CR-39 track etching and blow-up method
Hankins, Dale E.
1987-01-01
This invention is a method of etching tracks in CR-39 foil to obtain uniformly sized tracks. The invention comprises a step of electrochemically etching the foil at a low frequency and a "blow-up" step of electrochemically etching the foil at a high frequency.
Lateral electrochemical etching of III-nitride materials for microfabrication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Jung
Conductivity-selective lateral etching of III-nitride materials is described. Methods and structures for making vertical cavity surface emitting lasers with distributed Bragg reflectors via electrochemical etching are described. Layer-selective, lateral electrochemical etching of multi-layer stacks is employed to form semiconductor/air DBR structures adjacent active multiple quantum well regions of the lasers. The electrochemical etching techniques are suitable for high-volume production of lasers and other III-nitride devices, such as lasers, HEMT transistors, power transistors, MEMs structures, and LEDs.
Choi, Woong-Kirl; Kim, Seong-Hyun; Choi, Seung-Geon; Lee, Eun-Sang
2018-01-01
Ultra-precision products which contain a micro-hole array have recently shown remarkable demand growth in many fields, especially in the semiconductor and display industries. Photoresist etching and electrochemical machining are widely known as precision methods for machining micro-holes with no residual stress and lower surface roughness on the fabricated products. The Invar shadow masks used for organic light-emitting diodes (OLEDs) contain numerous micro-holes and are currently machined by a photoresist etching method. However, this method has several problems, such as uncontrollable hole machining accuracy, non-etched areas, and overcutting. To solve these problems, a machining method that combines photoresist etching and electrochemical machining can be applied. In this study, negative photoresist with a quadrilateral hole array pattern was dry coated onto 30-µm-thick Invar thin film, and then exposure and development were carried out. After that, photoresist single-side wet etching and a fusion method of wet etching-electrochemical machining were used to machine micro-holes on the Invar. The hole machining geometry, surface quality, and overcutting characteristics of the methods were studied. Wet etching and electrochemical fusion machining can improve the accuracy and surface quality. The overcutting phenomenon can also be controlled by the fusion machining. Experimental results show that the proposed method is promising for the fabrication of Invar film shadow masks. PMID:29351235
NASA Technical Reports Server (NTRS)
Kane, R. D.; Petrovic, J. J.; Ebert, L. J.
1975-01-01
Techniques are evaluated for chemical, electrochemical, and thermal etching of thoria dispersed (TD) nickel alloys. An electrochemical etch is described which yielded good results only for large grain sizes of TD-nickel. Two types of thermal etches are assessed for TD-nickel: an oxidation etch and vacuum annealing of a polished specimen to produce an etch. It is shown that the first etch was somewhat dependent on sample orientation with respect to the processing direction, the second technique was not sensitive to specimen orientation or grain size, and neither method appear to alter the innate grain structure when the materials were fully annealed prior to etching. An electrochemical etch is described which was used to observe the microstructures in TD-NiCr, and a thermal-oxidation etch is shown to produce better detail of grain boundaries and to have excellent etching behavior over the entire range of grain sizes of the sample.
Preparation of Chemically Etched Tips for Ambient Instructional Scanning Tunneling Microscopy
ERIC Educational Resources Information Center
Zaccardi, Margot J.; Winkelmann, Kurt; Olson, Joel A.
2010-01-01
A first-year laboratory experiment that utilizes concepts of electrochemical tip etching for scanning tunneling microscopy (STM) is described. This experiment can be used in conjunction with any STM experiment. Students electrochemically etch gold STM tips using a time-efficient method, which can then be used in an instructional grade STM that…
Yang, Xiaolong; Song, Jinlong; Liu, Junkai; Liu, Xin; Jin, Zhuji
2017-08-18
Superhydrophobic-superhydrophilic patterned surfaces have attracted more and more attention due to their great potential applications in the fog harvest process. In this work, we developed a simple and universal electrochemical-etching method to fabricate the superhydrophobic-superhydrophilic patterned surface on metal superhydrophobic substrates. The anti-electrochemical corrosion property of superhydrophobic substrates and the dependence of electrochemical etching potential on the wettability of the fabricated dimples were investigated on Al samples. Results showed that high etching potential was beneficial for efficiently producing a uniform superhydrophilic dimple. Fabrication of long-term superhydrophilic dimples on the Al superhydrophobic substrate was achieved by combining the masked electrochemical etching and boiling-water immersion methods. A long-term wedge-shaped superhydrophilic dimple array was fabricated on a superhydrophobic surface. The fog harvest test showed that the surface with a wedge-shaped pattern array had high water collection efficiency. Condensing water on the pattern was easy to converge and depart due to the internal Laplace pressure gradient of the liquid and the contact angle hysteresis contrast on the surface. The Furmidge equation was applied to explain the droplet departing mechanism and to control the departing volume. The fabrication technique and research of the fog harvest process may guide the design of new water collection devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazemi, Sayed Habib, E-mail: habibkazemi@iasbs.ac.ir; Center for Research in Climate Change and Global Warming; Maghami, Mostafa Ghaem
Highlights: • We report a facile method for fabrication of MnO{sub 2} nanostructures on electro-etched carbon fiber. • MnO{sub 2}-ECF electrode shows outstanding supercapacitive behavior even at high discharge rates. • Exceptional cycle stability was achieved for MnO{sub 2}-ECF electrode. • The coulombic efficiency of MnO{sub 2}-ECF electrode is nearly 100%. - Abstract: In this article we introduce a facile, low cost and additive/template free method to fabricate high-rate electrochemical capacitors. Manganese oxide nanostructures were electrodeposited on electro-etched carbon fiber substrate by applying a constant anodic current. Nanostructured MnO{sub 2} on electro-etched carbon fiber was characterized by scanning electron microscopy,more » X-ray diffraction and energy dispersive X-ray analysis. The electrochemical behavior of MnO{sub 2} electro-etched carbon fiber electrode was investigated by electrochemical techniques including cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy. A maximum specific capacitance of 728.5 F g{sup −1} was achieved at a scan rate of 5 mV s{sup −1} for MnO{sub 2} electro-etched carbon fiber electrode. Also, this electrode showed exceptional cycle stability, suggesting that it can be considered as a good candidate for supercapacitor electrodes.« less
Effect of Etching Methods in Metallographic Studies of Duplex Stainless Steel 2205
NASA Astrophysics Data System (ADS)
Kisasoz, A.; Karaaslan, A.; Bayrak, Y.
2017-03-01
Three different etching methods are used to uncover the ferrite-austenite structure and precipitates of secondary phases in stainless steel 22.5% Cr - 5.4% Ni - 3% Mo - 1.3% Mn. The structure is studied under a light microscope. The chemical etching is conducted in a glycerol solution of HNO3, HCl and HF; the electrochemical etching is conducted in solutions of KOH and NaOH.
NASA Astrophysics Data System (ADS)
Chung, Gwiy-Sang
2003-10-01
This paper describes the fabrication of SOI structures with buried cavities using SDB and electrochemical etch-stop. These methods are suitable for thick membrane fabrication with accurate thickness, uniformity, and flatness. After a feed-through hole for supplied voltage and buried cavities was formed on a handle Si wafer with p-type, the handle wafer was bonded to an active Si wafer consisting of a p-type substrate with an n-type epitaxial layer corresponding to membrane thickness. The bonded pair was then thinned until electrochemical etch-stop occurred at the pn junction during electrochemical etchback. By using the SDB SOI structure with buried cavities, active membranes, which have a free standing structure with a dimension of 900×900 μm2, were fabricated. It is confirmed that the fabrication process of the SDB SOI structure with buried cavities is a powerful and versatile technology for new MEMS applications.
Selectively-etched nanochannel electrophoretic and electrochemical devices
Surh, Michael P.; Wilson, William D.; Barbee, Jr., Troy W.; Lane, Stephen M.
2004-11-16
Nanochannel electrophoretic and electrochemical devices having selectively-etched nanolaminates located in the fluid transport channel. The normally flat surfaces of the nanolaminate having exposed conductive (metal) stripes are selectively-etched to form trenches and baffles. The modifications of the prior utilized flat exposed surfaces increase the amount of exposed metal to facilitate electrochemical redox reaction or control the exposure of the metal surfaces to analytes of large size. These etched areas variously increase the sensitivity of electrochemical detection devices to low concentrations of analyte, improve the plug flow characteristic of the channel, and allow additional discrimination of the colloidal particles during cyclic voltammetry.
Selectively-etched nanochannel electrophoretic and electrochemical devices
Surh, Michael P [Livermore, CA; Wilson, William D [Pleasanton, CA; Barbee, Jr., Troy W.; Lane, Stephen M [Oakland, CA
2006-06-27
Nanochannel electrophoretic and electrochemical devices having selectively-etched nanolaminates located in the fluid transport channel. The normally flat surfaces of the nanolaminate having exposed conductive (metal) stripes are selectively-etched to form trenches and baffles. The modifications of the prior utilized flat exposed surfaces increase the amount of exposed metal to facilitate electrochemical redox reaction or control the exposure of the metal surfaces to analytes of large size. These etched areas variously increase the sensitivity of electrochemical detection devices to low concentrations of analyte, improve the plug flow characteristic of the channel, and allow additional discrimination of the colloidal particles during cyclic voltammetry.
NASA Astrophysics Data System (ADS)
Alhalaili, Badriyah; Dryden, Daniel M.; Vidu, Ruxandra; Ghandiparsi, Soroush; Cansizoglu, Hilal; Gao, Yang; Saif Islam, M.
2018-03-01
Photo-electrochemical (PEC) etching can produce high-aspect ratio features, such as pillars and holes, with high anisotropy and selectivity, while avoiding the surface and sidewall damage caused by traditional deep reactive ion etching (DRIE) or inductively coupled plasma (ICP) RIE. Plasma-based techniques lead to the formation of dangling bonds, surface traps, carrier leakage paths, and recombination centers. In pursuit of effective PEC etching, we demonstrate an optical system using long wavelength (λ = 975 nm) infra-red (IR) illumination from a high-power laser (1-10 W) to control the PEC etching process in n-type silicon. The silicon wafer surface was patterned with notches through a lithography process and KOH etching. Then, PEC etching was introduced by illuminating the backside of the silicon wafer to enhance depth, resulting in high-aspect ratio structures. The effect of the PEC etching process was optimized by varying light intensities and electrolyte concentrations. This work was focused on determining and optimizing this PEC etching technique on silicon, with the goal of expanding the method to a variety of materials including GaN and SiC that are used in designing optoelectronic and electronic devices, sensors and energy harvesting devices.
NASA Astrophysics Data System (ADS)
Lu, Yao; Xu, Wenji; Song, Jinlong; Liu, Xin; Xing, Yingjie; Sun, Jing
2012-12-01
The preparation of superhydrophobic surfaces on hydrophilic metal substrates depends on both surface microstructures and low surface energy modification. In this study, a simple and inexpensive electrochemical method for preparing robust superhydrophobic titanium surfaces is reported. The neutral sodium chloride solution is used as electrolyte. Fluoroalkylsilane (FAS) was used to reduce the surface energy of the electrochemically etched surface. Scanning electron microscopy (SEM) images, energy-dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR) spectra, and contact angle measurement are performed to characterize the morphological features, chemical composition, and wettability of the titanium surfaces. Stability and friction tests indicate that the prepared titanium surfaces are robust. The analysis of electrolyte, reaction process, and products demonstrates that the electrochemical processing is very inexpensive and environment-friendly. This method is believed to be easily adaptable for use in large-scale industry productions to promote the application of superhydrophobic titanium surfaces in aviation, aerospace, shipbuilding, and the military industry.
Maruyama, Kenichi; Ohkawa, Hiroyuki; Ogawa, Sho; Ueda, Akio; Niwa, Osamu; Suzuki, Koji
2006-03-15
We have already reported a method for fabricating ultramicroelectrodes (Suzuki, K. JP Patent, 2004-45394, 2004). This method is based on the selective chemical etching of optical fibers. In this work, we undertake a detailed investigation involving a combination of etched optical fibers with various types of tapered tip (protruding-shape, double- (or pencil-) shape and triple-tapered electrode) and insulation with electrophoretic paint. Our goal is to establish a method for fabricating nanometer-sized optical fiber electrodes with high reproducibility. As a result, we realized pencil-shaped and triple-tapered electrodes that had radii in the nanometer range with high reproducibility. These nanometer-sized electrodes showed well-defined sigmoidal curves and stable diffusion-limited responses with cyclic voltammetry. The pencil-shaped optical fiber, which has a conical tip with a cone angle of 20 degrees , was effective for controlling the electrode radius. The pencil-shaped electrodes had higher reproducibility and smaller electrode radii (r(app) < 1.0 nm) than those of other etched optical fiber electrodes. By using a pencil-shaped electrode with a 105-nm radius as a probe, we obtained simultaneous electrochemical and optical images of an implantable interdigitated array electrode. We achieved nanometer-scale resolution with a combination of scanning electrochemical microscopy SECM and optical microscopy. The resolution of the electrochemical and optical images indicated sizes of 300 and 930 nm, respectively. The neurites of living PC12 cells were also successfully imaged on a 1.6-microm scale by using the negative feedback mode of an SECM.
Electrochemical Method of Making Porous Particles Using a Constant Current Density
NASA Technical Reports Server (NTRS)
Ferrari, Mauro (Inventor); Cheng, Ming-Cheng (Inventor); Liu, Xuewu (Inventor)
2014-01-01
Provided is a particle that includes a first porous region and a second porous region that differs from the first porous region. Also provided is a particle that has a wet etched porous region and that does have a nucleation layer associated with wet etching. Methods of making porous particles are also provided.
Submicron patterned metal hole etching
McCarthy, Anthony M.; Contolini, Robert J.; Liberman, Vladimir; Morse, Jeffrey
2000-01-01
A wet chemical process for etching submicron patterned holes in thin metal layers using electrochemical etching with the aid of a wetting agent. In this process, the processed wafer to be etched is immersed in a wetting agent, such as methanol, for a few seconds prior to inserting the processed wafer into an electrochemical etching setup, with the wafer maintained horizontal during transfer to maintain a film of methanol covering the patterned areas. The electrochemical etching setup includes a tube which seals the edges of the wafer preventing loss of the methanol. An electrolyte composed of 4:1 water: sulfuric is poured into the tube and the electrolyte replaces the wetting agent in the patterned holes. A working electrode is attached to a metal layer of the wafer, with reference and counter electrodes inserted in the electrolyte with all electrodes connected to a potentiostat. A single pulse on the counter electrode, such as a 100 ms pulse at +10.2 volts, is used to excite the electrochemical circuit and perform the etch. The process produces uniform etching of the patterned holes in the metal layers, such as chromium and molybdenum of the wafer without adversely effecting the patterned mask.
Hagedorn, Till; El Ouali, Mehdi; Paul, William; Oliver, David; Miyahara, Yoichi; Grütter, Peter
2011-11-01
A modification of the common electrochemical etching setup is presented. The described method reproducibly yields sharp tungsten tips for usage in the scanning tunneling microscope and tuning fork atomic force microscope. In situ treatment under ultrahigh vacuum (p ≤10(-10) mbar) conditions for cleaning and fine sharpening with minimal blunting is described. The structure of the microscopic apex of these tips is atomically resolved with field ion microscopy and cross checked with field emission. © 2011 American Institute of Physics
NASA Astrophysics Data System (ADS)
Omiya, Takuma; Tanaka, Akira; Shimomura, Masaru
2012-07-01
The structure of porous silicon carbide membranes that peeled off spontaneously during electrochemical etching was studied. They were fabricated from n-type 6H SiC(0001) wafers by a double-step electrochemical etching process in a hydrofluoric electrolyte. Nanoporous membranes were obtained after double-step etching with current densities of 10-20 and 60-100 mA/cm2 in the first and second steps, respectively. Microporous membranes were also fabricated after double-step etching with current densities of 100 and 200 mA/cm2. It was found that the pore diameter is influenced by the etching current in step 1, and that a higher current is required in step 2 when the current in step 1 is increased. During the etching processes in steps 1 and 2, vertical nanopore and lateral crack formations proceed, respectively. The influx pathway of hydrofluoric solution, expansion of generated gases, and transfer limitation of positive holes to the pore surface are the key factors in the peeling-off mechanism of the membrane.
Principles and applications of laser-induced liquid-phase jet-chemical etching
NASA Astrophysics Data System (ADS)
Stephen, Andreas; Metev, Simeon; Vollertsen, Frank
2003-11-01
In this treatment method laser radiation, which is guided from a coaxially expanding liquid jet-stream, locally initiates a thermochemical etching reaction on a metal surface, which leads to selective material removal at high resolution and quality of the treated surface as well as low thermal influence on the workpiece. Electrochemical investigations were performed under focused laser irradiation using a cw-Nd:YAG laser with a maximum power of 15 W and a simultaneous impact of the liquid jet-stream consisting of phosphoric acid with a maximum flow rate of 20 m/s. The time resolved measurements of the electrical potential difference against an electrochemical reference electrode were correlated with the specific processing parameters and corresponding etch rates to identify processing conditions for temporally stable and enhanced chemical etching reactions. Applications of laser-induced liquid-phase jet-chemical etching in the field of sensor technology, micromechanics and micrmoulding technology are presented. This includes the microstructuring of thin film systems, cutting of foils of shape memory alloys or the generation of structures with defined shape in bulk material.
2012-01-01
A method for fabrication of three-dimensional (3D) silicon nanostructures based on selective formation of porous silicon using ion beam irradiation of bulk p-type silicon followed by electrochemical etching is shown. It opens a route towards the fabrication of two-dimensional (2D) and 3D silicon-based photonic crystals with high flexibility and industrial compatibility. In this work, we present the fabrication of 2D photonic lattice and photonic slab structures and propose a process for the fabrication of 3D woodpile photonic crystals based on this approach. Simulated results of photonic band structures for the fabricated 2D photonic crystals show the presence of TE or TM gap in mid-infrared range. PMID:22824206
NASA Astrophysics Data System (ADS)
Lee, SeungGeun; Mishkat-Ul-Masabih, Saadat; Leonard, John T.; Feezell, Daniel F.; Cohen, Daniel A.; Speck, James S.; Nakamura, Shuji; DenBaars, Steven P.
2017-01-01
We investigate the photo-electrochemical (PEC) etching of Si-doped GaN samples grown on nonpolar GaN substrates, using a KOH/K2S2O8 solution and illuminated by a Xe arc lamp or a Q-switched 355 nm laser. The etch rate with the arc lamp decreased as the doping concentration increased, and the etching stopped for concentrations above 7.7 × 1018 cm-3. The high peak intensity of the Q-switched laser extended the etchable concentration to 2.4 × 1019 cm-3, with an etch rate of 14 nm/min. Compositionally selective etching was demonstrated, with an RMS surface roughness of 1.6 nm after etching down to an n-Al0.20Ga0.80N etch stop layer.
Jobbins, Matthew M; Raigoza, Annette F; Kandel, S Alex
2012-03-01
We present control circuits designed for electrochemically etching, reproducibly sharp STM probes. The design uses an Arduino UNO microcontroller to allow for both ac and dc operation, as well as a comparator driven shut-off that allows for etching to be stopped in 0.5-1 μs. The Arduino allows the instrument to be customized to suit a wide variety of potential applications without significant changes to hardware. Data is presented for coarse chemical etching of 80:20 platinum-iridium, tungsten, and nickel tips.
HF/H2O2 treated graphite felt as the positive electrode for vanadium redox flow battery
NASA Astrophysics Data System (ADS)
He, Zhangxing; Jiang, Yingqiao; Meng, Wei; Jiang, Fengyun; Zhou, Huizhu; Li, Yuehua; Zhu, Jing; Wang, Ling; Dai, Lei
2017-11-01
In order to improve the electrochemical performance of the positive graphite felt electrode in vanadium flow redox battery, a novel method is developed to effectively modify the graphite felt by combination of etching of HF and oxidation of H2O2. After the etching of HF for the graphite felt at ambient temperature, abundant oxygen-containing functional groups were further introduced on the surface of graphite felt by hydrothermal treatment using H2O2 as oxidant. Benefiting from the surface etching and introduction of functional groups, mass transfer and electrode process can be improved significantly on the surface of graphite felt. VO2+/VO2+ redox reaction on the graphite felt modified by HF and H2O2 jointly (denote: GF-HF/H2O2) exhibits superior electrochemical kinetics in comparison with the graphite felt modified by single HF or H2O2 treatment. The cell using GF-HF/H2O2 as the positive electrode was assembled and its electrochemical properties were evaluated. The increase of energy efficiency of 4.1% for GF-HF/H2O2 at a current density of 50 mA cm-2 was obtained compared with the pristine graphite felt. The cell using GF-HF/H2O2 also demonstrated higher discharge capacity. Our study revealed that HF/H2O2 treatment is an efficient method to enhance the electrochemical performance of graphite felt, further improving the comprehensive energy storage performance of the vanadium flow redox battery.
Vertical Si nanowire arrays fabricated by magnetically guided metal-assisted chemical etching
NASA Astrophysics Data System (ADS)
Chun, Dong Won; Kim, Tae Kyoung; Choi, Duyoung; Caldwell, Elizabeth; Kim, Young Jin; Paik, Jae Cheol; Jin, Sungho; Chen, Renkun
2016-11-01
In this work, vertically aligned Si nanowire arrays were fabricated by magnetically guided metal-assisted directional chemical etching. Using an anodized aluminum oxide template as a shadow mask, nanoscale Ni dot arrays were fabricated on an Si wafer to serve as a mask to protect the Si during the etching. For the magnetically guided chemical etching, we deposited a tri-layer metal catalyst (Au/Fe/Au) in a Swiss-cheese configuration and etched the sample under the magnetic field to improve the directionality of the Si nanowire etching and increase the etching rate along the vertical direction. After the etching, the nanowires were dried with minimal surface-tension-induced aggregation by utilizing a supercritical CO2 drying procedure. High-resolution transmission electron microscopy (HR-TEM) analysis confirmed the formation of single-crystal Si nanowires. The method developed here for producing vertically aligned Si nanowire arrays could find a wide range of applications in electrochemical and electronic devices.
Electrochemical etching technique of platinum-iridium tips for scanning tunneling microscopy
NASA Astrophysics Data System (ADS)
Herrera, Oscar
The scanning tunneling microscope (STM) allows researchers to investigate atomic and molecular structures and properties of nanomaterials. Through the quantum tunneling effect a charge is transferred between the surface of the material and a Platinum-Iridium (Pt-Ir) tip. The production of Pt-Ir tips by electrochemical etching (ECE) has been developed as an alternative technique, to achieve enhanced scanned images of samples, in contrast to the standard mechanical method (SMM). The sharpness apex structure is an essential feature during scanning in order to provide reliable data. We generated a control group of tips by the SMM technique and another group by the ECE technique to investigate the resolution effectiveness in scanning of graphite. The etching of the tips was produced using an auto-variable transformer running a 30 V AC in a 1.5 and 4.0 M CaCl2 solution. The scanning of the graphite surface was conducted at 7x7 nm image width, 0.2 seconds time/line, 256 points/line and 0.05 V for tip voltage. ECE etched tips displayed consistent image resolution, and the sharpness of the tip apex was generally uniform.
NASA Astrophysics Data System (ADS)
Jeżowski, P.; Nowicki, M.; Grzeszkowiak, M.; Czajka, R.; Béguin, F.
2015-04-01
The main purpose of the study was to increase the surface roughness of stainless steel 301 current collectors by etching, in order to improve the electrochemical performance of electrical double-layer capacitors (EDLC) in 1 mol L-1 lithium sulphate electrolyte. Etching was realized in 1:3:30 (HNO3:HCl:H2O) solution with times varying up to 10 min. For the considered 15 μm thick foil and a mass loss around 0.4 wt.%, pitting was uniform, with diameter of pits ranging from 100 to 300 nm. Atomic force microscopy (AFM) showed an increase of average surface roughness (Ra) from 5 nm for the as-received stainless steel foil to 24 nm for the pitted material. Electrochemical impedance spectroscopy realized on EDLCs with coated electrodes either on as-received or pitted foil in 1 mol L-1 Li2SO4 gave equivalent distributed resistance (EDR) of 8 Ω and 2 Ω, respectively, demonstrating a substantial improvement of collector/electrode interface after pitting. Correlatively, the EDLCs with pitted collector displayed a better charge propagation and low ohmic losses even at relatively high current of 20 A g-1. Hence, chemical pitting of stainless steel current collectors is an appropriate method for optimising the performance of EDLCs in neutral aqueous electrolyte.
Hemispherical cavities on silicon substrates: an overview of micro fabrication techniques
NASA Astrophysics Data System (ADS)
Poncelet, O.; Rasson, J.; Tuyaerts, R.; Coulombier, M.; Kotipalli, R.; Raskin, J.-P.; Francis, L. A.
2018-04-01
Hemispherical photonic crystals found in species like Papilio blumei and Cicendella chinensis have inspired new applications like anti-counterfeiting devices and gas sensors. In this work, we investigate and compare four different ways to micro fabricate such hemispherical cavities: using colloids as template, by wet (HNA) or dry (XeF2) isotropic etching of silicon and by electrochemical etching of silicon. The shape and the roughness of the obtained cavities have been discussed and the pros/cons for each method are highlighted.
Components, Assembly and Electrochemical Properties of Three-Dimensional Battery Architectures
2016-03-01
batteries is directed at our project on 3-D lithium - ion batteries where improvements in materials and fabrication methods are expected to facilitate...reporting period, we focused on new materials and electrode array fabrication processes for 3-D lithium - ion batteries and made substantial progress. In...to facilitate the assembly of a full 3-D lithium - ion battery system. a Pattern silicon dioxide etch I I I I I mask b DRIE etch silicon posts c I I
Plasma-Etching of Spray-Coated Single-Walled Carbon Nanotube Films for Biointerfaces
NASA Astrophysics Data System (ADS)
Kim, Joon Hyub; Lee, Jun-Yong; Min, Nam Ki
2012-08-01
We present an effective method for the batch fabrication of miniaturized single-walled carbon nanotube (SWCNT) film electrodes using oxygen plasma etching. We adopted the approach of spray-coating for good adhesion of the SWCNT film onto a pre-patterned Pt support and used O2 plasma patterning of the coated films to realize efficient biointerfaces between SWCNT surfaces and biomolecules. By these approaches, the SWCNT film can be easily integrated into miniaturized electrode systems. To demonstrate the effectiveness of plasma-etched SWCNT film electrodes as biointerfaces, Legionella antibody was selected as analysis model owing to its considerable importance to electrochemical biosensors and was detected using plasma-etched SWCNT film electrodes and a 3,3',5,5'-tetramethyl-benzidine dihydrochloride/horseradish peroxidase (TMB/HRP) catalytic system. The response currents increased with increasing concentration of Legionella antibody. This result indicates that antibodies were effectively immobilized on plasma-etched and activated SWCNT surfaces.
High quality self-separated GaN crystal grown on a novel nanoporous template by HVPE.
Huo, Qin; Shao, Yongliang; Wu, Yongzhong; Zhang, Baoguo; Hu, Haixiao; Hao, Xiaopeng
2018-02-16
In this study, a novel nanoporous template was obtained by a two-step etching process from MOCVD-GaN/Al 2 O 3 (MGA) with electrochemical etching sequentially followed by chemical wet etching. The twice-etched MOCVD-GaN/Al 2 O 3 (TEMGA) templates were utilized to grow GaN crystals by hydride vapor phase epitaxy (HVPE) method. The GaN crystals were separated spontaneously from the TEMGA template with the assistance of voids formed by the etched nanopores. Several techniques were utilized to characterize the quality of the free-standing GaN crystals obtained from the TEMGA template. Results showed that the quality of the as-obtained GaN crystals was improved obviously compared with those grown on the MGA. This convenient technique can be applied to grow high-quality free-standing GaN crystals.
Integration of Electrodeposited Ni-Fe in MEMS with Low-Temperature Deposition and Etch Processes
Schiavone, Giuseppe; Murray, Jeremy; Perry, Richard; Mount, Andrew R.; Desmulliez, Marc P. Y.; Walton, Anthony J.
2017-01-01
This article presents a set of low-temperature deposition and etching processes for the integration of electrochemically deposited Ni-Fe alloys in complex magnetic microelectromechanical systems, as Ni-Fe is known to suffer from detrimental stress development when subjected to excessive thermal loads. A selective etch process is reported which enables the copper seed layer used for electrodeposition to be removed while preserving the integrity of Ni-Fe. In addition, a low temperature deposition and surface micromachining process is presented in which silicon dioxide and silicon nitride are used, respectively, as sacrificial material and structural dielectric. The sacrificial layer can be patterned and removed by wet buffered oxide etch or vapour HF etching. The reported methods limit the thermal budget and minimise the stress development in Ni-Fe. This combination of techniques represents an advance towards the reliable integration of Ni-Fe components in complex surface micromachined magnetic MEMS. PMID:28772683
Chemical Composition of Nanoporous Layer Formed by Electrochemical Etching of p-Type GaAs.
Bioud, Youcef A; Boucherif, Abderraouf; Belarouci, Ali; Paradis, Etienne; Drouin, Dominique; Arès, Richard
2016-12-01
We have performed a detailed characterization study of electrochemically etched p-type GaAs in a hydrofluoric acid-based electrolyte. The samples were investigated and characterized through cathodoluminescence (CL), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). It was found that after electrochemical etching, the porous layer showed a major decrease in the CL intensity and a change in chemical composition and in the crystalline phase. Contrary to previous reports on p-GaAs porosification, which stated that the formed layer is composed of porous GaAs, we report evidence that the porous layer is in fact mainly constituted of porous As 2 O 3 . Finally, a qualitative model is proposed to explain the porous As 2 O 3 layer formation on p-GaAs substrate.
NASA Astrophysics Data System (ADS)
O, Ryong-Sok; Takamura, Makoto; Furukawa, Kazuaki; Nagase, Masao; Hibino, Hiroki
2015-03-01
We report on the effects of UV light intensity on the photo assisted electrochemical wet etching of SiC(0001) underneath an epitaxially grown graphene for the fabrication of suspended structures. The maximum etching rate of SiC(0001) was 2.5 µm/h under UV light irradiation in 1 wt % KOH at a constant current of 0.5 mA/cm2. The successful formation of suspended structures depended on the etching rate of SiC. In the Raman spectra of the suspended structures, we did not observe a significant increase in the intensity of the D peak, which originates from defects in graphene sheets. This is most likely explained by the high quality of the single-crystalline graphene epitaxially grown on SiC.
Electrochemical formation of field emitters
Bernhardt, Anthony F.
1999-01-01
Electrochemical formation of field emitters, particularly useful in the fabrication of flat panel displays. The fabrication involves field emitting points in a gated field emitter structure. Metal field emitters are formed by electroplating and the shape of the formed emitter is controlled by the potential imposed on the gate as well as on a separate counter electrode. This allows sharp emitters to be formed in a more inexpensive and manufacturable process than vacuum deposition processes used at present. The fabrication process involves etching of the gate metal and the dielectric layer down to the resistor layer, and then electroplating the etched area and forming an electroplated emitter point in the etched area.
NASA Astrophysics Data System (ADS)
Dorofeeva, Tatiana
Nanostructured materials have had a major impact on various fields, including medicine, catalysis, and energy storage, for the major part due to unique phenomena that arise at nanoscale. For this reason, there is a sustained need for new nanostructured materials, techniques to pattern them, and methods to precisely control their nanostructure. To that end, the primary focus of this dissertation is to demonstrate novel techniques to fabricate and tailor the morphology of a class of nanoporous metals, obtained by a process known as dealloying. In this process, while the less noble constituent of an alloy is chemically dissolved, surface-diffusion of the more noble constituent leads to self-assembly of a bicontinuous ligament network with characteristic porosity of ˜70% and ligament diameter of 10s of nanometers. As a model material produced by dealloying, this work employ nanoporous gold (np-Au), which has attracted significant attention of desirable features, such as high effective surface area, electrical conductivity, well-defined thiol-based surface modification strategies, microfabrication-compatibility, and biocompatibility. The most commonly method used to modify the morphology of np-Au is thermal treatment, where the enhanced diffusivity of the surface atoms leads to ligament (and consequently pore) coarsening. This method, however, is not conducive to modifying the morphology of thin films at specific locations on the film, which is necessary for creating devices that may need to contain different morphologies on a single device. In addition, coarsening attained by thermal treatment also leads to an undesirable reduction in effective surface area. In response to these challenges, this work demonstrates two different techniques that enables in situ modification of np-Au thin film electrodes obtained by sputter-deposition of a precursors silver-rich gold-silver alloy. The first method, referred to as electro-annealing, is achieved by injecting electrical current to np-Au electrodes, which leads coarsening due to a combination of Joule heating and other mechanisms. This method offers the capability to anneal different electrodes to varying degrees of coarsening in one step, by employing electrodes patterns with different cross-sectional areas - easily attained since np-Au can be patterned into arbitrary shapes via photolithography - to control electrode resistivity, thus current density and the amount of electro-annealing of an electrode. A surprising finding was that electro-annealing lead to electrode coarsening at much lower temperatures than conventional thermal treatment, which was attributed to augmented electron-surface atom interactions at high current densities that may in turn enhance surface atom diffusivity. A major advantage of electro-annealing is the ability to monitor the resistance change of the electrode (surrogate for electrode morphology) in real-time and vary the electro-annealing current accordingly to establish a closed-loop electro-annealing configuration. In nanostructured materials, the electrical resistance is often a function of nanostructure, thus changes in resistance can be directly linked to morphological changes of the electrode. Examination of the underlying mechanisms of nanostructure-dependent resistance change revealed that both ligament diameter and grain size play a role in dictating the observed electrode resistance change. The second method relies on electrochemical etching of ligaments to modify electrode morphology in order to maintain both a high effective surface area and large pores for unhindered transport of molecules to/from the ligament surfaces - an important consideration for many physico-chemical processes, such fuel cells, electrochemical sensors, and drug delivery platforms. The advantage of this method over purely chemical approach is that while an entire sample in exposed to the chemical reagent, the etching process does not occur until the necessary electrochemical potential is applied. Similar to the electro-annealing methods, electrical addressability allows for differentially modifying the morphology individual electrodes on a single substrate. The results of this study also revealed that electrochemical etching is a combination of coarsening and etching processes, where the optimization of etching parameters makes it possible precisely control the etching by favoring one process over the other. In summary, the two techniques, taken together in combination with np-Au's compatibility with microfabrication processes, can be extended to create multiple electrode arrays that display different morphologies for studying structure?property relationships and tuning catalysts/sensors for optimal performance.
Simplified fast neutron dosimeter
Sohrabi, Mehdi
1979-01-01
Direct fast-neutron-induced recoil and alpha particle tracks in polycarbonate films may be enlarged for direct visual observation and automated counting procedures employing electrochemical etching techniques. Electrochemical etching is, for example, carried out in a 28% KOH solution at room temperature by applying a 2000 V peak-to-peak voltage at 1 kHz frequency. Such recoil particle amplification can be used for the detection of wide neutron dose ranges from 1 mrad. to 1000 rads. or higher, if desired.
NASA Astrophysics Data System (ADS)
Naddaf, M.
2017-01-01
Matrices of copper oxide-porous silicon nanostructures have been formed by electrochemical etching of copper-coated silicon surfaces in HF-based solution at different etching times (5-15 min). Micro-Raman, X-ray diffraction and X-ray photoelectron spectroscopy results show that the nature of copper oxide in the matrix changes from single-phase copper (I) oxide (Cu2O) to single-phase copper (II) oxide (CuO) on increasing the etching time. This is accompanied with important variation in the content of carbon, carbon hydrides, carbonyl compounds and silicon oxide in the matrix. The matrix formed at the low etching time (5 min) exhibits a single broad "blue" room-temperature photoluminescence (PL) band. On increasing the etching time, the intensity of this band decreases and a much stronger "red" PL band emerges in the PL spectra. The relative intensity of this band with respect to the "blue" band significantly increases on increasing the etching time. The "blue" and "red" PL bands are attributed to Cu2O and porous silicon of the matrix, respectively. In addition, the water contact angle measurements reveal that the hydrophobicity of the matrix surface can be tuned from hydrophobic to superhydrophobic state by controlling the etching time.
NASA Astrophysics Data System (ADS)
Huan, Z.; Fratila-Apachitei, L. E.; Apachitei, I.; Duszczyk, J.
2014-02-01
The purpose of this study was to generate hybrid micro/nano-structures on biomedical nickel-titanium alloy (NiTi). To achieve this, NiTi surfaces were firstly electrochemically etched and then anodized in fluoride-containing electrolyte. With the etching process, the NiTi surface was micro-roughened through the formation of micropits uniformly distributed over the entire surface. Following the subsequent anodizing process, self-organized nanotube structures enriched in TiO2 could be superimposed on the etched surface under specific conditions. Furthermore, the anodizing treatment significantly reduced water contact angles and increased the surface free energy compared to the surfaces prior to anodizing. The results of this study show for the first time that it is possible to create hybrid micro/nano-structures on biomedical NiTi alloys by combining electrochemical etching and anodizing under controlled conditions. These novel structures are expected to significantly enhance the surface biofunctionality of the material when compared to conventional implant devices with either micro- or nano-structured surfaces.
Huan, Z; Fratila-Apachitei, L E; Apachitei, I; Duszczyk, J
2014-02-07
The purpose of this study was to generate hybrid micro/nano-structures on biomedical nickel-titanium alloy (NiTi). To achieve this, NiTi surfaces were firstly electrochemically etched and then anodized in fluoride-containing electrolyte. With the etching process, the NiTi surface was micro-roughened through the formation of micropits uniformly distributed over the entire surface. Following the subsequent anodizing process, self-organized nanotube structures enriched in TiO2 could be superimposed on the etched surface under specific conditions. Furthermore, the anodizing treatment significantly reduced water contact angles and increased the surface free energy compared to the surfaces prior to anodizing. The results of this study show for the first time that it is possible to create hybrid micro/nano-structures on biomedical NiTi alloys by combining electrochemical etching and anodizing under controlled conditions. These novel structures are expected to significantly enhance the surface biofunctionality of the material when compared to conventional implant devices with either micro- or nano-structured surfaces.
Electrochemical formation of field emitters
Bernhardt, A.F.
1999-03-16
Electrochemical formation of field emitters, particularly useful in the fabrication of flat panel displays is disclosed. The fabrication involves field emitting points in a gated field emitter structure. Metal field emitters are formed by electroplating and the shape of the formed emitter is controlled by the potential imposed on the gate as well as on a separate counter electrode. This allows sharp emitters to be formed in a more inexpensive and manufacturable process than vacuum deposition processes used at present. The fabrication process involves etching of the gate metal and the dielectric layer down to the resistor layer, and then electroplating the etched area and forming an electroplated emitter point in the etched area. 12 figs.
Porous siliconformation and etching process for use in silicon micromachining
Guilinger, Terry R.; Kelly, Michael J.; Martin, Jr., Samuel B.; Stevenson, Joel O.; Tsao, Sylvia S.
1991-01-01
A reproducible process for uniformly etching silicon from a series of micromechanical structures used in electrical devices and the like includes providing a micromechanical structure having a silicon layer with defined areas for removal thereon and an electrochemical cell containing an aqueous hydrofluoric acid electrolyte. The micromechanical structure is submerged in the electrochemical cell and the defined areas of the silicon layer thereon are anodically biased by passing a current through the electrochemical cell for a time period sufficient to cause the defined areas of the silicon layer to become porous. The formation of the depth of the porous silicon is regulated by controlling the amount of current passing through the electrochemical cell. The micromechanical structure is then removed from the electrochemical cell and submerged in a hydroxide solution to remove the porous silicon. The process is subsequently repeated for each of the series of micromechanical structures to achieve a reproducibility better than 0.3%.
Photoelectrochemical fabrication of spectroscopic diffraction gratings, phase 2
NASA Technical Reports Server (NTRS)
Rauh, R. David; Carrabba, Michael M.; Li, Jianguo; Cartland, Robert F.; Hachey, John P.; Mathew, Sam
1990-01-01
This program was directed toward the production of Echelle diffraction gratings by a light-driven, electrochemical etching technique (photoelectrochemical etching). Etching is carried out in single crystal materials, and the differential rate of etching of the different crystallographic planes used to define the groove profiles. Etching of V-groove profiles was first discovered by us during the first phase of this project, which was initially conceived as a general exploration of photoelectrochemical etching techniques for grating fabrication. This highly controllable V-groove etching process was considered to be of high significance for producing low pitch Echelles, and provided the basis for a more extensive Phase 2 investigation.
Yin, Chengcheng; Zhang, Yanjing; Cai, Qing; Li, Baosheng; Yang, Hua; Wang, Heling; Qi, Hua; Zhou, Yanmin; Meng, Weiyan
2017-03-01
In clinical applications, osseointegration is essential for the long-term stability of dental implants. Inspired by the hierarchical structure of natural bone, we applied the electrochemical etching (EC) technique to form a micro-nano structure on a titanium alloy (Ti6Al4V) substrate, called EC surface. Sand blasting and acid etching (SLA) and machined (M) methods were employed to generate micro and smooth textures, respectively, as the control groups. The surface topographies of the three substrates were characterized using scanning electron microscopy (SEM). Then, human osteoblast-like cells (MG63) were cultured on substrates, and adhesion, proliferation, morphology, alkaline phosphatase activity (ALP), and gene expression levels of Runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), osteopontin (OPN), and type I collagen (COLIA 1) were analyzed. MG63 cells cultured on the EC Ti alloy substrates displayed better cell adhesion, significant proliferation, and a higher production level of ALP, gene expressions of RUNX2, OCN, OPN and COLIA 1 (p < 0.01 or p < 0.05) compared with those of SLA and M substrates. These results indicate that the micro-nano structure fabricated by electrochemical etching method is beneficial for the biological functions of MG63 cells and may be a promising candidate in dental implants. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 757-769, 2017. © 2016 Wiley Periodicals, Inc.
Enhanced electrochemical etching of ion irradiated silicon by localized amorphization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dang, Z. Y.; Breese, M. B. H.; Lin, Y.
2014-05-12
A tailored distribution of ion induced defects in p-type silicon allows subsequent electrochemical anodization to be modified in various ways. Here we describe how a low level of lattice amorphization induced by ion irradiation influences anodization. First, it superposes a chemical etching effect, which is observable at high fluences as a reduced height of a micromachined component. Second, at lower fluences, it greatly enhances electrochemical anodization by allowing a hole diffusion current to flow to the exposed surface. We present an anodization model, which explains all observed effects produced by light ions such as helium and heavy ions such asmore » cesium over a wide range of fluences and irradiation geometries.« less
NASA Astrophysics Data System (ADS)
Tamura, Naoki; Tomai, Takaaki; Oka, Nobuto; Honma, Itaru
2018-01-01
The electrochemical properties of graphene edge has been attracted much attention. Especially, zigzag edge has high electrochemical activity because neutral radical exits on edge. However, due to a lack of efficient production method for zigzag graphene, the electrochemical properties of zigzag edge have not been experimentally demonstrated and the capacitance enhancement of carbonaceous materials in energy storage devices by the control in their edge states is still challenge. In this study, we fabricated zigzag-edge-rich graphene by a one-step method combining graphene exfoliation in supercritical fluid and anisotropic etching by catalytic nanoparticles. This efficient production of zigzag-edge-rich graphene allows us to investigate the electrochemical activity of zigzag edge. By cyclic voltammetry, we revealed the zigzag edge-introduced graphene exhibited unique redox reaction in aqueous acid solution. Moreover, by the calculation on the density function theory (DFT), this unique redox potential for zigzag edge-introduced graphene can be attributed to the proton-insertion/-extraction reactions at the zigzag edge. This finding indicates that the graphene edge modification can contribute to the further increase in the capacitance of the carbon-based electrochemical capacitor.
Method for electrochemical decontamination of radioactive metal
Ekechukwu, Amy A [Augusta, GA
2008-06-10
A decontamination method for stripping radionuclides from the surface of stainless steel or aluminum material comprising the steps of contacting the metal with a moderately acidic carbonate/bicarbonate electrolyte solution containing sodium or potassium ions and thereafter electrolytically removing the radionuclides from the surface of the metal whereby radionuclides are caused to be stripped off of the material without corrosion or etching of the material surface.
Personnel neutron dosimetry using electrochemically etched CR-39 foils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hankins, D.E.; Homann, S.; Westermark, J.
1986-09-17
A personnel neutron dosimetry system has been developed based on the electrochemical etching of CR-39 plastic at elevated temperatures. The doses obtained using this dosimeter system are more accurate than those obtained using other dosimetry systems, especially when varied neutron spectra are encountered. This Cr-39 dosimetry system does not have the severe energy dependence that exists with albedo neutron dosimeters or the fading and reading problems encountered with NTA film. The dosimetry system employs an electrochemical etch procedure that be used to process large numbers of Cr-39 dosimeters. The etch procedure is suitable for operations where the number of personnelmore » requires that many CR-39 dosimeters be processed. Experience shows that one full-time technician can etch and evaluate 2000 foils per month. The energy response to neutrons is fairly flat from about 80 keV to 3.5 MeV, but drops by about a factor of three in the 13 to 16 MeV range. The sensitivity of the dosimetry system is about 7 tracks/cm/sup 2//mrem, with a background equivalent to about 8 mrem for new CR-39 foils. The limit of sensitivity is approximately 10 mrem. The dosimeter has a significant variation in directional dependence, dropping to about 20% at 90/sup 0/. This dosimeter has been used for personnel neutron dosimetry at the Lawrence Livermore National Laboratory for more tha 18 months. 6 refs., 23 figs., 2 tabs.« less
NASA Astrophysics Data System (ADS)
Loan Nguyen, Thu; Dieu Thuy Ung, Thi; Liem Nguyen, Quang
2014-06-01
This paper reports on the fabrication of non-chapped, vertically well aligned titanium dioxide nanotubes (TONTs) by using electrochemical etching method and further heat treatment. Very highly ordered metallic titanium nanotubes (TNTs) were formed by directly anodizing titanium foil at room temperature in an electrolyte composed of ammonium fluoride (NH4F), ethylene glycol (EG), and water. The morphology of as-formed TNTs is greatly dependent on the applied voltage, NH4F content and etching time. Particularly, we have found two interesting points related to the formation of TNTs: (i) the smooth surface without chaps of the largely etched area was dependent on the crystalline orientation of the titanium foil; and (ii) by increasing the anodizing potential from 15 V to 20 V, the internal diameter of TNT was increased from about 50 nm to 60 nm and the tube density decreased from 403 tubes μm-2 down to 339 tubes μm-2, respectively. For the anodizing duration from 1 h to 5 h, the internal diameter of each TNT was increased from ˜30 nm to 60 nm and the tube density decreased from 496 tubes μm-2 down to 403 tubes μm-2. After annealing at 400 °C in open air for 1 h, the TNTs were transformed into TONTs in anatase structure; further annealing at 600 °C showed the structural transformation from anatase to rutile as determined by Raman scattering spectroscopy.
Preparation of scanning tunneling microscopy tips using pulsed alternating current etching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valencia, Victor A.; Thaker, Avesh A.; Derouin, Jonathan
An electrochemical method using pulsed alternating current etching (PACE) to produce atomically sharp scanning tunneling microscopy (STM) tips is presented. An Arduino Uno microcontroller was used to control the number and duration of the alternating current (AC) pulses, allowing for ready optimization of the procedures for both Pt:Ir and W tips using a single apparatus. W tips prepared using constant and pulsed AC power were compared. Tips fashioned using PACE were sharper than those etched with continuous AC power alone. Pt:Ir tips were prepared with an initial coarse etching stage using continuous AC power followed by fine etching using PACE.more » The number and potential of the finishing AC pulses was varied and scanning electron microscope imaging was used to compare the results. Finally, tip quality using the optimized procedures was verified by UHV-STM imaging. With PACE, at least 70% of the W tips and 80% of the Pt:Ir tips were of sufficiently high quality to obtain atomically resolved images of HOPG or Ni(111)« less
NASA Astrophysics Data System (ADS)
Kravets, L. I.; Elinson, V. M.; Ibragimov, R. G.; Mitu, B.; Dinescu, G.
2018-02-01
The surface and electrochemical properties of polypropylene track-etched membrane treated by plasma of nitrogen, air and oxygen are studied. The effect of the plasma-forming gas composition on the surface morphology is considered. It has been found that the micro-relief of the membrane surface formed under the gas-discharge etching, changes. Moreover, the effect of the non-polymerizing gas plasma leads to formation of oxygen-containing functional groups, mostly carbonyl and carboxyl. It is shown that due to the formation of polar groups on the surface and its higher roughness, the wettability of the plasma-modified membranes improves. In addition, the presence of polar groups on the membrane surface layer modifies its electrochemical properties so that conductivity of plasma-treated membranes increase.
Surface treatment influences electrochemical stability of cpTi exposed to mouthwashes.
Beline, Thamara; Garcia, Camila S; Ogawa, Erika S; Marques, Isabella S V; Matos, Adaias O; Sukotjo, Cortino; Mathew, Mathew T; Mesquita, Marcelo F; Consani, Rafael X; Barão, Valentim A R
2016-02-01
The role of surface treatment on the electrochemical behavior of commercially pure titanium (cpTi) exposed to mouthwashes was tested. Seventy-five disks were divided into 15 groups according to surface treatment (machined, sand blasted with Al2O3, and acid etched) and electrolyte solution (artificial saliva — control, 0.12% chlorhexidine digluconate, 0.05% cetylpyridinium chloride, 0.2% sodium fluoride, and 1.5% hydrogen peroxide) (n = 5). Open-circuit-potential and electrochemical impedance spectroscopy were conducted at baseline and after 7 and 14 days of immersion in each solution. Potentiodynamic test and total weight loss of disks were performed after 14 days of immersion. Scanning electron microscopy, energy dispersive spectroscopy, white light interferometry and profilometry were conducted for surface characterization before and after the electrochemical tests. Sandblasting promoted the lowest polarization resistance (Rp) (P b .0001) and the highest capacitance (CPE) (P b .006), corrosion current density (Icorr) and corrosion rate (P b .0001). In contrast, acid etching increased Rp and reduced CPE, independent to the mouthwash; while hydrogen peroxide reduced Rp (P b .008) and increased Icorr and corrosion rate (P b .0001). The highest CPE values were found for hydrogen peroxide and 0.2% sodium fluoride. Immersion for longer period improved the electrochemical stability of cpTi (P b .05). In conclusion, acid etching enhanced the electrochemical stability of cpTi. Hydrogen peroxide and sodium fluoride reduced the resistance to corrosion of cpTi, independent to the surface treatment. Chlorhexidine gluconate and cetylpyridinium chloride did not alter the corrosive behavior of cpTi.
Modeling the photoacoustic signal during the porous silicon formation
NASA Astrophysics Data System (ADS)
Ramirez-Gutierrez, C. F.; Castaño-Yepes, J. D.; Rodriguez-García, M. E.
2017-01-01
Within this work, the kinetics of the growing stage of porous silicon (PS) during the etching process was studied using the photoacoustic technique. A p-type Si with low resistivity was used as a substrate. An extension of the Rosencwaig and Gersho model is proposed in order to analyze the temporary changes that take place in the amplitude of the photoacoustic signal during the PS growth. The solution of the heat equation takes into account the modulated laser beam, the changes in the reflectance of the PS-backing heterostructure, the electrochemical reaction, and the Joule effect as thermal sources. The model includes the time-dependence of the sample thickness during the electrochemical etching of PS. The changes in the reflectance are identified as the laser reflections in the internal layers of the system. The reflectance is modeled by an additional sinusoidal-monochromatic light source and its modulated frequency is related to the velocity of the PS growth. The chemical reaction and the DC components of the heat sources are taken as an average value from the experimental data. The theoretical results are in agreement with the experimental data and hence provided a method to determine variables of the PS growth, such as the etching velocity and the thickness of the porous layer during the growing process.
Characteristics for electrochemical machining with nanoscale voltage pulses.
Lee, E S; Back, S Y; Lee, J T
2009-06-01
Electrochemical machining has traditionally been used in highly specialized fields, such as those of the aerospace and defense industries. It is now increasingly being applied in other industries, where parts with difficult-to-cut material, complex geometry and tribology, and devices of nanoscale and microscale are required. Electric characteristic plays a principal function role in and chemical characteristic plays an assistant function role in electrochemical machining. Therefore, essential parameters in electrochemical machining can be described current density, machining time, inter-electrode gap size, electrolyte, electrode shape etc. Electrochemical machining provides an economical and effective method for machining high strength, high tension and heat-resistant materials into complex shapes such as turbine blades of titanium and aluminum alloys. The application of nanoscale voltage pulses between a tool electrode and a workpiece in an electrochemical environment allows the three-dimensional machining of conducting materials with sub-micrometer precision. In this study, micro probe are developed by electrochemical etching and micro holes are manufactured using these micro probe as tool electrodes. Micro holes and microgroove can be accurately achieved by using nanoscale voltages pulses.
Single bead-based electrochemical biosensor.
Liu, Changchun; Schrlau, Michael G; Bau, Haim H
2009-12-15
A simple, robust, single bead-based electrochemical biosensor was fabricated and characterized. The sensor's working electrode consists of an electrochemically etched platinum wire, with a nominal diameter of 25 microm, hermetically heat-fusion sealed in a pulled glass capillary (micropipette). The sealing process does not require any epoxy or glue. A commercially available, densely functionalized agarose bead was mounted on the tip of the etched platinum wire. The use of a pre-functionalized bead eliminates the tedious and complicated surface functionalization process that is often the bottleneck in the development of electrochemical biosensors. We report on the use of a biotin agarose bead-based, micropipette, electrochemical (Bio-BMP) biosensor to monitor H(2)O(2) concentration and the use of a streptavidin bead-based, micropipette, electrochemical (SA-BMP) biosensor to detect DNA amplicons. The Bio-BMP biosensor's response increased linearly as the H(2)O(2) concentration increased in the range from 1 x 10(-6) to 1.2 x10(-4)M with a detection limit of 5 x 10(-7)M. The SA-BMP was able to detect the amplicons of 1pg DNA template of B. Cereus bacteria, thus providing better detection sensitivity than conventional gel-based electropherograms.
Method for vacuum pressing electrochemical cell components
NASA Technical Reports Server (NTRS)
Andrews, Craig C. (Inventor); Murphy, Oliver J. (Inventor)
2004-01-01
Assembling electrochemical cell components using a bonding agent comprising aligning components of the electrochemical cell, applying a bonding agent between the components to bond the components together, placing the components within a container that is essentially a pliable bag, and drawing a vacuum within the bag, wherein the bag conforms to the shape of the components from the pressure outside the bag, thereby holding the components securely in place. The vacuum is passively maintained until the adhesive has cured and the components are securely bonded. The bonding agent used to bond the components of the electrochemical cell may be distributed to the bonding surface from distribution channels in the components. To prevent contamination with bonding agent, some areas may be treated to produce regions of preferred adhesive distribution and protected regions. Treatments may include polishing, etching, coating and providing protective grooves between the bonding surfaces and the protected regions.
NASA Astrophysics Data System (ADS)
Chuang, Ho-Chiao; Yang, Hsi-Min; Wu, Cheng-Xiang; Sanchez, Jorge; Shyu, Jenq-Huey
2017-01-01
This paper aims to fabricate high aspect ratio through silicon via (TSV) by photo-assisted electrochemical etching (PAECE) and supercritical CO2 copper electroplating. A blind-holed silicon array was first fabricated by PAECE. By studying the etching parameters, including hydrofluoric acid concentration, etchant temperature, stirring speed, tetrabutylammonium perchlorate (TBAP) content, and Ohmic contact thickness, an array of pores with a 1∶45 aspect ratio (height=250 μm and diameter=5.5 μm) was obtained successfully. Moreover, TBAP and Kodak Photo-Flo (PF) solution were added into the etchant to acquire smooth sidewalls for the first time. TBAP was added for the first time to serve as an antistatic agent in deionized water-based etchant to prevent side-branch etching, and PF was used to degasify hydrogen bubbles in the etchant. The effect of gold thickness over Ohmic contact was investigated. Randomized etching was observed with an Au thickness of 200 Å, but it can be improved by increasing the etching voltage. The silicon mold of through-holes was filled with metal using supercritical CO2 copper electroplating, which features high diffusivity, permeability, and density. The TSV structure (aspect ratio=1∶35) was obtained at a supercritical pressure of 2000 psi, temperature of 50°C, and current density of 30 mA/cm2 in 2.5 h.
NASA Astrophysics Data System (ADS)
Noh, Taegeun; Tak, Yong Suk; Nam, Jaedo; Jeon, Jaewook; Kim, Hunmo; Choi, Hyoukryeol; Bae, Sang Sik
2001-07-01
Behaviors of nafion-based actuators are significantly affected by interfacial area between electrode and polymer electrolyte. Replication method was utilized to manufacture a large surface-area composite actuator. Etched aluminum foil was used as a template for replication using liquid nafion solution. Measurement of double layer charging and scanning electron microscopy indicated that interfacial area was greatly increased by replication method. Higher surface area induced a better bending performance of ionic polymer metal composite (IPMC). In parallel, the effect of cations on IPMC was interpreted with constant current experiment, linear sweep voltammetry and electrochemical impedance spectroscopy. For univalent cations, ion size is the most influencing parameter on ionic mobility inside membrane. However, ion-ion interaction affects an ionic mobility for divalent cations.
NASA Astrophysics Data System (ADS)
Naddaf, M.; Al-Mariri, A.; Haj-Mhmoud, N.
2017-06-01
Nanostructured layers composed of silver-porous silicon (Ag-PS) have been formed by an electrochemical etching of p-type (1 1 1) silicon substrate in a AgNO3:HF:C2H5OH solution at different etching times (10 min-30 min). Scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS) results reveal that the produced layers consist of Ag dendrites and a silicon-rich porous structure. The nanostructuring nature of the layer has been confirmed by spatial micro-Raman scattering and x-ray diffraction techniques. The Ag dendrites exhibit a surface-enhanced Raman scattering (SERS) spectrum, while the porous structure shows a typical PS Raman spectrum. Upon increasing the etching time, the average size of silicon nanocrystallite in the PS network decreases, while the average size of Ag nanocrystals is slightly affected. In addition, the immobilization of prokaryote Salmonella typhimurium DNA via physical adsorption onto the Ag-PS layer has been performed to demonstrate its efficiency as a platform for detection of biological molecules using SERS.
Bernhardt, A.F.; Contolini, R.J.
1993-10-26
In a process for fabricating planarized thin film metal interconnects for integrated circuit structures, a planarized metal layer is etched back to the underlying dielectric layer by electropolishing, ion milling or other procedure. Electropolishing reduces processing time from hours to minutes and allows batch processing of multiple wafers. The etched back planarized thin film interconnect is flush with the dielectric layer. 12 figures.
A Macroporous TiO2 Oxygen Sensor Fabricated Using Anodic Aluminium Oxide as an Etching Mask
Lu, Chih-Cheng; Huang, Yong-Sheng; Huang, Jun-Wei; Chang, Chien-Kuo; Wu, Sheng-Po
2010-01-01
An innovative fabrication method to produce a macroporous Si surface by employing an anodic aluminium oxide (AAO) nanopore array layer as an etching template is presented. Combining AAO with a reactive ion etching (RIE) processes, a homogeneous and macroporous silicon surface can be effectively configured by modulating AAO process parameters and alumina film thickness, thus hopefully replacing conventional photolithography and electrochemical etch methods. The hybrid process integration is considered fully CMOS compatible thanks to the low-temperature AAO and CMOS processes. The gas-sensing characteristics of 50 nm TiO2 nanofilms deposited on the macroporous surface are compared with those of conventional plain (or non-porous) nanofilms to verify reduced response noise and improved sensitivity as a result of their macroporosity. Our experimental results reveal that macroporous geometry of the TiO2 chemoresistive gas sensor demonstrates 2-fold higher (∼33%) improved sensitivity than a non-porous sensor at different levels of oxygen exposure. In addition, the macroporous device exhibits excellent discrimination capability and significantly lessened response noise at 500 °C. Experimental results indicate that the hybrid process of such miniature and macroporous devices are compatible as well as applicable to integrated next generation bio-chemical sensors. PMID:22315561
A macroporous TiO2 oxygen sensor fabricated using anodic aluminium oxide as an etching mask.
Lu, Chih-Cheng; Huang, Yong-Sheng; Huang, Jun-Wei; Chang, Chien-Kuo; Wu, Sheng-Po
2010-01-01
An innovative fabrication method to produce a macroporous Si surface by employing an anodic aluminium oxide (AAO) nanopore array layer as an etching template is presented. Combining AAO with a reactive ion etching (RIE) processes, a homogeneous and macroporous silicon surface can be effectively configured by modulating AAO process parameters and alumina film thickness, thus hopefully replacing conventional photolithography and electrochemical etch methods. The hybrid process integration is considered fully CMOS compatible thanks to the low-temperature AAO and CMOS processes. The gas-sensing characteristics of 50 nm TiO(2) nanofilms deposited on the macroporous surface are compared with those of conventional plain (or non-porous) nanofilms to verify reduced response noise and improved sensitivity as a result of their macroporosity. Our experimental results reveal that macroporous geometry of the TiO(2) chemoresistive gas sensor demonstrates 2-fold higher (∼33%) improved sensitivity than a non-porous sensor at different levels of oxygen exposure. In addition, the macroporous device exhibits excellent discrimination capability and significantly lessened response noise at 500 °C. Experimental results indicate that the hybrid process of such miniature and macroporous devices are compatible as well as applicable to integrated next generation bio-chemical sensors.
Zhang, Jie; Zhang, Lin; Wang, Wei; Han, Lianhuan; Jia, Jing-Chun; Tian, Zhao-Wu; Tian, Zhong-Qun; Zhan, Dongping
2017-03-01
Although metal assisted chemical etching (MacEtch) has emerged as a versatile micro-nanofabrication method for semiconductors, the chemical mechanism remains ambiguous in terms of both thermodynamics and kinetics. Here we demonstrate an innovative phenomenon, i.e. , the contact electrification between platinum (Pt) and an n-type gallium arsenide (100) wafer (n-GaAs) can induce interfacial redox reactions. Because of their different work functions, when the Pt electrode comes into contact with n-GaAs, electrons will move from n-GaAs to Pt and form a contact electric field at the Pt/n-GaAs junction until their electron Fermi levels ( E F ) become equal. In the presence of an electrolyte, the potential of the Pt/electrolyte interface will shift due to the contact electricity and induce the spontaneous reduction of MnO 4 - anions on the Pt surface. Because the equilibrium of contact electrification is disturbed, electrons will transfer from n-GaAs to Pt through the tunneling effect. Thus, the accumulated positive holes at the n-GaAs/electrolyte interface make n-GaAs dissolve anodically along the Pt/n-GaAs/electrolyte 3-phase interface. Based on this principle, we developed a direct electrochemical nanoimprint lithography method applicable to crystalline semiconductors.
NASA Astrophysics Data System (ADS)
Gao, Qingxue; Liu, Rong; Xiao, Hongdi; Cao, Dezhong; Liu, Jianqiang; Ma, Jin
2016-11-01
A strong phase-separated InGaN/GaN layer, which consists of multiple quantum wells (MQW) and superlattices (SL) layers and can produce a blue wavelength spectrum, has been grown on n-GaN thin film, and then fabricated into nanoporous structures by electrochemical etching method in oxalic acid. Scanning electron microscopy (SEM) technique reveals that the etching voltage of 8 V leads to a vertically aligned nanoporous structure, whereas the films etched at 15 V show branching pores within the n-GaN layer. Due to the low doping concentration of barriers (GaN layers) in the InGaN/GaN layer, we observed a record-low rate of etching (<100 nm/min) and nanopores which are mainly originated from the V-pits in the phase-separated layer. In addition, there exists a horizontal nanoporous structure at the interface between the phase-separated layer and the n-GaN layer, presumably resulting from the high transition of electrons between the barrier and the well (InGaN layer) at the interface. As compared to the as-grown MQW structure, the etched MQW structure exhibits a photoluminescence (PL) enhancement with a partial relaxation of compressive stress due to the increased light-extracting surface area and light-guiding effect. Such a compressive stress relaxation can be further confirmed by Raman spectra.
Zhang, Jie; Zhang, Lin; Wang, Wei; Han, Lianhuan; Jia, Jing-Chun; Tian, Zhao-Wu; Tian, Zhong-Qun
2017-01-01
Although metal assisted chemical etching (MacEtch) has emerged as a versatile micro-nanofabrication method for semiconductors, the chemical mechanism remains ambiguous in terms of both thermodynamics and kinetics. Here we demonstrate an innovative phenomenon, i.e., the contact electrification between platinum (Pt) and an n-type gallium arsenide (100) wafer (n-GaAs) can induce interfacial redox reactions. Because of their different work functions, when the Pt electrode comes into contact with n-GaAs, electrons will move from n-GaAs to Pt and form a contact electric field at the Pt/n-GaAs junction until their electron Fermi levels (E F) become equal. In the presence of an electrolyte, the potential of the Pt/electrolyte interface will shift due to the contact electricity and induce the spontaneous reduction of MnO4 – anions on the Pt surface. Because the equilibrium of contact electrification is disturbed, electrons will transfer from n-GaAs to Pt through the tunneling effect. Thus, the accumulated positive holes at the n-GaAs/electrolyte interface make n-GaAs dissolve anodically along the Pt/n-GaAs/electrolyte 3-phase interface. Based on this principle, we developed a direct electrochemical nanoimprint lithography method applicable to crystalline semiconductors. PMID:28451347
NASA Astrophysics Data System (ADS)
Cheng, Qian; Tang, Jie; Zhang, Han; Qin, Lu-Chang
2014-11-01
We describe preparation and characterization of nanostructured electrodes using Co(OH)2 nano-flakes and carbon fiber cloth for supercapacitors. Nanostructured Co(OH)2 flakes are produced by electrodeposition and they are coated onto the electro-etched carbon fiber cloth. A highest specific capacitance of 3404.8 F g-1 and an area-normalized specific capacitance of 3.3 F cm-2 have been obtained from such electrodes. Morphology and structure of the nanostructured electrodes have been characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrochemical properties have been studied by cyclic voltammetry (CV), constant-current charge and discharge, electrochemical impedance spectroscopy (EIS), and long-time cycling.
NASA Astrophysics Data System (ADS)
Gautier, G.; Biscarrat, J.; Defforge, T.; Fèvre, A.; Valente, D.; Gary, A.; Menard, S.
2014-12-01
In this study, we show I-V characterizations of various metal/porous silicon carbide (pSiC)/silicon carbide (SiC) structures. SiC wafers were electrochemically etched from the Si and C faces in the dark or under UV lighting leading to different pSiC morphologies. In the case of low porosity pSiC etched in the dark, the I-V characteristics were found to be almost linear and the extracted resistivities of pSiC were around 1.5 × 104 Ω cm at 30 °C for the Si face. This is around 6 orders of magnitude higher than the resistivity of doped SiC wafers. In the range of 20-200 °C, the activation energy was around 50 meV. pSiC obtained from the C face was less porous and the measured average resistivity was 10 Ω cm. In the case high porosity pSiC etched under UV illumination, the resistivity was found to be much higher, around 1014 Ω cm at room temperature. In this case, the extracted activation energy was estimated to be 290 meV.
NASA Astrophysics Data System (ADS)
Lohmüller, Theobald; Müller, Ulrich; Breisch, Stefanie; Nisch, Wilfried; Rudorf, Ralf; Schuhmann, Wolfgang; Neugebauer, Sebastian; Kaczor, Markus; Linke, Stephan; Lechner, Sebastian; Spatz, Joachim; Stelzle, Martin
2008-11-01
A porous metal-insulator-metal sensor system was developed with the ultimate goal of enhancing the sensitivity of electrochemical sensors by taking advantage of redox cycling of electro active molecules between closely spaced electrodes. The novel fabrication technology is based on thin film deposition in combination with colloidal self-assembly and reactive ion etching to create micro- or nanopores. This cost effective approach is advantageous compared to common interdigitated electrode arrays (IDA) since it does not require high definition lithography technology. Spin-coating and random particle deposition, combined with a new sublimation process are discussed as competing strategies to generate monolayers of colloidal spheres. Metal-insulator-metal layer systems with low leakage currents < 10 pA and an insulator thickness as low as 100 nm were obtained at high yield (typically > 90%). We also discuss possible causes of sensor failure with respect to critical fabrication processes. Short circuits which could occur during or as a result of the pore etching process were investigated in detail. Infrared microscopy in combination with focused ion beam etching/SEM were used to reveal a defect mechanism creating interconnects and increased leakage current between the top and bottom electrodes. Redox cycling provides for amplification factors of >100. A general applicability for electrochemical diagnostic assays is therefore anticipated.
Hydrogen Sensor Based on Pd/GeO{sub 2} Using a Low Cost Electrochemical Deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jawad, M. J.; Hashim, M. R.; Ali, N. K.
2011-05-25
This work reports on a synthesis of sub micron germanium dioxide (GeO{sub 2}) on porous silicon (PS) by electrochemical deposition. n-type Si (100) wafer was used to fabricate (PS) using conventional method of electrochemical etching in HF based solution. A GeCl{sub 4} was directly hydrolyzed by hydrogen peroxide to produce pure GeO{sub 2}, and then electrochemically deposited on PS. Followed by palladium (Pd) contact on GeO{sub 2} /PS was achieved by using RF sputtering technique. The grown GeO{sub 2} crystals were characterized using SEM and EDX. I-V characteristics of Pd/ GeO{sub 2} were recorded before and after hydrogen gas exposuremore » as well as with different H{sub 2} concentrations and different applied temperatures. The sensitivity of Pd/ GeO{sub 2} also has been investigated it could be seen to increase significantly with increased hydrogen concentration while it decreased with increase temperature.« less
Um, Sungyong; Cho, Bomin; Woo, Hee-Gweon; Sohn, Honglae
2011-08-01
Multi-spot porous silicon (MSPS)-based optical biosensor was developed to specify the biomolecules. MSPS chip was generated by an electrochemical etching of silicon wafer using an asymmetric electrode configuration in aqueous ethanolic HF solution and constituted with nine arrayed porous silicon. MSPS prepared from anisotropic etching conditions displayed the Fabry-Pérot fringe patterns which varied spatially across the porous silicon (PS). Each spot displayed different reflection resonances and different pore characteristics as a function of the lateral distance from the Pt counter electrode. The sensor system consists of the 3 x 3 spot array of porous silicon modified with Protein A. The system was probed with various fragments of an aqueous Human Immunoglobin G (Ig G) analyte. The sensor operated by measurement of the reflection patterns in the white light reflection spectrum of MSPS. Molecular binding and specificity was detected as a shift in wavelength of these Fabry-Pérot fringe patterns.
Ozel, Tuncay; Zhang, Benjamin A; Gao, Ruixuan; Day, Robert W; Lieber, Charles M; Nocera, Daniel G
2017-07-12
Development of new synthetic methods for the modification of nanostructures has accelerated materials design advances to furnish complex architectures. Structures based on one-dimensional (1D) silicon (Si) structures synthesized using top-down and bottom-up methods are especially prominent for diverse applications in chemistry, physics, and medicine. Yet further elaboration of these structures with distinct metal-based and polymeric materials, which could open up new opportunities, has been difficult. We present a general electrochemical method for the deposition of conformal layers of various materials onto high aspect ratio Si micro- and nanowire arrays. The electrochemical deposition of a library of coaxial layers comprising metals, metal oxides, and organic/inorganic semiconductors demonstrate the materials generality of the synthesis technique. Depositions may be performed on wire arrays with varying diameter (70 nm to 4 μm), pitch (5 μ to 15 μ), aspect ratio (4:1 to 75:1), shape (cylindrical, conical, hourglass), resistivity (0.001-0.01 to 1-10 ohm/cm 2 ), and substrate orientation. Anisotropic physical etching of wires with one or more coaxial shells yields 1D structures with exposed tips that can be further site-specifically modified by an electrochemical deposition approach. The electrochemical deposition methodology described herein features a wafer-scale synthesis platform for the preparation of multifunctional nanoscale devices based on a 1D Si substrate.
Amin, Mohammed A; Fadlallah, Sahar A; Alosaimi, Ghaida S; Ahmed, Emad M; Mostafa, Nasser Y; Roussel, Pascal; Szunerits, Sabine; Boukherroub, Rabah
2017-09-06
Self-supported electrocatalysts are a new class of materials exhibiting high catalytic performance for various electrochemical processes and can be directly equipped in energy conversion devices. We present here, for the first time, sparse Au NPs self-supported on etched Ti (nanocarved Ti substrate self-supported with TiH 2 ) as promising catalysts for the electrochemical generation of hydrogen (H 2 ) in KOH solutions. Cleaned, as-polished Ti substrates were etched in highly concentrated sulfuric acid solutions without and with 0.1 M NH 4 F at room temperature for 15 min. These two etching processes yielded a thin layer of TiH 2 (the corrosion product of the etching process) self-supported on nanocarved Ti substrates with different morphologies. While F - -free etching process led to formation of parallel channels (average width: 200 nm), where each channel consists of an array of rounded cavities (average width: 150 nm), etching in the presence of F - yielded Ti surface carved with nanogrooves (average width: 100 nm) in parallel orientation. Au NPs were then grown in situ (self-supported) on such etched surfaces via immersion in a standard gold solution at room temperature without using stabilizers or reducing agents, producing Au NPs/TiH 2 /nanostructured Ti catalysts. These materials were characterized by scanning electron microscopy/energy-dispersive spectroscopy (SEM/EDS), grazing incidence X-ray diffraction (GIXRD), and X-ray photoelectron spectroscopy (XPS). GIXRD confirmed the formation of Au 2 Ti phase, thus referring to strong chemical interaction between the supported Au NPs and the substrate surface (also evidenced from XPS) as well as a titanium hydride phase of chemical composition TiH 2 . Electrochemical measurements in 0.1 M KOH solution revealed outstanding hydrogen evolution reaction (HER) electrocatalytic activity for our synthesized catalysts, with Au NPs/TiH 2 /nanogrooved Ti catalyst being the best one among them. It exhibited fast kinetics for the HER with onset potentials as low as -22 mV vs. RHE, high exchange current density of 0.7 mA cm -2 , and a Tafel slope of 113 mV dec -1 . These HER electrochemical kinetic parameters are very close to those measured here for a commercial Pt/C catalyst (onset potential: -20 mV, Tafel slope: 110 mV dec -1 , and exchange current density: 0.75 mA cm -2 ). The high catalytic activity of these materials was attributed to the catalytic impacts of both TiH 2 phase and self-supported Au NPs (active sites for the catalytic reduction of water to H 2 ), in addition to their nanostructured features which provide a large-surface area for the HER.
NASA Astrophysics Data System (ADS)
Li, Xuewu; Zhang, Qiaoxin; Guo, Zheng; Shi, Tian; Yu, Jingui; Tang, Mingkai; Huang, Xingjiu
2015-07-01
This work has developed a simple and low-cost method to render 6061 aluminum alloy surface superhydrophobicity and excellent corrosion inhibition. The superhydrophobic aluminum alloy surface has been fabricated by hydrochloric acid etching, potassium permanganate passivation and fluoroalkyl-silane modification. Meanwhile, the effect of the etching and passivation time on the wettability and corrosion inhibition of the fabricated surface has also been investigated. Results show that with the etching time of 6 min and passivation time of 180 min the fabricated micro/nano-scale terrace-like hierarchical structures accompanying with the nanoscale coral-like network bulge structures after being modified can result in superhydrophobicity with a water contact angle (CA) of 155.7°. Moreover, an extremely weak adhesive force to droplets as well as an outstanding self-cleaning behavior of the superhydrophobic surface has also been proved. Finally, corrosion inhibition in seawater of the as-prepared aluminum alloy surface is characterized by potentiodynamic polarization curves and electrochemical impedance spectroscopy. Evidently, the fabricated superhydrophobic surface attained an improved corrosion inhibition efficiency of 83.37% compared with the traditional two-step processing consisting of etching and modification, which will extend the further applications of aluminum alloy especially in marine engineering fields.
NASA Astrophysics Data System (ADS)
Sun, Wei; Zheng, Ruilin; Chen, Xuyuan
To achieve higher energy density and power density, we have designed and fabricated a symmetric redox supercapacitor based on microelectromechanical system (MEMS) technologies. The supercapacitor consists of a three-dimensional (3D) microstructure on silicon substrate micromachined by high-aspect-ratio deep reactive ion etching (DRIE) method, two sputtered Ti current collectors and two electrochemical polymerized polypyrrole (PPy) films as electrodes. Electrochemical tests, including cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatical charge/discharge methods have been carried out on the single PPy electrodes and the symmetric supercapacitor in different electrolytes. The specific capacitance (capacitance per unit footprint area) and specific power (power per unit footprint area) of the PPy electrodes and symmetric supercapacitor can be calculated from the electrochemical test data. It is found that NaCl solution is a good electrolyte for the polymerized PPy electrodes. In NaCl electrolyte, single PPy electrodes exhibit 0.128 F cm -2 specific capacitance and 1.28 mW cm -2 specific power at 20 mV s -1 scan rate. The symmetric supercapacitor presents 0.056 F cm -2 specific capacitance and 0.56 mW cm -2 specific power at 20 mV s -1 scan rate.
An Optimization of Electrochemical Etching Conditions for Gold Nanotips Fabrication
NASA Astrophysics Data System (ADS)
Oh, Min Woo; Chong, Haeeun; Park, Doo Jae; Jang, Moonkyu; Bahn, Sebin; Choi, Soo Bong
2018-05-01
We demonstrate a series of experiments to find optimized electrochemical etching condition for fabricating gold nanotip, using square-wave voltage as a bias and using hydrochloric acid diluted by acetone as an etchant. We confirmed that the dilution ratio of 3: 1 between hydrochloric acid and acetone give the smallest tip apex diameter which reproduces our previous result. More importantly, by varying applied bias condition and immersion depth of the platinum ring used as a cathode inside the etchant, we found that the smaller tip apex diameter is achieved when both the amplitude and duty cycle get higher. The success rate, which we define the number of tips having meaningfully less diameter out of total number of tried tips, is also discussed.
Facile Synthesis of Flowerlike LiFe5O8 Microspheres for Electrochemical Supercapacitors.
Lin, Ying; Dong, Jingjing; Dai, Jingjing; Wang, Jingping; Yang, Haibo; Zong, Hanwen
2017-12-18
Facile synthesis of porous and hollow spinel materials is very urgent due to their extensive applications in the field of energy storage. In present work, flowerlike porous LiFe 5 O 8 microspheres etched for 15, 30, and 45 min (named as p-LFO-15, p-LFO-30, and p-LFO-45, respectively) are successfully synthesized through a facile chemical etching method based on bulk LiFe 5 O 8 (LFO) particles as precursors, and they are applied as electrode materials for high-performance electrochemical capacitors. In particular, the specific surface area of p-LFO-45 reaches 46.13 m 2 g -1 , which is 112 times greater than that of the unetched counterpart. Therefore, the p-LFO-45 electrode can achieve a higher capacitance of 278 F g -1 at a scan rate of 5 mV s -1 than the unetched counterpart. Furthermore, the p-LFO-45 electrode presents a good cycling stability with 78.3% of capacitive retention after 2000 cycles, which is much higher than that of the unetched LFO particles (66%). Therefore, the flowerlike porous LFO microspheres are very promising candidate materials for supercapacitor applications.
Yang, Cheng; Wang, Ying; Jacobs, Christopher B; Ivanov, Ilia N; Venton, B Jill
2017-05-16
Carbon nanotube (CNT) based microelectrodes exhibit rapid and selective detection of neurotransmitters. While different fabrication strategies and geometries of CNT microelectrodes have been characterized, relatively little research has investigated ways to selectively enhance their electrochemical properties. In this work, we introduce two simple, reproducible, low-cost, and efficient surface modification methods for carbon nanotube yarn microelectrodes (CNTYMEs): O 2 plasma etching and antistatic gun treatment. O 2 plasma etching was performed by a microwave plasma system with oxygen gas flow and the optimized time for treatment was 1 min. The antistatic gun treatment flows ions by the electrode surface; two triggers of the antistatic gun was the optimized number on the CNTYME surface. Current for dopamine at CNTYMEs increased 3-fold after O 2 plasma etching and 4-fold after antistatic gun treatment. When the two treatments were combined, the current increased 12-fold, showing the two effects are due to independent mechanisms that tune the surface properties. O 2 plasma etching increased the sensitivity due to increased surface oxygen content but did not affect surface roughness while the antistatic gun treatment increased surface roughness but not oxygen content. The effect of tissue fouling on CNT yarns was studied for the first time, and the relatively hydrophilic surface after O 2 plasma etching provided better resistance to fouling than unmodified or antistatic gun treated CNTYMEs. Overall, O 2 plasma etching and antistatic gun treatment improve the sensitivity of CNTYMEs by different mechanisms, providing the possibility to tune the CNTYME surface and enhance sensitivity.
Coceancigh, Herman; Tran-Ba, Khanh-Hoa; Siepser, Natasha; ...
2017-09-27
Here in this study, the longitudinally controlled modification of the inner surfaces of poly(ethylene terephthalate) (PET) track-etched pores was explored using an electrochemically assisted Cu(I)-catalyzed azide–alkyne cycloaddition (CuAAC) click reaction. Cylindrical or conical PET track-etched pores were first decorated with ethynyl groups via the amidation of surface -COOH groups, filled with a solution containing Cu(II) and azide-tagged fluorescent dye, and then sandwiched between comb-shaped and planar gold electrodes. Cu(I) was produced at the comb-shaped working electrode by the reduction of Cu(II); it diffused along the pores toward the other electrode and catalyzed CuAAC between an azide-tagged fluorescent dye and amore » pore-tethered ethynyl group. The modification efficiency of cylindrical pores (ca. 1 μm in diameter) was assessed from planar and cross-sectional fluorescence microscope images of modified membranes. Planar images showed that pore modification took place only above the teeth of the comb-shaped electrode with a higher reaction yield for longer Cu(II) reduction times. Cross-sectional images revealed micrometer-scale gradient modification along the pore axis, which reflected a Cu(I) concentration profile within the pores, as supported by finite-element computer simulations. The reported approach was applicable to the asymmetric modification of cylindrical pores with two different fluorescent dyes in the opposite directions and also for the selective visualization of the tip and base openings of conical pores (ca. 3.5 μm in base diameter and ca. 1 μm in tip diameter). Lastly, the method based on electrochemically assisted CuAAC provides a controlled means to fabricate asymmetrically modified nanoporous membranes and, in the future, will be applicable for chemical separations and the development of sequential catalytic reactors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coceancigh, Herman; Tran-Ba, Khanh-Hoa; Siepser, Natasha
Here in this study, the longitudinally controlled modification of the inner surfaces of poly(ethylene terephthalate) (PET) track-etched pores was explored using an electrochemically assisted Cu(I)-catalyzed azide–alkyne cycloaddition (CuAAC) click reaction. Cylindrical or conical PET track-etched pores were first decorated with ethynyl groups via the amidation of surface -COOH groups, filled with a solution containing Cu(II) and azide-tagged fluorescent dye, and then sandwiched between comb-shaped and planar gold electrodes. Cu(I) was produced at the comb-shaped working electrode by the reduction of Cu(II); it diffused along the pores toward the other electrode and catalyzed CuAAC between an azide-tagged fluorescent dye and amore » pore-tethered ethynyl group. The modification efficiency of cylindrical pores (ca. 1 μm in diameter) was assessed from planar and cross-sectional fluorescence microscope images of modified membranes. Planar images showed that pore modification took place only above the teeth of the comb-shaped electrode with a higher reaction yield for longer Cu(II) reduction times. Cross-sectional images revealed micrometer-scale gradient modification along the pore axis, which reflected a Cu(I) concentration profile within the pores, as supported by finite-element computer simulations. The reported approach was applicable to the asymmetric modification of cylindrical pores with two different fluorescent dyes in the opposite directions and also for the selective visualization of the tip and base openings of conical pores (ca. 3.5 μm in base diameter and ca. 1 μm in tip diameter). Lastly, the method based on electrochemically assisted CuAAC provides a controlled means to fabricate asymmetrically modified nanoporous membranes and, in the future, will be applicable for chemical separations and the development of sequential catalytic reactors.« less
SERS spectra of pyridine adsorbed on nickel film prepared by magnetron sputtering
NASA Astrophysics Data System (ADS)
Li, Daoyong; Ouyang, Yu; Chen, Li; Cao, Weiran; Shi, Shaohua
2011-02-01
As a repeating well and cheaper enhancement substrate, the nickel film was fabricated with magnetron sputtering coating instrument. Surface enhanced Raman spectra (SERS) of pyridine adsorbed on this nickel film are compared with the experimental values of gaseous pyridine, the theoretical value of pyridine solution listed in other literatures and our method is better than electro-chemical etching electrode method for large scale preparation. The enhancement factor of the nickel film is calculated and the result indicates that magnetron sputtering coating technology is feasible for obtaining good SERS active surface.
Porous silicon formation during Au-catalyzed etching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Algasinger, Michael; Bernt, Maximilian; Koynov, Svetoslav
2014-04-28
The formation of “black” nano-textured Si during the Au-catalyzed wet-chemical etch process was investigated with respect to photovoltaic applications. Cross-sectional scanning electron microscopy (SEM) images recorded at different stages of the etch process exhibit an evolution of a two-layer structure, consisting of cone-like Si hillocks covered with a nano-porous Si (np-Si) layer. Optical measurements confirm the presence of a np-Si phase which appears after the first ∼10 s of the etch process and continuously increases with the etch time. Furthermore, the etch process was investigated on Si substrates with different doping levels (∼0.01–100 Ω cm). SEM images show a transition frommore » the two-layer morphology to a structure consisting entirely of np-Si for higher doping levels (<0.1 Ω cm). The experimental results are discussed on the basis of the model of a local electrochemical etch process. A better understanding of the metal-catalyzed etch process facilitates the fabrication of “black” Si on various Si substrates, which is of significant interest for photovoltaic applications.« less
NASA Astrophysics Data System (ADS)
Awad, Ahmed M.; Shehata, Omnia S.; Heakal, Fakiha El-Taib
2015-12-01
Anodic aluminum oxide (AAO) is well known as an important nanostructured material, and a useful template in the fabrication of nanostructures. Nanoporous anodic alumina (PAA) with high open porosity was prepared by adopting three de-anodizing regimes following the first anodizing step and preceding the second one. The de-anodizing methods include electrolytic etching (EE) and chemical etching using either phosphoric acid (PE) or sodium hydroxide (HE) solutions. Three of the obtained AAO samples were black colored by electrodeposition of copper nanoparticles in their pores. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques were used to characterize the electrochemical performance of the two sets of the prepared samples. In general, the data obtained in aggressive aerated 0.5 M HCl solution demonstrated dissimilar behavior for the three prepared samples despite that the second anodizing step was the same for all of them. The data indicated that the resistance and thickness of the inner barrier part of nano-PAA film, are the main controlling factors determining its stability. On the other hand, coloring the film decreased its stability due to the galvanic effect. The difference in the electrochemical behavior of the three colored samples was discussed based on the difference in both the pore size and thickness of the outer porous part of PAA film as supported by SEM, TEM and cross-sectional micrographs. These results can thus contribute for better engineering applications of nanoporous AAO.
1994-02-01
electrochemically etched in near- saturated CaC1 2 and coated with a thermosetting plastic[13]. The quasi-reference electrode was a gold wire. The Pt(lll...annealing procedure, display arrays of small (ca 3-5 nm) terrace domains, these being separated from each other by monoatomic steps running in various
NASA Astrophysics Data System (ADS)
Bespalova, K.; Somov, P. A.; Spivak, Yu M.
2017-11-01
Porous silicon nanopowders for target drug delivery were obtained by electrochemical anodic etching in a hydrofluoric acid solution using the monocrystalline silicon n-type conductivity. Porous silicon powders were obtained by sonification of porous silicon layers. The powders were functionalized by antibiotic Kanamycin and fluorophore Indocyanine Green by the passive adsorption method. The peculiarities of absorption spectra in 190-600 nm region were revealed for functionalized porous silicon powders dispersions in water.
Micro Raman and photoluminescence spectroscopy of nano-porous n and p type GaN/sapphire(0001).
Ingale, Alka; Pal, Suparna; Dixit, V K; Tiwari, Pragya
2007-06-01
Variation of depth within a single etching spot (3 mm circular diameter) was observed in nanoporous GaN epilayer obtained on photo-assisted electrochemical etching of n and p-type GaN. The different etching depth regions were studied using microRaman and PL(yellow region) for both n-type and p-type GaN. From Raman spectroscopy, we observed that increase in disorder is accompanied by stress relaxation, as depth of etching increases for n-type GaN epilayer. This is well corroborated with scanning electron microscopy results. Contrarily, for p-type GaN epilayer we found that for minimum etching depth, stress in epilayer increases with increase in disorder. This is understood with the fact that as grown p-type GaN is more disordered compared to n-type GaN due to heavy Mg doping and further disorder leads to lattice distortion leading to increase in stress.
Formation of ultra Si/Ti nano thin film for enhancing silicon solar cell efficiency
NASA Astrophysics Data System (ADS)
Adam, T.; Dhahi, T. S.; Mohammed, M.; Al-Hajj, A. M.; Hashim, U.
2017-10-01
An alternative electrical source has l has become the major quest of every researchers due to it numerous advantages and applications of power supply and as electronic devices are becoming more and more portable. A highly efficient power supply is become inevitable. Thus. in this study, present ultrasonic based assisted fabrication of electrochemical silicon-Titanium nano thin film by in-house simple technique, uniformly silicon Nano film was fabricated and etched with HF (40%): C2H5OH (99%):1:1, < 20 nm pore diameter of silicon was fabricated. The surface and morphology reveal that the method produce uniform nano silicon porous layer with smaller silicon pores with high etching efficiency. The silicon-Titanium integrated nano porous exhibited excellent observation properties with low reflection index ~ 1.1 compared to silicon alone thin film.
Hankins, Matthew G [Albuquerque, NM
2009-10-06
Etchant solutions comprising a redox buffer can be used during the release etch step to reduce damage to the structural layers of a MEMS device that has noble material films. A preferred redox buffer comprises a soluble thiophosphoric acid, ester, or salt that maintains the electrochemical potential of the etchant solution at a level that prevents oxidation of the structural material. Therefore, the redox buffer preferentially oxidizes in place of the structural material. The sacrificial redox buffer thereby protects the exposed structural layers while permitting the dissolution of sacrificial oxide layers during the release etch.
Nanoporous Silicon Carbide for Nanoelectromechanical Systems Applications
NASA Technical Reports Server (NTRS)
Hossain, T.; Khan, F.; Adesida, I.; Bohn, P.; Rittenhouse, T.; Lienhard, Michael (Technical Monitor)
2003-01-01
A major goal of this project is to produce porous silicon carbide (PSiC) via an electroless process for eventual utilization in nanoscale sensing platforms. Results in the literature have shown a variety of porous morphologies in SiC produced in anodic cells. Therefore, predictability and reproducibility of porous structures are initial concerns. This work has concentrated on producing morphologies of known porosity, with particular attention paid toward producing the extremely high surface areas required for a porous flow sensor. We have conducted a parametric study of electroless etching conditions and characteristics of the resulting physical nanostructure and also investigated the relationship between morphology and materials properties. Further, we have investigated bulk etching of SiC using both photo-electrochemical etching and inductively-coupled-plasma reactive ion etching techniques.
NASA Astrophysics Data System (ADS)
Kim, Uk Su; Morita, Noboru; Lee, Deug Woo; Jun, Martin; Park, Jeong Woo
2017-05-01
Pulse electrochemical nanopatterning, a non-contact scanning probe lithography process using ultrashort voltage pulses, is based primarily on an electrochemical machining process using localized electrochemical oxidation between a sharp tool tip and the sample surface. In this study, nanoscale oxide patterns were formed on silicon Si (100) wafer surfaces via electrochemical surface nanopatterning, by supplying external pulsed currents through non-contact atomic force microscopy. Nanoscale oxide width and height were controlled by modulating the applied pulse duration. Additionally, protruding nanoscale oxides were removed completely by simple chemical etching, showing a depressed pattern on the sample substrate surface. Nanoscale two-dimensional oxides, prepared by a localized electrochemical reaction, can be defined easily by controlling physical and electrical variables, before proceeding further to a layer-by-layer nanofabrication process.
Black silicon: fabrication methods, properties and solar energy applications
Liu, Xiaogang; Coxon, Paul R.; Peters, Marius; ...
2014-08-04
Black silicon (BSi) represents a very active research area in renewable energy materials. The rise of BSi as a focus of study for its fundamental properties and potentially lucrative practical applications is shown by several recent results ranging from solar cells and light-emitting devices to antibacterial coatings and gas-sensors. Here in this article, the common BSi fabrication techniques are first reviewed, including electrochemical HF etching, stain etching, metal-assisted chemical etching, reactive ion etching, laser irradiation and the molten salt Fray-Farthing-Chen-Cambridge (FFC-Cambridge) process. The utilization of BSi as an anti-reflection coating in solar cells is then critically examined and appraised, basedmore » upon strategies towards higher efficiency renewable solar energy modules. Methods of incorporating BSi in advanced solar cell architectures and the production of ultra-thin and flexible BSi wafers are also surveyed. Particular attention is given to routes leading to passivated BSi surfaces, which are essential for improving the electrical properties of any devices incorporating BSi, with a special focus on atomic layer deposition of Al 2O 3. Finally, three potential research directions worth exploring for practical solar cell applications are highlighted, namely, encapsulation effects, the development of micro-nano dual-scale BSi, and the incorporation of BSi into thin solar cells. It is intended that this paper will serve as a useful introduction to this novel material and its properties, and provide a general overview of recent progress in research currently being undertaken for renewable energy applications.« less
Chemically Etched Silicon Nanowires as Anodes for Lithium-Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, Hannah Elise
2015-08-01
This study focused on silicon as a high capacity replacement anode for Lithium-ion batteries. The challenge of silicon is that it expands ~270% upon lithium insertion which causes particles of silicon to fracture, causing the capacity to fade rapidly. To account for this expansion chemically etched silicon nanowires from the University of Maine were studied as anodes. They were built into electrochemical half-cells and cycled continuously to measure the capacity and capacity fade.
Near-infrared emission from mesoporous crystalline germanium
NASA Astrophysics Data System (ADS)
Boucherif, Abderraouf; Korinek, Andreas; Aimez, Vincent; Arès, Richard
2014-10-01
Mesoporous crystalline germanium was fabricated by bipolar electrochemical etching of Ge wafer in HF-based electrolyte. It yields uniform mesoporous germanium layers composed of high density of crystallites with an average size 5-7 nm. Subsequent extended chemical etching allows tuning of crystallites size while preserving the same chemical composition. This highly controllable nanostructure exhibits photoluminescence emission above the bulk Ge bandgap, in the near-infrared range (1095-1360nm) with strong evidence of quantum confinement within the crystallites.
NASA Astrophysics Data System (ADS)
Liu, Yan; Yin, Xiaoming; Zhang, Jijia; Wang, Yaming; Han, Zhiwu; Ren, Luquan
2013-09-01
As one of the lightest metal materials, magnesium alloy plays an important role in industry such as automobile, airplane and electronic product. However, magnesium alloy is hindered due to its high chemical activity and easily corroded. Here, inspired by typical plant surfaces such as lotus leaves and petals of red rose with super-hydrophobic character, the new hydrophobic surface is fabricated on magnesium alloy to improve anti-corrosion by two-step methodology. The procedure is that the samples are processed by laser first and then immersed and etched in the aqueous AgNO3 solution concentrations of 0.1 mol/L, 0.3 mol/L and 0.5 mol/L for different times of 15 s, 40 s and 60 s, respectively, finally modified by DTS (CH3(CH2)11Si(OCH3)3). The microstructure, chemical composition, wettability and anti-corrosion are characterized by means of SEM, XPS, water contact angle measurement and electrochemical method. The hydrophobic surfaces with microscale crater-like and nanoscale flower-like binary structure are obtained. The low-energy material is contained in surface after DTS treatment. The contact angles could reach up to 138.4 ± 2°, which hydrophobic property is both related to the micro-nano binary structure and chemical composition. The results of electrochemical measurements show that anti-corrosion property of magnesium alloy is improved. Furthermore, our research is expected to create some ideas from natural enlightenment to improve anti-corrosion property of magnesium alloy while this method can be easily extended to other metal materials.
Ion track etching revisited: II. Electronic properties of aged tracks in polymers
NASA Astrophysics Data System (ADS)
Fink, D.; Muñoz Hernández, G.; Cruz, S. A.; Garcia-Arellano, H.; Vacik, J.; Hnatowicz, V.; Kiv, A.; Alfonta, L.
2018-02-01
We compile here electronic ion track etching effects, such as capacitive-type currents, current spike emission, phase shift, rectification and background currents that eventually emerge upon application of sinusoidal alternating voltages across thin, aged swift heavy ion-irradiated polymer foils during etching. Both capacitive-type currents and current spike emission occur as long as obstacles still prevent a smooth continuous charge carrier passage across the foils. In the case of sufficiently high applied electric fields, these obstacles are overcome by spike emission. These effects vanish upon etchant breakthrough. Subsequent transmitted currents are usually of Ohmic type, but shortly after breakthrough (during the track' core etching) often still exhibit deviations such as strong positive phase shifts. They stem from very slow charge carrier mobility across the etched ion tracks due to retarding trapping/detrapping processes. Upon etching the track's penumbra, one occasionally observes a split-up into two transmitted current components, one with positive and another one with negative phase shifts. Usually, these phase shifts vanish when bulk etching starts. Current rectification upon track etching is a very frequent phenomenon. Rectification uses to inverse when core etching ends and penumbra etching begins. When the latter ends, rectification largely vanishes. Occasionally, some residual rectification remains which we attribute to the aged polymeric bulk itself. Last not least, we still consider background currents which often emerge transiently during track etching. We could assign them clearly to differences in the electrochemical potential of the liquids on both sides of the etched polymer foils. Transient relaxation effects during the track etching cause their eventually chaotic behaviour.
Xiao, Xiaoyin; Fischer, Arthur J.; Coltrin, Michael E.; ...
2014-10-22
We report here the characteristics of photoelectrochemical (PEC) etching of epitaxial InGaN semiconductor thin films using narrowband lasers with linewidth less than ~1 nm. In the initial stages of PEC etching, when the thin film is flat, characteristic voltammogram shapes are observed. At low photo-excitation rates, voltammograms are S-shaped, indicating the onset of a voltage-independent rate-limiting process associated with electron-hole-pair creation and/or annihilation. At high photo-excitation rates, voltammograms are superlinear in shape, indicating, for the voltage ranges studied here, a voltage-dependent rate-limiting process associated with surface electrochemical oxidation. As PEC etching proceeds, the thin film becomes rough at the nanoscale,more » and ultimately evolves into an ensemble of nanoparticles. As a result, this change in InGaN film volume and morphology leads to a characteristic dependence of PEC etch rate on time: an incubation time, followed by a rise, then a peak, then a slow decay.« less
In Situ Electrochemical Deposition of Microscopic Wires
NASA Technical Reports Server (NTRS)
Yun, Minhee; Myung, Nosang; Vasquez, Richard
2005-01-01
A method of fabrication of wires having micron and submicron dimensions is built around electrochemical deposition of the wires in their final positions between electrodes in integrated circuits or other devices in which the wires are to be used. Heretofore, nanowires have been fabricated by a variety of techniques characterized by low degrees of controllability and low throughput rates, and it has been necessary to align and electrically connect the wires in their final positions by use of sophisticated equipment in expensive and tedious post-growth assembly processes. The present method is more economical, offers higher yields, enables control of wire widths, and eliminates the need for post-growth assembly. The wires fabricated by this method could be used as simple electrical conductors or as transducers in sensors. Depending upon electrodeposition conditions and the compositions of the electroplating solutions in specific applications, the wires could be made of metals, alloys, metal oxides, semiconductors, or electrically conductive polymers. In this method, one uses fabrication processes that are standard in the semiconductor industry. These include cleaning, dry etching, low-pressure chemical vapor deposition, lithography, dielectric deposition, electron-beam lithography, and metallization processes as well as the electrochemical deposition process used to form the wires. In a typical case of fabrication of a circuit that includes electrodes between which microscopic wires are to be formed on a silicon substrate, the fabrication processes follow a standard sequence until just before the fabrication of the microscopic wires. Then, by use of a thermal SiO-deposition technique, the electrodes and the substrate surface areas in the gaps between them are covered with SiO. Next, the SiO is electron-beam patterned, then reactive-ion etched to form channels having specified widths (typically about 1 m or less) that define the widths of the wires to be formed. Drops of an electroplating solution are placed on the substrate in the regions containing the channels thus formed, then the wires are electrodeposited from the solution onto the exposed portions of the electrodes and into the channels. The electrodeposition is a room-temperature, atmospheric-pressure process. The figure shows an example of palladium wires that were electrodeposited into 1-mm-wide channels between gold electrodes.
Vertically aligned nanowires from boron-doped diamond.
Yang, Nianjun; Uetsuka, Hiroshi; Osawa, Eiji; Nebel, Christoph E
2008-11-01
Vertically aligned diamond nanowires with controlled geometrical properties like length and distance between wires were fabricated by use of nanodiamond particles as a hard mask and by use of reactive ion etching. The surface structure, electronic properties, and electrochemical functionalization of diamond nanowires were characterized by atomic force microscopy (AFM) and scanning tunneling microscopy (STM) as well as electrochemical techniques. AFM and STM experiments show that diamond nanowire etched for 10 s have wire-typed structures with 3-10 nm in length and with typically 11 nm spacing in between. The electrode active area of diamond nanowires is enhanced by a factor of 2. The functionalization of nanowire tips with nitrophenyl molecules is characterized by STM on clean and on nitrophenyl molecule-modified diamond nanowires. Tip-modified diamond nanowires are promising with respect to biosensor applications where controlled biomolecule bonding is required to improve chemical stability and sensing significantly.
Wang, Dongmei; Xiao, Xiaoqing; Xu, Shen; Liu, Yong; Li, Yongxin
2018-01-15
In this work, single Au nanowire electrodes (AuNWEs) were fabricated by laser-assisted pulling/hydrofluoric acid (HF) etching process, which then were characterized by transmission electron microscopy (TEM), electrochemical method and finite-element simulation. The as-prepared single AuNWEs were used to construct electrochemical aptamer-based nanosensors (E-AB nanosensors) based on the formation of Au-S bond that duplex DNA tagged with methylene blue (MB) was modified on the surface of electrode. In the presence of adenosine triphosphate (ATP), the MB-labeled aptamer dissociated from the duplex DNA due to the strong specific affinity between aptamer and target, which lead to the reduction of MB electrochemical signals. Moreover, BSA was employed to further passivate electrode surface bonding sites for the stable of the sensor. The as-prepared E-AB nanosensor has been used for ATP assay with excellent sensitivity and selectivity, even in a complex system like cerebrospinal fluid of rat brain. Considering the unique properties of good stability, larger surface area and smaller overall dimensions, this E-AB nanosensor should be an ideal platform for widely sensing applications in living bio-system. Copyright © 2017 Elsevier B.V. All rights reserved.
2015-08-01
resistant 5083- H116 aluminum, sheet, 1/4" thick, 2" x 24", 2 pieces 71.60 5 Reagent VWR & Fisher Nitric acid and sodium hydroxide for mass loss...Temperature stability ±0.1oC @37oC Temperature uniformity ±0.2oC @37oC 693.55 4 5083-H116 Al-Mg alloy materials McMaster Carr Strengthened corrosion ...test, other acids for etching, electrochemical polishing, and anodizing 700.28 6 Containers VWR Beakers, petri dishes, bottles, graduated cylinders
NASA Astrophysics Data System (ADS)
Naddaf, M.; Mrad, O.; Al-zier, A.
2014-06-01
A pulsed anodic etching method has been utilized for nanostructuring of a copper-coated p-type (100) silicon substrate, using HF-based solution as electrolyte. Scanning electron microscopy reveals the formation of a nanostructured matrix that consists of island-like textures with nanosize grains grown onto fiber-like columnar structures separated with etch pits of grooved porous structures. Spatial micro-Raman scattering analysis indicates that the island-like texture is composed of single-phase cupric oxide (CuO) nanocrystals, while the grooved porous structure is barely related to formation of porous silicon (PS). X-ray diffraction shows that both the grown CuO nanostructures and the etched silicon layer have the same preferred (220) orientation. Chemical composition obtained by means of X-ray photoelectron spectroscopic (XPS) analysis confirms the presence of the single-phase CuO on the surface of the patterned CuO-PS matrix. As compared to PS formed on the bare silicon substrate, the room-temperature photoluminescence (PL) from the CuO-PS matrix exhibits an additional weak `blue' PL band as well as a blue shift in the PL band of PS (S-band). This has been revealed from XPS analysis to be associated with the enhancement in the SiO2 content as well as formation of the carbonyl group on the surface in the case of the CuO-PS matrix.
Use of Nanostructures in Fabrication of Large Scale Electrochemical Film
NASA Astrophysics Data System (ADS)
Chen, Chien Chon; Chen, Shih Hsun; Shyu, Sheang Wen; Hsieh, Sheng Jen
Control of electrochemical parameters when preparing small-scale samples for academic research is not difficult. In mass production environments, however, maintenance of constant current density and temperature become a critical issue. This article describes the design of several molds for large work pieces. These molds were designed to maintain constant current density and to facilitate the occurrence of electrochemical reactions in designated areas. Large-area thin films with fine nanostructure were successfully prepared using the designed electrochemical molds and containers. In addition, current density and temperature could be controlled well. This electrochemical system has been verified in many experimental operations, including etching of Al surfaces; electro-polishing of Al, Ti and stainless steel; and fabrication of anodic alumina oxide (AAO), Ti-TiO2 interference membrane, TiO2 nanotubes, AAO-TiO2 nanotubes, Ni nanowires and porous tungsten
Code of Federal Regulations, 2010 CFR
2010-07-01
... associated elements. (b) Extraction plant means a facility chemically processing beryllium ore to beryllium..., electrochemical machining, etching, or other similar operations. (e) Ceramic plant means a manufacturing plant... which contains more than 0.1 percent beryllium by weight. (k) Propellant plant means any facility...
Code of Federal Regulations, 2011 CFR
2011-07-01
... associated elements. (b) Extraction plant means a facility chemically processing beryllium ore to beryllium..., electrochemical machining, etching, or other similar operations. (e) Ceramic plant means a manufacturing plant... which contains more than 0.1 percent beryllium by weight. (k) Propellant plant means any facility...
Surface engineered porous silicon for stable, high performance electrochemical supercapacitors
Oakes, Landon; Westover, Andrew; Mares, Jeremy W.; Chatterjee, Shahana; Erwin, William R.; Bardhan, Rizia; Weiss, Sharon M.; Pint, Cary L.
2013-01-01
Silicon materials remain unused for supercapacitors due to extreme reactivity of silicon with electrolytes. However, doped silicon materials boast a low mass density, excellent conductivity, a controllably etched nanoporous structure, and combined earth abundance and technological presence appealing to diverse energy storage frameworks. Here, we demonstrate a universal route to transform porous silicon (P-Si) into stable electrodes for electrochemical devices through growth of an ultra-thin, conformal graphene coating on the P-Si surface. This graphene coating simultaneously passivates surface charge traps and provides an ideal electrode-electrolyte electrochemical interface. This leads to 10–40X improvement in energy density, and a 2X wider electrochemical window compared to identically-structured unpassivated P-Si. This work demonstrates a technique generalizable to mesoporous and nanoporous materials that decouples the engineering of electrode structure and electrochemical surface stability to engineer performance in electrochemical environments. Specifically, we demonstrate P-Si as a promising new platform for grid-scale and integrated electrochemical energy storage. PMID:24145684
Surface engineered porous silicon for stable, high performance electrochemical supercapacitors.
Oakes, Landon; Westover, Andrew; Mares, Jeremy W; Chatterjee, Shahana; Erwin, William R; Bardhan, Rizia; Weiss, Sharon M; Pint, Cary L
2013-10-22
Silicon materials remain unused for supercapacitors due to extreme reactivity of silicon with electrolytes. However, doped silicon materials boast a low mass density, excellent conductivity, a controllably etched nanoporous structure, and combined earth abundance and technological presence appealing to diverse energy storage frameworks. Here, we demonstrate a universal route to transform porous silicon (P-Si) into stable electrodes for electrochemical devices through growth of an ultra-thin, conformal graphene coating on the P-Si surface. This graphene coating simultaneously passivates surface charge traps and provides an ideal electrode-electrolyte electrochemical interface. This leads to 10-40X improvement in energy density, and a 2X wider electrochemical window compared to identically-structured unpassivated P-Si. This work demonstrates a technique generalizable to mesoporous and nanoporous materials that decouples the engineering of electrode structure and electrochemical surface stability to engineer performance in electrochemical environments. Specifically, we demonstrate P-Si as a promising new platform for grid-scale and integrated electrochemical energy storage.
Surface engineered porous silicon for stable, high performance electrochemical supercapacitors
NASA Astrophysics Data System (ADS)
Oakes, Landon; Westover, Andrew; Mares, Jeremy W.; Chatterjee, Shahana; Erwin, William R.; Bardhan, Rizia; Weiss, Sharon M.; Pint, Cary L.
2013-10-01
Silicon materials remain unused for supercapacitors due to extreme reactivity of silicon with electrolytes. However, doped silicon materials boast a low mass density, excellent conductivity, a controllably etched nanoporous structure, and combined earth abundance and technological presence appealing to diverse energy storage frameworks. Here, we demonstrate a universal route to transform porous silicon (P-Si) into stable electrodes for electrochemical devices through growth of an ultra-thin, conformal graphene coating on the P-Si surface. This graphene coating simultaneously passivates surface charge traps and provides an ideal electrode-electrolyte electrochemical interface. This leads to 10-40X improvement in energy density, and a 2X wider electrochemical window compared to identically-structured unpassivated P-Si. This work demonstrates a technique generalizable to mesoporous and nanoporous materials that decouples the engineering of electrode structure and electrochemical surface stability to engineer performance in electrochemical environments. Specifically, we demonstrate P-Si as a promising new platform for grid-scale and integrated electrochemical energy storage.
Faverani, Leonardo P; Assunção, Wirley G; de Carvalho, Paulo Sérgio P; Yuan, Judy Chia-Chun; Sukotjo, Cortino; Mathew, Mathew T; Barao, Valentim A
2014-01-01
Diabetes and infections are associated with a high risk of implant failure. However, the effects of such conditions on the electrochemical stability of titanium materials remain unclear. This study evaluated the corrosion behavior of a Ti-6Al-4V alloy, with a smooth surface or conditioned by double-acid-etching, in simulated body fluid with different concentrations of dextrose and lipopolysaccharide. For the electrochemical assay, the open-circuit-potential, electrochemical impedance spectroscopy, and potentiodynamic test were used. The disc surfaces were characterized by scanning electron microscopy and atomic force microscopy. Their surface roughness and Vickers microhardness were also tested. The quantitative data were analyzed by Pearson's correlation and independent t-tests (α = 0.05). In the corrosion parameters, there was a strong lipopolysaccharide correlation with the Ipass (passivation current density), Cdl (double-layer capacitance), and Rp (polarization resistance) values (p<0.05) for the Ti-6Al-4V alloy with surface treatment by double-acid-etching. The combination of dextrose and lipopolysaccharide was correlated with the Icorr (corrosion current density) and Ipass (p<0.05). The acid-treated groups showed a significant increase in Cdl values and reduced Rp values (p<0.05, t-test). According to the topography, there was an increase in surface roughness (R2 = 0.726, p<0.0001 for the smooth surface; R2 = 0.405, p = 0.036 for the double-acid-etching-treated surface). The microhardness of the smooth Ti-6Al-4V alloy decreased (p<0.05) and that of the treated Ti-6Al-4V alloy increased (p<0.0001). Atomic force microscopy showed changes in the microstructure of the Ti-6Al-4V alloy by increasing the surface thickness mainly in the group associated with dextrose and lipopolysaccharide. The combination of dextrose and lipopolysaccharide affected the corrosion behavior of the Ti-6Al-4V alloy surface treated with double-acid-etching. However, no dose-response corrosion behavior could be observed. These results suggest a greater susceptibility to corrosion of titanium implants in diabetic patients with associated infections.
Faverani, Leonardo P.; Assunção, Wirley G.; de Carvalho, Paulo Sérgio P.; Yuan, Judy Chia-Chun; Sukotjo, Cortino; Mathew, Mathew T.; Barao, Valentim A.
2014-01-01
Diabetes and infections are associated with a high risk of implant failure. However, the effects of such conditions on the electrochemical stability of titanium materials remain unclear. This study evaluated the corrosion behavior of a Ti-6Al-4V alloy, with a smooth surface or conditioned by double-acid-etching, in simulated body fluid with different concentrations of dextrose and lipopolysaccharide. For the electrochemical assay, the open-circuit-potential, electrochemical impedance spectroscopy, and potentiodynamic test were used. The disc surfaces were characterized by scanning electron microscopy and atomic force microscopy. Their surface roughness and Vickers microhardness were also tested. The quantitative data were analyzed by Pearson's correlation and independent t-tests (α = 0.05). In the corrosion parameters, there was a strong lipopolysaccharide correlation with the Ipass (passivation current density), Cdl (double-layer capacitance), and Rp (polarization resistance) values (p<0.05) for the Ti-6Al-4V alloy with surface treatment by double-acid-etching. The combination of dextrose and lipopolysaccharide was correlated with the Icorr (corrosion current density) and Ipass (p<0.05). The acid-treated groups showed a significant increase in Cdl values and reduced Rp values (p<0.05, t-test). According to the topography, there was an increase in surface roughness (R2 = 0.726, p<0.0001 for the smooth surface; R2 = 0.405, p = 0.036 for the double-acid-etching-treated surface). The microhardness of the smooth Ti-6Al-4V alloy decreased (p<0.05) and that of the treated Ti-6Al-4V alloy increased (p<0.0001). Atomic force microscopy showed changes in the microstructure of the Ti-6Al-4V alloy by increasing the surface thickness mainly in the group associated with dextrose and lipopolysaccharide. The combination of dextrose and lipopolysaccharide affected the corrosion behavior of the Ti-6Al-4V alloy surface treated with double-acid-etching. However, no dose-response corrosion behavior could be observed. These results suggest a greater susceptibility to corrosion of titanium implants in diabetic patients with associated infections. PMID:24671257
Lee, Chanwoo; Kim, Sung Tae; Jeong, Byeong Geun; Yun, Seok Joon; Song, Young Jae; Lee, Young Hee; Park, Doo Jae; Jeong, Mun Seok
2017-01-13
We successfully achieve the tip-enhanced nano Raman scattering images of a tungsten disulfide monolayer with optimizing a fabrication method of gold nanotip by controlling the concentration of etchant in an electrochemical etching process. By applying a square-wave voltage supplied from an arbitrary waveform generator to a gold wire, which is immersed in a hydrochloric acid solution diluted with ethanol at various ratios, we find that both the conical angle and radius of curvature of the tip apex can be varied by changing the ratio of hydrochloric acid and ethanol. We also suggest a model to explain the origin of these variations in the tip shape. From the systematic study, we find an optimal condition for achieving the yield of ~60% with the radius of ~34 nm and the cone angle of ~35°. Using representative tips fabricated under the optimal etching condition, we demonstrate the tip-enhanced Raman scattering experiment of tungsten disulfide monolayer grown by a chemical vapor deposition method with a spatial resolution of ~40 nm and a Raman enhancement factor of ~4,760.
Electrochemical thinning of silicon
Medernach, John W.
1994-01-01
Porous semiconducting material, e.g. silicon, is formed by electrochemical treatment of a specimen in hydrofluoric acid, using the specimen as anode. Before the treatment, the specimen can be masked. The porous material is then etched with a caustic solution or is oxidized, depending of the kind of structure desired, e.g. a thinned specimen, a specimen, a patterned thinned specimen, a specimen with insulated electrical conduits, and so on. Thinned silicon specimen can be subjected to tests, such as measurement of interstitial oxygen by Fourier transform infra-red spectroscopy (FTIR).
Photoluminescent properties of electrochemically synthetized ZnO nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gracia Jiménez, J.M.
ZnO nanotubes were prepared by a sequential combination of electrochemical deposition, chemical attack and regeneration. ZnO nanocolumns were initially electrodeposited on conductive substrates and then converted into nanotubes by a process involving chemical etching and subsequent regrowth. The morphology of these ZnO nanocolumns and derived nanotubes was monitored by Scanning Electron Microscopy and their optical properties was studied by photoluminescence spectroscopy. Photoluminescence were measured as a function of temperature, from 6 to 300 K, for both nanocolumns and nanotubes. In order to study the behaviour of induced intrinsic defect all ZnO films were annealed in air at 400 °C andmore » their photoluminescent properties were also registered before and after annealing. The behaviour of photoluminescence is explained taking into account the contribution of different point defects. A band energy diagram related to intrinsic defects was proposed to describe the behaviour of photoluminescence spectra. - Highlights: •ZnO nanotubes were obtained after etching and regrowth of electrodeposited ZnO films. •Photoluminescence spectra contain two parts involving excitonic and defects transitions. •Annealing produces a blue shift in the PL peaks in both ZnO nanocolumns and nanotubes. •Etching causes a blue shift in PL peaks due to confinement effect in nanotubes walls.« less
NASA Astrophysics Data System (ADS)
Weiying, Ou; Lei, Zhao; Hongwei, Diao; Jun, Zhang; Wenjing, Wang
2011-05-01
Porous silicon (PS) layers were formed on textured crystalline silicon by electrochemical etching in HF-based electrolyte. Optical and electrical properties of the TMAH textured surfaces with PS formation are studied. Moreover, the influences of the initial structures and the anodizing time on the optical and electrical properties of the surfaces after PS formation are investigated. The results show that the TMAH textured surfaces with PS formation present a dramatic decrease in reflectance. The longer the anodizing time is, the lower the reflectance. Moreover, an initial surface with bigger pyramids achieved lower reflectance in a short wavelength range. A minimum reflectance of 3.86% at 460 nm is achieved for a short anodizing time of 2 min. Furthermore, the reflectance spectrum of the sample, which was etched in 3 vol.% TMAH for 25 min and then anodized for 20 min, is extremely flat and lies between 3.67% and 6.15% in the wavelength range from 400 to 1040 nm. In addition, for a short anodizing time, a slight increase in the effective carrier lifetime is observed. Our results indicate that PS layers formed on a TMAH textured surface for a short anodization treatment can be used as both broadband antireflection coatings and passivation layers for the application in solar cells.
Multilayer porous structures of HVPE and MOCVD grown GaN for photonic applications
NASA Astrophysics Data System (ADS)
Braniste, T.; Ciers, Joachim; Monaico, Ed.; Martin, D.; Carlin, J.-F.; Ursaki, V. V.; Sergentu, V. V.; Tiginyanu, I. M.; Grandjean, N.
2017-02-01
In this paper we report on a comparative study of electrochemical processes for the preparation of multilayer porous structures in hydride vapor phase epitaxy (HVPE) and metal organic chemical vapor phase deposition (MOCVD) grown GaN. It was found that in HVPE-grown GaN, multilayer porous structures are obtained due to self-organization processes leading to a fine modulation of doping during the crystal growth. However, these processes are not totally under control. Multilayer porous structures with a controlled design have been produced by optimizing the technological process of electrochemical etching in MOCVD-grown samples, consisting of five pairs of thin layers with alternating-doping profiles. The samples have been characterized by SEM imaging, photoluminescence spectroscopy, and micro-reflectivity measurements, accompanied by transfer matrix analysis and simulations by a method developed for the calculation of optical reflection spectra. We demonstrate the applicability of the produced structures for the design of Bragg reflectors.
NASA Astrophysics Data System (ADS)
Moumni, Besma; Jaballah, Abdelkader Ben
2017-12-01
Silicon porosification by silver assisted chemical etching (Ag-ACE) for a short range of H2O2 concentration is reported. We experimentally show that porous silicon (PSi) is obtained for 1% H2O2, whereas silicon nanowires (SiNWs) appeared by simply tuning the concentration of H2O2 to relatively high concentrations up to 8%. The morphological aspects are claimed by scanning electron microscopy proving that the kinetics of SiNWs formation display nonlinear relationships versus H2O2 concentration and etching time. A semi-qualitative electrochemical etching model based on local anodic, Ic, and cathodic, Ia, currents is proposed to explain the different morphological changes, and to unveil the formation pathways of both PS and SiNWs. More importantly, an efficient antireflective character for silicon solar cell (reflectance close to 2%) is realized at 8% H2O2. In addition, the luminescence of the prepared Si-nanostructures is claimed by photoluminescence which exhibit a large enhancement of the intensity and a blue shift for narrow and deep SiNWs.
Code of Federal Regulations, 2012 CFR
2012-07-01
... associated elements. (b) Extraction plant means a facility chemically processing beryllium ore to beryllium..., electrochemical machining, etching, or other similar operations. (e) Ceramic plant means a manufacturing plant... compounds used or generated during any process or operation performed by a source subject to this subpart...
Code of Federal Regulations, 2013 CFR
2013-07-01
... associated elements. (b) Extraction plant means a facility chemically processing beryllium ore to beryllium..., electrochemical machining, etching, or other similar operations. (e) Ceramic plant means a manufacturing plant... compounds used or generated during any process or operation performed by a source subject to this subpart...
Code of Federal Regulations, 2014 CFR
2014-07-01
... associated elements. (b) Extraction plant means a facility chemically processing beryllium ore to beryllium..., electrochemical machining, etching, or other similar operations. (e) Ceramic plant means a manufacturing plant... compounds used or generated during any process or operation performed by a source subject to this subpart...
NASA Astrophysics Data System (ADS)
Lu, Fang; Qiu, Mengchun; Qi, Xiang; Yang, Liwen; Yin, Jinjie; Hao, Guolin; Feng, Xiang; Li, Jun; Zhong, Jianxin
2011-08-01
Highly ordered NiO coated Si nanowire arrays are fabricated as electrode materials for electrochemical supercapacitors (ES) via depositing Ni on electroless-etched Si nanowires and subsequently annealing. The electrochemical tests reveal that the constructed electrode has superior electrical conductibility and more active sites per unit area for chemical reaction processes, thereby possessing good cycle stability, high specific capacity, and low internal resistance. The specific capacity is up to 787.5 F g-1 at a discharge current of 2.5 mA and decreases slightly with 4.039% loss after 500 cycles, while the equivalent internal resistance is ˜3.067 Ω. Owing to its favorable electrochemical performance, this ordered hybrid array nanostructure is a promising electrode material in future commercial ES.
Solid-state energy storage module employing integrated interconnect board
Rouillard, Jean; Comte, Christophe; Daigle, Dominik; Hagen, Ronald A.; Knudson, Orlin B.; Morin, Andre; Ranger, Michel; Ross, Guy; Rouillard, Roger; St-Germain, Philippe; Sudano, Anthony; Turgeon, Thomas A.
2000-01-01
The present invention is directed to an improved electrochemical energy storage device. The electrochemical energy storage device includes a number of solid-state, thin-film electrochemical cells which are selectively interconnected in series or parallel through use of an integrated interconnect board. The interconnect board is typically disposed within a sealed housing which also houses the electrochemical cells, and includes a first contact and a second contact respectively coupled to first and second power terminals of the energy storage device. The interconnect board advantageously provides for selective series or parallel connectivity with the electrochemical cells, irrespective of electrochemical cell position within the housing. In one embodiment, a sheet of conductive material is processed by employing a known milling, stamping, or chemical etching technique to include a connection pattern which provides for flexible and selective interconnecting of individual electrochemical cells within the housing, which may be a hermetically sealed housing. Fuses and various electrical and electro-mechanical devices, such as bypass, equalization, and communication devices for example, may also be mounted to the interconnect board and selectively connected to the electrochemical cells.
Fabrication of gallium nitride nanowires by metal-assisted photochemical etching
NASA Astrophysics Data System (ADS)
Zhang, Miao-Rong; Jiang, Qing-Mei; Zhang, Shao-Hui; Wang, Zu-Gang; Hou, Fei; Pan, Ge-Bo
2017-11-01
Gallium nitride (GaN) nanowires (NWs) were fabricated by metal-assisted photochemical etching (MaPEtch). Gold nanoparticles (AuNPs) as metal catalyst were electrodeposited on the GaN substrate. SEM and HRTEM images show the surface of GaN NWs is smooth and clean without any impurity. SAED and FFT patterns demonstrate GaN NWs have single crystal structure, and the crystallographic orientation of GaN NWs is (0002) face. On the basis of the assumption of localized galvanic cells, combined with the energy levels and electrochemical potentials of reactants in this etching system, the generation, transfer and consumption of electron-hole pairs reveal the whole MaPEtch reaction process. Such easily fabricated GaN NWs have great potential for the assembly of GaN-based single-nanowire nanodevices.
NASA Technical Reports Server (NTRS)
Green, G.; Mattauch, R. J. (Inventor)
1983-01-01
A method is described for forming sharp tips on thin wires, in particular phosphor bronze wires of diameters such as one-thousandth inch used to contact micron size Schottky barrier diodes, which enables close control of tip shape and which avoids the use of highly toxic solutions. The method includes dipping an end of a phosphor bronze wire into a dilute solution of sulfamic acid and applying a current through the wire to electrochemically etch it. The humidity in the room is controlled to a level of less than 50%, and the voltage applied between the wire and another electrode in the solutions is a half wave rectified voltage. The current through the wire is monitored, and the process is stopped when the current falls to a predetermined low level.
Investigation of MeV-Cu implantation and channeling effects into porous silicon formation
NASA Astrophysics Data System (ADS)
Ahmad, M.; Naddaf, M.
2011-11-01
P-type (1 1 1) silicon wafers were implanted by copper ions (2.5 MeV) in channeling and random directions using ion beam accelerator of the Atomic Energy Commission of Syria (AECS). The effect of implantation direction on formation process of porous silicon (PS) using electrochemical etching method has been investigated using scanning electron microscope (SEM) and photoluminescence (PL) techniques. SEM observations revealed that the size, shape and density of the formed pores are highly affected by the direction of beam implantation. This in turn is seen to influence the PL behavior of the PS.
Vashpanov, Yuriy; Jung, Jae Il; Kwack, Kae Dal
2011-01-01
A new method of using photo-electromotive force in detecting gas and controlling sensitivity is proposed. Photo-electromotive force on the heterojunction between porous silicon thin layer and crystalline silicon wafer depends on the concentration of ammonia in the measurement chamber. A porous silicon thin layer was formed by electrochemical etching on p-type silicon wafer. A gas and light transparent electrical contact was manufactured to this porous layer. Photo-EMF sensitivity corresponding to ammonia concentration in the range from 10 ppm to 1,000 ppm can be maximized by controlling the intensity of illumination light.
NASA Astrophysics Data System (ADS)
Cardenas, Nelson; Kyrish, Matthew; Taylor, Daniel; Fraelich, Margaret; Lechuga, Oscar; Claytor, Richard; Claytor, Nelson
2015-03-01
Electro-Chemical Polishing is routinely used in the anodizing industry to achieve specular surface finishes of various metals products prior to anodizing. Electro-Chemical polishing functions by leveling the microscopic peaks and valleys of the substrate, thereby increasing specularity and reducing light scattering. The rate of attack is dependent of the physical characteristics (height, depth, and width) of the microscopic structures that constitute the surface finish. To prepare the sample, mechanical polishing such as buffing or grinding is typically required before etching. This type of mechanical polishing produces random microscopic structures at varying depths and widths, thus the electropolishing parameters are determined in an ad hoc basis. Alternatively, single point diamond turning offers excellent repeatability and highly specific control of substrate polishing parameters. While polishing, the diamond tool leaves behind an associated tool mark, which is related to the diamond tool geometry and machining parameters. Machine parameters such as tool cutting depth, speed and step over can be changed in situ, thus providing control of the spatial frequency of the microscopic structures characteristic of the surface topography of the substrate. By combining single point diamond turning with subsequent electro-chemical etching, ultra smooth polishing of both rotationally symmetric and free form mirrors and molds is possible. Additionally, machining parameters can be set to optimize post polishing for increased surface quality and reduced processing times. In this work, we present a study of substrate surface finish based on diamond turning tool mark spatial frequency with subsequent electro-chemical polishing.
NASA Astrophysics Data System (ADS)
Hwang, Byeong Jun; Lee, Sung Ho
2017-12-01
Biofilm formed on the surface of the object by the microorganism resulting in fouling organisms. This has led to many problems in daily life, medicine, health and industrial community. In this study, we tried to prevent biofilm formation on the stainless steel (SS304) sheet surface with micro fabricated structure. After then forming the microscale colloid patterns on the surface of stainless steel by using an electrochemical etching forming a pattern by using a FeCl3 etching was further increase the surface roughness. Culturing the Pseudomonas aeruginosa on the stainless steel fabricated with a micro structure on the surface was observed a relationship between the surface roughness and the biological fouling of the micro structure. As a result, the stainless steel surface with a micro structure was confirmed to be the biological fouling occurs less. We expect to be able to solve the problems caused by biological fouling in various fields such as medicine, engineering, using this research.
NASA Astrophysics Data System (ADS)
Lee, Seung-Min; Kang, Jin-Ho; Lee, June Key; Ryu, Sang-Wan
2016-09-01
The nanoporous medium is a valuable feature of optical devices because of its variable optical refractive index with porosity. One important application is in a GaN-based vertical cavity surface emitting laser having a distributed Bragg reflector (DBR) composed of alternating nanoporous and bulk GaNs. However, optimization of the fabrication process for high reflectivity DBRs having wellcontrolled high reflection bands has not been studied yet. We used electrochemical etching to study the fabrication process of a nanoporous GaN DBR and analyzed the relationship between the morphology and optical reflectivity. Several electrolytes were examined for the formation of the optimized nanoporous structure. A highly reflective DBRs having reflectivity of ~100% were obtained over a wide wavelength range of 450-750 nm. Porosification of semiconductors into nanoporous layers could provide a high reflectivity DBR due to controlled index-contrast, which would be advantages for the construction of a high-Q optical cavity.
Two-step fabrication technique of gold tips for use in point-contact spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narasiwodeyar, S.; Dwyer, M.; Liu, M.
For a successful point-contact spectroscopy (PCS) measurement, metallic tips of proper shape and smoothness are essential to ensure the ballistic nature of a point-contact junction. Until recently, the fabrication of Au tips suitable for use in point-contact spectroscopy has remained more of an art involving a trial and error method rather than an automated scientific process. To address these issues, we have developed a technique with which one can prepare high quality Au tips reproducibly and systematically. It involves an electronic control of the driving voltages used for an electrochemical etching of a gold wire in a HCl-glycerol mixture ormore » a HCl solution. We find that a stopping current, below which the circuit is set to shut off, is a single very important parameter to produce an Au tip of desired shape. We present detailed descriptions for a two-step etching process for Au tips and also test results from PCS measurements using them.« less
Anisotropic etching of platinum electrodes at the onset of cathodic corrosion
Hersbach, Thomas J. P.; Yanson, Alexei I.; Koper, Marc T. M.
2016-01-01
Cathodic corrosion is a process that etches metal electrodes under cathodic polarization. This process is presumed to occur through anionic metallic reaction intermediates, but the exact nature of these intermediates and the onset potential of their formation is unknown. Here we determine the onset potential of cathodic corrosion on platinum electrodes. Electrodes are characterized electrochemically before and after cathodic polarization in 10 M sodium hydroxide, revealing that changes in the electrode surface start at an electrode potential of −1.3 V versus the normal hydrogen electrode. The value of this onset potential rules out previous hypotheses regarding the nature of cathodic corrosion. Scanning electron microscopy shows the formation of well-defined etch pits with a specific orientation, which match the voltammetric data and indicate a remarkable anisotropy in the cathodic etching process, favouring the creation of (100) sites. Such anisotropy is hypothesized to be due to surface charge-induced adsorption of electrolyte cations. PMID:27554398
Buffered Electrochemical Polishing of Niobium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gianluigi Ciovati; Tian, Hui; Corcoran, Sean
The standard preparation of superconducting radio-frequency (SRF) cavities made of pure niobium include the removal of a 'damaged' surface layer, by buffered chemical polishing (BCP) or electropolishing (EP), after the cavities are formed. The performance of the cavities is characterized by a sharp degradation of the quality factor when the surface magnetic field exceeds about 90 mT, a phenomenon referred to as 'Q-drop.' In cavities made of polycrystalline fine grain (ASTM 5) niobium, the Q-drop can be significantly reduced by a low-temperature (? 120 °C) 'in-situ' baking of the cavity if the chemical treatment was EP rather than BCP. Asmore » part of the effort to understand this phenomenon, we investigated the effect of introducing a polarization potential during buffered chemical polishing, creating a process which is between the standard BCP and EP. While preliminary results on the application of this process to Nb cavities have been previously reported, in this contribution we focus on the characterization of this novel electrochemical process by measuring polarization curves, etching rates, surface finish, electrochemical impedance and the effects of temperature and electrolyte composition. In particular, it is shown that the anodic potential of Nb during BCP reduces the etching rate and improves the surface finish.« less
Solution-processed photodetectors from colloidal silicon nano/micro particle composite.
Tu, Chang-Ching; Tang, Liang; Huang, Jiangdong; Voutsas, Apostolos; Lin, Lih Y
2010-10-11
We demonstrate solution-processed photodetectors composed of heavy-metal-free Si nano/micro particle composite. The colloidal Si particles are synthesized by electrochemical etching of Si wafers, followed by ultra-sonication to pulverize the porous surface. With alkyl ligand surface passivation through hydrosilylation reaction, the particles can form a stable colloidal suspension which exhibits bright photoluminescence under ultraviolet excitation and a broadband extinction spectrum due to enhanced scattering from the micro-size particles. The efficiency of the thin film photodetectors has been substantially improved by preventing oxidation of the particles during the etching process.
Electrochemical thinning of silicon
Medernach, J.W.
1994-01-11
Porous semiconducting material, e.g. silicon, is formed by electrochemical treatment of a specimen in hydrofluoric acid, using the specimen as anode. Before the treatment, the specimen can be masked. The porous material is then etched with a caustic solution or is oxidized, depending of the kind of structure desired, e.g. a thinned specimen, a specimen, a patterned thinned specimen, a specimen with insulated electrical conduits, and so on. Thinned silicon specimen can be subjected to tests, such as measurement of interstitial oxygen by Fourier transform infra-red spectroscopy (FTIR). 14 figures.
Descamps, Emeline; Duroure, Nathalie; Deiss, Frédérique; Leichlé, Thierry; Adam, Catherine; Mailley, Pascal; Aït-Ikhlef, Ali; Livache, Thierry; Nicu, Liviu; Sojic, Neso
2013-08-07
Optical nanotip arrays fabricated on etched fiber bundles were functionalized with DNA spots. Such unconventional substrates (3D and non-planar) are difficult to pattern with standard microfabrication techniques but, using an electrochemical cantilever, up to 400 spots were electrodeposited on the nanostructured optical surface in 5 min. This approach allows each spot to be addressed individually and multiplexed fluorescence detection is demonstrated. Finally, remote fluorescence detection was performed by imaging through the optical fiber bundle itself after hybridisation with the complementary sequence.
Nanopore arrays in a silicon membrane for parallel single-molecule detection: fabrication
NASA Astrophysics Data System (ADS)
Schmidt, Torsten; Zhang, Miao; Sychugov, Ilya; Roxhed, Niclas; Linnros, Jan
2015-08-01
Solid state nanopores enable translocation and detection of single bio-molecules such as DNA in buffer solutions. Here, sub-10 nm nanopore arrays in silicon membranes were fabricated by using electron-beam lithography to define etch pits and by using a subsequent electrochemical etching step. This approach effectively decouples positioning of the pores and the control of their size, where the pore size essentially results from the anodizing current and time in the etching cell. Nanopores with diameters as small as 7 nm, fully penetrating 300 nm thick membranes, were obtained. The presented fabrication scheme to form large arrays of nanopores is attractive for parallel bio-molecule sensing and DNA sequencing using optical techniques. In particular the signal-to-noise ratio is improved compared to other alternatives such as nitride membranes suffering from a high-luminescence background.
Nanopore arrays in a silicon membrane for parallel single-molecule detection: fabrication.
Schmidt, Torsten; Zhang, Miao; Sychugov, Ilya; Roxhed, Niclas; Linnros, Jan
2015-08-07
Solid state nanopores enable translocation and detection of single bio-molecules such as DNA in buffer solutions. Here, sub-10 nm nanopore arrays in silicon membranes were fabricated by using electron-beam lithography to define etch pits and by using a subsequent electrochemical etching step. This approach effectively decouples positioning of the pores and the control of their size, where the pore size essentially results from the anodizing current and time in the etching cell. Nanopores with diameters as small as 7 nm, fully penetrating 300 nm thick membranes, were obtained. The presented fabrication scheme to form large arrays of nanopores is attractive for parallel bio-molecule sensing and DNA sequencing using optical techniques. In particular the signal-to-noise ratio is improved compared to other alternatives such as nitride membranes suffering from a high-luminescence background.
Effect of different electrolytes on porous GaN using photo-electrochemical etching
NASA Astrophysics Data System (ADS)
Al-Heuseen, K.; Hashim, M. R.; Ali, N. K.
2011-05-01
This article reports the properties and the behavior of GaN during the photoelectrochemical etching process using four different electrolytes. The measurements show that the porosity strongly depends on the electrolyte and highly affects the surface morphology of etched samples, which has been revealed by scanning electron microscopy (SEM) images. Peak intensity of the photoluminescence (PL) spectra of the porous GaN samples was observed to be enhanced and strongly depend on the electrolytes. Among the samples, there is a little difference in the peak position indicating that the change of porosity has little influence on the PL peak shift, while it highly affecting the peak intensity. Raman spectra of porous GaN under four different solution exhibit phonon mode E 2 (high), A 1 (LO), A 1 (TO) and E 2 (low). There was a red shift in E 2 (high) in all samples, indicating a relaxation of stress in the porous GaN surface with respect to the underlying single crystalline epitaxial GaN. Raman and PL intensities were high for samples etched in H 2SO 4:H 2O 2 and KOH followed by the samples etched in HF:HNO 3 and in HF:C 2H 5OH.
NASA Astrophysics Data System (ADS)
Takaloo, AshkanVakilipour; Kolahdouz, Mohammadreza; Poursafar, Jafar; Es, Firat; Turan, Rasit; Ki-Joo, Seung
2018-03-01
Nanotextured Si fabricated through metal-assisted chemical etching (MACE) technique exhibits a promising potential for producing antireflective layer for photovoltaic (PV) application. In this study, a novel single-step nickel (Ni) assisted etching technique was applied to produce an antireflective, nonporous Si (black Si) in an aqueous solution containing hydrofluoric acid (HF), hydrogen peroxide (H2O2) and NiSO4 at 40 °C. Field emission scanning electron microscope was used to characterize different morphologies of the textured Si. Optical reflection measurements of samples were carried out to compare the reflectivity of different morphologies. Results indicated that vertical as well as horizontal pores with nanosized diameters were bored in the Si wafer after 1 h treatment in the etching solution containing different molar ratios of H2O2 to HF. Increasing H2O2 concentration in electrochemical etching solution had a considerable influence on the morphology due to higher injection of positive charges from Ni atoms onto the Si surface. Optimized concentration of H2O2 led to formation of an antireflective layer with 2.1% reflectance of incident light.
Study of Thermal Electrical Modified Etching for Glass and Its Application in Structure Etching
Zhan, Zhan; Li, Wei; Yu, Lingke; Wang, Lingyun; Sun, Daoheng
2017-01-01
In this work, an accelerating etching method for glass named thermal electrical modified etching (TEM etching) is investigated. Based on the identification of the effect in anodic bonding, a novel method for glass structure micromachining is proposed using TEM etching. To validate the method, TEM-etched glasses are prepared and their morphology is tested, revealing the feasibility of the new method for micro/nano structure micromachining. Furthermore, two kinds of edge effect in the TEM and etching processes are analyzed. Additionally, a parameter study of TEM etching involving transferred charge, applied pressure, and etching roughness is conducted to evaluate this method. The study shows that TEM etching is a promising manufacture method for glass with low process temperature, three-dimensional self-control ability, and low equipment requirement. PMID:28772521
Porous Two-Dimensional Transition Metal Carbide (MXene) Flakes for High-Performance Li-Ion Storage
Ren, Chang E.; Zhao, M-Q; Makaryan, Taron; ...
2016-02-16
Herein we develop a chemical etching method to produce porous two-dimensional (2D) Ti 3C 2T x MXenes at room temperature in aqueous solutions. The as-produced porous Ti 3C 2T x (p-Ti 3C 2T x) have larger specific surface areas and more open structures than their pristine counterparts, and can be fabricated into flexible films with, or without, the addition of carbon nanotubes (CNTs). The as-fabricated p-Ti 3C 2T x/CNT films showed significantly improved lithium ion storage capabilities compared to pristine Ti 3C 2T x based films, with a very high capacity of ≈1250 mAh g -1 at 0.1 C, excellentmore » cycling stability, and good rate performance (330 mAh g -1 at 10 C). Using the same chemical etching method, we also made porous Nb 2CT x and V 2CT x MXenes. Therefore, this study provides a simple, yet effective, procedure to introduce pores into MXenes and possibly other 2D sheets that in turn, can enhance their electrochemical properties.« less
Taheri, M; Sohrabi, M; Jaleh, B; Hosseini, T; Montazer Rahmati, M M
2009-12-01
In the present paper a method has been developed for the determination of (226)Ra in water by the detection, using a solid-state nuclear track detector (SSNTD), of alpha particles from (226)Ra in equilibrium with (222)Rn in micro-precipitates collected on a filter. The micro-precipitates were prepared from environmental water samples by collection of radium with lead as Pb/RaSO(4). Several factors affect the (226)Ra precipitation on the filter and its recovery, in particular the filter pore size. Therefore in this experiment Whatman #42 and Millipore filters with different pore sizes were used. Using a 0.45 microm Millipore filter, the recovery efficiency was increased up to 96%, and the alpha self-absorption and scattering decreased remarkably. For efficient detection of alphas from (226)Ra/(222)Rn in equilibrium, three types of SSNTD were used-polycarbonate (PC) electrochemically etched (ECE), CR-39 and LR-115 chemically etched (CE). By preparing a standard micro-precipitate on a filter with known (226)Ra/(222)Rn characteristics, the calibration response of each detector and its minimum detection limit (MDL) were determined.
Li, Yapeng; Liu, Jindou; Chen, Chen; Zhang, Xiaohua; Chen, Jinhua
2017-02-22
Double metal phosphide (NiCoP) with hollow quasi-polyhedron structure was prepared by acidic etching and precipitation of ZIF-67 polyhedra and further phosphorization treatment with NaH 2 PO 2 . The morphology and microstructure of NiCoP quasi-polyhedron and its precursors were investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and a micropore and chemisorption analyzer. Electrocatalytic properties were examined by typical electrochemical methods, such as linear sweep voltammetry, cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy in 1.0 M KOH aqueous solution. Results reveal that, compared with CoP hollow polyhedra, NiCoP hollow quasi-polyhedra exhibit better electrochemical properties for hydrogen evolution with a low onset overpotential of 74 mV and a small Tafel slope of 42 mV dec -1 . When the current density is 10 mA cm -2 , the corresponding overpotential is merely 124 mV, and 93% of its electrocatalytic activity can be maintained for 12 h. This indicates that NiCoP with hollow quasi-polyhedron structure, bimetallic merit, and low cost may be a good candidate as electrocatalyst in the practical application of hydrogen evolution.
Investigation of porous silicon obtained under different conditions by the contact angle method
NASA Astrophysics Data System (ADS)
Belorus, A. O.; Bukina, Y. V.; Pastukhov, A. I.; Stebko, D. S.; Spivak, Yu M.; Moshnikov, V. A.
2017-11-01
This paper investigates a hydrophobicity/hydrophilicity of porous silicon by the contact angle method. Porous silicon series were obtained by electrochemical anodic etching of n-Si (100) and (111) under the current anodization density range of 5-120 mA/cm2. For this purpose the original laboratory installation and the software «Measurement of contact angle» were developed. It is shown that, the contact angle can vary significantly (up to 80 degrees for (100)) depending on the current anodization Discussion of the results is carried out taking in account the composition of the functional groups and of surface morphology of the porous silicon. These results are important for developing porous silicon particles as nanocontainers in the targeted drug delivery.
Wang, Guoyong; Liu, Shuai; Wei, Sufeng; Liu, Yan; Lian, Jianshe; Jiang, Qing
2016-01-01
Practical application of superhydrophobic surfaces is limited by the fragility of nanoscale asperities. Combining chemical etching and anodization, microscale pits and nanoscale pores, instead of the micro and nano protrusions on traditional superhydrophobic surfaces mimicking Lutos leaves, were fabricated on commercially pure aluminum surfaces. After modified by FDTS, the surfaces were superhydrophobic and self-cleaning. The ultrahigh hardness and electrochemical stability of Al2O3 coating endowed the surface excellent mechanical durability and good corrosion resistance. Because the method is scalable, it may find practical application on body panels of automobiles and aircrafts and so on. PMID:26853810
Vashpanov, Yuriy; Jung, Jae Il; Kwack, Kae Dal
2011-01-01
A new method of using photo-electromotive force in detecting gas and controlling sensitivity is proposed. Photo-electromotive force on the heterojunction between porous silicon thin layer and crystalline silicon wafer depends on the concentration of ammonia in the measurement chamber. A porous silicon thin layer was formed by electrochemical etching on p-type silicon wafer. A gas and light transparent electrical contact was manufactured to this porous layer. Photo-EMF sensitivity corresponding to ammonia concentration in the range from 10 ppm to 1,000 ppm can be maximized by controlling the intensity of illumination light. PMID:22319353
Modified Surface Having Low Adhesion Properties to Mitigate Insect Residue Adhesion
NASA Technical Reports Server (NTRS)
Wohl, Christopher J., Jr. (Inventor); Smith, Joseph G., Jr. (Inventor); Siochi, Emilie J. (Inventor); Penner, Ronald K. (Inventor)
2016-01-01
A process to modify a surface to provide reduced adhesion surface properties to mitigate insect residue adhesion. The surface may include the surface of an article including an aircraft, an automobile, a marine vessel, all-terrain vehicle, wind turbine, helmet, etc. The process includes topographically and chemically modifying the surface by applying a coating comprising a particulate matter, or by applying a coating and also topographically modifying the surface by various methods, including but not limited to, lithographic patterning, laser ablation and chemical etching, physical vapor phase deposition, chemical vapor phase deposition, crystal growth, electrochemical deposition, spin casting, and film casting.
Etching of Cr tips for scanning tunneling microscopy of cleavable oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Dennis; Liu, Stephen; Zeljkovic, Ilija
Here, we report a detailed three-step roadmap for the fabrication and characterization of bulk Cr tips for spin-polarized scanning tunneling microscopy. Our strategy uniquely circumvents the need for ultra-high vacuum preparation of clean surfaces or films. First, we demonstrate the role of ex situ electrochemical etch parameters on Cr tip apex geometry, using scanning electron micrographs of over 70 etched tips. Second, we describe the suitability of the in situ cleaved surface of the layered antiferromagnet La 1.4Sr 1.6Mn 2O 7 to evaluate the spin characteristics of the Cr tip, replacing the ultra-high vacuum-prepared test samples that have been usedmore » in prior studies. Third, we outline a statistical algorithm that can effectively delineate closely spaced or irregular cleaved step edges, to maximize the accuracy of step height and spin-polarization measurements.« less
Investigation on the structural characterization of pulsed p-type porous silicon
NASA Astrophysics Data System (ADS)
Wahab, N. H. Abd; Rahim, A. F. Abd; Mahmood, A.; Yusof, Y.
2017-08-01
P-type Porous silicon (PS) was sucessfully formed by using an electrochemical pulse etching (PC) and conventional direct current (DC) etching techniques. The PS was etched in the Hydrofluoric (HF) based solution at a current density of J = 10 mA/cm2 for 30 minutes from a crystalline silicon wafer with (100) orientation. For the PC process, the current was supplied through a pulse generator with 14 ms cycle time (T) with 10 ms on time (Ton) and pause time (Toff) of 4 ms respectively. FESEM, EDX, AFM, and XRD have been used to characterize the morphological properties of the PS. FESEM images showed that pulse PS (PPC) sample produces more uniform circular structures with estimated average pore sizes of 42.14 nm compared to DC porous (PDC) sample with estimated average size of 16.37nm respectively. The EDX spectrum for both samples showed higher Si content with minimal presence of oxide.
In-depth porosity control of mesoporous silicon layers by an anodization current adjustment
NASA Astrophysics Data System (ADS)
Lascaud, J.; Defforge, T.; Certon, D.; Valente, D.; Gautier, G.
2017-12-01
The formation of thick mesoporous silicon layers in P+-type substrates leads to an increase in the porosity from the surface to the interface with silicon. The adjustment of the current density during the electrochemical etching of porous silicon is an intuitive way to control the layer in-depth porosity. The duration and the current density during the anodization were varied to empirically model porosity variations with layer thickness and build a database. Current density profiles were extracted from the model in order to etch layer with in-depth control porosity. As a proof of principle, an 80 μm-thick porous silicon multilayer was synthetized with decreasing porosities from 55% to 35%. The results show that the assessment of the in-depth porosity could be significantly enhanced by taking into account the pure chemical etching of the layer in the hydrofluoric acid-based electrolyte.
Chloride (Cl-) ion-mediated shape control of palladium nanoparticles
NASA Astrophysics Data System (ADS)
Nalajala, Naresh; Chakraborty, Arup; Bera, Bapi; Neergat, Manoj
2016-02-01
The shape control of Pd nanoparticles is investigated using chloride (Cl-) ions as capping agents in an aqueous medium in the temperature range of 60-100 °C. With weakly adsorbing and strongly etching Cl- ions, oxygen plays a crucial role in shape control. The experimental factors considered are the concentration of the capping agents, reaction time and reaction atmosphere. Thus, Pd nanoparticles of various shapes with high selectivity can be synthesized. Moreover, the removal of Cl- ions from the nanoparticle surface is easier than that of Br- ions (moderately adsorbing and etching) and I- ions (strongly adsorbing and weakly etching). The cleaned Cl- ion-mediated shape-controlled Pd nanoparticles are electrochemically characterized and the order of the half-wave potential of the oxygen reduction reaction in oxygen-saturated 0.1 M HClO4 solution is of the same order as that observed with single-crystal Pd surfaces.
Etching of Cr tips for scanning tunneling microscopy of cleavable oxides
Huang, Dennis; Liu, Stephen; Zeljkovic, Ilija; ...
2017-02-21
Here, we report a detailed three-step roadmap for the fabrication and characterization of bulk Cr tips for spin-polarized scanning tunneling microscopy. Our strategy uniquely circumvents the need for ultra-high vacuum preparation of clean surfaces or films. First, we demonstrate the role of ex situ electrochemical etch parameters on Cr tip apex geometry, using scanning electron micrographs of over 70 etched tips. Second, we describe the suitability of the in situ cleaved surface of the layered antiferromagnet La 1.4Sr 1.6Mn 2O 7 to evaluate the spin characteristics of the Cr tip, replacing the ultra-high vacuum-prepared test samples that have been usedmore » in prior studies. Third, we outline a statistical algorithm that can effectively delineate closely spaced or irregular cleaved step edges, to maximize the accuracy of step height and spin-polarization measurements.« less
NASA Astrophysics Data System (ADS)
Mabrouk, Asma; Lorrain, N.; Haji, M. L.; Oueslati, Meherzi
2015-01-01
In this paper, we analyze the photoluminescence spectra (PL) of porous silicon (PS) layer which is elaborated by electrochemical etching and passivated by Fe3+ ions (PSF) via current density, electro-deposition and temperature measurements. We observe unusual surface morphology of PSF surface and anomalous emission behavior. The PSF surface shows regular distribution of cracks, leaving isolated regions or ;platelets; of nearly uniform thickness. These cracks become more pronounced for high current densities. The temperature dependence of the PL peak energy (EPL) presents anomalous behaviors, i.e., the PL peak energy shows a successive red/blue/redshift (S-shaped behavior) with increasing temperature that we attribute to the existence of strong potential fluctuations induced by the electrochemical etching of PS layers. A competition process between localized and delocalized excitons is used to discuss these PL properties. In this case, the potential confinement plays a key role on the enhancement of PL intensity in PSF. To explain the temperature dependence of the PL intensity, we have proposed a recombination model based on the tunneling and dissociation of excitons.
Defect-enhanced performance of a 3D graphene anode in a lithium-ion battery
NASA Astrophysics Data System (ADS)
Guo, Hongchen; Long, Deng; Zheng, Zongmin; Chen, Xinyi; Ng, Alan M. C.; Lu, Miao
2017-12-01
Morphological defects were generated in an undoped 3D graphene structure via the involvement of a ZnO and Mg(OH)2 intermediate nanostructure layer placed between two layers of vapor-deposited graphene. Once the intermediate layer was etched, the 3D graphene lost support and shrank; during this process many morphological defects were formed. The electrochemical performance of the derived defective graphene utilized as the anode of a lithium (Li)-ion battery was significantly improved from ˜382 mAh g-1 to ˜2204 mAh g-1 at 0.5 A g-1 compared to normal 3D graphene. The derived defective graphene exhibited an initial capacity of 1009 mAh g-1 and retention of 83% at 4 A g-1 for 500 cycles, and ˜330 mAh g-1 at a high rate of 20 A g-1. Complicated defects such as wrinkles, pores, and particles formed during the etching of the intermediate layer, were considered to contribute to the improvement of the electrochemical performance.
Kim, Seongwoong; Kim, Sungsoo; Ko, Young Chun; Sohn, Honglae
2015-07-01
Photoluminescent porous silicon were prepared by an electrochemical etch of n-type silicon under the illumination with a 300 W tungsten filament bulb for the duration of etch. The red photoluminescence emitting at 650 nm with an excitation wavelength of 450 nm is due to the quantum confinement of silicon quantum dots in porous silicon. HO-terminated red luminescent PS was obtained by an electrochemical treatment of fresh PS with the current of 150 mA for 60 seconds in water and sodium chloride. As-prepared PS was sonicated, fractured, and centrifuged in toluene solution to obtain photoluminescence silicon quantum dots. Dichlorotetraphenylsilole exhibiting an emission band at 520 nm was reacted with HO-terminated silicon quantum dots to give a silole-capped silicon quantum dots. The optical characterization of silole-derivatized silicon quantum dots was investigated by UV-vis and fluorescence spectrometer. The fluorescence emission efficiency of silole-capped silicon quantum dots was increased by about 2.5 times due to F6rster resonance energy transfer from silole moiety to silicon quantum dots.
Synthesis and characterization of porous silicon gas sensors
NASA Astrophysics Data System (ADS)
abbas, Roaa A.; Alwan, Alwan M.; Abdulhamied, Zainab T.
2018-05-01
In this work, photo-electrochemical etching process of n-type Silicon of resistivity(10 Ω.cm) and (100) orientation, using two illumination sources IR and violet wavelength in HF acid have been used to produce PSi gas detection device. The fabrication process was carried out at a fixed etching current density of 25mA/cm2 and at different etching time (5, 10, 15 and 20) min and (8, 16, 24, and 30) min. Two configurations of gas sensor configuration planer and sandwich have been made and investigated. The morphological properties have been studied using SEM,the FTIR measurement show that the (Si-Hx) and (Si-O-Si) absorption peak were increases with increasing etching time,and Photoluminescence properties of PSi layer show decrease in the peak of PL peak toward the violet shift. The gas detection process is made on the CO2 gas at different operating temperature and fixed gas concentration. In the planner structure, the gas sensing was measured through, the change in the resistance readout as a function to the exposure time, while for sandwich structure J-V characteristic have been made to determine the sensitivity.
Visible-blind ultraviolet photodetectors on porous silicon carbide substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naderi, N.; Hashim, M.R., E-mail: roslan@usm.my
2013-06-01
Highlights: • Highly reliable UV detectors are fabricated on porous silicon carbide substrates. • The optical properties of samples are enhanced by increasing the current density. • The optimized sample exhibits enhanced sensitivity to the incident UV radiation. - Abstract: Highly reliable visible-blind ultraviolet (UV) photodetectors were successfully fabricated on porous silicon carbide (PSC) substrates. High responsivity and high photoconductive gain were observed in a metal–semiconductor–metal ultraviolet photodetector that was fabricated on an optimized PSC substrate. The PSC samples were prepared via the UV-assisted photo-electrochemical etching of an n-type hexagonal silicon carbide (6H-SiC) substrate using different etching current densities. Themore » optical results showed that the current density is an outstanding etching parameter that controls the porosity and uniformity of PSC substrates. A highly porous substrate was synthesized using a suitable etching current density to enhance its light absorption, thereby improving the sensitivity of UV detector with this substrate. The electrical characteristics of fabricated devices on optimized PSC substrates exhibited enhanced sensitivity and responsivity to the incident radiation.« less
Zhu, Tongtong; Liu, Yingjun; Ding, Tao; Fu, Wai Yuen; Jarman, John; Ren, Christopher Xiang; Kumar, R Vasant; Oliver, Rachel A
2017-03-27
Distributed Bragg reflectors (DBRs) are essential components for the development of optoelectronic devices. For many device applications, it is highly desirable to achieve not only high reflectivity and low absorption, but also good conductivity to allow effective electrical injection of charges. Here, we demonstrate the wafer-scale fabrication of highly reflective and conductive non-polar gallium nitride (GaN) DBRs, consisting of perfectly lattice-matched non-polar (11-20) GaN and mesoporous GaN layers that are obtained by a facile one-step electrochemical etching method without any extra processing steps. The GaN/mesoporous GaN DBRs exhibit high peak reflectivities (>96%) across the entire visible spectrum and wide spectral stop-band widths (full-width at half-maximum >80 nm), while preserving the material quality and showing good electrical conductivity. Such mesoporous GaN DBRs thus provide a promising and scalable platform for high performance GaN-based optoelectronic, photonic, and quantum photonic devices.
Santhiago, Murilo; Wydallis, John B.; Kubota, Lauro T.; Henry, Charles S.
2013-01-01
This work presents a simple, low cost method for creating microelectrodes for electrochemical paper-based analytical devices (ePADs). The microelectrodes were constructed by backfilling small holes made in polyester sheets using a CO2 laser etching system. To make electrical connections, the working electrodes were combined with silver screen-printed paper in a sandwich type two-electrode configuration. The devices were characterized using linear sweep voltammetry and the results are in good agreement with theoretical predictions for electrode size and shape. As a proof-of-concept, cysteine was measured using cobalt phthalocyanine as a redox mediator. The rate constant (kobs) for the chemical reaction between cysteine and the redox mediator was obtained by chronoamperometry and found to be on the order of 105 s−1 M−1. Using a microelectrode array, it was possible to reach a limit of detection of 4.8 μM for cysteine. The results show that carbon paste microelectrodes can be easily integrated with paper-based analytical devices. PMID:23581428
Santhiago, Murilo; Wydallis, John B; Kubota, Lauro T; Henry, Charles S
2013-05-21
This work presents a simple, low cost method for creating microelectrodes for electrochemical paper-based analytical devices (ePADs). The microelectrodes were constructed by backfilling small holes made in polyester sheets using a CO2 laser etching system. To make electrical connections, the working electrodes were combined with silver screen-printed paper in a sandwich type two-electrode configuration. The devices were characterized using linear sweep voltammetry, and the results are in good agreement with theoretical predictions for electrode size and shape. As a proof-of-concept, cysteine was measured using cobalt phthalocyanine as a redox mediator. The rate constant (k(obs)) for the chemical reaction between cysteine and the redox mediator was obtained by chronoamperometry and found to be on the order of 10(5) s(-1) M(-1). Using a microelectrode array, it was possible to reach a limit of detection of 4.8 μM for cysteine. The results show that carbon paste microelectrodes can be easily integrated with paper-based analytical devices.
Tuna, Süleyman Hakan; Özçiçek Pekmez, Nuran; Kürkçüoğlu, Işin
2015-11-01
The effects of fabrication methods on the corrosion resistance of frameworks produced with Co-Cr alloys are not clear. The purpose of this in vitro study was to evaluate the electrochemical corrosion resistance of Co-Cr alloy specimens that were fabricated by conventional casting, milling, and laser sintering. The specimens fabricated with 3 different methods were investigated by potentiodynamic tests and electrochemical impedance spectroscopy in an artificial saliva. Ions released into the artificial saliva were estimated with inductively coupled plasma-mass spectrometry, and the results were statistically analyzed. The specimen surfaces were investigated with scanning electron microscopy before and after the tests. In terms of corrosion current and Rct properties, statistically significant differences were found both among the means of the methods and among the means of the material groups (P<.05). With regard to ions released, a statistically significant difference was found among the material groups (P<.05); however, no difference was found among the methods. Scanning electron microscopic imaging revealed that the specimens produced by conventional casting were affected to a greater extent by etching and electrochemical corrosion than those produced by milling and laser sintering. The corrosion resistance of a Co-Cr alloy specimens fabricated by milling or laser sintering was greater than that of the conventionally cast alloy specimens. The Co-Cr specimens produced by the same method also differed from one another in terms of corrosion resistance. These differences may be related to the variations in the alloy compositions. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Fabrication of optical filters using multilayered porous silicon
NASA Astrophysics Data System (ADS)
Gaber, Noha; Khalil, Diaa; Shaarawi, Amr
2011-02-01
In this work we describe a method for fabricating optical filters using multilayered porous silicon 1D photonic structure. An electrochemical cell is constructed to control the porosity of variable layers in p-type Si wafers. Porous silicon multilayered structures are formed of λ/4 (or multiples) thin films that construct optical interference filters. By changing the anodizing current density of the cell during fabrication, different porosities can be obtained as the optical refractive index is a direct function of the layer porosity. To determine the morphology, the wavelength dependent refractive index n and absorption coefficient α, first, porous silicon free standing mono-layers have been fabricated at different conditions and characterized in the near infrared region (from 1000 to 2500nm). Large difference in refractive index (between 1.6 and 2.6) is obtained. Subsequently, multilayer structures have been fabricated and tested. Their spectral response has been measured and it shows good agreement with numerical simulations. A technique based on inserting etching breaks is adopted to ensure the depth homogeneity. The effect of differing etching/break times on the reproducibility of the filters is studied.
Robust graphene membranes in a silicon carbide frame.
Waldmann, Daniel; Butz, Benjamin; Bauer, Sebastian; Englert, Jan M; Jobst, Johannes; Ullmann, Konrad; Fromm, Felix; Ammon, Maximilian; Enzelberger, Michael; Hirsch, Andreas; Maier, Sabine; Schmuki, Patrik; Seyller, Thomas; Spiecker, Erdmann; Weber, Heiko B
2013-05-28
We present a fabrication process for freely suspended membranes consisting of bi- and trilayer graphene grown on silicon carbide. The procedure, involving photoelectrochemical etching, enables the simultaneous fabrication of hundreds of arbitrarily shaped membranes with an area up to 500 μm(2) and a yield of around 90%. Micro-Raman and atomic force microscopy measurements confirm that the graphene layer withstands the electrochemical etching and show that the membranes are virtually unstrained. The process delivers membranes with a cleanliness suited for high-resolution transmission electron microscopy (HRTEM) at atomic scale. The membrane, and its frame, is very robust with respect to thermal cycling above 1000 °C as well as harsh acidic or alkaline treatment.
Effect of pH on ion current through conical nanopores
NASA Astrophysics Data System (ADS)
Chander, M.; Kumar, R.; Kumar, S.; Kumar, N.
2018-05-01
Here, we examined ionic current behavior of conical nanopores at different pH and a fixed ion concentration of potassium halide (KCl). Conical shaped nanopores have been developed by chemical etching technique in polyethylene terephthalate (PET) membrane/foil of thickness 12 micron. For this we employed a self-assembled electrochemical cell having two chambers and the foil was fitted in the centre of cell. The nanopores were produced in the foil using etching and stopping solutions. The experimental results show that ionic current rectification (ICR) occurs through synthesized conical nanopores. Further, ion current increases significantly with increase of voltage from the base side of nanopores to the tip side at fixed pH of electrolyte.
Room-temperature Electrochemical Synthesis of Carbide-derived Carbons and Related Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gogotsi, Yury
2015-02-28
This project addresses room-temperature electrochemical etching as an energy-efficient route to synthesis of 3D nanoporous carbon networks and layered 2D carbons and related structures, as well as provides fundamental understanding of structure and properties of materials produced by this method. Carbide-derived-carbons (CDCs) are a growing class of nanostructured carbon materials with properties that are desirable for many applications, such as electrical energy and gas storage. The structure of these functional materials is tunable by the choice of the starting carbide precursor, synthesis method, and process parameters. Moving from high-temperature synthesis of CDCs through vacuum decomposition above 1400°C and chlorination abovemore » 400°C, our studies under the previous DOE BES support led to identification of precursor materials and processing conditions for CDC synthesis at temperatures as low as 200°C, resulting in amorphous and highly reactive porous carbons. We also investigated synthesis of monolithic CDC films from carbide films at 250-1200°C. The results of our early studies provided new insights into CDC formation, led to development of materials for capacitive energy storage, and enabled fundamental understanding of the electrolyte ions confinement in nanoporous carbons.« less
NASA Astrophysics Data System (ADS)
Meng, Andrew C.; Tang, Kechao; Braun, Michael R.; Zhang, Liangliang; McIntyre, Paul C.
2017-10-01
The performance of nanostructured semiconductors is frequently limited by interface defects that trap electronic carriers. In particular, high aspect ratio geometries dramatically increase the difficulty of using typical solid-state electrical measurements (multifrequency capacitance- and conductance-voltage testing) to quantify interface trap densities (D it). We report on electrochemical impedance spectroscopy (EIS) to characterize the energy distribution of interface traps at metal oxide/semiconductor interfaces. This method takes advantage of liquid electrolytes, which provide conformal electrical contacts. Planar Al2O3/p-Si and Al2O3/p-Si0.55Ge0.45 interfaces are used to benchmark the EIS data against results obtained from standard electrical testing methods. We find that the solid state and EIS data agree very well, leading to the extraction of consistent D it energy distributions. Measurements carried out on pyramid-nanostructured p-Si obtained by KOH etching followed by deposition of a 10 nm ALD-Al2O3 demonstrate the application of EIS to trap characterization of a nanostructured dielectric/semiconductor interface. These results show the promise of this methodology to measure interface state densities for a broad range of semiconductor nanostructures such as nanowires, nanofins, and porous structures.
Electrochemical nonenzymatic sensing of glucose using advanced nanomaterials.
Dhara, Keerthy; Mahapatra, Debiprosad Roy
2017-12-13
An overview (with 376 refs.) is given here on the current state of methods for electrochemical sensing of glucose based on the use of advanced nanomaterials. An introduction into the field covers aspects of enzyme based sensing versus nonenzymatic sensing using nanomaterials. The next chapter cover the most commonly used nanomaterials for use in such sensors, with sections on uses of noble metals, transition metals, metal oxides, metal hydroxides, and metal sulfides, on bimetallic nanoparticles and alloys, and on other composites. A further section treats electrodes based on the use of carbon nanomaterials (with subsections on carbon nanotubes, on graphene, graphene oxide and carbon dots, and on other carbonaceous nanomaterials. The mechanisms for electro-catalysis are also discussed, and several Tables are given where the performance of sensors is being compared. Finally, the review addresses merits and limitations (such as the frequent need for working in strongly etching alkaline solutions and the need for diluting samples because sensors often have analytical ranges that are far below the glucose levels found in blood). We also address market/technology gaps in comparison to commercially available enzymatic sensors. Graphical Abstract Schematic representation of electrochemical nonenzymatic glucose sensing on the nanomaterials modified electrodes. At an applied potential, the nanomaterial-modified electrodes exhibit excellent electrocatalytic activity for direct oxidation of glucose oxidation.
Multimodal Sensing Strategy Using pH Dependent Fluorescence Switchable System
NASA Astrophysics Data System (ADS)
Muthurasu, A.; Ganesh, V.
2016-12-01
Biomolecules assisted preparation of fluorescent gold nanoparticles (FL-Au NPs) has been reported in this work using glucose oxidase enzyme as both reducing and stabilizing agent and demonstrated their application through multimodal sensing strategy for selective detection of cysteine (Cys). Three different methods namely fluorescence turn OFF-ON strategy, naked eye detection and electrochemical methods are used for Cys detection by employing FL-Au NPs as a common probe. In case of fluorescence turn-OFF method a strong interaction between Au NPs and thiol results in quenching of fluorescence due to replacement of glucose oxidase by Cys at neutral pH. Second mode is based on fluorescence switch-ON strategy where initial fluorescence is significantly quenched by either excess acid or base and further addition of Cys results in appearance of rosy-red and green fluorescence respectively. Visual colour change and fluorescence emission arises due to etching of Au atoms on the surface by thiol leading to formation of Au nanoclusters. Finally, electrochemical sensing of Cys is also carried out using cyclic voltammetry in 0.1 M PBS solution. These findings provide a suitable platform for Cys detection over a wide range of pH and concentration levels and hence the sensitivity can also be tuned accordingly.
NASA Technical Reports Server (NTRS)
Li, Jun; Cassell, Alan; Koehne, Jessica; Chen, Hua; Ng, Hou Tee; Ye, Qi; Stevens, Ramsey; Han, Jie; Meyyappan, M.
2003-01-01
We report on our recent breakthroughs in two different applications using well-aligned carbon nanotube (CNT) arrays on Si chips, including (1) a novel processing solution for highly robust electrical interconnects in integrated circuit manufacturing, and (2) the development of ultrasensitive electrochemical DNA sensors. Both of them rely on the invention of a bottom-up fabrication scheme which includes six steps, including: (a) lithographic patterning, (b) depositing bottom conducting contacts, (c) depositing metal catalysts, (d) CNT growth by plasma enhanced chemical vapor deposition (PECVD), (e) dielectric gap-filling, and (f) chemical mechanical polishing (CMP). Such processes produce a stable planarized surface with only the open end of CNTs exposed, whch can be further processed or modified for different applications. By depositing patterned top contacts, the CNT can serve as vertical interconnects between the two conducting layers. This method is fundamentally different fiom current damascene processes and avoids problems associated with etching and filling of high aspect ratio holes at nanoscales. In addition, multiwalled CNTs (MWCNTs) are highly robust and can carry a current density of 10(exp 9) A/square centimeters without degradation. It has great potential to help extending the current Si technology. The embedded MWCNT array without the top contact layer can be also used as a nanoelectrode array in electrochemical biosensors. The cell time-constant and sensitivity can be dramatically improved. By functionalizing the tube ends with specific oligonucleotide probes, specific DNA targets can be detected with electrochemical methods down to subattomoles.
Porous Silicon Gradient Refractive Index Micro-Optics.
Krueger, Neil A; Holsteen, Aaron L; Kang, Seung-Kyun; Ocier, Christian R; Zhou, Weijun; Mensing, Glennys; Rogers, John A; Brongersma, Mark L; Braun, Paul V
2016-12-14
The emergence and growth of transformation optics over the past decade has revitalized interest in how a gradient refractive index (GRIN) can be used to control light propagation. Two-dimensional demonstrations with lithographically defined silicon (Si) have displayed the power of GRIN optics and also represent a promising opportunity for integrating compact optical elements within Si photonic integrated circuits. Here, we demonstrate the fabrication of three-dimensional Si-based GRIN micro-optics through the shape-defined formation of porous Si (PSi). Conventional microfabrication creates Si square microcolumns (SMCs) that can be electrochemically etched into PSi elements with nanoscale porosity along the shape-defined etching pathway, which imparts the geometry with structural birefringence. Free-space characterization of the transmitted intensity distribution through a homogeneously etched PSi SMC exhibits polarization splitting behavior resembling that of dielectric metasurfaces that require considerably more laborious fabrication. Coupled birefringence/GRIN effects are studied by way of PSi SMCs etched with a linear (increasing from edge to center) GRIN profile. The transmitted intensity distribution shows polarization-selective focusing behavior with one polarization focused to a diffraction-limited spot and the orthogonal polarization focused into two laterally displaced foci. Optical thickness-based analysis readily predicts the experimentally observed phenomena, which strongly match finite-element electromagnetic simulations.
Selective Functionalization of Arbitrary Nanowires
2006-11-02
3-mercaptopropyl)- trimethoxysilane (MPTMS). The wires were grown electrochemically in anodic aluminum oxide ( AAO ) templates. Selective deposition...In the past, templates composed of polycarbonate track-etched membranes or anodic aluminum oxide materials have been used for the construction of...modifier MPTMS was used to function- alize the AAO template because it can form covalent bonds with silanes and metal oxide surfaces21 and because of
Porous carbon-free SnSb anodes for high-performance Na-ion batteries
NASA Astrophysics Data System (ADS)
Choi, Jeong-Hee; Ha, Choong-Wan; Choi, Hae-Young; Seong, Jae-Wook; Park, Cheol-Min; Lee, Sang-Min
2018-05-01
A simple melt-spinning/chemical-etching process is developed to create porous carbon-free SnSb anodes. Sodium ion batteries (SIBs) incorporating these anodes exhibit excellent electrochemical performances by accomodating large volume changes during repeated cycling. The porous carbon-free SnSb anode produced by the melt-spinning/chemical-etching process shows a high reversible capacity of 481 mAh g-1, high ICE of 80%, stable cyclability with a high capacity retention of 99% after 100 cycles, and a fast rate capability of 327 mAh g-1 at 4C-rate. Ex-situ X-ray diffraction and high resolution-transmission electron microscopy analyses demonstrate that the synthesized porous carbon-free SnSb anodes involve the highly reversible reaction with sodium through the conversion and recombination reactions during sodiation/desodiation process. The novel and simple melt-spinning/chemical-etching synthetic process represents a technological breakthrough in the commercialization of Na alloy-able anodes for SIBs.
Chemical method for producing smooth surfaces on silicon wafers
Yu, Conrad
2003-01-01
An improved method for producing optically smooth surfaces in silicon wafers during wet chemical etching involves a pre-treatment rinse of the wafers before etching and a post-etching rinse. The pre-treatment with an organic solvent provides a well-wetted surface that ensures uniform mass transfer during etching, which results in optically smooth surfaces. The post-etching treatment with an acetic acid solution stops the etching instantly, preventing any uneven etching that leads to surface roughness. This method can be used to etch silicon surfaces to a depth of 200 .mu.m or more, while the finished surfaces have a surface roughness of only 15-50 .ANG. (RMS).
Yuan, Zhishan; Wang, Chengyong; Yi, Xin; Ni, Zhonghua; Chen, Yunfei; Li, Tie
2018-02-20
Solid-state nanopore has captured the attention of many researchers due to its characteristic of nanoscale. Now, different fabrication methods have been reported, which can be summarized into two broad categories: "top-down" etching technology and "bottom-up" shrinkage technology. Ion track etching method, mask etching method chemical solution etching method, and high-energy particle etching and shrinkage method are exhibited in this report. Besides, we also discussed applications of solid-state nanopore fabrication technology in DNA sequencing, protein detection, and energy conversion.
NASA Astrophysics Data System (ADS)
Yuan, Zhishan; Wang, Chengyong; Yi, Xin; Ni, Zhonghua; Chen, Yunfei; Li, Tie
2018-02-01
Solid-state nanopore has captured the attention of many researchers due to its characteristic of nanoscale. Now, different fabrication methods have been reported, which can be summarized into two broad categories: "top-down" etching technology and "bottom-up" shrinkage technology. Ion track etching method, mask etching method chemical solution etching method, and high-energy particle etching and shrinkage method are exhibited in this report. Besides, we also discussed applications of solid-state nanopore fabrication technology in DNA sequencing, protein detection, and energy conversion.
Otte, M A; Solis-Tinoco, V; Prieto, P; Borrisé, X; Lechuga, L M; González, M U; Sepulveda, B
2015-09-02
In current top-down nanofabrication methodologies the design freedom is generally constrained to the two lateral dimensions, and is only limited by the resolution of the employed nanolithographic technique. However, nanostructure height, which relies on certain mask-dependent material deposition or etching techniques, is usually uniform, and on-chip variation of this parameter is difficult and generally limited to very simple patterns. Herein, a novel nanofabrication methodology is presented, which enables the generation of high aspect-ratio nanostructure arrays with height gradients in arbitrary directions by a single and fast etching process. Based on metal-assisted chemical etching using a catalytic gold layer perforated with nanoholes, it is demonstrated how nanostructure arrays with directional height gradients can be accurately tailored by: (i) the control of the mass transport through the nanohole array, (ii) the mechanical properties of the perforated metal layer, and (iii) the conductive coupling to the surrounding gold film to accelerate the local electrochemical etching process. The proposed technique, enabling 20-fold on-chip variation of nanostructure height in a spatial range of a few micrometers, offers a new tool for the creation of novel types of nano-assemblies and metamaterials with interesting technological applications in fields such as nanophotonics, nanophononics, microfluidics or biomechanics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Detection of nerve agent stimulants based on photoluminescent porous silicon interferometer
NASA Astrophysics Data System (ADS)
Kim, Seongwoong; Cho, Bomin; Sohn, Honglae
2012-09-01
Porous silicon (PSi) exhibiting dual optical properties, both Fabry-Pérot fringe and photolumincence, was developed and used as chemical sensors. PSi samples were prepared by an electrochemical etch of p-type silicon under the illumination of 300-W tungsten lamp during the etch process. The surface of PSi was characterized by cold field-emission scanning electron microscope. PSi samples exhibited a strong visible orange photoluminescence at 610 nm with an excitation wavelength of 460 nm as well as Fabry-Pérot fringe with a tungsten light source. Both reflectivity and photoluminescence were simultaneously measured under the exposure of organophosphate vapors. An increase of optical thickness and quenching photoluminescences under the exposure of various organophosphate vapors were observed.
Tauke-Pedretti, Anna; Nielson, Gregory N; Cederberg, Jeffrey G; Cruz-Campa, Jose Luis
2015-05-12
A method includes etching a release layer that is coupled between a plurality of semiconductor devices and a substrate with an etch. The etching includes etching the release layer between the semiconductor devices and the substrate until the semiconductor devices are at least substantially released from the substrate. The etching also includes etching a protuberance in the release layer between each of the semiconductor devices and the substrate. The etch is stopped while the protuberances remain between each of the semiconductor devices and the substrate. The method also includes separating the semiconductor devices from the substrate. Other methods and apparatus are also disclosed.
NASA Astrophysics Data System (ADS)
Kathiravan, Deepa; Huang, Bohr-Ran; Saravanan, Adhimoorthy; Yeh, Chien-Jui; Leou, Keh-Chyang; Lin, I.-Nan
2017-12-01
A high-performance ZnO nanotubes (ZNTs)/needle-structured graphitic diamond (NGD) nanohybrid material was prepared and observed the electrochemical sensing properties of liquid acetone in water. Initially, we synthesized NGD film using bias-enhanced growth (BEG) process. Afterwards, a well-etched ZNTs were spatially grown on the NGD film using simple hydrothermal method, and utilized as sensing material for assemble an electrochemical sensor (via EGFET configuration) operating at room temperature. The systematic investigations depict the ultra-high sensing properties attained from ZNTs grown on NGD film. The NGD film mostly have needle or wire shaped diamond grains, which contributes extremely high electrical conductivity. Furthermore, needle shaped diamond grains cover with multi-layer graphitic material generates conduction channels for ZNTs and leads to enhance the oxygen residuals and species. The material stability and conductivity of NGD as well the defects exist with oxygen vacancies in ZNTs offers superior sensing properties. Thus, the interesting combination of these wide band gap semiconductor materials exhibit high sensor response (89 mV/mL), high stability and long-term reliability (tested after 60 days).
NASA Astrophysics Data System (ADS)
Etminanfar, M. R.; Khalil-Allafi, J.
2016-02-01
In this study, a combination of surface modification process and the electrochemical deposition of Ca-P coatings was used for the modification of the Nitinol shape memory alloy. DSC, SEM, GIB-XRD, FT-Raman, XPS, and FTIR measurements were performed for the characterization of the samples. Results indicated that chemical etching and boiling of the samples in distilled water formed TiO film on the surface. After the chemical modification, subsequent aging of the sample, at 470 °C for 30 min, converted the oxide film to a stable structure of titanium dioxide. In that case, the treated substrate indicated a superelastic behavior. At the same electrochemical condition, the treated substrate revealed more stable and uniform Ca-P coatings in comparison with the abraded Nitinol substrate. This difference was attributed to the presence of hydroxyl groups on the titanium dioxide surface. Also, after soaking the sample in SBF, the needle-like coating on the treated substrate was completely covered with the hydroxyapatite phase which shows a good bioactivity of the coating.
Copper-assisted, anti-reflection etching of silicon surfaces
Toor, Fatima; Branz, Howard
2014-08-26
A method (300) for etching a silicon surface (116) to reduce reflectivity. The method (300) includes electroless deposition of copper nanoparticles about 20 nanometers in size on the silicon surface (116), with a particle-to-particle spacing of 3 to 8 nanometers. The method (300) includes positioning (310) the substrate (112) with a silicon surface (116) into a vessel (122). The vessel (122) is filled (340) with a volume of an etching solution (124) so as to cover the silicon surface (116). The etching solution (124) includes an oxidant-etchant solution (146), e.g., an aqueous solution of hydrofluoric acid and hydrogen peroxide. The silicon surface (116) is etched (350) by agitating the etching solution (124) with, for example, ultrasonic agitation, and the etching may include heating (360) the etching solution (124) and directing light (365) onto the silicon surface (116). During the etching, copper nanoparticles enhance or drive the etching process.
Han, Lijuan; Tang, Pengyi; Reyes-Carmona, Álvaro; Rodríguez-García, Bárbara; Torréns, Mabel; Morante, Joan Ramon; Arbiol, Jordi; Galan-Mascaros, Jose Ramon
2016-12-14
The development of upscalable oxygen evolving electrocatalysts from earth-abundant metals able to operate in neutral or acidic environments and low overpotentials remains a fundamental challenge for the realization of artificial photosynthesis. In this study, we report a highly active phase of heterobimetallic cyanide-bridged electrocatalysts able to promote water oxidation under neutral, basic (pH < 13), and acidic conditions (pH > 1). Cobalt-iron Prussian blue-type thin films, formed by chemical etching of Co(OH) 1.0 (CO 3 ) 0.5 ·nH 2 O nanocrystals, yield a dramatic enhancement of the catalytic performance toward oxygen production, when compared with previous reports for analogous materials. Electrochemical, spectroscopic, and structural studies confirm the excellent performance, stability, and corrosion resistance, even when compared with state-of-the-art metal oxide catalysts under moderate overpotentials and in a remarkably large pH range, including acid media where most cost-effective water oxidation catalysts are not useful. The origin of the superior electrocatalytic activity toward water oxidation appears to be in the optimized interfacial matching between catalyst and electrode surface obtained through this fabrication method.
Treated carbon fibers with improved performance for electrochemical and chemical applications
Chu, X.; Kinoshita, Kimio
1999-02-23
A treated mesophase carbon fiber is disclosed having a high density of exposed edges on the fiber surface, and a method is described for making such a treated fiber. A carbon electrode is also described which is constructed from such treated mesophase carbon fibers. The resulting electrode, formed from such treated flexible carbon fibers, is characterized by a high density of active sites formed from such exposed edges, low corrosion, and good mechanical strength, and may be fabricated into various shapes. The treated mesophase carbon fibers of the invention are formed by first loading the surface of the mesophase carbon fiber with catalytic metal particles to form catalytic etch sites on a hard carbon shell of the fiber. The carbon fiber is then subject to an etch step wherein portions of the hard carbon shell or skin are selectively removed adjacent the catalytic metal particles adhering to the carbon shell. This exposes the underlying radial edges of the graphite-like layers within the carbon shell of the mesophase carbon fiber, which exposed radial edges then act as active sites of a carbon electrode subsequently formed from the treated mesophase carbon fibers. 14 figs.
Treated carbon fibers with improved performance for electrochemical and chemical applications
Chu, Xi; Kinoshita, Kimio
1999-01-01
A treated mesophase carbon fiber is disclosed having a high density of exposed edges on the fiber surface, and a method of making such a treated fiber. A carbon electrode is also described which is constructed from such treated mesophase carbon fibers. The resulting electrode, formed from such treated flexible carbon fibers, is characterized by a high density of active sites formed from such exposed edges, low corrosion, and good mechanical strength, and may be fabricated into various shapes. The treated mesophase carbon fibers of the invention are formed by first loading the surface of the mesophase carbon fiber with catalytic metal particles to form catalytic etch sites on a hard carbon shell of the fiber. The carbon fiber is then subject to an etch step wherein portions of the hard carbon shell or skin are selectively removed adjacent the catalytic metal particles adhering to the carbon shell. This exposes the underlying radial edges of the graphite-like layers within the carbon shell of the mesophase carbon fiber, which exposed radial edges then act as active sites of a carbon electrode subsequently formed from the treated mesophase carbon fibers.
Method to control artifacts of microstructural fabrication
Shul, Randy J.; Willison, Christi G.; Schubert, W. Kent; Manginell, Ronald P.; Mitchell, Mary-Anne; Galambos, Paul C.
2006-09-12
New methods for fabrication of silicon microstructures have been developed. In these methods, an etching delay layer is deposited and patterned so as to provide differential control on the depth of features being etched into a substrate material. Compensation for etching-related structural artifacts can be accomplished by proper use of such an etching delay layer.
Inverse metal-assisted chemical etching produces smooth high aspect ratio InP nanostructures.
Kim, Seung Hyun; Mohseni, Parsian K; Song, Yi; Ishihara, Tatsumi; Li, Xiuling
2015-01-14
Creating high aspect ratio (AR) nanostructures by top-down fabrication without surface damage remains challenging for III-V semiconductors. Here, we demonstrate uniform, array-based InP nanostructures with lateral dimensions as small as sub-20 nm and AR > 35 using inverse metal-assisted chemical etching (I-MacEtch) in hydrogen peroxide (H2O2) and sulfuric acid (H2SO4), a purely solution-based yet anisotropic etching method. The mechanism of I-MacEtch, in contrast to regular MacEtch, is explored through surface characterization. Unique to I-MacEtch, the sidewall etching profile is remarkably smooth, independent of metal pattern edge roughness. The capability of this simple method to create various InP nanostructures, including high AR fins, can potentially enable the aggressive scaling of InP based transistors and optoelectronic devices with better performance and at lower cost than conventional etching methods.
Yang, Huan; Xie, Jiale; Bao, Shu juan; Li, Chang Ming
2015-11-01
Co(OH)2 hollow nanostructures including cube, octahedron and flower are delicately tailored via a simple and fast one-step Cu2O template etching method. The as-prepared materials were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), field emission scanning electron microscope (FESEM), N2 adsorption-desorption and electrochemical methods and X-ray photoelectron spectroscopy (XPS). In particular, the supercapacitive behaviors of the as-prepared materials were investigated to explore relation of capacitance versus nanostructure. Results indicate that the as-prepared Co(OH)2 samples inherit the size and shape of the Cu2O templates but with an inside hollow, and the differently nanostructured Co(OH)2 exhibits different capacitive behaviors. Among various morphologies, the flower Co(OH)2 has the largest specific capacitance of 1350 F/g, while octahedron Co(OH)2 has the smallest one of 986.4 F/g. This is mainly because the flower Co(OH)2 not only has the largest available surface area, but also offers the fast interfacial electron transfer for higher pseudocapacitance and enhanced electrolyte ion diffusion rate for high power density, which is supported by both theoretical calculation, measured BET data and ac impedance measurements. This work may provide a vivid example to rationally design a nanostructure and further explore its fundamental insights for high performance supercapacitors. Copyright © 2015 Elsevier Inc. All rights reserved.
Sun, Guoqiang; Zhang, Yan; Kong, Qingkun; Zheng, Xiaoxiao; Yu, Jinghua; Song, Xianrang
2015-04-15
In this work, multiplexed photoelectrochemical (PEC) immunoassays are introduced into an indium tin oxide (ITO) device. Firstly, the ITO device is fabricated using a simple acid etch treatment method. Secondly, AuPd alloy nanoparticles are electro-deposited on ITO working electrodes as electron sink to construct the immunosensor platform. After that, ZnO nanotubes (ZNTs) arrays are synthesized via chemical etching of ZnO nanorods that are grown on AuPd surface by electrochemical deposition method. Subsequently, CdS is electro-deposited on ZNTs arrays and used as photoactive material. Then, CuO nanoseeds are labeled with signal antibodies and firstly used as PEC signal amplification label. The introduction of CuO brings signal amplification because of the conduction band (CB) of both CuO and ZnO are lower than that of CdS, CuO will compete the photo-induced electrons in CB of CdS with ZnO, leading to the decrease of the photocurrent intensity. Using cancer antigen 125, prostate specific antigen and α-fetoprotein as model analytes, the proposed immunoassay exhibits excellent precision and sensitivity. Meanwhile, this work provides a promising, addressable and simple strategy for the multi-detection of tumor markers. Copyright © 2014 Elsevier B.V. All rights reserved.
Anisotropic multi-spot DBR porous silicon chip for the detection of human immunoglobin G.
Cho, Bomin; Um, Sungyong; Sohn, Honglae
2014-07-01
Asymmetric porous silicon multilayer (APSM)-based optical biosensor was developed to specify human Immunoglobin G (Ig G). APSM chip was generated by an electrochemical etching of silicon wafer using an asymmetric electrode configuration in aqueous ethanolic HF solution and constituted with nine arrayed porous silicon multilayer. APSM prepared from anisotropic etching conditions displayed a sharp reflection resonance in the reflectivity spectrum. Each spot displayed single reflection resonance at different wavelengths as a function of the lateral distance from the Pt counter electrode. The sensor system was consisted of the 3 x 3 spot array of APSM modified with protein A. The system was probed with an aqueous human Ig G. Molecular binding and specificity was monitored as a shift in wavelength of reflection resonance.
NASA Astrophysics Data System (ADS)
Zheng, Zhikun; Yang, Menglong; Liu, Yaqing; Zhang, Bailin
2006-11-01
Both bare and self-assembled monolayer (SAM) protected gold substrate could be etched by allyl bromide according to atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS) and inductively coupled plasma mass spectrometric (ICPMS) analysis results. With this allyl bromide ink material, negative nanopatterns could be fabricated directly by dip-pen nanolithography (DPN) on SAMs of 16-mercaptohexadecanoic acid (MHA) on Au(111) substrate. A tip-promoted etching mechanism was proposed where the gold-reactive ink could penetrate the MHA resist film through tip-induced defects resulting in local corrosive removal of the gold substrate. The fabrication mechanism was also confirmed by electrochemical characterization, energy dispersive spectroscopy (EDS) analysis and fabrication of positive nanopatterns via a used DPN tip.
Zhang, Q B; Abbott, Andrew P; Yang, C
2015-06-14
Nanoporous copper films were fabricated by a facile electrochemical alloying/dealloying process without the need of a template. A deep eutectic solvent made from choline chloride (ChCl) and urea was used with zinc oxide as the metal salt. Cyclic voltammetry was used to characterise the electrochemical reduction of zinc and follow Cu-Zn alloy formation on the copper substrate at elevated temperatures from 353 to 393 K. The alloy formation was confirmed by X-ray diffraction spectra. 3D, open and bicontinuous nanoporous copper films were obtained by in situ electrochemically etching (dealloying) of the zinc component in the Cu-Zn surface alloys at an appropriate potential (-0.4 V vs. Ag). This dealloying process was found to be highly temperature dependent and surface diffusion controlled, which involved the self-assembly of copper atoms at the alloy/electrolyte interface. Additionally, the effects of the deposition parameters, including deposition temperature, current density as well as total charge density on resulting the microstructure were investigated by scanning electron microscopy, and atomic force microscope.
Etching method for photoresists or polymers
NASA Technical Reports Server (NTRS)
Lerner, Narcinda R. (Inventor); Wydeven, Theodore J., Jr. (Inventor)
1991-01-01
A method for etching or removing polymers, photoresists, and organic contaminants from a substrate is disclosed. The method includes creating a more reactive gas species by producing a plasma discharge in a reactive gas such as oxygen and contacting the resulting gas species with a sacrificial solid organic material such as polyethylene or polyvinyl fluoride, reproducing a highly reactive gas species, which in turn etches the starting polymer, organic contaminant, or photoresist. The sample to be etched is located away from the plasma glow discharge region so as to avoid damaging the substrate by exposure to high energy particles and electric fields encountered in that region. Greatly increased etching rates are obtained. This method is highly effective for etching polymers such as polyimides and photoresists that are otherwise difficult or slow to etch downstream from an electric discharge in a reactive gas.
NASA Astrophysics Data System (ADS)
Zhang, Haibao; Wang, Jingjing; Wang, Hua; Tian, Xingyou
2017-09-01
In this paper, we presented the fabrication of mace-like gold hollow hierarchical micro/nanostructures (HMNs) grafted on ZnO nanorods array by using an electrochemical deposition in chloroauric acid solution on gold layer pre-coated ZnO nanorods array. Different from general electrochemical deposition process, the catalytic etching to ZnO and electrodeposition of gold are co-existed in our case, which lead to an inner hollow structure and an outer gold shell. Due to the appropriate electrodeposition conditions, the outer gold shell was built of many wimble-like nanoparticles, and the hierarchical micro/nanostructures were thus formed. In addition, because of the deposition rate is decreased gradually away from the top of ZnO nanorods, the final structures show mace-like appearance. The surface-enhanced Raman scattering (SERS) effect of the as-prepared gold hollow HMNs was further studied by using rhodamine 6G as probe molecule. It is demonstrated that these structures show ultrahigh SERS activity, and the detecting low limit of R6G solution can be to 10-10 M on single mace-like gold HMNs, which is quite important for their potential application in SERS-based surface analysis and sensors.
Wu, Kuen-Hsien; Li, Chong-Wei
2015-01-01
Porous-silicon (PS) multi-layered structures with three stacked PS layers of different porosity were prepared on silicon (Si) substrates by successively tuning the electrochemical-etching parameters in an anodization process. The three PS layers have different optical bandgap energy and construct a triple-layered PS (TLPS) structure with multiple bandgap energy. Photovoltaic devices were fabricated by depositing aluminum electrodes of Schottky contacts on the surfaces of the developed TLPS structures. The TLPS-based devices exhibit broadband photoresponses within the spectrum of the solar irradiation and get high photocurrent for the incident light of a tungsten lamp. The improved spectral responses of devices are owing to the multi-bandgap structures of TLPS, which are designed with a layered configuration analog to a tandem cell for absorbing a wider energy range of the incidental sun light. The large photocurrent is mainly ascribed to an enhanced light-absorption ability as a result of applying nanoporous-Si thin films as the surface layers to absorb the short-wavelength light and to improve the Schottky contacts of devices. Experimental results reveal that the multi-bandgap PS structures produced from electrochemical-etching of Si wafers are potentially promising for development of highly efficient Si-based solar cells. PMID:28793542
Ma, Ming; Liu, Kai; Shen, Jie; Kas, Recep; Smith, Wilson A
2018-06-08
In this work, the highly selective and stable electrocatalytic reduction of CO 2 to CO on nanostructured Ag electrocatalysts is presented. The Ag electrocatalysts are synthesized by the electroreduction of Ag 2 CO 3 formed by in situ anodic-etching of Ag foil in a KHCO 3 electrolyte. After 3 min of this etching treatment, the Ag 2 CO 3 -derived nanostructured Ag electrocatalysts are capable of producing CO with up to 92% Faradaic efficiency at an overpotential as low as 290 mV, which surpasses all of the reported Ag catalysts at identical conditions to date. In addition, the anodic-etched Ag retained ∼90% catalytic selectivity in the electroreduction of CO 2 to CO for more than 100 h. The Ag 2 CO 3 -derived Ag is able to facilitate the activation of CO 2 via reduction of the activation energy barrier of the initial electron transfer and provide an increased number of active sites, resulting in the dramatically improved catalytic activity for the reduction of CO 2 to CO.
Method to fabricate multi-level silicon-based microstructures via use of an etching delay layer
Manginell, Ronald P.; Schubert, W. Kent; Shul, Randy J.
2005-08-16
New methods for fabrication of silicon microstructures have been developed. In these methods, an etching delay layer is deposited and patterned so as to provide differential control on the depth of features being etched into a substrate material. Structures having features with different depth can be formed thereby in a single etching step.
Uniformly thinned optical fibers produced via HF etching with spectral and microscopic verification.
Bal, Harpreet K; Brodzeli, Zourab; Dragomir, Nicoleta M; Collins, Stephen F; Sidiroglou, Fotios
2012-05-01
A method for producing uniformly thinned (etched) optical fibers is described, which can also be employed to etch optical fibers containing a Bragg grating (FBG) uniformly for evanescent-field-based sensing and other applications. Through a simple modification of this method, the fabrication of phase-shifted FBGs based on uneven etching is also shown. The critical role of how a fiber is secured is shown, and the success of the method is illustrated, by differential interference contrast microscopy images of uniformly etched FBGs. An etched FBG sensor for the monitoring of the refractive index of different glycerin solutions is demonstrated.
Kim, Kwang-Il; Kim, Young Heon; Ogawa, Takashi; Choi, Suji; Cho, Boklae; Ahn, Sang Jung; Park, In-Yong
2018-05-11
A gas field ion source (GFIS) has many advantages that are suitable for ion microscope sources, such as high brightness and a small virtual source size, among others. In order to apply a tip-based GFIS to an ion microscope, it is better to create a trimer/single atom tip (TSAT), where the ion beam must be generated in several atoms of the tip apex. Here, unlike the conventional method which uses tip heating or a reactive gas, we show that the tip surface can be cleaned using only the field evaporation phenomenon and that the TSAT can also be fabricated using an insulating layer containing tungsten oxide, which remains after electrochemical etching. Using this method, we could get TSAT over 90% of yield. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Seidel, Helmut
2007-04-01
The biannual Workshop on Physical Chemistry of Wet Etching of Semiconductors (PCWES) was held in Saarbrücken, Germany in June 2006 for the fifth time in its history. The event was initiated in 1998 by Miko Elwenspoek from Twente University. It is a dedicated workshop with a typical attendance of about 30 scientists with multidisciplinary backgrounds from all parts of the world working in the field. Starting off in Holten in The Netherlands in 1998, subsequent workshops have been held at Toulouse, France in 2000, Nara, Japan in 2002, and Montreal, Canada in 2004. The initial focus was upon anisotropic etching of silicon in alkaline solutions, including surface topology, modelling aspects and applications. This process has found a wide range of applications in microsystems technology (MST), i.e. in the fabrication of microelectromechanical systems (MEMS). Most prominently, it provides the technological basis for bulk micromachining. More recently, other semiconductors such as germanium, III-V compounds and, particularly, wide-bandgap materials have started to enter the field. Furthermore, electrochemical aspects have gained in importance and the formation of porous silicon has also become a considerable part of the programme. From the very beginning up to the present time there was and is a strong focus on illumination of the underlying mechanism of crystallographic anisotropy, as well as on the understanding of electrochemical and dopant-induced etch stop phenomena. The fifth workshop, presented in Saarbrücken, included a total of twenty four contributions, six of which were as posters. Five of these are included in this partial special issue of Journal of Micromechanics and Microengineering as full length papers after having undergone the standard review process. The selection of contributions starts with the first invited paper given by M Gosalvez et al, resulting from a collaboration between Nagoya University, Japan and Helsinki University of Technology, Finland. It provides an atomistic point of view on the etching of the principal crystal surfaces of silicon. The step flow process and step bunching are explained in considerable detail, as well as effects of metal impurities. Simulation aspects of this approach are discussed in the second paper, also headed by M Gosalvez. They are based on a kinetic Monte Carlo scheme. The third contribution, from Z-f Zhou et al from the Southeast University in Nanjing, China also focuses on simulation aspects of anisotropic silicon etching. It proposes a novel 3-D cellular automata approach which is capable of describing the behaviour of high index planes in an efficient way. By choosing a dynamic algorithm, the programme gains speed and uses memory efficiently. The focus of the final two papers is on photoelectrochemical aspects of etching. D H van Dorp and J J Kelly from the University of Utrecht, The Netherlands describe the photoelectrochemistry and the etching behaviour of SiC in KOH. Silicon carbide is particularly attractive for harsh environment applications, due to its high chemical inertness. Therefore it is very difficult to etch purely chemically and can only be attacked by a light-induced process. Finally, F Yang et al from the Hahn-Meitner-Institut and ISAS Institute in Berlin, Germany describe an experiment of anodic oxide formation and subsequent etch back on (111) silicon surfaces in a NH4F solution. By monitoring the photoluminescence intensity and the photovoltage amplitude, effects of interface recombination and surface charging can be observed and characterized at the different steps of preparation. In total, the five papers provide a very fine overview of current activities and areas of interest in the field of wet chemical etching of semiconductors. The next PCWES workshop will be held in Asia in 2008.
Imai, Arisa; Takamizawa, Toshiki; Sai, Keiichi; Tsujimoto, Akimasa; Nojiri, Kie; Endo, Hajime; Barkmeier, Wayne W; Latta, Mark A; Miyazaki, Masashi
2017-10-01
The aim of the present study was to determine the influence of different adhesive application methods and etching modes on enamel bond effectiveness of universal adhesives using shear bond strength (SBS) testing and surface free-energy (SFE) measurements. The adhesives Scotchbond Universal, All-Bond Universal, Adhese Universal, and G-Premio Bond were used. Prepared bovine enamel specimens were divided into four groups, based on type of adhesive, and subjected to the following surface treatments: (i) total-etch mode with active application; (ii) total-etch mode with inactive application; (iii) self-etch mode with active application; and (iv) self-etch mode with inactive application. Bonded specimens were subjected to SBS testing. The SFE of the enamel surfaces with adhesive was measured after rinsing with acetone and water. The SBS values in total-etch mode were significantly higher than those in self-etch mode. In total-etch mode, significantly lower SBS values were observed with active application compared with inactive application; in contrast, in self-etch mode there were no significant differences in SBS between active and inactive applications. A reduction in total SFE was observed for active application compared with inactive application. The interaction between etching mode and application method was statistically significant, and the application method significantly affected enamel bond strength in total-etch mode. © 2017 Eur J Oral Sci.
Method for forming suspended micromechanical structures
Fleming, James G.
2000-01-01
A micromachining method is disclosed for forming a suspended micromechanical structure from {111} crystalline silicon. The micromachining method is based on the use of anisotropic dry etching to define lateral features of the structure which are etched down into a {111}-silicon substrate to a first etch depth, thereby forming sidewalls of the structure. The sidewalls are then coated with a protection layer, and the substrate is dry etched to a second etch depth to define a spacing of the structure from the substrate. A selective anisotropic wet etchant (e.g. KOH, EDP, TMAH, NaOH or CsOH) is used to laterally undercut the structure between the first and second etch depths, thereby forming a substantially planar lower surface of the structure along a {111} crystal plane that is parallel to an upper surface of the structure. The lateral extent of undercutting by the wet etchant is controlled and effectively terminated by either timing the etching, by the location of angled {111}-silicon planes or by the locations of preformed etch-stops. This present method allows the formation of suspended micromechanical structures having large vertical dimensions and large masses while allowing for detailed lateral features which can be provided by dry etch definition. Additionally, the method of the present invention is compatible with the formation of electronic circuitry on the substrate.
Method of fabricating vertically aligned group III-V nanowires
Wang, George T; Li, Qiming
2014-11-25
A top-down method of fabricating vertically aligned Group III-V micro- and nanowires uses a two-step etch process that adds a selective anisotropic wet etch after an initial plasma etch to remove the dry etch damage while enabling micro/nanowires with straight and smooth faceted sidewalls and controllable diameters independent of pitch. The method enables the fabrication of nanowire lasers, LEDs, and solar cells.
Morphology and electronic properties of silicon carbide surfaces
NASA Astrophysics Data System (ADS)
Nie, Shu
2007-12-01
Several issues related to SiC surfaces are studied in the thesis using scanning tunneling microscopy/spectroscopy (STM/S) and atomic force microscopy (AFM). Specific surfaces examined include electropolished SiC, epitaxial graphene on SiC, and vicinal (i.e. slightly miscut from a low-index direction) SiC that have been subjected to high temperature hydrogen-etching. The electropolished surfaces are meant to mimic electrochemically etched SiC, which forms a porous network. The chemical treatment of the surface is similar between electropolishing and electrochemical etching, but the etching conditions are slightly different such that the former produces a flat surface (that is amenable to STM study) whereas the latter produces a complex 3-dimensional porous network. We have used these porous SiC layers as semi-permeable membranes in a biosensor, and we find that the material is quite biocompatible. The purpose of the STM/STS study is to investigate the surface properties of the SiC on the atomic scale in an effort to explain this biocompatibility. The observed tunneling spectra are found to be very asymmetric, with a usual amount of current at positive voltages but no observable current at negative voltages. We propose that this behavior is due to surface charge accumulating on an incompletely passivated surface. Measurements on SiC surfaces prepared by various amounts of hydrogen-etching are used to support this interpretation. Comparison with tunneling computations reveals a density of about 10 13 cm-2 fixed charges on both the electro-polished and the H-etched surfaces. The relatively insulating nature observed on the electro-polished SiC surface may provide an explanation for the biocompatibility of the surface. Graphene, a monolayer of carbon, is a new material for electronic devices. Epitaxial graphene on SiC is fabricated by the Si sublimation method in which a substrate is heated up to about 1350°C in ultra-high vacuum (UHV). The formation of the graphene is monitored using low-energy electron diffraction (LEED) and Auger electron spectroscopy, and the morphology of the graphitized surface is studied using AFM and STM. Use of H-etched SiC substrates enables a relatively flat surface morphology, although residual steps remain due to unintentional miscut of the wafers. Additionally, some surface roughness in the form of small pits is observed, possibly due to the fact that the surface treatments (H-etching and UHV annealing) having been performed in separate vacuum chambers with an intervening transfer through air. Field-effect transistors have been fabricated with our graphene layers; they show a relatively strong held effect at room temperature, with an electron mobility of 535 cm 2/Vs. This value is somewhat lower than that believed to be theoretically possible for this material, and one possible reason may be the nonideal morphology of the surface (i.e. because of the observed steps and pits). Tunneling spectra of the graphene reveal semi-metallic behavior, consistent with that theoretically expected for an isolated layer of graphene. However, additional discrete states are observed in the spectra, possibly arising from bonding at the graphene/SiC interface. The observation of these states provides important input towards an eventual determination of the complete interface structure, and additionally, such states may be relevant in determining the electron mobility of the graphene. Stepped vicinal SIC{0001} substrates are useful templates for epitaxial growth of various types of layers: thick layers of compound semiconductor (in which the steps help preserving the stacking arrangement in the overlayer), monolayers of graphene, or submonolayer semiconductor layers that form quantum wires along the step edges. Step array produced by H-etching of vicinal SiC (0001) and (0001¯) with various miscut angles have been studied by AFM. H-etching is found to produce full unit-cell-high steps on the (0001) Si-face surfaces, but half unit-cell-high steps on the (0001¯) C-face surfaces. These observations are consistent with an asymmetry in the surface energy (i.e. etch rate) of the two types of step terminations occurring on the different surfaces. For high miscut angles, facet formation is observed on the vicinal Si-face, but less so on the C-face. This difference is interpreted in terms of a lower surface energy of the C-face. In terms of applying the stepped surfaces as a template, a much better uniformity in the step-step separation is found for the C-face surfaces.
Development of a Contactless Technique for Electrodeposition and Porous Silicon Formation
NASA Astrophysics Data System (ADS)
Zhao, Mingrui
One of the key active manufacturing technologies for 3D integration is through silicon vias (TSVs), which involves etching of deep vias in a silicon substrate that are filled with an electrodeposited metal, and subsequent removal of excess metal by chemical mechanical planarization (CMP). Electrodeposition often results in undesired voids in the TSV metal fill as well as a thick overburden layer. These via plating defects can severely degrade interconnect properties and lead to variation in via resistance, electrically open vias, and trapped plating chemicals that present a reliability hazard. Thick overburden layers result in lengthy and expensive CMP processing. We are proposing a technique that pursues a viable method of depositing a high quality metal inside vias with true bottom-up filling, using an additive-free deposition solution. The mechanism is based on a novel concept of electrochemical oxidation of backside silicon that releases electrons, and subsequent chemical etching of silicon dioxide for regeneration of the surface. Electrons are transported through the bulk silicon to the interface of the via bottom and the deposition solution, where the metal ions accept these electrons and electrodeposit resulting in the bottom-up filling of the large aspect ratio vias. With regions outside the vias covered bydielectric, no metal electrodeposition should occur in these regions. Our new bottom-up technique was initially examined and successfully demonstrated on blanket silicon wafers and shown to supply electrons to provide bottom-up filling advantage of through-hole plating and the depth tailorability of blind vias. We have also conducted a fundamental study that investigated the effect of various process parameters on the characteristics of deposited Cu and Ni and established correlations between metal filling properties and various electrochemical and solution variables. A copper sulfate solution with temperature of about 65°C was shown to be suitable for achieving stable and high values of current density that translated to copper deposition rates of 2.4 mum/min with good deposition uniformity. The importance of backside silicon oxidation and subsequent oxide etching on the kinetics of metal deposition on front side silicon has also been highlighted. Further, a process model was also developed to simulate the through silicon via copper filling process using conventional and contactless electrodeposition methods with no additives being used in the electrolyte solution. A series of electrochemical measurements were employed and integrated in the development of the comprehensive process simulator. The experimental data not only provided the necessary parameters for the model but also validated the simulation accuracy. From the simulation results, the "pinch-off" effect was observed for the additive-free conventional deposition process, which further causes partial filling and void formation. By contrast, a void-free filling with higher deposition rates was achieved by the use of the contactless technique. Moreover, experimental results of contactless electrodeposition on patterned wafers showed fast rate bottom-up filling ( 3.3 mum/min) in vias of 4 mum diameter and 50 mum depth (aspect ratio = 12.5) without void formation and no copper overburden in the regions outside the vias. Efforts were also made to extend the use of the contactless technique to other applications such as synthesis of porous silicon. We were able to fabricate porous silicon with a morphological gradient using a novel design of the experimental cell. The resulted porous silicon layers show a large distribution in porosity, pore size and depth along the radius of the samples. Symmetrical arrangements were attributed to decreasing current density radially inward on the silicon surface exposed to surfactant containing HF based etchant solution. The formation mechanism as well as morphological properties and their dependence on different process parameters has been investigated in detail. In the presence of surfactants, an increase in the distribution range of porosity, pore diameter and depth was observed by increasing HF concentration or lowering pH of the etchant solution, as the formation of pores was considered to be limited by the etch rates of silicon dioxide. Gradient porous silicon was also found to be successfully formulated both at high and low current densities. Interestingly, the morphological gradient was not developed when dimethyl sulfoxide (instead of surfactants) was used in etchant solution potentially due to limitations in the availability of oxidizing species at the silicon-etchant solution interface. In the last part of the dissertation, we have discussed the gradient bottom up filling of Cu in porous silicon substrates using the contactless electrochemical method. The radially symmetric current that gradually varied across the radius of the sample area was achieved by utilizing the modified cell design, which resulted in gradient filling in the vias. Effect of different deposition parameters such as applied current density, copper sulfate concentration and etching to deposition area ratio has been examined and discussed. (Abstract shortened by ProQuest.).
NASA Astrophysics Data System (ADS)
Abushrenta, Nasser; Wu, Xiaochao; Wang, Junnan; Liu, Junfeng; Sun, Xiaoming
2015-08-01
Hierarchical nanoarchitecture and porous structure can both provide advantages for improving the electrochemical performance in energy storage electrodes. Here we report a novel strategy to synthesize new electrode materials, hierarchical Co-based porous layered double hydroxide (PLDH) arrays derived via alkali etching from Co(OH)2@CoAl LDH nanoarrays. This structure not only has the benefits of hierarchical nanoarrays including short ion diffusion path and good charge transport, but also possesses a large contact surface area owing to its porous structure which lead to a high specific capacitance (23.75 F cm-2 or 1734 F g-1 at 5 mA cm-2) and excellent cycling performance (over 85% after 5000 cycles). The enhanced electrode material is a promising candidate for supercapacitors in future application.
Abushrenta, Nasser; Wu, Xiaochao; Wang, Junnan; Liu, Junfeng; Sun, Xiaoming
2015-01-01
Hierarchical nanoarchitecture and porous structure can both provide advantages for improving the electrochemical performance in energy storage electrodes. Here we report a novel strategy to synthesize new electrode materials, hierarchical Co-based porous layered double hydroxide (PLDH) arrays derived via alkali etching from Co(OH)2@CoAl LDH nanoarrays. This structure not only has the benefits of hierarchical nanoarrays including short ion diffusion path and good charge transport, but also possesses a large contact surface area owing to its porous structure which lead to a high specific capacitance (23.75 F cm−2 or 1734 F g−1 at 5 mA cm−2) and excellent cycling performance (over 85% after 5000 cycles). The enhanced electrode material is a promising candidate for supercapacitors in future application. PMID:26278334
Method for dry etching of transition metals
Ashby, C.I.H.; Baca, A.G.; Esherick, P.; Parmeter, J.E.; Rieger, D.J.; Shul, R.J.
1998-09-29
A method for dry etching of transition metals is disclosed. The method for dry etching of a transition metal (or a transition metal alloy such as a silicide) on a substrate comprises providing at least one nitrogen- or phosphorus-containing {pi}-acceptor ligand in proximity to the transition metal, and etching the transition metal to form a volatile transition metal/{pi}-acceptor ligand complex. The dry etching may be performed in a plasma etching system such as a reactive ion etching (RIE) system, a downstream plasma etching system (i.e. a plasma afterglow), a chemically-assisted ion beam etching (CAIBE) system or the like. The dry etching may also be performed by generating the {pi}-acceptor ligands directly from a ligand source gas (e.g. nitrosyl ligands generated from nitric oxide), or from contact with energized particles such as photons, electrons, ions, atoms, or molecules. In some preferred embodiments of the present invention, an intermediary reactant species such as carbonyl or a halide ligand is used for an initial chemical reaction with the transition metal, with the intermediary reactant species being replaced at least in part by the {pi}-acceptor ligand for forming the volatile transition metal/{pi}-acceptor ligand complex.
Method for dry etching of transition metals
Ashby, Carol I. H.; Baca, Albert G.; Esherick, Peter; Parmeter, John E.; Rieger, Dennis J.; Shul, Randy J.
1998-01-01
A method for dry etching of transition metals. The method for dry etching of a transition metal (or a transition metal alloy such as a silicide) on a substrate comprises providing at least one nitrogen- or phosphorous-containing .pi.-acceptor ligand in proximity to the transition metal, and etching the transition metal to form a volatile transition metal/.pi.-acceptor ligand complex. The dry etching may be performed in a plasma etching system such as a reactive ion etching (RIE) system, a downstream plasma etching system (i.e. a plasma afterglow), a chemically-assisted ion beam etching (CAIBE) system or the like. The dry etching may also be performed by generating the .pi.-acceptor ligands directly from a ligand source gas (e.g. nitrosyl ligands generated from nitric oxide), or from contact with energized particles such as photons, electrons, ions, atoms, or molecules. In some preferred embodiments of the present invention, an intermediary reactant species such as carbonyl or a halide ligand is used for an initial chemical reaction with the transition metal, with the intermediary reactant species being replaced at least in part by the .pi.-acceptor ligand for forming the volatile transition metal/.pi.-acceptor ligand complex.
Cho, Young-Lae; Lee, Jung-Woo; Lee, Chang-Hyoung; Choi, Hyung-Seon; Kim, Sung-Su; Song, Young Il; Park, Chan; Suh, Su-Jeong
2015-10-01
An aluminum (Al) thin film capacitor was fabricated for a high capacitance capacitor using electrochemical etching, barrier-type anodizing, and electroless Ni-P plating. In this study, we focused on the bottom-up filling of Ni-P electrodes on Al2O3/Al with etched tunnels. The Al tunnel pits were irregularly distributed on the Al foil, diameters were in the range of about 0.5~1 μm, the depth of the tunnel pits was approximately 35~40 μm, and the complex structure was made full filled hard metal. To control the plating rate, the experiment was performed by adding polyethyleneimine (PEI, C2H5N), a high molecular substance. PEI forms a cross-link at the etching tunnel inlet, playing the role of delaying the inlet plating. When the PEI solution bath was used after activation, the Ni-P layer was deposited selectively on the bottoms of the tunnels. The characteristics were analyzed by adding the PEI addition quantity rate of 100~600 mg/L into the DI water. The capacitance of the Ni-P/Al2O3 (650~700 nm)/Al film was measured at 1 kHz using an impedance/gain phase analyzer. For the plane film without etch tunnels the capacitance was 12.5 nF/cm2 and for the etch film with Ni-P bottom-up filling the capacitance was 92 nF/cm2. These results illustrate a remarkable maximization of capacitance for thin film metal capacitors.
Method of inducing differential etch rates in glow discharge produced amorphous silicon
Staebler, David L.; Zanzucchi, Peter J.
1980-01-01
A method of inducing differential etch rates in glow discharge produced amorphous silicon by heating a portion of the glow discharge produced amorphous silicon to a temperature of about 365.degree. C. higher than the deposition temperature prior to etching. The etch rate of the exposed amorphous silicon is less than the unheated amorphous silicon.
Unique Three-Dimensional InP Nanopore Arrays for Improved Photoelectrochemical Hydrogen Production.
Li, Qiang; Zheng, Maojun; Ma, Liguo; Zhong, Miao; Zhu, Changqing; Zhang, Bin; Wang, Faze; Song, Jingnan; Ma, Li; Shen, Wenzhong
2016-08-31
Ordered three-dimensional (3D) nanostructure arrays hold promise for high-performance energy harvesting and storage devices. Here, we report the fabrication of InP nanopore arrays (NPs) in unique 3D architectures with excellent light trapping characteristic and large surface areas for use as highly active photoelectrodes in photoelectrochemical (PEC) hydrogen evolution devices. The ordered 3D NPs were scalably synthesized by a facile two-step etching process of (1) anodic etching of InP in neutral 3 M NaCl electrolytes to realize nanoporous structures and (2) wet chemical etching in HCl/H3PO4 (volume ratio of 1:3) solutions for removing the remaining top irregular layer. Importantly, we demonstrated that the use of neutral electrolyte of NaCl instead of other solutions, such as HCl, in anodic etching of InP can significantly passivate the surface states of 3D NPs. As a result, the maximum photoconversion efficiency obtained with ∼15.7 μm thick 3D NPs was 0.95%, which was 7.3 and 1.4 times higher than that of planar and 2D NPs. Electrochemical impedance spectroscopy and photoluminescence analyses further clarified that the improved PEC performance was attributed to the enhanced charge transfer across 3D NPs/electrolyte interfaces, the improved charge separation at 3D NPs/electrolyte junction, and the increased PEC active surface areas with our unique 3D NP arrays.
Reactive ion etched substrates and methods of making and using
Rucker, Victor C [San Francisco, CA; Shediac, Rene [Oakland, CA; Simmons, Blake A [San Francisco, CA; Havenstrite, Karen L [New York, NY
2007-08-07
Disclosed herein are substrates comprising reactive ion etched surfaces and specific binding agents immobilized thereon. The substrates may be used in methods and devices for assaying or isolating analytes in a sample. Also disclosed are methods of making the reactive ion etched surfaces.
NASA Astrophysics Data System (ADS)
Shi, Tian; Kong, Jianyi; Wang, Xingdong; Li, Xuewu
2016-12-01
A superamphiphobic aluminum magnesium alloy surface with enhanced anticorrosion behavior has been prepared in this work via a simple and low-cost method. By successively polishing, etching and boiling treatments, the multifunctional hierarchical binary structures composed of the labyrinth-like concave-convex microstructures and twisty nanoflakes have been prepared. Results indicate that a superhydrophobic contact angle of 160.5° and superoleophobic contact angle larger than 150° as well as low adhesive property to liquids are achieved after such structures being modified with fluoroalkyl-silane. Furthermore, the anticorrosion behaviors in seawater of as-prepared samples are characterized by electrochemical tests including the impedance spectroscopies, equivalent circuits fittings and polarization curves. It is found that the hierarchical micro/nanostructures accompanying with the modified coating are proved to possess the maximal coating coverage rate of 90.0% larger than microstructures of 85.9%, nanostructures of 83.8% and bare polished surface of 67.1% suggesting the optimal anticorrosion. Finally, a great potential application in concentrators for surface-enhanced Raman scattering (SERS) analysis of toxic and pollutive ions on the superamphiphobic surface is also confirmed. This work has wider significance in extending further applications of alloys in engineering and environmental detecting fields.
NASA Astrophysics Data System (ADS)
Miranda, C. R. B.; Baldan, M. R.; Beloto, A. F.; Ferreira, N. G.
2011-09-01
Nanocrystalline diamond (NCD) was grown on the porous silicon (PS) substrate using Reticulated Vitreous Carbon (RVC) as an additional solid carbon source. RVC was produced at different heat treatment temperatures of 1300, 1500, and 2000 °C, resulting in samples with different turbostratic carbon organizations. The PS substrate was produced by an electrochemical method. NCD film was obtained by the chemical vapor infiltration/deposition process where a RVC piece was positioned just below the PS substrate. The PS and NCD samples were characterized by Field Emission Gun-Scanning Electron Microscopy (FEG-SEM). NCD films presented faceted nanograins with uniform surface texture covering all the pores resulting in an apparent micro honeycomb structure. Raman's spectra showed the D and G bands, as well as, the typical two shoulders at 1,150 and 1,490 cm-1 attributed to NCD. X-ray diffraction analyses showed the predominant (111) diamond orientation as well as the (220) and (311) peaks. The structural organization and the heteroatom presence on the RVC surface, analyzed from X-ray photoelectron spectroscopy, showed their significant influence on the NCD growth process. The hydrogen etching released, from RVC surface, associated to carbon and/or oxygen/nitrogen amounts led to different contributions for NCD growth.
Development of a DNA Sensor Based on Nanoporous Pt-Rich Electrodes
NASA Astrophysics Data System (ADS)
Van Hao, Pham; Thanh, Pham Duc; Xuan, Chu Thi; Hai, Nguyen Hoang; Tuan, Mai Anh
2017-06-01
Nanoporous Pt-rich electrodes with 72 at.% Pt composition were fabricated by sputtering a Pt-Ag alloy, followed by an electrochemical dealloying process to selectively etch away Ag atoms. The surface properties of nanoporous membranes were investigated by energy-dispersive x-ray spectroscopy (EDS), scanning electron microscopy (SEM), atomic force microscopy (AFM), a documentation system, and a gel image system (Gel Doc Imager). A single strand of probe deoxyribonucleic acid (DNA) was immobilized onto the electrode surface by physical adsorption. The DNA probe and target hybridization were measured using a lock-in amplifier and an electrochemical impedance spectroscope (EIS). The nanoporous Pt-rich electrode-based DNA sensor offers a fast response time of 3.7 s, with a limit of detection (LOD) of 4.35 × 10-10 M of DNA target.
The Electrochemical Behavior of Mo-Ta Alloy in Phosphoric Acid Solution for TFT-LCD Application.
Lee, Sang-Hyuk; Kim, Byoung O; Seo, Jong Hyun
2015-10-01
Molybdenum-tantalum alloy thin film is a suitable material for the higher corrosion resistance and low resistivity for gate and data metal lines. In this study, Mo-Ta alloy thin films were prepared by using a DC magnetron co-sputtering system on a glass substrate. An abrupt increase in the etching rates of low Mo-Ta alloys was observed. From the observed impedance analysis, the defect densities in the MoTa oxide films increased from 5.4 x 10(21) (cm(-3)) to 8.02 x 10(21) (cm(-3)) up to the 6 at% of tantalum level; and above the 6 at% of tantalum level, the defect densities decreased. This electrochemical behavior is explained by the mechanical instability of the MoTa oxide film.
Composition/bandgap selective dry photochemical etching of semiconductor materials
Ashby, C.I.H.; Dishman, J.L.
1985-10-11
Disclosed is a method of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap Eg/sub 1/ in the presence of a second semiconductor material of a different composition and direct bandgap Eg/sub 2/, wherein Eg/sub 2/ > Eg/sub 1/, said second semiconductor material substantially not being etched during said method. The method comprises subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said photons being of an energy greater than Eg/sub 1/ but less than Eg/sub 2/, whereby said first semiconductor material is photochemically etched and said second material is substantially not etched.
Differentiation of grain orientation with corrosive and colour etching on a granular bainitic steel.
Reisinger, S; Ressel, G; Eck, S; Marsoner, S
2017-08-01
This study presents a detailed verification of the etching methods with Nital and Klemm on a granular bainitic steel. It is shown that both methods allow the identification of the crystal orientation, whereas Klemm etching enables also a quantification of the apparent phases, as also retained austenite can be distinguished from the other bainitic microstructures. A combination of atom probe tomography with electron-back-scattered-diffraction showed that both etching methods emphasize the bainitic {100} crystal orientation. However, a cross-section produced by focused ion beam evidenced that Klemm etching leads to the formation of a topography of the different oriented bainitic crystals that directly affects the thickness and therefore the apparent colour of the deposited layer formed during etching. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Siuzdak, Katarzyna; Szkoda, Mariusz; Lisowska-Oleksiak, Anna; Grochowska, Katarzyna; Karczewski, Jakub; Ryl, Jacek
2015-12-01
This paper reports a novel method of boron doped titania nanotube arrays preparation by electrochemical anodization in electrolyte containing boron precursor - boron trifluoride diethyl etherate (BF3 C4H10O), simultaneously acting as an anodizing agent. A pure, ordered TiO2 nanotubes array, as a reference sample, was also prepared in solution containing a standard etching compound: ammonium fluoride. The doped and pure titania were characterized by scanning electron microscopy, UV-vis spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, photoluminescence emission spectroscopy and by means of electrochemical methods. The B-doping decidedly shifts the absorption edge of TiO2 nanotubes towards the visible light region and significantly inhibits the radiative recombination processes. Despite the fact that the doped sample is characterized by 4.6 lower real surface area when compared to pure titania, it leads to the decomposition of methylene blue in 93%, that is over 2.3 times higher than the degradation efficiency exhibited by the undoped material. The formation rate of hydroxyl radicals (rad OH) upon illumination significantly favours boron doped titania as a photocatalytic material. Moreover, the simple doping of TiO2 nanotubes array results in the enhancement of generated photocurrent from 120 μA/cm2 to 350 μA/cm2 registered for undoped and doped electrode, respectively.
Porosity and thickness effect of porous silicon layer on photoluminescence spectra
NASA Astrophysics Data System (ADS)
Husairi, F. S.; Eswar, K. A.; Guliling, Muliyadi; Khusaimi, Z.; Rusop, M.; Abdullah, S.
2018-05-01
The porous silicon nanostructures was prepared by electrochemical etching of p-type silicon wafer. Porous silicon prepared by using different current density and fix etching time with assistance of halogen lamp. The physical structure of porous silicon measured by the parameters used which know as experimental factor. In this work, we select one of those factors to correlate which optical properties of porous silicon. We investigated the surface morphology by using Surface Profiler (SP) and photoluminescence using Photoluminescence (PL) spectrometer. Different physical characteristics of porous silicon produced when current density varied. Surface profiler used to measure the thickness of porous and the porosity calculated using mass different of silicon. Photoluminescence characteristics of porous silicon depend on their morphology because the size and distribution of pore its self will effect to their exciton energy level. At J=30 mA/cm2 the shorter wavelength produced and it followed the trend of porosity with current density applied.
Method for anisotropic etching in the manufacture of semiconductor devices
NASA Technical Reports Server (NTRS)
Koontz, Steven L. (Inventor); Cross, Jon B. (Inventor)
1993-01-01
Hydrocarbon polymer coatings used in microelectronic manufacturing processes are anisotropically etched by hyperthermal atomic oxygen beams (translational energies of 0.2 to 20 eV, preferably 1 to 10 eV). Etching with hyperthermal oxygen atom species obtains highly anisotropic etching with sharp boundaries between etched and mask protected areas.
Method for anisotropic etching in the manufacture of semiconductor devices
Koontz, Steven L.; Cross, Jon B.
1993-01-01
Hydrocarbon polymer coatings used in microelectronic manufacturing processes are anisotropically etched by atomic oxygen beams (translational energies of 0.2-20 eV, preferably 1-10 eV). Etching with hyperthermal (kinetic energy>1 eV) oxygen atom species obtains highly anisotropic etching with sharp boundaries between etched and mask-protected areas.
Selective etching of silicon carbide films
Gao, Di; Howe, Roger T.; Maboudian, Roya
2006-12-19
A method of etching silicon carbide using a nonmetallic mask layer. The method includes providing a silicon carbide substrate; forming a non-metallic mask layer by applying a layer of material on the substrate; patterning the mask layer to expose underlying areas of the substrate; and etching the underlying areas of the substrate with a plasma at a first rate, while etching the mask layer at a rate lower than the first rate.
Etched-multilayer phase shifting masks for EUV lithography
Chapman, Henry N.; Taylor, John S.
2005-04-05
A method is disclosed for the implementation of phase shifting masks for EUV lithography. The method involves directly etching material away from the multilayer coating of the mask, to cause a refractive phase shift in the mask. By etching into the multilayer (for example, by reactive ion etching), rather than depositing extra material on the top of the multilayer, there will be minimal absorption loss associated with the phase shift.
Maskless micro/nanofabrication on GaAs surface by friction-induced selective etching
2014-01-01
In the present study, a friction-induced selective etching method was developed to produce nanostructures on GaAs surface. Without any resist mask, the nanofabrication can be achieved by scratching and post-etching in sulfuric acid solution. The effects of the applied normal load and etching period on the formation of the nanostructure were studied. Results showed that the height of the nanostructure increased with the normal load or the etching period. XPS and Raman detection demonstrated that residual compressive stress and lattice densification were probably the main reason for selective etching, which eventually led to the protrusive nanostructures from the scratched area on the GaAs surface. Through a homemade multi-probe instrument, the capability of this fabrication method was demonstrated by producing various nanostructures on the GaAs surface, such as linear array, intersecting parallel, surface mesas, and special letters. In summary, the proposed method provided a straightforward and more maneuverable micro/nanofabrication method on the GaAs surface. PMID:24495647
NASA Astrophysics Data System (ADS)
Sohrabi, Mehdi
2017-11-01
A novel development is made here by inventing panorama single-cell mega-size electrochemical etching (MS-ECE) chamber systems for processing panorama position-sensitive mega-size polycarbonate ion image detectors (MS-PCIDs) of potential for many neutron and ion detection applications in particular hydrogen ions or proton tracks and images detected for the first time in polycarbonates in this study. The MS-PCID is simply a large polycarbonate sheet of a desired size. The single-cell MS-ECE invented consists of two large equally sized transparent Plexiglas sheets as chamber walls holding a MS-PCID and the ECE chamber components tightly together. One wall has a large flat stainless steel electrode (dry cell) attached to it which is directly in contact with the MS-PCID and the other wall has a rod electrode with two holes to facilitate feeding and draining out the etching solution from the wet cell. A silicon rubber washer plays the role of the wet cell to hold the etchant and the electrical insulator to isolate the dry cell from the wet cell. A simple 50 Hz-HV home-made generator provides an adequate field strength through the two electrodes across the MS-ECE chamber. Two panorama single-cell MS-ECE chamber systems (circular and rectangular shapes) constructed were efficiently applied to processing the MS-PCIDs for 4π ion emission image detection of different gases in particular hydrogen ions or protons in a 3.5 kJ plasma focus device (PFD as uniquely observed by the unaided eyes). The panorama MS-PCID/MS-ECE image detection systems invented are novel with high potential for many applications in particular as applied to 4π panorama ion emission angular distribution image detection studies in PFD space, some results of which are presented and discussed.
Sohrabi, Mehdi
2017-11-01
A novel development is made here by inventing panorama single-cell mega-size electrochemical etching (MS-ECE) chamber systems for processing panorama position-sensitive mega-size polycarbonate ion image detectors (MS-PCIDs) of potential for many neutron and ion detection applications in particular hydrogen ions or proton tracks and images detected for the first time in polycarbonates in this study. The MS-PCID is simply a large polycarbonate sheet of a desired size. The single-cell MS-ECE invented consists of two large equally sized transparent Plexiglas sheets as chamber walls holding a MS-PCID and the ECE chamber components tightly together. One wall has a large flat stainless steel electrode (dry cell) attached to it which is directly in contact with the MS-PCID and the other wall has a rod electrode with two holes to facilitate feeding and draining out the etching solution from the wet cell. A silicon rubber washer plays the role of the wet cell to hold the etchant and the electrical insulator to isolate the dry cell from the wet cell. A simple 50 Hz-HV home-made generator provides an adequate field strength through the two electrodes across the MS-ECE chamber. Two panorama single-cell MS-ECE chamber systems (circular and rectangular shapes) constructed were efficiently applied to processing the MS-PCIDs for 4π ion emission image detection of different gases in particular hydrogen ions or protons in a 3.5 kJ plasma focus device (PFD as uniquely observed by the unaided eyes). The panorama MS-PCID/MS-ECE image detection systems invented are novel with high potential for many applications in particular as applied to 4π panorama ion emission angular distribution image detection studies in PFD space, some results of which are presented and discussed.
NASA Astrophysics Data System (ADS)
Gao, Wei; Zhang, Zhiyun; Li, Jing; Ma, Yuanyuan; Qu, Yongquan
2015-07-01
Controllable surface properties of nanocerias are desired for various catalytic processes. There is a lack of efficient approaches to adjust the surface properties of ceria to date. Herein, a redox chemical etching method was developed to controllably engineer the surface properties of ceria nanorods. Ascorbic acid and hydrogen peroxide were used to perform the redox chemical etching process, resulting in a rough surface and/or pores on the surface of ceria nanorods. Increasing the etching cycles induced a steady increase of the specific surface area, oxygen vacancies and surface Ce3+ fractions. As a result, the etched nanorods delivered enhanced catalytic activity for CO oxidation, compared to the non-etched ceria nanorods. Our method provides a novel and facile approach to continuously adjust the surface properties of ceria for practical applications.Controllable surface properties of nanocerias are desired for various catalytic processes. There is a lack of efficient approaches to adjust the surface properties of ceria to date. Herein, a redox chemical etching method was developed to controllably engineer the surface properties of ceria nanorods. Ascorbic acid and hydrogen peroxide were used to perform the redox chemical etching process, resulting in a rough surface and/or pores on the surface of ceria nanorods. Increasing the etching cycles induced a steady increase of the specific surface area, oxygen vacancies and surface Ce3+ fractions. As a result, the etched nanorods delivered enhanced catalytic activity for CO oxidation, compared to the non-etched ceria nanorods. Our method provides a novel and facile approach to continuously adjust the surface properties of ceria for practical applications. Electronic supplementary information (ESI) available: Diameter distributions of as-prepared and etched samples, optical images, specific catalytic data of CO oxidation and comparison of CO oxidation. See DOI: 10.1039/c5nr01846c
Plasma-deposited fluoropolymer film mask for local porous silicon formation
2012-01-01
The study of an innovative fluoropolymer masking layer for silicon anodization is proposed. Due to its high chemical resistance to hydrofluoric acid even under anodic bias, this thin film deposited by plasma has allowed the formation of deep porous silicon regions patterned on the silicon wafer. Unlike most of other masks, fluoropolymer removal after electrochemical etching is rapid and does not alter the porous layer. Local porous regions were thus fabricated both in p+-type and low-doped n-type silicon substrates. PMID:22734507
NASA Astrophysics Data System (ADS)
Tregulov, V. V.; Litvinov, V. G.; Ermachikhin, A. V.
2017-11-01
Defects in a semiconductor structure of a photoelectric converter of solar energy based on a p-n junction with an antireflection film of porous silicon on the front surface have been studied by current deeplevel transient spectroscopy. An explanation of the influence of thickness of a porous-silicon film formed by electrochemical etching on the character of transformation of defects with deep levels and efficiency of solarenergy conversion is proposed.
Temperature dependence of photoluminescence peaks of porous silicon structures
NASA Astrophysics Data System (ADS)
Brunner, Róbert; Pinčík, Emil; Kučera, Michal; Greguš, Ján; Vojtek, Pavel; Zábudlá, Zuzana
2017-12-01
Evaluation of photoluminescence spectra of porous silicon (PS) samples prepared by electrochemical etching is presented. The samples were measured at temperatures 30, 70 and 150 K. Peak parameters (energy, intensity and width) were calculated. The PL spectrum was approximated by a set of Gaussian peaks. Their parameters were fixed using fitting a procedure in which the optimal number of peeks included into the model was estimated using the residuum of the approximation. The weak thermal dependence of the spectra indicates the strong influence of active defects.
Strong modification of photoluminescence in erbium-doped porous silicon microcavities
NASA Astrophysics Data System (ADS)
Zhou, Y.; Snow, P. A.; Russell, P. St. J.
2000-10-01
A microcavity composed of porous silicon multilayer mirrors was electrochemically etched and doped with erbium. Measurements of the reflectivity and photoluminescence spectra are presented. Thermal processing under a nitrogen atmosphere optically activated the erbium ions. Photopumping yielded room temperature emission around 1.54 μm from the erbium-doped samples with the emitted light strongly modified by the microcavity structure. Emission spectra with a peak at 1.536 μm had a full width at half maximum of ˜6 nm.
High-uniformity centimeter-wide Si etching method for MEMS devices with large opening elements
NASA Astrophysics Data System (ADS)
Okamoto, Yuki; Tohyama, Yukiya; Inagaki, Shunsuke; Takiguchi, Mikio; Ono, Tomoki; Lebrasseur, Eric; Mita, Yoshio
2018-04-01
We propose a compensated mesh pattern filling method to achieve highly uniform wafer depth etching (over hundreds of microns) with a large-area opening (over centimeter). The mesh opening diameter is gradually changed between the center and the edge of a large etching area. Using such a design, the etching depth distribution depending on sidewall distance (known as the local loading effect) inversely compensates for the over-centimeter-scale etching depth distribution, known as the global or within-die(chip)-scale loading effect. Only a single DRIE with test structure patterns provides a micro-electromechanical systems (MEMS) designer with the etched depth dependence on the mesh opening size as well as on the distance from the chip edge, and the designer only has to set the opening size so as to obtain a uniform etching depth over the entire chip. This method is useful when process optimization cannot be performed, such as in the cases of using standard conditions for a foundry service and of short turn-around-time prototyping. To demonstrate, a large MEMS mirror that needed over 1 cm2 of backside etching was successfully fabricated using as-is-provided DRIE conditions.
Dopant type and/or concentration selective dry photochemical etching of semiconductor materials
Ashby, C.R.H.; Dishman, J.L.
1985-10-11
Disclosed is a method of selectively photochemically dry etching a first semiconductor material of a given composition in the presence of a second semiconductor material which is of a composition different from said first material, said second material substantially not being etched during said method. The method comprises subjecting both materials to the same photon flux of an energy greater than their respective direct bandgaps and to the same gaseous chemical etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said conditions also being such that the resultant electronic structure of the first semiconductor material under said photon flux is sufficient for the first material to undergo substantial photochemical etching under said conditions and being such that the resultant electronic structure of the second semiconductor material under said photon flux is not sufficient for the second material to undergo substantial photochemical etching under said conditions. In a preferred mode, the materials are subjected to a bias voltage which suppresses etching in n- or p-type material but not in p- or n-type material, respectively; or suppresses etching in the more heavily doped of two n-type or two p-type materials.
Composition/bandgap selective dry photochemical etching of semiconductor materials
Ashby, Carol I. H.; Dishman, James L.
1987-01-01
A method of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap Eg.sub.1 in the presence of a second semiconductor material of a different composition and direct bandgap Eg.sub.2, wherein Eg.sub.2 >Eg.sub.1, said second semiconductor material substantially not being etched during said method, comprises subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said photons being of an energy greater than Eg.sub.1 but less than Eg.sub.2, whereby said first semiconductor material is photochemically etched and said second material is substantially not etched.
Nitrogen-Doped Holey Graphene Film-Based Ultrafast Electrochemical Capacitors.
Zhou, Qinqin; Zhang, Miao; Chen, Ji; Hong, Jong-Dal; Shi, Gaoquan
2016-08-17
The commercialized aluminum electrolytic capacitors (AECs) currently used for alternating current (AC) line-filtering are usually the largest components in the electronic circuits because of their low specific capacitances and bulky sizes. Herein, nitrogen-doped holey graphene (NHG) films were prepared by thermal annealing the composite films of polyvinylpyrrolidone (PVP), graphene oxide (GO), and ferric oxide (Fe2O3) nanorods followed by chemical etching with hydrochloride acid. The typical electrochemical capacitor with NHG electrodes exhibited high areal and volumetric specific capacitances of 478 μF cm(-2) and 1.2 F cm(-3) at 120 Hz, ultrafast frequency response with a phase angle of -81.2° and a resistor-capacitor time constant of 203 μs at 120 Hz, as well as excellent cycling stability. Thus, it is promising to replace conventional AEC for AC line-filtering in miniaturized electronics.
Electrochemical performances of graphene nanoribbons interlacing hollow NiCo oxide nanocages
NASA Astrophysics Data System (ADS)
Zhao, Xiyu; Li, Xinlu; Huang, Yanchun; Su, Zelong; Long, Junjun; Zhang, Shilei; Sha, Junwei; Wu, Tianli; Wang, Ronghua
2017-12-01
A hybrid of graphene nanoribbons (GNRs) interlacing hollow NiCoO2 (G-HNCO) nanocages in a size range of 300 500 nm with rough surface is synthesized by a chemical etching Cu2O templates and followed by GNR interlacing process. The G-HNCO showed high electrochemical performance of oxygen evolution reaction (OER), which exhibited small onset potential of 1.50 V and achieved current densities of 10 mA cm-2 at potentials of 1.62 V. Also, the hybrid delivered high capacitance of 937.8 F g-1 at 1 A g-1 in supercapacitor (SC) tests as well as stable cycling performance in both OER and SC measurements. The approach to synthesize the hybrid is simple and scalable for other graphene nanoribbon-based electrocatalysts. [Figure not available: see fulltext.
Tailored porous silicon microparticles: fabrication and properties
Chiappini, Ciro; Tasciotti, Ennio; Fakhoury, Jean R.; Fine, Daniel; Pullan, Lee; Wang, Young-Chung; Fu, Lianfeng
2010-01-01
The use of mesoporous silicon particles for drug delivery has been widely explored thanks to their biodegradability and biocompatibility. The ability to tailor the physicochemical properties of porous silicon at the micro and nano scale confers versatility to this material. We present a method for the fabrication of highly reproducible, monodisperse mesoporous silicon particles with controlled physical characteristics through electrochemical etch of patterned silicon trenches. We tailored particle size in the micrometer range and pore size in the nanometer range, shape from tubular to discoidal to hemispherical, and porosity from 46% to over 80%. In addition, we correlated the properties of the porous matrix with the loading of model nanoparticles (Q-dots) and observed their three-dimensional arrangement within the matrix by transmission electron microscopy tomography. The methods developed in this study provide effective means to fabricate mesoporous silicon particles according to the principles of rational design for therapeutic vectors and to characterize the distribution of nanoparticles within the porous matrix PMID:20162656
Trends in Dielectric Etch for Microelectronics Processing
NASA Astrophysics Data System (ADS)
Hudson, Eric A.
2003-10-01
Dielectric etch technology faces many challenges to meet the requirements for leading-edge microelectronics processing. The move to sub 100-nm device design rules increases the aspect ratios of certain features, imposes tighter restrictions on etched features' critical dimensions, and increases the density of closely packed arrays of features. Changes in photolithography are driving transitions to new photoresist materials and novel multilayer resist methods. The increasing use of copper metallization and low-k interlayer dielectric materials has introduced dual-damascene integration methods, with specialized dielectric etch applications. A common need is the selective removal of multiple layers which have very different compositions, while maintaining close control of the etched features' profiles. To increase productivity, there is a growing trend toward in-situ processing, which allows several films to be successively etched during a single pass through the process module. Dielectric etch systems mainly utilize capacitively coupled etch reactors, operating with medium-density plasmas and low gas residence time. Commercial technology development increasingly relies upon plasma diagnostics and modeling to reduce development cycle time and maximize performance.
Nanoparticle-based etching of silicon surfaces
Branz, Howard [Boulder, CO; Duda, Anna [Denver, CO; Ginley, David S [Evergreen, CO; Yost, Vernon [Littleton, CO; Meier, Daniel [Atlanta, GA; Ward, James S [Golden, CO
2011-12-13
A method (300) of texturing silicon surfaces (116) such to reduce reflectivity of a silicon wafer (110) for use in solar cells. The method (300) includes filling (330, 340) a vessel (122) with a volume of an etching solution (124) so as to cover the silicon surface 116) of a wafer or substrate (112). The etching solution (124) is made up of a catalytic nanomaterial (140) and an oxidant-etchant solution (146). The catalytic nanomaterial (140) may include gold or silver nanoparticles or noble metal nanoparticles, each of which may be a colloidal solution. The oxidant-etchant solution (146) includes an etching agent (142), such as hydrofluoric acid, and an oxidizing agent (144), such as hydrogen peroxide. Etching (350) is performed for a period of time including agitating or stirring the etching solution (124). The etch time may be selected such that the etched silicon surface (116) has a reflectivity of less than about 15 percent such as 1 to 10 percent in a 350 to 1000 nanometer wavelength range.
Comparative study of resist stabilization techniques for metal etch processing
NASA Astrophysics Data System (ADS)
Becker, Gerry; Ross, Matthew F.; Wong, Selmer S.; Minter, Jason P.; Marlowe, Trey; Livesay, William R.
1999-06-01
This study investigates resist stabilization techniques as they are applied to a metal etch application. The techniques that are compared are conventional deep-UV/thermal stabilization, or UV bake, and electron beam stabilization. The electron beam tool use din this study, an ElectronCure system from AlliedSignal Inc., ELectron Vision Group, utilizes a flood electron source and a non-thermal process. These stabilization techniques are compared with respect to a metal etch process. In this study, two types of resist are considered for stabilization and etch: a g/i-line resist, Shipley SPR-3012, and an advanced i-line, Shipley SPR 955- Cm. For each of these resist the effects of stabilization on resist features are evaluated by post-stabilization SEM analysis. Etch selectivity in all cases is evaluated by using a timed metal etch, and measuring resists remaining relative to total metal thickness etched. Etch selectivity is presented as a function of stabilization condition. Analyses of the effects of the type of stabilization on this method of selectivity measurement are also presented. SEM analysis was also performed on the features after a compete etch process, and is detailed as a function of stabilization condition. Post-etch cleaning is also an important factor impacted by pre-etch resist stabilization. Results of post- etch cleaning are presented for both stabilization methods. SEM inspection is also detailed for the metal features after resist removal processing.
NASA Astrophysics Data System (ADS)
Puskás, R.; Varga, T.; Grósz, A.; Sápi, A.; Oszkó, A.; Kukovecz, Á.; Kónya, Z.
2016-06-01
Extremely high specific surface area mesoporous carbon-supported Pd nanoparticle catalysts were prepared with both impregnation and polyol-based sol methods. The silica template used for the synthesis of mesoporous carbon was removed by both NaOH and HF etching. Pd/mesoporous carbon catalysts synthesized with the impregnation method has as high specific surface area as 2250 m2/g. In case of NaOH-etched impregnated samples, the turnover frequency of cyclohexene hydrogenation to cyclohexane at 313 K was obtained 14 molecules • site- 1 • s- 1. The specific surface area of HF-etched samples was higher compared to NaOH-etched samples. However, catalytic activity was 3-6 times higher on NaOH-etched samples compared to HF-etched samples, which can be attributed to the presence of sodium and surface hydroxylgroups of the catalysts etched with NaOH solution.
Etching of enamel for direct bonding with a thulium fiber laser
NASA Astrophysics Data System (ADS)
Kabaş Sarp, Ayşe S.; Gülsoy, Murat
2011-03-01
Background: Laser etching of enamel for direct bonding can decrease the risk of surface enamel loss and demineralization which are the adverse effects of acid etching technique. However, in excess of +5.5°C can cause irreversible pulpal responses. In this study, a 1940- nm Thulium Fiber Laser in CW mode was used for laser etching. Aim: Determination of the suitable Laser parameters of enamel surface etching for direct bonding of ceramic brackets and keeping that intrapulpal temperature changes below the threshold value. Material and Method: Polycrystalline ceramic orthodontic brackets were bonded on bovine teeth by using 2 different kinds of etching techniques: Acid and Laser Etching. In addition to these 3 etched groups, there was also a group which was bonded without etching. Brackets were debonded with a material testing machine. Breaking time and the load at the breaking point were measured. Intrapulpal temperature changes were recorded by a K-type Thermocouple. For all laser groups, intrapulpal temperature rise was below the threshold value of 5.5°C. Results and Conclusion: Acid-etched group ( 11.73 MPa) significantly required more debonding force than 3- second- irradiated ( 5.03 MPa) and non-etched groups ( 3.4 MPa) but the results of acid etched group and 4- second- irradiated group (7.5 MPa) showed no significant difference. Moreover, 4- second irradiated group was over the minimum acceptable value for clinical use. Also, 3- second lasing caused a significant reduction in time according to acid-etch group. As a result, 1940- nm laser irradiation is a promising method for laser etching.
Chin, Fun-Tat; Lin, Yu-Hsien; You, Hsin-Chiang; Yang, Wen-Luh; Lin, Li-Min; Hsiao, Yu-Ping; Ko, Chum-Min; Chao, Tien-Sheng
2014-01-01
This study investigates an advanced copper (Cu) chemical displacement technique (CDT) with varying the chemical displacement time for fabricating Cu/SiO2-stacked resistive random-access memory (ReRAM). Compared with other Cu deposition methods, this CDT easily controls the interface of the Cu-insulator, the switching layer thickness, and the immunity of the Cu etching process, assisting the 1-transistor-1-ReRAM (1T-1R) structure and system-on-chip integration. The modulated shape of the Cu-SiO2 interface and the thickness of the SiO2 layer obtained by CDT-based Cu deposition on SiO2 were confirmed by scanning electron microscopy and atomic force microscopy. The CDT-fabricated Cu/SiO2-stacked ReRAM exhibited lower operation voltages and more stable data retention characteristics than the control Cu/SiO2-stacked sample. As the Cu CDT processing time increased, the forming and set voltages of the CDT-fabricated Cu/SiO2-stacked ReRAM decreased. Conversely, decreasing the processing time reduced the on-state current and reset voltage while increasing the endurance switching cycle time. Therefore, the switching characteristics were easily modulated by Cu CDT, yielding a high performance electrochemical metallization (ECM)-type ReRAM.
Micropores and methods of making and using thereof
Perroud, Thomas D.; Patel, Kamlesh D.; Meagher, Robert J.
2016-08-02
Disclosed herein are methods of making micropores of a desired height and/or width between two isotropic wet etched features in a substrate which comprises single-level isotropic wet etching the two features using an etchant and a mask distance that is less than 2.times. a set etch depth. Also disclosed herein are methods using the micropores and microfluidic devices comprising the micropores.
Zhang, X; Zhang, W; Zhou, X; Ogorevc, B
1996-10-01
A novel method has been developed for the fabrication of carbon fiber cone nanometer-size ultramicroelectrodes (nanoelectrodes) with overall tip dimensions as small as 50 nm in diameter. In this method, carbon fibers were initially etched by an argon ion beam thinner. Afterward, a single etched carbon fiber was inserted into a glass capillary, which was then sealed by heating the glass/fiber interface in a vacuum; thus, no epoxy resin is involved. The success rate of our fabrication route for the electrodes with overall tip diameters of up to 500 nm was about 80%; for those with tip diameters of up to 100 nm, it was about 50%. The fabricated carbon fiber cone nanoelectrodes (CFCNEs) were inspected by optical and scanning electron microscopy. Their electrochemical behavior was examined by cyclic and linear sweep voltammetric measurements of ferricyanide and ferrocene ions in aqueous and nonaqueous media. The potential analytical applicability of the CFCNEs was tested by differential pulse voltammetric measurements of two well-known neurotransmitters, dopamine (DA) and 5-hydroxytryptamine (5-HT), and the results achieved were highly satisfactory. The calibration plots obtained were linear over the ranges from 5.0 × 10(-7) to 1.0 × 10(-4) and from 2.0 × 10(-6) to 1.0 × 10(-4) mol/L, with limits of detection of 1.0 × 10(-7) and 5.0 × 10(-7) mol/L for DA and 5-HT, respectively. Some advantages and improvements of the proposed CFCNE fabrication method, especially with respect to smoothness of the fiber (electrode) surface, strength, and control over the fiber tip dimensions, are also discussed.
Taheri, M; Jafarizadeh, M; Baradaran, S; Zainali, Gh
2006-12-01
Passive radon dosimeters, based on alpha particle etched track detectors, are widely used for the assessment of radon exposure. These methods are often applied in radon dosimetry for long periods of time. In this research work, we have developed a highly efficient method of personal/environmental radon dosimetry that is based upon the detection of alpha particles from radon daughters, (218)Po and (214)Po, using a polycarbonate detector (PC). The radon daughters are collected on the filter surface by passing a fixed flow of air through it and the PC detector, placed at a specified distance from the filter, is simultaneously exposed to alpha particles. After exposure, the latent tracks on the detector are made to appear by means of an electrochemical etching process; these are proportional to the radon dose. The air flow rate and the detector-filter distance are the major factors that can affect the performance of the dosimeter. The results obtained in our experimental investigations have shown that a distance of 1.5 cm between the detector and the filter, an absorber layer of Al with a thickness of 12 microm and an air flow rate of 4 l min(-1) offer the best design parameters for a high efficiency radon dosimeter. Then, the designed dosimeter was calibrated against different values of radon exposures and the obtained sensitivity was found to be 2.1 (tracks cm(-2)) (kBq h m(-3))(-1). The most important advantages of this method are that it is reliable, fast and convenient when used for radon dose assessment. In this paper, the optimized parameters of the dosimeter structure and its calibration procedure are presented and discussed.
Ahn, Joonghee; Jung, Kyoung-Hwa; Son, Sung-Ae; Hur, Bock; Kwon, Yong-Hoon
2015-01-01
Objectives This study examined the effects of additional acid etching on the dentin bond strength of one-step self-etch adhesives with different compositions and pH. The effect of ethanol wetting on etched dentin bond strength of self-etch adhesives was also evaluated. Materials and Methods Forty-two human permanent molars were classified into 21 groups according to the adhesive types (Clearfil SE Bond [SE, control]; G-aenial Bond [GB]; Xeno V [XV]; Beauti Bond [BB]; Adper Easy Bond [AE]; Single Bond Universal [SU]; All Bond Universal [AU]), and the dentin conditioning methods. Composite resins were placed on the dentin surfaces, and the teeth were sectioned. The microtensile bond strength was measured, and the failure mode of the fractured specimens was examined. The data were analyzed statistically using two-way ANOVA and Duncan's post hoc test. Results In GB, XV and SE (pH ≤ 2), the bond strength was decreased significantly when the dentin was etched (p < 0.05). In BB, AE and SU (pH 2.4 - 2.7), additional etching did not affect the bond strength (p > 0.05). In AU (pH = 3.2), additional etching increased the bond strength significantly (p < 0.05). When adhesives were applied to the acid etched dentin with ethanol-wet bonding, the bond strength was significantly higher than that of the no ethanol-wet bonding groups, and the incidence of cohesive failure was increased. Conclusions The effect of additional acid etching on the dentin bond strength was influenced by the pH of one-step self-etch adhesives. Ethanol wetting on etched dentin could create a stronger bonding performance of one-step self-etch adhesives for acid etched dentin. PMID:25671215
Sequential infiltration synthesis for enhancing multiple-patterning lithography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darling, Seth B.; Elam, Jeffrey W.; Tseng, Yu-Chih
Simplified methods of multiple-patterning photolithography using sequential infiltration synthesis to modify the photoresist such that it withstands plasma etching better than unmodified resist and replaces one or more hard masks and/or a freezing step in MPL processes including litho-etch-litho-etch photolithography or litho-freeze-litho-etch photolithography.
Photon Doppler velocimetry measurements of transverse surface velocities
NASA Astrophysics Data System (ADS)
Johnson, C. R.; LaJeunesse, J. W.; Sable, P. A.; Dawson, A.; Hatzenbihler, A.; Borg, J. P.
2018-06-01
The goal of this work was to develop a technique for making transverse surface velocity measures utilizing Photon Doppler Velocimetry (PDV). Such a task is achieved by transmitting light and collecting Doppler-shifted light at an angle relative to the normal axis, where measured velocities are representative of a component of the transverse velocity. Because surface characteristics have an intrinsic effect on light scatter, different surface preparations were explored to direct reflectivity, including diffusion by means of sandpapering, or increasing retroreflectivity by coating with microspheres, milling v-cuts, and electrochemically etching grooves. Testing of these surface preparations was performed using an experiment featuring a 30 mm diameter aluminum disk rotating at 6000 or 6600 RPM. A single PDV collimator was positioned along the rotational axis of the disk at various angles, resolving the apparent transverse velocity. To characterize surface preparations, light return and velocities were recorded as a function of probe angle ranging from 0° to 51° from the surface normal for each preparation. Polished and electrochemically etched surfaces did not provide enough reflected light to resolve a beat frequency; however, sandpapered surfaces, retroreflective microspheres, and milled v-cuts provided adequate reflected light for incidence angles up to 51°. Applications of the surface preparations were then studied in gas gun experiments. Retroreflective microspheres were studied in a planar impact experiment, and milled v-cuts were studied in an oblique impact experiment. A normal and transverse profile of particle velocity was resolved in the oblique impact experiment.
Nanofabrication on monocrystalline silicon through friction-induced selective etching of Si3N4 mask
2014-01-01
A new fabrication method is proposed to produce nanostructures on monocrystalline silicon based on the friction-induced selective etching of its Si3N4 mask. With low-pressure chemical vapor deposition (LPCVD) Si3N4 film as etching mask on Si(100) surface, the fabrication can be realized by nanoscratching on the Si3N4 mask and post-etching in hydrofluoric acid (HF) and potassium hydroxide (KOH) solution in sequence. Scanning Auger nanoprobe analysis indicated that the HF solution could selectively etch the scratched Si3N4 mask and then provide the gap for post-etching of silicon substrate in KOH solution. Experimental results suggested that the fabrication depth increased with the increase of the scratching load or KOH etching period. Because of the excellent masking ability of the Si3N4 film, the maximum fabrication depth of nanostructure on silicon can reach several microns. Compared to the traditional friction-induced selective etching technique, the present method can fabricate structures with lesser damage and deeper depths. Since the proposed method has been demonstrated to be a less destructive and flexible way to fabricate a large-area texture structure, it will provide new opportunities for Si-based nanofabrication. PMID:24940174
Damage-Free Smooth-Sidewall InGaAs Nanopillar Array by Metal-Assisted Chemical Etching.
Kong, Lingyu; Song, Yi; Kim, Jeong Dong; Yu, Lan; Wasserman, Daniel; Chim, Wai Kin; Chiam, Sing Yang; Li, Xiuling
2017-10-24
Producing densely packed high aspect ratio In 0.53 Ga 0.47 As nanostructures without surface damage is critical for beyond Si-CMOS nanoelectronic and optoelectronic devices. However, conventional dry etching methods are known to produce irreversible damage to III-V compound semiconductors because of the inherent high-energy ion-driven process. In this work, we demonstrate the realization of ordered, uniform, array-based In 0.53 Ga 0.47 As pillars with diameters as small as 200 nm using the damage-free metal-assisted chemical etching (MacEtch) technology combined with the post-MacEtch digital etching smoothing. The etching mechanism of In x Ga 1-x As is explored through the characterization of pillar morphology and porosity as a function of etching condition and indium composition. The etching behavior of In 0.53 Ga 0.47 As, in contrast to higher bandgap semiconductors (e.g., Si or GaAs), can be interpreted by a Schottky barrier height model that dictates the etching mechanism constantly in the mass transport limited regime because of the low barrier height. A broader impact of this work relates to the complete elimination of surface roughness or porosity related defects, which can be prevalent byproducts of MacEtch, by post-MacEtch digital etching. Side-by-side comparison of the midgap interface state density and flat-band capacitance hysteresis of both the unprocessed planar and MacEtched pillar In 0.53 Ga 0.47 As metal-oxide-semiconductor capacitors further confirms that the surface of the resultant pillars is as smooth and defect-free as before etching. MacEtch combined with digital etching offers a simple, room-temperature, and low-cost method for the formation of high-quality In 0.53 Ga 0.47 As nanostructures that will potentially enable large-volume production of In 0.53 Ga 0.47 As-based devices including three-dimensional transistors and high-efficiency infrared photodetectors.
Nguyen, Trang T; Miller, Arthur; Orellana, Maria F
2011-07-01
(1) To quantitatively characterize human enamel porosity and surface area in vitro before and after etching for variable etching times; and (2) to evaluate shear bond strength after variable etching times. Specifically, our goal was to identify the presence of any correlation between enamel porosity and shear bond strength. Pore surface area, pore volume, and pore size of enamel from extracted human teeth were analyzed by Brunauer-Emmett-Teller (BET) gas adsorption before and after etching for 15, 30, and 60 seconds with 37% phosphoric acid. Orthodontic brackets were bonded with Transbond to the samples with variable etch times and were subsequently applied to a single-plane lap shear testing system. Pore volume and surface area increased after etching for 15 and 30 seconds. At 60 seconds, this increase was less pronounced. On the contrary, pore size appears to decrease after etching. No correlation was found between variable etching times and shear strength. Samples etched for 15, 30, and 60 seconds all demonstrated clinically viable shear strength values. The BET adsorption method could be a valuable tool in enhancing our understanding of enamel characteristics. Our findings indicate that distinct quantitative changes in enamel pore architecture are evident after etching. Further testing with a larger sample size would have to be carried out for more definitive conclusions to be made.
Lang, Leiming; Shi, Yi; Wang, Jiong; Wang, Feng-Bin; Xia, Xing-Hua
2015-05-06
Pt-free electrocatalysts with high activity and low cost are highly pursued for hydrogen production by electrochemically splitting water. Ni-based alloy catalysts are potential candidates for the hydrogen evolution reaction (HER) and have been studied extensively. Here, we synthesized novel hollow core-shell structure Ni-Sn@C nanoparticles (NPs) by sol-gel, chemical vapor deposition, and etching processes. The prepared electrocatalysts with porous hollow carbon layers have a high conductivity and large active area, which exhibit good electrocatalytic activity toward HER. The Tafel slope of ∼35 millivolts per decade measured in acidic solution for Ni-Sn@C NPs is the smallest one to date for the Ni-Sn alloy catalysts, and exceeds those of the most non-noble metal catalysts, indicating a possible Volmer-Heyrovsky reaction mechanism. The synthetic method can be extended to prepare other hollow core-shell structure electrocatalysts for low-temperature fuel cells.
Ben Slama, Sonia; Hajji, Messaoud; Ezzaouia, Hatem
2012-08-17
Porous silicon layers were elaborated by electrochemical etching of heavily doped p-type silicon substrates. Metallization of porous silicon was carried out by immersion of substrates in diluted aqueous solution of nickel. Amorphous silicon thin films were deposited by plasma-enhanced chemical vapor deposition on metalized porous layers. Deposited amorphous thin films were crystallized under vacuum at 750°C. Obtained results from structural, optical, and electrical characterizations show that thermal annealing of amorphous silicon deposited on Ni-metalized porous silicon leads to an enhancement in the crystalline quality and physical properties of the silicon thin films. The improvement in the quality of the film is due to the crystallization of the amorphous film during annealing. This simple and easy method can be used to produce silicon thin films with high quality suitable for thin film solar cell applications.
2012-01-01
Porous silicon layers were elaborated by electrochemical etching of heavily doped p-type silicon substrates. Metallization of porous silicon was carried out by immersion of substrates in diluted aqueous solution of nickel. Amorphous silicon thin films were deposited by plasma-enhanced chemical vapor deposition on metalized porous layers. Deposited amorphous thin films were crystallized under vacuum at 750°C. Obtained results from structural, optical, and electrical characterizations show that thermal annealing of amorphous silicon deposited on Ni-metalized porous silicon leads to an enhancement in the crystalline quality and physical properties of the silicon thin films. The improvement in the quality of the film is due to the crystallization of the amorphous film during annealing. This simple and easy method can be used to produce silicon thin films with high quality suitable for thin film solar cell applications. PMID:22901341
Dopant Selective Reactive Ion Etching of Silicon Carbide
NASA Technical Reports Server (NTRS)
Okojie, Robert (Inventor)
2016-01-01
A method for selectively etching a substrate is provided. In one embodiment, an epilayer is grown on top of the substrate. A resistive element may be defined and etched into the epilayer. On the other side of the substrate, the substrate is selectively etched up to the resistive element, leaving a suspended resistive element.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teague, L.; Duff, M.; Cadieux, J.
2010-09-24
A combination of atomic force microscopy, optical microscopy, and mass spectrometry was employed to study CdZnTe crystal surface and used etchant solution following exposure of the CdZnTe crystal to the Everson etch solution. We discuss the results of these studies in relationship to the initial surface preparation methods, the performance of the crystals as radiation spectrometers, the observed etch pit densities, and the chemical mechanism of surface etching. Our results show that the surface features that are exposed to etchants result from interactions with the chemical components of the etchants as well as pre-existing mechanical polishing.
Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiles, Jeff; Malinowski, Marcin; Rao, Ashutosh
A chlorine plasma etching-based method for the fabrication of high-performance chalcogenide-based integrated photonics on silicon substrates is presented. By optimizing the etching conditions, chlorine plasma is employed to produce extremely low-roughness etched sidewalls on waveguides with minimal penalty to propagation loss. Using this fabrication method, microring resonators with record-high intrinsic Q-factors as high as 450 000 and a corresponding propagation loss as low as 0.42 dB/cm are demonstrated in submicron chalcogenide waveguides. Furthermore, the developed chlorine plasma etching process is utilized to demonstrate fiber-to-waveguide grating couplers in chalcogenide photonics with high power coupling efficiency of 37% for transverse-electric polarized modes.
Temperature-Dependent Nanofabrication on Silicon by Friction-Induced Selective Etching.
Jin, Chenning; Yu, Bingjun; Xiao, Chen; Chen, Lei; Qian, Linmao
2016-12-01
Friction-induced selective etching provides a convenient and practical way for fabricating protrusive nanostructures. A further understanding of this method is very important for establishing a controllable nanofabrication process. In this study, the effect of etching temperature on the formation of protrusive hillocks and surface properties of the etched silicon surface was investigated. It is found that the height of the hillock produced by selective etching increases with the etching temperature before the collapse of the hillock. The temperature-dependent selective etching rate can be fitted well by the Arrhenius equation. The etching at higher temperature can cause rougher silicon surface with a little lower elastic modulus and hardness. The contact angle of the etched silicon surface decreases with the etching temperature. It is also noted that no obvious contamination can be detected on silicon surface after etching at different temperatures. As a result, the optimized condition for the selective etching was addressed. The present study provides a new insight into the control and application of friction-induced selective nanofabrication.
NASA Astrophysics Data System (ADS)
Shi, Chao; Li, Hongji; Li, Cuiping; Li, Mingji; Qu, Changqing; Yang, Baohe
2015-12-01
We report nanostructured TiO2/boron-doped diamond (BDD)/Ta multilayer films and their electrochemical performances as supercapacitor electrodes. The BDD films were grown on Ta substrates using electron-assisted hot filament chemical vapor deposition. Ti metal layers were deposited on the BDD surfaces by radio frequency magnetron sputtering, and nanostructured TiO2/BDD/Ta thin films were prepared by electrochemical etching and thermal annealing. The successful formation of TiO2 and Ta layered nanostructures was demonstrated using scanning electron and transmission electron microscopies. The electrochemical responses of these electrodes were evaluated by examining their use as electrical double-layer capacitors, using cyclic voltammetry, and galvanostatic charge/discharge and impedance measurements. When the TiO2/BDD/Ta film was used as the working electrode with 0.1 M Na2SO4 as the electrolyte, the capacitor had a specific capacitance of 5.23 mF cm-2 at a scan rate of 5 mV s-1 for a B/C ratio of 0.1% w/w. Furthermore, the TiO2/BDD/Ta film had improved electrochemical stability, with a retention of 89.3% after 500 cycles. This electrochemical behavior is attributed to the quality of the BDD, the surface roughness and electrocatalytic activities of the TiO2 layer and Ta nanoporous structures, and the synergies between them. These results show that TiO2/BDD/Ta films are promising as capacitor electrodes for special applications.
Wetzel, David J.; Malone, Marvin A.; Haasch, Richard T.; ...
2015-08-10
Rechargeable magnesium (Mg) batteries show promise for use as a next generation technology for high-density energy storage, though little is known about the Mg anode solid electrolyte interphase and its implications for the performance and durability of a Mg-based battery. We explore in this report passivation effects engendered during the electrochemical cycling of a bulk Mg anode, characterizing their influences during metal deposition and dissolution in a simple, nonaqueous, Grignard electrolyte solution (ethylmagnesium bromide, EtMgBr, in tetrahydrofuran). Scanning electron microscopy images of Mg foil working electrodes after electrochemical polarization to dissolution potentials show the formation of corrosion pits. The pitmore » densities so evidenced are markedly potential-dependent. When the Mg working electrode is cycled both potentiostatically and galvanostatically in EtMgBr these pits, formed due to passive layer breakdown, act as the foci for subsequent electrochemical activity. Detailed microscopy, diffraction, and spectroscopic data show that further passivation and corrosion results in the anisotropic stripping of the Mg {0001} plane, leaving thin oxide-comprising passivated side wall structures that demark the {0001} fiber texture of the etched Mg grains. Upon long-term cycling, oxide side walls formed due to the pronounced crystallographic anisotropy of the anodic stripping processes, leading to complex overlay anisotropic, columnar structures, exceeding 50 μm in height. Finally, the passive responses mediating the growth of these structures appear to be an intrinsic feature of the electrochemical growth and dissolution of Mg using this electrolyte.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wetzel, David J.; Malone, Marvin A.; Haasch, Richard T.
Rechargeable magnesium (Mg) batteries show promise for use as a next generation technology for high-density energy storage, though little is known about the Mg anode solid electrolyte interphase and its implications for the performance and durability of a Mg-based battery. We explore in this report passivation effects engendered during the electrochemical cycling of a bulk Mg anode, characterizing their influences during metal deposition and dissolution in a simple, nonaqueous, Grignard electrolyte solution (ethylmagnesium bromide, EtMgBr, in tetrahydrofuran). Scanning electron microscopy images of Mg foil working electrodes after electrochemical polarization to dissolution potentials show the formation of corrosion pits. The pitmore » densities so evidenced are markedly potential-dependent. When the Mg working electrode is cycled both potentiostatically and galvanostatically in EtMgBr these pits, formed due to passive layer breakdown, act as the foci for subsequent electrochemical activity. Detailed microscopy, diffraction, and spectroscopic data show that further passivation and corrosion results in the anisotropic stripping of the Mg {0001} plane, leaving thin oxide-comprising passivated side wall structures that demark the {0001} fiber texture of the etched Mg grains. Upon long-term cycling, oxide side walls formed due to the pronounced crystallographic anisotropy of the anodic stripping processes, leading to complex overlay anisotropic, columnar structures, exceeding 50 μm in height. Finally, the passive responses mediating the growth of these structures appear to be an intrinsic feature of the electrochemical growth and dissolution of Mg using this electrolyte.« less
Wetzel, David J; Malone, Marvin A; Haasch, Richard T; Meng, Yifei; Vieker, Henning; Hahn, Nathan T; Gölzhäuser, Armin; Zuo, Jian-Min; Zavadil, Kevin R; Gewirth, Andrew A; Nuzzo, Ralph G
2015-08-26
Although rechargeable magnesium (Mg) batteries show promise for use as a next generation technology for high-density energy storage, little is known about the Mg anode solid electrolyte interphase and its implications for the performance and durability of a Mg-based battery. We explore in this report passivation effects engendered during the electrochemical cycling of a bulk Mg anode, characterizing their influences during metal deposition and dissolution in a simple, nonaqueous, Grignard electrolyte solution (ethylmagnesium bromide, EtMgBr, in tetrahydrofuran). Scanning electron microscopy images of Mg foil working electrodes after electrochemical polarization to dissolution potentials show the formation of corrosion pits. The pit densities so evidenced are markedly potential-dependent. When the Mg working electrode is cycled both potentiostatically and galvanostatically in EtMgBr these pits, formed due to passive layer breakdown, act as the foci for subsequent electrochemical activity. Detailed microscopy, diffraction, and spectroscopic data show that further passivation and corrosion results in the anisotropic stripping of the Mg {0001} plane, leaving thin oxide-comprising passivated side wall structures that demark the {0001} fiber texture of the etched Mg grains. Upon long-term cycling, oxide side walls formed due to the pronounced crystallographic anisotropy of the anodic stripping processes, leading to complex overlay anisotropic, columnar structures, exceeding 50 μm in height. The passive responses mediating the growth of these structures appear to be an intrinsic feature of the electrochemical growth and dissolution of Mg using this electrolyte.
Method of producing an integral resonator sensor and case
NASA Technical Reports Server (NTRS)
Challoner, A. Dorian (Inventor); Yee, Karl Y. (Inventor); Shcheglov, Kirill V. (Inventor); Hayworth, Ken J. (Inventor); Wiberg, Dean V. (Inventor)
2005-01-01
The present invention discloses an inertial sensor having an integral resonator. A typical sensor comprises a planar mechanical resonator for sensing motion of the inertial sensor and a case for housing the resonator. The resonator and a wall of the case are defined through an etching process. A typical method of producing the resonator includes etching a baseplate, bonding a wafer to the etched baseplate, through etching the wafer to form a planar mechanical resonator and the wall of the case and bonding an end cap wafer to the wall to complete the case.
Method of making tapered capillary tips with constant inner diameters
Kelly, Ryan T [West Richland, WA; Page, Jason S [Kennewick, WA; Tang, Keqi [Richland, WA; Smith, Richard D [Richland, WA
2009-02-17
Methods of forming electrospray ionization emitter tips are disclosed herein. In one embodiment, an end portion of a capillary tube can be immersed into an etchant, wherein the etchant forms a concave meniscus on the outer surface of the capillary. Variable etching rates in the meniscus can cause an external taper to form. While etching the outer surface of the capillary wall, a fluid can be flowed through the interior of the capillary tube. Etching continues until the immersed portion of the capillary tube is completely etched away.
Dry etching method for compound semiconductors
Shul, Randy J.; Constantine, Christopher
1997-01-01
A dry etching method. According to the present invention, a gaseous plasma comprising, at least in part, boron trichloride, methane, and hydrogen may be used for dry etching of a compound semiconductor material containing layers including aluminum, or indium, or both. Material layers of a compound semiconductor alloy such as AlGaInP or the like may be anisotropically etched for forming electronic devices including field-effect transistors and heterojunction bipolar transistors and for forming photonic devices including vertical-cavity surface-emitting lasers, edge-emitting lasers, and reflectance modulators.
Dry etching method for compound semiconductors
Shul, R.J.; Constantine, C.
1997-04-29
A dry etching method is disclosed. According to the present invention, a gaseous plasma comprising, at least in part, boron trichloride, methane, and hydrogen may be used for dry etching of a compound semiconductor material containing layers including aluminum, or indium, or both. Material layers of a compound semiconductor alloy such as AlGaInP or the like may be anisotropically etched for forming electronic devices including field-effect transistors and heterojunction bipolar transistors and for forming photonic devices including vertical-cavity surface-emitting lasers, edge-emitting lasers, and reflectance modulators. 1 fig.
NASA Astrophysics Data System (ADS)
Nilsson, Sara; Björefors, Fredrik; Robinson, Nathaniel D.
2013-09-01
Coating hard materials such as Pt with soft polymers like poly-L-lysine is a well-established technique for increasing electrode biocompatibility. We have combined quartz crystal microgravimetry with dissipation with electrochemistry (EQCM-D) to study the deposition of PLL onto Pt electrodes under anodic potentials. Our results confirm the change in film growth over time previously reported by others. However, the dissipation data suggest that, after the short initial phase of the process, the rigidity of the film increases with time, rather than decreasing, as previously proposed. In addition to these results, we discuss how gas evolution from water electrolysis and Pt etching in electrolytes containing Cl- affect EQCM-D measurements, how to recognize these effects, and how to reduce them. Despite the challenges of using Pt as an anode in this system, we demonstrate that the various electrochemical processes can be understood and that PLL coatings can be successfully electrodeposited.
NASA Astrophysics Data System (ADS)
Shibata, Takayuki; Yamamoto, Kota; Sasano, Junji; Nagai, Moeto
2017-09-01
This paper presents a nanofabrication technique based on the electrochemically assisted chemical dissolution of zinc oxide (ZnO) single crystals in water at room temperature using a catalytically active Pt-coated atomic force microscopy (AFM) probe. Fabricated grooves featured depths and widths of several tens and several hundreds of nanometers, respectively. The material removal rate of ZnO was dramatically improved by controlling the formation of hydrogen ions (H+) on the surface of the catalytic Pt-coated probe via oxidation of H2O molecules; this reaction can be enhanced by applying a cathodic potential to an additional Pt-wire working electrode in a three-electrode configuration. Consequently, ZnO can be dissolved chemically in water as a soluble Zn2+ species via a reaction with H+ species present in high concentrations in the immediate vicinity of the AFM tip apex.
Electrochemical Corrosion Properties of Commercial Ultra-Thin Copper Foils
NASA Astrophysics Data System (ADS)
Yen, Ming-Hsuan; Liu, Jen-Hsiang; Song, Jenn-Ming; Lin, Shih-Ching
2017-08-01
Ultra-thin electrodeposited Cu foils have been developed for substrate thinning for mobile devices. Considering the corrosion by residual etchants from the lithography process for high-density circuit wiring, this study investigates the microstructural features of ultra-thin electrodeposited Cu foils with a thickness of 3 μm and their electrochemical corrosion performance in CuCl2-based etching solution. X-ray diffraction and electron backscatter diffraction analyses verify that ultra-thin Cu foils exhibit a random texture and equi-axed grains. Polarization curves show that ultra-thin foils exhibit a higher corrosion potential and a lower corrosion current density compared with conventional (220)-oriented foils with fan-like distributed fine-elongated columnar grains. Chronoamperometric results also suggest that ultra-thin foils possess superior corrosion resistance. The passive layer, mainly composed of CuCl and Cu2O, forms and dissolves in sequence during polarization.
An impedimetric immunosensor based on diamond nanowires decorated with nickel nanoparticles.
Subramanian, Palaniappan; Motorina, Anastasiia; Yeap, Weng Siang; Haenen, Ken; Coffinier, Yannick; Zaitsev, Vladimir; Niedziolka-Jonsson, Joanna; Boukherroub, Rabah; Szunerits, Sabine
2014-04-07
Nanostructured boron-doped diamond has been investigated as a sensitive impedimetric electrode for the detection of immunoglobulin G (IgG). The immunosensor was constructed in a three-step process: (i) reactive ion etching of flat boron-doped diamond (BDD) interfaces to synthesize BDD nanowires (BDD NWs), (ii) electrochemical deposition of nickel nanoparticles (Ni NPs) on the BDD NWs, and (iii) immobilization of biotin-tagged anti-IgG onto the Ni NPs. Electrochemical impedance spectroscopy (EIS) was used to follow the binding of IgG at different concentrations without the use of any additional label. A detection limit of 0.3 ng mL(-1) (2 nM) with a dynamic range up to 300 ng mL(-1) (2 μM) was obtained with the interface. Moreover, the study demonstrated that this immunosensor exhibits good stability over time and allows regeneration by incubation in ethylenediaminetetraacetic acid (EDTA) aqueous solution.
Qiu, M C; Yang, L W; Qi, X; Li, Jun; Zhong, J X
2010-12-01
Highly ordered NiO coated Si nanowire array films are fabricated as electrodes for a high performance lithium ion battery via depositing Ni on electroless-etched Si nanowires and subsequently annealing. The structures and morphologies of as-prepared films are characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. When the potential window versus lithium was controlled, the coated NiO can be selected to be electrochemically active to store and release Li+ ions, while highly conductive crystalline Si cores function as nothing more than a stable mechanical support and an efficient electrical conducting pathway. The hybrid nanowire array films exhibit superior cyclic stability and reversible capacity compared to that of NiO nanostructured films. Owing to the ease of large-scale fabrication and superior electrochemical performance, these hybrid nanowire array films will be promising anode materials for high performance lithium-ion batteries.
NASA Astrophysics Data System (ADS)
Su, Xiao-Li; Fu, Lin; Cheng, Ming-Yu; Yang, Jing-He; Guan, Xin-Xin; Zheng, Xiu-Cheng
2017-12-01
Nitrogen-doped graphene aerogel nanomesh (N-GANM) has been hydrothermally prepared from graphene oxide and ammonium hydroxide using iron nitrate as the etching agent. The results showed that N-GANM with an interesting nanomesh structure on the graphene sheets maintained the 3D architecture of graphene aerogel (GA). Furthermore, it exhibited excellent electrochemical capacitive behavior and the specific capacitance value (290.0 F g-1 at 1 A g-1) remained approximately 90.3% after 2000 cycles in the three-electrode system. In addition, N-GANM displayed an energy density of 30.9 Wh kg-1 at the power density of 450.3 W kg-1 and excellent cycling stability retention (98%) after 10,000 cycles in the two-electrode symmetric device. The resulting N-GANM was expected to be a much favorable supercapacitor electrode material due to the heteroatom-doping and its unique porous structure.
Porous silicon platform for optical detection of functionalized magnetic particles biosensing.
Ko, Pil Ju; Ishikawa, Ryousuke; Sohn, Honglae; Sandhu, Adarsh
2013-04-01
The physical properties of porous materials are being exploited for a wide range of applications including optical biosensors, waveguides, gas sensors, micro capacitors, and solar cells. Here, we review the fast, easy and inexpensive electrochemical anodization based fabrication porous silicon (PSi) for optical biosensing using functionalized magnetic particles. Combining magnetically labeled biomolecules with PSi offers a rapid and one-step immunoassay and real-time detection by magnetic manipulation of superparamagnetic beads (SPBs) functionalized with target molecules onto corresponding probe molecules immobilized inside nano-pores of PSi. We first give an introduction to electrochemical and chemical etching procedures used to fabricate a wide range of PSi structures. Next, we describe the basic properties of PSi and underlying optical scattering mechanisms that govern their unique optical properties. Finally, we give examples of our experiments that demonstrate the potential of combining PSi and magnetic beads for real-time point of care diagnostics.
Introducing etch kernels for efficient pattern sampling and etch bias prediction
NASA Astrophysics Data System (ADS)
Weisbuch, François; Lutich, Andrey; Schatz, Jirka
2018-01-01
Successful patterning requires good control of the photolithography and etch processes. While compact litho models, mainly based on rigorous physics, can predict very well the contours printed in photoresist, pure empirical etch models are less accurate and more unstable. Compact etch models are based on geometrical kernels to compute the litho-etch biases that measure the distance between litho and etch contours. The definition of the kernels, as well as the choice of calibration patterns, is critical to get a robust etch model. This work proposes to define a set of independent and anisotropic etch kernels-"internal, external, curvature, Gaussian, z_profile"-designed to represent the finest details of the resist geometry to characterize precisely the etch bias at any point along a resist contour. By evaluating the etch kernels on various structures, it is possible to map their etch signatures in a multidimensional space and analyze them to find an optimal sampling of structures. The etch kernels evaluated on these structures were combined with experimental etch bias derived from scanning electron microscope contours to train artificial neural networks to predict etch bias. The method applied to contact and line/space layers shows an improvement in etch model prediction accuracy over standard etch model. This work emphasizes the importance of the etch kernel definition to characterize and predict complex etch effects.
NASA Astrophysics Data System (ADS)
Sharma, Jayasree Roy; Mitra, Suchismita; Ghosh, Hemanta; Das, Gourab; Bose, Sukanta; Mandal, Sourav; Mukhopadhyay, Sumita; Saha, Hiranmay; Barua, A. K.
2018-02-01
In order to increase the stabilized efficiencies of thin film silicon (TFS) solar cells it is necessary to use better light management techniques. Texturization by etching of sputtered aluminum doped zinc oxide (Al:ZnO or AZO) films has opened up a variety of promises to optimize light trapping schemes. RF sputtered AZO film has been etched by potassium hydroxide (KOH). A systematic study of etching conditions such as etchant concentration, etching time, temperature management etc. have been performed in search of improved electrical and optical performances of the films. The change in etching conditions has exhibited a noticeable effect on the structure of AZO films for which the light trapping effect differs. After optimizing the etching conditions, nanorods have been found on the substrate. Hence, nanorods have been developed only by chemical etching, rather than the conventional development method (hydrothermal method, sol-gel method, electrolysis method etc.). The optimized etched substrate has 82% transmittance, moderate haze in the visible range and sheet resistance ∼13 (Ω/□). The developed nanorods (optimized etched substrate) provide better light trapping within the cell as the optical path length has been increased by using the nanorods. This provides an effect on carrier collection as well as the efficiency in a-Si solar cells. Finite difference time domain (FDTD) simulations have been performed to observe the light trapping by AZO nanorods formed on sputtered AZO films. For a p-i-n solar cell developed on AZO nanorods coated with sputtered AZO films, it has been found through simulations that, the incident light is back scattered into the absorbing layer, leading to an increase in photogenerated current and hence higher efficiency. It has been found that, the light that passes through the nanorods is not getting absorbed and maximum amount of light is back scattered towards the solar cell.
Semiconductor etching by hyperthermal neutral beams
NASA Technical Reports Server (NTRS)
Minton, Timothy K. (Inventor); Giapis, Konstantinos P. (Inventor)
1999-01-01
An at-least dual chamber apparatus and method in which high flux beams of fast moving neutral reactive species are created, collimated and used to etch semiconductor or metal materials from the surface of a workpiece. Beams including halogen atoms are preferably used to achieve anisotropic etching with good selectivity at satisfactory etch rates. Surface damage and undercutting are minimized.
NASA Astrophysics Data System (ADS)
Whalen, John J., III
Implantable electrical neurostimulating devices are being developed for a number of applications, including artificial vision through retinal stimulation. The epiretinal prosthesis will use a two-dimensional array microelectrodes to address individual cells of the retina. MEMS fabrication processes can produce arrays of microelectrodes with these dimensions, but there are two critical issues that they cannot satisfy. One, the stimulating electrodes are the only part of the implanted electrical device that penetrate through the water impermeable package, and must do so without sacrificing hermeticity. Two, As electrode size decreases, the current density (A cm-2 ) increases, due to increased electrochemical impedance. This reduces the amount of charge that can be safely injected into the tissue. To date, MEMS processing method, cannot produce electrode arrays with good, prolonged hermetic properties. Similarly, MEMS approaches do not account for the increased impedance caused by decreased surface area. For these reasons there is a strong motivation for the development of a water-impermeable, substrate-penetrating electrode array with low electrochemical impedance. This thesis presents a stimulating electrode array fabricated from platinum nanowires using a modified electrochemical template synthesis approach. Nanowires are electrochemically deposited from ammonium hexachloroplatinate solution into lithographically patterned nanoporous anodic alumina templates to produce microarrays of platinum nanowires. The platinum nanowires penetrating through the ceramic aluminum oxide template serve as parallel electrical conduits through the water impermeable, electrically insulating substrate. Electrode impedance can be adjusted by either controlling the nanowire hydrous platinum oxide content or by partially etching the alumina template to expose additional surface area. A stepwise approach to this project was taken. First, the electrochemistry of ammonium hexachloroplatinate solution was characterized, and physical properties of electrodeposited thin films were correlated to deposition conditions used. Second, platinum nanowires were fabricated and their properties characterized, using similar deposition conditions. Third, the feasibility of fabricating platinum nanowire stimulating electrode arrays with a variety of surface structures was demonstrated. Fourth, the enhanced charge transfer characteristics of these structures were demonstrated using electrochemical techniques. Finally, retinal cell stimulation was demonstrated using electrodes from platinum nanowire arrays.
Wet etch methods for InAs nanowire patterning and self-aligned electrical contacts
NASA Astrophysics Data System (ADS)
Fülöp, G.; d'Hollosy, S.; Hofstetter, L.; Baumgartner, A.; Nygård, J.; Schönenberger, C.; Csonka, S.
2016-05-01
Advanced synthesis of semiconductor nanowires (NWs) enables their application in diverse fields, notably in chemical and electrical sensing, photovoltaics, or quantum electronic devices. In particular, indium arsenide (InAs) NWs are an ideal platform for quantum devices, e.g. they may host topological Majorana states. While the synthesis has been continously perfected, only a few techniques have been developed to tailor individual NWs after growth. Here we present three wet chemical etch methods for the post-growth morphological engineering of InAs NWs on the sub-100 nm scale. The first two methods allow the formation of self-aligned electrical contacts to etched NWs, while the third method results in conical shaped NW profiles ideal for creating smooth electrical potential gradients and shallow barriers. Low temperature experiments show that NWs with etched segments have stable transport characteristics and can serve as building blocks of quantum electronic devices. As an example we report the formation of a single electrically stable quantum dot between two etched NW segments.
Laser micro-etching of metal prostheses for personal identification
Ganapathy, Dhanraj; Sivaswamy, Vinay; Sekhar, Prathap
2017-01-01
Denture marking techniques play a vital role in establishing personal identification in suitable clinical and forensic situations. The denture marking techniques are categorized broadly into additive and ablative methods. Additive methods involve embedding or impregnation of markers for establishing personal identity. Ablative methods involve partial removal of the denture surface thereby providing a marking for identification. Engraving and etching methods are the commonly used ablative methods. Ablative methods can be of contact and noncontact subtypes. Laser micro-etching is a precise noncontact ablative denture marking technique that could be used for prostheses-guided personal identification. PMID:28584473
Laser micro-etching of metal prostheses for personal identification.
Ganapathy, Dhanraj; Sivaswamy, Vinay; Sekhar, Prathap
2017-01-01
Denture marking techniques play a vital role in establishing personal identification in suitable clinical and forensic situations. The denture marking techniques are categorized broadly into additive and ablative methods. Additive methods involve embedding or impregnation of markers for establishing personal identity. Ablative methods involve partial removal of the denture surface thereby providing a marking for identification. Engraving and etching methods are the commonly used ablative methods. Ablative methods can be of contact and noncontact subtypes. Laser micro-etching is a precise noncontact ablative denture marking technique that could be used for prostheses-guided personal identification.
CDU improvement technology of etching pattern using photo lithography
NASA Astrophysics Data System (ADS)
Tadokoro, Masahide; Shinozuka, Shinichi; Jyousaka, Megumi; Ogata, Kunie; Morimoto, Tamotsu; Konishi, Yoshitaka
2008-03-01
Semiconductor manufacturing technology has shifted towards finer design rules, and demands for critical dimension uniformity (CDU) of resist patterns have become greater than ever. One of the methods for improving Resist Pattern CDU is to control post-exposure bake (PEB) temperature. When ArF resist is used, there is a certain relationship between critical dimension (CD) and PEB temperature. By utilizing this relationship, Resist Pattern CDU can be improved through control of within-wafer temperature distribution in the PEB process. Resist Pattern CDU improvement contributes to Etching Pattern CDU improvement to a certain degree. To further improve Etching Pattern CDU, etcher-specific CD variation needs to be controlled. In this evaluation, 1. We verified whether etcher-specific CD variation can be controlled and consequently Etching Pattern CDU can be further improved by controlling resist patterns through PEB control. 2. Verifying whether Etching Pattern CDU improvement through has any effect on the reduction in wiring resistance variation. The evaluation procedure is as follows.1. Wafers with base film of Doped Poly-Si (D-Poly) were prepared. 2. Resist patterns were created on them. 3. To determine etcher-specific characteristics, the first etching was performed, and after cleaning off the resist and BARC, CD of etched D-Poly was measured. 4. Using the obtained within-wafer CD distribution of the etching patterns, within-wafer temperature distribution in the PEB process was modified. 5. Resist patterns were created again, followed by the second etching and cleaning, which was followed by CD measurement. We used Optical CD Measurement (OCD) for measurement of resist patterns and etching patterns as OCD is minimally affected by Line Edge Roughness (LER). As a result, 1. We confirmed the effect of Resist Pattern CD control through PEB control on the reduction in etcher-specific CD variation and the improvement in Etching Pattern CDU. 2. The improvement in Etching Pattern CDU has an effect on the reduction in wiring resistance variation. The method for Etching Pattern CDU improvement through PEB control reduces within-wafer variation of MOS transistor's gate length. Therefore, with this method, we can expect to observe uniform within-wafer MOS transistor characteristics.
Swiler, Thomas P.; Garcia, Ernest J.; Francis, Kathryn M.
2013-06-11
A method is disclosed for singulating die from a semiconductor substrate (e.g. a semiconductor-on-insulator substrate or a bulk silicon substrate) containing an oxide layer (e.g. silicon dioxide or a silicate glass) and one or more semiconductor layers (e.g. monocrystalline or polycrystalline silicon) located above the oxide layer. The method etches trenches through the substrate and through each semiconductor layer about the die being singulated, with the trenches being offset from each other around at least a part of the die so that the oxide layer between the trenches holds the substrate and die together. The trenches can be anisotropically etched using a Deep Reactive Ion Etching (DRIE) process. After the trenches are etched, the oxide layer between the trenches can be etched away with an HF etchant to singulate the die. A release fixture can be located near one side of the substrate to receive the singulated die.
Swiler, Thomas P [Albuquerque, NM; Garcia, Ernest J [Albuquerque, NM; Francis, Kathryn M [Rio Rancho, NM
2014-01-07
A method is disclosed for singulating die from a semiconductor substrate (e.g. a semiconductor-on-insulator substrate or a bulk silicon substrate) containing an oxide layer (e.g. silicon dioxide or a silicate glass) and one or more semiconductor layers (e.g. monocrystalline or polycrystalline silicon) located above the oxide layer. The method etches trenches through the substrate and through each semiconductor layer about the die being singulated, with the trenches being offset from each other around at least a part of the die so that the oxide layer between the trenches holds the substrate and die together. The trenches can be anisotropically etched using a Deep Reactive Ion Etching (DRIE) process. After the trenches are etched, the oxide layer between the trenches can be etched away with a HF etchant to singulate the die. A release fixture can be located near one side of the substrate to receive the singulated die.
Consideration of VT5 etch-based OPC modeling
NASA Astrophysics Data System (ADS)
Lim, ChinTeong; Temchenko, Vlad; Kaiser, Dieter; Meusel, Ingo; Schmidt, Sebastian; Schneider, Jens; Niehoff, Martin
2008-03-01
Including etch-based empirical data during OPC model calibration is a desired yet controversial decision for OPC modeling, especially for process with a large litho to etch biasing. While many OPC software tools are capable of providing this functionality nowadays; yet few were implemented in manufacturing due to various risks considerations such as compromises in resist and optical effects prediction, etch model accuracy or even runtime concern. Conventional method of applying rule-based alongside resist model is popular but requires a lot of lengthy code generation to provide a leaner OPC input. This work discusses risk factors and their considerations, together with introduction of techniques used within Mentor Calibre VT5 etch-based modeling at sub 90nm technology node. Various strategies are discussed with the aim of better handling of large etch bias offset without adding complexity into final OPC package. Finally, results were presented to assess the advantages and limitations of the final method chosen.
Microfluidic etching and oxime-based tailoring of biodegradable polyketoesters.
Barrett, Devin G; Lamb, Brian M; Yousaf, Muhammad N
2008-09-02
A straightforward, flexible, and inexpensive method to etch biodegradable poly(1,2,6-hexanetriol alpha-ketoglutarate) films is reported. Microfluidic delivery of the etchant, a solution of NaOH, can create micron-scale channels through local hydrolysis of the polyester film. In addition, the presence of a ketone in the repeat unit allows for prior or post chemoselective modifications, enabling the design of functionalized microchannels. Delivery of oxyamine tethered ligands react with ketone groups on the polyketoester to generate covalent oxime linkages. By thermally sealing an etched film to a second flat surface, poly(1,2,6-hexanetriol alpha-ketoglutarate) can be used to create biodegradable microfluidic devices. In order to determine the versatility of the microfluidic etch technique, poly(epsilon-caprolactone) was etched with acetone. This strategy provides a facile method for the direct patterning of biodegradable materials, both through etching and chemoselective ligand immobilization.
Semiconductor structure and recess formation etch technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Bin; Sun, Min; Palacios, Tomas Apostol
2017-02-14
A semiconductor structure has a first layer that includes a first semiconductor material and a second layer that includes a second semiconductor material. The first semiconductor material is selectively etchable over the second semiconductor material using a first etching process. The first layer is disposed over the second layer. A recess is disposed at least in the first layer. Also described is a method of forming a semiconductor structure that includes a recess. The method includes etching a region in a first layer using a first etching process. The first layer includes a first semiconductor material. The first etching processmore » stops at a second layer beneath the first layer. The second layer includes a second semiconductor material.« less
Morales, Alfredo M.; Gonzales, Marcela
2004-06-15
The present invention describes a method for fabricating an embossing tool or an x-ray mask tool, providing microstructures that smoothly vary in height from point-to-point in etched substrates, i.e., structure which can vary in all three dimensions. The process uses a lithographic technique to transfer an image pattern in the surface of a silicon wafer by exposing and developing the resist and then etching the silicon substrate. Importantly, the photoresist is variably exposed so that when developed some of the resist layer remains. The remaining undeveloped resist acts as an etchant barrier to the reactive plasma used to etch the silicon substrate and therefore provides the ability etch structures of variable depths.
Epoxy bond and stop etch fabrication method
Simmons, Jerry A.; Weckwerth, Mark V.; Baca, Wes E.
2000-01-01
A class of epoxy bond and stop etch (EBASE) microelectronic fabrication techniques is disclosed. The essence of such techniques is to grow circuit components on top of a stop etch layer grown on a first substrate. The first substrate and a host substrate are then bonded together so that the circuit components are attached to the host substrate by the bonding agent. The first substrate is then removed, e.g., by a chemical or physical etching process to which the stop etch layer is resistant. EBASE fabrication methods allow access to regions of a device structure which are usually blocked by the presence of a substrate, and are of particular utility in the fabrication of ultrafast electronic and optoelectronic devices and circuits.
Etching and oxidation of InAs in planar inductively coupled plasma
NASA Astrophysics Data System (ADS)
Dultsev, F. N.; Kesler, V. G.
2009-10-01
The surface of InAs (1 1 1)A was investigated under plasmachemical etching in the gas mixture CH 4/H 2/Ar. Etching was performed using the RF (13.56 MHz) and ICP plasma with the power 30-150 and 50-300 W, respectively; gas pressure in the reactor was 3-10 mTorr. It was demonstrated that the composition of the subsurface layer less than 5 nm thick changes during plasmachemical etching. A method of deep etching of InAs involving ICP plasma and hydrocarbon based chemistry providing the conservation of the surface relief is proposed. Optimal conditions and the composition of the gas phase for plasmachemical etching ensuring acceptable etch rates were selected.
Dopant type and/or concentration selective dry photochemical etching of semiconductor materials
Ashby, Carol I. H.; Dishman, James L.
1987-01-01
A method of selectively photochemically dry etching a first semiconductor material of a given composition in the presence of a second semiconductor material which is of a composition different from said first material, said second material substantially not being etched during said method, comprises subjecting both materials to the same photon flux of an energy greater than their respective direct bandgaps and to the same gaseous chemical etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said conditions also being such that the resultant electronic structure of the first semiconductor material under said photon flux is sufficient for the first material to undergo substantial photochemical etching under said conditions and being such that the resultant electronic structure of the second semiconductor material under said photon flux is not sufficient for the second material to undergo substantial photochemical etching under said conditions. In a preferred mode, the materials are subjected to a bias voltage which suppresses etching in n- or p- type material but not in p- or n-type material, respectively; or suppresses etching in the more heavily doped of two n-type or two p-type materials.
Extreme wettability of nanostructured glass fabricated by non-lithographic, anisotropic etching
Yu, Eusun; Kim, Seul-Cham; Lee, Heon Ju; Oh, Kyu Hwan; Moon, Myoung-Woon
2015-01-01
Functional glass surfaces with the properties of superhydrophobicity/or superhydrohydrophilicity, anti-condensation or low reflectance require nano- or micro-scale roughness, which is difficult to fabricate directly on glass surfaces. Here, we report a novel non-lithographic method for the fabrication of nanostructures on glass; this method introduces a sacrificial SiO2 layer for anisotropic plasma etching. The first step was to form nanopillars on SiO2 layer-coated glass by using preferential CF4 plasma etching. With continuous plasma etching, the SiO2 pillars become etch-resistant masks on the glass; thus, the glass regions covered by the SiO2 pillars are etched slowly, and the regions with no SiO2 pillars are etched rapidly, resulting in nanopatterned glass. The glass surface that is etched with CF4 plasma becomes superhydrophilic because of its high surface energy, as well as its nano-scale roughness and high aspect ratio. Upon applying a subsequent hydrophobic coating to the nanostructured glass, a superhydrophobic surface was achieved. The light transmission of the glass was relatively unaffected by the nanostructures, whereas the reflectance was significantly reduced by the increase in nanopattern roughness on the glass. PMID:25791414
Gold core@silver semishell Janus nanoparticles prepared by interfacial etching
NASA Astrophysics Data System (ADS)
Chen, Limei; Deming, Christopher P.; Peng, Yi; Hu, Peiguang; Stofan, Jake; Chen, Shaowei
2016-07-01
Gold core@silver semishell Janus nanoparticles were prepared by chemical etching of Au@Ag core-shell nanoparticles at the air/water interface. Au@Ag core-shell nanoparticles were synthesized by chemical deposition of a silver shell onto gold seed colloids followed by the self-assembly of 1-dodecanethiol onto the nanoparticle surface. The nanoparticles then formed a monolayer on the water surface of a Langmuir-Blodgett trough, and part of the silver shell was selectively etched away by the mixture of hydrogen peroxide and ammonia in the water subphase, where the etching was limited to the side of the nanoparticles that was in direct contact with water. The resulting Janus nanoparticles exhibited an asymmetrical distribution of silver on the surface of the gold cores, as manifested in transmission electron microscopy, UV-vis absorption, and X-ray photoelectron spectroscopy measurements. Interestingly, the Au@Ag semishell Janus nanoparticles exhibited enhanced electrocatalytic activity in oxygen reduction reactions, as compared to their Au@Ag and Ag@Au core-shell counterparts, likely due to a synergistic effect between the gold cores and silver semishells that optimized oxygen binding to the nanoparticle surface.Gold core@silver semishell Janus nanoparticles were prepared by chemical etching of Au@Ag core-shell nanoparticles at the air/water interface. Au@Ag core-shell nanoparticles were synthesized by chemical deposition of a silver shell onto gold seed colloids followed by the self-assembly of 1-dodecanethiol onto the nanoparticle surface. The nanoparticles then formed a monolayer on the water surface of a Langmuir-Blodgett trough, and part of the silver shell was selectively etched away by the mixture of hydrogen peroxide and ammonia in the water subphase, where the etching was limited to the side of the nanoparticles that was in direct contact with water. The resulting Janus nanoparticles exhibited an asymmetrical distribution of silver on the surface of the gold cores, as manifested in transmission electron microscopy, UV-vis absorption, and X-ray photoelectron spectroscopy measurements. Interestingly, the Au@Ag semishell Janus nanoparticles exhibited enhanced electrocatalytic activity in oxygen reduction reactions, as compared to their Au@Ag and Ag@Au core-shell counterparts, likely due to a synergistic effect between the gold cores and silver semishells that optimized oxygen binding to the nanoparticle surface. Electronic supplementary information (ESI) available: Additional TEM, UV-vis, XPS, and electrochemical data. See DOI: 10.1039/c6nr03368g
Selective protection of poly(tetra-fluoroethylene) from effects of chemical etching
Martinez, Robert J.; Rye, Robert R.
1991-01-01
A photolithographic method for treating an article formed of polymeric material comprises subjecting portions of a surface of the polymeric article to ionizing radiation; and then subjecting the surface to chemical etching. The ionizing radiation treatment according to the present invention minimizes the effect of the subseuent chemical etching treatment. Thus, selective protection from the effects of chemical etching can be easily provided. The present invention has particular applicability to articles formed of fluorocarbons, such as PTFE. The ionizing radiation employed in the method may comprise Mg(k.alpha.) X-rays or lower-energy electrons.
Zanganeh, Somayeh; Khosravi, Safoora; Namdar, Naser; Amiri, Morteza Hassanpour; Gharooni, Milad; Abdolahad, Mohammad
2016-09-28
One of the most interested molecular research in the field of cancer detection is the mechanism of drug effect on cancer cells. Translating molecular evidence into electrochemical profiles would open new opportunities in cancer research. In this manner, applying nanostructures with anomalous physical and chemical properties as well as biocompatibility would be a suitable choice for the cell based electrochemical sensing. Silicon based nanostructure are the most interested nanomaterials used in electrochemical biosensors because of their compatibility with electronic fabrication process and well engineering in size and electrical properties. Here we apply silicon nanograss (SiNG) probing electrodes produced by reactive ion etching (RIE) on silicon wafer to electrochemically diagnose the effect of anticancer drugs on breast tumor cells. Paclitaxel (PTX) and mebendazole (MBZ) drugs have been used as polymerizing and depolymerizing agents of microtubules. PTX would perturb the anodic/cathodic responses of the cell-covered biosensor by binding phosphate groups to deformed proteins due to extracellular signal-regulated kinase (ERK(1/2)) pathway. MBZ induces accumulation of Cytochrome C in cytoplasm. Reduction of the mentioned agents in cytosol would change the ionic state of the cells monitored by silicon nanograss working electrodes (SiNGWEs). By extending the contacts with cancer cells, SiNGWEs can detect minor signal transduction and bio recognition events, resulting in precise biosensing. Effects of MBZ and PTX drugs, (with the concentrations of 2 nM and 0.1 nM, respectively) on electrochemical activity of MCF-7 cells are successfully recorded which are corroborated by confocal and flow cytometry assays. Copyright © 2016 Elsevier B.V. All rights reserved.
Uniform lateral etching of tungsten in deep trenches utilizing reaction-limited NF3 plasma process
NASA Astrophysics Data System (ADS)
Kofuji, Naoyuki; Mori, Masahito; Nishida, Toshiaki
2017-06-01
The reaction-limited etching of tungsten (W) with NF3 plasma was performed in an attempt to achieve the uniform lateral etching of W in a deep trench, a capability required by manufacturing processes for three-dimensional NAND flash memory. Reaction-limited etching was found to be possible at high pressures without ion irradiation. An almost constant etching rate that showed no dependence on NF3 pressure was obtained. The effect of varying the wafer temperature was also examined. A higher wafer temperature reduced the threshold pressure for reaction-limited etching and also increased the etching rate in the reaction-limited region. Therefore, the control of the wafer temperature is crucial to controlling the etching amount by this method. We found that the uniform lateral etching of W was possible even in a deep trench where the F radical concentration was low.
Lawson, Nathaniel C.; Robles, Augusto; Fu, Chin-Chuan; Lin, Chee Paul; Sawlani, Kanchan; Burgess, John O.
2016-01-01
Objectives To compare the clinical performance of Scotchbond™ Universal Adhesive used in self- and total-etch modes and two-bottle Scotchbond™ Multi-purpose Adhesive in total-etch mode for Class 5 non-carious cervical lesions (NCCLs). Methods 37 adults were recruited with 3 or 6 NCCLs (>1.5 mm deep). Teeth were isolated, and a short cervical bevel was prepared. Teeth were restored randomly with Scotchbond Universal total-etch, Scotchbond Universal self-etch or Scotchbond Multi-purpose followed with a composite resin. Restorations were evaluated at baseline, 6, 12 and 24 months for marginal adaptation, marginal discoloration, secondary caries, and sensitivity to cold using modified USPHS Criteria. Patients and evaluators were blinded. Logistic and linear regression models using a generalized estimating equation were applied to evaluate the effects of time and adhesive material on clinical assessment outcomes over the 24 month follow-up period. Kaplan–Meier method was used to compare the retention between adhesive materials. Results Clinical performance of all adhesive materials deteriorated over time for marginal adaptation, and discoloration (p <0.0001). Both Scotchbond Universal self-etch and Scotchbond Multi-purpose materials were more than three times as likely to contribute to less satisfying performance in marginal discoloration over time than Scotchbond Universal total-etch. The retention rates up to 24 months were 87.6%, 94.9% and 100% for Scotchbond Multi-purpose and Scotchbond Universal self-etch and total-etch, respectively. Conclusions Scotchbond Universal in self- and total- etch modes performed similar to or better than Scotchbond Multipurpose, respectively. Clinical significance 24 month evaluation of a universal adhesive indicates acceptable clinical performance, particularly in a total-etch mode. PMID:26231300
Influence of Pre-etching Times on Fatigue Strength of Self-etch Adhesives to Enamel.
Takamizawa, Toshiki; Barkmeier, Wayne W; Tsujimoto, Akimasa; Endo, Hajime; Tsuchiya, Kenji; Erickson, Robert L; Latta, Mark A; Miyazaki, Masashi
To use shear bond strength (SBS) and shear fatigue strength (SFS) testing to determine the influence of phosphoric acid pre-etching times prior to application of self-etch adhesives on enamel bonding. Two single-step self-etch universal adhesives (Prime&Bond Elect and Scotchbond Universal), a conventional single-step self-etch adhesive (G-ӕnial Bond), and a conventional two-step self-etch adhesive (OptiBond XTR) were used. The SBS and SFS were obtained with phosphoric acid pre-etching for 3, 10, or 15 s prior to application of the adhesives, and without pre-etching (0 s) as a control. A staircase method was used to determine the SFS with 10 Hz frequency for 50,000 cycles or until failure occurred. The mean demineralization depth for each treated enamel surface was also measured using a profilometer. For all the adhesives, the groups with pre-etching showed significantly higher SBS and SFS than groups without pre-etching. However, there was no significant difference in SBS and SFS among groups with > 3 s of preetching. In addition, although the groups with pre-etching showed significantly deeper demineralization depths than groups without pre-etching, there was no significant difference in depth among groups with > 3 s of pre-etching. Three seconds of phosphoric acid pre-etching prior to application of self-etch adhesive can enhance enamel bonding effectiveness.
Lebedev, Konstantin; Mafé, Salvador; Stroeve, Pieter
2005-08-04
Nanocables with a radial metal-semiconductor heterostructure have recently been prepared by electrochemical deposition inside metal nanotubes. First, a bare nanoporous polycarbonate track-etched membrane is coated uniformly with a metal film by electroless deposition. The film forms a working electrode for further deposition of a semiconductor layer that grows radially inside the nanopore when the deposition rate is slow. We propose a new physical model for the nanocable synthesis and study the effects of the deposited species concentration, potential-dependent reaction rate, and nanopore dimensions on the electrochemical deposition. The problem involves both axial diffusion through the nanopore and radial transport to the nanopore surface, with a surface reaction rate that depends on the axial position and the time. This is so because the radial potential drop across the deposited semiconductor layer changes with the layer thickness through the nanopore. Since axially uniform nanocables are needed for most applications, we consider the relative role of reaction and axial diffusion rates on the deposition process. However, in those cases where partial, empty-core deposition should be desirable (e.g., for producing conical nanopores to be used in single nanoparticle detection), we give conditions where asymmetric geometries can be experimentally realized.
Adiabatic tapered optical fiber fabrication in two step etching
NASA Astrophysics Data System (ADS)
Chenari, Z.; Latifi, H.; Ghamari, S.; Hashemi, R. S.; Doroodmand, F.
2016-01-01
A two-step etching method using HF acid and Buffered HF is proposed to fabricate adiabatic biconical optical fiber tapers. Due to the fact that the etching rate in second step is almost 3 times slower than the previous droplet etching method, terminating the fabrication process is controllable enough to achieve a desirable fiber diameter. By monitoring transmitted spectrum, final diameter and adiabaticity of tapers are deduced. Tapers with losses about 0.3 dB in air and 4.2 dB in water are produced. The biconical fiber taper fabricated using this method is used to excite whispering gallery modes (WGMs) on a microsphere surface in an aquatic environment. So that they are suitable to be used in applications like WGM biosensors.
NASA Astrophysics Data System (ADS)
Muttalib, M. Firdaus A.; Chen, Ruiqi Y.; Pearce, S. J.; Charlton, Martin D. B.
2017-11-01
In this paper, we demonstrate the optimization of reactive-ion etching (RIE) parameters for the fabrication of tantalum pentoxide (Ta2O5) waveguide with chromium (Cr) hard mask in a commercial OIPT Plasmalab 80 RIE etcher. A design of experiment (DOE) using Taguchi method was implemented to find optimum RF power, mixture of CHF3 and Ar gas ratio, and chamber pressure for a high etch rate, good selectivity, and smooth waveguide sidewall. It was found that the optimized etch condition obtained in this work were RF power = 200 W, gas ratio = 80 %, and chamber pressure = 30 mTorr with an etch rate of 21.6 nm/min, Ta2O5/Cr selectivity ratio of 28, and smooth waveguide sidewall.
Kampwirth, R.T.; Schuller, I.K.; Falco, C.M.
1979-11-23
An improved method of preparing thin film superconducting electrical circuits of niobium or niobium compounds is provided in which a thin film of the niobium or niobium compound is applied to a nonconductive substrate and covered with a layer of photosensitive material. The sensitive material is in turn covered with a circuit pattern exposed and developed to form a mask of the circuit in photoresistive material on the surface of the film. The unmasked excess niobium film is removed by contacting the substrate with an aqueous etching solution of nitric acid, sulfuric acid, and hydrogen fluoride, which will rapidly etch the niobium compound without undercutting the photoresist. A modification of the etching solution will permit thin films to be lifted from the substrate without further etching.
Tao, Kai; Han, Xue; Ma, Qingxiang; Han, Lei
2018-03-06
Metal-organic frameworks (MOFs) have emerged as a new platform for the construction of various functional materials for energy related applications. Here, a facile MOF templating method is developed to fabricate a hierarchical nickel-cobalt sulfide nanosheet array on conductive Ni foam (Ni-Co-S/NF) as a binder-free electrode for supercapacitors. A uniform 2D Co-MOF nanowall array is first grown in situ on Ni foam in aqueous solution at room temperature, and then the Co-MOF nanowalls are converted into hierarchical Ni-Co-S nanoarchitectures via an etching and ion-exchange reaction with Ni(NO 3 ) 2 , and a subsequent solvothermal sulfurization. Taking advantage of the compositional and structural merits of the hierarchical Ni-Co-S nanosheet array and conductive Ni foam, such as fast electron transportation, short ion diffusion path, abundant active sites and rich redox reactions, the obtained Ni-Co-S/NF electrode exhibits excellent electrochemical capacitive performance (1406.9 F g -1 at 0.5 A g -1 , 53.9% retention at 10 A g -1 and 88.6% retention over 1000 cycles), which is superior to control CoS/NF. An asymmetric supercapacitor (ASC) assembled by using the as-fabricated Ni-Co-S/NF as the positive electrode and activated carbon (AC) as the negative electrode delivers a high energy density of 24.8 W h kg -1 at a high power density of 849.5 W kg -1 . Even when the power density is as high as 8.5 kW kg -1 , the ASC still exhibits a high energy density of 12.5 W h kg -1 . This facile synthetic strategy can also be extended to fabricate other hierarchical integrated electrodes for high-efficiency electrochemical energy conversion and storage devices.
The K 2S 2O 8-KOH photoetching system for GaN
NASA Astrophysics Data System (ADS)
Weyher, J. L.; Tichelaar, F. D.; van Dorp, D. H.; Kelly, J. J.; Khachapuridze, A.
2010-09-01
A recently developed photoetching system for n-type GaN, a KOH solution containing the strong oxidizing agent potassium peroxydisulphate (K 2S 2O 8), was studied in detail. By careful selection of the etching parameters, such as the ratio of components and the hydrodynamics, two distinct modes were defined: defect-selective etching (denoted by KSO-D) and polishing (KSO-P). Both photoetching methods can be used under open-circuit (electroless) conditions. Well-defined dislocation-related etch whiskers are formed during KSO-D etching. All types of dislocations are revealed, and this was confirmed by cross-sectional TEM examination of the etched samples. Extended electrically active defects are also clearly revealed. The known relationship between etch rate and carrier concentration for photoetching of GaN in KOH solutions was confirmed for KSO-D etch using Raman measurements. It is shown that during KSO-P etching diffusion is the rate-limiting step, i.e. this etch is suitable for polishing of GaN. Some constraints of the KSO etching system for GaN are discussed and peculiar etch features, so far not understood, are described.
Effect of Self-etch Adhesives on Self-sealing Ability of High-Copper Amalgams
Moazzami, Saied Mostafa; Moosavi, Horieh; Moddaber, Maryam; Parvizi, Reza; Moayed, Mohamad Hadi; Mokhber, Nima; Meharry, Michael; B Kazemi, Reza
2016-01-01
Statement of the Problem: Similar to conventional amalgam, high-copper amalgam alloy may also undergo corrosion, but it takes longer time for the resulting products to reduce microleakage by sealing the micro-gap at the tooth/amalgam interface. Purpose: The aim of this study was to evaluate the effect of self-etch adhesives with different pH levels on the interfacial corrosion behavior of high-copper amalgam restoration and its induction potential for self-sealing ability of the micro-gap in the early hours after setting by means of Electro-Chemical Tests (ECTs). Materials and Method: Thirty cylindrical cavities of 4.5mm x 4.7mm were prepared on intact bicuspids. The samples were divided into five main groups of application of Adhesive Resin (AR)/ liner/ None (No), on the cavity floor. The first main group was left without an AR/ liner (No). In the other main groups, the types of AR/ liner used were I-Bond (IB), Clearfil S3 (S3), Single Bond (SB) and Varnish (V). Each main group (n=6) was divided into two subgroups (n=3) according to the types of the amalgams used, either admixed ANA 2000 (ANA) or spherical Tytin (Tyt). The ECTs, Open Circuit Potential (OCP), and the Linear Polarization Resistance (LPR) for each sample were performed and measured 48 hours after the completion of the samples. Results: The Tyt-No and Tyt-IB samples showed the highest and lowest OCP values respectively. In LPR tests, the Rp values of ANA-V and Tyt-V were the highest (lowest corrosion rate) and contrarily, the ANA-IB and Tyt-IB samples, with the lowest pH levels, represented the lowest Rp values (highest corrosion rates). Conclusion: Some self-etch adhesives may increase interfacial corrosion potential and self-sealing ability of high-copper amalgams. PMID:27942548
Anisotropic Etching Using Reactive Cluster Beams
NASA Astrophysics Data System (ADS)
Koike, Kunihiko; Yoshino, Yu; Senoo, Takehiko; Seki, Toshio; Ninomiya, Satoshi; Aoki, Takaaki; Matsuo, Jiro
2010-12-01
The characteristics of Si etching using nonionic cluster beams with highly reactive chlorine-trifluoride (ClF3) gas were examined. An etching rate of 40 µm/min or higher was obtained even at room temperature when a ClF3 molecular cluster was formed and irradiated on a single-crystal Si substrate in high vacuum. The etching selectivity of Si with respect to a photoresist and SiO2 was at least 1:1000. We also succeeded in highly anisotropic etching with an aspect ratio of 10 or higher. Moreover, this etching method has a great advantage of low damage, compared with the conventional plasma process.
NASA Astrophysics Data System (ADS)
George, J.; Irkens, M.; Neumann, S.; Scherer, U. W.; Srivastava, A.; Sinha, D.; Fink, D.
2006-03-01
It is a common practice since long to follow the ion track-etching process in thin foils via conductometry, i.e . by measurement of the electrical current which passes through the etched track, once the track breakthrough condition has been achieved. The major disadvantage of this approach, namely the absence of any major detectable signal before breakthrough, can be avoided by examining the track-etching process capacitively. This method allows one to define precisely not only the breakthrough point before it is reached, but also the length of any non-transient track. Combining both capacitive and conductive etching allows one to control the etching process perfectly. Examples and possible applications are given.
Raji, S. Hamid; Ghorbanipour, Reza; Majdzade, Fateme
2011-01-01
Background: The aim of this study was to evaluate the shear bond strength of an antimicrobial and fluoride-releasing self-etch primer (clearfil protect bond) and compare it with transbond plus self-etch primer and conventional acid etching and priming system. Materials and Methods: Forty-eight extracted human premolars were divided randomly to three groups. In group 1, the teeth were bonded with conventional acid etching and priming method. In group 2, the teeth were bonded with clearfil protect bond self-etch primer, and transbond plus self-etch primer was used to bond the teeth in group 3. The samples were stored in 37°C distilled water and thermocycled. Then, the SBS of the sample was evaluated with Zwick testing machine. Descriptive statistics and the analysis of variances (ANOVA) and Tukey's test and Kruskal-Wallis were used to analyze the data. Results: The results of the ANOVA showed that the mean of group 3 was significantly lower than that of other groups. Most of the sample showed a pattern of failure within the adhesive resin. Conclusion: The shear bond strength of clearfil protect bond and transbond plus self-etch primer was enough for bonding the orthodontic brackets. The mode of failure of bonded brackets with these two self-etch primers is safe for enamel. PMID:23372605
Lee, Dae-Sik; Yang, Haesik; Chung, Kwang-Hyo; Pyo, Hyeon-Bong
2005-08-15
Because of their broad applications in biomedical analysis, integrated, polymer-based microdevices incorporating micropatterned metallic and insulating layers are significant in contemporary research. In this study, micropatterns for temperature sensing and microelectrode sets for electroanalysis have been implemented on an injection-molded thin polymer membrane by employing conventional semiconductor processing techniques (i.e., standard photolithographic methods). Cyclic olefin copolymer (COC) is chosen as the polymer substrate because of its high chemical and thermal stability. A COC 5-in. wafer (1-mm thickness) is manufactured using an injection molding method, in which polymer membranes (approximately 130 microm thick and 3 mm x 6 mm in area) are implemented simultaneously in order to reduce local thermal mass around micropatterned heaters and temperature sensors. The highly polished surface (approximately 4 nm within 40 microm x 40 microm area) of the fabricated COC wafer as well as its good resistance to typical process chemicals makes it possible to use the standard photolithographic and etching protocols on the COC wafer. Gold micropatterns with a minimum 5-microm line width are fabricated for making microheaters, temperature sensors, and microelectrodes. An insulating layer of aluminum oxide (Al2O3) is prepared at a COC-endurable low temperature (approximately 120 degrees C) by using atomic layer deposition and micropatterning for the electrode contacts. The fabricated microdevice for heating and temperature sensing shows improved performance of thermal isolation, and microelectrodes display good electrochemical performances for electrochemical sensors. Thus, this novel 5-in. wafer-level microfabrication method is a simple and cost-effective protocol to prepare polymer substrate and demonstrates good potential for application to highly integrated and miniaturized biomedical devices.
Electrocrystallization and scanning probe microscopy of ceramic thin films and superlattices
NASA Astrophysics Data System (ADS)
Hung, Chen-Jen
This dissertation presents an investigation of the electrocrystallization and scanning probe microscopy of ceramic thin films and superlattices. All of the films were deposited from aqueous solution at room temperature with no subsequent heat treatment needed to effect crystallization. Thallium(III) oxide defect chemistry superlattices were electrodeposited by pulsing the applied overpotential during deposition. The defect chemistry of the oxide is dependent on the applied overpotential. High overpotentials favor oxygen vacancies, while low overpotentials favor cation interstitials. Nanometer-scale holes were formed in thin thallium(III) oxide films using the scanning tunneling microscope in humid ambient conditions. Both cathodic and anodic etching reactions were performed on this metal oxide surface. The hole formation was attributed to localized electrochemical etching reactions beneath the STM tip. The scanning tunneling microscope (STM) was also used to both induce local surface modifications and image cleaved Pb-Tl-O superlattices. A trench of 100 nm in width, 32 nm in depth, and over 1 μm in length was formed after sweeping a bias voltage of ±2.5 V for 1 minute using a fixed STM tip. It has been suggested that STM results obtained under ambient conditions must be evaluated with great care because of the possibility of localized electrochemcial reactions. A novel synthesis method for the production of Cu(II) oxide from an alkaline solution containing Cu(II) tartrate was developed. Rietveld refinement of the cupric oxide films reveals pure Cu(II) oxide with no Cu(I) oxide present in the film.
NASA Astrophysics Data System (ADS)
Li, Hailiang; Ye, Tianchun; Shi, Lina; Xie, Changqing
2017-12-01
We present a facile and effective approach for fabricating high aspect ratio, dense and vertical silicon nanopillar arrays, using a combination of metal etching following electron-beam lithography and Au metal assisted chemical etching (MacEtch). Ti/Au nanostructures used as catalysts in MacEtch are formed by single layer resist-based electron-beam exposure followed by ion beam etching. The effects of MacEtch process parameters, including half period, etching time, the concentrations of H2O2 and HF, etching temperature and drying method are systematically investigated. Especially, we demonstrate an enhancement of etching quality by employing cold MacEtch process, and an enhancement in preventing the collapse of high aspect ratio nanostructures by employing low surface tension rinse liquid and natural evaporation in the drying stage. Using an optimized MacEtch process, vertical silicon nanopillar arrays with a period of 250 nm and aspect ratio up to 160:1 are realized. Our results should be instructive for exploring the achievable aspect ratio limit in silicon nanostructures and may find potential applications in photovoltaic devices, thermoelectric devices and x-ray diffractive optics.
Pulsed-Current Electrochemical Codeposition and Heat Treatment of Ti-Dispersed Ni-Matrix Layers
NASA Astrophysics Data System (ADS)
Janetaisong, Pathompong; Boonyongmaneerat, Yuttanant; Techapiesancharoenkij, Ratchatee
2016-08-01
An electrochemical deposition is a fast and cost-efficient process to produce film or coating. In this research, Ni-Ti electrodeposition is developed by codepositing a Ti-dispersed Ni-matrix layer from a Ni-plating solution suspended with Ti particles. To enhance the coating uniformity and control the atomic composition, the pulsed current was applied to codeposit Ni-Ti layers with varying pulse duty cycles (10 to 100 pct) and frequencies (10 to 100 Hz). The microstructures and compositions of the codeposited layers were analyzed by scanning electron microscopy, X-ray diffraction, and X-ray fluorescent techniques. The pulsed current significantly improved the quality of the Ni-Ti layer as compared to a direct current. The Ni-Ti layers could be electroplated with a controlled composition within 48 to 51 at. pct of Ti. The optimal pulse duty cycle and frequency are 50 pct and 10 Hz, respectively. The standalone Ni-49Ti layers were removed from copper substrates by selective etching method and subsequently heat-treated under Ar-fed atmosphere at 1423 K (1150 °C) for 5 hours. The phase and microstructures of the post-annealed samples exhibit different Ni-Ti intermetallic compounds, including NiTi, Ni3Ti, and NiTi2. Yet, the contamination of TiN and TiO2 was also present in the post-annealed samples.
Kim, Jeong Dong; Kim, Munho; Kong, Lingyu; Mohseni, Parsian K; Ranganathan, Srikanth; Pachamuthu, Jayavel; Chim, Wai Kin; Chiam, Sing Yang; Coleman, James J; Li, Xiuling
2018-03-14
Defying text definitions of wet etching, metal-assisted chemical etching (MacEtch), a solution-based, damage-free semiconductor etching method, is directional, where the metal catalyst film sinks with the semiconductor etching front, producing 3D semiconductor structures that are complementary to the metal catalyst film pattern. The same recipe that works perfectly to produce ordered array of nanostructures for single-crystalline Si (c-Si) fails completely when applied to polycrystalline Si (poly-Si) with the same doping type and level. Another long-standing challenge for MacEtch is the difficulty of uniformly etching across feature sizes larger than a few micrometers because of the nature of lateral etching. The issue of interface control between the catalyst and the semiconductor in both lateral and vertical directions over time and over distance needs to be systematically addressed. Here, we present a self-anchored catalyst (SAC) MacEtch method, where a nanoporous catalyst film is used to produce nanowires through the pinholes, which in turn physically anchor the catalyst film from detouring as it descends. The systematic vertical etch rate study as a function of porous catalyst diameter from 200 to 900 nm shows that the SAC-MacEtch not only confines the etching direction but also enhances the etch rate due to the increased liquid access path, significantly delaying the onset of the mass-transport-limited critical diameter compared to nonporous catalyst c-Si counterpart. With this enhanced mass transport approach, vias on multistacks of poly-Si/SiO 2 are also formed with excellent vertical registry through the polystack, even though they are separated by SiO 2 which is readily removed by HF alone with no anisotropy. In addition, 320 μm square through-Si-via (TSV) arrays in 550 μm thick c-Si are realized. The ability of SAC-MacEtch to etch through poly/oxide/poly stack as well as more than half millimeter thick silicon with excellent site specificity for a wide range of feature sizes has significant implications for 2.5D/3D photonic and electronic device applications.
Resistance of dichromated gelatin as photoresist
NASA Astrophysics Data System (ADS)
Lin, Pang; Yan, Yingbai; Jin, Guofan; Wu, Minxian
1999-09-01
Based on the photographic chemistry, chemically hardening method was selected to enhance the anti-etch capability of gelatin. With the consideration of hardener and permeating processing, formaldehyde is the most ideal option due to the smallest molecule size and covalent cross-link with gelatin. After hardened in formaldehyde, the resistance of the gelatin was obtained by etched in 1% HF solution. The result showed that anti-etch capability of the gelatin layer increased with tanning time, but the increasing rate reduced gradually and tended to saturation. Based on the experimental results, dissolving-flaking hypothesis for chemically hardening gelatin was presented. Sol-gel coatings were etched with 1% HF solution. Compared with the etching rate of gelatin layer, it showed that gelatin could be used as resist to fabricate optical elements in sol-gel coating. With the cleaving-etch method and hardening of dichromated gelatin (DCG), DCG was used as a photoresist for fabricating sol-gel optical elements. As an application, a sol-gel random phase plate was fabricated.
Method and system for optical figuring by imagewise heating of a solvent
Rushford, Michael C.
2005-08-30
A method and system of imagewise etching the surface of a substrate, such as thin glass, in a parallel process. The substrate surface is placed in contact with an etchant solution which increases in etch rate with temperature. A local thermal gradient is then generated in each of a plurality of selected local regions of a boundary layer of the etchant solution to imagewise etch the substrate surface in a parallel process. In one embodiment, the local thermal gradient is a local heating gradient produced at selected addresses chosen from an indexed array of addresses. The activation of each of the selected addresses is independently controlled by a computer processor so as to imagewise etch the substrate surface at region-specific etch rates. Moreover, etching progress is preferably concurrently monitored in real time over the entire surface area by an interferometer so as to deterministically control the computer processor to image-wise figure the substrate surface where needed.
Fabrication of a Horizontal and a Vertical Large Surface Area Nanogap Electrochemical Sensor
Hammond, Jules L.; Rosamond, Mark C.; Sivaraya, Siva; Marken, Frank; Estrela, Pedro
2016-01-01
Nanogap sensors have a wide range of applications as they can provide accurate direct detection of biomolecules through impedimetric or amperometric signals. Signal response from nanogap sensors is dependent on both the electrode spacing and surface area. However, creating large surface area nanogap sensors presents several challenges during fabrication. We show two different approaches to achieve both horizontal and vertical coplanar nanogap geometries. In the first method we use electron-beam lithography (EBL) to pattern an 11 mm long serpentine nanogap (215 nm) between two electrodes. For the second method we use inductively-coupled plasma (ICP) reactive ion etching (RIE) to create a channel in a silicon substrate, optically pattern a buried 1.0 mm × 1.5 mm electrode before anodically bonding a second identical electrode, patterned on glass, directly above. The devices have a wide range of applicability in different sensing techniques with the large area nanogaps presenting advantages over other devices of the same family. As a case study we explore the detection of peptide nucleic acid (PNA)−DNA binding events using dielectric spectroscopy with the horizontal coplanar device. PMID:27983655
Pattern sampling for etch model calibration
NASA Astrophysics Data System (ADS)
Weisbuch, François; Lutich, Andrey; Schatz, Jirka
2017-06-01
Successful patterning requires good control of the photolithography and etch processes. While compact litho models, mainly based on rigorous physics, can predict very well the contours printed in photoresist, pure empirical etch models are less accurate and more unstable. Compact etch models are based on geometrical kernels to compute the litho-etch biases that measure the distance between litho and etch contours. The definition of the kernels as well as the choice of calibration patterns is critical to get a robust etch model. This work proposes to define a set of independent and anisotropic etch kernels -"internal, external, curvature, Gaussian, z_profile" - designed to capture the finest details of the resist contours and represent precisely any etch bias. By evaluating the etch kernels on various structures it is possible to map their etch signatures in a multi-dimensional space and analyze them to find an optimal sampling of structures to train an etch model. The method was specifically applied to a contact layer containing many different geometries and was used to successfully select appropriate calibration structures. The proposed kernels evaluated on these structures were combined to train an etch model significantly better than the standard one. We also illustrate the usage of the specific kernel "z_profile" which adds a third dimension to the description of the resist profile.
Method to fabricate functionalized conical nanopores
Small, Leo J.; Spoerke, Erik David; Wheeler, David R.
2016-07-12
A pressure-based chemical etch method is used to shape polymer nanopores into cones. By varying the pressure, the pore tip diameter can be controlled, while the pore base diameter is largely unaffected. The method provides an easy, low-cost approach for conically etching high density nanopores.
Two new methods to increase the contrast of track-etch neutron radiographs
NASA Technical Reports Server (NTRS)
Morley, J.
1973-01-01
In one method, fluorescent dye is deposited into tracks of radiograph and viewed under ultraviolet light. In second method, track-etch radiograph is placed between crossed polaroid filters, exposed to diffused light and resulting image is projected onto photographic film.
Study of Gallium Arsenide Etching in a DC Discharge in Low-Pressure HCl-Containing Mixtures
NASA Astrophysics Data System (ADS)
Dunaev, A. V.; Murin, D. B.
2018-04-01
Halogen-containing plasmas are often used to form topological structures on semiconductor surfaces; therefore, spectral monitoring of the etching process is an important diagnostic tool in modern electronics. In this work, the emission spectra of gas discharges in mixtures of hydrogen chloride with argon, chlorine, and hydrogen in the presence of a semiconducting gallium arsenide plate were studied. Spectral lines and bands of the GaAs etching products appropriate for monitoring the etching rate were determined. It is shown that the emission intensity of the etching products is proportional to the GaAs etching rate in plasmas of HCl mixtures with Ar and Cl2, which makes it possible to monitor the etching process in real time by means of spectral methods.
High-performance etching of multilevel phase-type Fresnel zone plates with large apertures
NASA Astrophysics Data System (ADS)
Guo, Chengli; Zhang, Zhiyu; Xue, Donglin; Li, Longxiang; Wang, Ruoqiu; Zhou, Xiaoguang; Zhang, Feng; Zhang, Xuejun
2018-01-01
To ensure the etching depth uniformity of large-aperture Fresnel zone plates (FZPs) with controllable depths, a combination of a point source ion beam with a dwell-time algorithm has been proposed. According to the obtained distribution of the removal function, the latter can be used to optimize the etching time matrix by minimizing the root-mean-square error between the simulation results and the design value. Owing to the convolution operation in the utilized algorithm, the etching depth error is insensitive to the etching rate fluctuations of the ion beam, thereby reducing the requirement for the etching stability of the ion system. As a result, a 4-level FZP with a circular aperture of 300 mm was fabricated. The obtained results showed that the etching depth uniformity of the full aperture could be reduced to below 1%, which was sufficiently accurate for meeting the use requirements of FZPs. The proposed etching method may serve as an alternative way of etching high-precision diffractive optical elements with large apertures.
Fan, Cun-Hui; Chen, Jie; Liu, Xin-Qiang; Ma, Xin
2005-08-01
To investigate the influence of different porcelain surface treatment methods on the shear bond strength of metal brackets bonded to porcelain. 80 porcelain facets were divided randomly into two groups according to different adhesive material that was used to bond metal brackets. Adhesive material were Jing-Jin enamel adhesive and light-cured composite resin. Each group was further divided into 4 subgroups according to different surface treatment methods, which were acid etching with 37% phosphoric acid (H3PO4), acid etching with 9.6% hydrofluoric acid (HF), deglazing by grinding and silanating the porcelain surface. All specimens were stored in 37 degrees C water for 24 hours and then the shear bond strength and the porcelain fracture after debonding was determined. The porcelain surfaces after HF etching, H3PO4 etching and deglazing by grinding were examined by scanning electron microscopy respectively. The shear bond strengths in the HF etching groups, the deglazing groups and the silanating groups were much greater than that in the phosphoric etching groups (P < 0.01). Adequate orthodontic bonding strength was achieved both when bonded with light-cured composite resin after deglazing by grinding and when bonded with either of these adhesives after HF etching or surface silanating. There were no differences in the rates of porcelain fractures among groups (P > 0.05). HF etching, deglazing by grinding and silanating can all increase the shear bond strength between metal bracket and porcelain. Surface silanating of porcelain is a better surface treatment when metal brackets bonded to porcelain.
Photonic jet μ-etching: from static to dynamic process
NASA Astrophysics Data System (ADS)
Abdurrochman, A.; Lecler, S.; Zelgowski, J.; Mermet, F.; Fontaine, J.; Tumbelaka, B. Y.
2017-05-01
Photonic jet etching is a direct-laser etching method applying photonic jet phenomenon to concentrate the laser beam onto the proceeded material. We call photonic jet the phenomenon of the localized sub-wavelength propagative beam generated at the shadow-side surfaces of micro-scale dielectric cylinders or spheres, when they are illuminated by an electromagnetic plane-wave or laser beam. This concentration has made possible the laser to yield sub-μ etching marks, despite the laser was a near-infrared with nano-second pulses sources. We will present these achievements from the beginning when some spherical glasses were used for static etching to dynamic etching using an optical fiber with a semi-elliptical tip.
Hyun Kim; Sun-Young Yoo; Ji Sung Kim; Zihuan Wang; Woon Hee Lee; Kyo-In Koo; Jong-Mo Seo; Dong-Il Cho
2017-07-01
Inhibition of polydimethylsiloxane (PDMS) polymerization could be observed when spin-coated over vinyl substrates. The degree of polymerization, partially curing or fully curing, depended on the PDMS thickness coated over the vinyl substrate. This characteristic was exploited to achieve simple and fast PDMS patterning method using a vinyl adhesive layer patterned through a cutting plotter. The proposed patterning method showed results resembling PDMS etching. Therefore, patterning PDMS over PDMS, glass, silicon, and gold substrates were tested to compare the results with conventional etching methods. Vinyl stencils with widths ranging from 200μm to 1500μm were used for the procedure. To evaluate the accuracy of the cutting plotter, stencil designed on the AutoCAD software and the actual stencil widths were compared. Furthermore, this method's accuracy was also evaluated by comparing the widths of the actual stencils and etched PDMS results.
Fabrication of GaAs symmetric pyramidal mesas prepared by wet-chemical etching using AlAs interlayer
NASA Astrophysics Data System (ADS)
Kicin, S.; Cambel, V.; Kuliffayová, M.; Gregušová, D.; Kováčová, E.; Novák, J.; Kostič, I.; Förster, A.
2002-01-01
We present a wet-chemical-etching method developed for the preparation of GaAs four-sided pyramid-shaped mesas. The method uses a fast lateral etching of AlAs interlayer that influences the cross-sectional profiles of etched structures. We have tested the method using H3PO4:H2O2:H2O etchant for the (100) GaAs patterning. The sidewalls of the prepared pyramidal structures together with the (100) bottom facet formed the cross-sectional angles 25° and 42° for mask edges parallel, resp. perpendicular to {011} cleavage planes. For mask edges turned in 45° according to the cleavage planes, 42° cross-sectional angles were obtained. Using the method, symmetric and more than 10-μm-high GaAs "Egyptian" pyramids with smooth tilted facets were prepared.
Enhancement of Device Performances in GaN-Based Light-Emitting Diodes Using Nano-Sized Surface Pit.
Yeon, Seunghwan; Son, Taejoon; Shin, Dong Su; Jung, Kyung-Young; Park, Jinsub
2015-07-01
We report the improvement in optical and electrical properties of GaN-based green light-emitting diodes (LEDs) with nano-sized etch pits formed by the surface chemical etching. In order to control the density and sizes of etch pits formed on top surface of green LEDs, H3PO4 solution is used as a etchant with different etching time. When the etching time was increased from 0 min to 20 min, both the etch pit size and density were gradually increased. The improvement of extraction efficiency of LEDs using surface etching method can be attributed to the enlarged escape angle of generated photon by roughened p-GaN surface. The finite-difference time-domain (FDTD) simulation results well agreed with experimentally observed results. Moreover, the LED with etched p-GaN surface for 5 min shows the lowest leakage current value and the further increase of etching time resulting in increase of densities of the large-sized etch pit makes the degradation of electrical properties of LEDs.
Weinreich, Wenke; Acker, Jörg; Gräber, Iris
2007-03-30
In the photovoltaic industry the etching of silicon in HF/HNO(3) solutions is a decisive process for cleaning wafer surfaces or to produce certain surface morphologies like polishing or texturization. With regard to cost efficiency, a maximal utilisation of etch baths in combination with highest quality and accuracy is strived. To provide an etch bath control realised by a replenishment with concentrated acids the main constituents of these HF/HNO(3) etch solutions including the reaction product H(2)SiF(6) have to be analysed. Two new methods for the determination of the total fluoride content in an acidic etch solution based on the precipitation titration with La(NO(3))(3) are presented within this paper. The first method bases on the proper choice of the reaction conditions, since free fluoride ions have to be liberated from HF and H(2)SiF(6) at the same time to be detected by a fluoride ion-selective electrode (F-ISE). Therefore, the sample is adjusted to a pH of 8 for total cleavage of the SiF(6)(2-) anion and titrated in absence of buffers. In a second method, the titration with La(NO(3))(3) is followed by a change of the pH-value using a HF resistant glass-electrode. Both methods provide consistent values, whereas the analysis is fast and accurate, and thus, applicable for industrial process control.
Tian, Mingliang; Wang, Jinguo; Kurtz, James; Mallouk, Thomas E; Chan, M H W
2003-07-01
Metallic nanowires (Au, Ag, Cu, Ni, Co, and Rh) with an average diameter of 40 nm and a length of 3-5 μm have been fabricated by electrodeposition in the pores of track-etched polycarbonate membranes. Structural characterizations by transmission electron microscopy (TEM) and electron diffraction showed that nanowires of Au, Ag, and Cu are single-crystalline with a preferred [111] orientation, whereas Ni, Co, and Rh wires are polycrystalline. Possible mechanisms responsible for nucleation and growth for single-crystal noble metals versus polycrystalline group VIII-B metals are discussed.
Note: Automated electrochemical etching and polishing of silver scanning tunneling microscope tips.
Sasaki, Stephen S; Perdue, Shawn M; Rodriguez Perez, Alejandro; Tallarida, Nicholas; Majors, Julia H; Apkarian, V Ara; Lee, Joonhee
2013-09-01
Fabrication of sharp and smooth Ag tips is crucial in optical scanning probe microscope experiments. To ensure reproducible tip profiles, the polishing process is fully automated using a closed-loop laminar flow system to deliver the electrolytic solution to moving electrodes mounted on a motorized translational stage. The repetitive translational motion is controlled precisely on the μm scale with a stepper motor and screw-thread mechanism. The automated setup allows reproducible control over the tip profile and improves smoothness and sharpness of tips (radius 27 ± 18 nm), as measured by ultrafast field emission.
Ammonia sensing using arrays of silicon nanowires and graphene
NASA Astrophysics Data System (ADS)
Fobelets, K.; Panteli, C.; Sydoruk, O.; Li, Chuanbo
2018-06-01
Ammonia (NH3) is a toxic gas released in different industrial, agricultural and natural processes. It is also a biomarker for some diseases. These require NH3 sensors for health and safety reasons. To boost the sensitivity of solid-state sensors, the effective sensing area should be increased. Two methods are explored and compared using an evaporating pool of 0.5 mL NH4OH (28% NH3). In the first method an array of Si nanowires (Si NWA) is obtained via metal-assisted-electrochemical etching to increase the effective surface area. In the second method CVD graphene is suspended on top of the Si nanowires to act as a sensing layer. Both the effective surface area as well as the density of surface traps influences the amplitude of the response. The effective surface area of Si NWAs is 100 × larger than that of suspended graphene for the same top surface area, leading to a larger response in amplitude by a factor of ~7 notwithstanding a higher trap density in suspended graphene. The use of Si NWAs increases the response rate for both Si NWAs as well as the suspended graphene due to more effective NH3 diffusion processes.
Influence of water storage on fatigue strength of self-etch adhesives.
Takamizawa, Toshiki; Barkmeier, Wayne W; Tsujimoto, Akimasa; Scheidel, Donal D; Watanabe, Hidehiko; Erickson, Robert L; Latta, Mark A; Miyazaki, Masashi
2015-12-01
The purpose of this study was to determine enamel and dentin bond durability after long-term water storage using self-etch adhesives. Two single step self-etch adhesives (SU, Scotchbond Universal and GB, G-ӕnial Bond) and a two-step self-etch adhesive (OX, OptiBond XTR) were used. The shear bond strength (SBS) and shear fatigue strength (FS) of the enamel and dentin were obtained with and without phosphoric acid pre-etching prior to application of the adhesives. The specimens were stored in distilled water at 37 °C for 24 h, 6 months, and one year. A staircase method was used to determine the FS using a frequency of 10 Hz for 50,000 cycles or until failure occurred. The SBS and FS of enamel bonds were significantly higher with pre-etching, when compared to no pre-etching for the same water storage period. The FS of dentin bonds with pre-etching tended to decrease relative to no pre-etching at the same storage period. For the one year storage period, SU and GB with pre-etching showed significantly lower FS values than the groups without pre-etching. The influence of water storage on FS of the self-etch adhesives was dependent on the adhesive material, storage period and phosphoric acid pre-etching of the bonding site. Phosphoric acid pre-etching of enamel improves the effectiveness of self-etch adhesive systems. Inadvertent contact of phosphoric acid on dentin appears to reduce the ability of self-etch adhesives to effectively bond resin composite materials. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yin, Lu; Yan, Mingjian; Han, Zhigang; Wang, Hailin; Shen, Hua; Zhu, Rihong
2017-04-17
We present the segmented corrosion method that uses hydrofluoric acid to etch the fiber of a fiber laser for removing high-power cladding light to improve stripping uniformity and power handling capability. For theoretical guidelines, we propose a simulation model of etched-fiber stripping to evaluate the relationship between the etched-fiber parameters and cladding light attenuation and to analyze the stripping uniformity achieved with segmented corrosion. A two-segment etched fiber is fabricated with cladding light attenuation of 19.8 dB and power handling capability up to 670 W. We find that the cladding light is stripped uniformly and the temperature distribution is uniform without the formation of hot spots.
Anisotropic Hydrogen Etching of Chemical Vapor Deposited Graphene
NASA Astrophysics Data System (ADS)
Zhang, Yi; Li, Zhen; Zhang, Luyao; Kim, Pyojae; Zhou, Chongwu
2012-02-01
In terms of the preparation of graphene, chemical vapor deposition (CVD) has raised its popularity as a scalable and cost effective approach for graphene synthesis. While the formation of graphene on copper foil has been intensively studied, the reverse reaction of graphene reacts with hydrogen has not been systematically studied. In this talk we will present a simple, clean, and highly anisotropic hydrogen etching method for CVD graphene catalyzed by the copper substrate. By exposing CVD graphene on copper foil to hydrogen flow around 800 ^oC, we observed that the initially continuous graphene can be etched to have many hexagonal openings. In addition, we found that the etching is temperature dependent and the etching of graphene at 800 oC is most efficient and anisotropic. 80% of the angles of graphene edges after etching are 120^o, indicating the etching is highly anisotropic. No increase of D band along the etched edges indicates that the crystallographic orientation of etching is zigzag direction. Furthermore, we observed that copper played an important role in catalyzing the etching reaction, as no etching was observed for graphene transferred to Si/SiO2 under similar conditions. This highly anisotropic hydrogen etching technology may work as a simple and convenient way to determine graphene crystal orientation and grain size, and may enable the etching of graphene into nanoribbons for electronic applications.
NASA Technical Reports Server (NTRS)
Benton, E. V.; Gruhn, T. A.; Andrus, C. H.
1973-01-01
Aqueous sodium hydroxide is widely used to develop charged particle tracks in polycarbonate film, particularly Lexan. The chemical nature of the etching process for this system has been determined. A method employing ultra-violet absorbance was developed for monitoring the concentration of the etch products in solution. Using this method it was possible to study the formation of the etching solution saturated in etch products. It was found that the system super-saturates to a significant extent before precipitation occurs. It was also learned that the system approaches its equilibrium state rather slowly. It is felt that both these phenomena may be due to the presence of surfactant in the solution. In light of these findings, suggestions are given regarding the preparation and maintenance of the saturated etch solution. Two additional research projects, involving automated techniques for particle track analysis and particle identification using AgCl crystals, are briefly summarized.
NASA Astrophysics Data System (ADS)
Con, Celal; Cui, Bo
2017-12-01
This paper describes a simple and low-cost fabrication method for multi-functional nanostructures with outstanding anti-reflective and super-hydrophobic properties. Our method employed phase separation of a metal salt-polymer nanocomposite film that leads to nanoisland formation after etching away the polymer matrix, and the metal salt island can then be utilized as a hard mask for dry etching the substrate or sublayer. Compared to many other methods for patterning metallic hard mask structures, such as the popular lift-off method, our approach involves only spin coating and thermal annealing, thus is more cost-efficient. Metal salts including aluminum nitrate nonahydrate (ANN) and chromium nitrate nonahydrate (CNN) can both be used, and high aspect ratio (1:30) and high-resolution (sub-50 nm) pillars etched into silicon can be achieved readily. With further control of the etching profile by adjusting the dry etching parameters, cone-like silicon structure with reflectivity in the visible region down to a remarkably low value of 2% was achieved. Lastly, by coating a hydrophobic surfactant layer, the pillar array demonstrated a super-hydrophobic property with an exceptionally high water contact angle of up to 165.7°.
Con, Celal; Cui, Bo
2017-12-16
This paper describes a simple and low-cost fabrication method for multi-functional nanostructures with outstanding anti-reflective and super-hydrophobic properties. Our method employed phase separation of a metal salt-polymer nanocomposite film that leads to nanoisland formation after etching away the polymer matrix, and the metal salt island can then be utilized as a hard mask for dry etching the substrate or sublayer. Compared to many other methods for patterning metallic hard mask structures, such as the popular lift-off method, our approach involves only spin coating and thermal annealing, thus is more cost-efficient. Metal salts including aluminum nitrate nonahydrate (ANN) and chromium nitrate nonahydrate (CNN) can both be used, and high aspect ratio (1:30) and high-resolution (sub-50 nm) pillars etched into silicon can be achieved readily. With further control of the etching profile by adjusting the dry etching parameters, cone-like silicon structure with reflectivity in the visible region down to a remarkably low value of 2% was achieved. Lastly, by coating a hydrophobic surfactant layer, the pillar array demonstrated a super-hydrophobic property with an exceptionally high water contact angle of up to 165.7°.
A method to accelerate creation of plasma etch recipes using physics and Bayesian statistics
NASA Astrophysics Data System (ADS)
Chopra, Meghali J.; Verma, Rahul; Lane, Austin; Willson, C. G.; Bonnecaze, Roger T.
2017-03-01
Next generation semiconductor technologies like high density memory storage require precise 2D and 3D nanopatterns. Plasma etching processes are essential to achieving the nanoscale precision required for these structures. Current plasma process development methods rely primarily on iterative trial and error or factorial design of experiment (DOE) to define the plasma process space. Here we evaluate the efficacy of the software tool Recipe Optimization for Deposition and Etching (RODEo) against standard industry methods at determining the process parameters of a high density O2 plasma system with three case studies. In the first case study, we demonstrate that RODEo is able to predict etch rates more accurately than a regression model based on a full factorial design while using 40% fewer experiments. In the second case study, we demonstrate that RODEo performs significantly better than a full factorial DOE at identifying optimal process conditions to maximize anisotropy. In the third case study we experimentally show how RODEo maximizes etch rates while using half the experiments of a full factorial DOE method. With enhanced process predictions and more accurate maps of the process space, RODEo reduces the number of experiments required to develop and optimize plasma processes.
Takamizawa, Toshiki; Scheidel, Donal D; Barkmeier, Wayne W; Erickson, Robert L; Tsujimoto, Akimasa; Latta, Mark A; Miyazaki, Masashi
2016-09-01
The purpose of this study was to determine the influence of different frequency rates on of bond durability of self-etch adhesives to enamel using shear fatigue strength (SFS) testing. A two-step self-etch adhesive (OX, OptiBond XTR), and two single step self-etch adhesives (GB, G-ӕnial Bond and SU, Scotchbond Universal) were used in this study. The shear fatigue strength (SFS) to enamel was obtained. A staircase method was used to determine the SFS values with 50,000 cycles or until failure occurred. Fatigue testing was performed at frequencies of 5Hz, 10Hz, and 20Hz. For each test condition, 30 specimens were prepared for the SFS testing. Regardless of the bond strength test method, OX showed significantly higher SFS values than the two single-step self-etch adhesives. For each of the three individual self-etch adhesives, there was no significant difference in SFS depending on the frequency rate, although 20Hz results tended to be higher. Regardless of the self-etch adhesive system, frequencies of 5Hz, 10Hz, and 20Hz produced similar results in fatigue strength of resin composite bonded to enamel using 50,000 cycles or until bond failure. Accelerated fatigue testing provides valuable information regarding the long term durability of resin composite to enamel bonding using self-etch adhesive system. Copyright © 2016 Elsevier Ltd. All rights reserved.
Germanium microflower-on-nanostem as a high-performance lithium ion battery electrode
Lee, Gwang-Hee; Kwon, S. Joon; Park, Kyung-Soo; Kang, Jin-Gu; Park, Jae-Gwan; Lee, Sungjun; Kim, Jae-Chan; Shim, Hyun-Woo; Kim, Dong-Wan
2014-01-01
We demonstrate a new design of Ge-based electrodes comprising three-dimensional (3-D) spherical microflowers containing crystalline nanorod networks on sturdy 1-D nanostems directly grown on a metallic current collector by facile thermal evaporation. The Ge nanorod networks were observed to self-replicate their tetrahedron structures and form a diamond cubic lattice-like inner network. After etching and subsequent carbon coating, the treated Ge nanostructures provide good electrical conductivity and are resistant to gradual deterioration, resulting in superior electrochemical performance as anode materials for LIBs, with a charge capacity retention of 96% after 100 cycles and a high specific capacity of 1360 mA h g−1 at 1 C and a high-rate capability with reversible capacities of 1080 and 850 mA h g−1 at the rates of 5 and 10 C, respectively. The improved electrochemical performance can be attributed to the fast electron transport and good strain accommodation of the carbon-filled Ge microflower-on-nanostem hybrid electrode. PMID:25363317
Xu, Caixia; Sun, Fenglei; Gao, Hua; Wang, Jinping
2013-05-30
Nanoporous platinum-cobalt (NP-PtCo) alloy with hierarchical nanostructure is straightforwardly fabricated by dealloying PtCoAl alloy in a mild alkaline solution. Selectively etching Al resulted in a hierarchical three-dimensional network nanostructure with a narrow size distribution at 3 nm. The as-prepared NP-PtCo alloy shows superior performance toward ethanol and hydrogen peroxide (H2O2) with highly sensitive response due to its unique electrocatalytic activity. In addition, NP-PtCo also exhibits excellent amperometric durability and long-term stability for H2O2 as well as a good anti-interference toward ascorbic acid, uric acid, and dopamine. The hierarchical nanoporous architecture in PtCo alloy is also highly active for glucose sensing electrooxidation and sensing in a wide linear range. The NP-PtCo alloy holds great application potential for electrochemical sensing with simple preparation, unique catalytic activity, and high structure stability. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hu, Huan; Siu, Vince S.; Gifford, Stacey M.; Kim, Sungcheol; Lu, Minhua; Meyer, Pablo; Stolovitzky, Gustavo A.
2017-12-01
The recently discovered bactericidal properties of nanostructures on wings of insects such as cicadas and dragonflies have inspired the development of similar nanostructured surfaces for antibacterial applications. Since most antibacterial applications require nanostructures covering a considerable amount of area, a practical fabrication method needs to be cost-effective and scalable. However, most reported nanofabrication methods require either expensive equipment or a high temperature process, limiting cost efficiency and scalability. Here, we report a simple, fast, low-cost, and scalable antibacterial surface nanofabrication methodology. Our method is based on metal-assisted chemical etching that only requires etching a single crystal silicon substrate in a mixture of silver nitrate and hydrofluoric acid for several minutes. We experimentally studied the effects of etching time on the morphology of the silicon nanospikes and the bactericidal properties of the resulting surface. We discovered that 6 minutes of etching results in a surface containing silicon nanospikes with optimal geometry. The bactericidal properties of the silicon nanospikes were supported by bacterial plating results, fluorescence images, and scanning electron microscopy images.
NASA Astrophysics Data System (ADS)
Kim, Han-Jung; Lee, Sang Eon; Lee, Jihye; Jung, Joo-Yun; Lee, Eung-Sug; Choi, Jun-Hyuk; Jung, Jun-Ho; Oh, Minsub; Hyun, Seungmin; Choi, Dae-Geun
2014-07-01
We designed and fabricated a gold (Au)-coated silicon nanowires/graphene (Au-SiNWs/G) hybrid composite as a polymer binder-free anode for rechargeable lithium-ion batteries (LIBs). A large amount of SiNWs for LIB anode materials can be prepared by metal-assisted chemical etching (MaCE) process. The Au-SiNWs/G composite film on current collector was obtained by vacuum filtration using an anodic aluminum oxide (AAO) membrane and hot pressing method. Our experimental results show that the Au-SiNWs/G composite has a stable reversible capacity of about 1520 mA h/g which was maintained for 20 cycles. The Au-SiNWs/G composite anode showed much better cycling performance than SiNWs/polyvinylidene fluoride (PVDF)/Super-P, SiNWs/G composite, and pure SiNWs anodes. The improved electrochemical properties of the Au-SiNWs/G composite anode material is mainly ascribed to the composite's porous network structure.
Wu, Cuiqing; Liu, Qi; Chen, Rongrong; Liu, Jingyuan; Zhang, Hongsen; Li, Rumin; Takahashi, Kazunobu; Liu, Peili; Wang, Jun
2017-03-29
Superhydrophobic coatings are highly promising for protecting material surfaces and for wide applications. In this study, superhydrophobic composites, comprising a rhombic-dodecahedral zeolitic imidazolate framework (ZIF-8@SiO 2 ), have been manufactured onto AZ31 magnesium alloy via chemical etching and dip-coating methods to enhance stability and corrosion resistance. Herein, we report on a simple strategy to modify hydrophobic hexadecyltrimethoxysilan (HDTMS) on ZIF-8@SiO 2 to significantly improve the property of repelling water. We show that various liquids can be stable on its surface and maintain a contact angle higher than 150°. The morphologies and chemical composition were characterized by means of scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FI-IR). In addition, the anticorrosion and antiattrition properties of the film were assessed by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization and HT, respectively. Such a coating shows promising potential as a material for large-scale fabrication.
NASA Astrophysics Data System (ADS)
Sohrabi, M.; Habibi, M.; Ramezani, V.
2017-02-01
The paper presents an experimental study and analysis of full helium ion density angular distributions in a 4-kJ plasma focus device (PFD) at pressures of 10, 15, 25, and 30 mbar using large-area polycarbonate track detectors (PCTDs) (15-cm etchable diameter) processed by 50-Hz-HV electrochemical etching (ECE). Helium ion track distributions at different pressures, in particular, at the main axis of the PFD are presented. Maximum ion track density of 4.4 × 104 tracks/cm2 was obtained in the PCTD placed 6 cm from the anode. The ion distributions for all pressures applied are ring-shaped, which is possibly due to the hollow cylindrical copper anode used. The large-area PCTD processed by ECE proves, at the present state-of-theart, a superior method for direct observation and analysis of ion distributions at a glance with minimum efforts and time. Some observations of the ion density distributions at different pressures are reported and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Posseme, N., E-mail: nicolas.posseme@cea.fr; Pollet, O.; Barnola, S.
2014-08-04
Silicon nitride spacer etching realization is considered today as one of the most challenging of the etch process for the new devices realization. For this step, the atomic etch precision to stop on silicon or silicon germanium with a perfect anisotropy (no foot formation) is required. The situation is that none of the current plasma technologies can meet all these requirements. To overcome these issues and meet the highly complex requirements imposed by device fabrication processes, we recently proposed an alternative etching process to the current plasma etch chemistries. This process is based on thin film modification by light ionsmore » implantation followed by a selective removal of the modified layer with respect to the non-modified material. In this Letter, we demonstrate the benefit of this alternative etch method in term of film damage control (silicon germanium recess obtained is less than 6 A), anisotropy (no foot formation), and its compatibility with other integration steps like epitaxial. The etch mechanisms of this approach are also addressed.« less
Zahran, R.; Rosales Leal, J. I.; Rodríguez Valverde, M. A.; Cabrerizo Vílchez, M. A.
2016-01-01
Titanium implant surface etching has proven an effective method to enhance cell attachment. Despite the frequent use of hydrofluoric (HF) acid, many questions remain unresolved, including the optimal etching time and its effect on surface and biological properties. The objective of this study was to investigate the effect of HF acid etching time on Ti topography, surface chemistry, wettability, and cell adhesion. These data are useful to design improved acid treatment and obtain an improved cell response. The surface topography, chemistry, dynamic wetting, and cell adhesiveness of polished Ti surfaces were evaluated after treatment with HF acid solution for 0, 2; 3, 5, 7, or 10 min, revealing a time-dependent effect of HF acid on their topography, chemistry, and wetting. Roughness and wetting increased with longer etching time except at 10 min, when roughness increased but wetness decreased. Skewness became negative after etching and kurtosis tended to 3 with longer etching time. Highest cell adhesion was achieved after 5–7 min of etching time. Wetting and cell adhesion were reduced on the highly rough surfaces obtained after 10-min etching time. PMID:27824875
Bonding effectiveness of self-etch adhesives to dentin after 24 h water storage
Sarr, Mouhamed; Benoist, Fatou Leye; Bane, Khaly; Aidara, Adjaratou Wakha; Seck, Anta; Toure, Babacar
2018-01-01
Purpose: This study evaluated the immediate bonding effectiveness of five self-etch adhesive systems bonded to dentin. Materials and Methods: The microtensile bond strength of five self-etch adhesives systems, including one two-step and four one-step self-etch adhesives to dentin, was measured. Human third molars had their superficial dentin surface exposed, after which a standardized smear layer was produced using a medium-grit diamond bur. The selected adhesives were applied according to their respective manufacturer's instructions for μTBS measurement after storage in water at 37°C for 24 h. Results: The μTBS varied from 11.1 to 44.3 MPa; the highest bond strength was obtained with the two-step self-etch adhesive Clearfil SE Bond and the lowest with the one-step self-etch adhesive Adper Prompt L-Pop. Pretesting failures mainly occurring during sectioning with the slow-speed diamond saw were observed only with the one-step self-etch adhesive Adper Prompt L-Pop (4 out of 18). Conclusions: When bonded to dentin, the self-etch adhesives with simplified application procedures (one-step self-etch adhesives) still underperform as compared to the two-step self-etch adhesive Clearfil SE Bond. PMID:29674814
Physics and chemistry of complex oxide etching and redeposition control
NASA Astrophysics Data System (ADS)
Margot, Joëlle
2012-10-01
Since its introduction in the 1970s, plasma etching has become the universal method for fine-line pattern transfer onto thin films and is anticipated to remain so in foreseeable future. Despite many success stories, plasma etching processes fail to meet the needs for several of the newest materials involved in advanced devices for photonic, electronic and RF applications like ferroelectrics, electro-optic materials, high-k dielectrics, giant magnetoresistance materials and unconventional conductors. In this context, the work achieved over the last decade on the etching of multicomponent oxides thin films such as barium strontium titanate (BST), strontium titanate (STO) and niobate of calcium and barium (CBN) will be reviewed. These materials present a low reactivity with usual etching gases such as fluorinated and chlorinated gases, their etching is mainly governed by ion sputtering and reactive gases sometimes interact with surface materials to form compounds that inhibit etching. The etching of platinum will also be presented as an example of unconventional conductor materials for which severe redeposition limits the achievable etching quality. Finally, it will be shown how simulation can help to understand the etching mechanisms and to define avenues for higher quality patterning.
Peng, F; Olson, J R; Shaw, M T; Wei, M
2009-01-01
A fibrous precursor for bone repair composites was made by coating poly(L-lactide) (PLLA) fibers with hydroxyapatite (HA) using a biomimetic method. To enhance the bonding between the HA coating and the PLLA fiber, PLLA fibers were etched with either sodium hydroxide or sodium hypochlorite to generate carboxyl groups on fiber surfaces. The experiments were designed to determine the influence of etching on the fiber surface morphology and chemistry as well as the subsequent HA coating on the etched fiber surfaces. It was found that the etching pretreatment increased the roughness as well as the hydrophilicity of fibers, indicating that hydrolysis of PLLA chains had taken place on fiber surfaces. The etching pretreatment also promoted HA coating formation by introducing thicker coating on the surface of fibers with a longer etching time, a higher etching concentration, or with NaOCl as the etching agent. A mechanism of surface hydrolysis and oxidation of PLLA was proposed. (c) 2008 Wiley Periodicals, Inc.
Method of sputter etching a surface
Henager, Jr., Charles H.
1984-01-01
The surface of a target is textured by co-sputter etching the target surface with a seed material adjacent thereto, while the target surface is maintained at a pre-selected temperature. By pre-selecting the temperature of the surface while sputter etching, it is possible to predetermine the reflectance properties of the etched surface. The surface may be textured to absorb sunlight efficiently and have minimal emittance in the infrared region so as to be well-suited for use as a solar absorber for photothermal energy conversion.
Method of sputter etching a surface
Henager, C.H. Jr.
1984-02-14
The surface of a target is textured by co-sputter etching the target surface with a seed material adjacent thereto, while the target surface is maintained at a pre-selected temperature. By pre-selecting the temperature of the surface while sputter etching, it is possible to predetermine the reflectance properties of the etched surface. The surface may be textured to absorb sunlight efficiently and have minimal emittance in the infrared region so as to be well-suited for use as a solar absorber for photothermal energy conversion. 4 figs.
Electroless epitaxial etching for semiconductor applications
McCarthy, Anthony M.
2002-01-01
A method for fabricating thin-film single-crystal silicon on insulator substrates using electroless etching for achieving efficient etch stopping on epitaxial silicon substrates. Microelectric circuits and devices are prepared on epitaxial silicon wafers in a standard fabrication facility. The wafers are bonded to a holding substrate. The silicon bulk is removed using electroless etching leaving the circuit contained within the epitaxial layer remaining on the holding substrate. A photolithographic operation is then performed to define streets and wire bond pad areas for electrical access to the circuit.
2014-07-01
BST) is a complex oxide material with ferroic properties which has been considered for applications ranging from non-volatile memory to microwave...utilizing self-aligned etching to create metal-insulator-metal (MIM) varactors . As part of this method we employed reactive ion etching (RIE) to remove BST...of BST removed vs. etch time for Ar:SF6. .........................................................4 Figure 3. SEM cross-section of varactor showing
Synthesis and characterization of hollow mesoporous BaFe{sub 12}O{sub 19} spheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Xia; Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487; Park, Jihoon
2015-02-15
A facile method is reported to synthesize hollow mesoporous BaFe{sub 12}O{sub 19} spheres using a template-free chemical etching process. Hollow BaFe{sub 12}O{sub 19} spheres were synthesized by conventional spray pyrolysis. The mesoporous structure is achieved by alkaline ethylene glycol etching at 185 °C, with the porosity controlled by the heating time. The hollow porous structure is confirmed by SEM, TEM, and FIB-FESEM characterization. The crystal structure and magnetic properties are not significantly affected after the chemical etching process. The formation mechanism of the porous structure is explained by grain boundary etching. - Graphical abstract: Hollow spherical BaFe{sub 12}O{sub 19} particlesmore » are polycrystalline with both grains and grain boundaries. Grain boundaries have less ordered structure and lower stability. When the particles are exposed to high temperature alkaline ethylene glycol, the grain boundaries are etched, leaving small grooves between grains. These grooves allow ethylene glycol to diffuse inside to further etch the grains. As the grain size decreases, gaps appear on the particle surfaces, and a porous structure is finally formed. - Highlights: • Two-step synthesis method for hollow mesoporous BaFe{sub 12}O{sub 19} spheres is proposed. • Porosity of the product can be regulated by controlling the second step of chemical etching. • The crystal structure and magnetic properties are examined to be little affected during the chemical etching. • The mesoporous structure formation mechanism is explained by grain boundary etching.« less
Noh, J. H.; Fowlkes, J. D.; Timilsina, R.; ...
2015-01-28
We introduce a laser-assisted focused electron-beam-induced etching (LA-FEBIE) process which is a versatile, direct write nanofabrication method that allows nanoscale patterning and editing; we do this in order to enhance the etch rate of electron-beam-induced etching. The results demonstrate that the titanium electron stimulated etch rate via the XeF2 precursor can be enhanced up to a factor of 6 times with an intermittent pulsed laser assist. Moreover, the evolution of the etching process is correlated to in situ stage current measurements and scanning electron micrographs as a function of time. Finally, the increased etch rate is attributed to photothermally enhancedmore » Ti–F reaction and TiF4 desorption and in some regimes enhanced XeF2 surface diffusion to the reaction zone.« less
Addae-Mensah, Kweku A.; Retterer, Scott; Opalenik, Susan R.; Thomas, Darrell; Lavrik, Nickolay V.; Wikswo, John P.
2013-01-01
This paper examines the use of deep reactive ion etching (DRIE) of silicon with fluorine high-density plasmas at cryogenic temperatures to produce silicon master molds for vertical microcantilever arrays used for controlling substrate stiffness for culturing living cells. The resultant profiles achieved depend on the rate of deposition and etching of a SiOxFy polymer, which serves as a passivation layer on the sidewalls of the etched structures in relation to areas that have not been passivated with the polymer. We look at how optimal tuning of two parameters, the O2 flow rate and the capacitively coupled plasma (CCP) power, determine the etch profile. All other pertinent parameters are kept constant. We examine the etch profiles produced using e-beam resist as the main etch mask, with holes having diameters of 750 nm, 1 µm, and 2 µm. PMID:24223478
Residual contamination and corrosion on electrochemically marked uranium
NASA Astrophysics Data System (ADS)
Seals, R. D.; Bullock, J. S.; Cristy, S. S.; Bennett, R. K.
Residual contamination and potential corrosion problems on uranium parts electrochemically marked with PHB-1 and PHB-1E electroetchants have been investigated using ion microprobe mass analysis (IMMA), scanning electron microscopy (SEM), and light microscopy (LM). The effectiveness of various solvent-cleaning sequences and the influence of the use of an abrasive cleaner were evaluated. The corrosion depths and chlorine distributions resulting from the electroetching process were determined. To meet the objective, the surfaces of uranium coupons, which had been processed according to production procedures for parts, i.e., machining, cleaning, marking, inspecting and coating with Shell Vitrea-29® oil, were studied. The greater surface wetting capability of the PHB-1E electroetchant solution relative to PHB-1 resulted in less localized corrosion at the point of attack which provided a more legible mark. Components of the electroetchants (aluminum, potassium and chromium) were found in the marked areas of both types of electroetched samples. Chromium, resulting from the corrosion inhibitor in the electroetchants, was found in the etched areas as well as on the coupon away from the electroetched areas. Depth profile data indicated that the major etching action (marking thickness) of the electroetchants penetrated to a depth of approximately 200 nm. Trace amounts of chlorine were present primarily within the first 65 nm of the marked surface. Comparison of the solvent rinsing sequences revealed that the most effective cleaning process included a degreaser, such as perchloroethylene, followed by a polar solvent, such as alcohol. Evaluation of the use of an abrasive cleaner on the electroetched areas indicates that this process removed residual contaminants, increased mark legibility and did not introduce significant residuals from the abrading material or cause significant surface damage.
NASA Astrophysics Data System (ADS)
Son, Gyeongho; Jung, Youngho; Yu, Kyoungsik
2017-04-01
We report a directional-coupler-based refractive index sensor and its cost-effective fabrication method using hydrofluoric acid droplet wet-etching and surface-tension-driven liquid flows. The proposed fiber sensor consists of a pair of twisted tapered optical fibers with low excess losses. The fiber cores in the etched microfiber region are exposed to the surrounding medium for efficient interaction with the guided light. We observe that the etching-based low-loss fiber-optic sensors can measure the water droplet volume by detecting the refractive index changes of the surrounding medium around the etched fiber core region.
High-quality fiber fabrication in buffered hydrofluoric acid solution with ultrasonic agitation.
Zhong, Nianbing; Liao, Qiang; Zhu, Xun; Wang, Yongzhong; Chen, Rong
2013-03-01
An etching method for preparing high-quality fiber-optic sensors using a buffered etchant with ultrasonic agitation is proposed. The effects of etching conditions on the etch rate and surface morphology of the etched fibers are investigated. The effect of surface roughness is discussed on the fibers' optical properties. Linear etching behavior and a smooth fiber surface can be repeatedly obtained by adjusting the ultrasonic power and etchant pH. The fibers' spectral quality is improved as the ratio of the pit depth to size decreases, and the fibers with smooth surfaces are more sensitive to a bacterial suspension than those with rough surfaces.
Chemically etched fiber tips for near-field optical microscopy: a process for smoother tips.
Lambelet, P; Sayah, A; Pfeffer, M; Philipona, C; Marquis-Weible, F
1998-11-01
An improved method for producing fiber tips for scanning near-field optical microscopy is presented. The improvement consists of chemically etching quartz optical fibers through their acrylate jacket. This new method is compared with the previous one in which bare fibers were etched. With the new process the meniscus formed by the acid along the fiber does not move during etching, leading to a much smoother surface of the tip cone. Subsequent metallization is thus improved, resulting in better coverage of the tip with an aluminum opaque layer. Our results show that leakage can be avoided along the cone, and light transmission through the tip is spatially limited to an optical aperture of a 100-nm dimension.
Krishnamurthy, Madhuram; Kumar, V Naveen; Leburu, Ashok; Dhanavel, Chakravarthy; Selvendran, Kasiswamy E; Praveen, Nehrudhas
2018-04-01
Aim: The aim of the present study was to compare the antibacterial activity of a self-etching primer containing antibacterial monomer methacryloyloxydodecylpyridinium bromide (MDPB) (Clearfil protect bond) with a conventional self-etching primer without MDPB (Clearfil SE bond) against Streptococcus mutans and the effect of incorporation of MDPB on the tensile bond strength of the experimental self-etching primer (Clearfil protect bond). Materials and methods: The antibacterial activity of the self-etching primers was assessed using agar disk diffusion method and the diameters of the zones of inhibition were measured and ranked. For tensile bond strength testing, 20 noncarious human molars were selected and randomly divided into two groups comprising 10 teeth in each group. Group I specimens were treated with Clearfil SE bond (without MDPB). Group II specimens were treated with Clearfil protect bond (with MDPB). Composite material was placed incrementally and cured for 40 seconds in all the specimens. Tensile bond strength was estimated using the Instron Universal testing machine at a crosshead speed of 1 mm/min. Results: The addition of MDPB into a self-etching primer exerts potential antibacterial effect against S. mutans. The tensile bond strength of MDPB containing self-etching primer was slightly lower than that of the conventional self-etching Clearfil protect bond primer, but the difference was not statistically significant. Conclusion: Thus, a self-etching primer containing MDPB will be a boon to adhesive dentistry as it has bactericidal property with adequate tensile bond strength. Clinical significance: The concept of prevention of extension in adhesive dentistry would result in micro/nanoleakage due to the presence of residual bacteria in the cavity. Self-etching primers with MDPB would improve the longevity of such restorations by providing adequate antibacterial activity without compromising the bond strength. Keywords: Antibacterial property, Methacryloyloxydodecy-lpyridinium bromide, Self-etching primers, Tensile bond strength.
Method of plasma etching Ga-based compound semiconductors
Qiu, Weibin; Goddard, Lynford L.
2012-12-25
A method of plasma etching Ga-based compound semiconductors includes providing a process chamber and a source electrode adjacent to the process chamber. The process chamber contains a sample comprising a Ga-based compound semiconductor. The sample is in contact with a platen which is electrically connected to a first power supply, and the source electrode is electrically connected to a second power supply. The method includes flowing SiCl.sub.4 gas into the chamber, flowing Ar gas into the chamber, and flowing H.sub.2 gas into the chamber. RF power is supplied independently to the source electrode and the platen. A plasma is generated based on the gases in the process chamber, and regions of a surface of the sample adjacent to one or more masked portions of the surface are etched to create a substantially smooth etched surface including features having substantially vertical walls beneath the masked portions.
Chen, Yun; Zhang, Cheng; Li, Liyi; Tuan, Chia-Chi; Wu, Fan; Chen, Xin; Gao, Jian; Ding, Yong; Wong, Ching-Ping
2017-07-12
Silicon (Si) zigzag nanowires (NWs) have a great potential in many applications because of its high surface/volume ratio. However, fabricating Si zigzag NWs has been challenging. In this work, a diffusion-controlled metal-assisted chemical etching method is developed to fabricate Si zigzag NWs. By tailoring the composition of etchant to change its diffusivity, etching direction, and etching time, various zigzag NWs can be easily fabricated. In addition, it is also found that a critical length of NW (>1 μm) is needed to form zigzag nanowires. Also, the amplitude of zigzag increases as the location approaches the center of the substrate and the length of zigzag nanowire increases. It is also demonstrated that such zigzag NWs can help the silicon substrate for self-cleaning and antireflection. This method may provide a feasible and economical way to fabricate zigzag NWs and novel structures for broad applications.
NASA Astrophysics Data System (ADS)
Liu, L. F.; Chen, Y. Y.; Ye, Z. H.; Hu, X. N.; Ding, R. J.; He, L.
2018-03-01
Plasma etching is a powerful technique for transferring high-resolution lithographic patterns into HgCdTe material with low etch-induced damage, and it is important for fabricating small-pixel-size HgCdTe infrared focal plane array (IRFPA) detectors. P- to n-type conversion is known to occur during plasma etching of vacancy-doped HgCdTe; however, it is usually unwanted and its removal requires extra steps. Etching at cryogenic temperatures can reduce the etch-induced type conversion depth in HgCdTe via the electrical damage mechanism. Laser beam-induced current (LBIC) is a nondestructive photoelectric characterization technique which can provide information regarding the vertical and lateral electrical field distribution, such as defects and p-n junctions. In this work, inductively coupled plasma (ICP) etching of HgCdTe was implemented at cryogenic temperatures. For an Ar/CH4 (30:1 in SCCM) plasma with ICP input power of 1000 W and RF-coupled DC bias of ˜ 25 V, a HgCdTe sample was dry-etched at 123 K for 5 min using ICP. The sample was then processed to remove a thin layer of the plasma-etched region while maintaining a ladder-like damaged layer by continuously controlling the wet chemical etching time. Combining the ladder etching method and LBIC measurement, the ICP etching-induced electrical damage depth was measured and estimated to be about 20 nm. The results indicate that ICP etching at cryogenic temperatures can significantly suppress plasma etching-induced electrical damage, which is beneficial for defining HgCdTe mesa arrays.
Improving contact layer patterning using SEM contour based etch model
NASA Astrophysics Data System (ADS)
Weisbuch, François; Lutich, Andrey; Schatz, Jirka; Hertzsch, Tino; Moll, Hans-Peter
2016-10-01
The patterning of the contact layer is modulated by strong etch effects that are highly dependent on the geometry of the contacts. Such litho-etch biases need to be corrected to ensure a good pattern fidelity. But aggressive designs contain complex shapes that can hardly be compensated with etch bias table and are difficult to characterize with standard CD metrology. In this work we propose to implement a model based etch compensation method able to deal with any contact configuration. With the help of SEM contours, it was possible to get reliable 2D measurements particularly helpful to calibrate the etch model. The selections of calibration structures was optimized in combination with model form to achieve an overall errRMS of 3nm allowing the implementation of the model in production.
The endpoint detection technique for deep submicrometer plasma etching
NASA Astrophysics Data System (ADS)
Wang, Wei; Du, Zhi-yun; Zeng, Yong; Lan, Zhong-went
2009-07-01
The availability of reliable optical sensor technology provides opportunities to better characterize and control plasma etching processes in real time, they could play a important role in endpoint detection, fault diagnostics and processes feedback control and so on. The optical emission spectroscopy (OES) method becomes deficient in the case of deep submicrometer gate etching. In the newly developed high density inductively coupled plasma (HD-ICP) etching system, Interferometry endpoint (IEP) is introduced to get the EPD. The IEP fringe count algorithm is investigated to predict the end point, and then its signal is used to control etching rate and to call end point with OES signal in over etching (OE) processes step. The experiment results show that IEP together with OES provide extra process control margin for advanced device with thinner gate oxide.
High density plasma etching of magnetic devices
NASA Astrophysics Data System (ADS)
Jung, Kee Bum
Magnetic materials such as NiFe (permalloy) or NiFeCo are widely used in the data storage industry. Techniques for submicron patterning are required to develop next generation magnetic devices. The relative chemical inertness of most magnetic materials means they are hard to etch using conventional RIE (Reactive Ion Etching). Therefore ion milling has generally been used across the industry, but this has limitations for magnetic structures with submicron dimensions. In this dissertation, we suggest high density plasmas such as ECR (Electron Cyclotron Resonance) and ICP (Inductively Coupled Plasma) for the etching of magnetic materials (NiFe, NiFeCo, CoFeB, CoSm, CoZr) and other related materials (TaN, CrSi, FeMn), which are employed for magnetic devices like magnetoresistive random access memories (MRAM), magnetic read/write heads, magnetic sensors and microactuators. This research examined the fundamental etch mechanisms occurring in high density plasma processing of magnetic materials by measuring etch rate, surface morphology and surface stoichiometry. However, one concern with using Cl2-based plasma chemistry is the effect of residual chlorine or chlorinated etch residues remaining on the sidewalls of etched features, leading to a degradation of the magnetic properties. To avoid this problem, we employed two different processing methods. The first one is applying several different cleaning procedures, including de-ionized water rinsing or in-situ exposure to H2, O2 or SF6 plasmas. Very stable magnetic properties were achieved over a period of ˜6 months except O2 plasma treated structures, with no evidence of corrosion, provided chlorinated etch residues were removed by post-etch cleaning. The second method is using non-corrosive gas chemistries such as CO/NH3 or CO2/NH3. There is a small chemical contribution to the etch mechanism (i.e. formation of metal carbonyls) as determined by a comparison with Ar and N2 physical sputtering. The discharge should be NH3-rich to achieve the highest etch rates. Several different mask materials were investigated, including photoresist, thermal oxide and deposited oxide. Photoresist etches very rapidly in CO/NH 3 and use of a hard mask is necessary to achieve pattern transfer. Due to its physically dominated nature, the CO/NH3 chemistry appears suited to shallow etch depth (≤0.5mum) applications, but mask erosion leads to sloped feature sidewalls for deeper features.
METHOD OF APPLYING NICKEL COATINGS ON URANIUM
Gray, A.G.
1959-07-14
A method is presented for protectively coating uranium which comprises etching the uranium in an aqueous etching solution containing chloride ions, electroplating a coating of nickel on the etched uranium and heating the nickel plated uranium by immersion thereof in a molten bath composed of a material selected from the group consisting of sodium chloride, potassium chloride, lithium chloride, and mixtures thereof, maintained at a temperature of between 700 and 800 deg C, for a time sufficient to alloy the nickel and uranium and form an integral protective coating of corrosion-resistant uranium-nickel alloy.
Light scattering apparatus and method for determining radiation exposure to plastic detectors
Hermes, Robert E.
2002-01-01
An improved system and method of analyzing cumulative radiation exposure registered as pits on track etch foils of radiation dosimeters. The light scattering apparatus and method of the present invention increases the speed of analysis while it also provides the ability to analyze exposure levels beyond that which may be properly measured with conventional techniques. Dosimeters often contain small plastic sheets that register accumulated damage when exposed to a radiation source. When the plastic sheet from the dosimeter is chemically etched, a track etch foil is produced wherein pits or holes are created in the plastic. The number of these pits, or holes, per unit of area (pit density) correspond to the amount of cumulative radiation exposure which is being optically measured by the apparatus. To measure the cumulative radiation exposure of a track etch foil a high intensity collimated beam is passed through foil such that the pits and holes within the track etch foil cause a portion of the impinging light beam to become scattered upon exit. The scattered light is focused with a lens, while the primary collimated light beam (unscattered light) is blocked. The scattered light is focused by the lens onto an optical detector capable of registering the optical power of the scattered light which corresponds to the cumulative radiation to which the track etch foil has been exposed.
Methods for globally treating silica optics to reduce optical damage
Miller, Philip Edward; Suratwala, Tayyab Ishaq; Bude, Jeffrey Devin; Shen, Nan; Steele, William Augustus; Laurence, Ted Alfred; Feit, Michael Dennis; Wong, Lana Louie
2012-11-20
A method for preventing damage caused by high intensity light sources to optical components includes annealing the optical component for a predetermined period. Another method includes etching the optical component in an etchant including fluoride and bi-fluoride ions. The method also includes ultrasonically agitating the etching solution during the process followed by rinsing of the optical component in a rinse bath.
Post-processing of fused silica and its effects on damage resistance to nanosecond pulsed UV lasers.
Ye, Hui; Li, Yaguo; Zhang, Qinghua; Wang, Wei; Yuan, Zhigang; Wang, Jian; Xu, Qiao
2016-04-10
HF-based (hydrofluoric acid) chemical etching has been a widely accepted technique to improve the laser damage performance of fused silica optics and ensure high-power UV laser systems at designed fluence. Etching processes such as acid concentration, composition, material removal amount, and etching state (etching with additional acoustic power or not) may have a great impact on the laser-induced damage threshold (LIDT) of treated sample surfaces. In order to find out the effects of these factors, we utilized the Taguchi method to determine the etching conditions that are helpful in raising the LIDT. Our results show that the most influential factors are concentration of etchants and the material etched away from the viewpoint of damage performance of fused silica optics. In addition, the additional acoustic power (∼0.6 W·cm-2) may not benefit the etching rate and damage performance of fused silica. Moreover, the post-cleaning procedure of etched samples is also important in damage performances of fused silica optics. Different post-cleaning procedures were, thus, experiments on samples treated under the same etching conditions. It is found that the "spraying + rinsing + spraying" cleaning process is favorable to the removal of etching-induced deposits. Residuals on the etched surface are harmful to surface roughness and optical transmission as well as laser damage performance.
Development and Research on the Mechanism of Novel Mist Etching Method for Oxide Thin Films
NASA Astrophysics Data System (ADS)
Kawaharamura, Toshiyuki; Hirao, Takashi
2012-03-01
A novel etching process with etchant mist was developed and applied to oxide thin films such as zinc oxide (ZnO), zinc magnesium oxide (ZnMgO), and indium tin oxide (ITO). By using this process, it was shown that precise control of the etching characteristics is possible with a reasonable etching rate, for example, in the range of 10-100 nm/min, and a fine pattern of high accuracy can also be realized, even though this is usually very difficult by conventional wet etching processes, for ZnO and ZnMgO. The mist etching process was found to be similarly and successfully applied to ITO. The mechanism of mist etching has been studied by examining the etching temperature dependence of pattern accuracy, and it was shown that the mechanism was different from that of conventional liquid-phase spray etching. It was ascertained that fine pattern etching was attained using mist droplets completely (or partly) gasified by the heat applied to the substrate. This technique was applied to the fabrication of a ZnO thin-film transistor (TFT) with a ZnO active channel length of 4 µm. The electrical properties of the TFT were found to be excellent with fine uniformity over the entire 4-in. wafer.
Identifying the Active Surfaces of Electrochemically Tuned LiCoO 2 for Oxygen Evolution Reaction
Lu, Zhiyi; Chen, Guangxu; Li, Yanbin; ...
2017-04-18
Identification of active sites for catalytic processes has both fundamental and technological implications for rational design of future catalysts. Herein, we study the active surfaces of layered lithium cobalt oxide (LCO) for the oxygen evolution reaction (OER) using the enhancement effect of electrochemical delithiation (De-LCO). Our theoretical results indicate that the most stable (0001) surface has a very large overpotential for OER independent of lithium content. In contrast, edge sites such as the nonpolar (1120) and polar (0112) surfaces are predicted to be highly active and dependent on (de)lithiation. The effect of lithium extraction from LCO on the surfaces andmore » their OER activities can be understood by the increase of Co 4+ sites relative to Co 3+ and by the shift of active oxygen 2p states. Experimentally, it is demonstrated that LCO nanosheets, which dominantly expose the (0001) surface show negligible OER enhancement upon delithiation. However, a noticeable increase in OER activity (~0.1 V in overpotential shift at 10 mA cm –2) is observed for the LCO nanoparticles, where the basal plane is greatly diminished to expose the edge sites, consistent with the theoretical simulations. In addition, we find that the OER activity of De-LCO nanosheets can be improved if we adopt an acid etching method on LCO to create more active edge sites, which in turn provides a strong evidence for the theoretical indication.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yu; School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430073; Guo, Zhiguang, E-mail: zguo@licp.cas.cn
Graphical abstract: A double-metal-assisted chemical etching method is employed to fabricate superhydrophobic surfaces, showing a good superhydrophobicity with the contact angle of about 170°, and the sliding angle of about 0°. Meanwhile, the potential formation mechanism about it is also presented. Highlights: ► A double-metal-assisted chemical etching method is employed to fabricate superhydrophobic surfaces. ► The obtained surfaces show good superhydrophobicity with a high contact angle and low sliding angle. ► The color of the etched substrate dark brown or black and it is so-called black silicon. -- Abstract: Silicon substrates treated by metal-assisted chemical etching have been studied formore » many years since they could be employed in a variety of electronic and optical devices such as integrated circuits, photovoltaics, sensors and detectors. However, to the best of our knowledge, the chemical etching treatment on the same silicon substrate with the assistance of two or more kinds of metals has not been reported. In this paper, we mainly focus on the etching time and finally obtain a series of superhydrophobic silicon surfaces with novel etching structures through two successive etching processes of Cu-assisted and Ag-assisted chemical etching. It is shown that large-scale homogeneous but locally irregular wire-like structures are obtained, and the superhydrophobic surfaces with low hysteresis are prepared after the modifications with low surface energy materials. It is worth noting that the final silicon substrates not only possess high static contact angle and low hysteresis angle, but also show a black color, indicating that the superhydrophobic silicon substrate has an extremely low reflectance in a certain range of wavelengths. In our future work, we will go a step further to discuss the effect of temperature, the size of Cu nanoparticles and solution concentration on the final topography and superhydrophobicity.« less
Microstructural characterization of aluminum alloys using Weck's reagent, part I: Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Li, E-mail: gao.l.ab@m.titech.ac.jp; Harada, Yohei, E-mail: harada.y.ah@m.titech.ac.jp; Kumai, Shinji, E-mail: kumai.s.aa@m.titech.ac.jp
This paper focuses on the applications of a color etchant for aluminum alloys named Weck's reagent. The Al phase shows different colors from location to location after being etched by Weck's reagent. It is proved that Weck's reagent is very sensitive to the micro-segregations of Ti, Si and Mg in Al alloys so that characterization of the micro-segregations can be qualitatively realized which is usually done by electronic probe techniques. With the help of this characterization method, we are able to evaluate solid fractions for the semi-solid processed Al alloy with a better accuracy by excluding the Al grain growthmore » during water quenching. To understand this reagent better, the color change during etching is investigated by applying different etching times at room temperature (25 °C). Among those results, 12 s shows the best color contrast after etching. Finally, we repeat the 12 second etching for four times through repeating a polishing–etching process. The result exhibits that Weck's reagent has a satisfying re-producibility with stable color and color distribution for the four times etching result. The second part of this study covers the coloring mechanism of Weck's reagent by characterizing the etched surface via various characterization methods. - Highlights: • The applications of Weck's reagent for Al alloys are introduced in detail. • Detailed relationship between micro-segregations in Al phase and the color difference revealed by Weck's reagent are studied. • Etching time has a strong influence on the color revealed by Weck's reagent. • Besides micro-segregation, grain boundaries can also be visualized by Weck's reagent, which was proved by EBSD analysis.« less
Maskless and low-destructive nanofabrication on quartz by friction-induced selective etching
2013-01-01
A low-destructive friction-induced nanofabrication method is proposed to produce three-dimensional nanostructures on a quartz surface. Without any template, nanofabrication can be achieved by low-destructive scanning on a target area and post-etching in a KOH solution. Various nanostructures, such as slopes, hierarchical stages and chessboard-like patterns, can be fabricated on the quartz surface. Although the rise of etching temperature can improve fabrication efficiency, fabrication depth is dependent only upon contact pressure and scanning cycles. With the increase of contact pressure during scanning, selective etching thickness of the scanned area increases from 0 to 2.9 nm before the yield of the quartz surface and then tends to stabilise after the appearance of a wear. Refabrication on existing nanostructures can be realised to produce deeper structures on the quartz surface. Based on Arrhenius fitting of the etching rate and transmission electron microscopy characterization of the nanostructure, fabrication mechanism could be attributed to the selective etching of the friction-induced amorphous layer on the quartz surface. As a maskless and low-destructive technique, the proposed friction-induced method will open up new possibilities for further nanofabrication. PMID:23531381
NASA Technical Reports Server (NTRS)
Shcheglov, Kirill V. (Inventor); Challoner, A. Dorian (Inventor); Hayworth, Ken J. (Inventor); Wiberg, Dean V. (Inventor); Yee, Karl Y. (Inventor)
2008-01-01
The present invention discloses an inertial sensor having an integral resonator. A typical sensor comprises a planar mechanical resonator for sensing motion of the inertial sensor and a case for housing the resonator. The resonator and a wall of the case are defined through an etching process. A typical method of producing the resonator includes etching a baseplate, bonding a wafer to the etched baseplate, through etching the wafer to form a planar mechanical resonator and the wall of the case and bonding an end cap wafer to the wall to complete the case.
Consideration of correlativity between litho and etching shape
NASA Astrophysics Data System (ADS)
Matsuoka, Ryoichi; Mito, Hiroaki; Shinoda, Shinichi; Toyoda, Yasutaka
2012-03-01
We developed an effective method for evaluating the correlation of shape of Litho and Etching pattern. The purpose of this method, makes the relations of the shape after that is the etching pattern an index in wafer same as a pattern shape on wafer made by a lithography process. Therefore, this method measures the characteristic of the shape of the wafer pattern by the lithography process and can predict the hotspot pattern shape by the etching process. The method adopts a metrology management system based on DBM (Design Based Metrology). This is the high accurate contouring created by an edge detection algorithm used wafer CD-SEM. Currently, as semiconductor manufacture moves towards even smaller feature size, this necessitates more aggressive optical proximity correction (OPC) to drive the super-resolution technology (RET). In other words, there is a trade-off between highly precise RET and lithography management, and this has a big impact on the semiconductor market that centers on the semiconductor business. 2-dimensional shape of wafer quantification is important as optimal solution over these problems. Although 1-dimensional shape measurement has been performed by the conventional technique, 2-dimensional shape management is needed in the mass production line under the influence of RET. We developed the technique of analyzing distribution of shape edge performance as the shape management technique. In this study, we conducted experiments for correlation method of the pattern (Measurement Based Contouring) as two-dimensional litho and etch evaluation technique. That is, observation of the identical position of a litho and etch was considered. It is possible to analyze variability of the edge of the same position with high precision.
Method for applying photographic resists to otherwise incompatible substrates
NASA Technical Reports Server (NTRS)
Fuhr, W. (Inventor)
1981-01-01
A method for applying photographic resists to otherwise incompatible substrates, such as a baking enamel paint surface, is described wherein the uncured enamel paint surface is coated with a non-curing lacquer which is, in turn, coated with a partially cured lacquer. The non-curing lacquer adheres to the enamel and a photo resist material satisfactorily adheres to the partially cured lacquer. Once normal photo etching techniques are employed the lacquer coats can be easily removed from the enamel leaving the photo etched image. In the case of edge lighted instrument panels, a coat of uncured enamel is placed over the cured enamel followed by the lacquer coats and the photo resists which is exposed and developed. Once the etched uncured enamel is cured, the lacquer coats are removed leaving an etched panel.
Power-scaling performance of a three-dimensional tritium betavoltaic diode
NASA Astrophysics Data System (ADS)
Liu, Baojun; Chen, Kevin P.; Kherani, Nazir P.; Zukotynski, Stefan
2009-12-01
Three-dimensional diodes fabricated by electrochemical etching are exposed to tritium gas at pressures from 0.05 to 33 atm at room temperature to examine its power scaling performance. It is shown that the three-dimensional microporous structure overcomes the self-absorption limited saturation of beta flux at high tritium pressures. These results are contrasted against the three-dimensional device powered in one instance by tritium absorbed in the near surface region of the three-dimensional microporous network, and in another by a planar scandium tritide foil. These findings suggest that direct tritium occlusion in the near surface of three-dimensional diode can improve the specific power production.
Etching holes in graphene supercapacitor electrodes for faster performance.
Ervin, Matthew H
2015-06-12
Graphene is being widely investigated as a material to replace activated carbon in supercapacitor (electrochemical capacitor) electrodes. Supercapacitors have much higher energy density, but are typically slow devices (∼0.1 Hz) compared to other types of capacitors. Here, top-down semiconductor processing has been applied to graphene-based electrodes in order to fabricate ordered arrays of holes through the graphene electrodes. This is demonstrated to increase the speed of the electrodes by reducing the ionic impedance through the electrode thickness. This approach may also be applicable to speeding up other types of devices, such as batteries and sensors, that use porous electrodes.
Burnout current density of bismuth nanowires
NASA Astrophysics Data System (ADS)
Cornelius, T. W.; Picht, O.; Müller, S.; Neumann, R.; Völklein, F.; Karim, S.; Duan, J. L.
2008-05-01
Single bismuth nanowires with diameters ranging from 100nmto1μm were electrochemically deposited in ion track-etched single-pore polycarbonate membranes. The maximum current density the wires are able to carry was investigated by ramping up the current until failure occurred. It increases by three to four orders of magnitude for nanowires embedded in the template compared to bulk bismuth and rises with diminishing diameter. Simulations show that the wires are heated up electrically to the melting temperature. Since the surface-to-volume ratio rises with diminishing diameter, thinner wires dissipate the heat more efficiently to the surrounding polymer matrix and, thus, can tolerate larger current densities.
Hierarchical regrowth of flowerlike nanographene sheets on oxygen-plasma-treated carbon nanowalls
NASA Astrophysics Data System (ADS)
Shimoeda, Hironao; Kondo, Hiroki; Ishikawa, Kenji; Hiramatsu, Mineo; Sekine, Makoto; Hori, Masaru
2014-04-01
Cauliflorous nanographene sheets were hierarchically regrown on the spearlike structures of carbon nanowalls (CNWs) produced by O2-plasma etching. The spears on the CNWs acted as a stem for the growth of flowerlike flaky nanographene sheets, where the root of the nanoflower was located at a defect or disordered site. The defects on the graphitic structures were induced by irradiation with oxygen-related radicals and ions in the O2-based plasmas and acted as sites for the nucleation of flowerlike nanographene. The porous carbon nanostructures regrown after O2-plasma treatment have a relatively higher surface area and are thus promising materials for electrochemical applications.
Mazumdar, Dibyendu; Ranjan, Shashi; Krishna, Naveen Kumar; Kole, Ravindra; Singh, Priyankar; Lakiang, Deirimika; Jayam, Chiranjeevi
2016-01-01
Introduction Etching of enamel and dentin surfaces increases the surface area of the substrate for better bonding of the tooth colored restorative materials. Acid etching is the most commonly used method. Recently, hard tissue lasers have been used for this purpose. Aim The aim of the present study was to evaluate and compare the etching pattern of Er,Cr:YSGG and conventional etching on extracted human enamel and dentin specimens. Materials and Methods Total 40 extracted non-diseased teeth were selected, 20 anterior and 20 posterior teeth each for enamel and dentin specimens respectively. The sectioned samples were polished by 400 grit Silicon Carbide (SiC) paper to a thickness of 1.0 ± 0.5 mm. The enamel and dentin specimens were grouped as: GrE1 & GrD1 as control specimens, GrE2 & GrD2 were acid etched and GrE3 & GrD3 were lased. Acid etching was done using Conditioner 36 (37 % phosphoric acid) according to manufacturer instructions. Laser etching was done using Er,Cr:YSGG (Erbium, Chromium : Ytrium Scandium Gallium Garnet) at power settings of 3W, air 70% and water 20%. After surface treatment with assigned agents the specimens were analyzed under ESEM (Environmental Scanning Electron Microscope) at X1000 and X5000 magnification. Results Chi Square and Student “t” statistical analysis was used to compare smear layer removal and etching patterns between GrE2-GrE3. GrD2 and GrD3 were compared for smear layer removal and diameter of dentinal tubule opening using the same statistical analysis. Chi-square test for removal of smear layer in any of the treated surfaces i.e., GrE2-E3 and GrD2-D3 did not differ significantly (p>0.05). While GrE2 showed predominantly type I etching pattern (Chi-square=2.78, 0.05
0.10) and GrE3 showed type III etching (Chi-square=4.50, p<0.05). The tubule diameters were measured using GSA (Gesellschaft fur Softwareentwicklung und Analytik, Germany) image analyzer and the ‘t’ value of student ‘t’ test was 18.10 which was a highly significant result (p<.001). GrD2 had a mean dentinal tubule diameter of 2.78μm and GrD3 of 1.09μm. Conclusion The present study revealed type I etching pattern after acid etching, while type III etching pattern in enamel after laser etching. The lased dentin showed preferential removal of intertubular dentin while acid etching had more effect on the peritubular dentin. No significant differences was observed in removal of smear layer between the acid etched and lased groups. Although diameter of the exposed dentinal tubules was lesser after lased treatment in comparison to acid etching, further long term in vivo studies are needed with different parameters to establish the usage of Er,Cr:YSGG as a sole etching agent. PMID:27437337
Klosa, Karsten; Wolfart, Stefan; Lehmann, Frank; Wenz, Hans-Jürgen; Kern, Matthias
2009-04-01
The purpose of this in-vitro study was to evaluate the resin bond strength to pre-etched lithium disilicate ceramic using different cleaning methods after two contamination modes (saliva or saliva and silicone). Plexiglas tubes filled with composite resin (MultiCore Flow) were bonded to etched and silanized ceramic disks made of lithium disilicate ceramic (IPS e.max Press) using a luting resin (Multilink Automix). Either etched or unetched ceramic surfaces were contaminated with saliva or with saliva followed by a disclosing silicone. Groups of 16 specimens each were bonded after pretreatment using 4 surface cleaning agents (37% phosphoric acid, 5% hydrofluoric acid, 96% isopropanol, air polishing device with sodium bicarbonate) in different combinations. Before measuring tensile bond strength, specimens were stored for 3 or 150 days with thermocycling. After 150 days of storage, etching of saliva-contaminated surfaces with 5% hydrofluoric acid and/or 37% phosphoric acid provided statistically significantly higher bond strengths (37.9 to 49.5 MPa) than the other cleaning methods (1.7 to 15.5 MPa). After saliva and silicone contamination, etching with 5% hydrofluoric acid provided statistically significantly higher bond strengths (44.5 to 50.3 MPa) than all other cleaning methods (0.3 to 13.5 MPa). Ceramic cleaning methods after try-in procedures have a significant influence on the resin bond strength and are dependent on the type of contamination. Re-etching lithium disilicate ceramic with 5% hydrofluoric acid is most effective in removing contamination with saliva and/or a silicone disclosing medium.
Asadpour-Zeynali, Karim; Mollarasouli, Fariba
2017-06-15
This work introduces a new electrochemical sensor based on polyvinyl pyrrolidone capped CoFe 2 O 4 @CdSe core-shell modified electrode for a rapid detection and highly sensitive determination of rifampicin (RIF) by square wave adsorptive stripping voltammetry. The new PVP capped CoFe 2 O 4 @CdSe with core-shell nanostructure was synthesized by a facile synthesis method for the first time. PVP can act as a capping and etching agent for protection of the outer surface nanoparticles and formation of a mesoporous shell, respectively. Another important feature of this work is the choice of the ligand (1,10-phenanthroline) for precursor cadmium complex that works as a chelating agent in order to increase optical and electrical properties and stability of prepared nanomaterial. The nanoparticles have been characterized by field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), UV-vis, photoluminescence (PL) spectroscopy, FT-IR, and cyclic voltammetry techniques. The PL spectroscopy study of CoFe 2 O 4 @CdSe has shown significant PL quenching by the formation of CoFe 2 O 4 core inside CdSe, this shows that CoFe 2 O 4 NPs are efficient electron acceptors with the CdSe. It is clearly observed that the biosensor can significantly enhance electrocatalytic activity towards the oxidation of RIF, under the optimal conditions. The novelty of this work arises from the new synthesis method for the core-shell of CoFe 2 O 4 @CdSe. Then, the novel electrochemical biosensor was fabricated for ultra-trace level determination of rifampicin with very low detection limit (4.55×10 -17 M) and a wide linear range from 1.0×10 -16 to 1.0×10 -7 M. The fabricated biosensor showed high sensitivity and selectivity, good reproducibility and stability. Therefore, it was successfully applied for the determination of ultra-trace RIF amounts in biological and pharmaceutical samples with satisfactory recovery data. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Peng; Wang, Yueming; Wu, Mingzai; Ye, Zhenhua
2018-06-01
Third-generation HgCdTe-based infrared focal plane arrays require high aspect ratio trenches with admissible etch induced damage at the surface and sidewalls for effectively isolating the pixels. In this paper, the high-density inductively coupled plasma enhanced reaction ion etching technique has been used for micro-mesa delineation of HgCdTe for third-generation infrared focal-plane array detectors. A nondestructive junction-level optoelectronic characterization method called laser beam induced current (LBIC) is used to evaluate the lateral junction extent of HgCdTe etch-induced damage scanning electron microscopy. It is found that the LBIC profiles exhibit evident double peaks and valleys phenomena. The lateral extent of etch induced mesa damage of ∼2.4 μm is obtained by comparing the LBIC profile and the scanning electron microscopy image of etched sample. This finding will guide us to nondestructively identify the distributions of the etching damages in large scale HgCdTe micro-mesa.
Simulation of the evolution of fused silica's surface defect during wet chemical etching
NASA Astrophysics Data System (ADS)
Liu, Taixiang; Yang, Ke; Li, Heyang; Yan, Lianghong; Yuan, Xiaodong; Yan, Hongwei
2017-08-01
Large high-power-laser facility is the basis for achieving inertial confinement fusion, one of whose missions is to make fusion energy usable in the near future. In the facility, fused silica optics plays an irreplaceable role to conduct extremely high-intensity laser to fusion capsule. But the surface defect of fused silica is a major obstacle limiting the output power of the large laser facility and likely resulting in the failure of ignition. To mitigate, or event to remove the surface defect, wet chemical etching has been developed as a practical way. However, how the surface defect evolves during wet chemical etching is still not clearly known so far. To address this problem, in this work, the three-dimensional model of surface defect is built and finite difference time domain (FDTD) method is developed to simulate the evolution of surface defect during etching. From the simulation, it is found that the surface defect will get smooth and result in the improvement of surface quality of fused silica after etching. Comparatively, surface defects (e.g. micro-crack, scratch, series of pinholes, etc.) of a typical fused silica at different etching time are experimentally measured. It can be seen that the simulation result agrees well with the result of experiment, indicating the FDTD method is valid for investigating the evolution of surface defect during etching. With the finding of FDTD simulation, one can optimize the treatment process of fused silica in practical etching or even to make the initial characterization of surface defect traceable.
Turk, Tamer; Elekdag-Turk, Selma; Isci, Devrim
2007-01-01
To evaluate the effect of a self-etching primer on shear bond strengths (SBS) at the different debond times of 5, 15, 30, and 60 minutes and 24 hours. Brackets were bonded to human premolars with different etching protocols. In the control group (conventional method [CM]) teeth were etched with 37% phosphoric acid. In the study group, a self-etching primer (SEP; Transbond Plus Self Etching Primer; 3M Unitek, Monrovia, Calif) was applied as recommended by the manufacturer. Brackets were bonded with light-cure adhesive paste (Transbond XT; 3M Unitek) and light-cured for 20 seconds in both groups. The shear bond test was performed at the different debond times of 5, 15, 30 and 60 minutes and 24 hours. Lowest SBS was attained with a debond time of 5 minutes for the CM group (9.51 MPa) and the SEP group (8.97 MPa). Highest SBS was obtained with a debond time of 24 hours for the CM group (16.82 MPa) and the SEP group (19.11 MPa). Statistically significant differences between the two groups were not observed for debond times of 5, 15, 30, or 60 minutes. However, the SBS values obtained at 24 hours were significantly different (P < .001). Adequate SBS was obtained with self-etching primer during the first 60 minutes (5, 15, 30 and 60 minutes) when compared with the conventional method. It is reliable to load the bracket 5 minutes after bonding using self-etching primer (Transbond Plus) with the light-cure adhesive (Transbond XT).
Properties of nanocrystalline Si layers embedded in structure of solar cell
NASA Astrophysics Data System (ADS)
Jurečka, Stanislav; Imamura, Kentaro; Matsumoto, Taketoshi; Kobayashi, Hikaru
2017-12-01
Suppression of spectral reflectance from the surface of solar cell is necessary for achieving a high energy conversion efficiency. We developed a simple method for forming nanocrystalline layers with ultralow reflectance in a broad range of wavelengths. The method is based on metal assisted etching of the silicon surface. In this work, we prepared Si solar cell structures with embedded nanocrystalline layers. The microstructure of embedded layer depends on the etching conditions. We examined the microstructure of the etched layers by a transmission electron microscope and analysed the experimental images by statistical and Fourier methods. The obtained results provide information on the applied treatment operations and can be used to optimize the solar cell forming procedure.
Kittrell, W. Carter; Wang, Yuhuang; Kim, Myung Jong; Hauge, Robert H.; Smalley, Richard E.; Marek leg, Irene Morin
2010-06-01
The present invention is directed to fibers of epitaxially grown single-wall carbon nanotubes (SWNTs) and methods of making same. Such methods generally comprise the steps of: (a) providing a spun SWNT fiber; (b) cutting the fiber substantially perpendicular to the fiber axis to yield a cut fiber; (c) etching the cut fiber at its end with a plasma to yield an etched cut fiber; (d) depositing metal catalyst on the etched cut fiber end to form a continuous SWNT fiber precursor; and (e) introducing feedstock gases under SWNT growth conditions to grow the continuous SWNT fiber precursor into a continuous SWNT fiber.
Process for etching mixed metal oxides
Ashby, Carol I. H.; Ginley, David S.
1994-01-01
An etching process using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstom range may be achieved by this method.
Encapsulants for protecting MEMS devices during post-packaging release etch
Peterson, Kenneth A.
2005-10-18
The present invention relates to methods to protect a MEMS or microsensor device through one or more release or activation steps in a "package first, release later" manufacturing scheme: This method of fabrication permits wirebonds, other interconnects, packaging materials, lines, bond pads, and other structures on the die to be protected from physical, chemical, or electrical damage during the release etch(es) or other packaging steps. Metallic structures (e.g., gold, aluminum, copper) on the device are also protected from galvanic attack because they are protected from contact with HF or HCL-bearing solutions.
The development of a method of producing etch resistant wax patterns on solar cells
NASA Technical Reports Server (NTRS)
Pastirik, E.
1980-01-01
A potentially attractive technique for wax masking of solar cells prior to etching processes was studied. This technique made use of a reuseable wax composition which was applied to the solar cell in patterned form by means of a letterpress printing method. After standard wet etching was performed, wax removal by means of hot water was investigated. Application of the letterpress wax printing process to silicon was met with a number of difficulties. The most serious shortcoming of the process was its inability to produce consistently well-defined printed patterns on the hard silicon cell surface.
Three-dimensional photonic crystals created by single-step multi-directional plasma etching.
Suzuki, Katsuyoshi; Kitano, Keisuke; Ishizaki, Kenji; Noda, Susumu
2014-07-14
We fabricate 3D photonic nanostructures by simultaneous multi-directional plasma etching. This simple and flexible method is enabled by controlling the ion-sheath in reactive-ion-etching equipment. We realize 3D photonic crystals on single-crystalline silicon wafers and show high reflectance (>95%) and low transmittance (<-15dB) at optical communication wavelengths, suggesting the formation of a complete photonic bandgap. Moreover, our method simply demonstrates Si-based 3D photonic crystals that show the photonic bandgap effect in a shorter wavelength range around 0.6 μm, where further fine structures are required.
Environmentally benign semiconductor processing for dielectric etch
NASA Astrophysics Data System (ADS)
Liao, Marci Yi-Ting
Semiconductor processing requires intensive usage of chemicals, electricity, and water. Such intensive resource usage leaves a large impact on the environment. For instance, in Silicon Valley, the semiconductor industry is responsible for 80% of the hazardous waste sites contaminated enough to require government assistance. Research on environmentally benign semiconductor processing is needed to reduce the environmental impact of the semiconductor industry. The focus of this dissertation is on the environmental impact of one aspect of semiconductor processing: patterning of dielectric materials. Plasma etching of silicon dioxide emits perfluorocarbons (PFCs) gases, like C2F6 and CF4, into the atmosphere. These gases are super global warming/greenhouse gases because of their extremely long atmospheric lifetimes and excellent infrared absorption properties. We developed the first inductively coupled plasma (ICP) abatement device for destroying PFCs downstream of a plasma etcher. Destruction efficiencies of 99% and 94% can be obtained for the above mentioned PFCs, by using O 2 as an additive gas. Our results have lead to extensive modeling in academia as well as commercialization of the ICP abatement system. Dielectric patterning of hi-k materials for future device technology brings different environment challenges. The uncertainty of the hi-k material selection and the patterning method need to be addressed. We have evaluated the environmental impact of three different dielectric patterning methods (plasma etch, wet etch and chemical-mechanical polishing), as well as, the transistor device performances associated with the patterning methods. Plasma etching was found to be the most environmentally benign patterning method, which also gives the best device performance. However, the environmental concern for plasma etching is the possibility of cross-contamination from low volatility etch by-products. Therefore, mass transfer in a plasma etcher for a promising hi-k dielectric material, ZrO2, was studied. A novel cross-contamination sampling technique was developed, along with a mass transfer model.
SHI induced nano track polymer filters and characterization
NASA Astrophysics Data System (ADS)
Vijay, Y. K.
2009-07-01
Swift heavy ion irradiation produces damage in polymers in the form of latent tracks. Latent tracks can be enlarged by etching it in a suitable etchant and thus nuclear track etch membrane can be formed for gas permeation / purification in particular for hydrogen where the molecular size is very small. By applying suitable and controlled etching conditions well defined tracks can be formed for specific applications of the membranes. After etching gas permeation method is used for characterizing the tracks. In the present work polycarbonate (PC) of various thickness were irradiated with energetic ion beam at Inter University Accelerator Centre (IUAC), New Delhi. Nuclear tracks were modified by etching the PC in 6N NaOH at 60 (±1) °C from both sides for different times to produce track etch membranes. At critical etch time the etched pits from both the sides meet a rapid increase in gas permeation was observed. Permeability of hydrogen and carbon dioxide has been measured in samples etched for different times. The latent tracks produced by SHI irradiation in the track etch membranes show enhancement of free volume of the polymer. Nano filters are separation devices for the mixture of gases, different ions in the solution and isotopes and isobars separations. The polymer thin films with controlled porosity finding it self as best choice. However, the permeability and selectivity of these polymer based membrane filters are very important at the nano scale separation. The Swift Heavy Ion (SHI) induced nuclear track etched polymeric films with controlled etching have been attempted and characterized as nano scale filters.
Effects of hard mask etch on final topography of advanced phase shift masks
NASA Astrophysics Data System (ADS)
Hortenbach, Olga; Rolff, Haiko; Lajn, Alexander; Baessler, Martin
2017-07-01
Continuous shrinking of the semiconductor device dimensions demands steady improvements of the lithographic resolution on wafer level. These requirements challenge the photomask industry to further improve the mask quality in all relevant printing characteristics. In this paper topography of the Phase Shift Masks (PSM) was investigated. Effects of hard mask etch on phase shift uniformity and mask absorber profile were studied. Design of experiments method (DoE) was used for the process optimization, whereas gas composition, bias power of the hard mask main etch and bias power of the over-etch were varied. In addition, influence of the over-etch time was examined at the end of the experiment. Absorber depth uniformity, sidewall angle (SWA), reactive ion etch lag (RIE lag) and through pitch (TP) dependence were analyzed. Measurements were performed by means of Atomic-force microscopy (AFM) using critical dimension (CD) mode with a boot-shaped tip. Scanning electron microscope (SEM) cross-section images were prepared to verify the profile quality. Finally CD analysis was performed to confirm the optimal etch conditions. Significant dependence of the absorber SWA on hard mask (HM) etch conditions was observed revealing an improvement potential for the mask absorber profile. It was found that hard mask etch can leave a depth footprint in the absorber layer. Thus, the etch depth uniformity of hard mask etch is crucial for achieving a uniform phase shift over the active mask area. The optimized hard mask etch process results in significantly improved mask topography without deterioration of tight CD specifications.
Shafiei, Fereshteh; Zarean, Mehran; Razmjoei, Faranak
2018-01-01
Background The effectiveness of sealants is dependent upon their adhesion to enamel surface. The aim of the study was to evaluate the sealing ability of a pit and fissure sealant used with a universal adhesive (etch-and-rinse vs. self-etch modes) when the site is contaminated with saliva. Adhesive properties were evaluated as microleakage and scanning electron microscopic (SEM) characteristics. Material and Methods A total of 72 mandibular third molars were randomly divided into 6 groups (n=12). Occlusal pits and fissures were sealed with an unfilled resin fissure sealant (FS) material with or without saliva contamination. The groups included: 1) phosphoric acid etching + FS (control), 2) phosphoric acid etching + Scotchbond Universal (etch-and-rinse) + FS, 3) phosphoric acid etching + saliva + Scotchbond Universal (etch-and-rinse) + FS, 4) Scotchbond Universal (self-etching) + FS,5) Scotchbond Universal (self-etching) + saliva + FS, and 6) Scotchbond Universal (self-etching) + saliva + Scotchbond Universal + FS. After thermocycling, the teeth were placed in 0.5% fuchsin, sectioned, and evaluated by digital microscopy. Two samples from each group were also observed by SEM. The data were analyzed with Kruskal-Wallis and Mann-Whitney tests for a significance of p<0.05. Results There were significant differences among groups. Groups 1,2 and 4 showed the least microleakage, with no significant differences among groups. Saliva contamination led to increased microleakage and gap formation in SEM images in groups 3, 5 and 6. Conclusions The fissure sealing ability of the universal adhesive in etch-and-rinse or self-etch modes was similar to that of conventional acid etching. Saliva contamination had a negative effect on sealant adhesion to pretreated enamel. Key words:Pit and fissure sealant, Universal adhesive, Saliva. PMID:29670708
On the influence of etch pits in the overall dissolution rate of apatite basal sections
NASA Astrophysics Data System (ADS)
Alencar, Igor; Guedes, Sandro; Palissari, Rosane; Hadler, Julio C.
2015-09-01
Determination of efficiencies for particle detection plays a central role for proper estimation of reaction rates. If chemical etching is employed in the revelation of latent particle tracks in solid-state detectors, dissolution rates and etchable lengths are important factors governing the revelation and observation. In this work, the mask method, where a reference part of the sample is protected during dissolution, was employed to measure step heights in basal sections of apatite etched with a nitric acid, HNO, solution at a concentration of 1.1 M and a temperature of 20 °C. We show a drastic increase in the etching velocity as the number of etch pits in the surface augments, in accordance with the dissolution stepwave model, where the outcrop of each etch pit generates a continuous sequence of stepwaves. The number of etch pits was varied by irradiation with neutrons and perpendicularly incident heavy ions. The size dependence of the etch-pit opening with etching duration for ion (200-300 MeV 152Sm and 238U) tracks was also investigated. There is no distinction for the etch pits between the different ions, and the dissolution seems to be governed by the opening velocity when a high number of etch pits are present in the surface. Measurements of the etchable lengths of these ion tracks show an increase in these lengths when samples are not pre-annealed before irradiation. We discuss the implications of these findings for fission-track modelling.
NASA Astrophysics Data System (ADS)
Song, Da
2008-02-01
One of the major challenges confronting the current integrated circuits (IC) industry is the metal "interconnect bottleneck". To overcome this obstacle, free space optical interconnects (FSOIs) can be used to address the demand for high speed data transmission, multi-functionality and multi-dimensional integration for the next generation IC. One of the crucial elements in FSOIs system is to develop a high performance and flexible optical network to transform the incoming optical signal into a distributed set of optical signals whose direction, alignment and power can be independently controlled. Among all the optical materials for the realization of FSOI components, porous silicon (PSi) is one of the most promising candidates because of its unique optical properties, flexible fabrication methods and integration with conventional IC material sets. PSi-based Distributed Bragg Reflector (DBR) and Fabry-Perot (F-P) structures with unique optical properties are realized by electrochemical etching of silicon. By incorporating PSi optical structures with Micro-Opto-Electro-Mechanical-Systems (MOEMS), several components required for FSOI have been developed. The first type of component is the out-of-plane freestanding optical switch. Implementing a PSi DBR structure as an optically active region, the device can realize channel selection by changing the tilting angle of the micromirror supported by the thermal bimorph actuator. All the fabricated optical switches have reached kHz working frequency and life time of millions of cycles. The second type of component is the in-plane tunable optical filter. By introducing PSi F-P structure into the in-plane PSi film, a thermally tunable optical filter with a sensitivity of 7.9nm/V has been realized for add/drop optical signal selection. Also, for the first time, a new type of PSi based reconfigurable diffractive optical element (DOE) has been developed. By using patterned photoresist as a protective mask for electrochemical etching, the freestanding PSi-based MOEMS DOE has been created as a beam splitter to redistribute the incoming optical signal with onto desired detector arrays. All the developed devices are realized in array fashion and can be addressed and controlled individually. The combination of PSi and MOEMS opens the door for a new generation of silicon compatible optical interconnects.
Etch pit investigation of free electron concentration controlled 4H-SiC
NASA Astrophysics Data System (ADS)
Kim, Hong-Yeol; Shin, Yun Ji; Kim, Jung Gon; Harima, Hiroshi; Kim, Jihyun; Bahng, Wook
2013-04-01
Etch pits were investigated using the molten KOH selective etching method to examine dependence of etch pit shape and size on free electron concentration. The free electron concentrations of highly doped 4H-silicon carbide (SiC) were controlled by proton irradiation and thermal annealing, which was confirmed by a frequency shift in the LO-phonon-plasmon-coupled (LOPC) mode on micro-Raman spectroscopy. The proton irradiated sample with 5×1015 cm-2 fluence and an intrinsic semi-insulating sample showed clearly classified etch pits but different ratios of threading screw dislocation (TSD) and threading edge dislocation (TED) sizes. Easily classified TEDs and TSDs on proton irradiated 4H-SiC were restored as highly doped 4H-SiC after thermal annealing due to the recovered carrier concentrations. The etched surface of proton irradiated 4H-SiC and boron implanted SiC showed different surface conditions after activation.
AlGaN-Cladding-Free m-Plane InGaN/GaN Laser Diodes with p-Type AlGaN Etch Stop Layers
NASA Astrophysics Data System (ADS)
Farrell, Robert M.; Haeger, Daniel A.; Hsu, Po Shan; Hardy, Matthew T.; Kelchner, Kathryn M.; Fujito, Kenji; Feezell, Daniel F.; Mishra, Umesh K.; DenBaars, Steven P.; Speck, James S.; Nakamura, Shuji
2011-09-01
We present a new method of improving the accuracy and reproducibility of dry etching processes for ridge waveguide InGaN/GaN laser diodes (LDs). A GaN:Al0.09Ga0.91N etch rate selectivity of 11:1 was demonstrated for an m-plane LD with a 40 nm p-Al0.09Ga0.91N etch stop layer (ESL) surrounded by Al-free cladding layers, establishing the effectiveness of AlGaN-based ESLs for controlling etch depth in ridge waveguide InGaN/GaN LDs. These results demonstrate the potential for integrating AlGaN ESLs into commercial device designs where accurate control of the etch depth of the ridge waveguide is necessary for stable, kink-free operation at high output powers.
Optical-fiber strain sensors with asymmetric etched structures.
Vaziri, M; Chen, C L
1993-11-01
Optical-fiber strain gauges with asymmetric etched structures have been analyzed, fabricated, and tested. These sensors are very sensitive with a gauge factor as high as 170 and a flat frequency response to at least 2.7 kHz. The gauge factor depends on the asymmetry of the etched structures and the number of etched sections. To understand the physical principles involved, researchers have used structural analysis programs based on a finite-element method to analyze fibers with asymmetric etched structures under tensile stress. The results show that lateral bends are induced on the etched fibers when they are stretched axially. To relate the lateral bending to the optical attenuation, we have also employed a ray-tracing technique to investigate the dependence of the attenuation on the structural deformation. Based on the structural analysis and the ray-tracing study parameters affecting the sensitivity have been studied. These results agree with the results of experimental investigations.
Simulation of SiO2 etching in an inductively coupled CF4 plasma
NASA Astrophysics Data System (ADS)
Xu, Qing; Li, Yu-Xing; Li, Xiao-Ning; Wang, Jia-Bin; Yang, Fan; Yang, Yi; Ren, Tian-Ling
2017-02-01
Plasma etching technology is an indispensable processing method in the manufacturing process of semiconductor devices. Because of the high fluorine/carbon ratio of CF4, the CF4 gas is often used for etching SiO2. A commercial software ESI-CFD is used to simulate the process of plasma etching with an inductively coupled plasma model. For the simulation part, CFD-ACE is used to simulate the chamber, and CFD-TOPO is used to simulate the surface of the sample. The effects of chamber pressure, bias voltage and ICP power on the reactant particles were investigated, and the etching profiles of SiO2 were obtained. Simulation can be used to predict the effects of reaction conditions on the density, energy and angular distributions of reactant particles, which can play a good role in guiding the etching process.
Method of fabricating a scalable nanoporous membrane filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tringe, Joseph W; Balhorn, Rodney L; Zaidi, Saleem
A method of fabricating a nanoporous membrane filter having a uniform array of nanopores etch-formed in a thin film structure (e.g. (100)-oriented single crystal silicon) having a predetermined thickness, by (a) using interferometric lithography to create an etch pattern comprising a plurality array of unit patterns having a predetermined width/diameter, (b) using the etch pattern to etch frustum-shaped cavities or pits in the thin film structure such that the dimension of the frustum floors of the cavities are substantially equal to a desired pore size based on the predetermined thickness of the thin film structure and the predetermined width/diameter ofmore » the unit patterns, and (c) removing the frustum floors at a boundary plane of the thin film structure to expose, open, and thereby create the nanopores substantially having the desired pore size.« less
Resistless lithography - selective etching of silicon with gallium doping regions
NASA Astrophysics Data System (ADS)
Abdullaev, D.; Milovanov, R.; Zubov, D.
2016-12-01
This paper presents the results for used of resistless lithography with a further reactive-ion etching (RIE) in various chemistry after local (Ga+) implantation of silicon with different doping dose and different size doped regions. We describe the different etching regimes for pattern transfer of FIB implanted Ga masks in silicon. The paper studied the influence of the implantation dose on the silicon surface, the masking effect and the mask resistance to erosion at dry etching. Based on these results we conclude about the possibility of using this method to create micro-and nanoscale silicon structures.
Fabrication and etching processes of silicon-based PZT thin films
NASA Astrophysics Data System (ADS)
Zhao, Hongjin; Liu, Yanxiang; Liu, Jianshe; Ren, Tian-Ling; Liu, Li-Tian; Li, Zhijian
2001-09-01
Lead-zirconate-titanate (PZT) thin films on silicon were prepared by a sol-gel method. Phase characterization and crystal orientation of the films were investigated by x-ray diffraction analysis (XRD). It was shown that the PZT thin films had a perfect perovskite structure after annealed at a low temperature of 600 degrees C. PZT thin films were chemically etched using HCl/HF solution through typical semiconductor lithographic process, and the etching condition was optimized. The scanning electron microscopy results indicated that the PZT thin film etching problem was well solved for the applications of PZT thin film devices.
Metal-assisted chemical etching using sputtered gold: a simple route to black silicon
NASA Astrophysics Data System (ADS)
Kurek, Agnieszka; Barry, Seán T.
2011-08-01
We report an accessible and simple method of producing 'black silicon' with aspect ratios as high as 8 using common laboratory equipment. Gold was sputtered to a thickness of 8 nm using a low-vacuum sputter coater. The structures were etched into silicon substrates using an aqueous H2O2/HF solution, and the gold was then removed using aqua regia. Ultrasonication was necessary to produce columnar structures, and an etch time of 24 min gave a velvety, non-reflective surface. The surface features after 24 min etching were uniformly microstructured over an area of square centimetres.
Measurement of the efficacy of calcium silicate for the protection and repair of dental enamel.
Parker, Alexander S; Patel, Anisha N; Al Botros, Rehab; Snowden, Michael E; McKelvey, Kim; Unwin, Patrick R; Ashcroft, Alexander T; Carvell, Mel; Joiner, Andrew; Peruffo, Massimo
2014-06-01
To investigate the formation of hydroxyapatite (HAP) from calcium silicate and the deposition of calcium silicate onto sound and acid eroded enamel surfaces in order to investigate its repair and protective properties. Calcium silicate was mixed with phosphate buffer for seven days and the resulting solids analysed for crystalline phases by Raman spectroscopy. Deposition studies were conducted on bovine enamel surfaces. Acid etched regions were produced on the enamel surfaces using scanning electrochemical cell microscopy (SECCM) with acid filled pipettes and varying contact times. Following treatment with calcium silicate, the deposition was visualised with FE-SEM and etch pit volumes were measured by AFM. A second set of bovine enamel specimens were pre-treated with calcium silicate and fluoride, before acid exposure with the SECCM. The volumes of the resultant acid etched pits were measured using AFM and the intrinsic rate constant for calcium loss was calculated. Raman spectroscopy confirmed that HAP was formed from calcium silicate. Deposition studies demonstrated greater delivery of calcium silicate to acid eroded than sound enamel and that the volume of acid etched enamel pits was significantly reduced following one treatment (p<0.05). In the protection study, the intrinsic rate constant for calcium loss from enamel was 0.092 ± 0.008 cm/s. This was significantly reduced, 0.056 ± 0.005 cm/s, for the calcium silicate treatments (p<0.0001). Calcium silicate can transform into HAP and can be deposited on acid eroded and sound enamel surfaces. Calcium silicate can provide significant protection of sound enamel from acid challenges. Calcium silicate is a material that has potential for a new approach to the repair of demineralised enamel and the protection of enamel from acid attacks, leading to significant dental hard tissue benefits. © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ali, Hiba M.; Makki, Sameer A.; Abd, Ahmed N.
2018-05-01
Porous silicon (n-PS) films can be prepared by photoelectochemical etching (PECE) Silicon chips n - types with 15 (mA / cm2), in 15 minutes etching time on the fabrication nano-sized pore arrangement. By using X-ray diffraction measurement and atomic power microscopy characteristics (AFM), PS was investigated. It was also evaluated the crystallites size from (XRD) for the PS nanoscale. The atomic force microscopy confirmed the nano-metric size chemical fictionalization through the electrochemical etching that was shown on the PS surface chemical composition. The atomic power microscopy checks showed the roughness of the silicon surface. It is also notified (TiO2) preparation nano-particles that were prepared by pulse laser eradication in ethanol (PLAL) technique through irradiation with a Nd:YAG laser pulses TiO2 target that is sunk in methanol using 400 mJ of laser energy. It has been studied the structural, optical and morphological of TiO2NPs. It has been detected that through XRD measurement, (TiO2) NPs have been Tetragonal crystal structure. While with AFM measurements, it has been realized that the synthesized TiO2 particles are spherical with an average particle size in the (82 nm) range. It has been determined that the energy band gap of TiO2 NPs from optical properties and set to be in (5eV) range.The transmittance and reflectance spectra have determined the TiO2 NPs optical constants. It was reported the effectiveness of TiO2 NPs expansion on the PS Photodetector properties which exposes the benefits in (Al/PS/Si/Al). The built-in tension values depend on the etching time current density and laser flounce. Al/TiO2/PS/Si/Al photo-detector heterojunction have two response peaks that are situated at 350 nm and (700 -800nm) with max sensitivity ≈ 0.7 A/W. The maximum given detectivity is 9.38at ≈ 780 nm wavelength.
Facile synthesis of silicon nanowire-nanopillar superhydrophobic structures
NASA Astrophysics Data System (ADS)
Roy, Abhijit; Satpati, Biswarup
2018-04-01
We have used metal assisted chemical etching (MACE) method to produce silicon (Si) nanowire-nanopillar array. Nanowire-nanopillar combined structures show higher degree of hydrophobicity compared to its nanowire (Si-NW) counterparts. The rate of etching is depended on initial metal deposition. The structural analysis was carried out using scanning electron microscopy (SEM) in combination with transmission electron microscopy (TEM) to determine different parameters like etching direction, crystallinity etc.
Process for etching mixed metal oxides
Ashby, C.I.H.; Ginley, D.S.
1994-10-18
An etching process is described using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstrom range may be achieved by this method. 1 fig.
NASA Astrophysics Data System (ADS)
Yang, Junyan; Martin, David
2003-03-01
Micromachined neural prosthetic devices facilitate the functional stimulation of and recording from the central nervous system (CNS). These devices have been fabricated to consist of silicon shanks that have gold or iridium sites along their surface. Our goal is to improve the biocompatibility and long-term performance of the neural prosthetic probes when they are implanted chronically in the brain. In our most recent efforts we have established that electrochemical polymerization can be used to deposit fuzzy coatings of conducting polymers specifically on the electrode sites. For neural prosthetic devices that are intended for long term implantation, we need to develop surfaces that provide intimate contact and promote efficient signal transport at the interface of the microelectrode array and brain tissue. We have developed methods to rapidly and reliably fabricate nanostructured conducting polymer coatings on the electrode probes using templated and surfactant-mediated techniques. Conducting polymer nanomushrooms and nanohairs of polypyrrole (PPy) were electrochemically polymerized onto the functional sites of neural probes by using either nanoporous block copolymers thin films, "track-etched" polycarbonate films or anodic aluminium oxide membranes as templates. Nanofibers of conducting polymers have also been successfully obtained by polymerizations in the presence of surfactants. The influence of current density, monomer concentration, surfactant concentration, and deposition charge on the thickness and morphology of the nanostructured conducting polymer coatings has been studied by optical, scanned probe, scanning electron and transmission electron microscopy. As compared with the normal nodular morphology of polypyrrole, the nanostructured morphologies grown from the neural electrode result in fuzzy coatings with extremely high surface area. The electrical properties of the polymer coatings were studied by Impedance Spectroscopy (IS) and Cyclic Voltammetry (CV). The significant drop in impedance in magnitude and phase angle is consistent with an increase of the surface area due to the roughened surface morphology.
Evaluation of ASR potential of quartz-rich rocks by alkaline etching of polished rock sections
NASA Astrophysics Data System (ADS)
Šachlová, Šárka; Kuchařová, Aneta; Pertold, Zdeněk; Přikryl, Richard
2015-04-01
Damaging effect of alkali-silica reaction (ASR) on concrete structures has been observed in various countries all over the World. Civil engineers and real state owners are demanding reliable methods in the assessment of ASR potential of aggregates before they are used in constructions. Time feasible methods are expected, as well as methods which enable prediction of long-term behaviour of aggregates in concrete. The most frequently employed accelerated mortar bar test (AMBT) quantifies ASR potential of aggregates according to the expansion values of mortar bars measured after fourteen days testing period. Current study aimed to develop a new methodical approach facilitating identification and quantification of ASR potential of aggregates. Polished rock sections of quartz and amorphous SiO2 (coming from orthoquartzite, quartz meta-greywacke, pegmatite, phyllite, chert, and flint) were subjected to experimental leaching in 1M NaOH solution at 80°C. After 14 days of alkaline etching, the rock sections were analyzed employing scanning electron microscope combined with energy dispersive spectrometer. Representative areas were documented in back scattered electron (BSE) images and measured using fully-automatic petrographic image analysis (PIA). Several features connected to alkaline etching were observed on the surface of polished rock sections: deep alkaline etching, partial leach-out of quartz and amorphous particles, alkaline etching connected to quartz grain boundaries, and alkaline etching without any connection to grain boundaries. All features mentioned above had significant influence on grey-scale spectrum of BSE images. A specific part of the grey-scale spectrum (i.e. grey-shade 0-70) was characteristic of areas affected by alkaline etching (ASR area). By measuring such areas we quantified the extent of alkaline etching in studied samples. Very good correlation was found between the ASR area and ASR potential of investigated rocks measured according to the standard AMBT (folowing ASTM C1260). The etching experiment is regarded to be feasible method to quantify ASR potential of quartz- (resp. SiO2-) rich rocks. Employement of the method: (1) decreases potential error from less experienced operator; (2) minimizes the volume of the rock need to be analyzed; (3) enables to visualize microscopic features where ASR originates; and (4) enables to identify alkali-reactive components in the rocks. The main disadvatage of the method is regarded in the restriction to quartz- (resp. SiO2-) rich rocks. If other minerals are included in the rocks their role in ASR should be considered. These minerals can be excluded from the analysis in case they are not reactive and if their content is very low (e.g. accesory minerals). If the minerals contribute to ASR (e.g. albite, micas), these mineral phases should be included in the analysis. Then the application of PIA needs to be modified in respect to different grey shades of individual minerals.
X-ray Reflectivity Study of a Highly Rough Surface: Si Nanowires Grown by Ag Nanoparticle Etching
NASA Astrophysics Data System (ADS)
Kremenak, Jesse; Arendse, Christopher; Cummings, Franscious; Chen, Yiyao; Miceli, Paul
Vertically oriented Si nanowires (SiNWs) formed by Ag-assisted wet chemical etching of a Si(100) substrate was studied by X-ray reflectivity (XRR) in combination with electron microscopy. Si(100) wafers coated with Ag nanoparticles, which serve as a catalyst, were etched for different durations in a HF/H2O2/DI-H2O solution. Because of the extreme roughness of these surfaces, there are challenges for using XRR methods in such systems. Therefore, significant attention is given to the analysis method of the XRR measurements. This sample-average information presents a valuable complement to electron microscopy studies, which focus on small sections of the sample. The present work shows-for the first time-the amount and distribution of Ag during the formation of SiNWs fabricated by Ag-assisted wet chemical etching, which is vital information for understanding the etching mechanisms. Support is gratefully acknowledged from the National Science Foundation (USA) - DGE1069091, the National Research Foundation (RSA) - TTK14052167658, 76568, 92520, and 93212; and the University of Missouri/University of Western Cape Linkage Program.
NASA Technical Reports Server (NTRS)
Barber, Patrick G.
1998-01-01
The goals outlined for the research project for this year have been completed, and the following supporting documentation is attached: 1. A copy of the proposal outlining the principal goals: (a) Improve the characterization of semiconductor crystals through new etches and etching procedures. (b) Developed a novel voltammetric method to characterize semiconductor crystals as a result of searching for improved etches for lead-tin-telluride. (c) Presented paper at ACCG- 10. (d) Prepared manuscripts for publication. Completed additional testing suggested by reviewers and re-submitted manuscripts. (e) Worked with an undergraduate student on this project to provide her an opportunity to have a significant research experience prior to graduation. 2. In addition to the anticipated goals the following were also accomplished: (a) Submitted the newly developed procedures for consideration as a patent or a NASA Tech Brief. (b) Submitted a paper for presentation at the forthcoming ICCG- 12 conference. 3. A copy of the final draft of the publication as submitted to the editors of the Journal of Crystal Growth.
Etch Profile Simulation Using Level Set Methods
NASA Technical Reports Server (NTRS)
Hwang, Helen H.; Meyyappan, Meyya; Arnold, James O. (Technical Monitor)
1997-01-01
Etching and deposition of materials are critical steps in semiconductor processing for device manufacturing. Both etching and deposition may have isotropic and anisotropic components, due to directional sputtering and redeposition of materials, for example. Previous attempts at modeling profile evolution have used so-called "string theory" to simulate the moving solid-gas interface between the semiconductor and the plasma. One complication of this method is that extensive de-looping schemes are required at the profile corners. We will present a 2D profile evolution simulation using level set theory to model the surface. (1) By embedding the location of the interface in a field variable, the need for de-looping schemes is eliminated and profile corners are more accurately modeled. This level set profile evolution model will calculate both isotropic and anisotropic etch and deposition rates of a substrate in low pressure (10s mTorr) plasmas, considering the incident ion energy angular distribution functions and neutral fluxes. We will present etching profiles of Si substrates in Ar/Cl2 discharges for various incident ion energies and trench geometries.
NASA Astrophysics Data System (ADS)
Xiaofeng, Chen; Nuofu, Chen; Jinliang, Wu; Xiulan, Zhang; Chunlin, Chai; Yude, Yu
2009-08-01
A GaSb crystal incorporated with Mn has been grown by the Bridgman method on the Polizon facility onboard the FOTON-M3 spacecraft. Structural defects and growth striations have been successfully revealed by the chemical etching method. By calculating various parameters of the convection, the striation patterns can be explained, and the critical value of the Taylor number, which characterizes the convective condition of the rotating magnetic field induced azimuthal flow, was shown. The stresses generated during crystal growth can be reflected by the observations of etch pit distribution and other structural defects. Suggestions for improving the space experiment to improve the quality of the crystal are given.
The improvement of adhesive properties of PEEK through different pre-treatments
NASA Astrophysics Data System (ADS)
Hallmann, Lubica; Mehl, Albert; Sereno, Nuno; Hämmerle, Christoph H. F.
2012-07-01
The purpose of this in vitro study was the evaluation of the bond strength of the adhesives/composite resin to Poly Ether Ether Ketone (PEEK) based dental polymer after using different surface conditioning methods. PEEK blanks were cut into discs. All disc specimens were polished with 800 grit SiC paper and divided into 6 main groups. Main groups were divided into 2 subgroups. The main groups of 32 specimens each were treated as follow: (1) control specimens (no treatment), (2) piranha solution etching, (3) abraded with 50 μm alumina particles and chemical etching, (4) abraded with 110 μm alumina particles and chemical etching, (5) abraded with 30 μm silica-coated alumina particles and chemical etching, (6) abraded with 110 μm silica-coated alumina particles and chemical etching. Plexiglas tubes filled with a composite resin (RelyX Unicem) were bonded to the specimens. The adhesives used were Heliobond and Clearfil Ceramic Primer. Each specimen was stored in distilled water (37 °C) for 3 days. Tensile bond strength was measured in a universal testing machine and failure methods were evaluated. Abraded surface with 50 μm alumina particles followed by etching with piranha solution lead to the highest bond strength of 21.4 MPa when Heliobond like adhesive was used. Tribochemical silica coated/etched PEEK surfaces did not have an effect on the bond strength. Non-treated PEEK surface was not able to establish a bond with composite resin. The proper choice of adhesive/composite resin system leads to a strong bond. ConclusionAirborne particle abrasion in combination with piranha solution etching improves the adhesive properties of PEEK.
Zorba, Yahya Orcun; Ilday, Nurcan Ozakar; Bayındır, Yusuf Ziya; Demirbuga, Sezer
2013-01-01
Objective: The aim of this study was to test the null hypothesis that different surface conditioning (etch and rinse and self-etch) and curing techniques (light cure/dual cure) had no effect on the shear bond strength of direct and indirect composite inlays. Materials and Methods: A total of 112 extracted human molar teeth were horizontally sectioned and randomly divided into two groups according to restoration technique (direct and indirect restorations). Each group was further subdivided into seven subgroups (n = 8) according to bonding agent (etch and rinse adhesives Scotchbond multi-purpose plus, All-Bond 3, Adper Single Bond and Prime Bond NT; and self-etch adhesives Clearfil Liner Bond, Futurabond DC and G bond). Indirect composites were cemented to dentin surfaces using dual-curing luting cement. Shear bond strength of specimens was tested using a Universal Testing Machine. Two samples from each subgroup were evaluated under Scanning electron microscopy to see the failing modes. Data was analyzed using independent sample t-tests and Tukey's tests. Results: Surface conditioning and curing of bonding agents were all found to have significant effects on shear bond strength (P < 0.05) of both direct and indirect composite inlays. With direct restoration, etch and rinse systems and dual-cured bonding agents yielded higher bond strengths than indirect restoration, self-etch systems and light-cured bonding agents. Conclusions: The results of the present study indicated that direct restoration to be a more reliable method than indirect restoration. Although etch and rinse bonding systems showed higher shear bond strength to dentin than self-etch systems, both systems can be safely used for the adhesion of direct as well as indirect restorations. PMID:24932118
Diamond network: template-free fabrication and properties.
Zhuang, Hao; Yang, Nianjun; Fu, Haiyuan; Zhang, Lei; Wang, Chun; Huang, Nan; Jiang, Xin
2015-03-11
A porous diamond network with three-dimensionally interconnected pores is of technical importance but difficult to be produced. In this contribution, we demonstrate a simple, controllable, and "template-free" approach to fabricate diamond networks. It combines the deposition of diamond/β-SiC nanocomposite film with a wet-chemical selective etching of the β-SiC phase. The porosity of these networks was tuned from 15 to 68%, determined by the ratio of the β-SiC phase in the composite films. The electrochemical working potential and the reactivity of redox probes on the diamond networks are similar to those of a flat nanocrystalline diamond film, while their surface areas are hundreds of times larger than that of a flat diamond film (e.g., 490-fold enhancement for a 3 μm thick diamond network). The marriage of the unprecedented physical/chemical features of diamond with inherent advantages of the porous structure makes the diamond network a potential candidate for various applications such as water treatment, energy conversion (batteries or fuel cells), and storage (capacitors), as well as electrochemical and biochemical sensing.
NASA Astrophysics Data System (ADS)
Thahe, Asad A.; Bidin, Noriah; Hassan, Z.; Bakhtiar, Hazri; Qaeed, M. A.; Bououdina, Mohamed; Ahmed, Naser M.; Talib, Zainal A.; Al-Azawi, Mohammed A.; Alqaraghuli, Hasan; Uday, M. B.; Hamad Ahmed, Omar
2017-11-01
Nanoporous silicon (n-PSi) with diverse morphologies was prepared on silicon (Si) substrate via photo-electrochemical etching technique. The role of changing current density (15, 30 and 45 mA cm-2) on the structure, morphology and optical properties was determined. As-prepared samples were systematically characterized using XRD, FESEM, AFM and photoluminescence measurements. Furthermore, the achieved n-PSi sample was used to make metal-semiconductor-metal (MSM) UV photodetector. The performance of these photodetectors was evaluated upon exposing to visible light of wavelength 530 nm (power density 1.55 mW cm-2), which exhibited very high sensitivity of 150.26 with a low dark current. The achieved internal photoconductive gain was 2.50, the photoresponse peak was 1.23 A W-1 and the response time was 0.49 s and the recovery time was 0.47 s. Excellent attributes of the fabricated photodetectors suggest that the present approach may provide a cost effective and simple way to obtain n-PSi suitable for sundry applications.
NASA Astrophysics Data System (ADS)
Lee, Sun-Young; Choi, Yunju; Hong, Kyong-Soo; Lee, Jung Kyoo; Kim, Ju-Young; Bae, Jong-Seong; Jeong, Euh Duck
2018-07-01
The crucial roles of ethylenediaminetetraacetic acid (EDTA) in the poly(acrylic acid) (PAA)-binder system were investigated for the high electrochemical performance silicon anode in lithium-ion batteries. The EDTA supports the construction of a mechanically robust network through the formation of sbndCOOH linkage with the SiO2 layer of the Si nanoparticles. The mixture of the PAA/EDTA binder and the conductive agent exhibited an improved elastic modulus and peeling strength. The creation of hydrogen fluoride (HF) was effectively suppressed through the elimination of the H2O. An H2O-phosphorous pentafluoride (PF5) reaction, which is known for its use in the etching of metal oxides including its creation of the solid electrolyte interphase (SEI) layer, generates the HF. A remarkably sound cyclability with a discharge capacity of 2540 mA h g-1 was achieved as a result of the synergistic effect between robust mechanical properties and suppression of the HF creation for the stability of the SEI layer.
NASA Astrophysics Data System (ADS)
Wang, Xiaofeng; Yin, Yajiang; Li, Xiangyu; You, Zheng
2014-04-01
A micro-supercapacitor with a three-dimensional configuration has been fabricated using an ICP etching technique. Hydrous ruthenium oxide with a tubular morphology is successfully synthesized using a cathodic deposition technique with a Si micro prominence as a template. The desired tubular RuO2·xH2O architecture facilitates electrolyte penetration and proton exchange/diffusion. A single MEMS electrode is studied using cyclic voltammetry, and a specific capacitance of 99.3 mF cm-2 and 70 F g-1 is presented at 5 mV s-1 in neutral Na2SO4 solution. The accelerated cycle life is tested at 80 mV s-1, and satisfactory cyclability is observed. When placed on a chip, the symmetric cell exhibits good supercapacitor properties, and a specific capacitance as high as 23 mF cm-2 is achieved at 10 mA cm-2. Therefore, 3D MEMS microelectrode arrays with electrochemically deposited ruthenium oxide films are promising candidates for on-chip electrochemical micro-capacitor applications.
Deep Etching Process Developed for the Fabrication of Silicon Carbide Microsystems
NASA Technical Reports Server (NTRS)
Beheim, Glenn M.
2000-01-01
Silicon carbide (SiC), because of its superior electrical and mechanical properties at elevated temperatures, is a nearly ideal material for the microminiature sensors and actuators that are used in harsh environments where temperatures may reach 600 C or greater. Deep etching using plasma methods is one of the key processes used to fabricate silicon microsystems for more benign environments, but SiC has proven to be a more difficult material to etch, and etch depths in SiC have been limited to several micrometers. Recently, the Sensors and Electronics Technology Branch at the NASA Glenn Research Center at Lewis Field developed a plasma etching process that was shown to be capable of etching SiC to a depth of 60 mm. Deep etching of SiC is achieved by inductive coupling of radiofrequency electrical energy to a sulfur hexafluoride (SF6) plasma to direct a high flux of energetic ions and reactive fluorine atoms to the SiC surface. The plasma etch is performed at a low pressure, 5 mtorr, which together with a high gas throughput, provides for rapid removal of the gaseous etch products. The lateral topology of the SiC microstructure is defined by a thin film of etch-resistant material, such as indium-tin-oxide, which is patterned using conventional photolithographic processes. Ions from the plasma bombard the exposed SiC surfaces and supply the energy needed to initiate a reaction between SiC and atomic fluorine. In the absence of ion bombardment, no reaction occurs, so surfaces perpendicular to the wafer surface (the etch sidewalls) are etched slowly, yielding the desired vertical sidewalls.
NASA Astrophysics Data System (ADS)
Nelson, A. J.; Swanberg, E. L.; Voss, L. F.; Graff, R. T.; Conway, A. M.; Nikolic, R. J.; Payne, S. A.; Kim, H.; Cirignano, L.; Shah, K.
2014-09-01
TlBr radiation detector operation degrades with time at room temperature and is thought to be due to electromigration of Tl and Br vacancies within the crystal as well as the metal contacts migrating into the TlBr crystal itself due to electrochemical reactions at the metal/TlBr interface. X-ray photoemission spectroscopy (XPS) was used to investigate the metal contact surface/interfacial structure on TlBr devices. Device-grade TlBr was polished and subjected to a 32% HCl etch to remove surface damage prior to Mo or Pt contact deposition. High-resolution photoemission measurements on the Tl 4f, Br 3d, Cl 2p, Mo 3d and Pt 4f core lines were used to evaluate surface chemistry and non-equilibrium interfacial diffusion. Results indicate that anion substitution at the TlBr surface due to the HCl etch forms TlBr1-xClx with consequent formation of a shallow heterojunction. In addition, a reduction of Tl1+ to Tl0 is observed at the metal contacts after device operation in both air and N2 at ambient temperature. Understanding contact/device degradation versus operating environment is useful for improving radiation detector performance.
Efficient suppression of nanograss during porous anodic TiO2 nanotubes growth
NASA Astrophysics Data System (ADS)
Gui, Qunfang; Yu, Dongliang; Li, Dongdong; Song, Ye; Zhu, Xufei; Cao, Liu; Zhang, Shaoyu; Ma, Weihua; You, Shiyu
2014-09-01
When Ti foil was anodized in fluoride-containing electrolyte for a long time, undesired etching-induced "nanograss" would inevitably generate on the top of porous anodic TiO2 nanotubes (PATNTs). The nanograss will hinder the ions transport and in turn yield depressed (photo) electrochemical performance. In order to obtain nanograss-free nanotubes, a modified three-step anodization and two-layer nanostructure of PATNTs were designed to avoid the nanograss. The first layer (L1) nanotubes were obtained by the conventional two-step anodization. After washing and drying processes, the third-step anodization was carried out with the presence of L1 nanotubes. The L1 nanotubes, serving as a sacrificed layer, was etched and transformed into nanograss, while the ultralong nanotubes (L2) were maintained underneath the L1. The bi-layer nanostructure of the nanograss/nanotubes (L1/L2) was then ultrasonically rinsed in deionized water to remove the nanograss (L1 layer). Then much longer nanotubes (L2 layer) with intact nanotube mouths could be obtained. Using this novel approach, the ultralong nanotubes without nanograss can be rationally controlled by adjusting the anodizing times of two layers.
Nanopore arrays in a silicon membrane for parallel single-molecule detection: DNA translocation
NASA Astrophysics Data System (ADS)
Zhang, Miao; Schmidt, Torsten; Jemt, Anders; Sahlén, Pelin; Sychugov, Ilya; Lundeberg, Joakim; Linnros, Jan
2015-08-01
Optical nanopore sensing offers great potential in single-molecule detection, genotyping, or DNA sequencing for high-throughput applications. However, one of the bottle-necks for fluorophore-based biomolecule sensing is the lack of an optically optimized membrane with a large array of nanopores, which has large pore-to-pore distance, small variation in pore size and low background photoluminescence (PL). Here, we demonstrate parallel detection of single-fluorophore-labeled DNA strands (450 bps) translocating through an array of silicon nanopores that fulfills the above-mentioned requirements for optical sensing. The nanopore array was fabricated using electron beam lithography and anisotropic etching followed by electrochemical etching resulting in pore diameters down to ∼7 nm. The DNA translocation measurements were performed in a conventional wide-field microscope tailored for effective background PL control. The individual nanopore diameter was found to have a substantial effect on the translocation velocity, where smaller openings slow the translocation enough for the event to be clearly detectable in the fluorescence. Our results demonstrate that a uniform silicon nanopore array combined with wide-field optical detection is a promising alternative with which to realize massively-parallel single-molecule detection.
Direct etch method for microfludic channel and nanoheight post-fabrication by picoliter droplets
NASA Astrophysics Data System (ADS)
Demirci, Utkan; Toner, Mehmet
2006-01-01
Photolithography is an expensive and significant step in microfabrication. Approaches that could change lithography would create an impact on semiconductor industry and microelectromechanical systems technologies. We demonstrate a direct etching method by ejecting etchant droplets at desired locations by using microdroplet ejector arrays. This method could be used for easy fabrication of poly(dimethylsiloxane) microfluidic channels and nanometer height postlike structures in microfluidic channels.
Femtosecond laser etching of dental enamel for bracket bonding.
Kabas, Ayse Sena; Ersoy, Tansu; Gülsoy, Murat; Akturk, Selcuk
2013-09-01
The aim is to investigate femtosecond laser ablation as an alternative method for enamel etching used before bonding orthodontic brackets. A focused laser beam is scanned over enamel within the area of bonding in a saw tooth pattern with a varying number of lines. After patterning, ceramic brackets are bonded and bonding quality of the proposed technique is measured by a universal testing machine. The results are compared to the conventional acid etching method. Results show that bonding strength is a function of laser average power and the density of the ablated lines. Intrapulpal temperature changes are also recorded and observed minimal effects are observed. Enamel surface of the samples is investigated microscopically and no signs of damage or cracking are observed. In conclusion, femtosecond laser exposure on enamel surface yields controllable patterns that provide efficient bonding strength with less removal of dental tissue than conventional acid-etching technique.
Method of plasma etching GA-based compound semiconductors
Qiu, Weibin; Goddard, Lynford L.
2013-01-01
A method of plasma etching Ga-based compound semiconductors includes providing a process chamber and a source electrode adjacent thereto. The chamber contains a Ga-based compound semiconductor sample in contact with a platen which is electrically connected to a first power supply, and the source electrode is electrically connected to a second power supply. SiCl.sub.4 and Ar gases are flowed into the chamber. RF power is supplied to the platen at a first power level, and RF power is supplied to the source electrode. A plasma is generated. Then, RF power is supplied to the platen at a second power level lower than the first power level and no greater than about 30 W. Regions of a surface of the sample adjacent to one or more masked portions of the surface are etched at a rate of no more than about 25 nm/min to create a substantially smooth etched surface.
High-indexed Pt 3Ni alloy tetrahexahedral nanoframes evolved through preferential CO etching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chenyu; Zhang, Lihua; Yang, Hongzhou
2017-03-07
Here, chemically controlling crystal structures in nanoscale is challenging, yet provides an effective way to improve catalytic performances. Pt-based nanoframes are a new class of nanomaterials that have great potential as high-performance catalysts. To date, these nanoframes are formed through acid etching in aqueous solutions, which demands long reaction time and often yields ill-defined surface structures. Herein we demonstrate a robust and unprecedented protocol for facile development of high-performance nanoframe catalysts using size and crystallographic facet-controlled PtNi 4 tetrahexahedral nanocrystals prepared through a colloidal synthesis approach as precursors. This new protocol employs the Mond process to preferentially dealloy nickel componentmore » in the <100> direction through carbon monoxide etching of carbon-supported PtNi 4 tetrahexahedral nanocrystals at an elevated temperature. The resultant Pt 3Ni alloy tetrahexahedral nanoframes possess an open, stable, and high-indexed microstructure, containing a segregated Pt thin layer strained to the Pt–Ni alloy surfaces and featuring a down-shift d-band center as revealed by the density functional theory calculations. These nanoframes exhibit much improved catalytic performance, such as high stability under prolonged electrochemical potential cycles, promoting direct electro-oxidation of formic acid to carbon dioxide and enhancing oxygen reduction reaction activities. Because carbon monoxide can be generated from the carbon support through thermal annealing in air, a common process for pretreating supported catalysts, the developed approach can be easily adopted for preparing industrial scale catalysts that are made of Pt–Ni and other alloy nanoframes.« less
Recovery of GaN surface after reactive ion etching
NASA Astrophysics Data System (ADS)
Fan, Qian; Chevtchenko, S.; Ni, Xianfeng; Cho, Sang-Jun; Morko, Hadis
2006-02-01
Surface properties of GaN subjected to reactive ion etching and the impact on device performance have been investigated by surface potential, optical and electrical measurements. Different etching conditions were studied and essentially high power levels and low chamber pressures resulted in higher etch rates accompanying with the roughening of the surface morphology. Surface potential for the as-grown c-plane GaN was found to be in the range of 0.5~0.7 V using Scanning Kevin Probe Microscopy. However, after reactive ion etching at a power level of 300 W, it decreased to 0.1~0.2 V. A nearly linear reduction was observed on c-plane GaN with increasing power. The nonpolar a-plane GaN samples also showed large surface band bending before and after etching. Additionally, the intensity of the near band-edge photoluminescence decreased and the free carrier density increased after etching. These results suggest that the changes in the surface potential may originate from the formation of possible nitrogen vacancies and other surface oriented defects and adsorbates. To recover the etched surface, N II plasma, rapid thermal annealing, and etching in wet KOH were performed. For each of these methods, the surface potential was found to increase by 0.1~0.3 V, also the reverse leakage current in Schottky diodes fabricated on treated samples was reduced considerably compared with as-etched samples, which implies a partial-to-complete recovery from the plasma-induced damage.
New silicon architectures by gold-assisted chemical etching.
Mikhael, Bechelany; Elise, Berodier; Xavier, Maeder; Sebastian, Schmitt; Johann, Michler; Laetitia, Philippe
2011-10-01
Silicon nanowires (SiNWs) were produced by nanosphere lithography and metal assisted chemical etching. The combination of these methods allows the morphology and organization control of Si NWs on a large area. From the investigation of major parameters affecting the etching such as doping type, doping concentration of the substrate, we demonstrate the formation of new Si architectures consisting of organized Si NW arrays formed on a micro/mesoporous silicon layer with different thickness. These investigations will allow us to better understand the mechanism of Si etching to enable a wide range of applications such as molecular sensing, and for thermoelectric and photovoltaic devices. © 2011 American Chemical Society
Etching of semiconductor cubic crystals: Determination of the dissolution slowness surfaces
NASA Astrophysics Data System (ADS)
Tellier, C. R.
1990-03-01
Equations of the representative surface of dissolution slowness for cubic crystals are determined in the framework of a tensorial approach of the orientation-dependent etching process. The independent dissolution constants are deduced from symmetry considerations. Using previous data on the chemical etching of germanium and gallium arsenide crystals, some possible polar diagrams of the dissolution slowness are proposed. A numerical and graphical simulation method is used to obtain the derived dissolution shapes. The influence of extrema in the dissolution slowness on the successive dissolution shapes is also examined. A graphical construction of limiting shapes of etched crystals appears possible using the tensorial representation of the dissolution slowness.
Metal-assisted chemical etch porous silicon formation method
Li, Xiuling; Bohn, Paul W.; Sweedler, Jonathan V.
2004-09-14
A thin discontinuous layer of metal such as Au, Pt, or Au/Pd is deposited on a silicon surface. The surface is then etched in a solution including HF and an oxidant for a brief period, as little as a couple seconds to one hour. A preferred oxidant is H.sub.2 O.sub.2. Morphology and light emitting properties of porous silicon can be selectively controlled as a function of the type of metal deposited, Si doping type, silicon doping level, and/or etch time. Electrical assistance is unnecessary during the chemical etching of the invention, which may be conducted in the presence or absence of illumination.
Rapid recipe formulation for plasma etching of new materials
NASA Astrophysics Data System (ADS)
Chopra, Meghali; Zhang, Zizhuo; Ekerdt, John; Bonnecaze, Roger T.
2016-03-01
A fast and inexpensive scheme for etch rate prediction using flexible continuum models and Bayesian statistics is demonstrated. Bulk etch rates of MgO are predicted using a steady-state model with volume-averaged plasma parameters and classical Langmuir surface kinetics. Plasma particle and surface kinetics are modeled within a global plasma framework using single component Metropolis Hastings methods and limited data. The accuracy of these predictions is evaluated with synthetic and experimental etch rate data for magnesium oxide in an ICP-RIE system. This approach is compared and superior to factorial models generated from JMP, a software package frequently employed for recipe creation and optimization.
Controlled core removal from a D-shaped optical fiber.
Markos, Douglas J; Ipson, Benjamin L; Smith, Kevin H; Schultz, Stephen M; Selfridge, Richard H; Monte, Thomas D; Dyott, Richard B; Miller, Gregory
2003-12-20
The partial removal of a section of the core from a continuous D-shaped optical fiber is presented. In the core removal process, selective chemical etching is used with hydrofluoric (HF) acid. A 25% HF acid solution removes the cladding material above the core, and a 5% HF acid solution removes the core. A red laser with a wavelength of 670 nm is transmitted through the optical fiber during the etching. The power transmitted through the optical fiber is correlated to the etch depth by scanning electron microscope imaging. The developed process provides a repeatable method to produce an optical fiber with a specific etch depth.
Bastos, Laura Alves; Sousa, Ana Beatriz Silva; Drubi-Filho, Brahim; Panzeri Pires-de-Souza, Fernanda de Carvalho
2015-01-01
Objectives The aim of this study was to evaluate the effect of pre-etching on the bond strength of silorane-based composite specific adhesive system to dentin. Materials and Methods Thirty human molars were randomly divided into 5 groups according to the different bonding strategies. For teeth restored with silorane-based composite (Filtek Silorane, 3M ESPE), the specific self-etching adhesive system (Adhesive System P90, 3M ESPE) was used with and without pre-etching (Pre-etching/Silorane and Silorane groups). Teeth restored with methacrylate based-composite (Filtek Z250, 3M ESPE) were hybridized with the two-step self-etching system (Clearfil SE Bond, Kuraray), with and without pre-etching (Pre-etching/Methacrylate and Methacrylate groups), or three-step adhesive system (Adper Scotchbond Multi-Purpose, 3M ESPE) (Three-step/Methacrylate group) (n = 6). The restored teeth were sectioned into stick-shaped test specimens (1.0 × 1.0 mm), and coupled to a universal test machine (0.5 mm/min) to perform microtensile testing. Results Pre-etching/Methacrylate group presented the highest bond strength values, with significant difference from Silorane and Three-step/Methacrylate groups (p < 0.05). However, it was not significantly different from Preetching/Silorane and Methacrylate groups. Conclusions Pre-etching increased bond strength of silorane-based composite specific adhesive system to dentin. PMID:25671209
Influence of enamel conditioning on the shear bond strength of different adhesives.
Brauchli, Lorenz; Muscillo, Teodoro; Steineck, Markus; Wichelhaus, Andrea
2010-11-01
Phosphoric acid etching is the gold standard for enamel conditioning. However, it is possible that air abrasion or a combination of air abrasion and etching might result in enhanced adhesion. The aim of this study was to investigate the effect of different enamel conditioning methods on the bond strength of six adhesives. Three different enamel conditioning procedures (phosphoric acid etching, air abrasion, air abrasion + phosphoric acid etching) were evaluated for their influence on the shear bond strength of six different adhesives (Transbond™ XT, Cool-Bond™, Fuji Ortho LC, Ultra Band-Lok, Tetric(®) Flow, Light-Bond™). Each group consisted of 15 specimens. Shear forces were measured with a universal testing machine. The scores of the Adhesive Remnant Index (ARI) were also analyzed. There were no significant differences between phosphoric acid etching and air abrasion + phosphoric acid etching. Air abrasion as a single conditioning technique led to significantly lower shear forces. The ARI scores did not correlate with the shear strengths measured. There were greater variations in shear forces for the different adhesives than for the conditioning techniques. The highest shear forces were found for the conventional composites Transbond™ XT and Cool- Bond™ in combination with conventional etching. Air abrasion alone and in combination with phosphoric acid etching showed no advantages compared with phosphoric acid etching alone and, therefore, cannot be recommended.
AFM and SEM study of the effects of etching on IPS-Empress 2 TM dental ceramic
NASA Astrophysics Data System (ADS)
Luo, X.-P.; Silikas, N.; Allaf, M.; Wilson, N. H. F.; Watts, D. C.
2001-10-01
The aim of this study was to investigate the effects of increasing etching time on the surface of the new dental material, IPS-Empress 2 TM glass ceramic. Twenty one IPS-Empress 2 TM glass ceramic samples were made from IPS-Empress 2 TM ingots through lost-wax, hot-pressed ceramic fabrication technology. All samples were highly polished and cleaned ultrasonically for 5 min in acetone before and after etching with 9.6% hydrofluoric acid gel. The etching times were 0, 10, 20, 30, 60, 90 and 120 s respectively. Microstructure was analysed by scanning electron microscopy (SEM) and atomic force microscopy (AFM) was used to evaluate the surface roughness and topography. Observations with SEM showed that etching with hydrofluoric acid resulted in preferential dissolution of glass matrix, and that partially supported crystals within the glass matrix were lost with increasing etching time. AFM measurements indicated that etching increased the surface roughness of the glass-ceramic. A simple least-squares linear regression was used to establish a relationship between surface roughness parameters ( Ra, RMS), and etching time, for which r2>0.94. This study demonstrates the benefits of combining two microscopic methods for a better understanding of the surface. SEM showed the mode of action of hydrofluoric acid on the ceramic and AFM provided valuable data regarding the extent of surface degradation relative to etching time.
Plasma processing of superconducting radio frequency cavities
NASA Astrophysics Data System (ADS)
Upadhyay, Janardan
The development of plasma processing technology of superconducting radio frequency (SRF) cavities not only provides a chemical free and less expensive processing method, but also opens up the possibility for controlled modification of the inner surfaces of the cavity for better superconducting properties. The research was focused on the transition of plasma etching from two dimensional flat surfaces to inner surfaces of three dimensional (3D) structures. The results could be applicable to a variety of inner surfaces of 3D structures other than SRF cavities. Understanding the Ar/Cl2 plasma etching mechanism is crucial for achieving the desired modification of Nb SRF cavities. In the process of developing plasma etching technology, an apparatus was built and a method was developed to plasma etch a single cell Pill Box cavity. The plasma characterization was done with the help of optical emission spectroscopy. The Nb etch rate at various points of this cavity was measured before processing the SRF cavity. Cylindrical ring-type samples of Nb placed on the inner surface of the outer wall were used to measure the dependence of the process parameters on plasma etching. The measured etch rate dependence on the pressure, rf power, dc bias, temperature, Cl2 concentration and diameter of the inner electrode was determined. The etch rate mechanism was studied by varying the temperature of the outer wall, the dc bias on the inner electrode and gas conditions. In a coaxial plasma reactor, uniform plasma etching along the cylindrical structure is a challenging task due to depletion of the active radicals along the gas flow direction. The dependence of etch rate uniformity along the cylindrical axis was determined as a function of process parameters. The formation of dc self-biases due to surface area asymmetry in this type of plasma and its variation on the pressure, rf power and gas composition was measured. Enhancing the surface area of the inner electrode to reduce the asymmetry was studied by changing the contour of the inner electrode. The optimized contour of the electrode based on these measurements was chosen for SRF cavity processing.
NASA Astrophysics Data System (ADS)
Zamuruyev, Konstantin O.; Zrodnikov, Yuriy; Davis, Cristina E.
2017-01-01
Excellent chemical and physical properties of glass, over a range of operating conditions, make it a preferred material for chemical detection systems in analytical chemistry, biology, and the environmental sciences. However, it is often compromised with SU8, PDMS, or Parylene materials due to the sophisticated mask preparation requirements for wet etching of glass. Here, we report our efforts toward developing a photolithography-free laser-patterned hydrofluoric acid-resistant chromium-polyimide tape mask for rapid prototyping of microfluidic systems in glass. The patterns are defined in masking layer with a diode-pumped solid-state laser. Minimum feature size is limited to the diameter of the laser beam, 30 µm minimum spacing between features is limited by the thermal shrinkage and adhesive contact of the polyimide tape to 40 µm. The patterned glass substrates are etched in 49% hydrofluoric acid at ambient temperature with soft agitation (in time increments, up to 60 min duration). In spite of the simplicity, our method demonstrates comparable results to the other current more sophisticated masking methods in terms of the etched depth (up to 300 µm in borosilicate glass), feature under etch ratio in isotropic etch (~1.36), and low mask hole density. The method demonstrates high yield and reliability. To our knowledge, this method is the first proposed technique for rapid prototyping of microfluidic systems in glass with such high performance parameters. The proposed method of fabrication can potentially be implemented in research institutions without access to a standard clean-room facility.
Oxide and hydrogen capped ultrasmall blue luminescent Si nanoparticles
NASA Astrophysics Data System (ADS)
Belomoin, Gennadiy; Therrien, Joel; Nayfeh, Munir
2000-08-01
We dispersed electrochemical etched silicon into a colloid of ultrasmall ultrabright Si nanoparticles. Direct imaging using transmission electron microscopy shows particles of ˜1 nm in diameter, and infrared and electron photospectroscopy show that they are passivated with hydrogen. Under 350 nm excitation, the luminescence is dominated by an extremely strong blue band at 390 nm. We replace hydrogen by a high-quality ultrathin surface oxide cap by self-limiting oxidation in H2O2. Upon capping, the excitation efficiency drops, but only by a factor of 2, to an efficiency still two-fold larger than that of fluorescein. Although of slightly lower brightness, capped Si particles have superior biocompatability, an important property for biosensing applications.
Study of the deposition process of vinpocetine on the surface of porous silicon
NASA Astrophysics Data System (ADS)
Lenshin, A. S.; Polkovnikova, Yu. A.; Seredin, P. V.
Currently the most prospective way in pharmacotherapy is the obtaining of nanoparticles involving pharmaceutical substances. Application of porous inorganic materials on the basis of silicon is among the main features in solving of this problem. The present work is concerned with the problem of the deposition of pharmaceutical drug with nootropic activity - vinpocetine - into porous silicon. Silicon nanoparticles were obtained by electrochemical anodic etching of Si plates. The process of vinpocetine deposition was studied in dependence of the deposition time. As a result of the investigations it was found that infrared transmission spectra of porous silicon with the deposited vinpocetine revealed the absorption bands characteristic of vinpocetine substance.
Highly Efficient Moisture-Triggered Nanogenerator Based on Graphene Quantum Dots.
Huang, Yaxin; Cheng, Huhu; Shi, Gaoquan; Qu, Liangti
2017-11-08
A high-performance moisture triggered nanogenerator is fabricated by using graphene quantum dots (GQDs) as the active material. GQDs are prepared by direct oxidation and etching of natural graphite powder, which have small sizes of 2-5 nm and abundant oxygen-containing functional groups. After the treatment by electrochemical polarization, the GQDs-based moisture triggered nanogenerator can deliver a high voltage up to 0.27 V under 70% relative humidity variation, and a power density of 1.86 mW cm -2 with an optimized load resistor. The latter value is much higher than the moisture-electric power generators reported previously. The GQD moisture triggered nanogenerator is promising for self-power electronics and miniature sensors.
NASA Astrophysics Data System (ADS)
Diener, J.; Künzner, N.; Kovalev, D.; Gross, E.; Koch, F.; Fujii, M.
2003-05-01
Electro-chemical etching of heavily doped, (110) oriented, p+ (boron) doped silicon wafers results in porous silicon (PSi) layers which exhibit a strong in-plane anisotropy of the refractive index (birefringence). Single- and multiple layers of anisotropically nanostructured silicon (Si) have been fabricated and studied by polarization-resolved reflection and transmission measurements. Dielectric stacks of birefringent PSi acting as distributed Bragg reflectors have two distinct reflection bands depending on the polarization of the incident linearly polarized light. This effect is caused by a three-dimensional (in plane and in-depth) variation of the refraction index. The possibility of fine tuning the two orthogonally polarized reflection bands and their spectral splitting is demonstrated.
Synthesis and transport characterization of electrochemically deposited CdTe nanowires
NASA Astrophysics Data System (ADS)
Kaur, Jaskiran; Kaur, Harmanmeet; Singh, R. C.
2018-04-01
This paper reports the synthesis and characterization of CdTe nanowires. A thin polymeric films were irradiated with 80MeV Ag ions at a fluence of 8E7 ions/cm2, followed by UV irradiation and chemically etching in aqueous NaOH. Nanosizes go-through pores so formed were filled using a specially designed cell via electrodeposition. Nanowires so formed were further studied using SEM, I-V, UV and XRD analysis. SEM images show very smooth and uniform CdTe nanowires freely standing on the substrate. The in-situ I-V characteristics of nano-/micro structures was carried out at room temperature by leaving the structures embedded in the insulating template membrane itself.
Fabrication of silver tips for scanning tunneling microscope induced luminescence.
Zhang, C; Gao, B; Chen, L G; Meng, Q S; Yang, H; Zhang, R; Tao, X; Gao, H Y; Liao, Y; Dong, Z C
2011-08-01
We describe a reliable fabrication procedure of silver tips for scanning tunneling microscope (STM) induced luminescence experiments. The tip was first etched electrochemically to yield a sharp cone shape using selected electrolyte solutions and then sputter cleaned in ultrahigh vacuum to remove surface oxidation. The tip status, in particular the tip induced plasmon mode and its emission intensity, can be further tuned through field emission and voltage pulse. The quality of silver tips thus fabricated not only offers atomically resolved STM imaging, but more importantly, also allows us to perform challenging "color" photon mapping with emission spectra taken at each pixel simultaneously during the STM scan under relatively small tunnel currents and relatively short exposure time.
METHOD OF APPLYING COPPER COATINGS TO URANIUM
Gray, A.G.
1959-07-14
A method is presented for protecting metallic uranium, which comprises anodic etching of the uranium in an aqueous phosphoric acid solution containing chloride ions, cleaning the etched uranium in aqueous nitric acid solution, promptly electro-plating the cleaned uranium in a copper electro-plating bath, and then electro-plating thereupon lead, tin, zinc, cadmium, chromium or nickel from an aqueous electro-plating bath.
Electrolytic etch for preventing electrical shorts in solar cells on polymer surfaces
Weber, Michael F.
1991-10-08
A method for preventing shorts and shunts in solar cells having in order, an insulating substrate, a conductive metal layer on the substrate, an amorphous silicon layer and a transparent conductive layer. The method includes anodic etching of exposed portions of the metal layer after deposition of the amorphous silicon and prior to depositing the transparent conductive layer.
IRON COATED URANIUM AND ITS PRODUCTION
Gray, A.G.
1960-03-15
A method of applying a protective coating to a metallic uranium article is given. The method comprises etching the surface of the article with an etchant solution containlng chloride ions, such as a solution of phosphoric acid and hydrochloric acid, cleaning the etched surface, electroplating iron thereon from a ferrous ammonium sulfate electroplating bath, and soldering an aluminum sheath to the resultant iron layer.
Silicon Quantum Dot Nanoparticles with Antifouling Coatings for Immunostaining on Live Cancer Cells.
Tu, Chang-Ching; Chen, Kuang-Po; Yang, Tsu-An; Chou, Min-Yuan; Lin, Lih Y; Li, Yaw-Kuen
2016-06-08
Fluorescent silicon quantum dots (SiQDs) have shown a great potential as antiphotobleaching, nontoxic and biodegradable labels for various in vitro and in vivo applications. However, fabricating SiQDs with high water-solubility and high photoluminescence quantum yield (PLQY) remains a challenge. Furthermore, for targeted imaging, their surface chemistry has to be capable of conjugating to antibodies, as well as sufficiently antifouling. Herein, antibody-conjugated SiQD nanoparticles (SiQD-NPs) with antifouling coatings composed of bovine serum albumin (BSA) and polyethylene glycol (PEG) are demonstrated for immunostaining on live cancer cells. The monodisperse SiQD-NPs of diameter about 130 nm are synthesized by a novel top-down method, including electrochemical etching, photochemical hydrosilylation, high energy ball milling, and "selective-etching" in HNO3 and HF. Subsequently, the BSA and PEG are covalently grafted on to the SiQD-NP surface through presynthesized chemical linkers, resulting in a stable, hydrophilic, and antifouling organic capping layer with isothiocyanates as the terminal functional groups for facile conjugation to the antibodies. The in vitro cell viability assay reveals that the BSA-coated SiQD-NPs had exceptional biocompatibility, with minimal cytotoxicity at concentration up to 1600 μg mL(-1). Under 365 nm excitation, the SiQD-NP colloid emits bright reddish photoluminescence with PLQY = 45-55% in organic solvent and 5-10% in aqueous buffer. Finally, through confocal fluorescent imaging and flow cytometry analysis, the anti-HER2 conjugated SiQD-NPs show obvious specific binding to the HER2-overexpressing SKOV3 cells and negligible nonspecific binding to the HER2-nonexpressing CHO cells. Under similar experimental conditions, the immunofluorescence results obtained with the SiQD-NPs are comparable to those using conventional fluorescein isothiocyanate (FITC).
NASA Astrophysics Data System (ADS)
Kasu, Makoto; Oshima, Takayoshi; Hanada, Kenji; Moribayashi, Tomoya; Hashiguchi, Akihiro; Oishi, Toshiyuki; Koshi, Kimiyoshi; Sasaki, Kohei; Kuramata, Akito; Ueda, Osamu
2017-09-01
A pixel array of vertical Schottky-barrier diodes (SBDs) was fabricated and measured on the surface of a (\\bar{2}01) β-Ga2O3 single crystal. Subsequently, etch pits and patterns were observed on the same surface. Three types of etch pits were discovered: (1) a line-shaped etch pattern originating from a void and extending toward the [010] direction, (2) an arrow-shaped etch pit whose arrow’s head faces toward the [102] direction and, (3) a gourd-shaped etch pit whose point head faces toward the [102] direction. Their average densities were estimated to be 5 × 102, 7 × 104, and 9 × 104 cm-2, respectively. We confirmed no clear relationship between the leakage current in SBDs and these crystalline defects. Such results are obtained because threading dislocations run mainly in the [010] growth direction and do not go through the (\\bar{2}01) sample plate.
Defect-selective dry etching for quick and easy probing of hexagonal boron nitride domains.
Wu, Qinke; Lee, Joohyun; Park, Sangwoo; Woo, Hwi Je; Lee, Sungjoo; Song, Young Jae
2018-03-23
In this study, we demonstrate a new method to selectively etch the point defects or the boundaries of as-grown hexagonal boron nitride (hBN) films and flakes in situ on copper substrates using hydrogen and argon gases. The initial quality of the chemical vapor deposition-grown hBN films and flakes was confirmed by UV-vis absorption spectroscopy, atomic force microscopy, and transmission electron microscopy. Different gas flow ratios of Ar/H 2 were then employed to etch the same quality of samples and it was found that etching with hydrogen starts from the point defects and grows epitaxially, which helps in confirming crystalline orientations. However, etching with argon is sensitive to line defects (boundaries) and helps in visualizing the domain size. Finally, based on this defect-selective dry etching technique, it could be visualized that the domains of a polycrystalline hBN monolayer merged together with many parts, even with those that grew from a single nucleation seed.
Defect-selective dry etching for quick and easy probing of hexagonal boron nitride domains
NASA Astrophysics Data System (ADS)
Wu, Qinke; Lee, Joohyun; Park, Sangwoo; Woo, Hwi Je; Lee, Sungjoo; Song, Young Jae
2018-03-01
In this study, we demonstrate a new method to selectively etch the point defects or the boundaries of as-grown hexagonal boron nitride (hBN) films and flakes in situ on copper substrates using hydrogen and argon gases. The initial quality of the chemical vapor deposition-grown hBN films and flakes was confirmed by UV-vis absorption spectroscopy, atomic force microscopy, and transmission electron microscopy. Different gas flow ratios of Ar/H2 were then employed to etch the same quality of samples and it was found that etching with hydrogen starts from the point defects and grows epitaxially, which helps in confirming crystalline orientations. However, etching with argon is sensitive to line defects (boundaries) and helps in visualizing the domain size. Finally, based on this defect-selective dry etching technique, it could be visualized that the domains of a polycrystalline hBN monolayer merged together with many parts, even with those that grew from a single nucleation seed.
In-situ photoluminescence imaging for passivation-layer etching process control for photovoltaics
NASA Astrophysics Data System (ADS)
Lee, J. Z.; Michaelson, L.; Munoz, K.; Tyson, T.; Gallegos, A.; Sullivan, J. T.; Buonassisi, T.
2014-07-01
Light-induced plating (LIP) of solar-cell metal contacts is a scalable alternative to silver paste. However, LIP requires an additional patterning step to create openings in the silicon nitride (SiNx) antireflection coating (ARC) layer prior to metallization. One approach to pattern the SiNx is masking and wet chemical etching. In-situ real-time photoluminescence imaging (PLI) is demonstrated as a process-monitoring method to determine when SiNx has been fully removed during etching. We demonstrate that the change in PLI signal intensity during etching is caused by a combination of (1) decreasing light absorption from the reduction in SiNx ARC layer thickness and (2) decreasing surface lifetime as the SiNx/Si interface transitions to an etch-solution/Si. Using in-situ PLI to guide the etching process, we demonstrate a full-area plated single-crystalline silicon device. In-situ PLI has the potential to be integrated into a commercial processing line to improve process control and reliability.
Ti Porous Film-Supported NiCo₂S₄ Nanotubes Counter Electrode for Quantum-Dot-Sensitized Solar Cells.
Deng, Jianping; Wang, Minqiang; Song, Xiaohui; Yang, Zhi; Yuan, Zhaolin
2018-04-17
In this paper, a novel Ti porous film-supported NiCo₂S₄ nanotube was fabricated by the acid etching and two-step hydrothermal method and then used as a counter electrode in a CdS/CdSe quantum-dot-sensitized solar cell. Measurements of the cyclic voltammetry, Tafel polarization curves, and electrochemical impedance spectroscopy of the symmetric cells revealed that compared with the conventional FTO (fluorine doped tin oxide)/Pt counter electrode, Ti porous film-supported NiCo₂S₄ nanotubes counter electrode exhibited greater electrocatalytic activity toward polysulfide electrolyte and lower charge-transfer resistance at the interface between electrolyte and counter electrode, which remarkably improved the fill factor, short-circuit current density, and power conversion efficiency of the quantum-dot-sensitized solar cell. Under illumination of one sun (100 mW/cm²), the quantum-dot-sensitized solar cell based on Ti porous film-supported NiCo₂S₄ nanotubes counter electrode achieved a power conversion efficiency of 3.14%, which is superior to the cell based on FTO/Pt counter electrode (1.3%).
Fabrication of TiO2 nanostructures on porous silicon for thermoelectric application
NASA Astrophysics Data System (ADS)
Fahrizal, F. N.; Ahmad, M. K.; Ramli, N. M.; Ahmad, N.; Fakhriah, R.; Mohamad, F.; Nafarizal, N.; Soon, C. F.; Ameruddin, A. S.; Faridah, A. B.; Shimomura, M.; Murakami, K.
2017-09-01
Nowadays, technology is moving by leaps and bounds over the last several decades. This has created new opportunities and challenge in the research fields. In this study, the experiment is about to investigate the potential of Titanium Dioxide (TiO2) nanostructures that have been growth onto a layer of porous silicon (pSi) for their thermoelectric application. Basically, it is divided into two parts, which is the preparation of the porous silicon (pSi) substrate by electrochemical-etching process and the growth of the Titanium Dioxide (TiO2) nanostructures by hydrothermal method. This sample have been characterize by Field Emission Scanning Electron Microscopy (FESEM) to visualize the morphology of the TiO2 nanostructures area that formed onto the porous silicon (pSi) substrate. Besides, the sample is also used to visualize their cross-section images under the FESEM microscopy. Next, the sample is characterized by the X-Ray Diffraction (XRD) machine. The XRD machine is used to get the information about the chemical composition, crystallographic structure and physical properties of materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sohrabi, M.; Habibi, M., E-mail: mortezahabibi@gmail.com; Ramezani, V.
2017-02-15
The paper presents an experimental study and analysis of full helium ion density angular distributions in a 4-kJ plasma focus device (PFD) at pressures of 10, 15, 25, and 30 mbar using large-area polycarbonate track detectors (PCTDs) (15-cm etchable diameter) processed by 50-Hz-HV electrochemical etching (ECE). Helium ion track distributions at different pressures, in particular, at the main axis of the PFD are presented. Maximum ion track density of ~4.4 × 10{sup 4} tracks/cm{sup 2} was obtained in the PCTD placed 6 cm from the anode. The ion distributions for all pressures applied are ring-shaped, which is possibly due tomore » the hollow cylindrical copper anode used. The large-area PCTD processed by ECE proves, at the present state-of-theart, a superior method for direct observation and analysis of ion distributions at a glance with minimum efforts and time. Some observations of the ion density distributions at different pressures are reported and discussed.« less
Conical Tungsten Tips as Substrates for the Preparation of Ultramicroelectrodes
Hermans, Andre; Wightman, R. Mark
2008-01-01
Here we describe a simple method to prepare voltammetric microelectrodes using tungsten wires as a substrate. Tungsten wires have high tensile modulus and enable the fabrication of electrodes that have small dimensions overall while retaining rigidity. In this work, 125 μm tungsten wires with a conical tip were employed. For the preparation of gold or platinum ultramicroelectrodes, commercial tungsten microelectrodes, completely insulated except at the tip, were used as substrates. Following removal of oxides from the exposed tungsten, platinum or gold was electroplated yielding surfaces with an electroactive area of between 1×10−6 cm2 to 2×10−6 cm2. Carbon surfaces on the etched tip of tungsten microwires were prepared by coating with photoresist followed by pyrolysis. The entire electrode was then insulated with Epoxylite except the tip yielding an exposed carbon surface with an area of around 4×10−6 cm2 to 6×10−6 cm2. All three types of ultramicroelectrodes fabricated on the tungsten wire had similar electrochemical behavior to electrodes fabricated from wires or fibers insulated with glass tubes. PMID:17129002
NASA Astrophysics Data System (ADS)
Guo, Xiaowei; Chen, Mingyong; Zhu, Jianhua; Ma, Yanqin; Du, Jinglei; Guo, Yongkang; Du, Chunlei
2006-01-01
A novel method for the fabrication of continuous micro-optical components is presented in this paper. It employs a computer controlled digital-micromirror-device(DMD TM) as a switchable projection mask and silver-halide sensitized gelatin (SHSG) as recording material. By etching SHSG with enzyme solution, the micro-optical components with relief modulation can be generated through special processing procedures. The principles of etching SHSG with enzyme and theoretical analysis for deep etching are also discussed in detail, and the detailed quantitative experiments on the processing procedures are conducted to determine optimum technique parameters. A good linear relationship within a depth range of 4μm was experimentally obtained between exposure dose and relief depth. At last, the microlensarray with 256.8μm radius and 2.572μm depth was achieved. This method is simple, cheap and the aberration in processing procedures can be corrected in the step of designing mask, so it is a practical method to fabricate good continuous profile for low-volume production.
Electrochemical nitridation of metal surfaces
Wang, Heli; Turner, John A.
2015-06-30
Electrochemical nitridation of metals and the produced metals are disclosed. An exemplary method of electrochemical nitridation of metals comprises providing an electrochemical solution at low temperature. The method also comprises providing a three-electrode potentiostat system. The method also comprises stabilizing the three-electrode potentiostat system at open circuit potential. The method also comprises applying a cathodic potential to a metal.
A new concept for spatially divided Deep Reactive Ion Etching with ALD-based passivation
NASA Astrophysics Data System (ADS)
Roozeboom, F.; Kniknie, B.; Lankhorst, A. M.; Winands, G.; Knaapen, R.; Smets, M.; Poodt, P.; Dingemans, G.; Keuning, W.; Kessels, W. M. M.
2012-12-01
Conventional Deep Reactive Ion Etching (DRIE) is a plasma etch process with alternating half-cycles of 1) Si-etching with SF6 to form gaseous SiFx etch products, and 2) passivation with C4F8 that polymerizes as a protecting fluorocarbon deposit on the sidewalls and bottom of the etched features. In this work we report on a novel alternative and disruptive technology concept of Spatially-divided Deep Reactive Ion Etching, S-DRIE, where the process is converted from the time-divided into the spatially divided regime. The spatial division can be accomplished by inert gas bearing 'curtains' of heights down to ~20 μm. These curtains confine the reactive gases to individual (often linear) injection slots constructed in a gas injector head. By horizontally moving the substrate back and forth under the head one can realize the alternate exposures to the overall cycle. A second improvement in the spatially divided approach is the replacement of the CVD-based C4F8 passivation steps by ALD-based oxide (e.g. SiO2) deposition cycles. The method can have industrial potential in cost-effective creation of advanced 3D interconnects (TSVs), MEMS manufacturing and advanced patterning, e.g., in nanoscale transistor line edge roughness using Atomic Layer Etching.
The Formation and Characterization of GaN Hexagonal Pyramids
NASA Astrophysics Data System (ADS)
Zhang, Shi-Ying; Xiu, Xiang-Qian; Lin, Zeng-Qin; Hua, Xue-Mei; Xie, Zi-Li; Zhang, Rong; Zheng, You-Dou
2013-05-01
GaN with hexagonal pyramids is fabricated using the photo-assisted electroless chemical etching method. Defective areas of the GaN substrate are selectively etched in a mixed solution of KOH and K2S2O8 under ultraviolet illumination, producing submicron-sized pyramids. Hexagonal pyramids on the etched GaN with well-defined {101¯1¯} facets and very sharp tips are formed. High-resolution x-ray diffraction shows that etched GaN with pyramids has a higher crystal quality, and micro-Raman spectra reveal a tensile stress relaxation in GaN with pyramids compared with normal GaN. The cathodoluminescence intensity of GaN after etching is significantly increased by three times, which is attributed to the reduction in the internal reflection, high-quality GaN with pyramids and the Bragg effect.
3D-fabrication of tunable and high-density arrays of crystalline silicon nanostructures
NASA Astrophysics Data System (ADS)
Wilbers, J. G. E.; Berenschot, J. W.; Tiggelaar, R. M.; Dogan, T.; Sugimura, K.; van der Wiel, W. G.; Gardeniers, J. G. E.; Tas, N. R.
2018-04-01
In this report, a procedure for the 3D-nanofabrication of ordered, high-density arrays of crystalline silicon nanostructures is described. Two nanolithography methods were utilized for the fabrication of the nanostructure array, viz. displacement Talbot lithography (DTL) and edge lithography (EL). DTL is employed to perform two (orthogonal) resist-patterning steps to pattern a thin Si3N4 layer. The resulting patterned double layer serves as an etch mask for all further etching steps for the fabrication of ordered arrays of silicon nanostructures. The arrays are made by means of anisotropic wet etching of silicon in combination with an isotropic retraction etch step of the etch mask, i.e. EL. The procedure enables fabrication of nanostructures with dimensions below 15 nm and a potential density of 1010 crystals cm-2.
Yu, Wenbin; Yuan, Peng; Liu, Dong; Deng, Liangliang; Yuan, Weiwei; Tao, Bo; Cheng, Hefa; Chen, Fanrong
2015-03-21
Hierarchically porous diatomite/MFI-type zeolite (Dt/Z) composites with excellent benzene adsorption performance were prepared. The hierarchical porosity was generated from the microporous zeolite coated at the surface of diatom frustules and from the macroporous diatomite support. A facile NaOH etching method was employed for the first time to treat the frustule support, followed by hydrothermal growth of MFI-type zeolite at the surface of frustules previously seeded with nanocrystalline silicalite-1 (Sil-1). NaOH etching enlarged the pores on diatom frustules and further increased the coated zeolite contents (W(z)). The central macropore size of the diatom frustules increased from approximately 200-500 nm to 400-1000 nm after NaOH etching. The W(z) could reach 61.2%, while the macroporosity of the composites was largely preserved due to more voids for zeolite coating being formed by NaOH etching. The Dt/Z composites exhibited higher benzene adsorption capacity per unit mass of zeolite and less mass transfer resistance than Sil-1, evaluated via a method of breakthrough curves. These results demonstrate that etching of a diatomite support is a facile but crucial process for the preparation of Dt/Z composites, enabling the resulting composites to become promising candidates for uses in volatile organic compounds emission control. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yin, Ruiyuan; Li, Yue; Sun, Yu; Wen, Cheng P.; Hao, Yilong; Wang, Maojun
2018-06-01
We report the effect of the gate recess process and the surface of as-etched GaN on the gate oxide quality and first reveal the correlation between border traps and exposed surface properties in normally-off Al2O3/GaN MOSFET. The inductively coupled plasma (ICP) dry etching gate recess with large damage presents a rough and active surface that is prone to form detrimental GaxO validated by atomic force microscopy and X-ray photoelectron spectroscopy. Lower drain current noise spectral density of the 1/f form and less dispersive ac transconductance are observed in GaN MOSFETs fabricated with oxygen assisted wet etching compared with devices based on ICP dry etching. One decade lower density of border traps is extracted in devices with wet etching according to the carrier number fluctuation model, which is consistent with the result from the ac transconductance method. Both methods show that the density of border traps is skewed towards the interface, indicating that GaxO is of higher trap density than the bulk gate oxide. GaxO located close to the interface is the major location of border traps. The damage-free oxidation assisted wet etching gate recess technique presents a relatively smooth and stable surface, resulting in lower border trap density, which would lead to better MOS channel quality and improved device reliability.
System and Method for Fabricating Super Conducting Circuitry on Both Sides of an Ultra-Thin Layer
NASA Technical Reports Server (NTRS)
Brown, Ari D. (Inventor); Mikula, Vilem (Inventor)
2017-01-01
A method of fabricating circuitry in a wafer includes depositing a superconducting metal on a silicon on insulator wafer having a handle wafer, coating the wafer with a sacrificial layer and bonding the wafer to a thermally oxide silicon wafer with a first epoxy. The method includes flipping the wafer, thinning the flipped wafer by removing a handle wafer, etching a buried oxide layer, depositing a superconducting layer, bonding the wafer to a thermally oxidized silicon wafer having a handle wafer using an epoxy, flipping the wafer again, thinning the flipped wafer, etching a buried oxide layer from the wafer and etching the sacrificial layer from the wafer. The result is a wafer having superconductive circuitry on both sides of an ultra-thin silicon layer.
Ibrahim, Ihab M.; Elkassas, Dina W.; Yousry, Mai M.
2010-01-01
Objectives: This in vitro study determined the effect of enamel pretreatment with phosphoric acid and ethylenediaminetetraacetic acid (EDTA) on the bond strength of strong, intermediary strong, and mild self-etching adhesive systems. Methods: Ninety sound human premolars were used. Resin composite cylinders were bonded to flat ground enamel surfaces using three self-etching adhesive systems: strong Adper Prompt L-Pop (pH=0.9–1.0), intermediary strong AdheSE (pH=1.6–1.7), and mild Frog (pH=2). Adhesive systems were applied either according to manufacturer instructions (control) or after pretreatment with either phosphoric acid or EDTA (n=10). After 24 hours, shear bond strength was tested using a universal testing machine at a cross-head speed of 0.5 mm/minute. Ultra-morphological characterization of the surface topography and resin/enamel interfaces as well as representative fractured enamel specimens were examined using scanning electron microscopy (SEM). Results: Neither surface pretreatment statistically increased the mean shear bond strength values of either the strong or the intermediary strong self-etching adhesive systems. However, phosphoric acid pretreatment significantly increased the mean shear bond strength values of the mild self-etching adhesive system. SEM examination of enamel surface topography showed that phosphoric acid pretreatment deepened the same etching pattern of the strong and intermediary strong adhesive systems but converted the irregular etching pattern of the mild self-etching adhesive system to a regular etching pattern. SEM examination of the resin/enamel interface revealed that deepening of the etching pattern was consistent with increase in the length of resin tags. EDTA pretreatment had a negligible effect on ultra-morphological features. Conclusions: Use of phosphoric acid pretreatment can be beneficial with mild self-etching adhesive systems for bonding to enamel. PMID:20922162
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tasaka, Akimasa, E-mail: aki-tasaka-load@yahoo.co.jp; Kotaka, Yuki; Oda, Atsushi
2014-09-01
In pure NF{sub 3} plasma, the etching rates of four kinds of single-crystalline SiC wafer etched at NF{sub 3} pressure of 2 Pa were the highest and it decreased with an increase in NF{sub 3} pressure. On the other hand, they increased with an increase in radio frequency (RF) power and were the highest at RF power of 200 W. A smooth surface was obtained on the single-crystalline 4H-SiC after reactive ion etching at NF{sub 3}/Ar gas pressure of 2 Pa and addition of Ar to NF{sub 3} plasma increased the smoothness of SiC surface. Scanning electron microscopy observation revealed that the numbermore » of pillars decreased with an increase in the Ar-concentration in the NF{sub 3}/Ar mixture gas. The roughness factor (R{sub a}) values were decreased from 51.5 nm to 25.5 nm for the As-cut SiC, from 0.25 nm to 0.20 nm for the Epi-SiC, from 5.0 nm to 0.7 nm for the Si-face mirror-polished SiC, and from 0.20 nm to 0.16 nm for the C-face mirror-polished SiC by adding 60% Ar to the NF{sub 3} gas. Both the R{sub a} values of the Epi- and the C-face mirror-polished wafer surfaces etched using the NF{sub 3}/Ar (40:60) plasma were similar to that treated with mirror polishing, so-called the Catalyst-Referred Etching (CARE) method, with which the lowest roughness of surface was obtained among the chemical mirror polishing methods. Etching duration for smoothing the single-crystalline SiC surface using its treatment was one third of that with the CARE method.« less
Response of CR-39 to 0.9-2.5 MeV protons for KOH and NaOH etching solutions
NASA Astrophysics Data System (ADS)
Bahrami, F.; Mianji, F.; Faghihi, R.; Taheri, M.; Ansarinejad, A.
2016-03-01
In some circumstances passive detecting methods are the only or preferable measuring approaches. For instance, defining particles' energy profile inside the objects being irradiated with heavy ions and measuring fluence of neutrons or heavy particles in space missions are the cases covered by these methods. In this paper the ability of polyallyl diglycol carbonate (PADC) track detector (commercially known as CR-39) for passive spectrometry of proton particles is studied. Furthermore, the effect of KOH and NaOH as commonly used chemical etching solutions on the response of the detector is investigated. The experiments were carried out with protons in the energy range of 0.94-2.5 MeV generated by a Van de Graaff accelerator. Then, the exposed track dosimeters were etched in the two aforementioned etchants through similar procedure with the same normality of 6.25 N and the same temperature of 85 °C. Formation of the tracks was precisely investigated and the track diameters were recorded following every etching step for each solution using a multistage etching process. The results showed that the proposed method can be efficiently used for the spectrometry of protons over a wider dynamic range and with a reasonable accuracy. Moreover, NaOH and KOH outperformed each other over different regions of the proton energy range. The detection efficiency of both etchants was approximately 100%.
Multi-functional micro electromechanical devices and method of bulk manufacturing same
NASA Technical Reports Server (NTRS)
Okojie, Robert S. (Inventor)
2004-01-01
A method of bulk manufacturing SiC sensors is disclosed and claimed. Materials other than SiC may be used as the substrate material. Sensors requiring that the SiC substrate be pierced are also disclosed and claimed. A process flow reversal is employed whereby the metallization is applied first before the recesses are etched into or through the wafer. Aluminum is deposited on the entire planar surface of the metallization. Photoresist is spun onto the substantially planar surface of the Aluminum which is subsequently masked (and developed and removed). Unwanted Aluminum is etched with aqueous TMAH and subsequently the metallization is dry etched. Photoresist is spun onto the still substantially planar surface of Aluminum and oxide and then masked (and developed and removed) leaving the unimidized photoresist behind. Next, ITO is applied over the still substantially planar surface of Aluminum, oxide and unimidized photoresist. Unimidized and exposed photoresist and ITO directly above it are removed with Acetone. Next, deep reactive ion etching attacks exposed oxide not protected by ITO. Finally, hot phosphoric acid removes the Al and ITO enabling wires to connect with the metallization. The back side of the SiC wafer may be also be etched.
Superhydrophobic Surface Based on a Coral-Like Hierarchical Structure of ZnO
Wu, Jun; Xia, Jun; Lei, Wei; Wang, Baoping
2010-01-01
Background Fabrication of superhydrophobic surfaces has attracted much interest in the past decade. The fabrication methods that have been studied are chemical vapour deposition, the sol-gel method, etching technique, electrochemical deposition, the layer-by-layer deposition, and so on. Simple and inexpensive methods for manufacturing environmentally stable superhydrophobic surfaces have also been proposed lately. However, work referring to the influence of special structures on the wettability, such as hierarchical ZnO nanostructures, is rare. Methodology This study presents a simple and reproducible method to fabricate a superhydrophobic surface with micro-scale roughness based on zinc oxide (ZnO) hierarchical structure, which is grown by the hydrothermal method with an alkaline aqueous solution. Coral-like structures of ZnO were fabricated on a glass substrate with a micro-scale roughness, while the antennas of the coral formed the nano-scale roughness. The fresh ZnO films exhibited excellent superhydrophilicity (the apparent contact angle for water droplet was about 0°), while the ability to be wet could be changed to superhydrophobicity after spin-coating Teflon (the apparent contact angle greater than 168°). The procedure reported here can be applied to substrates consisting of other materials and having various shapes. Results The new process is convenient and environmentally friendly compared to conventional methods. Furthermore, the hierarchical structure generates the extraordinary solid/gas/liquid three-phase contact interface, which is the essential characteristic for a superhydrophobic surface. PMID:21209931
NASA Astrophysics Data System (ADS)
Yang, Yannan; Yu, Meihua; Song, Hao; Wang, Yue; Yu, Chengzhong
2015-07-01
Well-dispersed mesoporous hollow silica-fullerene nanoparticles with particle sizes of ~50 nm have been successfully prepared by incorporating fullerene molecules into the silica framework followed by a selective etching method. The fabricated fluorescent silica-fullerene composite with high porosity demonstrates excellent performance in combined chemo/photodynamic therapy.Well-dispersed mesoporous hollow silica-fullerene nanoparticles with particle sizes of ~50 nm have been successfully prepared by incorporating fullerene molecules into the silica framework followed by a selective etching method. The fabricated fluorescent silica-fullerene composite with high porosity demonstrates excellent performance in combined chemo/photodynamic therapy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02769a
NASA Astrophysics Data System (ADS)
Lin, Dong; Zhang, Martin Yi; Ye, Chang; Liu, Zhikun; Liu, C. Richard; Cheng, Gary J.
2012-03-01
A new method to generate large scale and highly dense nanoholes is presented in this paper. By the pulsed laser irradiation under water, the hydrogen etching is introduced to form high density nanoholes on the surfaces of AISI 4140 steel and Ti. In order to achieve higher nanohole density, laser shock peening (LSP) followed by recrystallization is used for grain refinement. It is found that the nanohole density does not increase until recrystallization of the substructures after laser shock peening. The mechanism of nanohole generation is studied in detail. This method can be also applied to generate nanoholes on other materials with hydrogen etching effect.
Moritake, Yuto; Tanaka, Takuo
2018-02-05
We propose and demonstrate the elimination of substrate influence on plasmon resonance by using selective and isotropic etching of substrates. Preventing the red shift of the resonance due to substrates and improving refractive index sensitivity were experimentally demonstrated by using plasmonic nanostructures fabricated on silicon substrates. Applying substrate etching decreases the effective refractive index around the metal nanostructures, resulting in elimination of the red shift. Improvement of sensitivity to the refractive index environment was demonstrated by using plasmonic metamaterials with Fano resonance based on far field interference. Change in quality factors (Q-factors) of the Fano resonance by substrate etching was also investigated in detail. The presence of a closely positioned substrate distorts the electric field distribution and degrades the Q-factors. Substrate etching dramatically increased the refractive index sensitivity reaching to 1532 nm/RIU since the electric fields under the nanostructures became accessible through substrate etching. The FOM was improved compared to the case without the substrate etching. The method presented in this paper is applicable to a variety of plasmonic structures to eliminate the influence of substrates for realizing high performance plasmonic devices.
Chen, Hao; Zhang, Qi; Chou, Stephen Y
2015-02-27
Sapphire nanopatterning is the key solution to GaN light emitting diode (LED) light extraction. One challenge is to etch deep nanostructures with a vertical sidewall in sapphire. Here, we report a study of the effects of two masking materials (SiO2 and Cr) and different etching recipes (the reaction gas ratio, the reaction pressure and the inductive power) in a chlorine-based (BCl3 and Cl2) inductively coupled plasma (ICP) etching of deep nanopillars in sapphire, and the etching process optimization. The masking materials were patterned by nanoimprinting. We have achieved high aspect ratio sapphire nanopillar arrays with a much steeper sidewall than the previous etching methods. We discover that the SiO2 mask has much slower erosion rate than the Cr mask under the same etching condition, leading to the deep cylinder-shaped nanopillars (122 nm diameter, 200 nm pitch, 170 nm high, flat top, and a vertical sidewall of 80° angle), rather than the pyramid-shaped shallow pillars (200 nm based diameter, 52 nm height, and 42° sidewall) resulted by using Cr mask. The processes developed are scalable to large volume LED manufacturing.
Townsend, R.G.
1959-08-25
A method is described for protectively coating beryllium metal by etching the metal in an acid bath, immersing the etched beryllium in a solution of sodium zincate for a brief period of time, immersing the beryllium in concentrated nitric acid, immersing the beryhlium in a second solution of sodium zincate, electroplating a thin layer of copper over the beryllium, and finally electroplating a layer of chromium over the copper layer.
Surface etching technologies for monocrystalline silicon wafer solar cells
NASA Astrophysics Data System (ADS)
Tang, Muzhi
With more than 200 GW of accumulated installations in 2015, photovoltaics (PV) has become an important green energy harvesting method. The PV market is dominated by solar cells made from crystalline silicon wafers. The engineering of the wafer surfaces is critical to the solar cell cost reduction and performance enhancement. Therefore, this thesis focuses on the development of surface etching technologies for monocrystalline silicon wafer solar cells. It aims to develop a more efficient alkaline texturing method and more effective surface cleaning processes. Firstly, a rapid, isopropanol alcohol free texturing method is successfully demonstrated to shorten the process time and reduce the consumption of chemicals. This method utilizes the special chemical properties of triethylamine, which can form Si-N bonds with wafer surface atoms. Secondly, a room-temperature anisotropic emitter etch-back process is developed to improve the n+ emitter passivation. Using this method, 19.0% efficient screen-printed aluminium back surface field solar cells are developed that show an efficiency gain of 0.15% (absolute) compared with conventionally made solar cells. Finally, state-of-the-art silicon surface passivation results are achieved using hydrogen plasma etching as a dry alternative to the classical hydrofluoric acid wet-chemical process. The effective native oxide removal and the hydrogenation of the silicon surface are shown to be the reasons for the excellent level of surface passivation achieved with this novel method.
Morales, Alfredo M [Livermore, CA; Gonzales, Marcela [Seattle, WA
2006-03-07
The present invention describes a method for fabricating an embossing tool or an x-ray mask tool, providing microstructures that smoothly vary in height from point-to-point in etched substrates, i.e., structure which can vary in all three dimensions. The process uses a lithographic technique to transfer an image pattern in the surface of a silicon wafer by exposing and developing the resist and then etching the silicon substrate. Importantly, the photoresist is variably exposed so that when developed some of the resist layer remains. The remaining undeveloped resist acts as an etchant barrier to the reactive plasma used to etch the silicon substrate and therefore provides the ability etch structures of variable depths.
Ion-beam nanopatterning: experimental results with chemically-assisted beam
NASA Astrophysics Data System (ADS)
Pochon, Sebastien C. R.
2018-03-01
The need for forming gratings (for example used in VR headsets) in materials such as SiO2 has seen a recent surge in the use of Ion beam etching techniques. However, when using an argon-only beam, the selectivity is limited as it is a physical process. Typically, gases such as CHF3, SF6, O2 and Cl2 can be added to argon in order to increase selectivity; depending on where the gas is injected, the process is known as Reactive Ion Beam Etching (RIBE) or Chemically Assisted Ion Beam Etching (CAIBE). The substrate holder can rotate in order to provide an axisymmetric etch rate profile. It can also be tilted over a range of angles to the beam direction. This enables control over the sidewall profile as well as radial uniformity optimisation. Ion beam directionality in conjunction with variable incident beam angle via platen angle setting enables profile control and feature shaping during nanopatterning. These hardware features unique to the Ion Beam etching methods can be used to create angled etch features. The CAIBE technique is also well suited to laser diode facet etch (for optoelectronic devices); these typically use III-V materials like InP. Here, we report on materials such as SiO2 etched without rotation and at a fixed platen angle allowing the formation of gratings and InP etched at a fixed angle with rotation allowing the formation of nanopillars and laser facets.
Zhang, Ling; Tang, Tian; Zhang, Zhen-liang; Liang, Bing; Wang, Xiao-miao; Fu, Bai-ping
2013-01-01
Objective: This study deals with the effect of phosphoric acid etching and conditioning on enamel micro-tensile bond strengths (μTBSs) of conventional and resin-modified glass ionomer cements (GICs/RMGICs). Methods: Forty-eight bovine incisors were prepared into rectangular blocks. Highly-polished labial enamel surfaces were either acid-etched, conditioned with liquids of cements, or not further treated (control). Subsequently, two matching pre-treated enamel surfaces were cemented together with one of four cements [two GICs: Fuji I (GC), Ketac Cem Easymix (3M ESPE); two RMGICs: Fuji Plus (GC), RelyX Luting (3M ESPE)] in preparation for μTBS tests. Pre-treated enamel surfaces and cement-enamel interfaces were analyzed by scanning electron microscopy (SEM). Results: Phosphoric acid etching significantly increased the enamel μTBS of GICs/RMGICs. Conditioning with the liquids of the cements produced significantly weaker or equivalent enamel μTBS compared to the control. Regardless of etching, RMGICs yielded stronger enamel μTBS than GICs. A visible hybrid layer was found at certain enamel-cement interfaces of the etched enamels. Conclusions: Phosphoric acid etching significantly increased the enamel μTBSs of GICs/RMGICs. Phosphoric acid etching should be recommended to etch the enamel margins before the cementation of the prostheses such as inlays and onlays, using GICs/RMGICs to improve the bond strengths. RMGICs provided stronger enamel bond strength than GICs and conditioning did not increase enamel bond strength. PMID:24190447
Xie, Xianzong; Rieth, Loren; Negi, Sandeep; Bhandari, Rajmohan; Caldwell, Ryan; Sharma, Rohit; Tathireddy, Prashant; Solzbacher, Florian
2014-01-01
The recently developed alumina and Parylene C bi-layer encapsulation improved the lifetime of neural interfaces. Tip deinsulation of Utah electrode array based neural interfaces is challenging due to the complex 3D geometries and high aspect ratios of the devices. A three-step self-aligned process was developed for tip deinsulation of bilayer encapsulated arrays. The deinsulation process utilizes laser ablation to remove Parylene C, O2 reactive ion etching to remove carbon and Parylene residues, and buffered oxide etch to remove alumina deposited by atomic layer deposition, and expose the IrOx tip metallization. The deinsulated iridium oxide area was characterized by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy to determine the morphology, surface morphology, composition, and electrical properties of the deposited layers and deinsulated tips. The alumina layer was found to prevent the formation of micro cracks on iridium oxide during the laser ablation process, which has been previously reported as a challenge for laser deinsulation of Parylene films. The charge injection capacity, charge storage capacity, and impedance of deinsulated iridium oxide were characterized to determine the deinsulation efficacy compared to Parylene-only insulation. Deinsulated iridium oxide with bilayer encapsulation had higher charge injection capacity (240 vs 320 nC) and similar electrochemical impedance (2.5 vs 2.5 kΩ) compared to deinsulated iridium oxide with only Parylene coating for an area of 2 × 10−4 cm2. Tip impedances were in the ranges of 20 to 50 kΩ, with median of 32 KΩ and standard deviation of 30 kΩ, showing the effectiveness of the self-aligned deinsulation process for alumina and Parylene C bi-layer encapsulation. The relatively uniform tip impedance values demonstrated the consistency of tip exposures. PMID:24771981
Stella, João Paulo Fragomeni; Oliveira, Andrea Becker; Nojima, Lincoln Issamu; Marquezan, Mariana
2015-01-01
OBJECTIVE: To assess four different chemical surface conditioning methods for ceramic material before bracket bonding, and their impact on shear bond strength and surface integrity at debonding. METHODS: Four experimental groups (n = 13) were set up according to the ceramic conditioning method: G1 = 37% phosphoric acid etching followed by silane application; G2 = 37% liquid phosphoric acid etching, no rinsing, followed by silane application; G3 = 10% hydrofluoric acid etching alone; and G4 = 10% hydrofluoric acid etching followed by silane application. After surface conditioning, metal brackets were bonded to porcelain by means of the Transbond XP system (3M Unitek). Samples were submitted to shear bond strength tests in a universal testing machine and the surfaces were later assessed with a microscope under 8 X magnification. ANOVA/Tukey tests were performed to establish the difference between groups (α= 5%). RESULTS: The highest shear bond strength values were found in groups G3 and G4 (22.01 ± 2.15 MPa and 22.83 ± 3.32 Mpa, respectively), followed by G1 (16.42 ± 3.61 MPa) and G2 (9.29 ± 1.95 MPa). As regards surface evaluation after bracket debonding, the use of liquid phosphoric acid followed by silane application (G2) produced the least damage to porcelain. When hydrofluoric acid and silane were applied, the risk of ceramic fracture increased. CONCLUSIONS: Acceptable levels of bond strength for clinical use were reached by all methods tested; however, liquid phosphoric acid etching followed by silane application (G2) resulted in the least damage to the ceramic surface. PMID:26352845
Nazarov, Denis V.; Zemtsova, Elena G.; Valiev, Ruslan Z.; Smirnov, Vladimir M.
2015-01-01
In this study, an integrated approach was used for the preparation of a nanotitanium-based bioactive material. The integrated approach included three methods: severe plastic deformation (SPD), chemical etching and atomic layer deposition (ALD). For the first time, it was experimentally shown that the nature of the etching medium (acidic or basic Piranha solutions) and the etching time have a significant qualitative impact on the nanotitanium surface structure both at the nano- and microscale. The etched samples were coated with crystalline biocompatible TiO2 films with a thickness of 20 nm by Atomic Layer Deposition (ALD). Comparative study of the adhesive and spreading properties of human osteoblasts MG-63 has demonstrated that presence of nano- and microscale structures and crystalline titanium oxide on the surface of nanotitanium improve bioactive properties of the material. PMID:28793716
Fabrication of a novel quartz micromachined gyroscope
NASA Astrophysics Data System (ADS)
Xie, Liqiang; Xing, Jianchun; Wang, Haoxu; Wu, Xuezhong
2015-04-01
A novel quartz micromachined gyroscope is proposed in this paper. The novel gyroscope is realized by quartz anisotropic wet etching and 3-dimensional electrodes deposition. In the quartz wet etching process, the quality of Cr/Au mask films affecting the process are studied by experiment. An excellent mask film with 100 Å Cr and 2000 Å Au is achieved by optimization of experimental parameters. Crystal facets after etching seriously affect the following sidewall electrodes deposition process and the structure's mechanical behaviours. Removal of crystal facets is successfully implemented by increasing etching time based on etching rate ratios between facets and crystal planes. In the electrodes deposition process, an aperture mask evaporation method is employed to prepare electrodes on 3-dimensional surfaces of the gyroscope structure. The alignments among the aperture masks are realized by the ABM™ Mask Aligner System. Based on the processes described above, a z-axis quartz gyroscope is fabricated successfully.
Suppression of low-frequency charge noise in gates-defined GaAs quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, Jie; Li, Hai-Ou, E-mail: haiouli@ustc.edu.cn, E-mail: gpguo@ustc.edu.cn; Wang, Ke
To reduce the charge noise of a modulation-doped GaAs/AlGaAs quantum dot, we have fabricated shallow-etched GaAs/AlGaAs quantum dots using the wet-etching method to study the effects of two-dimensional electron gas (2DEG) underneath the metallic gates. The low-frequency 1/f noise in the Coulomb blockade region of the shallow-etched quantum dot is compared with a non-etched quantum dot on the same wafer. The average values of the gate noise are approximately 0.5 μeV in the shallow-etched quantum dot and 3 μeV in the regular quantum dot. Our results show the quantum dot low-frequency charge noise can be suppressed by the removal ofmore » the 2DEG underneath the metallic gates, which provides an architecture for noise reduction.« less
Fabrication technology of Si face and m face on 4H-SiC (0001) epi-layer based on molten KOH etching
NASA Astrophysics Data System (ADS)
Lin, Wen-kui; Zeng, Chun-hong; Sun, Yu-hua; Zhang, Xuan; Li, Zhe; Yang, Tao-tao; Ju, Tao; Zhang, Bao-shun
2018-02-01
Additional scattering of electrons in the complex MOSFET channel caused by off-cut angle of (0001) 4H-SiC wafer, makes accurate crystal face acquisition much desired. Molten KOH was used to etch the circular grooves on the SiC wafer surface in muffle furnace, and hexagonal grooves with SiC crystal symmetry were obtained. Average etching rates at 500°C along <11-20> and <1-100> direction were about 4.826 um/min and 4.112 um/min, respectively,with a etching anisotropy ratio of 1.18. The m face was obtained by controlling the etching time and Si face was obtained by selfstopping effect. The method we developed in this paper has potential applications in the accurate crystal face acquisition of (0001) 4H-SiC epi-wafer, and the preparation of structures based on 4H-SiC.
2013-01-01
We demonstrated a novel, simple, and low-cost method to fabricate silicon nanowire (SiNW) arrays and silicon nanohole (SiNH) arrays based on thin silver (Ag) film dewetting process combined with metal-assisted chemical etching. Ag mesh with holes and semispherical Ag nanoparticles can be prepared by simple thermal annealing of Ag thin film on a silicon substrate. Both the diameter and the distribution of mesh holes as well as the nanoparticles can be manipulated by the film thickness and the annealing temperature. The silicon underneath Ag coverage was etched off with the catalysis of metal in an aqueous solution containing HF and an oxidant, which form silicon nanostructures (either SiNW or SiNH arrays). The morphologies of the corresponding etched SiNW and SiNH arrays matched well with that of Ag holes and nanoparticles. This novel method allows lithography-free fabrication of the SiNW and SiNH arrays with control of the size and distribution. PMID:23557325
Size-focusing synthesis of gold nanoclusters with p-mercaptobenzoic acid.
Tvedte, Laura M; Ackerson, Christopher J
2014-09-18
Etching or size-focusing methods are now widespread for preparation of atomically monodisperse thiolate-protected gold nanoparticles. Size-focusing methods are not widespread, however, in the production of water-soluble gold nanoparticles. Reported here is a new method for size-focusing of large gold nanoparticles utilizing p-mercaptobenzoic acid. We observe preferential formation of three large gold nanoparticles with approximate masses of 23, 51, and 88 kDa. On the basis of the stability of these masses against further etching or growth, they appear to be especially stable sizes. These sizes are not prominent after etching challenges with organosoluble ligands, and the 51 and 88 kDa sizes appear to be novel stable thiolate-protected gold cluster sizes. The overall trend in particle size distribution over time is also unusual, with larger sizes dominating at longer time points.
NASA Astrophysics Data System (ADS)
Meng, Xiangwei; Yang, Qing; Chen, Feng; Shan, Chao; Liu, Keyin; Li, Yanyang; Bian, Hao; Du, Guangqing; Hou, Xun
2015-02-01
This paper reports a flexible fabrication method for 3D solenoid microcoils in silica glass. The method consists of femtosecond laser wet etching (FLWE) and microsolidics process. The 3D microchannel with high aspect ratio is fabricated by an improved FLWE method. In the microsolidics process, an alloy was chosen as the conductive metal. The microwires are achieved by injecting liquid alloy into the microchannel, and allowing the alloy to cool and solidify. The alloy microwires with high melting point can overcome the limitation of working temperature and improve the electrical property. The geometry, the height and diameter of microcoils were flexibly fabricated by the pre-designed laser writing path, the laser power and etching time. The 3D microcoils can provide uniform magnetic field and be widely integrated in many magnetic microsystems.
Defect sensitive etching of hexagonal boron nitride single crystals
NASA Astrophysics Data System (ADS)
Edgar, J. H.; Liu, S.; Hoffman, T.; Zhang, Yichao; Twigg, M. E.; Bassim, Nabil D.; Liang, Shenglong; Khan, Neelam
2017-12-01
Defect sensitive etching (DSE) was developed to estimate the density of non-basal plane dislocations in hexagonal boron nitride (hBN) single crystals. The crystals employed in this study were precipitated by slowly cooling (2-4 °C/h) a nickel-chromium flux saturated with hBN from 1500 °C under 1 bar of flowing nitrogen. On the (0001) planes, hexagonal-shaped etch pits were formed by etching the crystals in a eutectic mixture of NaOH and KOH between 450 °C and 525 °C for 1-2 min. There were three types of pits: pointed bottom, flat bottom, and mixed shape pits. Cross-sectional transmission electron microscopy revealed that the pointed bottom etch pits examined were associated with threading dislocations. All of these dislocations had an a-type burgers vector (i.e., they were edge dislocations, since the line direction is perpendicular to the [ 2 11 ¯ 0 ]-type direction). The pit widths were much wider than the pit depths as measured by atomic force microscopy, indicating the lateral etch rate was much faster than the vertical etch rate. From an Arrhenius plot of the log of the etch rate versus the inverse temperature, the activation energy was approximately 60 kJ/mol. This work demonstrates that DSE is an effective method for locating threading dislocations in hBN and estimating their densities.
NASA Astrophysics Data System (ADS)
Geng, Xuewen; Duan, Barrett K.; Grismer, Dane A.; Zhao, Liancheng; Bohn, Paul W.
2013-06-01
Metal-assisted chemical etching is a facile method to produce micro-/nanostructures in the near-surface region of gallium nitride (GaN) and other semiconductors. Detailed studies of the production of porous GaN (PGaN) using different metal catalysts and GaN doping conditions have been performed in order to understand the mechanism by which metal-assisted chemical etching is accomplished in GaN. Patterned catalysts show increasing metal-assisted chemical etching activity to n-GaN in the order Ag < Au < Ir < Pt. In addition, the catalytic behavior of continuous films is compared to discontinuous island films. Continuous metal films strongly shield the surface, hindering metal-assisted chemical etching, an effect which can be overcome by using discontinuous films or increasing the irradiance of the light source. With increasing etch time or irradiance, PGaN morphologies change from uniform porous structures to ridge and valley structures. The doping type plays an important role, with metal-assisted chemical etching activity increasing in the order p-GaN < intrinsic GaN < n-GaN. Both the catalyst identity and the doping type effects are explained by the work functions and the related band offsets that affect the metal-assisted chemical etching process through a combination of different barriers to hole injection and the formation of hole accumulation/depletion layers at the metal-semiconductor interface.
El-Damanhoury, Hatem M; Gaintantzopoulou, Maria D
2018-01-01
This study assessed the effect of pretreatment of hybrid and glass ceramics using a self-etching primer on the shear bond strength (SBS) and surface topography, in comparison to pretreatment with hydrofluoric acid and silane. 40 rectangular discs from each ceramic material (IPS e.max CAD;EM, Vita Mark II;VM, Vita Enamic;VE), were equally divided (n=10) and assigned to one of four surface pretreatment methods; etching with 4.8% hydrofluoric acid followed by Monobond plus (HFMP), Monobond etch & prime (Ivoclar Vivadent) (MEP), No treatment (NT) as negative control and Monobond plus (Ivoclar Vivadent) with no etching (MP) as positive control. SBS of resin cement (Multilink-N, Ivoclar Vivadent) to ceramic surfaces was tested following a standard protocol. Surface roughness was evaluated using an Atomic force microscope (AFM). Surface topography and elemental analysis were analyzed using SEM/EDX. Data were analyzed with two-way analysis of variance (ANOVA) and post-hoc Bonferroni test at a significance level of α=0.05. Pretreatment with HFMP resulted in higher SBS and increased surface roughness in comparison to MEP and MP. Regardless the method of surface pretreatment, the mean SBS values of EM ceramic was significantly higher (p<0.05) than those recorded for VM and VE, except when VE was treated with MEP, where the difference was statistically insignificant. Traces of fluoride ion were detected when MEP was used with VE and VM. Under limited conditions, using MEP resulted in comparable SBS results to HFMP; meanwhile HFMP remains the gold standard for pretreatment of glass ceramics for resin-luting cementation. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Luong, Emilie; Shayegan, Amir
2018-01-01
Aim The aim of this study was to make a comparison between microleakage of conventionally restored class V cavities using acid etchant and the ones conditioned by erbium-doped yttrium aluminum garnet (Er:YAG) laser, and also to assess and compare the effectiveness of enamel surface treatments of occlusal pits and fissures by acid etching and conditioned by Er:YAG laser-etch. Materials and methods Seventy-two extracted third molars were used in this study. The samples were divided into two major groups: class V cavities and pit and fissure sealants. Each subgroup was divided into conventional acid etching, Er:YAG laser conditioning and conventional acid etching, and combination with Er:YAG laser conditioning (n=12). The teeth were placed in 2% methylene blue dye solution, were sectioned, and were evaluated according to the dye penetration criteria. Two samples per subgroup were chosen for scanning electron microscopic (SEM) analysis. Results There was a significant difference between occlusal and cervical margin groups. Laser conventional composite cementum group showed more microleakage values compared to other groups. There was no significant difference between occlusal margin groups. However, there was a significant difference between cervical margin groups in terms of microleakage. In sealant groups, there was a significant difference between laser and conventional with/without laser treatment groups in terms of microleakage. Conclusion Based on the results reported in this study, it can be concluded that the application of the Er:YAG laser beneath the resin composite, the resin-modified glass ionomers (GIs), and the fissure sealant placement may be an alternative enamel and dentin etching method to acid etching. PMID:29881311
Method for forming silicon on a glass substrate
McCarthy, Anthony M.
1995-01-01
A method by which single-crystal silicon microelectronics may be fabricated on glass substrates at unconventionally low temperatures. This is achieved by fabricating a thin film of silicon on glass and subsequently forming the doped components by a short wavelength (excimer) laser doping procedure and conventional patterning techniques. This method may include introducing a heavily boron doped etch stop layer on a silicon wafer using an excimer laser, which permits good control of the etch stop layer removal process. This method additionally includes dramatically reducing the remaining surface roughness of the silicon thin films after etching in the fabrication of silicon on insulator wafers by scanning an excimer laser across the surface of the silicon thin film causing surface melting, whereby the surface tension of the melt causes smoothing of the surface during recrystallization. Applications for this method include those requiring a transparent or insulating substrate, such as display manufacturing. Other applications include sensors, actuators, optoelectronics, radiation hard and high temperature electronics.
Method for forming silicon on a glass substrate
McCarthy, A.M.
1995-03-07
A method by which single-crystal silicon microelectronics may be fabricated on glass substrates at unconventionally low temperatures. This is achieved by fabricating a thin film of silicon on glass and subsequently forming the doped components by a short wavelength (excimer) laser doping procedure and conventional patterning techniques. This method may include introducing a heavily boron doped etch stop layer on a silicon wafer using an excimer laser, which permits good control of the etch stop layer removal process. This method additionally includes dramatically reducing the remaining surface roughness of the silicon thin films after etching in the fabrication of silicon on insulator wafers by scanning an excimer laser across the surface of the silicon thin film causing surface melting, whereby the surface tension of the melt causes smoothing of the surface during recrystallization. Applications for this method include those requiring a transparent or insulating substrate, such as display manufacturing. Other applications include sensors, actuators, optoelectronics, radiation hard and high temperature electronics. 15 figs.
Photocatalytic Active Bismuth Fluoride/Oxyfluoride Surface Crystallized 2Bi2O3-B2O3 Glass-Ceramics
NASA Astrophysics Data System (ADS)
Sharma, Sumeet Kumar; Singh, V. P.; Chauhan, Vishal S.; Kushwaha, H. S.; Vaish, Rahul
2018-03-01
The present article deals with 2Bi2O3-B2O3 (BBO) glass whose photocatalytic activity has been enhanced by the method of wet etching using an aqueous solution of hydrofluoric acid (HF). X-ray diffraction of the samples reveals that etching with an aqueous solution of HF leads to the formation of BiF3 and BiO0.1F2.8 phases. Surface morphology obtained from scanning electron microscopy show granular and plate-like morphology on the etched glass samples. Rhodamine 6G (Rh 6G) has been used to investigate the photocatalytic activity of the as-quenched and etched glasses. Enhanced visible light-driven photocatalytic activity was observed in HF etched glass-ceramics compared to the as-quenched BBO glass. Contact angle of the as-quenched glass was 90.2°, which decreases up to 20.02° with an increase in concentration of HF in the etching solution. Enhanced photocatalytic activity and increase in the hydrophilic nature suggests the efficient treatment of water pollutants by using the prepared surface crystallized glass-ceramics.
[Influence of different surface treatments on porcelain surface topography].
Tai, Yinxia; Zhu, Xianchun; Sen, Yan; Liu, Chang; Zhang, Xian; Shi, Xueming
2013-02-01
To evaluate the influence of different surface treatments on porcelain surface topography. Metal ceramic prostheses in 6 groups were treated according to the different surface treatment methods, and the surface topography was observed through scanning electron microscope (SEM). Group A was the control one (untreated), group B was etched by 9.6% hydrofluoric acid(HF), group C was deglazed by grinding and then etched by 9.6% HF, group D was treated with Nd: YAG laser irradiation(0.75 W) and HF etching, group E was treated with Nd: YAG laser irradiation (1.05 W) and HF etching, and group F was treated with laser irradiation (1.45 W) and HF etching. Surface topography was different in different groups. A lot of inerratic cracks with the shapes of rhombuses and grid, and crater with a shape of circle were observed on the ceramic surface after treatment with energy parameters of 1.05 W Nd: YAG laser irradiation and 9.6% HF etching (group E). Surface topography showed a lot of concaves on the inner wall of the cracks, and the concaves with diameter of 1-5 microm could be observed on the inner wall of the holes, which had a diameter of 20 microm under SEM. The use of Nd: YAG laser irradiation with the energy parameters of 1.05 W and the HF with a concentration of 9.6% can evenly coarsen the porcelain surface, that is an effective surface treatment method.
NASA Astrophysics Data System (ADS)
Kuo, Meng-Wei
Semiconductor nanowires are important components in future nanoelectronic and optoelectronic device applications. These nanowires can be fabricated using either bottom-up or top-down methods. While bottom-up techniques can achieve higher aspect ratio at reduced dimension without having surface and sub-surface damage, uniform doping distributions with abrupt junction profiles are less challenging for top-down methods. In this dissertation, nanowires fabricated by both methods were systematically investigated to understand: (1) the in situ incorporation of boron (B) dopants in Si nanowires grown by the bottom-up vapor-liquid-solid (VLS) technique, and (2) the impact of plasma-induced etch damage on InGaAs p +-i-n+ nanowire junctions for tunnel field-effect transistors (TFETs) applications. In Chapter 2 and 3, the in situ incorporation of B in Si nanowires grown using silane (SiH4) or silicon tetrachloride (SiCl4) as the Si precursor and trimethylboron (TMB) as the p-type dopant source is investigated by I-V measurements of individual nanowires. The results from measurements using a global-back-gated test structure reveal nonuniform B doping profiles on nanowires grown from SiH4, which is due to simultaneous incorporation of B from nanowire surface and the catalyst during VLS growth. In contrast, a uniform B doping profile in both the axial and radial directions is achieved for TMBdoped Si nanowires grown using SiCl4 at high substrate temperatures. In Chapter 4, the I-V characteristics of wet- and dry-etched InGaAs p+-i-n+ junctions with different mesa geometries, orientations, and perimeter-to-area ratios are compared to evaluate the impact of the dry etch process on the junction leakage current properties. Different post-dry etch treatments, including wet etching and thermal annealing, are performed and the effectiveness of each is assessed by temperaturedependent I-V measurements. As compared to wet-etched control devices, dry-etched junctions have a significantly higher leakage current and a current kink in the reverse bias regime, which is likely due to additional trap states created by plasma-induced damage during the Cl2/Ar/H2 mesa isolation step. These states extend more than 60 nm from the mesa surface and can only be partially passivated after a thermal anneal at 350°C for 20 minutes. The evolution of the electrical properties with post-dry etch treatments indicates that the shallow and deep-level trap states resulting from ion-induced point defects, arsenic vacancies and hydrogen-dopant complexes are the primary cause of degradation in the electrical properties of the dry-etched junctions.
Effect of Phosphoric Acid Pre-etching on Fatigue Limits of Self-etching Adhesives.
Takamizawa, T; Barkmeier, W W; Tsujimoto, A; Scheidel, D D; Erickson, R L; Latta, M A; Miyazaki, M
2015-01-01
The purpose of this study was to use shear bond strength (SBS) and shear fatigue limit (SFL) testing to determine the effect of phosphoric acid pre-etching of enamel and dentin prior to application of self-etch adhesives for bonding resin composite to these substrates. Three self-etch adhesives--1) G- ænial Bond (GC Corporation, Tokyo, Japan); 2) OptiBond XTR (Kerr Corp, Orange, CA, USA); and 3) Scotchbond Universal (3M ESPE Dental Products, St Paul, MN, USA)--were used to bond Z100 Restorative resin composite to enamel and dentin surfaces. A stainless-steel metal ring with an inner diameter of 2.4 mm was used to bond the resin composite to flat-ground (4000 grit) tooth surfaces for determination of both SBS and SFL. Fifteen specimens each were used to determine initial SBS to human enamel/dentin, with and without pre-etching with a 35% phosphoric acid (Ultra-Etch, Ultradent Products Inc, South Jordan, UT, USA) for 15 seconds prior to the application of the adhesives. A staircase method of fatigue testing (25 specimens for each test) was then used to determine the SFL of resin composite bonded to enamel/dentin using a frequency of 10 Hz for 50,000 cycles or until failure occurred. A two-way analysis of variance and Tukey post hoc test were used for analysis of SBS data, and a modified t-test with Bonferroni correction was used for the SFL data. Scanning electron microscopy was used to examine the area of the bonded restorative/tooth interface. For all three adhesive systems, phosphoric acid pre-etching of enamel demonstrated significantly higher (p<0.05) SBS and SFL with pre-etching than it did without pre-etching. The SBS and SFL of dentin bonds decreased with phosphoric acid pre-etching. The SBS and SFL of bonds using phosphoric acid prior to application of self-etching adhesives clearly demonstrated different tendencies between enamel and dentin. The effect of using phosphoric acid, prior to the application of the self-etching adhesives, on SBS and SFL was dependent on the adhesive material and tooth substrate and should be carefully considered in clinical situations.