new understanding to extend PEFC life time and robustness by

  10. Apparatus for combinatorial screening of electrochemical materials

    DOEpatents

    Kepler, Keith Douglas [Belmont, CA; Wang, Yu [Foster City, CA

    2009-12-15

    A high throughput combinatorial screening method and apparatus for the evaluation of electrochemical materials using a single voltage source (2) is disclosed wherein temperature changes arising from the application of an electrical load to a cell array (1) are used to evaluate the relative electrochemical efficiency of the materials comprising the array. The apparatus may include an array of electrochemical cells (1) that are connected to each other in parallel or in series, an electronic load (2) for applying a voltage or current to the electrochemical cells (1), and a device (3), external to the cells, for monitoring the relative temperature of each cell when the load is applied.

  11. Kinetics of the electrochemical mineralization of perfluorooctanoic acid on ultrananocrystalline boron doped conductive diamond electrodes.

    PubMed

    Urtiaga, Ane; Fernández-González, Carolina; Gómez-Lavín, Sonia; Ortiz, Inmaculada

    2015-06-01

    This work deals with the electrochemical degradation and mineralization of perfluorooctanoic acid (PFOA). Model aqueous solutions of PFOA (100mg/L) were electro-oxidized under galvanostatic conditions in a flow-by undivided cell provided with a tungsten cathode and an anode formed by a commercial ultrananocrystalline boron doped diamond (BDD) coating on a niobium substrate. A systematic experimental study was conducted in order to analyze the influence of the following operation variables: (i) the supporting electrolyte, NaClO4 (1.4 and 8.4g/L) and Na2SO4 (5g/L); (ii) the applied current density, japp, in the range 50-200 A/m(2) and (iii) the hydrodynamic conditions, in terms of flowrate in the range 0.4×10(-4)-1.7×10(-4)m(3)/s and temperature in the range 293-313K. After 6h of treatment and at japp 200A/m(2), PFOA removal was higher than 93% and the mineralization ratio, obtained from the decrease of the total organic carbon (TOC) was 95%. The electrochemical generation of hydroxyl radicals in the supporting electrolyte was experimentally measured based on their reaction with dimethyl sulfoxide. The enhanced formation of hydroxyl radicals at higher japp was related to the faster kinetics of PFOA removal. The fitting of experimental data to the proposed kinetic model provided the first order rate constants of PFOA degradation, kc(1) that moved from 2.06×10(-4) to 15.58×10(-4)s(-1), when japp varied from 50 to 200A/m(2). Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Accessible triple-phase boundary length: A performance metric to account for transport pathways in heterogeneous electrochemical materials

    NASA Astrophysics Data System (ADS)

    Nakajo, A.; Cocco, A. P.; DeGostin, M. B.; Peracchio, A. A.; Cassenti, B. N.; Cantoni, M.; Van herle, J.; Chiu, W. K. S.

    2016-09-01

    The performance of materials for electrochemical energy conversion and storage depends upon the number of electrocatalytic sites available for reaction and their accessibility by the transport of reactants and products. For solid oxide fuel/electrolysis cell materials, standard 3-D measurements such as connected triple-phase boundary (TPB) length and effective transport properties partially inform on how local geometry and network topology causes variability in TPB accessibility. A new measurement, the accessible TPB, is proposed to quantify these effects in detail and characterize material performance. The approach probes the reticulated pathways to each TPB using an analytical electrochemical fin model applied to a 3-D discrete representation of the heterogeneous structure provided by skeleton-based partitioning. The method is tested on artificial and real structures imaged by 3-D x-ray and electron microscopy. The accessible TPB is not uniform and the pattern varies depending upon the structure. Connected TPBs can be even passivated. The sensitivity to manipulations of the local 3-D geometry and topology that standard measurements cannot capture is demonstrated. The clear presence of preferential pathways showcases a non-uniform utilization of the 3-D structure that potentially affects the performance and the resilience to alterations due to degradation phenomena. The concepts presented also apply to electrochemical energy storage and conversion devices such as other types of fuel cells, electrolyzers, batteries and capacitors.

  13. Electrochemical growth of SnS thin film: application to the photocatalytic degradation of rhodamine B under visible light

    NASA Astrophysics Data System (ADS)

    Kabouche, S.; Louafi, Y.; Bellal, B.; Trari, M.

    2017-08-01

    A facile and template-free wet electrochemical technique was used to deposit SnS on tin substrate. Longer time (>40 min) is required for the formation of the chalcogenide thin films and the potential must be carefully controlled to come out with a rough chemical identification of sulfide deposited at low potential scan. The deposition potential is selected from the cyclic voltammetry to preclude the oxidation of SnS to SnS2. The SnS films are uniform and well adhered to the substrate. They were characterized by X-ray diffraction, UV-Vis spectroscopy and electrochemical impedance spectroscopy (EIS). SnS crystallizes in an orthorhombic symmetry (SG: Pnma) and a crystallite size of 42 nm was obtained. The Mott-Schottky plot exhibited a linear behavior with a negative slope, characteristic of p-type conductivity. Holes density of 9.75 × 1020 cm-3, a flat band potential of 0.56 V SCE and a depletion width of 38 nm were determined. The valence band was located at (-5.41 eV/0.66 V) and derives mainly from S 2-: 3 p while the conduction band (3.8 eV/-0.95 V) was primarily made up of Sn2+: 5 p orbital. The EIS spectra measured over the frequency range (3 × 10-3-105 Hz) revealed mainly a bulk contribution. On application, rhodamine B was successfully oxidized on SnS films, 38% of the initial concentration (10 mg L-1) disappeared after 4 h of exposure to solar light (90 mW cm-2).

  14. Electrochemical membrane incinerator

    DOEpatents

    Johnson, Dennis C.; Houk, Linda L.; Feng, Jianren

    2001-03-20

    Electrochemical incineration of p-benzoquinone was evaluated as a model for the mineralization of carbon in toxic aromatic compounds. A Ti or Pt anode was coated with a film of the oxides of Ti, Ru, Sn and Sb. This quaternary metal oxide film was stable; elemental analysis of the electrolyzed solution indicated the concentration of these metal ions to be 3 .mu.g/L or less. The anode showed good reactivity for the electrochemical incineration of benzoquinone. The use of a dissolved salt matrix as the so-called "supporting electrolyte" was eliminated in favor of a solid-state electrolyte sandwiched between the anode and cathode.

  15. Electrochemical micro sensor

    DOEpatents

    Setter, Joseph R.; Maclay, G. Jordan

    1989-09-12

    A micro-amperometric electrochemical sensor for detecting the presence of a pre-determined species in a fluid material is disclosed. The sensor includes a smooth substrate having a thin coating of solid electrolytic material deposited thereon. The working and counter electrodes are deposited on the surface of the solid electrolytic material and adhere thereto. Electrical leads connect the working and counter electrodes to a potential source and an apparatus for measuring the change in an electrical signal caused by the electrochemical oxidation or reduction of the species. Alternatively, the sensor may be fabricated in a sandwich structure and also may be cylindrical, spherical or other shapes.

  16. Aqueous Electrochemical Mechanisms in Actinide Residue Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, David E.; Burns, Carol J.; Smith, Wayne H.

    2000-12-31

    as the Catalyzed Electrochemical Plutonium Oxide Dissolution (CEPOD) process pioneered by workers at Pacific Northwest National Laboratory in the mid-1970s [2]. The basis for most of these mediated electrochemical oxidation/reduction (MEO/R) processes is the generation of a dissolved electrochemical catalyst, such as Ag2+, which is capable of oxidizing or reducing solid-phase actinide species or actinide sorbates via 7 heterogeneous electron transfer to oxidation states that have significantly greater solubilities (e.g., PuO2(s) to PuO2 2+ (dissolved)). The solubilized actinide can then be recovered by ion exchange or other mechanisms. These aqueous electrochemical methods for residue treatment have been considered in many of the ''trade studies'' to evaluate options for stabilization of the various categories of residue materials. While some concerns generally arise (e.g., large secondary waste volumes could results since the process stream normally goes th rough anion exchange or precipitation steps to remove the actinide), the real utility and versatility of these methods should not be overlooked. They are low temperature, ambient pressure processes that operate in a non-corrosive environment. In principle, they can be designed to be highly selective for the actinides (i.e., no substrate degradation occurs), they can be utilized for many categories of residue materials with little or no modification in hardware or operating conditions, and they can conceivably be engineered to minimize secondary waste stream volume. However, some fundamental questions remain concerning the mechanisms through which these processes act, and how the processes might be optimized to maximize efficiency while minimizing secondary waste. In addition, given the success achieved to date on the limited set of residues, further research is merited to extend the range of applicability of these electrochemical methods to other residue and waste streams. The principal goal of the work described

  17. Electrochemical reduction of nalidixic acid at glassy carbon electrode modified with multi-walled carbon nanotubes.

    PubMed

    Patiño, Yolanda; Pilehvar, Sanaz; Díaz, Eva; Ordóñez, Salvador; De Wael, Karolien

    2017-02-05

    The aqueous phase electrochemical degradation of nalidixic acid (NAL) is studied in this work, using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) as instrumental techniques. The promotional effect of multi-walled carbon nanotubes (MWCNT) on the performance of glassy carbon electrodes is demonstrated, being observed that these materials catalyze the NAL reduction. The effect of surface functional groups on MWCNT -MWCNT-COOH and MWCNT-NH 2 -was also studied. The modification of glassy carbon electrode (GCE) with MWCNT leads to an improved performance for NAL reduction following the order of MWCNT>MWCNT-NH 2 >MWCNT-COOH. The best behavior at MWCNT-GCE is mainly due to both the increased electrode active area and the enhanced MWCNT adsorption properties. The NAL degradation was carried out under optimal conditions (pH=5.0, deposition time=20s and volume of MWCNT=10μL) using MWCNT-GCE obtaining an irreversible reduction of NAL to less toxic products. Paramaters as the number of DPV cycles and the volume/area (V/A) ratio were optimized for maximize pollutant degradation. It was observed that after 15 DPV scans and V/A=8, a complete reduction was obtained, obtaining two sub-products identified by liquid chromatography-mass spectrometry (LC-MS). Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Electrochemical hydrogen sulfide biosensors.

    PubMed

    Xu, Tailin; Scafa, Nikki; Xu, Li-Ping; Zhou, Shufeng; Abdullah Al-Ghanem, Khalid; Mahboob, Shahid; Fugetsu, Bunshi; Zhang, Xueji

    2016-02-21

    The measurement of sulfide, especially hydrogen sulfide, has held the attention of the analytical community due to its unique physiological and pathophysiological roles in biological systems. Electrochemical detection offers a rapid, highly sensitive, affordable, simple, and real-time technique to measure hydrogen sulfide concentration, which has been a well-documented and reliable method. This review details up-to-date research on the electrochemical detection of hydrogen sulfide (ion selective electrodes, polarographic hydrogen sulfide sensors, etc.) in biological samples for potential therapeutic use.

  19. In situ electrochemical and photo-electrochemical generation of the fenton reagent: a potentially important new water treatment technology.

    PubMed

    Peralta-Hernández, J M; Meas-Vong, Yunny; Rodríguez, Francisco J; Chapman, Thomas W; Maldonado, Manuel I; Godínez, Luis A

    2006-05-01

    In this work, the design and construction of an annular tube reactor for the electrochemical and photo-electrochemical in situ generation of H2O2 are described. By cathodic reduction of dissolved oxygen and the coupled oxidation of water at a UV-illuminated nanocrystalline-TiO2 semiconductor anode, it was found that the electrochemically generated H2O2 can be employed to readily oxidize the model compound Direct Yellow-52 in dilute acidic solution at high rates in the presence of small quantities of dissolved iron(II). Although, the model organic compound is chemically stable under UV radiation, its electrochemical oxidation rate increases substantially when the semiconductor anode is illuminated as compared to the same processes carried out in the dark.

  20. 4D in situ visualization of electrode morphology changes during accelerated degradation in fuel cells by X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    White, Robin T.; Wu, Alex; Najm, Marina; Orfino, Francesco P.; Dutta, Monica; Kjeang, Erik

    2017-05-01

    A four-dimensional visualization approach, featuring three dimensions in space and one dimension in time, is proposed to study local electrode degradation effects during voltage cycling in fuel cells. Non-invasive in situ micro X-ray computed tomography (XCT) with a custom fuel cell fixture is utilized to track the same cathode catalyst layer domain throughout various degradation times from beginning-of-life (BOL) to end-of-life (EOL). With this unique approach, new information regarding damage features and trends are revealed, including crack propagation and catalyst layer thinning being quantified by means of image processing and analysis methods. Degradation heterogeneities as a result of local environmental variations under land and channel are also explored, with a higher structural degradation rate under channels being observed. Density and compositional changes resulting from carbon corrosion and catalyst layer collapse and thinning are observed by changes in relative X-ray attenuation from BOL to EOL, which also indicate possible vulnerable regions where crack initiation and propagation may occur. Electrochemical diagnostics and morphological features observed by micro-XCT are correlated by additionally collecting effective catalyst surface area, double layer capacitance, and polarization curves prior to imaging at various stages of degradation.

  1. The influence of heat treatment and plastic deformation on the bio-degradation of a Mg-Y-RE alloy.

    PubMed

    Gunde, Petra; Furrer, Angela; Hänzi, Anja C; Schmutz, Patrik; Uggowitzer, Peter J

    2010-02-01

    In this study the bio-degradation behavior of a Mg-Y-RE alloy in different heat treatment states with respect to the alloy's potential application as biodegradable implant material was investigated by electrochemical impedance spectroscopy in two body-similar fluids. The heat treatments increase the degradation resistance of the alloy and lead to the formation of a thermal oxide layer on the sample surface and to a change in microstructure such as the distribution of yttrium. The varying Y distribution in the alloy does not significantly influence the degradation behavior, and all samples show a similar low polarization resistance. However, samples with a thermal oxide layer, which consists mainly of Y(2)O(3), degrade much more slowly and feature remarkably high polarization resistance. Nevertheless, in some cases localized corrosion attack occurs and drastically impairs performance. Cracks in the oxide layer, intentionally induced by straining of the samples and which in practice could originate from the implantation process, reduce the corrosion resistance. However, these samples perform still better than polished specimens and show a macroscopically homogeneous degradation behavior without localized corrosion. Microscopically, corrosion attacks start at the cracks and undermining of the oxide layer occurs with time. For all the material conditions a remarkable dependence of the degradation rate on the electrolyte is noted. (c) 2009 Wiley Periodicals, Inc.

  2. Monitoring of degradation of porous silicon photonic crystals using digital photography

    PubMed Central

    2014-01-01

    We report the monitoring of porous silicon (pSi) degradation in aqueous solutions using a consumer-grade digital camera. To facilitate optical monitoring, the pSi samples were prepared as one-dimensional photonic crystals (rugate filters) by electrochemical etching of highly doped p-type Si wafers using a periodic etch waveform. Two pSi formulations, representing chemistries relevant for self-reporting drug delivery applications, were tested: freshly etched pSi (fpSi) and fpSi coated with the biodegradable polymer chitosan (pSi-ch). Accelerated degradation of the samples in an ethanol-containing pH 10 aqueous basic buffer was monitored in situ by digital imaging with a consumer-grade digital camera with simultaneous optical reflectance spectrophotometric point measurements. As the nanostructured porous silicon matrix dissolved, a hypsochromic shift in the wavelength of the rugate reflectance peak resulted in visible color changes from red to green. While the H coordinate in the hue, saturation, and value (HSV) color space calculated using the as-acquired photographs was a good monitor of degradation at short times (t < 100 min), it was not a useful monitor of sample degradation at longer times since it was influenced by reflections of the broad spectral output of the lamp as well as from the narrow rugate reflectance band. A monotonic relationship was observed between the wavelength of the rugate reflectance peak and an H parameter value calculated from the average red-green-blue (RGB) values of each image by first independently normalizing each channel (R, G, and B) using their maximum and minimum value over the time course of the degradation process. Spectrophotometric measurements and digital image analysis using this H parameter gave consistent relative stabilities of the samples as fpSi > pSi-ch. PMID:25242902

  3. A New Platform for Profiling Degradation-Related Impurities Via Exploiting the Opportunities Offered by Ion-Selective Electrodes: Determination of Both Diatrizoate Sodium and Its Cytotoxic Degradation Product.

    PubMed

    Riad, Safaa M; Abd El-Rahman, Mohamed K; Fawaz, Esraa M; Shehata, Mostafa A

    2018-05-01

    Although the ultimate goal of administering active pharmaceutical ingredients (APIs) is to save countless lives, the presence of impurities and/or degradation products in APIs or formulations may cause harmful physiological effects. Today, impurity profiling (i.e., the identity as well as the quantity of impurity in a pharmaceutical) is receiving critical attention from regulatory authorities. Despite the predominant use of spectroscopic and chromatographic methods over electrochemical methods for impurity profiling of APIs, this work investigates the opportunities offered by electroanalytical methods, particularly, ion-selective electrodes (ISEs), for profiling degradation-related impurities (DRIs) compared with conventional spectroscopic and chromatographic methods. For a meaningful comparison, diatrizoate sodium (DTA) was chosen as the anionic X-ray contrast agent based on its susceptibility to deacetylation into its cytotoxic and mutagenic degradation product, 3,5-diamino-2,4,6 triiodobenzoic acid (DTB). This cationic diamino compound can be also detected as an impurity in the final product because it is used as a synthetic precursor for the synthesis of DTA. In this study, four novel sensitive and selective sensors for the determination of both DTA and its cytotoxic degradation products are presented. Sensors I and II were developed for the determination of the anionic drug, DTA, and sensors III and IV were developed for the determination of the cationic cytotoxic impurity. The use of these novel sensors not only provides a stability-indicating method for the selective determination of DTA in the presence of its degradation product, but also permits DRI profiling. Moreover, a great advantage of these proposed ISE systems is their higher sensitivity for the quantification of DTB relative to other spectroscopic and chromatographic methods, so it can measure trace amounts of DTB impurities in DTA bulk powder and pharmaceutical formulation without a need for

  4. Electrochemical immunoassay for tumor markers based on hydrogels.

    PubMed

    Yin, Shuang; Ma, Zhanfang

    2018-05-08

    Hydrogel-based electrochemical immunoassays exhibit a large surface-to-volume ratio, excellent biocompatibility, unique stimuli-responsive behavior, high permeability and hydrophilicity and, thus, have shown great potential in the sensitive and accurate detection of tumor markers. Electrochemical immunosensing techniques for tumor markers based on hydrogels have greatly progressed in recent years. Areas covered: In this review, the authors describe the recent advances of hydrogel-based electrochemical immunosensing interface of tumor markers based on the different functions of hydrogels including conductive, catalytic, redox, stimuli-responsive and antifouling hydrogels. Expert commentary: Hydrogels have been successfully employed in electrochemical immunoassay of tumor markers, which is accountable to their unique properties. For further exploitation of hydrogel-based electrochemical biosensors, more variety of hydrogels need be fabricated with improved functionality.

  5. In situ electrochemical detection of embryonic stem cell differentiation.

    PubMed

    Yea, Cheol-Heon; An, Jeung Hee; Kim, Jungho; Choi, Jeong-Woo

    2013-06-20

    Stem cell sensors have emerged as a promising technique to electrochemically monitor the functional status and viability of stem cells. However, efficient electrochemical analysis techniques are required for the development of effective electrochemical stem cell sensors. In the current study, we report a newly developed electrochemical cyclic voltammetry (CV) system to determine the status of mouse embryonic stem (ES) cells. 1-Naphthly phosphate (1-NP), which was dephosphorylated by alkaline phosphatase into a 1-naphthol on an undifferentiated mouse ES cell, was used as a substrate to electrochemically monitor the differentiation status of mouse ES cells. The peak current in the cyclic voltammetry of 1-NP increased linearly with the concentration of pure 1-NP (R(2)=0.9623). On the other hand, the peak current in the electrochemical responses of 1-NP decreased as the number of undifferentiated ES cells increased. The increased dephosphorylation of 1-NP to 1-naphthol made a decreased electrochemical signal. Non-toxicity of 1-NP was confirmed. In conclusion, the proposed electrochemical analysis system can be applied to an electrical stem cell chip for diagnosis, drug detection and on-site monitoring. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Fretting corrosion of CoCr alloy: Effect of load and displacement on the degradation mechanisms.

    PubMed

    Bryant, Michael; Neville, Anne

    2017-02-01

    Fretting corrosion of medical devices is of growing concern, yet, the interactions between tribological and electrochemical parameters are not fully understood. Fretting corrosion of CoCr alloy was simulated, and the components of damage were monitored as a function of displacement and contact pressure. Free corrosion potential (E corr ), intermittent linear polarisation resistance and cathodic potentiostatic methods were used to characterise the system. Interferometry was used to estimate material loss post rubbing. The fretting regime influenced the total material lost and the dominant degradation mechanism. At high contact pressures and low displacements, pure corrosion was dominant with wear and its synergies becoming more important as the contact pressure and displacement decreased and increased, respectively. In some cases, an antagonistic effect from the corrosion-enhanced wear contributor was observed suggesting that film formation and removal may be present. The relationship between slip mechanism and the contributors to tribocorrosion degradation is presented.

  7. Electrochemical oxidation for landfill leachate treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Yang; Englehardt, James D.

    2007-07-01

    This paper aims at providing an overview of electrochemical oxidation processes used for treatment of landfill leachate. The typical characteristics of landfill leachate are briefly reviewed, and the reactor designs used for electro-oxidation of leachate are summarized. Electrochemical oxidation can significantly reduce concentrations of organic contaminants, ammonia, and color in leachate. Pretreatment methods, anode materials, pH, current density, chloride concentration, and other additional electrolytes can considerably influence performance. Although high energy consumption and potential chlorinated organics formation may limit its application, electrochemical oxidation is a promising and powerful technology for treatment of landfill leachate.

  8. Chemically modified graphite for electrochemical cells

    DOEpatents

    Greinke, R.A.; Lewis, I.C.

    1998-05-26

    This invention relates to chemically modified graphite particles: (a) that are useful in alkali metal-containing electrode of a electrochemical cell comprising: (1) the electrode, (2) a non-aqueous electrolytic solution comprising an organic aprotic solvent which solvent tends to decompose when the electrochemical cell is in use, and an electrically conductive salt of an alkali metal, and (3) a counter electrode; and (b) that are chemically modified with fluorine, chlorine, iodine or phosphorus to reduce such decomposition. This invention also relates to electrodes comprising such chemically modified graphite and a binder and to electrochemical cells containing such electrodes. 3 figs.

  9. Chemically modified graphite for electrochemical cells

    DOEpatents

    Greinke, Ronald Alfred; Lewis, Irwin Charles

    1998-01-01

    This invention relates to chemically modified graphite particles: (a) that are useful in alkali metal-containing electrode of a electrochemical cell comprising: (i) the electrode, (ii) a non-aqueous electrolytic solution comprising an organic aprotic solvent which solvent tends to decompose when the electrochemical cell is in use, and an electrically conductive salt of an alkali metal, and (iii) a counterelectrode; and (b) that are chemically modified with fluorine, chlorine, iodine or phosphorus to reduce such decomposition. This invention also relates to electrodes comprising such chemically modified graphite and a binder and to electrochemical cells containing such electrodes.

  10. Management of processes of electrochemical dimensional processing

    NASA Astrophysics Data System (ADS)

    Akhmetov, I. D.; Zakirova, A. R.; Sadykov, Z. B.

    2017-09-01

    In different industries a lot high-precision parts are produced from hard-processed scarce materials. Forming such details can only be acting during non-contact processing, or a minimum of effort, and doable by the use, for example, of electro-chemical processing. At the present stage of development of metal working processes are important management issues electrochemical machining and its automation. This article provides some indicators and factors of electrochemical machining process.

  11. Electrochemical push-pull probe: from scanning electrochemical microscopy to multimodal altering of cell microenvironment.

    PubMed

    Bondarenko, Alexandra; Cortés-Salazar, Fernando; Gheorghiu, Mihaela; Gáspár, Szilveszter; Momotenko, Dmitry; Stanica, Luciana; Lesch, Andreas; Gheorghiu, Eugen; Girault, Hubert H

    2015-04-21

    To understand biological processes at the cellular level, a general approach is to alter the cells' environment and to study their chemical responses. Herein, we present the implementation of an electrochemical push-pull probe, which combines a microfluidic system with a microelectrode, as a tool for locally altering the microenvironment of few adherent living cells by working in two different perturbation modes, namely electrochemical (i.e., electrochemical generation of a chemical effector compound) and microfluidic (i.e., infusion of a chemical effector compound from the pushing microchannel, while simultaneously aspirating it through the pulling channel, thereby focusing the flow between the channels). The effect of several parameters such as flow rate, working distance, and probe inclination angle on the affected area of adherently growing cells was investigated both theoretically and experimentally. As a proof of concept, localized fluorescent labeling and pH changes were purposely introduced to validate the probe as a tool for studying adherent cancer cells through the control over the chemical composition of the extracellular space with high spatiotemporal resolution. A very good agreement between experimental and simulated results showed that the electrochemical perturbation mode enables to affect precisely only a few living cells localized in a high-density cell culture.

  12. DEGRADATION ISSUES IN SOLID OXIDE CELLS DURING HIGH TEMPERATURE ELECTROLYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. S. Sohal; J. E. O'Brien; C. M. Stoots

    2012-02-01

    Idaho National Laboratory (INL) is performing high-temperature electrolysis research to generate hydrogen using solid oxide electrolysis cells (SOECs). The project goals are to address the technical and degradation issues associated with the SOECs. This paper provides a summary of various ongoing INL and INL sponsored activities aimed at addressing SOEC degradation. These activities include stack testing, post-test examination, degradation modeling, and a list of issues that need to be addressed in future. Major degradation issues relating to solid oxide fuel cells (SOFC) are relatively better understood than those for SOECs. Some of the degradation mechanisms in SOFCs include contact problemsmore » between adjacent cell components, microstructural deterioration (coarsening) of the porous electrodes, and blocking of the reaction sites within the electrodes. Contact problems include delamination of an electrode from the electrolyte, growth of a poorly (electronically) conducting oxide layer between the metallic interconnect plates and the electrodes, and lack of contact between the interconnect and the electrode. INL's test results on high temperature electrolysis (HTE) using solid oxide cells do not provide a clear evidence whether different events lead to similar or drastically different electrochemical degradation mechanisms. Post-test examination of the solid oxide electrolysis cells showed that the hydrogen electrode and interconnect get partially oxidized and become non-conductive. This is most likely caused by the hydrogen stream composition and flow rate during cool down. The oxygen electrode side of the stacks seemed to be responsible for the observed degradation due to large areas of electrode delamination. Based on the oxygen electrode appearance, the degradation of these stacks was largely controlled by the oxygen electrode delamination rate. University of Utah (Virkar) has developed a SOEC model based on concepts in local thermodynamic equilibrium in

  13. DEGRADATION ISSUES IN SOLID OXIDE CELLS DURING HIGH TEMPERATURE ELECTROLYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. E. O'Brien; C. M. Stoots; V. I. Sharma

    2010-06-01

    Idaho National Laboratory (INL) is performing high-temperature electrolysis research to generate hydrogen using solid oxide electrolysis cells (SOECs). The project goals are to address the technical and degradation issues associated with the SOECs. This paper provides a summary of various ongoing INL and INL sponsored activities aimed at addressing SOEC degradation. These activities include stack testing, post-test examination, degradation modeling, and a list of issues that need to be addressed in future. Major degradation issues relating to solid oxide fuel cells (SOFC) are relatively better understood than those for SOECs. Some of the degradation mechanisms in SOFCs include contact problemsmore » between adjacent cell components, microstructural deterioration (coarsening) of the porous electrodes, and blocking of the reaction sites within the electrodes. Contact problems include delamination of an electrode from the electrolyte, growth of a poorly (electronically) conducting oxide layer between the metallic interconnect plates and the electrodes, and lack of contact between the interconnect and the electrode. INL’s test results on high temperature electrolysis (HTE) using solid oxide cells do not provide a clear evidence whether different events lead to similar or drastically different electrochemical degradation mechanisms. Post-test examination of the solid oxide electrolysis cells showed that the hydrogen electrode and interconnect get partially oxidized and become non-conductive. This is most likely caused by the hydrogen stream composition and flow rate during cool down. The oxygen electrode side of the stacks seemed to be responsible for the observed degradation due to large areas of electrode delamination. Based on the oxygen electrode appearance, the degradation of these stacks was largely controlled by the oxygen electrode delamination rate. University of Utah (Virkar) has developed a SOEC model based on concepts in local thermodynamic equilibrium

  14. Comparison of phthalic acid removal from aqueous solution by electrochemical methods: Optimization, kinetic and sludge study.

    PubMed

    Sandhwar, Vishal Kumar; Prasad, Basheshwar

    2017-12-01

    In this work, comparative study between electrochemical processes such as electrocoagulation (EC), peroxi-coagulation (PC) and peroxi-electrocoagulation (PEC) was performed for the removal of phthalic acid (PA) and chemical oxygen demand (COD) from aqueous medium. Initially, acid treatment was studied at various pH (1-3) and temperature (10-55 °C). Subsequently, the supernatant was re-treated by electrochemical processes such as EC, PC and PEC separately. Independent parameters viz. pH, current density (CD), electrolyte concentration (m), electrode gap (g), H 2 O 2 concentration and electrolysis time (t) were optimized by Central Composite Design (CCD) for these electrochemical processes. All three processes were compared based on removal, energy consumption, kinetic analysis, operating cost and sludge characteristics. In this study, PEC process was found more efficient among EC, PC and PEC processes in order to get maximum removal, minimum energy consumption and minimum operating cost. Maximum removal of PA- 68.21%, 74.36%, 82.25% & COD- 64.79%, 68.15%, 75.21% with energy consumption - 120.95, 97.51, 65.68 (kWh/kg COD removed) were attained through EC, PC and PEC processes respectively at their corresponding optimum conditions. Results indicated that PA and COD removals are in order of PEC > PC > EC under optimum conditions. First order kinetic model was found able to describe the degradation kinetics and provided best correlation for the removal rate within the acceptable error range. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Electrochemical construction

    DOEpatents

    Einstein, Harry; Grimes, Patrick G.

    1983-08-23

    An electrochemical cell construction features a novel co-extruded plastic electrode in an interleaved construction with a novel integral separator-spacer. Also featured is a leak and impact resistant construction for preventing the spill of corrosive materials in the event of rupture.

  16. Degradation forecast for PEMFC cathode-catalysts under cyclic loads

    NASA Astrophysics Data System (ADS)

    Moein-Jahromi, M.; Kermani, M. J.; Movahed, S.

    2017-08-01

    Degradation of Fuel Cell (FC) components under cyclic loads is one of the biggest bottlenecks in FC commercialization. In this paper, a novel experimental based algorithm is presented to predict the Catalyst Layer (CL) performance loss during cyclic load. The algorithm consists of two models namely Models 1 and 2. The Model 1 calculates the Electro-Chemical Surface Area (ECSA) and agglomerate size (e.g. agglomerate radius, rt,agg) for the catalyst layer under cyclic load. The Model 2 is the already-existing model from our earlier studies that computes catalyst performance with fixed structural parameters. Combinations of these two Models predict the CL performance under an arbitrary cyclic load. A set of parametric/sensitivity studies is performed to investigate the effects of operating parameters on the percentage of Voltage Degradation Rate (VDR%) with rank 1 for the most influential one. Amongst the considered parameters (such as: temperature, relative humidity, pressure, minimum and maximum voltage of the cyclic load), the results show that temperature and pressure have the most and the least influences on the VDR%, respectively. So that, increase of temperature from 60 °C to 80 °C leads to over 20% VDR intensification, the VDR will also reduce 1.41% by increasing pressure from 2 atm to 4 atm.

  17. Review on electrochromic devices for automotive glazing

    NASA Astrophysics Data System (ADS)

    Demiryont, Hulya

    1991-12-01

    Electrochromic materials have been intensively studied for applications of various switchable optical systems. These materials exhibit adjustable optical absorption upon reversible oxidation/reduction processes. Since a reversible oxidation/reduction phenomenon is provided by electrically-driven electrochemical reactions, these materials are known as electrochromics. There are many publications including proceedings, books, and review articles written on electrochromic (EC) materials and their applications. This paper focuses on conventional and some new electrochromic devices (ECD), their specifications, and applications.

  18. System and method for networking electrochemical devices

    DOEpatents

    Williams, Mark C.; Wimer, John G.; Archer, David H.

    1995-01-01

    An improved electrochemically active system and method including a plurality of electrochemical devices, such as fuel cells and fluid separation devices, in which the anode and cathode process-fluid flow chambers are connected in fluid-flow arrangements so that the operating parameters of each of said plurality of electrochemical devices which are dependent upon process-fluid parameters may be individually controlled to provide improved operating efficiency. The improvements in operation include improved power efficiency and improved fuel utilization in fuel cell power generating systems and reduced power consumption in fluid separation devices and the like through interstage process fluid parameter control for series networked electrochemical devices. The improved networking method includes recycling of various process flows to enhance the overall control scheme.

  19. Characteristics for electrochemical machining with nanoscale voltage pulses.

    PubMed

    Lee, E S; Back, S Y; Lee, J T

    2009-06-01

    Electrochemical machining has traditionally been used in highly specialized fields, such as those of the aerospace and defense industries. It is now increasingly being applied in other industries, where parts with difficult-to-cut material, complex geometry and tribology, and devices of nanoscale and microscale are required. Electric characteristic plays a principal function role in and chemical characteristic plays an assistant function role in electrochemical machining. Therefore, essential parameters in electrochemical machining can be described current density, machining time, inter-electrode gap size, electrolyte, electrode shape etc. Electrochemical machining provides an economical and effective method for machining high strength, high tension and heat-resistant materials into complex shapes such as turbine blades of titanium and aluminum alloys. The application of nanoscale voltage pulses between a tool electrode and a workpiece in an electrochemical environment allows the three-dimensional machining of conducting materials with sub-micrometer precision. In this study, micro probe are developed by electrochemical etching and micro holes are manufactured using these micro probe as tool electrodes. Micro holes and microgroove can be accurately achieved by using nanoscale voltages pulses.

  20. Superhydrophobic surfaces by electrochemical processes.

    PubMed

    Darmanin, Thierry; Taffin de Givenchy, Elisabeth; Amigoni, Sonia; Guittard, Frederic

    2013-03-13

    This review is an exhaustive representation of the electrochemical processes reported in the literature to produce superhydrophobic surfaces. Due to the intensive demand in the elaboration of superhydrophobic materials using low-cost, reproducible and fast methods, the use of strategies based on electrochemical processes have exponentially grown these last five years. These strategies are separated in two parts: the oxidation processes, such as oxidation of metals in solution, the anodization of metals or the electrodeposition of conducting polymers, and the reduction processed such as the electrodeposition of metals or the galvanic deposition. One of the main advantages of the electrochemical processes is the relative easiness to produce various surface morphologies and a precise control of the structures at a micro- or a nanoscale. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Electrochemical Corrosion and In vitro Biocompatibility Performance of AZ31Mg/Al2O3 Nanocomposite in Simulated Body Fluid

    NASA Astrophysics Data System (ADS)

    Madhan Kumar, A.; Fida Hassan, S.; Sorour, Ahmad A.; Paramsothy, M.; Gupta, M.

    2018-06-01

    In this present investigation, AZ31 alloy nanocomposite was prepared with the inclusion of Al2O3 nanoparticles using innovative disintegrated melt deposition (DMD) process followed by hot extrusion to improve the corrosion resistance and in vitro biocompatibility in simulated body fluid (SBF). This investigation systematically inspected the degradation performances of AZ31 alloy with Al2O3 nanoparticles through hydrogen evolution, weight loss and electrochemical methods in SBF. Further, the surface microstructure with the in vitro mineralization of the alloys in SBF was characterized by XRD, XPS, and SEM/EDS analysis. It was seen that the addition of Al2O3 nanoparticles significantly decreased the weight loss of AZ31 alloy substrates after 336 h of exposure in SBF. The corrosion resistance of the monolithic and nanocomposite samples was evaluated using potentiodynamic polarization tests, electrochemical impedance spectroscopy measurements in short- and long-term periods. Accordingly, the electrochemical analysis in SBF showed that the corrosion resistance performance of the AZ31 alloy enhanced considerably due to the incorporation of Al2O3 nanoparticles as reinforcement. Moreover, the rapid formation of bone-like apatite layer on the surface of the nanocomposite substrate demonstrated a good bioactivity of the nanocomposite samples in SBF.

  2. Degradation modeling of high temperature proton exchange membrane fuel cells using dual time scale simulation

    NASA Astrophysics Data System (ADS)

    Pohl, E.; Maximini, M.; Bauschulte, A.; vom Schloß, J.; Hermanns, R. T. E.

    2015-02-01

    HT-PEM fuel cells suffer from performance losses due to degradation effects. Therefore, the durability of HT-PEM is currently an important factor of research and development. In this paper a novel approach is presented for an integrated short term and long term simulation of HT-PEM accelerated lifetime testing. The physical phenomena of short term and long term effects are commonly modeled separately due to the different time scales. However, in accelerated lifetime testing, long term degradation effects have a crucial impact on the short term dynamics. Our approach addresses this problem by applying a novel method for dual time scale simulation. A transient system simulation is performed for an open voltage cycle test on a HT-PEM fuel cell for a physical time of 35 days. The analysis describes the system dynamics by numerical electrochemical impedance spectroscopy. Furthermore, a performance assessment is performed in order to demonstrate the efficiency of the approach. The presented approach reduces the simulation time by approximately 73% compared to conventional simulation approach without losing too much accuracy. The approach promises a comprehensive perspective considering short term dynamic behavior and long term degradation effects.

  3. Electrochemical capacitor

    DOEpatents

    Anderson, Marc A.; Liu, Kuo -Chuan; Mohr, Charles M.

    1999-10-05

    An inexpensive porous metal oxide material having high surface area, good conductivity and high specific capacitance is advantageously used in an electrochemical capacitor. The materials are formed in a sol-gel process which affords control over the properties of the resultant metal oxide materials.

  4. Electrochemical Engineering.

    ERIC Educational Resources Information Center

    Alkire, Richard C.

    1983-01-01

    Discusses engineering ramifications of electrochemistry, focusing on current/potential distribution, evaluation of trade-offs between influences of different phenomena, use of dimensionless numbers to assist in scale-over to new operating conditions, and economics. Also provides examples of electrochemical engineering education content related to…

  5. Thermal conductor for high-energy electrochemical cells

    DOEpatents

    Hoffman, Joseph A.; Domroese, Michael K.; Lindeman, David D.; Radewald, Vern E.; Rouillard, Roger; Trice, Jennifer L.

    2000-01-01

    A thermal conductor for use with an electrochemical energy storage device is disclosed. The thermal conductor is attached to one or both of the anode and cathode contacts of an electrochemical cell. A resilient portion of the conductor varies in height or position to maintain contact between the conductor and an adjacent wall structure of a containment vessel in response to relative movement between the conductor and the wall structure. The thermal conductor conducts current into and out of the electrochemical cell and conducts thermal energy between the electrochemical cell and thermally conductive and electrically resistive material disposed between the conductor and the wall structure. The thermal conductor may be fabricated to include a resilient portion having one of a substantially C-shaped, double C-shaped, Z-shaped, V-shaped, O-shaped, S-shaped, or finger-shaped cross-section. An elastomeric spring element may be configured so as to be captured by the resilient conductor for purposes of enhancing the functionality of the thermal conductor. The spring element may include a protrusion that provides electrical insulation between the spring conductor and a spring conductor of an adjacently disposed electrochemical cell in the presence of relative movement between the cells and the wall structure. The thermal conductor may also be fabricated from a sheet of electrically conductive material and affixed to the contacts of a number of electrochemical cells.

  6. Effect of chemical treatment on the electrochemical properties of Li1.2NixMn0.8-xO2 (x = 0.2 and 0.25) in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Konishi, Hiroaki; Hirano, Tatsumi; Takamatsu, Daiko; Gunji, Akira; Feng, Xiaoliang; Furutsuki, Sho; Okumura, Takefumi; Terada, Shohei

    2018-02-01

    The effect of chemical treatment using (NH4)2SO4 on the electrochemical properties of Li1.2Ni0.2Mn0.6O2 and Li1.2Ni0.25Mn0.55O2 was investigated. The treatment was effective in improving the Coulombic efficiency and discharge capacity of a Li1.2Ni0.2Mn0.6O2 cathode, but treatment with too much (NH4)2SO4 degraded the cathode's electrochemical performance. The effect of (NH4)2SO4 treatment on the charge-discharge reaction mechanism of Li1.2Ni0.2Mn0.6O2 was investigated by evaluating reaction potential, particle configuration, and oxidation state of transition metal. The experimental results indicated that the changes in the electrochemical performance of the treated cathodes were attributed to the changes in the surface state and of the element contributing to the redox reaction. Treatment with an appropriate amount of (NH4)2SO4 also improved the electrochemical performance of the high-nickel-content lithium-rich layer-structured cathode material Li1.2Ni0.25Mn0.55O2.

  7. Improved photocatalytic degradation of chlorophenol over Pt/Bi2WO6 on addition of phosphate

    NASA Astrophysics Data System (ADS)

    Meng, Jie; Xiong, Xianqiang; Zhang, Xiao; Xu, Yiming

    2018-05-01

    Bismuth tungstate (BiW) is a promising visible light photocatalyst. Herein we report a synergism between Pt and phosphate that increases the UV and visible light activities of BiW by factors of 32 and 15, respectively, for phenol degradation in neutral aqueous solution. BiW was home-made, followed by a photochemical deposition of Pt (Pt/BiW). On the addition of phosphate, the reaction rates on BiW and Pt/BiW in aqueous solution were decreased and increased, respectively. Such a phosphate effect was also observed from the reduction of O2 to H2O2, and from 2,4-dichlorophenol degradation. Moreover, the rate of phenol degradation was proportional to the amount of phosphate adsorption on Pt/BiW, and the phosphate activity increased in the order H3PO4 < H2PO4- < HPO42-. A (photo)electrochemical measurement revealed that Pt and phosphate catalyzed the electron reduction of O2 and the hole oxidation of phenol, respectively. A possible mechanism is proposed, involving the hole oxidation of phosphate into a phosphate radical, followed by phenol oxidation in aqueous phase. As phosphate loading exceeded 0.50 mM, however, the rates of phenol degradation on Pt/BiW under UV and visible light decreased with the phosphate loading. This is ascribed to recombination of the phosphate radicals into a less reactive peroxobiphosphate.

  8. Low elastic modulus Ti-Ta alloys for load-bearing permanent implants: enhancing the biodegradation resistance by electrochemical surface engineering.

    PubMed

    Kesteven, Jazmin; Kannan, M Bobby; Walter, Rhys; Khakbaz, Hadis; Choe, Han-Choel

    2015-01-01

    In this study, the in vitro degradation behaviour of titanium-tantalum (Ti-Ta) alloys (10-30 wt.% Ta) was investigated and compared with conventional implant materials, i.e., commercially pure titanium (Cp-Ti) and titanium-aluminium-vanadium (Ti6Al4V) alloy. Among the three Ti-Ta alloys studied, the Ti20Ta (6.3×10(-4) mm/y) exhibited the lowest degradation rate, followed by Ti30Ta (1.2×10(-3) mm/y) and Ti10Ta (1.4×10(-3) mm/y). All the Ti-Ta alloys exhibited lower degradation rate than that of Cp-Ti (1.8×10(-3) mm/y), which suggests that Ta addition to Ti is beneficial. As compared to Ti6Al4V alloy (8.1×10(-4) mm/y), the degradation rate of Ti20Ta alloy was lower by ~22%. However, the Ti30Ta alloy, which has closer elastic modulus to that of natural bone, showed ~48% higher degradation rate than that of Ti6Al4V alloy. Hence, to improve the degradation performance of Ti30Ta alloy, an intermediate thin porous layer was formed electrochemically on the alloy followed by calcium phosphate (CaP) electrodeposition. The coated Ti30Ta alloy (3.8×10(-3) mm/y) showed ~53% lower degradation rate than that of Ti6Al4V alloy. Thus, the study suggests that CaP coated Ti30Ta alloy can be a viable material for load-bearing permanent implants. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Method for making an electrochemical cell

    DOEpatents

    Tuller, Harry L.; Kramer, Steve A.; Spears, Marlene A.; Pal, Uday B.

    1996-01-01

    An electrochemical device including a solid electrolyte and solid electrode composed of materials having different chemical compositions and characterized by different electrical properties but having the same crystalline phase is provided. A method for fabricating an electrochemical device having a solid electrode and solid electrolyte characterized by the same crystalline phase is provided.

  10. Degradation of magnesium and its alloys: dependence on the composition of the synthetic biological media.

    PubMed

    Mueller, Wolf-Dieter; de Mele, Monica Fernández Lorenzo; Nascimento, Maria Lucia; Zeddies, Miriam

    2009-08-01

    Magnesium and its alloys are highly degradable metals that are potentially useful as biomaterials, especially in orthopaedic and cardiovascular applications. However, the in vivo corrosion has proved to be too high. Because of the complexity of in vivo conditions, a careful study of the corrosion of magnesium in synthetic solutions that simulate the in vivo environment is necessary as a first approach to predict the actual in vivo situation. The aim of this work was to evaluate the influence of the electrolyte composition on the corrosion behavior of magnesium and two Mg-alloys in synthetic biological media. Pure magnesium and its alloys (AZ31 and LAE442) were employed in the experiments. Electrochemical potentiodynamic polarization curves were recorded in sodium chloride and PBS electrolytes with different chloride ion and albumin concentration. Optical and SEM observations complemented by EDX analysis were made. The results showed that magnesium corrosion is localized in chloride- and albumin-containing buffer solutions. They also showed that the chloride concentration and the presence of buffer and protein strongly affect the electrochemical behavior of magnesium and magnesium alloys.

  11. Cerebral perfusion abnormalities in therapy-resistant epilepsy in childhood: comparison between EEG, MRI and 99Tcm-ECD brain SPET.

    PubMed

    Vattimo, A; Burroni, L; Bertelli, P; Volterrani, D; Vella, A

    1996-01-01

    We performed 99Tcm-ethyl cysteinate dimer (ECD) interictal single photon emission tomography (SPET) in 26 children with severe therapy-resistant epilepsy. All the children underwent a detailed clinical examination, an electroencephalogram (EEG) investigation and brain magnetic resonance imaging (MRI). In 21 of the 26 children, SPET demonstrated brain blood flow abnormalities, in 13 cases in the same territories that showed EEG alterations. MRI showed structural lesions in 6 of the 26 children, while SPET imaging confirmed these abnormalities in only 5 children. The lesion not detected on SPET was shown to be 3 mm thick on MRI. Five symptomatic patients had normal SPET. In one of these patients, the EEG findings were normal and MRI revealed a small calcific nodule (4 mm thick); in the others, the EEG showed non-focal but diffuse abnormalities. These data confirm that brain SPET is sensitive in detecting and localizing hypoperfused areas that could be associated with epileptic foci in this group of patients, even when the MRI image is normal.

  12. Electrochemical Performance of Ni-MOFs for Supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Yujuan; Song, Lili; Han, Yinghui; Wang, Guangyou

    2018-03-01

    In this work, the Ni-MOFs of electrode material has been synthesized, characterized and studied for the electrochemical properties of electrode materials. The effects of the doping amount of Ni, calcination temperature and time were studied in detail. The results suggested that the electrochemical properties were obviously improved by the Ni-MOFs of electrode material and the best preparation conditions can also improve the electrochemical properties of electrode materials. These results open a way for the design of tailored MOFs as electrode materials for supercapacitors.

  13. APPLICATIONS OF ELECTROCHEMICAL IMMUNOSENSORS TO ENVIRONMENTAL MONITORING

    EPA Science Inventory

    This paper discusses basic electrochemical immunoassay technology. Factors limiting the practical application of antibodies to anlaytical problems are also presented. It addresses the potential use of immunoassay methods based on electrochemical detection for the analysis of env...

  14. ELECTROCHEMICAL DECHLORINATIONOF 2-CHLOROBIPHENYL IN AQUEOUS SOLUTION

    EPA Science Inventory

    This paper presents electrochemical dechlorination of 2-chlorobiphenyl (2-CI BP) in aqueous environment using palladium modified granular graphite electrodes. 2-CI BP, the PCB congener that requires the highest reduction potential, was effectively dechlorinated in electrochemical...

  15. Electrochemical Affinity Biosensors Based on Disposable Screen-Printed Electrodes for Detection of Food Allergens

    PubMed Central

    Vasilescu, Alina; Nunes, Gilvanda; Hayat, Akhtar; Latif, Usman; Marty, Jean-Louis

    2016-01-01

    Food allergens are proteins from nuts and tree nuts, fish, shellfish, wheat, soy, eggs or milk which trigger severe adverse reactions in the human body, involving IgE-type antibodies. Sensitive detection of allergens in a large variety of food matrices has become increasingly important considering the emergence of functional foods and new food manufacturing technologies. For example, proteins such as casein from milk or lysozyme and ovalbumin from eggs are sometimes used as fining agents in the wine industry. Nonetheless, allergen detection in processed foods is a challenging endeavor, as allergen proteins are degraded during food processing steps involving heating or fermentation. Detection of food allergens was primarily achieved via Enzyme-Linked Immuno Assay (ELISA) or by chromatographic methods. With the advent of biosensors, electrochemical affinity-based biosensors such as those incorporating antibodies and aptamers as biorecognition elements were also reported in the literature. In this review paper, we highlight the success achieved in the design of electrochemical affinity biosensors based on disposable screen-printed electrodes towards detection of protein allergens. We will discuss the analytical figures of merit for various disposable screen-printed affinity sensors in relation to methodologies employed for immobilization of bioreceptors on transducer surface. PMID:27827963

  16. 4D nano-tomography of electrochemical energy devices using lab-based X-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heenan, T. M. M.; Finegan, D. P.; Tjaden, B.

    Electrochemical energy devices offer a variety of alternate means for low-carbon, multi-scale energy conversion and storage. Reactions in these devices are supported by electrodes with characteristically complex microstructures. To meet the increasing capacity and lifetime demands across a range of applications, it is essential to understand microstructural evolutions at a cell and electrode level which are thought to be critical aspects influencing material and device lifetime and performance. X-ray computed tomography (CT) has become a highly employed method for non-destructive characterisation of such microstructures with high spatial resolution. However, sub-micron resolutions present significant challenges for sample preparation and handling particularlymore » in 4D studies, (three spatial dimensions plus time). Here, microstructural information is collected from the same region of interest within two electrode materials: a solid oxide fuel cell and the positive electrode from a lithium-ion battery. Using a lab-based X-ray instrument, tomograms with sub-micron resolutions were obtained between thermal cycling. The intricate microstructural evolutions captured within these two materials provide model examples of 4D X-ray nano-CT capabilities in tracking challenging degradation mechanisms. This technique is valuable in the advancement of electrochemical research as well as broader applications for materials characterisation.« less

  17. Study of Electrochemical Reduction of CO2 for Future Use in Secondary Microbial Electrochemical Technologies.

    PubMed

    Gimkiewicz, Carla; Hegner, Richard; Gutensohn, Mareike F; Koch, Christin; Harnisch, Falk

    2017-03-09

    The fluctuation and decentralization of renewable energy have triggered the search for respective energy storage and utilization. At the same time, a sustainable bioeconomy calls for the exploitation of CO 2 as feedstock. Secondary microbial electrochemical technologies (METs) allow both challenges to be tackled because the electrochemical reduction of CO 2 can be coupled with microbial synthesis. Because this combination creates special challenges, the electrochemical reduction of CO 2 was investigated under conditions allowing microbial conversions, that is, for their future use in secondary METs. A reproducible electrodeposition procedure of In on a graphite backbone allowed a systematic study of formate production from CO 2 with a high number of replicates. Coulomb efficiencies and formate production rates of up to 64.6±6.8 % and 0.013±0.002 mmol formate  h -1  cm -2 , respectively, were achieved. Electrode redeposition, reusability, and long-term performance were investigated. Furthermore, the effect of components used in microbial media, that is, yeast extract, trace elements, and phosphate salts, on the electrode performance was addressed. The results demonstrate that the integration of electrochemical reduction of CO 2 in secondary METs can become technologically relevant. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Non-aqueous electrolytes for electrochemical cells

    DOEpatents

    Zhang, Zhengcheng; Dong, Jian; Amine, Khalil

    2016-06-14

    An electrolyte electrochemical device includes an anodic material and an electrolyte, the electrolyte including an organosilicon solvent, a salt, and a hybrid additiving having a first and a second compound, the hybrid additive configured to form a solid electrolyte interphase film on the anodic material upon application of a potential to the electrochemical device.

  19. Method of determining methane and electrochemical sensor therefor

    DOEpatents

    Zaromb, Solomon; Otagawa, Takaaki; Stetter, Joseph R.

    1986-01-01

    A method and instrument including an electrochemical cell for the detection and measurement of methane in a gas by the oxidation of methane electrochemically at a working electrode in a nonaqueous electrolyte at a voltage about about 1.4 volts versus R.H.E. (the reversible hydrogen electrode potential in the same electrolyte), and the measurement of the electrical signal resulting from the electrochemical oxidation.

  20. Electrochemical fabrication of capacitors

    DOEpatents

    Mansour, Azzam N.; Melendres, Carlos A.

    1999-01-01

    A film of nickel oxide is anodically deposited on a graphite sheet held in osition on an electrochemical cell during application of a positive electrode voltage to the graphite sheet while exposed to an electrolytic nickel oxide solution within a volumetrically variable chamber of the cell. An angularly orientated x-ray beam is admitted into the cell for transmission through the deposited nickel oxide film in order to obtain structural information while the film is subject to electrochemical and in-situ x-ray spectroscopy from which optimum film thickness, may be determined by comparative analysis for capacitor fabrication purposes.

  1. Electrochemical reduction of carbon dioxide. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaConti, A.B.; Molter, T.M.; Zagaja, J.A.

    1986-05-01

    Many researchers have studied the electrochemical reduction of carbon dioxide and related organic species to form concentrated liquid/gaseous products in laboratory-scale hardware. Hamilton Standard has developed a high pressure SPE electrolysis cell capable of reducing carbon dioxide streams to form pure, concentrated alcohols, carboxylic acids, and other hydrocarbons. The process is unique in that the byproducts of reaction include oxygen and, under some test conditions water. In addition, a relatively simple test system was designed and constructed permitting both batch and semibatch type electrochemical reduction studies. In this study, cathode materials were developed which 1) had a characteristic high hydrogenmore » overvoltage, and 2) possessed the intrinsic affinity for electrochemical reduction of the carbon dioxide species. In addition, suitable anode electrocatalyst materials were identified. Studies involving the electrochemical reduction of carbon dioxide required the ability to identify and quantify reaction products obtained during cell evaluation. Gas chromatographic techniques were developed along with the establishment of ion chromatographic methods permitting the analysis of organic reaction products. Hamilton Standard has evaluated electrochemical carbon dioxide reduction cells under a variety of test conditions.« less

  2. Emerging electrochemical energy conversion and storage technologies

    NASA Astrophysics Data System (ADS)

    Badwal, Sukhvinder; Giddey, Sarbjit; Munnings, Christopher; Bhatt, Anand; Hollenkamp, Tony

    2014-09-01

    Electrochemical cells and systems play a key role in a wide range of industry sectors. These devices are critical enabling technologies for renewable energy; energy management, conservation and storage; pollution control / monitoring; and greenhouse gas reduction. A large number of electrochemical energy technologies have been developed in the past. These systems continue to be optimized in terms of cost, life time and performance, leading to their continued expansion into existing and emerging market sectors. The more established technologies such as deep-cycle batteries and sensors are being joined by emerging technologies such as fuel cells, large format lithium-ion batteries, electrochemical reactors; ion transport membranes and supercapacitors. This growing demand (multi billion dollars) for electrochemical energy systems along with the increasing maturity of a number of technologies is having a significant effect on the global research and development effort which is increasing in both in size and depth. A number of new technologies, which will have substantial impact on the environment and the way we produce and utilize energy, are under development. This paper presents an overview of several emerging electrochemical energy technologies along with a discussion some of the key technical challenges.

  3. Emerging electrochemical energy conversion and storage technologies

    PubMed Central

    Badwal, Sukhvinder P. S.; Giddey, Sarbjit S.; Munnings, Christopher; Bhatt, Anand I.; Hollenkamp, Anthony F.

    2014-01-01

    Electrochemical cells and systems play a key role in a wide range of industry sectors. These devices are critical enabling technologies for renewable energy; energy management, conservation, and storage; pollution control/monitoring; and greenhouse gas reduction. A large number of electrochemical energy technologies have been developed in the past. These systems continue to be optimized in terms of cost, life time, and performance, leading to their continued expansion into existing and emerging market sectors. The more established technologies such as deep-cycle batteries and sensors are being joined by emerging technologies such as fuel cells, large format lithium-ion batteries, electrochemical reactors; ion transport membranes and supercapacitors. This growing demand (multi billion dollars) for electrochemical energy systems along with the increasing maturity of a number of technologies is having a significant effect on the global research and development effort which is increasing in both in size and depth. A number of new technologies, which will have substantial impact on the environment and the way we produce and utilize energy, are under development. This paper presents an overview of several emerging electrochemical energy technologies along with a discussion some of the key technical challenges. PMID:25309898

  4. Process for electrochemically gasifying coal using electromagnetism

    DOEpatents

    Botts, Thomas E.; Powell, James R.

    1987-01-01

    A process for electrochemically gasifying coal by establishing a flowing stream of coal particulate slurry, electrolyte and electrode members through a transverse magnetic field that has sufficient strength to polarize the electrode members, thereby causing them to operate in combination with the electrolyte to electrochemically reduce the coal particulate in the slurry. Such electrochemical reduction of the coal produces hydrogen and carbon dioxide at opposite ends of the polarized electrode members. Gas collection means are operated in conjunction with the process to collect the evolved gases as they rise from the slurry and electrolyte solution.

  5. Electrochemical cell structure including an ionomeric barrier

    DOEpatents

    Lambert, Timothy N.; Hibbs, Michael

    2017-06-20

    An apparatus includes an electrochemical half-cell comprising: an electrolyte, an anode; and an ionomeric barrier positioned between the electrolyte and the anode. The anode may comprise a multi-electron vanadium phosphorous alloy, such as VP.sub.x, wherein x is 1-5. The electrochemical half-cell is configured to oxidize the vanadium and phosphorous alloy to release electrons. A method of mitigating corrosion in an electrochemical cell includes disposing an ionomeric barrier in a path of electrolyte or ion flow to an anode and mitigating anion accumulation on the surface of the anode.

  6. Supported liquid membrane electrochemical separators

    DOEpatents

    Pemsler, J. Paul; Dempsey, Michael D.

    1986-01-01

    Supported liquid membrane separators improve the flexibility, efficiency and service life of electrochemical cells for a variety of applications. In the field of electrochemical storage, an alkaline secondary battery with improved service life is described in which a supported liquid membrane is interposed between the positive and negative electrodes. The supported liquid membranes of this invention can be used in energy production and storage systems, electrosynthesis systems, and in systems for the electrowinning and electrorefining of metals.

  7. Degradable polyphosphazene/poly(alpha-hydroxyester) blends: degradation studies.

    PubMed

    Ambrosio, Archel M A; Allcock, Harry R; Katti, Dhirendra S; Laurencin, Cato T

    2002-04-01

    Biomaterials based on the polymers of lactic acid and glycolic acid and their copolymers are used or studied extensively as implantable devices for drug delivery, tissue engineering and other biomedical applications. Although these polymers have shown good biocompatibility, concerns have been raised regarding their acidic degradation products, which have important implications for long-term implantable systems. Therefore, we have designed a novel biodegradable polyphosphazene/poly(alpha-hydroxyester) blend whose degradation products are less acidic than those of the poly(alpha-hydroxyester) alone. In this study, the degradation characteristics of a blend of poly(lactide-co-glycolide) (50:50 PLAGA) and poly[(50% ethyl glycinato)(50% p-methylphenoxy) phosphazene] (PPHOS-EG50) were qualitatively and quantitatively determined with comparisons made to the parent polymers. Circular matrices (14mm diameter) of the PLAGA, PPHOS-EG50 and PLAGA-PPHOS-EG50 blend were degraded in non-buffered solutions (pH 7.4). The degraded polymers were characterized for percentage mass loss and molecular weight and the degradation medium was characterized for acid released in non-buffered solutions. The amounts of neutralizing base necessary to bring about neutral pH were measured for each polymer or polymer blend during degradation. The poly(phosphazene)/poly(lactide-co-glycolide) blend required significantly less neutralizing base in order to bring about neutral solution pH during the degradation period studied. The results indicated that the blend degraded at a rate intermediate to that of the parent polymers and that the degradation products of the polyphosphazene neutralized the acidic degradation products of PLAGA. Thus, results from these in vitro degradation studies suggest that the PLAGA-PPHOS-EG50 blend may provide a viable improvement to biomaterials based on acid-releasing organic polymers.

  8. In Vitro Degradation of Pure Magnesium―The Effects of Glucose and/or Amino Acid

    PubMed Central

    Wang, Yu; Cui, Lan-Yue; Li, Shuo-Qi; Zou, Yu-Hong; Han, En-Hou

    2017-01-01

    The influences of glucose and amino acid (L-cysteine) on the degradation of pure magnesium have been investigated using SEM, XRD, Fourier transformed infrared (FTIR), X-ray photoelectron spectroscopy (XPS), polarization and electrochemical impedance spectroscopy and immersion tests. The results demonstrate that both amino acid and glucose inhibit the corrosion of pure magnesium in saline solution, whereas the presence of both amino acid and glucose accelerates the corrosion rate of pure magnesium. This may be due to the formation of -C=N- bonding (a functional group of Schiff bases) between amino acid and glucose, which restricts the formation of the protective Mg(OH)2 precipitates. PMID:28773085

  9. Simultaneously Coupled Mechanical-Electrochemical-Thermal Simulation of Lithium-Ion Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, C.; Santhanagopalan, S.; Sprague, M. A.

    2016-07-28

    Understanding the combined electrochemical-thermal and mechanical response of a system has a variety of applications, for example, structural failure from electrochemical fatigue and the potential induced changes of material properties. For lithium-ion batteries, there is an added concern over the safety of the system in the event of mechanical failure of the cell components. In this work, we present a generic multi-scale simultaneously coupled mechanical-electrochemical-thermal model to examine the interaction between mechanical failure and electrochemical-thermal responses. We treat the battery cell as a homogeneous material while locally we explicitly solve for the mechanical response of individual components using a homogenizationmore » model and the electrochemical-thermal responses using an electrochemical model for the battery. A benchmark problem is established to demonstrate the proposed modeling framework. The model shows the capability to capture the gradual evolution of cell electrochemical-thermal responses, and predicts the variation of those responses under different short-circuit conditions.« less

  10. Aerobic and Electrochemical Oxidations with N-Oxyl Reagents

    NASA Astrophysics Data System (ADS)

    Miles, Kelsey C.

    Selective oxidation of organic compounds represents a significant challenge for chemical transformations. Oxidation methods that utilize nitroxyl catalysts have become increasingly attractive and include Cu/nitroxyl and nitroxyl/NO x co-catalyst systems. Electrochemical activation of nitroxyls is also well known and offers an appealing alternative to the use of chemical co-oxidants. However, academic and industrial organic synthetic communities have not widely adopted electrochemical methods. Nitroxyl catalysts facilitate effective and selective oxidation of alcohols and aldehydes to ketones and carboxylic acids. Selective benzylic, allylic, and alpha-heteroatom C-H abstraction can also be achieved with nitroxyls and provides access to oxygenated products when used in combination with molecular oxygen as a radical trap. This thesis reports various chemical and electrochemical oxidation methods that were developed using nitroxyl mediators. Chapter 1 provides a short review on practical aerobic alcohol oxidation with Cu/nitroxyl and nitroxyl/NO x systems and emphasizes the utility of bicyclic nitroxyls as co-catalysts. In Chapter 2, the combination of these bicyclic nitroxyls with NOx is explored for development of a mild oxidation of alpha-chiral aryl aldehydes and showcases a sequential asymmetric hydroformylation/oxidation method. Chapter 3 reports the synthesis and characterization of two novel Cu/bicyclic nitroxyl complexes and the electronic structure analysis of these complexes. Chapter 4 highlights the electrochemical activation of various nitroxyls and reports an in-depth study on electrochemical alcohol oxidation and compares the reactivity of nitroxyls under electrochemical or chemical activation. N-oxyls can also participate in selective C-H abstraction, and Chapter 5 reports the chemical and electrochemical activation of N-oxyls for radical-mediated C-H oxygenation of (hetero)arylmethanes. For these electrochemical transformations, the development of

  11. Photocatalytic discoloration of Acid Red 14 aqueous solution using titania nanoparticles immobilized on graphene oxide fabricated plate.

    PubMed

    Akerdi, Abdollah Gholami; Bahrami, S Hajir; Arami, Mokhtar; Pajootan, Elmira

    2016-09-01

    Textile industry consumes remarkable amounts of water during various operations. A significant portion of the water discharge to environment is in the form of colored contaminant. The present research reports the photocatalytic degradation of anionic dye effluent using immobilized TiO2 nanoparticle on graphene oxide (GO) fabricated carbon electrodes. Acid Red 14 (AR 14) was used as model compound. Graphene oxide nanosheets were synthesized from graphite powder using modified Hummer's method. The nanosheets were characterized with field emission scanning electron microscope (FESEM) images, X-ray diffraction (XRD) and FTIR spectrum. The GO nanoparticles were deposited on carbon electrode (GO-CE) by electrochemical deposition (ECD) method and used as catalyst bed. TiO2 nanoparticles were fixed on the bed (GO-CE- TiO2) with thermal process. Photocatalytic processes were carried out using a 500 ml solution containing dye in batch mode. Each photocatalytic treatment were carried out for 120 min. Effect of dye concentration (mg/L), pH of solution, time (min) and TiO2 content (g/L) on the photocatalytic decolorization was investigated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Carbon-dot-decorated TiO2 nanotube arrays used for photo/voltage-induced organic pollutant degradation and the inactivation of bacteria

    NASA Astrophysics Data System (ADS)

    Feng, Lingyan; Sun, Hanjun; Ren, Jinsong; Qu, Xiaogang

    2016-03-01

    Photoluminescent carbon dots (c-dots) have recently attracted growing interest as a new member of the carbon-nanomaterial family. Here, we report for the first time that c-dot-decorated TiO2 nanotube arrays (c-dot/TiNTs) exhibit highly enhanced abilities regarding photo/voltage-induced organic pollutant degradation and bacterial inactivation. By applying UV irradiation (365 nm) or an electrochemical potential over 3 V (versus Ag/AgCl), an organic dye and a herbicide were efficiently degraded. Moreover, the inactivation of Gram-positive S. aureus and Gram-negative E. coli bacteria was realized on a c-dot/TiNT film. The c-dots were able to absorb light efficiently resulting in multiple exciton generation and also a reduction in the recombination of the e-/h+ pair produced in c-dot/TiNT film during photo/voltage-induced degradation. It was also possible to readily regenerate the surface using ultraviolet light irradiation, leaving the whole film structure undamaged and with high reproducibility and stability.

  13. Electrochemical cells and methods of manufacturing the same

    DOEpatents

    Bazzarella, Ricardo; Slocum, Alexander H; Doherty, Tristan; Cross, III, James C

    2015-11-03

    Electrochemical cells and methods of making electrochemical cells are described herein. In some embodiments, an apparatus includes a multi-layer sheet for encasing an electrode material for an electrochemical cell. The multi-layer sheet including an outer layer, an intermediate layer that includes a conductive substrate, and an inner layer disposed on a portion of the conductive substrate. The intermediate layer is disposed between the outer layer and the inner layer. The inner layer defines an opening through which a conductive region of the intermediate layer is exposed such that the electrode material can be electrically connected to the conductive region. Thus, the intermediate layer can serve as a current collector for the electrochemical cell.

  14. Gelation Mechanisms and Characterization of Electrochemically Generated Protein Films at Metal Interfaces

    NASA Astrophysics Data System (ADS)

    Martin, Elizabeth J.

    Although the electrochemical behavior of metals used in orthopedic implants has been studied extensively, the material interactions with proteins during corrosion processes remains poorly understood. Some studies suggest that metal-protein interactions accelerate corrosion, while others suggest that proteins protect the material from degradation. Corrosion of implant materials is a major concern due to the metal ion release that can sometimes cause adverse local tissue reactions and ultimately, failure of the implant. The initial purpose of this research was therefore to study the corrosion behavior of CoCrMo, an alloy commonly used in hip replacements, with a quartz crystal microbalance (QCM) in physiologically relevant media. The QCM enables in situ characterization of surface changes accompanying corrosion and is sensitive to viscoelastic effects at its surface. Results of QCM studies in proteinaceous media showed film deposition on the alloy surface under electrochemical conditions that otherwise produced mass loss if proteins were not present in the electrolyte. Additional studies on pure Co, Cr, and Mo demonstrated that the protein films also form on Mo surfaces after a release of molybdate ions, suggesting that these ions are essential for film formation. The electrochemically generated protein films are reminiscent of carbonaceous films that form on implant surfaces in vivo, therefore a second goal of the research was to delineate mechanisms that cause the films to form. In the second stage of this research, electrochemical QCM tests were conducted on models of the CoCrMo system consisting of Cr electrodes in proteinaceous or polymeric media containing dissolved molybdate ions. Studies indicated that films can be generated through electrochemical processes so long as both amine functional groups and molybdate ions are present in the electrolyte solution. These results suggest that the films form due to an ionic cross-linking reaction between the positively

  15. The binding property of a monoclonal antibody against the extracellular domains of aquaporin-4 directs aquaporin-4 toward endocytosis.

    PubMed

    Huang, Ping; Takai, Yoshiki; Kusano-Arai, Osamu; Ramadhanti, Julia; Iwanari, Hiroko; Miyauchi, Takayuki; Sakihama, Toshiko; Han, Jing-Yan; Aoki, Masashi; Hamakubo, Takao; Fujihara, Kazuo; Yasui, Masato; Abe, Yoichiro

    2016-09-01

    Neuromyelitis optica (NMO), an autoimmune disease of the central nervous system, is characterized by an autoantibody called NMO-IgG that recognizes the extracellular domains (ECDs) of aquaporin-4 (AQP4). In this study, monoclonal antibodies (mAbs) against the ECDs of mouse AQP4 were established by a baculovirus display method. Two types of mAb were obtained: one (E5415A) recognized both M1 and M23 isoforms, and the other (E5415B) almost exclusively recognized the square-array-formable M23 isoform. While E5415A enhanced endocytosis of both M1 and M23, followed by degradation in cells expressing AQP4, including astrocytes, E5415B did so to a much lesser degree, as determined by live imaging using fluorescence-labeled antibodies and by Western blotting of lysate of cells treated with these mAbs. E5415A promoted cluster formation of AQP4 on the cell surface prior to endocytosis as determined by immunofluorescent microscopic observation of bound mAbs to astrocytes as well as by Blue native PAGE analysis of AQP4 in the cells treated with the mAbs. These observations clearly indicate that an anti-AQP4-ECDs antibody possessing an ability to form a large cluster of AQP4 by cross-linking two or more tetramers outside the AQP4 arrays enhances endocytosis and the subsequent lysosomal degradation of AQP4.

  16. Electrochemical Genosensing of Circulating Biomarkers

    PubMed Central

    Campuzano, Susana; Yáñez-Sedeño, Paloma; Pingarrón, José Manuel

    2017-01-01

    Management and prognosis of diseases requires the measurement in non- or minimally invasively collected samples of specific circulating biomarkers, consisting of any measurable or observable factors in patients that indicate normal or disease-related biological processes or responses to therapy. Therefore, on-site, fast and accurate determination of these low abundance circulating biomarkers in scarcely treated body fluids is of great interest for health monitoring and biological applications. In this field, electrochemical DNA sensors (or genosensors) have demonstrated to be interesting alternatives to more complex conventional strategies. Currently, electrochemical genosensors are considered very promising analytical tools for this purpose due to their fast response, low cost, high sensitivity, compatibility with microfabrication technology and simple operation mode which makes them compatible with point-of-care (POC) testing. In this review, the relevance and current challenges of the determination of circulating biomarkers related to relevant diseases (cancer, bacterial and viral infections and neurodegenerative diseases) are briefly discussed. An overview of the electrochemical nucleic acid–based strategies developed in the last five years for this purpose is given to show to both familiar and non-expert readers the great potential of these methodologies for circulating biomarker determination. After highlighting the main features of the reported electrochemical genosensing strategies through the critical discussion of selected examples, a conclusions section points out the still existing challenges and future directions in this field. PMID:28420103

  17. Seed/Catalyst-Free Growth of Gallium-Based Compound Materials on Graphene on Insulator by Electrochemical Deposition at Room Temperature.

    PubMed

    Rashiddy Wong, Freddawati; Ahmed Ali, Amgad; Yasui, Kanji; Hashim, Abdul Manaf

    2015-12-01

    We report the growth of gallium-based compounds, i.e., gallium oxynitride (GaON) and gallium oxide (Ga2O3) on multilayer graphene (MLG) on insulator using a mixture of ammonium nitrate (NH4NO3) and gallium nitrate (Ga(NO3)3) by electrochemical deposition (ECD) method at room temperature (RT) for the first time. The controlling parameters of current density and electrolyte molarity were found to greatly influence the properties of the grown structures. The thicknesses of the deposited structures increase with the current density since it increases the chemical reaction rates. The layers grown at low molarities of both solutions basically show grain-like layer with cracking structures and dominated by both Ga2O3 and GaON. Such cracking structures seem to diminish with the increases of molarities of one of the solutions. It is speculated that the increase of current density and ions in the solutions helps to promote the growth at the area with uneven thicknesses of graphene. When the molarity of Ga(NO3)3 is increased while keeping the molarity of NH4NO3 at the lowest value of 2.5 M, the grown structures are basically dominated by the Ga2O3 structure. On the other hand, when the molarity of NH4NO3 is increased while keeping the molarity of Ga(NO3)3 at the lowest value of 0.8 M, the GaON structure seems to dominate where their cubic and hexagonal arrangements are coexisting. It was found that when the molarities of Ga(NO3)3 are at the high level of 7.5 M, the grown structures tend to be dominated by Ga2O3 even though the molarity of NH4NO3 is made equal or higher than the molarity of Ga(NO3)3. When the grown structure is dominated by the Ga2O3 structure, the deposition process became slow or unstable, resulting to the formation of thin layer. When the molarity of Ga(NO3)3 is increased to 15 M, the nanocluster-like structures were formed instead of continuous thin film structure. This study seems to successfully provide the conditions in growing either GaON-dominated or

  18. A skin-integrated transparent and stretchable strain sensor with interactive color-changing electrochromic displays.

    PubMed

    Park, Heun; Kim, Dong Sik; Hong, Soo Yeong; Kim, Chulmin; Yun, Jun Yeong; Oh, Seung Yun; Jin, Sang Woo; Jeong, Yu Ra; Kim, Gyu Tae; Ha, Jeong Sook

    2017-06-08

    In this study, we report on the development of a stretchable, transparent, and skin-attachable strain sensor integrated with a flexible electrochromic device as a human skin-inspired interactive color-changing system. The strain sensor consists of a spin-coated conductive nanocomposite film of poly(vinyl alcohol)/multi-walled carbon nanotube/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) on a polydimethylsiloxane substrate. The sensor exhibits excellent performance of high sensitivity, high durability, fast response, and high transparency. An electrochromic device (ECD) made of electrochemically synthesized polyaniline nanofibers and V 2 O 5 on an indium-tin-oxide-coated polyethylene terephthalate film experiences a change in color from yellow to dark blue on application of voltage. The strain sensor and ECD are integrated on skin via an Arduino circuit for an interactive color change with the variation of the applied strain, which enables a real-time visual display of body motion. This integrated system demonstrates high potential for use in interactive wearable devices, military applications, and smart robots.

  19. Diazo dye Congo Red degradation using a Boron-doped diamond anode: An experimental study on the effect of supporting electrolytes.

    PubMed

    Jalife-Jacobo, H; Feria-Reyes, R; Serrano-Torres, O; Gutiérrez-Granados, S; Peralta-Hernández, Juan M

    2016-12-05

    Diazo dye Congo Red (CR) solutions at 100mg/L, were degraded using different supporting electrolytes in an electrochemical advanced oxidation process (EAOPs), like the anodic oxidation (AOx/BDD). All experiments were carried out in a 3L flow reactor with a Boron-doped diamond (BDD) anode and stainless steel cathode (AISI 304), at 7.5, 15, 30 and 50mA/cm(2) current densities (j). Furthermore, each experiment was carried out under a flow rate of 7L/min. Additionally, HClO4, NaCl, Na2SO4, and H2SO4 were tested as supporting electrolytes at a 50mM concentration. The degradation process was at all times considerably faster in NaCl medium. Solutions containing SO4(2-) or ClO4(-) ions were less prompted to degradation due to the low oxidation power of these species into the bulk. Dissolved organic carbon (DOC) analysis, was carried out to evaluate the mineralization of CR. The degradation of CR, was evaluated with the HPLC analysis of the treated solutions. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Electrochemical device

    DOEpatents

    Grimes, Patrick G.; Einstein, Harry; Bellows, Richard J.

    1988-01-12

    A tunnel protected electrochemical device features channels fluidically communicating between manifold, tunnels and cells. The channels are designed to provide the most efficient use of auxiliary power. The channels have a greater hydraulic pressure drop and electrical resistance than the manifold. This will provide a design with the optimum auxiliary energy requirements.

  1. Cyclically optimized electrochemical processes

    NASA Astrophysics Data System (ADS)

    Ruedisueli, Robert Louis

    It has been frequently observed in experiment and industry practice that electrochemical processes (deposition, dissolution, fuel cells) operated in an intermittent or cyclic (AC) mode show improvements in efficiency and/or quality and yield over their steady (DC) mode of operation. Whether rationally invoked by design or empirically tuned-in, the optimal operating frequency and duty cycle is dependent upon the dominant relaxation time constant for the process in question. The electrochemical relaxation time constant is a function of: double-layer and reaction intermediary pseudo-capacitances, ion (charge) transport via electrical migration (mobility), and diffusion across a concentration gradient to electrode surface reaction sites where charge transfer and species incorporation or elimination occurs. The rate determining step dominates the time constant for the reaction or process. Electrochemical impedance spectroscopy (EIS) and piezoelectric crystal electrode (PCE) response analysis have proven to be useful tools in the study and identification of reaction mechanisms. This work explains and demonstrates with the electro-deposition of copper the application of EIS and PCE measurement and analysis to the selection of an optimum cyclic operating schedule, an optimum driving frequency for efficient, sustained cyclic (pulsed) operation.

  2. A Paper-Based Electrochromic Array for Visualized Electrochemical Sensing.

    PubMed

    Zhang, Fengling; Cai, Tianyi; Ma, Liang; Zhan, Liyuan; Liu, Hong

    2017-01-31

    We report a battery-powered, paper-based electrochromic array for visualized electrochemical sensing. The paper-based sensing system consists of six parallel electrochemical cells, which are powered by an aluminum-air battery. Each single electrochemical cell uses a Prussian Blue spot electrodeposited on an indium-doped tin oxide thin film as the electrochromic indicator. Each electrochemical cell is preloaded with increasing amounts of analyte. The sample activates the battery for the sensing. Both the preloaded analyte and the analyte in the sample initiate the color change of Prussian Blue to Prussian White. With a reaction time of 60 s, the number of electrochemical cells with complete color changes is correlated to the concentration of analyte in the sample. As a proof-of-concept analyte, lactic acid was detected semi-quantitatively using the naked eye.

  3. Study on preparation of SnO2-TiO2/Nano-graphite composite anode and electro-catalytic degradation of ceftriaxone sodium.

    PubMed

    Guo, Xiaolei; Wan, Jiafeng; Yu, Xiujuan; Lin, Yuhui

    2016-12-01

    In order to improve the electro-catalytic activity and catalytic reaction rate of graphite-like material, Tin dioxide-Titanium dioxide/Nano-graphite (SnO 2 -TiO 2 /Nano-G) composite was synthesized by a sol-gel method and SnO 2 -TiO 2 /Nano-G electrode was prepared in hot-press approach. The composite was characterized by X-ray photoelectron spectroscopy, fourier transform infrared, Raman, N 2 adsorption-desorption, scanning electrons microscopy, transmission electron microscopy and X-ray diffraction. The electrochemical performance of the SnO 2 -TiO 2 /Nano-G anode electrode was investigated via cyclic voltammetry and electrochemical impedance spectroscopy. The electro-catalytic performance was evaluated by the degradation of ceftriaxone sodium and the yield of ·OH radicals in the reaction system. The results demonstrated that TiO 2 , SnO 2 and Nano-G were composited successfully, and TiO 2 and SnO 2 particles dispersed on the surface and interlamination of the Nano-G uniformly. The specific surface area of SnO 2 modified anode was higher than that of TiO 2 /Nano-G anode and the degradation rate of ceftriaxone sodium within 120 min on SnO 2 -TiO 2 /Nano-G electrode was 98.7% at applied bias of 2.0 V. The highly efficient electro-chemical property of SnO 2 -TiO 2 /Nano-G electrode was attributed to the admirable conductive property of the Nano-G and SnO 2 -TiO 2 /Nano-G electrode. Moreover, the contribution of reactive species ·OH was detected, indicating the considerable electro-catalytic activity of SnO 2 -TiO 2 /Nano-G electrode. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Selectively-etched nanochannel electrophoretic and electrochemical devices

    DOEpatents

    Surh, Michael P.; Wilson, William D.; Barbee, Jr., Troy W.; Lane, Stephen M.

    2004-11-16

    Nanochannel electrophoretic and electrochemical devices having selectively-etched nanolaminates located in the fluid transport channel. The normally flat surfaces of the nanolaminate having exposed conductive (metal) stripes are selectively-etched to form trenches and baffles. The modifications of the prior utilized flat exposed surfaces increase the amount of exposed metal to facilitate electrochemical redox reaction or control the exposure of the metal surfaces to analytes of large size. These etched areas variously increase the sensitivity of electrochemical detection devices to low concentrations of analyte, improve the plug flow characteristic of the channel, and allow additional discrimination of the colloidal particles during cyclic voltammetry.

  5. Selectively-etched nanochannel electrophoretic and electrochemical devices

    DOEpatents

    Surh, Michael P [Livermore, CA; Wilson, William D [Pleasanton, CA; Barbee, Jr., Troy W.; Lane, Stephen M [Oakland, CA

    2006-06-27

    Nanochannel electrophoretic and electrochemical devices having selectively-etched nanolaminates located in the fluid transport channel. The normally flat surfaces of the nanolaminate having exposed conductive (metal) stripes are selectively-etched to form trenches and baffles. The modifications of the prior utilized flat exposed surfaces increase the amount of exposed metal to facilitate electrochemical redox reaction or control the exposure of the metal surfaces to analytes of large size. These etched areas variously increase the sensitivity of electrochemical detection devices to low concentrations of analyte, improve the plug flow characteristic of the channel, and allow additional discrimination of the colloidal particles during cyclic voltammetry.

  6. Electrochemical biosensing strategies for DNA methylation analysis.

    PubMed

    Hossain, Tanvir; Mahmudunnabi, Golam; Masud, Mostafa Kamal; Islam, Md Nazmul; Ooi, Lezanne; Konstantinov, Konstantin; Hossain, Md Shahriar Al; Martinac, Boris; Alici, Gursel; Nguyen, Nam-Trung; Shiddiky, Muhammad J A

    2017-08-15

    DNA methylation is one of the key epigenetic modifications of DNA that results from the enzymatic addition of a methyl group at the fifth carbon of the cytosine base. It plays a crucial role in cellular development, genomic stability and gene expression. Aberrant DNA methylation is responsible for the pathogenesis of many diseases including cancers. Over the past several decades, many methodologies have been developed to detect DNA methylation. These methodologies range from classical molecular biology and optical approaches, such as bisulfite sequencing, microarrays, quantitative real-time PCR, colorimetry, Raman spectroscopy to the more recent electrochemical approaches. Among these, electrochemical approaches offer sensitive, simple, specific, rapid, and cost-effective analysis of DNA methylation. Additionally, electrochemical methods are highly amenable to miniaturization and possess the potential to be multiplexed. In recent years, several reviews have provided information on the detection strategies of DNA methylation. However, to date, there is no comprehensive evaluation of electrochemical DNA methylation detection strategies. Herein, we address the recent developments of electrochemical DNA methylation detection approaches. Furthermore, we highlight the major technical and biological challenges involved in these strategies and provide suggestions for the future direction of this important field. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Electrochemically Controlled Reconstitution of Immobilized Ferritins for Bioelectronic Applications

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Woo; Choi, Sang H.; Lillehei, Peter T.; Chu, Sang-Hong; King, Glen C.; Watt, Gerald D.

    2007-01-01

    Site-specific reconstituted nanoparticles were fabricated via electrochemically-controlled biomineralization through the immobilization of biomolecules. The work reported herein includes the immobilization of ferritin with various surface modifications, the electrochemical biomineralization of ferritins with different inorganic cores, and the electrocatalytic reduction of oxygen on the reconstituted Pt-cored ferritins. Protein immobilization on the substrate is achieved by anchoring ferritins with dithiobis-N-succinimidyl propionate (DTSP). A reconstitution process of site-specific electrochemical biomineralization with a protein cage loads ferritins with different core materials. The ferritin acts as a nano-scale template, a biocompatible cage, and a separator between the nanoparticles. This first demonstration of electrochemically controlled site-specific reconstitution of biomolecules provides a new tool for biomineralization and opens the way to produce the bio-templated nanoparticles by electrochemical control. The nanosized platinum-cored ferritins on gold displayed good catalytic activity for the electrochemical reduction of oxygen, which is applicable to biofuel cell applications. This results in a smaller catalyst loading on the electrodes for fuel cells or other bioelectronic devices.

  8. Electrolytic Manipulation of Persulfate Reactivity by Iron Electrodes for TCE Degradation in Groundwater

    PubMed Central

    Yuan, Songhu; Liao, Peng; Alshawabkeh, Akram N.

    2014-01-01

    Activated persulfate oxidation is an effective in situ chemical oxidation process for groundwater remediation. However, reactivity of persulfate is difficult to manipulate or control in the subsurface causing activation before reaching the contaminated zone and leading to a loss of chemicals. Furthermore, mobilization of heavy metals by the process is a potential risk. An effective approach using iron electrodes is thus developed to manipulate the reactivity of persulfate in situ for trichloroethylene (TCE) degradation in groundwater, and to limit heavy metals mobilization. TCE degradation is quantitatively accelerated or inhibited by adjusting the current applied to the iron electrode, following k1 = 0.00053•Iv + 0.059 (−122 A/m3 ≤ Iv ≤ 244 A/m3) where k1 and Iv are the pseudo first-order rate constant (min−1) and volume normalized current (A/m3), respectively. Persulfate is mainly decomposed by Fe2+ produced from the electrochemical and chemical corrosion of iron followed by the regeneration via Fe3+ reduction on the cathode. SO4•− and •OH co-contribute to TCE degradation, but •OH contribution is more significant. Groundwater pH and oxidation-reduction potential can be restored to natural levels by the continuation of electrolysis after the disappearance of contaminants and persulfate, thus decreasing adverse impacts such as the mobility of heavy metals in the subsurface. PMID:24328192

  9. Center for Electrochemical Energy Science | Argonne National Laboratory

    Science.gov Websites

    Electrochemical Energy Science Research Program Publications & Presentations News An Energy Frontier Research Center Exploring the electrochemical reactivity of oxide materials and their interfaces under the extreme

  10. A facile electrochemical intercalation and microwave assisted exfoliation methodology applied to screen-printed electrochemical-based sensing platforms to impart improved electroanalytical outputs.

    PubMed

    Pierini, Gastón D; Foster, Christopher W; Rowley-Neale, Samuel J; Fernández, Héctor; Banks, Craig E

    2018-06-12

    Screen-printed electrodes (SPEs) are ubiquitous with the field of electrochemistry allowing researchers to translate sensors from the laboratory to the field. In this paper, we report an electrochemically driven intercalation process where an electrochemical reaction uses an electrolyte as a conductive medium as well as the intercalation source, which is followed by exfoliation and heating/drying via microwave irradiation, and applied to the working electrode of screen-printed electrodes/sensors (termed EDI-SPEs) for the first time. This novel methodology results in an increase of up to 85% of the sensor area (electrochemically active surface area, as evaluated using an outer-sphere redox probe). Upon further investigation, it is found that an increase in the electroactive area of the EDI-screen-printed based electrochemical sensing platforms is critically dependent upon the analyte and its associated electrochemical mechanism (i.e. adsorption vs. diffusion). Proof-of-concept for the electrochemical sensing of capsaicin, a measure of the hotness of chillies and chilli sauce, within both model aqueous solutions and a real sample (Tabasco sauce) is demonstrated in which the electroanalytical sensitivity (a plot of signal vs. concentration) is doubled when utilising EDI-SPEs over that of SPEs.

  11. Electrochemical cells and methods of manufacturing the same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazzarella, Ricardo; Slocum, Alexander H.; Doherty, Tristan

    2016-07-26

    Electrochemical cells and methods of making electrochemical cells are described herein. In some embodiments, an apparatus includes a multi-layer sheet for encasing an electrode material for an electrochemical cell. The multi-layer sheet including an outer layer, an intermediate layer that includes a conductive substrate, and an inner layer disposed on a portion of the conductive substrate. The intermediate layer is disposed between the outer layer and the inner layer. The inner layer defines an opening through which a conductive region of the intermediate layer is exposed such that the electrode material can be electrically connected to the conductive region. Thus,more » the intermediate layer can serve as a current collector for the electrochemical cell.« less

  12. Disease-Related Detection with Electrochemical Biosensors: A Review.

    PubMed

    Huang, Ying; Xu, Jin; Liu, Junjie; Wang, Xiangyang; Chen, Bin

    2017-10-17

    Rapid diagnosis of diseases at their initial stage is critical for effective clinical outcomes and promotes general public health. Classical in vitro diagnostics require centralized laboratories, tedious work and large, expensive devices. In recent years, numerous electrochemical biosensors have been developed and proposed for detection of various diseases based on specific biomarkers taking advantage of their features, including sensitivity, selectivity, low cost and rapid response. This article reviews research trends in disease-related detection with electrochemical biosensors. Focus has been placed on the immobilization mechanism of electrochemical biosensors, and the techniques and materials used for the fabrication of biosensors are introduced in details. Various biomolecules used for different diseases have been listed. Besides, the advances and challenges of using electrochemical biosensors for disease-related applications are discussed.

  13. SEM method for direct visual tracking of nanoscale morphological changes of platinum based electrocatalysts on fixed locations upon electrochemical or thermal treatments.

    PubMed

    Zorko, Milena; Jozinović, Barbara; Bele, Marjan; Hodnik, Nejc; Gaberšček, Miran

    2014-05-01

    A general method for tracking morphological surface changes on a nanometer scale with scanning electron microscopy (SEM) is introduced. We exemplify the usefulness of the method by showing consecutive SEM images of an identical location before and after the electrochemical and thermal treatments of platinum-based nanoparticles deposited on a high surface area carbon. Observations reveal an insight into platinum based catalyst degradation occurring during potential cycling treatment. The presence of chloride clearly increases the rate of degradation. At these conditions the dominant degradation mechanism seems to be the platinum dissolution with some subsequent redeposition on the top of the catalyst film. By contrast, at the temperature of 60°C, under potentiostatic conditions some carbon corrosion and particle aggregation was observed. Temperature treatment simulating the annealing step of the synthesis reveals sintering of small platinum based composite aggregates into uniform spherical particles. The method provides a direct proof of induced surface phenomena occurring on a chosen location without the usual statistical uncertainty in usual, random SEM observations across relatively large surface areas. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. New Horizons in Electrochemical Science and Technology. Report of the Committee on Electrochemical Aspects of Energy Conservation and Production.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. National Materials Advisory Board.

    Electrochemical phenomena play a fundamental role in providing essential materials and devices for modern society. This report reviews the status of current knowledge of electrochemical science and technology and makes recommendations for future research and development in this multidisciplinary field. The report identifies new technological…

  15. In vivo quantification of hydrogen gas concentration in bone marrow surrounding magnesium fracture fixation hardware using an electrochemical hydrogen gas sensor.

    PubMed

    Zhao, Daoli; Brown, Andrew; Wang, Tingting; Yoshizawa, Sayuri; Sfeir, Charles; Heineman, William R

    2018-04-20

    Magnesium (Mg) medical devices are currently being marketed for orthopedic applications and have a complex degradation process which includes the evolution of hydrogen gas (H 2 ). The effect of H 2 exposure on relevant cell types has not been studied; and the concentration surrounding degrading Mg devices has not been quantified to enable such mechanistic studies. A simple and effective method to measure the concentration of H 2 in varying microenvironments surrounding Mg implants is the first step to understanding the biological impact of H 2 on these cells. Here, the in vivo measurement of H 2 surrounding fracture fixation devices implanted in vivo is demonstrated. An electrochemical H 2 microsensor detected increased levels of H 2 at three anatomical sites with a response time of about 30 s. The sensor showed the H 2 concentration in the bone marrow at 1 week post-implantation (1460 ± 320 µM) to be much higher than measured in the subcutaneous tissue (550 ± 210 µM) and at the skin surface (120 ± 50 µM). Additionally, the H 2 concentrations measured in the bone marrow exceeded the concentration in a H 2 saturated water solution (∼800 µM). These results suggest that H 2 emanating from Mg implants in bone during degradation pass through the bone marrow and become at least partially trapped because of slow permeation through the bone. This study is the first to identify H 2 concentrations in the bone marrow environment and will enable in vitro experiments to be executed at clinically relevant H 2 concentrations to explore possible biological effects of H 2 exposure. An electrochemical H 2 sensor was used to monitor the degradation of a Mg fracture fixation system in a lapine ulna fracture model. Interestingly, the H 2 concentration in the bone marrow is 82% higher than H 2 saturated water solution. This suggests H 2 generated in situ is trapped in the bone marrow and bone is less permeable than the surrounding tissues. The detectable

  16. Electrochemical synthesis of mesoporous Pt-Au binary alloys with tunable compositions for enhancement of electrochemical performance.

    PubMed

    Yamauchi, Yusuke; Tonegawa, Akihisa; Komatsu, Masaki; Wang, Hongjing; Wang, Liang; Nemoto, Yoshihiro; Suzuki, Norihiro; Kuroda, Kazuyuki

    2012-03-21

    Mesoporous Pt-Au binary alloys were electrochemically synthesized from lyotropic liquid crystals (LLCs) containing corresponding metal species. Two-dimensional exagonally ordered LLC templates were prepared on conductive substrates from diluted surfactant solutions including water, a nonionic surfactant, ethanol, and metal species by drop-coating. Electrochemical synthesis using such LLC templates enabled the preparation of ordered mesoporous Pt-Au binary alloys without phase segregation. The framework composition in the mesoporous Pt-Au alloy was controlled simply by changing the compositional ratios in the precursor solution. Mesoporous Pt-Au alloys with low Au content exhibited well-ordered 2D hexagonal mesostructures, reflecting those of the original templates. With increasing Au content, however, the mesostructural order gradually decreased, thereby reducing the electrochemically active surface area. Wide-angle X-ray diffraction profiles, X-ray photoelectron spectra, and elemental mapping showed that both Pt and Au were atomically distributed in the frameworks. The electrochemical stability of mesoporous Pt-Au alloys toward methanol oxidation was highly improved relative to that of nonporous Pt and mesoporous Pt films, suggesting that mesoporous Pt-Au alloy films are potentially applicable as electrocatalysts for direct methanol fuel cells. Also, mesoporous Pt-Au alloy electrodes showed a highly sensitive amperometric response for glucose molecules, which will be useful in next-generation enzyme-free glucose sensors.

  17. Electrochemical capture and release of carbon dioxide

    DOE PAGES

    Rheinhardt, Joseph H.; Singh, Poonam; Tarakeshwar, Pilarisetty; ...

    2017-01-18

    Understanding the chemistry of carbon dioxide is key to affecting changes in atmospheric concentrations. One area of intense interest is CO 2 capture in chemically reversible cycles relevant to carbon capture technologies. Most CO 2 capture methods involve thermal cycles in which a nucleophilic agent captures CO 2 from impure gas streams (e.g., flue gas), followed by a thermal process in which pure CO 2 is released. Several reviews have detailed progress in these approaches. A less explored strategy uses electrochemical cycles to capture CO 2 and release it in pure form. These cycles typically rely on electrochemical generation ofmore » nucleophiles that attack CO 2 at the electrophilic carbon atom, forming a CO 2 adduct. Then, CO 2 is released in pure form via a subsequent electrochemical step. In this Perspective, we describe electrochemical cycles for CO 2 capture and release, emphasizing electrogenerated nucleophiles. As a result, we also discuss some advantages and disadvantages inherent in this general approach.« less

  18. Multi-layer seal for electrochemical devices

    DOEpatents

    Chou, Yeong-Shyung [Richland, WA; Meinhardt, Kerry D [Kennewick, WA; Stevenson, Jeffry W [Richland, WA

    2010-11-16

    Multi-layer seals are provided that find advantageous use for reducing leakage of gases between adjacent components of electrochemical devices. Multi-layer seals of the invention include a gasket body defining first and second opposing surfaces and a compliant interlayer positioned adjacent each of the first and second surfaces. Also provided are methods for making and using the multi-layer seals, and electrochemical devices including said seals.

  19. Multi-layer seal for electrochemical devices

    DOEpatents

    Chou, Yeong-Shyung [Richland, WA; Meinhardt, Kerry D [Kennewick, WA; Stevenson, Jeffry W [Richland, WA

    2010-09-14

    Multi-layer seals are provided that find advantageous use for reducing leakage of gases between adjacent components of electrochemical devices. Multi-layer seals of the invention include a gasket body defining first and second opposing surfaces and a compliant interlayer positioned adjacent each of the first and second surfaces. Also provided are methods for making and using the multi-layer seals, and electrochemical devices including said seals.

  20. Synthesis and electrochemical study of palladium-based nanomaterials for green energy applications

    NASA Astrophysics Data System (ADS)

    Ostrom, Cassandra K.

    Rising global energy consumption leads to increased environmental impacts. The continued use of current energy resources, e.g. fossil fuels, will exaggerate the cumulative nature of CO2 byproduct emissions in the atmosphere. The development and implementation of a hydrogen economy, as a solution to offset degradative environmental impacts, will likely enable opportunities for maintaining or improving standards of living while significantly lowering carbon emissions. Palladium has proven to be a strong contender as an enabling material that encompasses many aspects of a prospective hydrogen economy, lending promise to applications such as hydrogen purification, storage and fuel cell catalysis. In my M.Sc. study, Pd-based nanomaterials have been synthesized and examined for their applications in hydrogen storage and fuel cell catalysis. The surface properties of synthesized Pd-based nanomaterials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDS), X-ray diffraction (XRD), X-ray Photoelectron spectroscopy (XPS), and N2 gas adsorption/desorption. Electrochemical analysis of the fabricated materials was performed using cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). Inductively coupled plasma atomic emission spectroscopy (ICP-AES) was employed to characterize the composition of the formed samples. Hydrogen electrosorption onto activated carbon materials modified with different trimetallic dissociation catalysts (Pd-Ag-Cd) was investigated in an acidic medium. A uniform distribution of the Pd-Ag-Cd catalysts was achieved using a facile room temperature sodium borohydride reduction method. By varying the composition of the alloys, synergistic effects between the metal and carbon support resulted in drastic increases in hydrogen sorption capabilities in contrast to bi-metallic PdAg and PdCd catalysts

  1. Nanostructured core-shell electrode materials for electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Jiang, Long-bo; Yuan, Xing-zhong; Liang, Jie; Zhang, Jin; Wang, Hou; Zeng, Guang-ming

    2016-11-01

    Core-shell nanostructure represents a unique system for applications in electrochemical energy storage devices. Owing to the unique characteristics featuring high power delivery and long-term cycling stability, electrochemical capacitors (ECs) have emerged as one of the most attractive electrochemical storage systems since they can complement or even replace batteries in the energy storage field, especially when high power delivery or uptake is needed. This review aims to summarize recent progress on core-shell nanostructures for advanced supercapacitor applications in view of their hierarchical architecture which not only create the desired hierarchical porous channels, but also possess higher electrical conductivity and better structural mechanical stability. The core-shell nanostructures include carbon/carbon, carbon/metal oxide, carbon/conducting polymer, metal oxide/metal oxide, metal oxide/conducting polymer, conducting polymer/conducting polymer, and even more complex ternary core-shell nanoparticles. The preparation strategies, electrochemical performances, and structural stabilities of core-shell materials for ECs are summarized. The relationship between core-shell nanostructure and electrochemical performance is discussed in detail. In addition, the challenges and new trends in core-shell nanomaterials development have also been proposed.

  2. Electrochemically active biofilms: facts and fiction. A review

    PubMed Central

    Babauta, Jerome; Renslow, Ryan; Lewandowski, Zbigniew; Beyenal, Haluk

    2014-01-01

    This review examines the electrochemical techniques used to study extracellular electron transfer in the electrochemically active biofilms that are used in microbial fuel cells and other bioelectrochemical systems. Electrochemically active biofilms are defined as biofilms that exchange electrons with conductive surfaces: electrodes. Following the electrochemical conventions, and recognizing that electrodes can be considered reactants in these bioelectrochemical processes, biofilms that deliver electrons to the biofilm electrode are called anodic, ie electrode-reducing, biofilms, while biofilms that accept electrons from the biofilm electrode are called cathodic, ie electrode-oxidizing, biofilms. How to grow these electrochemically active biofilms in bioelec-trochemical systems is discussed and also the critical choices made in the experimental setup that affect the experimental results. The reactor configurations used in bioelectrochemical systems research are also described and the authors demonstrate how to use selected voltammetric techniques to study extracellular electron transfer in bioelectrochemical systems. Finally, some critical concerns with the proposed electron transfer mechanisms in bioelectrochemical systems are addressed together with the prospects of bioelectrochemical systems as energy-converting and energy-harvesting devices. PMID:22856464

  3. Photocatalytic and electrochemical performance of three-Dimensional reduced graphene Oxide/WS2/Mg-doped ZnO composites

    NASA Astrophysics Data System (ADS)

    Yu, Weiwei; Chen, Xi'an; Mei, Wei; Chen, Chuansheng; Tsang, Yuenhong

    2017-04-01

    To improve the dispersion of reduced graphene oxide and enhance the photocatalytic property of reduced graphene oxide/Mg-doped ZnO composites (rGMZ), the reduced graphene oxide/WS2/Mg-doped ZnO composites (rGWMZ) were prepared by electrostatic self-assembly and coprecipitation methods. The effects of mass ratio of WS2 nanosheets to reduced graphene oxide (WS2/rGO wt.%) and calcination temperature on the photocatalytic and electrochemical property of rGWMZ composites were investigated. Experimental results showed that the photocatalytic efficiency of rGWMZ composites is three-fold compared with that of rGMZ composites when the WS2/rGO wt.% is 20.8% and calcination temperature is 500 °C, in which the degradation ratio Rhodamin B (RhB) can reach 95% within 15 min under the UV light and 90% within 90 min under simulated solar light. In addition, the rGWMZ show larger capacitance and smaller resistance than rGMZ. The enhancement for photocatalytic activity and electrochemical performance of rGWMZ is ascribed to improving the specific surface area, electrical conductivity and electronic storage capability because of the synergistic effect of rGO and WS2 nanosheets.

  4. Performance of a Steel/Oxide Composite Waste Form for Combined Waste Steams from Advanced Electrochemical Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Indacochea, J. E.; Gattu, V. K.; Chen, X.

    materials made with added lanthanide and uranium oxides. These analyses show the corrosion behaviors of the alloy/ceramic composite materials are very similar to the corrosion behaviors of multi-phase alloy waste forms, and that the presence of oxide inclusions does not impact the corrosion behaviors of the alloy phases. Mixing with metallic waste streams is beneficial to lanthanide and uranium oxides in that they react with Zr in the fuel waste to form highly durable zirconates. The measured corrosion behaviors suggest properly formulated composite materials would be suitable waste forms for combined metallic and oxide waste streams generated during electrometallurgical reprocessing of spent nuclear fuel. Electrochemical methods are suitable for evaluating the durability and modeling long-term behavior of composite waste forms: the degradation model developed for metallic waste forms can be applied to the alloy phases formed in the composite and an affinity-based mineral dissolution model can be applied to the ceramic phases.« less

  5. Electrochemical Deburring

    NASA Technical Reports Server (NTRS)

    Burley, R. K.

    1983-01-01

    Electrochemical deburring removes burrs from assembled injector tubes. Since process uses liquid anodic dissolution in liquid electrolyte to proide deburring action, smoothes surfaces and edges in otherwise inaccessible areas. Tool consists of sleeve that contains metallic ring cathode. Sleeve is placed over tube, and electrolytic solution is forced to flow between tube and sleeve. The workpiece serves an anode.

  6. New insights into the electrochemical behavior of acid orange 7: Convergent paired electrochemical synthesis of new aminonaphthol derivatives

    NASA Astrophysics Data System (ADS)

    Momeni, Shima; Nematollahi, Davood

    2017-02-01

    Electrochemical behavior of acid orange 7 has been exhaustively studied in aqueous solutions with different pH values, using cyclic voltammetry and constant current coulometry. This study has provided new insights into the mechanistic details, pH dependence and intermediate structure of both electrochemical oxidation and reduction of acid orange 7. Surprisingly, the results indicate that a same redox couple (1-iminonaphthalen-2(1H)-one/1-aminonaphthalen-2-ol) is formed from both oxidation and reduction of acid orange 7. Also, an additional purpose of this work is electrochemical synthesis of three new derivatives of 1-amino-4-(phenylsulfonyl)naphthalen-2-ol (3a-3c) under constant current electrolysis via electrochemical oxidation (and reduction) of acid orange 7 in the presence of arylsulfinic acids as nucleophiles. The results indicate that the electrogenerated 1-iminonaphthalen-2(1 H)-one participates in Michael addition reaction with arylsulfinic acids to form the 1-amino-3-(phenylsulfonyl)naphthalen-2-ol derivatives. The synthesis was carried out in an undivided cell equipped with carbon rods as an anode and cathode.

  7. Combined electrochemical, sunlight-induced oxidation and biological process for the treatment of chloride containing textile effluent.

    PubMed

    Santhanam, Manikandan; Selvaraj, Rajeswari; Annamalai, Sivasankar; Sundaram, Maruthamuthu

    2017-11-01

    This study presents a combined electrochemical, sunlight-induced oxidation and biological process for the treatment of textile effluent. In the first step, RuO 2 -TiO 2 /Ti and Titanium were used as the electrodes in EO process and color removal was achieved in 40 min at an applied current density of 20 mA cm -2 . The EO process generated about 250 mg L -1 of active chlorine which hampered the subsequent biological treatment process. Thus, in the second step, sun light-induced photolysis (SLIP) is explored to remove hypochlorite present in the EO treated effluent. In the third step, the SLIP treated effluent was fed to laccase positive bacterial consortium for biological process. To assess the effect of SLIP in the overall process, experiments were carried out with and without SLIP process. In experiments without SLIP, sodium thiosulfate was used to remove active chlorine. HPLC analysis showed that SLIP integrated experiments achieved an overall dye component degradation of 71%, where as only 22% degradation was achieved in the absence of SLIP process. The improvement in degradation with SLIP process is attributed to the presence of ClO radicals which detected by EPR analysis. The oxidation of organic molecules during process was confirmed by FT-IR and GC-MS analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Removal of artificial sweetener aspartame from aqueous media by electrochemical advanced oxidation processes.

    PubMed

    Lin, Heng; Oturan, Nihal; Wu, Jie; Sharma, Virender K; Zhang, Hui; Oturan, Mehmet A

    2017-01-01

    The degradation and mineralization of aspartame (ASP) in aqueous solution were investigated, for the first time, by electrochemical advanced oxidation processes (EAOPs) in which hydroxyl radicals were formed concomitantly in the bulk from Fenton reaction via in situ electrogenerated Fenton's reagent and at the anode surface from the water oxidation. Experiments were performed in an undivided cylindrical glass cell with a carbon-felt cathode and a Pt or boron-doped diamond (BDD) anode. The effect of Fe 2+ concentration and applied current on the degradation and mineralization kinetics of ASP was evaluated. The absolute rate constant for the reaction between ASP and OH was determined as (5.23 ± 0.02) × 10 9  M -1  s -1 by using the competition kinetic method. Almost complete mineralization of ASP was achieved with BDD anode at 200 mA constant current electrolysis. The formation and generation of the formed carboxylic acids (as ultimate end products before complete mineralization) and released inorganic ion were monitored by ion-exclusion high performance liquid chromatography (HPLC) and ion chromatography techniques, respectively. The global toxicity of the treated ASP solution during treatment was assessed by the Microtox ® method using V. fischeri bacteria luminescence inhibition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Solar promoted azo dye degradation and energy production in the bio-photoelectrochemical system with a g-C3N4/BiOBr heterojunction photocathode

    NASA Astrophysics Data System (ADS)

    Hou, Yanping; Gan, Yuanyuan; Yu, Zebin; Chen, Xixi; Qian, Lun; Zhang, Boge; Huang, Lirong; Huang, Jun

    2017-12-01

    In this study, a single-chamber bio-photoelectrochemical system (BPES), integrating advantages of bioelectrochemical system and photocatalysis process, is developed using a g-C3N4/BiOBr heterojunction photocathode for methyl orange (MO) degradation and simultaneous energy recovery. Photocatalytic activities of g-C3N4/BiOBr, g-C3N4 and BiOBr are characterized by UV-vis diffuse reflectance spectra (UV-vis DRS) and Photoluminescence (PL) spectra; and electrochemical activities of photocathodes are examined by linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS). Results show that with an applied voltage of 0.8 V and under simulated solar irradiation, MO decolorization with g-C3N4/BiOBr photocathode reaches 97.8% within 4 h, higher than those with g-C3N4 (85.3%) and BiOBr (87.3%) photocathodes. Likewise, higher hydrogen production rate (143.8 L m-3d-1) is observed using g-C3N4/BiOBr photocathode; while values for g-C3N4 and BiOBr photocathodes are 124.3 L m-3d-1 and 117.1 L m-3d-1, respectively. PL and EIS reveal that superior performance of g-C3N4/BiOBr photocathode can be attributed to more efficient separation of photogenerated electron-hole pairs, lower resistance and better charge transfer. Synergistic effect occurs among biological, electrochemical and photocatalytic processes in illuminated BPES for MO removal. Photocathode optimization and system stability evaluation are conducted. This study demonstrates that the BPES holds great potential for efficient refractory organics degradation and energy production.

  10. Disease-Related Detection with Electrochemical Biosensors: A Review

    PubMed Central

    Huang, Ying; Xu, Jin; Liu, Junjie; Wang, Xiangyang; Chen, Bin

    2017-01-01

    Rapid diagnosis of diseases at their initial stage is critical for effective clinical outcomes and promotes general public health. Classical in vitro diagnostics require centralized laboratories, tedious work and large, expensive devices. In recent years, numerous electrochemical biosensors have been developed and proposed for detection of various diseases based on specific biomarkers taking advantage of their features, including sensitivity, selectivity, low cost and rapid response. This article reviews research trends in disease-related detection with electrochemical biosensors. Focus has been placed on the immobilization mechanism of electrochemical biosensors, and the techniques and materials used for the fabrication of biosensors are introduced in details. Various biomolecules used for different diseases have been listed. Besides, the advances and challenges of using electrochemical biosensors for disease-related applications are discussed. PMID:29039742

  11. Stretchable Electrochemical Sensor for Real-Time Monitoring of Cells and Tissues.

    PubMed

    Liu, Yan-Ling; Jin, Zi-He; Liu, Yan-Hong; Hu, Xue-Bo; Qin, Yu; Xu, Jia-Quan; Fan, Cui-Fang; Huang, Wei-Hua

    2016-03-24

    Stretchable electrochemical sensors are conceivably a powerful technique that provides important chemical information to unravel elastic and curvilinear living body. However, no breakthrough was made in stretchable electrochemical device for biological detection. Herein, we synthesized Au nanotubes (NTs) with large aspect ratio to construct an effective stretchable electrochemical sensor. Interlacing network of Au NTs endows the sensor with desirable stability against mechanical deformation, and Au nanostructure provides excellent electrochemical performance and biocompatibility. This allows for the first time, real-time electrochemical monitoring of mechanically sensitive cells on the sensor both in their stretching-free and stretching states as well as sensing of the inner lining of blood vessels. The results demonstrate the great potential of this sensor in electrochemical detection of living body, opening a new window for stretchable electrochemical sensor in biological exploration. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.