Sample records for electrochemical etching process

  1. Submicron patterned metal hole etching

    DOEpatents

    McCarthy, Anthony M.; Contolini, Robert J.; Liberman, Vladimir; Morse, Jeffrey

    2000-01-01

    A wet chemical process for etching submicron patterned holes in thin metal layers using electrochemical etching with the aid of a wetting agent. In this process, the processed wafer to be etched is immersed in a wetting agent, such as methanol, for a few seconds prior to inserting the processed wafer into an electrochemical etching setup, with the wafer maintained horizontal during transfer to maintain a film of methanol covering the patterned areas. The electrochemical etching setup includes a tube which seals the edges of the wafer preventing loss of the methanol. An electrolyte composed of 4:1 water: sulfuric is poured into the tube and the electrolyte replaces the wetting agent in the patterned holes. A working electrode is attached to a metal layer of the wafer, with reference and counter electrodes inserted in the electrolyte with all electrodes connected to a potentiostat. A single pulse on the counter electrode, such as a 100 ms pulse at +10.2 volts, is used to excite the electrochemical circuit and perform the etch. The process produces uniform etching of the patterned holes in the metal layers, such as chromium and molybdenum of the wafer without adversely effecting the patterned mask.

  2. Metallographic examination of TD-nickel base alloys. [thermal and chemical etching technique evaluation

    NASA Technical Reports Server (NTRS)

    Kane, R. D.; Petrovic, J. J.; Ebert, L. J.

    1975-01-01

    Techniques are evaluated for chemical, electrochemical, and thermal etching of thoria dispersed (TD) nickel alloys. An electrochemical etch is described which yielded good results only for large grain sizes of TD-nickel. Two types of thermal etches are assessed for TD-nickel: an oxidation etch and vacuum annealing of a polished specimen to produce an etch. It is shown that the first etch was somewhat dependent on sample orientation with respect to the processing direction, the second technique was not sensitive to specimen orientation or grain size, and neither method appear to alter the innate grain structure when the materials were fully annealed prior to etching. An electrochemical etch is described which was used to observe the microstructures in TD-NiCr, and a thermal-oxidation etch is shown to produce better detail of grain boundaries and to have excellent etching behavior over the entire range of grain sizes of the sample.

  3. Morphological Study on Porous Silicon Carbide Membrane Fabricated by Double-Step Electrochemical Etching

    NASA Astrophysics Data System (ADS)

    Omiya, Takuma; Tanaka, Akira; Shimomura, Masaru

    2012-07-01

    The structure of porous silicon carbide membranes that peeled off spontaneously during electrochemical etching was studied. They were fabricated from n-type 6H SiC(0001) wafers by a double-step electrochemical etching process in a hydrofluoric electrolyte. Nanoporous membranes were obtained after double-step etching with current densities of 10-20 and 60-100 mA/cm2 in the first and second steps, respectively. Microporous membranes were also fabricated after double-step etching with current densities of 100 and 200 mA/cm2. It was found that the pore diameter is influenced by the etching current in step 1, and that a higher current is required in step 2 when the current in step 1 is increased. During the etching processes in steps 1 and 2, vertical nanopore and lateral crack formations proceed, respectively. The influx pathway of hydrofluoric solution, expansion of generated gases, and transfer limitation of positive holes to the pore surface are the key factors in the peeling-off mechanism of the membrane.

  4. A Twice Electrochemical-Etching Method to Fabricate Superhydrophobic-Superhydrophilic Patterns for Biomimetic Fog Harvest.

    PubMed

    Yang, Xiaolong; Song, Jinlong; Liu, Junkai; Liu, Xin; Jin, Zhuji

    2017-08-18

    Superhydrophobic-superhydrophilic patterned surfaces have attracted more and more attention due to their great potential applications in the fog harvest process. In this work, we developed a simple and universal electrochemical-etching method to fabricate the superhydrophobic-superhydrophilic patterned surface on metal superhydrophobic substrates. The anti-electrochemical corrosion property of superhydrophobic substrates and the dependence of electrochemical etching potential on the wettability of the fabricated dimples were investigated on Al samples. Results showed that high etching potential was beneficial for efficiently producing a uniform superhydrophilic dimple. Fabrication of long-term superhydrophilic dimples on the Al superhydrophobic substrate was achieved by combining the masked electrochemical etching and boiling-water immersion methods. A long-term wedge-shaped superhydrophilic dimple array was fabricated on a superhydrophobic surface. The fog harvest test showed that the surface with a wedge-shaped pattern array had high water collection efficiency. Condensing water on the pattern was easy to converge and depart due to the internal Laplace pressure gradient of the liquid and the contact angle hysteresis contrast on the surface. The Furmidge equation was applied to explain the droplet departing mechanism and to control the departing volume. The fabrication technique and research of the fog harvest process may guide the design of new water collection devices.

  5. Electrochemical formation of field emitters

    DOEpatents

    Bernhardt, Anthony F.

    1999-01-01

    Electrochemical formation of field emitters, particularly useful in the fabrication of flat panel displays. The fabrication involves field emitting points in a gated field emitter structure. Metal field emitters are formed by electroplating and the shape of the formed emitter is controlled by the potential imposed on the gate as well as on a separate counter electrode. This allows sharp emitters to be formed in a more inexpensive and manufacturable process than vacuum deposition processes used at present. The fabrication process involves etching of the gate metal and the dielectric layer down to the resistor layer, and then electroplating the etched area and forming an electroplated emitter point in the etched area.

  6. High-aspect ratio micro- and nanostructures enabled by photo-electrochemical etching for sensing and energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Alhalaili, Badriyah; Dryden, Daniel M.; Vidu, Ruxandra; Ghandiparsi, Soroush; Cansizoglu, Hilal; Gao, Yang; Saif Islam, M.

    2018-03-01

    Photo-electrochemical (PEC) etching can produce high-aspect ratio features, such as pillars and holes, with high anisotropy and selectivity, while avoiding the surface and sidewall damage caused by traditional deep reactive ion etching (DRIE) or inductively coupled plasma (ICP) RIE. Plasma-based techniques lead to the formation of dangling bonds, surface traps, carrier leakage paths, and recombination centers. In pursuit of effective PEC etching, we demonstrate an optical system using long wavelength (λ = 975 nm) infra-red (IR) illumination from a high-power laser (1-10 W) to control the PEC etching process in n-type silicon. The silicon wafer surface was patterned with notches through a lithography process and KOH etching. Then, PEC etching was introduced by illuminating the backside of the silicon wafer to enhance depth, resulting in high-aspect ratio structures. The effect of the PEC etching process was optimized by varying light intensities and electrolyte concentrations. This work was focused on determining and optimizing this PEC etching technique on silicon, with the goal of expanding the method to a variety of materials including GaN and SiC that are used in designing optoelectronic and electronic devices, sensors and energy harvesting devices.

  7. Electrochemical formation of field emitters

    DOEpatents

    Bernhardt, A.F.

    1999-03-16

    Electrochemical formation of field emitters, particularly useful in the fabrication of flat panel displays is disclosed. The fabrication involves field emitting points in a gated field emitter structure. Metal field emitters are formed by electroplating and the shape of the formed emitter is controlled by the potential imposed on the gate as well as on a separate counter electrode. This allows sharp emitters to be formed in a more inexpensive and manufacturable process than vacuum deposition processes used at present. The fabrication process involves etching of the gate metal and the dielectric layer down to the resistor layer, and then electroplating the etched area and forming an electroplated emitter point in the etched area. 12 figs.

  8. Porous siliconformation and etching process for use in silicon micromachining

    DOEpatents

    Guilinger, Terry R.; Kelly, Michael J.; Martin, Jr., Samuel B.; Stevenson, Joel O.; Tsao, Sylvia S.

    1991-01-01

    A reproducible process for uniformly etching silicon from a series of micromechanical structures used in electrical devices and the like includes providing a micromechanical structure having a silicon layer with defined areas for removal thereon and an electrochemical cell containing an aqueous hydrofluoric acid electrolyte. The micromechanical structure is submerged in the electrochemical cell and the defined areas of the silicon layer thereon are anodically biased by passing a current through the electrochemical cell for a time period sufficient to cause the defined areas of the silicon layer to become porous. The formation of the depth of the porous silicon is regulated by controlling the amount of current passing through the electrochemical cell. The micromechanical structure is then removed from the electrochemical cell and submerged in a hydroxide solution to remove the porous silicon. The process is subsequently repeated for each of the series of micromechanical structures to achieve a reproducibility better than 0.3%.

  9. Lateral electrochemical etching of III-nitride materials for microfabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Jung

    Conductivity-selective lateral etching of III-nitride materials is described. Methods and structures for making vertical cavity surface emitting lasers with distributed Bragg reflectors via electrochemical etching are described. Layer-selective, lateral electrochemical etching of multi-layer stacks is employed to form semiconductor/air DBR structures adjacent active multiple quantum well regions of the lasers. The electrochemical etching techniques are suitable for high-volume production of lasers and other III-nitride devices, such as lasers, HEMT transistors, power transistors, MEMs structures, and LEDs.

  10. Fabrication of SOI structures with buried cavities using Si wafer direct bonding and electrochemical etch-stop

    NASA Astrophysics Data System (ADS)

    Chung, Gwiy-Sang

    2003-10-01

    This paper describes the fabrication of SOI structures with buried cavities using SDB and electrochemical etch-stop. These methods are suitable for thick membrane fabrication with accurate thickness, uniformity, and flatness. After a feed-through hole for supplied voltage and buried cavities was formed on a handle Si wafer with p-type, the handle wafer was bonded to an active Si wafer consisting of a p-type substrate with an n-type epitaxial layer corresponding to membrane thickness. The bonded pair was then thinned until electrochemical etch-stop occurred at the pn junction during electrochemical etchback. By using the SDB SOI structure with buried cavities, active membranes, which have a free standing structure with a dimension of 900×900 μm2, were fabricated. It is confirmed that the fabrication process of the SDB SOI structure with buried cavities is a powerful and versatile technology for new MEMS applications.

  11. Synthesis and characterization of hybrid micro/nano-structured NiTi surfaces by a combination of etching and anodizing

    NASA Astrophysics Data System (ADS)

    Huan, Z.; Fratila-Apachitei, L. E.; Apachitei, I.; Duszczyk, J.

    2014-02-01

    The purpose of this study was to generate hybrid micro/nano-structures on biomedical nickel-titanium alloy (NiTi). To achieve this, NiTi surfaces were firstly electrochemically etched and then anodized in fluoride-containing electrolyte. With the etching process, the NiTi surface was micro-roughened through the formation of micropits uniformly distributed over the entire surface. Following the subsequent anodizing process, self-organized nanotube structures enriched in TiO2 could be superimposed on the etched surface under specific conditions. Furthermore, the anodizing treatment significantly reduced water contact angles and increased the surface free energy compared to the surfaces prior to anodizing. The results of this study show for the first time that it is possible to create hybrid micro/nano-structures on biomedical NiTi alloys by combining electrochemical etching and anodizing under controlled conditions. These novel structures are expected to significantly enhance the surface biofunctionality of the material when compared to conventional implant devices with either micro- or nano-structured surfaces.

  12. Synthesis and characterization of hybrid micro/nano-structured NiTi surfaces by a combination of etching and anodizing.

    PubMed

    Huan, Z; Fratila-Apachitei, L E; Apachitei, I; Duszczyk, J

    2014-02-07

    The purpose of this study was to generate hybrid micro/nano-structures on biomedical nickel-titanium alloy (NiTi). To achieve this, NiTi surfaces were firstly electrochemically etched and then anodized in fluoride-containing electrolyte. With the etching process, the NiTi surface was micro-roughened through the formation of micropits uniformly distributed over the entire surface. Following the subsequent anodizing process, self-organized nanotube structures enriched in TiO2 could be superimposed on the etched surface under specific conditions. Furthermore, the anodizing treatment significantly reduced water contact angles and increased the surface free energy compared to the surfaces prior to anodizing. The results of this study show for the first time that it is possible to create hybrid micro/nano-structures on biomedical NiTi alloys by combining electrochemical etching and anodizing under controlled conditions. These novel structures are expected to significantly enhance the surface biofunctionality of the material when compared to conventional implant devices with either micro- or nano-structured surfaces.

  13. Electrochemical planarization

    DOEpatents

    Bernhardt, A.F.; Contolini, R.J.

    1993-10-26

    In a process for fabricating planarized thin film metal interconnects for integrated circuit structures, a planarized metal layer is etched back to the underlying dielectric layer by electropolishing, ion milling or other procedure. Electropolishing reduces processing time from hours to minutes and allows batch processing of multiple wafers. The etched back planarized thin film interconnect is flush with the dielectric layer. 12 figures.

  14. Preparation of superhydrophobic titanium surfaces via electrochemical etching and fluorosilane modification

    NASA Astrophysics Data System (ADS)

    Lu, Yao; Xu, Wenji; Song, Jinlong; Liu, Xin; Xing, Yingjie; Sun, Jing

    2012-12-01

    The preparation of superhydrophobic surfaces on hydrophilic metal substrates depends on both surface microstructures and low surface energy modification. In this study, a simple and inexpensive electrochemical method for preparing robust superhydrophobic titanium surfaces is reported. The neutral sodium chloride solution is used as electrolyte. Fluoroalkylsilane (FAS) was used to reduce the surface energy of the electrochemically etched surface. Scanning electron microscopy (SEM) images, energy-dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR) spectra, and contact angle measurement are performed to characterize the morphological features, chemical composition, and wettability of the titanium surfaces. Stability and friction tests indicate that the prepared titanium surfaces are robust. The analysis of electrolyte, reaction process, and products demonstrates that the electrochemical processing is very inexpensive and environment-friendly. This method is believed to be easily adaptable for use in large-scale industry productions to promote the application of superhydrophobic titanium surfaces in aviation, aerospace, shipbuilding, and the military industry.

  15. Principles and applications of laser-induced liquid-phase jet-chemical etching

    NASA Astrophysics Data System (ADS)

    Stephen, Andreas; Metev, Simeon; Vollertsen, Frank

    2003-11-01

    In this treatment method laser radiation, which is guided from a coaxially expanding liquid jet-stream, locally initiates a thermochemical etching reaction on a metal surface, which leads to selective material removal at high resolution and quality of the treated surface as well as low thermal influence on the workpiece. Electrochemical investigations were performed under focused laser irradiation using a cw-Nd:YAG laser with a maximum power of 15 W and a simultaneous impact of the liquid jet-stream consisting of phosphoric acid with a maximum flow rate of 20 m/s. The time resolved measurements of the electrical potential difference against an electrochemical reference electrode were correlated with the specific processing parameters and corresponding etch rates to identify processing conditions for temporally stable and enhanced chemical etching reactions. Applications of laser-induced liquid-phase jet-chemical etching in the field of sensor technology, micromechanics and micrmoulding technology are presented. This includes the microstructuring of thin film systems, cutting of foils of shape memory alloys or the generation of structures with defined shape in bulk material.

  16. CR-39 track etching and blow-up method

    DOEpatents

    Hankins, Dale E.

    1987-01-01

    This invention is a method of etching tracks in CR-39 foil to obtain uniformly sized tracks. The invention comprises a step of electrochemically etching the foil at a low frequency and a "blow-up" step of electrochemically etching the foil at a high frequency.

  17. Selectively-etched nanochannel electrophoretic and electrochemical devices

    DOEpatents

    Surh, Michael P.; Wilson, William D.; Barbee, Jr., Troy W.; Lane, Stephen M.

    2004-11-16

    Nanochannel electrophoretic and electrochemical devices having selectively-etched nanolaminates located in the fluid transport channel. The normally flat surfaces of the nanolaminate having exposed conductive (metal) stripes are selectively-etched to form trenches and baffles. The modifications of the prior utilized flat exposed surfaces increase the amount of exposed metal to facilitate electrochemical redox reaction or control the exposure of the metal surfaces to analytes of large size. These etched areas variously increase the sensitivity of electrochemical detection devices to low concentrations of analyte, improve the plug flow characteristic of the channel, and allow additional discrimination of the colloidal particles during cyclic voltammetry.

  18. Selectively-etched nanochannel electrophoretic and electrochemical devices

    DOEpatents

    Surh, Michael P [Livermore, CA; Wilson, William D [Pleasanton, CA; Barbee, Jr., Troy W.; Lane, Stephen M [Oakland, CA

    2006-06-27

    Nanochannel electrophoretic and electrochemical devices having selectively-etched nanolaminates located in the fluid transport channel. The normally flat surfaces of the nanolaminate having exposed conductive (metal) stripes are selectively-etched to form trenches and baffles. The modifications of the prior utilized flat exposed surfaces increase the amount of exposed metal to facilitate electrochemical redox reaction or control the exposure of the metal surfaces to analytes of large size. These etched areas variously increase the sensitivity of electrochemical detection devices to low concentrations of analyte, improve the plug flow characteristic of the channel, and allow additional discrimination of the colloidal particles during cyclic voltammetry.

  19. Photoelectrochemical fabrication of spectroscopic diffraction gratings, phase 2

    NASA Technical Reports Server (NTRS)

    Rauh, R. David; Carrabba, Michael M.; Li, Jianguo; Cartland, Robert F.; Hachey, John P.; Mathew, Sam

    1990-01-01

    This program was directed toward the production of Echelle diffraction gratings by a light-driven, electrochemical etching technique (photoelectrochemical etching). Etching is carried out in single crystal materials, and the differential rate of etching of the different crystallographic planes used to define the groove profiles. Etching of V-groove profiles was first discovered by us during the first phase of this project, which was initially conceived as a general exploration of photoelectrochemical etching techniques for grating fabrication. This highly controllable V-groove etching process was considered to be of high significance for producing low pitch Echelles, and provided the basis for a more extensive Phase 2 investigation.

  20. Porous silicon formation during Au-catalyzed etching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Algasinger, Michael; Bernt, Maximilian; Koynov, Svetoslav

    2014-04-28

    The formation of “black” nano-textured Si during the Au-catalyzed wet-chemical etch process was investigated with respect to photovoltaic applications. Cross-sectional scanning electron microscopy (SEM) images recorded at different stages of the etch process exhibit an evolution of a two-layer structure, consisting of cone-like Si hillocks covered with a nano-porous Si (np-Si) layer. Optical measurements confirm the presence of a np-Si phase which appears after the first ∼10 s of the etch process and continuously increases with the etch time. Furthermore, the etch process was investigated on Si substrates with different doping levels (∼0.01–100 Ω cm). SEM images show a transition frommore » the two-layer morphology to a structure consisting entirely of np-Si for higher doping levels (<0.1 Ω cm). The experimental results are discussed on the basis of the model of a local electrochemical etch process. A better understanding of the metal-catalyzed etch process facilitates the fabrication of “black” Si on various Si substrates, which is of significant interest for photovoltaic applications.« less

  1. Personnel neutron dosimetry using electrochemically etched CR-39 foils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hankins, D.E.; Homann, S.; Westermark, J.

    1986-09-17

    A personnel neutron dosimetry system has been developed based on the electrochemical etching of CR-39 plastic at elevated temperatures. The doses obtained using this dosimeter system are more accurate than those obtained using other dosimetry systems, especially when varied neutron spectra are encountered. This Cr-39 dosimetry system does not have the severe energy dependence that exists with albedo neutron dosimeters or the fading and reading problems encountered with NTA film. The dosimetry system employs an electrochemical etch procedure that be used to process large numbers of Cr-39 dosimeters. The etch procedure is suitable for operations where the number of personnelmore » requires that many CR-39 dosimeters be processed. Experience shows that one full-time technician can etch and evaluate 2000 foils per month. The energy response to neutrons is fairly flat from about 80 keV to 3.5 MeV, but drops by about a factor of three in the 13 to 16 MeV range. The sensitivity of the dosimetry system is about 7 tracks/cm/sup 2//mrem, with a background equivalent to about 8 mrem for new CR-39 foils. The limit of sensitivity is approximately 10 mrem. The dosimeter has a significant variation in directional dependence, dropping to about 20% at 90/sup 0/. This dosimeter has been used for personnel neutron dosimetry at the Lawrence Livermore National Laboratory for more tha 18 months. 6 refs., 23 figs., 2 tabs.« less

  2. Quadrilateral Micro-Hole Array Machining on Invar Thin Film: Wet Etching and Electrochemical Fusion Machining

    PubMed Central

    Choi, Woong-Kirl; Kim, Seong-Hyun; Choi, Seung-Geon; Lee, Eun-Sang

    2018-01-01

    Ultra-precision products which contain a micro-hole array have recently shown remarkable demand growth in many fields, especially in the semiconductor and display industries. Photoresist etching and electrochemical machining are widely known as precision methods for machining micro-holes with no residual stress and lower surface roughness on the fabricated products. The Invar shadow masks used for organic light-emitting diodes (OLEDs) contain numerous micro-holes and are currently machined by a photoresist etching method. However, this method has several problems, such as uncontrollable hole machining accuracy, non-etched areas, and overcutting. To solve these problems, a machining method that combines photoresist etching and electrochemical machining can be applied. In this study, negative photoresist with a quadrilateral hole array pattern was dry coated onto 30-µm-thick Invar thin film, and then exposure and development were carried out. After that, photoresist single-side wet etching and a fusion method of wet etching-electrochemical machining were used to machine micro-holes on the Invar. The hole machining geometry, surface quality, and overcutting characteristics of the methods were studied. Wet etching and electrochemical fusion machining can improve the accuracy and surface quality. The overcutting phenomenon can also be controlled by the fusion machining. Experimental results show that the proposed method is promising for the fabrication of Invar film shadow masks. PMID:29351235

  3. Single bead-based electrochemical biosensor.

    PubMed

    Liu, Changchun; Schrlau, Michael G; Bau, Haim H

    2009-12-15

    A simple, robust, single bead-based electrochemical biosensor was fabricated and characterized. The sensor's working electrode consists of an electrochemically etched platinum wire, with a nominal diameter of 25 microm, hermetically heat-fusion sealed in a pulled glass capillary (micropipette). The sealing process does not require any epoxy or glue. A commercially available, densely functionalized agarose bead was mounted on the tip of the etched platinum wire. The use of a pre-functionalized bead eliminates the tedious and complicated surface functionalization process that is often the bottleneck in the development of electrochemical biosensors. We report on the use of a biotin agarose bead-based, micropipette, electrochemical (Bio-BMP) biosensor to monitor H(2)O(2) concentration and the use of a streptavidin bead-based, micropipette, electrochemical (SA-BMP) biosensor to detect DNA amplicons. The Bio-BMP biosensor's response increased linearly as the H(2)O(2) concentration increased in the range from 1 x 10(-6) to 1.2 x10(-4)M with a detection limit of 5 x 10(-7)M. The SA-BMP was able to detect the amplicons of 1pg DNA template of B. Cereus bacteria, thus providing better detection sensitivity than conventional gel-based electropherograms.

  4. Integration of Electrodeposited Ni-Fe in MEMS with Low-Temperature Deposition and Etch Processes

    PubMed Central

    Schiavone, Giuseppe; Murray, Jeremy; Perry, Richard; Mount, Andrew R.; Desmulliez, Marc P. Y.; Walton, Anthony J.

    2017-01-01

    This article presents a set of low-temperature deposition and etching processes for the integration of electrochemically deposited Ni-Fe alloys in complex magnetic microelectromechanical systems, as Ni-Fe is known to suffer from detrimental stress development when subjected to excessive thermal loads. A selective etch process is reported which enables the copper seed layer used for electrodeposition to be removed while preserving the integrity of Ni-Fe. In addition, a low temperature deposition and surface micromachining process is presented in which silicon dioxide and silicon nitride are used, respectively, as sacrificial material and structural dielectric. The sacrificial layer can be patterned and removed by wet buffered oxide etch or vapour HF etching. The reported methods limit the thermal budget and minimise the stress development in Ni-Fe. This combination of techniques represents an advance towards the reliable integration of Ni-Fe components in complex surface micromachined magnetic MEMS. PMID:28772683

  5. Nano-porous electrode systems by colloidal lithography for sensitive electrochemical detection: fabrication technology and properties

    NASA Astrophysics Data System (ADS)

    Lohmüller, Theobald; Müller, Ulrich; Breisch, Stefanie; Nisch, Wilfried; Rudorf, Ralf; Schuhmann, Wolfgang; Neugebauer, Sebastian; Kaczor, Markus; Linke, Stephan; Lechner, Sebastian; Spatz, Joachim; Stelzle, Martin

    2008-11-01

    A porous metal-insulator-metal sensor system was developed with the ultimate goal of enhancing the sensitivity of electrochemical sensors by taking advantage of redox cycling of electro active molecules between closely spaced electrodes. The novel fabrication technology is based on thin film deposition in combination with colloidal self-assembly and reactive ion etching to create micro- or nanopores. This cost effective approach is advantageous compared to common interdigitated electrode arrays (IDA) since it does not require high definition lithography technology. Spin-coating and random particle deposition, combined with a new sublimation process are discussed as competing strategies to generate monolayers of colloidal spheres. Metal-insulator-metal layer systems with low leakage currents < 10 pA and an insulator thickness as low as 100 nm were obtained at high yield (typically > 90%). We also discuss possible causes of sensor failure with respect to critical fabrication processes. Short circuits which could occur during or as a result of the pore etching process were investigated in detail. Infrared microscopy in combination with focused ion beam etching/SEM were used to reveal a defect mechanism creating interconnects and increased leakage current between the top and bottom electrodes. Redox cycling provides for amplification factors of >100. A general applicability for electrochemical diagnostic assays is therefore anticipated.

  6. Preparation of Chemically Etched Tips for Ambient Instructional Scanning Tunneling Microscopy

    ERIC Educational Resources Information Center

    Zaccardi, Margot J.; Winkelmann, Kurt; Olson, Joel A.

    2010-01-01

    A first-year laboratory experiment that utilizes concepts of electrochemical tip etching for scanning tunneling microscopy (STM) is described. This experiment can be used in conjunction with any STM experiment. Students electrochemically etch gold STM tips using a time-efficient method, which can then be used in an instructional grade STM that…

  7. The possibility of multi-layer nanofabrication via atomic force microscope-based pulse electrochemical nanopatterning

    NASA Astrophysics Data System (ADS)

    Kim, Uk Su; Morita, Noboru; Lee, Deug Woo; Jun, Martin; Park, Jeong Woo

    2017-05-01

    Pulse electrochemical nanopatterning, a non-contact scanning probe lithography process using ultrashort voltage pulses, is based primarily on an electrochemical machining process using localized electrochemical oxidation between a sharp tool tip and the sample surface. In this study, nanoscale oxide patterns were formed on silicon Si (100) wafer surfaces via electrochemical surface nanopatterning, by supplying external pulsed currents through non-contact atomic force microscopy. Nanoscale oxide width and height were controlled by modulating the applied pulse duration. Additionally, protruding nanoscale oxides were removed completely by simple chemical etching, showing a depressed pattern on the sample substrate surface. Nanoscale two-dimensional oxides, prepared by a localized electrochemical reaction, can be defined easily by controlling physical and electrical variables, before proceeding further to a layer-by-layer nanofabrication process.

  8. Room-Temperature Wet Chemical Synthesis of Au NPs/TiH2/Nanocarved Ti Self-Supported Electrocatalysts for Highly Efficient H2 Generation.

    PubMed

    Amin, Mohammed A; Fadlallah, Sahar A; Alosaimi, Ghaida S; Ahmed, Emad M; Mostafa, Nasser Y; Roussel, Pascal; Szunerits, Sabine; Boukherroub, Rabah

    2017-09-06

    Self-supported electrocatalysts are a new class of materials exhibiting high catalytic performance for various electrochemical processes and can be directly equipped in energy conversion devices. We present here, for the first time, sparse Au NPs self-supported on etched Ti (nanocarved Ti substrate self-supported with TiH 2 ) as promising catalysts for the electrochemical generation of hydrogen (H 2 ) in KOH solutions. Cleaned, as-polished Ti substrates were etched in highly concentrated sulfuric acid solutions without and with 0.1 M NH 4 F at room temperature for 15 min. These two etching processes yielded a thin layer of TiH 2 (the corrosion product of the etching process) self-supported on nanocarved Ti substrates with different morphologies. While F - -free etching process led to formation of parallel channels (average width: 200 nm), where each channel consists of an array of rounded cavities (average width: 150 nm), etching in the presence of F - yielded Ti surface carved with nanogrooves (average width: 100 nm) in parallel orientation. Au NPs were then grown in situ (self-supported) on such etched surfaces via immersion in a standard gold solution at room temperature without using stabilizers or reducing agents, producing Au NPs/TiH 2 /nanostructured Ti catalysts. These materials were characterized by scanning electron microscopy/energy-dispersive spectroscopy (SEM/EDS), grazing incidence X-ray diffraction (GIXRD), and X-ray photoelectron spectroscopy (XPS). GIXRD confirmed the formation of Au 2 Ti phase, thus referring to strong chemical interaction between the supported Au NPs and the substrate surface (also evidenced from XPS) as well as a titanium hydride phase of chemical composition TiH 2 . Electrochemical measurements in 0.1 M KOH solution revealed outstanding hydrogen evolution reaction (HER) electrocatalytic activity for our synthesized catalysts, with Au NPs/TiH 2 /nanogrooved Ti catalyst being the best one among them. It exhibited fast kinetics for the HER with onset potentials as low as -22 mV vs. RHE, high exchange current density of 0.7 mA cm -2 , and a Tafel slope of 113 mV dec -1 . These HER electrochemical kinetic parameters are very close to those measured here for a commercial Pt/C catalyst (onset potential: -20 mV, Tafel slope: 110 mV dec -1 , and exchange current density: 0.75 mA cm -2 ). The high catalytic activity of these materials was attributed to the catalytic impacts of both TiH 2 phase and self-supported Au NPs (active sites for the catalytic reduction of water to H 2 ), in addition to their nanostructured features which provide a large-surface area for the HER.

  9. Smooth and selective photo-electrochemical etching of heavily doped GaN:Si using a mode-locked 355 nm microchip laser

    NASA Astrophysics Data System (ADS)

    Lee, SeungGeun; Mishkat-Ul-Masabih, Saadat; Leonard, John T.; Feezell, Daniel F.; Cohen, Daniel A.; Speck, James S.; Nakamura, Shuji; DenBaars, Steven P.

    2017-01-01

    We investigate the photo-electrochemical (PEC) etching of Si-doped GaN samples grown on nonpolar GaN substrates, using a KOH/K2S2O8 solution and illuminated by a Xe arc lamp or a Q-switched 355 nm laser. The etch rate with the arc lamp decreased as the doping concentration increased, and the etching stopped for concentrations above 7.7 × 1018 cm-3. The high peak intensity of the Q-switched laser extended the etchable concentration to 2.4 × 1019 cm-3, with an etch rate of 14 nm/min. Compositionally selective etching was demonstrated, with an RMS surface roughness of 1.6 nm after etching down to an n-Al0.20Ga0.80N etch stop layer.

  10. Note: Circuit design for direct current and alternating current electrochemical etching of scanning probe microscopy tips.

    PubMed

    Jobbins, Matthew M; Raigoza, Annette F; Kandel, S Alex

    2012-03-01

    We present control circuits designed for electrochemically etching, reproducibly sharp STM probes. The design uses an Arduino UNO microcontroller to allow for both ac and dc operation, as well as a comparator driven shut-off that allows for etching to be stopped in 0.5-1 μs. The Arduino allows the instrument to be customized to suit a wide variety of potential applications without significant changes to hardware. Data is presented for coarse chemical etching of 80:20 platinum-iridium, tungsten, and nickel tips.

  11. Electrodeposited manganese dioxide nanostructures on electro-etched carbon fibers: High performance materials for supercapacitor applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazemi, Sayed Habib, E-mail: habibkazemi@iasbs.ac.ir; Center for Research in Climate Change and Global Warming; Maghami, Mostafa Ghaem

    Highlights: • We report a facile method for fabrication of MnO{sub 2} nanostructures on electro-etched carbon fiber. • MnO{sub 2}-ECF electrode shows outstanding supercapacitive behavior even at high discharge rates. • Exceptional cycle stability was achieved for MnO{sub 2}-ECF electrode. • The coulombic efficiency of MnO{sub 2}-ECF electrode is nearly 100%. - Abstract: In this article we introduce a facile, low cost and additive/template free method to fabricate high-rate electrochemical capacitors. Manganese oxide nanostructures were electrodeposited on electro-etched carbon fiber substrate by applying a constant anodic current. Nanostructured MnO{sub 2} on electro-etched carbon fiber was characterized by scanning electron microscopy,more » X-ray diffraction and energy dispersive X-ray analysis. The electrochemical behavior of MnO{sub 2} electro-etched carbon fiber electrode was investigated by electrochemical techniques including cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy. A maximum specific capacitance of 728.5 F g{sup −1} was achieved at a scan rate of 5 mV s{sup −1} for MnO{sub 2} electro-etched carbon fiber electrode. Also, this electrode showed exceptional cycle stability, suggesting that it can be considered as a good candidate for supercapacitor electrodes.« less

  12. 40 CFR 61.31 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... associated elements. (b) Extraction plant means a facility chemically processing beryllium ore to beryllium..., electrochemical machining, etching, or other similar operations. (e) Ceramic plant means a manufacturing plant... compounds used or generated during any process or operation performed by a source subject to this subpart...

  13. 40 CFR 61.31 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... associated elements. (b) Extraction plant means a facility chemically processing beryllium ore to beryllium..., electrochemical machining, etching, or other similar operations. (e) Ceramic plant means a manufacturing plant... compounds used or generated during any process or operation performed by a source subject to this subpart...

  14. 40 CFR 61.31 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... associated elements. (b) Extraction plant means a facility chemically processing beryllium ore to beryllium..., electrochemical machining, etching, or other similar operations. (e) Ceramic plant means a manufacturing plant... compounds used or generated during any process or operation performed by a source subject to this subpart...

  15. Solution-processed photodetectors from colloidal silicon nano/micro particle composite.

    PubMed

    Tu, Chang-Ching; Tang, Liang; Huang, Jiangdong; Voutsas, Apostolos; Lin, Lih Y

    2010-10-11

    We demonstrate solution-processed photodetectors composed of heavy-metal-free Si nano/micro particle composite. The colloidal Si particles are synthesized by electrochemical etching of Si wafers, followed by ultra-sonication to pulverize the porous surface. With alkyl ligand surface passivation through hydrosilylation reaction, the particles can form a stable colloidal suspension which exhibits bright photoluminescence under ultraviolet excitation and a broadband extinction spectrum due to enhanced scattering from the micro-size particles. The efficiency of the thin film photodetectors has been substantially improved by preventing oxidation of the particles during the etching process.

  16. Silicon-based photonic crystals fabricated using proton beam writing combined with electrochemical etching method

    PubMed Central

    2012-01-01

    A method for fabrication of three-dimensional (3D) silicon nanostructures based on selective formation of porous silicon using ion beam irradiation of bulk p-type silicon followed by electrochemical etching is shown. It opens a route towards the fabrication of two-dimensional (2D) and 3D silicon-based photonic crystals with high flexibility and industrial compatibility. In this work, we present the fabrication of 2D photonic lattice and photonic slab structures and propose a process for the fabrication of 3D woodpile photonic crystals based on this approach. Simulated results of photonic band structures for the fabricated 2D photonic crystals show the presence of TE or TM gap in mid-infrared range. PMID:22824206

  17. Photoelectrochemical etching of epitaxial InGaN thin films: Self-limited kinetics and nanostructuring

    DOE PAGES

    Xiao, Xiaoyin; Fischer, Arthur J.; Coltrin, Michael E.; ...

    2014-10-22

    We report here the characteristics of photoelectrochemical (PEC) etching of epitaxial InGaN semiconductor thin films using narrowband lasers with linewidth less than ~1 nm. In the initial stages of PEC etching, when the thin film is flat, characteristic voltammogram shapes are observed. At low photo-excitation rates, voltammograms are S-shaped, indicating the onset of a voltage-independent rate-limiting process associated with electron-hole-pair creation and/or annihilation. At high photo-excitation rates, voltammograms are superlinear in shape, indicating, for the voltage ranges studied here, a voltage-dependent rate-limiting process associated with surface electrochemical oxidation. As PEC etching proceeds, the thin film becomes rough at the nanoscale,more » and ultimately evolves into an ensemble of nanoparticles. As a result, this change in InGaN film volume and morphology leads to a characteristic dependence of PEC etch rate on time: an incubation time, followed by a rise, then a peak, then a slow decay.« less

  18. Anisotropic etching of platinum electrodes at the onset of cathodic corrosion

    PubMed Central

    Hersbach, Thomas J. P.; Yanson, Alexei I.; Koper, Marc T. M.

    2016-01-01

    Cathodic corrosion is a process that etches metal electrodes under cathodic polarization. This process is presumed to occur through anionic metallic reaction intermediates, but the exact nature of these intermediates and the onset potential of their formation is unknown. Here we determine the onset potential of cathodic corrosion on platinum electrodes. Electrodes are characterized electrochemically before and after cathodic polarization in 10 M sodium hydroxide, revealing that changes in the electrode surface start at an electrode potential of −1.3 V versus the normal hydrogen electrode. The value of this onset potential rules out previous hypotheses regarding the nature of cathodic corrosion. Scanning electron microscopy shows the formation of well-defined etch pits with a specific orientation, which match the voltammetric data and indicate a remarkable anisotropy in the cathodic etching process, favouring the creation of (100) sites. Such anisotropy is hypothesized to be due to surface charge-induced adsorption of electrolyte cations. PMID:27554398

  19. 40 CFR 61.31 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... associated elements. (b) Extraction plant means a facility chemically processing beryllium ore to beryllium..., electrochemical machining, etching, or other similar operations. (e) Ceramic plant means a manufacturing plant... which contains more than 0.1 percent beryllium by weight. (k) Propellant plant means any facility...

  20. 40 CFR 61.31 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... associated elements. (b) Extraction plant means a facility chemically processing beryllium ore to beryllium..., electrochemical machining, etching, or other similar operations. (e) Ceramic plant means a manufacturing plant... which contains more than 0.1 percent beryllium by weight. (k) Propellant plant means any facility...

  1. Components, Assembly and Electrochemical Properties of Three-Dimensional Battery Architectures

    DTIC Science & Technology

    2016-03-01

    batteries is directed at our project on 3-D lithium - ion batteries where improvements in materials and fabrication methods are expected to facilitate...reporting period, we focused on new materials and electrode array fabrication processes for 3-D lithium - ion batteries and made substantial progress. In...to facilitate the assembly of a full 3-D lithium - ion battery system. a Pattern silicon dioxide etch I I I I I mask b DRIE etch silicon posts c I I

  2. Buffered Electrochemical Polishing of Niobium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gianluigi Ciovati; Tian, Hui; Corcoran, Sean

    The standard preparation of superconducting radio-frequency (SRF) cavities made of pure niobium include the removal of a 'damaged' surface layer, by buffered chemical polishing (BCP) or electropolishing (EP), after the cavities are formed. The performance of the cavities is characterized by a sharp degradation of the quality factor when the surface magnetic field exceeds about 90 mT, a phenomenon referred to as 'Q-drop.' In cavities made of polycrystalline fine grain (ASTM 5) niobium, the Q-drop can be significantly reduced by a low-temperature (? 120 °C) 'in-situ' baking of the cavity if the chemical treatment was EP rather than BCP. Asmore » part of the effort to understand this phenomenon, we investigated the effect of introducing a polarization potential during buffered chemical polishing, creating a process which is between the standard BCP and EP. While preliminary results on the application of this process to Nb cavities have been previously reported, in this contribution we focus on the characterization of this novel electrochemical process by measuring polarization curves, etching rates, surface finish, electrochemical impedance and the effects of temperature and electrolyte composition. In particular, it is shown that the anodic potential of Nb during BCP reduces the etching rate and improves the surface finish.« less

  3. Nanoporous Silicon Carbide for Nanoelectromechanical Systems Applications

    NASA Technical Reports Server (NTRS)

    Hossain, T.; Khan, F.; Adesida, I.; Bohn, P.; Rittenhouse, T.; Lienhard, Michael (Technical Monitor)

    2003-01-01

    A major goal of this project is to produce porous silicon carbide (PSiC) via an electroless process for eventual utilization in nanoscale sensing platforms. Results in the literature have shown a variety of porous morphologies in SiC produced in anodic cells. Therefore, predictability and reproducibility of porous structures are initial concerns. This work has concentrated on producing morphologies of known porosity, with particular attention paid toward producing the extremely high surface areas required for a porous flow sensor. We have conducted a parametric study of electroless etching conditions and characteristics of the resulting physical nanostructure and also investigated the relationship between morphology and materials properties. Further, we have investigated bulk etching of SiC using both photo-electrochemical etching and inductively-coupled-plasma reactive ion etching techniques.

  4. High quality self-separated GaN crystal grown on a novel nanoporous template by HVPE.

    PubMed

    Huo, Qin; Shao, Yongliang; Wu, Yongzhong; Zhang, Baoguo; Hu, Haixiao; Hao, Xiaopeng

    2018-02-16

    In this study, a novel nanoporous template was obtained by a two-step etching process from MOCVD-GaN/Al 2 O 3 (MGA) with electrochemical etching sequentially followed by chemical wet etching. The twice-etched MOCVD-GaN/Al 2 O 3 (TEMGA) templates were utilized to grow GaN crystals by hydride vapor phase epitaxy (HVPE) method. The GaN crystals were separated spontaneously from the TEMGA template with the assistance of voids formed by the etched nanopores. Several techniques were utilized to characterize the quality of the free-standing GaN crystals obtained from the TEMGA template. Results showed that the quality of the as-obtained GaN crystals was improved obviously compared with those grown on the MGA. This convenient technique can be applied to grow high-quality free-standing GaN crystals.

  5. Fabrication of high reflectivity nanoporous distributed Bragg reflectors by controlled electrochemical etching of GaN

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Min; Kang, Jin-Ho; Lee, June Key; Ryu, Sang-Wan

    2016-09-01

    The nanoporous medium is a valuable feature of optical devices because of its variable optical refractive index with porosity. One important application is in a GaN-based vertical cavity surface emitting laser having a distributed Bragg reflector (DBR) composed of alternating nanoporous and bulk GaNs. However, optimization of the fabrication process for high reflectivity DBRs having wellcontrolled high reflection bands has not been studied yet. We used electrochemical etching to study the fabrication process of a nanoporous GaN DBR and analyzed the relationship between the morphology and optical reflectivity. Several electrolytes were examined for the formation of the optimized nanoporous structure. A highly reflective DBRs having reflectivity of ~100% were obtained over a wide wavelength range of 450-750 nm. Porosification of semiconductors into nanoporous layers could provide a high reflectivity DBR due to controlled index-contrast, which would be advantages for the construction of a high-Q optical cavity.

  6. Modeling the photoacoustic signal during the porous silicon formation

    NASA Astrophysics Data System (ADS)

    Ramirez-Gutierrez, C. F.; Castaño-Yepes, J. D.; Rodriguez-García, M. E.

    2017-01-01

    Within this work, the kinetics of the growing stage of porous silicon (PS) during the etching process was studied using the photoacoustic technique. A p-type Si with low resistivity was used as a substrate. An extension of the Rosencwaig and Gersho model is proposed in order to analyze the temporary changes that take place in the amplitude of the photoacoustic signal during the PS growth. The solution of the heat equation takes into account the modulated laser beam, the changes in the reflectance of the PS-backing heterostructure, the electrochemical reaction, and the Joule effect as thermal sources. The model includes the time-dependence of the sample thickness during the electrochemical etching of PS. The changes in the reflectance are identified as the laser reflections in the internal layers of the system. The reflectance is modeled by an additional sinusoidal-monochromatic light source and its modulated frequency is related to the velocity of the PS growth. The chemical reaction and the DC components of the heat sources are taken as an average value from the experimental data. The theoretical results are in agreement with the experimental data and hence provided a method to determine variables of the PS growth, such as the etching velocity and the thickness of the porous layer during the growing process.

  7. HF/H2O2 treated graphite felt as the positive electrode for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    He, Zhangxing; Jiang, Yingqiao; Meng, Wei; Jiang, Fengyun; Zhou, Huizhu; Li, Yuehua; Zhu, Jing; Wang, Ling; Dai, Lei

    2017-11-01

    In order to improve the electrochemical performance of the positive graphite felt electrode in vanadium flow redox battery, a novel method is developed to effectively modify the graphite felt by combination of etching of HF and oxidation of H2O2. After the etching of HF for the graphite felt at ambient temperature, abundant oxygen-containing functional groups were further introduced on the surface of graphite felt by hydrothermal treatment using H2O2 as oxidant. Benefiting from the surface etching and introduction of functional groups, mass transfer and electrode process can be improved significantly on the surface of graphite felt. VO2+/VO2+ redox reaction on the graphite felt modified by HF and H2O2 jointly (denote: GF-HF/H2O2) exhibits superior electrochemical kinetics in comparison with the graphite felt modified by single HF or H2O2 treatment. The cell using GF-HF/H2O2 as the positive electrode was assembled and its electrochemical properties were evaluated. The increase of energy efficiency of 4.1% for GF-HF/H2O2 at a current density of 50 mA cm-2 was obtained compared with the pristine graphite felt. The cell using GF-HF/H2O2 also demonstrated higher discharge capacity. Our study revealed that HF/H2O2 treatment is an efficient method to enhance the electrochemical performance of graphite felt, further improving the comprehensive energy storage performance of the vanadium flow redox battery.

  8. Synthesis and characterization of porous silicon gas sensors

    NASA Astrophysics Data System (ADS)

    abbas, Roaa A.; Alwan, Alwan M.; Abdulhamied, Zainab T.

    2018-05-01

    In this work, photo-electrochemical etching process of n-type Silicon of resistivity(10 Ω.cm) and (100) orientation, using two illumination sources IR and violet wavelength in HF acid have been used to produce PSi gas detection device. The fabrication process was carried out at a fixed etching current density of 25mA/cm2 and at different etching time (5, 10, 15 and 20) min and (8, 16, 24, and 30) min. Two configurations of gas sensor configuration planer and sandwich have been made and investigated. The morphological properties have been studied using SEM,the FTIR measurement show that the (Si-Hx) and (Si-O-Si) absorption peak were increases with increasing etching time,and Photoluminescence properties of PSi layer show decrease in the peak of PL peak toward the violet shift. The gas detection process is made on the CO2 gas at different operating temperature and fixed gas concentration. In the planner structure, the gas sensing was measured through, the change in the resistance readout as a function to the exposure time, while for sandwich structure J-V characteristic have been made to determine the sensitivity.

  9. Chemical Composition of Nanoporous Layer Formed by Electrochemical Etching of p-Type GaAs.

    PubMed

    Bioud, Youcef A; Boucherif, Abderraouf; Belarouci, Ali; Paradis, Etienne; Drouin, Dominique; Arès, Richard

    2016-12-01

    We have performed a detailed characterization study of electrochemically etched p-type GaAs in a hydrofluoric acid-based electrolyte. The samples were investigated and characterized through cathodoluminescence (CL), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). It was found that after electrochemical etching, the porous layer showed a major decrease in the CL intensity and a change in chemical composition and in the crystalline phase. Contrary to previous reports on p-GaAs porosification, which stated that the formed layer is composed of porous GaAs, we report evidence that the porous layer is in fact mainly constituted of porous As 2 O 3 . Finally, a qualitative model is proposed to explain the porous As 2 O 3 layer formation on p-GaAs substrate.

  10. Porous carbon-free SnSb anodes for high-performance Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Choi, Jeong-Hee; Ha, Choong-Wan; Choi, Hae-Young; Seong, Jae-Wook; Park, Cheol-Min; Lee, Sang-Min

    2018-05-01

    A simple melt-spinning/chemical-etching process is developed to create porous carbon-free SnSb anodes. Sodium ion batteries (SIBs) incorporating these anodes exhibit excellent electrochemical performances by accomodating large volume changes during repeated cycling. The porous carbon-free SnSb anode produced by the melt-spinning/chemical-etching process shows a high reversible capacity of 481 mAh g-1, high ICE of 80%, stable cyclability with a high capacity retention of 99% after 100 cycles, and a fast rate capability of 327 mAh g-1 at 4C-rate. Ex-situ X-ray diffraction and high resolution-transmission electron microscopy analyses demonstrate that the synthesized porous carbon-free SnSb anodes involve the highly reversible reaction with sodium through the conversion and recombination reactions during sodiation/desodiation process. The novel and simple melt-spinning/chemical-etching synthetic process represents a technological breakthrough in the commercialization of Na alloy-able anodes for SIBs.

  11. Modification of Patterned Nanoporous Gold Thin Film Electrodes via Electro-annealing and Electrochemical Etching

    NASA Astrophysics Data System (ADS)

    Dorofeeva, Tatiana

    Nanostructured materials have had a major impact on various fields, including medicine, catalysis, and energy storage, for the major part due to unique phenomena that arise at nanoscale. For this reason, there is a sustained need for new nanostructured materials, techniques to pattern them, and methods to precisely control their nanostructure. To that end, the primary focus of this dissertation is to demonstrate novel techniques to fabricate and tailor the morphology of a class of nanoporous metals, obtained by a process known as dealloying. In this process, while the less noble constituent of an alloy is chemically dissolved, surface-diffusion of the more noble constituent leads to self-assembly of a bicontinuous ligament network with characteristic porosity of ˜70% and ligament diameter of 10s of nanometers. As a model material produced by dealloying, this work employ nanoporous gold (np-Au), which has attracted significant attention of desirable features, such as high effective surface area, electrical conductivity, well-defined thiol-based surface modification strategies, microfabrication-compatibility, and biocompatibility. The most commonly method used to modify the morphology of np-Au is thermal treatment, where the enhanced diffusivity of the surface atoms leads to ligament (and consequently pore) coarsening. This method, however, is not conducive to modifying the morphology of thin films at specific locations on the film, which is necessary for creating devices that may need to contain different morphologies on a single device. In addition, coarsening attained by thermal treatment also leads to an undesirable reduction in effective surface area. In response to these challenges, this work demonstrates two different techniques that enables in situ modification of np-Au thin film electrodes obtained by sputter-deposition of a precursors silver-rich gold-silver alloy. The first method, referred to as electro-annealing, is achieved by injecting electrical current to np-Au electrodes, which leads coarsening due to a combination of Joule heating and other mechanisms. This method offers the capability to anneal different electrodes to varying degrees of coarsening in one step, by employing electrodes patterns with different cross-sectional areas - easily attained since np-Au can be patterned into arbitrary shapes via photolithography - to control electrode resistivity, thus current density and the amount of electro-annealing of an electrode. A surprising finding was that electro-annealing lead to electrode coarsening at much lower temperatures than conventional thermal treatment, which was attributed to augmented electron-surface atom interactions at high current densities that may in turn enhance surface atom diffusivity. A major advantage of electro-annealing is the ability to monitor the resistance change of the electrode (surrogate for electrode morphology) in real-time and vary the electro-annealing current accordingly to establish a closed-loop electro-annealing configuration. In nanostructured materials, the electrical resistance is often a function of nanostructure, thus changes in resistance can be directly linked to morphological changes of the electrode. Examination of the underlying mechanisms of nanostructure-dependent resistance change revealed that both ligament diameter and grain size play a role in dictating the observed electrode resistance change. The second method relies on electrochemical etching of ligaments to modify electrode morphology in order to maintain both a high effective surface area and large pores for unhindered transport of molecules to/from the ligament surfaces - an important consideration for many physico-chemical processes, such fuel cells, electrochemical sensors, and drug delivery platforms. The advantage of this method over purely chemical approach is that while an entire sample in exposed to the chemical reagent, the etching process does not occur until the necessary electrochemical potential is applied. Similar to the electro-annealing methods, electrical addressability allows for differentially modifying the morphology individual electrodes on a single substrate. The results of this study also revealed that electrochemical etching is a combination of coarsening and etching processes, where the optimization of etching parameters makes it possible precisely control the etching by favoring one process over the other. In summary, the two techniques, taken together in combination with np-Au's compatibility with microfabrication processes, can be extended to create multiple electrode arrays that display different morphologies for studying structure?property relationships and tuning catalysts/sensors for optimal performance.

  12. Effects of UV light intensity on electrochemical wet etching of SiC for the fabrication of suspended graphene

    NASA Astrophysics Data System (ADS)

    O, Ryong-Sok; Takamura, Makoto; Furukawa, Kazuaki; Nagase, Masao; Hibino, Hiroki

    2015-03-01

    We report on the effects of UV light intensity on the photo assisted electrochemical wet etching of SiC(0001) underneath an epitaxially grown graphene for the fabrication of suspended structures. The maximum etching rate of SiC(0001) was 2.5 µm/h under UV light irradiation in 1 wt % KOH at a constant current of 0.5 mA/cm2. The successful formation of suspended structures depended on the etching rate of SiC. In the Raman spectra of the suspended structures, we did not observe a significant increase in the intensity of the D peak, which originates from defects in graphene sheets. This is most likely explained by the high quality of the single-crystalline graphene epitaxially grown on SiC.

  13. Robust graphene membranes in a silicon carbide frame.

    PubMed

    Waldmann, Daniel; Butz, Benjamin; Bauer, Sebastian; Englert, Jan M; Jobst, Johannes; Ullmann, Konrad; Fromm, Felix; Ammon, Maximilian; Enzelberger, Michael; Hirsch, Andreas; Maier, Sabine; Schmuki, Patrik; Seyller, Thomas; Spiecker, Erdmann; Weber, Heiko B

    2013-05-28

    We present a fabrication process for freely suspended membranes consisting of bi- and trilayer graphene grown on silicon carbide. The procedure, involving photoelectrochemical etching, enables the simultaneous fabrication of hundreds of arbitrarily shaped membranes with an area up to 500 μm(2) and a yield of around 90%. Micro-Raman and atomic force microscopy measurements confirm that the graphene layer withstands the electrochemical etching and show that the membranes are virtually unstrained. The process delivers membranes with a cleanliness suited for high-resolution transmission electron microscopy (HRTEM) at atomic scale. The membrane, and its frame, is very robust with respect to thermal cycling above 1000 °C as well as harsh acidic or alkaline treatment.

  14. A Macroporous TiO2 Oxygen Sensor Fabricated Using Anodic Aluminium Oxide as an Etching Mask

    PubMed Central

    Lu, Chih-Cheng; Huang, Yong-Sheng; Huang, Jun-Wei; Chang, Chien-Kuo; Wu, Sheng-Po

    2010-01-01

    An innovative fabrication method to produce a macroporous Si surface by employing an anodic aluminium oxide (AAO) nanopore array layer as an etching template is presented. Combining AAO with a reactive ion etching (RIE) processes, a homogeneous and macroporous silicon surface can be effectively configured by modulating AAO process parameters and alumina film thickness, thus hopefully replacing conventional photolithography and electrochemical etch methods. The hybrid process integration is considered fully CMOS compatible thanks to the low-temperature AAO and CMOS processes. The gas-sensing characteristics of 50 nm TiO2 nanofilms deposited on the macroporous surface are compared with those of conventional plain (or non-porous) nanofilms to verify reduced response noise and improved sensitivity as a result of their macroporosity. Our experimental results reveal that macroporous geometry of the TiO2 chemoresistive gas sensor demonstrates 2-fold higher (∼33%) improved sensitivity than a non-porous sensor at different levels of oxygen exposure. In addition, the macroporous device exhibits excellent discrimination capability and significantly lessened response noise at 500 °C. Experimental results indicate that the hybrid process of such miniature and macroporous devices are compatible as well as applicable to integrated next generation bio-chemical sensors. PMID:22315561

  15. A macroporous TiO2 oxygen sensor fabricated using anodic aluminium oxide as an etching mask.

    PubMed

    Lu, Chih-Cheng; Huang, Yong-Sheng; Huang, Jun-Wei; Chang, Chien-Kuo; Wu, Sheng-Po

    2010-01-01

    An innovative fabrication method to produce a macroporous Si surface by employing an anodic aluminium oxide (AAO) nanopore array layer as an etching template is presented. Combining AAO with a reactive ion etching (RIE) processes, a homogeneous and macroporous silicon surface can be effectively configured by modulating AAO process parameters and alumina film thickness, thus hopefully replacing conventional photolithography and electrochemical etch methods. The hybrid process integration is considered fully CMOS compatible thanks to the low-temperature AAO and CMOS processes. The gas-sensing characteristics of 50 nm TiO(2) nanofilms deposited on the macroporous surface are compared with those of conventional plain (or non-porous) nanofilms to verify reduced response noise and improved sensitivity as a result of their macroporosity. Our experimental results reveal that macroporous geometry of the TiO(2) chemoresistive gas sensor demonstrates 2-fold higher (∼33%) improved sensitivity than a non-porous sensor at different levels of oxygen exposure. In addition, the macroporous device exhibits excellent discrimination capability and significantly lessened response noise at 500 °C. Experimental results indicate that the hybrid process of such miniature and macroporous devices are compatible as well as applicable to integrated next generation bio-chemical sensors.

  16. Effect of Etching Methods in Metallographic Studies of Duplex Stainless Steel 2205

    NASA Astrophysics Data System (ADS)

    Kisasoz, A.; Karaaslan, A.; Bayrak, Y.

    2017-03-01

    Three different etching methods are used to uncover the ferrite-austenite structure and precipitates of secondary phases in stainless steel 22.5% Cr - 5.4% Ni - 3% Mo - 1.3% Mn. The structure is studied under a light microscope. The chemical etching is conducted in a glycerol solution of HNO3, HCl and HF; the electrochemical etching is conducted in solutions of KOH and NaOH.

  17. Simplified fast neutron dosimeter

    DOEpatents

    Sohrabi, Mehdi

    1979-01-01

    Direct fast-neutron-induced recoil and alpha particle tracks in polycarbonate films may be enlarged for direct visual observation and automated counting procedures employing electrochemical etching techniques. Electrochemical etching is, for example, carried out in a 28% KOH solution at room temperature by applying a 2000 V peak-to-peak voltage at 1 kHz frequency. Such recoil particle amplification can be used for the detection of wide neutron dose ranges from 1 mrad. to 1000 rads. or higher, if desired.

  18. Tuning of structural, light emission and wetting properties of nanostructured copper oxide-porous silicon matrix formed on electrochemically etched copper-coated silicon substrates

    NASA Astrophysics Data System (ADS)

    Naddaf, M.

    2017-01-01

    Matrices of copper oxide-porous silicon nanostructures have been formed by electrochemical etching of copper-coated silicon surfaces in HF-based solution at different etching times (5-15 min). Micro-Raman, X-ray diffraction and X-ray photoelectron spectroscopy results show that the nature of copper oxide in the matrix changes from single-phase copper (I) oxide (Cu2O) to single-phase copper (II) oxide (CuO) on increasing the etching time. This is accompanied with important variation in the content of carbon, carbon hydrides, carbonyl compounds and silicon oxide in the matrix. The matrix formed at the low etching time (5 min) exhibits a single broad "blue" room-temperature photoluminescence (PL) band. On increasing the etching time, the intensity of this band decreases and a much stronger "red" PL band emerges in the PL spectra. The relative intensity of this band with respect to the "blue" band significantly increases on increasing the etching time. The "blue" and "red" PL bands are attributed to Cu2O and porous silicon of the matrix, respectively. In addition, the water contact angle measurements reveal that the hydrophobicity of the matrix surface can be tuned from hydrophobic to superhydrophobic state by controlling the etching time.

  19. Electrochemical properties of high-power supercapacitors using ordered NiO coated Si nanowire array electrodes

    NASA Astrophysics Data System (ADS)

    Lu, Fang; Qiu, Mengchun; Qi, Xiang; Yang, Liwen; Yin, Jinjie; Hao, Guolin; Feng, Xiang; Li, Jun; Zhong, Jianxin

    2011-08-01

    Highly ordered NiO coated Si nanowire arrays are fabricated as electrode materials for electrochemical supercapacitors (ES) via depositing Ni on electroless-etched Si nanowires and subsequently annealing. The electrochemical tests reveal that the constructed electrode has superior electrical conductibility and more active sites per unit area for chemical reaction processes, thereby possessing good cycle stability, high specific capacity, and low internal resistance. The specific capacity is up to 787.5 F g-1 at a discharge current of 2.5 mA and decreases slightly with 4.039% loss after 500 cycles, while the equivalent internal resistance is ˜3.067 Ω. Owing to its favorable electrochemical performance, this ordered hybrid array nanostructure is a promising electrode material in future commercial ES.

  20. Fabrication of gallium nitride nanowires by metal-assisted photochemical etching

    NASA Astrophysics Data System (ADS)

    Zhang, Miao-Rong; Jiang, Qing-Mei; Zhang, Shao-Hui; Wang, Zu-Gang; Hou, Fei; Pan, Ge-Bo

    2017-11-01

    Gallium nitride (GaN) nanowires (NWs) were fabricated by metal-assisted photochemical etching (MaPEtch). Gold nanoparticles (AuNPs) as metal catalyst were electrodeposited on the GaN substrate. SEM and HRTEM images show the surface of GaN NWs is smooth and clean without any impurity. SAED and FFT patterns demonstrate GaN NWs have single crystal structure, and the crystallographic orientation of GaN NWs is (0002) face. On the basis of the assumption of localized galvanic cells, combined with the energy levels and electrochemical potentials of reactants in this etching system, the generation, transfer and consumption of electron-hole pairs reveal the whole MaPEtch reaction process. Such easily fabricated GaN NWs have great potential for the assembly of GaN-based single-nanowire nanodevices.

  1. Enhanced electrochemical etching of ion irradiated silicon by localized amorphization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dang, Z. Y.; Breese, M. B. H.; Lin, Y.

    2014-05-12

    A tailored distribution of ion induced defects in p-type silicon allows subsequent electrochemical anodization to be modified in various ways. Here we describe how a low level of lattice amorphization induced by ion irradiation influences anodization. First, it superposes a chemical etching effect, which is observable at high fluences as a reduced height of a micromachined component. Second, at lower fluences, it greatly enhances electrochemical anodization by allowing a hole diffusion current to flow to the exposed surface. We present an anodization model, which explains all observed effects produced by light ions such as helium and heavy ions such asmore » cesium over a wide range of fluences and irradiation geometries.« less

  2. Ion track etching revisited: II. Electronic properties of aged tracks in polymers

    NASA Astrophysics Data System (ADS)

    Fink, D.; Muñoz Hernández, G.; Cruz, S. A.; Garcia-Arellano, H.; Vacik, J.; Hnatowicz, V.; Kiv, A.; Alfonta, L.

    2018-02-01

    We compile here electronic ion track etching effects, such as capacitive-type currents, current spike emission, phase shift, rectification and background currents that eventually emerge upon application of sinusoidal alternating voltages across thin, aged swift heavy ion-irradiated polymer foils during etching. Both capacitive-type currents and current spike emission occur as long as obstacles still prevent a smooth continuous charge carrier passage across the foils. In the case of sufficiently high applied electric fields, these obstacles are overcome by spike emission. These effects vanish upon etchant breakthrough. Subsequent transmitted currents are usually of Ohmic type, but shortly after breakthrough (during the track' core etching) often still exhibit deviations such as strong positive phase shifts. They stem from very slow charge carrier mobility across the etched ion tracks due to retarding trapping/detrapping processes. Upon etching the track's penumbra, one occasionally observes a split-up into two transmitted current components, one with positive and another one with negative phase shifts. Usually, these phase shifts vanish when bulk etching starts. Current rectification upon track etching is a very frequent phenomenon. Rectification uses to inverse when core etching ends and penumbra etching begins. When the latter ends, rectification largely vanishes. Occasionally, some residual rectification remains which we attribute to the aged polymeric bulk itself. Last not least, we still consider background currents which often emerge transiently during track etching. We could assign them clearly to differences in the electrochemical potential of the liquids on both sides of the etched polymer foils. Transient relaxation effects during the track etching cause their eventually chaotic behaviour.

  3. Solid-state energy storage module employing integrated interconnect board

    DOEpatents

    Rouillard, Jean; Comte, Christophe; Daigle, Dominik; Hagen, Ronald A.; Knudson, Orlin B.; Morin, Andre; Ranger, Michel; Ross, Guy; Rouillard, Roger; St-Germain, Philippe; Sudano, Anthony; Turgeon, Thomas A.

    2000-01-01

    The present invention is directed to an improved electrochemical energy storage device. The electrochemical energy storage device includes a number of solid-state, thin-film electrochemical cells which are selectively interconnected in series or parallel through use of an integrated interconnect board. The interconnect board is typically disposed within a sealed housing which also houses the electrochemical cells, and includes a first contact and a second contact respectively coupled to first and second power terminals of the energy storage device. The interconnect board advantageously provides for selective series or parallel connectivity with the electrochemical cells, irrespective of electrochemical cell position within the housing. In one embodiment, a sheet of conductive material is processed by employing a known milling, stamping, or chemical etching technique to include a connection pattern which provides for flexible and selective interconnecting of individual electrochemical cells within the housing, which may be a hermetically sealed housing. Fuses and various electrical and electro-mechanical devices, such as bypass, equalization, and communication devices for example, may also be mounted to the interconnect board and selectively connected to the electrochemical cells.

  4. Photoluminescent properties of electrochemically synthetized ZnO nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gracia Jiménez, J.M.

    ZnO nanotubes were prepared by a sequential combination of electrochemical deposition, chemical attack and regeneration. ZnO nanocolumns were initially electrodeposited on conductive substrates and then converted into nanotubes by a process involving chemical etching and subsequent regrowth. The morphology of these ZnO nanocolumns and derived nanotubes was monitored by Scanning Electron Microscopy and their optical properties was studied by photoluminescence spectroscopy. Photoluminescence were measured as a function of temperature, from 6 to 300 K, for both nanocolumns and nanotubes. In order to study the behaviour of induced intrinsic defect all ZnO films were annealed in air at 400 °C andmore » their photoluminescent properties were also registered before and after annealing. The behaviour of photoluminescence is explained taking into account the contribution of different point defects. A band energy diagram related to intrinsic defects was proposed to describe the behaviour of photoluminescence spectra. - Highlights: •ZnO nanotubes were obtained after etching and regrowth of electrodeposited ZnO films. •Photoluminescence spectra contain two parts involving excitonic and defects transitions. •Annealing produces a blue shift in the PL peaks in both ZnO nanocolumns and nanotubes. •Etching causes a blue shift in PL peaks due to confinement effect in nanotubes walls.« less

  5. Plasma surface modification of polypropylene track-etched membrane to improve its performance properties

    NASA Astrophysics Data System (ADS)

    Kravets, L. I.; Elinson, V. M.; Ibragimov, R. G.; Mitu, B.; Dinescu, G.

    2018-02-01

    The surface and electrochemical properties of polypropylene track-etched membrane treated by plasma of nitrogen, air and oxygen are studied. The effect of the plasma-forming gas composition on the surface morphology is considered. It has been found that the micro-relief of the membrane surface formed under the gas-discharge etching, changes. Moreover, the effect of the non-polymerizing gas plasma leads to formation of oxygen-containing functional groups, mostly carbonyl and carboxyl. It is shown that due to the formation of polar groups on the surface and its higher roughness, the wettability of the plasma-modified membranes improves. In addition, the presence of polar groups on the membrane surface layer modifies its electrochemical properties so that conductivity of plasma-treated membranes increase.

  6. Surface treatment influences electrochemical stability of cpTi exposed to mouthwashes.

    PubMed

    Beline, Thamara; Garcia, Camila S; Ogawa, Erika S; Marques, Isabella S V; Matos, Adaias O; Sukotjo, Cortino; Mathew, Mathew T; Mesquita, Marcelo F; Consani, Rafael X; Barão, Valentim A R

    2016-02-01

    The role of surface treatment on the electrochemical behavior of commercially pure titanium (cpTi) exposed to mouthwashes was tested. Seventy-five disks were divided into 15 groups according to surface treatment (machined, sand blasted with Al2O3, and acid etched) and electrolyte solution (artificial saliva — control, 0.12% chlorhexidine digluconate, 0.05% cetylpyridinium chloride, 0.2% sodium fluoride, and 1.5% hydrogen peroxide) (n = 5). Open-circuit-potential and electrochemical impedance spectroscopy were conducted at baseline and after 7 and 14 days of immersion in each solution. Potentiodynamic test and total weight loss of disks were performed after 14 days of immersion. Scanning electron microscopy, energy dispersive spectroscopy, white light interferometry and profilometry were conducted for surface characterization before and after the electrochemical tests. Sandblasting promoted the lowest polarization resistance (Rp) (P b .0001) and the highest capacitance (CPE) (P b .006), corrosion current density (Icorr) and corrosion rate (P b .0001). In contrast, acid etching increased Rp and reduced CPE, independent to the mouthwash; while hydrogen peroxide reduced Rp (P b .008) and increased Icorr and corrosion rate (P b .0001). The highest CPE values were found for hydrogen peroxide and 0.2% sodium fluoride. Immersion for longer period improved the electrochemical stability of cpTi (P b .05). In conclusion, acid etching enhanced the electrochemical stability of cpTi. Hydrogen peroxide and sodium fluoride reduced the resistance to corrosion of cpTi, independent to the surface treatment. Chlorhexidine gluconate and cetylpyridinium chloride did not alter the corrosive behavior of cpTi.

  7. Fabrication and characterization of a nanometer-sized optical fiber electrode based on selective chemical etching for scanning electrochemical/optical microscopy.

    PubMed

    Maruyama, Kenichi; Ohkawa, Hiroyuki; Ogawa, Sho; Ueda, Akio; Niwa, Osamu; Suzuki, Koji

    2006-03-15

    We have already reported a method for fabricating ultramicroelectrodes (Suzuki, K. JP Patent, 2004-45394, 2004). This method is based on the selective chemical etching of optical fibers. In this work, we undertake a detailed investigation involving a combination of etched optical fibers with various types of tapered tip (protruding-shape, double- (or pencil-) shape and triple-tapered electrode) and insulation with electrophoretic paint. Our goal is to establish a method for fabricating nanometer-sized optical fiber electrodes with high reproducibility. As a result, we realized pencil-shaped and triple-tapered electrodes that had radii in the nanometer range with high reproducibility. These nanometer-sized electrodes showed well-defined sigmoidal curves and stable diffusion-limited responses with cyclic voltammetry. The pencil-shaped optical fiber, which has a conical tip with a cone angle of 20 degrees , was effective for controlling the electrode radius. The pencil-shaped electrodes had higher reproducibility and smaller electrode radii (r(app) < 1.0 nm) than those of other etched optical fiber electrodes. By using a pencil-shaped electrode with a 105-nm radius as a probe, we obtained simultaneous electrochemical and optical images of an implantable interdigitated array electrode. We achieved nanometer-scale resolution with a combination of scanning electrochemical microscopy SECM and optical microscopy. The resolution of the electrochemical and optical images indicated sizes of 300 and 930 nm, respectively. The neurites of living PC12 cells were also successfully imaged on a 1.6-microm scale by using the negative feedback mode of an SECM.

  8. Investigation on the structural characterization of pulsed p-type porous silicon

    NASA Astrophysics Data System (ADS)

    Wahab, N. H. Abd; Rahim, A. F. Abd; Mahmood, A.; Yusof, Y.

    2017-08-01

    P-type Porous silicon (PS) was sucessfully formed by using an electrochemical pulse etching (PC) and conventional direct current (DC) etching techniques. The PS was etched in the Hydrofluoric (HF) based solution at a current density of J = 10 mA/cm2 for 30 minutes from a crystalline silicon wafer with (100) orientation. For the PC process, the current was supplied through a pulse generator with 14 ms cycle time (T) with 10 ms on time (Ton) and pause time (Toff) of 4 ms respectively. FESEM, EDX, AFM, and XRD have been used to characterize the morphological properties of the PS. FESEM images showed that pulse PS (PPC) sample produces more uniform circular structures with estimated average pore sizes of 42.14 nm compared to DC porous (PDC) sample with estimated average size of 16.37nm respectively. The EDX spectrum for both samples showed higher Si content with minimal presence of oxide.

  9. Tailored Height Gradients in Vertical Nanowire Arrays via Mechanical and Electronic Modulation of Metal-Assisted Chemical Etching.

    PubMed

    Otte, M A; Solis-Tinoco, V; Prieto, P; Borrisé, X; Lechuga, L M; González, M U; Sepulveda, B

    2015-09-02

    In current top-down nanofabrication methodologies the design freedom is generally constrained to the two lateral dimensions, and is only limited by the resolution of the employed nanolithographic technique. However, nanostructure height, which relies on certain mask-dependent material deposition or etching techniques, is usually uniform, and on-chip variation of this parameter is difficult and generally limited to very simple patterns. Herein, a novel nanofabrication methodology is presented, which enables the generation of high aspect-ratio nanostructure arrays with height gradients in arbitrary directions by a single and fast etching process. Based on metal-assisted chemical etching using a catalytic gold layer perforated with nanoholes, it is demonstrated how nanostructure arrays with directional height gradients can be accurately tailored by: (i) the control of the mass transport through the nanohole array, (ii) the mechanical properties of the perforated metal layer, and (iii) the conductive coupling to the surrounding gold film to accelerate the local electrochemical etching process. The proposed technique, enabling 20-fold on-chip variation of nanostructure height in a spatial range of a few micrometers, offers a new tool for the creation of novel types of nano-assemblies and metamaterials with interesting technological applications in fields such as nanophotonics, nanophononics, microfluidics or biomechanics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Quantification of microscopic surface features of single point diamond turned optics with subsequent chemical polishing

    NASA Astrophysics Data System (ADS)

    Cardenas, Nelson; Kyrish, Matthew; Taylor, Daniel; Fraelich, Margaret; Lechuga, Oscar; Claytor, Richard; Claytor, Nelson

    2015-03-01

    Electro-Chemical Polishing is routinely used in the anodizing industry to achieve specular surface finishes of various metals products prior to anodizing. Electro-Chemical polishing functions by leveling the microscopic peaks and valleys of the substrate, thereby increasing specularity and reducing light scattering. The rate of attack is dependent of the physical characteristics (height, depth, and width) of the microscopic structures that constitute the surface finish. To prepare the sample, mechanical polishing such as buffing or grinding is typically required before etching. This type of mechanical polishing produces random microscopic structures at varying depths and widths, thus the electropolishing parameters are determined in an ad hoc basis. Alternatively, single point diamond turning offers excellent repeatability and highly specific control of substrate polishing parameters. While polishing, the diamond tool leaves behind an associated tool mark, which is related to the diamond tool geometry and machining parameters. Machine parameters such as tool cutting depth, speed and step over can be changed in situ, thus providing control of the spatial frequency of the microscopic structures characteristic of the surface topography of the substrate. By combining single point diamond turning with subsequent electro-chemical etching, ultra smooth polishing of both rotationally symmetric and free form mirrors and molds is possible. Additionally, machining parameters can be set to optimize post polishing for increased surface quality and reduced processing times. In this work, we present a study of substrate surface finish based on diamond turning tool mark spatial frequency with subsequent electro-chemical polishing.

  11. Refined tip preparation by electrochemical etching and ultrahigh vacuum treatment to obtain atomically sharp tips for scanning tunneling microscope and atomic force microscope.

    PubMed

    Hagedorn, Till; El Ouali, Mehdi; Paul, William; Oliver, David; Miyahara, Yoichi; Grütter, Peter

    2011-11-01

    A modification of the common electrochemical etching setup is presented. The described method reproducibly yields sharp tungsten tips for usage in the scanning tunneling microscope and tuning fork atomic force microscope. In situ treatment under ultrahigh vacuum (p ≤10(-10) mbar) conditions for cleaning and fine sharpening with minimal blunting is described. The structure of the microscopic apex of these tips is atomically resolved with field ion microscopy and cross checked with field emission. © 2011 American Institute of Physics

  12. Effect of different electrolytes on porous GaN using photo-electrochemical etching

    NASA Astrophysics Data System (ADS)

    Al-Heuseen, K.; Hashim, M. R.; Ali, N. K.

    2011-05-01

    This article reports the properties and the behavior of GaN during the photoelectrochemical etching process using four different electrolytes. The measurements show that the porosity strongly depends on the electrolyte and highly affects the surface morphology of etched samples, which has been revealed by scanning electron microscopy (SEM) images. Peak intensity of the photoluminescence (PL) spectra of the porous GaN samples was observed to be enhanced and strongly depend on the electrolytes. Among the samples, there is a little difference in the peak position indicating that the change of porosity has little influence on the PL peak shift, while it highly affecting the peak intensity. Raman spectra of porous GaN under four different solution exhibit phonon mode E 2 (high), A 1 (LO), A 1 (TO) and E 2 (low). There was a red shift in E 2 (high) in all samples, indicating a relaxation of stress in the porous GaN surface with respect to the underlying single crystalline epitaxial GaN. Raman and PL intensities were high for samples etched in H 2SO 4:H 2O 2 and KOH followed by the samples etched in HF:HNO 3 and in HF:C 2H 5OH.

  13. Electrochemical fabrication of nanoporous copper films in choline chloride-urea deep eutectic solvent.

    PubMed

    Zhang, Q B; Abbott, Andrew P; Yang, C

    2015-06-14

    Nanoporous copper films were fabricated by a facile electrochemical alloying/dealloying process without the need of a template. A deep eutectic solvent made from choline chloride (ChCl) and urea was used with zinc oxide as the metal salt. Cyclic voltammetry was used to characterise the electrochemical reduction of zinc and follow Cu-Zn alloy formation on the copper substrate at elevated temperatures from 353 to 393 K. The alloy formation was confirmed by X-ray diffraction spectra. 3D, open and bicontinuous nanoporous copper films were obtained by in situ electrochemically etching (dealloying) of the zinc component in the Cu-Zn surface alloys at an appropriate potential (-0.4 V vs. Ag). This dealloying process was found to be highly temperature dependent and surface diffusion controlled, which involved the self-assembly of copper atoms at the alloy/electrolyte interface. Additionally, the effects of the deposition parameters, including deposition temperature, current density as well as total charge density on resulting the microstructure were investigated by scanning electron microscopy, and atomic force microscope.

  14. Correlation between optical properties surface morphology of porous silicon electrodeposited by Fe3+ ion

    NASA Astrophysics Data System (ADS)

    Mabrouk, Asma; Lorrain, N.; Haji, M. L.; Oueslati, Meherzi

    2015-01-01

    In this paper, we analyze the photoluminescence spectra (PL) of porous silicon (PS) layer which is elaborated by electrochemical etching and passivated by Fe3+ ions (PSF) via current density, electro-deposition and temperature measurements. We observe unusual surface morphology of PSF surface and anomalous emission behavior. The PSF surface shows regular distribution of cracks, leaving isolated regions or ;platelets; of nearly uniform thickness. These cracks become more pronounced for high current densities. The temperature dependence of the PL peak energy (EPL) presents anomalous behaviors, i.e., the PL peak energy shows a successive red/blue/redshift (S-shaped behavior) with increasing temperature that we attribute to the existence of strong potential fluctuations induced by the electrochemical etching of PS layers. A competition process between localized and delocalized excitons is used to discuss these PL properties. In this case, the potential confinement plays a key role on the enhancement of PL intensity in PSF. To explain the temperature dependence of the PL intensity, we have proposed a recombination model based on the tunneling and dissociation of excitons.

  15. Defect-enhanced performance of a 3D graphene anode in a lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Guo, Hongchen; Long, Deng; Zheng, Zongmin; Chen, Xinyi; Ng, Alan M. C.; Lu, Miao

    2017-12-01

    Morphological defects were generated in an undoped 3D graphene structure via the involvement of a ZnO and Mg(OH)2 intermediate nanostructure layer placed between two layers of vapor-deposited graphene. Once the intermediate layer was etched, the 3D graphene lost support and shrank; during this process many morphological defects were formed. The electrochemical performance of the derived defective graphene utilized as the anode of a lithium (Li)-ion battery was significantly improved from ˜382 mAh g-1 to ˜2204 mAh g-1 at 0.5 A g-1 compared to normal 3D graphene. The derived defective graphene exhibited an initial capacity of 1009 mAh g-1 and retention of 83% at 4 A g-1 for 500 cycles, and ˜330 mAh g-1 at a high rate of 20 A g-1. Complicated defects such as wrinkles, pores, and particles formed during the etching of the intermediate layer, were considered to contribute to the improvement of the electrochemical performance.

  16. Fabrication of through-silicon via arrays by photo-assisted electrochemical etching and supercritical electroplating

    NASA Astrophysics Data System (ADS)

    Chuang, Ho-Chiao; Yang, Hsi-Min; Wu, Cheng-Xiang; Sanchez, Jorge; Shyu, Jenq-Huey

    2017-01-01

    This paper aims to fabricate high aspect ratio through silicon via (TSV) by photo-assisted electrochemical etching (PAECE) and supercritical CO2 copper electroplating. A blind-holed silicon array was first fabricated by PAECE. By studying the etching parameters, including hydrofluoric acid concentration, etchant temperature, stirring speed, tetrabutylammonium perchlorate (TBAP) content, and Ohmic contact thickness, an array of pores with a 1∶45 aspect ratio (height=250 μm and diameter=5.5 μm) was obtained successfully. Moreover, TBAP and Kodak Photo-Flo (PF) solution were added into the etchant to acquire smooth sidewalls for the first time. TBAP was added for the first time to serve as an antistatic agent in deionized water-based etchant to prevent side-branch etching, and PF was used to degasify hydrogen bubbles in the etchant. The effect of gold thickness over Ohmic contact was investigated. Randomized etching was observed with an Au thickness of 200 Å, but it can be improved by increasing the etching voltage. The silicon mold of through-holes was filled with metal using supercritical CO2 copper electroplating, which features high diffusivity, permeability, and density. The TSV structure (aspect ratio=1∶35) was obtained at a supercritical pressure of 2000 psi, temperature of 50°C, and current density of 30 mA/cm2 in 2.5 h.

  17. Multilayer porous structures of HVPE and MOCVD grown GaN for photonic applications

    NASA Astrophysics Data System (ADS)

    Braniste, T.; Ciers, Joachim; Monaico, Ed.; Martin, D.; Carlin, J.-F.; Ursaki, V. V.; Sergentu, V. V.; Tiginyanu, I. M.; Grandjean, N.

    2017-02-01

    In this paper we report on a comparative study of electrochemical processes for the preparation of multilayer porous structures in hydride vapor phase epitaxy (HVPE) and metal organic chemical vapor phase deposition (MOCVD) grown GaN. It was found that in HVPE-grown GaN, multilayer porous structures are obtained due to self-organization processes leading to a fine modulation of doping during the crystal growth. However, these processes are not totally under control. Multilayer porous structures with a controlled design have been produced by optimizing the technological process of electrochemical etching in MOCVD-grown samples, consisting of five pairs of thin layers with alternating-doping profiles. The samples have been characterized by SEM imaging, photoluminescence spectroscopy, and micro-reflectivity measurements, accompanied by transfer matrix analysis and simulations by a method developed for the calculation of optical reflection spectra. We demonstrate the applicability of the produced structures for the design of Bragg reflectors.

  18. Characterization of Ag-porous silicon nanostructured layer formed by an electrochemical etching of p-type silicon surface for bio-application

    NASA Astrophysics Data System (ADS)

    Naddaf, M.; Al-Mariri, A.; Haj-Mhmoud, N.

    2017-06-01

    Nanostructured layers composed of silver-porous silicon (Ag-PS) have been formed by an electrochemical etching of p-type (1 1 1) silicon substrate in a AgNO3:HF:C2H5OH solution at different etching times (10 min-30 min). Scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS) results reveal that the produced layers consist of Ag dendrites and a silicon-rich porous structure. The nanostructuring nature of the layer has been confirmed by spatial micro-Raman scattering and x-ray diffraction techniques. The Ag dendrites exhibit a surface-enhanced Raman scattering (SERS) spectrum, while the porous structure shows a typical PS Raman spectrum. Upon increasing the etching time, the average size of silicon nanocrystallite in the PS network decreases, while the average size of Ag nanocrystals is slightly affected. In addition, the immobilization of prokaryote Salmonella typhimurium DNA via physical adsorption onto the Ag-PS layer has been performed to demonstrate its efficiency as a platform for detection of biological molecules using SERS.

  19. Detection of nerve agent stimulants based on photoluminescent porous silicon interferometer

    NASA Astrophysics Data System (ADS)

    Kim, Seongwoong; Cho, Bomin; Sohn, Honglae

    2012-09-01

    Porous silicon (PSi) exhibiting dual optical properties, both Fabry-Pérot fringe and photolumincence, was developed and used as chemical sensors. PSi samples were prepared by an electrochemical etch of p-type silicon under the illumination of 300-W tungsten lamp during the etch process. The surface of PSi was characterized by cold field-emission scanning electron microscope. PSi samples exhibited a strong visible orange photoluminescence at 610 nm with an excitation wavelength of 460 nm as well as Fabry-Pérot fringe with a tungsten light source. Both reflectivity and photoluminescence were simultaneously measured under the exposure of organophosphate vapors. An increase of optical thickness and quenching photoluminescences under the exposure of various organophosphate vapors were observed.

  20. Electrochemical Method of Making Porous Particles Using a Constant Current Density

    NASA Technical Reports Server (NTRS)

    Ferrari, Mauro (Inventor); Cheng, Ming-Cheng (Inventor); Liu, Xuewu (Inventor)

    2014-01-01

    Provided is a particle that includes a first porous region and a second porous region that differs from the first porous region. Also provided is a particle that has a wet etched porous region and that does have a nucleation layer associated with wet etching. Methods of making porous particles are also provided.

  1. EDITORIAL: The Fifth International Workshop on Physical Chemistry of Wet Etching of Semiconductors (PCWES 2006)

    NASA Astrophysics Data System (ADS)

    Seidel, Helmut

    2007-04-01

    The biannual Workshop on Physical Chemistry of Wet Etching of Semiconductors (PCWES) was held in Saarbrücken, Germany in June 2006 for the fifth time in its history. The event was initiated in 1998 by Miko Elwenspoek from Twente University. It is a dedicated workshop with a typical attendance of about 30 scientists with multidisciplinary backgrounds from all parts of the world working in the field. Starting off in Holten in The Netherlands in 1998, subsequent workshops have been held at Toulouse, France in 2000, Nara, Japan in 2002, and Montreal, Canada in 2004. The initial focus was upon anisotropic etching of silicon in alkaline solutions, including surface topology, modelling aspects and applications. This process has found a wide range of applications in microsystems technology (MST), i.e. in the fabrication of microelectromechanical systems (MEMS). Most prominently, it provides the technological basis for bulk micromachining. More recently, other semiconductors such as germanium, III-V compounds and, particularly, wide-bandgap materials have started to enter the field. Furthermore, electrochemical aspects have gained in importance and the formation of porous silicon has also become a considerable part of the programme. From the very beginning up to the present time there was and is a strong focus on illumination of the underlying mechanism of crystallographic anisotropy, as well as on the understanding of electrochemical and dopant-induced etch stop phenomena. The fifth workshop, presented in Saarbrücken, included a total of twenty four contributions, six of which were as posters. Five of these are included in this partial special issue of Journal of Micromechanics and Microengineering as full length papers after having undergone the standard review process. The selection of contributions starts with the first invited paper given by M Gosalvez et al, resulting from a collaboration between Nagoya University, Japan and Helsinki University of Technology, Finland. It provides an atomistic point of view on the etching of the principal crystal surfaces of silicon. The step flow process and step bunching are explained in considerable detail, as well as effects of metal impurities. Simulation aspects of this approach are discussed in the second paper, also headed by M Gosalvez. They are based on a kinetic Monte Carlo scheme. The third contribution, from Z-f Zhou et al from the Southeast University in Nanjing, China also focuses on simulation aspects of anisotropic silicon etching. It proposes a novel 3-D cellular automata approach which is capable of describing the behaviour of high index planes in an efficient way. By choosing a dynamic algorithm, the programme gains speed and uses memory efficiently. The focus of the final two papers is on photoelectrochemical aspects of etching. D H van Dorp and J J Kelly from the University of Utrecht, The Netherlands describe the photoelectrochemistry and the etching behaviour of SiC in KOH. Silicon carbide is particularly attractive for harsh environment applications, due to its high chemical inertness. Therefore it is very difficult to etch purely chemically and can only be attacked by a light-induced process. Finally, F Yang et al from the Hahn-Meitner-Institut and ISAS Institute in Berlin, Germany describe an experiment of anodic oxide formation and subsequent etch back on (111) silicon surfaces in a NH4F solution. By monitoring the photoluminescence intensity and the photovoltage amplitude, effects of interface recombination and surface charging can be observed and characterized at the different steps of preparation. In total, the five papers provide a very fine overview of current activities and areas of interest in the field of wet chemical etching of semiconductors. The next PCWES workshop will be held in Asia in 2008.

  2. Vertically aligned cobalt hydroxide nano-flake coated electro-etched carbon fiber cloth electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Cheng, Qian; Tang, Jie; Zhang, Han; Qin, Lu-Chang

    2014-11-01

    We describe preparation and characterization of nanostructured electrodes using Co(OH)2 nano-flakes and carbon fiber cloth for supercapacitors. Nanostructured Co(OH)2 flakes are produced by electrodeposition and they are coated onto the electro-etched carbon fiber cloth. A highest specific capacitance of 3404.8 F g-1 and an area-normalized specific capacitance of 3.3 F cm-2 have been obtained from such electrodes. Morphology and structure of the nanostructured electrodes have been characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrochemical properties have been studied by cyclic voltammetry (CV), constant-current charge and discharge, electrochemical impedance spectroscopy (EIS), and long-time cycling.

  3. Vertical Si nanowire arrays fabricated by magnetically guided metal-assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Chun, Dong Won; Kim, Tae Kyoung; Choi, Duyoung; Caldwell, Elizabeth; Kim, Young Jin; Paik, Jae Cheol; Jin, Sungho; Chen, Renkun

    2016-11-01

    In this work, vertically aligned Si nanowire arrays were fabricated by magnetically guided metal-assisted directional chemical etching. Using an anodized aluminum oxide template as a shadow mask, nanoscale Ni dot arrays were fabricated on an Si wafer to serve as a mask to protect the Si during the etching. For the magnetically guided chemical etching, we deposited a tri-layer metal catalyst (Au/Fe/Au) in a Swiss-cheese configuration and etched the sample under the magnetic field to improve the directionality of the Si nanowire etching and increase the etching rate along the vertical direction. After the etching, the nanowires were dried with minimal surface-tension-induced aggregation by utilizing a supercritical CO2 drying procedure. High-resolution transmission electron microscopy (HR-TEM) analysis confirmed the formation of single-crystal Si nanowires. The method developed here for producing vertically aligned Si nanowire arrays could find a wide range of applications in electrochemical and electronic devices.

  4. Investigation of direct current electrical properties of electrochemically etched mesoporous silicon carbide

    NASA Astrophysics Data System (ADS)

    Gautier, G.; Biscarrat, J.; Defforge, T.; Fèvre, A.; Valente, D.; Gary, A.; Menard, S.

    2014-12-01

    In this study, we show I-V characterizations of various metal/porous silicon carbide (pSiC)/silicon carbide (SiC) structures. SiC wafers were electrochemically etched from the Si and C faces in the dark or under UV lighting leading to different pSiC morphologies. In the case of low porosity pSiC etched in the dark, the I-V characteristics were found to be almost linear and the extracted resistivities of pSiC were around 1.5 × 104 Ω cm at 30 °C for the Si face. This is around 6 orders of magnitude higher than the resistivity of doped SiC wafers. In the range of 20-200 °C, the activation energy was around 50 meV. pSiC obtained from the C face was less porous and the measured average resistivity was 10 Ω cm. In the case high porosity pSiC etched under UV illumination, the resistivity was found to be much higher, around 1014 Ω cm at room temperature. In this case, the extracted activation energy was estimated to be 290 meV.

  5. Electrochemical etching technique of platinum-iridium tips for scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Herrera, Oscar

    The scanning tunneling microscope (STM) allows researchers to investigate atomic and molecular structures and properties of nanomaterials. Through the quantum tunneling effect a charge is transferred between the surface of the material and a Platinum-Iridium (Pt-Ir) tip. The production of Pt-Ir tips by electrochemical etching (ECE) has been developed as an alternative technique, to achieve enhanced scanned images of samples, in contrast to the standard mechanical method (SMM). The sharpness apex structure is an essential feature during scanning in order to provide reliable data. We generated a control group of tips by the SMM technique and another group by the ECE technique to investigate the resolution effectiveness in scanning of graphite. The etching of the tips was produced using an auto-variable transformer running a 30 V AC in a 1.5 and 4.0 M CaCl2 solution. The scanning of the graphite surface was conducted at 7x7 nm image width, 0.2 seconds time/line, 256 points/line and 0.05 V for tip voltage. ECE etched tips displayed consistent image resolution, and the sharpness of the tip apex was generally uniform.

  6. Fabrication of superhydrophobic surface with improved corrosion inhibition on 6061 aluminum alloy substrate

    NASA Astrophysics Data System (ADS)

    Li, Xuewu; Zhang, Qiaoxin; Guo, Zheng; Shi, Tian; Yu, Jingui; Tang, Mingkai; Huang, Xingjiu

    2015-07-01

    This work has developed a simple and low-cost method to render 6061 aluminum alloy surface superhydrophobicity and excellent corrosion inhibition. The superhydrophobic aluminum alloy surface has been fabricated by hydrochloric acid etching, potassium permanganate passivation and fluoroalkyl-silane modification. Meanwhile, the effect of the etching and passivation time on the wettability and corrosion inhibition of the fabricated surface has also been investigated. Results show that with the etching time of 6 min and passivation time of 180 min the fabricated micro/nano-scale terrace-like hierarchical structures accompanying with the nanoscale coral-like network bulge structures after being modified can result in superhydrophobicity with a water contact angle (CA) of 155.7°. Moreover, an extremely weak adhesive force to droplets as well as an outstanding self-cleaning behavior of the superhydrophobic surface has also been proved. Finally, corrosion inhibition in seawater of the as-prepared aluminum alloy surface is characterized by potentiodynamic polarization curves and electrochemical impedance spectroscopy. Evidently, the fabricated superhydrophobic surface attained an improved corrosion inhibition efficiency of 83.37% compared with the traditional two-step processing consisting of etching and modification, which will extend the further applications of aluminum alloy especially in marine engineering fields.

  7. Chemical etching of stainless steel 301 for improving performance of electrochemical capacitors in aqueous electrolyte

    NASA Astrophysics Data System (ADS)

    Jeżowski, P.; Nowicki, M.; Grzeszkowiak, M.; Czajka, R.; Béguin, F.

    2015-04-01

    The main purpose of the study was to increase the surface roughness of stainless steel 301 current collectors by etching, in order to improve the electrochemical performance of electrical double-layer capacitors (EDLC) in 1 mol L-1 lithium sulphate electrolyte. Etching was realized in 1:3:30 (HNO3:HCl:H2O) solution with times varying up to 10 min. For the considered 15 μm thick foil and a mass loss around 0.4 wt.%, pitting was uniform, with diameter of pits ranging from 100 to 300 nm. Atomic force microscopy (AFM) showed an increase of average surface roughness (Ra) from 5 nm for the as-received stainless steel foil to 24 nm for the pitted material. Electrochemical impedance spectroscopy realized on EDLCs with coated electrodes either on as-received or pitted foil in 1 mol L-1 Li2SO4 gave equivalent distributed resistance (EDR) of 8 Ω and 2 Ω, respectively, demonstrating a substantial improvement of collector/electrode interface after pitting. Correlatively, the EDLCs with pitted collector displayed a better charge propagation and low ohmic losses even at relatively high current of 20 A g-1. Hence, chemical pitting of stainless steel current collectors is an appropriate method for optimising the performance of EDLCs in neutral aqueous electrolyte.

  8. Multi-spot porous silicon chip prepared from asymmetric electrochemical etching for human immunoglobin G sensor.

    PubMed

    Um, Sungyong; Cho, Bomin; Woo, Hee-Gweon; Sohn, Honglae

    2011-08-01

    Multi-spot porous silicon (MSPS)-based optical biosensor was developed to specify the biomolecules. MSPS chip was generated by an electrochemical etching of silicon wafer using an asymmetric electrode configuration in aqueous ethanolic HF solution and constituted with nine arrayed porous silicon. MSPS prepared from anisotropic etching conditions displayed the Fabry-Pérot fringe patterns which varied spatially across the porous silicon (PS). Each spot displayed different reflection resonances and different pore characteristics as a function of the lateral distance from the Pt counter electrode. The sensor system consists of the 3 x 3 spot array of porous silicon modified with Protein A. The system was probed with various fragments of an aqueous Human Immunoglobin G (Ig G) analyte. The sensor operated by measurement of the reflection patterns in the white light reflection spectrum of MSPS. Molecular binding and specificity was detected as a shift in wavelength of these Fabry-Pérot fringe patterns.

  9. An Optimization of Electrochemical Etching Conditions for Gold Nanotips Fabrication

    NASA Astrophysics Data System (ADS)

    Oh, Min Woo; Chong, Haeeun; Park, Doo Jae; Jang, Moonkyu; Bahn, Sebin; Choi, Soo Bong

    2018-05-01

    We demonstrate a series of experiments to find optimized electrochemical etching condition for fabricating gold nanotip, using square-wave voltage as a bias and using hydrochloric acid diluted by acetone as an etchant. We confirmed that the dilution ratio of 3: 1 between hydrochloric acid and acetone give the smallest tip apex diameter which reproduces our previous result. More importantly, by varying applied bias condition and immersion depth of the platinum ring used as a cathode inside the etchant, we found that the smaller tip apex diameter is achieved when both the amplitude and duty cycle get higher. The success rate, which we define the number of tips having meaningfully less diameter out of total number of tried tips, is also discussed.

  10. Electrochemical quartz crystal microbalance study of polyelectrolyte film growth under anodic conditions

    NASA Astrophysics Data System (ADS)

    Nilsson, Sara; Björefors, Fredrik; Robinson, Nathaniel D.

    2013-09-01

    Coating hard materials such as Pt with soft polymers like poly-L-lysine is a well-established technique for increasing electrode biocompatibility. We have combined quartz crystal microgravimetry with dissipation with electrochemistry (EQCM-D) to study the deposition of PLL onto Pt electrodes under anodic potentials. Our results confirm the change in film growth over time previously reported by others. However, the dissipation data suggest that, after the short initial phase of the process, the rigidity of the film increases with time, rather than decreasing, as previously proposed. In addition to these results, we discuss how gas evolution from water electrolysis and Pt etching in electrolytes containing Cl- affect EQCM-D measurements, how to recognize these effects, and how to reduce them. Despite the challenges of using Pt as an anode in this system, we demonstrate that the various electrochemical processes can be understood and that PLL coatings can be successfully electrodeposited.

  11. In Situ Electrochemical Deposition of Microscopic Wires

    NASA Technical Reports Server (NTRS)

    Yun, Minhee; Myung, Nosang; Vasquez, Richard

    2005-01-01

    A method of fabrication of wires having micron and submicron dimensions is built around electrochemical deposition of the wires in their final positions between electrodes in integrated circuits or other devices in which the wires are to be used. Heretofore, nanowires have been fabricated by a variety of techniques characterized by low degrees of controllability and low throughput rates, and it has been necessary to align and electrically connect the wires in their final positions by use of sophisticated equipment in expensive and tedious post-growth assembly processes. The present method is more economical, offers higher yields, enables control of wire widths, and eliminates the need for post-growth assembly. The wires fabricated by this method could be used as simple electrical conductors or as transducers in sensors. Depending upon electrodeposition conditions and the compositions of the electroplating solutions in specific applications, the wires could be made of metals, alloys, metal oxides, semiconductors, or electrically conductive polymers. In this method, one uses fabrication processes that are standard in the semiconductor industry. These include cleaning, dry etching, low-pressure chemical vapor deposition, lithography, dielectric deposition, electron-beam lithography, and metallization processes as well as the electrochemical deposition process used to form the wires. In a typical case of fabrication of a circuit that includes electrodes between which microscopic wires are to be formed on a silicon substrate, the fabrication processes follow a standard sequence until just before the fabrication of the microscopic wires. Then, by use of a thermal SiO-deposition technique, the electrodes and the substrate surface areas in the gaps between them are covered with SiO. Next, the SiO is electron-beam patterned, then reactive-ion etched to form channels having specified widths (typically about 1 m or less) that define the widths of the wires to be formed. Drops of an electroplating solution are placed on the substrate in the regions containing the channels thus formed, then the wires are electrodeposited from the solution onto the exposed portions of the electrodes and into the channels. The electrodeposition is a room-temperature, atmospheric-pressure process. The figure shows an example of palladium wires that were electrodeposited into 1-mm-wide channels between gold electrodes.

  12. Scanning Tunneling Microscopy and Infrared Spectroscopy as Combined In- Situ Probes of Electrochemical Adlayer Structure: Cyanide on PT(111)

    DTIC Science & Technology

    1994-02-01

    electrochemically etched in near- saturated CaC1 2 and coated with a thermosetting plastic[13]. The quasi-reference electrode was a gold wire. The Pt(lll...annealing procedure, display arrays of small (ca 3-5 nm) terrace domains, these being separated from each other by monoatomic steps running in various

  13. Strong modification of photoluminescence in erbium-doped porous silicon microcavities

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Snow, P. A.; Russell, P. St. J.

    2000-10-01

    A microcavity composed of porous silicon multilayer mirrors was electrochemically etched and doped with erbium. Measurements of the reflectivity and photoluminescence spectra are presented. Thermal processing under a nitrogen atmosphere optically activated the erbium ions. Photopumping yielded room temperature emission around 1.54 μm from the erbium-doped samples with the emitted light strongly modified by the microcavity structure. Emission spectra with a peak at 1.536 μm had a full width at half maximum of ˜6 nm.

  14. Two-step fabrication technique of gold tips for use in point-contact spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narasiwodeyar, S.; Dwyer, M.; Liu, M.

    For a successful point-contact spectroscopy (PCS) measurement, metallic tips of proper shape and smoothness are essential to ensure the ballistic nature of a point-contact junction. Until recently, the fabrication of Au tips suitable for use in point-contact spectroscopy has remained more of an art involving a trial and error method rather than an automated scientific process. To address these issues, we have developed a technique with which one can prepare high quality Au tips reproducibly and systematically. It involves an electronic control of the driving voltages used for an electrochemical etching of a gold wire in a HCl-glycerol mixture ormore » a HCl solution. We find that a stopping current, below which the circuit is set to shut off, is a single very important parameter to produce an Au tip of desired shape. We present detailed descriptions for a two-step etching process for Au tips and also test results from PCS measurements using them.« less

  15. Development of a DNA Sensor Based on Nanoporous Pt-Rich Electrodes

    NASA Astrophysics Data System (ADS)

    Van Hao, Pham; Thanh, Pham Duc; Xuan, Chu Thi; Hai, Nguyen Hoang; Tuan, Mai Anh

    2017-06-01

    Nanoporous Pt-rich electrodes with 72 at.% Pt composition were fabricated by sputtering a Pt-Ag alloy, followed by an electrochemical dealloying process to selectively etch away Ag atoms. The surface properties of nanoporous membranes were investigated by energy-dispersive x-ray spectroscopy (EDS), scanning electron microscopy (SEM), atomic force microscopy (AFM), a documentation system, and a gel image system (Gel Doc Imager). A single strand of probe deoxyribonucleic acid (DNA) was immobilized onto the electrode surface by physical adsorption. The DNA probe and target hybridization were measured using a lock-in amplifier and an electrochemical impedance spectroscope (EIS). The nanoporous Pt-rich electrode-based DNA sensor offers a fast response time of 3.7 s, with a limit of detection (LOD) of 4.35 × 10-10 M of DNA target.

  16. Plasma-Etching of Spray-Coated Single-Walled Carbon Nanotube Films for Biointerfaces

    NASA Astrophysics Data System (ADS)

    Kim, Joon Hyub; Lee, Jun-Yong; Min, Nam Ki

    2012-08-01

    We present an effective method for the batch fabrication of miniaturized single-walled carbon nanotube (SWCNT) film electrodes using oxygen plasma etching. We adopted the approach of spray-coating for good adhesion of the SWCNT film onto a pre-patterned Pt support and used O2 plasma patterning of the coated films to realize efficient biointerfaces between SWCNT surfaces and biomolecules. By these approaches, the SWCNT film can be easily integrated into miniaturized electrode systems. To demonstrate the effectiveness of plasma-etched SWCNT film electrodes as biointerfaces, Legionella antibody was selected as analysis model owing to its considerable importance to electrochemical biosensors and was detected using plasma-etched SWCNT film electrodes and a 3,3',5,5'-tetramethyl-benzidine dihydrochloride/horseradish peroxidase (TMB/HRP) catalytic system. The response currents increased with increasing concentration of Legionella antibody. This result indicates that antibodies were effectively immobilized on plasma-etched and activated SWCNT surfaces.

  17. Micro Raman and photoluminescence spectroscopy of nano-porous n and p type GaN/sapphire(0001).

    PubMed

    Ingale, Alka; Pal, Suparna; Dixit, V K; Tiwari, Pragya

    2007-06-01

    Variation of depth within a single etching spot (3 mm circular diameter) was observed in nanoporous GaN epilayer obtained on photo-assisted electrochemical etching of n and p-type GaN. The different etching depth regions were studied using microRaman and PL(yellow region) for both n-type and p-type GaN. From Raman spectroscopy, we observed that increase in disorder is accompanied by stress relaxation, as depth of etching increases for n-type GaN epilayer. This is well corroborated with scanning electron microscopy results. Contrarily, for p-type GaN epilayer we found that for minimum etching depth, stress in epilayer increases with increase in disorder. This is understood with the fact that as grown p-type GaN is more disordered compared to n-type GaN due to heavy Mg doping and further disorder leads to lattice distortion leading to increase in stress.

  18. Mace-like gold hollow hierarchical micro/nanostructures fabricated by co-effect of catalytic etching and electrodeposition and their SERS performance

    NASA Astrophysics Data System (ADS)

    Zhang, Haibao; Wang, Jingjing; Wang, Hua; Tian, Xingyou

    2017-09-01

    In this paper, we presented the fabrication of mace-like gold hollow hierarchical micro/nanostructures (HMNs) grafted on ZnO nanorods array by using an electrochemical deposition in chloroauric acid solution on gold layer pre-coated ZnO nanorods array. Different from general electrochemical deposition process, the catalytic etching to ZnO and electrodeposition of gold are co-existed in our case, which lead to an inner hollow structure and an outer gold shell. Due to the appropriate electrodeposition conditions, the outer gold shell was built of many wimble-like nanoparticles, and the hierarchical micro/nanostructures were thus formed. In addition, because of the deposition rate is decreased gradually away from the top of ZnO nanorods, the final structures show mace-like appearance. The surface-enhanced Raman scattering (SERS) effect of the as-prepared gold hollow HMNs was further studied by using rhodamine 6G as probe molecule. It is demonstrated that these structures show ultrahigh SERS activity, and the detecting low limit of R6G solution can be to 10-10 M on single mace-like gold HMNs, which is quite important for their potential application in SERS-based surface analysis and sensors.

  19. Light Absorption Enhancement of Silicon-Based Photovoltaic Devices with Multiple Bandgap Structures of Porous Silicon

    PubMed Central

    Wu, Kuen-Hsien; Li, Chong-Wei

    2015-01-01

    Porous-silicon (PS) multi-layered structures with three stacked PS layers of different porosity were prepared on silicon (Si) substrates by successively tuning the electrochemical-etching parameters in an anodization process. The three PS layers have different optical bandgap energy and construct a triple-layered PS (TLPS) structure with multiple bandgap energy. Photovoltaic devices were fabricated by depositing aluminum electrodes of Schottky contacts on the surfaces of the developed TLPS structures. The TLPS-based devices exhibit broadband photoresponses within the spectrum of the solar irradiation and get high photocurrent for the incident light of a tungsten lamp. The improved spectral responses of devices are owing to the multi-bandgap structures of TLPS, which are designed with a layered configuration analog to a tandem cell for absorbing a wider energy range of the incidental sun light. The large photocurrent is mainly ascribed to an enhanced light-absorption ability as a result of applying nanoporous-Si thin films as the surface layers to absorb the short-wavelength light and to improve the Schottky contacts of devices. Experimental results reveal that the multi-bandgap PS structures produced from electrochemical-etching of Si wafers are potentially promising for development of highly efficient Si-based solar cells. PMID:28793542

  20. Redox buffered hydrofluoric acid etchant for the reduction of galvanic attack during release etching of MEMS devices having noble material films

    DOEpatents

    Hankins, Matthew G [Albuquerque, NM

    2009-10-06

    Etchant solutions comprising a redox buffer can be used during the release etch step to reduce damage to the structural layers of a MEMS device that has noble material films. A preferred redox buffer comprises a soluble thiophosphoric acid, ester, or salt that maintains the electrochemical potential of the etchant solution at a level that prevents oxidation of the structural material. Therefore, the redox buffer preferentially oxidizes in place of the structural material. The sacrificial redox buffer thereby protects the exposed structural layers while permitting the dissolution of sacrificial oxide layers during the release etch.

  1. Novel single-cell mega-size chambers for electrochemical etching of panorama position-sensitive polycarbonate ion image detectors

    NASA Astrophysics Data System (ADS)

    Sohrabi, Mehdi

    2017-11-01

    A novel development is made here by inventing panorama single-cell mega-size electrochemical etching (MS-ECE) chamber systems for processing panorama position-sensitive mega-size polycarbonate ion image detectors (MS-PCIDs) of potential for many neutron and ion detection applications in particular hydrogen ions or proton tracks and images detected for the first time in polycarbonates in this study. The MS-PCID is simply a large polycarbonate sheet of a desired size. The single-cell MS-ECE invented consists of two large equally sized transparent Plexiglas sheets as chamber walls holding a MS-PCID and the ECE chamber components tightly together. One wall has a large flat stainless steel electrode (dry cell) attached to it which is directly in contact with the MS-PCID and the other wall has a rod electrode with two holes to facilitate feeding and draining out the etching solution from the wet cell. A silicon rubber washer plays the role of the wet cell to hold the etchant and the electrical insulator to isolate the dry cell from the wet cell. A simple 50 Hz-HV home-made generator provides an adequate field strength through the two electrodes across the MS-ECE chamber. Two panorama single-cell MS-ECE chamber systems (circular and rectangular shapes) constructed were efficiently applied to processing the MS-PCIDs for 4π ion emission image detection of different gases in particular hydrogen ions or protons in a 3.5 kJ plasma focus device (PFD as uniquely observed by the unaided eyes). The panorama MS-PCID/MS-ECE image detection systems invented are novel with high potential for many applications in particular as applied to 4π panorama ion emission angular distribution image detection studies in PFD space, some results of which are presented and discussed.

  2. Novel single-cell mega-size chambers for electrochemical etching of panorama position-sensitive polycarbonate ion image detectors.

    PubMed

    Sohrabi, Mehdi

    2017-11-01

    A novel development is made here by inventing panorama single-cell mega-size electrochemical etching (MS-ECE) chamber systems for processing panorama position-sensitive mega-size polycarbonate ion image detectors (MS-PCIDs) of potential for many neutron and ion detection applications in particular hydrogen ions or proton tracks and images detected for the first time in polycarbonates in this study. The MS-PCID is simply a large polycarbonate sheet of a desired size. The single-cell MS-ECE invented consists of two large equally sized transparent Plexiglas sheets as chamber walls holding a MS-PCID and the ECE chamber components tightly together. One wall has a large flat stainless steel electrode (dry cell) attached to it which is directly in contact with the MS-PCID and the other wall has a rod electrode with two holes to facilitate feeding and draining out the etching solution from the wet cell. A silicon rubber washer plays the role of the wet cell to hold the etchant and the electrical insulator to isolate the dry cell from the wet cell. A simple 50 Hz-HV home-made generator provides an adequate field strength through the two electrodes across the MS-ECE chamber. Two panorama single-cell MS-ECE chamber systems (circular and rectangular shapes) constructed were efficiently applied to processing the MS-PCIDs for 4π ion emission image detection of different gases in particular hydrogen ions or protons in a 3.5 kJ plasma focus device (PFD as uniquely observed by the unaided eyes). The panorama MS-PCID/MS-ECE image detection systems invented are novel with high potential for many applications in particular as applied to 4π panorama ion emission angular distribution image detection studies in PFD space, some results of which are presented and discussed.

  3. Residual contamination and corrosion on electrochemically marked uranium

    NASA Astrophysics Data System (ADS)

    Seals, R. D.; Bullock, J. S.; Cristy, S. S.; Bennett, R. K.

    Residual contamination and potential corrosion problems on uranium parts electrochemically marked with PHB-1 and PHB-1E electroetchants have been investigated using ion microprobe mass analysis (IMMA), scanning electron microscopy (SEM), and light microscopy (LM). The effectiveness of various solvent-cleaning sequences and the influence of the use of an abrasive cleaner were evaluated. The corrosion depths and chlorine distributions resulting from the electroetching process were determined. To meet the objective, the surfaces of uranium coupons, which had been processed according to production procedures for parts, i.e., machining, cleaning, marking, inspecting and coating with Shell Vitrea-29® oil, were studied. The greater surface wetting capability of the PHB-1E electroetchant solution relative to PHB-1 resulted in less localized corrosion at the point of attack which provided a more legible mark. Components of the electroetchants (aluminum, potassium and chromium) were found in the marked areas of both types of electroetched samples. Chromium, resulting from the corrosion inhibitor in the electroetchants, was found in the etched areas as well as on the coupon away from the electroetched areas. Depth profile data indicated that the major etching action (marking thickness) of the electroetchants penetrated to a depth of approximately 200 nm. Trace amounts of chlorine were present primarily within the first 65 nm of the marked surface. Comparison of the solvent rinsing sequences revealed that the most effective cleaning process included a degreaser, such as perchloroethylene, followed by a polar solvent, such as alcohol. Evaluation of the use of an abrasive cleaner on the electroetched areas indicates that this process removed residual contaminants, increased mark legibility and did not introduce significant residuals from the abrading material or cause significant surface damage.

  4. Chemically Etched Silicon Nanowires as Anodes for Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, Hannah Elise

    2015-08-01

    This study focused on silicon as a high capacity replacement anode for Lithium-ion batteries. The challenge of silicon is that it expands ~270% upon lithium insertion which causes particles of silicon to fracture, causing the capacity to fade rapidly. To account for this expansion chemically etched silicon nanowires from the University of Maine were studied as anodes. They were built into electrochemical half-cells and cycled continuously to measure the capacity and capacity fade.

  5. Near-infrared emission from mesoporous crystalline germanium

    NASA Astrophysics Data System (ADS)

    Boucherif, Abderraouf; Korinek, Andreas; Aimez, Vincent; Arès, Richard

    2014-10-01

    Mesoporous crystalline germanium was fabricated by bipolar electrochemical etching of Ge wafer in HF-based electrolyte. It yields uniform mesoporous germanium layers composed of high density of crystallites with an average size 5-7 nm. Subsequent extended chemical etching allows tuning of crystallites size while preserving the same chemical composition. This highly controllable nanostructure exhibits photoluminescence emission above the bulk Ge bandgap, in the near-infrared range (1095-1360nm) with strong evidence of quantum confinement within the crystallites.

  6. Modified Surface Having Low Adhesion Properties to Mitigate Insect Residue Adhesion

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J., Jr. (Inventor); Smith, Joseph G., Jr. (Inventor); Siochi, Emilie J. (Inventor); Penner, Ronald K. (Inventor)

    2016-01-01

    A process to modify a surface to provide reduced adhesion surface properties to mitigate insect residue adhesion. The surface may include the surface of an article including an aircraft, an automobile, a marine vessel, all-terrain vehicle, wind turbine, helmet, etc. The process includes topographically and chemically modifying the surface by applying a coating comprising a particulate matter, or by applying a coating and also topographically modifying the surface by various methods, including but not limited to, lithographic patterning, laser ablation and chemical etching, physical vapor phase deposition, chemical vapor phase deposition, crystal growth, electrochemical deposition, spin casting, and film casting.

  7. Electrochemical performances of graphene nanoribbons interlacing hollow NiCo oxide nanocages

    NASA Astrophysics Data System (ADS)

    Zhao, Xiyu; Li, Xinlu; Huang, Yanchun; Su, Zelong; Long, Junjun; Zhang, Shilei; Sha, Junwei; Wu, Tianli; Wang, Ronghua

    2017-12-01

    A hybrid of graphene nanoribbons (GNRs) interlacing hollow NiCoO2 (G-HNCO) nanocages in a size range of 300 500 nm with rough surface is synthesized by a chemical etching Cu2O templates and followed by GNR interlacing process. The G-HNCO showed high electrochemical performance of oxygen evolution reaction (OER), which exhibited small onset potential of 1.50 V and achieved current densities of 10 mA cm-2 at potentials of 1.62 V. Also, the hybrid delivered high capacitance of 937.8 F g-1 at 1 A g-1 in supercapacitor (SC) tests as well as stable cycling performance in both OER and SC measurements. The approach to synthesize the hybrid is simple and scalable for other graphene nanoribbon-based electrocatalysts. [Figure not available: see fulltext.

  8. Electrochemical aptamer-based nanosensor fabricated on single Au nanowire electrodes for adenosine triphosphate assay.

    PubMed

    Wang, Dongmei; Xiao, Xiaoqing; Xu, Shen; Liu, Yong; Li, Yongxin

    2018-01-15

    In this work, single Au nanowire electrodes (AuNWEs) were fabricated by laser-assisted pulling/hydrofluoric acid (HF) etching process, which then were characterized by transmission electron microscopy (TEM), electrochemical method and finite-element simulation. The as-prepared single AuNWEs were used to construct electrochemical aptamer-based nanosensors (E-AB nanosensors) based on the formation of Au-S bond that duplex DNA tagged with methylene blue (MB) was modified on the surface of electrode. In the presence of adenosine triphosphate (ATP), the MB-labeled aptamer dissociated from the duplex DNA due to the strong specific affinity between aptamer and target, which lead to the reduction of MB electrochemical signals. Moreover, BSA was employed to further passivate electrode surface bonding sites for the stable of the sensor. The as-prepared E-AB nanosensor has been used for ATP assay with excellent sensitivity and selectivity, even in a complex system like cerebrospinal fluid of rat brain. Considering the unique properties of good stability, larger surface area and smaller overall dimensions, this E-AB nanosensor should be an ideal platform for widely sensing applications in living bio-system. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Hemispherical cavities on silicon substrates: an overview of micro fabrication techniques

    NASA Astrophysics Data System (ADS)

    Poncelet, O.; Rasson, J.; Tuyaerts, R.; Coulombier, M.; Kotipalli, R.; Raskin, J.-P.; Francis, L. A.

    2018-04-01

    Hemispherical photonic crystals found in species like Papilio blumei and Cicendella chinensis have inspired new applications like anti-counterfeiting devices and gas sensors. In this work, we investigate and compare four different ways to micro fabricate such hemispherical cavities: using colloids as template, by wet (HNA) or dry (XeF2) isotropic etching of silicon and by electrochemical etching of silicon. The shape and the roughness of the obtained cavities have been discussed and the pros/cons for each method are highlighted.

  10. Unique Three-Dimensional InP Nanopore Arrays for Improved Photoelectrochemical Hydrogen Production.

    PubMed

    Li, Qiang; Zheng, Maojun; Ma, Liguo; Zhong, Miao; Zhu, Changqing; Zhang, Bin; Wang, Faze; Song, Jingnan; Ma, Li; Shen, Wenzhong

    2016-08-31

    Ordered three-dimensional (3D) nanostructure arrays hold promise for high-performance energy harvesting and storage devices. Here, we report the fabrication of InP nanopore arrays (NPs) in unique 3D architectures with excellent light trapping characteristic and large surface areas for use as highly active photoelectrodes in photoelectrochemical (PEC) hydrogen evolution devices. The ordered 3D NPs were scalably synthesized by a facile two-step etching process of (1) anodic etching of InP in neutral 3 M NaCl electrolytes to realize nanoporous structures and (2) wet chemical etching in HCl/H3PO4 (volume ratio of 1:3) solutions for removing the remaining top irregular layer. Importantly, we demonstrated that the use of neutral electrolyte of NaCl instead of other solutions, such as HCl, in anodic etching of InP can significantly passivate the surface states of 3D NPs. As a result, the maximum photoconversion efficiency obtained with ∼15.7 μm thick 3D NPs was 0.95%, which was 7.3 and 1.4 times higher than that of planar and 2D NPs. Electrochemical impedance spectroscopy and photoluminescence analyses further clarified that the improved PEC performance was attributed to the enhanced charge transfer across 3D NPs/electrolyte interfaces, the improved charge separation at 3D NPs/electrolyte junction, and the increased PEC active surface areas with our unique 3D NP arrays.

  11. Vertically aligned nanowires from boron-doped diamond.

    PubMed

    Yang, Nianjun; Uetsuka, Hiroshi; Osawa, Eiji; Nebel, Christoph E

    2008-11-01

    Vertically aligned diamond nanowires with controlled geometrical properties like length and distance between wires were fabricated by use of nanodiamond particles as a hard mask and by use of reactive ion etching. The surface structure, electronic properties, and electrochemical functionalization of diamond nanowires were characterized by atomic force microscopy (AFM) and scanning tunneling microscopy (STM) as well as electrochemical techniques. AFM and STM experiments show that diamond nanowire etched for 10 s have wire-typed structures with 3-10 nm in length and with typically 11 nm spacing in between. The electrode active area of diamond nanowires is enhanced by a factor of 2. The functionalization of nanowire tips with nitrophenyl molecules is characterized by STM on clean and on nitrophenyl molecule-modified diamond nanowires. Tip-modified diamond nanowires are promising with respect to biosensor applications where controlled biomolecule bonding is required to improve chemical stability and sensing significantly.

  12. Tip-Enhanced Raman Scattering Imaging of Two-Dimensional Tungsten Disulfide with Optimized Tip Fabrication Process.

    PubMed

    Lee, Chanwoo; Kim, Sung Tae; Jeong, Byeong Geun; Yun, Seok Joon; Song, Young Jae; Lee, Young Hee; Park, Doo Jae; Jeong, Mun Seok

    2017-01-13

    We successfully achieve the tip-enhanced nano Raman scattering images of a tungsten disulfide monolayer with optimizing a fabrication method of gold nanotip by controlling the concentration of etchant in an electrochemical etching process. By applying a square-wave voltage supplied from an arbitrary waveform generator to a gold wire, which is immersed in a hydrochloric acid solution diluted with ethanol at various ratios, we find that both the conical angle and radius of curvature of the tip apex can be varied by changing the ratio of hydrochloric acid and ethanol. We also suggest a model to explain the origin of these variations in the tip shape. From the systematic study, we find an optimal condition for achieving the yield of ~60% with the radius of ~34 nm and the cone angle of ~35°. Using representative tips fabricated under the optimal etching condition, we demonstrate the tip-enhanced Raman scattering experiment of tungsten disulfide monolayer grown by a chemical vapor deposition method with a spatial resolution of ~40 nm and a Raman enhancement factor of ~4,760.

  13. Fabrication and Characteristics of High Capacitance Al Thin Films Capacitor Using a Polymer Inhibitor Bath in Electroless Plating Process.

    PubMed

    Cho, Young-Lae; Lee, Jung-Woo; Lee, Chang-Hyoung; Choi, Hyung-Seon; Kim, Sung-Su; Song, Young Il; Park, Chan; Suh, Su-Jeong

    2015-10-01

    An aluminum (Al) thin film capacitor was fabricated for a high capacitance capacitor using electrochemical etching, barrier-type anodizing, and electroless Ni-P plating. In this study, we focused on the bottom-up filling of Ni-P electrodes on Al2O3/Al with etched tunnels. The Al tunnel pits were irregularly distributed on the Al foil, diameters were in the range of about 0.5~1 μm, the depth of the tunnel pits was approximately 35~40 μm, and the complex structure was made full filled hard metal. To control the plating rate, the experiment was performed by adding polyethyleneimine (PEI, C2H5N), a high molecular substance. PEI forms a cross-link at the etching tunnel inlet, playing the role of delaying the inlet plating. When the PEI solution bath was used after activation, the Ni-P layer was deposited selectively on the bottoms of the tunnels. The characteristics were analyzed by adding the PEI addition quantity rate of 100~600 mg/L into the DI water. The capacitance of the Ni-P/Al2O3 (650~700 nm)/Al film was measured at 1 kHz using an impedance/gain phase analyzer. For the plane film without etch tunnels the capacitance was 12.5 nF/cm2 and for the etch film with Ni-P bottom-up filling the capacitance was 92 nF/cm2. These results illustrate a remarkable maximization of capacitance for thin film metal capacitors.

  14. Non-chapped, vertically well aligned titanium dioxide nanotubes fabricated by electrochemical etching

    NASA Astrophysics Data System (ADS)

    Loan Nguyen, Thu; Dieu Thuy Ung, Thi; Liem Nguyen, Quang

    2014-06-01

    This paper reports on the fabrication of non-chapped, vertically well aligned titanium dioxide nanotubes (TONTs) by using electrochemical etching method and further heat treatment. Very highly ordered metallic titanium nanotubes (TNTs) were formed by directly anodizing titanium foil at room temperature in an electrolyte composed of ammonium fluoride (NH4F), ethylene glycol (EG), and water. The morphology of as-formed TNTs is greatly dependent on the applied voltage, NH4F content and etching time. Particularly, we have found two interesting points related to the formation of TNTs: (i) the smooth surface without chaps of the largely etched area was dependent on the crystalline orientation of the titanium foil; and (ii) by increasing the anodizing potential from 15 V to 20 V, the internal diameter of TNT was increased from about 50 nm to 60 nm and the tube density decreased from 403 tubes μm-2 down to 339 tubes μm-2, respectively. For the anodizing duration from 1 h to 5 h, the internal diameter of each TNT was increased from ˜30 nm to 60 nm and the tube density decreased from 496 tubes μm-2 down to 403 tubes μm-2. After annealing at 400 °C in open air for 1 h, the TNTs were transformed into TONTs in anatase structure; further annealing at 600 °C showed the structural transformation from anatase to rutile as determined by Raman scattering spectroscopy.

  15. Electrochemical Corrosion Properties of Commercial Ultra-Thin Copper Foils

    NASA Astrophysics Data System (ADS)

    Yen, Ming-Hsuan; Liu, Jen-Hsiang; Song, Jenn-Ming; Lin, Shih-Ching

    2017-08-01

    Ultra-thin electrodeposited Cu foils have been developed for substrate thinning for mobile devices. Considering the corrosion by residual etchants from the lithography process for high-density circuit wiring, this study investigates the microstructural features of ultra-thin electrodeposited Cu foils with a thickness of 3 μm and their electrochemical corrosion performance in CuCl2-based etching solution. X-ray diffraction and electron backscatter diffraction analyses verify that ultra-thin Cu foils exhibit a random texture and equi-axed grains. Polarization curves show that ultra-thin foils exhibit a higher corrosion potential and a lower corrosion current density compared with conventional (220)-oriented foils with fan-like distributed fine-elongated columnar grains. Chronoamperometric results also suggest that ultra-thin foils possess superior corrosion resistance. The passive layer, mainly composed of CuCl and Cu2O, forms and dissolves in sequence during polarization.

  16. An impedimetric immunosensor based on diamond nanowires decorated with nickel nanoparticles.

    PubMed

    Subramanian, Palaniappan; Motorina, Anastasiia; Yeap, Weng Siang; Haenen, Ken; Coffinier, Yannick; Zaitsev, Vladimir; Niedziolka-Jonsson, Joanna; Boukherroub, Rabah; Szunerits, Sabine

    2014-04-07

    Nanostructured boron-doped diamond has been investigated as a sensitive impedimetric electrode for the detection of immunoglobulin G (IgG). The immunosensor was constructed in a three-step process: (i) reactive ion etching of flat boron-doped diamond (BDD) interfaces to synthesize BDD nanowires (BDD NWs), (ii) electrochemical deposition of nickel nanoparticles (Ni NPs) on the BDD NWs, and (iii) immobilization of biotin-tagged anti-IgG onto the Ni NPs. Electrochemical impedance spectroscopy (EIS) was used to follow the binding of IgG at different concentrations without the use of any additional label. A detection limit of 0.3 ng mL(-1) (2 nM) with a dynamic range up to 300 ng mL(-1) (2 μM) was obtained with the interface. Moreover, the study demonstrated that this immunosensor exhibits good stability over time and allows regeneration by incubation in ethylenediaminetetraacetic acid (EDTA) aqueous solution.

  17. Use of Nanostructures in Fabrication of Large Scale Electrochemical Film

    NASA Astrophysics Data System (ADS)

    Chen, Chien Chon; Chen, Shih Hsun; Shyu, Sheang Wen; Hsieh, Sheng Jen

    Control of electrochemical parameters when preparing small-scale samples for academic research is not difficult. In mass production environments, however, maintenance of constant current density and temperature become a critical issue. This article describes the design of several molds for large work pieces. These molds were designed to maintain constant current density and to facilitate the occurrence of electrochemical reactions in designated areas. Large-area thin films with fine nanostructure were successfully prepared using the designed electrochemical molds and containers. In addition, current density and temperature could be controlled well. This electrochemical system has been verified in many experimental operations, including etching of Al surfaces; electro-polishing of Al, Ti and stainless steel; and fabrication of anodic alumina oxide (AAO), Ti-TiO2 interference membrane, TiO2 nanotubes, AAO-TiO2 nanotubes, Ni nanowires and porous tungsten

  18. Dry etching of metallization

    NASA Technical Reports Server (NTRS)

    Bollinger, D.

    1983-01-01

    The production dry etch processes are reviewed from the perspective of microelectronic fabrication applications. The major dry etch processes used in the fabrication of microelectronic devices can be divided into two categories - plasma processes in which samples are directly exposed to an electrical discharge, and ion beam processes in which samples are etched by a beam of ions extracted from a discharge. The plasma etch processes can be distinguished by the degree to which ion bombardment contributes to the etch process. This, in turn is related to capability for anisotropic etching. Reactive Ion Etching (RIE) and Ion Beam Etching are of most interest for etching of thin film metals. RIE is generally considered the best process for large volume, anisotropic aluminum etching.

  19. Study of the deposition process of vinpocetine on the surface of porous silicon

    NASA Astrophysics Data System (ADS)

    Lenshin, A. S.; Polkovnikova, Yu. A.; Seredin, P. V.

    Currently the most prospective way in pharmacotherapy is the obtaining of nanoparticles involving pharmaceutical substances. Application of porous inorganic materials on the basis of silicon is among the main features in solving of this problem. The present work is concerned with the problem of the deposition of pharmaceutical drug with nootropic activity - vinpocetine - into porous silicon. Silicon nanoparticles were obtained by electrochemical anodic etching of Si plates. The process of vinpocetine deposition was studied in dependence of the deposition time. As a result of the investigations it was found that infrared transmission spectra of porous silicon with the deposited vinpocetine revealed the absorption bands characteristic of vinpocetine substance.

  20. Investigation of MeV-Cu implantation and channeling effects into porous silicon formation

    NASA Astrophysics Data System (ADS)

    Ahmad, M.; Naddaf, M.

    2011-11-01

    P-type (1 1 1) silicon wafers were implanted by copper ions (2.5 MeV) in channeling and random directions using ion beam accelerator of the Atomic Energy Commission of Syria (AECS). The effect of implantation direction on formation process of porous silicon (PS) using electrochemical etching method has been investigated using scanning electron microscope (SEM) and photoluminescence (PL) techniques. SEM observations revealed that the size, shape and density of the formed pores are highly affected by the direction of beam implantation. This in turn is seen to influence the PL behavior of the PS.

  1. Note: Automated electrochemical etching and polishing of silver scanning tunneling microscope tips.

    PubMed

    Sasaki, Stephen S; Perdue, Shawn M; Rodriguez Perez, Alejandro; Tallarida, Nicholas; Majors, Julia H; Apkarian, V Ara; Lee, Joonhee

    2013-09-01

    Fabrication of sharp and smooth Ag tips is crucial in optical scanning probe microscope experiments. To ensure reproducible tip profiles, the polishing process is fully automated using a closed-loop laminar flow system to deliver the electrolytic solution to moving electrodes mounted on a motorized translational stage. The repetitive translational motion is controlled precisely on the μm scale with a stepper motor and screw-thread mechanism. The automated setup allows reproducible control over the tip profile and improves smoothness and sharpness of tips (radius 27 ± 18 nm), as measured by ultrafast field emission.

  2. Surface engineered porous silicon for stable, high performance electrochemical supercapacitors

    PubMed Central

    Oakes, Landon; Westover, Andrew; Mares, Jeremy W.; Chatterjee, Shahana; Erwin, William R.; Bardhan, Rizia; Weiss, Sharon M.; Pint, Cary L.

    2013-01-01

    Silicon materials remain unused for supercapacitors due to extreme reactivity of silicon with electrolytes. However, doped silicon materials boast a low mass density, excellent conductivity, a controllably etched nanoporous structure, and combined earth abundance and technological presence appealing to diverse energy storage frameworks. Here, we demonstrate a universal route to transform porous silicon (P-Si) into stable electrodes for electrochemical devices through growth of an ultra-thin, conformal graphene coating on the P-Si surface. This graphene coating simultaneously passivates surface charge traps and provides an ideal electrode-electrolyte electrochemical interface. This leads to 10–40X improvement in energy density, and a 2X wider electrochemical window compared to identically-structured unpassivated P-Si. This work demonstrates a technique generalizable to mesoporous and nanoporous materials that decouples the engineering of electrode structure and electrochemical surface stability to engineer performance in electrochemical environments. Specifically, we demonstrate P-Si as a promising new platform for grid-scale and integrated electrochemical energy storage. PMID:24145684

  3. Surface engineered porous silicon for stable, high performance electrochemical supercapacitors.

    PubMed

    Oakes, Landon; Westover, Andrew; Mares, Jeremy W; Chatterjee, Shahana; Erwin, William R; Bardhan, Rizia; Weiss, Sharon M; Pint, Cary L

    2013-10-22

    Silicon materials remain unused for supercapacitors due to extreme reactivity of silicon with electrolytes. However, doped silicon materials boast a low mass density, excellent conductivity, a controllably etched nanoporous structure, and combined earth abundance and technological presence appealing to diverse energy storage frameworks. Here, we demonstrate a universal route to transform porous silicon (P-Si) into stable electrodes for electrochemical devices through growth of an ultra-thin, conformal graphene coating on the P-Si surface. This graphene coating simultaneously passivates surface charge traps and provides an ideal electrode-electrolyte electrochemical interface. This leads to 10-40X improvement in energy density, and a 2X wider electrochemical window compared to identically-structured unpassivated P-Si. This work demonstrates a technique generalizable to mesoporous and nanoporous materials that decouples the engineering of electrode structure and electrochemical surface stability to engineer performance in electrochemical environments. Specifically, we demonstrate P-Si as a promising new platform for grid-scale and integrated electrochemical energy storage.

  4. Surface engineered porous silicon for stable, high performance electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Oakes, Landon; Westover, Andrew; Mares, Jeremy W.; Chatterjee, Shahana; Erwin, William R.; Bardhan, Rizia; Weiss, Sharon M.; Pint, Cary L.

    2013-10-01

    Silicon materials remain unused for supercapacitors due to extreme reactivity of silicon with electrolytes. However, doped silicon materials boast a low mass density, excellent conductivity, a controllably etched nanoporous structure, and combined earth abundance and technological presence appealing to diverse energy storage frameworks. Here, we demonstrate a universal route to transform porous silicon (P-Si) into stable electrodes for electrochemical devices through growth of an ultra-thin, conformal graphene coating on the P-Si surface. This graphene coating simultaneously passivates surface charge traps and provides an ideal electrode-electrolyte electrochemical interface. This leads to 10-40X improvement in energy density, and a 2X wider electrochemical window compared to identically-structured unpassivated P-Si. This work demonstrates a technique generalizable to mesoporous and nanoporous materials that decouples the engineering of electrode structure and electrochemical surface stability to engineer performance in electrochemical environments. Specifically, we demonstrate P-Si as a promising new platform for grid-scale and integrated electrochemical energy storage.

  5. Effects of dextrose and lipopolysaccharide on the corrosion behavior of a Ti-6Al-4V alloy with a smooth surface or treated with double-acid-etching.

    PubMed

    Faverani, Leonardo P; Assunção, Wirley G; de Carvalho, Paulo Sérgio P; Yuan, Judy Chia-Chun; Sukotjo, Cortino; Mathew, Mathew T; Barao, Valentim A

    2014-01-01

    Diabetes and infections are associated with a high risk of implant failure. However, the effects of such conditions on the electrochemical stability of titanium materials remain unclear. This study evaluated the corrosion behavior of a Ti-6Al-4V alloy, with a smooth surface or conditioned by double-acid-etching, in simulated body fluid with different concentrations of dextrose and lipopolysaccharide. For the electrochemical assay, the open-circuit-potential, electrochemical impedance spectroscopy, and potentiodynamic test were used. The disc surfaces were characterized by scanning electron microscopy and atomic force microscopy. Their surface roughness and Vickers microhardness were also tested. The quantitative data were analyzed by Pearson's correlation and independent t-tests (α = 0.05). In the corrosion parameters, there was a strong lipopolysaccharide correlation with the Ipass (passivation current density), Cdl (double-layer capacitance), and Rp (polarization resistance) values (p<0.05) for the Ti-6Al-4V alloy with surface treatment by double-acid-etching. The combination of dextrose and lipopolysaccharide was correlated with the Icorr (corrosion current density) and Ipass (p<0.05). The acid-treated groups showed a significant increase in Cdl values and reduced Rp values (p<0.05, t-test). According to the topography, there was an increase in surface roughness (R2 = 0.726, p<0.0001 for the smooth surface; R2 = 0.405, p = 0.036 for the double-acid-etching-treated surface). The microhardness of the smooth Ti-6Al-4V alloy decreased (p<0.05) and that of the treated Ti-6Al-4V alloy increased (p<0.0001). Atomic force microscopy showed changes in the microstructure of the Ti-6Al-4V alloy by increasing the surface thickness mainly in the group associated with dextrose and lipopolysaccharide. The combination of dextrose and lipopolysaccharide affected the corrosion behavior of the Ti-6Al-4V alloy surface treated with double-acid-etching. However, no dose-response corrosion behavior could be observed. These results suggest a greater susceptibility to corrosion of titanium implants in diabetic patients with associated infections.

  6. Effects of Dextrose and Lipopolysaccharide on the Corrosion Behavior of a Ti-6Al-4V Alloy with a Smooth Surface or Treated with Double-Acid-Etching

    PubMed Central

    Faverani, Leonardo P.; Assunção, Wirley G.; de Carvalho, Paulo Sérgio P.; Yuan, Judy Chia-Chun; Sukotjo, Cortino; Mathew, Mathew T.; Barao, Valentim A.

    2014-01-01

    Diabetes and infections are associated with a high risk of implant failure. However, the effects of such conditions on the electrochemical stability of titanium materials remain unclear. This study evaluated the corrosion behavior of a Ti-6Al-4V alloy, with a smooth surface or conditioned by double-acid-etching, in simulated body fluid with different concentrations of dextrose and lipopolysaccharide. For the electrochemical assay, the open-circuit-potential, electrochemical impedance spectroscopy, and potentiodynamic test were used. The disc surfaces were characterized by scanning electron microscopy and atomic force microscopy. Their surface roughness and Vickers microhardness were also tested. The quantitative data were analyzed by Pearson's correlation and independent t-tests (α = 0.05). In the corrosion parameters, there was a strong lipopolysaccharide correlation with the Ipass (passivation current density), Cdl (double-layer capacitance), and Rp (polarization resistance) values (p<0.05) for the Ti-6Al-4V alloy with surface treatment by double-acid-etching. The combination of dextrose and lipopolysaccharide was correlated with the Icorr (corrosion current density) and Ipass (p<0.05). The acid-treated groups showed a significant increase in Cdl values and reduced Rp values (p<0.05, t-test). According to the topography, there was an increase in surface roughness (R2 = 0.726, p<0.0001 for the smooth surface; R2 = 0.405, p = 0.036 for the double-acid-etching-treated surface). The microhardness of the smooth Ti-6Al-4V alloy decreased (p<0.05) and that of the treated Ti-6Al-4V alloy increased (p<0.0001). Atomic force microscopy showed changes in the microstructure of the Ti-6Al-4V alloy by increasing the surface thickness mainly in the group associated with dextrose and lipopolysaccharide. The combination of dextrose and lipopolysaccharide affected the corrosion behavior of the Ti-6Al-4V alloy surface treated with double-acid-etching. However, no dose-response corrosion behavior could be observed. These results suggest a greater susceptibility to corrosion of titanium implants in diabetic patients with associated infections. PMID:24671257

  7. Electrochemical thinning of silicon

    DOEpatents

    Medernach, John W.

    1994-01-01

    Porous semiconducting material, e.g. silicon, is formed by electrochemical treatment of a specimen in hydrofluoric acid, using the specimen as anode. Before the treatment, the specimen can be masked. The porous material is then etched with a caustic solution or is oxidized, depending of the kind of structure desired, e.g. a thinned specimen, a specimen, a patterned thinned specimen, a specimen with insulated electrical conduits, and so on. Thinned silicon specimen can be subjected to tests, such as measurement of interstitial oxygen by Fourier transform infra-red spectroscopy (FTIR).

  8. Optical and electrical properties of porous silicon layer formed on the textured surface by electrochemical etching

    NASA Astrophysics Data System (ADS)

    Weiying, Ou; Lei, Zhao; Hongwei, Diao; Jun, Zhang; Wenjing, Wang

    2011-05-01

    Porous silicon (PS) layers were formed on textured crystalline silicon by electrochemical etching in HF-based electrolyte. Optical and electrical properties of the TMAH textured surfaces with PS formation are studied. Moreover, the influences of the initial structures and the anodizing time on the optical and electrical properties of the surfaces after PS formation are investigated. The results show that the TMAH textured surfaces with PS formation present a dramatic decrease in reflectance. The longer the anodizing time is, the lower the reflectance. Moreover, an initial surface with bigger pyramids achieved lower reflectance in a short wavelength range. A minimum reflectance of 3.86% at 460 nm is achieved for a short anodizing time of 2 min. Furthermore, the reflectance spectrum of the sample, which was etched in 3 vol.% TMAH for 25 min and then anodized for 20 min, is extremely flat and lies between 3.67% and 6.15% in the wavelength range from 400 to 1040 nm. In addition, for a short anodizing time, a slight increase in the effective carrier lifetime is observed. Our results indicate that PS layers formed on a TMAH textured surface for a short anodization treatment can be used as both broadband antireflection coatings and passivation layers for the application in solar cells.

  9. The Highly Robust Electrical Interconnects and Ultrasensitive Biosensors Based on Embedded Carbon Nanotube Arrays

    NASA Technical Reports Server (NTRS)

    Li, Jun; Cassell, Alan; Koehne, Jessica; Chen, Hua; Ng, Hou Tee; Ye, Qi; Stevens, Ramsey; Han, Jie; Meyyappan, M.

    2003-01-01

    We report on our recent breakthroughs in two different applications using well-aligned carbon nanotube (CNT) arrays on Si chips, including (1) a novel processing solution for highly robust electrical interconnects in integrated circuit manufacturing, and (2) the development of ultrasensitive electrochemical DNA sensors. Both of them rely on the invention of a bottom-up fabrication scheme which includes six steps, including: (a) lithographic patterning, (b) depositing bottom conducting contacts, (c) depositing metal catalysts, (d) CNT growth by plasma enhanced chemical vapor deposition (PECVD), (e) dielectric gap-filling, and (f) chemical mechanical polishing (CMP). Such processes produce a stable planarized surface with only the open end of CNTs exposed, whch can be further processed or modified for different applications. By depositing patterned top contacts, the CNT can serve as vertical interconnects between the two conducting layers. This method is fundamentally different fiom current damascene processes and avoids problems associated with etching and filling of high aspect ratio holes at nanoscales. In addition, multiwalled CNTs (MWCNTs) are highly robust and can carry a current density of 10(exp 9) A/square centimeters without degradation. It has great potential to help extending the current Si technology. The embedded MWCNT array without the top contact layer can be also used as a nanoelectrode array in electrochemical biosensors. The cell time-constant and sensitivity can be dramatically improved. By functionalizing the tube ends with specific oligonucleotide probes, specific DNA targets can be detected with electrochemical methods down to subattomoles.

  10. Black silicon: fabrication methods, properties and solar energy applications

    DOE PAGES

    Liu, Xiaogang; Coxon, Paul R.; Peters, Marius; ...

    2014-08-04

    Black silicon (BSi) represents a very active research area in renewable energy materials. The rise of BSi as a focus of study for its fundamental properties and potentially lucrative practical applications is shown by several recent results ranging from solar cells and light-emitting devices to antibacterial coatings and gas-sensors. Here in this article, the common BSi fabrication techniques are first reviewed, including electrochemical HF etching, stain etching, metal-assisted chemical etching, reactive ion etching, laser irradiation and the molten salt Fray-Farthing-Chen-Cambridge (FFC-Cambridge) process. The utilization of BSi as an anti-reflection coating in solar cells is then critically examined and appraised, basedmore » upon strategies towards higher efficiency renewable solar energy modules. Methods of incorporating BSi in advanced solar cell architectures and the production of ultra-thin and flexible BSi wafers are also surveyed. Particular attention is given to routes leading to passivated BSi surfaces, which are essential for improving the electrical properties of any devices incorporating BSi, with a special focus on atomic layer deposition of Al 2O 3. Finally, three potential research directions worth exploring for practical solar cell applications are highlighted, namely, encapsulation effects, the development of micro-nano dual-scale BSi, and the incorporation of BSi into thin solar cells. It is intended that this paper will serve as a useful introduction to this novel material and its properties, and provide a general overview of recent progress in research currently being undertaken for renewable energy applications.« less

  11. Preparation of scanning tunneling microscopy tips using pulsed alternating current etching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valencia, Victor A.; Thaker, Avesh A.; Derouin, Jonathan

    An electrochemical method using pulsed alternating current etching (PACE) to produce atomically sharp scanning tunneling microscopy (STM) tips is presented. An Arduino Uno microcontroller was used to control the number and duration of the alternating current (AC) pulses, allowing for ready optimization of the procedures for both Pt:Ir and W tips using a single apparatus. W tips prepared using constant and pulsed AC power were compared. Tips fashioned using PACE were sharper than those etched with continuous AC power alone. Pt:Ir tips were prepared with an initial coarse etching stage using continuous AC power followed by fine etching using PACE.more » The number and potential of the finishing AC pulses was varied and scanning electron microscope imaging was used to compare the results. Finally, tip quality using the optimized procedures was verified by UHV-STM imaging. With PACE, at least 70% of the W tips and 80% of the Pt:Ir tips were of sufficiently high quality to obtain atomically resolved images of HOPG or Ni(111)« less

  12. Correlation between oxidant concentrations, morphological aspects and etching kinetics of silicon nanowires during silver-assist electroless etching

    NASA Astrophysics Data System (ADS)

    Moumni, Besma; Jaballah, Abdelkader Ben

    2017-12-01

    Silicon porosification by silver assisted chemical etching (Ag-ACE) for a short range of H2O2 concentration is reported. We experimentally show that porous silicon (PSi) is obtained for 1% H2O2, whereas silicon nanowires (SiNWs) appeared by simply tuning the concentration of H2O2 to relatively high concentrations up to 8%. The morphological aspects are claimed by scanning electron microscopy proving that the kinetics of SiNWs formation display nonlinear relationships versus H2O2 concentration and etching time. A semi-qualitative electrochemical etching model based on local anodic, Ic, and cathodic, Ia, currents is proposed to explain the different morphological changes, and to unveil the formation pathways of both PS and SiNWs. More importantly, an efficient antireflective character for silicon solar cell (reflectance close to 2%) is realized at 8% H2O2. In addition, the luminescence of the prepared Si-nanostructures is claimed by photoluminescence which exhibit a large enhancement of the intensity and a blue shift for narrow and deep SiNWs.

  13. SELF ALIGNED TIP DEINSULATION OF ATOMIC LAYER DEPOSITED AL2O3 AND PARYLENE C COATED UTAH ELECTRODE ARRAY BASED NEURAL INTERFACES

    PubMed Central

    Xie, Xianzong; Rieth, Loren; Negi, Sandeep; Bhandari, Rajmohan; Caldwell, Ryan; Sharma, Rohit; Tathireddy, Prashant; Solzbacher, Florian

    2014-01-01

    The recently developed alumina and Parylene C bi-layer encapsulation improved the lifetime of neural interfaces. Tip deinsulation of Utah electrode array based neural interfaces is challenging due to the complex 3D geometries and high aspect ratios of the devices. A three-step self-aligned process was developed for tip deinsulation of bilayer encapsulated arrays. The deinsulation process utilizes laser ablation to remove Parylene C, O2 reactive ion etching to remove carbon and Parylene residues, and buffered oxide etch to remove alumina deposited by atomic layer deposition, and expose the IrOx tip metallization. The deinsulated iridium oxide area was characterized by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy to determine the morphology, surface morphology, composition, and electrical properties of the deposited layers and deinsulated tips. The alumina layer was found to prevent the formation of micro cracks on iridium oxide during the laser ablation process, which has been previously reported as a challenge for laser deinsulation of Parylene films. The charge injection capacity, charge storage capacity, and impedance of deinsulated iridium oxide were characterized to determine the deinsulation efficacy compared to Parylene-only insulation. Deinsulated iridium oxide with bilayer encapsulation had higher charge injection capacity (240 vs 320 nC) and similar electrochemical impedance (2.5 vs 2.5 kΩ) compared to deinsulated iridium oxide with only Parylene coating for an area of 2 × 10−4 cm2. Tip impedances were in the ranges of 20 to 50 kΩ, with median of 32 KΩ and standard deviation of 30 kΩ, showing the effectiveness of the self-aligned deinsulation process for alumina and Parylene C bi-layer encapsulation. The relatively uniform tip impedance values demonstrated the consistency of tip exposures. PMID:24771981

  14. Solar Cell Nanotechnology Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Biswajit

    2014-05-07

    The objective of this project is to develop a low cost nonlithographic nanofabrication technology for the fabrication of thin film porous templates as well as uniform arrays of semiconductor nanostructures for the implementation of high efficiency solar cells. Solar cells based on semiconductor nanostructures are expected to have very high energy conversion efficiencies due to the increased absorption coefficients of semiconductor nanostructures. In addition, the thin film porous template can be used for optimum surface texturing of solar cells leading to additional enhancement in energy conversion efficiency. An important requirement for these applications is the ability to synthesize nanostructure arraysmore » of different dimensions with good size control. This project employed nanoporous alumina templates created by the anodization of aluminum thin films deposited on glass substrates for the fabrication of the nanostructures and optimized the process parameters to obtain uniform pore diameters. An additional requirement is uniformity or regularity of the nanostructure arrays. While constant current anodization was observed to provide controlled pore diameters, constant voltage anodization was needed for regularity of the nanostructure arrays. Thus a two-step anodization process was investigated and developed in this project for improving the pore size distribution and pore periodicity of the nanoporous alumina templates. CdTe was selected to be the active material for the nanowires, and the process for the successful synthesis of CdTe nanowires was developed in this project. Two different synthesis approaches were investigated in this project, electrochemical and electrophoretic deposition. While electrochemical synthesis was successfully employed for the synthesis of nanowires inside the pores of the alumina templates, the technique was determined to be non-optimum due to the need of elevated temperature that is detrimental to the structural integrity of the nanoporous alumina templates. In order to eliminate this problem, electrophoretic deposition was selected as the more appropriate technique, which involves the guided deposition of semiconductor nanoparticles in the presence of ultrasonic energy to form the crystalline nanowires. Extensive experimental research was carried out to optimize the process parameters for formation of crystalline nanowires. It was observed that the environmental bath temperature plays a critical role in determining the structural integrity of the nanowires and hence their lengths. Investigation was carried out for the formation of semitransparent ohmic contacts on the nanowires to facilitate photocurrent spectroscopy measurements as well as for solar cell implementation. Formation of such ohmic contacts was found to be challenging and a process involving mechanical and electrochemical polishing was developed to facilitate such contacts. The use of nanoporous alumina templates for the surface texturing of mono- and multi-crystalline solar cells was extensively investigated by electrochemical etching of the silicon through the pores of the nanoporous templates. The processes for template formation as well as etching were optimized and the alumina/silicon interface was investigated using capacitance-voltage characterization. The process developed was found to be viable for improving solar cell performance.« less

  15. Study on micro fabricated stainless steel surface to anti-biofouling using electrochemical fabrication

    NASA Astrophysics Data System (ADS)

    Hwang, Byeong Jun; Lee, Sung Ho

    2017-12-01

    Biofilm formed on the surface of the object by the microorganism resulting in fouling organisms. This has led to many problems in daily life, medicine, health and industrial community. In this study, we tried to prevent biofilm formation on the stainless steel (SS304) sheet surface with micro fabricated structure. After then forming the microscale colloid patterns on the surface of stainless steel by using an electrochemical etching forming a pattern by using a FeCl3 etching was further increase the surface roughness. Culturing the Pseudomonas aeruginosa on the stainless steel fabricated with a micro structure on the surface was observed a relationship between the surface roughness and the biological fouling of the micro structure. As a result, the stainless steel surface with a micro structure was confirmed to be the biological fouling occurs less. We expect to be able to solve the problems caused by biological fouling in various fields such as medicine, engineering, using this research.

  16. Controlled synthesis of hollow octahedral ZnCo2O4 nanocages assembled from ultrathin 2D nanosheets for enhanced lithium storage.

    PubMed

    Liu, Beihong; Liu, Hui; Liang, Mengfang; Liu, Lixiang; Lv, Zhaolin; Zhou, Hang; Guo, Hong

    2017-11-16

    Hollow octahedral ZnCo 2 O 4 nanocages assembled from ultrathin 2D nanosheets are prepared through facile fast simultaneous coordinating etching and thermal processes. Electrochemical results show that the hollow octahedral ZnCo 2 O 4 nanocage is an outstanding anode material for LIBs with a high reversible discharge capacity of 1025 mA h g -1 at 500 mA g -1 after 200 cycles, and an outstanding rate capability of 525 mA h g -1 at 4 A g -1 . Moreover, this simple, low cost and fast process could be useful for the construction of many other hollow advanced materials for supercapacitors, sensors and other novel energy and environmental applications.

  17. Passivation dynamics in the anisotropic deposition and stripping of bulk magnesium electrodes during electrochemical cycling

    DOE PAGES

    Wetzel, David J.; Malone, Marvin A.; Haasch, Richard T.; ...

    2015-08-10

    Rechargeable magnesium (Mg) batteries show promise for use as a next generation technology for high-density energy storage, though little is known about the Mg anode solid electrolyte interphase and its implications for the performance and durability of a Mg-based battery. We explore in this report passivation effects engendered during the electrochemical cycling of a bulk Mg anode, characterizing their influences during metal deposition and dissolution in a simple, nonaqueous, Grignard electrolyte solution (ethylmagnesium bromide, EtMgBr, in tetrahydrofuran). Scanning electron microscopy images of Mg foil working electrodes after electrochemical polarization to dissolution potentials show the formation of corrosion pits. The pitmore » densities so evidenced are markedly potential-dependent. When the Mg working electrode is cycled both potentiostatically and galvanostatically in EtMgBr these pits, formed due to passive layer breakdown, act as the foci for subsequent electrochemical activity. Detailed microscopy, diffraction, and spectroscopic data show that further passivation and corrosion results in the anisotropic stripping of the Mg {0001} plane, leaving thin oxide-comprising passivated side wall structures that demark the {0001} fiber texture of the etched Mg grains. Upon long-term cycling, oxide side walls formed due to the pronounced crystallographic anisotropy of the anodic stripping processes, leading to complex overlay anisotropic, columnar structures, exceeding 50 μm in height. Finally, the passive responses mediating the growth of these structures appear to be an intrinsic feature of the electrochemical growth and dissolution of Mg using this electrolyte.« less

  18. Passivation dynamics in the anisotropic deposition and stripping of bulk magnesium electrodes during electrochemical cycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetzel, David J.; Malone, Marvin A.; Haasch, Richard T.

    Rechargeable magnesium (Mg) batteries show promise for use as a next generation technology for high-density energy storage, though little is known about the Mg anode solid electrolyte interphase and its implications for the performance and durability of a Mg-based battery. We explore in this report passivation effects engendered during the electrochemical cycling of a bulk Mg anode, characterizing their influences during metal deposition and dissolution in a simple, nonaqueous, Grignard electrolyte solution (ethylmagnesium bromide, EtMgBr, in tetrahydrofuran). Scanning electron microscopy images of Mg foil working electrodes after electrochemical polarization to dissolution potentials show the formation of corrosion pits. The pitmore » densities so evidenced are markedly potential-dependent. When the Mg working electrode is cycled both potentiostatically and galvanostatically in EtMgBr these pits, formed due to passive layer breakdown, act as the foci for subsequent electrochemical activity. Detailed microscopy, diffraction, and spectroscopic data show that further passivation and corrosion results in the anisotropic stripping of the Mg {0001} plane, leaving thin oxide-comprising passivated side wall structures that demark the {0001} fiber texture of the etched Mg grains. Upon long-term cycling, oxide side walls formed due to the pronounced crystallographic anisotropy of the anodic stripping processes, leading to complex overlay anisotropic, columnar structures, exceeding 50 μm in height. Finally, the passive responses mediating the growth of these structures appear to be an intrinsic feature of the electrochemical growth and dissolution of Mg using this electrolyte.« less

  19. Passivation Dynamics in the Anisotropic Deposition and Stripping of Bulk Magnesium Electrodes During Electrochemical Cycling.

    PubMed

    Wetzel, David J; Malone, Marvin A; Haasch, Richard T; Meng, Yifei; Vieker, Henning; Hahn, Nathan T; Gölzhäuser, Armin; Zuo, Jian-Min; Zavadil, Kevin R; Gewirth, Andrew A; Nuzzo, Ralph G

    2015-08-26

    Although rechargeable magnesium (Mg) batteries show promise for use as a next generation technology for high-density energy storage, little is known about the Mg anode solid electrolyte interphase and its implications for the performance and durability of a Mg-based battery. We explore in this report passivation effects engendered during the electrochemical cycling of a bulk Mg anode, characterizing their influences during metal deposition and dissolution in a simple, nonaqueous, Grignard electrolyte solution (ethylmagnesium bromide, EtMgBr, in tetrahydrofuran). Scanning electron microscopy images of Mg foil working electrodes after electrochemical polarization to dissolution potentials show the formation of corrosion pits. The pit densities so evidenced are markedly potential-dependent. When the Mg working electrode is cycled both potentiostatically and galvanostatically in EtMgBr these pits, formed due to passive layer breakdown, act as the foci for subsequent electrochemical activity. Detailed microscopy, diffraction, and spectroscopic data show that further passivation and corrosion results in the anisotropic stripping of the Mg {0001} plane, leaving thin oxide-comprising passivated side wall structures that demark the {0001} fiber texture of the etched Mg grains. Upon long-term cycling, oxide side walls formed due to the pronounced crystallographic anisotropy of the anodic stripping processes, leading to complex overlay anisotropic, columnar structures, exceeding 50 μm in height. The passive responses mediating the growth of these structures appear to be an intrinsic feature of the electrochemical growth and dissolution of Mg using this electrolyte.

  20. Modeling electrochemical deposition inside nanotubes to obtain metal-semiconductor multiscale nanocables or conical nanopores.

    PubMed

    Lebedev, Konstantin; Mafé, Salvador; Stroeve, Pieter

    2005-08-04

    Nanocables with a radial metal-semiconductor heterostructure have recently been prepared by electrochemical deposition inside metal nanotubes. First, a bare nanoporous polycarbonate track-etched membrane is coated uniformly with a metal film by electroless deposition. The film forms a working electrode for further deposition of a semiconductor layer that grows radially inside the nanopore when the deposition rate is slow. We propose a new physical model for the nanocable synthesis and study the effects of the deposited species concentration, potential-dependent reaction rate, and nanopore dimensions on the electrochemical deposition. The problem involves both axial diffusion through the nanopore and radial transport to the nanopore surface, with a surface reaction rate that depends on the axial position and the time. This is so because the radial potential drop across the deposited semiconductor layer changes with the layer thickness through the nanopore. Since axially uniform nanocables are needed for most applications, we consider the relative role of reaction and axial diffusion rates on the deposition process. However, in those cases where partial, empty-core deposition should be desirable (e.g., for producing conical nanopores to be used in single nanoparticle detection), we give conditions where asymmetric geometries can be experimentally realized.

  1. Characteristics for electrochemical machining with nanoscale voltage pulses.

    PubMed

    Lee, E S; Back, S Y; Lee, J T

    2009-06-01

    Electrochemical machining has traditionally been used in highly specialized fields, such as those of the aerospace and defense industries. It is now increasingly being applied in other industries, where parts with difficult-to-cut material, complex geometry and tribology, and devices of nanoscale and microscale are required. Electric characteristic plays a principal function role in and chemical characteristic plays an assistant function role in electrochemical machining. Therefore, essential parameters in electrochemical machining can be described current density, machining time, inter-electrode gap size, electrolyte, electrode shape etc. Electrochemical machining provides an economical and effective method for machining high strength, high tension and heat-resistant materials into complex shapes such as turbine blades of titanium and aluminum alloys. The application of nanoscale voltage pulses between a tool electrode and a workpiece in an electrochemical environment allows the three-dimensional machining of conducting materials with sub-micrometer precision. In this study, micro probe are developed by electrochemical etching and micro holes are manufactured using these micro probe as tool electrodes. Micro holes and microgroove can be accurately achieved by using nanoscale voltages pulses.

  2. Electrochemical thinning of silicon

    DOEpatents

    Medernach, J.W.

    1994-01-11

    Porous semiconducting material, e.g. silicon, is formed by electrochemical treatment of a specimen in hydrofluoric acid, using the specimen as anode. Before the treatment, the specimen can be masked. The porous material is then etched with a caustic solution or is oxidized, depending of the kind of structure desired, e.g. a thinned specimen, a specimen, a patterned thinned specimen, a specimen with insulated electrical conduits, and so on. Thinned silicon specimen can be subjected to tests, such as measurement of interstitial oxygen by Fourier transform infra-red spectroscopy (FTIR). 14 figures.

  3. Functionalization of optical nanotip arrays with an electrochemical microcantilever for multiplexed DNA detection.

    PubMed

    Descamps, Emeline; Duroure, Nathalie; Deiss, Frédérique; Leichlé, Thierry; Adam, Catherine; Mailley, Pascal; Aït-Ikhlef, Ali; Livache, Thierry; Nicu, Liviu; Sojic, Neso

    2013-08-07

    Optical nanotip arrays fabricated on etched fiber bundles were functionalized with DNA spots. Such unconventional substrates (3D and non-planar) are difficult to pattern with standard microfabrication techniques but, using an electrochemical cantilever, up to 400 spots were electrodeposited on the nanostructured optical surface in 5 min. This approach allows each spot to be addressed individually and multiplexed fluorescence detection is demonstrated. Finally, remote fluorescence detection was performed by imaging through the optical fiber bundle itself after hybridisation with the complementary sequence.

  4. Etching holes in graphene supercapacitor electrodes for faster performance.

    PubMed

    Ervin, Matthew H

    2015-06-12

    Graphene is being widely investigated as a material to replace activated carbon in supercapacitor (electrochemical capacitor) electrodes. Supercapacitors have much higher energy density, but are typically slow devices (∼0.1 Hz) compared to other types of capacitors. Here, top-down semiconductor processing has been applied to graphene-based electrodes in order to fabricate ordered arrays of holes through the graphene electrodes. This is demonstrated to increase the speed of the electrodes by reducing the ionic impedance through the electrode thickness. This approach may also be applicable to speeding up other types of devices, such as batteries and sensors, that use porous electrodes.

  5. Nanopore arrays in a silicon membrane for parallel single-molecule detection: fabrication

    NASA Astrophysics Data System (ADS)

    Schmidt, Torsten; Zhang, Miao; Sychugov, Ilya; Roxhed, Niclas; Linnros, Jan

    2015-08-01

    Solid state nanopores enable translocation and detection of single bio-molecules such as DNA in buffer solutions. Here, sub-10 nm nanopore arrays in silicon membranes were fabricated by using electron-beam lithography to define etch pits and by using a subsequent electrochemical etching step. This approach effectively decouples positioning of the pores and the control of their size, where the pore size essentially results from the anodizing current and time in the etching cell. Nanopores with diameters as small as 7 nm, fully penetrating 300 nm thick membranes, were obtained. The presented fabrication scheme to form large arrays of nanopores is attractive for parallel bio-molecule sensing and DNA sequencing using optical techniques. In particular the signal-to-noise ratio is improved compared to other alternatives such as nitride membranes suffering from a high-luminescence background.

  6. Nanopore arrays in a silicon membrane for parallel single-molecule detection: fabrication.

    PubMed

    Schmidt, Torsten; Zhang, Miao; Sychugov, Ilya; Roxhed, Niclas; Linnros, Jan

    2015-08-07

    Solid state nanopores enable translocation and detection of single bio-molecules such as DNA in buffer solutions. Here, sub-10 nm nanopore arrays in silicon membranes were fabricated by using electron-beam lithography to define etch pits and by using a subsequent electrochemical etching step. This approach effectively decouples positioning of the pores and the control of their size, where the pore size essentially results from the anodizing current and time in the etching cell. Nanopores with diameters as small as 7 nm, fully penetrating 300 nm thick membranes, were obtained. The presented fabrication scheme to form large arrays of nanopores is attractive for parallel bio-molecule sensing and DNA sequencing using optical techniques. In particular the signal-to-noise ratio is improved compared to other alternatives such as nitride membranes suffering from a high-luminescence background.

  7. Effects of the micro-nano surface topography of titanium alloy on the biological responses of osteoblast.

    PubMed

    Yin, Chengcheng; Zhang, Yanjing; Cai, Qing; Li, Baosheng; Yang, Hua; Wang, Heling; Qi, Hua; Zhou, Yanmin; Meng, Weiyan

    2017-03-01

    In clinical applications, osseointegration is essential for the long-term stability of dental implants. Inspired by the hierarchical structure of natural bone, we applied the electrochemical etching (EC) technique to form a micro-nano structure on a titanium alloy (Ti6Al4V) substrate, called EC surface. Sand blasting and acid etching (SLA) and machined (M) methods were employed to generate micro and smooth textures, respectively, as the control groups. The surface topographies of the three substrates were characterized using scanning electron microscopy (SEM). Then, human osteoblast-like cells (MG63) were cultured on substrates, and adhesion, proliferation, morphology, alkaline phosphatase activity (ALP), and gene expression levels of Runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), osteopontin (OPN), and type I collagen (COLIA 1) were analyzed. MG63 cells cultured on the EC Ti alloy substrates displayed better cell adhesion, significant proliferation, and a higher production level of ALP, gene expressions of RUNX2, OCN, OPN and COLIA 1 (p < 0.01 or p < 0.05) compared with those of SLA and M substrates. These results indicate that the micro-nano structure fabricated by electrochemical etching method is beneficial for the biological functions of MG63 cells and may be a promising candidate in dental implants. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 757-769, 2017. © 2016 Wiley Periodicals, Inc.

  8. Fabrication of low reflective nanopore-type black Si layer using one-step Ni-assisted chemical etching for Si solar cell application

    NASA Astrophysics Data System (ADS)

    Takaloo, AshkanVakilipour; Kolahdouz, Mohammadreza; Poursafar, Jafar; Es, Firat; Turan, Rasit; Ki-Joo, Seung

    2018-03-01

    Nanotextured Si fabricated through metal-assisted chemical etching (MACE) technique exhibits a promising potential for producing antireflective layer for photovoltaic (PV) application. In this study, a novel single-step nickel (Ni) assisted etching technique was applied to produce an antireflective, nonporous Si (black Si) in an aqueous solution containing hydrofluoric acid (HF), hydrogen peroxide (H2O2) and NiSO4 at 40 °C. Field emission scanning electron microscope was used to characterize different morphologies of the textured Si. Optical reflection measurements of samples were carried out to compare the reflectivity of different morphologies. Results indicated that vertical as well as horizontal pores with nanosized diameters were bored in the Si wafer after 1 h treatment in the etching solution containing different molar ratios of H2O2 to HF. Increasing H2O2 concentration in electrochemical etching solution had a considerable influence on the morphology due to higher injection of positive charges from Ni atoms onto the Si surface. Optimized concentration of H2O2 led to formation of an antireflective layer with 2.1% reflectance of incident light.

  9. Development of a Contactless Technique for Electrodeposition and Porous Silicon Formation

    NASA Astrophysics Data System (ADS)

    Zhao, Mingrui

    One of the key active manufacturing technologies for 3D integration is through silicon vias (TSVs), which involves etching of deep vias in a silicon substrate that are filled with an electrodeposited metal, and subsequent removal of excess metal by chemical mechanical planarization (CMP). Electrodeposition often results in undesired voids in the TSV metal fill as well as a thick overburden layer. These via plating defects can severely degrade interconnect properties and lead to variation in via resistance, electrically open vias, and trapped plating chemicals that present a reliability hazard. Thick overburden layers result in lengthy and expensive CMP processing. We are proposing a technique that pursues a viable method of depositing a high quality metal inside vias with true bottom-up filling, using an additive-free deposition solution. The mechanism is based on a novel concept of electrochemical oxidation of backside silicon that releases electrons, and subsequent chemical etching of silicon dioxide for regeneration of the surface. Electrons are transported through the bulk silicon to the interface of the via bottom and the deposition solution, where the metal ions accept these electrons and electrodeposit resulting in the bottom-up filling of the large aspect ratio vias. With regions outside the vias covered bydielectric, no metal electrodeposition should occur in these regions. Our new bottom-up technique was initially examined and successfully demonstrated on blanket silicon wafers and shown to supply electrons to provide bottom-up filling advantage of through-hole plating and the depth tailorability of blind vias. We have also conducted a fundamental study that investigated the effect of various process parameters on the characteristics of deposited Cu and Ni and established correlations between metal filling properties and various electrochemical and solution variables. A copper sulfate solution with temperature of about 65°C was shown to be suitable for achieving stable and high values of current density that translated to copper deposition rates of 2.4 mum/min with good deposition uniformity. The importance of backside silicon oxidation and subsequent oxide etching on the kinetics of metal deposition on front side silicon has also been highlighted. Further, a process model was also developed to simulate the through silicon via copper filling process using conventional and contactless electrodeposition methods with no additives being used in the electrolyte solution. A series of electrochemical measurements were employed and integrated in the development of the comprehensive process simulator. The experimental data not only provided the necessary parameters for the model but also validated the simulation accuracy. From the simulation results, the "pinch-off" effect was observed for the additive-free conventional deposition process, which further causes partial filling and void formation. By contrast, a void-free filling with higher deposition rates was achieved by the use of the contactless technique. Moreover, experimental results of contactless electrodeposition on patterned wafers showed fast rate bottom-up filling ( 3.3 mum/min) in vias of 4 mum diameter and 50 mum depth (aspect ratio = 12.5) without void formation and no copper overburden in the regions outside the vias. Efforts were also made to extend the use of the contactless technique to other applications such as synthesis of porous silicon. We were able to fabricate porous silicon with a morphological gradient using a novel design of the experimental cell. The resulted porous silicon layers show a large distribution in porosity, pore size and depth along the radius of the samples. Symmetrical arrangements were attributed to decreasing current density radially inward on the silicon surface exposed to surfactant containing HF based etchant solution. The formation mechanism as well as morphological properties and their dependence on different process parameters has been investigated in detail. In the presence of surfactants, an increase in the distribution range of porosity, pore diameter and depth was observed by increasing HF concentration or lowering pH of the etchant solution, as the formation of pores was considered to be limited by the etch rates of silicon dioxide. Gradient porous silicon was also found to be successfully formulated both at high and low current densities. Interestingly, the morphological gradient was not developed when dimethyl sulfoxide (instead of surfactants) was used in etchant solution potentially due to limitations in the availability of oxidizing species at the silicon-etchant solution interface. In the last part of the dissertation, we have discussed the gradient bottom up filling of Cu in porous silicon substrates using the contactless electrochemical method. The radially symmetric current that gradually varied across the radius of the sample area was achieved by utilizing the modified cell design, which resulted in gradient filling in the vias. Effect of different deposition parameters such as applied current density, copper sulfate concentration and etching to deposition area ratio has been examined and discussed. (Abstract shortened by ProQuest.).

  10. Wafer-scale Fabrication of Non-Polar Mesoporous GaN Distributed Bragg Reflectors via Electrochemical Porosification.

    PubMed

    Zhu, Tongtong; Liu, Yingjun; Ding, Tao; Fu, Wai Yuen; Jarman, John; Ren, Christopher Xiang; Kumar, R Vasant; Oliver, Rachel A

    2017-03-27

    Distributed Bragg reflectors (DBRs) are essential components for the development of optoelectronic devices. For many device applications, it is highly desirable to achieve not only high reflectivity and low absorption, but also good conductivity to allow effective electrical injection of charges. Here, we demonstrate the wafer-scale fabrication of highly reflective and conductive non-polar gallium nitride (GaN) DBRs, consisting of perfectly lattice-matched non-polar (11-20) GaN and mesoporous GaN layers that are obtained by a facile one-step electrochemical etching method without any extra processing steps. The GaN/mesoporous GaN DBRs exhibit high peak reflectivities (>96%) across the entire visible spectrum and wide spectral stop-band widths (full-width at half-maximum >80 nm), while preserving the material quality and showing good electrical conductivity. Such mesoporous GaN DBRs thus provide a promising and scalable platform for high performance GaN-based optoelectronic, photonic, and quantum photonic devices.

  11. High-indexed Pt 3Ni alloy tetrahexahedral nanoframes evolved through preferential CO etching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chenyu; Zhang, Lihua; Yang, Hongzhou

    2017-03-07

    Here, chemically controlling crystal structures in nanoscale is challenging, yet provides an effective way to improve catalytic performances. Pt-based nanoframes are a new class of nanomaterials that have great potential as high-performance catalysts. To date, these nanoframes are formed through acid etching in aqueous solutions, which demands long reaction time and often yields ill-defined surface structures. Herein we demonstrate a robust and unprecedented protocol for facile development of high-performance nanoframe catalysts using size and crystallographic facet-controlled PtNi 4 tetrahexahedral nanocrystals prepared through a colloidal synthesis approach as precursors. This new protocol employs the Mond process to preferentially dealloy nickel componentmore » in the <100> direction through carbon monoxide etching of carbon-supported PtNi 4 tetrahexahedral nanocrystals at an elevated temperature. The resultant Pt 3Ni alloy tetrahexahedral nanoframes possess an open, stable, and high-indexed microstructure, containing a segregated Pt thin layer strained to the Pt–Ni alloy surfaces and featuring a down-shift d-band center as revealed by the density functional theory calculations. These nanoframes exhibit much improved catalytic performance, such as high stability under prolonged electrochemical potential cycles, promoting direct electro-oxidation of formic acid to carbon dioxide and enhancing oxygen reduction reaction activities. Because carbon monoxide can be generated from the carbon support through thermal annealing in air, a common process for pretreating supported catalysts, the developed approach can be easily adopted for preparing industrial scale catalysts that are made of Pt–Ni and other alloy nanoframes.« less

  12. Processing and Probability Analysis of Pulsed Terahertz NDE of Corrosion under Shuttle Tile Data

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Madaras, Eric I.; Seebo, Jeffrey P.; Ely, Thomas M.

    2009-01-01

    This paper examines data processing and probability analysis of pulsed terahertz NDE scans of corrosion defects under a Shuttle tile. Pulsed terahertz data collected from an aluminum plate with fabricated corrosion defects and covered with a Shuttle tile is presented. The corrosion defects imaged were fabricated by electrochemically etching areas of various diameter and depth in the plate. In this work, the aluminum plate echo signal is located in the terahertz time-of-flight data and a threshold is applied to produce a binary image of sample features. Feature location and area are examined and identified as corrosion through comparison with the known defect layout. The results are tabulated with hit, miss, or false call information for a probability of detection analysis that is used to identify an optimal processing threshold.

  13. Anisotropic diamond etching through thermochemical reaction between Ni and diamond in high-temperature water vapour.

    PubMed

    Nagai, Masatsugu; Nakanishi, Kazuhiro; Takahashi, Hiraku; Kato, Hiromitsu; Makino, Toshiharu; Yamasaki, Satoshi; Matsumoto, Tsubasa; Inokuma, Takao; Tokuda, Norio

    2018-04-27

    Diamond possesses excellent physical and electronic properties, and thus various applications that use diamond are under development. Additionally, the control of diamond geometry by etching technique is essential for such applications. However, conventional wet processes used for etching other materials are ineffective for diamond. Moreover, plasma processes currently employed for diamond etching are not selective, and plasma-induced damage to diamond deteriorates the device-performances. Here, we report a non-plasma etching process for single crystal diamond using thermochemical reaction between Ni and diamond in high-temperature water vapour. Diamond under Ni films was selectively etched, with no etching at other locations. A diamond-etching rate of approximately 8.7 μm/min (1000 °C) was successfully achieved. To the best of our knowledge, this rate is considerably greater than those reported so far for other diamond-etching processes, including plasma processes. The anisotropy observed for this diamond etching was considerably similar to that observed for Si etching using KOH.

  14. Low-damage direct patterning of silicon oxide mask by mechanical processing

    PubMed Central

    2014-01-01

    To realize the nanofabrication of silicon surfaces using atomic force microscopy (AFM), we investigated the etching of mechanically processed oxide masks using potassium hydroxide (KOH) solution. The dependence of the KOH solution etching rate on the load and scanning density of the mechanical pre-processing was evaluated. Particular load ranges were found to increase the etching rate, and the silicon etching rate also increased with removal of the natural oxide layer by diamond tip sliding. In contrast, the local oxide pattern formed (due to mechanochemical reaction of the silicon) by tip sliding at higher load was found to have higher etching resistance than that of unprocessed areas. The profile changes caused by the etching of the mechanically pre-processed areas with the KOH solution were also investigated. First, protuberances were processed by diamond tip sliding at lower and higher stresses than that of the shearing strength. Mechanical processing at low load and scanning density to remove the natural oxide layer was then performed. The KOH solution selectively etched the low load and scanning density processed area first and then etched the unprocessed silicon area. In contrast, the protuberances pre-processed at higher load were hardly etched. The etching resistance of plastic deformed layers was decreased, and their etching rate was increased because of surface damage induced by the pre-processing. These results show that etching depth can be controlled by controlling the etching time through natural oxide layer removal and mechanochemical oxide layer formation. These oxide layer removal and formation processes can be exploited to realize low-damage mask patterns. PMID:24948891

  15. Method for vacuum pressing electrochemical cell components

    NASA Technical Reports Server (NTRS)

    Andrews, Craig C. (Inventor); Murphy, Oliver J. (Inventor)

    2004-01-01

    Assembling electrochemical cell components using a bonding agent comprising aligning components of the electrochemical cell, applying a bonding agent between the components to bond the components together, placing the components within a container that is essentially a pliable bag, and drawing a vacuum within the bag, wherein the bag conforms to the shape of the components from the pressure outside the bag, thereby holding the components securely in place. The vacuum is passively maintained until the adhesive has cured and the components are securely bonded. The bonding agent used to bond the components of the electrochemical cell may be distributed to the bonding surface from distribution channels in the components. To prevent contamination with bonding agent, some areas may be treated to produce regions of preferred adhesive distribution and protected regions. Treatments may include polishing, etching, coating and providing protective grooves between the bonding surfaces and the protected regions.

  16. Capacity improvement of the carbon-based electrochemical capacitor by zigzag-edge introduced graphene

    NASA Astrophysics Data System (ADS)

    Tamura, Naoki; Tomai, Takaaki; Oka, Nobuto; Honma, Itaru

    2018-01-01

    The electrochemical properties of graphene edge has been attracted much attention. Especially, zigzag edge has high electrochemical activity because neutral radical exits on edge. However, due to a lack of efficient production method for zigzag graphene, the electrochemical properties of zigzag edge have not been experimentally demonstrated and the capacitance enhancement of carbonaceous materials in energy storage devices by the control in their edge states is still challenge. In this study, we fabricated zigzag-edge-rich graphene by a one-step method combining graphene exfoliation in supercritical fluid and anisotropic etching by catalytic nanoparticles. This efficient production of zigzag-edge-rich graphene allows us to investigate the electrochemical activity of zigzag edge. By cyclic voltammetry, we revealed the zigzag edge-introduced graphene exhibited unique redox reaction in aqueous acid solution. Moreover, by the calculation on the density function theory (DFT), this unique redox potential for zigzag edge-introduced graphene can be attributed to the proton-insertion/-extraction reactions at the zigzag edge. This finding indicates that the graphene edge modification can contribute to the further increase in the capacitance of the carbon-based electrochemical capacitor.

  17. Electrochemical approach for monitoring the effect of anti tubulin drugs on breast cancer cells based on silicon nanograss electrodes.

    PubMed

    Zanganeh, Somayeh; Khosravi, Safoora; Namdar, Naser; Amiri, Morteza Hassanpour; Gharooni, Milad; Abdolahad, Mohammad

    2016-09-28

    One of the most interested molecular research in the field of cancer detection is the mechanism of drug effect on cancer cells. Translating molecular evidence into electrochemical profiles would open new opportunities in cancer research. In this manner, applying nanostructures with anomalous physical and chemical properties as well as biocompatibility would be a suitable choice for the cell based electrochemical sensing. Silicon based nanostructure are the most interested nanomaterials used in electrochemical biosensors because of their compatibility with electronic fabrication process and well engineering in size and electrical properties. Here we apply silicon nanograss (SiNG) probing electrodes produced by reactive ion etching (RIE) on silicon wafer to electrochemically diagnose the effect of anticancer drugs on breast tumor cells. Paclitaxel (PTX) and mebendazole (MBZ) drugs have been used as polymerizing and depolymerizing agents of microtubules. PTX would perturb the anodic/cathodic responses of the cell-covered biosensor by binding phosphate groups to deformed proteins due to extracellular signal-regulated kinase (ERK(1/2)) pathway. MBZ induces accumulation of Cytochrome C in cytoplasm. Reduction of the mentioned agents in cytosol would change the ionic state of the cells monitored by silicon nanograss working electrodes (SiNGWEs). By extending the contacts with cancer cells, SiNGWEs can detect minor signal transduction and bio recognition events, resulting in precise biosensing. Effects of MBZ and PTX drugs, (with the concentrations of 2 nM and 0.1 nM, respectively) on electrochemical activity of MCF-7 cells are successfully recorded which are corroborated by confocal and flow cytometry assays. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Etching of Cr tips for scanning tunneling microscopy of cleavable oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Dennis; Liu, Stephen; Zeljkovic, Ilija

    Here, we report a detailed three-step roadmap for the fabrication and characterization of bulk Cr tips for spin-polarized scanning tunneling microscopy. Our strategy uniquely circumvents the need for ultra-high vacuum preparation of clean surfaces or films. First, we demonstrate the role of ex situ electrochemical etch parameters on Cr tip apex geometry, using scanning electron micrographs of over 70 etched tips. Second, we describe the suitability of the in situ cleaved surface of the layered antiferromagnet La 1.4Sr 1.6Mn 2O 7 to evaluate the spin characteristics of the Cr tip, replacing the ultra-high vacuum-prepared test samples that have been usedmore » in prior studies. Third, we outline a statistical algorithm that can effectively delineate closely spaced or irregular cleaved step edges, to maximize the accuracy of step height and spin-polarization measurements.« less

  19. In-depth porosity control of mesoporous silicon layers by an anodization current adjustment

    NASA Astrophysics Data System (ADS)

    Lascaud, J.; Defforge, T.; Certon, D.; Valente, D.; Gautier, G.

    2017-12-01

    The formation of thick mesoporous silicon layers in P+-type substrates leads to an increase in the porosity from the surface to the interface with silicon. The adjustment of the current density during the electrochemical etching of porous silicon is an intuitive way to control the layer in-depth porosity. The duration and the current density during the anodization were varied to empirically model porosity variations with layer thickness and build a database. Current density profiles were extracted from the model in order to etch layer with in-depth control porosity. As a proof of principle, an 80 μm-thick porous silicon multilayer was synthetized with decreasing porosities from 55% to 35%. The results show that the assessment of the in-depth porosity could be significantly enhanced by taking into account the pure chemical etching of the layer in the hydrofluoric acid-based electrolyte.

  20. Chloride (Cl-) ion-mediated shape control of palladium nanoparticles

    NASA Astrophysics Data System (ADS)

    Nalajala, Naresh; Chakraborty, Arup; Bera, Bapi; Neergat, Manoj

    2016-02-01

    The shape control of Pd nanoparticles is investigated using chloride (Cl-) ions as capping agents in an aqueous medium in the temperature range of 60-100 °C. With weakly adsorbing and strongly etching Cl- ions, oxygen plays a crucial role in shape control. The experimental factors considered are the concentration of the capping agents, reaction time and reaction atmosphere. Thus, Pd nanoparticles of various shapes with high selectivity can be synthesized. Moreover, the removal of Cl- ions from the nanoparticle surface is easier than that of Br- ions (moderately adsorbing and etching) and I- ions (strongly adsorbing and weakly etching). The cleaned Cl- ion-mediated shape-controlled Pd nanoparticles are electrochemically characterized and the order of the half-wave potential of the oxygen reduction reaction in oxygen-saturated 0.1 M HClO4 solution is of the same order as that observed with single-crystal Pd surfaces.

  1. Etching of Cr tips for scanning tunneling microscopy of cleavable oxides

    DOE PAGES

    Huang, Dennis; Liu, Stephen; Zeljkovic, Ilija; ...

    2017-02-21

    Here, we report a detailed three-step roadmap for the fabrication and characterization of bulk Cr tips for spin-polarized scanning tunneling microscopy. Our strategy uniquely circumvents the need for ultra-high vacuum preparation of clean surfaces or films. First, we demonstrate the role of ex situ electrochemical etch parameters on Cr tip apex geometry, using scanning electron micrographs of over 70 etched tips. Second, we describe the suitability of the in situ cleaved surface of the layered antiferromagnet La 1.4Sr 1.6Mn 2O 7 to evaluate the spin characteristics of the Cr tip, replacing the ultra-high vacuum-prepared test samples that have been usedmore » in prior studies. Third, we outline a statistical algorithm that can effectively delineate closely spaced or irregular cleaved step edges, to maximize the accuracy of step height and spin-polarization measurements.« less

  2. Biomimetic hydrophobic surface fabricated by chemical etching method from hierarchically structured magnesium alloy substrate

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Yin, Xiaoming; Zhang, Jijia; Wang, Yaming; Han, Zhiwu; Ren, Luquan

    2013-09-01

    As one of the lightest metal materials, magnesium alloy plays an important role in industry such as automobile, airplane and electronic product. However, magnesium alloy is hindered due to its high chemical activity and easily corroded. Here, inspired by typical plant surfaces such as lotus leaves and petals of red rose with super-hydrophobic character, the new hydrophobic surface is fabricated on magnesium alloy to improve anti-corrosion by two-step methodology. The procedure is that the samples are processed by laser first and then immersed and etched in the aqueous AgNO3 solution concentrations of 0.1 mol/L, 0.3 mol/L and 0.5 mol/L for different times of 15 s, 40 s and 60 s, respectively, finally modified by DTS (CH3(CH2)11Si(OCH3)3). The microstructure, chemical composition, wettability and anti-corrosion are characterized by means of SEM, XPS, water contact angle measurement and electrochemical method. The hydrophobic surfaces with microscale crater-like and nanoscale flower-like binary structure are obtained. The low-energy material is contained in surface after DTS treatment. The contact angles could reach up to 138.4 ± 2°, which hydrophobic property is both related to the micro-nano binary structure and chemical composition. The results of electrochemical measurements show that anti-corrosion property of magnesium alloy is improved. Furthermore, our research is expected to create some ideas from natural enlightenment to improve anti-corrosion property of magnesium alloy while this method can be easily extended to other metal materials.

  3. Anodic etching of GaN based film with a strong phase-separated InGaN/GaN layer: Mechanism and properties

    NASA Astrophysics Data System (ADS)

    Gao, Qingxue; Liu, Rong; Xiao, Hongdi; Cao, Dezhong; Liu, Jianqiang; Ma, Jin

    2016-11-01

    A strong phase-separated InGaN/GaN layer, which consists of multiple quantum wells (MQW) and superlattices (SL) layers and can produce a blue wavelength spectrum, has been grown on n-GaN thin film, and then fabricated into nanoporous structures by electrochemical etching method in oxalic acid. Scanning electron microscopy (SEM) technique reveals that the etching voltage of 8 V leads to a vertically aligned nanoporous structure, whereas the films etched at 15 V show branching pores within the n-GaN layer. Due to the low doping concentration of barriers (GaN layers) in the InGaN/GaN layer, we observed a record-low rate of etching (<100 nm/min) and nanopores which are mainly originated from the V-pits in the phase-separated layer. In addition, there exists a horizontal nanoporous structure at the interface between the phase-separated layer and the n-GaN layer, presumably resulting from the high transition of electrons between the barrier and the well (InGaN layer) at the interface. As compared to the as-grown MQW structure, the etched MQW structure exhibits a photoluminescence (PL) enhancement with a partial relaxation of compressive stress due to the increased light-extracting surface area and light-guiding effect. Such a compressive stress relaxation can be further confirmed by Raman spectra.

  4. Photoluminescence Enhancement of Silole-Capped Silicon Quantum Dots Based on Förster Resonance Energy Transfer.

    PubMed

    Kim, Seongwoong; Kim, Sungsoo; Ko, Young Chun; Sohn, Honglae

    2015-07-01

    Photoluminescent porous silicon were prepared by an electrochemical etch of n-type silicon under the illumination with a 300 W tungsten filament bulb for the duration of etch. The red photoluminescence emitting at 650 nm with an excitation wavelength of 450 nm is due to the quantum confinement of silicon quantum dots in porous silicon. HO-terminated red luminescent PS was obtained by an electrochemical treatment of fresh PS with the current of 150 mA for 60 seconds in water and sodium chloride. As-prepared PS was sonicated, fractured, and centrifuged in toluene solution to obtain photoluminescence silicon quantum dots. Dichlorotetraphenylsilole exhibiting an emission band at 520 nm was reacted with HO-terminated silicon quantum dots to give a silole-capped silicon quantum dots. The optical characterization of silole-derivatized silicon quantum dots was investigated by UV-vis and fluorescence spectrometer. The fluorescence emission efficiency of silole-capped silicon quantum dots was increased by about 2.5 times due to F6rster resonance energy transfer from silole moiety to silicon quantum dots.

  5. A review on plasma-etch-process induced damage of HgCdTe

    NASA Astrophysics Data System (ADS)

    Liu, Lingfeng; Chen, Yiyu; Ye, Zhenhua; Ding, Ruijun

    2018-05-01

    Dry etching techniques with minimal etch induced damage are required to develop highly anisotropic etch for pixel delineation of HgCdTe infrared focal plane arrays (IRFPAs). High density plasma process has become the main etching technique for HgCdTe in the past twenty years, In this paper, high density plasma electron cyclotron resonance (ECR) and inductively coupled plasma (ICP) etching of HgCdTe are summarized. Common plasma-etch-process induced type conversion and related mechanisms are reviewed particularly.

  6. Visible-blind ultraviolet photodetectors on porous silicon carbide substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naderi, N.; Hashim, M.R., E-mail: roslan@usm.my

    2013-06-01

    Highlights: • Highly reliable UV detectors are fabricated on porous silicon carbide substrates. • The optical properties of samples are enhanced by increasing the current density. • The optimized sample exhibits enhanced sensitivity to the incident UV radiation. - Abstract: Highly reliable visible-blind ultraviolet (UV) photodetectors were successfully fabricated on porous silicon carbide (PSC) substrates. High responsivity and high photoconductive gain were observed in a metal–semiconductor–metal ultraviolet photodetector that was fabricated on an optimized PSC substrate. The PSC samples were prepared via the UV-assisted photo-electrochemical etching of an n-type hexagonal silicon carbide (6H-SiC) substrate using different etching current densities. Themore » optical results showed that the current density is an outstanding etching parameter that controls the porosity and uniformity of PSC substrates. A highly porous substrate was synthesized using a suitable etching current density to enhance its light absorption, thereby improving the sensitivity of UV detector with this substrate. The electrical characteristics of fabricated devices on optimized PSC substrates exhibited enhanced sensitivity and responsivity to the incident radiation.« less

  7. Room-temperature Electrochemical Synthesis of Carbide-derived Carbons and Related Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gogotsi, Yury

    2015-02-28

    This project addresses room-temperature electrochemical etching as an energy-efficient route to synthesis of 3D nanoporous carbon networks and layered 2D carbons and related structures, as well as provides fundamental understanding of structure and properties of materials produced by this method. Carbide-derived-carbons (CDCs) are a growing class of nanostructured carbon materials with properties that are desirable for many applications, such as electrical energy and gas storage. The structure of these functional materials is tunable by the choice of the starting carbide precursor, synthesis method, and process parameters. Moving from high-temperature synthesis of CDCs through vacuum decomposition above 1400°C and chlorination abovemore » 400°C, our studies under the previous DOE BES support led to identification of precursor materials and processing conditions for CDC synthesis at temperatures as low as 200°C, resulting in amorphous and highly reactive porous carbons. We also investigated synthesis of monolithic CDC films from carbide films at 250-1200°C. The results of our early studies provided new insights into CDC formation, led to development of materials for capacitive energy storage, and enabled fundamental understanding of the electrolyte ions confinement in nanoporous carbons.« less

  8. Process margin enhancement for 0.25-μm metal etch process

    NASA Astrophysics Data System (ADS)

    Lee, Chung Y.; Ma, Wei Wen; Lim, Eng H.; Cheng, Alex T.; Joy, Raymond; Ross, Matthew F.; Wong, Selmer S.; Marlowe, Trey

    2000-06-01

    This study evaluates electron beam stabilization of UV6, a positive tone Deep-UV (DUV) resist from Shipley, for a 0.25 micrometer metal etch application. Results are compared between untreated resist and resist treated with different levels of electron beam stabilization. The electron beam processing was carried out in an ElectronCureTM flood electron beam exposure system from Honeywell International Inc., Electron Vision. The ElectronCureTM system utilizes a flood electron beam source which is larger in diameter than the substrate being processed, and is capable of variable energy so that the electron range is matched to the resist film thickness. Changes in the UV6 resist material as a result of the electron beam stabilization are monitored via spectroscopic ellipsometry for film thickness and index of refraction changes and FTIR for analysis of chemical changes. Thermal flow stability is evaluated by applying hot plate bakes of 150 degrees Celsius and 200 degrees Celsius, to patterned resist wafers with no treatment and with an electron beam dose level of 2000 (mu) C/cm2. A significant improvement in the thermal flow stability of the patterned UV6 resist features is achieved with the electron beam stabilization process. Etch process performance of the UV6 resist was evaluated by performing a metal pattern transfer process on wafers with untreated resist and comparing these with etch results on wafers with different levels of electron beam stabilization. The etch processing was carried out in an Applied Materials reactor with an etch chemistry including BCl3 and Cl2. All wafers were etched under the same conditions and the resist was treated after etch to prevent further erosion after etch but before SEM analysis. Post metal etch SEM cross-sections show the enhancement in etch resistance provided by the electron beam stabilization process. Enhanced process margin is achieved as a result of the improved etch resistance, and is observed in reduced resist side-wall angles after etch. Only a slight improvement is observed in the isolated to dense bias effects of the etch process. Improved CD control is also achieved by applying the electron beam process, as more consistent CDs are observed after etch.

  9. Advanced Cu chemical displacement technique for SiO2-based electrochemical metallization ReRAM application.

    PubMed

    Chin, Fun-Tat; Lin, Yu-Hsien; You, Hsin-Chiang; Yang, Wen-Luh; Lin, Li-Min; Hsiao, Yu-Ping; Ko, Chum-Min; Chao, Tien-Sheng

    2014-01-01

    This study investigates an advanced copper (Cu) chemical displacement technique (CDT) with varying the chemical displacement time for fabricating Cu/SiO2-stacked resistive random-access memory (ReRAM). Compared with other Cu deposition methods, this CDT easily controls the interface of the Cu-insulator, the switching layer thickness, and the immunity of the Cu etching process, assisting the 1-transistor-1-ReRAM (1T-1R) structure and system-on-chip integration. The modulated shape of the Cu-SiO2 interface and the thickness of the SiO2 layer obtained by CDT-based Cu deposition on SiO2 were confirmed by scanning electron microscopy and atomic force microscopy. The CDT-fabricated Cu/SiO2-stacked ReRAM exhibited lower operation voltages and more stable data retention characteristics than the control Cu/SiO2-stacked sample. As the Cu CDT processing time increased, the forming and set voltages of the CDT-fabricated Cu/SiO2-stacked ReRAM decreased. Conversely, decreasing the processing time reduced the on-state current and reset voltage while increasing the endurance switching cycle time. Therefore, the switching characteristics were easily modulated by Cu CDT, yielding a high performance electrochemical metallization (ECM)-type ReRAM.

  10. Longitudinally Controlled Modification of Cylindrical and Conical Track-Etched Poly(ethylene terephthalate) Pores Using an Electrochemically Assisted Click Reaction

    DOE PAGES

    Coceancigh, Herman; Tran-Ba, Khanh-Hoa; Siepser, Natasha; ...

    2017-09-27

    Here in this study, the longitudinally controlled modification of the inner surfaces of poly(ethylene terephthalate) (PET) track-etched pores was explored using an electrochemically assisted Cu(I)-catalyzed azide–alkyne cycloaddition (CuAAC) click reaction. Cylindrical or conical PET track-etched pores were first decorated with ethynyl groups via the amidation of surface -COOH groups, filled with a solution containing Cu(II) and azide-tagged fluorescent dye, and then sandwiched between comb-shaped and planar gold electrodes. Cu(I) was produced at the comb-shaped working electrode by the reduction of Cu(II); it diffused along the pores toward the other electrode and catalyzed CuAAC between an azide-tagged fluorescent dye and amore » pore-tethered ethynyl group. The modification efficiency of cylindrical pores (ca. 1 μm in diameter) was assessed from planar and cross-sectional fluorescence microscope images of modified membranes. Planar images showed that pore modification took place only above the teeth of the comb-shaped electrode with a higher reaction yield for longer Cu(II) reduction times. Cross-sectional images revealed micrometer-scale gradient modification along the pore axis, which reflected a Cu(I) concentration profile within the pores, as supported by finite-element computer simulations. The reported approach was applicable to the asymmetric modification of cylindrical pores with two different fluorescent dyes in the opposite directions and also for the selective visualization of the tip and base openings of conical pores (ca. 3.5 μm in base diameter and ca. 1 μm in tip diameter). Lastly, the method based on electrochemically assisted CuAAC provides a controlled means to fabricate asymmetrically modified nanoporous membranes and, in the future, will be applicable for chemical separations and the development of sequential catalytic reactors.« less

  11. Longitudinally Controlled Modification of Cylindrical and Conical Track-Etched Poly(ethylene terephthalate) Pores Using an Electrochemically Assisted Click Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coceancigh, Herman; Tran-Ba, Khanh-Hoa; Siepser, Natasha

    Here in this study, the longitudinally controlled modification of the inner surfaces of poly(ethylene terephthalate) (PET) track-etched pores was explored using an electrochemically assisted Cu(I)-catalyzed azide–alkyne cycloaddition (CuAAC) click reaction. Cylindrical or conical PET track-etched pores were first decorated with ethynyl groups via the amidation of surface -COOH groups, filled with a solution containing Cu(II) and azide-tagged fluorescent dye, and then sandwiched between comb-shaped and planar gold electrodes. Cu(I) was produced at the comb-shaped working electrode by the reduction of Cu(II); it diffused along the pores toward the other electrode and catalyzed CuAAC between an azide-tagged fluorescent dye and amore » pore-tethered ethynyl group. The modification efficiency of cylindrical pores (ca. 1 μm in diameter) was assessed from planar and cross-sectional fluorescence microscope images of modified membranes. Planar images showed that pore modification took place only above the teeth of the comb-shaped electrode with a higher reaction yield for longer Cu(II) reduction times. Cross-sectional images revealed micrometer-scale gradient modification along the pore axis, which reflected a Cu(I) concentration profile within the pores, as supported by finite-element computer simulations. The reported approach was applicable to the asymmetric modification of cylindrical pores with two different fluorescent dyes in the opposite directions and also for the selective visualization of the tip and base openings of conical pores (ca. 3.5 μm in base diameter and ca. 1 μm in tip diameter). Lastly, the method based on electrochemically assisted CuAAC provides a controlled means to fabricate asymmetrically modified nanoporous membranes and, in the future, will be applicable for chemical separations and the development of sequential catalytic reactors.« less

  12. Nanodiamond infiltration into porous silicon through etching of solid carbon produced at different graphitization temperatures

    NASA Astrophysics Data System (ADS)

    Miranda, C. R. B.; Baldan, M. R.; Beloto, A. F.; Ferreira, N. G.

    2011-09-01

    Nanocrystalline diamond (NCD) was grown on the porous silicon (PS) substrate using Reticulated Vitreous Carbon (RVC) as an additional solid carbon source. RVC was produced at different heat treatment temperatures of 1300, 1500, and 2000 °C, resulting in samples with different turbostratic carbon organizations. The PS substrate was produced by an electrochemical method. NCD film was obtained by the chemical vapor infiltration/deposition process where a RVC piece was positioned just below the PS substrate. The PS and NCD samples were characterized by Field Emission Gun-Scanning Electron Microscopy (FEG-SEM). NCD films presented faceted nanograins with uniform surface texture covering all the pores resulting in an apparent micro honeycomb structure. Raman's spectra showed the D and G bands, as well as, the typical two shoulders at 1,150 and 1,490 cm-1 attributed to NCD. X-ray diffraction analyses showed the predominant (111) diamond orientation as well as the (220) and (311) peaks. The structural organization and the heteroatom presence on the RVC surface, analyzed from X-ray photoelectron spectroscopy, showed their significant influence on the NCD growth process. The hydrogen etching released, from RVC surface, associated to carbon and/or oxygen/nitrogen amounts led to different contributions for NCD growth.

  13. Introduction of pre-etch deposition techniques in EUV patterning

    NASA Astrophysics Data System (ADS)

    Xiang, Xun; Beique, Genevieve; Sun, Lei; Labonte, Andre; Labelle, Catherine; Nagabhirava, Bhaskar; Friddle, Phil; Schmitz, Stefan; Goss, Michael; Metzler, Dominik; Arnold, John

    2018-04-01

    The thin nature of EUV (Extreme Ultraviolet) resist has posed significant challenges for etch processes. In particular, EUV patterning combined with conventional etch approaches suffers from loss of pattern fidelity in the form of line breaks. A typical conventional etch approach prevents the etch process from having sufficient resist margin to control the trench CD (Critical Dimension), minimize the LWR (Line Width Roughness), LER (Line Edge Roughness) and reduce the T2T (Tip-to-Tip). Pre-etch deposition increases the resist budget by adding additional material to the resist layer, thus enabling the etch process to explore a wider set of process parameters to achieve better pattern fidelity. Preliminary tests with pre-etch deposition resulted in blocked isolated trenches. In order to mitigate these effects, a cyclic deposition and etch technique is proposed. With optimization of deposition and etch cycle time as well as total number of cycles, it is possible to open the underlying layers with a beneficial over etch and simultaneously keep the isolated trenches open. This study compares the impact of no pre-etch deposition, one time deposition and cyclic deposition/etch techniques on 4 aspects: resist budget, isolated trench open, LWR/LER and T2T.

  14. Contributions to the initial development of a microelectromechanical loop heat pipe, which is based on coherent porous silicon

    NASA Astrophysics Data System (ADS)

    Cytrynowicz, Debra G.

    The research project itself was the initiation of the development of a planar miniature loop heat pipe based on a capillary wick structure made of coherent porous silicon. Work on this project fell into four main categories, which were component fabrication, test system construction, characterization testing and test data collection, performance analysis and thermal modeling. Component fabrication involved the production of various components for the evaporator. When applicable, these components were to be produced by microelectronic and MEMS or microelectromechanical fabrication techniques. Required work involved analyses and, where necessary, modifications to the wafer processing sequence, the photo-electrochemical etching process, system and controlling computer program to make it more reliable, flexible and efficient. The development of more than one wick production process was also extremely necessary in the event of equipment failure. Work on developing this alternative also involved investigations into various details of the photo-electrochemical etching process itself. Test system construction involved the actual assembly of open and closed loop test systems. Characterization involved developing and administering a series of tests to evaluate the performance of the wicks and test systems. Although there were some indications that the devices were operating according to loop heat pipe theory, they were transient and unstable. Performance analysis involved the construction of a transparent evaporator, which enabled the visual observation of the phenomena, which occurred in the evaporator during operation. It also involved investigating the effect of the quartz wool secondary wick on the operation of the device. Observations made during the visualization study indicated that the capillary and boiling limits were being reached at extremely low values of input power. The work was performed in a collaborative effort between the Biomedical Nanotechnology Research Laboratory at the University of Toledo, the Center for Microelectronics and Sensors and MEMS at the University of Cincinnati and the Thermo-Mechanical Systems Branch of the Power and On-Board Propulsion Division at the John H. Glenn Research Center of the National Aeronautics and Space Administration in Cleveland, Ohio. Work on the project produced six publications, which presented various details on component fabrication, tests system construction and characterization and thermal modeling.

  15. Single-crystal silicon trench etching for fabrication of highly integrated circuits

    NASA Astrophysics Data System (ADS)

    Engelhardt, Manfred

    1991-03-01

    The development of single crystal silicon trench etching for fabrication of memory cells in 4 16 and 64Mbit DRAMs is reviewed in this paper. A variety of both etch tools and process gases used for the process development is discussed since both equipment and etch chemistry had to be improved and changed respectively to meet the increasing requirements for high fidelity pattern transfer with increasing degree of integration. In additon to DRAM cell structures etch results for deep trench isolation in advanced bipolar ICs and ASICs are presented for these applications grooves were etched into silicon through a highly doped buried layer and at the borderline of adjacent p- and n-well areas respectively. Shallow trench etching of large and small exposed areas with identical etch rates is presented as an approach to replace standard LOCOS isolation by an advanced isolation technique. The etch profiles were investigated with SEM TEM and AES to get information on contathination and damage levels and on the mechanism leading to anisotropy in the dry etch process. Thermal wave measurements were performed on processed single crystal silicon substrates for a fast evaluation of the process with respect to plasma-induced substrate degradation. This useful technique allows an optimization ofthe etch process regarding high electrical performance of the fully processed memory chip. The benefits of the use of magnetic fields for the development of innovative single crystal silicon dry

  16. Deep Reactive Ion Etching (DRIE) of High Aspect Ratio SiC Microstructures using a Time-Multiplexed Etch-Passivate Process

    NASA Technical Reports Server (NTRS)

    Evans, Laura J.; Beheim, Glenn M.

    2006-01-01

    High aspect ratio silicon carbide (SiC) microstructures are needed for microengines and other harsh environment micro-electro-mechanical systems (MEMS). Previously, deep reactive ion etching (DRIE) of low aspect ratio (AR less than or = 1) deep (greater than 100 micron) trenches in SiC has been reported. However, existing DRIE processes for SiC are not well-suited for definition of high aspect ratio features because such simple etch-only processes provide insufficient control over sidewall roughness and slope. Therefore, we have investigated the use of a time-multiplexed etch-passivate (TMEP) process, which alternates etching with polymer passivation of the etch sidewalls. An optimized TMEP process was used to etch high aspect ratio (AR greater than 5) deep (less than 100 micron) trenches in 6H-SiC. Power MEMS structures (micro turbine blades) in 6H-SiC were also fabricated.

  17. Analysis of InP-based single photon avalanche diodes based on a single recess-etching process

    NASA Astrophysics Data System (ADS)

    Lee, Kiwon

    2018-04-01

    Effects of the different etching techniques have been investigated by analyzing electrical and optical characteristics of two-types of single-diffused single photon avalanche diodes (SPADs). The fabricated two-types of SPADs have no diffusion depth variation by using a single diffusion process at the same time. The dry-etched SPADs show higher temperature dependence of a breakdown voltage, larger dark-count-rate (DCR), and lower photon-detection-efficiency (PDE) than those of the wet-etched SPADs due to plasma-induced damage of dry-etching process. The results show that the dry etching damages can more significantly affect the performance of the SPADs based on a single recess-etching process.

  18. O2 Plasma Etching and Antistatic Gun Surface Modifications for CNT Yarn Microelectrode Improve Sensitivity and Antifouling Properties.

    PubMed

    Yang, Cheng; Wang, Ying; Jacobs, Christopher B; Ivanov, Ilia N; Venton, B Jill

    2017-05-16

    Carbon nanotube (CNT) based microelectrodes exhibit rapid and selective detection of neurotransmitters. While different fabrication strategies and geometries of CNT microelectrodes have been characterized, relatively little research has investigated ways to selectively enhance their electrochemical properties. In this work, we introduce two simple, reproducible, low-cost, and efficient surface modification methods for carbon nanotube yarn microelectrodes (CNTYMEs): O 2 plasma etching and antistatic gun treatment. O 2 plasma etching was performed by a microwave plasma system with oxygen gas flow and the optimized time for treatment was 1 min. The antistatic gun treatment flows ions by the electrode surface; two triggers of the antistatic gun was the optimized number on the CNTYME surface. Current for dopamine at CNTYMEs increased 3-fold after O 2 plasma etching and 4-fold after antistatic gun treatment. When the two treatments were combined, the current increased 12-fold, showing the two effects are due to independent mechanisms that tune the surface properties. O 2 plasma etching increased the sensitivity due to increased surface oxygen content but did not affect surface roughness while the antistatic gun treatment increased surface roughness but not oxygen content. The effect of tissue fouling on CNT yarns was studied for the first time, and the relatively hydrophilic surface after O 2 plasma etching provided better resistance to fouling than unmodified or antistatic gun treated CNTYMEs. Overall, O 2 plasma etching and antistatic gun treatment improve the sensitivity of CNTYMEs by different mechanisms, providing the possibility to tune the CNTYME surface and enhance sensitivity.

  19. Simultaneous Purification and Perforation of Low-Grade Si Sources for Lithium-Ion Battery Anode.

    PubMed

    Jin, Yan; Zhang, Su; Zhu, Bin; Tan, Yingling; Hu, Xiaozhen; Zong, Linqi; Zhu, Jia

    2015-11-11

    Silicon is regarded as one of the most promising candidates for lithium-ion battery anodes because of its abundance and high theoretical capacity. Various silicon nanostructures have been heavily investigated to improve electrochemical performance by addressing issues related to structure fracture and unstable solid-electrolyte interphase (SEI). However, to further enable widespread applications, scalable and cost-effective processes need to be developed to produce these nanostructures at large quantity with finely controlled structures and morphologies. In this study, we develop a scalable and low cost process to produce porous silicon directly from low grade silicon through ball-milling and modified metal-assisted chemical etching. The morphology of porous silicon can be drastically changed from porous-network to nanowire-array by adjusting the component in reaction solutions. Meanwhile, this perforation process can also effectively remove the impurities and, therefore, increase Si purity (up to 99.4%) significantly from low-grade and low-cost ferrosilicon (purity of 83.4%) sources. The electrochemical examinations indicate that these porous silicon structures with carbon treatment can deliver a stable capacity of 1287 mAh g(-1) over 100 cycles at a current density of 2 A g(-1). This type of purified porous silicon with finely controlled morphology, produced by a scalable and cost-effective fabrication process, can also serve as promising candidates for many other energy applications, such as thermoelectrics and solar energy conversion devices.

  20. Effect of pH on ion current through conical nanopores

    NASA Astrophysics Data System (ADS)

    Chander, M.; Kumar, R.; Kumar, S.; Kumar, N.

    2018-05-01

    Here, we examined ionic current behavior of conical nanopores at different pH and a fixed ion concentration of potassium halide (KCl). Conical shaped nanopores have been developed by chemical etching technique in polyethylene terephthalate (PET) membrane/foil of thickness 12 micron. For this we employed a self-assembled electrochemical cell having two chambers and the foil was fitted in the centre of cell. The nanopores were produced in the foil using etching and stopping solutions. The experimental results show that ionic current rectification (ICR) occurs through synthesized conical nanopores. Further, ion current increases significantly with increase of voltage from the base side of nanopores to the tip side at fixed pH of electrolyte.

  1. Guiding gate-etch process development using 3D surface reaction modeling for 7nm and beyond

    NASA Astrophysics Data System (ADS)

    Dunn, Derren; Sporre, John R.; Deshpande, Vaibhav; Oulmane, Mohamed; Gull, Ronald; Ventzek, Peter; Ranjan, Alok

    2017-03-01

    Increasingly, advanced process nodes such as 7nm (N7) are fundamentally 3D and require stringent control of critical dimensions over high aspect ratio features. Process integration in these nodes requires a deep understanding of complex physical mechanisms to control critical dimensions from lithography through final etch. Polysilicon gate etch processes are critical steps in several device architectures for advanced nodes that rely on self-aligned patterning approaches to gate definition. These processes are required to meet several key metrics: (a) vertical etch profiles over high aspect ratios; (b) clean gate sidewalls free of etch process residue; (c) minimal erosion of liner oxide films protecting key architectural elements such as fins; and (e) residue free corners at gate interfaces with critical device elements. In this study, we explore how hybrid modeling approaches can be used to model a multi-step finFET polysilicon gate etch process. Initial parts of the patterning process through hardmask assembly are modeled using process emulation. Important aspects of gate definition are then modeled using a particle Monte Carlo (PMC) feature scale model that incorporates surface chemical reactions.1 When necessary, species and energy flux inputs to the PMC model are derived from simulations of the etch chamber. The modeled polysilicon gate etch process consists of several steps including a hard mask breakthrough step (BT), main feature etch steps (ME), and over-etch steps (OE) that control gate profiles at the gate fin interface. An additional constraint on this etch flow is that fin spacer oxides are left intact after final profile tuning steps. A natural optimization required from these processes is to maximize vertical gate profiles while minimizing erosion of fin spacer films.2

  2. Comparative study of resist stabilization techniques for metal etch processing

    NASA Astrophysics Data System (ADS)

    Becker, Gerry; Ross, Matthew F.; Wong, Selmer S.; Minter, Jason P.; Marlowe, Trey; Livesay, William R.

    1999-06-01

    This study investigates resist stabilization techniques as they are applied to a metal etch application. The techniques that are compared are conventional deep-UV/thermal stabilization, or UV bake, and electron beam stabilization. The electron beam tool use din this study, an ElectronCure system from AlliedSignal Inc., ELectron Vision Group, utilizes a flood electron source and a non-thermal process. These stabilization techniques are compared with respect to a metal etch process. In this study, two types of resist are considered for stabilization and etch: a g/i-line resist, Shipley SPR-3012, and an advanced i-line, Shipley SPR 955- Cm. For each of these resist the effects of stabilization on resist features are evaluated by post-stabilization SEM analysis. Etch selectivity in all cases is evaluated by using a timed metal etch, and measuring resists remaining relative to total metal thickness etched. Etch selectivity is presented as a function of stabilization condition. Analyses of the effects of the type of stabilization on this method of selectivity measurement are also presented. SEM analysis was also performed on the features after a compete etch process, and is detailed as a function of stabilization condition. Post-etch cleaning is also an important factor impacted by pre-etch resist stabilization. Results of post- etch cleaning are presented for both stabilization methods. SEM inspection is also detailed for the metal features after resist removal processing.

  3. Advanced plasma etch technologies for nanopatterning

    NASA Astrophysics Data System (ADS)

    Wise, Rich

    2013-10-01

    Advances in patterning techniques have enabled the extension of immersion lithography from 65/45 nm through 14/10 nm device technologies. A key to this increase in patterning capability has been innovation in the subsequent dry plasma etch processing steps. Multiple exposure techniques, such as litho-etch-litho-etch, sidewall image transfer, line/cut mask, and self-aligned structures, have been implemented to solution required device scaling. Advances in dry plasma etch process control across wafer uniformity and etch selectivity to both masking materials have enabled adoption of vertical devices and thin film scaling for increased device performance at a given pitch. Plasma etch processes, such as trilayer etches, aggressive critical dimension shrink techniques, and the extension of resist trim processes, have increased the attainable device dimensions at a given imaging capability. Precise control of the plasma etch parameters affecting across-design variation, defectivity, profile stability within wafer, within lot, and across tools has been successfully implemented to provide manufacturable patterning technology solutions. IBM has addressed these patterning challenges through an integrated total patterning solutions team to provide seamless and synergistic patterning processes to device and integration internal customers. We will discuss these challenges and the innovative plasma etch solutions pioneered by IBM and our alliance partners.

  4. Advanced plasma etch technologies for nanopatterning

    NASA Astrophysics Data System (ADS)

    Wise, Rich

    2012-03-01

    Advances in patterning techniques have enabled the extension of immersion lithography from 65/45nm through 14/10nm device technologies. A key to this increase in patterning capability has been innovation in the subsequent dry plasma etch processing steps. Multiple exposure techniques such as litho-etch-litho-etch, sidewall image transfer, line/cut mask and self-aligned structures have been implemented to solution required device scaling. Advances in dry plasma etch process control, across wafer uniformity and etch selectivity to both masking materials and have enabled adoption of vertical devices and thin film scaling for increased device performance at a given pitch. Plasma etch processes such as trilayer etches, aggressive CD shrink techniques, and the extension of resist trim processes have increased the attainable device dimensions at a given imaging capability. Precise control of the plasma etch parameters affecting across design variation, defectivity, profile stability within wafer, within lot, and across tools have been successfully implemented to provide manufacturable patterning technology solutions. IBM has addressed these patterning challenges through an integrated Total Patterning Solutions team to provide seamless and synergistic patterning processes to device and integration internal customers. This paper will discuss these challenges and the innovative plasma etch solutions pioneered by IBM and our alliance partners.

  5. Alternative process for thin layer etching: Application to nitride spacer etching stopping on silicon germanium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Posseme, N., E-mail: nicolas.posseme@cea.fr; Pollet, O.; Barnola, S.

    2014-08-04

    Silicon nitride spacer etching realization is considered today as one of the most challenging of the etch process for the new devices realization. For this step, the atomic etch precision to stop on silicon or silicon germanium with a perfect anisotropy (no foot formation) is required. The situation is that none of the current plasma technologies can meet all these requirements. To overcome these issues and meet the highly complex requirements imposed by device fabrication processes, we recently proposed an alternative etching process to the current plasma etch chemistries. This process is based on thin film modification by light ionsmore » implantation followed by a selective removal of the modified layer with respect to the non-modified material. In this Letter, we demonstrate the benefit of this alternative etch method in term of film damage control (silicon germanium recess obtained is less than 6 A), anisotropy (no foot formation), and its compatibility with other integration steps like epitaxial. The etch mechanisms of this approach are also addressed.« less

  6. Metal-assisted etch combined with regularizing etch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yim, Joanne; Miller, Jeff; Jura, Michael

    In an aspect of the disclosure, a process for forming nanostructuring on a silicon-containing substrate is provided. The process comprises (a) performing metal-assisted chemical etching on the substrate, (b) performing a clean, including partial or total removal of the metal used to assist the chemical etch, and (c) performing an isotropic or substantially isotropic chemical etch subsequently to the metal-assisted chemical etch of step (a). In an alternative aspect of the disclosure, the process comprises (a) performing metal-assisted chemical etching on the substrate, (b) cleaning the substrate, including removal of some or all of the assisting metal, and (c) performingmore » a chemical etch which results in regularized openings in the silicon substrate.« less

  7. Effect of various de-anodizing techniques on the surface stability of non-colored and colored nanoporous AAO films in acidic solution

    NASA Astrophysics Data System (ADS)

    Awad, Ahmed M.; Shehata, Omnia S.; Heakal, Fakiha El-Taib

    2015-12-01

    Anodic aluminum oxide (AAO) is well known as an important nanostructured material, and a useful template in the fabrication of nanostructures. Nanoporous anodic alumina (PAA) with high open porosity was prepared by adopting three de-anodizing regimes following the first anodizing step and preceding the second one. The de-anodizing methods include electrolytic etching (EE) and chemical etching using either phosphoric acid (PE) or sodium hydroxide (HE) solutions. Three of the obtained AAO samples were black colored by electrodeposition of copper nanoparticles in their pores. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques were used to characterize the electrochemical performance of the two sets of the prepared samples. In general, the data obtained in aggressive aerated 0.5 M HCl solution demonstrated dissimilar behavior for the three prepared samples despite that the second anodizing step was the same for all of them. The data indicated that the resistance and thickness of the inner barrier part of nano-PAA film, are the main controlling factors determining its stability. On the other hand, coloring the film decreased its stability due to the galvanic effect. The difference in the electrochemical behavior of the three colored samples was discussed based on the difference in both the pore size and thickness of the outer porous part of PAA film as supported by SEM, TEM and cross-sectional micrographs. These results can thus contribute for better engineering applications of nanoporous AAO.

  8. Dry etching technologies for reflective multilayer

    NASA Astrophysics Data System (ADS)

    Iino, Yoshinori; Karyu, Makoto; Ita, Hirotsugu; Kase, Yoshihisa; Yoshimori, Tomoaki; Muto, Makoto; Nonaka, Mikio; Iwami, Munenori

    2012-11-01

    We have developed a highly integrated methodology for patterning Extreme Ultraviolet (EUV) mask, which has been highlighted for the lithography technique at the 14nm half-pitch generation and beyond. The EUV mask is characterized as a reflective-type mask which is completely different compared with conventional transparent-type of photo mask. And it requires not only patterning of absorber layer without damaging the underlying multi reflective layers (40 Si/Mo layers) but also etching multi reflective layers. In this case, the dry etch process has generally faced technical challenges such as the difficulties in CD control, etch damage to quartz substrate and low selectivity to the mask resist. Shibaura Mechatronics ARESTM mask etch system and its optimized etch process has already achieved the maximal etch performance at patterning two-layered absorber. And in this study, our process technologies of multi reflective layers will be evaluated by means of optimal combination of process gases and our optimized plasma produced by certain source power and bias power. When our ARES™ is used for multilayer etching, the user can choose to etch the absorber layer at the same time or etch only the multilayer.

  9. A Study on Ohmic Contact to Dry-Etched p-GaN

    NASA Astrophysics Data System (ADS)

    Hu, Cheng-Yu; Ao, Jin-Ping; Okada, Masaya; Ohno, Yasuo

    Low-power dry-etching process has been adopted to study the influence of dry-etching on Ohmic contact to p-GaN. When the surface layer of as-grown p-GaN was removed by low-power SiCl4/Cl2-etching, no Ohmic contact can be formed on the low-power dry-etched p-GaN. The same dry-etching process was also applied on n-GaN to understand the influence of the low-power dry-etching process. By capacitance-voltage (C-V) measurement, the Schottky barrier heights (SBHs) of p-GaN and n-GaN were measured. By comparing the change of measured SBHs on p-GaN and n-GaN, it was suggested that etching damage is not the only reason responsible for the degraded Ohmic contacts to dry-etched p-GaN and for Ohmic contact formatin, the original surface layer of as-grown p-GaN have some special properties, which were removed by dry-etching process. To partially recover the original surface of as-grown p-GaN, high temperature annealing (1000°C 30s) was tried on the SiCl4/Cl2-etched p-GaN and Ohmic contact was obtained.

  10. Dry etching technologies for the advanced binary film

    NASA Astrophysics Data System (ADS)

    Iino, Yoshinori; Karyu, Makoto; Ita, Hirotsugu; Yoshimori, Tomoaki; Azumano, Hidehito; Muto, Makoto; Nonaka, Mikio

    2011-11-01

    ABF (Advanced Binary Film) developed by Hoya as a photomask for 32 (nm) and larger specifications provides excellent resistance to both mask cleaning and 193 (nm) excimer laser and thereby helps extend the lifetime of the mask itself compared to conventional photomasks and consequently reduces the semiconductor manufacturing cost [1,2,3]. Because ABF uses Ta-based films, which are different from Cr film or MoSi films commonly used for photomask, a new process is required for its etching technology. A patterning technology for ABF was established to perform the dry etching process for Ta-based films by using the knowledge gained from absorption layer etching for EUV mask that required the same Ta-film etching process [4]. Using the mask etching system ARES, which is manufactured by Shibaura Mechatronics, and its optimized etching process, a favorable CD (Critical Dimension) uniformity, a CD linearity and other etching characteristics were obtained in ABF patterning. Those results are reported here.

  11. Interfacial effects in ZnO nanotubes/needle-structured graphitic diamond nanohybrid for detecting dissolved acetone at room temperature

    NASA Astrophysics Data System (ADS)

    Kathiravan, Deepa; Huang, Bohr-Ran; Saravanan, Adhimoorthy; Yeh, Chien-Jui; Leou, Keh-Chyang; Lin, I.-Nan

    2017-12-01

    A high-performance ZnO nanotubes (ZNTs)/needle-structured graphitic diamond (NGD) nanohybrid material was prepared and observed the electrochemical sensing properties of liquid acetone in water. Initially, we synthesized NGD film using bias-enhanced growth (BEG) process. Afterwards, a well-etched ZNTs were spatially grown on the NGD film using simple hydrothermal method, and utilized as sensing material for assemble an electrochemical sensor (via EGFET configuration) operating at room temperature. The systematic investigations depict the ultra-high sensing properties attained from ZNTs grown on NGD film. The NGD film mostly have needle or wire shaped diamond grains, which contributes extremely high electrical conductivity. Furthermore, needle shaped diamond grains cover with multi-layer graphitic material generates conduction channels for ZNTs and leads to enhance the oxygen residuals and species. The material stability and conductivity of NGD as well the defects exist with oxygen vacancies in ZNTs offers superior sensing properties. Thus, the interesting combination of these wide band gap semiconductor materials exhibit high sensor response (89 mV/mL), high stability and long-term reliability (tested after 60 days).

  12. On the Electrodeposition of Ca-P Coatings on Nitinol Alloy: A Comparison Between Different Surface Modification Methods

    NASA Astrophysics Data System (ADS)

    Etminanfar, M. R.; Khalil-Allafi, J.

    2016-02-01

    In this study, a combination of surface modification process and the electrochemical deposition of Ca-P coatings was used for the modification of the Nitinol shape memory alloy. DSC, SEM, GIB-XRD, FT-Raman, XPS, and FTIR measurements were performed for the characterization of the samples. Results indicated that chemical etching and boiling of the samples in distilled water formed TiO film on the surface. After the chemical modification, subsequent aging of the sample, at 470 °C for 30 min, converted the oxide film to a stable structure of titanium dioxide. In that case, the treated substrate indicated a superelastic behavior. At the same electrochemical condition, the treated substrate revealed more stable and uniform Ca-P coatings in comparison with the abraded Nitinol substrate. This difference was attributed to the presence of hydroxyl groups on the titanium dioxide surface. Also, after soaking the sample in SBF, the needle-like coating on the treated substrate was completely covered with the hydroxyapatite phase which shows a good bioactivity of the coating.

  13. Hydrogen Sensor Based on Pd/GeO{sub 2} Using a Low Cost Electrochemical Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jawad, M. J.; Hashim, M. R.; Ali, N. K.

    2011-05-25

    This work reports on a synthesis of sub micron germanium dioxide (GeO{sub 2}) on porous silicon (PS) by electrochemical deposition. n-type Si (100) wafer was used to fabricate (PS) using conventional method of electrochemical etching in HF based solution. A GeCl{sub 4} was directly hydrolyzed by hydrogen peroxide to produce pure GeO{sub 2}, and then electrochemically deposited on PS. Followed by palladium (Pd) contact on GeO{sub 2} /PS was achieved by using RF sputtering technique. The grown GeO{sub 2} crystals were characterized using SEM and EDX. I-V characteristics of Pd/ GeO{sub 2} were recorded before and after hydrogen gas exposuremore » as well as with different H{sub 2} concentrations and different applied temperatures. The sensitivity of Pd/ GeO{sub 2} also has been investigated it could be seen to increase significantly with increased hydrogen concentration while it decreased with increase temperature.« less

  14. Porous Silicon Gradient Refractive Index Micro-Optics.

    PubMed

    Krueger, Neil A; Holsteen, Aaron L; Kang, Seung-Kyun; Ocier, Christian R; Zhou, Weijun; Mensing, Glennys; Rogers, John A; Brongersma, Mark L; Braun, Paul V

    2016-12-14

    The emergence and growth of transformation optics over the past decade has revitalized interest in how a gradient refractive index (GRIN) can be used to control light propagation. Two-dimensional demonstrations with lithographically defined silicon (Si) have displayed the power of GRIN optics and also represent a promising opportunity for integrating compact optical elements within Si photonic integrated circuits. Here, we demonstrate the fabrication of three-dimensional Si-based GRIN micro-optics through the shape-defined formation of porous Si (PSi). Conventional microfabrication creates Si square microcolumns (SMCs) that can be electrochemically etched into PSi elements with nanoscale porosity along the shape-defined etching pathway, which imparts the geometry with structural birefringence. Free-space characterization of the transmitted intensity distribution through a homogeneously etched PSi SMC exhibits polarization splitting behavior resembling that of dielectric metasurfaces that require considerably more laborious fabrication. Coupled birefringence/GRIN effects are studied by way of PSi SMCs etched with a linear (increasing from edge to center) GRIN profile. The transmitted intensity distribution shows polarization-selective focusing behavior with one polarization focused to a diffraction-limited spot and the orthogonal polarization focused into two laterally displaced foci. Optical thickness-based analysis readily predicts the experimentally observed phenomena, which strongly match finite-element electromagnetic simulations.

  15. Study of Thermal Electrical Modified Etching for Glass and Its Application in Structure Etching

    PubMed Central

    Zhan, Zhan; Li, Wei; Yu, Lingke; Wang, Lingyun; Sun, Daoheng

    2017-01-01

    In this work, an accelerating etching method for glass named thermal electrical modified etching (TEM etching) is investigated. Based on the identification of the effect in anodic bonding, a novel method for glass structure micromachining is proposed using TEM etching. To validate the method, TEM-etched glasses are prepared and their morphology is tested, revealing the feasibility of the new method for micro/nano structure micromachining. Furthermore, two kinds of edge effect in the TEM and etching processes are analyzed. Additionally, a parameter study of TEM etching involving transferred charge, applied pressure, and etching roughness is conducted to evaluate this method. The study shows that TEM etching is a promising manufacture method for glass with low process temperature, three-dimensional self-control ability, and low equipment requirement. PMID:28772521

  16. Selective Functionalization of Arbitrary Nanowires

    DTIC Science & Technology

    2006-11-02

    3-mercaptopropyl)- trimethoxysilane (MPTMS). The wires were grown electrochemically in anodic aluminum oxide ( AAO ) templates. Selective deposition...In the past, templates composed of polycarbonate track-etched membranes or anodic aluminum oxide materials have been used for the construction of...modifier MPTMS was used to function- alize the AAO template because it can form covalent bonds with silanes and metal oxide surfaces21 and because of

  17. Facile Synthesis of Flowerlike LiFe5O8 Microspheres for Electrochemical Supercapacitors.

    PubMed

    Lin, Ying; Dong, Jingjing; Dai, Jingjing; Wang, Jingping; Yang, Haibo; Zong, Hanwen

    2017-12-18

    Facile synthesis of porous and hollow spinel materials is very urgent due to their extensive applications in the field of energy storage. In present work, flowerlike porous LiFe 5 O 8 microspheres etched for 15, 30, and 45 min (named as p-LFO-15, p-LFO-30, and p-LFO-45, respectively) are successfully synthesized through a facile chemical etching method based on bulk LiFe 5 O 8 (LFO) particles as precursors, and they are applied as electrode materials for high-performance electrochemical capacitors. In particular, the specific surface area of p-LFO-45 reaches 46.13 m 2 g -1 , which is 112 times greater than that of the unetched counterpart. Therefore, the p-LFO-45 electrode can achieve a higher capacitance of 278 F g -1 at a scan rate of 5 mV s -1 than the unetched counterpart. Furthermore, the p-LFO-45 electrode presents a good cycling stability with 78.3% of capacitive retention after 2000 cycles, which is much higher than that of the unetched LFO particles (66%). Therefore, the flowerlike porous LFO microspheres are very promising candidate materials for supercapacitor applications.

  18. Etching and Growth of GaAs

    NASA Technical Reports Server (NTRS)

    Seabaugh, A. C.; Mattauch, R., J.

    1983-01-01

    In-place process for etching and growth of gallium arsenide calls for presaturation of etch and growth melts by arsenic source crystal. Procedure allows precise control of thickness of etch and newly grown layer on substrate. Etching and deposition setup is expected to simplify processing and improve characteristics of gallium arsenide lasers, high-frequency amplifiers, and advanced integrated circuits.

  19. Radicals are required for thiol etching of gold particles

    PubMed Central

    Dreier, Timothy A.

    2016-01-01

    Etching of gold with excess thiol ligand is used in both synthesis and analysis of gold particles. Mechanistically, the process of etching gold with excess thiol is opaque. Previous studies have obliquely considered the role of oxygen in thiolate etching of gold. Herein, we show that oxygen or a radical initator is a necessary component for efficient etching of gold by thiolates. Attenuation of the etching process by radical scavengers in the presence of oxygen, and the restoration of activity by radical initiators under inert atmosphere, strongly implicate the oxygen radical. These data led us to propose an atomistic mechanism in which the oxygen radical initiates the etching process. PMID:26089294

  20. Thin wire pointing method

    NASA Technical Reports Server (NTRS)

    Green, G.; Mattauch, R. J. (Inventor)

    1983-01-01

    A method is described for forming sharp tips on thin wires, in particular phosphor bronze wires of diameters such as one-thousandth inch used to contact micron size Schottky barrier diodes, which enables close control of tip shape and which avoids the use of highly toxic solutions. The method includes dipping an end of a phosphor bronze wire into a dilute solution of sulfamic acid and applying a current through the wire to electrochemically etch it. The humidity in the room is controlled to a level of less than 50%, and the voltage applied between the wire and another electrode in the solutions is a half wave rectified voltage. The current through the wire is monitored, and the process is stopped when the current falls to a predetermined low level.

  1. Enhanced Activity and Acid pH Stability of Prussian Blue-type Oxygen Evolution Electrocatalysts Processed by Chemical Etching.

    PubMed

    Han, Lijuan; Tang, Pengyi; Reyes-Carmona, Álvaro; Rodríguez-García, Bárbara; Torréns, Mabel; Morante, Joan Ramon; Arbiol, Jordi; Galan-Mascaros, Jose Ramon

    2016-12-14

    The development of upscalable oxygen evolving electrocatalysts from earth-abundant metals able to operate in neutral or acidic environments and low overpotentials remains a fundamental challenge for the realization of artificial photosynthesis. In this study, we report a highly active phase of heterobimetallic cyanide-bridged electrocatalysts able to promote water oxidation under neutral, basic (pH < 13), and acidic conditions (pH > 1). Cobalt-iron Prussian blue-type thin films, formed by chemical etching of Co(OH) 1.0 (CO 3 ) 0.5 ·nH 2 O nanocrystals, yield a dramatic enhancement of the catalytic performance toward oxygen production, when compared with previous reports for analogous materials. Electrochemical, spectroscopic, and structural studies confirm the excellent performance, stability, and corrosion resistance, even when compared with state-of-the-art metal oxide catalysts under moderate overpotentials and in a remarkably large pH range, including acid media where most cost-effective water oxidation catalysts are not useful. The origin of the superior electrocatalytic activity toward water oxidation appears to be in the optimized interfacial matching between catalyst and electrode surface obtained through this fabrication method.

  2. Efficient suppression of nanograss during porous anodic TiO2 nanotubes growth

    NASA Astrophysics Data System (ADS)

    Gui, Qunfang; Yu, Dongliang; Li, Dongdong; Song, Ye; Zhu, Xufei; Cao, Liu; Zhang, Shaoyu; Ma, Weihua; You, Shiyu

    2014-09-01

    When Ti foil was anodized in fluoride-containing electrolyte for a long time, undesired etching-induced "nanograss" would inevitably generate on the top of porous anodic TiO2 nanotubes (PATNTs). The nanograss will hinder the ions transport and in turn yield depressed (photo) electrochemical performance. In order to obtain nanograss-free nanotubes, a modified three-step anodization and two-layer nanostructure of PATNTs were designed to avoid the nanograss. The first layer (L1) nanotubes were obtained by the conventional two-step anodization. After washing and drying processes, the third-step anodization was carried out with the presence of L1 nanotubes. The L1 nanotubes, serving as a sacrificed layer, was etched and transformed into nanograss, while the ultralong nanotubes (L2) were maintained underneath the L1. The bi-layer nanostructure of the nanograss/nanotubes (L1/L2) was then ultrasonically rinsed in deionized water to remove the nanograss (L1 layer). Then much longer nanotubes (L2 layer) with intact nanotube mouths could be obtained. Using this novel approach, the ultralong nanotubes without nanograss can be rationally controlled by adjusting the anodizing times of two layers.

  3. Dry etch challenges for CD shrinkage in memory process

    NASA Astrophysics Data System (ADS)

    Matsushita, Takaya; Matsumoto, Takanori; Mukai, Hidefumi; Kyoh, Suigen; Hashimoto, Kohji

    2015-03-01

    Line pattern collapse attracts attention as a new problem of the L&S formation in sub-20nm H.P feature. Line pattern collapse that occurs in a slight non-uniformity of adjacent CD (Critical dimension) space using double patterning process has been studied with focus on micro-loading effect in Si etching. Bias RF pulsing plasma etching process using low duty cycle helped increase of selectivity Si to SiO2. In addition to the effect of Bias RF pulsing process, the thin mask obtained from improvement of selectivity has greatly suppressed micro-loading in Si etching. However it was found that micro-loading effect worsen again in sub-20nm space width. It has been confirmed that by using cycle etch process to remove deposition with CFx based etching micro-loading effect could be suppressed. Finally, Si etching process condition using combination of results above could provide finer line and space without "line pattern collapse" in sub-20nm.

  4. Quantum cascade laser based monitoring of CF{sub 2} radical concentration as a diagnostic tool of dielectric etching plasma processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hübner, M.; Lang, N.; Röpcke, J.

    2015-01-19

    Dielectric etching plasma processes for modern interlevel dielectrics become more and more complex by the introduction of new ultra low-k dielectrics. One challenge is the minimization of sidewall damage, while etching ultra low-k porous SiCOH by fluorocarbon plasmas. The optimization of this process requires a deeper understanding of the concentration of the CF{sub 2} radical, which acts as precursor in the polymerization of the etch sample surfaces. In an industrial dielectric etching plasma reactor, the CF{sub 2} radical was measured in situ using a continuous wave quantum cascade laser (cw-QCL) around 1106.2 cm{sup −1}. We measured Doppler-resolved ro-vibrational absorption lines andmore » determined absolute densities using transitions in the ν{sub 3} fundamental band of CF{sub 2} with the aid of an improved simulation of the line strengths. We found that the CF{sub 2} radical concentration during the etching plasma process directly correlates to the layer structure of the etched wafer. Hence, this correlation can serve as a diagnostic tool of dielectric etching plasma processes. Applying QCL based absorption spectroscopy opens up the way for advanced process monitoring and etching controlling in semiconductor manufacturing.« less

  5. Laser-driven fusion etching process

    DOEpatents

    Ashby, C.I.H.; Brannon, P.J.; Gerardo, J.B.

    1987-08-25

    The surfaces of solids are etched by a radiation-driven chemical reaction. The process involves exposing a substrate coated with a layer of a reactant material on its surface to radiation, e.g., a laser, to induce localized melting of the substrate which results in the occurrence of a fusion reaction between the substrate and coating material. The resultant reaction product and excess reactant salt are then removed from the surface of the substrate with a solvent which is relatively inert towards the substrate. The laser-driven chemical etching process is especially suitable for etching ionic substrates, e.g., LiNbO/sub 3/, such as used in electro-optical/acousto-optic devices. It is also suitable for applications wherein the etching process is required to produce an etched ionic substrate having a smooth surface morphology or when a very rapid etching rate is desired.

  6. Dry etching of chrome for photomasks for 100-nm technology using chemically amplified resist

    NASA Astrophysics Data System (ADS)

    Mueller, Mark; Komarov, Serguie; Baik, Ki-Ho

    2002-07-01

    Photo mask etching for the 100nm technology node places new requirements on dry etching processes. As the minimum-size features on the mask, such as assist bars and optical proximity correction (OPC) patterns, shrink down to 100nm, it is necessary to produce etch CD biases of below 20nm in order to reproduce minimum resist features into chrome with good pattern fidelity. In addition, vertical profiles are necessary. In previous generations of photomask technology, footing and sidewall profile slope were tolerated, since this dry etch profile was an improvement from wet etching. However, as feature sizes shrink, it is extremely important to select etch processes which do not generate a foot, because this will affect etch linearity and also limit the smallest etched feature size. Chemically amplified resist (CAR) from TOK is patterned with a 50keV MEBES eXara e-beam writer, allowing for patterning of small features with vertical resist profiles. This resist is developed for raster scan 50 kV e-beam systems. It has high contrast, good coating characteristics, good dry etch selectivity, and high environmental stability. Chrome etch process development has been performed using Design of Experiments to optimize parameters such as sidewall profile, etch CD bias, etch CD linearity for varying sizes of line/space patterns, etch CD linearity for varying sizes of isolated lines and spaces, loading effects, and application to contact etching.

  7. Dry etched SiO2 Mask for HgCdTe Etching Process

    NASA Astrophysics Data System (ADS)

    Chen, Y. Y.; Ye, Z. H.; Sun, C. H.; Deng, L. G.; Zhang, S.; Xing, W.; Hu, X. N.; Ding, R. J.; He, L.

    2016-09-01

    A highly anisotropic etching process with low etch-induced damage is indispensable for advanced HgCdTe (MCT) infrared focal plane array (IRFPA) detectors. The inductively coupled plasma (ICP) enhanced reactive ion etching technique has been widely adopted in manufacturing HgCdTe IRFPA devices. An accurately patterned mask with sharp edges is decisive to accomplish pattern duplication. It has been reported by our group that the SiO2 mask functions well in etching HgCdTe with high selectivity. However, the wet process in defining the SiO2 mask is limited by ambiguous edges and nonuniform patterns. In this report, we patterned SiO2 with a mature ICP etching technique, prior to which a thin ZnS film was deposited by thermal evaporation. The SiO2 film etching can be terminated at the auto-stopping point of the ZnS layer thanks to the high selectivity of SiO2/ZnS in SF6 based etchant. Consequently, MCT etching was directly performed without any other treatment. This mask showed acceptable profile due to the maturity of the SiO2 etching process. The well-defined SiO2 pattern and the etched smooth surfaces were investigated with scanning electron microscopy and atomic force microscope. This new mask process could transfer the patterns exactly with very small etch-bias. A cavity with aspect-ratio (AR) of 1.2 and root mean square roughness of 1.77 nm was achieved first, slightly higher AR of 1.67 was also get with better mask profile. This masking process ensures good uniformity and surely benefits the delineation of shrinking pixels with its high resolution.

  8. Fabrication of ultra-high aspect ratio (>160:1) silicon nanostructures by using Au metal assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Li, Hailiang; Ye, Tianchun; Shi, Lina; Xie, Changqing

    2017-12-01

    We present a facile and effective approach for fabricating high aspect ratio, dense and vertical silicon nanopillar arrays, using a combination of metal etching following electron-beam lithography and Au metal assisted chemical etching (MacEtch). Ti/Au nanostructures used as catalysts in MacEtch are formed by single layer resist-based electron-beam exposure followed by ion beam etching. The effects of MacEtch process parameters, including half period, etching time, the concentrations of H2O2 and HF, etching temperature and drying method are systematically investigated. Especially, we demonstrate an enhancement of etching quality by employing cold MacEtch process, and an enhancement in preventing the collapse of high aspect ratio nanostructures by employing low surface tension rinse liquid and natural evaporation in the drying stage. Using an optimized MacEtch process, vertical silicon nanopillar arrays with a period of 250 nm and aspect ratio up to 160:1 are realized. Our results should be instructive for exploring the achievable aspect ratio limit in silicon nanostructures and may find potential applications in photovoltaic devices, thermoelectric devices and x-ray diffractive optics.

  9. Radicals Are Required for Thiol Etching of Gold Particles.

    PubMed

    Dreier, Timothy A; Ackerson, Christopher J

    2015-08-03

    Etching of gold with an excess of thiol ligand is used in both synthesis and analysis of gold particles. Mechanistically, the process of etching gold with excess thiol is unclear. Previous studies have obliquely considered the role of oxygen in thiolate etching of gold. Herein, we show that oxygen or a radical initiator is a necessary component for efficient etching of gold by thiolates. Attenuation of the etching process by radical scavengers in the presence of oxygen, and the restoration of activity by radical initiators under inert atmosphere, strongly implicate the oxygen radical. These data led us to propose an atomistic mechanism in which the oxygen radical initiates the etching process. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Trends in Dielectric Etch for Microelectronics Processing

    NASA Astrophysics Data System (ADS)

    Hudson, Eric A.

    2003-10-01

    Dielectric etch technology faces many challenges to meet the requirements for leading-edge microelectronics processing. The move to sub 100-nm device design rules increases the aspect ratios of certain features, imposes tighter restrictions on etched features' critical dimensions, and increases the density of closely packed arrays of features. Changes in photolithography are driving transitions to new photoresist materials and novel multilayer resist methods. The increasing use of copper metallization and low-k interlayer dielectric materials has introduced dual-damascene integration methods, with specialized dielectric etch applications. A common need is the selective removal of multiple layers which have very different compositions, while maintaining close control of the etched features' profiles. To increase productivity, there is a growing trend toward in-situ processing, which allows several films to be successively etched during a single pass through the process module. Dielectric etch systems mainly utilize capacitively coupled etch reactors, operating with medium-density plasmas and low gas residence time. Commercial technology development increasingly relies upon plasma diagnostics and modeling to reduce development cycle time and maximize performance.

  11. Scalloping minimization in deep Si etching on Unaxis DSE tools

    NASA Astrophysics Data System (ADS)

    Lai, Shouliang; Johnson, Dave J.; Westerman, Russ J.; Nolan, John J.; Purser, David; Devre, Mike

    2003-01-01

    Sidewall smoothness is often a critical requirement for many MEMS devices, such as microfludic devices, chemical, biological and optical transducers, while fast silicon etch rate is another. For such applications, the time division multiplex (TDM) etch processes, so-called "Bosch" processes are widely employed. However, in the conventional TDM processes, rough sidewalls result due to scallop formation. To date, the amplitude of the scalloping has been directly linked to the silicon etch rate. At Unaxis USA Inc., we have developed a proprietary fast gas switching technique that is effective for scalloping minimization in deep silicon etching processes. In this technique, process cycle times can be reduced from several seconds to as little as a fraction of second. Scallop amplitudes can be reduced with shorter process cycles. More importantly, as the scallop amplitude is progressively reduced, the silicon etch rate can be maintained relatively constant at high values. An optimized experiment has shown that at etch rate in excess of 7 μm/min, scallops with length of 116 nm and depth of 35 nm were obtained. The fast gas switching approach offers an ideal manufacturing solution for MEMS applications where extremely smooth sidewall and fast etch rate are crucial.

  12. Etching Behavior of Aluminum Alloy Extrusions

    NASA Astrophysics Data System (ADS)

    Zhu, Hanliang

    2014-11-01

    The etching treatment is an important process step in influencing the surface quality of anodized aluminum alloy extrusions. The aim of etching is to produce a homogeneously matte surface. However, in the etching process, further surface imperfections can be generated on the extrusion surface due to uneven materials loss from different microstructural components. These surface imperfections formed prior to anodizing can significantly influence the surface quality of the final anodized extrusion products. In this article, various factors that influence the materials loss during alkaline etching of aluminum alloy extrusions are investigated. The influencing variables considered include etching process parameters, Fe-rich particles, Mg-Si precipitates, and extrusion profiles. This study provides a basis for improving the surface quality in industrial extrusion products by optimizing various process parameters.

  13. Controlled ion track etching

    NASA Astrophysics Data System (ADS)

    George, J.; Irkens, M.; Neumann, S.; Scherer, U. W.; Srivastava, A.; Sinha, D.; Fink, D.

    2006-03-01

    It is a common practice since long to follow the ion track-etching process in thin foils via conductometry, i.e . by measurement of the electrical current which passes through the etched track, once the track breakthrough condition has been achieved. The major disadvantage of this approach, namely the absence of any major detectable signal before breakthrough, can be avoided by examining the track-etching process capacitively. This method allows one to define precisely not only the breakthrough point before it is reached, but also the length of any non-transient track. Combining both capacitive and conductive etching allows one to control the etching process perfectly. Examples and possible applications are given.

  14. Laser-driven fusion etching process

    DOEpatents

    Ashby, Carol I. H.; Brannon, Paul J.; Gerardo, James B.

    1989-01-01

    The surfaces of solid ionic substrates are etched by a radiation-driven chemical reaction. The process involves exposing an ionic substrate coated with a layer of a reactant material on its surface to radiation, e.g. a laser, to induce localized melting of the substrate which results in the occurrance of a fusion reaction between the substrate and coating material. The resultant reaction product and excess reactant salt are then removed from the surface of the substrate with a solvent which is relatively inert towards the substrate. The laser-driven chemical etching process is especially suitable for etching ionic salt substrates, e.g., a solid inorganic salt such as LiNbO.sub.3, such as used in electro-optical/acousto-optic devices. It is also suitable for applications wherein the etching process is required to produce an etched ionic substrate having a smooth surface morphology or when a very rapid etching rate is desired.

  15. High-density plasma etching of III-nitrides: Process development, device applications and damage remediation

    NASA Astrophysics Data System (ADS)

    Singh, Rajwinder

    Plasma-assisted etching is a key technology for III-nitride device fabrication. The inevitable etch damage resulting from energetic pattern transfer is a challenge that needs to be addressed in order to optimize device performance and reliability. This dissertation focuses on the development of a high-density inductively-coupled plasma (ICP) etch process for III-nitrides, the demonstration of its applicability to practical device fabrication using a custom built ICP reactor, and development of techniques for remediation of etch damage. A chlorine-based standard dry etch process has been developed and utilized in fabrication of a number of electronic and optoelectronic III-nitride devices. Annealing studies carried out at 700°C have yielded the important insight that the annealing time necessary for making good-quality metal contacts to etch processed n-GaN is very short (<30 sec), comparable with the annealing times necessary for dopant activation of p-GaN films and provides an opportunity for streamlining process flow. Plasma etching degrades contact quality on n-GaN films and this degradation has been found to increase with the rf bias levels (ion energies) used, most notably in films with higher doping levels. Immersion in 1:1 mixture of hydrochloric acid and de-ionized water, prior to metallization, removes some of the etch damage and is helpful in recovering contact quality. In-situ treatment consisting of a slow ramp-down of rf bias at the end of the etch is found to achieve the same effect as the ex-situ treatment. This insitu technique is significantly advantageous in a large-scale production environment because it eliminates a process step, particularly one involving treatment in hydrochloric acid. ICP equipment customization for scaling up the process to full 2-inch wafer size is described. Results on etching of state of the art 256 x 256 AlGaN focal plane arrays of ultraviolet photodetectors are reported, with excellent etch uniformity over the wafer area.

  16. Photoelectrochemical response of GaN, InGaN, and GaNP nanowire ensembles

    NASA Astrophysics Data System (ADS)

    Philipps, Jan M.; Hölzel, Sara; Hille, Pascal; Schörmann, Jörg; Chatterjee, Sangam; Buyanova, Irina A.; Eickhoff, Martin; Hofmann, Detlev M.

    2018-05-01

    The photoelectrochemical responses of GaN, GaNP, and InGaN nanowire ensembles are investigated by the electrical bias dependent photoluminescence, photocurrent, and spin trapping experiments. The results are explained in the frame of the surface band bending model. The model is sufficient for InGaN nanowires, but for GaN nanowires the electrochemical etching processes in the anodic regime have to be considered additionally. These processes lead to oxygen rich surface (GaxOy) conditions as evident from energy dispersive X-ray fluorescence. For the GaNP nanowires, a bias dependence of the carrier transfer to the electrolyte is not reflected in the photoluminescence response, which is tentatively ascribed to a different origin of radiative recombination in this material as compared to (In)GaN. The corresponding consequences for the applications of the materials for water splitting or pH-sensing will be discussed.

  17. Double-shell CuS nanocages as advanced supercapacitor electrode materials

    NASA Astrophysics Data System (ADS)

    Guo, Jinxue; Zhang, Xinqun; Sun, Yanfang; Zhang, Xiaohong; Tang, Lin; Zhang, Xiao

    2017-07-01

    Metal sulfides hollow structures are advanced materials for energy storage applications of lithium-ion batteries and supercapacitors. However, constructing hollow metal sulfides with specific features, such as multi-shell and non-spherical shape, still remains great challenge. In this work, we firstly demonstrate the synthesis of CuS double-shell hollow nanocages using Cu2O nanocubes as precursors. The synthesis processes involve the repeated anion exchange reaction with Na2S and the controllable etching using hydrochloric acid. The whole synthesis processes are well revealed and the obtained double-shell CuS is tested as pseudocapacitive electrode material for supercapacitors. As expected, the CuS double-shell hollow nanocages deliver high specific capacitance, good rate performance and excellent cycling stability due to their unique nano-architecture. The present work contributes greatly to the exploration of hollow metal sulfides with complex architecture and non-spherical shape, as well as their promising application in high-performance electrochemical supercapacitors.

  18. Method for electrochemical decontamination of radioactive metal

    DOEpatents

    Ekechukwu, Amy A [Augusta, GA

    2008-06-10

    A decontamination method for stripping radionuclides from the surface of stainless steel or aluminum material comprising the steps of contacting the metal with a moderately acidic carbonate/bicarbonate electrolyte solution containing sodium or potassium ions and thereafter electrolytically removing the radionuclides from the surface of the metal whereby radionuclides are caused to be stripped off of the material without corrosion or etching of the material surface.

  19. Selective dry etching of silicon containing anti-reflective coating

    NASA Astrophysics Data System (ADS)

    Sridhar, Shyam; Nolan, Andrew; Wang, Li; Karakas, Erdinc; Voronin, Sergey; Biolsi, Peter; Ranjan, Alok

    2018-03-01

    Multi-layer patterning schemes involve the use of Silicon containing Anti-Reflective Coating (SiARC) films for their anti-reflective properties. Patterning transfer completion requires complete and selective removal of SiARC which is very difficult due to its high silicon content (>40%). Typically, SiARC removal is accomplished through a non-selective etch during the pattern transfer process using fluorine containing plasmas, or an ex-situ wet etch process using hydrofluoric acid is employed to remove the residual SiARC, post pattern transfer. Using a non-selective etch may result in profile distortion or wiggling, due to distortion of the underlying organic layer. The drawbacks of using wet etch process for SiARC removal are increased overall processing time and the need for additional equipment. Many applications may involve patterning of active structures in a poly-Si layer with an underlying oxide stopping layer. In such applications, SiARC removal selective to oxide using a wet process may prove futile. Removing SiARC selectively to SiO2 using a dry etch process is also challenging, due to similarity in the nature of chemical bonds (Si - O) in the two materials. In this work, we present highly selective etching of SiARC, in a plasma driven by a surface wave radial line slot antenna. The first step in the process involves an in-situ modification of the SiARC layer in O2 plasma followed by selective etching in a NF3/H2 plasma. Surface treatment in O2 plasma resulted in enhanced etching of the SiARC layer. For the right processing conditions, in-situ NF3/H2 dry etch process demonstrated selectivity values greater than 15:1 with respect to SiO2. The etching chemistry, however, was sensitive to NF3:H2 gas ratio. For dilute NF3 in H2, no SiARC etching was observed. Presumably, this is due to the deposition of ammonium fluorosilicate layer that occurs for dilute NF3/H2 plasmas. Additionally, challenges involved in selective SiARC removal (selective to SiO2, organic and Si layers) post pattern transfer, in a multi-layer structure will be discussed.

  20. Suppression of Lateral Diffusion and Surface Leakage Currents in nBn Photodetectors Using an Inverted Design

    NASA Astrophysics Data System (ADS)

    Du, X.; Savich, G. R.; Marozas, B. T.; Wicks, G. W.

    2018-02-01

    Surface leakage and lateral diffusion currents in InAs-based nBn photodetectors have been investigated. Devices fabricated using a shallow etch processing scheme that etches through the top contact and stops at the barrier exhibited large lateral diffusion current but undetectably low surface leakage. Such large lateral diffusion current significantly increased the dark current, especially in small devices, and causes pixel-to-pixel crosstalk in detector arrays. To eliminate the lateral diffusion current, two different approaches were examined. The conventional solution utilized a deep etch process, which etches through the top contact, barrier, and absorber. This deep etch processing scheme eliminated lateral diffusion, but introduced high surface current along the device mesa sidewalls, increasing the dark current. High device failure rate was also observed in deep-etched nBn structures. An alternative approach to limit lateral diffusion used an inverted nBn structure that has its absorber grown above the barrier. Like the shallow etch process on conventional nBn structures, the inverted nBn devices were fabricated with a processing scheme that only etches the top layer (the absorber, in this case) but avoids etching through the barrier. The results show that inverted nBn devices have the advantage of eliminating the lateral diffusion current without introducing elevated surface current.

  1. 3D memory: etch is the new litho

    NASA Astrophysics Data System (ADS)

    Petti, Christopher

    2018-03-01

    This paper discusses the process challenges and limitations for 3D NAND processes, focusing on vertical 3D architectures. The effect of deep memory hole etches on die cost is calculated, with die cost showing a minimum at a given number of layers because of aspect-ratio dependent etch effects. Techniques to mitigate these etch effects are summarized, as are other etch issues, such as bowing and twisting. Metal replacement gate processes and their challenges are also described. Lastly, future directions of vertical 3D NAND technologies are explored.

  2. Development and Research on the Mechanism of Novel Mist Etching Method for Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Kawaharamura, Toshiyuki; Hirao, Takashi

    2012-03-01

    A novel etching process with etchant mist was developed and applied to oxide thin films such as zinc oxide (ZnO), zinc magnesium oxide (ZnMgO), and indium tin oxide (ITO). By using this process, it was shown that precise control of the etching characteristics is possible with a reasonable etching rate, for example, in the range of 10-100 nm/min, and a fine pattern of high accuracy can also be realized, even though this is usually very difficult by conventional wet etching processes, for ZnO and ZnMgO. The mist etching process was found to be similarly and successfully applied to ITO. The mechanism of mist etching has been studied by examining the etching temperature dependence of pattern accuracy, and it was shown that the mechanism was different from that of conventional liquid-phase spray etching. It was ascertained that fine pattern etching was attained using mist droplets completely (or partly) gasified by the heat applied to the substrate. This technique was applied to the fabrication of a ZnO thin-film transistor (TFT) with a ZnO active channel length of 4 µm. The electrical properties of the TFT were found to be excellent with fine uniformity over the entire 4-in. wafer.

  3. Making Porous Luminescent Regions In Silicon Wafers

    NASA Technical Reports Server (NTRS)

    Fathauer, Robert W.; Jones, Eric W.

    1994-01-01

    Regions damaged by ion implantation stain-etched. Porous regions within single-crystal silicon wafers fabricated by straightforward stain-etching process. Regions exhibit visible photoluminescence at room temperature and might constitute basis of novel class of optoelectronic devices. Stain-etching process has advantages over recently investigated anodic-etching process. Process works on both n-doped and p-doped silicon wafers. Related development reported in article, "Porous Si(x)Ge(1-x) Layers Within Single Crystals of Si," (NPO-18836).

  4. Dry-plasma-free chemical etch technique for variability reduction in multi-patterning (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kal, Subhadeep; Mohanty, Nihar; Farrell, Richard A.; Franke, Elliott; Raley, Angelique; Thibaut, Sophie; Pereira, Cheryl; Pillai, Karthik; Ko, Akiteru; Mosden, Aelan; Biolsi, Peter

    2017-04-01

    Scaling beyond the 7nm technology node demands significant control over the variability down to a few angstroms, in order to achieve reasonable yield. For example, to meet the current scaling targets it is highly desirable to achieve sub 30nm pitch line/space features at back-end of the line (BEOL) or front end of line (FEOL); uniform and precise contact/hole patterning at middle of line (MOL). One of the quintessential requirements for such precise and possibly self-aligned patterning strategies is superior etch selectivity between the target films while other masks/films are exposed. The need to achieve high etch selectivity becomes more evident for unit process development at MOL and BEOL, as a result of low density films choices (compared to FEOL film choices) due to lower temperature budget. Low etch selectivity with conventional plasma and wet chemical etch techniques, causes significant gouging (un-intended etching of etch stop layer, as shown in Fig 1), high line edge roughness (LER)/line width roughness (LWR), non-uniformity, etc. In certain circumstances this may lead to added downstream process stochastics. Furthermore, conventional plasma etches may also have the added disadvantage of plasma VUV damage and corner rounding (Fig. 1). Finally, the above mentioned factors can potentially compromise edge placement error (EPE) and/or yield. Therefore a process flow enabled with extremely high selective etches inherent to film properties and/or etch chemistries is a significant advantage. To improve this etch selectivity for certain etch steps during a process flow, we have to implement alternate highly selective, plasma free techniques in conjunction with conventional plasma etches (Fig 2.). In this article, we will present our plasma free, chemical gas phase etch technique using chemistries that have high selectivity towards a spectrum of films owing to the reaction mechanism ( as shown Fig 1). Gas phase etches also help eliminate plasma damage to the features during the etch process. Herein we will also demonstrate a test case on how a combination or plasma assisted and plasma free etch techniques has the potential to improve process performance of a 193nm immersion based self aligned quandruple patterning (SAQP) for BEOL compliant films (an example shown in Fig 2). In addition, we will also present on the application of gas etches for (1) profile improvement, (2) selective mandrel pull (3) critical dimension trim of mandrels, with an analysis of advantages over conventional techniques in terms of LER and EPE.

  5. The endpoint detection technique for deep submicrometer plasma etching

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Du, Zhi-yun; Zeng, Yong; Lan, Zhong-went

    2009-07-01

    The availability of reliable optical sensor technology provides opportunities to better characterize and control plasma etching processes in real time, they could play a important role in endpoint detection, fault diagnostics and processes feedback control and so on. The optical emission spectroscopy (OES) method becomes deficient in the case of deep submicrometer gate etching. In the newly developed high density inductively coupled plasma (HD-ICP) etching system, Interferometry endpoint (IEP) is introduced to get the EPD. The IEP fringe count algorithm is investigated to predict the end point, and then its signal is used to control etching rate and to call end point with OES signal in over etching (OE) processes step. The experiment results show that IEP together with OES provide extra process control margin for advanced device with thinner gate oxide.

  6. Evaluation of Pentafluoroethane and 1,1-Difluoroethane for a Dielectric Etch Application in an Inductively Coupled Plasma Etch Tool

    NASA Astrophysics Data System (ADS)

    Karecki, Simon; Chatterjee, Ritwik; Pruette, Laura; Reif, Rafael; Sparks, Terry; Beu, Laurie; Vartanian, Victor

    2000-07-01

    In this work, a combination of two hydrofluorocarbon compounds, pentafluoroethane (FC-125, C2HF5) and 1,1-difluoroethane (FC-152a, CF2H-CH3), was evaluated as a potential replacement for perfluorocompounds in dielectric etch applications. A high aspect ratio oxide via etch was used as the test vehicle for this study, which was conducted in a commercial inductively coupled high density plasma etch tool. Both process and emissions data were collected and compared to those provided by a process utilizing a standard perfluorinated etch chemistry (C2F6). Global warming (CF4, C2F6, CHF3) and hygroscopic gas (HF, SiF4) emissions were characterized using Fourier transform infrared (FTIR) spectroscopy. FC-125/FC-152a was found to produce significant reductions in global warming emissions, on the order of 68 to 76% relative to the reference process. Although etch stopping, caused by a high degree of polymer deposition inside the etched features, was observed, process data otherwise appeared promising for an initial study, with good resist selectivity and etch rates being achieved.

  7. Contact electrification induced interfacial reactions and direct electrochemical nanoimprint lithography in n-type gallium arsenate wafer† †Electronic supplementary information (ESI) available: Electrochemical measurements of the interfaces, optimization of the contact force and temperature of ECNL, XPS analysis, and more examples of ECNL on n-GaAs. See DOI: 10.1039/c6sc04091h Click here for additional data file.

    PubMed Central

    Zhang, Jie; Zhang, Lin; Wang, Wei; Han, Lianhuan; Jia, Jing-Chun; Tian, Zhao-Wu; Tian, Zhong-Qun

    2017-01-01

    Although metal assisted chemical etching (MacEtch) has emerged as a versatile micro-nanofabrication method for semiconductors, the chemical mechanism remains ambiguous in terms of both thermodynamics and kinetics. Here we demonstrate an innovative phenomenon, i.e., the contact electrification between platinum (Pt) and an n-type gallium arsenide (100) wafer (n-GaAs) can induce interfacial redox reactions. Because of their different work functions, when the Pt electrode comes into contact with n-GaAs, electrons will move from n-GaAs to Pt and form a contact electric field at the Pt/n-GaAs junction until their electron Fermi levels (E F) become equal. In the presence of an electrolyte, the potential of the Pt/electrolyte interface will shift due to the contact electricity and induce the spontaneous reduction of MnO4 – anions on the Pt surface. Because the equilibrium of contact electrification is disturbed, electrons will transfer from n-GaAs to Pt through the tunneling effect. Thus, the accumulated positive holes at the n-GaAs/electrolyte interface make n-GaAs dissolve anodically along the Pt/n-GaAs/electrolyte 3-phase interface. Based on this principle, we developed a direct electrochemical nanoimprint lithography method applicable to crystalline semiconductors. PMID:28451347

  8. Etch bias inversion during EUV mask ARC etch

    NASA Astrophysics Data System (ADS)

    Lajn, Alexander; Rolff, Haiko; Wistrom, Richard

    2017-07-01

    The introduction of EUV lithography to high volume manufacturing is now within reach for 7nm technology node and beyond (1), at least for some steps. The scheduling is in transition from long to mid-term. Thus, all contributors need to focus their efforts on the production requirements. For the photo mask industry, these requirements include the control of defectivity, CD performance and lifetime of their masks. The mask CD performance including CD uniformity, CD targeting, and CD linearity/ resolution, is predominantly determined by the photo resist performance and by the litho and etch processes. State-of-the-art chemically amplified resists exhibit an asymmetric resolution for directly and indirectly written features, which usually results in a similarly asymmetric resolution performance on the mask. This resolution gap may reach as high as multiple tens of nanometers on the mask level in dependence of the chosen processes. Depending on the printing requirements of the wafer process, a reduction or even an increase of this gap may be required. A potential way of tuning via the etch process, is to control the lateral CD contribution during etch. Aside from process tuning knobs like pressure, RF powers and gases, which usually also affect CD linearity and CD uniformity, the simplest knob is the etch time itself. An increased over etch time results in an increased CD contribution in the normal case. , We found that the etch CD contribution of ARC layer etch on EUV photo masks is reduced by longer over etch times. Moreover, this effect can be demonstrated to be present for different etch chambers and photo resists.

  9. The research on conformal acid etching process of glass ceramic

    NASA Astrophysics Data System (ADS)

    Wang, Kepeng; Guo, Peiji

    2014-08-01

    A series of experiments have been done to explore the effect of different conditions on the hydrofluoric acid etching. The hydrofluoric acid was used to etch the glass ceramic called "ZERODUR", which is invented by SCHOTT in Germany. The glass ceramic was processed into cylindrical samples. The hydrofluoric acid etching was done in a plastic beaker. The concentration of hydrofluoric acid and the etching time were changed to measure the changes of geometric tolerance and I observed the surface using a microscope in order to find an appropriate condition of hydrofluoric acid etching.

  10. Consequences of atomic layer etching on wafer scale uniformity in inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Huard, Chad M.; Lanham, Steven J.; Kushner, Mark J.

    2018-04-01

    Atomic layer etching (ALE) typically divides the etching process into two self-limited reactions. One reaction passivates a single layer of material while the second preferentially removes the passivated layer. As such, under ideal conditions the wafer scale uniformity of ALE should be independent of the uniformity of the reactant fluxes onto the wafers, provided all surface reactions are saturated. The passivation and etch steps should individually asymptotically saturate after a characteristic fluence of reactants has been delivered to each site. In this paper, results from a computational investigation are discussed regarding the uniformity of ALE of Si in Cl2 containing inductively coupled plasmas when the reactant fluxes are both non-uniform and non-ideal. In the parameter space investigated for inductively coupled plasmas, the local etch rate for continuous processing was proportional to the ion flux. When operated with saturated conditions (that is, both ALE steps are allowed to self-terminate), the ALE process is less sensitive to non-uniformities in the incoming ion flux than continuous etching. Operating ALE in a sub-saturation regime resulted in less uniform etching. It was also found that ALE processing with saturated steps requires a larger total ion fluence than continuous etching to achieve the same etch depth. This condition may result in increased resist erosion and/or damage to stopping layers using ALE. While these results demonstrate that ALE provides increased etch depth uniformity, they do not show an improved critical dimension uniformity in all cases. These possible limitations to ALE processing, as well as increased processing time, will be part of the process optimization that includes the benefits of atomic resolution and improved uniformity.

  11. Cryogenic Etching of High Aspect Ratio 400 nm Pitch Silicon Gratings.

    PubMed

    Miao, Houxun; Chen, Lei; Mirzaeimoghri, Mona; Kasica, Richard; Wen, Han

    2016-10-01

    The cryogenic process and Bosch process are two widely used processes for reactive ion etching of high aspect ratio silicon structures. This paper focuses on the cryogenic deep etching of 400 nm pitch silicon gratings with various etching mask materials including polymer, Cr, SiO 2 and Cr-on-polymer. The undercut is found to be the key factor limiting the achievable aspect ratio for the direct hard masks of Cr and SiO 2 , while the etch selectivity responds to the limitation of the polymer mask. The Cr-on-polymer mask provides the same high selectivity as Cr and reduces the excessive undercut introduced by direct hard masks. By optimizing the etching parameters, we etched a 400 nm pitch grating to ≈ 10.6 μ m depth, corresponding to an aspect ratio of ≈ 53.

  12. Process for Smoothing an Si Substrate after Etching of SiO2

    NASA Technical Reports Server (NTRS)

    Turner, Tasha; Wu, Chi

    2003-01-01

    A reactive-ion etching (RIE) process for smoothing a silicon substrate has been devised. The process is especially useful for smoothing those silicon areas that have been exposed by etching a pattern of holes in a layer of silicon dioxide that covers the substrate. Applications in which one could utilize smooth silicon surfaces like those produced by this process include fabrication of optical waveguides, epitaxial deposition of silicon on selected areas of silicon substrates, and preparation of silicon substrates for deposition of adherent metal layers. During etching away of a layer of SiO2 that covers an Si substrate, a polymer becomes deposited on the substrate, and the substrate surface becomes rough (roughness height approximately equal to 50 nm) as a result of over-etching or of deposition of the polymer. While it is possible to smooth a silicon substrate by wet chemical etching, the undesired consequences of wet chemical etching can include compromising the integrity of the SiO2 sidewalls and undercutting of the adjacent areas of the silicon dioxide that are meant to be left intact. The present RIE process results in anisotropic etching that removes the polymer and reduces height of roughness of the silicon substrate to less than 10 nm while leaving the SiO2 sidewalls intact and vertical. Control over substrate versus sidewall etching (in particular, preferential etching of the substrate) is achieved through selection of process parameters, including gas flow, power, and pressure. Such control is not uniformly and repeatably achievable in wet chemical etching. The recipe for the present RIE process is the following: Etch 1 - A mixture of CF4 and O2 gases flowing at rates of 25 to 75 and 75 to 125 standard cubic centimeters per minute (stdcm3/min), respectively; power between 44 and 55 W; and pressure between 45 and 55 mtorr (between 6.0 and 7.3 Pa). The etch rate lies between approximately equal to 3 and approximately equal to 6 nm/minute. Etch 2 - O2 gas flowing at 75 to 125 stdcm3/min, power between 44 and 55 W, and pressure between 50 and 100 mtorr (between 6.7 and 13.3 Pa).

  13. Single-Run Single-Mask Inductively-Coupled-Plasma Reactive-Ion-Etching Process for Fabricating Suspended High-Aspect-Ratio Microstructures

    NASA Astrophysics Data System (ADS)

    Yang, Yao-Joe; Kuo, Wen-Cheng; Fan, Kuang-Chao

    2006-01-01

    In this work, we present a single-run single-mask (SRM) process for fabricating suspended high-aspect-ratio structures on standard silicon wafers using an inductively coupled plasma-reactive ion etching (ICP-RIE) etcher. This process eliminates extra fabrication steps which are required for structure release after trench etching. Released microstructures with 120 μm thickness are obtained by this process. The corresponding maximum aspect ratio of the trench is 28. The SRM process is an extended version of the standard process proposed by BOSCH GmbH (BOSCH process). The first step of the SRM process is a standard BOSCH process for trench etching, then a polymer layer is deposited on trench sidewalls as a protective layer for the subsequent structure-releasing step. The structure is released by dry isotropic etching after the polymer layer on the trench floor is removed. All the steps can be integrated into a single-run ICP process. Also, only one mask is required. Therefore, the process complexity and fabrication cost can be effectively reduced. Discussions on each SRM step and considerations for avoiding undesired etching of the silicon structures during the release process are also presented.

  14. Effects of wet etch processing on laser-induced damage of fused silica surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battersby, C.L.; Kozlowski, M.R.; Sheehan, L.M.

    1998-12-22

    Laser-induced damage of transparent fused silica optical components by 355 nm illumination occurs primarily at surface defects produced during the grinding and polishing processes. These defects can either be surface defects or sub-surface damage.Wet etch processing in a buffered hydrogen fluoride (HF) solution has been examined as a tool for characterizing such defects. A study was conducted to understand the effects of etch depth on the damage threshold of fused silica substrates. The study used a 355 nm, 7.5 ns, 10 Hz Nd:YAG laser to damage test fused silica optics through various wet etch processing steps. Inspection of the surfacemore » quality was performed with Nomarski microscopy and Total Internal Reflection Microscopy. The damage test data and inspection results were correlated with polishing process specifics. The results show that a wet etch exposes subsurface damage while maintaining or improving the laser damage performance. The benefits of a wet etch must be evaluated for each polishing process.« less

  15. Anisotropic multi-spot DBR porous silicon chip for the detection of human immunoglobin G.

    PubMed

    Cho, Bomin; Um, Sungyong; Sohn, Honglae

    2014-07-01

    Asymmetric porous silicon multilayer (APSM)-based optical biosensor was developed to specify human Immunoglobin G (Ig G). APSM chip was generated by an electrochemical etching of silicon wafer using an asymmetric electrode configuration in aqueous ethanolic HF solution and constituted with nine arrayed porous silicon multilayer. APSM prepared from anisotropic etching conditions displayed a sharp reflection resonance in the reflectivity spectrum. Each spot displayed single reflection resonance at different wavelengths as a function of the lateral distance from the Pt counter electrode. The sensor system was consisted of the 3 x 3 spot array of APSM modified with protein A. The system was probed with an aqueous human Ig G. Molecular binding and specificity was monitored as a shift in wavelength of reflection resonance.

  16. Direct patterning of negative nanostructures on self-assembled monolayers of 16-mercaptohexadecanoic acid on Au(111) substrate via dip-pen nanolithography

    NASA Astrophysics Data System (ADS)

    Zheng, Zhikun; Yang, Menglong; Liu, Yaqing; Zhang, Bailin

    2006-11-01

    Both bare and self-assembled monolayer (SAM) protected gold substrate could be etched by allyl bromide according to atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS) and inductively coupled plasma mass spectrometric (ICPMS) analysis results. With this allyl bromide ink material, negative nanopatterns could be fabricated directly by dip-pen nanolithography (DPN) on SAMs of 16-mercaptohexadecanoic acid (MHA) on Au(111) substrate. A tip-promoted etching mechanism was proposed where the gold-reactive ink could penetrate the MHA resist film through tip-induced defects resulting in local corrosive removal of the gold substrate. The fabrication mechanism was also confirmed by electrochemical characterization, energy dispersive spectroscopy (EDS) analysis and fabrication of positive nanopatterns via a used DPN tip.

  17. Multiscale Interfacial Strategy to Engineer Mixed Metal-Oxide Anodes toward Enhanced Cycling Efficiency.

    PubMed

    Ma, Yue; Tai, Cheuk-Wai; Li, Shaowen; Edström, Kristina; Wei, Bingqing

    2018-06-13

    Interconnected macro/mesoporous structures of mixed metal oxide (MMO) are developed on nickel foam as freestanding anodes for Li-ion batteries. The sustainable production is realized via a wet chemical etching process with bio-friendly chemicals. By means of divalent iron doping during an in situ recrystallization process, the as-developed MMO anodes exhibit enhanced levels of cycling efficiency. Furthermore, this atomic-scale modification coherently synergizes with the encapsulation layer across a micrometer scale. During this step, we develop a quasi-gel-state tri-copolymer, i.e., F127-resorcinol-melamine, as the N-doped carbon source to regulate the interfacial chemistry of the MMO electrodes. Electrochemical tests of the modified Fe x Ni 1- x O@NC-NiF anode in both half-cell and full-cell configurations unravel the favorable suppression of the irreversible capacity loss and satisfactory cyclability at the high rates. This study highlights a proof-of-concept modification strategy across multiple scales to govern the interfacial chemical process of the electrodes toward better reversibility.

  18. Graphene nanoribbons: Relevance of etching process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simonet, P., E-mail: psimonet@phys.ethz.ch; Bischoff, D.; Moser, A.

    2015-05-14

    Most graphene nanoribbons in the experimental literature are patterned using plasma etching. Various etching processes induce different types of defects and do not necessarily result in the same electronic and structural ribbon properties. This study focuses on two frequently used etching techniques, namely, O{sub 2} plasma ashing and O{sub 2 }+ Ar reactive ion etching (RIE). O{sub 2} plasma ashing represents an alternative to RIE physical etching for sensitive substrates, as it is a more gentle chemical process. We find that plasma ashing creates defective graphene in the exposed trenches, resulting in instabilities in the ribbon transport. These are probably caused bymore » more or larger localized states at the edges of the ashed device compared to the RIE defined device.« less

  19. Platinum nanowire microelectrode arrays for neurostimulation applications: Fabrication, characterization, and in-vitro retinal cell stimulation

    NASA Astrophysics Data System (ADS)

    Whalen, John J., III

    Implantable electrical neurostimulating devices are being developed for a number of applications, including artificial vision through retinal stimulation. The epiretinal prosthesis will use a two-dimensional array microelectrodes to address individual cells of the retina. MEMS fabrication processes can produce arrays of microelectrodes with these dimensions, but there are two critical issues that they cannot satisfy. One, the stimulating electrodes are the only part of the implanted electrical device that penetrate through the water impermeable package, and must do so without sacrificing hermeticity. Two, As electrode size decreases, the current density (A cm-2 ) increases, due to increased electrochemical impedance. This reduces the amount of charge that can be safely injected into the tissue. To date, MEMS processing method, cannot produce electrode arrays with good, prolonged hermetic properties. Similarly, MEMS approaches do not account for the increased impedance caused by decreased surface area. For these reasons there is a strong motivation for the development of a water-impermeable, substrate-penetrating electrode array with low electrochemical impedance. This thesis presents a stimulating electrode array fabricated from platinum nanowires using a modified electrochemical template synthesis approach. Nanowires are electrochemically deposited from ammonium hexachloroplatinate solution into lithographically patterned nanoporous anodic alumina templates to produce microarrays of platinum nanowires. The platinum nanowires penetrating through the ceramic aluminum oxide template serve as parallel electrical conduits through the water impermeable, electrically insulating substrate. Electrode impedance can be adjusted by either controlling the nanowire hydrous platinum oxide content or by partially etching the alumina template to expose additional surface area. A stepwise approach to this project was taken. First, the electrochemistry of ammonium hexachloroplatinate solution was characterized, and physical properties of electrodeposited thin films were correlated to deposition conditions used. Second, platinum nanowires were fabricated and their properties characterized, using similar deposition conditions. Third, the feasibility of fabricating platinum nanowire stimulating electrode arrays with a variety of surface structures was demonstrated. Fourth, the enhanced charge transfer characteristics of these structures were demonstrated using electrochemical techniques. Finally, retinal cell stimulation was demonstrated using electrodes from platinum nanowire arrays.

  20. Modeling Cl2/O2/Ar inductively coupled plasmas used for silicon etching: effects of SiO2 chamber wall coating

    NASA Astrophysics Data System (ADS)

    Tinck, S.; Boullart, W.; Bogaerts, A.

    2011-08-01

    In this paper, simulations are performed to gain a better insight into the properties of a Cl2/Ar plasma, with and without O2, during plasma etching of Si. Both plasma and surface properties are calculated in a self-consistent manner. Special attention is paid to the behavior of etch products coming from the wafer or the walls, and how the chamber walls can affect the plasma and the resulting etch process. Two modeling cases are considered. In the first case, the reactor walls are defined as clean (Al2O3), whereas in the second case a SiO2 coating is introduced on the reactor walls before the etching process, so that oxygen will be sputtered from the walls and introduced into the plasma. For this reason, a detailed reaction set is presented for a Cl2/O2/Ar plasma containing etched species, as well as an extensive reaction set for surface processes, including physical and chemical sputtering, chemical etching and deposition processes. Density and flux profiles of various species are presented for a better understanding of the bulk plasma during the etching process. Detailed information is also given on the composition of the surfaces at various locations of the reactor, on the etch products in the plasma and on the surface loss probabilities of the plasma species at the walls, with different compositions. It is found that in the clean chamber, walls are mostly chlorinated (Al2Cl3), with a thin layer of etch products residing on the wall. In the coated chamber, an oxy-chloride layer is grown on the walls for a few nanometers during the etching process. The Cl atom wall loss probability is found to decrease significantly in the coated chamber, hence increasing the etch rate. SiCl2, SiCl4 and SiCl3 are found to be the main etch products in the plasma, with the fraction of SiCl2 being always slightly higher. The simulation results compare well with experimental data available from the literature.

  1. Atomic precision etch using a low-electron temperature plasma

    NASA Astrophysics Data System (ADS)

    Dorf, L.; Wang, J.-C.; Rauf, S.; Zhang, Y.; Agarwal, A.; Kenney, J.; Ramaswamy, K.; Collins, K.

    2016-03-01

    Sub-nm precision is increasingly being required of many critical plasma etching processes in the semiconductor industry. Accurate control over ion energy and ion/radical composition is needed during plasma processing to meet these stringent requirements. Described in this work is a new plasma etch system which has been designed with the requirements of atomic precision plasma processing in mind. In this system, an electron sheet beam parallel to the substrate surface produces a plasma with an order of magnitude lower electron temperature Te (~ 0.3 eV) and ion energy Ei (< 3 eV without applied bias) compared to conventional radio-frequency (RF) plasma technologies. Electron beam plasmas are characterized by higher ion-to-radical fraction compared to RF plasmas, so a separate radical source is used to provide accurate control over relative ion and radical concentrations. Another important element in this plasma system is low frequency RF bias capability which allows control of ion energy in the 2-50 eV range. Presented in this work are the results of etching of a variety of materials and structures performed in this system. In addition to high selectivity and low controllable etch rate, an important requirement of atomic precision etch processes is no (or minimal) damage to the remaining material surface. It has traditionally not been possible to avoid damage in RF plasma processing systems, even during atomic layer etch. The experiments for Si etch in Cl2 based plasmas in the aforementioned etch system show that damage can be minimized if the ion energy is kept below 10 eV. Layer-by-layer etch of Si is also demonstrated in this etch system using electrical and gas pulsing.

  2. Contact electrification induced interfacial reactions and direct electrochemical nanoimprint lithography in n-type gallium arsenate wafer.

    PubMed

    Zhang, Jie; Zhang, Lin; Wang, Wei; Han, Lianhuan; Jia, Jing-Chun; Tian, Zhao-Wu; Tian, Zhong-Qun; Zhan, Dongping

    2017-03-01

    Although metal assisted chemical etching (MacEtch) has emerged as a versatile micro-nanofabrication method for semiconductors, the chemical mechanism remains ambiguous in terms of both thermodynamics and kinetics. Here we demonstrate an innovative phenomenon, i.e. , the contact electrification between platinum (Pt) and an n-type gallium arsenide (100) wafer (n-GaAs) can induce interfacial redox reactions. Because of their different work functions, when the Pt electrode comes into contact with n-GaAs, electrons will move from n-GaAs to Pt and form a contact electric field at the Pt/n-GaAs junction until their electron Fermi levels ( E F ) become equal. In the presence of an electrolyte, the potential of the Pt/electrolyte interface will shift due to the contact electricity and induce the spontaneous reduction of MnO 4 - anions on the Pt surface. Because the equilibrium of contact electrification is disturbed, electrons will transfer from n-GaAs to Pt through the tunneling effect. Thus, the accumulated positive holes at the n-GaAs/electrolyte interface make n-GaAs dissolve anodically along the Pt/n-GaAs/electrolyte 3-phase interface. Based on this principle, we developed a direct electrochemical nanoimprint lithography method applicable to crystalline semiconductors.

  3. Uniform lateral etching of tungsten in deep trenches utilizing reaction-limited NF3 plasma process

    NASA Astrophysics Data System (ADS)

    Kofuji, Naoyuki; Mori, Masahito; Nishida, Toshiaki

    2017-06-01

    The reaction-limited etching of tungsten (W) with NF3 plasma was performed in an attempt to achieve the uniform lateral etching of W in a deep trench, a capability required by manufacturing processes for three-dimensional NAND flash memory. Reaction-limited etching was found to be possible at high pressures without ion irradiation. An almost constant etching rate that showed no dependence on NF3 pressure was obtained. The effect of varying the wafer temperature was also examined. A higher wafer temperature reduced the threshold pressure for reaction-limited etching and also increased the etching rate in the reaction-limited region. Therefore, the control of the wafer temperature is crucial to controlling the etching amount by this method. We found that the uniform lateral etching of W was possible even in a deep trench where the F radical concentration was low.

  4. In Situ Fabrication and Reactivation of Highly Selective and Stable Ag Catalysts for Electrochemical CO2 Conversion.

    PubMed

    Ma, Ming; Liu, Kai; Shen, Jie; Kas, Recep; Smith, Wilson A

    2018-06-08

    In this work, the highly selective and stable electrocatalytic reduction of CO 2 to CO on nanostructured Ag electrocatalysts is presented. The Ag electrocatalysts are synthesized by the electroreduction of Ag 2 CO 3 formed by in situ anodic-etching of Ag foil in a KHCO 3 electrolyte. After 3 min of this etching treatment, the Ag 2 CO 3 -derived nanostructured Ag electrocatalysts are capable of producing CO with up to 92% Faradaic efficiency at an overpotential as low as 290 mV, which surpasses all of the reported Ag catalysts at identical conditions to date. In addition, the anodic-etched Ag retained ∼90% catalytic selectivity in the electroreduction of CO 2 to CO for more than 100 h. The Ag 2 CO 3 -derived Ag is able to facilitate the activation of CO 2 via reduction of the activation energy barrier of the initial electron transfer and provide an increased number of active sites, resulting in the dramatically improved catalytic activity for the reduction of CO 2 to CO.

  5. Modeling the characteristic etch morphologies along specific crystallographic orientations by anisotropic chemical etching

    NASA Astrophysics Data System (ADS)

    Li, Kun-Dar; Miao, Jin-Ru

    2018-02-01

    To improve the advanced manufacturing technology for functional materials, a sophisticated control of chemical etching process is highly demanded, especially in the fields of environment and energy related applications. In this study, a phase-field-based model is utilized to investigate the etch morphologies influenced by the crystallographic characters during anisotropic chemical etching. Three types of etching modes are inspected theoretically, including the isotropic, <100> and <111> preferred oriented etchings. Owing to the specific etching behavior along the crystallographic directions, different characteristic surface structures are presented in the simulations, such as the pimple-like, pyramidal hillock and ridge-like morphologies. In addition, the processing parameters affecting the surface morphological formation and evolution are also examined systematically. According to the numerical results, the growth mechanism of surface morphology in a chemical etching is revealed distinctly. While the etching dynamics plays a dominant role on the surface formation, the characteristic surface morphologies corresponding to the preferred etching direction become more apparent. As the atomic diffusion turned into a determinative factor, a smoothened surface would appear, even under the anisotropic etching conditions. These simulation results provide fundamental information to enhance the development and application of anisotropic chemical etching techniques.

  6. Simulation of SiO2 etching in an inductively coupled CF4 plasma

    NASA Astrophysics Data System (ADS)

    Xu, Qing; Li, Yu-Xing; Li, Xiao-Ning; Wang, Jia-Bin; Yang, Fan; Yang, Yi; Ren, Tian-Ling

    2017-02-01

    Plasma etching technology is an indispensable processing method in the manufacturing process of semiconductor devices. Because of the high fluorine/carbon ratio of CF4, the CF4 gas is often used for etching SiO2. A commercial software ESI-CFD is used to simulate the process of plasma etching with an inductively coupled plasma model. For the simulation part, CFD-ACE is used to simulate the chamber, and CFD-TOPO is used to simulate the surface of the sample. The effects of chamber pressure, bias voltage and ICP power on the reactant particles were investigated, and the etching profiles of SiO2 were obtained. Simulation can be used to predict the effects of reaction conditions on the density, energy and angular distributions of reactant particles, which can play a good role in guiding the etching process.

  7. Deep Etching Process Developed for the Fabrication of Silicon Carbide Microsystems

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn M.

    2000-01-01

    Silicon carbide (SiC), because of its superior electrical and mechanical properties at elevated temperatures, is a nearly ideal material for the microminiature sensors and actuators that are used in harsh environments where temperatures may reach 600 C or greater. Deep etching using plasma methods is one of the key processes used to fabricate silicon microsystems for more benign environments, but SiC has proven to be a more difficult material to etch, and etch depths in SiC have been limited to several micrometers. Recently, the Sensors and Electronics Technology Branch at the NASA Glenn Research Center at Lewis Field developed a plasma etching process that was shown to be capable of etching SiC to a depth of 60 mm. Deep etching of SiC is achieved by inductive coupling of radiofrequency electrical energy to a sulfur hexafluoride (SF6) plasma to direct a high flux of energetic ions and reactive fluorine atoms to the SiC surface. The plasma etch is performed at a low pressure, 5 mtorr, which together with a high gas throughput, provides for rapid removal of the gaseous etch products. The lateral topology of the SiC microstructure is defined by a thin film of etch-resistant material, such as indium-tin-oxide, which is patterned using conventional photolithographic processes. Ions from the plasma bombard the exposed SiC surfaces and supply the energy needed to initiate a reaction between SiC and atomic fluorine. In the absence of ion bombardment, no reaction occurs, so surfaces perpendicular to the wafer surface (the etch sidewalls) are etched slowly, yielding the desired vertical sidewalls.

  8. In-situ photoluminescence imaging for passivation-layer etching process control for photovoltaics

    NASA Astrophysics Data System (ADS)

    Lee, J. Z.; Michaelson, L.; Munoz, K.; Tyson, T.; Gallegos, A.; Sullivan, J. T.; Buonassisi, T.

    2014-07-01

    Light-induced plating (LIP) of solar-cell metal contacts is a scalable alternative to silver paste. However, LIP requires an additional patterning step to create openings in the silicon nitride (SiNx) antireflection coating (ARC) layer prior to metallization. One approach to pattern the SiNx is masking and wet chemical etching. In-situ real-time photoluminescence imaging (PLI) is demonstrated as a process-monitoring method to determine when SiNx has been fully removed during etching. We demonstrate that the change in PLI signal intensity during etching is caused by a combination of (1) decreasing light absorption from the reduction in SiNx ARC layer thickness and (2) decreasing surface lifetime as the SiNx/Si interface transitions to an etch-solution/Si. Using in-situ PLI to guide the etching process, we demonstrate a full-area plated single-crystalline silicon device. In-situ PLI has the potential to be integrated into a commercial processing line to improve process control and reliability.

  9. Development of large-surface Nafion-metal composite actuator and its electrochemical characterization

    NASA Astrophysics Data System (ADS)

    Noh, Taegeun; Tak, Yong Suk; Nam, Jaedo; Jeon, Jaewook; Kim, Hunmo; Choi, Hyoukryeol; Bae, Sang Sik

    2001-07-01

    Behaviors of nafion-based actuators are significantly affected by interfacial area between electrode and polymer electrolyte. Replication method was utilized to manufacture a large surface-area composite actuator. Etched aluminum foil was used as a template for replication using liquid nafion solution. Measurement of double layer charging and scanning electron microscopy indicated that interfacial area was greatly increased by replication method. Higher surface area induced a better bending performance of ionic polymer metal composite (IPMC). In parallel, the effect of cations on IPMC was interpreted with constant current experiment, linear sweep voltammetry and electrochemical impedance spectroscopy. For univalent cations, ion size is the most influencing parameter on ionic mobility inside membrane. However, ion-ion interaction affects an ionic mobility for divalent cations.

  10. Post-processing of fused silica and its effects on damage resistance to nanosecond pulsed UV lasers.

    PubMed

    Ye, Hui; Li, Yaguo; Zhang, Qinghua; Wang, Wei; Yuan, Zhigang; Wang, Jian; Xu, Qiao

    2016-04-10

    HF-based (hydrofluoric acid) chemical etching has been a widely accepted technique to improve the laser damage performance of fused silica optics and ensure high-power UV laser systems at designed fluence. Etching processes such as acid concentration, composition, material removal amount, and etching state (etching with additional acoustic power or not) may have a great impact on the laser-induced damage threshold (LIDT) of treated sample surfaces. In order to find out the effects of these factors, we utilized the Taguchi method to determine the etching conditions that are helpful in raising the LIDT. Our results show that the most influential factors are concentration of etchants and the material etched away from the viewpoint of damage performance of fused silica optics. In addition, the additional acoustic power (∼0.6  W·cm-2) may not benefit the etching rate and damage performance of fused silica. Moreover, the post-cleaning procedure of etched samples is also important in damage performances of fused silica optics. Different post-cleaning procedures were, thus, experiments on samples treated under the same etching conditions. It is found that the "spraying + rinsing + spraying" cleaning process is favorable to the removal of etching-induced deposits. Residuals on the etched surface are harmful to surface roughness and optical transmission as well as laser damage performance.

  11. Microfabricated electrochemical sensors for combustion applications

    NASA Astrophysics Data System (ADS)

    Vulcano Rossi, Vitor A.; Mullen, Max R.; Karker, Nicholas A.; Zhao, Zhouying; Kowarz, Marek W.; Dutta, Prabir K.; Carpenter, Michael A.

    2015-05-01

    A new design for the miniaturization of an existing oxygen sensor is proposed based on the application of silicon microfabrication technologies to a cm sized O2 sensor demonstrated by Argonne National Laboratory and The Ohio State University which seals a metal/metal oxide within the structure to provide an integrated oxygen reference. The structural and processing changes suggested will result in a novel MEMS-based device meeting the semiconductor industry standards for cost efficiency and mass production. The MEMS design requires thin film depositions to create a YSZ membrane, palladium oxide reference and platinum electrodes. Pt electrodes are studied under operational conditions ensuring film conductivity over prolonged usage. SEM imaging confirms void formation after extended tests, consistent with the literature. Furthermore, hydrophilic bonding of pairs of silicon die samples containing the YSZ membrane and palladium oxide is discussed in order to create hermetic sealed cavities for oxygen reference. The introduction of tensile Si3N4 films to the backside of the silicon die generates bowing of the chips, compromising bond quality. This effect is controlled through the application of pressure during the initial bonding stages. In addition, KOH etching of the bonded die samples is discussed, and a YSZ membrane that survives the etching step is characterized by Raman spectroscopy.

  12. Synthesis of hollow carbon nanoshells and their application for supercapacitors

    NASA Astrophysics Data System (ADS)

    Rudakov, G. A.; Sosunov, A. V.; Ponomarev, R. S.; Khenner, V. K.; Reza, Md. Shamim; Sumanasekera, Gamini

    2018-01-01

    This work is devoted to the study of the synthesis, the description of the structure, and the use of hollow carbon nanoshells 3-5 nm in size. Hollow carbon nanoshells were synthesized by thermolysis of a mixture of nickel acetate and citric acid in the temperature range of 500-700°C. During the chemical reaction, nickel nuclei 3-5 nm in size are formed, separated from each other by carbon layers. At an annealing temperature of 600°C, the most ordered, close-packed structure is formed, evenly distributed throughout the sample. The etching of nickel with nitric acid resulted in hollow carbon nanoshells with a high specific surface area ( 1200 m2/g) and a homogeneous structure. Raman spectroscopy shows that the graphene-like structure of carbon nanoshells is preserved before and after the etching of nickel, and their defect density does not increase, which enables them to be subjected to new processing (functionalization) in order to obtain additional physical properties. The resulting carbon nanoshells were used as active material of the supercapacitor electrodes. The conducted electrochemical measurements showed that the specific capacitance of the supercapacitor did not fall below 120 F/g at a current density of 0.3 to 3 A after 800 charge/discharge cycles.

  13. Preparation of multifunctional Al-Mg alloy surface with hierarchical micro/nanostructures by selective chemical etching processes

    NASA Astrophysics Data System (ADS)

    Shi, Tian; Kong, Jianyi; Wang, Xingdong; Li, Xuewu

    2016-12-01

    A superamphiphobic aluminum magnesium alloy surface with enhanced anticorrosion behavior has been prepared in this work via a simple and low-cost method. By successively polishing, etching and boiling treatments, the multifunctional hierarchical binary structures composed of the labyrinth-like concave-convex microstructures and twisty nanoflakes have been prepared. Results indicate that a superhydrophobic contact angle of 160.5° and superoleophobic contact angle larger than 150° as well as low adhesive property to liquids are achieved after such structures being modified with fluoroalkyl-silane. Furthermore, the anticorrosion behaviors in seawater of as-prepared samples are characterized by electrochemical tests including the impedance spectroscopies, equivalent circuits fittings and polarization curves. It is found that the hierarchical micro/nanostructures accompanying with the modified coating are proved to possess the maximal coating coverage rate of 90.0% larger than microstructures of 85.9%, nanostructures of 83.8% and bare polished surface of 67.1% suggesting the optimal anticorrosion. Finally, a great potential application in concentrators for surface-enhanced Raman scattering (SERS) analysis of toxic and pollutive ions on the superamphiphobic surface is also confirmed. This work has wider significance in extending further applications of alloys in engineering and environmental detecting fields.

  14. Scalable fabrication of carbon-based MEMS/NEMS and their applications: a review

    NASA Astrophysics Data System (ADS)

    Jiang, Shulan; Shi, Tielin; Zhan, Xiaobin; Xi, Shuang; Long, Hu; Gong, Bo; Li, Junjie; Cheng, Siyi; Huang, Yuanyuan; Tang, Zirong

    2015-11-01

    The carbon-based micro/nano electromechanical system (MEMS/NEMS) technique provides a powerful approach to large-scale manufacture of high-aspect-ratio carbon structures for wafer-level processing. The fabricated three-dimensional (3D) carbon structures have the advantages of excellent electrical and electrochemical properties, and superior biocompatibility. In order to improve their performance for applications in micro energy storage devices and microsensors, an increase in the footprint surface area is of great importance. Various approaches have been proposed for fabricating large surface area carbon-based structures, including the integration of nanostructures such as carbon nanotubes (CNTs), graphene, nanowires, nanofilms and nanowrinkles onto 3D structures, which has been proved to be effective and productive. Moreover, by etching the 3D photoresist microstructures through oxygen plasma or modifying the photoresist with specific materials which can be etched in the following pyrolysis process, micro/nano hierarchical carbon structures have been fabricated. These improved structures show excellent performance in various applications, especially in the fields of biological sensors, surface-enhanced Raman scattering, and energy storage devices such as micro-supercapacitors and fuel cells. With the rapid development of microelectronic devices, the carbon-based MEMS/NEMS technique could make more aggressive moves into microelectronics, sensors, miniaturized power systems, etc. In this review, the recent advances in the fabrication of micro/nano hierarchical carbon-based structures are introduced and the technical challenges and future outlook of the carbon-based MEMS/NEMS techniques are also analyzed.

  15. Hierarchical Co-based Porous Layered Double Hydroxide Arrays Derived via Alkali Etching for High-performance Supercapacitors

    NASA Astrophysics Data System (ADS)

    Abushrenta, Nasser; Wu, Xiaochao; Wang, Junnan; Liu, Junfeng; Sun, Xiaoming

    2015-08-01

    Hierarchical nanoarchitecture and porous structure can both provide advantages for improving the electrochemical performance in energy storage electrodes. Here we report a novel strategy to synthesize new electrode materials, hierarchical Co-based porous layered double hydroxide (PLDH) arrays derived via alkali etching from Co(OH)2@CoAl LDH nanoarrays. This structure not only has the benefits of hierarchical nanoarrays including short ion diffusion path and good charge transport, but also possesses a large contact surface area owing to its porous structure which lead to a high specific capacitance (23.75 F cm-2 or 1734 F g-1 at 5 mA cm-2) and excellent cycling performance (over 85% after 5000 cycles). The enhanced electrode material is a promising candidate for supercapacitors in future application.

  16. Hierarchical Co-based Porous Layered Double Hydroxide Arrays Derived via Alkali Etching for High-performance Supercapacitors

    PubMed Central

    Abushrenta, Nasser; Wu, Xiaochao; Wang, Junnan; Liu, Junfeng; Sun, Xiaoming

    2015-01-01

    Hierarchical nanoarchitecture and porous structure can both provide advantages for improving the electrochemical performance in energy storage electrodes. Here we report a novel strategy to synthesize new electrode materials, hierarchical Co-based porous layered double hydroxide (PLDH) arrays derived via alkali etching from Co(OH)2@CoAl LDH nanoarrays. This structure not only has the benefits of hierarchical nanoarrays including short ion diffusion path and good charge transport, but also possesses a large contact surface area owing to its porous structure which lead to a high specific capacitance (23.75 F cm−2 or 1734 F g−1 at 5 mA cm−2) and excellent cycling performance (over 85% after 5000 cycles). The enhanced electrode material is a promising candidate for supercapacitors in future application. PMID:26278334

  17. Formation of ultra Si/Ti nano thin film for enhancing silicon solar cell efficiency

    NASA Astrophysics Data System (ADS)

    Adam, T.; Dhahi, T. S.; Mohammed, M.; Al-Hajj, A. M.; Hashim, U.

    2017-10-01

    An alternative electrical source has l has become the major quest of every researchers due to it numerous advantages and applications of power supply and as electronic devices are becoming more and more portable. A highly efficient power supply is become inevitable. Thus. in this study, present ultrasonic based assisted fabrication of electrochemical silicon-Titanium nano thin film by in-house simple technique, uniformly silicon Nano film was fabricated and etched with HF (40%): C2H5OH (99%):1:1, < 20 nm pore diameter of silicon was fabricated. The surface and morphology reveal that the method produce uniform nano silicon porous layer with smaller silicon pores with high etching efficiency. The silicon-Titanium integrated nano porous exhibited excellent observation properties with low reflection index ~ 1.1 compared to silicon alone thin film.

  18. Study of Gallium Arsenide Etching in a DC Discharge in Low-Pressure HCl-Containing Mixtures

    NASA Astrophysics Data System (ADS)

    Dunaev, A. V.; Murin, D. B.

    2018-04-01

    Halogen-containing plasmas are often used to form topological structures on semiconductor surfaces; therefore, spectral monitoring of the etching process is an important diagnostic tool in modern electronics. In this work, the emission spectra of gas discharges in mixtures of hydrogen chloride with argon, chlorine, and hydrogen in the presence of a semiconducting gallium arsenide plate were studied. Spectral lines and bands of the GaAs etching products appropriate for monitoring the etching rate were determined. It is shown that the emission intensity of the etching products is proportional to the GaAs etching rate in plasmas of HCl mixtures with Ar and Cl2, which makes it possible to monitor the etching process in real time by means of spectral methods.

  19. Method for anisotropic etching in the manufacture of semiconductor devices

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor); Cross, Jon B. (Inventor)

    1993-01-01

    Hydrocarbon polymer coatings used in microelectronic manufacturing processes are anisotropically etched by hyperthermal atomic oxygen beams (translational energies of 0.2 to 20 eV, preferably 1 to 10 eV). Etching with hyperthermal oxygen atom species obtains highly anisotropic etching with sharp boundaries between etched and mask protected areas.

  20. Method for anisotropic etching in the manufacture of semiconductor devices

    DOEpatents

    Koontz, Steven L.; Cross, Jon B.

    1993-01-01

    Hydrocarbon polymer coatings used in microelectronic manufacturing processes are anisotropically etched by atomic oxygen beams (translational energies of 0.2-20 eV, preferably 1-10 eV). Etching with hyperthermal (kinetic energy>1 eV) oxygen atom species obtains highly anisotropic etching with sharp boundaries between etched and mask-protected areas.

  1. Performance improvements of binary diffractive structures via optimization of the photolithography and dry etch processes

    NASA Astrophysics Data System (ADS)

    Welch, Kevin; Leonard, Jerry; Jones, Richard D.

    2010-08-01

    Increasingly stringent requirements on the performance of diffractive optical elements (DOEs) used in wafer scanner illumination systems are driving continuous improvements in their associated manufacturing processes. Specifically, these processes are designed to improve the output pattern uniformity of off-axis illumination systems to minimize degradation in the ultimate imaging performance of a lithographic tool. In this paper, we discuss performance improvements in both photolithographic patterning and RIE etching of fused silica diffractive optical structures. In summary, optimized photolithographic processes were developed to increase critical dimension uniformity and featuresize linearity across the substrate. The photoresist film thickness was also optimized for integration with an improved etch process. This etch process was itself optimized for pattern transfer fidelity, sidewall profile (wall angle, trench bottom flatness), and across-wafer etch depth uniformity. Improvements observed with these processes on idealized test structures (for ease of analysis) led to their implementation in product flows, with comparable increases in performance and yield on customer designs.

  2. Plasma processing of superconducting radio frequency cavities

    NASA Astrophysics Data System (ADS)

    Upadhyay, Janardan

    The development of plasma processing technology of superconducting radio frequency (SRF) cavities not only provides a chemical free and less expensive processing method, but also opens up the possibility for controlled modification of the inner surfaces of the cavity for better superconducting properties. The research was focused on the transition of plasma etching from two dimensional flat surfaces to inner surfaces of three dimensional (3D) structures. The results could be applicable to a variety of inner surfaces of 3D structures other than SRF cavities. Understanding the Ar/Cl2 plasma etching mechanism is crucial for achieving the desired modification of Nb SRF cavities. In the process of developing plasma etching technology, an apparatus was built and a method was developed to plasma etch a single cell Pill Box cavity. The plasma characterization was done with the help of optical emission spectroscopy. The Nb etch rate at various points of this cavity was measured before processing the SRF cavity. Cylindrical ring-type samples of Nb placed on the inner surface of the outer wall were used to measure the dependence of the process parameters on plasma etching. The measured etch rate dependence on the pressure, rf power, dc bias, temperature, Cl2 concentration and diameter of the inner electrode was determined. The etch rate mechanism was studied by varying the temperature of the outer wall, the dc bias on the inner electrode and gas conditions. In a coaxial plasma reactor, uniform plasma etching along the cylindrical structure is a challenging task due to depletion of the active radicals along the gas flow direction. The dependence of etch rate uniformity along the cylindrical axis was determined as a function of process parameters. The formation of dc self-biases due to surface area asymmetry in this type of plasma and its variation on the pressure, rf power and gas composition was measured. Enhancing the surface area of the inner electrode to reduce the asymmetry was studied by changing the contour of the inner electrode. The optimized contour of the electrode based on these measurements was chosen for SRF cavity processing.

  3. Fabrication of a novel quartz micromachined gyroscope

    NASA Astrophysics Data System (ADS)

    Xie, Liqiang; Xing, Jianchun; Wang, Haoxu; Wu, Xuezhong

    2015-04-01

    A novel quartz micromachined gyroscope is proposed in this paper. The novel gyroscope is realized by quartz anisotropic wet etching and 3-dimensional electrodes deposition. In the quartz wet etching process, the quality of Cr/Au mask films affecting the process are studied by experiment. An excellent mask film with 100 Å Cr and 2000 Å Au is achieved by optimization of experimental parameters. Crystal facets after etching seriously affect the following sidewall electrodes deposition process and the structure's mechanical behaviours. Removal of crystal facets is successfully implemented by increasing etching time based on etching rate ratios between facets and crystal planes. In the electrodes deposition process, an aperture mask evaporation method is employed to prepare electrodes on 3-dimensional surfaces of the gyroscope structure. The alignments among the aperture masks are realized by the ABM™ Mask Aligner System. Based on the processes described above, a z-axis quartz gyroscope is fabricated successfully.

  4. Characterization of nanostructured CuO-porous silicon matrix formed on copper-coated silicon substrate via electrochemical etching

    NASA Astrophysics Data System (ADS)

    Naddaf, M.; Mrad, O.; Al-zier, A.

    2014-06-01

    A pulsed anodic etching method has been utilized for nanostructuring of a copper-coated p-type (100) silicon substrate, using HF-based solution as electrolyte. Scanning electron microscopy reveals the formation of a nanostructured matrix that consists of island-like textures with nanosize grains grown onto fiber-like columnar structures separated with etch pits of grooved porous structures. Spatial micro-Raman scattering analysis indicates that the island-like texture is composed of single-phase cupric oxide (CuO) nanocrystals, while the grooved porous structure is barely related to formation of porous silicon (PS). X-ray diffraction shows that both the grown CuO nanostructures and the etched silicon layer have the same preferred (220) orientation. Chemical composition obtained by means of X-ray photoelectron spectroscopic (XPS) analysis confirms the presence of the single-phase CuO on the surface of the patterned CuO-PS matrix. As compared to PS formed on the bare silicon substrate, the room-temperature photoluminescence (PL) from the CuO-PS matrix exhibits an additional weak `blue' PL band as well as a blue shift in the PL band of PS (S-band). This has been revealed from XPS analysis to be associated with the enhancement in the SiO2 content as well as formation of the carbonyl group on the surface in the case of the CuO-PS matrix.

  5. Mechanism for Plasma Etching of Shallow Trench Isolation Features in an Inductively Coupled Plasma

    NASA Astrophysics Data System (ADS)

    Agarwal, Ankur; Rauf, Shahid; He, Jim; Choi, Jinhan; Collins, Ken

    2011-10-01

    Plasma etching for microelectronics fabrication is facing extreme challenges as processes are developed for advanced technological nodes. As device sizes shrink, control of shallow trench isolation (STI) features become more important in both logic and memory devices. Halogen-based inductively coupled plasmas in a pressure range of 20-60 mTorr are typically used to etch STI features. The need for improved performance and shorter development cycles are placing greater emphasis on understanding the underlying mechanisms to meet process specifications. In this work, a surface mechanism for STI etch process will be discussed that couples a fundamental plasma model to experimental etch process measurements. This model utilizes ion/neutral fluxes and energy distributions calculated using the Hybrid Plasma Equipment Model. Experiments are for blanket Si wafers in a Cl2/HBr/O2/N2 plasma over a range of pressures, bias powers, and flow rates of feedstock gases. We found that kinetic treatment of electron transport was critical to achieve good agreement with experiments. The calibrated plasma model is then coupled to a string-based feature scale model to quantify the effect of varying process parameters on the etch profile. We found that the operating parameters strongly influence critical dimensions but have only a subtle impact on the etch depths.

  6. Monitoring of degradation of porous silicon photonic crystals using digital photography

    PubMed Central

    2014-01-01

    We report the monitoring of porous silicon (pSi) degradation in aqueous solutions using a consumer-grade digital camera. To facilitate optical monitoring, the pSi samples were prepared as one-dimensional photonic crystals (rugate filters) by electrochemical etching of highly doped p-type Si wafers using a periodic etch waveform. Two pSi formulations, representing chemistries relevant for self-reporting drug delivery applications, were tested: freshly etched pSi (fpSi) and fpSi coated with the biodegradable polymer chitosan (pSi-ch). Accelerated degradation of the samples in an ethanol-containing pH 10 aqueous basic buffer was monitored in situ by digital imaging with a consumer-grade digital camera with simultaneous optical reflectance spectrophotometric point measurements. As the nanostructured porous silicon matrix dissolved, a hypsochromic shift in the wavelength of the rugate reflectance peak resulted in visible color changes from red to green. While the H coordinate in the hue, saturation, and value (HSV) color space calculated using the as-acquired photographs was a good monitor of degradation at short times (t < 100 min), it was not a useful monitor of sample degradation at longer times since it was influenced by reflections of the broad spectral output of the lamp as well as from the narrow rugate reflectance band. A monotonic relationship was observed between the wavelength of the rugate reflectance peak and an H parameter value calculated from the average red-green-blue (RGB) values of each image by first independently normalizing each channel (R, G, and B) using their maximum and minimum value over the time course of the degradation process. Spectrophotometric measurements and digital image analysis using this H parameter gave consistent relative stabilities of the samples as fpSi > pSi-ch. PMID:25242902

  7. Silicon etching using only Oxygen at high temperature: An alternative approach to Si micro-machining on 150 mm Si wafers

    NASA Astrophysics Data System (ADS)

    Chai, Jessica; Walker, Glenn; Wang, Li; Massoubre, David; Tan, Say Hwa; Chaik, Kien; Hold, Leonie; Iacopi, Alan

    2015-12-01

    Using a combination of low-pressure oxygen and high temperatures, isotropic and anisotropic silicon (Si) etch rates can be controlled up to ten micron per minute. By varying the process conditions, we show that the vertical-to-lateral etch rate ratio can be controlled from 1:1 isotropic etch to 1.8:1 anisotropic. This simple Si etching technique combines the main respective advantages of both wet and dry Si etching techniques such as fast Si etch rate, stiction-free, and high etch rate uniformity across a wafer. In addition, this alternative O2-based Si etching technique has additional advantages not commonly associated with dry etchants such as avoiding the use of halogens and has no toxic by-products, which improves safety and simplifies waste disposal. Furthermore, this process also exhibits very high selectivity (>1000:1) with conventional hard masks such as silicon carbide, silicon dioxide and silicon nitride, enabling deep Si etching. In these initial studies, etch rates as high as 9.2 μm/min could be achieved at 1150 °C. Empirical estimation for the calculation of the etch rate as a function of the feature size and oxygen flow rate are presented and used as proof of concepts.

  8. Surface engineering on CeO2 nanorods by chemical redox etching and their enhanced catalytic activity for CO oxidation

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Zhang, Zhiyun; Li, Jing; Ma, Yuanyuan; Qu, Yongquan

    2015-07-01

    Controllable surface properties of nanocerias are desired for various catalytic processes. There is a lack of efficient approaches to adjust the surface properties of ceria to date. Herein, a redox chemical etching method was developed to controllably engineer the surface properties of ceria nanorods. Ascorbic acid and hydrogen peroxide were used to perform the redox chemical etching process, resulting in a rough surface and/or pores on the surface of ceria nanorods. Increasing the etching cycles induced a steady increase of the specific surface area, oxygen vacancies and surface Ce3+ fractions. As a result, the etched nanorods delivered enhanced catalytic activity for CO oxidation, compared to the non-etched ceria nanorods. Our method provides a novel and facile approach to continuously adjust the surface properties of ceria for practical applications.Controllable surface properties of nanocerias are desired for various catalytic processes. There is a lack of efficient approaches to adjust the surface properties of ceria to date. Herein, a redox chemical etching method was developed to controllably engineer the surface properties of ceria nanorods. Ascorbic acid and hydrogen peroxide were used to perform the redox chemical etching process, resulting in a rough surface and/or pores on the surface of ceria nanorods. Increasing the etching cycles induced a steady increase of the specific surface area, oxygen vacancies and surface Ce3+ fractions. As a result, the etched nanorods delivered enhanced catalytic activity for CO oxidation, compared to the non-etched ceria nanorods. Our method provides a novel and facile approach to continuously adjust the surface properties of ceria for practical applications. Electronic supplementary information (ESI) available: Diameter distributions of as-prepared and etched samples, optical images, specific catalytic data of CO oxidation and comparison of CO oxidation. See DOI: 10.1039/c5nr01846c

  9. New Deep Reactive Ion Etching Process Developed for the Microfabrication of Silicon Carbide

    NASA Technical Reports Server (NTRS)

    Evans, Laura J.; Beheim, Glenn M.

    2005-01-01

    Silicon carbide (SiC) is a promising material for harsh environment sensors and electronics because it can enable such devices to withstand high temperatures and corrosive environments. Microfabrication techniques have been studied extensively in an effort to obtain the same flexibility of machining SiC that is possible for the fabrication of silicon devices. Bulk micromachining using deep reactive ion etching (DRIE) is attractive because it allows the fabrication of microstructures with high aspect ratios (etch depth divided by lateral feature size) in single-crystal or polycrystalline wafers. Previously, the Sensors and Electronics Branch of the NASA Glenn Research Center developed a DRIE process for SiC using the etchant gases sulfur hexafluoride (SF6) and argon (Ar). This process provides an adequate etch rate of 0.2 m/min and yields a smooth surface at the etch bottom. However, the etch sidewalls are rougher than desired, as shown in the preceding photomicrograph. Furthermore, the resulting structures have sides that slope inwards, rather than being precisely vertical. A new DRIE process for SiC was developed at Glenn that produces smooth, vertical sidewalls, while maintaining an adequately high etch rate.

  10. Silicon solar cells made by a self-aligned, selective-emitter, plasma-etchback process

    DOEpatents

    Ruby, Douglas S.; Schubert, William K.; Gee, James M.

    1999-01-01

    A potentially low-cost process for forming and passivating a selective emitter. The process uses a plasma etch of the heavily doped emitter to improve its performance. The grids of the solar cell are used to mask the plasma etch so that only the emitter in the region between the grids is etched, while the region beneath the grids remains heavily doped for low contact resistance. This process is potentially low-cost because it requires no alignment. After the emitter etch, a silicon nitride layer is deposited by plasma-enhanced, chemical vapor deposition, and the solar cell is annealed in a forming gas.

  11. Silicon solar cells made by a self-aligned, selective-emitter, plasma-etchback process

    DOEpatents

    Ruby, D.S.; Schubert, W.K.; Gee, J.M.

    1999-02-16

    A potentially low-cost process for forming and passivating a selective emitter. The process uses a plasma etch of the heavily doped emitter to improve its performance. The grids of the solar cell are used to mask the plasma etch so that only the emitter in the region between the grids is etched, while the region beneath the grids remains heavily doped for low contact resistance. This process is potentially low-cost because it requires no alignment. After the emitter etch, a silicon nitride layer is deposited by plasma-enhanced, chemical vapor deposition, and the solar cell is annealed in a forming gas. 5 figs.

  12. Process Development for Automated Solar Cell and Module Production. Task 4: Automated Array Assembly

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A baseline sequence for the manufacture of solar cell modules was specified. Starting with silicon wafers, the process goes through damage etching, texture etching, junction formation, plasma edge etch, aluminum back surface field formation, and screen printed metallization to produce finished solar cells. The cells were then series connected on a ribbon and bonded into a finished glass tedlar module. A number of steps required additional developmental effort to verify technical and economic feasibility. These steps include texture etching, plasma edge etch, aluminum back surface field formation, array layup and interconnect, and module edge sealing and framing.

  13. Symmetric redox supercapacitor based on micro-fabrication with three-dimensional polypyrrole electrodes

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Zheng, Ruilin; Chen, Xuyuan

    To achieve higher energy density and power density, we have designed and fabricated a symmetric redox supercapacitor based on microelectromechanical system (MEMS) technologies. The supercapacitor consists of a three-dimensional (3D) microstructure on silicon substrate micromachined by high-aspect-ratio deep reactive ion etching (DRIE) method, two sputtered Ti current collectors and two electrochemical polymerized polypyrrole (PPy) films as electrodes. Electrochemical tests, including cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatical charge/discharge methods have been carried out on the single PPy electrodes and the symmetric supercapacitor in different electrolytes. The specific capacitance (capacitance per unit footprint area) and specific power (power per unit footprint area) of the PPy electrodes and symmetric supercapacitor can be calculated from the electrochemical test data. It is found that NaCl solution is a good electrolyte for the polymerized PPy electrodes. In NaCl electrolyte, single PPy electrodes exhibit 0.128 F cm -2 specific capacitance and 1.28 mW cm -2 specific power at 20 mV s -1 scan rate. The symmetric supercapacitor presents 0.056 F cm -2 specific capacitance and 0.56 mW cm -2 specific power at 20 mV s -1 scan rate.

  14. The Electrochemical Behavior of Mo-Ta Alloy in Phosphoric Acid Solution for TFT-LCD Application.

    PubMed

    Lee, Sang-Hyuk; Kim, Byoung O; Seo, Jong Hyun

    2015-10-01

    Molybdenum-tantalum alloy thin film is a suitable material for the higher corrosion resistance and low resistivity for gate and data metal lines. In this study, Mo-Ta alloy thin films were prepared by using a DC magnetron co-sputtering system on a glass substrate. An abrupt increase in the etching rates of low Mo-Ta alloys was observed. From the observed impedance analysis, the defect densities in the MoTa oxide films increased from 5.4 x 10(21) (cm(-3)) to 8.02 x 10(21) (cm(-3)) up to the 6 at% of tantalum level; and above the 6 at% of tantalum level, the defect densities decreased. This electrochemical behavior is explained by the mechanical instability of the MoTa oxide film.

  15. Modeling of block copolymer dry etching for directed self-assembly lithography

    NASA Astrophysics Data System (ADS)

    Belete, Zelalem; Baer, Eberhard; Erdmann, Andreas

    2018-03-01

    Directed self-assembly (DSA) of block copolymers (BCP) is a promising alternative technology to overcome the limits of patterning for the semiconductor industry. DSA exploits the self-assembling property of BCPs for nano-scale manufacturing and to repair defects in patterns created during photolithography. After self-assembly of BCPs, to transfer the created pattern to the underlying substrate, selective etching of PMMA (poly (methyl methacrylate)) to PS (polystyrene) is required. However, the etch process to transfer the self-assemble "fingerprint" DSA patterns to the underlying layer is still a challenge. Using combined experimental and modelling studies increases understanding of plasma interaction with BCP materials during the etch process and supports the development of selective process that form well-defined patterns. In this paper, a simple model based on a generic surface model has been developed and an investigation to understand the etch behavior of PS-b-PMMA for Ar, and Ar/O2 plasma chemistries has been conducted. The implemented model is calibrated for etch rates and etch profiles with literature data to extract parameters and conduct simulations. In order to understand the effect of the plasma on the block copolymers, first the etch model was calibrated for polystyrene (PS) and poly (methyl methacrylate) (PMMA) homopolymers. After calibration of the model with the homopolymers etch rate, a full Monte-Carlo simulation was conducted and simulation results are compared with the critical-dimension (CD) and selectivity of etch profile measurement. In addition, etch simulations for lamellae pattern have been demonstrated, using the implemented model.

  16. Investigation of porous silicon nanopowders functionalized by antibiotic Kanamycin, fluorophore Indocyanine Green

    NASA Astrophysics Data System (ADS)

    Bespalova, K.; Somov, P. A.; Spivak, Yu M.

    2017-11-01

    Porous silicon nanopowders for target drug delivery were obtained by electrochemical anodic etching in a hydrofluoric acid solution using the monocrystalline silicon n-type conductivity. Porous silicon powders were obtained by sonification of porous silicon layers. The powders were functionalized by antibiotic Kanamycin and fluorophore Indocyanine Green by the passive adsorption method. The peculiarities of absorption spectra in 190-600 nm region were revealed for functionalized porous silicon powders dispersions in water.

  17. Fabrication of superhydrophobic Pt3Fe/Fe surface for its application

    NASA Astrophysics Data System (ADS)

    Cui, Shuo; Lu, Shixiang; Xu, Wenguo; Wu, Bei

    2017-10-01

    Well-defined Pt3Fe/Fe superhydrophobic materials on iron sheet with special properties, such as corrosion resistance, superhydrophobicity and superoleophilicity, was fabricated. The fabrication process involved etching in hydrochloric acid aqueous solution and simple replacement deposition process without using any seed and organic solvent, and then annealing. The electrochemical measurements show that the resultant surface in 3.5% sodium chloride solution displays good corrosion resistance. Also, it is proved that the obtained surface has better mechanical abrasion resistance via scratch test. The superoleophilicity and low water adhesion force of the obtained surface endow it high oil/water separation capacity. The as-prepared nanocomposites display enhanced catalytic activity and kinetics toward degradation of methyl orange. In particular, it possesses the most efficient degradation capacity (95%) towards methyl orange at a high concentration (17.5 mg/L) in 80 min. The improved stability and excellent catalytic activity of the Pt3Fe/Fe nanocomposites promise new opportunities for the development of waste water treatment.

  18. Measurement of ion beam angular distribution at different helium gas pressures in a plasma focus device by large-area polycarbonate detectors

    NASA Astrophysics Data System (ADS)

    Sohrabi, M.; Habibi, M.; Ramezani, V.

    2017-02-01

    The paper presents an experimental study and analysis of full helium ion density angular distributions in a 4-kJ plasma focus device (PFD) at pressures of 10, 15, 25, and 30 mbar using large-area polycarbonate track detectors (PCTDs) (15-cm etchable diameter) processed by 50-Hz-HV electrochemical etching (ECE). Helium ion track distributions at different pressures, in particular, at the main axis of the PFD are presented. Maximum ion track density of 4.4 × 104 tracks/cm2 was obtained in the PCTD placed 6 cm from the anode. The ion distributions for all pressures applied are ring-shaped, which is possibly due to the hollow cylindrical copper anode used. The large-area PCTD processed by ECE proves, at the present state-of-theart, a superior method for direct observation and analysis of ion distributions at a glance with minimum efforts and time. Some observations of the ion density distributions at different pressures are reported and discussed.

  19. Nanoscale silver-assisted wet etching of crystalline silicon for anti-reflection surface textures.

    PubMed

    Li, Rui; Wang, Shuling; Chuwongin, Santhad; Zhou, Weidong

    2013-01-01

    We report here an electro-less metal-assisted chemical etching (MacEtch) process as light management surface-texturing technique for single crystalline Si photovoltaics. Random Silver nanostructures were formed on top of the Si surface based on the thin film evaporation and annealing process. Significant reflection reduction was obtained from the fabricated Si sample, with approximately 2% reflection over a wide spectra range (300 to 1050 nm). The work demonstrates the potential of MacEtch process for anti-reflection surface texture fabrication of large area, high efficiency, and low cost thin film solar cell.

  20. GPU based 3D feature profile simulation of high-aspect ratio contact hole etch process under fluorocarbon plasmas

    NASA Astrophysics Data System (ADS)

    Chun, Poo-Reum; Lee, Se-Ah; Yook, Yeong-Geun; Choi, Kwang-Sung; Cho, Deog-Geun; Yu, Dong-Hun; Chang, Won-Seok; Kwon, Deuk-Chul; Im, Yeon-Ho

    2013-09-01

    Although plasma etch profile simulation has been attracted much interest for developing reliable plasma etching, there still exist big gaps between current research status and predictable modeling due to the inherent complexity of plasma process. As an effort to address this issue, we present 3D feature profile simulation coupled with well-defined plasma-surface kinetic model for silicon dioxide etching process under fluorocarbon plasmas. To capture the realistic plasma surface reaction behaviors, a polymer layer based surface kinetic model was proposed to consider the simultaneous polymer deposition and oxide etching. Finally, the realistic plasma surface model was used for calculation of speed function for 3D topology simulation, which consists of multiple level set based moving algorithm, and ballistic transport module. In addition, the time consumable computations in the ballistic transport calculation were improved drastically by GPU based numerical computation, leading to the real time computation. Finally, we demonstrated that the surface kinetic model could be coupled successfully for 3D etch profile simulations in high-aspect ratio contact hole plasma etching.

  1. EUV process establishment through litho and etch for N7 node

    NASA Astrophysics Data System (ADS)

    Kuwahara, Yuhei; Kawakami, Shinichiro; Kubota, Minoru; Matsunaga, Koichi; Nafus, Kathleen; Foubert, Philippe; Mao, Ming

    2016-03-01

    Extreme ultraviolet lithography (EUVL) technology is steadily reaching high volume manufacturing for 16nm half pitch node and beyond. However, some challenges, for example scanner availability and resist performance (resolution, CD uniformity (CDU), LWR, etch behavior and so on) are remaining. Advance EUV patterning on the ASML NXE:3300/ CLEAN TRACK LITHIUS Pro Z- EUV litho cluster is launched at imec, allowing for finer pitch patterns for L/S and CH. Tokyo Electron Ltd. and imec are continuously collabo rating to develop manufacturing quality POR processes for NXE:3300. TEL's technologies to enhance CDU, defectivity and LWR/LER can improve patterning performance. The patterning is characterized and optimized in both litho and etch for a more complete understanding of the final patterning performance. This paper reports on post-litho CDU improvement by litho process optimization and also post-etch LWR reduction by litho and etch process optimization.

  2. Low damage dry etch for III-nitride light emitters

    NASA Astrophysics Data System (ADS)

    Nedy, Joseph G.; Young, Nathan G.; Kelchner, Kathryn M.; Hu, Yanling; Farrell, Robert M.; Nakamura, Shuji; DenBaars, Steven P.; Weisbuch, Claude; Speck, James S.

    2015-08-01

    We have developed a dry etch process for the fabrication of lithographically defined features close to light emitting layers in the III-nitride material system. The dry etch was tested for its effect on the internal quantum efficiency of c-plane InGaN quantum wells using the photoluminescence of a test structure with two active regions. No change was observed in the internal quantum efficiency of the test active region when the etched surface was greater than 71 nm away. To demonstrate the application of the developed dry etch process, surface-etched air gaps were fabricated 275 nm away from the active region of an m-plane InGaN/GaN laser diode and served as the waveguide upper cladding. Electrically injected lasing was observed without the need for regrowth or recovery anneals. This dry etch opens up a new design tool that can be utilized in the next generation of GaN light emitters.

  3. Pulsed Laser-Assisted Focused Electron-Beam-Induced Etching of Titanium with XeF 2 : Enhanced Reaction Rate and Precursor Transport

    DOE PAGES

    Noh, J. H.; Fowlkes, J. D.; Timilsina, R.; ...

    2015-01-28

    We introduce a laser-assisted focused electron-beam-induced etching (LA-FEBIE) process which is a versatile, direct write nanofabrication method that allows nanoscale patterning and editing; we do this in order to enhance the etch rate of electron-beam-induced etching. The results demonstrate that the titanium electron stimulated etch rate via the XeF2 precursor can be enhanced up to a factor of 6 times with an intermittent pulsed laser assist. Moreover, the evolution of the etching process is correlated to in situ stage current measurements and scanning electron micrographs as a function of time. Finally, the increased etch rate is attributed to photothermally enhancedmore » Ti–F reaction and TiF4 desorption and in some regimes enhanced XeF2 surface diffusion to the reaction zone.« less

  4. Formation and metrology of dual scale nano-morphology on SF(6) plasma etched silicon surfaces.

    PubMed

    Boulousis, G; Constantoudis, V; Kokkoris, G; Gogolides, E

    2008-06-25

    Surface roughness and nano-morphology in SF(6) plasma etched silicon substrates are investigated in a helicon type plasma reactor as a function of etching time and process parameters. The plasma etched surfaces are analyzed by atomic force microscopy. It is found that dual scale nano-roughness is formatted on the silicon surface comprising an underlying nano-roughness and superimposed nano-mounds. Detailed metrological quantification is proposed for the characterization of dual scale surface morphology. As etching proceeds, the mounds become higher, fewer and wider, and the underlying nano-roughness also increases. Increase in wafer temperature leads to smoother surfaces with lower, fewer and wider nano-mounds. A mechanism based on the deposition of etch inhibiting particles during the etching process is proposed for the explanation of the experimental behavior. In addition, appropriately designed experiments are conducted, and they confirm the presence of this mechanism.

  5. SEMICONDUCTOR TECHNOLOGY Texturization of mono-crystalline silicon solar cells in TMAH without the addition of surfactant

    NASA Astrophysics Data System (ADS)

    Weiying, Ou; Yao, Zhang; Hailing, Li; Lei, Zhao; Chunlan, Zhou; Hongwei, Diao; Min, Liu; Weiming, Lu; Jun, Zhang; Wenjing, Wang

    2010-10-01

    Etching was performed on (100) silicon wafers using silicon-dissolved tetramethylammonium hydroxide (TMAH) solutions without the addition of surfactant. Experiments were carried out in different TMAH concentrations at different temperatures for different etching times. The surface phenomena, etching rates, surface morphology and surface reflectance were analyzed. Experimental results show that the resulting surface covered with uniform pyramids can be realized with a small change in etching rates during the etching process. The etching mechanism is explained based on the experimental results and the theoretical considerations. It is suggested that all the components in the TMAH solutions play important roles in the etching process. Moreover, TMA+ ions may increase the wettability of the textured surface. A good textured surface can be obtained in conditions where the absorption of OH-/H2O is in equilibrium with that of TMA+/SiO2 (OH)22-.

  6. Highly selective SiO2 etching over Si3N4 using a cyclic process with BCl3 and fluorocarbon gas chemistries

    NASA Astrophysics Data System (ADS)

    Matsui, Miyako; Kuwahara, Kenichi

    2018-06-01

    A cyclic process for highly selective SiO2 etching with atomic-scale precision over Si3N4 was developed by using BCl3 and fluorocarbon gas chemistries. This process consists of two alternately performed steps: a deposition step using BCl3 mixed-gas plasma and an etching step using CF4/Ar mixed-gas plasma. The mechanism of the cyclic process was investigated by analyzing the surface chemistry at each step. BCl x layers formed on both SiO2 and Si3N4 surfaces in the deposition step. Early in the etching step, the deposited BCl x layers reacted with CF x radicals by forming CCl x and BF x . Then, fluorocarbon films were deposited on both surfaces in the etching step. We found that the BCl x layers formed in the deposition step enhanced the formation of the fluorocarbon films in the CF4 plasma etching step. In addition, because F radicals that radiated from the CF4 plasma reacted with B atoms while passing through the BCl x layers, the BCl x layers protected the Si3N4 surface from F-radical etching. The deposited layers, which contained the BCl x , CCl x , and CF x components, became thinner on SiO2 than on Si3N4, which promoted the ion-assisted etching of SiO2. This is because the BCl x component had a high reactivity with SiO2, and the CF x component was consumed by the etching reaction with SiO2.

  7. Photo-assisted etching of silicon in chlorine- and bromine-containing plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Weiye; Sridhar, Shyam; Liu, Lei

    2014-05-28

    Cl{sub 2}, Br{sub 2}, HBr, Br{sub 2}/Cl{sub 2}, and HBr/Cl{sub 2} feed gases diluted in Ar (50%–50% by volume) were used to study etching of p-type Si(100) in a rf inductively coupled, Faraday-shielded plasma, with a focus on the photo-assisted etching component. Etching rates were measured as a function of ion energy. Etching at ion energies below the threshold for ion-assisted etching was observed in all cases, with Br{sub 2}/Ar and HBr/Cl{sub 2}/Ar plasmas having the lowest and highest sub-threshold etching rates, respectively. Sub-threshold etching rates scaled with the product of surface halogen coverage (measured by X-ray photoelectron spectroscopy) andmore » Ar emission intensity (7504 Å). Etching rates measured under MgF{sub 2}, quartz, and opaque windows showed that sub-threshold etching is due to photon-stimulated processes on the surface, with vacuum ultraviolet photons being much more effective than longer wavelengths. Scanning electron and atomic force microscopy revealed that photo-etched surfaces were very rough, quite likely due to the inability of the photo-assisted process to remove contaminants from the surface. Photo-assisted etching in Cl{sub 2}/Ar plasmas resulted in the formation of 4-sided pyramidal features with bases that formed an angle of 45° with respect to 〈110〉 cleavage planes, suggesting that photo-assisted etching can be sensitive to crystal orientation.« less

  8. Nitrogen reactive ion etch processes for the selective removal of poly-(4-vinylpyridine) in block copolymer films.

    PubMed

    Flynn, Shauna P; Bogan, Justin; Lundy, Ross; Khalafalla, Khalafalla E; Shaw, Matthew; Rodriguez, Brian J; Swift, Paul; Daniels, Stephen; O'Connor, Robert; Hughes, Greg; Kelleher, Susan M

    2018-08-31

    Self-assembling block copolymer (BCP) patterns are one of the main contenders for the fabrication of nanopattern templates in next generation lithography technology. Transforming these templates to hard mark materials is key for pattern transfer and in some cases, involves selectively removing one block from the nanopattern. For poly(styrene)-block-poly(4-vinylpyridine) (PS-b-P4VP), a high χ BCP system which could be potentially incorporated into semiconductor nanofabrication, this selective removal is predominantly done by a wet etch/activation process. Conversely, this process has numerous disadvantages including lack of control and high generation of waste leading to high cost. For these reasons, our motivation was to move away from the wet etch process and optimise a dry etch which would overcome the limitations associated with the activation process. The work presented herein shows the development of a selective plasma etch process for the removal of P4VP cores from PS-b-P4VP nanopatterned film. Results have shown that a nitrogen reactive ion etch plasma has a selectivity for P4VP of 2.2:1 and suggest that the position of the nitrogen in the aromatic ring of P4VP plays a key role in this selectivity. In situ plasma etching and x-ray photoelectron spectrometry measurements were made without breaking vacuum, confirming that the nitrogen plasma has selectivity for removal of P4VP over PS.

  9. Porosity and thickness effect of porous silicon layer on photoluminescence spectra

    NASA Astrophysics Data System (ADS)

    Husairi, F. S.; Eswar, K. A.; Guliling, Muliyadi; Khusaimi, Z.; Rusop, M.; Abdullah, S.

    2018-05-01

    The porous silicon nanostructures was prepared by electrochemical etching of p-type silicon wafer. Porous silicon prepared by using different current density and fix etching time with assistance of halogen lamp. The physical structure of porous silicon measured by the parameters used which know as experimental factor. In this work, we select one of those factors to correlate which optical properties of porous silicon. We investigated the surface morphology by using Surface Profiler (SP) and photoluminescence using Photoluminescence (PL) spectrometer. Different physical characteristics of porous silicon produced when current density varied. Surface profiler used to measure the thickness of porous and the porosity calculated using mass different of silicon. Photoluminescence characteristics of porous silicon depend on their morphology because the size and distribution of pore its self will effect to their exciton energy level. At J=30 mA/cm2 the shorter wavelength produced and it followed the trend of porosity with current density applied.

  10. The Tensile and Shear Bond Strengths of Poly (Methyl Methacrylate) Processed on Electrolytically Etched Ticonium.

    DTIC Science & Technology

    1986-05-01

    METHYL NETHACRYLATE) PROCESSED ON ELECTROLYTICALLY ETCHED TICONIUM A THESIS Presented to the Faculty of The University of Texas Graduate School of...were cast utilizing the manufacturer’s directions for investment, burnout , and casting. Two groups of metal specimens were prepared: 20 for...STRENGTHS OF POLY (METHYL METHACRYLATE) PROCESSED ON ELECTROLYTICALLY ETCHED TICONIUM JOHN EDWARD ZURASKY, M.S. The University of Texas Graduate School

  11. High rate dry etching of InGaZnO by BCl3/O2 plasma

    NASA Astrophysics Data System (ADS)

    Park, Wanjae; Whang, Ki-Woong; Gwang Yoon, Young; Hwan Kim, Jeong; Rha, Sang-Ho; Seong Hwang, Cheol

    2011-08-01

    This paper reports the results of the high-rate dry etching of indium gallium zinc oxide (IGZO) at room temperature using BCl3/O2 plasma. We achieved an etch rate of 250 nm/min. We inferred from the x-ray photoelectron spectroscopy analysis that BOx or BOClx radicals generated from BCl3/O2 plasma cause the etching of the IGZO material. O2 initiates the etching of IGZO, and Ar removes nonvolatile byproducts from the surface during the etching process. Consequently, a smooth etched surface results when these gases are added to the etch gas.

  12. Sequential infiltration synthesis for enhancing multiple-patterning lithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darling, Seth B.; Elam, Jeffrey W.; Tseng, Yu-Chih

    Simplified methods of multiple-patterning photolithography using sequential infiltration synthesis to modify the photoresist such that it withstands plasma etching better than unmodified resist and replaces one or more hard masks and/or a freezing step in MPL processes including litho-etch-litho-etch photolithography or litho-freeze-litho-etch photolithography.

  13. Electrochemical Deposition of Conformal and Functional Layers on High Aspect Ratio Silicon Micro/Nanowires.

    PubMed

    Ozel, Tuncay; Zhang, Benjamin A; Gao, Ruixuan; Day, Robert W; Lieber, Charles M; Nocera, Daniel G

    2017-07-12

    Development of new synthetic methods for the modification of nanostructures has accelerated materials design advances to furnish complex architectures. Structures based on one-dimensional (1D) silicon (Si) structures synthesized using top-down and bottom-up methods are especially prominent for diverse applications in chemistry, physics, and medicine. Yet further elaboration of these structures with distinct metal-based and polymeric materials, which could open up new opportunities, has been difficult. We present a general electrochemical method for the deposition of conformal layers of various materials onto high aspect ratio Si micro- and nanowire arrays. The electrochemical deposition of a library of coaxial layers comprising metals, metal oxides, and organic/inorganic semiconductors demonstrate the materials generality of the synthesis technique. Depositions may be performed on wire arrays with varying diameter (70 nm to 4 μm), pitch (5 μ to 15 μ), aspect ratio (4:1 to 75:1), shape (cylindrical, conical, hourglass), resistivity (0.001-0.01 to 1-10 ohm/cm 2 ), and substrate orientation. Anisotropic physical etching of wires with one or more coaxial shells yields 1D structures with exposed tips that can be further site-specifically modified by an electrochemical deposition approach. The electrochemical deposition methodology described herein features a wafer-scale synthesis platform for the preparation of multifunctional nanoscale devices based on a 1D Si substrate.

  14. Arrays of carbon nanofibers as a platform for biosensing at the molecular level and for tissue engineering and implantation.

    PubMed

    Koehne, Jessica E; Chen, Hua; Cassell, Alan; Liu, Gang-yu; Li, Jun; Meyyappan, M

    2009-01-01

    Arrays of Carbon nanofibers (CNFs) harness the advantages of individual CNF as well the collective property of assemblies, which made them promising materials in biosensing and tissue engineering or implantation. Here, we report two studies to explore the applications of vertically aligned CNFs. First, a nanoelectrode array (NEA) based on vertically aligned CNFs embedded in SiO(2) is used for ultrasensitive DNA detection. Oligonucleotide probes are selectively functionalized at the open ends of the CNFs and specifically hybridized with oligonucleotide targets. The guanine groups are employed as the signal moieties in the electrochemical measurements. Ru(bpy)(3)(2+) mediator is used to further amplify the guanine oxidation signal. The hybridization of less than approximately 1000 molecules of PCR amplified DNA targets are detected electrochemically by combining the CNF nanoelectrode array with the Ru(bpy)(3)(2+) amplification mechanism. Second, the SiO(2) matrix was etched back to produce needle-like protruding nanoelectrode arrays to be used as cell interfacing fibers for investigating gene transfection, electrical stimulation and detection of cellular processes. Our goal is to take advantage of the nanostructure of CNFs for unconventional biomolecular studies requiring ultrahigh sensitivity, high-degree of miniaturization and selective biofunctionalization.

  15. Isotropic plasma etching of Ge Si and SiN x films

    DOE PAGES

    Henry, Michael David; Douglas, Erica Ann

    2016-08-31

    This study reports on selective isotropic dry etching of chemically vapor deposited (CVD) Ge thin film, release layers using a Shibaura chemical downstream etcher (CDE) with NF 3 and Ar based plasma chemistry. Relative etch rates between Ge, Si and SiN x are described with etch rate reductions achieved by adjusting plasma chemistry with O 2. Formation of oxides reducing etch rates were measured for both Ge and Si, but nitrides or oxy-nitrides created using direct injection of NO into the process chamber were measured to increase Si and SiN x etch rates while retarding Ge etching.

  16. A method to accelerate creation of plasma etch recipes using physics and Bayesian statistics

    NASA Astrophysics Data System (ADS)

    Chopra, Meghali J.; Verma, Rahul; Lane, Austin; Willson, C. G.; Bonnecaze, Roger T.

    2017-03-01

    Next generation semiconductor technologies like high density memory storage require precise 2D and 3D nanopatterns. Plasma etching processes are essential to achieving the nanoscale precision required for these structures. Current plasma process development methods rely primarily on iterative trial and error or factorial design of experiment (DOE) to define the plasma process space. Here we evaluate the efficacy of the software tool Recipe Optimization for Deposition and Etching (RODEo) against standard industry methods at determining the process parameters of a high density O2 plasma system with three case studies. In the first case study, we demonstrate that RODEo is able to predict etch rates more accurately than a regression model based on a full factorial design while using 40% fewer experiments. In the second case study, we demonstrate that RODEo performs significantly better than a full factorial DOE at identifying optimal process conditions to maximize anisotropy. In the third case study we experimentally show how RODEo maximizes etch rates while using half the experiments of a full factorial DOE method. With enhanced process predictions and more accurate maps of the process space, RODEo reduces the number of experiments required to develop and optimize plasma processes.

  17. Chemical etching and organometallic chemical vapor deposition on varied geometries of GaAs

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Landis, Geoffrey A.; Wilt, David M.

    1989-01-01

    Results of micron-spaced geometries produced by wet chemical etching and subsequent OMCVD growth on various GaAs surfaces are presented. The polar lattice increases the complexity of the process. The slow-etch planes defined by anisotropic etching are not always the same as the growth facets produced during MOCVD deposition, especially for deposition on higher-order planes produced by the hex groove etching.

  18. Alternating SiCl4/O2 passivation steps with SF6 etch steps for silicon deep etching

    NASA Astrophysics Data System (ADS)

    Duluard, C. Y.; Ranson, P.; Pichon, L. E.; Pereira, J.; Oubensaid, E. H.; Lefaucheux, P.; Puech, M.; Dussart, R.

    2011-06-01

    Deep etching of silicon has been investigated in an inductively coupled plasma etch reactor using short SiCl4/O2 plasma steps to passivate the sidewalls of the etched structures. A study was first carried out to define the appropriate parameters to create, at a substrate temperature of -20 °C, a passivation layer by SiCl4/O2 plasma that resists lateral chemical etching in SF6 plasma. The most efficient passivation layer was obtained for a SiCl4/O2 gas flow ratio of 2:1, a pressure of 1 Pa and a source power of 1000 W. Ex situ analyses on a film deposited with these parameters show that it is very rich in oxygen. Silicon etching processes that alternate SF6 plasma etch steps with SiCl4/O2 plasma passivation steps were then developed. Preliminary tests in pulsed-mode conditions have enabled etch rates greater than 2 µm min-1 with selectivities higher than 220. These results show that it is possible to develop a silicon deep etching process at substrate temperatures around -20 °C that uses low SiCl4 and O2 gas flows instead of conventional fluorocarbon gases for sidewall protection.

  19. Exploration of suitable dry etch technologies for directed self-assembly

    NASA Astrophysics Data System (ADS)

    Yamashita, Fumiko; Nishimura, Eiichi; Yatsuda, Koichi; Mochiki, Hiromasa; Bannister, Julie

    2012-03-01

    Directed self-assembly (DSA) has shown the potential to replace traditional resist patterns and provide a lower cost alternative for sub-20-nm patterns. One of the possible roadblocks for DSA implementation is the ability to etch the polymers to produce quality masks for subsequent etch processes. We have studied the effects of RF frequency and etch chemistry for dry developing DSA patterns. The results of the study showed a capacitively-coupled plasma (CCP) reactor with very high frequency (VHF) had superior pattern development after the block co-polymer (BCP) etch. The VHF CCP demonstrated minimal BCP height loss and line edge roughness (LER)/line width roughness (LWR). The advantage of CCP over ICP is the low dissociation so the etch rate of BCP is maintained low enough for process control. Additionally, the advantage of VHF is the low electron energy with a tight ion energy distribution that enables removal of the polymethyl methacrylate (PMMA) with good selectivity to polystyrene (PS) and minimal LER/LWR. Etch chemistries were evaluated on the VHF CCP to determine ability to treat the BCPs to increase etch resistance and feature resolution. The right combination of RF source frequencies and etch chemistry can help overcome the challenges of using DSA patterns to create good etch results.

  20. Anisotropic etching of silicon in solutions containing tensioactive compounds

    NASA Astrophysics Data System (ADS)

    Zubel, Irena

    2016-12-01

    The results of investigations concerning anisotropic etching in 3M KOH and 25% TMAH solutions modified by tensioactive compounds such as alcohols, diols and a typical surfactant Triton X100 have been compared. Etching anisotropy was assessed on the basis of etch rates ratio V(110)/V(100). It was stated that the relation between surface tension of the solutions and etch rates of particular planes depend not only on the kind of surfactant but also on the kind of etching solution (KOH, TMAH). It points out an important role of TMA+ ions in the etching process, probably in the process of forming an adsorption layer, consisting of the molecules of tensioactive compounds on Si surface, which decides about etch rate. We have observed that this phenomenon occurs only at high concentration of TMA+ ions (25% TMAH). Reduction of TMAH concentration changes the properties of surfactant containing TMAH solutions. From all investigated solutions, the solutions that assured developing of (110) plane inclined at the angle of 45° to (100) substrate were selected. Such planes can be used as micromirrors in MOEMS structures. The solutions provide the etch rate ratio V(110)/V(100)<0.7, thus they were selected from hydroxide solutions containing surfactants. A simple way for etch rate anisotropy V(110)/V(100) assessment based on microscopic images etched structures has been proposed.

  1. Fabrication of Nanostructured Mesoporous Germanium for Application in Laser Desorption Ionization Mass Spectrometry.

    PubMed

    Abdelmaksoud, Hazem H; Guinan, Taryn M; Voelcker, Nicolas H

    2017-02-15

    Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) is a high-throughput analytical technique ideally suited for small-molecule detection from different bodily fluids (e.g., saliva, urine, and blood plasma). Many SALDI-MS substrates require complex fabrication processes and further surface modifications. Furthermore, some substrates show instability upon exposure to ambient conditions and need to be kept under special inert conditions. We have successfully optimized mesoporous germanium (meso-pGe) using bipolar electrochemical etching and efficiently applied meso-pGe as a SALDI-MS substrate for the detection of illicit drugs such as in the context of workplace, roadside, and antiaddictive drug compliance. Argon plasma treatment improved the meso-pGe efficiency as a SALDI-MS substrate and eliminated the need for surface functionalization. The resulting substrate showed a precise surface geometry tuning by altering the etching parameters, and an outstanding performance for illicit drug detection with a limit of detection in Milli-Q water of 1.7 ng/mL and in spiked saliva as low as 5.3 ng/mL for cocaine. The meso-pGe substrate had a demonstrated stability over 56 days stored in ambient conditions. This proof-of-principle study demonstrates that meso-pGe can be reproducibly fabricated and applied as an analytical SALDI-MS substrate which opens the door for further analytical and forensic high-throughput applications.

  2. Plasma-deposited fluoropolymer film mask for local porous silicon formation

    PubMed Central

    2012-01-01

    The study of an innovative fluoropolymer masking layer for silicon anodization is proposed. Due to its high chemical resistance to hydrofluoric acid even under anodic bias, this thin film deposited by plasma has allowed the formation of deep porous silicon regions patterned on the silicon wafer. Unlike most of other masks, fluoropolymer removal after electrochemical etching is rapid and does not alter the porous layer. Local porous regions were thus fabricated both in p+-type and low-doped n-type silicon substrates. PMID:22734507

  3. Defects with deep levels in a semiconductor structure of a photoelectric converter of solar energy with an antireflection film of porous silicon

    NASA Astrophysics Data System (ADS)

    Tregulov, V. V.; Litvinov, V. G.; Ermachikhin, A. V.

    2017-11-01

    Defects in a semiconductor structure of a photoelectric converter of solar energy based on a p-n junction with an antireflection film of porous silicon on the front surface have been studied by current deeplevel transient spectroscopy. An explanation of the influence of thickness of a porous-silicon film formed by electrochemical etching on the character of transformation of defects with deep levels and efficiency of solarenergy conversion is proposed.

  4. Temperature dependence of photoluminescence peaks of porous silicon structures

    NASA Astrophysics Data System (ADS)

    Brunner, Róbert; Pinčík, Emil; Kučera, Michal; Greguš, Ján; Vojtek, Pavel; Zábudlá, Zuzana

    2017-12-01

    Evaluation of photoluminescence spectra of porous silicon (PS) samples prepared by electrochemical etching is presented. The samples were measured at temperatures 30, 70 and 150 K. Peak parameters (energy, intensity and width) were calculated. The PL spectrum was approximated by a set of Gaussian peaks. Their parameters were fixed using fitting a procedure in which the optimal number of peeks included into the model was estimated using the residuum of the approximation. The weak thermal dependence of the spectra indicates the strong influence of active defects.

  5. A study of GaN-based LED structure etching using inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Wang, Pei; Cao, Bin; Gan, Zhiyin; Liu, Sheng

    2011-02-01

    GaN as a wide band gap semiconductor has been employed to fabricate optoelectronic devices such as light-emitting diodes (LEDs) and laser diodes (LDs). Recently several different dry etching techniques for GaN-based materials have been developed. ICP etching is attractive because of its superior plasma uniformity and strong controllability. Most previous reports emphasized on the ICP etching characteristics of single GaN film. In this study dry etching of GaN-based LED structure was performed by inductively coupled plasmas (ICP) etching with Cl2 as the base gas and BCl3 as the additive gas. The effects of the key process parameters such as etching gases flow rate, ICP power, RF power and chamber pressure on the etching properties of GaN-based LED structure including etching rate, selectivity, etched surface morphology and sidewall was investigated. Etch depths were measured using a depth profilometer and used to calculate the etch rates. The etch profiles were observed with a scanning electron microscope (SEM).

  6. Metal/Carbon Hybrid Nanostructures Produced from Plasma-Enhanced Chemical Vapor Deposition over Nafion-Supported Electrochemically Deposited Cobalt Nanoparticles

    PubMed Central

    Achour, Amine; Saeed, Khalid; Djouadi, Mohamed Abdou

    2018-01-01

    In this work, we report development of hybrid nanostructures of metal nanoparticles (NP) and carbon nanostructures with strong potential for catalysis, sensing, and energy applications. First, the etched silicon wafer substrates were passivated for subsequent electrochemical (EC) processing through grafting of nitro phenyl groups using para-nitrobenzene diazonium (PNBT). The X-ray photoelectron spectroscope (XPS) and atomic force microscope (AFM) studies confirmed presence of few layers. Cobalt-based nanoparticles were produced over dip or spin coated Nafion films under different EC reduction conditions, namely CoSO4 salt concentration (0.1 M, 1 mM), reduction time (5, 20 s), and indirect or direct EC reduction route. Extensive AFM examination revealed NP formation with different attributes (size, distribution) depending on electrochemistry conditions. While relatively large NP with >100 nm size and bimodal distribution were obtained after 20 s EC reduction in H3BO3 following Co2+ ion uptake, ultrafine NP (<10 nm) could be produced from EC reduction in CoSO4 and H3BO3 mixed solution with some tendency to form oxides. Different carbon nanostructures including few-walled or multiwalled carbon nanotubes (CNT) and carbon nanosheets were grown in a C2H2/NH3 plasma using the plasma-enhanced chemical vapor deposition technique. The devised processing routes enable size controlled synthesis of cobalt nanoparticles and metal/carbon hybrid nanostructures with unique microstructural features. PMID:29702583

  7. Deterministic Nanopatterning of Diamond Using Electron Beams.

    PubMed

    Bishop, James; Fronzi, Marco; Elbadawi, Christopher; Nikam, Vikram; Pritchard, Joshua; Fröch, Johannes E; Duong, Ngoc My Hanh; Ford, Michael J; Aharonovich, Igor; Lobo, Charlene J; Toth, Milos

    2018-03-27

    Diamond is an ideal material for a broad range of current and emerging applications in tribology, quantum photonics, high-power electronics, and sensing. However, top-down processing is very challenging due to its extreme chemical and physical properties. Gas-mediated electron beam-induced etching (EBIE) has recently emerged as a minimally invasive, facile means to dry etch and pattern diamond at the nanoscale using oxidizing precursor gases such as O 2 and H 2 O. Here we explain the roles of oxygen and hydrogen in the etch process and show that oxygen gives rise to rapid, isotropic etching, while the addition of hydrogen gives rise to anisotropic etching and the formation of topographic surface patterns. We identify the etch reaction pathways and show that the anisotropy is caused by preferential passivation of specific crystal planes. The anisotropy can be controlled by the partial pressure of hydrogen and by using a remote RF plasma source to radicalize the precursor gas. It can be used to manipulate the geometries of topographic surface patterns as well as nano- and microstructures fabricated by EBIE. Our findings constitute a comprehensive explanation of the anisotropic etch process and advance present understanding of electron-surface interactions.

  8. Vapor etching of nuclear tracks in dielectric materials

    DOEpatents

    Musket, Ronald G.; Porter, John D.; Yoshiyama, James M.; Contolini, Robert J.

    2000-01-01

    A process involving vapor etching of nuclear tracks in dielectric materials for creating high aspect ratio (i.e., length much greater than diameter), isolated cylindrical holes in dielectric materials that have been exposed to high-energy atomic particles. The process includes cleaning the surface of the tracked material and exposing the cleaned surface to a vapor of a suitable etchant. Independent control of the temperatures of the vapor and the tracked materials provide the means to vary separately the etch rates for the latent track region and the non-tracked material. As a rule, the tracked regions etch at a greater rate than the non-tracked regions. In addition, the vapor-etched holes can be enlarged and smoothed by subsequent dipping in a liquid etchant. The 20-1000 nm diameter holes resulting from the vapor etching process can be useful as molds for electroplating nanometer-sized filaments, etching gate cavities for deposition of nano-cones, developing high-aspect ratio holes in trackable resists, and as filters for a variety of molecular-sized particles in virtually any liquid or gas by selecting the dielectric material that is compatible with the liquid or gas of interest.

  9. Vertically aligned ZnO nanorod core-polypyrrole conducting polymer sheath and nanotube arrays for electrochemical supercapacitor energy storage

    PubMed Central

    2014-01-01

    Nanocomposite electrodes having three-dimensional (3-D) nanoscale architecture comprising of vertically aligned ZnO nanorod array core-polypyrrole (PPy) conducting polymer sheath and the vertical PPy nanotube arrays have been investigated for supercapacitor energy storage. The electrodes in the ZnO nanorod core-PPy sheath structure are formed by preferential nucleation and deposition of PPy layer over hydrothermally synthesized vertical ZnO nanorod array by controlled pulsed current electropolymerization of pyrrole monomer under surfactant action. The vertical PPy nanotube arrays of different tube diameter are created by selective etching of the ZnO nanorod core in ammonia solution for different periods. Cyclic voltammetry studies show high areal-specific capacitance approximately 240 mF.cm-2 for open pore and approximately 180 mF.cm-2 for narrow 30-to-36-nm diameter PPy nanotube arrays attributed to intensive faradic processes arising from enhanced access of electrolyte ions through nanotube interior and exterior. Impedance spectroscopy studies show that capacitive response extends over larger frequency domain in electrodes with PPy nanotube structure. Simulation of Nyquist plots by electrical equivalent circuit modeling establishes that 3-D nanostructure is better represented by constant phase element which accounts for the inhomogeneous electrochemical redox processes. Charge-discharge studies at different current densities establish that kinetics of the redox process in PPy nanotube electrode is due to the limitation on electron transport rather than the diffusive process of electrolyte ions. The PPy nanotube electrodes show deep discharge capability with high coulomb efficiency and long-term charge-discharge cyclic studies show nondegrading performance of the specific areal capacitance tested for 5,000 cycles. PMID:25246867

  10. Novel electrochemical nickel metallization in silicon impedance engineering for mixed-signal system-on-chip crosstalk isolation

    NASA Astrophysics Data System (ADS)

    Zhang, Xi

    One of the major challenges for single chip radio frequency integrated circuits (RFIC's) built on Si is the RE crosstalk through the Si substrate. Noise from switching transient in digital circuits can be transmitted through Si substrate and degrades the performance of analog circuit elements. A highly conductive moat or Faraday cage type structure of through-the-wafer thickness in the Si substrate was demonstrated to be effective in shielding electromagnetic interference thereby reducing RE cross-talk in high performance mixed signal integrated circuits. Such a structure incorporated into the p- Si substrate was realized by electroless Ni metallization over selected regions with ultra-high-aspect-ratio macropores that was etched electrochemically in p- Si substrates. The metallization process was conducted by immersing the macroporous Si sample in an alkaline aqueous solution containing Ni2+ without a reducing agent. It was found that working at slightly elevated temperature, Ni 2+ was rapidly reduced and deposited in the macropores. During the wet chemical process, conformal metallization on the pore wall was achieved. The entire porous Si skeleton was gradually replaced by Ni along the extended duration of immersion. In a p-/p+ epi Si substrate used for high performance digital CMOS, the suppression of crosstalk by the arrayed metallic Ni via structure fabricated from the front p side was significant that the crosstalk went down to the noise floor of the conventional measurement instruments. The process and mechanism of forming such a Ni structure over the original Si were studied. Theoretical computation relevant to the process was carried out to show a good consistency with the experiments.

  11. Hollow core-shell structured Ni-Sn@C nanoparticles: a novel electrocatalyst for the hydrogen evolution reaction.

    PubMed

    Lang, Leiming; Shi, Yi; Wang, Jiong; Wang, Feng-Bin; Xia, Xing-Hua

    2015-05-06

    Pt-free electrocatalysts with high activity and low cost are highly pursued for hydrogen production by electrochemically splitting water. Ni-based alloy catalysts are potential candidates for the hydrogen evolution reaction (HER) and have been studied extensively. Here, we synthesized novel hollow core-shell structure Ni-Sn@C nanoparticles (NPs) by sol-gel, chemical vapor deposition, and etching processes. The prepared electrocatalysts with porous hollow carbon layers have a high conductivity and large active area, which exhibit good electrocatalytic activity toward HER. The Tafel slope of ∼35 millivolts per decade measured in acidic solution for Ni-Sn@C NPs is the smallest one to date for the Ni-Sn alloy catalysts, and exceeds those of the most non-noble metal catalysts, indicating a possible Volmer-Heyrovsky reaction mechanism. The synthetic method can be extended to prepare other hollow core-shell structure electrocatalysts for low-temperature fuel cells.

  12. Electrically conductive PEDOT coating with self-healing superhydrophobicity.

    PubMed

    Zhu, Dandan; Lu, Xuemin; Lu, Qinghua

    2014-04-29

    A self-healing electrically conductive superhydrophobic poly(3,4-ethylenedioxythiophene) (PEDOT) coating has been prepared by chemical vapor deposition of a fluoroalkylsilane (POTS) onto a PEDOT film, which was obtained by electrochemical deposition. The coating not only maintained high conductivity with a low resistivity of 3.2 × 10(-4) Ω·m, but also displayed a water contact angle larger than 156° and a sliding angle smaller than 10°. After being etched with O2 plasma, the coating showed an excellent self-healing ability, spontaneously regaining its superhydrophobicity when left under ambient conditions for 20 h. This superhydrophobicity recovery process was found to be humidity-dependent, and could be accelerated and completed within 2 h under a high humidity of 84%. The coating also exhibited good superhydrophobicity recovering ability after being corroded by strong acid solution at pH 1 or strong base solution at pH 14 for 3 h.

  13. Fabrication of micromachined ceramic thin-film-type pressure sensors for overpressure tolerance and its characteristics

    NASA Astrophysics Data System (ADS)

    Chung, Gwiy-Sang; Kim, Jae-Min

    2004-04-01

    This paper describes the fabrication process and characteristics of ceramic thin-film pressure sensors based on Ta-N strain gauges for harsh environment applications. The Ta-N thin-film strain gauges are sputter-deposited on a thermally oxidized micromachined Si diaphragm with buried cavities for overpressure tolerance. The proposed device takes advantage of the good mechanical properties of single-crystalline Si as a diaphragm fabricated by SDB and electrochemical etch-stop technology, and in order to extend the temperature range, it has relatively higher resistance, stability and gauge factor of Ta-N thin-films more than other gauges. The fabricated pressure sensor presents a low temperature coefficient of resistance, high-sensitivity, low nonlinearity and excellent temperature stability. The sensitivity is 1.21-1.097 mV/V×kgf/cm2 in temperature ranges of 25-200°C and a maximum non-linearity is 0.43 %FS.

  14. Real-Time and In-Flow Sensing Using a High Sensitivity Porous Silicon Microcavity-Based Sensor.

    PubMed

    Caroselli, Raffaele; Martín Sánchez, David; Ponce Alcántara, Salvador; Prats Quilez, Francisco; Torrijos Morán, Luis; García-Rupérez, Jaime

    2017-12-05

    Porous silicon seems to be an appropriate material platform for the development of high-sensitivity and low-cost optical sensors, as their porous nature increases the interaction with the target substances, and their fabrication process is very simple and inexpensive. In this paper, we present the experimental development of a porous silicon microcavity sensor and its use for real-time in-flow sensing application. A high-sensitivity configuration was designed and then fabricated, by electrochemically etching a silicon wafer. Refractive index sensing experiments were realized by flowing several dilutions with decreasing refractive indices, and measuring the spectral shift in real-time. The porous silicon microcavity sensor showed a very linear response over a wide refractive index range, with a sensitivity around 1000 nm/refractive index unit (RIU), which allowed us to directly detect refractive index variations in the 10 -7 RIU range.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahmani, N.; Dariani, R. S., E-mail: dariani@alzahra.ac.ir

    Porous silicon films with porosity ranging from 42% to 77% were fabricated by electrochemical anodization under different current density. We used atomic force microscopy and dynamic scaling theory for deriving the surface roughness profile and processing the topography of the porous silicon layers, respectively. We first compared the topography of bare silicon surface with porous silicon and then studied the effect of the porosity of porous silicon films on their scaling behavior by using their self-affinity nature. Our work demonstrated that silicon compared to the porous silicon films has the highest Hurst parameter, indicating that the formation of porous layermore » due to the anodization etching of silicon surface leads to an increase of its roughness. Fractal analysis revealed that the evolution of the nanocrystallites’ fractal dimension along with porosity. Also, we found that both interface width and Hurst parameter are affected by the increase of porosity.« less

  16. Nitrogen-Doped Holey Graphene Film-Based Ultrafast Electrochemical Capacitors.

    PubMed

    Zhou, Qinqin; Zhang, Miao; Chen, Ji; Hong, Jong-Dal; Shi, Gaoquan

    2016-08-17

    The commercialized aluminum electrolytic capacitors (AECs) currently used for alternating current (AC) line-filtering are usually the largest components in the electronic circuits because of their low specific capacitances and bulky sizes. Herein, nitrogen-doped holey graphene (NHG) films were prepared by thermal annealing the composite films of polyvinylpyrrolidone (PVP), graphene oxide (GO), and ferric oxide (Fe2O3) nanorods followed by chemical etching with hydrochloride acid. The typical electrochemical capacitor with NHG electrodes exhibited high areal and volumetric specific capacitances of 478 μF cm(-2) and 1.2 F cm(-3) at 120 Hz, ultrafast frequency response with a phase angle of -81.2° and a resistor-capacitor time constant of 203 μs at 120 Hz, as well as excellent cycling stability. Thus, it is promising to replace conventional AEC for AC line-filtering in miniaturized electronics.

  17. A novel methodology for litho-to-etch pattern fidelity correction for SADP process

    NASA Astrophysics Data System (ADS)

    Chen, Shr-Jia; Chang, Yu-Cheng; Lin, Arthur; Chang, Yi-Shiang; Lin, Chia-Chi; Lai, Jun-Cheng

    2017-03-01

    For 2x nm node semiconductor devices and beyond, more aggressive resolution enhancement techniques (RETs) such as source-mask co-optimization (SMO), litho-etch-litho-etch (LELE) and self-aligned double patterning (SADP) are utilized for the low k1 factor lithography processes. In the SADP process, the pattern fidelity is extremely critical since a slight photoresist (PR) top-loss or profile roughness may impact the later core trim process, due to its sensitivity to environment. During the subsequent sidewall formation and core removal processes, the core trim profile weakness may worsen and induces serious defects that affect the final electrical performance. To predict PR top-loss, a rigorous lithography simulation can provide a reference to modify mask layouts; but it takes a much longer run time and is not capable of full-field mask data preparation. In this paper, we first brought out an algorithm which utilizes multi-intensity levels from conventional aerial image simulation to assess the physical profile through lithography to core trim etching steps. Subsequently, a novel correction method was utilized to improve the post-etch pattern fidelity without the litho. process window suffering. The results not only matched PR top-loss in rigorous lithography simulation, but also agreed with post-etch wafer data. Furthermore, this methodology can also be incorporated with OPC and post-OPC verification to improve core trim profile and final pattern fidelity at an early stage.

  18. Demonstration of an N7 integrated fab process for metal oxide EUV photoresist

    NASA Astrophysics Data System (ADS)

    De Simone, Danilo; Mao, Ming; Kocsis, Michael; De Schepper, Peter; Lazzarino, Frederic; Vandenberghe, Geert; Stowers, Jason; Meyers, Stephen; Clark, Benjamin L.; Grenville, Andrew; Luong, Vinh; Yamashita, Fumiko; Parnell, Doni

    2016-03-01

    Inpria has developed a directly patternable metal oxide hard-mask as a robust, high-resolution photoresist for EUV lithography. In this paper we demonstrate the full integration of a baseline Inpria resist into an imec N7 BEOL block mask process module. We examine in detail both the lithography and etch patterning results. By leveraging the high differential etch resistance of metal oxide photoresists, we explore opportunities for process simplification and cost reduction. We review the imaging results from the imec N7 block mask patterns and its process windows as well as routes to maximize the process latitude, underlayer integration, etch transfer, cross sections, etch equipment integration from cross metal contamination standpoint and selective resist strip process. Finally, initial results from a higher sensitivity Inpria resist are also reported. A dose to size of 19 mJ/cm2 was achieved to print pillars as small as 21nm.

  19. Heterogeneous processes in CF4/O2 plasmas probed using laser-induced fluorescence of CF2

    NASA Astrophysics Data System (ADS)

    Hansen, S. G.; Luckman, G.; Nieman, George C.; Colson, Steven D.

    1990-09-01

    Laser-induced fluorescence of CF2 is used to monitor heterogeneous processes in ≊300 mTorr CF4/O2 plasmas. CF2 is rapidly removed at fluorinated copper and silver surfaces in 13.56-MHz rf discharges as judged by a distinct dip in its spatial distribution. These metals, when employed as etch masks, are known to accelerate plasma etching of silicon, and the present results suggest catalytic dehalogenation of CF2 is involved in this process. In contrast, aluminum and silicon dioxide exhibit negligible reactivity with CF2, which suggests that aluminum masks will not appreciably accelerate silicon etching and that ground state CF2 does not efficiently etch silicon dioxide. Measurement of CF2 decay in a pulsed discharge coupled with direct laser sputtering of metal into the gas phase indicates the interaction between CF2 and the active metals is purely heterogeneous. Aluminum does, however, exhibit homogeneous reactivity with CF2. Redistribution of active metal by plasma sputtering readily occurs; silicon etch rates may also be enhanced by the metal's presence on the silicon surface. Polymers contribute CF2 to the plasma as they etch. The observation of an induction period suggests fluorination of the polymer surface is the first step in its degradation. Polymeric etch masks can therefore depress the silicon etch rate by removal of F atoms, the primary etchants.

  20. Study on the performance of 2.6 μm In0.83Ga0.17As detector with different etch gases

    NASA Astrophysics Data System (ADS)

    Li, Ping; Tang, Hengjing; Li, Tao; Li, Xue; Shao, Xiumei; Ma, Yingjie; Gong, Haimei

    2017-09-01

    In order to obtain a low-damage recipe in the ICP processing, ICP-induced damage using Cl2/CH4 etch gases in extended wavelength In0.83Ga0.17As detector materials was studied in this paper. The effect of ICP etching on In0.83Ga0.17As samples was characterized qualitatively by the photoluminescence (PL) technology. The etch damage of In0.83Ga0.17As samples was characterized quantitatively by the Transmission Line Model (TLM), current voltage (IV) measurement, signal and noise testing and the Fourier Transform Infrared Spectroscopy (FTIR) technologies. The results showed that the Cl2/CH4 etching processing could lead better detector performance than that Cl2/N2, such as a larger square resistance, a lower dark current, a lower noise voltage and a higher peak detectivity. The lower PL signal intensity and lower dark current could be attributed to the hydrogen decomposed by the CH4 etch gases in the plasma etching process. These hydrogen particles generated non-radiative recombination centers in inner materials to weaken the PL intensity and passivated dangling bond at the surface to reduce the dark current. The larger square resistance resulted from the lower etch damage. The lower dark current meant that the detectors have less dangling bonds and leakage channels.

  1. Temperature-Dependent Nanofabrication on Silicon by Friction-Induced Selective Etching.

    PubMed

    Jin, Chenning; Yu, Bingjun; Xiao, Chen; Chen, Lei; Qian, Linmao

    2016-12-01

    Friction-induced selective etching provides a convenient and practical way for fabricating protrusive nanostructures. A further understanding of this method is very important for establishing a controllable nanofabrication process. In this study, the effect of etching temperature on the formation of protrusive hillocks and surface properties of the etched silicon surface was investigated. It is found that the height of the hillock produced by selective etching increases with the etching temperature before the collapse of the hillock. The temperature-dependent selective etching rate can be fitted well by the Arrhenius equation. The etching at higher temperature can cause rougher silicon surface with a little lower elastic modulus and hardness. The contact angle of the etched silicon surface decreases with the etching temperature. It is also noted that no obvious contamination can be detected on silicon surface after etching at different temperatures. As a result, the optimized condition for the selective etching was addressed. The present study provides a new insight into the control and application of friction-induced selective nanofabrication.

  2. Overview of several applications of chemical downstream etching (CDE) for IC manufacturing: advantages and drawbacks versus WET processes

    NASA Astrophysics Data System (ADS)

    de Buttet, Côme; Prevost, Emilie; Campo, Alain; Garnier, Philippe; Zoll, Stephane; Vallier, Laurent; Cunge, Gilles; Maury, Patrick; Massin, Thomas; Chhun, Sonarith

    2017-03-01

    Today the IC manufacturing faces lots of problematics linked to the continuous down scaling of printed structures. Some of those issues are related to wet processing, which are often used in the IC manufacturing flow for wafer cleaning, material etching and surface preparation. In the current work we summarize the limitations for the next nodes of wet processing such as metallic contaminations, wafer charging, corrosion and pattern collapse. As a replacement, we promoted the isotropic chemical dry etching (CDE) which is supposed to fix all the above drawbacks. Etching steps of SI3N4 layers were evaluated in order to prove the interest of such technique.

  3. Characterizing fluorocarbon assisted atomic layer etching of Si using cyclic Ar/C4F8 and Ar/CHF3 plasma

    NASA Astrophysics Data System (ADS)

    Metzler, Dominik; Li, Chen; Engelmann, Sebastian; Bruce, Robert L.; Joseph, Eric A.; Oehrlein, Gottlieb S.

    2017-02-01

    With the increasing interest in establishing directional etching methods capable of atomic scale resolution for fabricating highly scaled electronic devices, the need for development and characterization of atomic layer etching processes, or generally etch processes with atomic layer precision, is growing. In this work, a flux-controlled cyclic plasma process is used for etching of SiO2 and Si at the Angstrom-level. This is based on steady-state Ar plasma, with periodic, precise injection of a fluorocarbon (FC) precursor (C4F8 and CHF3) and synchronized, plasma-based Ar+ ion bombardment [D. Metzler et al., J. Vac. Sci. Technol., A 32, 020603 (2014) and D. Metzler et al., J. Vac. Sci. Technol., A 34, 01B101 (2016)]. For low energy Ar+ ion bombardment conditions, physical sputter rates are minimized, whereas material can be etched when FC reactants are present at the surface. This cyclic approach offers a large parameter space for process optimization. Etch depth per cycle, removal rates, and self-limitation of removal, along with material dependence of these aspects, were examined as a function of FC surface coverage, ion energy, and etch step length using in situ real time ellipsometry. The deposited FC thickness per cycle is found to have a strong impact on etch depth per cycle of SiO2 and Si but is limited with regard to control over material etching selectivity. Ion energy over the 20-30 eV range strongly impacts material selectivity. The choice of precursor can have a significant impact on the surface chemistry and chemically enhanced etching. CHF3 has a lower FC deposition yield for both SiO2 and Si and also exhibits a strong substrate dependence of FC deposition yield, in contrast to C4F8. The thickness of deposited FC layers using CHF3 is found to be greater for Si than for SiO2. X-ray photoelectron spectroscopy was used to study surface chemistry. When thicker FC films of 11 Å are employed, strong changes of FC film chemistry during a cycle are seen whereas the chemical state of the substrate varies much less. On the other hand, for FC film deposition of 5 Å for each cycle, strong substrate surface chemical changes are seen during an etching cycle. The nature of this cyclic etching with periodic deposition of thin FC films differs significantly from conventional etching with steady-state FC layers since surface conditions change strongly throughout each cycle.

  4. From ‘petal effect’ to ‘lotus effect’ on the highly flexible Silastic S elastomer microstructured using a fluorine based reactive ion etching process

    NASA Astrophysics Data System (ADS)

    Frankiewicz, Christophe; Zoueshtiagh, Farzam; Talbi, Abdelkrim; Streque, Jérémy; Pernod, Philippe; Merlen, Alain

    2014-11-01

    A fluorine-based reactive ion etching (RIE) process has been applied on a new family of silicone elastomers named ‘Silastic S’ for the first time. Excellent mechanical properties are the principal advantage of this elastomer. The main objective of this study was (i) to develop a new process with an electrodeposited thin Nickel (Ni) layer as a mask to obtain a more precise pattern transfer for deep etching (ii) to investigate the etch rates and the etch profiles obtained under various plasma conditions (gas mixture ratios and pressure). The resulting process exhibits etch rates that range from 20 µm h-1 to 40 µm h-1. The process was optimized to obtain anisotropic profiles of the edges. Finally, it is shown that (iii) the wetting contact angle could be easily modified with this process from 103° to 162°, with a hysteresis that ranges from 2° to 140°. The process is, at present, the only reported solution to reproduce the ‘petal effect’ (high contact angle hysteresis value) on a highly flexible substrate. A possibility to control the contact angle hysteresis from the ‘petal effect’ to the ‘lotus effect’ (low contact angle hysteresis value) has been investigated to allow a precise control on the required energy to pin or unpin the contact line of water droplets. This opens multiple possibilities to exploit this elastomer in many microfluidics applications.

  5. Semiconductor structure and recess formation etch technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Bin; Sun, Min; Palacios, Tomas Apostol

    2017-02-14

    A semiconductor structure has a first layer that includes a first semiconductor material and a second layer that includes a second semiconductor material. The first semiconductor material is selectively etchable over the second semiconductor material using a first etching process. The first layer is disposed over the second layer. A recess is disposed at least in the first layer. Also described is a method of forming a semiconductor structure that includes a recess. The method includes etching a region in a first layer using a first etching process. The first layer includes a first semiconductor material. The first etching processmore » stops at a second layer beneath the first layer. The second layer includes a second semiconductor material.« less

  6. Wide angle near-field optical probes by reverse tube etching.

    PubMed

    Patanè, S; Cefalì, E; Arena, A; Gucciardi, P G; Allegrini, M

    2006-04-01

    We present a simple modification of the tube etching process for the fabrication of fiber probes for near-field optical microscopy. It increases the taper angle of the probe by a factor of two. The novelty is that the fiber is immersed in hydrofluoric acid and chemically etched in an upside-down geometry. The tip formation occurs inside the micrometer tube cavity formed by the polymeric jacket. By applying this approach, called reverse tube etching, to multimode fibers with 200/250 microm core/cladding diameter, we have fabricated tapered regions featuring high surface smoothness and average cone angles of approximately 30 degrees . A simple model based on the crucial role of the gravity in removing the etching products, explains the tip formation process.

  7. Kinetic-limited etching of magnesium doping nitrogen polar GaN in potassium hydroxide solution

    NASA Astrophysics Data System (ADS)

    Jiang, Junyan; Zhang, Yuantao; Chi, Chen; Yang, Fan; Li, Pengchong; Zhao, Degang; Zhang, Baolin; Du, Guotong

    2016-01-01

    KOH based wet etchings were performed on both undoped and Mg-doped N-polar GaN films grown by metal-organic chemical vapor deposition. It is found that the etching rate for Mg-doped N-polar GaN gets slow obviously compared with undoped N-polar GaN. X-ray photoelectron spectroscopy analysis proved that Mg oxide formed on N-polar GaN surface is insoluble in KOH solution so that kinetic-limited etching occurs as the etching process goes on. The etching process model of Mg-doped N-polar GaN in KOH solution is tentatively purposed using a simplified ideal atomic configuration. Raman spectroscopy analysis reveals that Mg doping can induce tensile strain in N-polar GaN films. Meanwhile, p-type N-polar GaN film with a hole concentration of 2.4 ÿ 1017 cm⿿3 was obtained by optimizing bis-cyclopentadienyl magnesium flow rates.

  8. Silicon nanowire photodetectors made by metal-assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Xu, Ying; Ni, Chuan; Sarangan, Andrew

    2016-09-01

    Silicon nanowires have unique optical effects, and have potential applications in photodetectors. They can exhibit simple optical effects such as anti-reflection, but can also produce quantum confined effects. In this work, we have fabricated silicon photodetectors, and then post-processed them by etching nanowires on the incident surface. These nanowires were produced by a wet-chemical etching process known as the metal-assisted-chemical etching, abbreviated as MACE. N-type silicon substrates were doped by thermal diffusion from a solid ceramic source, followed by etching, patterning and contact metallization. The detectors were first tested for functionality and optical performance. The nanowires were then made by depositing an ultra-thin film of gold below its percolation thickness to produce an interconnected porous film. This was then used as a template to etch high aspect ratio nanowires into the face of the detectors with a HF:H2O2 mixture.

  9. Effects of hard mask etch on final topography of advanced phase shift masks

    NASA Astrophysics Data System (ADS)

    Hortenbach, Olga; Rolff, Haiko; Lajn, Alexander; Baessler, Martin

    2017-07-01

    Continuous shrinking of the semiconductor device dimensions demands steady improvements of the lithographic resolution on wafer level. These requirements challenge the photomask industry to further improve the mask quality in all relevant printing characteristics. In this paper topography of the Phase Shift Masks (PSM) was investigated. Effects of hard mask etch on phase shift uniformity and mask absorber profile were studied. Design of experiments method (DoE) was used for the process optimization, whereas gas composition, bias power of the hard mask main etch and bias power of the over-etch were varied. In addition, influence of the over-etch time was examined at the end of the experiment. Absorber depth uniformity, sidewall angle (SWA), reactive ion etch lag (RIE lag) and through pitch (TP) dependence were analyzed. Measurements were performed by means of Atomic-force microscopy (AFM) using critical dimension (CD) mode with a boot-shaped tip. Scanning electron microscope (SEM) cross-section images were prepared to verify the profile quality. Finally CD analysis was performed to confirm the optimal etch conditions. Significant dependence of the absorber SWA on hard mask (HM) etch conditions was observed revealing an improvement potential for the mask absorber profile. It was found that hard mask etch can leave a depth footprint in the absorber layer. Thus, the etch depth uniformity of hard mask etch is crucial for achieving a uniform phase shift over the active mask area. The optimized hard mask etch process results in significantly improved mask topography without deterioration of tight CD specifications.

  10. Copper-assisted, anti-reflection etching of silicon surfaces

    DOEpatents

    Toor, Fatima; Branz, Howard

    2014-08-26

    A method (300) for etching a silicon surface (116) to reduce reflectivity. The method (300) includes electroless deposition of copper nanoparticles about 20 nanometers in size on the silicon surface (116), with a particle-to-particle spacing of 3 to 8 nanometers. The method (300) includes positioning (310) the substrate (112) with a silicon surface (116) into a vessel (122). The vessel (122) is filled (340) with a volume of an etching solution (124) so as to cover the silicon surface (116). The etching solution (124) includes an oxidant-etchant solution (146), e.g., an aqueous solution of hydrofluoric acid and hydrogen peroxide. The silicon surface (116) is etched (350) by agitating the etching solution (124) with, for example, ultrasonic agitation, and the etching may include heating (360) the etching solution (124) and directing light (365) onto the silicon surface (116). During the etching, copper nanoparticles enhance or drive the etching process.

  11. Process for etching mixed metal oxides

    DOEpatents

    Ashby, Carol I. H.; Ginley, David S.

    1994-01-01

    An etching process using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstom range may be achieved by this method.

  12. Introducing etch kernels for efficient pattern sampling and etch bias prediction

    NASA Astrophysics Data System (ADS)

    Weisbuch, François; Lutich, Andrey; Schatz, Jirka

    2018-01-01

    Successful patterning requires good control of the photolithography and etch processes. While compact litho models, mainly based on rigorous physics, can predict very well the contours printed in photoresist, pure empirical etch models are less accurate and more unstable. Compact etch models are based on geometrical kernels to compute the litho-etch biases that measure the distance between litho and etch contours. The definition of the kernels, as well as the choice of calibration patterns, is critical to get a robust etch model. This work proposes to define a set of independent and anisotropic etch kernels-"internal, external, curvature, Gaussian, z_profile"-designed to represent the finest details of the resist geometry to characterize precisely the etch bias at any point along a resist contour. By evaluating the etch kernels on various structures, it is possible to map their etch signatures in a multidimensional space and analyze them to find an optimal sampling of structures. The etch kernels evaluated on these structures were combined with experimental etch bias derived from scanning electron microscope contours to train artificial neural networks to predict etch bias. The method applied to contact and line/space layers shows an improvement in etch model prediction accuracy over standard etch model. This work emphasizes the importance of the etch kernel definition to characterize and predict complex etch effects.

  13. Multi-Step Deep Reactive Ion Etching Fabrication Process for Silicon-Based Terahertz Components

    NASA Technical Reports Server (NTRS)

    Reck, Theodore (Inventor); Perez, Jose Vicente Siles (Inventor); Lee, Choonsup (Inventor); Cooper, Ken B. (Inventor); Jung-Kubiak, Cecile (Inventor); Mehdi, Imran (Inventor); Chattopadhyay, Goutam (Inventor); Lin, Robert H. (Inventor); Peralta, Alejandro (Inventor)

    2016-01-01

    A multi-step silicon etching process has been developed to fabricate silicon-based terahertz (THz) waveguide components. This technique provides precise dimensional control across multiple etch depths with batch processing capabilities. Nonlinear and passive components such as mixers and multipliers waveguides, hybrids, OMTs and twists have been fabricated and integrated into a small silicon package. This fabrication technique enables a wafer-stacking architecture to provide ultra-compact multi-pixel receiver front-ends in the THz range.

  14. Fabrication and etching processes of silicon-based PZT thin films

    NASA Astrophysics Data System (ADS)

    Zhao, Hongjin; Liu, Yanxiang; Liu, Jianshe; Ren, Tian-Ling; Liu, Li-Tian; Li, Zhijian

    2001-09-01

    Lead-zirconate-titanate (PZT) thin films on silicon were prepared by a sol-gel method. Phase characterization and crystal orientation of the films were investigated by x-ray diffraction analysis (XRD). It was shown that the PZT thin films had a perfect perovskite structure after annealed at a low temperature of 600 degrees C. PZT thin films were chemically etched using HCl/HF solution through typical semiconductor lithographic process, and the etching condition was optimized. The scanning electron microscopy results indicated that the PZT thin film etching problem was well solved for the applications of PZT thin film devices.

  15. Photon Doppler velocimetry measurements of transverse surface velocities

    NASA Astrophysics Data System (ADS)

    Johnson, C. R.; LaJeunesse, J. W.; Sable, P. A.; Dawson, A.; Hatzenbihler, A.; Borg, J. P.

    2018-06-01

    The goal of this work was to develop a technique for making transverse surface velocity measures utilizing Photon Doppler Velocimetry (PDV). Such a task is achieved by transmitting light and collecting Doppler-shifted light at an angle relative to the normal axis, where measured velocities are representative of a component of the transverse velocity. Because surface characteristics have an intrinsic effect on light scatter, different surface preparations were explored to direct reflectivity, including diffusion by means of sandpapering, or increasing retroreflectivity by coating with microspheres, milling v-cuts, and electrochemically etching grooves. Testing of these surface preparations was performed using an experiment featuring a 30 mm diameter aluminum disk rotating at 6000 or 6600 RPM. A single PDV collimator was positioned along the rotational axis of the disk at various angles, resolving the apparent transverse velocity. To characterize surface preparations, light return and velocities were recorded as a function of probe angle ranging from 0° to 51° from the surface normal for each preparation. Polished and electrochemically etched surfaces did not provide enough reflected light to resolve a beat frequency; however, sandpapered surfaces, retroreflective microspheres, and milled v-cuts provided adequate reflected light for incidence angles up to 51°. Applications of the surface preparations were then studied in gas gun experiments. Retroreflective microspheres were studied in a planar impact experiment, and milled v-cuts were studied in an oblique impact experiment. A normal and transverse profile of particle velocity was resolved in the oblique impact experiment.

  16. High rate dry etching of (BiSb)2Te3 film by CH4/H2-based plasma

    NASA Astrophysics Data System (ADS)

    Song, Junqiang; Shi, Xun; Chen, Lidong

    2014-10-01

    Etching characteristics of p-type (BiSb)2Te3 films were studied with CH4/H2/Ar gas mixture using an inductively coupled plasma (ICP)-reactive ion etching (RIE) system. The effects of gas mixing ratio, working pressure and gas flow rate on the etch rate and the surface morphology were investigated. The vertical etched profile with the etch rate of 600 nm/min was achieved at the optimized processing parameters. X-ray photoelectron spectroscopy (XPS) analysis revealed the non-uniform etching of (BiSb)2Te3 films due to disparate volatility of the etching products. Micro-masking effects caused by polymer deposition and Bi-rich residues resulted in roughly etched surfaces. Smooth surfaces can be obtained by optimizing the CH4/H2/Ar mixing ratio.

  17. Characterization of the high density plasma etching process of CCTO thin films for the fabrication of very high density capacitors

    NASA Astrophysics Data System (ADS)

    Altamore, C.; Tringali, C.; Sparta', N.; Di Marco, S.; Grasso, A.; Ravesi, S.

    2010-02-01

    In this work the feasibility of CCTO (Calcium Copper Titanate) patterning by etching process is demonstrated and fully characterized in a hard to etch materials etcher. CCTO sintered in powder shows a giant relative dielectric constant (105) measured at 1 MHz at room temperature. This feature is furthermore coupled with stability from 101 Hz to 106 Hz in a wide temperature range (100K - 600K). In principle, this property can allow to fabricate very high capacitance density condenser. Due to its perovskite multi-component structure, CCTO can be considered a hard to etch material. For high density capacitor fabrication, CCTO anisotropic etching is requested by using high density plasma. The behavior of etched CCTO was studied in a HRe- (High Density Reflected electron) plasma etcher using Cl2/Ar chemistry. The relationship between the etch rate and the Cl2/Ar ratio was also studied. The effects of RF MHz, KHz Power and pressure variation, the impact of HBr addiction to the Cl2/Ar chemistry on the CCTO etch rate and on its selectivity to Pt and photo resist was investigated.

  18. The effect of reactive ion etch (RIE) process conditions on ReRAM device performance

    NASA Astrophysics Data System (ADS)

    Beckmann, K.; Holt, J.; Olin-Ammentorp, W.; Alamgir, Z.; Van Nostrand, J.; Cady, N. C.

    2017-09-01

    The recent surge of research on resistive random access memory (ReRAM) devices has resulted in a wealth of different materials and fabrication approaches. In this work, we describe the performance implications of utilizing a reactive ion etch (RIE) based process to fabricate HfO2 based ReRAM devices, versus a more unconventional shadow mask fabrication approach. The work is the result of an effort to increase device yield and reduce individual device size. Our results show that choice of RIE etch gas (SF6 versus CF4) is critical for defining the post-etch device profile (cross-section), and for tuning the removal of metal layers used as bottom electrodes in the ReRAM device stack. We have shown that etch conditions leading to a tapered profile for the device stack cause poor electrical performance, likely due to metal re-deposition during etching, and damage to the switching layer. These devices exhibit nonlinear I-V during the low resistive state, but this could be improved to linear behavior once a near-vertical etch profile was achieved. Device stacks with vertical etch profiles also showed an increase in forming voltage, reduced switching variability and increased endurance.

  19. Inductively coupled plasma etching of GaAs low loss waveguides for a traveling waveguide polarization converter, using chlorine chemistry

    NASA Astrophysics Data System (ADS)

    Lu, J.; Meng, X.; Springthorpe, A. J.; Shepherd, F. R.; Poirier, M.

    2004-05-01

    A traveling waveguide polarization converter [M. Poirier et al.] has been developed, which involves long, low loss, weakly confined waveguides etched in GaAs (epitaxially grown by molecular beam epitaxy), with electroplated ``T electrodes'' distributed along the etched floor adjacent to the ridge walls, and airbridge interconnect metallization. This article describes the development of the waveguide fabrication, based on inductively coupled plasma (ICP) etching of GaAs using Cl2 chemistry; the special processes required to fabricate the electrodes and metallization [X. Meng et al.], and the device characteristics [M. Poirier et al.], are described elsewhere. The required waveguide has dimensions nominally 4 μm wide and 2.1 μm deep, with dimensional tolerances ~0.1 μm across the wafer and wafer to wafer. A vertical etch profile with very smooth sidewalls and floors is required to enable the plated metal electrodes to be fabricated within 0.1 μm of the ridge. The ridges were fabricated using Cl2 ICP etching and a photoresist mask patterned with an I-line stepper; He backside cooling, combined with an electrostatic chuck, was employed to ensure good heat transfer to prevent resist reticulation. The experimental results showed that the ridge profile is very sensitive to ICP power and platen rf power. High ICP power and low platen power tend to result in more isotropic etching, whereas increasing platen power increases the photoresist etch rate, which causes rougher ridge sidewalls. No strong dependence of GaAs etch rate and ridge profile were observed with small changes in process temperature (chuck temperature). However, when the chuck temperature was decreased from 25 to 0 °C, etch uniformity across a 3 in. wafer improved from 6% to 3%. Photoresist and polymer residues present after the ICP etch were removed using a combination of wet and dry processes. .

  20. Ion beam sputtering of fluoropolymers. [etching polymer films and target surfaces

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.

    1978-01-01

    Ion beam sputter processing rates as well as pertinent characteristics of etched targets and films are described. An argon ion beam source was used to sputter etch and deposit the fluoropolymers PTFE, FEP, and CTFE. Ion beam energy, current density, and target temperature were varied to examine effects on etch and deposition rates. The ion etched fluoropolymers yield cone or spire-like surface structures which vary depending upon the type of polymer, ion beam power density, etch time, and target temperature. Sputter target and film characteristics documented by spectral transmittance measurements, X-ray diffraction, ESCA, and SEM photomicrographs are included.

  1. Studies and testing of antireflective (AR) coatings for soda-lime glass

    NASA Technical Reports Server (NTRS)

    Pastirik, E. M.; Sparks, T. G.; Coleman, M. G.

    1978-01-01

    Processes for producing antireflection films on glass are concentrated in three areas: acid etching of glass, plasma etching of glass, and acid development of sodium silicate films on glass. The best transmission was achieved through the acid etching technique, while the most durable films were produced from development of sodium silicate films. Control of the acid etching technique is presently inadequate for production implementation. While films having excellent antireflective properties were fabricated by plasma etching techniques, all were water soluble.

  2. Highly cytocompatible and flexible three-dimensional graphene/polydimethylsiloxane composite for culture and electrochemical detection of L929 fibroblast cells.

    PubMed

    Waiwijit, Uraiwan; Maturos, Thitima; Pakapongpan, Saithip; Phokharatkul, Ditsayut; Wisitsoraat, Anurat; Tuantranont, Adisorn

    2016-08-01

    Recently, three-dimensional graphene interconnected network has attracted great interest as a scaffold structure for tissue engineering due to its high biocompatibility, high electrical conductivity, high specific surface area and high porosity. However, free-standing three-dimensional graphene exhibits poor flexibility and stability due to ease of disintegration during processing. In this work, three-dimensional graphene is composited with polydimethylsiloxane to improve the structural flexibility and stability by a new simple two-step process comprising dip coating of polydimethylsiloxane on chemical vapor deposited graphene/Ni foam and wet etching of nickel foam. Structural characterizations confirmed an interconnected three-dimensional multi-layer graphene structure with thin polydimethylsiloxane scaffold. The composite was employed as a substrate for culture of L929 fibroblast cells and its cytocompatibility was evaluated by cell viability (Alamar blue assay), reactive oxygen species production and vinculin immunofluorescence imaging. The result revealed that cell viability on three-dimensional graphene/polydimethylsiloxane composite increased with increasing culture time and was slightly different from a polystyrene substrate (control). Moreover, cells cultured on three-dimensional graphene/polydimethylsiloxane composite generated less ROS than the control at culture times of 3-6 h. The results of immunofluorescence staining demonstrated that fibroblast cells expressed adhesion protein (vinculin) and adhered well on three-dimensional graphene/polydimethylsiloxane surface. Good cell adhesion could be attributed to suitable surface properties of three-dimensional graphene/polydimethylsiloxane with moderate contact angle and small negative zeta potential in culture solution. The results of electrochemical study by cyclic voltammetry showed that an oxidation current signal with no apparent peak was induced by fibroblast cells and the oxidation current at an oxidation potential of +0.9 V increased linearly with increasing cell number. Therefore, the three-dimensional graphene/polydimethylsiloxane composite exhibits high cytocompatibility and can potentially be used as a conductive substrate for cell-based electrochemical sensing. © The Author(s) 2016.

  3. Process for etching mixed metal oxides

    DOEpatents

    Ashby, C.I.H.; Ginley, D.S.

    1994-10-18

    An etching process is described using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstrom range may be achieved by this method. 1 fig.

  4. Plasma processing of large curved surfaces for superconducting rf cavity modification

    DOE PAGES

    Upadhyay, J.; Im, Do; Popović, S.; ...

    2014-12-15

    In this study, plasma based surface modification of niobium is a promising alternative to wet etching of superconducting radio frequency (SRF) cavities. The development of the technology based on Cl 2/Ar plasma etching has to address several crucial parameters which influence the etching rate and surface roughness, and eventually, determine cavity performance. This includes dependence of the process on the frequency of the RF generator, gas pressure, power level, the driven (inner) electrode configuration, and the chlorine concentration in the gas mixture during plasma processing. To demonstrate surface layer removal in the asymmetric non-planar geometry, we are using a simplemore » cylindrical cavity with 8 ports symmetrically distributed over the cylinder. The ports are used for diagnosing the plasma parameters and as holders for the samples to be etched. The etching rate is highly correlated with the shape of the inner electrode, radio-frequency (RF) circuit elements, chlorine concentration in the Cl 2/Ar gas mixtures, residence time of reactive species and temperature of the cavity. Using cylindrical electrodes with variable radius, large-surface ring-shaped samples and d.c. bias implementation in the external circuit we have demonstrated substantial average etching rates and outlined the possibility to optimize plasma properties with respect to maximum surface processing effect.« less

  5. Chemical etching for automatic processing of integrated circuits

    NASA Technical Reports Server (NTRS)

    Kennedy, B. W.

    1981-01-01

    Chemical etching for automatic processing of integrated circuits is discussed. The wafer carrier and loading from a receiving air track into automatic furnaces and unloading onto a sending air track are included.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metzler, Dominik; Li, Chen; Engelmann, Sebastian

    With the increasing interest in establishing directional etching methods capable of atomic scale resolution for fabricating highly scaled electronic devices, the need for development and characterization of atomic layer etching (ALE) processes, or generally etch processes with atomic layer precision, is growing. In this work, a flux-controlled cyclic plasma process is used for etching of SiO 2 and Si at the Angstrom-level. This is based on steady-state Ar plasma, with periodic, precise injection of a fluorocarbon (FC) precursor (C 4F 8 and CHF 3), and synchronized, plasma-based Ar+ ion bombardment [D. Metzler et al., J Vac Sci Technol A 32,more » 020603 (2014), and D. Metzler et al., J Vac Sci Technol A 34, 01B101 (2016)]. For low energy Ar+ ion bombardment conditions, physical sputter rates are minimized, whereas material can be etched when FC reactants are present at the surface. This cyclic approach offers a large parameter space for process optimization. Etch depth per cycle, removal rates, and self-limitation of removal, along with material dependence of these aspects, were examined as a function of FC surface coverage, ion energy, and etch step length using in situ real time ellipsometry. The deposited FC thickness per cycle is found to have a strong impact on etch depth per cycle of SiO 2 and Si, but is limited with regard to control over material etching selectivity. Ion energy over the 20 to 30 eV range strongly impacts material selectivity. The choice of precursor can have a significant impact on the surface chemistry and chemically enhanced etching. CHF 3 has a lower FC deposition yield for both SiO 2 and Si, and also exhibits a strong substrate dependence of FC deposition yield, in contrast to C4F 8. The thickness of deposited FC layers using CHF 3 is found to be greater for Si than for SiO 2. X-ray photoelectron spectroscopy was used to study surface chemistry. When thicker FC films of 11 Å are employed, strong changes of FC film chemistry during a cycle are seen whereas the chemical state of the substrate varies much less. On the other hand, for FC film deposition of 5 Å for each cycle, strong substrate surface chemical changes are seen during an etching cycle. The nature of this cyclic etching with periodic deposition of thin FC films differs significantly from conventional etching with steady-state FC layers since surface conditions change strongly throughout each cycle.« less

  7. Photolithography and Selective Etching of an Array of Quartz Tuning Fork Resonators with Improved Impact Resistance Characteristics

    NASA Astrophysics Data System (ADS)

    Lee, Sungkyu

    2001-08-01

    Quartz tuning fork blanks with improved impact-resistant characteristics for use in Qualcomm mobile station modem (MSM)-3000 central processing unit (CPU) chips for code division multiple access (CDMA), personal communication system (PCS), and global system for mobile communication (GSM) systems were designed using finite element method (FEM) analysis and suitable processing conditions were determined for the reproducible precision etching of a Z-cut quartz wafer into an array of tuning forks. Negative photoresist photolithography for the additive process was used in preference to positive photoresist photolithography for the subtractive process to etch the array of quartz tuning forks. The tuning fork pattern was transferred via a conventional photolithographical chromium/quartz glass template using a standard single-sided aligner and subsequent negative photoresist development. A tightly adhering and pinhole-free 600/2000 Å chromium/gold mask was coated over the developed photoresist pattern which was subsequently stripped in acetone. This procedure was repeated on the back surface of the wafer. With the protective metallization area of the tuning fork geometry thus formed, etching through the quartz wafer was performed at 80°C in a ± 1.5°C controlled bath containing a concentrated solution of ammonium bifluoride to remove the unwanted areas of the quartz wafer. The quality of the quartz wafer surface finish after quartz etching depended primarily on the surface finish of the quartz wafer prior to etching and the quality of quartz crystals used. Selective etching of a 100 μm quartz wafer could be achieved within 90 min at 80°C. A selective etching procedure with reproducible precision has thus been established and enables the photolithographic mass production of miniature tuning fork resonators.

  8. Silicon macroporous arrays with high aspect ratio prepared by ICP etching

    NASA Astrophysics Data System (ADS)

    Wang, Guozheng; Yang, Bingchen; Wang, Ji; Yang, Jikai; Duanmu, Qingduo

    2018-02-01

    This paper reports on a macroporous silicon arrays with high aspect ratio, the pores of which are of 162, 205, 252, 276μm depths with 6, 10, 15 and 20 μm diameters respectively, prepared by Multiplex Inductively Coupled Plasma (ICP) etching. It was shown that there are very differences in process of high aspect ratio microstructures between the deep pores, a closed structure, and deep trenches, a open structure. The morphology and the aspect ratio dependent etching were analyzed and discussed. The macroporous silicon etched by ICP process yield an uneven, re-entrant, notched and ripples surface within the pores. The main factors effecting on the RIE lag of HARP etching are the passivation cycle time, the pressure of reactive chamber, and the platen power of ICP system.

  9. Difference in anisotropic etching characteristics of alkaline and copper based acid solutions for single-crystalline Si.

    PubMed

    Chen, Wei; Liu, Yaoping; Yang, Lixia; Wu, Juntao; Chen, Quansheng; Zhao, Yan; Wang, Yan; Du, Xiaolong

    2018-02-21

    The so called inverted pyramid arrays, outperforming conventional upright pyramid textures, have been successfully achieved by one-step Cu assisted chemical etching (CACE) for light reflection minimization in silicon solar cells. Due to the lower reduction potential of Cu 2+ /Cu and different electronic properties of different Si planes, the etching of Si substrate shows orientation-dependent. Different from the upright pyramid obtained by alkaline solutions, the formation of inverted pyramid results from the coexistence of anisotropic etching and localized etching process. The obtained structure is bounded by Si {111} planes which have the lowest etching rate, no matter what orientation of Si substrate is. The Si etching rate and (100)/(111) etching ratio are quantitatively analyzed. The different behaviors of anisotropic etching of Si by alkaline and Cu based acid etchant have been systematically investigated.

  10. Preparation of TiO2/boron-doped diamond/Ta multilayer films and use as electrode materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Shi, Chao; Li, Hongji; Li, Cuiping; Li, Mingji; Qu, Changqing; Yang, Baohe

    2015-12-01

    We report nanostructured TiO2/boron-doped diamond (BDD)/Ta multilayer films and their electrochemical performances as supercapacitor electrodes. The BDD films were grown on Ta substrates using electron-assisted hot filament chemical vapor deposition. Ti metal layers were deposited on the BDD surfaces by radio frequency magnetron sputtering, and nanostructured TiO2/BDD/Ta thin films were prepared by electrochemical etching and thermal annealing. The successful formation of TiO2 and Ta layered nanostructures was demonstrated using scanning electron and transmission electron microscopies. The electrochemical responses of these electrodes were evaluated by examining their use as electrical double-layer capacitors, using cyclic voltammetry, and galvanostatic charge/discharge and impedance measurements. When the TiO2/BDD/Ta film was used as the working electrode with 0.1 M Na2SO4 as the electrolyte, the capacitor had a specific capacitance of 5.23 mF cm-2 at a scan rate of 5 mV s-1 for a B/C ratio of 0.1% w/w. Furthermore, the TiO2/BDD/Ta film had improved electrochemical stability, with a retention of 89.3% after 500 cycles. This electrochemical behavior is attributed to the quality of the BDD, the surface roughness and electrocatalytic activities of the TiO2 layer and Ta nanoporous structures, and the synergies between them. These results show that TiO2/BDD/Ta films are promising as capacitor electrodes for special applications.

  11. Method of fabricating vertically aligned group III-V nanowires

    DOEpatents

    Wang, George T; Li, Qiming

    2014-11-25

    A top-down method of fabricating vertically aligned Group III-V micro- and nanowires uses a two-step etch process that adds a selective anisotropic wet etch after an initial plasma etch to remove the dry etch damage while enabling micro/nanowires with straight and smooth faceted sidewalls and controllable diameters independent of pitch. The method enables the fabrication of nanowire lasers, LEDs, and solar cells.

  12. An optimized one-step wet etching process of Pb(Zr0.52Ti0.48)O3 thin films for microelectromechanical system applications

    NASA Astrophysics Data System (ADS)

    Che, L.; Halvorsen, E.; Chen, X.

    2011-10-01

    The existence of insoluble residues as intermediate products produced during the wet etching process is the main quality-reducing and structure-patterning issue for lead zirconate titanate (PZT) thin films. A one-step wet etching process using the solutions of buffered HF (BHF) and HNO3 acid was developed for patterning PZT thin films for microelectomechanical system (MEMS) applications. PZT thin films with 1 µm thickness were prepared on the Pt/Ti/SiO2/Si substrate by the sol-gel process for compatibility with Si micromachining. Various compositions of the etchant were investigated and the patterns were examined to optimize the etching process. The optimal result is demonstrated by a high etch rate (3.3 µm min-1) and low undercutting (1.1: 1). The patterned PZT thin film exhibits a remnant polarization of 24 µC cm-2, a coercive field of 53 kV cm-1, a leakage current density of 4.7 × 10-8 A cm-2 at 320 kV cm-1 and a dielectric constant of 1100 at 1 KHz.

  13. Electrochemically assisted localized etching of ZnO single crystals in water using a catalytically active Pt-coated atomic force microscopy probe

    NASA Astrophysics Data System (ADS)

    Shibata, Takayuki; Yamamoto, Kota; Sasano, Junji; Nagai, Moeto

    2017-09-01

    This paper presents a nanofabrication technique based on the electrochemically assisted chemical dissolution of zinc oxide (ZnO) single crystals in water at room temperature using a catalytically active Pt-coated atomic force microscopy (AFM) probe. Fabricated grooves featured depths and widths of several tens and several hundreds of nanometers, respectively. The material removal rate of ZnO was dramatically improved by controlling the formation of hydrogen ions (H+) on the surface of the catalytic Pt-coated probe via oxidation of H2O molecules; this reaction can be enhanced by applying a cathodic potential to an additional Pt-wire working electrode in a three-electrode configuration. Consequently, ZnO can be dissolved chemically in water as a soluble Zn2+ species via a reaction with H+ species present in high concentrations in the immediate vicinity of the AFM tip apex.

  14. Fabrication of ordered NiO coated Si nanowire array films as electrodes for a high performance lithium ion battery.

    PubMed

    Qiu, M C; Yang, L W; Qi, X; Li, Jun; Zhong, J X

    2010-12-01

    Highly ordered NiO coated Si nanowire array films are fabricated as electrodes for a high performance lithium ion battery via depositing Ni on electroless-etched Si nanowires and subsequently annealing. The structures and morphologies of as-prepared films are characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. When the potential window versus lithium was controlled, the coated NiO can be selected to be electrochemically active to store and release Li+ ions, while highly conductive crystalline Si cores function as nothing more than a stable mechanical support and an efficient electrical conducting pathway. The hybrid nanowire array films exhibit superior cyclic stability and reversible capacity compared to that of NiO nanostructured films. Owing to the ease of large-scale fabrication and superior electrochemical performance, these hybrid nanowire array films will be promising anode materials for high performance lithium-ion batteries.

  15. 3D nitrogen-doped graphene aerogel nanomesh: Facile synthesis and electrochemical properties as the electrode materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Su, Xiao-Li; Fu, Lin; Cheng, Ming-Yu; Yang, Jing-He; Guan, Xin-Xin; Zheng, Xiu-Cheng

    2017-12-01

    Nitrogen-doped graphene aerogel nanomesh (N-GANM) has been hydrothermally prepared from graphene oxide and ammonium hydroxide using iron nitrate as the etching agent. The results showed that N-GANM with an interesting nanomesh structure on the graphene sheets maintained the 3D architecture of graphene aerogel (GA). Furthermore, it exhibited excellent electrochemical capacitive behavior and the specific capacitance value (290.0 F g-1 at 1 A g-1) remained approximately 90.3% after 2000 cycles in the three-electrode system. In addition, N-GANM displayed an energy density of 30.9 Wh kg-1 at the power density of 450.3 W kg-1 and excellent cycling stability retention (98%) after 10,000 cycles in the two-electrode symmetric device. The resulting N-GANM was expected to be a much favorable supercapacitor electrode material due to the heteroatom-doping and its unique porous structure.

  16. Porous silicon platform for optical detection of functionalized magnetic particles biosensing.

    PubMed

    Ko, Pil Ju; Ishikawa, Ryousuke; Sohn, Honglae; Sandhu, Adarsh

    2013-04-01

    The physical properties of porous materials are being exploited for a wide range of applications including optical biosensors, waveguides, gas sensors, micro capacitors, and solar cells. Here, we review the fast, easy and inexpensive electrochemical anodization based fabrication porous silicon (PSi) for optical biosensing using functionalized magnetic particles. Combining magnetically labeled biomolecules with PSi offers a rapid and one-step immunoassay and real-time detection by magnetic manipulation of superparamagnetic beads (SPBs) functionalized with target molecules onto corresponding probe molecules immobilized inside nano-pores of PSi. We first give an introduction to electrochemical and chemical etching procedures used to fabricate a wide range of PSi structures. Next, we describe the basic properties of PSi and underlying optical scattering mechanisms that govern their unique optical properties. Finally, we give examples of our experiments that demonstrate the potential of combining PSi and magnetic beads for real-time point of care diagnostics.

  17. Characterizing Fluorocarbon Assisted Atomic Layer Etching of Si Using Cyclic Ar/C 4F 8 and Ar/CHF 3 Plasma

    DOE PAGES

    Metzler, Dominik; Li, Chen; Engelmann, Sebastian; ...

    2016-09-08

    With the increasing interest in establishing directional etching methods capable of atomic scale resolution for fabricating highly scaled electronic devices, the need for development and characterization of atomic layer etching (ALE) processes, or generally etch processes with atomic layer precision, is growing. In this work, a flux-controlled cyclic plasma process is used for etching of SiO 2 and Si at the Angstrom-level. This is based on steady-state Ar plasma, with periodic, precise injection of a fluorocarbon (FC) precursor (C 4F 8 and CHF 3), and synchronized, plasma-based Ar+ ion bombardment [D. Metzler et al., J Vac Sci Technol A 32,more » 020603 (2014), and D. Metzler et al., J Vac Sci Technol A 34, 01B101 (2016)]. For low energy Ar+ ion bombardment conditions, physical sputter rates are minimized, whereas material can be etched when FC reactants are present at the surface. This cyclic approach offers a large parameter space for process optimization. Etch depth per cycle, removal rates, and self-limitation of removal, along with material dependence of these aspects, were examined as a function of FC surface coverage, ion energy, and etch step length using in situ real time ellipsometry. The deposited FC thickness per cycle is found to have a strong impact on etch depth per cycle of SiO 2 and Si, but is limited with regard to control over material etching selectivity. Ion energy over the 20 to 30 eV range strongly impacts material selectivity. The choice of precursor can have a significant impact on the surface chemistry and chemically enhanced etching. CHF 3 has a lower FC deposition yield for both SiO 2 and Si, and also exhibits a strong substrate dependence of FC deposition yield, in contrast to C4F 8. The thickness of deposited FC layers using CHF 3 is found to be greater for Si than for SiO 2. X-ray photoelectron spectroscopy was used to study surface chemistry. When thicker FC films of 11 Å are employed, strong changes of FC film chemistry during a cycle are seen whereas the chemical state of the substrate varies much less. On the other hand, for FC film deposition of 5 Å for each cycle, strong substrate surface chemical changes are seen during an etching cycle. The nature of this cyclic etching with periodic deposition of thin FC films differs significantly from conventional etching with steady-state FC layers since surface conditions change strongly throughout each cycle.« less

  18. Effects of epitaxial structure and processing on electrical characteristics of InAs-based nBn infrared detectors

    NASA Astrophysics Data System (ADS)

    Du, X.; Savich, G. R.; Marozas, B. T.; Wicks, G. W.

    2017-02-01

    The conventional processing of the III-V nBn photodetectors defines mesa devices by etching the contact n-layer and stopping immediately above the barrier, i.e., a shallow etch. This processing enables great suppression of surface leakage currents without having to explore surface passivation techniques. However, devices that are made with this processing scheme are subject to lateral diffusion currents. To address the lateral diffusion current, we compare the effects of different processing approaches and epitaxial structures of nBn detectors. The conventional solution for eliminating lateral diffusion current, a deep etch through the barrier and the absorber, creates increased dark currents and an increased device failure rate. To avoid deep etch processing, a new device structure is proposed, the inverted-nBn structure. By comparing with the conventional nBn structure, the results show that the lateral diffusion current is effectively eliminated in the inverted-nBn structure without elevating the dark currents.

  19. Technique for etching monolayer and multilayer materials

    DOEpatents

    Bouet, Nathalie C. D.; Conley, Raymond P.; Divan, Ralu; Macrander, Albert

    2015-10-06

    A process is disclosed for sectioning by etching of monolayers and multilayers using an RIE technique with fluorine-based chemistry. In one embodiment, the process uses Reactive Ion Etching (RIE) alone or in combination with Inductively Coupled Plasma (ICP) using fluorine-based chemistry alone and using sufficient power to provide high ion energy to increase the etching rate and to obtain deeper anisotropic etching. In a second embodiment, a process is provided for sectioning of WSi.sub.2/Si multilayers using RIE in combination with ICP using a combination of fluorine-based and chlorine-based chemistries and using RF power and ICP power. According to the second embodiment, a high level of vertical anisotropy is achieved by a ratio of three gases; namely, CHF.sub.3, Cl.sub.2, and O.sub.2 with RF and ICP. Additionally, in conjunction with the second embodiment, a passivation layer can be formed on the surface of the multilayer which aids in anisotropic profile generation.

  20. Controlled core removal from a D-shaped optical fiber.

    PubMed

    Markos, Douglas J; Ipson, Benjamin L; Smith, Kevin H; Schultz, Stephen M; Selfridge, Richard H; Monte, Thomas D; Dyott, Richard B; Miller, Gregory

    2003-12-20

    The partial removal of a section of the core from a continuous D-shaped optical fiber is presented. In the core removal process, selective chemical etching is used with hydrofluoric (HF) acid. A 25% HF acid solution removes the cladding material above the core, and a 5% HF acid solution removes the core. A red laser with a wavelength of 670 nm is transmitted through the optical fiber during the etching. The power transmitted through the optical fiber is correlated to the etch depth by scanning electron microscope imaging. The developed process provides a repeatable method to produce an optical fiber with a specific etch depth.

  1. Power ultrasound irradiation during the alkaline etching process of the 2024 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Moutarlier, V.; Viennet, R.; Rolet, J.; Gigandet, M. P.; Hihn, J. Y.

    2015-11-01

    Prior to any surface treatment on an aluminum alloy, a surface preparation is necessary. This commonly consists in performing an alkaline etching followed by acid deoxidizing. In this work, the use of power ultrasound irradiation during the etching step on the 2024 aluminum alloy was studied. The etching rate was estimated by weight loss, and the alkaline film formed during the etching step was characterized by glow discharge optical emission spectrometry (GDOES) and scanning electron microscope (SEM). The benefit of power ultrasound during the etching step was confirmed by pitting potential measurement in NaCl solution after a post-treatment (anodizing).

  2. Anisotropic Etching Using Reactive Cluster Beams

    NASA Astrophysics Data System (ADS)

    Koike, Kunihiko; Yoshino, Yu; Senoo, Takehiko; Seki, Toshio; Ninomiya, Satoshi; Aoki, Takaaki; Matsuo, Jiro

    2010-12-01

    The characteristics of Si etching using nonionic cluster beams with highly reactive chlorine-trifluoride (ClF3) gas were examined. An etching rate of 40 µm/min or higher was obtained even at room temperature when a ClF3 molecular cluster was formed and irradiated on a single-crystal Si substrate in high vacuum. The etching selectivity of Si with respect to a photoresist and SiO2 was at least 1:1000. We also succeeded in highly anisotropic etching with an aspect ratio of 10 or higher. Moreover, this etching method has a great advantage of low damage, compared with the conventional plasma process.

  3. Angular dependence of etch rates in the etching of poly-Si and fluorocarbon polymer using SF6, C4F8, and O2 plasmas

    NASA Astrophysics Data System (ADS)

    Min, Jae-Ho; Lee, Gyeo-Re; Lee, Jin-Kwan; Moon, Sang Heup; Kim, Chang-Koo

    2004-05-01

    The dependences of etch rates on the angle of ions incident on the substrate surface in four plasma/substrate systems that constitute the advanced Bosch process were investigated using a Faraday cage designed for the accurate control of the ion-incident angle. The four systems, established by combining discharge gases and substrates, were a SF6/poly-Si, a SF6/fluorocarbon polymer, an O2/fluorocarbon polymer, and a C4F8/Si. In the case of SF6/poly-Si, the normalized etch rates (NERs), defined as the etch rates normalized by the rate on the horizontal surface, were higher at all angles than values predicted from the cosine of the ion-incident angle. This characteristic curve shape was independent of changes in process variables including the source power and bias voltage. Contrary to the earlier case, the NERs for the O2/polymer decreased and eventually reached much lower values than the cosine values at angles between 30° and 70° when the source power was increased and the bias voltage was decreased. On the other hand, the NERs for the SF6/polymer showed a weak dependence on the process variables. In the case of C4F8/Si, which is used in the Bosch process for depositing a fluorocarbon layer on the substrate surface, the deposition rate varied with the ion incident angle, showing an S-shaped curve. These characteristic deposition rate curves, which were highly dependent on the process conditions, could be divided into four distinct regions: a Si sputtering region, an ion-suppressed polymer deposition region, an ion-enhanced polymer deposition region, and an ion-free polymer deposition region. Based on the earlier characteristic angular dependences of the etch (or deposition) rates in the individual systems, ideal process conditions for obtaining an anisotropic etch profile in the advanced Bosch process are proposed. .

  4. PCB Fault Detection Using Image Processing

    NASA Astrophysics Data System (ADS)

    Nayak, Jithendra P. R.; Anitha, K.; Parameshachari, B. D., Dr.; Banu, Reshma, Dr.; Rashmi, P.

    2017-08-01

    The importance of the Printed Circuit Board inspection process has been magnified by requirements of the modern manufacturing environment where delivery of 100% defect free PCBs is the expectation. To meet such expectations, identifying various defects and their types becomes the first step. In this PCB inspection system the inspection algorithm mainly focuses on the defect detection using the natural images. Many practical issues like tilt of the images, bad light conditions, height at which images are taken etc. are to be considered to ensure good quality of the image which can then be used for defect detection. Printed circuit board (PCB) fabrication is a multidisciplinary process, and etching is the most critical part in the PCB manufacturing process. The main objective of Etching process is to remove the exposed unwanted copper other than the required circuit pattern. In order to minimize scrap caused by the wrongly etched PCB panel, inspection has to be done in early stage. However, all of the inspections are done after the etching process where any defective PCB found is no longer useful and is simply thrown away. Since etching process costs 0% of the entire PCB fabrication, it is uneconomical to simply discard the defective PCBs. In this paper a method to identify the defects in natural PCB images and associated practical issues are addressed using Software tools and some of the major types of single layer PCB defects are Pattern Cut, Pin hole, Pattern Short, Nick etc., Therefore the defects should be identified before the etching process so that the PCB would be reprocessed. In the present approach expected to improve the efficiency of the system in detecting the defects even in low quality images

  5. Bi-stage time evolution of nano-morphology on inductively coupled plasma etched fused silica surface caused by surface morphological transformation

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaolong; Zhang, Lijuan; Bai, Yang; Liu, Ying; Liu, Zhengkun; Qiu, Keqiang; Liao, Wei; Zhang, Chuanchao; Yang, Ke; Chen, Jing; Jiang, Yilan; Yuan, Xiaodong

    2017-07-01

    In this work, we experimentally investigate the surface nano-roughness during the inductively coupled plasma etching of fused silica, and discover a novel bi-stage time evolution of surface nano-morphology. At the beginning, the rms roughness, correlation length and nano-mound dimensions increase linearly and rapidly with etching time. At the second stage, the roughening process slows down dramatically. The switch of evolution stage synchronizes with the morphological change from dual-scale roughness comprising long wavelength underlying surface and superimposed nano-mounds to one scale of nano-mounds. A theoretical model based on surface morphological change is proposed. The key idea is that at the beginning, etched surface is dual-scale, and both larger deposition rate of etch inhibitors and better plasma etching resistance at the surface peaks than surface valleys contribute to the roughness development. After surface morphology transforming into one-scale, the difference of plasma resistance between surface peaks and valleys vanishes, thus the roughening process slows down.

  6. Impact of Parameter Variation in Fabrication of Nanostructure by Atomic Force Microscopy Nanolithography

    PubMed Central

    Dehzangi, Arash; Larki, Farhad; Hutagalung, Sabar D.; Goodarz Naseri, Mahmood; Majlis, Burhanuddin Y.; Navasery, Manizheh; Hamid, Norihan Abdul; Noor, Mimiwaty Mohd

    2013-01-01

    In this letter, we investigate the fabrication of Silicon nanostructure patterned on lightly doped (1015 cm−3) p-type silicon-on-insulator by atomic force microscope nanolithography technique. The local anodic oxidation followed by two wet etching steps, potassium hydroxide etching for silicon removal and hydrofluoric etching for oxide removal, are implemented to reach the structures. The impact of contributing parameters in oxidation such as tip materials, applying voltage on the tip, relative humidity and exposure time are studied. The effect of the etchant concentration (10% to 30% wt) of potassium hydroxide and its mixture with isopropyl alcohol (10%vol. IPA ) at different temperatures on silicon surface are expressed. For different KOH concentrations, the effect of etching with the IPA admixture and the effect of the immersing time in the etching process on the structure are investigated. The etching processes are accurately optimized by 30%wt. KOH +10%vol. IPA in appropriate time, temperature, and humidity. PMID:23776479

  7. Method and system for optical figuring by imagewise heating of a solvent

    DOEpatents

    Rushford, Michael C.

    2005-08-30

    A method and system of imagewise etching the surface of a substrate, such as thin glass, in a parallel process. The substrate surface is placed in contact with an etchant solution which increases in etch rate with temperature. A local thermal gradient is then generated in each of a plurality of selected local regions of a boundary layer of the etchant solution to imagewise etch the substrate surface in a parallel process. In one embodiment, the local thermal gradient is a local heating gradient produced at selected addresses chosen from an indexed array of addresses. The activation of each of the selected addresses is independently controlled by a computer processor so as to imagewise etch the substrate surface at region-specific etch rates. Moreover, etching progress is preferably concurrently monitored in real time over the entire surface area by an interferometer so as to deterministically control the computer processor to image-wise figure the substrate surface where needed.

  8. Portable Fiber Laser System and Method to Remove Pits and Cracks on Sensitized Surfaces of Aluminum Alloys

    DTIC Science & Technology

    2015-08-01

    resistant 5083- H116 aluminum, sheet, 1/4" thick, 2" x 24", 2 pieces 71.60 5 Reagent VWR & Fisher Nitric acid and sodium hydroxide for mass loss...Temperature stability ±0.1oC @37oC Temperature uniformity ±0.2oC @37oC 693.55 4 5083-H116 Al-Mg alloy materials McMaster Carr Strengthened corrosion ...test, other acids for etching, electrochemical polishing, and anodizing 700.28 6 Containers VWR Beakers, petri dishes, bottles, graduated cylinders

  9. SERS spectra of pyridine adsorbed on nickel film prepared by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Li, Daoyong; Ouyang, Yu; Chen, Li; Cao, Weiran; Shi, Shaohua

    2011-02-01

    As a repeating well and cheaper enhancement substrate, the nickel film was fabricated with magnetron sputtering coating instrument. Surface enhanced Raman spectra (SERS) of pyridine adsorbed on this nickel film are compared with the experimental values of gaseous pyridine, the theoretical value of pyridine solution listed in other literatures and our method is better than electro-chemical etching electrode method for large scale preparation. The enhancement factor of the nickel film is calculated and the result indicates that magnetron sputtering coating technology is feasible for obtaining good SERS active surface.

  10. Measurement of ion beam angular distribution at different helium gas pressures in a plasma focus device by large-area polycarbonate detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sohrabi, M.; Habibi, M., E-mail: mortezahabibi@gmail.com; Ramezani, V.

    2017-02-15

    The paper presents an experimental study and analysis of full helium ion density angular distributions in a 4-kJ plasma focus device (PFD) at pressures of 10, 15, 25, and 30 mbar using large-area polycarbonate track detectors (PCTDs) (15-cm etchable diameter) processed by 50-Hz-HV electrochemical etching (ECE). Helium ion track distributions at different pressures, in particular, at the main axis of the PFD are presented. Maximum ion track density of ~4.4 × 10{sup 4} tracks/cm{sup 2} was obtained in the PCTD placed 6 cm from the anode. The ion distributions for all pressures applied are ring-shaped, which is possibly due tomore » the hollow cylindrical copper anode used. The large-area PCTD processed by ECE proves, at the present state-of-theart, a superior method for direct observation and analysis of ion distributions at a glance with minimum efforts and time. Some observations of the ion density distributions at different pressures are reported and discussed.« less

  11. Method of plasma etching Ga-based compound semiconductors

    DOEpatents

    Qiu, Weibin; Goddard, Lynford L.

    2012-12-25

    A method of plasma etching Ga-based compound semiconductors includes providing a process chamber and a source electrode adjacent to the process chamber. The process chamber contains a sample comprising a Ga-based compound semiconductor. The sample is in contact with a platen which is electrically connected to a first power supply, and the source electrode is electrically connected to a second power supply. The method includes flowing SiCl.sub.4 gas into the chamber, flowing Ar gas into the chamber, and flowing H.sub.2 gas into the chamber. RF power is supplied independently to the source electrode and the platen. A plasma is generated based on the gases in the process chamber, and regions of a surface of the sample adjacent to one or more masked portions of the surface are etched to create a substantially smooth etched surface including features having substantially vertical walls beneath the masked portions.

  12. A new concept for spatially divided Deep Reactive Ion Etching with ALD-based passivation

    NASA Astrophysics Data System (ADS)

    Roozeboom, F.; Kniknie, B.; Lankhorst, A. M.; Winands, G.; Knaapen, R.; Smets, M.; Poodt, P.; Dingemans, G.; Keuning, W.; Kessels, W. M. M.

    2012-12-01

    Conventional Deep Reactive Ion Etching (DRIE) is a plasma etch process with alternating half-cycles of 1) Si-etching with SF6 to form gaseous SiFx etch products, and 2) passivation with C4F8 that polymerizes as a protecting fluorocarbon deposit on the sidewalls and bottom of the etched features. In this work we report on a novel alternative and disruptive technology concept of Spatially-divided Deep Reactive Ion Etching, S-DRIE, where the process is converted from the time-divided into the spatially divided regime. The spatial division can be accomplished by inert gas bearing 'curtains' of heights down to ~20 μm. These curtains confine the reactive gases to individual (often linear) injection slots constructed in a gas injector head. By horizontally moving the substrate back and forth under the head one can realize the alternate exposures to the overall cycle. A second improvement in the spatially divided approach is the replacement of the CVD-based C4F8 passivation steps by ALD-based oxide (e.g. SiO2) deposition cycles. The method can have industrial potential in cost-effective creation of advanced 3D interconnects (TSVs), MEMS manufacturing and advanced patterning, e.g., in nanoscale transistor line edge roughness using Atomic Layer Etching.

  13. Suboxide/subnitride formation on Ta masks during magnetic material etching by reactive plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hu; Muraki, Yu; Karahashi, Kazuhiro

    2015-07-15

    Etching characteristics of tantalum (Ta) masks used in magnetoresistive random-access memory etching processes by carbon monoxide and ammonium (CO/NH{sub 3}) or methanol (CH{sub 3}OH) plasmas have been examined by mass-selected ion beam experiments with in-situ surface analyses. It has been suggested in earlier studies that etching of magnetic materials, i.e., Fe, Ni, Co, and their alloys, by such plasmas is mostly due to physical sputtering and etch selectivity of the process arises from etch resistance (i.e., low-sputtering yield) of the hard mask materials such as Ta. In this study, it is shown that, during Ta etching by energetic CO{sup +}more » or N{sup +} ions, suboxides or subnitrides are formed on the Ta surface, which reduces the apparent sputtering yield of Ta. It is also shown that the sputtering yield of Ta by energetic CO{sup +} or N{sup +} ions has a strong dependence on the angle of ion incidence, which suggests a correlation between the sputtering yield and the oxidation states of Ta in the suboxide or subnitride; the higher the oxidation state of Ta, the lower is the sputtering yield. These data account for the observed etch selectivity by CO/NH{sub 3} and CH{sub 3}OH plasmas.« less

  14. Localized etching of polymer films using an atmospheric pressure air microplasma jet

    NASA Astrophysics Data System (ADS)

    Guo, Honglei; Liu, Jingquan; Yang, Bin; Chen, Xiang; Yang, Chunsheng

    2015-01-01

    A direct-write process device based on the atmospheric pressure air microplasma jet (AμPJ) has been developed for the localized etching of polymer films. The plasma was generated by the air discharge ejected out through a tip-nozzle (inner diameter of 100 μm), forming the microplasma jet. The AμPJ was capable of reacting with the polymer surface since it contains a high concentration of oxygen reactive species and thus resulted in the selective removal of polymer films. The experimental results demonstrated that the AμPJ could fabricate different microstructures on a parylene-C film without using any masks or causing any heat damage. The etch rate of parylene-C reached 5.1 μm min-1 and microstructures of different depth and width could also be realized by controlling two process parameters, namely, the etching time and the distance between the nozzle and the substrate. In addition, combining XPS analysis and oxygen-induced chemical etching principles, the potential etching mechanism of parylene-C by the AμPJ was investigated. Aside from the etching of parylene-C, micro-holes on the photoresist and polyimide film were successfully created by the AμPJ. In summary, maskless pattern etching of polymer films could be achieved using this AμPJ.

  15. A Reactive-Ion Etch for Patterning Piezoelectric Thin Film

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok; Wild, Larry

    2003-01-01

    Reactive-ion etching (RIE) under conditions described below has been found to be a suitable means for patterning piezoelectric thin films made from such materials as PbZr(1-x)Ti(x)O3 or Ba(x)Sr(1.x)TiO3. In the original application for which this particular RIE process was developed, PbZr(1-x)Ti(x)O3 films 0.5 microns thick are to be sandwiched between Pt electrode layers 0.1 microns thick and Ir electrode layers 0.1 microns thick to form piezoelectric capacitor structures. Such structures are typical of piezoelectric actuators in advanced microelectromechanical systems now under development or planned to be developed in the near future. RIE of PbZr(1-x)Ti(x)O3 is usually considered to involve two major subprocesses: an ion-assisted- etching reaction, and a sputtering subprocess that removes reactive byproducts. RIE is favored over other etching techniques because it offers a potential for a high degree of anisotropy, high-resolution pattern definition, and good process control. However, conventional RIE is not ideal for patterning PbZr(1-x)Ti(x)O3 films at a thickness as great as that in the original intended application. In order to realize the potential benefits mentioned above, it is necessary to optimize process conditions . in particular, the composition of the etching gas and the values of such other process parameters as radio-frequency power, gas pressure, gas-flow rate, and duration of the process. Guidelines for determining optimum conditions can be obtained from experimental determination of etch rates as functions of these parameters. Etch-gas mixtures of BCl3 and Cl2, some also including Ar, have been found to offer a high degree of selectivity as needed for patterning of PbZr(1-x)Ti(x)O3 films on top of Ir electrode layers in thin-film capacitor structures. The selectivity is characterized by a ratio of approx.10:1 (rate of etching PbZr(1-x)Ti(x)O3 divided by rate of etching Ir and IrO(x)). At the time of reporting the information for this article, several experiments on RIE in BCl3 and Cl2 (and sometimes Ar) had demonstrated the 10:1 selectivity ratio, and further experiments to enhance understanding and obtain further guidance for optimizing process conditions were planned.

  16. Self-standing silicon-carbon nanotube/graphene by a scalable in situ approach from low-cost Al-Si alloy powder for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Cai, Hongyan; Han, Kai; Jiang, Heng; Wang, Jingwen; Liu, Hui

    2017-10-01

    Silicon/carbon (Si/C) composite shows great potential to replace graphite as lithium-ion battery (LIB) anode owing to its high theoretical capacity. Exploring low-cost scalable approach for synthesizing Si/C composites with excellent electrochemical performance is critical for practical application of Si/C anodes. In this study, we rationally applied a scalable in situ approach to produce Si-carbon nanotube (Si-CNT) composite via acid etching of commercial inexpensive micro-sized Al-Si alloy powder and CNT mixture. In the Si-CNT composite, ∼10 nm Si particles were uniformly deposited on the CNT surface. After combining with graphene sheets, a flexible self-standing Si-CNT/graphene paper was fabricated with three-dimensional (3D) sandwich-like structure. The in situ presence of CNT during acid-etching process shows remarkable two advantages: providing deposition sites for Si atoms to restrain agglomeration of Si nanoparticles after Al removal from Al-Si alloy powder, increasing the cross-layer conductivity of the paper anode to provide excellent conductive contact sites for each Si nanoparticles. When used as binder-free anode for LIBs without any further treatment, in situ addition of CNT especially plays important role to improve the initial electrochemical activity of Si nanoparticles synthesized from low-cost Al-Si alloy powder, thus resulting in about twice higher capacity than Si/G paper anode. The self-standing Si-CNT/graphene paper anode exhibited a high specific capacity of 1100 mAh g-1 even after 100 cycles at 200 mA g-1 current density with a Coulombic efficiency of >99%. It also showed remarkable rate capability improvement compared to Si/G paper without CNT. The present work demonstrates a low-cost scalable in situ approach from commercial micro-sized Al-Si alloy powder for Si-based composites with specific nanostructure. The Si-CNT/graphene paper is a promising anode candidate with high capacity and cycling stability for LIBs, especially for the flexible batteries application.

  17. Thin layer of ordered boron-doped TiO2 nanotubes fabricated in a novel type of electrolyte and characterized by remarkably improved photoactivity

    NASA Astrophysics Data System (ADS)

    Siuzdak, Katarzyna; Szkoda, Mariusz; Lisowska-Oleksiak, Anna; Grochowska, Katarzyna; Karczewski, Jakub; Ryl, Jacek

    2015-12-01

    This paper reports a novel method of boron doped titania nanotube arrays preparation by electrochemical anodization in electrolyte containing boron precursor - boron trifluoride diethyl etherate (BF3 C4H10O), simultaneously acting as an anodizing agent. A pure, ordered TiO2 nanotubes array, as a reference sample, was also prepared in solution containing a standard etching compound: ammonium fluoride. The doped and pure titania were characterized by scanning electron microscopy, UV-vis spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, photoluminescence emission spectroscopy and by means of electrochemical methods. The B-doping decidedly shifts the absorption edge of TiO2 nanotubes towards the visible light region and significantly inhibits the radiative recombination processes. Despite the fact that the doped sample is characterized by 4.6 lower real surface area when compared to pure titania, it leads to the decomposition of methylene blue in 93%, that is over 2.3 times higher than the degradation efficiency exhibited by the undoped material. The formation rate of hydroxyl radicals (rad OH) upon illumination significantly favours boron doped titania as a photocatalytic material. Moreover, the simple doping of TiO2 nanotubes array results in the enhancement of generated photocurrent from 120 μA/cm2 to 350 μA/cm2 registered for undoped and doped electrode, respectively.

  18. Pulsed-Current Electrochemical Codeposition and Heat Treatment of Ti-Dispersed Ni-Matrix Layers

    NASA Astrophysics Data System (ADS)

    Janetaisong, Pathompong; Boonyongmaneerat, Yuttanant; Techapiesancharoenkij, Ratchatee

    2016-08-01

    An electrochemical deposition is a fast and cost-efficient process to produce film or coating. In this research, Ni-Ti electrodeposition is developed by codepositing a Ti-dispersed Ni-matrix layer from a Ni-plating solution suspended with Ti particles. To enhance the coating uniformity and control the atomic composition, the pulsed current was applied to codeposit Ni-Ti layers with varying pulse duty cycles (10 to 100 pct) and frequencies (10 to 100 Hz). The microstructures and compositions of the codeposited layers were analyzed by scanning electron microscopy, X-ray diffraction, and X-ray fluorescent techniques. The pulsed current significantly improved the quality of the Ni-Ti layer as compared to a direct current. The Ni-Ti layers could be electroplated with a controlled composition within 48 to 51 at. pct of Ti. The optimal pulse duty cycle and frequency are 50 pct and 10 Hz, respectively. The standalone Ni-49Ti layers were removed from copper substrates by selective etching method and subsequently heat-treated under Ar-fed atmosphere at 1423 K (1150 °C) for 5 hours. The phase and microstructures of the post-annealed samples exhibit different Ni-Ti intermetallic compounds, including NiTi, Ni3Ti, and NiTi2. Yet, the contamination of TiN and TiO2 was also present in the post-annealed samples.

  19. New type of dummy layout pattern to control ILD etch rate

    NASA Astrophysics Data System (ADS)

    Pohland, Oliver; Spieker, Julie; Huang, Chih-Ta; Govindaswamy, Srikanth; Balasinski, Artur

    2007-12-01

    Adding dummy features (waffles) to drawn geometries of the circuit layout is a common practice to improve its manufacturability. As an example, local dummy pattern improves MOSFET line and space CD control by adjusting short range optical proximity and reducing the aggressiveness of its correction features (OPC) to widen the lithography process window. Another application of dummy pattern (waffles) is to globally equalize layout pattern density, to reduce long-range inter-layer dielectric (ILD) thickness variations after the CMP process and improve contact resistance uniformity over the die area. In this work, we discuss a novel type of dummy pattern with a mid-range interaction distance, to control the ILD composition driven by its deposition and etch process. This composition is reflected on sidewall spacers and depends on the topography of the underlying poly pattern. During contact etch, it impacts the etch rate of the ILD. As a result, the deposited W filling the damascene etched self-aligned trench contacts in the ILD may electrically short to the underlying gates in the areas of isolated poly. To mitigate the dependence of the ILD composition on poly pattern distribution, we proposed a special dummy feature generation with the interaction range defined by the ILD deposition and etch process. This helped equalize mid-range poly pattern density without disabling the routing capability with damascene trench contacts in the periphery which would have increased the layout footprint.

  20. Investigation of the layout and optical proximity correction effects to control the trench etching process on 4H-SiC

    NASA Astrophysics Data System (ADS)

    Kyoung, Sinsu; Jung, Eun-Sik; Sung, Man Young

    2017-07-01

    Although trench gate and super-junction technology have micro-trench problems when applied to the SiC process due to the material characteristics. In this paper, area effects are analyzed from the test element group with various patterns and optical proximity correction (OPC) methods are proposed and analyzed to reduce micro-trenches in the SiC trench etching process. First, the loading effects were analyzed from pattern samples with various trench widths (Wt). From experiments, the area must limited under a proper size for a uniform etching profile and reduced micro-trenches because a wider area accelerates the etch rate. Second, the area effects were more severely unbalanced at corner patterns because the corner pattern necessarily has an in-corner and out-corner that have different etching areas to each other. We can balance areas using OPC patterns to overcome this. Experiments with OPC represented improved micro-trench profile from when comparing differences of trench depth (Δdt) at out corner and in corner. As a result, the area effects can be used to improve the trench profile with optimized etching process conditions. Therefore, the trench gate and super-junction pillar of the SiC power MOSFET can have an improved uniform profile without micro-trenches using proper design and OPC.[Figure not available: see fulltext.

  1. Gold core@silver semishell Janus nanoparticles prepared by interfacial etching

    NASA Astrophysics Data System (ADS)

    Chen, Limei; Deming, Christopher P.; Peng, Yi; Hu, Peiguang; Stofan, Jake; Chen, Shaowei

    2016-07-01

    Gold core@silver semishell Janus nanoparticles were prepared by chemical etching of Au@Ag core-shell nanoparticles at the air/water interface. Au@Ag core-shell nanoparticles were synthesized by chemical deposition of a silver shell onto gold seed colloids followed by the self-assembly of 1-dodecanethiol onto the nanoparticle surface. The nanoparticles then formed a monolayer on the water surface of a Langmuir-Blodgett trough, and part of the silver shell was selectively etched away by the mixture of hydrogen peroxide and ammonia in the water subphase, where the etching was limited to the side of the nanoparticles that was in direct contact with water. The resulting Janus nanoparticles exhibited an asymmetrical distribution of silver on the surface of the gold cores, as manifested in transmission electron microscopy, UV-vis absorption, and X-ray photoelectron spectroscopy measurements. Interestingly, the Au@Ag semishell Janus nanoparticles exhibited enhanced electrocatalytic activity in oxygen reduction reactions, as compared to their Au@Ag and Ag@Au core-shell counterparts, likely due to a synergistic effect between the gold cores and silver semishells that optimized oxygen binding to the nanoparticle surface.Gold core@silver semishell Janus nanoparticles were prepared by chemical etching of Au@Ag core-shell nanoparticles at the air/water interface. Au@Ag core-shell nanoparticles were synthesized by chemical deposition of a silver shell onto gold seed colloids followed by the self-assembly of 1-dodecanethiol onto the nanoparticle surface. The nanoparticles then formed a monolayer on the water surface of a Langmuir-Blodgett trough, and part of the silver shell was selectively etched away by the mixture of hydrogen peroxide and ammonia in the water subphase, where the etching was limited to the side of the nanoparticles that was in direct contact with water. The resulting Janus nanoparticles exhibited an asymmetrical distribution of silver on the surface of the gold cores, as manifested in transmission electron microscopy, UV-vis absorption, and X-ray photoelectron spectroscopy measurements. Interestingly, the Au@Ag semishell Janus nanoparticles exhibited enhanced electrocatalytic activity in oxygen reduction reactions, as compared to their Au@Ag and Ag@Au core-shell counterparts, likely due to a synergistic effect between the gold cores and silver semishells that optimized oxygen binding to the nanoparticle surface. Electronic supplementary information (ESI) available: Additional TEM, UV-vis, XPS, and electrochemical data. See DOI: 10.1039/c6nr03368g

  2. Patterning of light-extraction nanostructures on sapphire substrates using nanoimprint and ICP etching with different masking materials.

    PubMed

    Chen, Hao; Zhang, Qi; Chou, Stephen Y

    2015-02-27

    Sapphire nanopatterning is the key solution to GaN light emitting diode (LED) light extraction. One challenge is to etch deep nanostructures with a vertical sidewall in sapphire. Here, we report a study of the effects of two masking materials (SiO2 and Cr) and different etching recipes (the reaction gas ratio, the reaction pressure and the inductive power) in a chlorine-based (BCl3 and Cl2) inductively coupled plasma (ICP) etching of deep nanopillars in sapphire, and the etching process optimization. The masking materials were patterned by nanoimprinting. We have achieved high aspect ratio sapphire nanopillar arrays with a much steeper sidewall than the previous etching methods. We discover that the SiO2 mask has much slower erosion rate than the Cr mask under the same etching condition, leading to the deep cylinder-shaped nanopillars (122 nm diameter, 200 nm pitch, 170 nm high, flat top, and a vertical sidewall of 80° angle), rather than the pyramid-shaped shallow pillars (200 nm based diameter, 52 nm height, and 42° sidewall) resulted by using Cr mask. The processes developed are scalable to large volume LED manufacturing.

  3. Pattern sampling for etch model calibration

    NASA Astrophysics Data System (ADS)

    Weisbuch, François; Lutich, Andrey; Schatz, Jirka

    2017-06-01

    Successful patterning requires good control of the photolithography and etch processes. While compact litho models, mainly based on rigorous physics, can predict very well the contours printed in photoresist, pure empirical etch models are less accurate and more unstable. Compact etch models are based on geometrical kernels to compute the litho-etch biases that measure the distance between litho and etch contours. The definition of the kernels as well as the choice of calibration patterns is critical to get a robust etch model. This work proposes to define a set of independent and anisotropic etch kernels -"internal, external, curvature, Gaussian, z_profile" - designed to capture the finest details of the resist contours and represent precisely any etch bias. By evaluating the etch kernels on various structures it is possible to map their etch signatures in a multi-dimensional space and analyze them to find an optimal sampling of structures to train an etch model. The method was specifically applied to a contact layer containing many different geometries and was used to successfully select appropriate calibration structures. The proposed kernels evaluated on these structures were combined to train an etch model significantly better than the standard one. We also illustrate the usage of the specific kernel "z_profile" which adds a third dimension to the description of the resist profile.

  4. Photonic jet μ-etching: from static to dynamic process

    NASA Astrophysics Data System (ADS)

    Abdurrochman, A.; Lecler, S.; Zelgowski, J.; Mermet, F.; Fontaine, J.; Tumbelaka, B. Y.

    2017-05-01

    Photonic jet etching is a direct-laser etching method applying photonic jet phenomenon to concentrate the laser beam onto the proceeded material. We call photonic jet the phenomenon of the localized sub-wavelength propagative beam generated at the shadow-side surfaces of micro-scale dielectric cylinders or spheres, when they are illuminated by an electromagnetic plane-wave or laser beam. This concentration has made possible the laser to yield sub-μ etching marks, despite the laser was a near-infrared with nano-second pulses sources. We will present these achievements from the beginning when some spherical glasses were used for static etching to dynamic etching using an optical fiber with a semi-elliptical tip.

  5. Unveiling the mechanisms of dressed-photon-phonon etching based on hierarchical surface roughness measure

    NASA Astrophysics Data System (ADS)

    Naruse, Makoto; Yatsui, Takashi; Nomura, Wataru; Kawazoe, Tadashi; Aida, Masaki; Ohtsu, Motoichi

    2013-02-01

    Dressed-photon-phonon (DPP) etching is a disruptive technology in planarizing material surfaces because it completely eliminates mechanical contact processes. However, adequate metrics for evaluating the surface roughness and the underlying physical mechanisms are still not well understood. Here, we propose a two-dimensional hierarchical surface roughness measure, inspired by the Allan variance, that represents the effectiveness of DPP etching while conserving the original two-dimensional surface topology. Also, we build a simple physical model of DPP etching that agrees well with the experimental observations, which clearly shows the involvement of the intrinsic hierarchical properties of dressed photons, or optical near-fields, in the surface processing.

  6. A Dry-Etch Process for Low Temperature Superconducting Transition Edge Sensors for Far Infrared Bolometer Arrays

    NASA Technical Reports Server (NTRS)

    Allen, Christine A.; Chervenak, James A.; Hsieh, Wen-Ting; McClanahan, Richard A.; Miller, Timothy M.; Mitchell, Robert; Moseley, S. Harvey; Staguhn, Johannes; Stevenson, Thomas R.

    2003-01-01

    The next generation of ultra-low power bolometer arrays, with applications in far infrared imaging, spectroscopy and polarimetry, utilizes a superconducting bilayer as the sensing element to enable SQUID multiplexed readout. Superconducting transition edge sensors (TES s) are being produced with dual metal systems of superconductinghormal bilayers. The transition temperature (Tc) is tuned by altering the relative thickness of the superconductor with respect to the normal layer. We are currently investigating MoAu and MoCu bilayers. We have developed a dry-etching process for MoAu TES s with integrated molybdenum leads, and are working on adapting the process to MoCu. Dry etching has the advantage over wet etching in the MoAu system in that one can achieve a high degree of selectivity, greater than 10, using argon ME, or argon ion milling, for patterning gold on molybdenum. Molybdenum leads are subsequently patterned using fluorine plasma.. The dry-etch technique results in a smooth, featureless TES with sharp sidewalls, no undercutting of the Mo beneath the normal metal, and Mo leads with high critical current. The effects of individual processing parameters on the characteristics of the transition will be reported.

  7. Ion-beam nanopatterning: experimental results with chemically-assisted beam

    NASA Astrophysics Data System (ADS)

    Pochon, Sebastien C. R.

    2018-03-01

    The need for forming gratings (for example used in VR headsets) in materials such as SiO2 has seen a recent surge in the use of Ion beam etching techniques. However, when using an argon-only beam, the selectivity is limited as it is a physical process. Typically, gases such as CHF3, SF6, O2 and Cl2 can be added to argon in order to increase selectivity; depending on where the gas is injected, the process is known as Reactive Ion Beam Etching (RIBE) or Chemically Assisted Ion Beam Etching (CAIBE). The substrate holder can rotate in order to provide an axisymmetric etch rate profile. It can also be tilted over a range of angles to the beam direction. This enables control over the sidewall profile as well as radial uniformity optimisation. Ion beam directionality in conjunction with variable incident beam angle via platen angle setting enables profile control and feature shaping during nanopatterning. These hardware features unique to the Ion Beam etching methods can be used to create angled etch features. The CAIBE technique is also well suited to laser diode facet etch (for optoelectronic devices); these typically use III-V materials like InP. Here, we report on materials such as SiO2 etched without rotation and at a fixed platen angle allowing the formation of gratings and InP etched at a fixed angle with rotation allowing the formation of nanopillars and laser facets.

  8. The development of a method of producing etch resistant wax patterns on solar cells

    NASA Technical Reports Server (NTRS)

    Pastirik, E.

    1980-01-01

    A potentially attractive technique for wax masking of solar cells prior to etching processes was studied. This technique made use of a reuseable wax composition which was applied to the solar cell in patterned form by means of a letterpress printing method. After standard wet etching was performed, wax removal by means of hot water was investigated. Application of the letterpress wax printing process to silicon was met with a number of difficulties. The most serious shortcoming of the process was its inability to produce consistently well-defined printed patterns on the hard silicon cell surface.

  9. A plasmaless, photochemical etch process for porous organosilicate glass films

    NASA Astrophysics Data System (ADS)

    Ryan, E. Todd; Molis, Steven E.

    2017-12-01

    A plasmaless, photochemical etch process using ultraviolet (UV) light in the presence of NH3 or O2 etched porous organosilicate glass films, also called pSiCOH films, in a two-step process. First, a UV/NH3 or UV/O2 treatment removed carbon (mostly methyl groups bonded to silicon) from a pSiCOH film by demethylation to a depth determined by the treatment exposure time. Second, aqueous HF was used to selectively remove the demethylated layer of the pSiCOH film leaving the methylated layer below. UV in the presence of inert gas or H2 did not demethylate the pSiCOH film. The depth of UV/NH3 demethylation followed diffusion limited kinetics and possible mechanisms of demethylation are presented. Unlike reactive plasma processes, which contain ions that can damage surrounding structures during nanofabrication, the photochemical etch contains no damaging ions. Feasibility of the photochemical etching was shown by comparing it to a plasma-based process to remove the pSiCOH dielectric from between Cu interconnect lines, which is a critical step during air gap fabrication. The findings also expand our understanding of UV photon interactions in pSiCOH films that may contribute to plasma-induced damage to pSiCOH films.

  10. TOPICAL REVIEW: Black silicon method X: a review on high speed and selective plasma etching of silicon with profile control: an in-depth comparison between Bosch and cryostat DRIE processes as a roadmap to next generation equipment

    NASA Astrophysics Data System (ADS)

    Jansen, H V; de Boer, M J; Unnikrishnan, S; Louwerse, M C; Elwenspoek, M C

    2009-03-01

    An intensive study has been performed to understand and tune deep reactive ion etch (DRIE) processes for optimum results with respect to the silicon etch rate, etch profile and mask etch selectivity (in order of priority) using state-of-the-art dual power source DRIE equipment. The research compares pulsed-mode DRIE processes (e.g. Bosch technique) and mixed-mode DRIE processes (e.g. cryostat technique). In both techniques, an inhibitor is added to fluorine-based plasma to achieve directional etching, which is formed out of an oxide-forming (O2) or a fluorocarbon (FC) gas (C4F8 or CHF3). The inhibitor can be introduced together with the etch gas, which is named a mixed-mode DRIE process, or the inhibitor can be added in a time-multiplexed manner, which will be termed a pulsed-mode DRIE process. Next, the most convenient mode of operation found in this study is highlighted including some remarks to ensure proper etching (i.e. step synchronization in pulsed-mode operation and heat control of the wafer). First of all, for the fabrication of directional profiles, pulsed-mode DRIE is far easier to handle, is more robust with respect to the pattern layout and has the potential of achieving much higher mask etch selectivity, whereas in a mixed-mode the etch rate is higher and sidewall scalloping is prohibited. It is found that both pulsed-mode CHF3 and C4F8 are perfectly suited to perform high speed directional etching, although they have the drawback of leaving the FC residue at the sidewalls of etched structures. They show an identical result when the flow of CHF3 is roughly 30 times the flow of C4F8, and the amount of gas needed for a comparable result decreases rapidly while lowering the temperature from room down to cryogenic (and increasing the etch rate). Moreover, lowering the temperature lowers the mask erosion rate substantially (and so the mask selectivity improves). The pulsed-mode O2 is FC-free but shows only tolerable anisotropic results at -120 °C. The downside of needing liquid nitrogen to perform cryogenic etching can be improved by using a new approach in which both the pulsed and mixed modes are combined into the so-called puffed mode. Alternatively, the use of tetra-ethyl-ortho-silicate (TEOS) as a silicon oxide precursor is proposed to enable sufficient inhibiting strength and improved profile control up to room temperature. Pulsed-mode processing, the second important aspect, is commonly performed in a cycle using two separate steps: etch and deposition. Sometimes, a three-step cycle is adopted using a separate step to clean the bottom of etching features. This study highlights an issue, known by the authors but not discussed before in the literature: the need for proper synchronization between gas and bias pulses to explore the benefit of three steps. The transport of gas from the mass flow controller towards the wafer takes time, whereas the application of bias to the wafer is relatively instantaneous. This delay causes a problem with respect to synchronization when decreasing the step time towards a value close to the gas residence time. It is proposed to upgrade the software with a delay time module for the bias pulses to be in pace with the gas pulses. If properly designed, the delay module makes it possible to switch on the bias exactly during the arrival of the gas for the bottom removal step and so it will minimize the ionic impact because now etch and deposition steps can be performed virtually without bias. This will increase the mask etch selectivity and lower the heat impact significantly. Moreover, the extra bottom removal step can be performed at (also synchronized!) low pressure and therefore opens a window for improved aspect ratios. The temperature control of the wafer, a third aspect of this study, at a higher etch rate and longer etch time, needs critical attention, because it drastically limits the DRIE performance. It is stressed that the exothermic reaction (high silicon loading) and ionic impact (due to metallic masks and/or exposed silicon) are the main sources of heat that might raise the wafer temperature uncontrollably, and they show the weakness of the helium backside technique using mechanical clamping. Electrostatic clamping, an alternative technique, should minimize this problem because it is less susceptible to heat transfer when its thermal resistance and the gap of the helium backside cavity are minimized; however, it is not a subject of the current study. Because oxygen-growth-based etch processes (due to their ultra thin inhibiting layer) rely more heavily on a constant wafer temperature than fluorocarbon-based processes, oxygen etches are more affected by temperature fluctuations and drifts during the etching. The fourth outcome of this review is a phenomenological model, which explains and predicts many features with respect to loading, flow and pressure behaviour in DRIE equipment including a diffusion zone. The model is a reshape of the flow model constructed by Mogab, who studied the loading effect in plasma etching. Despite the downside of needing a cryostat, it is shown that—when selecting proper conditions—a cryogenic two-step pulsed mode can be used as a successful technique to achieve high speed and selective plasma etching with an etch rate around 25 µm min-1 (<1% silicon load) with nearly vertical walls and resist etch selectivity beyond 1000. With the model in hand, it can be predicted that the etch rate can be doubled (50 µm min-1 at an efficiency of 33% for the fluorine generation from the SF6 feed gas) by minimizing the time the free radicals need to pass the diffusion zone. It is anticipated that this residence time can be reduced sufficiently by a proper inductive coupled plasma (ICP) source design (e.g. plasma shower head and concentrator). In order to preserve the correct profile at such high etch rates, the pressure during the bottom removal step should be minimized and, therefore, the synchronized three-step pulsed mode is believed to be essential to reach such high etch rates with sufficient profile control. In order to improve the etch rate even further, the ICP power should be enhanced; the upgrading of the turbopump seems not yet to be relevant because the throttle valve in the current study had to be used to restrict the turbo efficiency. In order to have a versatile list of state-of-the-art references, it has been decided to arrange it in subjects. The categories concerning plasma physics and applications are, for example, books, reviews, general topics, fluorine-based plasmas, plasma mixtures with oxygen at room temperature, wafer heat transfer and high aspect ratio trench (HART) etching. For readers 'new' to this field, it is advisable to study at least one (but rather more than one) of the reviews concerning plasma as found in the first 30 references. In many cases, a paper can be classified into more than one category. In such cases, the paper is directed to the subject most suited for the discussion of the current review. For example, many papers on heat transfer also treat cryogenic conditions and all the references dealing with highly anisotropic behaviour have been directed to the category HARTs. Additional pointers could get around this problem but have the disadvantage of creating a kind of written spaghetti. I hope that the adapted organization structure will help to have a quick look at and understanding of current developments in high aspect ratio plasma etching. Enjoy reading... Henri Jansen 18 June 2008

  11. Scanning electron microscopy evaluation of the effect of etching agents on human enamel surface.

    PubMed

    Zanet, Caio G; Arana-Chavez, Victor E; Fava, Marcelo

    2006-01-01

    Acid etching promotes microporosities on enamel surface, which provide a better bonding surface to adhesive materials. The purpose of this study was to comparatively analyze the microstructure of enamel surface after etching with 37% phosphoric acid or with two self-etching primers, Non-rinse conditioner (NRC) and Clearfil SE Bond (CSEB) using scanning electron microscopy. Thirty sound premolars were divided into 3 groups with ten teeth each: Group 1: the buccal surface was etched with 37% phosphoric acid for 15 seconds; Group 2: the buccal surface was etched with NRC for 20 seconds; Group 3: the buccal surface was etched with CSEB for 20 seconds. Teeth from Group 1 were rinsed with water; teeth from all groups were air-dried for 15 seconds. After that, all specimens were processed for scanning electron microscopy and analyzed in a Jeol 6100 SEM. The results showed deeper etching when the enamel surface was etched with 37% phosphoric acid, followed by NRC and CSEB. It is concluded that 37% phosphoric acid is still the best agent for a most effective enamel etching.

  12. Removal and deposition efficiencies of the long-lived 222Rn daughters during etching of germanium surfaces

    NASA Astrophysics Data System (ADS)

    Zuzel, G.; Wójcik, M.; Majorovits, B.; Lampert, M. O.; Wendling, P.

    2012-06-01

    Removal and deposition efficiencies of the long-lived 222Rn daughters during etching from and onto surfaces of standard and high purity germanium were investigated. The standard etching procedure of Canberra-France used during production of high purity n-type germanium diodes was applied to germanium discs, which have been exposed earlier to a strong radon source for deposition of its progenies. An uncontaminated sample was etched in a solution containing 210Pb, 210Bi and 210Po. All isotopes were measured before and after etching with appropriate detectors. In contrast to copper and stainless steel, they were removed from germanium very efficiently. However, the reverse process was also observed. Considerable amounts of radioactive lead, bismuth and polonium isotopes present initially in the artificially polluted etchant were transferred to the clean high purity surface during processing of the sample.

  13. Preparation of NiCoP Hollow Quasi-Polyhedra and Their Electrocatalytic Properties for Hydrogen Evolution in Alkaline Solution.

    PubMed

    Li, Yapeng; Liu, Jindou; Chen, Chen; Zhang, Xiaohua; Chen, Jinhua

    2017-02-22

    Double metal phosphide (NiCoP) with hollow quasi-polyhedron structure was prepared by acidic etching and precipitation of ZIF-67 polyhedra and further phosphorization treatment with NaH 2 PO 2 . The morphology and microstructure of NiCoP quasi-polyhedron and its precursors were investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and a micropore and chemisorption analyzer. Electrocatalytic properties were examined by typical electrochemical methods, such as linear sweep voltammetry, cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy in 1.0 M KOH aqueous solution. Results reveal that, compared with CoP hollow polyhedra, NiCoP hollow quasi-polyhedra exhibit better electrochemical properties for hydrogen evolution with a low onset overpotential of 74 mV and a small Tafel slope of 42 mV dec -1 . When the current density is 10 mA cm -2 , the corresponding overpotential is merely 124 mV, and 93% of its electrocatalytic activity can be maintained for 12 h. This indicates that NiCoP with hollow quasi-polyhedron structure, bimetallic merit, and low cost may be a good candidate as electrocatalyst in the practical application of hydrogen evolution.

  14. Process For Patterning Dispenser-Cathode Surfaces

    NASA Technical Reports Server (NTRS)

    Garner, Charles E.; Deininger, William D.

    1989-01-01

    Several microfabrication techniques combined into process cutting slots 100 micrometer long and 1 to 5 micrometer wide into tungsten dispenser cathodes for traveling-wave tubes. Patterned photoresist serves as mask for etching underlying aluminum. Chemically-assisted ion-beam etching with chlorine removes exposed parts of aluminum layer. Etching with fluorine or chlorine trifluoride removes tungsten not masked by aluminum layer. Slots enable more-uniform low-work function coating dispensed to electron-emitting surface. Emission of electrons therefore becomes more uniform over cathode surface.

  15. A Widely-Accessible Distributed MEMS Processing Environment. The MEMS Exchange Program

    DTIC Science & Technology

    2012-10-29

    promise for high-aspect and deep etching into fused silica. This process capability is important for a DARPA project called the Navigation-Grade...on fused silica samples that appear to allow 2 to 1 aspect ratios in fused silica with a depth of etch of around 125 microns – a dramatic result in a...very hard to etch material such as fused silica! After receiving approval from DARPA, the MEMS Exchange purchased a previously- owned Ulvac etcher

  16. Morphology and electronic properties of silicon carbide surfaces

    NASA Astrophysics Data System (ADS)

    Nie, Shu

    2007-12-01

    Several issues related to SiC surfaces are studied in the thesis using scanning tunneling microscopy/spectroscopy (STM/S) and atomic force microscopy (AFM). Specific surfaces examined include electropolished SiC, epitaxial graphene on SiC, and vicinal (i.e. slightly miscut from a low-index direction) SiC that have been subjected to high temperature hydrogen-etching. The electropolished surfaces are meant to mimic electrochemically etched SiC, which forms a porous network. The chemical treatment of the surface is similar between electropolishing and electrochemical etching, but the etching conditions are slightly different such that the former produces a flat surface (that is amenable to STM study) whereas the latter produces a complex 3-dimensional porous network. We have used these porous SiC layers as semi-permeable membranes in a biosensor, and we find that the material is quite biocompatible. The purpose of the STM/STS study is to investigate the surface properties of the SiC on the atomic scale in an effort to explain this biocompatibility. The observed tunneling spectra are found to be very asymmetric, with a usual amount of current at positive voltages but no observable current at negative voltages. We propose that this behavior is due to surface charge accumulating on an incompletely passivated surface. Measurements on SiC surfaces prepared by various amounts of hydrogen-etching are used to support this interpretation. Comparison with tunneling computations reveals a density of about 10 13 cm-2 fixed charges on both the electro-polished and the H-etched surfaces. The relatively insulating nature observed on the electro-polished SiC surface may provide an explanation for the biocompatibility of the surface. Graphene, a monolayer of carbon, is a new material for electronic devices. Epitaxial graphene on SiC is fabricated by the Si sublimation method in which a substrate is heated up to about 1350°C in ultra-high vacuum (UHV). The formation of the graphene is monitored using low-energy electron diffraction (LEED) and Auger electron spectroscopy, and the morphology of the graphitized surface is studied using AFM and STM. Use of H-etched SiC substrates enables a relatively flat surface morphology, although residual steps remain due to unintentional miscut of the wafers. Additionally, some surface roughness in the form of small pits is observed, possibly due to the fact that the surface treatments (H-etching and UHV annealing) having been performed in separate vacuum chambers with an intervening transfer through air. Field-effect transistors have been fabricated with our graphene layers; they show a relatively strong held effect at room temperature, with an electron mobility of 535 cm 2/Vs. This value is somewhat lower than that believed to be theoretically possible for this material, and one possible reason may be the nonideal morphology of the surface (i.e. because of the observed steps and pits). Tunneling spectra of the graphene reveal semi-metallic behavior, consistent with that theoretically expected for an isolated layer of graphene. However, additional discrete states are observed in the spectra, possibly arising from bonding at the graphene/SiC interface. The observation of these states provides important input towards an eventual determination of the complete interface structure, and additionally, such states may be relevant in determining the electron mobility of the graphene. Stepped vicinal SIC{0001} substrates are useful templates for epitaxial growth of various types of layers: thick layers of compound semiconductor (in which the steps help preserving the stacking arrangement in the overlayer), monolayers of graphene, or submonolayer semiconductor layers that form quantum wires along the step edges. Step array produced by H-etching of vicinal SiC (0001) and (0001¯) with various miscut angles have been studied by AFM. H-etching is found to produce full unit-cell-high steps on the (0001) Si-face surfaces, but half unit-cell-high steps on the (0001¯) C-face surfaces. These observations are consistent with an asymmetry in the surface energy (i.e. etch rate) of the two types of step terminations occurring on the different surfaces. For high miscut angles, facet formation is observed on the vicinal Si-face, but less so on the C-face. This difference is interpreted in terms of a lower surface energy of the C-face. In terms of applying the stepped surfaces as a template, a much better uniformity in the step-step separation is found for the C-face surfaces.

  17. Design and grayscale fabrication of beamfanners in a silicon substrate

    NASA Astrophysics Data System (ADS)

    Ellis, Arthur Cecil

    2001-11-01

    This dissertation addresses important first steps in the development of a grayscale fabrication process for multiple phase diffractive optical elements (DOS's) in silicon. Specifically, this process was developed through the design, fabrication, and testing of 1-2 and 1-4 beamfanner arrays for 5-micron illumination. The 1-2 beamfanner arrays serve as a test-of- concept and basic developmental step toward the construction of the 1-4 beamfanners. The beamfanners are 50 microns wide, and have features with dimensions of between 2 and 10 microns. The Iterative Annular Spectrum Approach (IASA) method, developed by Steve Mellin of UAH, and the Boundary Element Method (BEM) are the design and testing tools used to create the beamfanner profiles and predict their performance. Fabrication of the beamfanners required the techniques of grayscale photolithography and reactive ion etching (RIE). A 2-3micron feature size 1-4 silicon beamfanner array was fabricated, but the small features and contact photolithographic techniques available prevented its construction to specifications. A second and more successful attempt was made in which both 1-4 and 1-2 beamfanner arrays were fabricated with a 5-micron minimum feature size. Photolithography for the UAH array was contracted to MEMS-Optical of Huntsville, Alabama. A repeatability study was performed, using statistical techniques, of 14 photoresist arrays and the subsequent RIE process used to etch the arrays in silicon. The variance in selectivity between the 14 processes was far greater than the variance between the individual etched features within each process. Specifically, the ratio of the variance of the selectivities averaged over each of the 14 etch processes to the variance of individual feature selectivities within the processes yielded a significance level below 0.1% by F-test, indicating that good etch-to-etch process repeatability was not attained. One of the 14 arrays had feature etch-depths close enough to design specifications for optical testing, but 5- micron IR illumination of the 1-4 and 1-2 beamfanners yielded no convincing results of beam splitting in the detector plane 340 microns from the surface of the beamfanner array.

  18. Capabilities of ICP-RIE cryogenic dry etching of silicon: review of exemplary microstructures

    NASA Astrophysics Data System (ADS)

    Sökmen, Ü.; Stranz, A.; Fündling, S.; Wehmann, H.-H.; Bandalo, V.; Bora, A.; Tornow, M.; Waag, A.; Peiner, E.

    2009-10-01

    Inductively coupled plasma (ICP) cryogenic dry etching was used to etch submicron pores, nano contact lines, submicron diameter pillars, thin and thick cantilevers, membrane structures and anisotropic deep structures with high aspect ratios in silicon for bio-nanoelectronics, optoelectronics and nano-micro electromechanical systems (NMEMS). The ICP cryogenic dry etching gives us the advantage of switching plasmas between etch rates of 13 nm min-1 and 4 µm min-1 for submicron pores and for membrane structures, respectively. A very thin photoresist mask can endure at -75 °C even during etching 70 µm deep for cantilevers and 300 µm deep for membrane structures. Coating the backsides of silicon membrane substrates with a thin photoresist film inhibited the lateral etching of cantilevers during their front release. Between -95 °C and -140 °C, we realized crystallographic-plane-dependent etching that creates facets only at the etch profile bottom. By varying the oxygen content and the process temperature, we achieved good control over the shape of the etched structures. The formation of black silicon during membrane etching down to 300 µm was delayed by reducing the oxygen content.

  19. Etude fondamentale des mecanismes de gravure par plasma de materiaux de pointe: Application a la fabrication de dispositifs photoniques

    NASA Astrophysics Data System (ADS)

    Stafford, Luc

    Advances in electronics and photonics critically depend upon plasma-based materials processing either for transferring small lithographic patterns into underlying materials (plasma etching) or for the growth of high-quality films. This thesis deals with the etching mechanisms of materials using high-density plasmas. The general objective of this work is to provide an original framework for the plasma-material interaction involved in the etching of advanced materials by putting the emphasis on complex oxides such as SrTiO3, (Ba,Sr)TiO 3 and SrBi2Ta2O9 films. Based on a synthesis of the descriptions proposed by different authors to explain the etching characteristics of simple materials in noble and halogenated plasma mixtures, we propose comprehensive rate models for physical and chemical plasma etching processes. These models have been successfully validated using experimental data published in literature for Si, Pt, W, SiO2 and ZnO. As an example, we have been able to adequately describe the simultaneous dependence of the etch rate on ion and reactive neutral fluxes and on the ion energy. From an exhaustive experimental investigation of the plasma and etching properties, we have also demonstrated that the validity of the proposed models can be extended to complex oxides such as SrTiO3, (Ba,Sr)TiO 3 and SrBi2Ta2O9 films. We also reported for the first time physical aspects involved in plasma etching such as the influence of the film microstructural properties on the sputter-etch rate and the influence of the positive ion composition on the ion-assisted desorption dynamics. Finally, we have used our deep investigation of the etching mechanisms of STO films and the resulting excellent control of the etch rate to fabricate a ridge waveguide for photonic device applications. Keywords: plasma etching, sputtering, adsorption and desorption dynamics, high-density plasmas, plasma diagnostics, advanced materials, photonic applications.

  20. Fabrication of 3D surface structures using grayscale lithography

    NASA Astrophysics Data System (ADS)

    Stilson, Christopher; Pal, Rajan; Coutu, Ronald A.

    2014-03-01

    The ability to design and develop 3D microstructures is important for microelectromechanical systems (MEMS) fabrication. Previous techniques used to create 3D devices included tedious steps in direct writing and aligning patterns onto a substrate followed by multiple photolithography steps using expensive, customized equipment. Additionally, these techniques restricted batch processing and placed limits on achievable shapes. Gray-scale lithography enables the fabrication of a variety of shapes using a single photolithography step followed by reactive ion etching (RIE). Micromachining 3D silicon structures for MEMS can be accomplished using gray-scale lithography along with dry anisotropic etching. In this study, we investigated: using MATLAB for mask designs; feasibility of using 1 μm Heidelberg mask maker to direct write patterns onto photoresist; using RIE processing to etch patterns into a silicon substrate; and the ability to tailor etch selectivity for precise fabrication. To determine etch rates and to obtain desired etch selectivity, parameters such as gas mixture, gas flow, and electrode power were studied. This process successfully demonstrates the ability to use gray-scale lithography and RIE for use in the study of micro-contacts. These results were used to produce a known engineered non-planer surface for testing micro-contacts. Surface structures are between 5 μm and 20 μm wide with varying depths and slopes based on mask design and etch rate selectivity. The engineered surfaces will provide more insight into contact geometries and failure modes of fixed-fixed micro-contacts.

  1. Advanced Simulation Technology to Design Etching Process on CMOS Devices

    NASA Astrophysics Data System (ADS)

    Kuboi, Nobuyuki

    2015-09-01

    Prediction and control of plasma-induced damage is needed to mass-produce high performance CMOS devices. In particular, side-wall (SW) etching with low damage is a key process for the next generation of MOSFETs and FinFETs. To predict and control the damage, we have developed a SiN etching simulation technique for CHxFy/Ar/O2 plasma processes using a three-dimensional (3D) voxel model. This model includes new concepts for the gas transportation in the pattern, detailed surface reactions on the SiN reactive layer divided into several thin slabs and C-F polymer layer dependent on the H/N ratio, and use of ``smart voxels''. We successfully predicted the etching properties such as the etch rate, polymer layer thickness, and selectivity for Si, SiO2, and SiN films along with process variations and demonstrated the 3D damage distribution time-dependently during SW etching on MOSFETs and FinFETs. We confirmed that a large amount of Si damage was caused in the source/drain region with the passage of time in spite of the existing SiO2 layer of 15 nm in the over etch step and the Si fin having been directly damaged by a large amount of high energy H during the removal step of the parasitic fin spacer leading to Si fin damage to a depth of 14 to 18 nm. By analyzing the results of these simulations and our previous simulations, we found that it is important to carefully control the dose of high energy H, incident energy of H, polymer layer thickness, and over-etch time considering the effects of the pattern structure, chamber-wall condition, and wafer open area ratio. In collaboration with Masanaga Fukasawa and Tetsuya Tatsumi, Sony Corporation. We thank Mr. T. Shigetoshi and Mr. T. Kinoshita of Sony Corporation for their assistance with the experiments.

  2. Catalyst and processing effects on metal-assisted chemical etching for the production of highly porous GaN

    NASA Astrophysics Data System (ADS)

    Geng, Xuewen; Duan, Barrett K.; Grismer, Dane A.; Zhao, Liancheng; Bohn, Paul W.

    2013-06-01

    Metal-assisted chemical etching is a facile method to produce micro-/nanostructures in the near-surface region of gallium nitride (GaN) and other semiconductors. Detailed studies of the production of porous GaN (PGaN) using different metal catalysts and GaN doping conditions have been performed in order to understand the mechanism by which metal-assisted chemical etching is accomplished in GaN. Patterned catalysts show increasing metal-assisted chemical etching activity to n-GaN in the order Ag < Au < Ir < Pt. In addition, the catalytic behavior of continuous films is compared to discontinuous island films. Continuous metal films strongly shield the surface, hindering metal-assisted chemical etching, an effect which can be overcome by using discontinuous films or increasing the irradiance of the light source. With increasing etch time or irradiance, PGaN morphologies change from uniform porous structures to ridge and valley structures. The doping type plays an important role, with metal-assisted chemical etching activity increasing in the order p-GaN < intrinsic GaN < n-GaN. Both the catalyst identity and the doping type effects are explained by the work functions and the related band offsets that affect the metal-assisted chemical etching process through a combination of different barriers to hole injection and the formation of hole accumulation/depletion layers at the metal-semiconductor interface.

  3. Direct mapping and characterization of dry etch damage-induced PN junction for long-wavelength HgCdTe infrared detector arrays.

    PubMed

    Li, Yantao; Hu, Weida; Ye, Zhenhua; Chen, Yiyu; Chen, Xiaoshuang; Lu, Wei

    2017-04-01

    Mercury cadmium telluride is the standard material to fabricate high-performance infrared focal plane array (FPA) detectors. However, etch-induced damage is a serious obstacle for realizing highly uniform and damage-free FPA detectors. In this Letter, the high signal-to-noise ratio and high spatial resolution scanning photocurrent microscopy (SPCM) is used to characterize the dry etch-induced inversion layer of vacancy-doped p-type Hg1-xCdxTe (x=0.22) material under different etching temperatures. It is found that the peak-to-peak magnitude of the SPCM profile decreases with a decrease in etching temperature, showing direct proof of controlling dry etch-induced type conversion. Our work paves the way toward seeking optimal etching processes in large-scale infrared FPAs.

  4. Thermal etching rate of GaN during MOCVD growth interruption in hydrogen and ammonia ambient determined by AlGaN/GaN superlattice structures

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Ikeda, Masao; Zhang, Shuming; Liu, Jianping; Tian, Aiqin; Wen, Pengyan; Cheng, Yang; Yang, Hui

    2017-10-01

    Thermal etching effect of GaN during growth interruption in the metalorganic chemical vapor deposition reactor was investigated in this paper. The thermal etching rate was determined by growing a series of AlGaN/GaN superlattice structures with fixed GaN growth temperature at 735 °C and various AlGaN growth temperature changing from 900 °C to 1007 °C. It was observed that the GaN layer was etched off during the growth interruption when the growth temperature ramped up to AlGaN growth temperature. The etching thickness was determined by high resolution X-ray diffractometer and the etching rate was deduced accordingly. An activation energy of 2.53 eV was obtained for the thermal etching process.

  5. MITLL Silicon Integrated Photonics Process: Design Guide

    DTIC Science & Technology

    2015-07-31

    Silicon Integrated Photonics Process Comprehensive Design Guide 16  Deep Etch for Fiber Coupling (DEEP_ETCH...facets for fiber coupling. Standard design layers for each process are defined in Section 3, but other options can be made available. Notes on...a silicon thinning process that can create very low loss waveguides (and which better suppresses back scatter and, therefore, resonance splitting in

  6. Ultraviolet Laser Damage Dependence on Contamination Concentration in Fused Silica Optics during Reactive Ion Etching Process

    PubMed Central

    Sun, Laixi; Shao, Ting; Shi, Zhaohua; Huang, Jin; Ye, Xin; Jiang, Xiaodong; Wu, Weidong; Yang, Liming; Zheng, Wanguo

    2018-01-01

    The reactive ion etching (RIE) process of fused silica is often accompanied by surface contamination, which seriously degrades the ultraviolet laser damage performance of the optics. In this study, we find that the contamination behavior on the fused silica surface is very sensitive to the RIE process which can be significantly optimized by changing the plasma generating conditions such as discharge mode, etchant gas and electrode material. Additionally, an optimized RIE process is proposed to thoroughly remove polishing-introduced contamination and efficiently prevent the introduction of other contamination during the etching process. The research demonstrates the feasibility of improving the damage performance of fused silica optics by using the RIE technique. PMID:29642571

  7. Ion beam sputtering of fluoropolymers

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.

    1978-01-01

    Etching and deposition of fluoropolymers are of considerable industrial interest for applications dealing with adhesion, chemical inertness, hydrophobicity, and dielectric properties. This paper describes ion beam sputter processing rates as well as pertinent characteristics of etched targets and films. An argon ion beam source was used to sputter etch and deposit the fluoropolymers PTFE, FEP, and CTFE. Ion beam energy, current density, and target temperature were varied to examine effects on etch and deposition rates. The ion etched fluoropolymers yield cone or spire-like surface structures which vary depending upon the type of polymer, ion beam power density, etch time, and target temperature. Also presented are sputter target and film characteristics which were documented by spectral transmittance measurements, X-ray diffraction, ESCA, and SEM photomicrographs.

  8. More vertical etch profile using a Faraday cage in plasma etching

    NASA Astrophysics Data System (ADS)

    Cho, Byeong-Ok; Hwang, Sung-Wook; Ryu, Jung-Hyun; Moon, Sang Heup

    1999-05-01

    Scanning electron microscope images of sidewalls obtained by plasma etching of an SiO2 film with and without a Faraday cage have been compared. When the substrate film is etched in the Faraday cage, faceting is effectively suppressed and the etch profile becomes more vertical regardless of the process conditions. This is because the electric potential in the cage is nearly uniform and therefore distortion of the electric field at the convex corner of a microfeature is prevented. The most vertical etch profile is obtained when the cage is used in fluorocarbon plasmas, where faceting is further suppressed due to the decrease in the chemical sputtering yield and the increase in the radical/ion flux on the substrate.

  9. A molded surface-micromachining and bulk etching release (MOSBE) fabrication platform on (1 1 1) Si for MOEMS

    NASA Astrophysics Data System (ADS)

    Wu, Mingching; Fang, Weileun

    2006-02-01

    This work attempts to integrate poly-Si thin film and single-crystal-silicon (SCS) structures in a monolithic process. The process integrated multi-depth DRIE (deep reactive ion etching), trench-refilled molding, a two poly-Si MUMPs process and (1 1 1) Si bulk micromachining to accomplish multi-thickness and multi-depth structures for superior micro-optical devices. In application, a SCS scanning mirror driven by self-aligned vertical comb-drive actuators was demonstrated. The stiffness of the mirror was significantly increased by thick SCS structures. The thin poly-Si film served as flexible torsional springs and electrical routings. The depth difference of the vertical comb electrodes was tuned by DRIE to increase the devices' stroke. Finally, a large moving space was available after the bulk Si etching. In summary, the present fabrication process, named (1 1 1) MOSBE (molded surface-micromachining and bulk etching release on (1 1 1) Si substrate), can further integrate with the MUMPs devices to establish a more powerful platform.

  10. Advanced Mitigation Process (AMP) for Improving Laser Damage Threshold of Fused Silica Optics

    NASA Astrophysics Data System (ADS)

    Ye, Xin; Huang, Jin; Liu, Hongjie; Geng, Feng; Sun, Laixi; Jiang, Xiaodong; Wu, Weidong; Qiao, Liang; Zu, Xiaotao; Zheng, Wanguo

    2016-08-01

    The laser damage precursors in subsurface of fused silica (e.g. photosensitive impurities, scratches and redeposited silica compounds) were mitigated by mineral acid leaching and HF etching with multi-frequency ultrasonic agitation, respectively. The comparison of scratches morphology after static etching and high-frequency ultrasonic agitation etching was devoted in our case. And comparison of laser induce damage resistance of scratched and non-scratched fused silica surfaces after HF etching with high-frequency ultrasonic agitation were also investigated in this study. The global laser induce damage resistance was increased significantly after the laser damage precursors were mitigated in this case. The redeposition of reaction produce was avoided by involving multi-frequency ultrasonic and chemical leaching process. These methods made the increase of laser damage threshold more stable. In addition, there is no scratch related damage initiations found on the samples which were treated by Advanced Mitigation Process.

  11. Advanced Mitigation Process (AMP) for Improving Laser Damage Threshold of Fused Silica Optics

    PubMed Central

    Ye, Xin; Huang, Jin; Liu, Hongjie; Geng, Feng; Sun, Laixi; Jiang, Xiaodong; Wu, Weidong; Qiao, Liang; Zu, Xiaotao; Zheng, Wanguo

    2016-01-01

    The laser damage precursors in subsurface of fused silica (e.g. photosensitive impurities, scratches and redeposited silica compounds) were mitigated by mineral acid leaching and HF etching with multi-frequency ultrasonic agitation, respectively. The comparison of scratches morphology after static etching and high-frequency ultrasonic agitation etching was devoted in our case. And comparison of laser induce damage resistance of scratched and non-scratched fused silica surfaces after HF etching with high-frequency ultrasonic agitation were also investigated in this study. The global laser induce damage resistance was increased significantly after the laser damage precursors were mitigated in this case. The redeposition of reaction produce was avoided by involving multi-frequency ultrasonic and chemical leaching process. These methods made the increase of laser damage threshold more stable. In addition, there is no scratch related damage initiations found on the samples which were treated by Advanced Mitigation Process. PMID:27484188

  12. Laser micromachining of optical devices

    NASA Astrophysics Data System (ADS)

    Kopitkovas, Giedrius; Lippert, Thomas; David, Christian; Sulcas, Rokas; Hobley, Jonathan; Wokaun, Alexander J.; Gobrecht, Jens

    2004-10-01

    The combination of a gray tone phase mask with a laser assisted wet etching process was applied to fabricate complex microstructures in UV transparent dielectric materials. This one-step method allows the generation of arrays of plano-convex and Fresnel micro-lenses using a conventional XeCl excimer laser and an absorbing liquid, which is in contact with the UV transparent material. An array of plano-convex micro-lenses was tested as beam homogenizer for a high power XeCl excimer and ps Nd:YAG laser. The roughness of the etched features varies from several μm to 10 nm, depending on the laser fluence and concentration of the dye in the organic liquid. The etching process can be divided into several etching mechanisms which vary with laser fluence.

  13. Chemically etched fiber tips for near-field optical microscopy: a process for smoother tips.

    PubMed

    Lambelet, P; Sayah, A; Pfeffer, M; Philipona, C; Marquis-Weible, F

    1998-11-01

    An improved method for producing fiber tips for scanning near-field optical microscopy is presented. The improvement consists of chemically etching quartz optical fibers through their acrylate jacket. This new method is compared with the previous one in which bare fibers were etched. With the new process the meniscus formed by the acid along the fiber does not move during etching, leading to a much smoother surface of the tip cone. Subsequent metallization is thus improved, resulting in better coverage of the tip with an aluminum opaque layer. Our results show that leakage can be avoided along the cone, and light transmission through the tip is spatially limited to an optical aperture of a 100-nm dimension.

  14. Prediction of plasma-induced damage distribution during silicon nitride etching using advanced three-dimensional voxel model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuboi, Nobuyuki, E-mail: Nobuyuki.Kuboi@jp.sony.com; Tatsumi, Tetsuya; Kinoshita, Takashi

    2015-11-15

    The authors modeled SiN film etching with hydrofluorocarbon (CH{sub x}F{sub y}/Ar/O{sub 2}) plasma considering physical (ion bombardment) and chemical reactions in detail, including the reactivity of radicals (C, F, O, N, and H), the area ratio of Si dangling bonds, the outflux of N and H, the dependence of the H/N ratio on the polymer layer, and generation of by-products (HCN, C{sub 2}N{sub 2}, NH, HF, OH, and CH, in addition to CO, CF{sub 2}, SiF{sub 2}, and SiF{sub 4}) as ion assistance process parameters for the first time. The model was consistent with the measured C-F polymer layer thickness,more » etch rate, and selectivity dependence on process variation for SiN, SiO{sub 2}, and Si film etching. To analyze the three-dimensional (3D) damage distribution affected by the etched profile, the authors developed an advanced 3D voxel model that can predict the time-evolution of the etched profile and damage distribution. The model includes some new concepts for gas transportation in the pattern using a fluid model and the property of voxels called “smart voxels,” which contain details of the history of the etching situation. Using this 3D model, the authors demonstrated metal–oxide–semiconductor field-effect transistor SiN side-wall etching that consisted of the main-etch step with CF{sub 4}/Ar/O{sub 2} plasma and an over-etch step with CH{sub 3}F/Ar/O{sub 2} plasma under the assumption of a realistic process and pattern size. A large amount of Si damage induced by irradiated hydrogen occurred in the source/drain region, a Si recess depth of 5 nm was generated, and the dislocated Si was distributed in a 10 nm deeper region than the Si recess, which was consistent with experimental data for a capacitively coupled plasma. An especially large amount of Si damage was also found at the bottom edge region of the metal–oxide–semiconductor field-effect transistors. Furthermore, our simulation results for bulk fin-type field-effect transistor side-wall etching showed that the Si fin (source/drain region) was directly damaged by high energy hydrogen and had local variations in the damage distribution, which may lead to a shift in the threshold voltage and the off-state leakage current. Therefore, side-wall etching and ion implantation processes must be carefully designed by considering the Si damage distribution to achieve low damage and high transistor performance for complementary metal–oxide–semiconductor devices.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swain, Basudev, E-mail: swain@iae.re.kr; Mishra, Chinmayee; Hong, Hyun Seon

    Sustainable valorization processes for selective recovery of pure copper nanopowder from Indium-Tin-Oxide (ITO) etching wastewater by various wet chemical reduction processes, their chemistry has been investigated and compared. After the indium recovery by solvent extraction from ITO etching wastewater, the same is also an environmental challenge, needs to be treated before disposal. After the indium recovery, ITO etching wastewater contains 6.11 kg/m{sup 3} of copper and 1.35 kg/m{sup 3} of aluminum, pH of the solution is very low converging to 0 and contain a significant amount of chlorine in the media. In this study, pure copper nanopowder was recovered usingmore » various reducing reagents by wet chemical reduction and characterized. Different reducing agents like a metallic, an inorganic acid and an organic acid were used to understand reduction behavior of copper in the presence of aluminum in a strong chloride medium of the ITO etching wastewater. The effect of a polymer surfactant Polyvinylpyrrolidone (PVP), which was included to prevent aggregation, to provide dispersion stability and control the size of copper nanopowder was investigated and compared. The developed copper nanopowder recovery techniques are techno-economical feasible processes for commercial production of copper nanopowder in the range of 100–500 nm size from the reported facilities through a one-pot synthesis. By all the process reported pure copper nanopowder can be recovered with>99% efficiency. After the copper recovery, copper concentration in the wastewater reduced to acceptable limit recommended by WHO for wastewater disposal. The process is not only beneficial for recycling of copper, but also helps to address environment challenged posed by ITO etching wastewater. From a complex wastewater, synthesis of pure copper nanopowder using various wet chemical reduction route and their comparison is the novelty of this recovery process. - Highlights: • From the Indium-Tin-Oxide etching wastewater, copper nanopowder was synthesized. • Solution chemistry of ITO etching wastewater is addressed. • A techno-economical feasible, environment friendly and occupational safe process. • Brings back the material to production stream and address the circular economy. • A cradle to cradle technology management lowers the futuristic carbon economy.« less

  16. Smart Pixels for Optical Processing and Communications: Design, Models, Fabrication and Test

    DTIC Science & Technology

    1998-06-01

    11.3 Mobility-Lifetime Product 115 11.4 P-IforVCSEL 116 Chapter 12: Developing a Reliable Etch 12.1 Etch Rates and Selectivity for Citric Acid 126...eGa0.4As etch-stop layer beneath the GaAs buffer. The gate recess was performed with a timed citric acid / hydrogen peroxide wet etch. The conducting...alkalinity. The wet etchant tested in this effort was a citric acid / hydrogen peroxide mixture,8൓ due to its availability, ease of preparation

  17. CDU improvement technology of etching pattern using photo lithography

    NASA Astrophysics Data System (ADS)

    Tadokoro, Masahide; Shinozuka, Shinichi; Jyousaka, Megumi; Ogata, Kunie; Morimoto, Tamotsu; Konishi, Yoshitaka

    2008-03-01

    Semiconductor manufacturing technology has shifted towards finer design rules, and demands for critical dimension uniformity (CDU) of resist patterns have become greater than ever. One of the methods for improving Resist Pattern CDU is to control post-exposure bake (PEB) temperature. When ArF resist is used, there is a certain relationship between critical dimension (CD) and PEB temperature. By utilizing this relationship, Resist Pattern CDU can be improved through control of within-wafer temperature distribution in the PEB process. Resist Pattern CDU improvement contributes to Etching Pattern CDU improvement to a certain degree. To further improve Etching Pattern CDU, etcher-specific CD variation needs to be controlled. In this evaluation, 1. We verified whether etcher-specific CD variation can be controlled and consequently Etching Pattern CDU can be further improved by controlling resist patterns through PEB control. 2. Verifying whether Etching Pattern CDU improvement through has any effect on the reduction in wiring resistance variation. The evaluation procedure is as follows.1. Wafers with base film of Doped Poly-Si (D-Poly) were prepared. 2. Resist patterns were created on them. 3. To determine etcher-specific characteristics, the first etching was performed, and after cleaning off the resist and BARC, CD of etched D-Poly was measured. 4. Using the obtained within-wafer CD distribution of the etching patterns, within-wafer temperature distribution in the PEB process was modified. 5. Resist patterns were created again, followed by the second etching and cleaning, which was followed by CD measurement. We used Optical CD Measurement (OCD) for measurement of resist patterns and etching patterns as OCD is minimally affected by Line Edge Roughness (LER). As a result, 1. We confirmed the effect of Resist Pattern CD control through PEB control on the reduction in etcher-specific CD variation and the improvement in Etching Pattern CDU. 2. The improvement in Etching Pattern CDU has an effect on the reduction in wiring resistance variation. The method for Etching Pattern CDU improvement through PEB control reduces within-wafer variation of MOS transistor's gate length. Therefore, with this method, we can expect to observe uniform within-wafer MOS transistor characteristics.

  18. Creation of superhydrophobic stainless steel surfaces by acid treatments and hydrophobic film deposition.

    PubMed

    Li, Lester; Breedveld, Victor; Hess, Dennis W

    2012-09-26

    In this work, we present a method to render stainless steel surfaces superhydrophobic while maintaining their corrosion resistance. Creation of surface roughness on 304 and 316 grade stainless steels was performed using a hydrofluoric acid bath. New insight into the etch process is developed through a detailed analysis of the chemical and physical changes that occur on the stainless steel surfaces. As a result of intergranular corrosion, along with metallic oxide and fluoride redeposition, surface roughness was generated on the nano- and microscales. Differences in alloy composition between 304 and 316 grades of stainless steel led to variations in etch rate and different levels of surface roughness for similar etch times. After fluorocarbon film deposition to lower the surface energy, etched samples of 304 and 316 stainless steel displayed maximum static water contact angles of 159.9 and 146.6°, respectively. However, etching in HF also caused both grades of stainless steel to be susceptible to corrosion. By passivating the HF-etched samples in a nitric acid bath, the corrosion resistant properties of stainless steels were recovered. When a three step process was used, consisting of etching, passivation and fluorocarbon deposition, 304 and 316 stainless steel samples exhibited maximum contact angles of 157.3 and 134.9°, respectively, while maintaining corrosion resistance.

  19. Synthesis and characterization of hollow mesoporous BaFe{sub 12}O{sub 19} spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xia; Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487; Park, Jihoon

    2015-02-15

    A facile method is reported to synthesize hollow mesoporous BaFe{sub 12}O{sub 19} spheres using a template-free chemical etching process. Hollow BaFe{sub 12}O{sub 19} spheres were synthesized by conventional spray pyrolysis. The mesoporous structure is achieved by alkaline ethylene glycol etching at 185 °C, with the porosity controlled by the heating time. The hollow porous structure is confirmed by SEM, TEM, and FIB-FESEM characterization. The crystal structure and magnetic properties are not significantly affected after the chemical etching process. The formation mechanism of the porous structure is explained by grain boundary etching. - Graphical abstract: Hollow spherical BaFe{sub 12}O{sub 19} particlesmore » are polycrystalline with both grains and grain boundaries. Grain boundaries have less ordered structure and lower stability. When the particles are exposed to high temperature alkaline ethylene glycol, the grain boundaries are etched, leaving small grooves between grains. These grooves allow ethylene glycol to diffuse inside to further etch the grains. As the grain size decreases, gaps appear on the particle surfaces, and a porous structure is finally formed. - Highlights: • Two-step synthesis method for hollow mesoporous BaFe{sub 12}O{sub 19} spheres is proposed. • Porosity of the product can be regulated by controlling the second step of chemical etching. • The crystal structure and magnetic properties are examined to be little affected during the chemical etching. • The mesoporous structure formation mechanism is explained by grain boundary etching.« less

  20. Effect of surface acid etching on the biaxial flexural strength of two hot-pressed glass ceramics.

    PubMed

    Hooshmand, Tabassom; Parvizi, Shaghayegh; Keshvad, Alireza

    2008-07-01

    The purpose of this study was to assess the effect of surface acid etching on the biaxial flexural strength of two hot-pressed glass ceramics reinforced by leucite or lithium disilicate crystals. Forty glass ceramic disks (14-mm diameter, 2-mm thick) consisting of 20 leucite-based ceramic disks (IPS Empress) and 20 lithia disilicate-based ceramic (IPS Empress 2) were produced by hot-pressing technique. All specimens were polished and then cleaned ultrasonically in distilled water. Ten specimens of each ceramic group were then etched with 9% hydrofluoric (HF) acid gel for 2 minutes and cleaned ultrasonically again. The biaxial flexural strength was measured by the piston-on-three-ball test in a universal testing machine. Data based on ten specimens in each group were analyzed by two-way ANOVA (alpha= 0.05). Microstructure of ceramic surfaces before and after acid etching was also examined by a scanning electron microscope. The mean biaxial flexural strength values for each group tested were (in MPa): nonetched IPS Empress = 118.6 +/- 25.5; etched IPS Empress = 102.9 +/- 15.4; nonetched IPS Empress 2 = 283.0 +/- 48.5; and etched IPS Empress 2 = 250.6 +/- 34.6. The results showed that the etching process reduced the biaxial flexural strengths significantly for both ceramic types (p= 0.025). No significant interaction between the ceramic type and etching process was found (p= 0.407). From the results, it was concluded that surface HF acid etching could have a weakening effect on hot-pressed leucite or lithia disilicate-based glass ceramic systems.

  1. Gold-coated silicon nanowire-graphene core-shell composite film as a polymer binder-free anode for rechargeable lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Kim, Han-Jung; Lee, Sang Eon; Lee, Jihye; Jung, Joo-Yun; Lee, Eung-Sug; Choi, Jun-Hyuk; Jung, Jun-Ho; Oh, Minsub; Hyun, Seungmin; Choi, Dae-Geun

    2014-07-01

    We designed and fabricated a gold (Au)-coated silicon nanowires/graphene (Au-SiNWs/G) hybrid composite as a polymer binder-free anode for rechargeable lithium-ion batteries (LIBs). A large amount of SiNWs for LIB anode materials can be prepared by metal-assisted chemical etching (MaCE) process. The Au-SiNWs/G composite film on current collector was obtained by vacuum filtration using an anodic aluminum oxide (AAO) membrane and hot pressing method. Our experimental results show that the Au-SiNWs/G composite has a stable reversible capacity of about 1520 mA h/g which was maintained for 20 cycles. The Au-SiNWs/G composite anode showed much better cycling performance than SiNWs/polyvinylidene fluoride (PVDF)/Super-P, SiNWs/G composite, and pure SiNWs anodes. The improved electrochemical properties of the Au-SiNWs/G composite anode material is mainly ascribed to the composite's porous network structure.

  2. Study of Ni Metallization in Macroporous Si Using Wet Chemistry for Radio Frequency Cross-Talk Isolation in Mixed Signal Integrated Circuits

    PubMed Central

    Zhang, Xi; Xu, Chengkun; Chong, Kyuchul; Tu, King-Ning; Xie, Ya-Hong

    2011-01-01

    A highly conductive moat or Faraday cage of through-the-wafer thickness in Si substrate was proposed to be effective in shielding electromagnetic interference thereby reducing radio frequency (RF) cross-talk in high performance mixed signal integrated circuits. Such a structure was realized by metallization of selected ultra-high-aspect-ratio macroporous regions that were electrochemically etched in p− Si substrates. The metallization process was conducted by means of wet chemistry in an alkaline aqueous solution containing Ni2+ without reducing agent. It is found that at elevated temperature during immersion, Ni2+ was rapidly reduced and deposited into macroporous Si and a conformal metallization of the macropore sidewalls was obtained in a way that the entire porous Si framework was converted to Ni. A conductive moat was as a result incorporated into p− Si substrate. The experimentally measured reduction of crosstalk in this structure is 5~18 dB at frequencies up to 35 GHz. PMID:28879960

  3. Study of Ni Metallization in Macroporous Si Using Wet Chemistry for Radio Frequency Cross-Talk Isolation in Mixed Signal Integrated Circuits.

    PubMed

    Zhang, Xi; Xu, Chengkun; Chong, Kyuchul; Tu, King-Ning; Xie, Ya-Hong

    2011-05-25

    A highly conductive moat or Faraday cage of through-the-wafer thickness in Si substrate was proposed to be effective in shielding electromagnetic interference thereby reducing radio frequency (RF) cross-talk in high performance mixed signal integrated circuits. Such a structure was realized by metallization of selected ultra-high-aspect-ratio macroporous regions that were electrochemically etched in p - Si substrates. The metallization process was conducted by means of wet chemistry in an alkaline aqueous solution containing Ni 2+ without reducing agent. It is found that at elevated temperature during immersion, Ni 2+ was rapidly reduced and deposited into macroporous Si and a conformal metallization of the macropore sidewalls was obtained in a way that the entire porous Si framework was converted to Ni. A conductive moat was as a result incorporated into p - Si substrate. The experimentally measured reduction of crosstalk in this structure is 5~18 dB at frequencies up to 35 GHz.

  4. Novel strategy to improve the Li-storage performance of micro silicon anodes

    NASA Astrophysics Data System (ADS)

    Choi, Min-Jae; Xiao, Ying; Hwang, Jang-Yeon; Belharouak, Ilias; Sun, Yang-Kook

    2017-04-01

    Silicon (Si)-based materials have attracted significant research as an outstanding candidate for the anode material of lithium-ion batteries. However, the tremendous volume change and poor electron conductivity of bulk silicon result in inferior capacity retention and low Coulombic efficiency. Designing special Si with high energy density and good stability in a bulk electrode remains a significant challenge. In this work, we introduce an ingenious strategy to modify micro silicon by designing a porous structure, constructing nanoparticle blocks, and introducing carbon nanotubes as wedges. A disproportion reaction, coupled with a chemical etching process and a ball-milling reaction, are applied to generate the desired material. The as-prepared micro silicon material features porosity, small primary particles, and effective CNT-wedging, which combine to endow the resultant anode with a high reversible specific capacity of up to 2028.6 mAh g-1 after 100 cycles and excellent rate capability. The superior electrochemical performance is attributed to the unique architecture and optimized composition.

  5. Sequential infiltration synthesis for advanced lithography

    DOEpatents

    Darling, Seth B.; Elam, Jeffrey W.; Tseng, Yu-Chih; Peng, Qing

    2015-03-17

    A plasma etch resist material modified by an inorganic protective component via sequential infiltration synthesis (SIS) and methods of preparing the modified resist material. The modified resist material is characterized by an improved resistance to a plasma etching or related process relative to the unmodified resist material, thereby allowing formation of patterned features into a substrate material, which may be high-aspect ratio features. The SIS process forms the protective component within the bulk resist material through a plurality of alternating exposures to gas phase precursors which infiltrate the resist material. The plasma etch resist material may be initially patterned using photolithography, electron-beam lithography or a block copolymer self-assembly process.

  6. Optimized plasma etch window of block copolymers and neutral brush layers for enhanced direct self-assembly pattern transfer into a hardmask layer

    NASA Astrophysics Data System (ADS)

    Brakensiek, Nickolas; Xu, Kui; Sweat, Daniel; Hockey, Mary Ann

    2018-03-01

    Directed self-assembly (DSA) of block copolymers (BCPs) is one of the most promising patterning technologies for future lithography nodes. However, one of the biggest challenges to DSA is the pattern transfer by plasma etching from BCP to hardmask (HM) because the etch selectivity between BCP and neutral brush layer underneath is usually not high enough to enable robust pattern transfer. This paper will explore the plasma etch conditions of both BCPs and neutral brush layers that may improve selectivity and allow a more robust pattern transfer of DSA patterns into the hardmask layer. The plasma etching parameters that are under investigation include the selection of oxidative or reductive etch chemistries, as well as plasma gas pressure, power, and gas mixture fractions. Investigation into the relationship between BCP/neutral brush layer materials with varying chemical compositions and the plasma etching conditions will be highlighted. The culmination of this work will demonstrate important etch parameters that allow BCPs and neutral brush layers to be etched into the underlying hardmask layer with a large process window.

  7. Wet etching mechanism and crystallization of indium-tin oxide layer for application in light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Su, Shui-Hsiang; Kong, Hsieng-Jen; Tseng, Chun-Lung; Chen, Guan-Yu

    2018-01-01

    In the article, we describe the etching mechanism of indium-tin oxide (ITO) film, which was wet-etched using a solution of hydrochloric acid (HCl) and ferric chloride (FeCl3). The etching mechanism is analyzed at various etching durations of ITO films by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), and selective area diffraction (SAD) analysis. In comparison with the crystalline phase of SnO2, the In2O3 phase can be more easily transformed to In3+ and can form an inverted conical structure during the etching process. By adjusting the etching duration, the residual ITO is completely removed to show a designed pattern. This is attributed to the negative Gibbs energy of In2O3 transformed to In3+. The result also corresponds to the finding of energy-dispersive X-ray spectroscopy (EDS) analysis that the Sn/In ratio increases with increasing etching duration.

  8. Hafnium Oxide Film Etching Using Hydrogen Chloride Gas

    NASA Astrophysics Data System (ADS)

    Habuka, Hitoshi; Yamaji, Masahiko; Kobori, Yoshitsugu; Horii, Sadayoshi; Kunii, Yasuo

    2009-12-01

    Hydrogen chloride gas removes the hafnium oxide film formed by atomic layer deposition at the etch rate of about 1 nm/min. A 100 nm-thick hafnium oxide film was perfectly etched off at 1173 K for 60 min by 100% hydrogen chloride gas at 100 sccm. A weight decrease in the hafnium oxide film was observed at temperatures higher than ca. 600 K, which corresponds to the sublimation point of hafnium tetrachloride. The etching by-product is considered to be hafnium tetrachloride. The etching technique developed in this study is expected to be applicable to various processes, such as the cleaning of a hafnium oxide film deposition reactor.

  9. Physics and chemistry of complex oxide etching and redeposition control

    NASA Astrophysics Data System (ADS)

    Margot, Joëlle

    2012-10-01

    Since its introduction in the 1970s, plasma etching has become the universal method for fine-line pattern transfer onto thin films and is anticipated to remain so in foreseeable future. Despite many success stories, plasma etching processes fail to meet the needs for several of the newest materials involved in advanced devices for photonic, electronic and RF applications like ferroelectrics, electro-optic materials, high-k dielectrics, giant magnetoresistance materials and unconventional conductors. In this context, the work achieved over the last decade on the etching of multicomponent oxides thin films such as barium strontium titanate (BST), strontium titanate (STO) and niobate of calcium and barium (CBN) will be reviewed. These materials present a low reactivity with usual etching gases such as fluorinated and chlorinated gases, their etching is mainly governed by ion sputtering and reactive gases sometimes interact with surface materials to form compounds that inhibit etching. The etching of platinum will also be presented as an example of unconventional conductor materials for which severe redeposition limits the achievable etching quality. Finally, it will be shown how simulation can help to understand the etching mechanisms and to define avenues for higher quality patterning.

  10. Use of KRS-XE positive chemically amplified resist for optical mask manufacturing

    NASA Astrophysics Data System (ADS)

    Ashe, Brian; Deverich, Christina; Rabidoux, Paul A.; Peck, Barbara; Petrillo, Karen E.; Angelopoulos, Marie; Huang, Wu-Song; Moreau, Wayne M.; Medeiros, David R.

    2002-03-01

    The traditional mask making process uses chain scission-type resists such as PBS, poly(butene-1-sulfone), and ZEP, poly(methyl a-chloroacrylate-co-a-methylstyrene) for making masks with dimensions greater than 180nm. PBS resist requires a wet etch process to produce patterns in chrome. ZEP was employed for dry etch processing to meet the requirements of shrinking dimensions, optical proximity corrections and phase shift masks. However, ZEP offers low contrast, marginal etch resistance, organic solvent development, and concerns regarding resist heating with its high dose requirements1. Chemically Amplified Resist (CAR) systems are a very good choice for dimensions less than 180nm because of their high sensitivity and contrast, high resolution, dry etch resistance, aqueous development, and process latitude2. KRS-XE was developed as a high contrast CA resist based on ketal protecting groups that eliminate the need for post exposure bake (PEB). This resist can be used for a variety of electron beam exposures, and improves the capability to fabricate masks for devices smaller than 180nm. Many factors influence the performance of resists in mask making such as post apply bake, exposure dose, resist develop, and post exposure bake. These items will be discussed as well as the use of reactive ion etching (RIE) selectivity and pattern transfer.

  11. Implementation of atomic layer etching of silicon: Scaling parameters, feasibility, and profile control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ranjan, Alok, E-mail: alok.ranjan@us.tel.com; Wang, Mingmei; Sherpa, Sonam D.

    2016-05-15

    Atomic or layer by layer etching of silicon exploits temporally segregated self-limiting adsorption and material removal steps to mitigate the problems associated with continuous or quasicontinuous (pulsed) plasma processes: selectivity loss, damage, and profile control. Successful implementation of atomic layer etching requires careful choice of the plasma parameters for adsorption and desorption steps. This paper illustrates how process parameters can be arrived at through basic scaling exercises, modeling and simulation, and fundamental experimental tests of their predictions. Using chlorine and argon plasma in a radial line slot antenna plasma source as a platform, the authors illustrate how cycle time, ionmore » energy, and radical to ion ratio can be manipulated to manage the deviation from ideality when cycle times are shortened or purges are incomplete. Cell based Monte Carlo feature scale modeling is used to illustrate profile outcomes. Experimental results of atomic layer etching processes are illustrated on silicon line and space structures such that iso-dense bias and aspect ratio dependent free profiles are produced. Experimental results also illustrate the profile control margin as processes move from atomic layer to multilayer by layer etching. The consequence of not controlling contamination (e.g., oxygen) is shown to result in deposition and roughness generation.« less

  12. Silicon vertical microstructure fabrication by catalytic etching

    NASA Astrophysics Data System (ADS)

    Huang, Mao-Jung; Yang, Chii-Rong; Chang, Chun-Ming; Chu, Nien-Nan; Shiao, Ming-Hua

    2012-08-01

    This study presents an effective, simple and inexpensive process for forming micro-scale vertical structures on a (1 0 0) silicon wafer. Several modified etchants and micro-patterns including rectangular, snake-like, circular and comb patterns were employed to determine the optimum etching process. We found that an etchant solution consisting of 4.6 M hydrofluoric acid, 0.44 M hydrogen peroxide and isopropyl alcohol produces microstructures at an etching rate of 0.47 µm min-1 and surface roughness of 17.4 nm. All the patterns were transferred faithfully to the silicon substrate.

  13. A high-performance nanoporous Si/Al2O3 foam lithium-ion battery anode fabricated by selective chemical etching of the Al-Si alloy and subsequent thermal oxidation.

    PubMed

    Hwang, Gaeun; Park, Hyungmin; Bok, Taesoo; Choi, Sinho; Lee, Sungjun; Hwang, Inchan; Choi, Nam-Soon; Seo, Kwanyong; Park, Soojin

    2015-03-14

    Nanostructured micrometer-sized Al-Si particles are synthesized via a facile selective etching process of Al-Si alloy powder. Subsequent thin Al2O3 layers are introduced on the Si foam surface via a selective thermal wet oxidation process of etched Al-Si particles. The resulting Si/Al2O3 foam anodes exhibit outstanding cycling stability (a capacity retention of 78% after 300 cycles at the C/5 rate) and excellent rate capability.

  14. Photo-EMF sensitivity of porous silicon thin layer-crystalline silicon heterojunction to ammonia adsorption.

    PubMed

    Vashpanov, Yuriy; Jung, Jae Il; Kwack, Kae Dal

    2011-01-01

    A new method of using photo-electromotive force in detecting gas and controlling sensitivity is proposed. Photo-electromotive force on the heterojunction between porous silicon thin layer and crystalline silicon wafer depends on the concentration of ammonia in the measurement chamber. A porous silicon thin layer was formed by electrochemical etching on p-type silicon wafer. A gas and light transparent electrical contact was manufactured to this porous layer. Photo-EMF sensitivity corresponding to ammonia concentration in the range from 10 ppm to 1,000 ppm can be maximized by controlling the intensity of illumination light.

  15. Electrochemical Growth of Single-Crystal Metal Nanowires via a Two-Dimensional Nucleation and Growth Mechanism.

    PubMed

    Tian, Mingliang; Wang, Jinguo; Kurtz, James; Mallouk, Thomas E; Chan, M H W

    2003-07-01

    Metallic nanowires (Au, Ag, Cu, Ni, Co, and Rh) with an average diameter of 40 nm and a length of 3-5 μm have been fabricated by electrodeposition in the pores of track-etched polycarbonate membranes. Structural characterizations by transmission electron microscopy (TEM) and electron diffraction showed that nanowires of Au, Ag, and Cu are single-crystalline with a preferred [111] orientation, whereas Ni, Co, and Rh wires are polycrystalline. Possible mechanisms responsible for nucleation and growth for single-crystal noble metals versus polycrystalline group VIII-B metals are discussed.

  16. Edge-Controlled Growth and Etching of Two-Dimensional GaSe Monolayers

    DOE PAGES

    Li, Xufan; Dong, Jichen; Idrobo, Juan C.; ...

    2016-12-07

    Understanding the atomistic mechanisms governing the growth of two-dimensional (2D) materials is of great importance in guiding the synthesis of wafer-sized, single-crystalline, high-quality 2D crystals and heterostructures. Etching, in many cases regarded as the reverse process of material growth, has been used to study the growth kinetics of graphene. In this paper, we explore a growth–etching–regrowth process of monolayer GaSe crystals, including single-crystalline triangles and irregularly shaped domains formed by merged triangles. We show that the etching begins at a slow rate, creating triangular, truncated triangular, or hexagonally shaped holes that eventually evolve to exclusively triangles that are rotated 60°more » with respect to the crystalline orientation of the monolayer triangular crystals. The regrowth occurs much faster than etching, reversibly filling the etched holes and then enlarging the size of the monolayer crystals. A theoretical model developed based on kinetic Wulff construction (KWC) theory and density functional theory (DFT) calculations accurately describe the observed morphology evolution of the monolayer GaSe crystals and etched holes during the growth and etching processes, showing that they are governed by the probability of atom attachment/detachment to/from different types of edges with different formation energies of nucleus/dents mediated by chemical potential difference Δμ between Ga and Se. Finally, our growth–etching–regrowth study provides not only guidance to understand the growth mechanisms of 2D binary crystals but also a potential method for the synthesis of large, shape-controllable, high-quality single-crystalline 2D crystals and their lateral heterostructures.« less

  17. Feature Profile Evolution of SiO2 Trenches In Fluorocarbon Plasmas

    NASA Technical Reports Server (NTRS)

    Hwang, Helen; Govindan, T. R.; Meyyappan, M.; Arunachalam, Valli; Rauf, Shahid; Coronell, Dan; Carroll, Carol W. (Technical Monitor)

    1999-01-01

    Etching of silicon microstructures for semiconductor manufacturing in chlorine plasmas has been well characterized. The etching proceeds in a two-part process, where the chlorine neutrals passivate the Si surface and then the ions etch away SiClx. However, etching in more complicated gas mixtures and materials, such as etching of SiO2 in Ar/C4F8, requires knowledge of the ion and neutral distribution functions as a function of angle and velocity, in addition to modeling the gas surface reactions. In order to address these needs, we have developed and integrated a suite of models to simulate the etching process from the plasma reactor level to the feature profile evolution level. This arrangement allows for a better understanding, control, and prediction of the influence of equipment level process parameters on feature profile evolution. We are currently using the HPEM (Hybrid Plasma Equipment Model) and PCMCM (Plasma Chemistry Monte Carlo Model) to generate plasma properties and ion and neutral distribution functions for argon/fluorocarbon discharges in a GEC Reference Cell. These quantities are then input to the feature scale model, Simulation of Profile Evolution by Level Sets (SPELS). A surface chemistry model is used to determine the interaction of the incoming species with the substrate material and simulate the evolution of the trench profile. The impact of change of gas pressure and inductive power on the relative flux of CFx and F to the wafer, the etch and polymerization rates, and feature profiles will be examined. Comparisons to experimental profiles will also be presented.

  18. Determination of etching parameters for pulsed XeF2 etching of silicon using chamber pressure data

    NASA Astrophysics Data System (ADS)

    Sarkar, Dipta; Baboly, M. G.; Elahi, M. M.; Abbas, K.; Butner, J.; Piñon, D.; Ward, T. L.; Hieber, Tyler; Schuberth, Austin; Leseman, Z. C.

    2018-04-01

    A technique is presented for determination of the depletion of the etchant, etched depth, and instantaneous etch rate for Si etching with XeF2 in a pulsed etching system in real time. The only experimental data required is the pressure data collected temporally. Coupling the pressure data with the knowledge of the chemical reactions allows for the determination of the etching parameters of interest. Using this technique, it is revealed that pulsed etching processes are nonlinear, with the initial etch rate being the highest and monotonically decreasing as the etchant is depleted. With the pulsed etching system introduced in this paper, the highest instantaneous etch rate of silicon was recorded to be 19.5 µm min-1 for an initial pressure of 1.2 Torr for XeF2. Additionally, the same data is used to determine the rate constant for the reaction of XeF2 with Si; the reaction is determined to be second order in nature. The effect of varying the exposed surface area of Si as well as the effect that pressure has on the instantaneous etch rate as a function of time is shown applying the same technique. As a proof of concept, an AlN resonator is released using XeF2 pulses to remove a sacrificial poly-Si layer.

  19. Inorganic Bi/In thermal resist as a high-etch-ratio patterning layer for CF4/CHF3/O2 plasma etch

    NASA Astrophysics Data System (ADS)

    Tu, Yuqiang; Chapman, Glenn H.; Peng, Jun

    2004-05-01

    Bimetallic thin films containing indium and with low eutectic points, such as Bi/In, have been found to form highly sensitive thermal resists. They can be exposed by lasers with a wide range of wavelengths and be developed by diluted RCA2 solutions. The exposed bimetallic resist Bi/In can work as an etch masking layer for alkaline-based (KOH, TMAH and EDP) "wet" Si anisotropic etching. Current research shows that it can also act as a patterning and masking layer for Si and SiO2 plasma "dry" etch using CF4/CHF3. The profile of etched structures can be tuned by adding CHF3 and other gases such as Ar, and by changing the CF4/CHF3 ratio. Depending on the fluorocarbon plasma etching recipe the etch rate of laser exposed Bi/In can be as low as 0.1nm/min, 500 times lower than organic photoresists. O2 plasma ashing has little etching effect on exposed Bi/In, indicating that laser exposure is an oxidation process. Experiment result shows that single metal Indium film and bilayer Sn/In exhibit thermal resist characteristics but at higher exposure levels. They can be developed in diluted RCA2 solution and used as etch mask layers for Si anisotropic etch and plasma etch.

  20. High density plasma etching of magnetic devices

    NASA Astrophysics Data System (ADS)

    Jung, Kee Bum

    Magnetic materials such as NiFe (permalloy) or NiFeCo are widely used in the data storage industry. Techniques for submicron patterning are required to develop next generation magnetic devices. The relative chemical inertness of most magnetic materials means they are hard to etch using conventional RIE (Reactive Ion Etching). Therefore ion milling has generally been used across the industry, but this has limitations for magnetic structures with submicron dimensions. In this dissertation, we suggest high density plasmas such as ECR (Electron Cyclotron Resonance) and ICP (Inductively Coupled Plasma) for the etching of magnetic materials (NiFe, NiFeCo, CoFeB, CoSm, CoZr) and other related materials (TaN, CrSi, FeMn), which are employed for magnetic devices like magnetoresistive random access memories (MRAM), magnetic read/write heads, magnetic sensors and microactuators. This research examined the fundamental etch mechanisms occurring in high density plasma processing of magnetic materials by measuring etch rate, surface morphology and surface stoichiometry. However, one concern with using Cl2-based plasma chemistry is the effect of residual chlorine or chlorinated etch residues remaining on the sidewalls of etched features, leading to a degradation of the magnetic properties. To avoid this problem, we employed two different processing methods. The first one is applying several different cleaning procedures, including de-ionized water rinsing or in-situ exposure to H2, O2 or SF6 plasmas. Very stable magnetic properties were achieved over a period of ˜6 months except O2 plasma treated structures, with no evidence of corrosion, provided chlorinated etch residues were removed by post-etch cleaning. The second method is using non-corrosive gas chemistries such as CO/NH3 or CO2/NH3. There is a small chemical contribution to the etch mechanism (i.e. formation of metal carbonyls) as determined by a comparison with Ar and N2 physical sputtering. The discharge should be NH3-rich to achieve the highest etch rates. Several different mask materials were investigated, including photoresist, thermal oxide and deposited oxide. Photoresist etches very rapidly in CO/NH 3 and use of a hard mask is necessary to achieve pattern transfer. Due to its physically dominated nature, the CO/NH3 chemistry appears suited to shallow etch depth (≤0.5mum) applications, but mask erosion leads to sloped feature sidewalls for deeper features.

  1. Electronic-carrier-controlled photochemical etching process in semiconductor device fabrication

    DOEpatents

    Ashby, C.I.H.; Myers, D.R.; Vook, F.L.

    1988-06-16

    An electronic-carrier-controlled photochemical etching process for carrying out patterning and selective removing of material in semiconductor device fabrication includes the steps of selective ion implanting, photochemical dry etching, and thermal annealing, in that order. In the selective ion implanting step, regions of the semiconductor material in a desired pattern are damaged and the remainder of the regions of the material not implanted are left undamaged. The rate of recombination of electrons and holes is increased in the damaged regions of the pattern compared to undamaged regions. In the photochemical dry etching step which follows ion implanting step, the material in the undamaged regions of the semiconductor are removed substantially faster than in the damaged regions representing the pattern, leaving the ion-implanted, damaged regions as raised surface structures on the semiconductor material. After completion of photochemical dry etching step, the thermal annealing step is used to restore the electrical conductivity of the damaged regions of the semiconductor material.

  2. Electronic-carrier-controlled photochemical etching process in semiconductor device fabrication

    DOEpatents

    Ashby, Carol I. H.; Myers, David R.; Vook, Frederick L.

    1989-01-01

    An electronic-carrier-controlled photochemical etching process for carrying out patterning and selective removing of material in semiconductor device fabrication includes the steps of selective ion implanting, photochemical dry etching, and thermal annealing, in that order. In the selective ion implanting step, regions of the semiconductor material in a desired pattern are damaged and the remainder of the regions of the material not implanted are left undamaged. The rate of recombination of electrons and holes is increased in the damaged regions of the pattern compared to undamaged regions. In the photochemical dry etching step which follows ion implanting step, the material in the undamaged regions of the semiconductor are removed substantially faster than in the damaged regions representing the pattern, leaving the ion-implanted, damaged regions as raised surface structures on the semiconductor material. After completion of photochemical dry etching step, the thermal annealing step is used to restore the electrical conductivity of the damaged regions of the semiconductor material.

  3. Inductively Coupled Plasma-Induced Electrical Damage on HgCdTe Etched Surface at Cryogenic Temperatures

    NASA Astrophysics Data System (ADS)

    Liu, L. F.; Chen, Y. Y.; Ye, Z. H.; Hu, X. N.; Ding, R. J.; He, L.

    2018-03-01

    Plasma etching is a powerful technique for transferring high-resolution lithographic patterns into HgCdTe material with low etch-induced damage, and it is important for fabricating small-pixel-size HgCdTe infrared focal plane array (IRFPA) detectors. P- to n-type conversion is known to occur during plasma etching of vacancy-doped HgCdTe; however, it is usually unwanted and its removal requires extra steps. Etching at cryogenic temperatures can reduce the etch-induced type conversion depth in HgCdTe via the electrical damage mechanism. Laser beam-induced current (LBIC) is a nondestructive photoelectric characterization technique which can provide information regarding the vertical and lateral electrical field distribution, such as defects and p-n junctions. In this work, inductively coupled plasma (ICP) etching of HgCdTe was implemented at cryogenic temperatures. For an Ar/CH4 (30:1 in SCCM) plasma with ICP input power of 1000 W and RF-coupled DC bias of ˜ 25 V, a HgCdTe sample was dry-etched at 123 K for 5 min using ICP. The sample was then processed to remove a thin layer of the plasma-etched region while maintaining a ladder-like damaged layer by continuously controlling the wet chemical etching time. Combining the ladder etching method and LBIC measurement, the ICP etching-induced electrical damage depth was measured and estimated to be about 20 nm. The results indicate that ICP etching at cryogenic temperatures can significantly suppress plasma etching-induced electrical damage, which is beneficial for defining HgCdTe mesa arrays.

  4. Effect of the chamber wall on fluorocarbon-assisted atomic layer etching of SiO2 using cyclic Ar/C4F8 plasma

    PubMed Central

    Kawakami, Masatoshi; Metzler, Dominik; Li, Chen; Oehrlein, Gottlieb S.

    2016-01-01

    The authors studied the effect of the temperature and chemical state of the chamber wall on process performance for atomic layer etching of SiO2 using a steady-state Ar plasma, periodic injection of a defined number of C4F8 molecules, and synchronized plasma-based Ar+ ion bombardment. To evaluate these effects, the authors measured the quartz coupling window temperature. The plasma gas phase chemistry was characterized using optical emission spectroscopy. It was found that although the thickness of the polymer film deposited in each cycle is constant, the etching behavior changed, which is likely related to a change in the plasma gas phase chemistry. The authors found that the main gas phase changes occur after C4F8 injection. The C4F8 and the quartz window react and generate SiF and CO. The emission intensity changes with wall surface state and temperature. Therefore, changes in the plasma gas species generation can lead to a shift in etching performance during processing. During initial cycles, minimal etching is observed, while etching gradually increases with cycle number. PMID:27375342

  5. A novel 2D silicon nano-mold fabrication technique for linear nanochannels over a 4 inch diameter substrate

    PubMed Central

    Yin, Zhifu; Qi, Liping; Zou, Helin; Sun, Lei

    2016-01-01

    A novel low-cost 2D silicon nano-mold fabrication technique was developed based on Cu inclined-deposition and Ar+ (argon ion) etching. With this technique, sub-100 nm 2D (two dimensional) nano-channels can be etched economically over the whole area of a 4 inch n-type <100> silicon wafer. The fabricating process consists of only 4 steps, UV (Ultraviolet) lithography, inclined Cu deposition, Ar+ sputter etching, and photoresist & Cu removing. During this nano-mold fabrication process, we investigated the influence of the deposition angle on the width of the nano-channels and the effect of Ar+ etching time on their depth. Post-etching measurements showed the accuracy of the nanochannels over the whole area: the variation in width is 10%, in depth it is 11%. However, post-etching measurements also showed the accuracy of the nanochannels between chips: the variation in width is 2%, in depth it is 5%. With this newly developed technology, low-cost and large scale 2D nano-molds can be fabricated, which allows commercial manufacturing of nano-components over large areas. PMID:26752559

  6. Microstructural characterization of aluminum alloys using Weck's reagent, part I: Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Li, E-mail: gao.l.ab@m.titech.ac.jp; Harada, Yohei, E-mail: harada.y.ah@m.titech.ac.jp; Kumai, Shinji, E-mail: kumai.s.aa@m.titech.ac.jp

    This paper focuses on the applications of a color etchant for aluminum alloys named Weck's reagent. The Al phase shows different colors from location to location after being etched by Weck's reagent. It is proved that Weck's reagent is very sensitive to the micro-segregations of Ti, Si and Mg in Al alloys so that characterization of the micro-segregations can be qualitatively realized which is usually done by electronic probe techniques. With the help of this characterization method, we are able to evaluate solid fractions for the semi-solid processed Al alloy with a better accuracy by excluding the Al grain growthmore » during water quenching. To understand this reagent better, the color change during etching is investigated by applying different etching times at room temperature (25 °C). Among those results, 12 s shows the best color contrast after etching. Finally, we repeat the 12 second etching for four times through repeating a polishing–etching process. The result exhibits that Weck's reagent has a satisfying re-producibility with stable color and color distribution for the four times etching result. The second part of this study covers the coloring mechanism of Weck's reagent by characterizing the etched surface via various characterization methods. - Highlights: • The applications of Weck's reagent for Al alloys are introduced in detail. • Detailed relationship between micro-segregations in Al phase and the color difference revealed by Weck's reagent are studied. • Etching time has a strong influence on the color revealed by Weck's reagent. • Besides micro-segregation, grain boundaries can also be visualized by Weck's reagent, which was proved by EBSD analysis.« less

  7. Germanium microflower-on-nanostem as a high-performance lithium ion battery electrode

    PubMed Central

    Lee, Gwang-Hee; Kwon, S. Joon; Park, Kyung-Soo; Kang, Jin-Gu; Park, Jae-Gwan; Lee, Sungjun; Kim, Jae-Chan; Shim, Hyun-Woo; Kim, Dong-Wan

    2014-01-01

    We demonstrate a new design of Ge-based electrodes comprising three-dimensional (3-D) spherical microflowers containing crystalline nanorod networks on sturdy 1-D nanostems directly grown on a metallic current collector by facile thermal evaporation. The Ge nanorod networks were observed to self-replicate their tetrahedron structures and form a diamond cubic lattice-like inner network. After etching and subsequent carbon coating, the treated Ge nanostructures provide good electrical conductivity and are resistant to gradual deterioration, resulting in superior electrochemical performance as anode materials for LIBs, with a charge capacity retention of 96% after 100 cycles and a high specific capacity of 1360 mA h g−1 at 1 C and a high-rate capability with reversible capacities of 1080 and 850 mA h g−1 at the rates of 5 and 10 C, respectively. The improved electrochemical performance can be attributed to the fast electron transport and good strain accommodation of the carbon-filled Ge microflower-on-nanostem hybrid electrode. PMID:25363317

  8. Nanoporous platinum-cobalt alloy for electrochemical sensing for ethanol, hydrogen peroxide, and glucose.

    PubMed

    Xu, Caixia; Sun, Fenglei; Gao, Hua; Wang, Jinping

    2013-05-30

    Nanoporous platinum-cobalt (NP-PtCo) alloy with hierarchical nanostructure is straightforwardly fabricated by dealloying PtCoAl alloy in a mild alkaline solution. Selectively etching Al resulted in a hierarchical three-dimensional network nanostructure with a narrow size distribution at 3 nm. The as-prepared NP-PtCo alloy shows superior performance toward ethanol and hydrogen peroxide (H2O2) with highly sensitive response due to its unique electrocatalytic activity. In addition, NP-PtCo also exhibits excellent amperometric durability and long-term stability for H2O2 as well as a good anti-interference toward ascorbic acid, uric acid, and dopamine. The hierarchical nanoporous architecture in PtCo alloy is also highly active for glucose sensing electrooxidation and sensing in a wide linear range. The NP-PtCo alloy holds great application potential for electrochemical sensing with simple preparation, unique catalytic activity, and high structure stability. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Construction and electrochemical characterization of microelectrodes for improved sensitivity in paper-based analytical devices

    PubMed Central

    Santhiago, Murilo; Wydallis, John B.; Kubota, Lauro T.; Henry, Charles S.

    2013-01-01

    This work presents a simple, low cost method for creating microelectrodes for electrochemical paper-based analytical devices (ePADs). The microelectrodes were constructed by backfilling small holes made in polyester sheets using a CO2 laser etching system. To make electrical connections, the working electrodes were combined with silver screen-printed paper in a sandwich type two-electrode configuration. The devices were characterized using linear sweep voltammetry and the results are in good agreement with theoretical predictions for electrode size and shape. As a proof-of-concept, cysteine was measured using cobalt phthalocyanine as a redox mediator. The rate constant (kobs) for the chemical reaction between cysteine and the redox mediator was obtained by chronoamperometry and found to be on the order of 105 s−1 M−1. Using a microelectrode array, it was possible to reach a limit of detection of 4.8 μM for cysteine. The results show that carbon paste microelectrodes can be easily integrated with paper-based analytical devices. PMID:23581428

  10. Construction and electrochemical characterization of microelectrodes for improved sensitivity in paper-based analytical devices.

    PubMed

    Santhiago, Murilo; Wydallis, John B; Kubota, Lauro T; Henry, Charles S

    2013-05-21

    This work presents a simple, low cost method for creating microelectrodes for electrochemical paper-based analytical devices (ePADs). The microelectrodes were constructed by backfilling small holes made in polyester sheets using a CO2 laser etching system. To make electrical connections, the working electrodes were combined with silver screen-printed paper in a sandwich type two-electrode configuration. The devices were characterized using linear sweep voltammetry, and the results are in good agreement with theoretical predictions for electrode size and shape. As a proof-of-concept, cysteine was measured using cobalt phthalocyanine as a redox mediator. The rate constant (k(obs)) for the chemical reaction between cysteine and the redox mediator was obtained by chronoamperometry and found to be on the order of 10(5) s(-1) M(-1). Using a microelectrode array, it was possible to reach a limit of detection of 4.8 μM for cysteine. The results show that carbon paste microelectrodes can be easily integrated with paper-based analytical devices.

  11. Integral resonator gyroscope

    NASA Technical Reports Server (NTRS)

    Shcheglov, Kirill V. (Inventor); Challoner, A. Dorian (Inventor); Hayworth, Ken J. (Inventor); Wiberg, Dean V. (Inventor); Yee, Karl Y. (Inventor)

    2008-01-01

    The present invention discloses an inertial sensor having an integral resonator. A typical sensor comprises a planar mechanical resonator for sensing motion of the inertial sensor and a case for housing the resonator. The resonator and a wall of the case are defined through an etching process. A typical method of producing the resonator includes etching a baseplate, bonding a wafer to the etched baseplate, through etching the wafer to form a planar mechanical resonator and the wall of the case and bonding an end cap wafer to the wall to complete the case.

  12. Method of producing an integral resonator sensor and case

    NASA Technical Reports Server (NTRS)

    Challoner, A. Dorian (Inventor); Yee, Karl Y. (Inventor); Shcheglov, Kirill V. (Inventor); Hayworth, Ken J. (Inventor); Wiberg, Dean V. (Inventor)

    2005-01-01

    The present invention discloses an inertial sensor having an integral resonator. A typical sensor comprises a planar mechanical resonator for sensing motion of the inertial sensor and a case for housing the resonator. The resonator and a wall of the case are defined through an etching process. A typical method of producing the resonator includes etching a baseplate, bonding a wafer to the etched baseplate, through etching the wafer to form a planar mechanical resonator and the wall of the case and bonding an end cap wafer to the wall to complete the case.

  13. Wafer-scale fabrication of polymer-based microdevices via injection molding and photolithographic micropatterning protocols.

    PubMed

    Lee, Dae-Sik; Yang, Haesik; Chung, Kwang-Hyo; Pyo, Hyeon-Bong

    2005-08-15

    Because of their broad applications in biomedical analysis, integrated, polymer-based microdevices incorporating micropatterned metallic and insulating layers are significant in contemporary research. In this study, micropatterns for temperature sensing and microelectrode sets for electroanalysis have been implemented on an injection-molded thin polymer membrane by employing conventional semiconductor processing techniques (i.e., standard photolithographic methods). Cyclic olefin copolymer (COC) is chosen as the polymer substrate because of its high chemical and thermal stability. A COC 5-in. wafer (1-mm thickness) is manufactured using an injection molding method, in which polymer membranes (approximately 130 microm thick and 3 mm x 6 mm in area) are implemented simultaneously in order to reduce local thermal mass around micropatterned heaters and temperature sensors. The highly polished surface (approximately 4 nm within 40 microm x 40 microm area) of the fabricated COC wafer as well as its good resistance to typical process chemicals makes it possible to use the standard photolithographic and etching protocols on the COC wafer. Gold micropatterns with a minimum 5-microm line width are fabricated for making microheaters, temperature sensors, and microelectrodes. An insulating layer of aluminum oxide (Al2O3) is prepared at a COC-endurable low temperature (approximately 120 degrees C) by using atomic layer deposition and micropatterning for the electrode contacts. The fabricated microdevice for heating and temperature sensing shows improved performance of thermal isolation, and microelectrodes display good electrochemical performances for electrochemical sensors. Thus, this novel 5-in. wafer-level microfabrication method is a simple and cost-effective protocol to prepare polymer substrate and demonstrates good potential for application to highly integrated and miniaturized biomedical devices.

  14. Etching nano-holes in silicon carbide using catalytic platinum nano-particles

    NASA Astrophysics Data System (ADS)

    Moyen, E.; Wulfhekel, W.; Lee, W.; Leycuras, A.; Nielsch, K.; Gösele, U.; Hanbücken, M.

    2006-09-01

    The catalytic reaction of platinum during a hydrogen etching process has been used to perform controlled vertical nanopatterning of silicon carbide substrates. A first set of experiments was performed with platinum powder randomly distributed on the SiC surface. Subsequent hydrogen etching in a hot wall reactor caused local atomic hydrogen production at the catalyst resulting in local SiC etching and hole formation. Secondly, a highly regular and monosized distribution of Pt was obtained by sputter deposition of Pt through an Au membrane serving as a contact mask. After the lift-off of the mask, the hydrogen etching revealed the onset of well-controlled vertical patterned holes on the SiC surface.

  15. Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiles, Jeff; Malinowski, Marcin; Rao, Ashutosh

    A chlorine plasma etching-based method for the fabrication of high-performance chalcogenide-based integrated photonics on silicon substrates is presented. By optimizing the etching conditions, chlorine plasma is employed to produce extremely low-roughness etched sidewalls on waveguides with minimal penalty to propagation loss. Using this fabrication method, microring resonators with record-high intrinsic Q-factors as high as 450 000 and a corresponding propagation loss as low as 0.42 dB/cm are demonstrated in submicron chalcogenide waveguides. Furthermore, the developed chlorine plasma etching process is utilized to demonstrate fiber-to-waveguide grating couplers in chalcogenide photonics with high power coupling efficiency of 37% for transverse-electric polarized modes.

  16. Sequential infiltration synthesis for advanced lithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darling, Seth B.; Elam, Jeffrey W.; Tseng, Yu-Chih

    A plasma etch resist material modified by an inorganic protective component via sequential infiltration synthesis (SIS) and methods of preparing the modified resist material. The modified resist material is characterized by an improved resistance to a plasma etching or related process relative to the unmodified resist material, thereby allowing formation of patterned features into a substrate material, which may be high-aspect ratio features. The SIS process forms the protective component within the bulk resist material through a plurality of alternating exposures to gas phase precursors which infiltrate the resist material. The plasma etch resist material may be initially patterned usingmore » photolithography, electron-beam lithography or a block copolymer self-assembly process.« less

  17. Morphology-Driven Control of Metabolite Selectivity Using Nanostructure-Initiator Mass Spectrometry

    DOE PAGES

    Gao, Jian; Louie, Katherine B.; Steinke, Philipp; ...

    2017-05-26

    Nanostructure-initiator mass spectrometry (NIMS) is a laser desorption/ionization analysis technique based on the vaporization of a nanostructure-trapped liquid "initiator" phase. Here we report an intriguing relationship between NIMS surface morphology and analyte selectivity. Scanning electron microscopy and spectroscopic ellipsometry were used to characterize the surface morphologies of a series of NIMS substrates generated by anodic electrochemical etching. Mass spectrometry imaging was applied to compare NIMS sensitivity of these various surfaces toward the analysis of diverse analytes. The porosity of NIMS surfaces was found to increase linearly with etching time where the pore size ranged from 4 to 12 nm withmore » corresponding porosities estimated to be 7-70%. Surface morphology was found to significantly and selectively alter NIMS sensitivity. The small molecule ( < 2k Da) sensitivity was found to increase with increased porosity, whereas low porosity had the highest sensitivity for the largest molecules examined. Estimation of molecular sizes showed that this transition occurs when the pore size is < 3× the maximum of molecular dimensions. While the origins of selectivity are unclear, increased signal from small molecules with increased surface area is consistent with a surface area restructuring-driven desorption/ionization process where signal intensity increases with porosity. In contrast, large molecules show highest signal for the low-porosity and small-pore-size surfaces. We attribute this to strong interactions between the initiator-coated pore structures and large molecules that hinder desorption/ionization by trapping large molecules. This finding may enable us to design NIMS surfaces with increased specificity to molecules of interest.« less

  18. Improvement in etching rate for epilayer lift-off with surfactant

    NASA Astrophysics Data System (ADS)

    Wu, Fan-Lei; Horng, Ray-Hua; Lu, Jian-Heng; Chen, Chun-Li; Kao, Yu-Cheng

    2013-03-01

    In this study, the GaAs epilayer is quickly separated from GaAs substrate by epitaxial lift-off (ELO) process with mixture etchant solution. The HF solution mixes with surfactant as mixture etchant solution to etch AlAs sacrificial layer for the selective wet etching of AlAs sacrificial layer. Addiction surfactants etchant significantly enhance the etching rate in the hydrofluoric acid etching solution. It is because surfactant provides hydrophilicity to change the contact angle with enhances the fluid properties of the mixture etchant between GaAs epilayer and GaAs substrate. Arsine gas was released from the etchant solution because the critical reaction product in semiconductor etching is dissolved arsine gas. Arsine gas forms a bubble, which easily displaces the etchant solution, before the AlAs layer was undercut. The results showed that acetone and hydrofluoric acid ratio of about 1:1 for the fastest etching rate of 13.2 μm / min. The etching rate increases about 4 times compared with pure hydrofluoric acid, moreover can shorten the separation time about 70% of GaAs epilayer with GaAs substrate. The results indicate that etching ratio and stability are improved by mixture etchant solution. It is not only saving the epilayer and the etching solution exposure time, but also reducing the damage to the epilayer structure.

  19. Fabrication of optical filters using multilayered porous silicon

    NASA Astrophysics Data System (ADS)

    Gaber, Noha; Khalil, Diaa; Shaarawi, Amr

    2011-02-01

    In this work we describe a method for fabricating optical filters using multilayered porous silicon 1D photonic structure. An electrochemical cell is constructed to control the porosity of variable layers in p-type Si wafers. Porous silicon multilayered structures are formed of λ/4 (or multiples) thin films that construct optical interference filters. By changing the anodizing current density of the cell during fabrication, different porosities can be obtained as the optical refractive index is a direct function of the layer porosity. To determine the morphology, the wavelength dependent refractive index n and absorption coefficient α, first, porous silicon free standing mono-layers have been fabricated at different conditions and characterized in the near infrared region (from 1000 to 2500nm). Large difference in refractive index (between 1.6 and 2.6) is obtained. Subsequently, multilayer structures have been fabricated and tested. Their spectral response has been measured and it shows good agreement with numerical simulations. A technique based on inserting etching breaks is adopted to ensure the depth homogeneity. The effect of differing etching/break times on the reproducibility of the filters is studied.

  20. Damage-Free Smooth-Sidewall InGaAs Nanopillar Array by Metal-Assisted Chemical Etching.

    PubMed

    Kong, Lingyu; Song, Yi; Kim, Jeong Dong; Yu, Lan; Wasserman, Daniel; Chim, Wai Kin; Chiam, Sing Yang; Li, Xiuling

    2017-10-24

    Producing densely packed high aspect ratio In 0.53 Ga 0.47 As nanostructures without surface damage is critical for beyond Si-CMOS nanoelectronic and optoelectronic devices. However, conventional dry etching methods are known to produce irreversible damage to III-V compound semiconductors because of the inherent high-energy ion-driven process. In this work, we demonstrate the realization of ordered, uniform, array-based In 0.53 Ga 0.47 As pillars with diameters as small as 200 nm using the damage-free metal-assisted chemical etching (MacEtch) technology combined with the post-MacEtch digital etching smoothing. The etching mechanism of In x Ga 1-x As is explored through the characterization of pillar morphology and porosity as a function of etching condition and indium composition. The etching behavior of In 0.53 Ga 0.47 As, in contrast to higher bandgap semiconductors (e.g., Si or GaAs), can be interpreted by a Schottky barrier height model that dictates the etching mechanism constantly in the mass transport limited regime because of the low barrier height. A broader impact of this work relates to the complete elimination of surface roughness or porosity related defects, which can be prevalent byproducts of MacEtch, by post-MacEtch digital etching. Side-by-side comparison of the midgap interface state density and flat-band capacitance hysteresis of both the unprocessed planar and MacEtched pillar In 0.53 Ga 0.47 As metal-oxide-semiconductor capacitors further confirms that the surface of the resultant pillars is as smooth and defect-free as before etching. MacEtch combined with digital etching offers a simple, room-temperature, and low-cost method for the formation of high-quality In 0.53 Ga 0.47 As nanostructures that will potentially enable large-volume production of In 0.53 Ga 0.47 As-based devices including three-dimensional transistors and high-efficiency infrared photodetectors.

  1. Anisotropic Etching of Hexagonal Boron Nitride and Graphene: Question of Edge Terminations.

    PubMed

    Stehle, Yijing Y; Sang, Xiahan; Unocic, Raymond R; Voylov, Dmitry; Jackson, Roderick K; Smirnov, Sergei; Vlassiouk, Ivan

    2017-12-13

    Chemical vapor deposition (CVD) has been established as the most effective way to grow large area two-dimensional materials. Direct study of the etching process can reveal subtleties of this competing with the growth reaction and thus provide the necessary details of the overall growth mechanism. Here we investigate hydrogen-induced etching of hBN and graphene and compare the results with the classical kinetic Wulff construction model. Formation of the anisotropically etched holes in the center of hBN and graphene single crystals was observed along with the changes in the crystals' circumference. We show that the edges of triangular holes in hBN crystals formed at regular etching conditions are parallel to B-terminated zigzags, opposite to the N-terminated zigzag edges of hBN triangular crystals. The morphology of the etched hBN holes is affected by a disbalance of the B/N ratio upon etching and can be shifted toward the anticipated from the Wulff model N-terminated zigzag by etching in a nitrogen buffer gas instead of a typical argon. For graphene, etched hexagonal holes are terminated by zigzag, while the crystal circumference is gradually changing from a pure zigzag to a slanted angle resulting in dodecagons.

  2. A foldable electrode array for 3D recording of deep-seated abnormal brain cavities

    NASA Astrophysics Data System (ADS)

    Kil, Dries; De Vloo, Philippe; Fierens, Guy; Ceyssens, Frederik; Hunyadi, Borbála; Bertrand, Alexander; Nuttin, Bart; Puers, Robert

    2018-06-01

    Objective. This study describes the design and microfabrication of a foldable thin-film neural implant and investigates its suitability for electrical recording of deep-lying brain cavity walls. Approach. A new type of foldable neural electrode array is presented, which can be inserted through a cannula. The microfabricated electrode is specifically designed for electrical recording of the cavity wall of thalamic lesions resulting from stroke. The proof-of-concept is demonstrated by measurements in rat brain cavities. On implantation, the electrode array unfolds in the brain cavity, contacting the cavity walls and allowing recording at multiple anatomical locations. A three-layer microfabrication process based on UV-lithography and Reactive Ion Etching is described. Electrochemical characterization of the electrode is performed in addition to an in vivo experiment in which the implantation procedure and the unfolding of the electrode are tested and visualized. Main results. Electrochemical characterization validated the suitability of the electrode for in vivo use. CT imaging confirmed the unfolding of the electrode in the brain cavity and analysis of recorded local field potentials showed the ability to record neural signals of biological origin. Significance. The conducted research confirms that it is possible to record neural activity from the inside wall of brain cavities at various anatomical locations after a single implantation procedure. This opens up possibilities towards research of abnormal brain cavities and the clinical conditions associated with them, such as central post-stroke pain.

  3. Identifying the Active Surfaces of Electrochemically Tuned LiCoO 2 for Oxygen Evolution Reaction

    DOE PAGES

    Lu, Zhiyi; Chen, Guangxu; Li, Yanbin; ...

    2017-04-18

    Identification of active sites for catalytic processes has both fundamental and technological implications for rational design of future catalysts. Herein, we study the active surfaces of layered lithium cobalt oxide (LCO) for the oxygen evolution reaction (OER) using the enhancement effect of electrochemical delithiation (De-LCO). Our theoretical results indicate that the most stable (0001) surface has a very large overpotential for OER independent of lithium content. In contrast, edge sites such as the nonpolar (1120) and polar (0112) surfaces are predicted to be highly active and dependent on (de)lithiation. The effect of lithium extraction from LCO on the surfaces andmore » their OER activities can be understood by the increase of Co 4+ sites relative to Co 3+ and by the shift of active oxygen 2p states. Experimentally, it is demonstrated that LCO nanosheets, which dominantly expose the (0001) surface show negligible OER enhancement upon delithiation. However, a noticeable increase in OER activity (~0.1 V in overpotential shift at 10 mA cm –2) is observed for the LCO nanoparticles, where the basal plane is greatly diminished to expose the edge sites, consistent with the theoretical simulations. In addition, we find that the OER activity of De-LCO nanosheets can be improved if we adopt an acid etching method on LCO to create more active edge sites, which in turn provides a strong evidence for the theoretical indication.« less

  4. Improvement of luster consistency between the p-Pad and the n-Pad of GaN-based light-emitting diodes via the under-etching process

    NASA Astrophysics Data System (ADS)

    Zheng, Chenju; Lv, Jiajiang; Zhou, Shengjun; Liu, Sheng

    2017-04-01

    For improvement of the light extraction efficiency of GaN-based lateral light-emitting diodes (LEDs), a p-GaN surface was textured through a low-temperature (850 °C) p-GaN growth process. However, the p-GaN texturing process caused luster inconsistency between the n-pad and the p-pad due to the roughness difference between the indium-tin oxide (ITO) and the n-GaN beneath the pads, which decreased the image recognition rate and accuracy during the wire bonding process for LED packaging. Therefore, an under-etching process was proposed to improve the luster consistency between the p-pad and the n-pad of GaN-based LEDs with a naturally textured p-GaN surface. The under-etching process decreased the roughness of the exposed n-GaN surface from 109 nm to 73.1 nm, which was similar to the roughness (74.8 nm) of the ITO surface. Optical microscopy showed that LEDs with a naturally textured p-GaN surface exhibited excellent luster consistency between the n-pad and the p-pad after the proposed under-etching process had been applied. Further analysis indicated that the LEDs with a naturally textured p-GaN surface showed no degradation of optical or the electrical performance after the proposed under-etching process had been applied. At a 20-mA injection current, the light output power of a LED with naturally a textured p-GaN surface was 8.7% higher than that of a LED with a smooth p-GaN surface.

  5. Deep reactive ion etching of 4H-SiC via cyclic SF6/O2 segments

    NASA Astrophysics Data System (ADS)

    Luna, Lunet E.; Tadjer, Marko J.; Anderson, Travis J.; Imhoff, Eugene A.; Hobart, Karl D.; Kub, Fritz J.

    2017-10-01

    Cycles of inductively coupled SF6/O2 plasma with low (9%) and high (90%) oxygen content etch segments are used to produce up to 46.6 µm-deep trenches with 5.5 µm-wide openings in single-crystalline 4H-SiC substrates. The low oxygen content segment serves to etch deep in SiC whereas the high oxygen content segment serves to etch SiC at a slower rate, targeting carbon-rich residues on the surface as the combination of carbon-rich and fluorinated residues impact sidewall profile. The cycles work in concert to etch past 30 µm at an etch rate of ~0.26 µm min-1 near room temperature, while maintaining close to vertical sidewalls, high aspect ratio, and high mask selectivity. In addition, power ramps during the low oxygen content segment is used to produce a 1:1 ratio of mask opening to trench bottom width. The effect of process parameters such as cycle time and backside substrate cooling on etch depth and micromasking of the electroplated nickel etch mask are investigated.

  6. Collaborative Platform for DFM

    DTIC Science & Technology

    2007-12-20

    generation litho hotspot checkers have also been implemented in automated hotspot fixers that can automatically fix designs by making small changes...processing side (ex. new CMP models, etch models, litho models) and on the circuit side (ex. Process aware circuit analysis or yield optimization...Since final gate CD is a function of not only litho , but Post Exposure Bake, ashing, and etch, the processing module can be augmented with more

  7. Mask fabrication process

    DOEpatents

    Cardinale, Gregory F.

    2000-01-01

    A method for fabricating masks and reticles useful for projection lithography systems. An absorber layer is conventionally patterned using a pattern and etch process. Following the step of patterning, the entire surface of the remaining top patterning photoresist layer as well as that portion of an underlying protective photoresist layer where absorber material has been etched away is exposed to UV radiation. The UV-exposed regions of the protective photoresist layer and the top patterning photoresist layer are then removed by solution development, thereby eliminating the need for an oxygen plasma etch and strip and chances for damaging the surface of the substrate or coatings.

  8. Effect of an aggressive medium on discontinuous deformation of aluminum-magnesium alloy AlMg6

    NASA Astrophysics Data System (ADS)

    Shibkov, A. A.; Denisov, A. A.; Zolotov, A. E.; Kochegarov, S. S.

    2017-01-01

    It is experimentally shown that the molecular (chemical) process of surface etching of deformed aluminum-magnesium alloy AlMg6 causes the development of a macroscopic plastic strain step with an amplitude of a few percent. Using numerical simulation of the polycrystalline solid etching process, it is shown that the corrosion front morphology varies during etching from Euclid (flat) to fractal (rough). The results obtained show the key role of the surface state on the development of macroscopic mechanical instability of a material exhibiting the Portevin-Le Chatelier effect.

  9. Fabrication of a Silicon Nanowire on a Bulk Substrate by Use of a Plasma Etching and Total Ionizing Dose Effects on a Gate-All-Around Field-Effect Transistor

    NASA Technical Reports Server (NTRS)

    Moon, Dong-Il; Han, Jin-Woo; Meyyappan, Meyya

    2016-01-01

    The gate all around transistor is investigated through experiment. The suspended silicon nanowire for the next generation is fabricated on bulk substrate by plasma etching method. The scallop pattern generated by Bosch process is utilized to form a floating silicon nanowire. By combining anisotropic and istropic silicon etch process, the shape of nanowire is accurately controlled. From the suspended nanowire, the gate all around transistor is demonstrated. As the silicon nanowire is fully surrounded by the gate, the device shows excellent electrostatic characteristics.

  10. Heavily Boron-Doped Silicon Layer for the Fabrication of Nanoscale Thermoelectric Devices

    PubMed Central

    Liu, Yang; Deng, Lingxiao; Zhang, Mingliang; Zhang, Shuyuan; Ma, Jing; Song, Peishuai; Liu, Qing; Ji, An; Yang, Fuhua; Wang, Xiaodong

    2018-01-01

    Heavily boron-doped silicon layers and boron etch-stop techniques have been widely used in the fabrication of microelectromechanical systems (MEMS). This paper provides an introduction to the fabrication process of nanoscale silicon thermoelectric devices. Low-dimensional structures such as silicon nanowire (SiNW) have been considered as a promising alternative for thermoelectric applications in order to achieve a higher thermoelectric figure of merit (ZT) than bulk silicon. Here, heavily boron-doped silicon layers and boron etch-stop processes for the fabrication of suspended SiNWs will be discussed in detail, including boron diffusion, electron beam lithography, inductively coupled plasma (ICP) etching and tetramethylammonium hydroxide (TMAH) etch-stop processes. A 7 μm long nanowire structure with a height of 280 nm and a width of 55 nm was achieved, indicating that the proposed technique is useful for nanoscale fabrication. Furthermore, a SiNW thermoelectric device has also been demonstrated, and its performance shows an obvious reduction in thermal conductivity. PMID:29385759

  11. Environmentally benign semiconductor processing for dielectric etch

    NASA Astrophysics Data System (ADS)

    Liao, Marci Yi-Ting

    Semiconductor processing requires intensive usage of chemicals, electricity, and water. Such intensive resource usage leaves a large impact on the environment. For instance, in Silicon Valley, the semiconductor industry is responsible for 80% of the hazardous waste sites contaminated enough to require government assistance. Research on environmentally benign semiconductor processing is needed to reduce the environmental impact of the semiconductor industry. The focus of this dissertation is on the environmental impact of one aspect of semiconductor processing: patterning of dielectric materials. Plasma etching of silicon dioxide emits perfluorocarbons (PFCs) gases, like C2F6 and CF4, into the atmosphere. These gases are super global warming/greenhouse gases because of their extremely long atmospheric lifetimes and excellent infrared absorption properties. We developed the first inductively coupled plasma (ICP) abatement device for destroying PFCs downstream of a plasma etcher. Destruction efficiencies of 99% and 94% can be obtained for the above mentioned PFCs, by using O 2 as an additive gas. Our results have lead to extensive modeling in academia as well as commercialization of the ICP abatement system. Dielectric patterning of hi-k materials for future device technology brings different environment challenges. The uncertainty of the hi-k material selection and the patterning method need to be addressed. We have evaluated the environmental impact of three different dielectric patterning methods (plasma etch, wet etch and chemical-mechanical polishing), as well as, the transistor device performances associated with the patterning methods. Plasma etching was found to be the most environmentally benign patterning method, which also gives the best device performance. However, the environmental concern for plasma etching is the possibility of cross-contamination from low volatility etch by-products. Therefore, mass transfer in a plasma etcher for a promising hi-k dielectric material, ZrO2, was studied. A novel cross-contamination sampling technique was developed, along with a mass transfer model.

  12. Surface processing for bulk niobium superconducting radio frequency cavities

    NASA Astrophysics Data System (ADS)

    Kelly, M. P.; Reid, T.

    2017-04-01

    The majority of niobium cavities for superconducting particle accelerators continue to be fabricated from thin-walled (2-4 mm) polycrystalline niobium sheet and, as a final step, require material removal from the radio frequency (RF) surface in order to achieve performance needed for use as practical accelerator devices. More recently bulk niobium in the form of, single- or large-grain slices cut from an ingot has become a viable alternative for some cavity types. In both cases the so-called damaged layer must be chemically etched or electrochemically polished away. The methods for doing this date back at least four decades, however, vigorous empirical studies on real cavities and more fundamental studies on niobium samples at laboratories worldwide have led to seemingly modest improvements that, when taken together, constitute a substantial advance in the reproducibility for surface processing techniques and overall cavity performance. This article reviews the development of niobium cavity surface processing, and summarizes results of recent studies. We place some emphasis on practical details for real cavity processing systems which are difficult to find in the literature but are, nonetheless, crucial for achieving the good and reproducible cavity performance. New approaches for bulk niobium surface treatment which aim to reduce cost or increase performance, including alternate chemical recipes, barrel polishing and ‘nitrogen doping’ of the RF surface, continue to be pursued and are closely linked to the requirements for surface processing.

  13. Surface processing for bulk niobium superconducting radio frequency cavities

    DOE PAGES

    Kelly, M. P.; Reid, T.

    2017-02-21

    The majority of niobium cavities for superconducting particle accelerators continue to be fabricated from thin-walled (2-4mm) polycrystalline niobium sheet and, as a final step, require material removal from the radio frequency (RF) surface in order to achieve performance needed for use as practical accelerator devices. More recently bulk niobium in the form of, single-or large-grain slices cut from an ingot has become a viable alternative for some cavity types. In both cases the so-called damaged layer must be chemically etched or electrochemically polished away. The methods for doing this date back at least four decades, however, vigorous empirical studies onmore » real cavities and more fundamental studies on niobium samples at laboratories worldwide have led to seemingly modest improvements that, when taken together, constitute a substantial advance in the reproducibility for surface processing techniques and overall cavity performance. This article reviews the development of niobium cavity surface processing, and summarizes results of recent studies. We place some emphasis on practical details for real cavity processing systems which are difficult to find in the literature but are, nonetheless, crucial for achieving the good and reproducible cavity performance. New approaches for bulk niobium surface treatment which aim to reduce cost or increase performance, including alternate chemical recipes, barrel polishing and 'nitrogen doping' of the RF surface, continue to be pursued and are closely linked to the requirements for surface processing.« less

  14. Surface processing for bulk niobium superconducting radio frequency cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, M. P.; Reid, T.

    The majority of niobium cavities for superconducting particle accelerators continue to be fabricated from thin-walled (2-4mm) polycrystalline niobium sheet and, as a final step, require material removal from the radio frequency (RF) surface in order to achieve performance needed for use as practical accelerator devices. More recently bulk niobium in the form of, single-or large-grain slices cut from an ingot has become a viable alternative for some cavity types. In both cases the so-called damaged layer must be chemically etched or electrochemically polished away. The methods for doing this date back at least four decades, however, vigorous empirical studies onmore » real cavities and more fundamental studies on niobium samples at laboratories worldwide have led to seemingly modest improvements that, when taken together, constitute a substantial advance in the reproducibility for surface processing techniques and overall cavity performance. This article reviews the development of niobium cavity surface processing, and summarizes results of recent studies. We place some emphasis on practical details for real cavity processing systems which are difficult to find in the literature but are, nonetheless, crucial for achieving the good and reproducible cavity performance. New approaches for bulk niobium surface treatment which aim to reduce cost or increase performance, including alternate chemical recipes, barrel polishing and 'nitrogen doping' of the RF surface, continue to be pursued and are closely linked to the requirements for surface processing.« less

  15. Adhesive performance of a multi-mode adhesive system: 1-year in vitro study.

    PubMed

    Marchesi, Giulio; Frassetto, Andrea; Mazzoni, Annalisa; Apolonio, Fabianni; Diolosà, Marina; Cadenaro, Milena; Di Lenarda, Roberto; Pashley, David H; Tay, Franklin; Breschi, Lorenzo

    2014-05-01

    The aim of this study was to investigate the adhesive stability over time of a multi-mode one-step adhesive applied using different bonding techniques on human coronal dentine. The hypotheses tested were that microtensile bond strength (μTBS), interfacial nanoleakage expression and matrix metalloproteinases (MMPs) activation are not affected by the adhesive application mode (following the use of self-etch technique or with the etch-and-rinse technique on dry or wet dentine) or by ageing for 24h, 6 months and 1year in artificial saliva. Human molars were cut to expose middle/deep dentine and assigned to one of the following bonding systems (N=15): (1) Scotchbond Universal (3M ESPE) self-etch mode, (2) Scotchbond Universal etch-and-rinse technique on wet dentine, (3) Scotchbond Universal etch-and-rinse technique on dry dentine, and (4) Prime&Bond NT (Dentsply De Trey) etch-and-rinse technique on wet dentine (control). Specimens were processed for μTBS test in accordance with the non-trimming technique and stressed to failure after 24h, 6 months or 1 year. Additional specimens were processed and examined to assay interfacial nanoleakage and MMP expression. At baseline, no differences between groups were found. After 1 year of storage, Scotchbond Universal applied in the self-etch mode and Prime&Bond NT showed higher μTBS compared to the other groups. The lowest nanoleakage expression was found for Scotchbond Universal applied in the self-etch mode, both at baseline and after storage. MMPs activation was found after application of each tested adhesive. The results of this study support the use of the self-etch approach for bonding the tested multi-mode adhesive system to dentine due to improved stability over time. Improved bonding effectiveness of the tested universal adhesive system on dentine may be obtained if the adhesive is applied with the self-etch approach. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Metamaterial and Metastructural Architectures for Novel C4ISR Devices and Sensors

    DTIC Science & Technology

    2015-03-01

    2.7 The SEM pictures of the fabricated metastructure cage waveguide a) before and b) after the thermal oxidization and HF etching process ..10 Fig...of the hollow core. (Bottom) The SiO2 shell in the core was removed by buffered high-frequency etch...28 Fig. 3.9 SEM images of the waveguides after etching in CR-9 and buffered oxide etchant

  17. High-etch-rate bottom-antireflective coating and gap-fill materials using dextrin derivatives in via first dual-Damascene lithography process

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi; Sakaida, Yasushi; Shinjo, Tetsuya; Hashimoto, Keisuke; Nakajima, Yasuyuki

    2008-03-01

    The present paper describes a novel class of bottom antireflective coating (BARC) and gap fill materials using dextrin derivatives. The general trend of interconnect fabrication for such a high performance LSI is to apply cupper (Cu)/ low-dielectric-constant (low-k) interconnect to reduce RC delay. A via-first dual damascene process is one of the most promising processes to fabricate Cu/ low-k interconnect due to its wide miss-alignment margin. The sacrificial materials containing dextrin derivatives under resist for lithography were developed in via-first dual damascene process. The dextrin derivatives in this study was obtained by the esterification of the hydroxyl groups of dextrin resulting in improved solubility in the resist solvents such as propylene glycol monomethylether, propylene glycol monomethylether acetate, and ethyl lactate due to avoid the issue of defects that were caused by incompatability. The etch rate of our developed BARC and gap fill materials using dextrin derivatives was more than two times faster than one of the ArF resists evaluated in a CF4 gas condition using reactive ion etching. The improved etch performance was also verified by comparison with poly(hydroxystyrene), acrylate-type materials and latest low-k materials as a reference. In addition to superior etch performance, these materials showed good resist profiles and via filling performance without voids in via holes.

  18. High-voltage nano-oxidation in deionized water and atmospheric environments by atomic force microscopy.

    PubMed

    Huang, Jen-Ching; Chen, Chung-Ming

    2012-01-01

    This study used atomic force microscopy (AFM), metallic probes with a nanoscale tip, and high-voltage generators to investigate the feasibility of high-voltage nano-oxidation processing in deionized water (DI water) and atmospheric environments. Researchers used a combination of wire-cutting and electrochemical etching to transform a 20-μm-thick stainless steel sheet into a conductive metallic AFM probe with a tip radius of 60 nm, capable of withstanding high voltages. The combination of AFM, high-voltage generators, and nanoscale metallic probes enabled nano-oxidation processing at 200 V in DI water environments, producing oxides up to 66.6 nm in height and 467.03 nm in width. Oxides produced through high-voltage nano-oxidation in atmospheric environments were 117.29 nm in height and 551.28 nm in width, considerably exceeding the dimensions of those produced in DI water. An increase in the applied bias voltage led to an apparent logarithmic increase in the height of the oxide dots in the range of 200-400 V. The performance of the proposed high-voltage nano-oxidation technique was relatively high with seamless integration between the AFM machine and the metallic probe fabricated in this study. © Wiley Periodicals, Inc.

  19. Fabrication of a 3D micro/nano dual-scale carbon array and its demonstration as the microelectrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Jiang, Shulan; Shi, Tielin; Gao, Yang; Long, Hu; Xi, Shuang; Tang, Zirong

    2014-04-01

    An easily accessible method is proposed for the fabrication of a 3D micro/nano dual-scale carbon array with a large surface area. The process mainly consists of three critical steps. Firstly, a hemispherical photoresist micro-array was obtained by the cost-effective nanoimprint lithography process. Then the micro-array was transformed into hierarchical structures with longitudinal nanowires on the microstructure surface by oxygen plasma etching. Finally, the micro/nano dual-scale carbon array was fabricated by carbonizing these hierarchical photoresist structures. It has also been demonstrated that the micro/nano dual-scale carbon array can be used as the microelectrodes for supercapacitors by the electrodeposition of a manganese dioxide (MnO2) film onto the hierarchical carbon structures with greatly enhanced electrochemical performance. The specific gravimetric capacitance of the deposited micro/nano dual-scale microelectrodes is estimated to be 337 F g-1 at the scan rate of 5 mV s-1. This proposed approach of fabricating a micro/nano dual-scale carbon array provides a facile way in large-scale microstructures’ manufacturing for a wide variety of applications, including sensors and on-chip energy storage devices.

  20. Ammonia sensing using arrays of silicon nanowires and graphene

    NASA Astrophysics Data System (ADS)

    Fobelets, K.; Panteli, C.; Sydoruk, O.; Li, Chuanbo

    2018-06-01

    Ammonia (NH3) is a toxic gas released in different industrial, agricultural and natural processes. It is also a biomarker for some diseases. These require NH3 sensors for health and safety reasons. To boost the sensitivity of solid-state sensors, the effective sensing area should be increased. Two methods are explored and compared using an evaporating pool of 0.5 mL NH4OH (28% NH3). In the first method an array of Si nanowires (Si NWA) is obtained via metal-assisted-electrochemical etching to increase the effective surface area. In the second method CVD graphene is suspended on top of the Si nanowires to act as a sensing layer. Both the effective surface area as well as the density of surface traps influences the amplitude of the response. The effective surface area of Si NWAs is 100 × larger than that of suspended graphene for the same top surface area, leading to a larger response in amplitude by a factor of ~7 notwithstanding a higher trap density in suspended graphene. The use of Si NWAs increases the response rate for both Si NWAs as well as the suspended graphene due to more effective NH3 diffusion processes.

  1. Electrodeposition of gold particles on aluminum substrates containing copper.

    PubMed

    Olson, Tim S; Atanassov, Plamen; Brevnov, Dmitri A

    2005-01-27

    Electrodeposition of adhesive metal films on aluminum is traditionally preceded by the zincate process, which activates the aluminum surface. This paper presents an alternative approach for activation of aluminum by using films containing 99.5% aluminum and 0.5% copper. Aluminum/copper films are made amenable for subsequent electrodeposition by anodization followed by chemical etching of aluminum oxide. The electrodeposition of gold is monitored with electrochemical impedance spectroscopy (EIS). Analysis of EIS data suggests that electrodeposition of gold increases the interfacial capacitance from values typical for electrodes with thin oxide layers to values typical for metal electrodes. Scanning electron microscopy examination of aluminum/copper films following gold electrodeposition shows the presence of gold particles with densities of 10(5)-10(7) particles cm(-2). The relative standard deviation of mean particle diameters is approximately 25%. Evaluation of the micrographs suggests that the electrodeposition occurs by instantaneous nucleation followed by growth of three-dimensional semispherical particles. The gold particles, which are electrically connected to the conductive aluminum/copper film, support a reversible faradaic process for a soluble redox couple. The deposited gold particles are suitable for subsequent metallization of aluminum and fabrication of particle-type films with interesting catalytic, electrical, and optical properties.

  2. Wafer-Level Membrane-Transfer Process for Fabricating MEMS

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok; Wiberg, Dean

    2003-01-01

    A process for transferring an entire wafer-level micromachined silicon structure for mating with and bonding to another such structure has been devised. This process is intended especially for use in wafer-level integration of microelectromechanical systems (MEMS) that have been fabricated on dissimilar substrates. Unlike in some older membrane-transfer processes, there is no use of wax or epoxy during transfer. In this process, the substrate of a wafer-level structure to be transferred serves as a carrier, and is etched away once the transfer has been completed. Another important feature of this process is that two electrodes constitutes an electrostatic actuator array. An SOI wafer and a silicon wafer (see Figure 1) are used as the carrier and electrode wafers, respectively. After oxidation, both wafers are patterned and etched to define a corrugation profile and electrode array, respectively. The polysilicon layer is deposited on the SOI wafer. The carrier wafer is bonded to the electrode wafer by using evaporated indium bumps. The piston pressure of 4 kPa is applied at 156 C in a vacuum chamber to provide hermetic sealing. The substrate of the SOI wafer is etched in a 25 weight percent TMAH bath at 80 C. The exposed buried oxide is then removed by using 49 percent HF droplets after an oxygen plasma ashing. The SOI top silicon layer is etched away by using an SF6 plasma to define the corrugation profile, followed by the HF droplet etching of the remaining oxide. The SF6 plasma with a shadow mask selectively etches the polysilicon membrane, if the transferred membrane structure needs to be patterned. Electrostatic actuators with various electrode gaps have been fabricated by this transfer technique. The gap between the transferred membrane and electrode substrate is very uniform ( 0.1 m across a wafer diameter of 100 mm, provided by optimizing the bonding control). Figure 2 depicts the finished product.

  3. Effects of gas flow rate on the etch characteristics of a low- k sicoh film with an amorphous carbon mask in dual-frequency CF4/C4F8/Ar capacitively-coupled plasmas

    NASA Astrophysics Data System (ADS)

    Kwon, Bong-Soo; Lee, Hea-Lim; Lee, Nae-Eung; Kim, Chang-Young; Choi, Chi Kyu

    2013-01-01

    Highly selective nanoscale etching of a low-dielectric constant (low- k) organosilicate (SiCOH) layer using a mask pattern of chemical-vapor-deposited (CVD) amorphous carbon layer (ACL) was carried out in CF4/C4F8/Ar dual-frequency superimposed capacitively-coupled plasmas. The etching characteristics of the SiCOH layers, such as the etch rate, etch selectivity, critical dimension (CD), and line edge roughness (LER) during the plasma etching, were investigated by varying the C4F8 flow rate. The C4F8 gas flow rate primarily was found to control the degree of polymerization and to cause variations in the selectivity, CD and LER of the patterned SiCOH layer. Process windows for ultra-high etch selectivity of the SiCOH layer to the CVD ACL are formed due to the disproportionate degrees of polymerization on the SiCOH and the ACL surfaces.

  4. Barium-strontium-titanate etching characteristics in chlorinated discharges

    NASA Astrophysics Data System (ADS)

    Stafford, Luc; Margot, Joëlle; Langlois, Olivier; Chaker, Mohamed

    2003-07-01

    The etching characteristics of barium-strontium-titanate (BST) were investigated using a high-density plasma sustained by surface waves at 190 MHz in Ar/Cl2 gas mixtures. The etch rate was examined as a function of both the total gas pressure and the Cl2 fraction in Ar/Cl2 using a wafer temperature of 10 °C. The results were correlated to positive ion density and plasma composition obtained from Langmuir probes and mass spectrometry. The BST etch rate was found to increase linearly with the positive ion density and to decrease with increasing chlorine atom concentration. This result indicates that for the temperature conditions used, the interaction between chlorine and BST yields compounds having a volatility that is lower than the original material. As a consequence, the contribution of neutral atomic Cl atoms to the etch mechanism is detrimental, thereby reducing the etch rate. As the wafer temperature increases, the role of chemistry in the etching process is enhanced.

  5. Etching Selectivity of Cr, Fe and Ni Masks on Si & SiO2 Wafers

    NASA Astrophysics Data System (ADS)

    Garcia, Jorge; Lowndes, Douglas H.

    2000-10-01

    During this Summer 2000 I joined the Semiconductors and Thin Films group led by Dr. Douglas H. Lowndes at Oak Ridge National Laboratory’s Solid State Division. Our objective was to evaluate the selectivity that Trifluoromethane (CHF3), and Sulfur Hexafluoride (SF6) plasmas have for Si, SiO2 wafers and the Ni, Cr, and Fe masks; being this etching selectivity the ratio of the etching rates of the plasmas for each of the materials. We made use of Silicon and Silicon Dioxide-coated wafers that have Fe, Cr or Ni masks. In the semiconductor field, metal layers are often used as masks to protect layers underneath during processing steps; when these wafers are taken to the dry etching process, both the wafer and the mask layers’ thickness are reduced.

  6. Highly selective dry etching of GaP in the presence of AlxGa1–xP with a SiCl4/SF6 plasma

    NASA Astrophysics Data System (ADS)

    Hönl, Simon; Hahn, Herwig; Baumgartner, Yannick; Czornomaz, Lukas; Seidler, Paul

    2018-05-01

    We present an inductively coupled-plasma reactive-ion etching process that simultaneously provides both a high etch rate and unprecedented selectivity for gallium phosphide (GaP) in the presence of aluminum gallium phosphide (AlxGa1–xP). Utilizing mixtures of silicon tetrachloride (SiCl4) and sulfur hexafluoride (SF6), selectivities exceeding 2700:1 are achieved at GaP etch rates above 3000 nm min‑1. A design of experiments has been employed to investigate the influence of the inductively coupled-plasma power, the chamber pressure, the DC bias and the ratio of SiCl4 to SF6. The process enables the use of thin AlxGa1–xP stop layers even at aluminum contents of a few percent.

  7. Nanorods on surface of GaN-based thin-film LEDs deposited by post-annealing after photo-assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Chen, Lung-Chien; Lin, Wun-Wei; Liu, Te-Yu

    2017-01-01

    This study investigates the optoelectronic characteristics of gallium nitride (GaN)-based thin-film light-emitting diodes (TF-LEDs) that are formed by a two-step transfer process that involves wet etching and post-annealing. In the two-step transfer process, GaN LEDs were stripped from sapphire substrates by the laser lift-off (LLO) method using a KrF laser and then transferred onto ceramic substrates. Ga-K nanorods were formed on the surface of the GaN-based TF-LEDs following photo-assisted chemical etching and photo-enhanced post-annealing at 100 °C for 1 min. As a result, the light output power of GaN-based TF-LEDs with wet etching and post-annealing was over 72% more than that of LEDs that did not undergo these treatments.

  8. High-Frequency (>50 MHz) Medical Ultrasound Linear Arrays Fabricated From Micromachined Bulk PZT Materials

    PubMed Central

    Liu, Changgeng; Zhou, Qifa; Djuth, Frank T.; Shung, K. Kirk

    2012-01-01

    This paper describes the development and characterization of a high-frequency (65-MHz) ultrasound transducer linear array. The array was built from bulk PZT which was etched using an optimized chlorine-based plasma dry-etching process. The median etch rate of 8 μm/h yielded a good profile (wall) angle (>83°) and a reasonable processing time for etch depths up to 40 μm (which corresponds to a 50-MHz transducer). A backing layer with an acoustic impedance of 6 MRayl and a front-end polymer matching layer yielded a transducer bandwidth of 40%. The major parameters of the transducer have been characterized. The two-way insertion loss and crosstalk between adjacent channels at the center frequency are 26.5 and −25 dB, respectively. PMID:24626041

  9. Selective Plasma Etching of Polymeric Substrates for Advanced Applications

    PubMed Central

    Puliyalil, Harinarayanan; Cvelbar, Uroš

    2016-01-01

    In today’s nanoworld, there is a strong need to manipulate and process materials on an atom-by-atom scale with new tools such as reactive plasma, which in some states enables high selectivity of interaction between plasma species and materials. These interactions first involve preferential interactions with precise bonds in materials and later cause etching. This typically occurs based on material stability, which leads to preferential etching of one material over other. This process is especially interesting for polymeric substrates with increasing complexity and a “zoo” of bonds, which are used in numerous applications. In this comprehensive summary, we encompass the complete selective etching of polymers and polymer matrix micro-/nanocomposites with plasma and unravel the mechanisms behind the scenes, which ultimately leads to the enhancement of surface properties and device performance. PMID:28335238

  10. Oxygen plasma etching of graphene: A first-principles dynamical inspection of the reaction mechanisms and related activation barriers

    NASA Astrophysics Data System (ADS)

    Koizumi, Kenichi; Boero, Mauro; Shigeta, Yasuteru; Oshiyama, Atsushi; Dept. of Applied Physics Team; Institute of Physics and Chemistry of Strasbourg (IPCMS) Collaboration; Department Of Materials Engineering Science Collaboration

    2013-03-01

    Oxygen plasma etching is a crucial step in the fabrication of electronic circuits and has recently received a renovated interest in view of the realization of carbon-based nanodevices. In an attempt at unraveling the atomic-scale details and to provide guidelines for the control of the etching processes mechanisms, we inspected the possible reaction pathways via reactive first principles simulations. These processes involve breaking and formation of several chemical bonds and are characterized by different free-energy barriers. Free-energy sampling techniques (metadynamics and blue moon), used to enhance the standard Car-Parrinello molecular dynamics, provide us a detailed microscopic picture of the etching of graphene surfaces and a comprehensive scenario of the activation barriers involved in the various steps. MEXT, Japan - contract N. 22104005

  11. Electrochemical nonenzymatic sensing of glucose using advanced nanomaterials.

    PubMed

    Dhara, Keerthy; Mahapatra, Debiprosad Roy

    2017-12-13

    An overview (with 376 refs.) is given here on the current state of methods for electrochemical sensing of glucose based on the use of advanced nanomaterials. An introduction into the field covers aspects of enzyme based sensing versus nonenzymatic sensing using nanomaterials. The next chapter cover the most commonly used nanomaterials for use in such sensors, with sections on uses of noble metals, transition metals, metal oxides, metal hydroxides, and metal sulfides, on bimetallic nanoparticles and alloys, and on other composites. A further section treats electrodes based on the use of carbon nanomaterials (with subsections on carbon nanotubes, on graphene, graphene oxide and carbon dots, and on other carbonaceous nanomaterials. The mechanisms for electro-catalysis are also discussed, and several Tables are given where the performance of sensors is being compared. Finally, the review addresses merits and limitations (such as the frequent need for working in strongly etching alkaline solutions and the need for diluting samples because sensors often have analytical ranges that are far below the glucose levels found in blood). We also address market/technology gaps in comparison to commercially available enzymatic sensors. Graphical Abstract Schematic representation of electrochemical nonenzymatic glucose sensing on the nanomaterials modified electrodes. At an applied potential, the nanomaterial-modified electrodes exhibit excellent electrocatalytic activity for direct oxidation of glucose oxidation.

  12. Fluorocarbon assisted atomic layer etching of SiO 2 and Si using cyclic Ar/C 4F 8 and Ar/CHF 3 plasma

    DOE PAGES

    Metzler, Dominik; Li, Chen; Engelmann, Sebastian; ...

    2015-11-11

    The need for atomic layer etching (ALE) is steadily increasing as smaller critical dimensions and pitches are required in device patterning. A flux-control based cyclic Ar/C 4F 8 ALE based on steady-state Ar plasma in conjunction with periodic, precise C 4F 8 injection and synchronized plasma-based low energy Ar + ion bombardment has been established for SiO 2. 1 In this work, the cyclic process is further characterized and extended to ALE of silicon under similar process conditions. The use of CHF 3 as a precursor is examined and compared to C 4F 8. CHF 3 is shown to enablemore » selective SiO 2/Si etching using a fluorocarbon (FC) film build up. Other critical process parameters investigated are the FC film thickness deposited per cycle, the ion energy, and the etch step length. Etching behavior and mechanisms are studied using in situ real time ellipsometry and X-ray photoelectron spectroscopy. Silicon ALE shows less self-limitation than silicon oxide due to higher physical sputtering rates for the maximum ion energies used in this work, ranged from 20 to 30 eV. The surface chemistry is found to contain fluorinated silicon oxide during the etching of silicon. As a result, plasma parameters during ALE are studied using a Langmuir probe and establish the impact of precursor addition on plasma properties.« less

  13. Metal1 patterning study for random-logic applications with 193i, using calibrated OPC for litho and etch

    NASA Astrophysics Data System (ADS)

    Mailfert, Julien; Van de Kerkhove, Jeroen; De Bisschop, Peter; De Meyer, Kristin

    2014-03-01

    A Metal1-layer (M1) patterning study is conducted on 20nm node (N20) for random-logic applications. We quantified the printability performance on our test vehicle for N20, corresponding to Poly/M1 pitches of 90/64nm, and with a selected minimum M1 gap size of 70nm. The Metal1 layer is patterned with 193nm immersion lithography (193i) using Negative Tone Developer (NTD) resist, and a double-patterning Litho-Etch-Litho-Etch (LELE) process. Our study is based on Logic test blocks that we OPCed with a combination of calibrated models for litho and for etch. We report the Overlapping Process Window (OPW), based on a selection of test structures measured after-etch. We find that most of the OPW limiting structures are EOL (End-of-Line) configurations. Further analysis of these individual OPW limiters will reveal that they belong to different types, such as Resist 3D (R3D) and Mask 3D (M3D) sensitive structures, limiters related to OPC (Optical Proximity Corrections) options such as assist placement, or the choice of CD metrics and tolerances for calculation of the process windows itself. To guide this investigation, we will consider a `reference OPC' case to be compared with other solutions. In addition, rigorous simulations and OPC verifications will complete the after-etch measurements to help us to validate our experimental findings.

  14. Silicon on insulator achieved using electrochemical etching

    DOEpatents

    McCarthy, A.M.

    1997-10-07

    Bulk crystalline silicon wafers are transferred after the completion of circuit fabrication to form thin films of crystalline circuitry on almost any support, such as metal, semiconductor, plastic, polymer, glass, wood, and paper. In particular, this technique is suitable to form silicon-on-insulator (SOI) wafers, whereby the devices and circuits formed exhibit superior performance after transfer due to the removal of the silicon substrate. The added cost of the transfer process to conventional silicon fabrication is insignificant. No epitaxial, lift-off, release or buried oxide layers are needed to perform the transfer of single or multiple wafers onto support members. The transfer process may be performed at temperatures of 50 C or less, permits transparency around the circuits and does not require post-transfer patterning. Consequently, the technique opens up new avenues for the use of integrated circuit devices in high-brightness, high-resolution video-speed color displays, reduced-thickness increased-flexibility intelligent cards, flexible electronics on ultrathin support members, adhesive electronics, touch screen electronics, items requiring low weight materials, smart cards, intelligent keys for encryption systems, toys, large area circuits, flexible supports, and other applications. The added process flexibility also permits a cheap technique for increasing circuit speed of market driven technologies such as microprocessors at little added expense. 57 figs.

  15. Silicon on insulator achieved using electrochemical etching

    DOEpatents

    McCarthy, Anthony M.

    1997-01-01

    Bulk crystalline silicon wafers are transferred after the completion of circuit fabrication to form thin films of crystalline circuitry on almost any support, such as metal, semiconductor, plastic, polymer, glass, wood, and paper. In particular, this technique is suitable to form silicon-on-insulator (SOI) wafers, whereby the devices and circuits formed exhibit superior performance after transfer due to the removal of the silicon substrate. The added cost of the transfer process to conventional silicon fabrication is insignificant. No epitaxial, lift-off, release or buried oxide layers are needed to perform the transfer of single or multiple wafers onto support members. The transfer process may be performed at temperatures of 50.degree. C. or less, permits transparency around the circuits and does not require post-transfer patterning. Consequently, the technique opens up new avenues for the use of integrated circuit devices in high-brightness, high-resolution video-speed color displays, reduced-thickness increased-flexibility intelligent cards, flexible electronics on ultrathin support members, adhesive electronics, touch screen electronics, items requiring low weight materials, smart cards, intelligent keys for encryption systems, toys, large area circuits, flexible supports, and other applications. The added process flexibility also permits a cheap technique for increasing circuit speed of market driven technologies such as microprocessors at little added expense.

  16. Method for providing an arbitrary three-dimensional microstructure in silicon using an anisotropic deep etch

    DOEpatents

    Morales, Alfredo M.; Gonzales, Marcela

    2004-06-15

    The present invention describes a method for fabricating an embossing tool or an x-ray mask tool, providing microstructures that smoothly vary in height from point-to-point in etched substrates, i.e., structure which can vary in all three dimensions. The process uses a lithographic technique to transfer an image pattern in the surface of a silicon wafer by exposing and developing the resist and then etching the silicon substrate. Importantly, the photoresist is variably exposed so that when developed some of the resist layer remains. The remaining undeveloped resist acts as an etchant barrier to the reactive plasma used to etch the silicon substrate and therefore provides the ability etch structures of variable depths.

  17. Epoxy bond and stop etch fabrication method

    DOEpatents

    Simmons, Jerry A.; Weckwerth, Mark V.; Baca, Wes E.

    2000-01-01

    A class of epoxy bond and stop etch (EBASE) microelectronic fabrication techniques is disclosed. The essence of such techniques is to grow circuit components on top of a stop etch layer grown on a first substrate. The first substrate and a host substrate are then bonded together so that the circuit components are attached to the host substrate by the bonding agent. The first substrate is then removed, e.g., by a chemical or physical etching process to which the stop etch layer is resistant. EBASE fabrication methods allow access to regions of a device structure which are usually blocked by the presence of a substrate, and are of particular utility in the fabrication of ultrafast electronic and optoelectronic devices and circuits.

  18. AlGaN-Cladding-Free m-Plane InGaN/GaN Laser Diodes with p-Type AlGaN Etch Stop Layers

    NASA Astrophysics Data System (ADS)

    Farrell, Robert M.; Haeger, Daniel A.; Hsu, Po Shan; Hardy, Matthew T.; Kelchner, Kathryn M.; Fujito, Kenji; Feezell, Daniel F.; Mishra, Umesh K.; DenBaars, Steven P.; Speck, James S.; Nakamura, Shuji

    2011-09-01

    We present a new method of improving the accuracy and reproducibility of dry etching processes for ridge waveguide InGaN/GaN laser diodes (LDs). A GaN:Al0.09Ga0.91N etch rate selectivity of 11:1 was demonstrated for an m-plane LD with a 40 nm p-Al0.09Ga0.91N etch stop layer (ESL) surrounded by Al-free cladding layers, establishing the effectiveness of AlGaN-based ESLs for controlling etch depth in ridge waveguide InGaN/GaN LDs. These results demonstrate the potential for integrating AlGaN ESLs into commercial device designs where accurate control of the etch depth of the ridge waveguide is necessary for stable, kink-free operation at high output powers.

  19. Consideration of VT5 etch-based OPC modeling

    NASA Astrophysics Data System (ADS)

    Lim, ChinTeong; Temchenko, Vlad; Kaiser, Dieter; Meusel, Ingo; Schmidt, Sebastian; Schneider, Jens; Niehoff, Martin

    2008-03-01

    Including etch-based empirical data during OPC model calibration is a desired yet controversial decision for OPC modeling, especially for process with a large litho to etch biasing. While many OPC software tools are capable of providing this functionality nowadays; yet few were implemented in manufacturing due to various risks considerations such as compromises in resist and optical effects prediction, etch model accuracy or even runtime concern. Conventional method of applying rule-based alongside resist model is popular but requires a lot of lengthy code generation to provide a leaner OPC input. This work discusses risk factors and their considerations, together with introduction of techniques used within Mentor Calibre VT5 etch-based modeling at sub 90nm technology node. Various strategies are discussed with the aim of better handling of large etch bias offset without adding complexity into final OPC package. Finally, results were presented to assess the advantages and limitations of the final method chosen.

  20. Highly Manufacturable Deep (Sub-Millimeter) Etching Enabled High Aspect Ratio Complex Geometry Lego-Like Silicon Electronics.

    PubMed

    Ghoneim, Mohamed Tarek; Hussain, Muhammad Mustafa

    2017-04-01

    A highly manufacturable deep reactive ion etching based process involving a hybrid soft/hard mask process technology shows high aspect ratio complex geometry Lego-like silicon electronics formation enabling free-form (physically flexible, stretchable, and reconfigurable) electronic systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Top