Science.gov

Sample records for electrochemical impedance spectra

  1. Correlation of capacity fading processes and electrochemical impedance spectra in lithium/sulfur cells

    NASA Astrophysics Data System (ADS)

    Risse, Sebastian; Cañas, Natalia A.; Wagner, Norbert; Härk, Eneli; Ballauff, Matthias; Friedrich, K. Andreas

    2016-08-01

    The capacity fading of lithium/sulfur (Li/S) cells is one major challenge that has to be overcome for a successful commercialization of this electrochemical storage system. Therefore it is essential to detect the major fading mechanisms for further improvements of this system. In this work, the processes leading to fading are analyzed in terms of a linear four state model and correlated to the distribution of relaxation times calculated with a modified Levenberg-Marquardt algorithm. Additionally, the Warburg impedance and the solution resistance are also obtained by the same algorithm. The detailed analysis of intermediate states during the first cycle gives the distinction between relaxation processes at the sulfur cathode and at the lithium anode. The influence of the polysulfides on the impedance parameters was evaluated using symmetric cells; this yields a good correlation with the results obtained from the first discharge/charge experiment. A fast and a slow capacity fading process are observed for the charge and the discharge during 50 cycles. The fast fading process can be assigned to Faradaic reactions at the lithium anode.

  2. Detailed dynamic Solid Oxide Fuel Cell modeling for electrochemical impedance spectra simulation

    NASA Astrophysics Data System (ADS)

    Hofmann, Ph.; Panopoulos, K. D.

    This paper presents a detailed flexible mathematical model for planar solid oxide fuel cells (SOFCs), which allows the simulation of steady-state performance characteristics, i.e. voltage-current density (V- j) curves, and dynamic operation behavior, with a special capability of simulating electrochemical impedance spectroscopy (EIS). The model is based on physico-chemical governing equations coupled with a detailed multi-component gas diffusion mechanism (Dusty-Gas Model (DGM)) and a multi-step heterogeneous reaction mechanism implicitly accounting for the water-gas-shift (WGS), methane reforming and Boudouard reactions. Spatial discretization can be applied for 1D (button-cell approximation) up to quasi-3D (full size anode supported cell in cross-flow configuration) geometries and is resolved with the finite difference method (FDM). The model is built and implemented on the commercially available modeling and simulations platform gPROMS™. Different fuels based on hydrogen, methane and syngas with inert diluents are run. The model is applied to demonstrate a detailed analysis of the SOFC inherent losses and their attribution to the EIS. This is achieved by means of a step-by-step analysis of the involved transient processes such as gas conversion in the main gas chambers/channels, gas diffusion through the porous electrodes together with the heterogeneous reactions on the nickel catalyst, and the double-layer current within the electrochemical reaction zone. The model is an important tool for analyzing SOFC performance fundamentals as well as for design and optimization of materials' and operational parameters.

  3. Electrochemical Impedance Spectroscopy of Conductive Polymer Coatings

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; MacDowell, Louis G.

    1996-01-01

    Electrochemical impedance spectroscopy (EIS) was used to investigate the corrosion protection performance of twenty nine proprietary conductive polymer coatings for cold rolled steel under immersion in 3.55 percent NaCl. Corrosion potential as well as Bode plots of the data were obtained for each coating after one hour immersion, All coatings, with the exception of one, have a corrosion potential that is higher in the positive direction than the corrosion potential of bare steel under the same conditions. Group A consisted of twenty one coatings with Bode plots indicative of the capacitive behavior characteristic of barrier coatings. An equivalent circuit consisting of a capacitor in series with a resistor simulated the experimental EIS data for these coatings very well. Group B consisted of eight coatings that exhibited EIS spectra showing an inflection point which indicates that two time constants are present. This may be caused by an electrochemical process taking place which could be indicitive of coating failing. These coatings have a lower impedance that those in Group A.

  4. Electrochemical impedance analysis for lithium ion intercalation into graphitized carbons

    SciTech Connect

    Chang, Y.C.; Sohn, H.J.

    2000-01-01

    Electrochemical impedance spectroscopy (EIS) was employed to study electrochemical behaviors during intercalation of Li{sup +} into graphitized carbon anode. Analysis was carried out on three regions of frequencies mainly below 0.3 V. The first depressed semicircle in the high-frequency region had two-dimensional characteristics and did not vary over the entire potential range. The second semicircle in the mid-frequency region had a potential dependency above 0.3 V. Impedance spectra at the lower frequency region were attributed to the finite diffusion of Li{sup +}, and the order of the chemical diffusion coefficient was approximately 10{sup {minus}10} cm{sup 2}/s.

  5. Tracking of electrochemical impedance of batteries

    NASA Astrophysics Data System (ADS)

    Piret, H.; Granjon, P.; Guillet, N.; Cattin, V.

    2016-04-01

    This paper presents an evolutionary battery impedance estimation method, which can be easily embedded in vehicles or nomad devices. The proposed method not only allows an accurate frequency impedance estimation, but also a tracking of its temporal evolution contrary to classical electrochemical impedance spectroscopy methods. Taking into account constraints of cost and complexity, we propose to use the existing electronics of current control to perform a frequency evolutionary estimation of the electrochemical impedance. The developed method uses a simple wideband input signal, and relies on a recursive local average of Fourier transforms. The averaging is controlled by a single parameter, managing a trade-off between tracking and estimation performance. This normalized parameter allows to correctly adapt the behavior of the proposed estimator to the variations of the impedance. The advantage of the proposed method is twofold: the method is easy to embed into a simple electronic circuit, and the battery impedance estimator is evolutionary. The ability of the method to monitor the impedance over time is demonstrated on a simulator, and on a real Lithium ion battery, on which a repeatability study is carried out. The experiments reveal good tracking results, and estimation performance as accurate as the usual laboratory approaches.

  6. Method for conducting nonlinear electrochemical impedance spectroscopy

    DOEpatents

    Adler, Stuart B.; Wilson, Jamie R.; Huff, Shawn L.; Schwartz, Daniel T.

    2015-06-02

    A method for conducting nonlinear electrochemical impedance spectroscopy. The method includes quantifying the nonlinear response of an electrochemical system by measuring higher-order current or voltage harmonics generated by moderate-amplitude sinusoidal current or voltage perturbations. The method involves acquisition of the response signal followed by time apodization and fast Fourier transformation of the data into the frequency domain, where the magnitude and phase of each harmonic signal can be readily quantified. The method can be implemented on a computer as a software program.

  7. Corrosion Study Using Electrochemical Impedance Spectroscopy

    NASA Technical Reports Server (NTRS)

    Farooq, Muhammad Umar

    2003-01-01

    Corrosion is a common phenomenon. It is the destructive result of chemical reaction between a metal or metal alloy and its environment. Stainless steel tubing is used at Kennedy Space Center for various supply lines which service the orbiter. The launch pads are also made of stainless steel. The environment at the launch site has very high chloride content due to the proximity to the Atlantic Ocean. Also, during a launch, the exhaust products in the solid rocket boosters include concentrated hydrogen chloride. The purpose of this project was to study various alloys by Electrochemical Impedance Spectroscopy in corrosive environments similar to the launch sites. This report includes data and analysis of the measurements for 304L, 254SMO and AL-6XN in primarily neutral 3.55% NaCl. One set of data for 304L in neutral 3.55%NaCl + 0.1N HCl is also included.

  8. Sensing Estrogen with Electrochemical Impedance Spectroscopy

    PubMed Central

    Li, Jing; Kim, Byung Kun; Im, Ji-Eun; Choi, Han Nim; Kim, Dong-Hwan; Cho, Seong In

    2016-01-01

    This study demonstrates the application feasibility of electrochemical impedance spectroscopy (EIS) in measuring estrogen (17β-estradiol) in gas phase. The present biosensor gives a linear response (R2 = 0.999) for 17β-estradiol vapor concentration from 3.7 ng/L to 3.7 × 10−4 ng/L with a limit of detection (3.7 × 10−4 ng/L). The results show that the fabricated biosensor demonstrates better detection limit of 17β-estradiol in gas phase than the previous report with GC-MS method. This estrogen biosensor has many potential applications for on-site detection of a variety of endocrine disrupting compounds (EDCs) in the gas phase. PMID:27803838

  9. Mapping Electrochemical Heterogeneity at Iron Oxide Surfaces: A Local Electrochemical Impedance Study.

    PubMed

    Lucas, Marie; Boily, Jean-François

    2015-12-22

    Alternating current scanning electrochemical microscopy (AC-SECM) was used for the first time to map key electrochemical attributes of oriented hematite (α-Fe2O3) single crystal surfaces at the micron-scale. Localized electrochemical impedance spectra (LEIS) of the (001) and (012) faces provided insight into the spatial variations of local double layer capacitance (C(dl)) and charge transfer resistance (R(ad)). These parameters were extracted by LEIS measurements in the 0.4-8000 Hz range to probe the impedance response generated by the redistribution of water molecules and charge carriers (ions) under an applied AC. These were attributed to local variations in the local conductivity of the sample surfaces. Comparison with global EIS measurements on the same samples uncovered highly comparable frequency-resolved processes, that were broken down into contributions from the bulk hematite, the interface as well as the microelectrode/tip assembly. This work paves the way for new studies aimed at mapping electrochemical processes at the mesoscale on this environmentally and technologically important material.

  10. Evaluation of pitting corrosion with electrochemical impedance spectroscopy (EIS) for alumina/aluminium alloys composites

    SciTech Connect

    Odegard, C.; Bronson, A.

    1998-12-31

    The pitting susceptibility of monolithic aluminum 6061 alloy and alumina/aluminum alloy composites has been analyzed by using electrochemical impedance spectroscopy and subsequent comparison with their polarization scans. The composites consisting of 0.10 and 0.15 volume fraction of alumina particles (VFAP) and the monolith as cylindrical electrodes were rotated at 1500 rpm while immersed in NaCl solution. The passive currents of the composites were greater than that of the monolith as per the polarization scans. The impedance spectra were acquired at constant potential increments along the passive region up to the pitting potential. The impedance spectra represented by semicircles on a Nyquist plot acquired above the pitting potential collapsed underneath the spectra obtained in the passive region near the corrosion potential for the monolithic alloy and composites. The impedance spectra modeled with a simplified equivalent circuit indicate that the effective capacitance for the composites is greater than that of the monolithic alloy.

  11. Plasmonic-Based Electrochemical Impedance Spectroscopy: Application to Molecular Binding

    PubMed Central

    Lu, Jin; Wang, Wei; Wang, Shaopeng; Shan, Xiaonan; Li, Jinghong; Tao, Nongjian

    2012-01-01

    Plasmonic-based electrochemical impedance spectroscopy (P-EIS) is developed to investigate molecular binding on surfaces. Its basic principle relies on the sensitive dependence of surface plasmon resonance (SPR) signal on surface charge density, which is modulated by applying an AC potential to a SPR chip surface. The AC component of the SPR response gives the electrochemical impedance, and the DC component provides the conventional SPR detection. The plasmonic-based impedance measured over a range of frequency is in quantitative agreement with the conventional electrochemical impedance. Compared to the conventional SPR detection, P-EIS is sensitive to molecular binding taking place on the chip surface, and less sensitive to bulk refractive index changes or non-specific binding. Moreover, this new approach allows for simultaneous SPR and surface impedance analysis of molecular binding processes. PMID:22122514

  12. The Impedance Response of Semiconductors: An Electrochemical Engineering Perspective.

    ERIC Educational Resources Information Center

    Orazem, Mark E.

    1990-01-01

    Shows that the principles learned in the study of mass transport, thermodynamics, and kinetics associated with electrochemical systems can be applied to the transport and reaction processes taking place within a semiconductor. Describes impedance techniques and provides several graphs illustrating impedance data for diverse circuit systems. (YP)

  13. Electrochemical impedance spectroscopy analysis of porous silicon prepared by photo-electrochemical etching: current density effect

    NASA Astrophysics Data System (ADS)

    Husairi, F. S.; Rouhi, J.; Eswar, K. A.; Zainurul, A. Z.; Rusop, M.; Abdullah, S.

    2014-09-01

    Electrical impedance characteristics of porous silicon nanostructures (PSiNs) in frequency function were studied. PSiNs were prepared through photo-electrochemical etching method at various current densities (15-40 mA/cm2) and constant etching time. The atomic force microscope images of PSiNs show that pore diameter and roughness increase when current density increases to 35 mA/cm2. The surface roughness subsequently decreases because of continuous etching of pillars, and a second etching process occurs. Photoluminescence spectra show blue and red shift with increasing applied current density that is attributed to PSiNs size. Variations of electrical resistance and capacitance values of PSiNs were measured using electrochemical impedance spectroscopy analysis. These results indicate that PSiNs prepared at 20 mA/cm2 current density have uniform porous structures with a large number of pillars. Furthermore, this PSiNs structure influences large values of charge transfer resistance and double layer capacitance, indicating potential application in sensors.

  14. Electrochemical Impedance Of Inorganic-Zinc-Coated Steel

    NASA Technical Reports Server (NTRS)

    Macdowell, Louis G.

    1992-01-01

    Report describes preliminary experiments to evaluate both direct-current and alternating-current electrochemical impedance measurements as candidate techniques for use in accelerated corrosion testing of mild-steel panels coated with inorganic zinc-rich primers and exposed to seaside air. Basic idea behind experiments to compare electrochemical impedance measurements with anticorrosion performances of coating materials to determine whether measurements can be used to predict performances. Part of continuing program to identify anticorrosion coating materials protecting steel panels adequately for as long as 5 years and beyond.

  15. Exploring the interfaces between metal electrodes and aqueous electrolytes with electrochemical impedance spectroscopy.

    PubMed

    Bandarenka, Aliaksandr S

    2013-10-01

    Electrochemical impedance spectroscopy (EIS) is one of the oldest electroanalytical techniques. With respect to the investigation of the electrode-electrolyte interfaces, it has gained wide popularity as a non-destructive, sensitive and highly informative method. A particularly attractive advantage is that it provides a unique opportunity to distinguish contributions from different processes which take place simultaneously at the electrode surface. During the past decade, considerable progress has been made in the field of impedance spectroscopy to advance data acquisition, modelling and spectra analysis. EIS has evolved from slow data acquisition procedures with semi-quantitative interpretation to innovative methodologies which allow simple operation and accurate analysis using hundreds or even thousands of spectra; these spectra can often be recorded as a result of a single experiment. Impedance spectroscopy is nowadays widely combined with other techniques, with successful application in areas ranging from analytical and physical chemistry to localized impedance microscopies. The focus of this review is on recent experimental and theoretical achievements in the characterisation of the interfaces between metal electrodes and aqueous electrolytes using EIS. Some key challenges to further increase the informative power of electrochemical impedance spectroscopy are also outlined.

  16. A study of gadolinia-doped ceria electrolyte by electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Liu, Feng; Brinkman, Kyle; Reifsnider, Kenneth L.; Virkar, Anil V.

    2014-02-01

    Samples of Gd2O3-doped CeO2 (GDC) were fabricated by sintering of powder compacts. Impedance spectra were measured from 400 °C to 675 °C in air by electrochemical impedance spectroscopy (EIS). Above ∼500 °C, high frequency arc was not semicircular but could be fitted with a constant phase element (CPE). Above ∼625 °C, high frequency arc could not be resolved due to a significant contribution from the inductive load. The impedance spectra were described using a simple equivalent circuit which included the leads/instrument impedance. The leads/instrument impedance was measured over a range of frequencies and temperatures. The high frequency part of the impedance after subtracting leads/instrument impedance could be resolved even at the highest measurement temperature and was described by a semicircle representative of transport across grain boundaries. From these measurements, grain and grain boundary resistivities were determined. The corresponding activation energies were 0.69 eV and 1.11 eV, respectively. The grain boundary capacitance was nearly independent of temperature. The present results show that grain boundary effects can be described by a resistor and a capacitor. Relevant equivalent circuit parameters were obtained from intercepts, maxima and minima in impedance diagrams.

  17. Monitoring early zeolite formation via in situ electrochemical impedance spectroscopy.

    PubMed

    Brabants, G; Lieben, S; Breynaert, E; Reichel, E K; Taulelle, F; Martens, J A; Jakoby, B; Kirschhock, C E A

    2016-04-01

    Hitherto zeolite formation has not been fully understood. Although electrochemical impedance spectroscopy has proven to be a versatile tool for characterizing ionic solutions, it was never used for monitoring zeolite growth. We show here that EIS can quantitatively monitor zeolite formation, especially during crucial early steps where other methods fall short. PMID:27020096

  18. Monitoring early zeolite formation via in situ electrochemical impedance spectroscopy.

    PubMed

    Brabants, G; Lieben, S; Breynaert, E; Reichel, E K; Taulelle, F; Martens, J A; Jakoby, B; Kirschhock, C E A

    2016-04-01

    Hitherto zeolite formation has not been fully understood. Although electrochemical impedance spectroscopy has proven to be a versatile tool for characterizing ionic solutions, it was never used for monitoring zeolite growth. We show here that EIS can quantitatively monitor zeolite formation, especially during crucial early steps where other methods fall short.

  19. Materials analyses and electrochemical impedance of implantable metal electrodes.

    PubMed

    Howlader, Matiar M R; Ul Alam, Arif; Sharma, Rahul P; Deen, M Jamal

    2015-04-21

    Implantable electrodes with high flexibility, high mechanical fixation and low electrochemical impedance are desirable for neuromuscular activation because they provide safe, effective and stable stimulation. In this paper, we report on detailed materials and electrical analyses of three metal implantable electrodes - gold (Au), platinum (Pt) and titanium (Ti) - using X-ray photoelectron spectroscopy (XPS), scanning acoustic microscopy, drop shape analysis and electrochemical impedance spectroscopy. We investigated the cause of changes in electrochemical impedance of long-term immersed Au, Pt and Ti electrodes on liquid crystal polymers (LCPs) in phosphate buffered saline (PBS). We analyzed the surface wettability, surface and interface defects and the elemental depth profile of the electrode-adhesion layers on the LCP. The impedance of the electrodes decreased at lower frequencies, but increased at higher frequencies compared with that of the short-term immersion. The increase of impedances was influenced by the oxidation of the electrode/adhesion-layers that affected the double layer capacitance behavior of the electrode/PBS. The oxidation of the adhesion layer for all the electrodes was confirmed by XPS. Alkali ions (sodium) were adsorbed on the Au and Pt surfaces, but diffused into the Ti electrode and LCPs. The Pt electrode showed a higher sensitivity to surface and interface defects than that of Ti and Au electrodes. These findings may be useful when designing electrodes for long-term implantable devices.

  20. Thermal Transitions in Layer-by-Layer Assemblies Observed Using Electrochemical Impedance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sung, Choonghyun; Hearn, Katelin; Lutkenhaus, Jodie

    2014-03-01

    Layer-by-layer (LbL) assemblies have been of great interest due to their versatile functionality and ease of fabrication. Charge and mass transport in LbL assemblies have been studied for the application of electrochemical devices and ion-conducting membranes. However, there are limited studies on the effect of temperature and of thickness on charge transport in LbL assemblies. Some LbL assemblies are known to have a thermal transition similar to a glass transition when hydrated. Thus, electrochemical properties can be strongly influenced by temperature. In this presentation, we studied the electrochemical impedance spectra of layer-by-layer assemblies of poly(diallyldimethyl ammonium chloride) and poly(styrene sulfonate) as a function of temperature using the ferricyanide/ferrocyanide redox couple. The effect of assembly salt concentration, thickness, and outermost layer on electrochemical properties is studied. Modified Randles circuits were used to quantitatively analyze the impedance spectra. Temperature-dependent impedance data are discussed with respect to the structure and thermal properties of LbL assemblies.

  1. New impedance and electrochemical image techniques for biological applications

    NASA Astrophysics Data System (ADS)

    Tao, N. J.

    2010-03-01

    A method to image local surface impedance and electrochemical current optically is developed for biological applications. The principle of the impedance imaging is based on sensitive dependence of surface plasmon resonance (SPR) on local surface charge density. The technique can image local surface impedance and charge while providing simultaneously a conventional surface plasmon resonance (SPR) image. By applying a potential modulation to a sensor surface, it is possible to obtain an image of the DC component, and the amplitude and phase images of the AC component. The DC image provides local molecular binding, as found in the conventional SPR imaging technique. The AC images are directly related to the local impedance of the surface. This imaging capability may be used as a new detection platform for DNA and protein microarrays, a new method for analyzing local molecular binding and interfacial processes and a new tool for imaging cells and tissues.

  2. Tunable nanogap devices for ultra-sensitive electrochemical impedance biosensing.

    PubMed

    Lu, Yong; Guo, Zheng; Song, Jing-Jing; Huang, Qin-An; Zhu, Si-Wei; Huang, Xing-Jiu; Wei, Yan

    2016-01-28

    A wealth of research has been available discussing nanogap devices for detecting very small quantities of biomolecules by observing their electrical behavior generally performed in dry conditions. We report that a gold nanogapped electrode with tunable gap length for ultra-sensitive detection of streptavidin based on electrochemical impedance technique. The gold nanogap is fabricated using simple monolayer film deposition and in-situ growth of gold nanoparticles in a traditional interdigitated array (IDA) microelectrode. The electrochemical impedance biosensor with a 25-nm nanogap is found to be ultra-sensitive to the specific binding of streptavidin to biotin. The binding of the streptavidin hinder the electron transfer between two electrodes, resulting in a large increase in electron-transfer resistance (Ret) for operating the impedance. A linear relation between the relative Ret and the logarithmic value of streptavidin concentration is observed in the concentration range from 1 pM (picomolar) to 100 nM (nanomolar). The lowest detectable concentration actually measured reaches 1 pM. We believe that such an electrochemical impedance nanogap biosensor provides a useful approach towards biomolecular detection that could be extended to a number of other systems.

  3. Tunable nanogap devices for ultra-sensitive electrochemical impedance biosensing.

    PubMed

    Lu, Yong; Guo, Zheng; Song, Jing-Jing; Huang, Qin-An; Zhu, Si-Wei; Huang, Xing-Jiu; Wei, Yan

    2016-01-28

    A wealth of research has been available discussing nanogap devices for detecting very small quantities of biomolecules by observing their electrical behavior generally performed in dry conditions. We report that a gold nanogapped electrode with tunable gap length for ultra-sensitive detection of streptavidin based on electrochemical impedance technique. The gold nanogap is fabricated using simple monolayer film deposition and in-situ growth of gold nanoparticles in a traditional interdigitated array (IDA) microelectrode. The electrochemical impedance biosensor with a 25-nm nanogap is found to be ultra-sensitive to the specific binding of streptavidin to biotin. The binding of the streptavidin hinder the electron transfer between two electrodes, resulting in a large increase in electron-transfer resistance (Ret) for operating the impedance. A linear relation between the relative Ret and the logarithmic value of streptavidin concentration is observed in the concentration range from 1 pM (picomolar) to 100 nM (nanomolar). The lowest detectable concentration actually measured reaches 1 pM. We believe that such an electrochemical impedance nanogap biosensor provides a useful approach towards biomolecular detection that could be extended to a number of other systems. PMID:26755137

  4. Reconstruction of relaxation time distribution from linear electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yanxiang; Chen, Yu; Yan, Mufu; Chen, Fanglin

    2015-06-01

    Linear electrochemical impedance spectroscopy (EIS), and in particular its representation of distribution of relaxation time (DRT), enables the identification of the number of processes and their nature involved in electrochemical cells. With the advantage of high frequency resolution, DRT has recently drawn increasing attention for applications in solid oxide fuel cells (SOFCs). However, the method of DRT reconstruction is not yet presented clearly in terms of what mathematical treatments and theoretical assumptions have been made. Here we present unambiguously a method to reconstruct DRT function of impedance based on Tikhonov regularization. By using the synthetic impedances and analytic DRT functions of RQ element, generalized finite length Warburg element, and Gerischer element with physical quantities representative to those of SOFC processes, we show that the quality of DRT reconstruction is sensitive to the sampling points per decade (ppd) of frequency from the impedance measurement. The robustness of the DRT reconstruction to resist noise imbedded in impedance data and numerical calculations can be accomplished by optimizing the weighting factor λ according to well defined criterion.

  5. Dynamic electrochemical impedance spectroscopy reconstructed from continuous impedance measurement of single frequency during charging/discharging

    NASA Astrophysics Data System (ADS)

    Huang, Jun; Li, Zhe; Zhang, Jianbo

    2015-01-01

    In this study, a novel implementation of dynamic electrochemical impedance spectroscopy (DEIS) is proposed. The method first measures the impedance continuously at a single frequency during one charging/discharging cycle, then repeats the measurement at a number of other selected frequencies. The impedance spectrum at a specific SOC is obtained by interpolating and collecting the impedance at all of the selected frequencies. The charge transfer resistance, Rct, from the DEIS is smaller than that from the steady EIS in a wide state-of-charge (SOC) range from 0.4 to 1.0, the Rct during charging is generally smaller than that during discharging for the battery chemistry used in this study.

  6. Electrochemical cell design for the impedance studies of chlorine evolution at DSA anodes

    NASA Astrophysics Data System (ADS)

    Silva, J. F.; Dias, A. C.; Araújo, P.; Brett, C. M. A.; Mendes, A.

    2016-08-01

    A new electrochemical cell design suitable for the electrochemical impedance spectroscopy (EIS) studies of chlorine evolution on Dimensionally Stable Anodes (DSA®) has been developed. Despite being considered a powerful tool, EIS has rarely been used to study the kinetics of chlorine evolution at DSA anodes. Cell designs in the open literature are unsuitable for the EIS analysis at high DSA anode current densities for chlorine evolution because they allow gas accumulation at the electrode surface. Using the new cell, the impedance spectra of the DSA anode during chlorine evolution at high sodium chloride concentration (5 mol dm-3 NaCl) and high current densities (up to 140 mA cm-2) were recorded. Additionally, polarization curves and voltammograms were obtained showing little or no noise. EIS and polarization curves evidence the role of the adsorption step in the chlorine evolution reaction, compatible with the Volmer-Heyrovsky and Volmer-Tafel mechanisms.

  7. Electrochemical cell design for the impedance studies of chlorine evolution at DSA(®) anodes.

    PubMed

    Silva, J F; Dias, A C; Araújo, P; Brett, C M A; Mendes, A

    2016-08-01

    A new electrochemical cell design suitable for the electrochemical impedance spectroscopy (EIS) studies of chlorine evolution on Dimensionally Stable Anodes (DSA(®)) has been developed. Despite being considered a powerful tool, EIS has rarely been used to study the kinetics of chlorine evolution at DSA anodes. Cell designs in the open literature are unsuitable for the EIS analysis at high DSA anode current densities for chlorine evolution because they allow gas accumulation at the electrode surface. Using the new cell, the impedance spectra of the DSA anode during chlorine evolution at high sodium chloride concentration (5 mol dm(-3) NaCl) and high current densities (up to 140 mA cm(-2)) were recorded. Additionally, polarization curves and voltammograms were obtained showing little or no noise. EIS and polarization curves evidence the role of the adsorption step in the chlorine evolution reaction, compatible with the Volmer-Heyrovsky and Volmer-Tafel mechanisms.

  8. Electrochemical cell design for the impedance studies of chlorine evolution at DSA(®) anodes.

    PubMed

    Silva, J F; Dias, A C; Araújo, P; Brett, C M A; Mendes, A

    2016-08-01

    A new electrochemical cell design suitable for the electrochemical impedance spectroscopy (EIS) studies of chlorine evolution on Dimensionally Stable Anodes (DSA(®)) has been developed. Despite being considered a powerful tool, EIS has rarely been used to study the kinetics of chlorine evolution at DSA anodes. Cell designs in the open literature are unsuitable for the EIS analysis at high DSA anode current densities for chlorine evolution because they allow gas accumulation at the electrode surface. Using the new cell, the impedance spectra of the DSA anode during chlorine evolution at high sodium chloride concentration (5 mol dm(-3) NaCl) and high current densities (up to 140 mA cm(-2)) were recorded. Additionally, polarization curves and voltammograms were obtained showing little or no noise. EIS and polarization curves evidence the role of the adsorption step in the chlorine evolution reaction, compatible with the Volmer-Heyrovsky and Volmer-Tafel mechanisms. PMID:27587166

  9. Challenges of electrochemical impedance spectroscopy in protein biosensing.

    PubMed

    Bogomolova, A; Komarova, E; Reber, K; Gerasimov, T; Yavuz, O; Bhatt, S; Aldissi, M

    2009-05-15

    Electrochemical impedance spectroscopy (EIS) measurement, performed in the presence of a redox agent, is a convenient method to measure molecular interactions of electrochemically inactive compounds taking place on the electrode surface. High sensitivity of the method, being highly advantageous, can be also associated with nonspecific impedance changes that could be easily mistaken for specific interactions. Therefore, it is necessary to be aware of all possible causes and perform parallel control experiments to rule them out. We present the results obtained during the early stages of aptamer-based sensor development, utilizing a model system of human alpha thrombin interacting with a thiolated DNA aptamer, immobilized on gold electrodes. EIS measurements took place in the presence of iron ferrocyanides. In addition to known method limitations, that is, inability to discriminate between specific and nonspecific binding (both causing impedance increase), we have found other factors leading to nonspecific impedance changes, such as: (i) initial electrode contamination; (ii) repetitive measurements; (iii) additional cyclic voltammetry (CV) or differential pulse voltammetry (DPV) measurements; and (iv) additional incubations in the buffer between measurements, which have never been discussed before. We suggest ways to overcome the method limitations.

  10. Time-domain fitting of battery electrochemical impedance models

    NASA Astrophysics Data System (ADS)

    Alavi, S. M. M.; Birkl, C. R.; Howey, D. A.

    2015-08-01

    Electrochemical impedance spectroscopy (EIS) is an effective technique for diagnosing the behaviour of electrochemical devices such as batteries and fuel cells, usually by fitting data to an equivalent circuit model (ECM). The common approach in the laboratory is to measure the impedance spectrum of a cell in the frequency domain using a single sine sweep signal, then fit the ECM parameters in the frequency domain. This paper focuses instead on estimation of the ECM parameters directly from time-domain data. This may be advantageous for parameter estimation in practical applications such as automotive systems including battery-powered vehicles, where the data may be heavily corrupted by noise. The proposed methodology is based on the simplified refined instrumental variable for continuous-time fractional systems method ('srivcf'), provided by the Crone toolbox [1,2], combined with gradient-based optimisation to estimate the order of the fractional term in the ECM. The approach was tested first on synthetic data and then on real data measured from a 26650 lithium-ion iron phosphate cell with low-cost equipment. The resulting Nyquist plots from the time-domain fitted models match the impedance spectrum closely (much more accurately than when a Randles model is assumed), and the fitted parameters as separately determined through a laboratory potentiostat with frequency domain fitting match to within 13%.

  11. Theoretical models for electrochemical impedance spectroscopy and local ζ-potential of unfolded proteins in nanopores

    PubMed Central

    Vitarelli, Michael J.; Talaga, David S.

    2013-01-01

    Single solid-state nanopores find increasing use for electrical detection and/or manipulation of macromolecules. These applications exploit the changes in signals due to the geometry and electrical properties of the molecular species found within the nanopore. The sensitivity and resolution of such measurements are also influenced by the geometric and electrical properties of the nanopore. This paper continues the development of an analytical theory to predict the electrochemical impedance spectra of nanopores by including the influence of the presence of an unfolded protein using the variable topology finite Warburg impedance model previously published by the authors. The local excluded volume of, and charges present on, the segment of protein sampled by the nanopore are shown to influence the shape and peak frequency of the electrochemical impedance spectrum. An analytical theory is used to relate the capacitive response of the electrical double layer at the surface of the protein to both the charge density at the protein surface and the more commonly measured zeta potential. Illustrative examples show how the theory predicts that the varying sequential regions of surface charge density and excluded volume dictated by the protein primary structure may allow for an impedance-based approach to identifying unfolded proteins. PMID:24050368

  12. Evaluation of non toxic alkyd primers by electrochemical impedance spectroscopy

    SciTech Connect

    Hernandez, L.S.; Garcia, G. |; Lopez, C.

    1998-12-31

    The purpose of this work was to compare the protective capacity of several alkyd primers pigmented with 12.1 volume percent either of calcium phosphate or micronized zinc phosphate as anticorrosive pigments. A paint containing zinc chromate was used as reference. The performance of these paints on steel was assessed through Electrochemical Impedance Spectroscopy (EIS) using a 3% NaCl solution. After 576 hr immersion, the paint with calcium phosphate and specially that with micronized zinc phosphate, showed a better behavior than paint with zinc chromate. Paint rating, using impedance parameters (ionic resistance and capacitance of the paint film, and breakpoint frequency), was in agreement with the visible paint deterioration and corrosion, In addition, there was a good correlation between these parameter and the open circuit corrosion potential of the metallic substrate.

  13. Organic electrochemical transistors for cell-based impedance sensing

    NASA Astrophysics Data System (ADS)

    Rivnay, Jonathan; Ramuz, Marc; Leleux, Pierre; Hama, Adel; Huerta, Miriam; Owens, Roisin M.

    2015-01-01

    Electrical impedance sensing of biological systems, especially cultured epithelial cell layers, is now a common technique to monitor cell motion, morphology, and cell layer/tissue integrity for high throughput toxicology screening. Existing methods to measure electrical impedance most often rely on a two electrode configuration, where low frequency signals are challenging to obtain for small devices and for tissues with high resistance, due to low current. Organic electrochemical transistors (OECTs) are conducting polymer-based devices, which have been shown to efficiently transduce and amplify low-level ionic fluxes in biological systems into electronic output signals. In this work, we combine OECT-based drain current measurements with simultaneous measurement of more traditional impedance sensing using the gate current to produce complex impedance traces, which show low error at both low and high frequencies. We apply this technique in vitro to a model epithelial tissue layer and show that the data can be fit to an equivalent circuit model yielding trans-epithelial resistance and cell layer capacitance values in agreement with literature. Importantly, the combined measurement allows for low biases across the cell layer, while still maintaining good broadband signal.

  14. Characterization of antimicrobial peptide activity by electrochemical impedance spectroscopy

    PubMed Central

    Chang, William K.; Wimley, William C.; Searson, Peter C.; Hristova, Kalina; Merzlyakov, Mikhail

    2008-01-01

    Summary Electrochemical impedance spectroscopy performed on surface-supported bilayer membranes allows for the monitoring of changes in membrane properties, such as thickness, ion permeability, and homogeneity, after exposure to antimicrobial peptides (AMPs). We show that two model cationic peptides, very similar in sequence but different in activity, induce dramatically different changes in membrane properties as probed by impedance spectroscopy. Moreover, the impedance results excluded the “barrel-stave” and the “toroidal pore” models of AMP mode of action, and are more consistent with the “carpet” and the “detergent” models. The impedance data provide important new insights about the kinetics and the scale of the peptide action which currently are not addressed by the “carpet” and the “detergent” models. The method presented not only provides additional information about the mode of action of a particular AMP, but offers a means of characterizing AMP activity in reproducible, well-defined quantitative terms. PMID:18657512

  15. Sensorless battery temperature measurements based on electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Raijmakers, L. H. J.; Danilov, D. L.; van Lammeren, J. P. M.; Lammers, M. J. G.; Notten, P. H. L.

    2014-02-01

    A new method is proposed to measure the internal temperature of (Li-ion) batteries. Based on electrochemical impedance spectroscopy measurements, an intercept frequency (f0) can be determined which is exclusively related to the internal battery temperature. The intercept frequency is defined as the frequency at which the imaginary part of the impedance is zero (Zim = 0), i.e. where the phase shift between the battery current and voltage is absent. The advantage of the proposed method is twofold: (i) no hardware temperature sensors are required anymore to monitor the battery temperature and (ii) the method does not suffer from heat transfer delays. Mathematical analysis of the equivalent electrical-circuit, representing the battery performance, confirms that the intercept frequency decreases with rising temperatures. Impedance measurements on rechargeable Li-ion cells of various chemistries were conducted to verify the proposed method. These experiments reveal that the intercept frequency is clearly dependent on the temperature and does not depend on State-of-Charge (SoC) and aging. These impedance-based sensorless temperature measurements are therefore simple and convenient for application in a wide range of stationary, mobile and high-power devices, such as hybrid- and full electric vehicles.

  16. Organic electrochemical transistors for cell-based impedance sensing

    SciTech Connect

    Rivnay, Jonathan E-mail: owens@emse.fr; Ramuz, Marc; Hama, Adel; Huerta, Miriam; Owens, Roisin M. E-mail: owens@emse.fr; Leleux, Pierre

    2015-01-26

    Electrical impedance sensing of biological systems, especially cultured epithelial cell layers, is now a common technique to monitor cell motion, morphology, and cell layer/tissue integrity for high throughput toxicology screening. Existing methods to measure electrical impedance most often rely on a two electrode configuration, where low frequency signals are challenging to obtain for small devices and for tissues with high resistance, due to low current. Organic electrochemical transistors (OECTs) are conducting polymer-based devices, which have been shown to efficiently transduce and amplify low-level ionic fluxes in biological systems into electronic output signals. In this work, we combine OECT-based drain current measurements with simultaneous measurement of more traditional impedance sensing using the gate current to produce complex impedance traces, which show low error at both low and high frequencies. We apply this technique in vitro to a model epithelial tissue layer and show that the data can be fit to an equivalent circuit model yielding trans-epithelial resistance and cell layer capacitance values in agreement with literature. Importantly, the combined measurement allows for low biases across the cell layer, while still maintaining good broadband signal.

  17. Inductive phenomena at low frequencies in impedance spectra of proton exchange membrane fuel cells - A review

    NASA Astrophysics Data System (ADS)

    Pivac, Ivan; Barbir, Frano

    2016-09-01

    The results of electrochemical impedance spectroscopy of proton exchange membrane (PEM) fuel cells may exhibit inductive phenomena at low frequencies. The occurrence of inductive features at high frequencies is explained by the cables and wires of the test system. However, explanation of inductive loop at low frequencies requires a more detailed study. This review paper discusses several possible causes of such inductive behavior in PEM fuel cells, such as side reactions with intermediate species, carbon monoxide poisoning, and water transport, also as their equivalent circuit representations. It may be concluded that interpretation of impedance spectra at low frequencies is still ambiguous, and that better equivalent circuit models are needed with clearly defined physical meaning of each of the circuit elements.

  18. AC impedance electrochemical modeling of lithium-ion positive electrodes.

    SciTech Connect

    Dees, D.; Gunen, E.; Abraham, D.; Jansen, A.; Prakash, J.; Chemical Engineering; IIT

    2004-01-01

    Under Department of Energy's Advanced Technology Development Program,various analytical diagnostic studies are being carried out to examine the lithium-ion battery technology for hybrid electric vehicle applications, and a series of electrochemical studies are being conducted to examine the performance of these batteries. An electrochemical model was developed to associate changes that were observed in the post-test analytical diagnostic studies with the electrochemical performance loss during testing of lithium ion batteries. While both electrodes in the lithium-ion cell have been studied using a similar electrochemical model, the discussion here is limited to modeling of the positive electrode. The positive electrode under study has a composite structure made of a layered nickel oxide (LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2}) active material, a carbon black and graphite additive for distributing current, and a PVDF binder all on an aluminum current collector. The electrolyte is 1.2M LiPF{sub 6} dissolved in a mixture of EC and EMC and a Celgard micro-porous membrane is used as the separator. Planar test cells (positive/separator/negative) were constructed with a special fixture and two separator membranes that allowed the placement of a micro-reference electrode between the separator membranes [1]. Electrochemical studies including AC impedance spectroscopy were then conducted on the individual electrodes to examine the performance and ageing effects in the cell. The model was developed by following the work of Professor Newman at Berkeley [2]. The solid electrolyte interface (SEI) region, based on post-test analytical results, was assumed to be a film on the oxide and an oxide layer at the surface of the oxide. A double layer capacity was added in parallel with the Butler-Volmer kinetic expression. The pertinent reaction, thermodynamic, and transport equations were linearized for a small sinusoidal perturbation [3]. The resulting system of differential

  19. Botulinum Neurotoxin Serotypes Detected by Electrochemical Impedance Spectroscopy

    PubMed Central

    Savage, Alison C.; Buckley, Nicholas; Halliwell, Jennifer; Gwenin, Christopher

    2015-01-01

    Botulinum neurotoxin is one of the deadliest biological toxins known to mankind and is able to cause the debilitating disease botulism. The rapid detection of the different serotypes of botulinum neurotoxin is essential for both diagnosis of botulism and identifying the presence of toxin in potential cases of terrorism and food contamination. The modes of action of botulinum neurotoxins are well-established in literature and differ for each serotype. The toxins are known to specifically cleave portions of the SNARE proteins SNAP-25 or VAMP; an interaction that can be monitored by electrochemical impedance spectroscopy. This study presents a SNAP-25 and a VAMP biosensors for detecting the activity of five botulinum neurotoxin serotypes (A–E) using electrochemical impedance spectroscopy. The biosensors are able to detect concentrations of toxins as low as 25 fg/mL, in a short time-frame compared with the current standard methods of detection. Both biosensors show greater specificity for their compatible serotypes compared with incompatible serotypes and denatured toxins. PMID:25954998

  20. Electrochemical Impedance Spectroscopy to Characterize Inflammatory Atherosclerotic Plaques

    PubMed Central

    Yu, Fei; Dai, Xiaohu; Beebe, Tyler; Hsiai, Tzung

    2011-01-01

    Despite advances in diagnosis and therapy, atherosclerotic cardiovascular disease remains the leading cause of morbidity and mortality in the Western world. Predicting metabolically active atherosclerotic lesions has remained an unmet clinical need. We hereby developed an electrochemical strategy to characterize the inflammatory states of high-risk atherosclerotic plaques. Using the concentric bipolar microelectrodes, we sought to demonstrate distinct Electrochemical Impedance Spectroscopic (EIS) measurements for unstable atherosclerotic plaques that harbored active lipids and inflammatory cells. Using equivalent circuits to simulate vessel impedance at the electrode-endoluminal tissue interface, we demonstrated specific electric elements to model working and counter electrode interfaces as well as the tissue impedance. Using explants of human coronary, carotid, and femoral arteries at various Stary stages of atherosclerotic lesions (n = 15), we performed endoluminal EIS measurements (n = 147) and validated with histology and immunohistochemistry. We computed the vascular tissue resistance using the equivalent circuit model and normalized the resistance to the lesion-free regions. Tissue resistance was significantly elevated in the oxLDL-rich thin-cap atheromas (1.57±0.40, n = 14, p < 0.001) and fatty streaks (1.36±0.28, n = 33, p < 0.001) as compared with lesion-free region (1.00±0.18, n = 82) or oxLDL-absent fibrous atheromas (0.86±0.30, n = 12). Tissue resistance was also elevated in the calcified core of fibrous atheroma (2.37±0.60, n = 6, p < 0.001). Despite presence of fibrous structures, tissue resistance between ox-LDL-absent fibroatheroma and the lesion-free regions was statistically insignificant (0.86±0.30, n = 12, p > 0.05). Hence, we demonstrate that the application of EIS strategy was sensitive to detect fibrous cap oxLDL-rich lesions and specific to distinguish oxLDL-absent fibroatheroma. PMID:21959227

  1. Electrochemical Impedance Spectroscopy to Assess Vascular Oxidative Stress

    PubMed Central

    Yu, Fei; Li, Rongsong; Ai, Lisong; Edington, Collin; Yu, Hongyu; Barr, Mark; Kim, E. S.; Hsiai, Tzung K.

    2012-01-01

    Vascular inflammatory responses are intimately linked with oxidative stress, favoring the development of pre-atherosclerotic lesions. We proposed that oxidized low density lipoprotein (oxLDL) and foam cell infiltrates in the subendothelial layer engendered distinct electrochemical properties that could be measured in terms of the electrochemical impedance spectroscopy (EIS). Concentric bipolar microelectrodes were applied to interrogate EIS of aortas isolated from fat-fed New Zealand White (NZW) rabbits and explants of human aortas. Frequency-dependent EIS measurements were assessed between 10 kHz and 100 kHz, and were significantly elevated in the pre-atherosclerotic lesions in which oxLDL and macrophage infiltrates were prevalent (At 100 kHz: aortic arch lesion = 26.7 ± 2.7 kΩ vs. control = 15.8 ± 2.4 kΩ; at 10 kHz: lesions = 49.2 ± 7.3 kΩ vs. control = 27.6 ± 2.7 kΩ, n = 10, p<0.001). Similarly, EIS measurements were significantly elevated in the human descending aorta where pre-atherosclerotic lesions or fatty streaks were prominent. EIS measurements remained unchanged in spite of various depths of electrode submersion or orientation of the specimens. Hence, the concentric bipolar microelectrodes provided a reliable means to measure endoluminal electrochemical modifications in regions of pro-inflammatory with high spatial resolution and reproducibility albeit uneven lesion topography and non-uniform current distribution. PMID:20652746

  2. Electrochemical impedance spectroscopy based MEMS sensors for phthalates detection in water and juices

    NASA Astrophysics Data System (ADS)

    Zia, Asif I.; Mohd Syaifudin, A. R.; Mukhopadhyay, S. C.; Yu, P. L.; Al-Bahadly, I. H.; Gooneratne, Chinthaka P.; Kosel, Jǘrgen; Liao, Tai-Shan

    2013-06-01

    Phthalate esters are ubiquitous environmental and food pollutants well known as endocrine disrupting compounds (EDCs). These developmental and reproductive toxicants pose a grave risk to the human health due to their unlimited use in consumer plastic industry. Detection of phthalates is strictly laboratory based time consuming and expensive process and requires expertise of highly qualified and skilled professionals. We present a real time, non-invasive, label free rapid detection technique to quantify phthalates' presence in deionized water and fruit juices. Electrochemical impedance spectroscopy (EIS) technique applied to a novel planar inter-digital (ID) capacitive sensor plays a vital role to explore the presence of phthalate esters in bulk fluid media. The ID sensor with multiple sensing gold electrodes was fabricated on silicon substrate using micro-electromechanical system (MEMS) device fabrication technology. A thin film of parylene C polymer was coated as a passivation layer to enhance the capacitive sensing capabilities of the sensor and to reduce the magnitude of Faradic current flowing through the sensor. Various concentrations, 0.002ppm through to 2ppm of di (2-ethylhexyl) phthalate (DEHP) in deionized water, were exposed to the sensing system by dip testing method. Impedance spectra obtained was analysed to determine sample conductance which led to consequent evaluation of its dielectric properties. Electro-chemical impedance spectrum analyser algorithm was employed to model the experimentally obtained impedance spectra. Curve fitting technique was applied to deduce constant phase element (CPE) equivalent circuit based on Randle's equivalent circuit model. The sensing system was tested to detect different concentrations of DEHP in orange juice as a real world application. The result analysis indicated that our rapid testing technique is able to detect the presence of DEHP in all test samples distinctively.

  3. Impedance spectra of hot, dry silicate minerals and rocks: qualitative interpretation of spectra

    USGS Publications Warehouse

    Huebner, J.S.; Dillenburg, R.G.

    1995-01-01

    Impedance spectroscopy helps distinguish the contributions that grain interiors and grain boundaries make to electrical resistance of silicate minerals and rocks. Olivine, orthopyroxene, clinopyroxenes, and both natural and synthetic clinopyroxenite were measured. A network of electrical elements is presented for use in interpreting impedance spectra and conductive paths in hot or cold, wet or dry, minerals and rocks at any pressure. In dry rocks, a series network path predominates; in wet rocks, aqueous pore fluid and crystals both conduct. Finite resistance across the sample-electrode interface is evidence that electronic charge carriers are present at the surface, and presumably within, the silicate minerals and rocks measured. -from Authors

  4. Electrochemical impedance spectroscopy study on corrosion inhibition of benzyltriethylammonium chloride

    NASA Astrophysics Data System (ADS)

    Idris, Mohd Nazri; Daud, Abdul Razak; Othman, Norinsan Kamil

    2013-11-01

    Electrochemical Impedance Spectroscopy (EIS) was employed to study the corrosion inhibition behavior of benzyltriethylammonium chloride (BTC) for carbon steel corrosion. The inhibition efficiency was investigated in 1.0 M HCl solution at room temperature (25°C) by varying the BTC concentration. EIS results indicated that the double layer capacitance of electrolyte/carbon steel interface decreases with the increasing of BTC concentration and consequently enhances the polarization resistance of equivalence Randles circuit. The results indicated that inhibition efficiency of as high as 65% could be achieved when 10mM BTC was present in 1.0 M HCl solution as compared to inhibitor-free solution. The inhibition process of BTC on the carbon steel corrosion was found to obey Langmuir adsorption isotherm. This study revealed that BTC is suitable to be used as a corrosion inhibitor in acid media.

  5. Pore Characteristics of Chitosan Scaffolds Studied by Electrochemical Impedance Spectroscopy

    PubMed Central

    Tully-Dartez, Stephanie; Cardenas, Henry E.

    2010-01-01

    In this study, a novel approach, electrochemical impedance spectroscopy (EIS), was used to examine the pore characteristics of chitosan scaffolds under aqueous conditions. The EIS was run with a constant current of 0.1 mA with the frequency sweep of 106 to 10−4 Hz. The resulting complex impedance measurement was then used to calculate porosity, which was determined to be 71%. Scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP), two commonly used methods for scaffold characterization, were used to independently evaluate the pore characteristics and compare with that of EIS. The SEM and MIP were performed and analyzed under standard conditions. The pore diameter values found by SEM and MIP are 107 μm and 82 μm, respectively, indicating that both the image-based (SEM) and pressure-based (MIP) analyses provide similar results. The porosity of 73% calculated by MIP is comparable to that of EIS. From these results, it can be suggested that EIS, a relatively nondestructive test, is able to obtain comparable data on pore characteristics, as compared to SEM and MIP. The advantage of the EIS as an nondestructive test is that it can be performed under physiologically relevant conditions, whereas SEM and MIP require dry samples and vacuum conditions for measurement. These benefits make EIS a viable option for the characterization and long-term observation of tissue-engineered scaffolds. PMID:19580421

  6. An Electrochemical Impedance Spectroscopy System for Monitoring Pineapple Waste Saccharification.

    PubMed

    Conesa, Claudia; Ibáñez Civera, Javier; Seguí, Lucía; Fito, Pedro; Laguarda-Miró, Nicolás

    2016-02-04

    Electrochemical impedance spectroscopy (EIS) has been used for monitoring the enzymatic pineapple waste hydrolysis process. The system employed consists of a device called Advanced Voltammetry, Impedance Spectroscopy & Potentiometry Analyzer (AVISPA) equipped with a specific software application and a stainless steel double needle electrode. EIS measurements were conducted at different saccharification time intervals: 0, 0.75, 1.5, 6, 12 and 24 h. Partial least squares (PLS) were used to model the relationship between the EIS measurements and the sugar determination by HPAEC-PAD. On the other hand, artificial neural networks: (multilayer feed forward architecture with quick propagation training algorithm and logistic-type transfer functions) gave the best results as predictive models for glucose, fructose, sucrose and total sugars. Coefficients of determination (R²) and root mean square errors of prediction (RMSEP) were determined as R² > 0.944 and RMSEP < 1.782 for PLS and R² > 0.973 and RMSEP < 0.486 for artificial neural networks (ANNs), respectively. Therefore, a combination of both an EIS-based technique and ANN models is suggested as a promising alternative to the traditional laboratory techniques for monitoring the pineapple waste saccharification step.

  7. An Electrochemical Impedance Spectroscopy System for Monitoring Pineapple Waste Saccharification

    PubMed Central

    Conesa, Claudia; Ibáñez Civera, Javier; Seguí, Lucía; Fito, Pedro; Laguarda-Miró, Nicolás

    2016-01-01

    Electrochemical impedance spectroscopy (EIS) has been used for monitoring the enzymatic pineapple waste hydrolysis process. The system employed consists of a device called Advanced Voltammetry, Impedance Spectroscopy & Potentiometry Analyzer (AVISPA) equipped with a specific software application and a stainless steel double needle electrode. EIS measurements were conducted at different saccharification time intervals: 0, 0.75, 1.5, 6, 12 and 24 h. Partial least squares (PLS) were used to model the relationship between the EIS measurements and the sugar determination by HPAEC-PAD. On the other hand, artificial neural networks: (multilayer feed forward architecture with quick propagation training algorithm and logistic-type transfer functions) gave the best results as predictive models for glucose, fructose, sucrose and total sugars. Coefficients of determination (R2) and root mean square errors of prediction (RMSEP) were determined as R2 > 0.944 and RMSEP < 1.782 for PLS and R2 > 0.973 and RMSEP < 0.486 for artificial neural networks (ANNs), respectively. Therefore, a combination of both an EIS-based technique and ANN models is suggested as a promising alternative to the traditional laboratory techniques for monitoring the pineapple waste saccharification step. PMID:26861317

  8. An Electrochemical Impedance Spectroscopy System for Monitoring Pineapple Waste Saccharification.

    PubMed

    Conesa, Claudia; Ibáñez Civera, Javier; Seguí, Lucía; Fito, Pedro; Laguarda-Miró, Nicolás

    2016-01-01

    Electrochemical impedance spectroscopy (EIS) has been used for monitoring the enzymatic pineapple waste hydrolysis process. The system employed consists of a device called Advanced Voltammetry, Impedance Spectroscopy & Potentiometry Analyzer (AVISPA) equipped with a specific software application and a stainless steel double needle electrode. EIS measurements were conducted at different saccharification time intervals: 0, 0.75, 1.5, 6, 12 and 24 h. Partial least squares (PLS) were used to model the relationship between the EIS measurements and the sugar determination by HPAEC-PAD. On the other hand, artificial neural networks: (multilayer feed forward architecture with quick propagation training algorithm and logistic-type transfer functions) gave the best results as predictive models for glucose, fructose, sucrose and total sugars. Coefficients of determination (R²) and root mean square errors of prediction (RMSEP) were determined as R² > 0.944 and RMSEP < 1.782 for PLS and R² > 0.973 and RMSEP < 0.486 for artificial neural networks (ANNs), respectively. Therefore, a combination of both an EIS-based technique and ANN models is suggested as a promising alternative to the traditional laboratory techniques for monitoring the pineapple waste saccharification step. PMID:26861317

  9. Non-destructive evaluation of TBC by electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Jianqi

    The objectives of this work focus on studying the feasibility of developing electrochemical impedance spectroscopy as an NDE methodology for quality assurance and post exposure inspection of TBC. Principally air plasma sprayed TBC was investigated while APS dense vertically cracked TBC and electron beam physical vapor deposition sprayed TBC were also studied using EIS. It has been found that EIS has a great promise in TBC quality assurance and post-exposure assessment. In the quality evaluation, EIS can detect TBC topcoat thickness, porosity, and kinds of defects (pore shape, cracks, or delamination). The TBC topcoat thickness shows a linear relationship with ceramic resistance. The TBC porosity has a linear relationship with ceramic capacitance. The kinds of defects in TBC topcoat can be assessed by the value of pore resistance. In the post-exposure inspection, EIS can monitor the evolution of defects in the topcoat, porosity, the growth of TGO and thermal conductivity of TBC. There is an exponential relationship between thermal conductivity and electrochemical impedance or a logarithmic relationship between thermal conductivity and electrochemical conductance. Investigation on thermal conductivity of TBC showed the specific heat or thermal conductivity of TBC has a logarithmic relationship with temperature, respectively. Exposure temperature and time are two important factors for an increase in thermal conductivity. The higher temperature and longer the exposure, the greater increase the thermal conductivity. High temperature exposure of TBC results in phase transformations, t-ZrO2 → m-ZrO2 and t-ZrO2 → c-ZrO2 and evolution of defect (ceramic sintering). Both the phase transformations and the sintering cause an increase in thermal conductivity. However, it has been found the phase transformations are only a conservative factor while the sintering is a substantial reason for an increase in thermal conductivity. A failure mode of TBC due to sintering was

  10. Corrosion protection of copper by polypyrrole film studied by electrochemical impedance spectroscopy and the electrochemical quartz microbalance

    NASA Astrophysics Data System (ADS)

    Lei, Yanhua; Ohtsuka, Toshiaki; Sheng, Nan

    2015-12-01

    Polypyrrole (PPy) films were synthesized on copper in solution of sodium di-hydrogen phosphate and phytate for corrosion protection. The protection properties of PPy films were comparatively investigated in NaCl solution. During two months immersion, the PPy film doped with phytate anions, working as a cationic perm-selective membrane, inhibited the dissolution of copper to 1% of bare copper. Differently, the PPy film doped with di-hydrogen phosphate anions, possessing anionic perm-selectivity, was gradually reduced, and inhibited the dissolution to 7.8% of bare copper. Degradation of the PPy films was studied by comparing the electrochemical impedance spectroscopy change at different immersion time and Raman spectra change after immersion.

  11. Wavelet transformation to determine impedance spectra of lithium-ion rechargeable battery

    NASA Astrophysics Data System (ADS)

    Hoshi, Yoshinao; Yakabe, Natsuki; Isobe, Koichiro; Saito, Toshiki; Shitanda, Isao; Itagaki, Masayuki

    2016-05-01

    A new analytical method is proposed to determine the electrochemical impedance of lithium-ion rechargeable batteries (LIRB) from time domain data by wavelet transformation (WT). The WT is a waveform analysis method that can transform data in the time domain to the frequency domain while retaining time information. In this transformation, the frequency domain data are obtained by the convolution integral of a mother wavelet and original time domain data. A complex Morlet mother wavelet (CMMW) is used to obtain the complex number data in the frequency domain. The CMMW is expressed by combining a Gaussian function and sinusoidal term. The theory to select a set of suitable conditions for variables and constants related to the CMMW, i.e., band, scale, and time parameters, is established by determining impedance spectra from wavelet coefficients using input voltage to the equivalent circuit and the output current. The impedance spectrum of LIRB determined by WT agrees well with that measured using a frequency response analyzer.

  12. Detection of 1,5-Anhydroglucitol by Electrochemical Impedance Spectroscopy

    PubMed Central

    Adamson, Teagan L.; Cook, Curtiss B.

    2014-01-01

    Multiple markers are used to assess glycemic control in patients with diabetes mellitus (DM). New technology that permits simultaneous detection of multiple biomarkers combined with those used at the point of care indicative of glycemic control, including glycemic variability determined from 1,5-anhydroglucitol measurement, could provide better management and further insight into the disease. This platform was based on previous research involving glucose detection and uses electrochemical impedance spectroscopy to detect a range of 1,5-anhydroglucitol concentrations at an optimal binding frequency. The enzyme pyranose oxidase was fixed to gold electrodes while a sine wave of sweeping frequencies was induced in purified solutions and in variable presence of whole blood. The optimal binding frequency for the detection of 1,5-anhydroglucitol was found to be 3.71 kHz. The impedance response compared to the concentration of target present was found to have a logarithmic slope of 7.04 with an R-squared value of 0.96. This response includes 2 experimental sets, a single test of a low concentration range and a high concentration range with 5 replicates. The relative standard deviation of the high range varied from 28% to 27% from lowest to highest concentrations. Best detection in complex solutions was found in lower blood concentrations of 0.5% and 1%, but maintained relatively high accuracy in concentrations 5% and 10%. The sensor platform was successfully evaluated at a high dynamic range of 1,5-AG in purified solutions. In the presence of whole blood, lowest percentages yielded the best results indicating that filtering interferents may be necessary in final device architecture. PMID:24876587

  13. Electrochemical characterization of gelatinized starch dispersions: voltammetry and electrochemical impedance spectroscopy on platinum surface.

    PubMed

    Hernandez-Jaimes, C; Lobato-Calleros, C; Sosa, E; Bello-Pérez, L A; Vernon-Carter, E J; Alvarez-Ramirez, J

    2015-06-25

    The electrochemical properties of gelatinized starch dispersions (GSD; 5% w/w) from different botanical sources were studied using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) tests over a platinum surface. The phenomenological modelling of EIS data using equivalent circuits indicated that after gelatinization the electrical resistance was determined mainly by the resistance of insoluble material (i.e., ghosts). Sonication of the GSD disrupted the ghost microstructure, and produced an increase in electrical conductivity by reducing the resistance of the insoluble material. The CV data showed three oxidation peaks at potentials where glucose solutions displayed oxidation waves. It is postulated that hydrolysis at the bulk and electrocatalyzed oxidation on the Pt-surface are reactions involved in the starch transformation. Starches peak intensity increased with the amylose content, suggesting that the amylose-rich matrix played an important role in the charge transfer in the electrolytic system.

  14. Electrochemical Impedance Spectroscopic Sensing of Methamphetamine by a Specific Aptamer

    PubMed Central

    Ebrahimi, Mohsen; Johari-Ahar, Mohammad; Hamzeiy, Hossein; Barar, Jaleh; Mashinchian, Omid; Omidi, Yadollah

    2012-01-01

    Introduction Electrochemical impedance spectroscopy (EIS) is a simple and highly sensitive technique that can be used for evaluation of the aptamer-target interaction even in a label-free approach. Methods To pursue the effectiveness of EIS, in the current study, the folding properties of specific aptamer for methamphetamine (METH) (i.e., aptaMETH) were evaluated in the presence of METH and amphetamine (Amph). Folded and unfolded aptaMETH was mounted on the gold electrode surface and the electron charge transfer was measured by EIS. Results The Ret of methamphetamine-aptaMETH was significantly increased in comparison with other folding conditions, indicating specific detection of METH by aptaMETH. Conclusion Based on these findings, methamphetamine-aptaMETH on the gold electrode surface displayed the most interfacial electrode resistance and thus the most folding situation. This clearly indicates that the aptaMETH can profoundly and specifically pinpoint METH; as a result we suggest utilization of this methodology for fast and cost-effective identification of METH. PMID:23678446

  15. Dynamic electrochemical impedance spectroscopy of Pt/C-based membrane-electrode assemblies subjected to cycling protocols

    NASA Astrophysics Data System (ADS)

    Darab, Mahdi; Dahlstrøm, Per Kristian; Thomassen, Magnus Skinlo; Seland, Frode; Sunde, Svein

    2013-11-01

    A PEM fuel cell membrane-electrode assembly (MEA) was characterized by dynamic electrochemical impedance spectroscopy (dEIS) before and after cycling in a single cell configuration. The cell was subjected to 100 cycles between 0.6 V and 1.5 V vs. RHE in N2/5% H2 and 80 °C and 100% RH. Initially, the impedance-plane plots contained first- and fourth-quadrant behavior, which is resulting from a reaction mechanism at the cathode involving adsorbed intermediates. After the cycling, the impedance spectra changed to display first-quadrant behavior only. This is suggested to be due to particle growth and possibly the formation of edges between agglomerated particles. The results show that dEIS is a sensitive technique to detect even very moderate changes in electrocatalyst structure.

  16. Characterization of Molybdate Conversion Coatings for Aluminum Alloys by Electrochemical Impedance Spectroscopy

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina

    2000-01-01

    Electrochemical impedance spectroscopy (EIS) was used to investigate the corrosion inhibiting properties of newly developed proprietary molybdate conversion coatings on aluminum alloy 2024-T3 under immersion in aerated 5% (w/w) NaCl. Corrosion potential and EIS measurements were gathered for six formulations of the coating at several immersion times for two weeks. Nyquist as well as Bode plots of the data were obtained. The conversion-coated alloy panels showed an increase in the corrosion potential during the first 24 hours of immersion that later subsided and approached a steady value. Corrosion potential measurements indicated that formulations A, D, and F exhibit a protective effect on aluminum 2024-T3. The EIS spectra of the conversion-coated alloy were characterized by an impedance that is higher than the impedance of the bare alloy at all the immersion times. The low frequency impedance, Z(sub lf) (determined from the value at 0.05 Hz) for the conversion-coated alloy was higher at all the immersion times than that of the bare panel. This indicates improvement of corrosion resistance with addition of the molybdate conversion coating. Scanning electron microscopy (SEM) revealed the presence of cracks in the coating and the presence of cubic crystals believed to be calcium carbonate. Energy dispersive spectroscopy (EDS) of the test panels revealed the presence of high levels of aluminum, oxygen, and calcium but did not detect the presence of molybdenum on the test panels. X-ray photoelectron spectroscopy (XPS) indicated the presence of less than 0.01 atomic percent molybdenum on the surface of the coating.

  17. The application of electrochemical impedance spectroscopy for characterizing the degradation of Ni(OH)2/NiOOH electrodes

    NASA Technical Reports Server (NTRS)

    Macdonald, D. D.; Pound, B. G.; Lenhart, S. J.

    1989-01-01

    Electrochemical impedance spectra of rolled and bonded and sintered porous nickel battery electrodes were recorded periodically during charge/discharge cycling in concentrated KOH solution at various temperatures. A transmission line model (TLM) was adopted to represent the impedance of the porous electrodes, and various model parameters were adjusted in a curve fitting routine to reproduce the experimental impedances. Degradation processes for rolled and bonded electrodes were deduced from changes in model parameters with electrode cycling time. In developing the TLM, impedance spectra of planar (non-porous) electrodes were used to represent the pore wall and backing plate interfacial impedances. These data were measured over a range of potentials and temperatures, and an equivalent circuit model was adopted to represent the planar electrode data. Cyclic voltammetry was used to study the characteristics of the oxygen evolution reaction on planar nickel electrodes during charging, since oxygen evolution can affect battery electrode charging efficiency and ultimately electrode cycle life if the overpotential for oxygen evolution is sufficiently low. Transmission line modeling results suggest that porous rolled and bonded nickel electrodes undergo restructuring during charge/discharge cycling prior to failure.

  18. Surface Characteristics and Electrochemical Impedance Investigation of Spark-Anodized Ti-6Al-4V Alloy

    NASA Astrophysics Data System (ADS)

    Garsivaz jazi, M. R.; Golozar, M. A.; Raeissi, K.; Fazel, M.

    2014-04-01

    In this study, the surface characteristic of oxide films on Ti-6Al-4V alloy formed by an anodic oxidation treatment in H2SO4/H3PO4 electrolyte at potentials higher than the breakdown voltage was evaluated. Morphology of the surface layers was studied by scanning electron microscope. The results indicated that the diameter of pores and porosity of oxide layer increase by increasing the anodizing voltage. The thickness measurement of the oxide layers showed a linear increase of thickness with increasing the anodizing voltage. The EDS analysis of oxide films formed in H2SO4/H3PO4 at potentials higher than breakdown voltage demonstrated precipitation of sulfur and phosphor elements from electrolyte into the oxide layer. X-ray diffraction was employed to exhibit the effect of anodizing voltage on the oxide layer structure. Roughness measurements of oxide layer showed that in spark anodizing, the Ra and Rz parameters would increase by increasing the anodizing voltage. The structure and Corrosion properties of oxide layers were studied using electrochemical impedance spectroscopy (EIS) techniques, in 0.9 wt.% NaCl solution. The obtained EIS spectra and their interpretation in terms of an equivalent circuit with the circuit elements indicated that the detailed impedance behavior is affected by three regions of the interface: the space charge region, the inner compact layer, and outer porous layer.

  19. A novel approach for analyzing electrochemical properties of mixed conducting solid oxide fuel cell anode materials by impedance spectroscopy.

    PubMed

    Nenning, A; Opitz, A K; Huber, T M; Fleig, J

    2014-10-28

    For application of acceptor-doped mixed conducting oxides as solid oxide fuel cell (SOFC) anodes, high electrochemical surface activity as well as acceptable electronic and ionic conductivity are crucial. In a reducing atmosphere, particularly the electronic conductivity of acceptor-doped oxides can become rather low and the resulting complex interplay of electrochemical reactions and charge transport processes makes a mechanistic interpretation of impedance measurements very complicated. In order to determine all relevant resistive and capacitive contributions of mixed conducting electrodes in a reducing atmosphere, a novel electrode design and impedance-based analysis technique is therefore introduced. Two interdigitating metallic current collectors are placed in a microelectrode, which allows in-plane measurements within the electrode as well as electrochemical measurements versus a counter electrode. Equivalent circuit models for quantifying the spectra of both measurement modes are developed and applied to simultaneously fit both spectra, using the same parameter set. In this manner, the electronic and ionic conductivity of the material as well as the area-specific resistance of the surface reaction and the chemical capacitance can be determined on a single microelectrode in a H2-H2O atmosphere. The applicability of this new tool was demonstrated in SrTi0.7Fe0.3O(3-δ) (STFO) thin film microelectrodes, deposited on single-crystalline yttria-stabilized zirconia (YSZ) substrates. All materials parameters that contribute to the polarization resistance of STFO electrodes in a reducing atmosphere could thus be quantified.

  20. Constituent phases of the passive film formed on 2205 stainless steel by dynamic electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Cheng, Xue-Qun; Li, Cheng-Tao; Dong, Chao-Fang; Li, Xiao-Gang

    2011-02-01

    The passive film formed on 2205 duplex stainless steel (DSS) in 0.5 M NaHCO3+0.5 M NaCl aqueous solution was characterized by electrochemical measurements, including potentiodynamic anodic polarization and dynamic electrochemical impedance spectroscopy (DEIS). The results demonstrate that there is a great difference between the passive film evolutions of ferrite and austenite. The impedance values of ferrite are higher than those of austenite. The impedance peaks of ferritic and austenitic phases correspond to the potential of 0.15 and 0.25 V in the low potential range and correspond to 0.8 and 0.75 V in the high potential range. The evolutions of the capacitance of both phases are reverse compared to the evolutions of impedance. The thickness variations obtained from capacitance agree well with those of impedance analysis. The results can be used to explain why pitting corrosion occurs more easily in austenite phase than in ferrite phase.

  1. The Influence of Nanopore Dimensions on the Electrochemical Properties of Nanopore Arrays Studied by Impedance Spectroscopy

    PubMed Central

    Kant, Krishna; Priest, Craig; Shapter, Joe G.; Losic, Dusan

    2014-01-01

    The understanding of the electrochemical properties of nanopores is the key factor for better understanding their performance and applications for nanopore-based sensing devices. In this study, the influence of pore dimensions of nanoporous alumina (NPA) membranes prepared by an anodization process and their electrochemical properties as a sensing platform using impedance spectroscopy was explored. NPA with four different pore diameters (25 nm, 45 nm and 65 nm) and lengths (5 μm to 20 μm) was used and their electrochemical properties were explored using different concentration of electrolyte solution (NaCl) ranging from 1 to 100 μM. Our results show that the impedance and resistance of nanopores are influenced by the concentration and ion species of electrolytes, while the capacitance is independent of them. It was found that nanopore diameters also have a significant influence on impedance due to changes in the thickness of the double layer inside the pores. PMID:25393785

  2. Single cells and intracellular processes studied by a plasmonic-based electrochemical impedance microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Foley, Kyle; Shan, Xiaonan; Wang, Shaopeng; Eaton, Seron; Nagaraj, Vinay J.; Wiktor, Peter; Patel, Urmez; Tao, Nongjian

    2011-03-01

    Electrochemical impedance spectroscopy is a crucial tool for the detection and study of various biological substances, from DNA and proteins to viruses and bacteria. It does not require any labelling species, and methods based on it have been developed to study cellular processes (such as cell spreading, adhesion, invasion, toxicology and mobility). However, data have so far lacked spatial information, which is essential for investigating heterogeneous processes and imaging high-throughput microarrays. Here, we report an electrochemical impedance microscope based on surface plasmon resonance that resolves local impedance with submicrometre spatial resolution. We have used an electrochemical impedance microscope to monitor the dynamics of cellular processes (apoptosis and electroporation of individual cells) with millisecond time resolution. The high spatial and temporal resolution makes it possible to study individual cells, but also resolve subcellular structures and processes without labels, and with excellent detection sensitivity (~2 pS). We also describe a model that simulates cellular and electrochemical impedance microscope images based on local dielectric constant and conductivity.

  3. Single cells and intracellular processes studied by a plasmonic-based electrochemical impedance microscopy.

    PubMed

    Wang, Wei; Foley, Kyle; Shan, Xiaonan; Wang, Shaopeng; Eaton, Seron; Nagaraj, Vinay J; Wiktor, Peter; Patel, Urmez; Tao, Nongjian

    2011-03-01

    Electrochemical impedance spectroscopy is a crucial tool for the detection and study of various biological substances, from DNA and proteins to viruses and bacteria. It does not require any labelling species, and methods based on it have been developed to study cellular processes (such as cell spreading, adhesion, invasion, toxicology and mobility). However, data have so far lacked spatial information, which is essential for investigating heterogeneous processes and imaging high-throughput microarrays. Here, we report an electrochemical impedance microscope based on surface plasmon resonance that resolves local impedance with submicrometre spatial resolution. We have used an electrochemical impedance microscope to monitor the dynamics of cellular processes (apoptosis and electroporation of individual cells) with millisecond time resolution. The high spatial and temporal resolution makes it possible to study individual cells, but also resolve subcellular structures and processes without labels, and with excellent detection sensitivity (~2 pS). We also describe a model that simulates cellular and electrochemical impedance microscope images based on local dielectric constant and conductivity.

  4. In situ anodization of aluminum surfaces studied by x-ray reflectivity and electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Bertram, F.; Zhang, F.; Evertsson, J.; Carlà, F.; Pan, J.; Messing, M. E.; Mikkelsen, A.; Nilsson, J.-O.; Lundgren, E.

    2014-07-01

    We present results from the anodization of an aluminum single crystal [Al(111)] and an aluminum alloy [Al 6060] studied by in situ x-ray reflectivity, in situ electrochemical impedance spectroscopy and ex situ scanning electron microscopy. For both samples, a linear increase of oxide film thickness with increasing anodization voltage was found. However, the slope is much higher in the single crystal case, and the break-up of the oxide film grown on the alloy occurs at a lower anodization potential than on the single crystal. The reasons for these observations are discussed as are the measured differences observed for x-ray reflectivity and electrochemical impedance spectroscopy.

  5. Electrochemical impedance spectroscopy in chromatography paper and its application to latex bead detection

    NASA Astrophysics Data System (ADS)

    Iwahara, Shohei; Miki, Masashi; Hori, Fumitaka; Uno, Shigeyasu

    2014-01-01

    The principle of the quantitative immunochromatographic strip test (IST) is proposed. Electrochemical impedance spectroscopy is shown to be capable of detecting latex beads in chromatography paper, where latex beads can serve as a label in IST. Measurements to examine the impedance changes in the absence and presence of latex beads are conducted. In the presence of latex beads, an increase of 12.5% in the bulk solution resistance is observed. This indicates that the latex-bead-labeled antigen-antibody complex can be detected electrochemically by actual IST.

  6. Electrochemical Impedance Analysis of β-TITANIUM Alloys as Implants in Ringers Lactate Solution

    NASA Astrophysics Data System (ADS)

    Bhola, Rahul; Bhola, Shaily M.; Mishra, Brajendra; Olson, David L.

    2010-02-01

    Commercially pure titanium and two β-titanium alloys, TNZT and TMZF, have been characterized using various electrochemical techniques for their corrosion behavior in Ringers lactate solution. The variation of corrosion potential and solution pH with time has been discussed. Electrochemical Impedance Spectroscopy has been used to fit the results into a circuit model. The stability of the oxides formed on the surface of these alloys has been correlated with impedance phase angles. Cyclic Potentiodynamic Polarization has been used to compute the corrosion parameters for the alloys. TMZF is found to be a better β-alloy as compared to TNZT.

  7. In situ anodization of aluminum surfaces studied by x-ray reflectivity and electrochemical impedance spectroscopy

    SciTech Connect

    Bertram, F. Evertsson, J.; Messing, M. E.; Mikkelsen, A.; Lundgren, E.; Zhang, F.; Pan, J.; Carlà, F.; Nilsson, J.-O.

    2014-07-21

    We present results from the anodization of an aluminum single crystal [Al(111)] and an aluminum alloy [Al 6060] studied by in situ x-ray reflectivity, in situ electrochemical impedance spectroscopy and ex situ scanning electron microscopy. For both samples, a linear increase of oxide film thickness with increasing anodization voltage was found. However, the slope is much higher in the single crystal case, and the break-up of the oxide film grown on the alloy occurs at a lower anodization potential than on the single crystal. The reasons for these observations are discussed as are the measured differences observed for x-ray reflectivity and electrochemical impedance spectroscopy.

  8. ELECTROCHEMICAL IMPEDANCE ANALYSIS OF beta-TITANIUM ALLOYS AS IMPLANTS IN RINGERS LACTATE SOLUTION

    SciTech Connect

    Bhola, Rahul; Bhola, Shaily M.; Mishra, Brajendra; Olson, David L.

    2010-02-22

    Commercially pure titanium and two beta-titanium alloys, TNZT and TMZF, have been characterized using various electrochemical techniques for their corrosion behavior in Ringers lactate solution. The variation of corrosion potential and solution pH with time has been discussed. Electrochemical Impedance Spectroscopy has been used to fit the results into a circuit model. The stability of the oxides formed on the surface of these alloys has been correlated with impedance phase angles. Cyclic Potentiodynamic Polarization has been used to compute the corrosion parameters for the alloys. TMZF is found to be a better beta-alloy as compared to TNZT.

  9. Characterization of implant materials in fetal bovine serum and sodium sulfate by electrochemical impedance spectroscopy. II. Coarsely sandblasted samples.

    PubMed

    Contu, F; Elsener, B; Böhni, H

    2003-10-01

    Electrochemical impedance spectroscopy is used to investigate the corrosion resistance of coarsely sandblasted implant alloys, commercially pure titanium, Ti6Al4V, Ti6Al7Nb, and CoCrMo in 0.1M sodium sulfate and fetal bovine serum. Coarsely sandblasted samples have a heterogeneous surface constituted by a large number of protrusions and recessions. Impedance spectra collected in sodium sulfate present two time constants (maxima in the phase-angle of the bode plot) associated with the total surface and with the tips, respectively. In bovine serum, the two maxima in the impedance spectra cannot be distinguished because of the formation of an adsorption layer of organic molecules, which causes a decrease in the values of both the total and tips' capacitances as well as an increase in the polarization resistance. Ti6Al4V and Ti6Al7Nb show the highest corrosion rate both in serum and in sodium sulfate. Based on the capacitance values obtained in sodium sulfate, the real surface area of the coarsely sandblasted electrodes has been estimated relative to mechanically polished surfaces. The values of the effective electrode area correlate with the mechanical properties of the samples: in fact, the softest electrode (commercially pure titanium) shows the largest effective electrode area, whereas the hardest material (CoCrMo alloy) shows the smallest surface area.

  10. A system for characterizing Mg corrosion in aqueous solutions using electrochemical sensors and impedance spectroscopy.

    PubMed

    Doepke, Amos; Kuhlmann, Julia; Guo, Xuefei; Voorhees, Robert T; Heineman, William R

    2013-11-01

    Understanding Mg corrosion is important to the development of biomedical implants made from Mg alloys. Mg corrodes readily in aqueous environments, producing H2, OH- and Mg2+. The rate of formation of these corrosion products is especially important in biomedical applications where they can affect cells and tissue near the implant. We have developed a corrosion characterization system (CCS) that allows realtime monitoring of the solution soluble corrosion products OH-, Mg2+, and H2 during immersion tests commonly used to study the corrosion of Mg materials. Instrumentation was developed to allow the system to also record electrochemical impedance spectra simultaneously in the same solution to monitor changes in the Mg samples. We demonstrated application of the CCS by observing the corrosion of Mg (99.9%) in three different corrosion solutions: NaCl, HEPES buffer, and HEPES buffer with NaCl at 37°C for 48 h. The solution concentrations of the corrosion products measured by sensors correlated with the results using standard weight loss measurements to obtain corrosion rates. This novel approach gives a better understanding of the dynamics of the corrosion process in realtime during immersion tests, rather than just providing a corrosion rate at the end of the test, and goes well beyond the immersion tests that are commonly used to study the corrosion of Mg materials. The system has the potential to be useful in systematically testing and comparing the corrosion behavior of different Mg alloys, as well as protective coatings.

  11. A study on the impact of lithium-ion cell relaxation on electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Barai, Anup; Chouchelamane, Gael H.; Guo, Yue; McGordon, Andrew; Jennings, Paul

    2015-04-01

    Lithium-ion (Li-ion) batteries are of great interest to the automotive industry due to their higher power and energy density, higher cell voltage, longer cycle life and lower self-discharge compared to other battery chemistries. Electrochemical impedance spectroscopy is a powerful tool employed to investigate the fundamental electrochemical reactions within a Li-ion battery cell, which relates to state of charge, internal temperature and state of health. Its effectiveness has established it as a core method to study electrochemical behaviour of batteries in both off-line and on-line applications. In this work it is shown that in addition to state of charge, internal temperature and state of health, the time period between the removal of an electrical load and the impedance measurement affects the results. The study of five commercially available cells of varying capacities and electrode chemistries show that, regardless of cell type, maximum impedance change takes place within the first 4 h of the relaxation period. The root cause of this impedance change has been discussed from an electrochemical perspective.

  12. Label-free electrochemical impedance detection of kinase and phosphatase activities using carbon nanofiber nanoelectrode arrays

    PubMed Central

    Li, Yifen; Syed, Lateef; Liu, Jianwei; Hua, Duy H.; Li, Jun

    2012-01-01

    We demonstrate the feasibility of a label-free electrochemical method to detect the kinetics of phosphorylation and dephosphorylation of surface-attached peptides catalyzed by kinase and phosphatase, respectively. The peptides with a sequence specific to c-Src tyrosine kinase and protein tyrosine phosphatase 1B (PTP1B) were first validated with ELISA-based protein tyrosine kinase assay and then functionalized on vertically aligned carbon nanofiber (VACNF) nanoelectrode arrays (NEAs). Real-time electrochemical impedance spectroscopy (REIS) measurements showed reversible impedance changes upon the addition of c-Src kinase and PTP1B phosphatase. Only a small and unreliable impedance variation was observed during the peptide phosphorylation, but a large and fast impedance decrease was observed during the peptide dephosphorylation at different PTP1B concentrations. The REIS data of dephosphorylation displayed a well-defined exponential decay following the Michaelis-Menten heterogeneous enzymatic model with a specific constant, kcat/Km, of (2.1 ± 0.1) × 107 M−1 s−1. Consistent values of the specific constant was measured at PTP1B concentration varying from 1.2 to 2.4 nM with the corresponding electrochemical signal decay constant varying from 38.5 to 19.1 s. This electrochemical method can be potentially used as a label-free method for profiling enzyme activities in fast reactions. PMID:22935373

  13. Estimation of Parameters Obtained by Electrochemical Impedance Spectroscopy on Systems Containing High Capacities

    PubMed Central

    Stević, Zoran; Vujasinović, Mirjana Rajčić; Radunović, Milan

    2009-01-01

    Electrochemical systems with high capacities demand devices for electrochemical impedance spectroscopy (EIS) with ultra-low frequencies (in order of mHz), that are almost impossible to accomplish with analogue techniques, but this becomes possible by using a computer technique and accompanying digital equipment. Recently, an original software and hardware for electrochemical measurements, intended for electrochemical systems exhibiting high capacities, such as supercapacitors, has been developed. One of the included methods is EIS. In this paper, the method of calculation of circuit parameters from an EIS curve is described. The results of testing on a physical model of an electrochemical system, constructed of known elements (including a 1.6 F capacitor) in a defined arrangement, proved the validity of the system and the method. PMID:22400000

  14. Estimation of parameters obtained by electrochemical impedance spectroscopy on systems containing high capacities.

    PubMed

    Stević, Zoran; Vujasinović, Mirjana Rajčić; Radunović, Milan

    2009-01-01

    Electrochemical systems with high capacities demand devices for electrochemical impedance spectroscopy (EIS) with ultra-low frequencies (in order of mHz), that are almost impossible to accomplish with analogue techniques, but this becomes possible by using a computer technique and accompanying digital equipment. Recently, an original software and hardware for electrochemical measurements, intended for electrochemical systems exhibiting high capacities, such as supercapacitors, has been developed. One of the included methods is EIS. In this paper, the method of calculation of circuit parameters from an EIS curve is described. The results of testing on a physical model of an electrochemical system, constructed of known elements (including a 1.6 F capacitor) in a defined arrangement, proved the validity of the system and the method.

  15. Two-dimensional modeling of a polymer electrolyte membrane fuel cell with long flow channel. Part II. Physics-based electrochemical impedance analysis

    NASA Astrophysics Data System (ADS)

    Bao, Cheng; Bessler, Wolfgang G.

    2015-03-01

    The state-of-the-art electrochemical impedance spectroscopy (EIS) calculations have not yet started from fully multi-dimensional modeling. For a polymer electrolyte membrane fuel cell (PEMFC) with long flow channel, the impedance plot shows a multi-arc characteristic and some impedance arcs could merge. By using a step excitation/Fourier transform algorithm, an EIS simulation is implemented for the first time based on the full 2D PEMFC model presented in the first part of this work. All the dominant transient behaviors are able to be captured. A novel methodology called 'configuration of system dynamics', which is suitable for any electrochemical system, is then developed to resolve the physical meaning of the impedance spectra. In addition to the high-frequency arc due to charge transfer, the Nyquist plots contain additional medium/low-frequency arcs due to mass transfer in the diffusion layers and along the channel, as well as a low-frequency arc resulting from water transport in the membrane. In some case, the impedance spectra appear partly inductive due to water transport, which demonstrates the complexity of the water management of PEMFCs and the necessity of physics-based calculations.

  16. Analysis of bio-anode performance through electrochemical impedance spectroscopy.

    PubMed

    ter Heijne, Annemiek; Schaetzle, Olivier; Gimenez, Sixto; Navarro, Lucia; Hamelers, Bert; Fabregat-Santiago, Francisco

    2015-12-01

    In this paper we studied the performance of bioanodes under different experimental conditions using polarization curves and impedance spectroscopy. We have identified that the large capacitances of up to 1 mF·cm(-2) for graphite anodes have their origin in the nature of the carbonaceous electrode, rather than the microbial culture. In some cases, the separate contributions of charge transfer and diffusion resistance were clearly visible, while in other cases their contribution was masked by the high capacitance of 1 mF·cm(-2). The impedance data were analyzed using the basic Randles model to analyze ohmic, charge transfer and diffusion resistances. Increasing buffer concentration from 0 to 50mM and increasing pH from 6 to 8 resulted in decreased charge transfer and diffusion resistances; lowest values being 144 Ω·cm(2) and 34 Ω·cm(2), respectively. At acetate concentrations below 1 mM, current generation was limited by acetate. We show a linear relationship between inverse charge transfer resistance at potentials close to open circuit and saturation (maximum) current, associated to the Butler-Volmer relationship that needs further exploration.

  17. Analysis of bio-anode performance through electrochemical impedance spectroscopy.

    PubMed

    ter Heijne, Annemiek; Schaetzle, Olivier; Gimenez, Sixto; Navarro, Lucia; Hamelers, Bert; Fabregat-Santiago, Francisco

    2015-12-01

    In this paper we studied the performance of bioanodes under different experimental conditions using polarization curves and impedance spectroscopy. We have identified that the large capacitances of up to 1 mF·cm(-2) for graphite anodes have their origin in the nature of the carbonaceous electrode, rather than the microbial culture. In some cases, the separate contributions of charge transfer and diffusion resistance were clearly visible, while in other cases their contribution was masked by the high capacitance of 1 mF·cm(-2). The impedance data were analyzed using the basic Randles model to analyze ohmic, charge transfer and diffusion resistances. Increasing buffer concentration from 0 to 50mM and increasing pH from 6 to 8 resulted in decreased charge transfer and diffusion resistances; lowest values being 144 Ω·cm(2) and 34 Ω·cm(2), respectively. At acetate concentrations below 1 mM, current generation was limited by acetate. We show a linear relationship between inverse charge transfer resistance at potentials close to open circuit and saturation (maximum) current, associated to the Butler-Volmer relationship that needs further exploration. PMID:25869113

  18. Electrochemical impedance spectroscopy of lithium-titanium disulfide rechargeable cells

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.; Shen, D. H.; Surampudi, S.; Attia, A. I.; Halpert, G.

    1993-01-01

    The two-terminal alternating current impedance of Li/TiS2 rechargeable cells was studied as a function of frequency, state-of-charge, and extended cycling. Analysis based on a plausible equivalent circuit model for the Li/TiS2 cell leads to evaluation of kinetic parameters for the various physicochemical processes occurring at the electrode/electrolyte interfaces. To investigate the causes of cell degradation during extended cycling, the parameters evaluated for cells cycled 5 times were compared with the parameters of cells cycled over 600 times. The findings are that the combined ohmic resistance of the electrolyte and electrodes suffers a tenfold increase after extended cycling, while the charge-transfer resistance and diffusional impedance at the TiS2/electrolyte interface are not significantIy affected. The results reflect the morphological change and increase in area of the anode due to cycling. The study also shows that overdischarge of a cathode-limited cell causes a decrease in the diffusion coefficient of the lithium ion in the cathode.

  19. Graphical analysis of electrochemical impedance spectroscopy data in Bode and Nyquist representations

    NASA Astrophysics Data System (ADS)

    Huang, Jun; Li, Zhe; Liaw, Bor Yann; Zhang, Jianbo

    2016-03-01

    Though it becomes a routine to fit impedance data to an equivalent electric circuit model (EECM) using complex nonlinear least square (CNLS) to extract physical parameters from impedance data, two formidable challenges still remain: to build a physically meaningful EECM and to find good initial estimates for model parameters. In this study, combining graphical analysis of impedance data in both Bode and Nyquist plots, a two-step procedure is proposed to address the challenges: (1) a frequency derivative phase angle method is developed in Bode plot to identify the number of time constants (or electrochemical processes); (2) graphical analysis of impedance data in Nyquist plot is used sequentially for initial parameter determination. Major graphical analysis methods are compared in terms of frequency resolution, accuracy and complexity using synthetic data. The superiority of the proposed procedure is illustrated using the experimental data of a three-electrode lithium-ion cell.

  20. Predicting molecular scale skin-effect in electrochemical impedance due to anomalous subdiffusion mediated adsorption phenomenon

    NASA Astrophysics Data System (ADS)

    Kushagra, Arindam

    2016-02-01

    Anomalous subdiffusion governs the processes which are not energetically driven, on a molecular scale. This paper proposes a model to predict the response of electrochemical impedance due to such diffusion process. Previous works considered the use of fractional calculus to predict the impedance behaviour in response to the anomalous diffusion. Here, we have developed an expression which predicts the skin-effect, marked by an increase in the impedance with increasing frequency, in this regime. Negative inductances have also been predicted as a consequence of the inertial response of adsorbed species upon application of frequency-mediated perturbations. It might help the researchers in the fields of impedimetric sensors to choose the working frequency and those working in the field of batteries to choose the parameters, likewise. This work would shed some light into the molecular mechanisms governing the impedance when exposed to frequency-based perturbations like electromagnetic waves (microwaves to ionizing radiations) and in charge storage devices like batteries etc.

  1. Report on the source of the electrochemical impedance on cermet inert anodes

    SciTech Connect

    Windisch, C.F. Jr.; Stice, N.D.

    1991-02-01

    the Inert Electrode Program at Pacific Northwest Laboratory (PNL) is supported by the Office of Industrial Processes of the US Department of Energy and is aimed at improving the energy efficiency of Hall-Heroult cells through the development of inert anodes. The inert anodes currently under study are composed of a cermet material of the general composition NiO-NiFe{sub 2}O{sub 4}-Cu. The program has three primary objectives: (a) to evaluate the anode material in a scaled-up, pilot cell facility, (b) to investigate the mechanisms of the electrochemical reactions at the anode surface, and (c) to develop sensors for monitoring anode and/or electrolyte conditions. This report covers the results of a portion of the studies on anode reaction mechanisms. The electrochemical impedances of cermet inert anodes in alumina-saturated molten cryolite as a function of frequency, current density, and time indicated that a significant component of the impedance is due to the gas bubbles produced at the anode during electrolysis. The data also showed a connection between surface structure and impedance that appears to be related to the effects of surface structure on bubble flow. Given the results of this work, it is doubtful that a resistive film contributes significantly to the electrochemical impedances on inert anodes. Properties previously assigned to such a film are more likely due to the bubbles and those factors that affect the properties and dynamics of the bubbles at the anode surface. 12 refs., 16 figs., 3 tabs.

  2. Electrochemical Impedance Spectroscopy Investigation on the Clinical Lifetime of ProTaper Rotary File System

    PubMed Central

    Pirvu, Cristian; Demetrescu, Ioana

    2014-01-01

    The main objective of the current paper is to show that electrochemical impedance spectroscopy (EIS) could be a method for evaluating and predicting of ProTaper rotary file system clinical lifespan. This particular aspect of everyday use of the endodontic files is of great importance in each dental practice and has profound clinical implications. The method used for quantification resides in the electrochemical impedance spectroscopy theory and has in its main focus the characteristics of the surface titanium oxide layer. This electrochemical technique has been adapted successfully to identify the quality of the Ni-Ti files oxide layer. The modification of this protective layer induces changes in corrosion behavior of the alloy modifying the impedance value of the file. In order to assess the method, 14 ProTaper sets utilized on different patients in a dental clinic have been submitted for testing using EIS. The information obtained in regard to the surface oxide layer has offered an indication of use and proves that the said layer evolves with each clinical application. The novelty of this research is related to an electrochemical technique successfully adapted for Ni-Ti file investigation and correlation with surface and clinical aspects. PMID:24605336

  3. Electrochemical impedance spectroscopy investigation on the clinical lifetime of ProTaper rotary file system.

    PubMed

    Penta, Virgil; Pirvu, Cristian; Demetrescu, Ioana

    2014-01-01

    The main objective of the current paper is to show that electrochemical impedance spectroscopy (EIS) could be a method for evaluating and predicting of ProTaper rotary file system clinical lifespan. This particular aspect of everyday use of the endodontic files is of great importance in each dental practice and has profound clinical implications. The method used for quantification resides in the electrochemical impedance spectroscopy theory and has in its main focus the characteristics of the surface titanium oxide layer. This electrochemical technique has been adapted successfully to identify the quality of the Ni-Ti files oxide layer. The modification of this protective layer induces changes in corrosion behavior of the alloy modifying the impedance value of the file. In order to assess the method, 14 ProTaper sets utilized on different patients in a dental clinic have been submitted for testing using EIS. The information obtained in regard to the surface oxide layer has offered an indication of use and proves that the said layer evolves with each clinical application. The novelty of this research is related to an electrochemical technique successfully adapted for Ni-Ti file investigation and correlation with surface and clinical aspects.

  4. Numerical modelling of impedance spectra of ionic conductor-insulator core-shell composites

    NASA Astrophysics Data System (ADS)

    Laugier, J.-M.; Raymond, L.; Albinet, G.; Knauth, P.

    2011-09-01

    Impedance spectra of ionic conductor-insulator core-shell composites are simulated in Cole-Cole and Bode representation using a 3D lattice of parallel resistance-capacitance elements. The composite model is based on a random ternary network, considering three impedance elements: good conductor (representing interface regions), conductor and insulator. The favourable interactions between the two phases lead to a significant non-random situation versus usual percolation models. Two percolation transitions are well observed: the first corresponds to ionic conduction enhancement by space charge layers. After the second transition, the conduction pathways are blocked by the insulator and the conductivity drops dramatically. Experimental impedance spectra of model copper- and lithium-ion conducting composites and nanocomposites are in good agreement with the simulation. The dc conductivity maximum can be described by a master equation: σmax ~ N-0.79 where N is proportional to the ionic conductor grain size.

  5. A shock spectra and impedance method to determine a bound for spacecraft structural loads

    NASA Technical Reports Server (NTRS)

    Bamford, R.; Trubert, M.

    1974-01-01

    A method to determine a bound of structural loads for a spacecraft mounted on a launch vehicle is developed. The method utilizes the interface shock spectra and the relative impedance of the spacecraft and launch vehicle. The method is developed for single-degree-of-freedom models and then generalized to multidegree-of-freedom models.

  6. Effective impedance spectra for predicting rough sea effects on atmospheric impulsive sounds.

    PubMed

    Boulanger, Patrice; Attenborough, Keith

    2005-02-01

    Two methods of calculating the effective impedance spectra of acoustically hard, randomly rough, two-dimensional surfaces valid for acoustic wavelengths large compared with the roughness scales have been explored. The first method uses the complex excess attenuation spectrum due to a point source above a rough boundary predicted by a boundary element method (BEM) and solves for effective impedance roots identified by a winding number integral method. The second method is based on an analytical theory in which the contributions from random distributions of surface scatterers are summed to obtain the total scattered field. Effective impedance spectra deduced from measurements of the complex excess attenuation above 2D randomly rough surfaces formed by semicylinders and wedges have been compared to predictions from the two approaches. Although the analytical theory gives relatively poor predictions, BEM-deduced effective impedance spectra agree tolerably well with measured data. Simple polynomials have been found to fit BEM-deduced spectra for surfaces formed by intersecting parabolas corresponding to average roughness heights between 0.25 and 7.5 m and for five incidence angles for each average height. Predicted effects of sea-surface roughness on sonic boom profiles and rise time are comparable to those due to turbulence and molecular relaxation effects. PMID:15759695

  7. Effects of Nitrogen on Passivity of Nickel-Free Stainless Steels by Electrochemical Impedance Spectroscopy Analysis

    NASA Astrophysics Data System (ADS)

    Wu, Xinqiang; Fu, Yao; Ke, Wei; Xu, Song; Feng, Bing; Hu, Botao

    2015-09-01

    The effects of different nitrogen contents on the passivity of nickel-free stainless steels in 0.5 M sulfuric acid + 0.5 M sodium chloride solution were investigated by electrochemical impedance spectroscopy in the potential ranges of active dissolution and active-passive transition. A simplified reaction model containing adsorbed intermediates involved dissolution process, and passivation process was proposed to explain the impedance characteristics. Based on both equivalent circuit and mathematical model analysis, the effects of nitrogen on the passivity of stainless steels are discussed.

  8. Development of a label free IGE sensitive aptasensor based on electrochemical impedance spectrometry.

    PubMed

    Kara, Pinar; Meric, Buket; Ozsoz, Mehmet

    2010-08-01

    A sensitive aptamer based electrochemical biosensor to detect human immunoglobulin E (IgE) is presented in this study. 5' Biotin labeled 45 mer DNA aptamer sequence was immobilized onto streptavidin coated graphite surfaces. Interaction between human IgE and DNA aptamer was monitored by Electrochemical Impedance Spectrometry (EIS) in a 0.48nM detection limit of IgE. EIS analysis are based on electron transfer resistance (Rct) in the presence of 5mM [Fe(CN)6]3-/4-.

  9. Electrochemical impedance spectroscopy based-on interferon-gamma detection

    NASA Astrophysics Data System (ADS)

    Li, Guan-Wei; Kuo, Yi-Ching; Tsai, Pei-I.; Lee, Chih-Kung

    2014-03-01

    Tuberculosis (TB) is an ancient disease constituted a long-term menace to public health. According to World Health Organization (WHO), mycobacterium tuberculosis (MTB) infected nearly a third of people of the world. There is about one new TB occurrence every second. Interferon-gamma (IFN-γ) is associated with susceptibility to TB, and interferongamma release assays (IGRA) is considered to be the best alternative of tuberculin skin test (TST) for diagnosis of latent tuberculosis infection (LTBI). Although significant progress has been made with regard to the design of enzyme immunoassays for IFN-γ, adopting this assay is still labor-intensive and time-consuming. To alleviate these drawbacks, we used IFN-γ antibody to facilitate the detection of IFN-γ. An experimental verification on the performance of IGRA was done in this research. We developed two biosensor configurations, both of which possess high sensitivity, specificity, and rapid IFN-γ diagnoses. The first is the electrochemical method. The second is a circular polarization interferometry configuration, which incorporates two light beams with p-polarization and s-polarization states individually along a common path, a four photo-detector quadrature configuration to arrive at a phase modulated ellipsometer. With these two methods, interaction between IFN-γ antibody and IFN-γ were explored and presented in detail.

  10. Direct immobilization of antibodies on a new polymer film for fabricating an electrochemical impedance immunosensor.

    PubMed

    Zhang, Xiangyang; Shen, Guangyu; Shen, Youming; Yin, Dan; Zhang, Chunxiang

    2015-09-15

    A new polymer bearing aldehyde groups was designed and synthesized by grafting 4-pyridinecarboxaldehyde onto poly(epichlorohydrin). Antibodies can be directly immobilized on the surface of the polymer film through the covalent bonding of aldehyde groups of the film with amino groups of antibodies. In this study, human immunoglobulin G (IgG) was used as a model analyte for the fabrication of an electrochemical impedance immunosensor. Using the proposed immunosensor, IgG in the range from 0.1 to 80 ng ml(-1) was detected with a detection limit of 0.07 ng ml(-1) (signal/noise [S/N]=3). In addition, the electrochemical impedance immunosensor displays good stability and reproducibility.

  11. Electrochemical impedance analysis of spray deposited CZTS thin film: Effect of Se introduction

    NASA Astrophysics Data System (ADS)

    Patil, Swati J.; Lokhande, Vaibhav C.; Lee, Dong-Weon; Lokhande, Chandrakant D.

    2016-08-01

    The present work deals with electrochemical impedance analysis of spray deposited Cu2ZnSnS4 (CZTS) thin films grown on fluorine doped tin oxide (FTO) substrates and effect of post Se introduction. The CZTS thin films are characterized using X-ray diffraction (XRD), X-Ray photo spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM) and UV-Vis spectroscopy techniques. The electrochemical measurements are carried out using impedance analysis spectroscopy. The strong peak in XRD pattern along (112) plane confirms the Kestrite crystal structure of CZTS film. The FE-SEM analysis reveals that nanoflakes contain crack-free surface microstructure changes with post Se introucation. The optical study reveals that absorption increases with Se dipping time and observed lower band gap of 1.31 eV. Introduction of Se in CZTS film results an improvement in the grain size and surface morphology which leads to increased electrical conductivity of CZTS film.

  12. Integration of Faradaic electrochemical impedance spectroscopy into a scalable surface plasmon biosensor for in tandem detection.

    PubMed

    Hong, Brandon; Sun, Alexander; Pang, Lin; Venkatesh, A G; Hall, Drew; Fainman, Yeshaiahu

    2015-11-16

    We present an integrated label-free biosensor based on surface plasmon resonance (SPR) and Faradaic electrochemical impedance spectroscopy (f-EIS) sensing modalities, for the simultaneous detection of biological analytes. Analyte detection is based on the angular spectroscopy of surface plasmon resonance and the extraction of charge transfer resistance values from reduction-oxidation reactions at the gold surface, as responses to functionalized surface binding events. To collocate the measurement areas and fully integrate the modalities, holographically exposed thin-film gold SPR-transducer gratings are patterned into coplanar electrodes for tandem impedance sensing. Mutual non-interference between plasmonic and electrochemical measurement processes is shown, and using our scalable and compact detection system, we experimentally demonstrate biotinylated surface capture of neutravidin concentrations as low as 10 nM detection, with a 5.5 nM limit of detection.

  13. Oxidative dissolution of chalcopyrite by Acidithiobacillus ferrooxidans analyzed by electrochemical impedance spectroscopy and atomic force microscopy.

    PubMed

    Bevilaqua, D; Diéz-Perez, I; Fugivara, C S; Sanz, F; Benedetti, A V; Garcia, O

    2004-08-01

    The microbiological leaching of chalcopyrite (CuFeS(2)) is of great interest because of its potential application to many CuFeS(2)-rich ore materials. However, the efficiency of the microbiological process is very limited because this mineral is one of the most refractory to bacterial attack. Knowledge of bacterial role during chalcopyrite oxidation is very important in order to improve the efficiency of bioleaching operation. The oxidative dissolution of a massive chalcopyrite electrode by Acidithiobacillus ferrooxidans was evaluated by electrochemical impedance spectroscopy (EIS) and atomic force microscopy (AFM). A massive chalcopyrite electrode was utilized in a Tait-type electrochemical cell in acid medium for different immersion times in the presence or absence of bacterium. The differences observed in the impedance diagrams were correlated with the adhesion process of bacteria on the mineral surface. PMID:15219250

  14. Tethered bilayer lipid membranes studied by simultaneous attenuated total reflectance infrared spectroscopy and electrochemical impedance spectroscopy

    PubMed Central

    Erbe, Andreas; Bushby, Richard J.; Evans, Stephen D.; Jeuken, Lars J. C.

    2013-01-01

    The formation of tethered lipid bilayer membranes (tBLMs) from unilamelar vesicles of egg yolk phosphatidylcholine (EggPC) on mixed self–assembled monolayers (SAMs) from varying ratios of 6-mercaptohexanol and EO3Cholesteryl on gold has been monitored by simultaneous attenuated total reflectance fourier transform infrared (ATR–FTIR) spectroscopy and electrochemical impedance spectroscopy (EIS). The influence of the lipid orientation (and hence the anisotropy) of lipids on a gold film on the dichroic ratio was studied by simulations of spectra with a matrix method for anisotropic layers. It is shown that for certain tilt angles of the dielectric tensor of the adsorbed anisotropic layer dispersive and negative absorption bands are possible. The experimental data indicates that the structure of the assemblies obtained varies with varying SAM composition. On SAMs with a high content of EO3Cholesteryl, tBLMs with reduced fluidity are formed. For SAMs with high content of 6-mercaptohexanol, the results are consistent with the adsorption of flattened vesicles, while spherical vesicles have been found in a small range of surface compositions. The kinetics of the adsorption process is consistent with the assumption of spherical vesicles as long–living intermediates for surfaces of high 6-mercaptohexanol content. No long–living spherical vesicles have been detected for surfaces with large fraction of EO3Cholesteryl tethers. The observed differences between the surfaces suggest that for the formation of tBLMs (unlike supported BLMs) no critical surface coverage of vesicles is needed prior to lipid bilayer formation. PMID:17388505

  15. Critical View on Electrochemical Impedance Spectroscopy Using the Ferri/Ferrocyanide Redox Couple at Gold Electrodes.

    PubMed

    Vogt, Stephan; Su, Qiang; Gutiérrez-Sánchez, Cristina; Nöll, Gilbert

    2016-04-19

    Electrochemical or faradaic impedance spectroscopy (EIS) using the ferri/ferrocyanide couple as a redox probe at gold working electrodes was evaluated with respect to its ability to monitor consecutive surface modification steps. As a model reaction, the reversible hybridization and dehybridization of DNA was studied. Thiol-modified single stranded DNA (ssDNA, 20 bases, capture probe) was chemisorbed to a gold electrode and treated with a solution of short thiols to release nonspecifically adsorbed DNA before hybridization with complementary ssDNA (20 bases, target) was carried out. Reversible dehybridization was achieved by intense rinsing with pure water. The experimental procedures were optimized by kinetic surface plasmon resonance (SPR) and quartz crystal microbalance with dissipation (QCM-D) measurements to maximize the increase in reflectivity or decrease in frequency upon hybridization before hybridization/dehybridization was also monitored by EIS. In contrast to SPR and QCM-D, repeatable EIS measurements were not possible at first. Combined SPR/EIS and QCM-D/EIS measurements revealed that during EIS the gold surface is seriously damaged due to the presence of CN(-) ions, which are released from the ferri/ferrocyanide redox probe. Even at optimized experimental conditions, etching the gold electrodes could not be completely suppressed and the repeatability of the EIS measurements was limited. In three out of four experimental runs, only two hybridization/dehybridization steps could be monitored reversibly by EIS. Thereafter etching the gold electrode significantly contributed to the EIS spectra whereas the QCM-D response was still repeatable. Hence great care has to be taken when this technique is used to monitor surface modification at gold electrodes.

  16. Critical View on Electrochemical Impedance Spectroscopy Using the Ferri/Ferrocyanide Redox Couple at Gold Electrodes.

    PubMed

    Vogt, Stephan; Su, Qiang; Gutiérrez-Sánchez, Cristina; Nöll, Gilbert

    2016-04-19

    Electrochemical or faradaic impedance spectroscopy (EIS) using the ferri/ferrocyanide couple as a redox probe at gold working electrodes was evaluated with respect to its ability to monitor consecutive surface modification steps. As a model reaction, the reversible hybridization and dehybridization of DNA was studied. Thiol-modified single stranded DNA (ssDNA, 20 bases, capture probe) was chemisorbed to a gold electrode and treated with a solution of short thiols to release nonspecifically adsorbed DNA before hybridization with complementary ssDNA (20 bases, target) was carried out. Reversible dehybridization was achieved by intense rinsing with pure water. The experimental procedures were optimized by kinetic surface plasmon resonance (SPR) and quartz crystal microbalance with dissipation (QCM-D) measurements to maximize the increase in reflectivity or decrease in frequency upon hybridization before hybridization/dehybridization was also monitored by EIS. In contrast to SPR and QCM-D, repeatable EIS measurements were not possible at first. Combined SPR/EIS and QCM-D/EIS measurements revealed that during EIS the gold surface is seriously damaged due to the presence of CN(-) ions, which are released from the ferri/ferrocyanide redox probe. Even at optimized experimental conditions, etching the gold electrodes could not be completely suppressed and the repeatability of the EIS measurements was limited. In three out of four experimental runs, only two hybridization/dehybridization steps could be monitored reversibly by EIS. Thereafter etching the gold electrode significantly contributed to the EIS spectra whereas the QCM-D response was still repeatable. Hence great care has to be taken when this technique is used to monitor surface modification at gold electrodes. PMID:26990929

  17. Electrochemical emission and impedance spectroscopies of passive iron and carbon steel

    NASA Astrophysics Data System (ADS)

    Liu, Jun

    A high fidelity in situ technique for measuring electrochemical noise data on carbon steel in alkaline solutions, referred to as Electrochemical Emission Spectroscopy (EES), or Electrochemical Noise Measurement (ENM), has been developed in this thesis as a means of monitoring general corrosion and pitting corrosion on carbon steel in simulated DOE nuclear waste storage systems and to develop a better understanding of the corrosion processes of carbon steel in these environments. The data acquisition system is essential to the accuracy of voltage and current measurements and the validity of experimental data for further analysis. Time and frequency domain analyses display different characteristics for general corrosion and pitting corrosion. DOE raw noise data analysis shows that the penetration corrosion rate in liquid/sludge phases is in the order of 10-2--10-3 mm/year for the carbon steel-lined tanks in the DOE waste environments. In addition, good correlation has been observed between EES and traditional Linear Polarization Resistance (LPR) method in detecting the corrosion rates of carbon steel. The passive state on iron in EDTA (ethylene diammine tetra acetic acid, disodium salt, C10H14N2Na2O 8)-containing borate buffer solutions of pH ranging from 8.15 to 12.87 at ambient temperature has been explored using Electrochemical Impedance Spectroscopy (EIS), another powerful in situ electrochemical method for investigating steady-state electrochemical and corrosion systems. It has been found that frequency sweep range, perturbation voltage amplitude, solution pH, and film formation voltage are important factors to influence the impedance of passive iron. The steady-state passive films formed on iron have been shown to satisfy the conditions of linearity, causality, stability and finiteness, on the basis of the good agreement observed between the experimental impedance data and the Kramers-Kronig transforms calculated data over most of the frequency range employed

  18. Raman spectra of aligned carbon micro-coils and their impedance characteristics under loads

    NASA Astrophysics Data System (ADS)

    Tao, Wang; Yabo, Zhu; Heliang, Fan; Zhicheng, Ju; Lei, Chen; Zhengyuan, Wang

    2014-02-01

    Scanning and transmission electron microscopy were used to characterize the morphology of the carbon microcoils (CMCs). The Raman spectra showed that CMCs had local regular structure as ID/IG = 0.841. Then, aligned CMCs/silicone-rubber composites (5 × 5 × 1 mm3) were fabricated by coating of silicone rubber on the CMCs. Their alternating current impedance characteristics were measured as a function of applied load and the pressure sensitivity was discussed. The results showed that the impedance decreased as the increasing applied load, and the sample with less CMCs owned high pressure sensitivity, which indicated a novel composite film could act as an alternative of tactile sensor.

  19. Electrochemical impedance spectroscopy of metal alloys in the space transportation system launch environment

    NASA Technical Reports Server (NTRS)

    Calle, Luz

    1990-01-01

    AC impedance measurements were performed to investigate the corrosion resistance of 18 alloys under conditions similar to the Space Transportation System (STS) launch environment. The alloys were: (1) zirconium 702; (2) Hastelloy C-22, C-276, C-4, and B-2; (3) Inconel 600 and 825; (4) Ferralium 255; (5) Inco Alloy G-3; (6) 20Cb-3; (7) SS 904L, 304LN, 316L, 317L, and 304L; (8) ES 2205; and (9) Monel 400. AC impedance data were gathered for each alloy at various immersion times in 3.55 percent NaCl-0.1N HCl. Polarization resistance values were obtained for the Nyguist plots at each immersion time using the EQUIVALENT CIRCUIT software package available with the 388 electrochemical impedance software. Hastelloy C-22 showed the highest overall values for polarization resistance while Monel 400 and Inconel 600 had the lowest overall values. There was good general correlation between the corrosion performance of the alloys at the beach corrosion testing site, and the expected rate of corrosion as predicted based on the polarization resistance values obtained. The data indicate that electrochemical impedance spectroscopy can be used to predict the corrosion performance of metal alloys.

  20. A new lithium-ion battery internal temperature on-line estimate method based on electrochemical impedance spectroscopy measurement

    NASA Astrophysics Data System (ADS)

    Zhu, J. G.; Sun, Z. C.; Wei, X. Z.; Dai, H. F.

    2015-01-01

    The power battery thermal management problem in EV (electric vehicle) and HEV (hybrid electric vehicle) has been widely discussed, and EIS (electrochemical impedance spectroscopy) is an effective experimental method to test and estimate the status of the battery. Firstly, an electrochemical-based impedance matrix analysis for lithium-ion battery is developed to describe the impedance response of electrochemical impedance spectroscopy. Then a method, based on electrochemical impedance spectroscopy measurement, has been proposed to estimate the internal temperature of power lithium-ion battery by analyzing the phase shift and magnitude of impedance at different ambient temperatures. Respectively, the SoC (state of charge) and temperature have different effects on the impedance characteristics of battery at various frequency ranges in the electrochemical impedance spectroscopy experimental study. Also the impedance spectrum affected by SoH (state of health) is discussed in the paper preliminary. Therefore, the excitation frequency selected to estimate the inner temperature is in the frequency range which is significantly influenced by temperature without the SoC and SoH. The intrinsic relationship between the phase shift and temperature is established under the chosen excitation frequency. And the magnitude of impedance related to temperature is studied in the paper. In practical applications, through obtaining the phase shift and magnitude of impedance, the inner temperature estimation could be achieved. Then the verification experiments are conduced to validate the estimate method. Finally, an estimate strategy and an on-line estimation system implementation scheme utilizing battery management system are presented to describe the engineering value.

  1. Impedance spectra classification for determining the state of charge on a lithium iron phosphate cell using a support vector machine

    NASA Astrophysics Data System (ADS)

    Jansen, P.; Vergossen, D.; Renner, D.; John, W.; Götze, J.

    2015-11-01

    An alternative method for determining the state of charge (SOC) on lithium iron phosphate cells by impedance spectra classification is given. Methods based on the electric equivalent circuit diagram (ECD), such as the Kalman Filter, the extended Kalman Filter and the state space observer, for instance, have reached their limits for this cell chemistry. The new method resigns on the open circuit voltage curve and the parameters for the electric ECD. Impedance spectra classification is implemented by a Support Vector Machine (SVM). The classes for the SVM-algorithm are represented by all the impedance spectra that correspond to the SOC (the SOC classes) for defined temperature and aging states. A divide and conquer based search algorithm on a binary search tree makes it possible to grade measured impedances using the SVM method. Statistical analysis is used to verify the concept by grading every single impedance from each impedance spectrum corresponding to the SOC by class with different magnitudes of charged error.

  2. On-line monitoring of the crystallization process: relationship between crystal size and electrical impedance spectra

    NASA Astrophysics Data System (ADS)

    Zhao, Yanlin; Yao, Jun; Wang, Mi

    2016-07-01

    On-line monitoring of crystal size in the crystallization process is crucial to many pharmaceutical and fine-chemical industrial applications. In this paper, a novel method is proposed for the on-line monitoring of the cooling crystallization process of L-glutamic acid (LGA) using electrical impedance spectroscopy (EIS). The EIS method can be used to monitor the growth of crystal particles relying on the presence of an electrical double layer on the charged particle surface and the polarization of double layer under the excitation of alternating electrical field. The electrical impedance spectra and crystal size were measured on-line simultaneously by an impedance analyzer and focused beam reflectance measurement (FBRM), respectively. The impedance spectra were analyzed using the equivalent circuit model and the equivalent circuit elements in the model can be obtained by fitting the experimental data. Two equivalent circuit elements, including capacitance (C 2) and resistance (R 2) from the dielectric polarization of the LGA solution and crystal particle/solution interface, are in relation with the crystal size. The mathematical relationship between the crystal size and the equivalent circuit elements can be obtained by a non-linear fitting method. The function can be used to predict the change of crystal size during the crystallization process.

  3. Mapping Electrical Impedance Spectra of the Healthy Oral Mucosa: a Pilot Study

    PubMed Central

    Richter, Ivica; Alajbeg, Ivan; Boras, Vanja Vučićević; Rogulj, Ana Andabak

    2015-01-01

    Objective Electrical impedance is the resistance to the electric current flow through a tissue and depends on the tissue’s structure and chemical composition. The aim of this study was to map electrical impedance spectra for each region of the healthy oral mucosa. Materials and Methods Electrical impedance was measured in 30 participants with healthy oral mucosa. Measurements were performed in 14 points on the right and the left side of the oral cavity, and repeated after 7 and 14 days respectively. Results The lowest values were measured on the tongue dorsum and the highest values were measured on the hard palate. No significant differences were found between the right and the left side. Significantly higher values were found in females on the upper labial mucosa, tongue dorsum and the ventral tongue. Significant difference between smokers and non-smokers on the lower labial mucosa and floor of the mouth was found. Electrical impedance was negatively correlated with salivary flow on the upper labial mucosa, hard palate, tongue dorsum and sublingual mucosa. Higher variability of measurements was found at low frequencies. Conclusions Electrical impedance mostly depends on the degree of mucosal keratinization. Demographic and clinical factors probably affect its values. Further studies with bigger number of participants are required. PMID:27688418

  4. Mapping Electrical Impedance Spectra of the Healthy Oral Mucosa: a Pilot Study

    PubMed Central

    Richter, Ivica; Alajbeg, Ivan; Boras, Vanja Vučićević; Rogulj, Ana Andabak

    2015-01-01

    Objective Electrical impedance is the resistance to the electric current flow through a tissue and depends on the tissue’s structure and chemical composition. The aim of this study was to map electrical impedance spectra for each region of the healthy oral mucosa. Materials and Methods Electrical impedance was measured in 30 participants with healthy oral mucosa. Measurements were performed in 14 points on the right and the left side of the oral cavity, and repeated after 7 and 14 days respectively. Results The lowest values were measured on the tongue dorsum and the highest values were measured on the hard palate. No significant differences were found between the right and the left side. Significantly higher values were found in females on the upper labial mucosa, tongue dorsum and the ventral tongue. Significant difference between smokers and non-smokers on the lower labial mucosa and floor of the mouth was found. Electrical impedance was negatively correlated with salivary flow on the upper labial mucosa, hard palate, tongue dorsum and sublingual mucosa. Higher variability of measurements was found at low frequencies. Conclusions Electrical impedance mostly depends on the degree of mucosal keratinization. Demographic and clinical factors probably affect its values. Further studies with bigger number of participants are required.

  5. Position dependent analysis of membrane electrode assembly degradation of a direct methanol fuel cell via electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Hartmann, Peter; Zamel, Nada; Gerteisen, Dietmar

    2013-11-01

    The performance of a direct methanol fuel cell MEA degraded during an operational period of more than 3000 h in a stack is locally examined using electrochemical impedance spectroscopy. Therefore, after disassembling the MEA is cut into small pieces and analyzed in a 1 cm2 test cell. Using a reference electrode, we were capable of measuring the anode and cathode spectra separately. The spectra of the segments at different positions do not follow a specified trend from methanol inlet to outlet of the stack flow field. The anode spectra were analyzed with an equivalent circuit simulation. The conductance of the charge transfer was found to increase with current density up to a point where a raising limitation process of the complex methanol oxidation dominates, which is not a bottleneck at low current density. Further, an increase of the double layer capacitance with current density was observed. The diffusion resistance was calculated as an effective diffusion coefficient in the order of 10-10 m2 s-1; implying that the diffusion limitation is not the bulk diffusion in the backing layer. Finally, the degree of poisoning of the catalysts by carbon monoxide was measured as a pseudo inductive arc and decreases with increasing current.

  6. Electrochemical Impedance Studies on Single and Multi-Walled Carbon Nanotubes--Polymer Nanocomposites for Biosensors Development.

    PubMed

    Tertiş, Mihaela; Florea, Anca; Feier, Bogdan; Marian, Iuliu Ovidiu; Silaghi-Dumitrescu, Luminţa; Cristea, Alexandru; Săndulescu, Robert; Cristea, Cecilia

    2015-05-01

    Advances in nanoscience have allowed scientists to incorporate new nanomaterials in biosensing platforms. Carbon nanotubes are nanomaterials that facilitate the charge transfer between the bioelement and the transducer. Electrochemical impedance spectroscopy is a useful technique for the modified surface characterization. In the present approach electrochemical impedance spectroscopy was used to characterize the electrodes modified with different types of carbon nanotubes (single and multi-wall) according to their morphology and electrochemical behavior. By using Nyquist and Bode diagrams it was possible to assign the appropriate circuit considering all possible contributors. The charge transfer resistances as well as the time constants were calculated for all five types of investigated carbon nanotubes.

  7. Electrochemical impedance measurement of prostate cancer cells using carbon nanotube array electrodes in a microfluidic channel

    NASA Astrophysics Data System (ADS)

    Heung Yun, Yeo; Dong, Zhongyun; Shanov, Vesselin N.; Schulz, Mark J.

    2007-11-01

    Highly aligned multi-wall carbon nanotubes were synthesized in the shape of towers and embedded into fluidic channels as electrodes for impedance measurement of LNCaP human prostate cancer cells. Tower electrodes up to 8 mm high were grown and easily peeled off a silicon substrate. The nanotube electrodes were then successfully soldered onto patterned printed circuit boards and cast into epoxy under pressure. After polishing the top of the tower electrodes, RF plasma was used to enhance the electrocatalytic effect by removing excess epoxy and activating the open end of the nanotubes. Electrodeposition of Au particles on the plasma-treated tower electrodes was done at a controlled density. Finally, the nanotube electrodes were embedded into a polydimethylsiloxane (PDMS) channel and electrochemical impedance spectroscopy was carried out with different conditions. Preliminary electrochemical impedance spectroscopy results using deionized water, buffer solution, and LNCaP prostate cancer cells showed that nanotube electrodes can distinguish the different solutions and could be used in future cell-based biosensor development.

  8. A regenerating ultrasensitive electrochemical impedance immunosensor for the detection of adenovirus.

    PubMed

    Lin, Donghai; Tang, Thompson; Harrison, D Jed; Lee, William E; Jemere, Abebaw B

    2015-06-15

    We report on the development of a regenerable sensitive immunosensor based on electrochemical impedance spectroscopy for the detection of type 5 adenovirus. The multi-layered immunosensor fabrication involved successive modification steps on gold electrodes: (i) modification with self-assembled layer of 1,6-hexanedithiol to which gold nanoparticles were attached via the distal thiol groups, (ii) formation of self-assembled monolayer of 11-mercaptoundecanoic acid onto the gold nanoparticles, (iii) covalent immobilization of monoclonal anti-adenovirus 5 antibody, with EDC/NHS coupling reaction on the nanoparticles, completing the immunosensor. The immunosensor displayed a very good detection limit of 30 virus particles/ml and a wide linear dynamic range of 10(5). An electrochemical reductive desorption technique was employed to completely desorb the components of the immunosensor surface, then re-assemble the sensing layer and reuse the sensor. On a single electrode, the multi-layered immunosensor could be assembled and disassembled at least 30 times with 87% of the original signal intact. The changes of electrode behavior after each assembly and desorption processes were investigated by cyclic voltammetry, electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy techniques. PMID:25562739

  9. Characterization of implant materials in fetal bovine serum and sodium sulfate by electrochemical impedance spectroscopy. I. Mechanically polished samples.

    PubMed

    Contu, F; Elsener, B; Böhni, H

    2002-12-01

    Electrochemical impedance spectroscopy is used to monitor the long-term stability (up to 150 days) of mechanically polished commercial pure titanium, Ti6Al4V, Ti6Al7Nb, and CoCrMo alloys in 0.1M sodium sulfate and fetal bovine serum. A capacitive spectrum in the frequency range from 10(-3) to 10(5) Hz is always found and the impedance spectra can be fitted by a simple parallel RC circuit with a constant phase element. The open circuit potential observed in serum is always more cathodic and the polarization resistance (R(p)) is higher than that recorded in sodium sulfate solutions. The observed variation of the equivalent capacitance in serum bovine suggests that an adsorption layer of organic molecules develops on the electrode surface and it is responsible for both the decrease in open circuit potential and the higher R(p), because it hinders the oxygen evolution reaction and the charge transfer responsible for the passive film dissolution (or growth). Among the alloys studied, Ti6Al4V displayed the highest steady-state values of R(p) both in serum and in sodium sulfate.

  10. Evaluation of corrosion resistance of aluminium coating with and without annealing against molten carbonate using electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Ni, C. S.; Lu, L. Y.; Zeng, C. L.; Niu, Y.

    2014-09-01

    An arc ion plating (AIP) was used to fabricate a FeAl layer on 310S stainless steel to protect the sealing area being corroded by the molten carbonate in molten carbonate fuel cells (MCFCs). The degradation of aluminide coatings comes from both the corrosion of the coating in contact with the molten carbonate and the aluminium depletion due to the interdiffusion of aluminium and the substrate. The in-situ forming of aluminide in molten carbonate at 650 °C could be a possible way to reduce the inward diffusion of aluminium in the conventional pre-annealing at 850 °C. Electrochemical impedance spectroscopy (EIS) measurements were performed to model the corrosion of this pre-formed FeAl coating in comparison with the one formed in-situ in molten (0.62 Li+0.38 K)2CO3 at 650 °C. Although α-LiAlO2 is the corrosion product in both cases, the impedance spectra show distinct rate-limiting steps; the former is controlled by the charged particles passing through the scale, while the latter by their diffusion in the melt. The microstructure of the scale might be the reason for the difference in corrosion mechanism.

  11. Single cells and intracellular processes studied by a plasmonic-based electrochemical impedance microscopy

    PubMed Central

    Wang, Wei; Foley, Kyle; Shan, Xiaonan; Wang, Shaopeng; Eaton, Seron; Nagaraj, Vinay J; Wiktor, Peter; Patel, Urmez; Tao, Nongjian

    2012-01-01

    We report an electrochemical impedance microscope (EIM) based on surface plasmon resonance. The new EIM can resolve local impedance with sub-micron spatial resolution, and monitor dynamics of various processes, such as apoptosis and electroporation of individual cells with millisecond time resolution. The high spatial and temporal resolution images make it possible to not only study individual cells, but also resolve the sub-cellular structures and processes without labels. The detection sensitivity achieved with the current setup is ~2 pS, which is excellent considering the conductance of a single ion channel is in the range of 5–400 pS. We describe also a model that simulates the EIM images of cells based on local dielectric constant and conductivity. PMID:21336333

  12. Proton Diffusion Coefficient in Electrospun Hybrid Membranes by Electrochemical Impedance Spectroscopy.

    PubMed

    Dos Santos, Leslie; Laberty-Robert, Christel; Maréchal, Manuel; Perrot, Hubert; Sel, Ozlem

    2015-09-15

    Electrochemical Impedance Spectroscopy (EIS) was, for the first time, used to estimate the global transverse proton diffusion coefficient, D(H+)(EHM), in electrospun hybrid conducting membranes (EHMs). In contrast to conventional impedance spectroscopy, EIS measurements were performed at room temperature with a liquid interface. In this configuration, the measure of the bulk proton transport is influenced by the kinetics of the transfer of proton at the solid/liquid interface. We demonstrated that the use of additives in the process of the membrane impacts the organization of the hydrophilic domains and also the proton transport. The D(H+)(EHM) is close to 1.10(-7) cm(2) s(-1) (± 0.1.10(-7) cm(2) s(-1)) for the EHMs without additive, whereas it is 4.10(-6) cm(2) s(-1) (± 0.4.10(-6) cm(2) s(-1)) for EHMs with additives.

  13. Electrochemical Impedance Sensors for Monitoring Trace Amounts of NO3 in Selected Growing Media

    PubMed Central

    Ghaffari, Seyed Alireza; Caron, William-O.; Loubier, Mathilde; Normandeau, Charles-O.; Viens, Jeff; Lamhamedi, Mohammed S.; Gosselin, Benoit; Messaddeq, Younes

    2015-01-01

    With the advent of smart cities and big data, precision agriculture allows the feeding of sensor data into online databases for continuous crop monitoring, production optimization, and data storage. This paper describes a low-cost, compact, and scalable nitrate sensor based on electrochemical impedance spectroscopy for monitoring trace amounts of NO3− in selected growing media. The nitrate sensor can be integrated to conventional microelectronics to perform online nitrate sensing continuously over a wide concentration range from 0.1 ppm to 100 ppm, with a response time of about 1 min, and feed data into a database for storage and analysis. The paper describes the structural design, the Nyquist impedance response, the measurement sensitivity and accuracy, and the field testing of the nitrate sensor performed within tree nursery settings under ISO/IEC 17025 certifications. PMID:26197322

  14. Electrochemical Impedance Sensors for Monitoring Trace Amounts of NO3 in Selected Growing Media.

    PubMed

    Ghaffari, Seyed Alireza; Caron, William-O; Loubier, Mathilde; Normandeau, Charles-O; Viens, Jeff; Lamhamedi, Mohammed S; Gosselin, Benoit; Messaddeq, Younes

    2015-07-21

    With the advent of smart cities and big data, precision agriculture allows the feeding of sensor data into online databases for continuous crop monitoring, production optimization, and data storage. This paper describes a low-cost, compact, and scalable nitrate sensor based on electrochemical impedance spectroscopy for monitoring trace amounts of NO3- in selected growing media. The nitrate sensor can be integrated to conventional microelectronics to perform online nitrate sensing continuously over a wide concentration range from 0.1 ppm to 100 ppm, with a response time of about 1 min, and feed data into a database for storage and analysis. The paper describes the structural design, the Nyquist impedance response, the measurement sensitivity and accuracy, and the field testing of the nitrate sensor performed within tree nursery settings under ISO/IEC 17025 certifications.

  15. Electrochemical Impedance Sensors for Monitoring Trace Amounts of NO3 in Selected Growing Media.

    PubMed

    Ghaffari, Seyed Alireza; Caron, William-O; Loubier, Mathilde; Normandeau, Charles-O; Viens, Jeff; Lamhamedi, Mohammed S; Gosselin, Benoit; Messaddeq, Younes

    2015-01-01

    With the advent of smart cities and big data, precision agriculture allows the feeding of sensor data into online databases for continuous crop monitoring, production optimization, and data storage. This paper describes a low-cost, compact, and scalable nitrate sensor based on electrochemical impedance spectroscopy for monitoring trace amounts of NO3- in selected growing media. The nitrate sensor can be integrated to conventional microelectronics to perform online nitrate sensing continuously over a wide concentration range from 0.1 ppm to 100 ppm, with a response time of about 1 min, and feed data into a database for storage and analysis. The paper describes the structural design, the Nyquist impedance response, the measurement sensitivity and accuracy, and the field testing of the nitrate sensor performed within tree nursery settings under ISO/IEC 17025 certifications. PMID:26197322

  16. Electrochemical Impedance Spectroscopy Study on Corrosion Protection of Acrylate Nanocomposite on Mild Steel Doped Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Mahmud, M. R.; Akhir, M. M.; Shamsudin, M. S.; Afaah, A. N.; Aadila, A.; Asib, N. A. M.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Harun, M. K.; Rusop, M.; Abdullah, S.

    2015-05-01

    Acrylate:carbon nanotubes (A:CNTs) nanocomposite thin film was prepared by sol- gel technique. The corrosion coating protection of acrylate:carbon nanotubes (CNTs) nanocomposite thin film has been coated on mild steel characterised by electrochemical impedance spectrometer (EIS) measurement and equivalent circuit model are employed to analyse coating impedance for corrosion protection. In this study, 3.5 w/v % sodium chloride (NaCl) solution was immersed the acrylate:carbon nanotubes nanocomposite thin film. As the results, the surface morphology were found that there formation of carbon nanotubes with good distribution on acrylate-based coating. From EIS measurement, A:CNTs nanocomposite thin film with 0.4 w/v % contain of CNTs was exhibited the highest coating impedance from Nyquist graph after immersed in sodium chloride solution and may provide the excellent corrosion protection. The Bode plots have shown the impedance is high at the beginning from the time at high frequency and slightly decreases with value of frequency become smaller.

  17. Comparative study of electrolyte additives using electrochemical impedance spectroscopy on symmetric cells

    NASA Astrophysics Data System (ADS)

    Petibon, R.; Sinha, N. N.; Burns, J. C.; Aiken, C. P.; Ye, Hui; VanElzen, Collette M.; Jain, Gaurav; Trussler, S.; Dahn, J. R.

    2014-04-01

    The effect of various electrolyte additives and additive combinations added to a 1 M LiPF6 EC:EMC electrolyte on the positive and negative electrodes surface of 1 year old wound LiCoO2/graphite cells and Li[Ni0.4Mn0.4Co0.2])O2/graphite cells was studied using electrochemical impedance spectroscopy (EIS) on symmetric cells. The additives tested were: vinylene carbonate (VC), trimethoxyboroxine (TMOBX), fluoroethylene carbonate (FEC), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), and H2O alone or in combination. In general, compared to control electrolyte, the additives tested reduced the impedance of the positive electrode and increased the impedance of the negative electrode with the exception of LiTFSI in Li[Ni0.4Mn0.4Co0.2]O2/graphite wound cells. Higher charge voltage led to higher positive electrode impedance, with the exception of 2%VC + 2% FEC, and 2% LiTFSI. In some cases, some additives when mixed with another controlled the formation of the SEI at one electrode, and shared the formation of the SEI at one electrode when mixed with a different additive.

  18. Label-Free Toxin Detection by Means of Time-Resolved Electrochemical Impedance Spectroscopy

    PubMed Central

    Chai, Changhoon; Takhistov, Paul

    2010-01-01

    The real-time detection of trace concentrations of biological toxins requires significant improvement of the detection methods from those reported in the literature. To develop a highly sensitive and selective detection device it is necessary to determine the optimal measuring conditions for the electrochemical sensor in three domains: time, frequency and polarization potential. In this work we utilized a time-resolved electrochemical impedance spectroscopy for the detection of trace concentrations of Staphylococcus enterotoxin B (SEB). An anti-SEB antibody has been attached to the nano-porous aluminum surface using 3-aminopropyltriethoxysilane/glutaraldehyde coupling system. This immobilization method allows fabrication of a highly reproducible and stable sensing device. Using developed immobilization procedure and optimized detection regime, it is possible to determine the presence of SEB at the levels as low as 10 pg/mL in 15 minutes. PMID:22315560

  19. Investigation of the suppression effect of polyethylene glycol on copper electroplating by electrochemical impedance spectroscopy

    SciTech Connect

    Hung, C.-C.; Lee, W.-H.; Wang, Y.-L.; Chan, D.-Y.; Hwang, G.-J.

    2008-09-15

    Polyethylene glycol (PEG) is an additive that is commonly used as a suppressor in the semiconductor copper (Cu)-electroplating process. In this study, electrochemical impedance spectroscopy (EIS) was used to analyze the electrochemical behavior of PEG in the Cu-electroplating process. Polarization analysis, cyclic-voltammetry stripping, and cell voltage versus plating time were examined to clarify the suppression behavior of PEG. The equivalent circuit simulated from the EIS data shows that PEG inhibited the Cu-electroplating rate by increasing the charge-transfer resistance as well as the resistance of the adsorption layer. The presence of a large inductance demonstrated the strong adsorption of cuprous-PEG-chloride complexes on the Cu surface during the Cu-electroplating process. Increasing the PEG concentration appears to increase the resistances of charge transfer, the adsorption layer, and the inductance of the electroplating system.

  20. Interface Design for CMOS-Integrated Electrochemical Impedance Spectroscopy (EIS) Biosensors

    PubMed Central

    Manickam, Arun; Johnson, Christopher Andrew; Kavusi, Sam; Hassibi, Arjang

    2012-01-01

    Electrochemical Impedance Spectroscopy (EIS) is a powerful electrochemical technique to detect biomolecules. EIS has the potential of carrying out label-free and real-time detection, and in addition, can be easily implemented using electronic integrated circuits (ICs) that are built through standard semiconductor fabrication processes. This paper focuses on the various design and optimization aspects of EIS ICs, particularly the bio-to-semiconductor interface design. We discuss, in detail, considerations such as the choice of the electrode surface in view of IC manufacturing, surface linkers, and development of optimal bio-molecular detection protocols. We also report experimental results, using both macro- and micro-electrodes to demonstrate the design trade-offs and ultimately validate our optimization procedures. PMID:23202170

  1. Electrochemical impedance spectroscopy of preoxidized MA 956 superalloy during in vitro experiments.

    PubMed

    Escudero, M L; González-Carrasco, J L; García-Alonso, C; Ramírez, E

    1995-06-01

    Preoxidation treatment of MA 956 superalloy at 1100 degrees C produces a fine and tightly adherent alpha-alumina layer at the surface, which provides the alloy with an excellent barrier against a great variety of aggressive environments. In this work the protective capacity of the alumina/alloy system is evaluated in a physiological medium by means of electrochemical impedance spectroscopy. The electrochemical response of the material is modelled by equivalent circuits which provide the most relevant corrosion and protection parameters applicable to MA 956 in both preoxidized and as-received conditions (passivated state). The high protective capacity of preoxidized MA 956 superalloy holds for long-term tests, which indicates that the corrosion phenomena, if any, would be characterized by very slow kinetics. The corrosion resistance of the preoxidized material is at least two orders of magnitude higher than that of the non-treated alloy. PMID:7578779

  2. Algorithm for characteristic parameter estimation of gastric impedance spectra in humans.

    PubMed

    Beltrán, Nohra E; de Folter, Jozefus J M; Godínez, María M; Díaz, Ursina; Sacristán, Emilio

    2007-01-01

    Impedance spectroscopy has been proposed as a method of monitoring mucosal injury due to hypoperfusion and ischemia in the critically ill. The present paper presents an algorithm developed to calculate the characteristic electrical values that best describe human gastric impedance measurements and simplify the information obtained with this method. An impedance spectroscopy probe and nasogastric tube (ISP/NGT) was placed into the stomach of healthy volunteers, cardiovascular surgery and critically ill patients, and a database with 16199 spectra was obtained. The gastric spectrum forms two semi circles in the complex domain, divided into low frequency (F < 10 kHz) and high frequency (F > 10 kHz). A fitting algorithm was developed based on the Cole model, and central characteristic parameters were calculated. The parameters were validated using the normalized mean squared error and 0.66% of the spectra were discarded. From the experimental data obtained in humans, the greatest changes observed as the gastric mucosa becomes ischemic occur at low frequencies, which are specific and sensitive to tissue damage, and vary with the degree of hypoperfusion. PMID:18002911

  3. Optimisation of the hot conditioning of carbon steel surfaces of primary heat transport system of Pressurized Heavy Water Reactors using electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Kiran Kumar, M.; Gaonkar, Krishna; Ghosh, Swati; Kain, Vivekanand; Bojinov, Martin; Saario, Timo

    2010-06-01

    Hot conditioning operation of the primary heat transport system is an important step prior to the commissioning of Pressurized Heavy Water Reactors. One of the major objectives of the operation is to develop a stable and protective magnetite layer on the inner surfaces of carbon steel piping. The correlation between stable magnetite film growth on carbon steel surfaces and the period of exposure to hot conditioning environment is generally established by a combination of weight change measurements and microscopic/morphological observations of the specimens periodically removed during the operation. In the present study, electrochemical impedance spectroscopy (EIS) at room temperature is demonstrated as an alternate, quantitative technique to arrive at an optimal duration of the exposure period. Specimens of carbon steel were exposed for 24, 35 and 48 h during hot conditioning of primary heat transport system of two Indian PHWRs. The composition and morphology of oxide films grown during exposure was characterized by X-ray diffraction and optical microscopy. Further, ex situ electrochemical impedance spectra of magnetite films formed after each exposure were measured, in 1 ppm Li + electrolyte at room temperature as a function of potential in a range of -0.8 to +0.3 VSCE. The defect density of the magnetite films formed after each exposure was estimated by Mott-Schottky analysis of capacitances extracted from the impedance spectra. Further the ionic resistance of the oxide was also extracted from the impedance spectra. Defect density was observed to decrease with increase in exposure time and to saturate after 35 h, indicating stabilisation of the barrier layer part of the magnetite film. The values of the ionic transport resistance start to increase after 35-40 h of exposure. The quantitative ability of EIS technique to assess the film quality demonstrates that it can be used as a supplementary tool to the thickness and morphological characterizations of samples

  4. Raman spectra of aligned carbon micro-coils and their impedance characteristics under loads

    SciTech Connect

    Tao, Wang; Yabo, Zhu Heliang, Fan; Zhicheng, Ju; Lei, Chen; Zhengyuan, Wang

    2014-02-21

    Scanning and transmission electron microscopy were used to characterize the morphology of the carbon microcoils (CMCs). The Raman spectra showed that CMCs had local regular structure as I{sub D}/I{sub G} = 0.841. Then, aligned CMCs/silicone–rubber composites (5 × 5 × 1 mm{sup 3}) were fabricated by coating of silicone rubber on the CMCs. Their alternating current impedance characteristics were measured as a function of applied load and the pressure sensitivity was discussed. The results showed that the impedance decreased as the increasing applied load, and the sample with less CMCs owned high pressure sensitivity, which indicated a novel composite film could act as an alternative of tactile sensor.

  5. Application of electrochemical impedance spectroscopy: A phase behavior study of babassu biodiesel-based microemulsions.

    PubMed

    Pereira, Thulio C; Conceição, Carlos A F; Khan, Alamgir; Fernandes, Raquel M T; Ferreira, Maira S; Marques, Edmar P; Marques, Aldaléa L B

    2016-11-01

    Microemulsions are thermodynamically stable systems of two immiscible liquids, one aqueous and the other of organic nature, with a surfactant and/or co-surfactant adsorbed in the interface between the two phases. Biodiesel-based microemulsions, consisting of alkyl esters of fatty acids, open a new means of analysis for the application of electroanalytical techniques, and is advantageous as it eliminates the required pre-treatment of a sample. In this work, the phase behaviours of biodiesel-based microemulsions were investigated through the electrochemical impedance spectroscopy (EIS) technique. We observed thatan increase in the amount of biodiesel in the microemulsion formulation increases the resistance to charge transfer at the interface. Also, the electrical conductivity measurements revealed that a decrease or increase in electrical properties depends on the amount of biodiesel. EIS studies of the biodiesel-based microemulsion samples showed the presence of two capacitive arcs: one high-frequency and the other low-frequency. Thus, the formulation of microemulsions plays an important role in estimating the electrical properties through the electrochemical impedance spectroscopy technique.

  6. Energy resolved electrochemical impedance spectroscopy for electronic structure mapping in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Nádaždy, V.; Schauer, F.; Gmucová, K.

    2014-10-01

    We introduce an energy resolved electrochemical impedance spectroscopy method to map the electronic density of states (DOS) in organic semiconductor materials. The method consists in measurement of the charge transfer resistance of a semiconductor/electrolyte interface at a frequency where the redox reactions determine the real component of the impedance. The charge transfer resistance value provides direct information about the electronic DOS at the energy given by the electrochemical potential of the electrolyte, which can be adjusted using an external voltage. A simple theory for experimental data evaluation is proposed, along with an explanation of the corresponding experimental conditions. The method allows mapping over unprecedentedly wide energy and DOS ranges. Also, important DOS parameters can be determined directly from the raw experimental data without the lengthy analysis required in other techniques. The potential of the proposed method is illustrated by tracing weak bond defect states induced by ultraviolet treatment above the highest occupied molecular orbital in a prototypical σ-conjugated polymer, poly[methyl(phenyl)silylene]. The results agree well with those of our previous DOS reconstruction by post-transient space-charge-limited-current spectroscopy, which was, however, limited to a narrow energy range. In addition, good agreement of the DOS values measured on two common π-conjugated organic polymer semiconductors, polyphenylene vinylene and poly(3-hexylthiophene), with the rather rare previously published data demonstrate the accuracy of the proposed method.

  7. Comprehensive characterization of all-solid-state thin films commercial microbatteries by Electrochemical Impedance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Larfaillou, S.; Guy-Bouyssou, D.; le Cras, F.; Franger, S.

    2016-07-01

    Constant miniaturization of electronic devices opens the way to the development of thin film microbatteries (TFB). For this type of devices, the use of an all-solid-state thin film technology has many advantages over conventional lithium cells. These microbatteries are thin, bendable and can be produced with a customizable shape for integration in microelectronic devices. Moreover, without liquid electrolyte, they are safer. With the aim to support the industrial production of these TFBs, adequate tools for understanding the electrochemical behavior of the complete microbattery and the identification of their possible failures that can occur have to be developed. In this context, the Electrochemical Impedance Spectroscopy seems to be a good compromise for cells characterization. Widely used for the characterization of liquid electrolyte-based batteries, this technique has been less applied to all solid state batteries, mainly because of the difficulty to work with a two-electrode system. There has been no comprehensive study deeply explaining the impedance evolution during the entire life of a microbattery. In this paper, physical characterizations of individual active materials and aging experiments have been performed in order to undoubtedly assign each EIS contributions, and to propose a more comprehensive electrical model for this family of commercial all-solid-state microbatteries.

  8. Application of electrochemical impedance spectroscopy: A phase behavior study of babassu biodiesel-based microemulsions

    NASA Astrophysics Data System (ADS)

    Pereira, Thulio C.; Conceição, Carlos A. F.; Khan, Alamgir; Fernandes, Raquel M. T.; Ferreira, Maira S.; Marques, Edmar P.; Marques, Aldaléa L. B.

    2016-11-01

    Microemulsions are thermodynamically stable systems of two immiscible liquids, one aqueous and the other of organic nature, with a surfactant and/or co-surfactant adsorbed in the interface between the two phases. Biodiesel-based microemulsions, consisting of alkyl esters of fatty acids, open a new means of analysis for the application of electroanalytical techniques, and is advantageous as it eliminates the required pre-treatment of a sample. In this work, the phase behaviours of biodiesel-based microemulsions were investigated through the electrochemical impedance spectroscopy (EIS) technique. We observed thatan increase in the amount of biodiesel in the microemulsion formulation increases the resistance to charge transfer at the interface. Also, the electrical conductivity measurements revealed that a decrease or increase in electrical properties depends on the amount of biodiesel. EIS studies of the biodiesel-based microemulsion samples showed the presence of two capacitive arcs: one high-frequency and the other low-frequency. Thus, the formulation of microemulsions plays an important role in estimating the electrical properties through the electrochemical impedance spectroscopy technique.

  9. Energy resolved electrochemical impedance spectroscopy for electronic structure mapping in organic semiconductors

    SciTech Connect

    Nádaždy, V. Gmucová, K.; Schauer, F.

    2014-10-06

    We introduce an energy resolved electrochemical impedance spectroscopy method to map the electronic density of states (DOS) in organic semiconductor materials. The method consists in measurement of the charge transfer resistance of a semiconductor/electrolyte interface at a frequency where the redox reactions determine the real component of the impedance. The charge transfer resistance value provides direct information about the electronic DOS at the energy given by the electrochemical potential of the electrolyte, which can be adjusted using an external voltage. A simple theory for experimental data evaluation is proposed, along with an explanation of the corresponding experimental conditions. The method allows mapping over unprecedentedly wide energy and DOS ranges. Also, important DOS parameters can be determined directly from the raw experimental data without the lengthy analysis required in other techniques. The potential of the proposed method is illustrated by tracing weak bond defect states induced by ultraviolet treatment above the highest occupied molecular orbital in a prototypical σ-conjugated polymer, poly[methyl(phenyl)silylene]. The results agree well with those of our previous DOS reconstruction by post-transient space-charge-limited-current spectroscopy, which was, however, limited to a narrow energy range. In addition, good agreement of the DOS values measured on two common π-conjugated organic polymer semiconductors, polyphenylene vinylene and poly(3-hexylthiophene), with the rather rare previously published data demonstrate the accuracy of the proposed method.

  10. Application of electrochemical impedance spectroscopy: A phase behavior study of babassu biodiesel-based microemulsions.

    PubMed

    Pereira, Thulio C; Conceição, Carlos A F; Khan, Alamgir; Fernandes, Raquel M T; Ferreira, Maira S; Marques, Edmar P; Marques, Aldaléa L B

    2016-11-01

    Microemulsions are thermodynamically stable systems of two immiscible liquids, one aqueous and the other of organic nature, with a surfactant and/or co-surfactant adsorbed in the interface between the two phases. Biodiesel-based microemulsions, consisting of alkyl esters of fatty acids, open a new means of analysis for the application of electroanalytical techniques, and is advantageous as it eliminates the required pre-treatment of a sample. In this work, the phase behaviours of biodiesel-based microemulsions were investigated through the electrochemical impedance spectroscopy (EIS) technique. We observed thatan increase in the amount of biodiesel in the microemulsion formulation increases the resistance to charge transfer at the interface. Also, the electrical conductivity measurements revealed that a decrease or increase in electrical properties depends on the amount of biodiesel. EIS studies of the biodiesel-based microemulsion samples showed the presence of two capacitive arcs: one high-frequency and the other low-frequency. Thus, the formulation of microemulsions plays an important role in estimating the electrical properties through the electrochemical impedance spectroscopy technique. PMID:27276278

  11. High sensitivity and label-free detection of Enterovirus 71 by nanogold modified electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Fang-Yu; Li, Hsing-Yuan; Tseng, Shing-Hua; Cheng, Tsai-Mu; Chu, Hsueh-Liang; Yang, Jyh-Yuan; Chang, Chia-Ching

    2013-03-01

    Enterovirus 71 (EV71), which is the most fulminant and invasive species of enterovirus, can cause children neurologic complications and death within 2-3 days after fever and rash developed. Besides, EV71 has high sequence similarity with Coxsackie A 16 (CA16) that makes differential diagnosis difficult in clinic and laboratory. Since conventional viral diagnostic method cannot diagnose EV71 quickly and EV71 can transmit at low viral titer, the patients might delay in treatment. A quick, high sensitive, and high specific test for EV71 detection is pivotal. Electrochemical impedance spectroscopy (EIS) has been applied for detecting bio-molecules as biosensors recently. In this study, we try to build a detection platform for EV71 detection by nanogold modified EIS probe. The result shows that our probe can detect 3.6 VP1/50 μl (one EV71 particle has 60 VP1) in 3 minutes. The test can also distinguish EV71 from CA16 and lysozyme. Diagnosis of enterovirus 71 by electrochemical impedance spectroscopy has the potential to apply in clinic.

  12. Selective detection of endotoxin using an impedance aptasensor with electrochemically deposited gold nanoparticles.

    PubMed

    Su, Wenqiong; Kim, Sung-Eun; Cho, MiSuk; Nam, Jae-Do; Choe, Woo-Seok; Lee, Youngkwan

    2013-01-01

    Using a single-stranded DNA (ssDNA) aptamer exhibiting high binding affinity (Kd = 12 nM) to endotoxin as a probe, an impedance sensor where aptamer-conjugated gold nanoparticles (AuNPs) were electrochemically deposited on a gold electrode was fabricated and its performance in regard to endotoxin detection assessed. AuNPs have been employed widely as biosensors because of their unique physical and chemical properties. In order to maximize the performance of the impedance aptasensor on endotoxin detection, some critical factors affecting aptamer conjugation to AuNPs and target recognition ability (i.e. concentrations of aptamer coupled with AuNPs, pH, ion strength and cation effect at the time of aptamer-endotoxin interaction) were optimized. Electrochemical impendence spectroscopy, cyclic voltametry, atomic force microscope, scanning electron microscope and quartz crystal microbalance were employed to characterize all the modification/detection procedures during the sensor fabrication. The developed aptasensor showed a broad linear dynamic detection range (0.01-10.24 ng/ml) with a very low detection limit for endotoxin (0.005 ng/ml), despite the presence of several biomolecules (e.g. plasmid DNA, RNA, serum albumin, Glc and sucrose) known to interfere with other endotoxin assays. The demonstrated aptasensor required a detection time of only 10 min, providing a simple and fast analytical method to specifically detect endotoxin from complex biological liqors.

  13. Selective detection of endotoxin using an impedance aptasensor with electrochemically deposited gold nanoparticles.

    PubMed

    Su, Wenqiong; Kim, Sung-Eun; Cho, MiSuk; Nam, Jae-Do; Choe, Woo-Seok; Lee, Youngkwan

    2013-01-01

    Using a single-stranded DNA (ssDNA) aptamer exhibiting high binding affinity (Kd = 12 nM) to endotoxin as a probe, an impedance sensor where aptamer-conjugated gold nanoparticles (AuNPs) were electrochemically deposited on a gold electrode was fabricated and its performance in regard to endotoxin detection assessed. AuNPs have been employed widely as biosensors because of their unique physical and chemical properties. In order to maximize the performance of the impedance aptasensor on endotoxin detection, some critical factors affecting aptamer conjugation to AuNPs and target recognition ability (i.e. concentrations of aptamer coupled with AuNPs, pH, ion strength and cation effect at the time of aptamer-endotoxin interaction) were optimized. Electrochemical impendence spectroscopy, cyclic voltametry, atomic force microscope, scanning electron microscope and quartz crystal microbalance were employed to characterize all the modification/detection procedures during the sensor fabrication. The developed aptasensor showed a broad linear dynamic detection range (0.01-10.24 ng/ml) with a very low detection limit for endotoxin (0.005 ng/ml), despite the presence of several biomolecules (e.g. plasmid DNA, RNA, serum albumin, Glc and sucrose) known to interfere with other endotoxin assays. The demonstrated aptasensor required a detection time of only 10 min, providing a simple and fast analytical method to specifically detect endotoxin from complex biological liqors. PMID:23165992

  14. In Situ Characterization of Ultrathin Films by Scanning Electrochemical Impedance Microscopy.

    PubMed

    Estrada-Vargas, Arturo; Bandarenka, Aliaksandr; Kuznetsov, Volodymyr; Schuhmann, Wolfgang

    2016-03-15

    Control over the properties of ultrathin films plays a crucial role in many fields of science and technology. Although nondestructive optical and electrical methods have multiple advantages for local surface characterization, their applicability is very limited if the surface is in contact with an electrolyte solution. Local electrochemical methods, e.g., scanning electrochemical microscopy (SECM), cannot be used as a robust alternative yet because their methodological aspects are not sufficiently developed with respect to these systems. The recently proposed scanning electrochemical impedance microscopy (SEIM) can efficiently elucidate many key properties of the solid/liquid interface such as charge transfer resistance or interfacial capacitance. However, many fundamental aspects related to SEIM application still remain unclear. In this work, a methodology for the interpretation of SEIM data of "charge blocking systems" has been elaborated with the help of finite element simulations in combination with experimental results. As a proof of concept, the local film thickness has been visualized using model systems at various tip-to-sample separations. Namely, anodized aluminum oxide (Al2O3, 2-20 nm) and self-assembled monolayers based on 11-mercapto-1-undecanol and 16-mercapto-1-hexadecanethiol (2.1 and 2.9 nm, respectively) were used as model systems.

  15. Detection of 2D phase transitions at the electrode/electrolyte interface using electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Tymoczko, Jakub; Colic, Viktor; Bandarenka, Aliaksandr S.; Schuhmann, Wolfgang

    2015-01-01

    The capacitance of the electric double layer, CDL, formed at the electrode/electrolyte interface is generally determined by electrochemical impedance spectroscopy (EIS). However, CDL values obtained using EIS data often depend on the ac frequency of the potential perturbation used in EIS. The reasons for the observed frequency dispersions can be various, and hence extracting valuable information about the status of the electrified interface is not possible with the required certainty. In this work, using well-understood electrochemical systems, namely Pt(111) electrodes in contact with a series of acidic sulfate ions containing electrolytes, we provide strong evidence that 2D phase transitions in the adsorbate layers and, in general, structural effects at the electrode/electrolyte interface are in many cases responsible for the frequency dispersion of the double layer capacitance. These empirical findings open new opportunities for the detection and evaluation of 2D phase transition processes and other structural effects using EIS, even in presence of simultaneously occurring electrochemical processes. However, further theoretical elaboration of this effect is necessary.

  16. In Situ Characterization of Ultrathin Films by Scanning Electrochemical Impedance Microscopy.

    PubMed

    Estrada-Vargas, Arturo; Bandarenka, Aliaksandr; Kuznetsov, Volodymyr; Schuhmann, Wolfgang

    2016-03-15

    Control over the properties of ultrathin films plays a crucial role in many fields of science and technology. Although nondestructive optical and electrical methods have multiple advantages for local surface characterization, their applicability is very limited if the surface is in contact with an electrolyte solution. Local electrochemical methods, e.g., scanning electrochemical microscopy (SECM), cannot be used as a robust alternative yet because their methodological aspects are not sufficiently developed with respect to these systems. The recently proposed scanning electrochemical impedance microscopy (SEIM) can efficiently elucidate many key properties of the solid/liquid interface such as charge transfer resistance or interfacial capacitance. However, many fundamental aspects related to SEIM application still remain unclear. In this work, a methodology for the interpretation of SEIM data of "charge blocking systems" has been elaborated with the help of finite element simulations in combination with experimental results. As a proof of concept, the local film thickness has been visualized using model systems at various tip-to-sample separations. Namely, anodized aluminum oxide (Al2O3, 2-20 nm) and self-assembled monolayers based on 11-mercapto-1-undecanol and 16-mercapto-1-hexadecanethiol (2.1 and 2.9 nm, respectively) were used as model systems. PMID:26871004

  17. Dynamic Characterization of Dendrite Deposition and Growth in Li-Surface by Electrochemical Impedance Spectroscopy

    SciTech Connect

    Hernandez-Maya, R; Rosas, O; Saunders, J; Castaneda, H

    2015-01-13

    The evolution of dendrite formation is characterized by DC and AC electrochemical techniques. Interfacial mechanisms for lithium deposition are described and quantified by electrochemical impedance spectroscopy (EIS) between a lithium electrode and a graphite electrode. The initiation and growth of dendrites in the lithium surface due to the cathodic polarization conditions following anodic dissolution emulate long term cycling process occurring in the lithium electrodes. The dendrite initiation at the lithium/organic electrolyte interface is proposed to be performed through a combination of layering and interfacial reactions during different cathodic conditions. The growth is proposed to be performed by surface geometrical deposition. In this work, we use EIS in galvanostatic mode to assess the initiation and growth stages of dendrites by the accumulation of precipitates formed under different current conditions. The lithium/organic solvent experimental system using frequency domain techniques is validated by the theoretical approach using a deterministic model that accounts for the faradaic processes at the interface assuming a coverage fraction of the electrodic surface affected by the dendritic growth. (C) 2015 The Electrochemical Society. All rights reserved.

  18. Electrochemical impedance spectroscopy for lithium-ion cells: Test equipment and procedures for aging and fast characterization in time and frequency domain

    NASA Astrophysics Data System (ADS)

    Lohmann, Nils; Weßkamp, Patrick; Haußmann, Peter; Melbert, Joachim; Musch, Thomas

    2015-01-01

    New test equipment and characterization methods for aging investigations on lithium-ion cells for automotive applications are presented in this work. Electrochemical impedance spectroscopy (EIS) is a well-established method for cell characterization and analyzing electrochemical processes. In order to integrate this method into long-term aging studies with real driving currents, new test equipment is mandatory. The presented test equipment meets the demands for high current, wide bandwidth and precise measurement. This allows the cells to be cycled and characterized without interruption for changing the test device. The characterization procedures must be of short duration and have a minimum charge-throughput for negligible influence on the aging effect. This work presents new methods in the time and the frequency domain for obtaining the impedance spectrum which allow a flexible trade-off between measurement performance, time consumption and charge-throughput. In addition to sinusoidal waveforms, rectangular, Gaussian and sin(x)/x pulses are applied for EIS. The performance of the different methods is discussed. Finally, the time domain analysis is applied with real driving currents which provides impedance spectra for state of charge estimation considering aging effects in the car.

  19. Fast and sensitive detection of foodborne pathogen using electrochemical impedance analysis, urease catalysis and microfluidics.

    PubMed

    Chen, Qi; Wang, Dan; Cai, Gaozhe; Xiong, Yonghua; Li, Yuntao; Wang, Maohua; Huo, Huiling; Lin, Jianhan

    2016-12-15

    Early screening of pathogenic bacteria is a key to prevent and control of foodborne diseases. In this study, we developed a fast and sensitive bacteria detection method integrating electrochemical impedance analysis, urease catalysis with microfluidics and using Listeria as model. The Listeria cells, the anti-Listeria monoclonal antibodies modified magnetic nanoparticles (MNPs), and the anti-Listeria polyclonal antibodies and urease modified gold nanoparticles (AuNPs) were incubated in a fluidic separation chip with active mixing to form the MNP-Listeria-AuNP-urease sandwich complexes. The complexes were captured in the separation chip by applying a high gradient magnetic field, and the urea was injected to resuspend the complexes and hydrolyzed under the catalysis of the urease on the complexes into ammonium ions and carbonate ions, which were transported into a microfluidic detection chip with an interdigitated microelectrode for impedance measurement to determine the amount of the Listeria cells. The capture efficiency of the Listeria cells in the separation chip was ∼93% with a shorter time of 30min due to the faster immuno-reaction using the active magnetic mixing. The changes on both impedance magnitude and phase angle were demonstrated to be able to detect the Listeria cells as low as 1.6×10(2)CFU/mL. The detection time was reduced from original ∼2h to current ∼1h. The recoveries of the spiked lettuce samples ranged from 82.1% to 89.6%, indicating the applicability of this proposed biosensor. This microfluidic impedance biosensor has shown the potential for online, automatic and sensitive bacteria separation and detection.

  20. Fast and sensitive detection of foodborne pathogen using electrochemical impedance analysis, urease catalysis and microfluidics.

    PubMed

    Chen, Qi; Wang, Dan; Cai, Gaozhe; Xiong, Yonghua; Li, Yuntao; Wang, Maohua; Huo, Huiling; Lin, Jianhan

    2016-12-15

    Early screening of pathogenic bacteria is a key to prevent and control of foodborne diseases. In this study, we developed a fast and sensitive bacteria detection method integrating electrochemical impedance analysis, urease catalysis with microfluidics and using Listeria as model. The Listeria cells, the anti-Listeria monoclonal antibodies modified magnetic nanoparticles (MNPs), and the anti-Listeria polyclonal antibodies and urease modified gold nanoparticles (AuNPs) were incubated in a fluidic separation chip with active mixing to form the MNP-Listeria-AuNP-urease sandwich complexes. The complexes were captured in the separation chip by applying a high gradient magnetic field, and the urea was injected to resuspend the complexes and hydrolyzed under the catalysis of the urease on the complexes into ammonium ions and carbonate ions, which were transported into a microfluidic detection chip with an interdigitated microelectrode for impedance measurement to determine the amount of the Listeria cells. The capture efficiency of the Listeria cells in the separation chip was ∼93% with a shorter time of 30min due to the faster immuno-reaction using the active magnetic mixing. The changes on both impedance magnitude and phase angle were demonstrated to be able to detect the Listeria cells as low as 1.6×10(2)CFU/mL. The detection time was reduced from original ∼2h to current ∼1h. The recoveries of the spiked lettuce samples ranged from 82.1% to 89.6%, indicating the applicability of this proposed biosensor. This microfluidic impedance biosensor has shown the potential for online, automatic and sensitive bacteria separation and detection. PMID:27476059

  1. Corrosion Resistance Characterization of Coating Systems Used to Protect Aluminum Alloys Using Electrochemical Impedance Spectroscopy and Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Gambina, Federico

    In this study, the corrosion protection provided by of a number of chromate and chromate-free coatings systems was characterized in detail. High-solids SrCrO4-pigmented epoxy primers applied to 2024 and 7075 substrates were subject to salt spray exposure testing for 30 days. Samples were removed periodically and an electrochemical impedance measurement (EIS) was made. Although none of the coatings tested showed visual evidence of corrosion, the total impedance of the samples decreased by as much as two orders of magnitude. An analysis of capacitance showed that the primer coatings rapidly took up water from the exposure environment, but the coating-metal remained passive despite the fact that it was wet. These results support the idea that chromate coatings protect by creating a chromate-rich electrolyte within the coating that is passivating to the underlying metal substrate. They also suggest that indications of metal substrate passivity found in the low-frequency capacitive reactance of the impedance spectra are a better indicator of corrosion protection than the total impedance. The low-frequency capacitive reactance from EIS measurements is also good at assessing the protectiveness of chromate-free coatings systems. Fifteen different coatings systems comprising high-solids, chromate-free primers and chromate-free conversion coatings were applied to 2024 and 7075 substrates. These coatings were subject to salt spray exposure and EIS measurements. All coatings were inferior to coating systems containing chromate, but changes in the capacitive reactance measured in EIS was shown to anticipate visual indications of coating failure. A predictive model based on neural networks was trained to recognize the pattern in the capacitive reactance in impedance spectra measured after 48 hours of exposure and make an estimate of remaining coating life. A sensitivity analysis was performed to prune the impedance inputs. As a result of this analysis, a very simple but highly

  2. In Situ Representation of Soil/Sediment Conductivity Using Electrochemical Impedance Spectroscopy

    PubMed Central

    Li, Xiaojing; Wang, Xin; Zhao, Qian; Zhang, Yueyong; Zhou, Qixing

    2016-01-01

    The electrical conductivity (EC) of soil is generally measured after soil extraction, so this method cannot represent the in situ EC of soil (e.g., EC of soils with different moisture contents) and therefore lacks comparability in some cases. Using a resistance measurement apparatus converted from a configuration of soil microbial fuel cell, the in situ soil EC was evaluated according to the Ohmic resistance (Rs) measured using electrochemical impedance spectroscopy. The EC of soils with moisture content from 9.1% to 37.5% was calculated according to Rs. A significant positive correlation (R2 = 0.896, p < 0.01) between the soil EC and the moisture content was observed, which demonstrated the feasibility of the approach. This new method can not only represent the actual soil EC, but also does not need any pretreatment. Thus it may be used widely in the measurement of the EC for soils and sediments. PMID:27144567

  3. In Situ Representation of Soil/Sediment Conductivity Using Electrochemical Impedance Spectroscopy.

    PubMed

    Li, Xiaojing; Wang, Xin; Zhao, Qian; Zhang, Yueyong; Zhou, Qixing

    2016-04-30

    The electrical conductivity (EC) of soil is generally measured after soil extraction, so this method cannot represent the in situ EC of soil (e.g., EC of soils with different moisture contents) and therefore lacks comparability in some cases. Using a resistance measurement apparatus converted from a configuration of soil microbial fuel cell, the in situ soil EC was evaluated according to the Ohmic resistance (Rs) measured using electrochemical impedance spectroscopy. The EC of soils with moisture content from 9.1% to 37.5% was calculated according to Rs. A significant positive correlation (R² = 0.896, p < 0.01) between the soil EC and the moisture content was observed, which demonstrated the feasibility of the approach. This new method can not only represent the actual soil EC, but also does not need any pretreatment. Thus it may be used widely in the measurement of the EC for soils and sediments.

  4. Energy Dispersive X-Ray and Electrochemical Impedance Spectroscopies for Performance and Corrosion Analysis of PEMWEs

    NASA Astrophysics Data System (ADS)

    Steen, S. M., Iii; Zhang, F.-Y.

    2014-11-01

    Proton exchange membrane water electrolyzers (PEMWEs) are a promising energy storage technology due to their high efficiency, compact design, and ability to be used in a renewable energy system. Before they are able to make a large commercial impact, there are several hurdles facing the technology today. Two powerful techniques for both in-situ and ex- situ characterizations to improve upon their performance and better understand their corrosion are electrochemical impedance spectroscopy and energy dispersive x-ray spectroscopy, respectively. In this paper, the authors use both methods in order to characterize the anode gas diffusion layer (GDL) in a PEMWE cell and better understand the corrosion that occurs in the oxygen electrode during electrolysis.

  5. In-situ quantification of solid oxide fuel cell electrode microstructure by electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yanxiang; Chen, Yu; Chen, Fanglin

    2015-03-01

    Three-dimensional (3D) microstructure of solid oxide fuel cell electrodes plays critical roles in determining fuel cell performance. The state-of-the-art quantification technique such as X-ray computed tomography enables direct calculation of geometric factors by 3D microstructure reconstruction. Taking advantages of in-situ, fast-responding and low cost, electrochemical impedance spectroscopy represented by distribution of relaxation time (DRT) is a novel technique to estimate geometric properties of fuel cell electrodes. In this study, we employed the anode supported cells with the cell configuration of Ni-YSZ || YSZ || LSM-YSZ as an example and compared the tortuosity factor of pores of the anode substrate layer by X-ray computed tomography and DRT analysis. Good agreement was found, validating the feasibility of in-situ microstructural quantification by using the DRT technique.

  6. Detection of methotrexate in a flow system using electrochemical impedance spectroscopy and multivariate data analysis.

    PubMed

    Tesfalidet, Solomon; Geladi, Paul; Shimizu, Kenichi; Lindholm-Sethson, Britta

    2016-03-31

    Methotrexate (MTX), a common pharmaceutical drug in cancer therapy and treatment of rheumatic diseases, is known to cause severe adverse side effects at high dose. As the side effect may be life threatening, there is an urgent need for a continuous, bed-side monitoring of the nominal MTX serum level in a patient while the chemical is being administered. This article describes a detection of MTX using a flow system that consists two modified gold electrodes. Interaction of MTX with the antibodies fixed on the electrode surface is detected by electrochemical impedance spectroscopy and evaluated using singular value decomposition (SVD). The key finding of this work is that the change in the electrode capacitance is found to be quantitative with respect to the concentration of MTX. Moreover a calibration curve constructed using the principal component regression method has a linear range of six orders of magnitude and a detection limit of 1.65 × 10(-10) M.

  7. Solid oxide electrolysis cell analysis by means of electrochemical impedance spectroscopy: A review

    NASA Astrophysics Data System (ADS)

    Nechache, A.; Cassir, M.; Ringuedé, A.

    2014-07-01

    High temperature water electrolysis based on Solid Oxide Electrolysis Cell (SOEC) is a very promising solution to produce directly pure hydrogen. However, degradation issues occurring during operation still represent a scientific and technological barrier in view of its development at an industrial scale. Electrochemical Impedance Spectroscopy (EIS) is a powerful in-situ fundamental tool adapted to the study of SOEC systems. Hence, after a quick presentation of EIS principle and data analysis methods, this review demonstrates how EIS can be used: (i) to characterize the performance and mechanisms of SOEC electrodes; (ii) as a complementary tool to study SOEC degradation processes for different cell configurations, in addition to post-test tools such as scanning electron microscopy (SEM) or X-ray diffraction (XRD). The use of EIS to establish a systematic SOEC analysis is introduced as well.

  8. Protein-G-based human immunoglobulin G biosensing by electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Tsugimura, Kaiki; Ohnuki, Hitoshi; Endo, Hideaki; Tsuya, Daijyu; Izumi, Mitsuru

    2016-02-01

    A highly sensitive biosensor based on electrochemical impedance spectroscopy (EIS) was developed for the determination of human immunoglobulin G (IgG). Protein G, which specifically binds to IgG, was employed as the molecular receptor. Protein G was covalently immobilized on interdigitated electrodes through a mixed self-assembled monolayer (SAM) composed of 11-mercaptoundecanoic acid (MUA) and 6-mercaptohexanol. It was found that the mixing ratio of the SAM markedly affected the sensor performance. The sample prepared on 25% MUA SAM exhibited a linear behavior in the concentration range of 0.01-10 ng/mL, which is a record low detection for EIS-based IgG sensors. On the other hand, the sample on 100% MUA SAM showed no IgG-sensing action. A possible mechanism of the mixing ratio that affects the sensing performance was proposed.

  9. The Pt(111)/electrolyte interface under oxygen reduction reaction conditions: an electrochemical impedance spectroscopy study.

    PubMed

    Bondarenko, Alexander S; Stephens, Ifan E L; Hansen, Heine A; Pérez-Alonso, Francisco J; Tripkovic, Vladimir; Johansson, Tobias P; Rossmeisl, Jan; Nørskov, Jens K; Chorkendorff, Ib

    2011-03-01

    The Pt(111)/electrolyte interface has been characterized during the oxygen reduction reaction (ORR) in 0.1 M HClO(4) using electrochemical impedance spectroscopy. The surface was studied within the potential region where adsorption of OH* and O* species occur without significant place exchange between the adsorbate and Pt surface atoms (0.45-1.15 V vs RHE). An equivalent electric circuit is proposed to model the Pt(111)/electrolyte interface under ORR conditions within the selected potential window. This equivalent circuit reflects three processes with different time constants, which occur simultaneously during the ORR at Pt(111). Density functional theory (DFT) calculations were used to correlate and interpret the results of the measurements. The calculations indicate that the coadsorption of ClO(4)* and Cl* with OH* is unlikely. Our analysis suggests that the two-dimensional (2D) structures formed in O(2)-free solution are also formed under ORR conditions. PMID:21244087

  10. Corrosion Behavior of Stainless Steels in Neutral and Acidified Sodium Chloride Solutions by Electrochemical Impedance Spectroscopy

    NASA Technical Reports Server (NTRS)

    Calle, L. M.; Kolady, M. R.; Vinje, R. D.

    2004-01-01

    The objective of this work was to evaluate the corrosion performance of three alloys by Electrochemical Impedance Spectroscopy (EIS) and to compare the results with those obtained during a two-year atmospheric exposure study.' Three alloys: AL6XN (UNS N08367), 254SM0 (UNS S32154), and 304L (UNS S30403) were included in the study. 304L was included as a control. The alloys were tested in three electrolyte solutions which consisted of neutral 3.55% NaC1, 3.55% NaC1 in 0.lN HC1, and 3.55% NaC1 in 1.ON HC1. These conditions were expected to be less severe, similar, and more severe respectively than the conditions at NASA's Kennedy Space Center launch pads.

  11. Characterization of TiO2-based semiconductors for photocatalysis by electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Ângelo, Joana; Magalhães, Pedro; Andrade, Luísa; Mendes, Adélio

    2016-11-01

    The photocatalytic activity of a commercial titanium dioxide (P25) and of an in-house prepared P25/graphene composite is assessed according to standard ISO 22197-1:2007. The photoactivity performances of bare and composite TiO2-based materials were further studied by electrochemical impedance spectroscopy (EIS) technique to better understand the function of the graphene in the composite. EIS experiments were performed using a three-electrode configuration, which allows obtaining more detailed information about the complex charge transfer phenomena at the semiconductor/electrolyte interface. The Randles equivalent circuit was selected as the most suitable for modelling the present photocatalysts. The use of the graphene composite allows a more effective charge separation with lower charge transfer resistance and less e-/h+ recombination on the composite photocatalyst, reflected in the higher values of NO conversion.

  12. Label-free aptamer-based electrochemical impedance biosensor for 17β-estradiol.

    PubMed

    Lin, Zhenyu; Chen, Lifen; Zhang, Guiyun; Liu, Qida; Qiu, Bin; Cai, Zongwei; Chen, Guonan

    2012-02-21

    A novel aptamer-based label-free electrochemical impedance spectroscopy biosensor for 17β-estradiol has been fabricated. The aptamers were firstly immobilized on the gold electrode through Au-S interaction; the aptamer probe was then bound with the addition of 17β-estradiol to form the estradiol/aptamer complex on the electrode surface. This leads to a significantly larger interfacial electron transfer resistance than that without the addition of 17β-estradiol. The change in the resistance had a linear relationship with 17β-estradiol concentration in the range of 1.0 × 10(-8) to 1.0 × 10(-11) mol L(-1), with a detection limit of 2.0 × 10(-12) mol L(-1). The biosensor showed high selectivity to 17β-estradiol and good stability. The designed biosensor has been applied to detect 17β-estradiol in human urine with satisfactory results.

  13. A bacteriophage endolysin-based electrochemical impedance biosensor for the rapid detection of Listeria cells.

    PubMed

    Tolba, Mona; Ahmed, Minhaz Uddin; Tlili, Chaker; Eichenseher, Fritz; Loessner, Martin J; Zourob, Mohammed

    2012-12-21

    The objective of this study was to develop a biosensor using the cell wall binding domain (CBD) of bacteriophage-encoded peptidoglycan hydrolases (endolysin) immobilized on a gold screen printed electrode (SPE) and subsequent electrochemical impedance spectroscopy (EIS) for a rapid and specific detection of Listeria cells. The endolysin was amine-coupled to SPEs using EDC/NHS chemistry. The CBD-based electrode was used to capture and detect the Listeria innocua serovar 6b from pure culture and 2% artificially contaminated milk. In our study, the endolysin functionalized SPEs have been characterized using X-ray photoelectron spectroscopy (XPS). The integration of endolysin-based recognition for specific bacteria and EIS can be used for direct and rapid detection of Listeria cells with high specificity against non-Listeria cells with a limit of detection of 1.1 × 10(4) and 10(5) CFU mL(-1) in pure culture and 2% milk, respectively.

  14. Impedance-derived electrochemical capacitance spectroscopy for the evaluation of lectin-glycoprotein binding affinity.

    PubMed

    Santos, Adriano; Carvalho, Fernanda C; Roque-Barreira, Maria-Cristina; Bueno, Paulo R

    2014-12-15

    Characterization of lectin-carbohydrate binding using label-free methods such as impedance-derived electrochemical capacitance spectroscopy (ECS) is desirable to evaluate specific interactions, for example, ArtinM lectin and horseradish peroxidase (HRP) glycoprotein, used here as a model for protein-carbohydrate binding affinity. An electroactive molecular film comprising alkyl ferrocene as a redox probe and ArtinM as a carbohydrate receptive center to target HRP was successfully used to determine the binding affinity between ArtinM and HRP. The redox capacitance, a transducer signal associated with the alkyl ferrocene centers, was obtained by ECS and used in the Langmuir adsorption model to obtain the affinity constant (1.6±0.6)×10(8) L mol(-1). The results shown herein suggest the feasibility of ECS application for lectin glycoarray characterization. PMID:24994505

  15. Electrochemical impedance spectroscopy and laser photoselectivity with gold nanoparticles for food applications

    NASA Astrophysics Data System (ADS)

    Chee, Grace

    With consistently higher and stricter standards for food quality and safety, it is becoming increasingly necessary to be able to quickly and easily determine certain properties of products in order to keep up with and maintain these standards. This master’s thesis is presented in three chapters. First, an overview of the theoretical background, current applications, and new technologies related to taking physiochemical property measurements of food, and various treatment methods used for food safety purposes. In the second chapter, electrochemical impedance spectroscopy (EIS) is used to find the dielectric (DE) constants and other physiochemical properties of potatoes in order to make quick adjustments to improve the microwave processing technique used for potato chipping. Finally, the third chapter introduces the use of a carbon dioxide laser system in conjunction with a two-ZnSe lens beam expander and functionalized gold nanoparticles to specifically target and kill E. coli in food samples.

  16. Impedance-derived electrochemical capacitance spectroscopy for the evaluation of lectin-glycoprotein binding affinity.

    PubMed

    Santos, Adriano; Carvalho, Fernanda C; Roque-Barreira, Maria-Cristina; Bueno, Paulo R

    2014-12-15

    Characterization of lectin-carbohydrate binding using label-free methods such as impedance-derived electrochemical capacitance spectroscopy (ECS) is desirable to evaluate specific interactions, for example, ArtinM lectin and horseradish peroxidase (HRP) glycoprotein, used here as a model for protein-carbohydrate binding affinity. An electroactive molecular film comprising alkyl ferrocene as a redox probe and ArtinM as a carbohydrate receptive center to target HRP was successfully used to determine the binding affinity between ArtinM and HRP. The redox capacitance, a transducer signal associated with the alkyl ferrocene centers, was obtained by ECS and used in the Langmuir adsorption model to obtain the affinity constant (1.6±0.6)×10(8) L mol(-1). The results shown herein suggest the feasibility of ECS application for lectin glycoarray characterization.

  17. Single domain antibody coated gold nanoparticles as enhancer for Clostridium difficile toxin detection by electrochemical impedance immunosensors

    PubMed Central

    Zhu, Zanzan; Shi, Lianfa; Feng, Hanping; Zhou, H. Susan

    2016-01-01

    This work presents a sandwich-type electrochemical impedance immunosensor for detecting Clostridium difficile toxin A (TcdA) and toxin B (TcdB). Single domain antibody conjugated gold nanoparticles were applied to amplify the detection signal. Gold nanoparticles (Au NPs) were characterized by transmission electron microscopy and UV–vis spectra. The electron transfer resistance (Ret) of the working electrode surface was used as a parameter in the measurement of the biosensor. With the increase of the concentration of toxins from 1 pg/mL to 100 pg/mL, a linear relationship was observed between the relative electron transfer resistance and toxin concentration. In addition, the detection signal was enhanced due to the amplification effect. The limit of detection for TcdA and TcdB was found to be 0.61 pg/mL and 0.60 pg/mL respectively at a signal-to-noise ratio of 3 (S/N = 3). This method is simple, fast and ultrasensitive, thus possesses a great potential for clinical applications in the future. PMID:25460611

  18. A Realtime and Continuous Assessment of Cortisol in ISF Using Electrochemical Impedance Spectroscopy

    PubMed Central

    Arya, Sunil K.; Chornokur, Ganna; Bhansali, Shekhar

    2011-01-01

    This study describes the functioning of a novel sensor to measure cortisol concentration in the interstitial fluid (ISF) of a human subject. ISF is extracted by means of vacuum pressure from micropores created on the stratum corneum layer of the skin. The pores are produced by focusing a near infrared laser on a layer of black dye material attached to the skin. The pores are viable for approximately three days after skin poration. Cortisol measurements are based on electrochemical impedance (EIS) technique. Gold microelectrode arrays functionalized with Dithiobis (succinimidyl propionate) self-assembled monolayer (SAM) have been used to fabricate an ultrasensitive, disposable, electrochemical cortisol immunosensor. The biosensor was successfully used for in-vitro measurement of cortisol in ISF. Tests in a laboratory setup show that the sensor exhibits a linear response to cortisol concentrations in the range 1 pm to 100 nM. A small pilot clinical study showed that in-vitro immunosensor readings, when compared with commercial evaluation using enzyme-linked immunoassay (ELISA) method, correlated well with cortisol levels in saliva and ISF. Further, circadian rhythm could be established between the subject's ISF and the saliva samples collected over 24 hours time-period. Cortisol levels in ISF were found reliably higher than in saliva. This Research establishes the feasibility of using impedance based biosensor architecture for a disposable, wearable cortisol detector. The projected commercial in-vivo real-time cortisol sensor device, besides being minimally invasive, will allow continuous ISF harvesting and cortisol monitoring over 24 hours even when the subject is asleep. Forthcoming, this sensor could be interfaced to a wireless health monitoring system that could transfer sensor data over existing wide-area networks such as the internet and a cellular phone network to enable real-time remote monitoring of subjects. PMID:22163154

  19. Impedance Spectroscopic Investigation of Proton Conductivity in Nafion Using Transient Electrochemical Atomic Force Microscopy (AFM)

    PubMed Central

    Hink, Steffen; Wagner, Norbert; Bessler, Wolfgang G.; Roduner, Emil

    2012-01-01

    Spatially resolved impedance spectroscopy of a Nafion polyelectrolyte membrane is performed employing a conductive and Pt-coated tip of an atomic force microscope as a point-like contact and electrode. The experiment is conducted by perturbing the system by a rectangular voltage step and measuring the incurred current, followed by Fourier transformation and plotting the impedance against the frequency in a conventional Bode diagram. To test the potential and limitations of this novel method, we present a feasibility study using an identical hydrogen atmosphere at a well-defined relative humidity on both sides of the membrane. It is demonstrated that good quality impedance spectra are obtained in a frequency range of 0.2–1000 Hz. The extracted polarization curves exhibit a maximum current which cannot be explained by typical diffusion effects. Simulation based on equivalent circuits requires a Nernst element for restricted diffusion in the membrane which suggests that this effect is based on the potential dependence of the electrolyte resistance in the high overpotential region. PMID:24958175

  20. Equivalent circuit model analysis on electrochemical impedance spectroscopy of lithium metal batteries

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Zhang, Cuifen; Wen, Guangwu

    2015-10-01

    Lithium metal electrode is pretreated with 1,3-dioxolane or 1,4-dioxane to improve its properties. The components and morphology of the surface films formed in the above two pretreatment liquids are studied using FTIR and SEM respectively. Li-LiCoO2 coin cells are then fabricated and their cycle and discharge performance are tested. It is found that the battery performance is greatly improved by such pretreatment. Interestingly, the 1,4-dioxane pretreatment is more effective than 1,3-dioxolane in improving the lithium metal electrode performance. To explore the mechanism(s) behind, the electrochemical impedance spectroscopy (EIS) is employed and an equivalent circuit model is designed for EIS analysis. The fitting curves are aligned well with the experimental curves, suggesting that the proposed equivalent circuit model is an ideal model for lithium battery. Next, the corresponding relationship between the impedance components and every individual semicircle in the Nyquist curves is inferred theoretically and the result is satisfying. Based on the analysis using this model, we conclude that the structural stability of SEI film is increased and the interfacial compatibility between the lithium substrate and the SEI film is improved by 1,3-dioxolane or 1,4-dioxane pretreatment.

  1. Detection of parathyroid hormone using an electrochemical impedance biosensor based on PAMAM dendrimers.

    PubMed

    Özcan, Hakkı Mevlüt; Sezgintürk, Mustafa Kemal

    2015-01-01

    This paper presents a novel hormone-based impedimetric biosensor to determine parathyroid hormone (PTH) level in serum for diagnosis and monitoring treatment of hyperparathyroidism, hypoparathyroidism and thyroid cancer. The interaction between PTH and the biosensor was investigated by an electrochemical method. The biosensor was based on the gold electrode modified by 12-mercapto dodecanoic (12MDDA). Antiparathyroid hormone (anti-PTH) was covalently immobilized on to poly amidoamine dendrimer (PAMAM) which was bound to a 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide/N-hydroxysuccinimide (EDC/NHS) couple, self-assembled monolayer structure from one of the other NH2 sites. The immobilization of anti-PTH was monitored by electrochemical impedance spectroscopy, cyclic voltammetry and scanning electron microscope techniques. After the optimization studies of immobilization materials such as 12MDDA, EDC-NHS, PAMAM, and glutaraldehyde, the performance of the biosensor was investigated in terms of linearity, sensitivity, repeatability, and reproducibility. PTH was detected within a linear range of 10-60 fg/mL. Finally the described biosensor was used to monitor PTH levels in artificial serum samples.

  2. Effects of Bimolecular Recombination on Impedance Spectra in Organic Semiconductors: Analytical Approach.

    PubMed

    Takata, Masashi; Takagi, Kenichiro; Nagase, Takashi; Kobayashi, Takashi; Naito, Hiroyoshi

    2016-04-01

    An analytical expression for impedance spectra in the case of double injection (both electrons and holes are injected into an organic semiconductor thin film) has been derived from the basic transport equations (the current density equation, the continuity equation and the Possion's equation). Capacitance-frequency characteristics calculated from the analytical expression have been examined at different recombination constants and different values of mobility balance defined by a ratio of electron mobility to hole mobility. Negative capacitance appears when the recombination constant is lower than the Langevin recombination constant and when the value of the mobility balance approaches unity. These results are consistent with the numerical results obtained by a device simulator (Atlas, Silvaco). PMID:27451625

  3. Origin of Capacity Fading in Nano-Sized Co3O4Electrodes: Electrochemical Impedance Spectroscopy Study

    PubMed Central

    2008-01-01

    Transition metal oxides have been suggested as innovative, high-energy electrode materials for lithium-ion batteries because their electrochemical conversion reactions can transfer two to six electrons. However, nano-sized transition metal oxides, especially Co3O4, exhibit drastic capacity decay during discharge/charge cycling, which hinders their practical use in lithium-ion batteries. Herein, we prepared nano-sized Co3O4with high crystallinity using a simple citrate-gel method and used electrochemical impedance spectroscopy method to examine the origin for the drastic capacity fading observed in the nano-sized Co3O4anode system. During cycling, AC impedance responses were collected at the first discharged state and at every subsequent tenth discharged state until the 100th cycle. By examining the separable relaxation time of each electrochemical reaction and the goodness-of-fit results, a direct relation between the charge transfer process and cycling performance was clearly observed.

  4. Impedance model of lithium ion polymer battery considering temperature effects based on electrochemical principle: Part I for high frequency

    NASA Astrophysics Data System (ADS)

    Xiao, Meng; Choe, Song-Yul

    2015-03-01

    Measurement of impedance is one of well-known methods to experimentally characterize electrochemical properties of Li-ion batteries. The measured impedance responses are generally fitted to an equivalent circuit model that is composed of linear and nonlinear electric components that mimic behaviors of different layers of a battery. However, the parameters do not provide quantitative statements on charge dynamics considering material properties. Therefore, electrochemical models are widely employed to study the charge dynamics, but have not included high frequency responses predominantly determined by double layers. Thus, we have developed models for the double layer and bulk that are integrated into the electrochemical model for a pouch type Li-ion battery. The integrated model is validated against the frequency response obtained from EIS equipment at different temperatures as well as the time response. The results show that the proposed model is capable of representing the responses at charging and discharging in time and frequency domain.

  5. The Performance of Dammar-based Paint System Evaluated by Electrochemical Impedance Spectroscopy (EIS) and Potential Time Measurement (PTM)

    NASA Astrophysics Data System (ADS)

    Omar, N. M.; Ahmad, A. Hanom

    2009-06-01

    The coating resistance of the Dammar-based paint system was determined by using Electrochemical Impedance Spectroscopy (EIS), whereas, the corrosion potential analysis was determined by using potential time measurement (PTM) method. Carotenoid pigment obtained from Capsicum Annum (dried chili pepper) was added into the mixture of dammar and acrylic polyol resin and the paint systems were proofed on Aluminium steel Q-panels as a substrate. Result shows that the paint system with a composition of 35% dammar (CD35%) possessed the higher corrosion resistance after 30 days of exposure in 3% NaCl solution for electrochemical impedance spectroscopy and also can withstand the longest time for delimitation protection in PTM analysis. The results prove that the developed organic paint system can improve the electrochemical and corrosion protection properties of a paint system.

  6. Impedance spectroscopy study of a catechol-modified activated carbon electrode as active material in electrochemical capacitor

    NASA Astrophysics Data System (ADS)

    Cougnon, C.; Lebègue, E.; Pognon, G.

    2015-01-01

    Modified activated carbon (Norit S-50) electrodes with electrochemical double layer (EDL) capacitance and redox capacitance contributions to the electric charge storage were tested in 1 M H2SO4 to quantify the benefit and the limitation of the surface redox reactions on the electrochemical performances of the resulting pseudo-capacitive materials. The electrochemical performances of an electrochemically anodized carbon electrode and a catechol-modified carbon electrode, which make use both EDL capacitance of the porous structure of the carbon and redox capacitance, were compared to the performances obtained for the pristine carbon. Nitrogen gas adsorption measurements have been used for studying the impact of the grafting on the BET surface area, pore size distribution, pore volume and average pore diameter. The electrochemical behavior of carbon materials was studied by cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The EIS data were discussed by using a complex capacitance model that allows defining the characteristic time constant, the global capacitance and the frequency at which the maximum charge stored is reached. The EIS measurements were achieved at different dc potential values where a redox activity occurs and the evolution of the capacitance and the capacitive relaxation time with the electrode potential are presented. Realistic galvanostatic charge/discharge measurements performed at different current rates corroborate the results obtained by impedance.

  7. Electrochemical Impedance Spectroscopy of Alloys in a Simulated Space Shuttle Launch Environment

    NASA Technical Reports Server (NTRS)

    Calle, L. M.; Kolody, M. R.; Vinje, R. D.; Whitten, M. C.; Li, D.

    2005-01-01

    Corrosion studies began at NASA/Kennedy Space Center in 1966 during the Gemini/Apollo Programs with the evaluation of long-term protective coatings for the atmospheric protection of carbon steel. An outdoor exposure facility on the beach near the launch pad was established for this purpose at that time. The site has provided over 35 years of technical information on the evaluation of the long-term corrosion performance of many materials and coatings as well as on maintenance procedures. Results from these evaluations have helped NASA find new materials and processes that increase the safety and reliability of our flight hardware, launch structures, and ground support equipment. The launch environment at the Kennedy Space Center (KSC) is extremely corrosive due to the combination of ocean salt spray, heat, humidity, and sunlight. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pad were rendered even more severe by the acidic exhaust from the solid rocket boosters. Over the years, many materials have been evaluated for their corrosion performance under conditions similar to those found at the launch pads. These studies have typically included atmospheric exposure and evaluation with conventional electrochemical methods such as open circuit potential (OCP) measurements, polarization techniques, and electrochemical impedance spectroscopy (EIS). The atmosphere at the Space Shuttle launch site is aggressive to most metals and causes severe pitting in many of the common stainless steel alloys such as type 304L stainless steel (304L SS). A study was undertaken to find a more corrosion resistant material to replace the existing 304L SS tubing. This paper presents the results from atmospheric exposure as well as electrochemical measurements on the corrosion resistance of AL-6XN (UNS N08367) and 254-SMO (UNS S32154). Type 304L SS (UNS S30403) was used as a control. Conditions at the Space Shuttle launch pad were

  8. Direct electrical transduction of antibody binding to a covalent virus layer using electrochemical impedance.

    PubMed

    Yang, Li-Mei C; Diaz, Juan E; McIntire, Theresa M; Weiss, Gregory A; Penner, Reginald M

    2008-08-01

    Electrochemical impedance spectroscopy is used to detect the binding of a 148.2 kDa antibody to a "covalent virus layer" (CVL) immobilized on a gold electrode. The CVL consisted of M13 phage particles covalently anchored to a 3 mm diameter gold disk electrode. The ability of the CVL to distinguish this antibody ("p-Ab") from a second, nonbinding antibody ("n-Ab") was evaluated as a function of the frequency and phase of the measured current relative to the applied voltage. The binding of p-Ab to the CVL was correlated with a change in the resistance, reducing it at low frequency (1-40 Hz) while increasing it at high frequency (2-140 kHz). The capacitance of the CVL was virtually uncorrelated with p-Ab binding. At both low and high frequency, the electrode resistance was linearly dependent on the p-Ab concentration from 20 to 266 nM but noise compromised the reproducibility of the p-Ab measurement at frequencies below 40 Hz. A "signal-to-noise" ratio for antibody detection was computed based upon the ratio between the measured resistance change upon p-Ab binding and the standard deviation of this change obtained from multiple measurements. In spite of the fact that the impedance change upon p-Ab binding in the low frequency domain was more than 100 times larger than that measured at high frequency, the S/N ratio at high frequency was higher and virtually independent of frequency from 4 to 140 kHz. Attempts to release p-Ab from the CVL using 0.05 M HCl, as previously described for mass-based detection, caused a loss of sensitivity that may be associated with a transition of these phage particles within the CVL from a linear to a coiled conformation at low pH. PMID:18590279

  9. Electrochemical impedance spectroscopy as an alternative to determine dielectric constant of potatoes at various moisture contents.

    PubMed

    Chee, Grace; Rungraeng, Natthakan; Han, Jung H; Jun, Soojin

    2014-02-01

    The dielectric (DE) properties, specifically the DE constant (ε') and loss factor (ε''), were measured for vacuum-dried and freeze-dried potato samples at a microwave frequency of 2.45 GHz over a range of different moisture contents (MCs) using a DE probe and also a 2-probe electrochemical impedance spectroscopy (EIS). Third-order polynomial models (ε' = f₁(MC); and ε'' = f₂(MC)) at room temperature were developed for regression analysis. Additionally, at various temperatures (T), biphasic 3rd-order polynomial models (ε' = f₁(MC, T); and ε'' = f₂(MC, T)) were obtained to determine ε' and ε'' as a function of MC and T using measured data. The vacuum-dried potato sample showed a good fitness of ε' and ε'' (R² = 0.95 and 0.96, respectively) to the regression model with the range of MCs from 18% to 80% (w/w), while the freeze-dried potato sample showed a good fitness of ε' and ε'' to the 1st-phase regression model with MC < 50% w/w (R² = 0.95 and 0.96, respectively) and the 2nd-phase regression model with MC > 50% w/w (R² = 0.94 to 0.96). EIS measurements were also used to obtain correlation impedances for ε' and ε'' determined by the DE probe method. The resulted regression analysis meets the demands for simple, rapid, and accurate assessment for transient values of ε' and ε'' of food products during dehydration/drying processes. The EIS method was verified to be a successful alternative to direct measurements of ε' and ε''.

  10. Electrochemical impedance spectroscopy as an alternative to determine dielectric constant of potatoes at various moisture contents.

    PubMed

    Chee, Grace; Rungraeng, Natthakan; Han, Jung H; Jun, Soojin

    2014-02-01

    The dielectric (DE) properties, specifically the DE constant (ε') and loss factor (ε''), were measured for vacuum-dried and freeze-dried potato samples at a microwave frequency of 2.45 GHz over a range of different moisture contents (MCs) using a DE probe and also a 2-probe electrochemical impedance spectroscopy (EIS). Third-order polynomial models (ε' = f₁(MC); and ε'' = f₂(MC)) at room temperature were developed for regression analysis. Additionally, at various temperatures (T), biphasic 3rd-order polynomial models (ε' = f₁(MC, T); and ε'' = f₂(MC, T)) were obtained to determine ε' and ε'' as a function of MC and T using measured data. The vacuum-dried potato sample showed a good fitness of ε' and ε'' (R² = 0.95 and 0.96, respectively) to the regression model with the range of MCs from 18% to 80% (w/w), while the freeze-dried potato sample showed a good fitness of ε' and ε'' to the 1st-phase regression model with MC < 50% w/w (R² = 0.95 and 0.96, respectively) and the 2nd-phase regression model with MC > 50% w/w (R² = 0.94 to 0.96). EIS measurements were also used to obtain correlation impedances for ε' and ε'' determined by the DE probe method. The resulted regression analysis meets the demands for simple, rapid, and accurate assessment for transient values of ε' and ε'' of food products during dehydration/drying processes. The EIS method was verified to be a successful alternative to direct measurements of ε' and ε''. PMID:24446887

  11. Mismatch detection in DNA monolayers by atomic force microscopy and electrochemical impedance spectroscopy

    PubMed Central

    Ambrosetti, Elena; Scoles, Giacinto; Casalis, Loredana

    2016-01-01

    Summary Background: DNA hybridization is at the basis of most current technologies for genotyping and sequencing, due to the unique properties of DNA base-pairing that guarantee a high grade of selectivity. Nonetheless the presence of single base mismatches or not perfectly matched sequences can affect the response of the devices and the major challenge is, nowadays, to distinguish a mismatch of a single base and, at the same time, unequivocally differentiate devices read-out of fully and partially matching sequences. Results: We present here two platforms based on different sensing strategies, to detect mismatched and/or perfectly matched complementary DNA strands hybridization into ssDNA oligonucleotide monolayers. The first platform exploits atomic force microscopy-based nanolithography to create ssDNA nano-arrays on gold surfaces. AFM topography measurements then monitor the variation of height of the nanostructures upon biorecognition and then follow annealing at different temperatures. This strategy allowed us to clearly detect the presence of mismatches. The second strategy exploits the change in capacitance at the interface between an ssDNA-functionalized gold electrode and the solution due to the hybridization process in a miniaturized electrochemical cell. Through electrochemical impedance spectroscopy measurements on extended ssDNA self-assembled monolayers we followed in real-time the variation of capacitance, being able to distinguish, through the difference in hybridization kinetics, not only the presence of single, double or triple mismatches in the complementary sequence, but also the position of the mismatched base pair with respect to the electrode surface. Conclusion: We demonstrate here two platforms based on different sensing strategies as sensitive and selective tools to discriminate mismatches. Our assays are ready for parallelization and can be used in the detection and quantification of single nucleotide mismatches in microRNAs or in

  12. Degradation characteristics of hydroxyapatite coatings on orthopaedic TiAlV in simulated physiological media investigated by electrochemical impedance spectroscopy.

    PubMed

    Souto, Ricardo M; Laz, María M; Reis, Rui L

    2003-10-01

    This paper concentrates on the degradation characteristics of hydroxyapatite (HA) coatings on orthopaedic Ti-6Al-4V alloy while immersed in Ringer's salt solution, which were investigated by electrochemical impedance spectroscopy. Electrochemical impedance spectroscopy measurements were used to in situ characterize the electrochemical behavior of the passivated alloy covered with HA during aging in Ringer's solution. Comparison of the electrochemical data for the coated material with that for the uncoated metal substrate was also performed. The characteristic feature that describes the electrochemical behavior of the coated material is the coexistence of large areas of the coating itself with pores where the substrate is exposed to the aggressive media. The interpretation of results was thus performed in terms of a two-layer model of the film, in which the precipitation of hydrated oxide or phosphate compounds seals the pores left by the ceramic coating. The blocking effect due to salt precipitation inside the pores produces an enhancement of the resistance values, thus effectively diminishing the metal ion release in the system.

  13. Charge Carrier Conduction Mechanism in PbS Quantum Dot Solar Cells: Electrochemical Impedance Spectroscopy Study.

    PubMed

    Wang, Haowei; Wang, Yishan; He, Bo; Li, Weile; Sulaman, Muhammad; Xu, Junfeng; Yang, Shengyi; Tang, Yi; Zou, Bingsuo

    2016-07-20

    With its properties of bandgap tunability, low cost, and substrate compatibility, colloidal quantum dots (CQDs) are becoming promising materials for optoelectronic applications. Additionally, solution-processed organic, inorganic, and hybrid ligand-exchange technologies have been widely used in PbS CQDs solar cells, and currently the maximum certified power conversion efficiency of 9.9% has been reported by passivation treatment of molecular iodine. Presently, there are still some challenges, and the basic physical mechanism of charge carriers in CQDs-based solar cells is not clear. Electrochemical impedance spectroscopy is a monitoring technology for current by changing the frequency of applied alternating current voltage, and it provides an insight into its electrical properties that cannot be measured by direct current testing facilities. In this work, we used EIS to analyze the recombination resistance, carrier lifetime, capacitance, and conductivity of two typical PbS CQD solar cells Au/PbS-TBAl/ZnO/ITO and Au/PbS-EDT/PbS-TBAl/ZnO/ITO, in this way, to better understand the charge carriers conduction mechanism behind in PbS CQD solar cells, and it provides a guide to design high-performance quantum-dots solar cells. PMID:27176547

  14. Generation of Small Single Domain Nanobody Binders for Sensitive Detection of Testosterone by Electrochemical Impedance Spectroscopy.

    PubMed

    Li, Guanghui; Zhu, Min; Ma, Lu; Yan, Junrong; Lu, Xiaoling; Shen, Yanfei; Wan, Yakun

    2016-06-01

    A phage display library of variable domain of the heavy chain only antibody or nanobody (Nb) was constructed after immunizing a bactrian camel with testosterone. With the smaller molecular size (15 kDa), improved solubility, good stability, high affinity, specificity, and lower immunogenicity, Nbs are a promising tool in the next generation of diagnosis and medical applications. Testosterone is a reproductive hormone, playing an important role in normal cardiac function and being the highly predictive marker for many diseases. Herein, a simple and sensitive immunosensor based on electrochemical impedance spectroscopy (EIS) and Nbs was successfully developed for the determination of testosterone. We successfully isolated the antitestosterone Nbs from an immune phage display library. Moreover, one of the Nbs was biotinylated according to in vivo BirA system, which showed the highest production yield and the most stable case. Further, the EIS immunosensor was set up for testosterone detection by applying the biotinylated antitestosterone Nb. As a result, the biosensor exhibited a linear working range from 0.05 to 5 ng mL(-1) with a detection limit of 0.045 ng mL(-1). In addition, the proposed immunosensor was successfully applied in determining testosterone in serum samples. In conclusion, the proposed immunosensor revealed high specificity of testosterone detection and showed as a potential approach for sensitive and accurate diagnosis of testosterone.

  15. Electrochemical Impedance Studies on Tribocorrosion Behavior of Plasma-Sprayed Al2O3 Coatings

    NASA Astrophysics Data System (ADS)

    Liu, Zhe; Chu, Zhenhua; Chen, Xueguang; Dong, Yanchun; Yang, Yong; Li, Yingzhen; Yan, Dianran

    2015-06-01

    In this paper, the tribocorrosion of plasma-sprayed Al2O3 coatings in simulated seawater was investigated by electrochemical impedance spectroscopy (EIS) technique, complemented by scanning electron microscopy to observe the morphology of the tribocorrosion attack. Base on EIS of plasma-sprayed Al2O3 coatings undergoing long-time immersion in simulated seawater, the corrosion process of Al2O3 coatings can be divided into the earlier stage of immersion (up to 20 h) and the later stage (beyond 20 h). Then, the wear tests were carried out on the surface of Al2O3 coating undergoing different times of immersion to investigate the influence of wear on corrosion at different stages. The coexistence of wear and corrosion condition had been created by a boron nitride grinding head rotating on the surface of coatings corroded in simulated seawater. The measured EIS and the values of the fitting circuit elements showed that wear accelerated corrosion at the later stage, meanwhile, corrosion accelerated wear with the immersion time increasing.

  16. Electrochemical impedance spectroscopy for graphene surface modification and protein translocation through the chemically modified graphene nanopore

    NASA Astrophysics Data System (ADS)

    Tiwari, Purushottam; Shan, Yuping; Wang, Xuewen; Darici, Yesim; He, Jin

    2014-03-01

    The multilayer graphene surface has been modified using mercaptohexadecanoic acid (MHA) and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-750] (DPPE-PEG750). The surface modifications are evaluated using electrochemical impedance spectroscopy (EIS). EIS measurements show the better graphene surface passivation with DPPE-PEG750 than with MHA. After modification with ferritin, the MHA modified surface shows greater charge transfer resistance (Rct) change than DPPE-PEG750 modified surface. Based on these results the translocations of ferritin through modified graphene nanopore with diameter 5-20 nm are studied. The translocation is more successful through DPPE-PEG750 modified graphene nanopore. This concludes that that the attachment of ferritin to DPPE-PEG750 modified graphene nanopore is not significant compared to MHA modified pore for the ferritin translocation hindrance. These results nicely correlate with the EIS data for respective Rct change of ferritin modified surfaces. P. Tiwari would like to thank FIU School of Integrated Science & Humanity, College Arts & Sciences for the research assistantship.

  17. Electrochemical impedance immunosensor for rapid detection of stressed pathogenic Staphylococcus aureus bacteria.

    PubMed

    Bekir, Karima; Barhoumi, Houcine; Braiek, Mohamed; Chrouda, Amani; Zine, Nadia; Abid, Nabil; Maaref, Abdelrazek; Bakhrouf, Amina; Ouada, Hafedh Ben; Jaffrezic-Renault, Nicole; Mansour, Hedi Ben

    2015-10-01

    In this work, we report the adaptation of bacteria to stress conditions that induce instability of their cultural, morphological, and enzymatic characters, on which the identification of pathogenic bacteria is based. These can raise serious issues during the characterization of bacteria. The timely detection of pathogens is also a subject of great importance. For this reason, our objective is oriented towards developing an immunosensing system for rapid detection and quantification of Staphylococcus aureus. Polyclonal anti-S. aureus are immobilized onto modified gold electrode by self-assembled molecular monolayer (SAM) method. The electrochemical performances of the developed immunosensor were evaluated by impedance spectroscopy through the monitoring of the charge transfer resistance at the modified solid/liquid interface using ferri-/ferrocyanide as redox probe. The developed immunosensor was applied to detect stressed and resuscitate bacteria. As a result, a stable and reproducible immunosensor with sensitivity of 15 kΩ/decade and a detection limit of 10 CFU/mL was obtained for the S. aureus concentrations ranging from 10(1) to 10(7) CFU/mL. A low deviation in the immunosensor response (±10 %) was signed when it is exposed to stressed and not stressed bacteria.

  18. Characterization of electrochemical response of a hybrid micro-nanochannel system using computational impedance spectroscopy (CIS)

    NASA Astrophysics Data System (ADS)

    Nandigana, Vishal; Aluru, Narayan

    2013-11-01

    Single molecule/particle sensing using micro/nanochannel integrated systems has attracted tremendous interest in recent years. The molecule in an aqueous ionic solution is translocated from the source microchannel towards the drain microchannel across a nanochannel under the influence of an external electric field. The translocated molecules are characterized from the electrical response of the system. In order to develop an efficient design for accurate characterization of single molecules, it is important to first understand the ion-transport dynamics in these integrated systems. To this end, we develop a computationally efficient area-averaged multi-ion transport model (AAM), considering an ion-selective nanochannel integrated with a microchannel on either side. Further, we study the ion transport dynamics both under equilibrium and non-equilibrium regimes. In each regime, the base state is perturbed with an external harmonic electrical disturbance over a wide range of frequency spectrum and the electrochemical impedance response is computed. We correlate each characteristic frequency present in the system to its corresponding physical phenomena and also characterize the microscopic diffusion boundary layer lengths (DBL) observed in the microchannel. This work was supported by the National Science Foundation (NSF) under Grants 0328162 (nano-CEMMS, UIUC), 0852657 and 0915718.

  19. Detecting proton exchange membrane fuel cell hydrogen leak using electrochemical impedance spectroscopy method

    NASA Astrophysics Data System (ADS)

    Mousa, Ghassan; Golnaraghi, Farid; DeVaal, Jake; Young, Alan

    2014-01-01

    When a proton exchange membrane (PEM) fuel cell runs short of hydrogen, it suffers from a reverse potential fault that, when driven by neighboring cells, can lead to anode catalyst degradation and holes in the membrane due to local heat generation. As a result, hydrogen leaks through the electrically-shorted membrane-electrode assembly (MEA) without being reacted, and a reduction in fuel cell voltage is noticed. Such voltage reduction can be detected by using electrochemical impedance spectroscopy (EIS). To fully understand the reverse potential fault, the effect of hydrogen crossover leakage in a commercial MEA is measured by EIS at different differential pressures between the anode and cathode. Then the signatures of these leaky cells were compared with the signatures of a no-leaky cells at different oxygen concentrations with the same current densities. The eventual intent of this early stage work is to develop an on-board diagnostics system that can be used to detect and possibly prevent cell reversal failures, and to permit understanding the status of crossover or transfer leaks versus time in operation.

  20. DNA Hybridization Sensors Based on Electrochemical Impedance Spectroscopy as a Detection Tool

    PubMed Central

    Park, Jin-Young; Park, Su-Moon

    2009-01-01

    Recent advances in label free DNA hybridization sensors employing electrochemical impedance spectroscopy (EIS) as a detection tool are reviewed. These sensors are based on the modulation of the blocking ability of an electrode modified with a probe DNA by an analyte, i.e., target DNA. The probe DNA is immobilized on a self-assembled monolayer, a conducting polymer film, or a layer of nanostructures on the electrode such that desired probe DNA would selectively hybridize with target DNA. The rate of charge transfer from the electrode thus modified to a redox indicator, e.g., [Fe(CN)6]3−/4−, which is measured by EIS in the form of charge transfer resistance (Rct), is modulated by whether or not, as well as how much, the intended target DNA is selectively hybridized. Efforts made to enhance the selectivity as well as the sensitivity of DNA sensors and to reduce the EIS measurement time are briefly described along with brief future perspectives in developing DNA sensors. PMID:22303136

  1. A Multilayer MEMS Platform for Single-Cell Electric Impedance Spectroscopy and Electrochemical Analysis

    PubMed Central

    Dittami, Gregory M.; Ayliffe, H. Edward; King, Curtis S.; Rabbitt, Richard D.

    2008-01-01

    The fabrication and characterization of a microchamber electrode array for electrical and electrochemical studies of individual biological cells are presented. The geometry was tailored specifically for measurements from sensory hair cells isolated from the cochlea of the mammalian inner ear. Conventional microelectromechanical system (MEMS) fabrication techniques were combined with a heat-sealing technique and polydimethylsiloxane micromolding to achieve a multilayered microfluidic system that facilitates cell manipulation and selection. The system allowed for electrical stimulation of individual living cells and interrogation of excitable cell membrane dielectric properties as a function of space and time. A three-electrode impedimetric system was incorporated to provide the additional ability to record the time-dependent concentrations of specific biochemicals in microdomain volumes near identified regions of the cell membrane. The design and fabrication of a robust fluidic and electrical interface are also described. The interface provided the flexibility and simplicity of a “cartridge-based” approach in connecting to the MEMS devices. Cytometric measurement capabilities were characterized by using electric impedance spectroscopy (1 kHz–10 MHz) of isolated outer hair cells. Chemical sensing capability within the microchannel recording chamber was characterized by using cyclic voltammetry with varying concentrations of potassium ferricyanide (K3Fe(CN)6). Chronoamperometric recordings of electrically stimulated PC12 cells highlight the ability of the platform to resolve exocytosis events from individual cells. PMID:19756255

  2. A highly selective electrochemical impedance spectroscopy-based aptasensor for sensitive detection of acetamiprid.

    PubMed

    Fan, Lifang; Zhao, Guohua; Shi, Huijie; Liu, Meichuan; Li, Zhengxin

    2013-05-15

    A simple aptasensor for sensitive and selective detection of acetamiprid has been developed based on electrochemical impedance spectroscopy (EIS). To improve sensitivity of the aptasensor, gold nanoparticles (AuNPs) were electrodeposited on the bare gold electrode surface by cycle voltammetry (CV), which was employed as a platform for aptamer immobilization. With the addition of acetamiprid, the formation of acetamiprid-aptamer complex on the AuNPs-deposited electrode surface resulted in an increase of electron transfer resistance (Ret). The change of Ret strongly depends on acetamiprid concentration, which is applied for acetamiprid quantification. A wide linear range was obtained from 5 to 600nM with a low detection limit of 1nM. The control experiments performed by employing the pesticides that may coexist or have similar structure with acetamiprid demonstrate that the aptasensor has only specific recognition to acetamiprid, resulting in high selectivity of the aptasensor. The dissociation constant, Kd of 23.41nM for acetamiprid-aptamer complex has been determined from the differential capacitance (Cd) by assuming a Langmuir isotherm, which indicates strong interaction between acetamiprid and aptamer, further proving high selectivity of the aptasensor. Besides, the applicability of the developed aptasensor has been successfully evaluated by determining acetamiprid in the real samples, wastewater and tomatoes. PMID:23274191

  3. Probing the chemistry of nickel/metal hydride battery cells using electrochemical impedance spectroscopy

    NASA Technical Reports Server (NTRS)

    Isaac, Bryan J.

    1994-01-01

    Electrochemical Impedance Spectroscopy (EIS) is a valuable tool for investigating the chemical and physical processes occurring at electrode surfaces. It offers information about electron transfer at interfaces, kinetics of reactions, and diffusion characteristics of the bulk phase between the electrodes. For battery cells, this technique offers another advantage in that it can be done without taking the battery apart. This non-destructive analysis technique can thus be used to gain a better understanding of the processes occurring within a battery cell. This also raises the possibility of improvements in battery design and identification or prediction of battery characteristics useful in industry and aerospace applications. EIS as a technique is powerful and capable of yielding significant information about the cell, but it also requires that the many parameters under investigation can be resolved. This implies an understanding of the processes occurring in a battery cell. Many battery types were surveyed in this work, but the main emphasis was on nickel/metal hydride batteries.

  4. Electrochemical Impedance Spectroscopy (bio)sensing through hydrogen evolution reaction induced by gold nanoparticles.

    PubMed

    Mayorga-Martinez, Carmen C; Chamorro-Garcia, Alejandro; Merkoçi, Arben

    2015-05-15

    A new gold nanoparticle (AuNP) based detection strategy using Electrochemical Impedance Spectroscopy (EIS) through hydrogen evolution reaction (HER) is proposed. This EIS-HER method is used as an alternative to the conventional EIS based on [Fe(CN)6](3-/4-) or [Ru(NH3)6](3+/2+) indicators. The proposed method is based on the HER induced by AuNPs. EIS measurements for different amounts of AuNP are registered and the charge transfer resistance (Rct) was found to correlate and be useful for their quantification. Moreover the effect of AuNP size on electrical properties of AuNPs for HER using this sensitive technique has been investigated. Different EIS-HER signals generated in the presence of AuNPs of different sizes (2, 5, 10, 15, 20, and 50 nm) are observed, being the corresponding phenomena extendible to other nanoparticles and related catalytic reactions. This EIS-HER sensing technology is applied to a magneto-immunosandwich assay for the detection of a model protein (IgG) achieving improvements of the analytical performance in terms of a wide linear range (2-500 ng mL(-1)) with a good limit of detection (LOD) of 0.31 ng mL(-1) and high sensitivity. Moreover, with this methodology a reduction of one order of magnitude in the LOD for IgG detection, compared with a chroamperometric technique normally used was achieved. PMID:24953452

  5. Evaluation of inorganic zinc-rich primers using Electrochemical Impedance Spectroscopy (EIS)

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.

    1993-01-01

    This investigation explores the use of Electrochemical Impedance Spectroscopy (EIS) in combination with beach exposure as a short term method for analyzing the performance of twenty-one zinc-rich primers. The twenty-one zinc-rich primers were: Carboline CZ-11, Ameron Devoe-Marine Catha-Coat 304, Briner V-65, Ameron D-21-9, Sherwin Williams Zinc Clad II, Carboline CZ-D7, Ameron D-4, Dupont Ganicin 347WB, Porter TQ-4374H, Inorganic Coatings IC-531, Subox Galvanox IV, Southern Coatings Chemtec 600, Glidden Glidzinc 5530, Byco SP-101, Tnemec 90E-75, Devoe Catha-Coat 302H, Glidden Glidzinc 5536, Koppers 701, Ameron D-21-5, Coronado 935-152, and Subox Galvanoz V. Data were also collected on galvanized steel for comparison purposes. A library of Bode magnitude plots was generated for each coating including curves for the initial time and after each week of atmospheric exposure as Beach Corrosion Test Site near the Space Shuttle launch pad at the Kennedy Space Center for up to three weeks. An examination of the variation of the Bode magnitude plots with atmospheric exposure revealed no clearly identifiable trend at this point that could distinguish between the good and the poor coatings. The test will be continued by including EIS measurements after six months and one year of atmospheric exposure.

  6. Aptamer-based biosensor for label-free detection of ethanolamine by electrochemical impedance spectroscopy.

    PubMed

    Liang, Gang; Man, Yan; Jin, Xinxin; Pan, Ligang; Liu, Xinhui

    2016-09-14

    A label-free sensing assay for ethanolamine (EA) detection based on G-quadruplex-EA binding interaction is presented by using G-rich aptamer DNA (Ap-DNA) and electrochemical impedance spectroscopy (EIS). The presence of K(+) induces the Ap-DNA to form a K(+)-stabilized G-quadruplex structure which provides binding sites for EA. The sensing mechanism was further confirmed by circular dichroism (CD) spectroscopy and EIS measurement. As a result, the charge transfer resistance (RCT) is strongly increased as demonstrated by using the ferro/ferricyanide ([Fe(CN)6](3-/4-)) as a redox probe. Under the optimized conditions, a linear relationship between ΔRCT and EA concentration was obtained over the range of 0.16 nM and 16 nM EA, with a detection limit of 0.08 nM. Interference by other selected chemicals with similar structure was negligible. Analytical results of EA spiked into tap water and serum by the sensor suggested the assay could be successfully applied to real sample analysis. With the advantages of high sensitivity, selectivity and simple sensor construction, this method is potentially suitable for the on-site monitoring of EA contamination.

  7. Salt transport properties of model reverse osmosis membranes using electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Feldman, Kathleen; Chan, Edwin; Stafford, Gery; Stafford, Christopher

    With the increasing shortage of clean water, efficient purification technologies including membrane separations are becoming critical. The main requirement of reverse osmosis in particular is to maximize water permeability while minimizing salt permeability. Such performance optimization has typically taken place through trial and error approaches. In this work, key salt transport metrics are instead measured in model reverse osmosis membranes using electrochemical impedance spectroscopy (EIS). As shown previously, EIS can provide both the membrane resistance Rm and membrane capacitance Cm, with Rm directly related to salt permeability. The membranes are fabricated in a molecular layer by layer approach, which allows for control over such parameters as thickness, surface and bulk chemistry, and network geometry/connectivity. Rm, and therefore salt permeability, follows the expected trends with thickness and membrane area but shows unusual behavior when the network geometry is systematically varied. By connecting intrinsic material properties such as the salt permeability with macroscopic performance measures we can begin to establish design rules for improving membrane efficiency and facilitate the creation of next-generation separation membranes.

  8. A label-free electrochemical impedance aptasensor for cylindrospermopsin detection based on thionine-graphene nanocomposites.

    PubMed

    Zhao, Zhen; Chen, Hongda; Ma, Lina; Liu, Dianjun; Wang, Zhenxin

    2015-08-21

    It is important to develop methods to determine cylindrospermopsin (CYN) at trace levels since CYN is a kind of widespread cyanobacterial toxin in water sources. In this study, a label-free impedimetric aptasensor has been fabricated for detecting CYN. In this case, the amino-substituted aptamer of CYN was covalently grafted onto the surface of the thionine-graphene (TH-G) nanocomposite through the cross-linker glutaraldehyde (GA). The reaction of the aptamer with CYN was monitored by electrochemical impedance spectroscopy because the CYN induced conformation change of the aptamer can cause a remarkable decrease of the electron transfer resistance. Under optimum conditions, the aptasensor exhibits high sensitivity and a low detection limit for CYN determination. The CYN can be quantified in a wide range of 0.39 to 78 ng mL(-1) with a good linearity (R(2) = 0.9968) and a low detection limit of 0.117 ng mL(-1). In addition, the proposed aptasensor displays excellent stability, reusability and reproducibility. PMID:26111280

  9. Rapid and highly sensitive detection of Enterovirus 71 by using nanogold-enhanced electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Hsing-Yuan; Tseng, Shing-Hua; Cheng, Tsai-Mu; Chu, Hsueh-Liang; Lu, Yu-Ning; Wang, Fang-Yu; Tsai, Li-Yun; Shieh, Juo-Yu; Yang, Jyh-Yuan; Juan, Chien-Chang; Tu, Lung-Chen; Chang, Chia-Ching

    2013-07-01

    Enterovirus 71 (EV71) infection is an emerging infectious disease causing neurological complications and/or death within two to three days after the development of fever and rash. A low viral titre in clinical specimens makes the detection of EV71 difficult. Conventional approaches for detecting EV71 are time consuming, poorly sensitive, or complicated, and cannot be used effectively for clinical diagnosis. Furthermore, EV71 and Coxsackie virus A16 (CA16) may cross react in conventional assays. Therefore, a rapid, highly sensitive, specific, and user-friendly test is needed. We developed an EV71-specific nanogold-modified working electrode for electrochemical impedance spectroscopy in the detection of EV71. Our results show that EV71 can be distinguished from CA16, Herpes simplex virus, and lysozyme, with the modified nanogold electrode being able to detect EV71 in concentrations as low as 1 copy number/50 μl reaction volume, and the duration between sample preparation and detection being 11 min. This detection platform may have the potential for use in point-of-care diagnostics.

  10. Rapid detection and quantification of free hemoglobin and haptoglobin by nanogold modified electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Lu, Yu-Ning; Li, Hsing-Yuan; Chu, Hsueh-Liang; Cheng, Tsia-Mu; Tseng, Shin-Hua; Chang, Chia-Ching

    2013-03-01

    Free Hemoglobin (Hb) is a metabolic substance that damage tissue and vessel. It is released from destructed red blood cell and causes infection or inflammatory of human body. In blood plasma, haptoglobin (Hp) binds free Hb with high affinity and prevents the damage which is caused by cell free Hb. Hp has three phenotypes, that are Hp1-1, Hp 2-1, and Hp 2-2. Different phenotypes of Hp has been different affinities to Hb. It is known that electrochemical impedance spectroscopy (EIS) provide more information for detecting the small amount bio-molecules, include protein and DNA. In this study, we have developed a simple, fast, reliable and sensitive platform to quantify concentration of free Hb and Hp. In this platform, detection probe has been modified with nano gold and the surface charge transfer resistance of Hb and Hp binding could be detected and quantified within 18 min. This is a whole new platform to quantify free Hb in the serum of human to our knowledge.

  11. Human haptoglobin phenotypes and concentration determination by nanogold-enhanced electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Cheng, Tsai-Mu; Lee, Tzu-Cheng; Tseng, Shin-Hua; Chu, Hsueh-Liang; Pan, Ju-Pin; Chang, Chia-Ching

    2011-06-01

    Haptoglobin (Hp) is an acute phase protein that binds free hemoglobin (Hb), preventing Hb-induced oxidative damage in the vascular system. There are three phenotypes in human Hp, whose heterogeneous polymorphic structures and varying concentrations in plasma have been attributed to the cause of diseases and outcome of clinical treatments. Different phenotypes of Hp may be composed of the same subunits but different copy numbers, rendering their determination difficult by a single procedure. In this study, we have developed a simple, fast, reliable and sensitive method, using label-free nanogold-modified bioprobes coupled with self-development electrochemical impedance spectroscopy (EIS). By this method, probe surface charge transfer resistance is detected. The relative charge transfer resistance ratios for Hp 1-1, Hp 2-1 and Hp 2-2 were characterized. We were able to determine protein size difference within 3 nm, and the linear region of the calibration curve for Hp levels in the range of 90 pg ml - 1 and 90 µg ml - 1 (~1 fM to 1 pM). We surmise that similar approaches can be used to investigate protein polymorphism and altered protein-protein interaction associated with diseases.

  12. Effects of Operating Conditions on Internal Resistances in Enzyme Fuel Cells Studied via Electrochemical Impedance Spectroscopy

    SciTech Connect

    Aaron, D; Borole, Abhijeet P; Yiacoumi, Sotira; Tsouris, Costas

    2012-01-01

    Enzyme fuel cells (EFCs) offer some advantages over traditional precious-metal-catalyzed fuel cells, such as polymer electrolyte membrane fuel cells (PEMFCs). However, EFCs exhibit far less power output than PEMFCs and have relatively short life spans before materials must be replaced. In this work, electrochemical impedance spectroscopy (EIS) is used to analyze the internal resistances throughout the EFC at a variety of operating conditions. EIS analysis is focused primarily on the resistances of the anode, solution/membrane, and cathode. Increased enzyme loading results in improved power output and reductions in internal resistance. Conditions are identified for which enzyme loading does not limit the EFC performance. EIS experiments are also reported for EFCs operated continuously for 2 days; power output declines sharply over time, while all internal resistances increase. Drying of the cathode and enzyme/mediator degradation are believed to have contributed to this behavior. Finally, experiments are performed at varying air-humidification temperatures. Little effect on internal resistances or power output is observed. However, it is anticipated that increased air humidification can improve longevity by delivering more water to the cathode. Improvements to the enzymatic cathode are needed for EFC development. These improvements need to focus on improving transport rather than increasing enzyme loading.

  13. Charge Carrier Conduction Mechanism in PbS Quantum Dot Solar Cells: Electrochemical Impedance Spectroscopy Study.

    PubMed

    Wang, Haowei; Wang, Yishan; He, Bo; Li, Weile; Sulaman, Muhammad; Xu, Junfeng; Yang, Shengyi; Tang, Yi; Zou, Bingsuo

    2016-07-20

    With its properties of bandgap tunability, low cost, and substrate compatibility, colloidal quantum dots (CQDs) are becoming promising materials for optoelectronic applications. Additionally, solution-processed organic, inorganic, and hybrid ligand-exchange technologies have been widely used in PbS CQDs solar cells, and currently the maximum certified power conversion efficiency of 9.9% has been reported by passivation treatment of molecular iodine. Presently, there are still some challenges, and the basic physical mechanism of charge carriers in CQDs-based solar cells is not clear. Electrochemical impedance spectroscopy is a monitoring technology for current by changing the frequency of applied alternating current voltage, and it provides an insight into its electrical properties that cannot be measured by direct current testing facilities. In this work, we used EIS to analyze the recombination resistance, carrier lifetime, capacitance, and conductivity of two typical PbS CQD solar cells Au/PbS-TBAl/ZnO/ITO and Au/PbS-EDT/PbS-TBAl/ZnO/ITO, in this way, to better understand the charge carriers conduction mechanism behind in PbS CQD solar cells, and it provides a guide to design high-performance quantum-dots solar cells.

  14. Aptamer-based biosensor for label-free detection of ethanolamine by electrochemical impedance spectroscopy.

    PubMed

    Liang, Gang; Man, Yan; Jin, Xinxin; Pan, Ligang; Liu, Xinhui

    2016-09-14

    A label-free sensing assay for ethanolamine (EA) detection based on G-quadruplex-EA binding interaction is presented by using G-rich aptamer DNA (Ap-DNA) and electrochemical impedance spectroscopy (EIS). The presence of K(+) induces the Ap-DNA to form a K(+)-stabilized G-quadruplex structure which provides binding sites for EA. The sensing mechanism was further confirmed by circular dichroism (CD) spectroscopy and EIS measurement. As a result, the charge transfer resistance (RCT) is strongly increased as demonstrated by using the ferro/ferricyanide ([Fe(CN)6](3-/4-)) as a redox probe. Under the optimized conditions, a linear relationship between ΔRCT and EA concentration was obtained over the range of 0.16 nM and 16 nM EA, with a detection limit of 0.08 nM. Interference by other selected chemicals with similar structure was negligible. Analytical results of EA spiked into tap water and serum by the sensor suggested the assay could be successfully applied to real sample analysis. With the advantages of high sensitivity, selectivity and simple sensor construction, this method is potentially suitable for the on-site monitoring of EA contamination. PMID:27566359

  15. An electrochemical impedance investigation of the behaviour of anodically oxidised titanium in human plasma and cognate fluids, relevant to dental applications.

    PubMed

    Bozzini, B; Carlino, P; D'Urzo, L; Pepe, V; Mele, C; Venturo, F

    2008-11-01

    In dental applications, the contact between the metal implant and the receiving living tissue is made through the oxide layer on the implant surface, which allows the osseointegration process. In dentistry, the passive film formed on titanium seems to be more stable and protective than that formed on the Ti alloys, customarily used in other medical applications. Corrosion of titanium alloys in the mouth can result from the presence of a number of corrosive species, such as the hydrogen ion (H(+)), sulfide compounds (S(2-)), dissolved oxygen (O(2)) and Cl(-) and can result in the release of Ti(4+) ions that, in turn, brings about the reduction of alkaline phosphatase activity of osteoblastic cells. The present study reports a time-dependent electrochemical corrosion study of titanium in contact with the following biologically relevant solutions: (i) SBF (simulating the inorganic part of human plasma), (ii) SBF with added ovalbumin (a protein simulating the post-implant environment) and (iii) human plasma. To the best of the authors' knowledge, this is the first report on the corrosion of Ti in human plasma. The electrochemical measurements are based on electrochemical impedance spectrometry. Impedance spectra were interpreted on the basis of the equivalent-circuit approach and estimates of the time-variation of oxide film thickness and resistance were computed. Surface Raman spectroscopy was used to characterise the structure of as-anodised and corroded TiO(2) films: the effects of phosphate and organic incorporation were highlighted. EIS and surface Raman measurements have demonstrated that the corrosion resistance of the oxide films formed on Ti is strongly affected by the presence of biomolecules in the chloride- and phosphate-based aqueous solution. In particular, ovalbumin increases corrosion performance and human plasma is found to be remarkably more aggressive in comparison to SBF. These results suggest some caution in extrapolating corrosion results obtained

  16. Two-Point Stretchable Electrode Array for Endoluminal Electrochemical Impedance Spectroscopy Measurements of Lipid-Laden Atherosclerotic Plaques.

    PubMed

    Packard, René R Sevag; Zhang, XiaoXiao; Luo, Yuan; Ma, Teng; Jen, Nelson; Ma, Jianguo; Demer, Linda L; Zhou, Qifa; Sayre, James W; Li, Rongsong; Tai, Yu-Chong; Hsiai, Tzung K

    2016-09-01

    Four-point electrode systems are commonly used for electric impedance measurements of biomaterials and tissues. We introduce a 2-point system to reduce electrode polarization for heterogeneous measurements of vascular wall. Presence of endoluminal oxidized low density lipoprotein (oxLDL) and lipids alters the electrochemical impedance that can be measured by electrochemical impedance spectroscopy (EIS). We developed a catheter-based 2-point micro-electrode configuration for intravascular deployment in New Zealand White rabbits. An array of 2 flexible round electrodes, 240 µm in diameter and separated by 400 µm was microfabricated and mounted on an inflatable balloon catheter for EIS measurement of the oxLDL-rich lesions developed as a result of high-fat diet-induced hyperlipidemia. Upon balloon inflation, the 2-point electrode array conformed to the arterial wall to allow deep intraplaque penetration via alternating current (AC). The frequency sweep from 10 to 300 kHz generated an increase in capacitance, providing distinct changes in both impedance (Ω) and phase (ϕ) in relation to varying degrees of intraplaque lipid burden in the aorta. Aortic endoluminal EIS measurements were compared with epicardial fat tissue and validated by intravascular ultrasound and immunohistochemistry for plaque lipids and foam cells. Thus, we demonstrate a new approach to quantify endoluminal EIS via a 2-point stretchable electrode strategy.

  17. Two-Point Stretchable Electrode Array for Endoluminal Electrochemical Impedance Spectroscopy Measurements of Lipid-Laden Atherosclerotic Plaques.

    PubMed

    Packard, René R Sevag; Zhang, XiaoXiao; Luo, Yuan; Ma, Teng; Jen, Nelson; Ma, Jianguo; Demer, Linda L; Zhou, Qifa; Sayre, James W; Li, Rongsong; Tai, Yu-Chong; Hsiai, Tzung K

    2016-09-01

    Four-point electrode systems are commonly used for electric impedance measurements of biomaterials and tissues. We introduce a 2-point system to reduce electrode polarization for heterogeneous measurements of vascular wall. Presence of endoluminal oxidized low density lipoprotein (oxLDL) and lipids alters the electrochemical impedance that can be measured by electrochemical impedance spectroscopy (EIS). We developed a catheter-based 2-point micro-electrode configuration for intravascular deployment in New Zealand White rabbits. An array of 2 flexible round electrodes, 240 µm in diameter and separated by 400 µm was microfabricated and mounted on an inflatable balloon catheter for EIS measurement of the oxLDL-rich lesions developed as a result of high-fat diet-induced hyperlipidemia. Upon balloon inflation, the 2-point electrode array conformed to the arterial wall to allow deep intraplaque penetration via alternating current (AC). The frequency sweep from 10 to 300 kHz generated an increase in capacitance, providing distinct changes in both impedance (Ω) and phase (ϕ) in relation to varying degrees of intraplaque lipid burden in the aorta. Aortic endoluminal EIS measurements were compared with epicardial fat tissue and validated by intravascular ultrasound and immunohistochemistry for plaque lipids and foam cells. Thus, we demonstrate a new approach to quantify endoluminal EIS via a 2-point stretchable electrode strategy. PMID:26857007

  18. Study of impedance spectra for dry and wet EarEEG electrodes.

    PubMed

    Kappel, Simon L; Kidmose, Preben

    2015-01-01

    EarEEG is a novel recordings concept where electrodes are embedded on the surface of an earpiece customized to the individual anatomical shape of the users ear. A key parameter for recording EEG signals of good quality is a stable and low impedance electrode-body interface. This study characterizes the impedance for dry and wet EarEEG electrodes in a study of 10 subjects. A custom made and automated setup was used to characterize the impedance spectrum from 0.1 Hz-2 kHz. The study of dry electrodes showed a mean (standard deviation) low frequency impedance of the canal electrodes of 1.2 MΩ (1.4 MΩ) and the high frequency impedance was 230 kΩ (220 kΩ). For wet electrodes the low frequency impedance was 34 kΩ (37 kΩ) and the high frequency impedance was 5.1 kΩ (4.4 kΩ). The high standard deviation of the impedance for dry electrodes imposes very high requirements for the input impedance of the amplifier in order to achieve an acceptable common-mode rejection. The wet electrode impedance was in line with what is typical for a wet electrode interface.

  19. Investigating Water Splitting with CaFe2O4 Photocathodes by Electrochemical Impedance Spectroscopy.

    PubMed

    Díez-García, María Isabel; Gómez, Roberto

    2016-08-24

    Artificial photosynthesis constitutes one of the most promising alternatives for harvesting solar energy in the form of fuels, such as hydrogen. Among the different devices that could be developed to achieve efficient water photosplitting, tandem photoelectrochemical cells show more flexibility and offer high theoretical conversion efficiency. The development of these cells depends on finding efficient and stable photoanodes and, particularly, photocathodes, which requires having reliable information on the mechanism of charge transfer at the semiconductor/solution interface. In this context, this work deals with the preparation of thin film calcium ferrite electrodes and their photoelectrochemical characterization for hydrogen generation by means of electrochemical impedance spectroscopy (EIS). A fully theoretical model that includes elementary steps for electron transfer to the electrolyte and surface recombination with photogenerated holes is presented. The model also takes into account the complexity of the semiconductor/solution interface by including the capacitances of the space charge region, the surface states and the Helmholtz layer (as a constant phase element). After illustrating the predicted Nyquist plots in a general manner, the experimental results for calcium ferrite electrodes at different applied potentials and under different illumination intensities are fitted to the model. The excellent agreement between the model and the experimental results is illustrated by the simultaneous fit of both Nyquist and Bode plots. The concordance between both theory and experiments allows us to conclude that a direct transfer of electrons from the conduction band to water prevails for hydrogen photogeneration on calcium ferrite electrodes and that most of the carrier recombination occurs in the material bulk. In more general vein, this study illustrates how the use of EIS may provide important clues about the behavior of photoelectrodes and the main strategies

  20. Investigating Water Splitting with CaFe2O4 Photocathodes by Electrochemical Impedance Spectroscopy.

    PubMed

    Díez-García, María Isabel; Gómez, Roberto

    2016-08-24

    Artificial photosynthesis constitutes one of the most promising alternatives for harvesting solar energy in the form of fuels, such as hydrogen. Among the different devices that could be developed to achieve efficient water photosplitting, tandem photoelectrochemical cells show more flexibility and offer high theoretical conversion efficiency. The development of these cells depends on finding efficient and stable photoanodes and, particularly, photocathodes, which requires having reliable information on the mechanism of charge transfer at the semiconductor/solution interface. In this context, this work deals with the preparation of thin film calcium ferrite electrodes and their photoelectrochemical characterization for hydrogen generation by means of electrochemical impedance spectroscopy (EIS). A fully theoretical model that includes elementary steps for electron transfer to the electrolyte and surface recombination with photogenerated holes is presented. The model also takes into account the complexity of the semiconductor/solution interface by including the capacitances of the space charge region, the surface states and the Helmholtz layer (as a constant phase element). After illustrating the predicted Nyquist plots in a general manner, the experimental results for calcium ferrite electrodes at different applied potentials and under different illumination intensities are fitted to the model. The excellent agreement between the model and the experimental results is illustrated by the simultaneous fit of both Nyquist and Bode plots. The concordance between both theory and experiments allows us to conclude that a direct transfer of electrons from the conduction band to water prevails for hydrogen photogeneration on calcium ferrite electrodes and that most of the carrier recombination occurs in the material bulk. In more general vein, this study illustrates how the use of EIS may provide important clues about the behavior of photoelectrodes and the main strategies

  1. Electrochemical impedance spectroscopy system and methods for determining spatial locations of defects

    DOEpatents

    Glenn, David F.; Matthern, Gretchen E.; Propp, W. Alan; Glenn, Anne W.; Shaw, Peter G.

    2006-08-08

    A method and apparatus for determining spatial locations of defects in a material are described. The method includes providing a plurality of electrodes in contact with a material, applying a sinusoidal voltage to a select number of the electrodes at a predetermined frequency, determining gain and phase angle measurements at other of the electrodes in response to applying the sinusoidal voltage to the select number of electrodes, determining impedance values from the gain and phase angle measurements, computing an impedance spectrum for an area of the material from the determined impedance values, and comparing the computed impedance spectrum with a known impedance spectrum to identify spatial locations of defects in the material.

  2. Hampering of the Stability of Gold Electrodes by Ferri-/Ferrocyanide Redox Couple Electrolytes during Electrochemical Impedance Spectroscopy.

    PubMed

    Lazar, Jaroslav; Schnelting, Christoph; Slavcheva, Evelina; Schnakenberg, Uwe

    2016-01-01

    In the past decades, numerous measurements have applied electrochemical impedance spectroscopy (EIS) in an electrode-electrolyte system consisting of gold electrodes and the redox couple potassium ferrocyanide/potassium ferricyanide (HCF). Yet these measurements are often hampered by false positive and negative results. Electrochemical impedance signals often display a nonlinear drift in electrolyte systems containing the HCF redox couple, which can mask the accuracy of the analysis. Thus, this Article aims to elucidate the stability and reliability of this particular electrode-electrolyte system. Here, different gold electrode cleaning treatments were compared with respect to adsorption and roughness of the surface of gold electrodes. They show substantial nonlinear long-term drifts of the charge-transfer resistance RD. In particular, the use of HCF-containing electrolytes causes adsorption and corrosion on the gold electrode surface, resulting in a nonlinear impedance behavior that depends on the incubation period as well as on electrolyte composition. Consequently, it is strongly recommended not to use HCF containing electrolytes in combination with gold electrodes.

  3. Failure of thin organic films by a combination of shearography and electrochemical impedance spectroscopy: the new concept of resistivity

    NASA Astrophysics Data System (ADS)

    Habib, Khaled

    2012-04-01

    A critical (steady state) value of the resistivity of different organic coatings was determined by a combination of optical shearography and electrochemical impedance spectroscopy (EIS). The behavior of organic coatings, i.e., ACE premiumgray enamel, white enamel, beige enamel (spray coatings), a yellow acrylic lacquer, and a gold nail polish on a metallic alloy, i.e., a carbon steel, was investigated over a temperature range of 20-60 °C. The value of the resistivity of coatings was determined by correlating the in-plan displacement of the coating (by shearography over a temperature range of 20- 60 °C) and the value of the alternating current (A.C) impedance of the coating by EIS in 3% NaCl solution. The integrity of the coatings with respect to time was assessed by comparison the measured value of resistivity to the critical (steady state) or asymptotic value of resistivity. In other words, by shearography, measurement of coating properties could be performed independent of parameters such as UV exposure, humidity, presence of chemical species, and other parameters which may normally interfere with conventional methods of the assessing of the integrity of coatings. Therefore, one may measure the resistivity of coatings, regardless of the history of the coating, in order to assess the integrity of coatings. Also, the obtained shearography data were found to be in a reasonable trend with the data of electrochemical impedance spectroscopy (EIS) in 3%NaCl solution.

  4. Resolving Losses at the Negative Electrode in All-Vanadium Redox Flow Batteries Using Electrochemical Impedance Spectroscopy

    SciTech Connect

    Sun, Che Nan; Delnick, Frank M; Aaron, D; Mench, Matthew M; Zawodzinski, Thomas A

    2014-01-01

    We present an in situ electrochemical technique for the quantitative measurement and resolution of the ohmic, charge transfer and diffusion overvoltages at the negative electrode of an all-vanadium redox flow battery (VRFB) using electrochemical impedance spectroscopy (EIS). The mathematics describing the complex impedance of the V+2/V+3 redox reaction is derived and matches the experimental data. The voltage losses contributed by each process have been resolved and quantified at various flow rates and electrode thicknesses as a function of current density during anodic and cathodic polarization. The diffusion overvoltage was affected strongly by flow rate while the charge transfer and ohmic losses were invariant. On the other hand, adopting a thicker electrode significantly changed both the charge transfer and diffusion losses due to increased surface area. Furthermore, the Tafel plot obtained from the impedance resolved charge transfer overvoltage yielded the geometric exchange current density, anodic and cathodic Tafel slopes (135 5 and 121 5 mV/decade respectively) and corresponding transfer coefficients = 0.45 0.02 and = 0.50 0.02 in an operating cell.

  5. Dead-ended anode polymer electrolyte fuel cell stack operation investigated using electrochemical impedance spectroscopy, off-gas analysis and thermal imaging

    NASA Astrophysics Data System (ADS)

    Meyer, Quentin; Ashton, Sean; Curnick, Oliver; Reisch, Tobias; Adcock, Paul; Ronaszegi, Krisztian; Robinson, James B.; Brett, Daniel J. L.

    2014-05-01

    Dead-ended anode operation, with intermittent purge, is increasingly being used in polymer electrolyte fuel cells as it simplifies the mass flow control of feed and improves fuel efficiency. However, performance is affected through a reduction in voltage during dead-ended operation, particularly at high current density. This study uses electrochemical impedance spectroscopy (EIS), off-gas analysis and high resolution thermal imaging to examine the source of performance decay during dead-ended operation. A novel, 'reconstructed impedance' technique is applied to acquire complete EIS spectra with a temporal resolution that allows the dynamics of cell processes to be studied. The results provide evidence that upon entering dead-ended operation, there is an initial increase in performance associated with an increase in anode compartment pressure and improved hydration of the membrane electrolyte. Subsequent reduction in performance is associated with an increase in mass transport losses due to a combination of water management issues and build-up of N2 in the anode. The purge process rapidly recovers performance. Understanding of the processes involved in the dead-end/purge cycle provides a rationale for determining the optimum cycle frequency and duration as a function of current density.

  6. Impedance Characterization of a Model Au/Yttria-Stabilized Zirconia (YSZ)/Au Electrochemical Cell in Varying Oxygen and NOx Concentrations

    SciTech Connect

    Woo, L Y; Martin, L P; Glass, R S; Gorte, R J

    2006-11-01

    An electrochemical cell (Au/YSZ/Au) serves as a model system to investigate the effect of O{sub 2} and NO{sub x}. Possible mechanisms responsible for the response are presented. Two dense Au electrodes are co-located on the same side of a dense YSZ electrolyte and are separated from the electrolyte by a porous YSZ layer, present only under the electrodes. While not completely understood, the porous layer appears to result in enhanced NO{sub x} response. Impedance data were obtained over a range of frequencies (0.1 Hz to 1 MHz), temperatures (600 to 700 C), and oxygen (2 to 18.9%) and NO{sub x} (10 to 100 ppm) concentrations. Spectra were fit with an equivalent circuit, and values of the circuit elements were evaluated. In the absence of NO{sub x}, the effect of O{sub 2} on the low-frequency arc resistance could be described by a power law, and the temperature dependence by a single apparent activation energy at all O{sub 2} concentrations. When both O{sub 2} and NO{sub x} were present, however, the power-law exponent varied as a function of both temperature and concentration, and the apparent activation energy also showed dual dependence. Adsorption mechanisms are discussed as possibilities for the rate-limiting steps. Implications for impedance metric NO{sub x} sensing are also discussed.

  7. Electrochemical impedance spectroscopy of supercapacitors: A novel analysis approach using evolutionary programming

    NASA Astrophysics Data System (ADS)

    Oz, Alon; Hershkovitz, Shany; Tsur, Yoed

    2014-11-01

    In this contribution we present a novel approach to analyze impedance spectroscopy measurements of supercapacitors. Transforming the impedance data into frequency-dependent capacitance allows us to use Impedance Spectroscopy Genetic Programming (ISGP) in order to find the distribution function of relaxation times (DFRT) of the processes taking place in the tested device. Synthetic data was generated in order to demonstrate this technique and a model for supercapacitor ageing process has been obtained.

  8. Simultaneous Measurement of Nonlinearity and Electrochemical Impedance for Protein Sensing Using Two-Tone Excitation

    PubMed Central

    Daniels, Jonathan S.; Anderson, Erik P.; Lee, Thomas H.; Pourmand, Nader

    2009-01-01

    Impedance biosensors detect the binding of a target to an immobilized probe by quantifying changes in the impedance of the electrode-electrolyte interface. The interface's I-V relationship is inherently nonlinear, varying with DC bias, and target binding can alter the degree of nonlinearity. We propose and demonstrate a method to simultaneously measure the nonlinearity and conventional small-signal impedance using intermodulation products from a two-tone input. Intermodulation amplitudes accurately reflect the impedance's manually-measured voltage dependence. We demonstrate that changes in nonlinearity can discriminate protein binding. Our measurements suggest that target binding can alter nonlinearity via the voltage dependence of the ionic double layer. PMID:19164024

  9. Electrochemical Impedance Spectroscopy of Alloys in a Simulated Space Shuttle Launch Environment

    NASA Technical Reports Server (NTRS)

    Calle, L. M.; Kolody, M. R.; Vinje, R. D.

    2004-01-01

    Type 304L stainless steel (304L SS) tubing is currently used in various supply lines that service the Orbiter at NASA's John F. Kennedy Space Center Launch Pads in Florida (USA). The atmosphere at the Space Shuffle launch site is very corrosive due to a combination of factors, such as the proximity of the Atlantic Ocean and the concentrated hydrochloric acid produced by the fuel combustion reaction in the solid rocket boosters. The acidic chloride environment is aggressive to most metals and causes severe pitting in many of the common stainless steel alloys such as 304L SS. Stainless steel tubing is susceptible to pitting corrosion that can cause cracking and rupture of both high-pressure gas and fluid systems. Outages in the systems where failures occur can impact the normal operation of the shuttle and launch schedules. The use of a more corrosion resistant tubing alloy for launch pad applications would greatly reduce the probability of failure, improve safety, lessen maintenance costs, and reduce downtime. A study which included ten alloys was undertaken to find a more corrosion resistant material to replace the existing 304L SS tubing. The study included atmospheric exposure at NASA's John F. Kennedy Space Center outdoor corrosion test site near the launch pads and electrochemical measurements in the laboratory which included DC techniques and electrochemical impedance spectroscopy (EIS). This paper presents the results from EIS measurements on three of the alloys: AL6XN (UN N08367), 254SMO (UNS S32l54), and 304L SS (UNS S30403). Type 304L SS was included in the study as a control. The alloys were tested in three electrolyte solutions which consisted of neutral 3.55% NaC1, 3.55% NaCl in O.1N HC1, and 3.55% NaCl in 1.ON HC1. The solutions were chosen to simulate environments that were expected to be less, similar, and more aggressive, respectively, than those present at the Space Shuttle launch pads. The results from the EIS measurements were analyzed to

  10. Analysis of dye-sensitized solar cells with current collecting electrodes using electrochemical impedance spectroscopy, with a finite element method

    NASA Astrophysics Data System (ADS)

    Shitanda, Isao; Inoue, Kazuya; Hoshi, Yoshinao; Itagaki, Masayuki

    2014-02-01

    The internal resistances of dye-sensitized solar cells (DSCs) with and without current collecting electrodes (CCEs) were analyzed using electrochemical impedance spectroscopy (EIS) with a finite element method (FEM). Three different DSC models with or without current collecting electrodes were designed. Theoretical values of the internal resistance were estimated by FEM on changing the position and size of the current collecting electrodes. Large DSCs with current collecting electrodes were fabricated using a screen-printing technique, and experimental values of the internal resistance were analyzed by EIS and compared with the theoretical values. The internal resistances obtained from the impedance measurements were in good agreement with those obtained by simulation. The internal resistance was found to decrease with increasing width and thickness of the CCEs, below a threshold value. EIS was found to be extremely useful for evaluating CCE design for improved DSCs.

  11. Determination of microcystin-LR in water by a label-free aptamer based electrochemical impedance biosensor.

    PubMed

    Lin, Zhenyu; Huang, Huiming; Xu, Yixiang; Gao, Xiaoyao; Qiu, Bin; Chen, Xi; Chen, Guonan

    2013-01-15

    In this study, an electrochemical impedance biosensor for cyanobacterial toxin microcystin-LR (MC-LR) detection has been developed. MC-LR aptamers were immobilized on the gold electrode through Au-S interaction, in the presence of target (MC-LR); the binding of MC-LR and aptamers probe led to a complex formation change on the electrode surface and resulted in the impedance decreasing. The decrease rate had a linear relationship with logarithm of the MC-LR concentration in the range of 1.0 × 10(-7)-5.0 × 10(-11)mol/L, with a detection limit of 1.8 × 10(-11)mol/L. The sensor has good selectivity and stability, it has been applied to detect MC-LR in three kinds of real water samples with satisfying results.

  12. Study of corrosion of super martensitic stainless steel under alternating current in artificial seawater with electrochemical impedance spectroscopy

    SciTech Connect

    Reyes, T.; Bhola, S.; Olson, D. L.; Mishra, B.

    2011-06-23

    The assessment of corrosion requires the use of tools able to quantify the corrosion but often times also qualify it. Electrochemical Impedance Spectroscopy (EIS) is a laboratory tool that can provide both qualification and quantification of corrosion. EIS was successfully used to compare the thickness of the corrosion products formed during the application of different alternating current (AC) densities as well as to characterize pitting. When EIS is applied at the open circuit potential, the technique is nondestructive and predicts the corrosion behavior of the electrode. It can also be used at cathodic potentials while still being nondestructive, providing information about the electrode reaction kinetics, diffusion and electrical double layer.

  13. In situ monitoring of discharge/charge processes in Li-O2 batteries by electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Landa-Medrano, Imanol; Ruiz de Larramendi, Idoia; Ortiz-Vitoriano, Nagore; Pinedo, Ricardo; Ignacio Ruiz de Larramendi, José; Rojo, Teófilo

    2014-03-01

    Gaining insight into the reaction mechanisms underway during charge and discharge in Li-air batteries is essential to allow the target development of improved power and performance devices. This work reports the in situ monitoring of Li-air cells by electrochemical impedance spectroscopy and, for the first time, the development of an electrochemical model allowing the identification and attribution of the processes involved. The voltage at which each reaction product forms has been identified, including Li2O2 or Li2CO3 during discharge, together with the delithiation of the outer part of Li2O2 and oxidation reactions and electrolyte decomposition. The developed model can be used as a valuable tool for the optimisation of composition and structure of the air electrode through the investigation of the resistance associated with each process.

  14. The platinum microelectrode/Nafion interface - An electrochemical impedance spectroscopic analysis of oxygen reduction kinetics and Nafion characteristics

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Arvind; Dave, Bhasker; Srinivasan, Supramaniam; Appleby, John A.; Martin, Charles R.

    1992-01-01

    The objectives of this study were to use electrochemical impedance spectroscopy (EIS) to study the oxygen-reduction reaction under lower humidification conditions than previously studied. The EIS technique permits the discrimination of electrode kinetics of oxygen reduction, mass transport of O2 in the membrane, and the electrical characteristics of the membrane. Electrode-kinetic parameters for the oxygen-reduction reaction, corrosion current densities for Pt, and double-layer capacitances were calculated. The production of water due to electrochemical reduction of oxygen greatly influenced the EIS response and the electrode kinetics at the Pt/Nafion interface. From the finite-length Warburg behavior, a measure of the diffusion coefficient of oxygen in Nafion and diffusion-layer thickness was obtained. An analysis of the EIS data in the high-frequency domain yielded membrane and interfacial characteristics such as ionic conductivity of the membrane, membrane grain-boundary capacitance and resistance, and uncompensated resistance.

  15. Label-free electrochemical impedance biosensor to detect human interleukin-8 in serum with sub-pg/ml sensitivity

    PubMed Central

    Sharma, R.; Deacon, S.E.; Nowak, D.; George, S.E.; Szymonik, M.P.; Tang, A.A.S.; Tomlinson, D.C.; Davies, A.G.; McPherson, M.J.; Wälti, C.

    2016-01-01

    Biosensors with high sensitivity and short time-to-result that are capable of detecting biomarkers in body fluids such as serum are an important prerequisite for early diagnostics in modern healthcare provision. Here, we report the development of an electrochemical impedance-based sensor for the detection in serum of human interleukin-8 (IL-8), a pro-angiogenic chemokine implicated in a wide range of inflammatory diseases. The sensor employs a small and robust synthetic non-antibody capture protein based on a cystatin scaffold that displays high affinity for human IL-8 with a KD of 35±10 nM and excellent ligand specificity. The change in the phase of the electrochemical impedance from the serum baseline, ∆θ(ƒ), measured at 0.1 Hz, was used as the measure for quantifying IL-8 concentration in the fluid. Optimal sensor signal was observed after 15 min incubation, and the sensor exhibited a linear response versus logarithm of IL-8 concentration from 900 fg/ml to 900 ng/ml. A detection limit of around 90 fg/ml, which is significantly lower than the basal clinical levels of 5–10 pg/ml, was observed. Our results are significant for the development of point-of-care and early diagnostics where high sensitivity and short time-to-results are essential. PMID:26897263

  16. Label-free electrochemical impedance biosensor to detect human interleukin-8 in serum with sub-pg/ml sensitivity.

    PubMed

    Sharma, R; Deacon, S E; Nowak, D; George, S E; Szymonik, M P; Tang, A A S; Tomlinson, D C; Davies, A G; McPherson, M J; Wälti, C

    2016-06-15

    Biosensors with high sensitivity and short time-to-result that are capable of detecting biomarkers in body fluids such as serum are an important prerequisite for early diagnostics in modern healthcare provision. Here, we report the development of an electrochemical impedance-based sensor for the detection in serum of human interleukin-8 (IL-8), a pro-angiogenic chemokine implicated in a wide range of inflammatory diseases. The sensor employs a small and robust synthetic non-antibody capture protein based on a cystatin scaffold that displays high affinity for human IL-8 with a KD of 35 ± 10 nM and excellent ligand specificity. The change in the phase of the electrochemical impedance from the serum baseline, ∆θ(ƒ), measured at 0.1 Hz, was used as the measure for quantifying IL-8 concentration in the fluid. Optimal sensor signal was observed after 15 min incubation, and the sensor exhibited a linear response versus logarithm of IL-8 concentration from 900 fg/ml to 900 ng/ml. A detection limit of around 90 fg/ml, which is significantly lower than the basal clinical levels of 5-10 pg/ml, was observed. Our results are significant for the development of point-of-care and early diagnostics where high sensitivity and short time-to-results are essential.

  17. Degradation of all-vanadium redox flow batteries (VRFB) investigated by electrochemical impedance and X-ray photoelectron spectroscopy: Part 2 electrochemical degradation

    NASA Astrophysics Data System (ADS)

    Derr, Igor; Bruns, Michael; Langner, Joachim; Fetyan, Abdulmonem; Melke, Julia; Roth, Christina

    2016-09-01

    Electrochemical degradation (ED) of carbon felt electrodes was investigated by cycling of a flow through all-vanadium redox flow battery (VRFB) and conducting half-cell measurements with two reference electrodes inside the test bench. ED was detected using half-cell and full-cell electrochemical impedance spectroscopy (EIS) at different states of charge (SOC). Reversing the polarity of the battery to recover cell performance was performed with little success. Renewing the electrolyte after a certain amount of cycles restored the capacity of the battery. X-ray photoelectron spectroscopy (XPS) reveals that the amount of surface functional increases by more than a factor of 3 for the negative side as well as for the positive side. Scanning electron microscope (SEM) images show a peeling of the fiber surface after cycling the felts, which leads to a loss of electrochemically active surface area (ECSA). Long term cycling shows that ED has a stronger impact on the negative half-cell [V(II)/V(III)] than the positive half-cell [V(IV)/V(V)] and that the negative half-cell is the rate-determining half-cell for the VRFB.

  18. Stretchable Electrochemical Impedance Sensors for Intravascular Detection of Lipid-Rich Lesions in New Zealand White Rabbits

    PubMed Central

    Cao, Hung; Yu, Fei; Zhao, Yu; Scianmarello, Nick; Lee, Juhyun; Dai, Wangde; Jen, Nelson; Beebe, Tyler; Li, Rongsong; Ebrahimi, Ramin; Chang, Donald S.; Mody, Freny V.; Pacella, John; Tai, Yu-Chong; Hsiai, Tzung

    2014-01-01

    Flexible electronics have enabled catheter-based intravascular sensing. However, real-time interrogation of unstable plaque remains an unmet clinical challenge. Here, we demonstrate the feasibility of stretchable electrochemical impedance spectroscopy (EIS) sensors for endoluminal investigations in New Zealand White (NZW) rabbits on diet-induced hyperlipidemia. A parylene C (PAC)-based EIS sensor mounted on the surface of an inflatable silicone balloon affixed to the tip of an interrogating catheter was deployed 1) on the explants of NZW rabbit aorta for detection of lipid-rich atherosclerotic lesions, and 2) on live animals for demonstration of balloon inflation and EIS measurements. An input peak-to-peak AC voltage of 10 mV and sweeping-frequency from 300 kHz to 100 Hz were delivered to the endoluminal sites. Balloon inflation allowed EIS sensors to be in contact with endoluminal surface. In the oxidized low-density-lipoprotein (oxLDL)-rich lesions from explants of fat-fed rabbits, impedance magnitude increased significantly by 1.5-fold across the entire frequency band, and phase shifted ~5 degrees at frequencies below 10 kHz. In the lesion-free sites of the normal diet-fed rabbits, impedance magnitude increased by 1.2-fold and phase shifted ~5 degrees at frequencies above 30 kHz. Thus, we demonstrate the feasibility of stretchable intravascular EIS sensors for identification of lipid rich lesions, with a translational implication for detecting unstable lesions. PMID:24333932

  19. Electrochemical impedance spectroscopy to study physiological changes affecting the red blood cell after invasion by malaria parasites.

    PubMed

    Ribaut, Clotilde; Reybier, Karine; Reynes, Olivier; Launay, Jérôme; Valentin, Alexis; Fabre, Paul Louis; Nepveu, Françoise

    2009-04-15

    The malaria parasite, Plasmodium falciparum, invades human erythrocytes and induces dramatic changes in the host cell. The idea of this work was to use RBC modified electrode to perform electrochemical impedance spectroscopy (EIS) with the aim of monitoring physiological changes affecting the erythrocyte after invasion by the malaria parasite. Impedance cell-based devices are potentially useful to give insight into cellular behavior and to detect morphological changes. The modelling of impedance plots (Nyquist diagram) in equivalent circuit taking into account the presence of the cellular layer, allowed us pointing out specific events associated with the development of the parasite such as (i) strong changes in the host cell cytoplasm illustrated by changes in the film capacity, (ii) perturbation of the ionic composition of the host cell illustrated by changes in the film resistance, (iii) releasing of reducer (lactic acid or heme) and an enhanced oxygen consumption characterized by changes in the charge transfer resistance and in the Warburg coefficient characteristic of the redox species diffusion. These results show that the RBC-based device may help to analyze strategic events in the malaria parasite development constituting a new tool in antimalarial research.

  20. Application of electrochemical impedance spectroscopy for monitoring allergen-antibody reactions using gold nanoparticle-based biomolecular immobilization method.

    PubMed

    Huang, Haizhen; Liu, Zhigang; Yang, Xiurong

    2006-09-15

    Gold nanoparticles were used to enhance the immobilization amount and retain the immunoactivity of recombinant dust mite allergen Der f2 immobilized on a glassy carbon electrode (GCE). The interaction between allergen and antibody was studied by electrochemical impedance spectroscopy (EIS). Self-assembled Au colloid layer (ø=16nm) deposited on (3-mercaptopropyl)trimethoxysilane (MPTS)-modified GCE offered a basis to control the immobilization of allergen Der f2. The impedance measurements were based on the charge transfer kinetics of the [Fe(CN)(6)](3-/4-) redox pair, compared with bare GCE, the immobilization of allergen Der f2 and the allergen-antibody interaction that occurred on the electrode surface altered the interfacial electron transfer resistance and thereby slowed down the charge transfer kinetics by reducing the active area of the electrode or by preventing the redox species in electrolyte solution from approaching the electrode. The interactions of allergen with various concentrations of monoclonal antibody were also monitored through the change of impedance response. The results showed that the electron transfer resistance increased with increasing concentrations of monoclonal antibody. PMID:16836968

  1. A time-based potential step analysis of electrochemical impedance incorporating a constant phase element: a study of commercially pure titanium in phosphate buffered saline.

    PubMed

    Ehrensberger, Mark T; Gilbert, Jeremy L

    2010-05-01

    The measurement of electrochemical impedance is a valuable tool to assess the electrochemical environment that exists at the surface of metallic biomaterials. This article describes the development and validation of a new technique, potential step impedance analysis (PSIA), to assess the electrochemical impedance of materials whose interface with solution can be modeled as a simplified Randles circuit that is modified with a constant phase element. PSIA is based upon applying a step change in voltage to a working electrode and analyzing the subsequent current transient response in a combined time and frequency domain technique. The solution resistance, polarization resistance, and interfacial capacitance are found directly in the time domain. The experimental current transient is numerically transformed to the frequency domain to determine the constant phase exponent, alpha. This combined time and frequency approach was tested using current transients generated from computer simulations, from resistor-capacitor breadboard circuits, and from commercially pure titanium samples immersed in phosphate buffered saline and polarized at -800 mV or +1000 mV versus Ag/AgCl. It was shown that PSIA calculates equivalent admittance and impedance behavior over this range of potentials when compared to standard electrochemical impedance spectroscopy. This current transient approach characterizes the frequency response of the system without the need for expensive frequency response analyzers or software.

  2. Transport in fuel cells: Electrochemical impedance spectroscopy and neutron imaging studies

    NASA Astrophysics Data System (ADS)

    Aaron, Douglas Scott

    This dissertation focuses on two powerful methods of performing in-situ studies of transport limitations in fuel cells. The first is electrochemical impedance spectroscopy (EIS) while the second is neutron imaging. Three fuel cell systems are studied in this work: polymer electrolyte membrane fuel cells (PEMFCs), microbial fuel cells (MFCs) and enzyme fuel cells (EFCs). The first experimental section of this dissertation focuses on application of EIS and neutron imaging to an operating PEMFC. The effects of cathode-side humidity and flow rate, as well as cell temperature and a transient response to cathode-side humidity, were studied for a PEMFC via EIS. It was found that increased air humidity in the cathode resulted in greatly reduced cathode resistance as well as a significant reduction in membrane resistance. The anode resistance was only slightly reduced in this case. Increased air flow rate was observed to have little effect on any resistance in the PEMFC, though slight reductions in both the anode and the cathode were observed. Increased cell temperature resulted in decreased cathode and anode resistances. Finally, the transient response to increased humidity exhibited unstable behavior for both the anode and the cathode resistances and the PEMFC power output. Neutron imaging allowed the calculation of water content throughout the PEMFC, showing a maximum in water content at the cathode gas diffusion layer - membrane interface. The second experimental section of this dissertation delves into the world of microbial fuel cells. Multiple long-term observations of changes in internal resistances were performed and illustrated the reduction in anode resistance as the bacterial community was established. Over this same time period, the cathode resistance was observed to have increased; these two phenomena suggest that the anode improved over time while the cathode suffered from degradation. Increased anode fluid ionic strength and flow rate both led to significant

  3. Interpreting impedance spectra of organic photovoltaic cells—Extracting charge transit and recombination rates

    SciTech Connect

    Mullenbach, Tyler K.; Zou, Yunlong; Holmes, Russell J.; Holst, James

    2014-09-28

    Impedance spectroscopy has been widely used to extract the electron-hole recombination rate constant in organic photovoltaic cells (OPVs). This technique is typically performed on OPVs held at open-circuit. Under these conditions, the analysis is simplified with recombination as the only pathway for the decay of excess charge carriers; transit provides no net change in the charge density. In this work, we generalize the application and interpretation of impedance spectroscopy for bulk heterojunction OPVs at any operating voltage. This, in conjunction with reverse bias external quantum efficiency measurements, permits the extraction of both recombination and transit rate constants. Using this approach, the transit and recombination rate constants are determined for OPVs with a variety of electron donor-acceptor pairings and compositions. It is found that neither rate constant individually is sufficient to characterize the efficiency of charge collection in an OPV. It is demonstrated that a large recombination rate constant can be accompanied by a large transit rate constant, thus fast recombination is not necessarily detrimental to OPV performance. Extracting the transit and recombination rate constants permits a detailed understanding of how OPV architecture and processing conditions impact the transient behavior of charge carriers, elucidating the origin of optimum device configurations.

  4. Discerning the Impact of a Lithium Salt Additive in Thin-Film Light-Emitting Electrochemical Cells with Electrochemical Impedance Spectroscopy.

    PubMed

    Bastatas, Lyndon D; Lin, Kuo-Yao; Moore, Matthew D; Suhr, Kristin J; Bowler, Melanie H; Shen, Yulong; Holliday, Bradley J; Slinker, Jason D

    2016-09-20

    Light-emitting electrochemical cells (LEECs) from small molecules, such as iridium complexes, have great potential as low-cost emissive devices. In these devices, ions rearrange during operation to facilitate carrier injection, bringing about efficient operation from simple, single-layer devices. Prior work has shown that the luminance, efficiency, and responsiveness of iridium LEECs is greatly enhanced by the inclusion of small fractions of lithium salts, but much remains to be understood about the origin of this enhancement. Recent work with planar devices demonstrates that lithium additives in iridium LEECs enhance double-layer formation. However, the quantitative influence of lithium salts on the underlying physics of conventional thin-film, sandwich structure LEECs, which beneficially operate at low voltages and generate higher luminance, has yet to be clarified. Here, we use electrochemical impedance spectroscopy to discern the impact of the lithium salt concentration on double-layer formation within the device and draw correlations with performance metrics, such as current, luminance, and external quantum efficiency.

  5. A high-precision approach to reconstruct distribution of relaxation times from electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yanxiang; Chen, Yu; Li, Mei; Yan, Mufu; Ni, Meng; Xia, Changrong

    2016-03-01

    A new Tikhonov regularization approach without adjusting parameters is proposed for reconstructing distribution of relaxation time (DRT). It is capable of eliminating the pseudo peaks and capturing discontinuities in the DRT, making it feasible to resolve the number and the nature of electrochemical processes without making assumptions.

  6. Rapid Electron Transport Phenomenon in the Bis(terpyridine) Metal Complex Wire: Marcus Theory and Electrochemical Impedance Spectroscopy Study.

    PubMed

    Maeda, Hiroaki; Sakamoto, Ryota; Nishihara, Hiroshi

    2015-10-01

    The authors reported previously that bis(terpyiridne)iron(II) complex oligomer wires possess outstanding long-range intrawire electron transport ability. Here, molecular arrays of gold-electrode-bis(terpyridine)iron(II)-ferrocene are constructed by stepwise coordination as simple models of the oligomer wire system. The fast electron transfer between the terminal ferrocene and the gold electrode through the bis(terpyiridne)iron(II) complex unit is studied by potential step chronoamperometry (PSCA) and electrochemical impedance spectroscopy (EIS). Tafel plots derived from PSCA are analyzed based on Marcus theory. The plots reveal greater first-order electron transfer rate constant, weaker electronic coupling between the terminal ferrocene and the gold electrode, and smaller reorganization energy than shown by a conventional ferrocenylalkanethiol self-assembled monolayer. The electron transfer rate constants estimated by EIS agree with the PSCA results.

  7. Study of caffeine as corrosion inhibitors of carbon steel in chloride solution containing hydrogen sulfide using electrochemical impedance spectroscopy (EIS)

    NASA Astrophysics Data System (ADS)

    Solehudin, Agus; Berman, Ega Taqwali; Nurdin, Isdiriayani

    2015-09-01

    The corrosion behaviour of steel surface in the absence and presence of caffeine in 3.5% NaCl solution containing dissolved H2S gas is studied using electrochemical impedance spectroscopy (EIS). The experimental results of carbon steel corrosion in 3.5% NaCl solution containing 500 mg/l H2S at different caffeine concentrations showed that corrosion rate of carbon steel decreases with increasing of caffeine concentrations from 0 to 0,1 mmol/l. Whereas, the corrosion rate increase with increasing of caffeine concentrations from 1 to 10 mmol/l. It is clear that no inhibition efficiency increases with increasing inhibitor concentration. The optimum value of inhibition efficiency was 90% at a caffeine concentration of 0.1 mmol/l. This suggests that caffeine's performance as a corrosion inhibitor is more effective at a concentration of 0.1 mmol/l.

  8. Implications of electronic short circuiting in plasma sprayed solid oxide fuel cells on electrode performance evaluation by electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    White, B. D.; Kesler, O.

    Electronic short circuiting of the electrolyte in a solid oxide fuel cell (SOFC) arising from flaws in the plasma spray fabrication process has been found to have a significant effect on the perceived performance of the electrodes, as evaluated by electrochemical impedance spectroscopy (EIS). The presence of a short circuit has been found to lead to the underestimation of the electrode polarization resistance (R p) and hence an overestimation of electrode performance. The effect is particularly noticeable when electrolyte resistance is relatively high, for example during low to intermediate temperature operation, leading to an obvious deviation from the expected Arrhenius-type temperature dependence of R p. A method is developed for determining the real electrode performance from measurements of various cell properties, and strategies for eliminating the occurrence of short circuiting in plasma sprayed cells are identified.

  9. Characterization of Damp-Heat Degradation of CuInGaSe2 Solar Cell Components and Devices by (Electrochemical) Impedance Spectroscopy: Preprint

    SciTech Connect

    Pern, F. J. J.; Noufi, R.

    2011-09-01

    This work evaluated the capability of (electrochemical) impedance spectroscopy (IS, or ECIS as used here) to monitor damp heat (DH) stability of contact materials, CuInGaSe2 (CIGS) solar cell components, and devices. Cell characteristics and its variation of the CIGS devices were also examined by the ECIS.

  10. Application of electrochemical impedance spectroscopy to monitoring discharging process of nickel/metal hydride battery

    NASA Astrophysics Data System (ADS)

    Slepski, Pawel; Darowicki, Kazimierz; Janicka, Ewa; Sierczynska, Agnieszka

    2013-11-01

    This paper presents the possibility of applying impedance analysis to cell diagnostics. In order to obtain characteristic curves of both electrodes of a NiMH battery simultaneously, a reference electrode was added into the circuit. The authors analysed the cell under three cases, i.e. when its properties are determined only by the state of the positive electrode, only by the state of the negative electrode, or when both electrodes determine operation of the cell to the same extent. Impedance characteristic curves of the entire cell in the function of variable state of charge do not allow for a conclusion as to which electrode determines cell capacity. This is not possible until an analysis of impedance graphs is carried out for each electrode. In view of the obtained results equivalent circuits for the positive electrode, the negative electrode, and the entire cell were selected. Further, a correlation between charge transfer resistance, calculated for the entire cell, and the values obtained for the positive electrode, as well as the negative one, is presented.

  11. Measurement of Small Molecule Binding Kinetics on a Protein Microarray by Plasmonic-Based Electrochemical Impedance Imaging

    PubMed Central

    2015-01-01

    We report on a quantitative study of small molecule binding kinetics on protein microarrays with plasmonic-based electrochemical impedance microscopy (P-EIM). P-EIM measures electrical impedance optically with high spatial resolution by converting a surface charge change to a surface plasmon resonance (SPR) image intensity change, and the signal is not scaled to the mass of the analyte. Using P-EIM, we measured binding kinetics and affinity between small molecule drugs (imatinib and SB202190) and their target proteins (kinases Abl1 and p38-α). The measured affinity values are consistent with reported values measured by an indirect competitive binding assay. We also found that SB202190 has weak bindings to ABL1 with KD > 10 μM, which is not reported in the literature. Furthermore, we found that P-EIM is less prone to nonspecific binding, a long-standing issue in SPR. Our results show that P-EIM is a novel method for high-throughput measurement of small molecule binding kinetics and affinity, which is critical to the understanding of small molecules in biological systems and discovery of small molecule drugs. PMID:25153794

  12. Electrochemical noise and impedance of Au electrode/electrolyte interfaces enabling extracellular detection of glioma cell populations

    NASA Astrophysics Data System (ADS)

    Rocha, Paulo R. F.; Schlett, Paul; Kintzel, Ulrike; Mailänder, Volker; Vandamme, Lode K. J.; Zeck, Gunther; Gomes, Henrique L.; Biscarini, Fabio; de Leeuw, Dago M.

    2016-10-01

    Microelectrode arrays (MEA) record extracellular local field potentials of cells adhered to the electrodes. A disadvantage is the limited signal-to-noise ratio. The state-of-the-art background noise level is about 10 μVpp. Furthermore, in MEAs low frequency events are filtered out. Here, we quantitatively analyze Au electrode/electrolyte interfaces with impedance spectroscopy and noise measurements. The equivalent circuit is the charge transfer resistance in parallel with a constant phase element that describes the double layer capacitance, in series with a spreading resistance. This equivalent circuit leads to a Maxwell-Wagner relaxation frequency, the value of which is determined as a function of electrode area and molarity of an aqueous KCl electrolyte solution. The electrochemical voltage and current noise is measured as a function of electrode area and frequency and follow unambiguously from the measured impedance. By using large area electrodes the noise floor can be as low as 0.3 μVpp. The resulting high sensitivity is demonstrated by the extracellular detection of C6 glioma cell populations. Their minute electrical activity can be clearly detected at a frequency below about 10 Hz, which shows that the methodology can be used to monitor slow cooperative biological signals in cell populations.

  13. Electrochemical noise and impedance of Au electrode/electrolyte interfaces enabling extracellular detection of glioma cell populations

    PubMed Central

    Rocha, Paulo R. F.; Schlett, Paul; Kintzel, Ulrike; Mailänder, Volker; Vandamme, Lode K. J.; Zeck, Gunther; Gomes, Henrique L.; Biscarini, Fabio; de Leeuw, Dago M.

    2016-01-01

    Microelectrode arrays (MEA) record extracellular local field potentials of cells adhered to the electrodes. A disadvantage is the limited signal-to-noise ratio. The state-of-the-art background noise level is about 10 μVpp. Furthermore, in MEAs low frequency events are filtered out. Here, we quantitatively analyze Au electrode/electrolyte interfaces with impedance spectroscopy and noise measurements. The equivalent circuit is the charge transfer resistance in parallel with a constant phase element that describes the double layer capacitance, in series with a spreading resistance. This equivalent circuit leads to a Maxwell-Wagner relaxation frequency, the value of which is determined as a function of electrode area and molarity of an aqueous KCl electrolyte solution. The electrochemical voltage and current noise is measured as a function of electrode area and frequency and follow unambiguously from the measured impedance. By using large area electrodes the noise floor can be as low as 0.3 μVpp. The resulting high sensitivity is demonstrated by the extracellular detection of C6 glioma cell populations. Their minute electrical activity can be clearly detected at a frequency below about 10 Hz, which shows that the methodology can be used to monitor slow cooperative biological signals in cell populations. PMID:27708378

  14. Heat loss distribution: Impedance and thermal loss analyses in LiFePO4/graphite 18650 electrochemical cell

    NASA Astrophysics Data System (ADS)

    Balasundaram, Manikandan; Ramar, Vishwanathan; Yap, Christopher; Lu, Li; Tay, Andrew A. O.; Palani, Balaya

    2016-10-01

    We report here thermal behaviour and various components of heat loss of 18650-type LiFePO4/graphite cell at different testing conditions. In this regard, the total heat generated during charging and discharging processes at various current rates (C) has been quantified in an Accelerating Rate Calorimeter experiment. Irreversible heat generation, which depends on applied current and internal cell resistance, is measured under corresponding charge/discharge conditions using intermittent pulse techniques. On the other hand, reversible heat generation which depends on entropy changes of the electrode materials during the cell reaction is measured from the determination of entropic coefficient at various states of charge/discharge. The contributions of irreversible and reversible heat generation to the total heat generation at both high and low current rates are evaluated. At every state of charge/discharge, the nature of the cell reaction is found to be either exothermic or endothermic which is especially evident at low C rates. In addition, electrochemical impedance spectroscopy measurements are performed on above 18650 cells at various states of charge to determine the components of internal resistance. The findings from the impedance and thermal loss analysis are helpful for understanding the favourable states of charge/discharge for battery operation, and designing better thermal management systems.

  15. Sensitivity Enhancement of Bead-based Electrochemical Impedance Spectroscopy (BEIS) biosensor by electric field-focusing in microwells.

    PubMed

    Shin, Kyeong-Sik; Ji, Jae Hoon; Hwang, Kyo Seon; Jun, Seong Chan; Kang, Ji Yoon

    2016-11-15

    This paper reports a novel electrochemical impedance spectroscopy (EIS) biosensors that uses magnetic beads trapped in a microwell array to improve the sensitivity of conventional bead-based EIS (BEIS) biosensors. Unloading the previously measured beads by removing the magnetic bar enables the BEIS sensor to be used repeatedly by reloading it with new beads. Despite its recyclability, the sensitivity of conventional BEIS biosensors is so low that it has not attracted much attentions from the biosensor industry. We significantly improved the sensitivity of the BEIS system by introducing of a microwell array that contains two electrodes (a working electrode and a counter electrode) to concentrate the electric field on the surfaces of the beads. We confirmed that the performance of the BEIS sensor in a microwell array using an immunoassay of prostate specific antigen (PSA) in PBS buffer and human plasma. The experimental results showed that a low concentration of PSA (a few tens or hundreds of fg/mL) were detectable as a ratio of the changes in the impedance of the PBS buffer or in human plasma. Therefore, our BEIS sensor with a microwell array could be a promising platform for low cost, high-performance biosensors for applications that require high sensitivity and recyclability.

  16. A Label-Free Electrochemical Impedance Cytosensor Based on Specific Peptide-Fused Phage Selected from Landscape Phage Library.

    PubMed

    Han, Lei; Liu, Pei; Petrenko, Valery A; Liu, Aihua

    2016-02-24

    One of the major challenges in the design of biosensors for cancer diagnosis is to introduce a low-cost and selective probe that can recognize cancer cells. In this paper, we combined the phage display technology and electrochemical impedance spectroscopy (EIS) to develop a label-free cytosensor for the detection of cancer cells, without complicated purification of recognition elements. Fabrication steps of the cytosensing interface were monitored by EIS. Due to the high specificity of the displayed octapeptides and avidity effect of their multicopy display on the phage scaffold, good biocompatibility of recombinant phage, the fibrous nanostructure of phage, and the inherent merits of EIS technology, the proposed cytosensor demonstrated a wide linear range (2.0 × 10(2) - 2.0 × 10(8) cells mL(-1)), a low limit of detection (79 cells mL(-1), S/N = 3), high specificity, good inter-and intra-assay reproducibility and satisfactory storage stability. This novel cytosensor designing strategy will open a new prospect for rapid and label-free electrochemical platform for tumor diagnosis.

  17. A Label-Free Electrochemical Impedance Cytosensor Based on Specific Peptide-Fused Phage Selected from Landscape Phage Library

    NASA Astrophysics Data System (ADS)

    Han, Lei; Liu, Pei; Petrenko, Valery A.; Liu, Aihua

    2016-02-01

    One of the major challenges in the design of biosensors for cancer diagnosis is to introduce a low-cost and selective probe that can recognize cancer cells. In this paper, we combined the phage display technology and electrochemical impedance spectroscopy (EIS) to develop a label-free cytosensor for the detection of cancer cells, without complicated purification of recognition elements. Fabrication steps of the cytosensing interface were monitored by EIS. Due to the high specificity of the displayed octapeptides and avidity effect of their multicopy display on the phage scaffold, good biocompatibility of recombinant phage, the fibrous nanostructure of phage, and the inherent merits of EIS technology, the proposed cytosensor demonstrated a wide linear range (2.0 × 102 ‑ 2.0 × 108 cells mL‑1), a low limit of detection (79 cells mL‑1, S/N = 3), high specificity, good inter-and intra-assay reproducibility and satisfactory storage stability. This novel cytosensor designing strategy will open a new prospect for rapid and label-free electrochemical platform for tumor diagnosis.

  18. Impedance Spectroscopic Indication for Solid State Electrochemical Reaction in (CH3NH3)PbI3 Films.

    PubMed

    Zohar, Arava; Kedem, Nir; Levine, Igal; Zohar, Dorin; Vilan, Ayelet; Ehre, David; Hodes, Gary; Cahen, David

    2016-01-01

    Halide perovskite-based solar cells still have limited reproducibility, stability, and incomplete understanding of how they work. We track electronic processes in [CH3NH3]PbI3(Cl) ("perovskite") films in vacuo, and in N2, air, and O2, using impedance spectroscopy (IS), contact potential difference, and surface photovoltage measurements, providing direct evidence for perovskite sensitivity to the ambient environment. Two major characteristics of the perovskite IS response change with ambient environment, viz. -1- appearance of negative capacitance in vacuo or post-vacuo N2 exposure, indicating for the first time an electrochemical process in the perovskite, and -2- orders of magnitude decrease in the film resistance upon transferring the film from O2-rich ambient atmosphere to vacuum. The same change in ambient conditions also results in a 0.5 V decrease in the material work function. We suggest that facile adsorption of oxygen onto the film dedopes it from n-type toward intrinsic. These effects influence any material characterization, i.e., results may be ambient-dependent due to changes in the material's electrical properties and electrochemical reactivity, which can also affect material stability.

  19. In situ investigation of pore clogging during discharge of a Li/O2 battery by electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Bardenhagen, Ingo; Yezerska, Olga; Augustin, Matthias; Fenske, Daniela; Wittstock, Arne; Bäumer, Marcus

    2015-03-01

    The behavior of three gas diffusion electrodes (GDE) with macro- and mesopores is investigated by in situ electrochemical impedance spectroscopy (EIS) in the Li/O2 battery system while discharging. Using a three electrode setup the current response from the anode (Li metal) and cathode (GDE) can be separated and the changes of the electrochemical processes at the GDE during discharge can be observed, exclusively. We identify up to four processes with different time constants which we assign to the lithium ion migration through a surface layer, the charge-transfer from the carbon surface to the molecular oxygen, the lithium ion and oxygen diffusion towards the cathode surface and, in case of the mesoporous materials, the lithium ion movement inside the pores, along the pore axis. The latter finding reflects that pore clogging of such is a limiting factor for the discharge of the Li/O2 battery. A large mesopore volume as in the xerogel electrode, however, allows for a high storage capability and a long and constant oxygen reduction. We demonstrate that the three electrode EIS proves to be a powerful in situ diagnostic tool to determine the state and, hence, the reversibility of the reactions at the cathode.

  20. A Label-Free Electrochemical Impedance Cytosensor Based on Specific Peptide-Fused Phage Selected from Landscape Phage Library

    PubMed Central

    Han, Lei; Liu, Pei; Petrenko, Valery A.; Liu, Aihua

    2016-01-01

    One of the major challenges in the design of biosensors for cancer diagnosis is to introduce a low-cost and selective probe that can recognize cancer cells. In this paper, we combined the phage display technology and electrochemical impedance spectroscopy (EIS) to develop a label-free cytosensor for the detection of cancer cells, without complicated purification of recognition elements. Fabrication steps of the cytosensing interface were monitored by EIS. Due to the high specificity of the displayed octapeptides and avidity effect of their multicopy display on the phage scaffold, good biocompatibility of recombinant phage, the fibrous nanostructure of phage, and the inherent merits of EIS technology, the proposed cytosensor demonstrated a wide linear range (2.0 × 102 − 2.0 × 108 cells mL−1), a low limit of detection (79 cells mL−1, S/N = 3), high specificity, good inter-and intra-assay reproducibility and satisfactory storage stability. This novel cytosensor designing strategy will open a new prospect for rapid and label-free electrochemical platform for tumor diagnosis. PMID:26908277

  1. A Label-Free Electrochemical Impedance Cytosensor Based on Specific Peptide-Fused Phage Selected from Landscape Phage Library.

    PubMed

    Han, Lei; Liu, Pei; Petrenko, Valery A; Liu, Aihua

    2016-01-01

    One of the major challenges in the design of biosensors for cancer diagnosis is to introduce a low-cost and selective probe that can recognize cancer cells. In this paper, we combined the phage display technology and electrochemical impedance spectroscopy (EIS) to develop a label-free cytosensor for the detection of cancer cells, without complicated purification of recognition elements. Fabrication steps of the cytosensing interface were monitored by EIS. Due to the high specificity of the displayed octapeptides and avidity effect of their multicopy display on the phage scaffold, good biocompatibility of recombinant phage, the fibrous nanostructure of phage, and the inherent merits of EIS technology, the proposed cytosensor demonstrated a wide linear range (2.0 × 10(2) - 2.0 × 10(8) cells mL(-1)), a low limit of detection (79 cells mL(-1), S/N = 3), high specificity, good inter-and intra-assay reproducibility and satisfactory storage stability. This novel cytosensor designing strategy will open a new prospect for rapid and label-free electrochemical platform for tumor diagnosis. PMID:26908277

  2. Corrosion Behavior of Surface-Treated Implant Ti-6Al-4V by Electrochemical Polarization and Impedance Studies

    NASA Astrophysics Data System (ADS)

    Paul, Subir; Yadav, Kasturi

    2011-04-01

    Implant materials for orthopedic and heart surgical services demand a better corrosion resistance material than the presently used titanium alloys, where protective oxide layer breaks down on a prolonged stay in aqueous physiological human body, giving rise to localized corrosion of pitting, crevice, and fretting corrosion. A few surface treatments on Ti alloy, in the form of anodization, passivation, and thermal oxidation, followed by soaking in Hank solution have been found to be very effective in bringing down the corrosion rate as well as producing high corrosion resistance surface film as reflected from electrochemical polarization, cyclic polarization, and Electrochemical Impedance Spectroscopy (EIS) studies. The XRD study revealed the presence of various types of oxides along with anatase and rutile on the surface, giving rise to high corrosion resistance film. While surface treatment of passivation and thermal oxidation could reduce the corrosion rate by 1/5th, anodization in 0.3 M phosphoric acid at 16 V versus stainless steel cathode drastically brought down the corrosion rate by less than ten times. The mechanism of corrosion behavior and formation of different surface films is better understood from the determination of EIS parameters derived from the best-fit equivalent circuit.

  3. Interpretation of observations made using local electrochemical impedance mapping (LEIM) on organic coated aluminum alloy 2024-T3

    NASA Astrophysics Data System (ADS)

    Mierisch, Amber Menemsha

    2001-08-01

    Local Electrochemical Impedance Mapping (LED4) was used to investigate local underfilm corrosion of organic coated (epoxy, polyurethane, vinyl) aluminum alloy 2024- T3 substrates immersed in chloride solutions. Several interesting features in LEIM were observed that would provide insight into the local breakdown processes of coated metals if they reflected actual electrochemical phenomena. Contribution to measurements from' artifact or quantities unrelated to breakdown, and the general effect of the dielectric layer on LEIM, were evaluated by comparison of analytical and numerical modeling to LEIM of fabricated electrodes. An equipotential disk was used to model underfilm corrosion. The fields calculated for these models were correlated with LEIM of both bare and coated fabricated electrodes (Au, Pt, Al, Cu). Numerical modeling predicted that a dielectric layer would dull edge effects and severely dampen the magnitude of the field emanating from the substrate surface. A salt film beneath the coating was predicted to have no significant effect on the field. LEIM of coated disk electrodes showed no evidence of the underfilm electrode with two exceptions: (1)underfilm corrosion occurring on pure aluminum, and (2)a copper electrode, which has a very active surface. The discrepancy between modeling and experimental results of coated systems prompted further experimental investigation to isolate the roles of current density and coating defects. Blisters were created on coated gold samples by placing NaCl and AlCl3 salt islands beneath the coating for various coating and substrate configurations. LEIM recorded a peak in admittance only over an acidic blister in polyurethane where local hydrolysis had occurred. It was determined that one of two criteria is required to measure electrochemical activity through a film: (1)the substrate must be actively corroding to produce a current density sufficient to generate a measurable field, or (2)a low resistivity defect must exist

  4. Evaluation of inorganic zinc-rich primers using Electrochemical Impedance Spectroscopy (EIS) in combination with atmospheric exposure

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.

    1994-01-01

    This investigation explored the use of Electrochemical Impedance Spectroscopy (EIS) in combination with atmospheric exposure as a short term method for analyzing the performance of twenty-one commercially available zinc-rich primers. The twenty-one zinc-rich primers were: Carboline CZ-11, Ameron Devoe-Marine Catha-Coat 304, Briner V-65, Ameron D-21-9, Sherwin Williams Zinc Clad II, Carboline CZ-D7, Ameron D-4, Dupont Ganicin 347WB, Porter TQ-4374H, Inorganic Coatings IC-531, Subox Galvanox IV, Southern Coatings Chemtec 600, GLidden Glidzinc 5530, Byco SP-101, Tnemec 90E-75, Devoe Catha-Coat 302H, Glidden Glidzinc 5536, Koppers 701, Ameron D-21-5, Coronado 935-152, and Subox Galvanox V. Data were also collected on galvanized steel for comparison purposes. A library of Bode magnitude plots was generated for each coating including curves for the initial time and after each week of atmospheric exposure at the Beach Corrosion Test site near the Space Shuttle launch pad at the Kennedy Space Center for up to four weeks. Subsequent measurements were collected after 8 weeks and after one year of atmospheric exposure. Analysis of the impedance data was performed with the purpose of identifying parameters that could be used to predict the long-term performance of zinc-rich primers. It has been shown that there is a correlation between the long-term performance of zinc-rich primers and several parameters obtained from EIS measurements in combination with atmospheric exposure. The equivalent circuit R2(R2C(R3W)) provided a satisfactory fit for the EIS data. The corrosion potential and the R2 resistance are parameters indicative of the galvanic mechanism of protection. The capacitance of the coating is related to the barrier mechanism of protection.

  5. Elevated Electrochemical Impedance in the Endoluminal Regions with High Shear Stress: Implication for Assessing Lipid-Rich Atherosclerotic Lesions

    PubMed Central

    Yu, Fei; Lee, Juhyun; Jen, Nelson; Li, Xiang; Zhang, Qian; Tang, Rui; Zhou, Qifa; Kim, Eun. S.; Hsiai, Tzung K.

    2012-01-01

    Background Identifying metabolically active atherosclerotic lesions remains an unmet clinical challenge during coronary intervention. Electrochemical impedance (EIS) increased in response to oxidized low density lipoprotein (oxLDL)-laden lesions. We hereby assessed whether integrating EIS with intravascular ultrasound (IVUS) and shear stress (ISS) provided a new strategy to assess oxLDL-laden lesions in the fat-fed New Zealand White (NZW) rabbits. Methods and Results A micro-heat transfer sensor was deployed to acquire the ISS profiles at baseline and post high-fat diet (HD) in the NZW rabbits (n=8). After 9 weeks of HD, serum oxLDL levels (mg/dL) increased by 140-fold, accompanied by a 1.5-fold increase in kinematic viscosity (cP) in the HD group. Time-averaged ISS (ISSave) in the thoracic aorta also increased in the HD group (baseline: 17.61±0.24 vs. 9 weeks: 25.22±0.95 dyne/cm2, n=4), but remained unchanged in the normal diet group (baseline: 22.85±0.53 dyne/cm2 vs. 9 weeks: 22.37±0.57 dyne/cm2, n=4). High-frequency Intravascular Ultrasound (IVUS) revealed atherosclerotic lesions in the regions with augmented ISSave, and concentric bipolar microelectrodes demonstrated elevated EIS signals, which were correlated with prominent anti-oxLDL immuno-staining (oxLDL-free regions: 497±55 Ω, n = 8 vs. oxLDL-rich lesions: 679±125 Ω, n = 12, P < 0.05). The equivalent circuit model for tissue resistance between the lesion-free and ox-LDL-rich lesions further validated the experimental EIS signals. Conclusions By applying electrochemical impedance in conjunction with shear stress and high-frequency ultrasound sensors, we provided a new strategy to identify oxLDL-laden lesions. The study demonstrated the feasibility of integrating EIS, ISS, and IVUS for a catheter-based approach to assess mechanically unstable plaque. PMID:23318546

  6. Sensitivity improvement of a miniaturized label-free electrochemical impedance biosensor by electrode edge effect

    NASA Astrophysics Data System (ADS)

    Kuo, Yi-Ching; Chen, Ching-Sung; Chang, Ku-Ning; Lin, Chih-Ting; Lee, Chih-Kung

    2014-07-01

    Point-of-care (PoC) biosensors continue to gain popularity because of the desire to improve cost performance in today's health care industry. As cardiovascular disease (CVD) remains one of the top three leading causes of death in Asia, a tool that can help to detect CVDs is highly sought after. We present a high-sensitivity PoC biosensor that can be used to detect CVD biomarkers. To meet the requirements of a PoC biosensor, we adopted electrochemical methods as the basis of the detection. A more stable three-electrode configuration was miniaturized and put onto a biochip. To improve the detection sensitivity associated with the reduced size in the biochip, computer simulation was used to investigate several potential effective possibilities. We found that the electrolyte current density on the edge near the working electrode (WE) and counter electrode (CE) was higher. This was verified using an atomic force microscope to measure the surface potential. We then experimented with the configuration by lengthening the edge of the WE and CE without changing the area of the WE and CE and maintained the gap between the two electrodes. We found improved measurement efficiency with our newly developed biochip.

  7. Electrochemical Impedance Spectroscopy—A Simple Method for the Characterization of Polymer Inclusion Membranes Containing Aliquat 336

    PubMed Central

    O'Rourke, Michelle; Duffy, Noel; De Marco, Roland; Potter, Ian

    2011-01-01

    Electrochemical impedance spectroscopy (EIS) has been used to estimate the non-frequency dependent (static) dielectric constants of base polymers such as poly(vinyl chloride) (PVC), cellulose triacetate (CTA) and polystyrene (PS). Polymer inclusion membranes (PIMs) containing different amounts of PVC or CTA, along with the room temperature ionic liquid Aliquat 336 and plasticizers such as trisbutoxyethyl phosphate (TBEP), dioctyl sebecate (DOS) and 2-nitrophenyloctyl ether (NPOE) have been investigated. In this study, the complex and abstract method of EIS has been applied in a simple and easy to use way, so as to make the method accessible to membrane scientists and engineers who may not possess the detailed knowledge of electrochemistry and interfacial science needed for a rigorous interpretation of EIS results. The EIS data reported herein are internally consistent with a percolation threshold in the dielectric constant at high concentrations of Aliquat 336, which illustrates the suitability of the EIS technique since membrane percolation with ion exchangers is a well-known phenomenon. PMID:24957616

  8. Study of benzotriazole as corrosion inhibitors of carbon steel in chloride solution containing hydrogen sulfide using electrochemical impedance spectroscopy (EIS)

    NASA Astrophysics Data System (ADS)

    Solehudin, Agus; Nurdin, Isdiriayani

    2014-03-01

    Corrosion and inhibition studies on API 5LX65 carbon steel in chloride solution containing various concentrations of benzotriazole has been conducted at temperature of 70°C using Electrochemical Impedance Spectroscopy (EIS). Corroded carbon steel surface with and without inhibitor have been observed using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Energy Dispersive Spectroscopy (EDS). The objectives of this research are to study the performance of benzotriazole as corrosion inhibitors. The experimental results of carbon steel corrosion in 3.5% NaCl solution containing 500 mg/l H2S at different BTAH concentrations showed that corrosion rate of carbon steel decreases with increasing of BTAH concentrations from 0 to 10 mmol/l. The inhibition efficiency of BTAH was found to be affected by its concentration. The optimum efficiency obtained of BTAH is 93% at concentration of 5 mmol/l. The result of XRD and EDS analysis reveal the iron sulfide (FeS) formation on corroded carbon steel surface without inhibitor. The EDS spectrum show the Nitrogen (N) bond on carbon steel surface inhibited by BTAH.

  9. An Electrochemical Impedance Spectroscopy-Based Technique to Identify and Quantify Fermentable Sugars in Pineapple Waste Valorization for Bioethanol Production.

    PubMed

    Conesa, Claudia; García-Breijo, Eduardo; Loeff, Edwin; Seguí, Lucía; Fito, Pedro; Laguarda-Miró, Nicolás

    2015-01-01

    Electrochemical Impedance Spectroscopy (EIS) has been used to develop a methodology able to identify and quantify fermentable sugars present in the enzymatic hydrolysis phase of second-generation bioethanol production from pineapple waste. Thus, a low-cost non-destructive system consisting of a stainless double needle electrode associated to an electronic equipment that allows the implementation of EIS was developed. In order to validate the system, different concentrations of glucose, fructose and sucrose were added to the pineapple waste and analyzed both individually and in combination. Next, statistical data treatment enabled the design of specific Artificial Neural Networks-based mathematical models for each one of the studied sugars and their respective combinations. The obtained prediction models are robust and reliable and they are considered statistically valid (CCR% > 93.443%). These results allow us to introduce this EIS-based technique as an easy, fast, non-destructive, and in-situ alternative to the traditional laboratory methods for enzymatic hydrolysis monitoring. PMID:26378537

  10. Electrochemical Impedance Spectroscopy study in micro-grain structured amorphous silicon anodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Paloukis, Fotis; Elmasides, Costas; Farmakis, Filippos; Selinis, Petros; Neophytides, Stylianos G.; Georgoulas, Nikolaos

    2016-11-01

    In this paper, a study of the lithiation mechanism of micro-grain structured silicon anode is presented. Micro-grain amorphous silicon was deposited on special copper foil and it is shown that after several decades of galvanostatic cycles, it preserves its granular nature with minor degradation. In order to shed light on the lithiation mechanisms of the micro-grain silicon, Electrochemical Impedance Spectroscopy (EIS) was conducted on silicon half-cells at various State-of-Charge (SoC) and various discharging current values and the Solid-Electrolyte Interphase (SEI) RSEI and polarization resistance Rpol were determined. Results reveal that Rpol highly increases for cell voltages lower than 0.2 V and it strongly depends on the discharging C-rate. From X-ray Photoelectron Spectroscopy (XPS) measurements combined with surface sputtering, the existence of a LixSiyOz interlayer between SEI and silicon is confirmed, which is believed to play an important role to the lithium kinetics. Finally, combining our results, a lithiation mechanism of the micro-grain silicon anode is proposed.

  11. Study of benzotriazole as corrosion inhibitors of carbon steel in chloride solution containing hydrogen sulfide using electrochemical impedance spectroscopy (EIS)

    SciTech Connect

    Solehudin, Agus; Nurdin, Isdiriayani

    2014-03-24

    Corrosion and inhibition studies on API 5LX65 carbon steel in chloride solution containing various concentrations of benzotriazole has been conducted at temperature of 70°C using Electrochemical Impedance Spectroscopy (EIS). Corroded carbon steel surface with and without inhibitor have been observed using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Energy Dispersive Spectroscopy (EDS). The objectives of this research are to study the performance of benzotriazole as corrosion inhibitors. The experimental results of carbon steel corrosion in 3.5% NaCl solution containing 500 mg/l H{sub 2}S at different BTAH concentrations showed that corrosion rate of carbon steel decreases with increasing of BTAH concentrations from 0 to 10 mmol/l. The inhibition efficiency of BTAH was found to be affected by its concentration. The optimum efficiency obtained of BTAH is 93% at concentration of 5 mmol/l. The result of XRD and EDS analysis reveal the iron sulfide (FeS) formation on corroded carbon steel surface without inhibitor. The EDS spectrum show the Nitrogen (N) bond on carbon steel surface inhibited by BTAH.

  12. Electrochemical impedance spectroscopy versus cyclic voltammetry for the electroanalytical sensing of capsaicin utilising screen printed carbon nanotube electrodes.

    PubMed

    Randviir, Edward P; Metters, Jonathan P; Stainton, John; Banks, Craig E

    2013-05-21

    Screen printed carbon nanotube electrodes (SPEs) are explored as electroanalytical sensing platforms for the detection of capsaicin in both synthetic capsaicin solutions and capsaicin extracted from chillies and chilli sauces utilising both cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). It is found that the technique which is most applicable to the electroanalytical detection of capsaicin depends upon the analyte concentration: for the case of low capsaicin concentrations, CV is a more appropriate method as capsaicin exhibits characteristic voltammetric waves of peak heights relevant to the capsaicin concentration; but for the case of high capsaicin concentrations where the voltammetric waves merge and migrate out of the potential window, EIS is shown to be a more appropriate technique, owing to the observed linear increases in R(ct) with increasing concentration. Furthermore, we explore different types of screen printed carbon nanotube electrodes, namely single- and multi- walled carbon nanotubes, finding that they are technique-specific: for the case of low capsaicin concentrations, single-walled carbon nanotube SPEs are preferable (SW-SPE); yet for the case of EIS at high capsaicin concentrations, multi-walled carbon nanotube SPEs (MW-SPE) are preferred, based upon analytical responses. The analytical performance of CV and EIS is applied to the sensing of capsaicin in grown chillies and chilli sauces and is critically compared to 'gold standard' HPLC analysis.

  13. An Electrochemical Impedance Spectroscopy-Based Technique to Identify and Quantify Fermentable Sugars in Pineapple Waste Valorization for Bioethanol Production.

    PubMed

    Conesa, Claudia; García-Breijo, Eduardo; Loeff, Edwin; Seguí, Lucía; Fito, Pedro; Laguarda-Miró, Nicolás

    2015-09-11

    Electrochemical Impedance Spectroscopy (EIS) has been used to develop a methodology able to identify and quantify fermentable sugars present in the enzymatic hydrolysis phase of second-generation bioethanol production from pineapple waste. Thus, a low-cost non-destructive system consisting of a stainless double needle electrode associated to an electronic equipment that allows the implementation of EIS was developed. In order to validate the system, different concentrations of glucose, fructose and sucrose were added to the pineapple waste and analyzed both individually and in combination. Next, statistical data treatment enabled the design of specific Artificial Neural Networks-based mathematical models for each one of the studied sugars and their respective combinations. The obtained prediction models are robust and reliable and they are considered statistically valid (CCR% > 93.443%). These results allow us to introduce this EIS-based technique as an easy, fast, non-destructive, and in-situ alternative to the traditional laboratory methods for enzymatic hydrolysis monitoring.

  14. Rapid and highly sensitive detection of Enterovirus 71 by using nanogold-enhanced electrochemical impedance spectroscopy.

    PubMed

    Li, Hsing-Yuan; Tseng, Shing-Hua; Cheng, Tsai-Mu; Chu, Hsueh-Liang; Lu, Yu-Ning; Wang, Fang-Yu; Tsai, Li-Yun; Shieh, Juo-Yu; Yang, Jyh-Yuan; Juan, Chien-Chang; Tu, Lung-Chen; Chang, Chia-Ching

    2013-07-19

    Enterovirus 71 (EV71) infection is an emerging infectious disease causing neurological complications and/or death within two to three days after the development of fever and rash. A low viral titre in clinical specimens makes the detection of EV71 difficult. Conventional approaches for detecting EV71 are time consuming, poorly sensitive, or complicated, and cannot be used effectively for clinical diagnosis. Furthermore, EV71 and Coxsackie virus A16 (CA16) may cross react in conventional assays. Therefore, a rapid, highly sensitive, specific, and user-friendly test is needed. We developed an EV71-specific nanogold-modified working electrode for electrochemical impedance spectroscopy in the detection of EV71. Our results show that EV71 can be distinguished from CA16, Herpes simplex virus, and lysozyme, with the modified nanogold electrode being able to detect EV71 in concentrations as low as 1 copy number/50 μl reaction volume, and the duration between sample preparation and detection being 11 min. This detection platform may have the potential for use in point-of-care diagnostics.

  15. An Electrochemical Impedance Spectroscopy-Based Technique to Identify and Quantify Fermentable Sugars in Pineapple Waste Valorization for Bioethanol Production

    PubMed Central

    Conesa, Claudia; García-Breijo, Eduardo; Loeff, Edwin; Seguí, Lucía; Fito, Pedro; Laguarda-Miró, Nicolás

    2015-01-01

    Electrochemical Impedance Spectroscopy (EIS) has been used to develop a methodology able to identify and quantify fermentable sugars present in the enzymatic hydrolysis phase of second-generation bioethanol production from pineapple waste. Thus, a low-cost non-destructive system consisting of a stainless double needle electrode associated to an electronic equipment that allows the implementation of EIS was developed. In order to validate the system, different concentrations of glucose, fructose and sucrose were added to the pineapple waste and analyzed both individually and in combination. Next, statistical data treatment enabled the design of specific Artificial Neural Networks-based mathematical models for each one of the studied sugars and their respective combinations. The obtained prediction models are robust and reliable and they are considered statistically valid (CCR% > 93.443%). These results allow us to introduce this EIS-based technique as an easy, fast, non-destructive, and in-situ alternative to the traditional laboratory methods for enzymatic hydrolysis monitoring. PMID:26378537

  16. Reactivity at the Ln2NiO4+δ/electrolyte interface (Ln = La, Nd) studied by Electrochemical Impedance Spectroscopy and Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Montenegro-Hernández, Alejandra; Soldati, Analía; Mogni, Liliana; Troiani, Horacio; Schreiber, Anja; Soldera, Flavio; Caneiro, Alberto

    2014-11-01

    Chemical reactivity between Ln2NiO4+δ (Ln: La, Nd) electrodes and Y0.08Zr0.92O1.96 (YSZ) and Ce0.9Gd0.1O1.95 (CGO) electrolytes was analyzed by Electrochemical Impedance Spectroscopy (EIS) and Focused Ion Beam-Transmission Electron Microscopy (FIB-TEM) techniques. Ln2NiO4+δ electrodes were deposited onto CGO and YSZ electrolytes by aerography and treated at 900 °C during 1 h in order to promote electrode adhesion. EIS spectra were collected between 500 and 800 °C in dry air. The Polarization Resistances (PR) values for La2NiO4/CGO/La2NiO4 cell are higher than those of La2NiO4/YSZ/La2NiO4. The PR for both cells and its evolution in time suggest that chemical reactivity is developed at 900 °C during the adhesion treatment and at T higher than 650 °C during the EIS measurements. The PR for Nd2NiO4/CGO/Nd2NiO4 and Nd2NiO4/YSZ/Nd2NiO4 are much lower than those of La2NiO4/CGO/La2NiO4 and La2NiO4/YSZ/La2NiO4 cells. These values and the slight increase of PR with time for Nd2NiO4 (NNO) electrodes indicate that the strength of chemical reactivity is much lower than that of La2NiO4 (LNO). TEM results confirmed that reactivity between CGO and LNO is much higher than that of YSZ and LNO and also confirm that the strength of reactivity is appreciably lower for NNO as electrode material.

  17. On the sensitivity improvement of a miniaturized label-free electrochemical impedance biosensor

    NASA Astrophysics Data System (ADS)

    Kuo, Yi-Ching; Chou, Shin-Ting; Tsai, Pei-I.; Li, Guan-Wei; Lin, Chih-Ting; Lee, Chih-Kung

    2014-03-01

    Development of point-of-care biosensors continues to gain popularity due to the demand of improving the cost performance in today's health care. As cardiovascular disease induced death remains on the top 3 death causes for most Asian countries, this paper is to present a high-sensitivity point-of-care biosensor for the detection of cardiovascular disease biomarkers. To meet the point-of-care biosensors requirements, which include characteristics such as small size, low cost, and ease of operation, we adopted electrochemical methods as the basis of detection. The 4-aminothiophenol was adopted as the bio-linkers to facilitate the antibody-antigen interaction. A more stable three-electrode configuration was miniaturized and laid out onto a biochip. A microfluidics subsystem based on opto-piezoelectronic technology was also integrated to create the microfluidic biochip system. To improve the detection sensitivity associated with the reduction in biochip size, electrochemistry simulation was used to investigate several potentially effective means. We found that the electric field on the edge near working electrode and counter electrode was higher, which was verified by using atomic force microscopy to measure the surface potential. With the successful verification, we explored the configuration, i.e., lengthened the edge of working electrode and counter electrode without changing the areas of working electrode and counter electrode and the gap between these two electrodes, so as to evaluate the possibility of improving the measurement efficiency in our newly developed biochips. Detailed design, simulation and experimental results, improved design identified, etc. were all presented in detail.

  18. Electrochemical impedance analysis of electrodeposited Si-O-C composite thick film on Cu microcones-arrayed current collector for lithium ion battery anode

    NASA Astrophysics Data System (ADS)

    Hang, Tao; Mukoyama, Daikichi; Nara, Hiroki; Yokoshima, Tokihiko; Momma, Toshiyuki; Li, Ming; Osaka, Tetsuya

    2014-06-01

    The impedance behaviors of Si-O-C composite film electrodeposited on Cu microcones-arrayed current collector have been investigated to understand the electrochemical process kinetics that influences the cycling performance when used as a highly-durable anode in a lithium battery. The impedance was measured by using impedance spectroscopy in equilibrium conditions at various depths of discharge and during several hundred charge-discharge cycles. The measured impedance was interpreted with an equivalent circuit composed of solid electrolyte interphase (SEI) film, charge transfer and solid state diffusion. The impedance analysis shows that the change of charge transfer resistance is the main contribution to the total resistance change during discharge, but an abrupt augmentation of diffusive resistance at high depth of discharge is also observed which cannot be explained very well by the presented model. The impedance evolution of this electrode during charge-discharge cycles suggests that the slow growth of the SEI film as well as the increase of the electrode density are responsible for the capacity fading after long term cycling.

  19. Measurement of surface resistivity/conductivity of different organic thin films by a combination of optical shearography and electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Habib, Khaled

    2013-11-01

    Shearography techniques were applied again to measure the surface resistivity/conductivity of different organic thin films on a metallic substrate. The coatings were ACE premium-grey enamel (spray coating), a yellow Acrylic lacquer, and a gold nail polish on a carbon steel substrate. The investigation was focused on determining the in-plane displacement of the coatings by shearography between 20 and 60 °C. Then, the alternating current (AC) impedance (resistance) of the same coated samples was determined by electrochemical impedance spectroscopy (EIS) in 3.0% NaCl solution at room temperature. As a result, the proportionality constant (resistivity or conductivity = 1/surface resistivity) between the determined AC impedance and the in-plane displacement was obtained. The obtained resistivity of all investigated coatings, 40:15 × 106-24:6 × 109Ωcm, was found in the insulator range.

  20. Assessment of the Effects of Flow Rate and Ionic Strength on Microbial Fuel Cell Performance Using Electrochemical Impedance Spectroscopy

    SciTech Connect

    Aaron, D; Tsouris, Costas; Hamilton, Choo Yieng; Borole, Abhijeet P

    2010-01-01

    Impedance changes of the anode, cathode and solution were examined for a microbial fuel cell (MFC) under varying conditions in order to improve its performance. An MFC inoculated with a pre-enriched microbial culture resulted in a startup time of ten days. Over this period, the anode impedance decreased below the cathode impedance, suggesting a cathode limited power output. Decreasing the anode flow rate did not impact the anode impedance significantly, while it increased the cathode impedance by 65% . Reducing the anode-medium ionic strength from 100% to 10% increased the cathode impedance by 48%.

  1. Advanced binary search pattern for impedance spectra classification for determining the state of charge of a lithium iron phosphate cell using a support vector machine

    NASA Astrophysics Data System (ADS)

    Jansen, Patrick; Vollnhals, Michael; Renner, Daniel; Vergossen, David; John, Werner; Götze, Jürgen

    2016-09-01

    Further improvements on the novel method for state of charge (SOC) determination of lithium iron phosphate (LFP) cells based on the impedance spectra classification are presented. A Support Vector Machine (SVM) is applied to impedance spectra of a LFP cell, with each impedance spectrum representing a distinct SOC for a predefined temperature. As a SVM is a binary classifier, only the distinction between two SOC can be computed in one iteration of the algorithm. Therefore a search pattern is necessary. A balanced tree search was implemented with good results. In order to further improvements of the SVM method, this paper discusses two new search pattern, namely a linear search and an imbalanced tree search, the later one based on an initial educated guess. All three search pattern were compared under various aspects like accuracy, efficiency, tolerance of disturbances and temperature dependancy. The imbalanced search tree shows to be the most efficient search pattern if the initial guess is within less than ±5 % SOC of the original SOC in both directions and exhibits the best tolerance for high disturbances. Linear search improves the rate of exact classifications for almost every temperature. It also improves the robustness against high disturbances and can even detect a certain number of false classifications which makes this search pattern unique. The downside is a much lower efficiency as all impedance spectra have to be evaluated while the tree search pattern only evaluate those on the tree path.

  2. Electrochemical impedance spectroscopy as a tool in the plate making process optimization.

    PubMed

    Cigula, Tomislav; Fuchs-Godec, Regina; Gojo, Miroslav; Slemnik, Mojca

    2012-09-01

    The structure of the porous aluminium-oxide layer, which builds non-image areas, has the most significant influence on the quality of final graphical product. This paper presents the results of the application of EIS in the characterisation and detection of changes on the aluminium-oxide layer caused by chemical processing in highly alkaline solution. The Al2O3 layer was characterised using SEM, fractal dimension and surface free energy calculation and EIS analysis. The results of the investigation showed that chemical processing has a significant influence on the structure of aluminium-oxide which could lead to a decrease in the quality of the printing plate. EIS enables the detection of changes on the aluminium-oxide layer. The two equivalent circuits are proposed. Based on modelling with the obtained EIS spectra, precise evaluation of developing time in which complete removal of the photoactive layer is achieved. This makes EIS a powerful tool in optimizing chemical processing of lithographic printing plates. PMID:24061304

  3. Experimental investigation of the effect of indium content on the CuIn{sub 5}S{sub 8} electrodes using electrochemical impedance spectroscopy

    SciTech Connect

    Gannouni, M. Assaker, I. Ben; Chtourou, R.

    2015-01-15

    This paper reports on the use of electrochemical impedance spectroscopy to investigate the electrochemical behavior of spinel CuIn{sub 5}S{sub 8}/electrolyte interface. The CuIn{sub 5}S{sub 8} spinel films have been potentiostatically deposited onto indium tin oxide (ITO)-coated glass substrate. CuCl{sub 2} and InCl{sub 3} mixed solutions with different [Cu]/[In] ratios were used as cation precursor and Na{sub 2}S{sub 2}O{sub 3} as the anion precursor in acidic solution and at room temperature. The effect of the [Cu]/[In] ratio in the precursor solution on the structural, chemical stoichiometry, and morphological properties of prepared samples, as well as the electrochemical behavior of the CuIn{sub 5}S{sub 8}/electrolyte interface was investigated. The electrochemical impedance spectroscopy data have been modeled using an equivalent circuit approach. Several parameters such as, flat-band potential and free carrier concentration were determined by the change in the Mott–Schottky plots.

  4. A sensitive electrochemical impedance immunosensor for determination of malachite green and leucomalachite green in the aqueous environment.

    PubMed

    Zhu, Dan; Li, Qiangqiang; Pang, Xiumei; Liu, Yue; Wang, Xue; Chen, Gang

    2016-08-01

    Application of malachite green (MG) and leucomalachite green (LMG) in fish farm water causes an environmental problem. This study proposes for the first time a sensitive and convenient electrochemical impedance spectroscopy (EIS) method for determining MG and LMG by a bovine serum albumin-decorated gold nanocluster (BSA-AuNC)/antibody composite film-based immunosensor. In order to improve the analytical performance, the glassy carbon electrode (GCE) was modified with 1, 4-phenylenediamine to form a stable layer, and then, BSA-AuNCs were covalently bound to the GCE. An adequate quantity of the polyclonal antibody of LMG was immobilized onto the surface of the BSA-AuNCs by the chemical reaction of EDC/NHS. The sensors can respond to the specific target based on specific covalent bonding. The experimental parameters, such as the pH, incubating concentration, and time, have been investigated and optimized. The calibration curve for LMG was linear in the range of 0.1~10.0 ng/mL with the limit of detection (LOD) 0.03 ng/mL. Furthermore, the sum of MG and LMG was detected in fish farm water by MG reduction. The recovery was between 89.7 % and 99.2 % in spiked samples. The EC sensor method was also compared with the ELISA method and validated by the LC-MS/MS method, which proves its great promise as a field instrument for the rapid monitoring of MG and LMG pollution. Graphical abstract 1, 4-Phenylenediamine and BSA-AuNC/antibody-decorated glassy carbon electrodes have been used for the impedimetric detection of the sum of malachite green and leucomalachite green via specific immuno-binding.

  5. A sensitive electrochemical impedance immunosensor for determination of malachite green and leucomalachite green in the aqueous environment.

    PubMed

    Zhu, Dan; Li, Qiangqiang; Pang, Xiumei; Liu, Yue; Wang, Xue; Chen, Gang

    2016-08-01

    Application of malachite green (MG) and leucomalachite green (LMG) in fish farm water causes an environmental problem. This study proposes for the first time a sensitive and convenient electrochemical impedance spectroscopy (EIS) method for determining MG and LMG by a bovine serum albumin-decorated gold nanocluster (BSA-AuNC)/antibody composite film-based immunosensor. In order to improve the analytical performance, the glassy carbon electrode (GCE) was modified with 1, 4-phenylenediamine to form a stable layer, and then, BSA-AuNCs were covalently bound to the GCE. An adequate quantity of the polyclonal antibody of LMG was immobilized onto the surface of the BSA-AuNCs by the chemical reaction of EDC/NHS. The sensors can respond to the specific target based on specific covalent bonding. The experimental parameters, such as the pH, incubating concentration, and time, have been investigated and optimized. The calibration curve for LMG was linear in the range of 0.1~10.0 ng/mL with the limit of detection (LOD) 0.03 ng/mL. Furthermore, the sum of MG and LMG was detected in fish farm water by MG reduction. The recovery was between 89.7 % and 99.2 % in spiked samples. The EC sensor method was also compared with the ELISA method and validated by the LC-MS/MS method, which proves its great promise as a field instrument for the rapid monitoring of MG and LMG pollution. Graphical abstract 1, 4-Phenylenediamine and BSA-AuNC/antibody-decorated glassy carbon electrodes have been used for the impedimetric detection of the sum of malachite green and leucomalachite green via specific immuno-binding. PMID:27277811

  6. A ladder network modelling the electrochemical impedance of the diffusion and reaction processes in semi-infinite space.

    PubMed

    Moya, A A

    2016-02-01

    The Gerischer impedance, i.e., the diffusion-reaction impedance of an ionic species in semi-infinite space, has been modelled by means of a novel simple equivalent ladder electric circuit constituted by a finite number of resistors and capacitors, which corresponds to the Cauer structure obtained from development into continued fractions. The Nyquist plots of the impedance of the ladder network or Cauer circuit and the deviation with respect to the Gerischer impedance have been originally analysed as a function of the number of circuit elements. From the Cauer equivalent circuit, a new and simple expression modelling the Gerischer impedance at the limit of the lowest frequencies has been derived.

  7. Studies of the Use of Electrochemical Impedance Spectroscopy to Characterize and Assess the Performance of Lacquers Used to Protect Aluminum Sheet and Can Ends

    NASA Astrophysics Data System (ADS)

    Ali, Mohammad

    This study involved investigating the feasibility of using Electrochemical Impedance Spectroscopy to assess the performance of coatings used to protect aluminum in beverage containers, and developing an accelerated testing procedure. In the preliminary investigation, tests were performed to ensure that the EIS systems at hand are capable, functional and consistent. This was followed by EIS testing of kitchen-aluminum foil and high-impedance epoxy polymer as a baseline for chemically-active and chemically-inert systems. The ability of EIS to differentiate between intact and flawed coatings was tested by investigating deliberately damaged coatings. The effects of varying the pH and oxygen content on the performance of the coated aluminum samples were also tested. From this investigation, it has been concluded that EIS can be used to differentiate between intact and flawed coatings and detect corrosion before it is visually observable. Signatures of corrosion have been recorded and a preliminary testing procedure has been drawn.

  8. Electrochemical growth of Co nanowires in ultra-high aspect ratio InP membranes: FFT-impedance spectroscopy of the growth process and magnetic properties

    PubMed Central

    2014-01-01

    The electrochemical growth of Co nanowires in ultra-high aspect ratio InP membranes has been investigated by fast Fourier transform-impedance spectroscopy (FFT-IS) in the frequency range from 75 Hz to 18.5 kHz. The impedance data could be fitted very well using an electric circuit equivalent model with a series resistance connected in series to a simple resistor-capacitor (RC) element and a Maxwell element. Based on the impedance data, the Co deposition in ultra-high aspect ratio InP membranes can be divided into two different Co deposition processes. The corresponding share of each process on the overall Co deposition can be determined directly from the transfer resistances of the two processes. The impedance data clearly show the beneficial impact of boric acid on the Co deposition and also indicate a diffusion limitation of boric acid in ultra-high aspect ratio InP membranes. The grown Co nanowires are polycrystalline with a very small grain size. They show a narrow hysteresis loop with a preferential orientation of the easy magnetization direction along the long nanowire axis due to the arising shape anisotropy of the Co nanowires. PMID:25050088

  9. Electrochemical growth of Co nanowires in ultra-high aspect ratio InP membranes: FFT-impedance spectroscopy of the growth process and magnetic properties

    NASA Astrophysics Data System (ADS)

    Gerngross, Mark-Daniel; Carstensen, Jürgen; Föll, Helmut

    2014-06-01

    The electrochemical growth of Co nanowires in ultra-high aspect ratio InP membranes has been investigated by fast Fourier transform-impedance spectroscopy (FFT-IS) in the frequency range from 75 Hz to 18.5 kHz. The impedance data could be fitted very well using an electric circuit equivalent model with a series resistance connected in series to a simple resistor-capacitor ( RC) element and a Maxwell element. Based on the impedance data, the Co deposition in ultra-high aspect ratio InP membranes can be divided into two different Co deposition processes. The corresponding share of each process on the overall Co deposition can be determined directly from the transfer resistances of the two processes. The impedance data clearly show the beneficial impact of boric acid on the Co deposition and also indicate a diffusion limitation of boric acid in ultra-high aspect ratio InP membranes. The grown Co nanowires are polycrystalline with a very small grain size. They show a narrow hysteresis loop with a preferential orientation of the easy magnetization direction along the long nanowire axis due to the arising shape anisotropy of the Co nanowires.

  10. Electrochemical impedance spectroscopy study on the corrosion of the weld zone of 3Cr steel welded joints in CO2 environments

    NASA Astrophysics Data System (ADS)

    Xu, Li-ning; Zhu, Jin-yang; Lu, Min-xu; Zhang, Lei; Chang, Wei

    2015-05-01

    The welded joints of 3Cr pipeline steel were fabricated with commercial welding wire using the gas tungsten arc welding (GTAW) technique. Potentiodynamic polarization curves, linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), and energy-dispersive spectrometry (EDS) were used to investigate the corrosion resistance and the growth of a corrosion film on the weld zone (WZ). The changes in electrochemical characteristics of the film were obtained through fitting of the EIS data. The results showed that the average corrosion rate of the WZ in CO2 environments first increased, then fluctuated, and finally decreased gradually. The formation of the film on the WZ was divided into three stages: dynamic adsorption, incomplete-coverage layer formation, and integral layer formation.

  11. Negative resistance for methanol electro-oxidation on platinum/carbon (Pt/C) catalyst investigated by an electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Cai, Guang-Xu; Guo, Jian-Wei; Wang, Jia; Li, Song

    2015-02-01

    The poisoning of Pt-based catalyst occurs generally during methanol electro-oxidation. Though traditional electrochemical techniques have probed these issues intensively, it is amazing to find that the negative resistance presents in the intermediate potential zone during an electrochemical impedance spectroscopy (EIS) measurement. Based on the chemical reaction analysis, we establish an EIS model and make some numerical analyses, thus determining the specific EIS shapes and equivalent circuits relating to various potential zones. These results not only compensate the drawback for traditional electrochemical approaches, but also reveal the dynamic adsorption of CO and OH species on Pt surfaces, providing a chance for understanding bifunctional mechanism towards quantitative manners. Significantly, we clarify that the negative resistance begins from the maximum catalysis of methanol electro-catalysis and ends in the initial passive state on Pt surfaces, offering a tool for further improvement. Interestingly, our discovery for negative resistance is consistent with that in general electrochemical system, facilitating its extension and direction in future.

  12. Electrolyte ion adsorption and charge blocking effect at the hematite/aqueous solution interface: an electrochemical impedance study using multivariate data analysis.

    PubMed

    Shimizu, K; Nyström, J; Geladi, P; Lindholm-Sethson, B; Boily, J-F

    2015-05-01

    A model-free multivariate analysis using singular value decomposition is employed to refine an equivalent electrical circuit model in order to probe the electrochemical properties of the hematite/water interface in dilute NaCl and NH4Cl solutions using electrochemical impedance spectroscopy. The result shows that the surface protonation is directly related to the mobility and trapping of charge carriers at the mineral surface. Moreover, the point of zero charge can be found at pH where the charge transfer resistance is the highest, in addition to the minimum double layer capacitance. The inner-sphere interaction of the NH4(+) ion with the surface is indicated by an increase of capacitance for charge carrier trapping from the protonated surface as well as lower double layer capacitance and open circuit potential. It is clear that the intrinsic electrochemical activity of hematite depends on the degree of surface (de)protonation and other inner-sphere adsorption, as these processes affect the charge carrier density in the surface state. This work also highlights an important synergistic effect of the two spectral analyses that enables EIS to be utilized in an in-depth investigation of mineral/water interfaces. PMID:25857599

  13. Performance comparison between high temperature and traditional proton exchange membrane fuel cell stacks using electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Ying; Zhu, Wenhua H.; Tatarchuk, Bruce J.

    2014-06-01

    A temperature above 100 °C is always desired for proton exchange membrane (PEM) fuel cell operation. It not only improves kinetic and mass transport processes, but also facilitates thermal and water management in fuel cell systems. Increased carbon monoxide (CO) tolerance at higher operating temperature also simplifies the pretreatment of fuel supplement. The novel phosphoric acid (PA) doped polybenzimidazole (PBI) membranes achieve PEM fuel cell operations above 100 °C. The performance of a commercial high temperature (HT) PEM fuel cell stack module is studied by measuring its impedance under various current loads when the operating temperature is set at 160 °C. The contributions of kinetic and mass transport processes to stack impedance are analyzed qualitatively and quantitatively by equivalent circuit (EC) simulation. The performance of a traditional PEM fuel cell stack module operated is also studied by impedance measurement and EC simulation. The operating temperature is self-stabilized between 40 °C and 65 °C. An enhancement of the HT-PEM fuel cell stack in polarization impedance is evaluated by comparing to the traditional PEM fuel cell stack. The impedance study on two commercial fuel cell stacks reveals the real situation of current fuel cell development.

  14. On the estimation of high frequency parameters of Proton Exchange Membrane Fuel Cells via Electrochemical Impedance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Mainka, J.; Maranzana, G.; Dillet, J.; Didierjean, S.; Lottin, O.

    2014-05-01

    This paper is a discussion on the estimation of impedance parameters of H2/air fed Proton Exchange Membrane Fuel Cells (PEMFC). The impedance model corresponds to the Randles electrical equivalent circuit accounting for charge separation and transport processes in the cathode catalyst layer, as well as for oxygen diffusion through the backing layer. A sensitivity analysis confirms that the cathode parameters are not correlated and that the consideration of the anode has no significant impact on the estimation of their values. In addition, it is shown that the diffusion parameters have a significant impact in the low frequency domain only, at least with this model. The parameters characterizing charge separation and transport processes at the cathode can thus be estimated with the high frequency impedance data, independently of the oxygen transport model. Consequently, even in the absence of a fully validated oxygen transport impedance, EIS can be used as an alternative method (to classical steady-state methods) for the estimation of the parameters characterizing the cathode reaction: the Tafel slope b, the charge transfer coefficient α and possibly, the exchange current density j0. This reduces significantly the measuring time while enhancing the accuracy by comparison with steady-state methods.

  15. An electrochemical study of corrosion protection by primer-topcoat systems on 4130 steel with ac impedance and dc methods

    NASA Technical Reports Server (NTRS)

    Mendrek, M. J.; Higgins, R. H.; Danford, M. D.

    1988-01-01

    To investigate metal surface corrosion and the breakdown of metal protective coatings, the ac impedance method is applied to six systems of primer coated and primer topcoated 4130 steel. Two primers were used: a zinc-rich epoxy primer and a red lead oxide epoxy primer. The epoxy-polyamine topcoat was used in four of the systems. The EG and G-PARC Model 368 ac impedance measurement system, along with dc measurements with the same system using the polarization resistance method, were used to monitor changing properties of coated 4230 steel disks immersed in 3.5 percent NaCl solutions buffered at pH 5.4 over periods of 40 to 60 days. The corrosion system can be represented by an electronic analog called an equivalent circuit consisting of resistors and capacitors in specific arrangements. This equivalent circuit parallels the impedance behavior of the corrosion system during a frequency scan. Values for the resistors and capacitors, that can be assigned in the equivalent circuit following a least-squares analysis of the data, describe changes that occur on the corroding metal surface and in the protective coatings. Two equivalent circuits have been determined that predict the correct Bode phase and magnitude of the experimental sample at different immersion times. The dc corrosion current density data are related to equivalent circuit element parameters. Methods for determining corrosion rate with ac impedance parameters are verified by the dc method.

  16. Non-uniform temperature distribution in Li-ion batteries during discharge - A combined thermal imaging, X-ray micro-tomography and electrochemical impedance approach

    NASA Astrophysics Data System (ADS)

    Robinson, James B.; Darr, Jawwad A.; Eastwood, David S.; Hinds, Gareth; Lee, Peter D.; Shearing, Paul R.; Taiwo, Oluwadamilola O.; Brett, Dan J. L.

    2014-04-01

    Thermal runaway is a major cause of failure in Li-ion batteries (LIBs), and of particular concern for high energy density transport applications, where safety concerns have hampered commercialisation. A clear understanding of electro-thermal properties and how these relate to structure and operation is vital to improving thermal management of LIBs. Here a combined thermal imaging, X-ray tomography and electrochemical impedance spectroscopy (EIS) approach was applied to commercially available 18650 cells to study their thermal characteristics. Thermal imaging was used to characterise heterogeneous temperature distributions during discharge above 0.75C; the complementary information provided by 3D X-ray tomography was utilised to evaluate the internal structure of the battery and identify the regions causing heating, specifically the components of the battery cap.

  17. X-ray and Electrochemical Impedance Spectroscopy Diagnostic Investigations of Liquid Water in Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers

    NASA Astrophysics Data System (ADS)

    Antonacci, Patrick

    In this thesis, electrochemical impedance spectroscopy (EIS) and synchrotron x-ray radiography were utilized to characterize the impact of liquid water distributions in polymer electrolyte membrane fuel cell (PEMFC) gas diffusion layers (GDLs) on fuel cell performance. These diagnostic techniques were used to quantify the effects of liquid water visualized on equivalent resistances measured through EIS. The effects of varying the thickness of the microporous layer (MPL) of GDLs were studied using these diagnostic techniques. In a first study on the feasibility of this methodology, two fuel cell cases with a 100 microm-thick and a 150 microm-thick MPL were compared under constant current density operation. In a second study with 10, 30, 50, and 100 microm-thick MPLs, the liquid water in the cathode substrate was demonstrated to affect mass transport resistance, while the liquid water content in the anode (from back diffusion) affected membrane hydration, evidenced through ohmic resistance measurements.

  18. Developing high-sensitivity ethanol liquid sensors based on ZnO/porous Si nanostructure surfaces using an electrochemical impedance technique

    NASA Astrophysics Data System (ADS)

    Husairi, Mohd; Rouhi, Jalal; Alvin, Kevin; Atikah, Zainurul; Rusop, Muhammad; Abdullah, Saifollah

    2014-07-01

    ZnO nanostructures were synthesized on porous Si (PSi) substrates using the thermal catalytic-free immersion method. Crack-like ZnO nanostructures were formed on the bare, sponge-like PSi structures. An approach to fabricate chemical sensors based on the ZnO/PSi nanostructure arrays that uses an electrochemical impedance technique is reported. Sensor performance was evaluated for ethanol solutions by the morphology and defect structures of the ZnO nanostructure layer. Results indicate that the ZnO/PSi nanostructure chemical sensor exhibits rapid and high response to ethanol compared with a PSi nanostructure sensor because of its small particle size and an oxide layer acting as a capacitive layer on the PSi nanostructure surface.

  19. Immobilization of anti-aflatoxin B1 antibody by UV polymerization of aniline and aflatoxin B1 detection via electrochemical impedance spectroscopy.

    PubMed

    Dinçkaya, Erhan; Kinik, Özer; Sezgintürk, Mustafa Kemal; Altuğ, Çağri; Akkoca, Aylin

    2012-12-01

    In the study, we investigated the practicality of the UV polymerization of aniline for anti-aflatoxin B1 antibody immobilization, and utilization of the resulting biosensor in the impedimetric determination of aflatoxin B1. The anti-aflatoxin B 1 antibody was physically immobilized on gold electrodes by UV polymerization of aniline at a fixed wavelength. The biosensor was based on specific interaction anti-aflatoxin B1 - aflatoxin B1 recognition and investigation of this recognition event by electrochemical impedance spectroscopy. A calibration curve was obtained in a linear detection range 1-20 ng/mL aflatoxin B1. Finally, the biosensor was applied to analysis of a real food sample.

  20. A study of X100 pipeline steel passivation in mildly alkaline bicarbonate solutions using electrochemical impedance spectroscopy under potentiodynamic conditions and Mott-Schottky

    NASA Astrophysics Data System (ADS)

    Gadala, Ibrahim M.; Alfantazi, Akram

    2015-12-01

    The key steps involved in X100 pipeline steel passivation in bicarbonate-based simulated soil solutions from the pre-passive to transpassive potential regions have been analyzed here using a step-wise anodizing-electrochemical impedance spectroscopy (EIS) routine. Pre-passive steps involve parallel dissolution-adsorption in early stages followed by clear diffusion-adsorption control shortly before iron hydroxide formation. Aggressive NS4 chlorides/sulfate promote steel dissolution whilst inhibiting diffusion in pre-passive steps. Diffusive and adsorptive effects remain during iron hydroxide formation, but withdraw shortly thereafter during its removal and the development of the stable iron carbonate passive layer. Passive layer protectiveness is evaluated using EIS fitting, current density analysis, and correlations with semiconductive parameters, consistently revealing improved robustness in colder, bicarbonate-rich, chloride/sulfate-free conditions. Ferrous oxide formation at higher potentials results in markedly lower impedances with disordered behavior, and the involvement of the iron(III) valence state is observed in Mott-Schottky tests exclusively for 75 °C conditions.

  1. A catalyst layer optimisation approach using electrochemical impedance spectroscopy for PEM fuel cells operated with pyrolysed transition metal-N-C catalysts

    NASA Astrophysics Data System (ADS)

    Malko, Daniel; Lopes, Thiago; Ticianelli, Edson A.; Kucernak, Anthony

    2016-08-01

    The effect of the ionomer to carbon (I/C) ratio on the performance of single cell polymer electrolyte fuel cells is investigated for three different types of non-precious metal cathodic catalysts. Polarisation curves as well as impedance spectra are recorded at different potentials in the presence of argon or oxygen at the cathode and hydrogen at the anode. It is found that a optimised ionomer content is a key factor for improving the performance of the catalyst. Non-optimal ionomer loading can be assessed by two different factors from the impedance spectra. Hence this observation could be used as a diagnostic element to determine the ideal ionomer content and distribution in newly developed catalyst-electrodes. An electrode morphology based on the presence of inhomogeneous resistance distribution within the porous structure is suggested to explain the observed phenomena. The back-pressure and relative humidity effect on this feature is also investigated and supports the above hypothesis. We give a simple flowchart to aid optimisation of electrodes with the minimum number of trials.

  2. Electrochemical and impedance characterization of Microbial Fuel Cells based on 2D and 3D anodic electrodes working with seawater microorganisms under continuous operation.

    PubMed

    Hidalgo, D; Sacco, A; Hernández, S; Tommasi, T

    2015-11-01

    A mixed microbial population naturally presents in seawater was used as active anodic biofilm of two Microbial Fuel Cells (MFCs), employing either a 2D commercial carbon felt or 3D carbon-coated Berl saddles as anode electrodes, with the aim to compare their electrochemical behavior under continuous operation. After an initial increase of the maximum power density, the felt-based cell reduced its performance at 5 months (from 7 to 4 μW cm(-2)), while the saddle-based MFC exceeds 9 μW cm(-2) (after 2 months) and maintained such performance for all the tests. Electrochemical impedance spectroscopy was used to identify the MFCs controlling losses and indicates that the mass-transport limitations at the biofilm-electrolyte interface have the main contribution (>95%) to their internal resistance. The activation resistance was one order of magnitude lower with the Berl saddles than with carbon felt, suggesting an enhanced charge-transfer in the high surface-area 3D electrode, due to an increase in bacteria population growth.

  3. Study of low concentration CO poisoning of Pt anode in a proton exchange membrane fuel cell using spatial electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Reshetenko, Tatyana V.; Bethune, Keith; Rubio, Miguel A.; Rocheleau, Richard

    2014-12-01

    This paper presents experimental and modeling results of the effect of low CO concentration (2 ppm) on the spatial performance of PEMFC as well as its spatial electrochemical impedance spectroscopy (EIS) responses. The cell was operated at constant current using various cathode gases: air, O2 and H2. Due to CO adsorption on the Pt anode and its poisoning, the cell voltage decreased and spatial current redistribution was observed. The steady state voltage losses were 0.089, 0.280 and 0.295 V for the H2/O2, H2/air and H2/H2 gas configurations, respectively. EIS data revealed a pseudo-inductive behavior in the low frequency region for inlet segments of the cell operated under H2/air and H2/H2 conditions. Operation with O2 as an oxidant did not cause any pseudo-inductance. Analysis of the EIS and anode overpotential data suggested that CO oxidation occurred via chemical or electrochemical mechanisms, or a combination of both depending on the selected cathode gas. The spatial EIS data were analyzed using the equivalent electric circuits approach. The distributions of the equivalent electric circuit parameters are presented and discussed. A current distribution model and EIS interpolation technique were successfully applied for detailed analysis of CO effects on the spatial PEMFC performance and EIS.

  4. Electrochemical and impedance characterization of Microbial Fuel Cells based on 2D and 3D anodic electrodes working with seawater microorganisms under continuous operation.

    PubMed

    Hidalgo, D; Sacco, A; Hernández, S; Tommasi, T

    2015-11-01

    A mixed microbial population naturally presents in seawater was used as active anodic biofilm of two Microbial Fuel Cells (MFCs), employing either a 2D commercial carbon felt or 3D carbon-coated Berl saddles as anode electrodes, with the aim to compare their electrochemical behavior under continuous operation. After an initial increase of the maximum power density, the felt-based cell reduced its performance at 5 months (from 7 to 4 μW cm(-2)), while the saddle-based MFC exceeds 9 μW cm(-2) (after 2 months) and maintained such performance for all the tests. Electrochemical impedance spectroscopy was used to identify the MFCs controlling losses and indicates that the mass-transport limitations at the biofilm-electrolyte interface have the main contribution (>95%) to their internal resistance. The activation resistance was one order of magnitude lower with the Berl saddles than with carbon felt, suggesting an enhanced charge-transfer in the high surface-area 3D electrode, due to an increase in bacteria population growth. PMID:26166463

  5. Disposable MMP-9 sensor based on the degradation of peptide cross-linked hydrogel films using electrochemical impedance spectroscopy.

    PubMed

    Biela, Anna; Watkinson, Michael; Meier, Ute C; Baker, David; Giovannoni, Gavin; Becer, C Remzi; Krause, Steffi

    2015-06-15

    Matrix metalloproteinase-9 (MMP-9) plays an important role in both physiological and pathological processes. This enzyme is a peripheral biomarker of neuroinflammation in multiple sclerosis (MS), a chronic autoimmune disease of the central nervous system. Presently, expensive magnetic resonance imaging (MRI) studies are used to monitor subclinical disease activity in MS. An alternative to costly MRI scans could be the detection of MMP-9, using a low-cost, disposable sensor system for MMP-9 suitable for home-monitoring of inflammation. This would allow an early prediction of the failure of anti-inflammatory therapies and more timely clinical intervention to limit neuronal damage and prevent disability. Herein we present the development of a disposable sensor for fast and straightforward detection of MMP-9. Biosensors were produced by coating electrodes with oxidized dextran and subsequent cross-linking with peptides containing specific cleavage sites for MMP-9. Exposure of the films to the enzyme resulted in the degradation of the films, which was monitored using impedance measurements. Sensor response was rapid, a significant impedance change was usually observed within 5 min after the addition of MMP-9. Sensors showed a negligible response to matrix metalloproteinase-2 (MMP-2), a protease which may interfere with MMP-9 detection. The peptide sequence with the highest sensitivity and selectivity Leu-Gly-Arg-Met-Gly-Leu-Pro-Gly-Lys was selected to construct calibration curves. MMP-9 was successfully detected in a clinically relevant range from 50 to 400 ng/ml. Two different processes of hydrogel degradation were observed on electrode surfaces with different roughness, and both appeared suitable to monitor MMP-9 activity. The sensor materials are generic and can be easily adopted to respond to other proteases by selecting peptide cross-linkers with suitable cleavage sites. PMID:25660510

  6. Investigation of gas diffusion layer compression by electrochemical impedance spectroscopy on running polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Dotelli, Giovanni; Omati, Luca; Gallo Stampino, Paola; Grassini, Paolo; Brivio, Davide

    Two gas diffusion layers based on the same carbon cloth substrate, produced by an Italian Company (SAATI), and coated with microporous layers of different hydrophobicities, were assembled in a polymer electrolyte membrane fuel cell and its performances assessed. For comparison the cell mounting the carbon cloth without microporous layer was also tested. The membrane electrode assembly was made of Nafion ® 212 with Pt load 0.3/0.6 mg cm -2 (anode/cathode). The cell testing was run at 60 °C and 80 °C with fully humidified air (100%RH) and 80%RH hydrogen feedings. The assembly of gas diffusion layers and membrane with electrodes was compressed to 30% and 50% of its initial thickness. For each configuration polarization and power curves were recorded; in order to evaluate the role of different GDLs, AC impedance spectroscopy of the running cell was also performed. The higher compression ratio caused the worsening of cell performances, partially mitigated when the operating temperature was raised to 80 °C. The presence of the microporous layer onto the carbon cloth resulted extremely beneficial for the operations especially at high current density; moreover, it sensibly reduces the high frequency resistance of the overall assembly.

  7. X-ray photoelectron spectroscopic and electrochemical impedance spectroscopic analysis of RuO2-Ta2O5 thick film pH sensors.

    PubMed

    Manjakkal, Libu; Cvejin, Katarina; Kulawik, Jan; Zaraska, Krzysztof; Socha, Robert P; Szwagierczak, Dorota

    2016-08-10

    The paper reports on investigation of the pH sensing mechanism of thick film RuO2-Ta2O5 sensors by using X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). Interdigitated conductimetric pH sensors were screen printed on alumina substrates. The microstructure and elemental composition of the films were examined by scanning electron microscopy and energy dispersive spectroscopy. The XPS studies revealed the presence of Ru ions at different oxidation states and the surface hydroxylation of the sensing layer increasing with increasing pH. The EIS analysis carried out in the frequency range 10 Hz-2 MHz showed that the electrical parameters of the sensitive electrodes in the low frequency range were distinctly dependent on pH. The charge transfer and ionic exchange occurring at metal oxide-solution interface were indicated as processes responsible for the sensing mechanism of thick film RuO2-Ta2O5 pH sensors.

  8. Microelectromechanical System-Based Sensing Arrays for Comparative in Vitro Nanotoxicity Assessment at Single Cell and Small Cell-Population Using Electrochemical Impedance Spectroscopy.

    PubMed

    Shah, Pratikkumar; Zhu, Xuena; Zhang, Xueji; He, Jin; Li, Chen-zhong

    2016-03-01

    The traditional in vitro nanotoxicity assessment approaches are conducted on a monolayer of cell culture. However, to study a cell response without interference from the neighbor cells, a single cell study is necessary; especially in cases of neuronal, cancerous, and stem cells, wherein an individual cell's fate is often not explained by the whole cell population. Nonetheless, a single cell does not mimic the actual in vivo environment and lacks important information regarding cell communication with its microenvironment. Both a single cell and a cell population provide important and complementary information about cells' behaviors. In this research, we explored nanotoxicity assessment on a single cell and a small cell population using electrochemical impedance spectroscopy and a microelectromechanical system (MEMS) device. We demonstrated a controlled capture of PC12 cells in different-sized microwells (to capture a different number of cells) using a combined method of surface functionalization and dielectrophoresis. The present approach provides a rapid nanotoxicity response as compared to other conventional approaches. This is the first study, to our knowledge, which demonstrates a comparative response of a single cell and small cell colonies on the same MEMS platform, when exposed to metaloxide nanoparticles. We demonstrated that the microenvironment of a cell is also accountable for cells' behaviors and their responses to nanomaterials. The results of this experimental study open up a new hypothesis to be tested for identifying the role of cell communication in spreading toxicity in a cell population.

  9. A comparison of corrosion, tribocorrosion and electrochemical impedance properties of pure Ti and Ti6Al4V alloy treated by micro-arc oxidation process

    NASA Astrophysics Data System (ADS)

    Fazel, M.; Salimijazi, H. R.; Golozar, M. A.; Garsivaz jazi, M. R.

    2015-01-01

    In this paper, the micro-arc oxidation (MAO) coatings were performed on pure Ti and Ti6Al4V samples at 180 V. The results indicated that unlike the volcanic morphology of oxide layer on pure Ti, a cortex-like morphology with irregular vermiform slots was seen on MAO/Ti6Al4V sample. According to polarization curves, the corrosion resistance of untreated samples was significantly increased by MAO process. The electrochemical impedance spectroscopy analysis showed a lower capacitance of barrier layer (led to higher resistance) for MAO/Ti specimens. This indicates that corrosive ions diffusion throughout the oxide film would be more difficult resulted in a higher corrosion resistance. Tribocorrosion results illustrated that the potential of untreated samples was dropped sharply to very low negative values. However, the lower wear volume loss was achieved for Ti6Al4V alloy. SEM images of worn surfaces demonstrated the local detachment of oxide layer within the wear track of MAO/Ti sample. Conversely, no delamination was detected in MAO/Ti6Al4V and a mild abrasive wear was the dominant mechanism.

  10. Combined operando X-ray diffraction–electrochemical impedance spectroscopy detecting solid solution reactions of LiFePO4 in batteries

    PubMed Central

    Hess, Michael; Sasaki, Tsuyoshi; Villevieille, Claire; Novák, Petr

    2015-01-01

    Lithium-ion batteries are widely used for portable applications today; however, often suffer from limited recharge rates. One reason for such limitation can be a reduced active surface area during phase separation. Here we report a technique combining high-resolution operando synchrotron X-ray diffraction coupled with electrochemical impedance spectroscopy to directly track non-equilibrium intermediate phases in lithium-ion battery materials. LiFePO4, for example, is known to undergo phase separation when cycled under low-current-density conditions. However, operando X-ray diffraction under ultra-high-rate alternating current and direct current excitation reveal a continuous but current-dependent, solid solution reaction between LiFePO4 and FePO4 which is consistent with previous experiments and calculations. In addition, the formation of a preferred phase with a composition similar to the eutectoid composition, Li0.625FePO4, is evident. Even at a low rate of 0.1C, ∼20% of the X-ray diffractogram can be attributed to non-equilibrium phases, which changes our understanding of the intercalation dynamics in LiFePO4. PMID:26345306

  11. Combined operando X-ray diffraction-electrochemical impedance spectroscopy detecting solid solution reactions of LiFePO4 in batteries

    NASA Astrophysics Data System (ADS)

    Hess, Michael; Sasaki, Tsuyoshi; Villevieille, Claire; Novák, Petr

    2015-09-01

    Lithium-ion batteries are widely used for portable applications today; however, often suffer from limited recharge rates. One reason for such limitation can be a reduced active surface area during phase separation. Here we report a technique combining high-resolution operando synchrotron X-ray diffraction coupled with electrochemical impedance spectroscopy to directly track non-equilibrium intermediate phases in lithium-ion battery materials. LiFePO4, for example, is known to undergo phase separation when cycled under low-current-density conditions. However, operando X-ray diffraction under ultra-high-rate alternating current and direct current excitation reveal a continuous but current-dependent, solid solution reaction between LiFePO4 and FePO4 which is consistent with previous experiments and calculations. In addition, the formation of a preferred phase with a composition similar to the eutectoid composition, Li0.625FePO4, is evident. Even at a low rate of 0.1C, ~20% of the X-ray diffractogram can be attributed to non-equilibrium phases, which changes our understanding of the intercalation dynamics in LiFePO4.

  12. Ultra-trace electrochemical impedance determination of bovine serum albumin by a two dimensional silica network citrate-capped gold nanoparticles modified gold electrode.

    PubMed

    Yari, Abdollah; Saeidikhah, Marzieh

    2015-11-01

    In this work, a gold electrode (GE) was modified by coating with two dimensional silica network/citrate capped gold nanoparticles-poly(diallyldimethylammonium chloride) (GE-TDSN-CGNP-PDDA) for ultra-sensitive determination of Bovine Serum Albumin (BSA). After covalently binding of a silica network (in two-dimensional form) on the surface of a gold electrode, via twice in situ hydrolysis of 3-mercaptopropyl-tri-ethoxysilane, citrate capped gold nanoparticles (CGNP) were chemically adsorbed on the silica cage. Subsequently, PDDA was bonded to CGNP via electrostatic interaction of positively charged polymer and negatively charged stabilizer of CGNP. Analytical properties of GE-TDSN-CGNP-PDDA were studied by Electrochemical Impedance Spectroscopy (EIS). The detection limit for measured BSA was found to be 8.4×10(-13) mol L(-1) and the measuring linear concentration range of the proposed sensor was 9.9×10(-12)-1.6×10(-10) mol L(-1) of BSA. In addition, GE-TDSN-CGNP-PDDA exhibited good stability with high selectivity and was applied for determination of BSA in some samples with satisfactory results.

  13. Combined operando X-ray diffraction-electrochemical impedance spectroscopy detecting solid solution reactions of LiFePO4 in batteries.

    PubMed

    Hess, Michael; Sasaki, Tsuyoshi; Villevieille, Claire; Novák, Petr

    2015-09-08

    Lithium-ion batteries are widely used for portable applications today; however, often suffer from limited recharge rates. One reason for such limitation can be a reduced active surface area during phase separation. Here we report a technique combining high-resolution operando synchrotron X-ray diffraction coupled with electrochemical impedance spectroscopy to directly track non-equilibrium intermediate phases in lithium-ion battery materials. LiFePO4, for example, is known to undergo phase separation when cycled under low-current-density conditions. However, operando X-ray diffraction under ultra-high-rate alternating current and direct current excitation reveal a continuous but current-dependent, solid solution reaction between LiFePO4 and FePO4 which is consistent with previous experiments and calculations. In addition, the formation of a preferred phase with a composition similar to the eutectoid composition, Li0.625FePO4, is evident. Even at a low rate of 0.1C, ∼20% of the X-ray diffractogram can be attributed to non-equilibrium phases, which changes our understanding of the intercalation dynamics in LiFePO4.

  14. Kinetics of oxidation of Fe-Cr-Al alloy Characterization by electrochemical spectroscopy of impedance in a 3% medium NaCl

    NASA Astrophysics Data System (ADS)

    Chadli, H.; Retima, M.; Khenioui, Y.

    2009-11-01

    The film growths kinetic study developed on the Fe-Cr-Al alloy oxidation under ambient air has been studied due to its tremendous uses in the automobile industry, specifically in catalytic exhaust. In this work, we report on its behavior as a function of various parameters such as the temperature, the oxidation duration, elaboration mode or the substrate nature and geometry. It has been shown that the growth, the morphology or the adherence of the formed layers are strongly affected by these parameters. At high temperature (900-1100 ∘C), the formed protective film for the materials studied in this work is primarily consisted of alumina. Below these temperatures, several phases may coexist, namely, the γ phase and the θ phase. The extension of this alloy application has led us to perform spectroscopic measurements of electrochemical impedance (SEI) in an aqueous environment 3% (NaCl). These measurements have shown that sane coatings preserve excellent insulating properties and the corrosion risks are related to defects in the layers while are formed.

  15. Three-Dimensional Simulation of Porosity in Plasma-Sprayed Alumina Using Microtomography and Electrochemical Impedance Spectrometry for Finite Element Modeling of Properties

    NASA Astrophysics Data System (ADS)

    Amsellem, O.; Borit, F.; Jeulin, D.; Guipont, V.; Jeandin, M.; Boller, E.; Pauchet, F.

    2012-03-01

    Moving from a 2-dimensional to a 3-dimensional (3D) approach to microstructure and properties has been expected eagerly for a long while to result in a dramatic increase in the knowledge of thermally sprayed coatings. To meet these expectations, in the present study, microtomography and electrochemical impedance spectroscopy (EIS) were carried out to simulate the microstructure of plasma-sprayed alumina. As-sprayed and excimer laser-processed deposits were studied. Some unexpected but relevant results, e.g., regarding pore orientation in the coatings, could be obtained. EIS led to the establishment of an equivalent electrical circuit representation of the microstructure which enabled modeling of the insulating properties as a function of interfaces and pore interconnection. The pore interconnection was studied by microtomography. From this 3D simulation, a finite element analysis of Young's modulus properties was developed and compared to experiments. Using this approach, excimer laser surface processing was shown to be an innovative process to modify insulating characteristics of plasma-sprayed alumina.

  16. Novel electrochemical nickel metallization in silicon impedance engineering for mixed-signal system-on-chip crosstalk isolation

    NASA Astrophysics Data System (ADS)

    Zhang, Xi

    One of the major challenges for single chip radio frequency integrated circuits (RFIC's) built on Si is the RE crosstalk through the Si substrate. Noise from switching transient in digital circuits can be transmitted through Si substrate and degrades the performance of analog circuit elements. A highly conductive moat or Faraday cage type structure of through-the-wafer thickness in the Si substrate was demonstrated to be effective in shielding electromagnetic interference thereby reducing RE cross-talk in high performance mixed signal integrated circuits. Such a structure incorporated into the p- Si substrate was realized by electroless Ni metallization over selected regions with ultra-high-aspect-ratio macropores that was etched electrochemically in p- Si substrates. The metallization process was conducted by immersing the macroporous Si sample in an alkaline aqueous solution containing Ni2+ without a reducing agent. It was found that working at slightly elevated temperature, Ni 2+ was rapidly reduced and deposited in the macropores. During the wet chemical process, conformal metallization on the pore wall was achieved. The entire porous Si skeleton was gradually replaced by Ni along the extended duration of immersion. In a p-/p+ epi Si substrate used for high performance digital CMOS, the suppression of crosstalk by the arrayed metallic Ni via structure fabricated from the front p side was significant that the crosstalk went down to the noise floor of the conventional measurement instruments. The process and mechanism of forming such a Ni structure over the original Si were studied. Theoretical computation relevant to the process was carried out to show a good consistency with the experiments.

  17. Characterization of damp heat degradation of CuInGaSe2 solar cell components and devices by (electrochemical) impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Pern, F. J. John; Noufi, Rommel

    2011-09-01

    This work evaluated the capability of (electrochemical) impedance spectroscopy (IS, or ECIS as used here) to monitor damp heat (DH) stability of contact materials, CuInGaSe2 (CIGS) solar cell components, and devices. Cell characteristics and its variation of the CIGS devices were also examined by the ECIS. Bare and encapsulated sample sets were separately prepared and exposed in an environmental chamber at 85°C and 85% relative humidity (RH). The ECIS results from bare samples tested within 50-100 h of DH exposure allowed the determination of the use of a conducting Ag paste and a low-melting-point solder alloy for making a DH-stable external connection with Au wires. Bare Mo and AlNi grid degraded (corroded) rapidly while Ni was DH-stable. The moisture-dampened Al-doped ZnO (AZO) and bilayer ZnO (BZO) likely underwent hydrolytic "capacitor-forming" reaction by DH, resulting in "transient" behavior of very high resistance in ECIS that was not detected by four-point probe. Using an encapsulation test structure that allowed moisture ingress control, DH-induced degradation (resistance increase) rates of BZO on glass decreased from 0.21 ohm/h using a moisture-permeable Tedlar/Polyester/Tedlar (TPT) backsheet to 1.0 x 10-3 ohm/h using a moisture barrier FG-200 film, while Mo on glass did not exhibit the same conducting degradation and corrosion as the bare samples after over 1270 h DH exposure. CIGS solar cells encapsulated with a TPT backsheet degraded irregularly over 774 h DH exposure. Key resistance and capacitance parameters extracted by curve fitting of impedance data clearly showed the variation and impact of DH exposure on cell characteristics. Profound "depression" or shorting of the "p-n junction capacitor" by DH was evident. ECIS results are shown to correlate reasonably well with the solar cells' currentvoltage (I-V) degrading trends. Furthermore, ECIS analysis was capable of differentiating cell degradation due to "junction capacitor" shorting, damage or

  18. XPS and electrochemical impedance spectroscopy studies on effects of the porcelain firing process on surface and corrosion properties of two nickel-chromium dental alloys.

    PubMed

    Qiu, Jing; Tang, Chun-bo; Zhu, Zhi-jun; Zhou, Guo-xing; Wang, Jie; Yang, Yi; Wang, Guo-ping

    2013-11-01

    The aim of this study was to evaluate the effects of a simulated porcelain firing process on the surface, corrosion behavior and cell culture response of two nickel-chromium (Ni-Cr) dental alloys. A Be-free alloy and a Be-containing alloy were tested. Before porcelain firing, as-cast specimens were examined for surface composition using X-ray photoelectron spectroscopy and metallurgical phases using X-ray diffraction. Corrosion behaviors were evaluated using electrochemical impedance spectroscopy. 3T3 fibroblasts were cultured and exposed indirectly to specimens. MTT assays were counted after 3 and 6 days. The cell culture mediums exposed to specimens were analyzed for metal ion release. After porcelain firing, similar specimens were examined for the same properties. In both as-cast and fired conditions, the Be-free Ni-Cr alloy showed significantly more resistance to corrosion than the Be-containing Ni-Cr alloy, which exhibited BeNi phase. After porcelain firing, the corrosion resistance of the Be-free Ni-Cr alloy decreased statistically, corresponding with evident decreases of Cr and Ni oxides on the alloy surface. Also, the alloy's MTT assay decreased significantly corresponding with an obvious increase of Ni-ion release after the firing. For the Be-containing Ni-Cr alloy, the firing process led to increases of surface oxides and metallic Be, while its corrosion resistance and cell culture response were not significantly changed after porcelain firing. The results suggested that the corrosion resistance and biocompatibility of the Be-free Ni-Cr alloy decreased after porcelain firing, whereas the firing process had little effect on the same properties of the Be-containing Ni-Cr alloy. PMID:23881280

  19. Photovoltaic Characterization and Electrochemical Impedance Spectroscopy Analysis of Dye-Sensitized Solar Cells Based on Composite TiO2-MWCNT Photoelectrodes

    NASA Astrophysics Data System (ADS)

    Parvazian, E.; Karimzadeh, F.; Enayati, M. H.

    2014-05-01

    Dye-sensitized solar cells (DSSCs) use the effect of light on dye molecules to generate electricity through a photoelectrochemical mechanism. The aim of this study is to synthesize nanostructured DSSCs based on titania-multiwalled carbon nanotube (TiO2-MWCNT) composite photoelectrodes and improve their performance and efficiency. DSSCs were fabricated based on single-layer TiO2-MWCNT photoelectrodes with various weight percentages of multiwalled carbon nanotubes and bilayer TiO2/TiO2-2%MWCNT photoelectrodes. The microstructure and thickness of the anodic layers were characterized by field-emission scanning electron microscopy and optical microscopy. Also, to compare the conversion efficiency and determine the electron behavior in the electrical equivalent circuit of these cells, photovoltaic characterization and electrochemical impedance spectroscopy (EIS) analysis were used. The DSSC based on a single-layer TiO2-2%MWCNT electrode, compared with other single-layer DSSCs in this study, had the highest conversion efficiency of 3.9% (for anodic layer thickness of 9 μm). The efficiency of the solar cell with the bilayer TiO2/TiO2-2%MWCNT photoelectrode, in comparison with the single-layer solar cell with the TiO2-2%MWCNT electrode, showed a 23% increase from 4.33% to 5.35% (for anodic layer thickness of 18 μm). EIS analysis indicated that the charge-transport resistance of the DSSC based on the bilayer photoelectrode, in comparison with the single-layer TiO2 and TiO2-2%MWCNT solar cells, was decreased by 68% and 57%, respectively.

  20. An immobilization-free electrochemical impedance biosensor based on duplex-specific nuclease assisted target recycling for amplified detection of microRNA.

    PubMed

    Zhang, Jing; Wu, Dong-Zhi; Cai, Shu-Xian; Chen, Mei; Xia, Yao-Kun; Wu, Fang; Chen, Jing-Hua

    2016-01-15

    An immobilization-free electrochemical impedance biosensor for microRNA detection was developed in this work, which was based on both the duplex-specific nuclease assisted target recycling (DSNATR) and capture probes (Cps) enriched from the solution to electrode surface via magnetic beads (MBs). In the absence of miR-21, Cps cannot be hydrolyzed due to the low activity of duplex-specific nuclease (DSN) against ssDNA. Therefore, the intact Cps could be attached to the surface of magnetic glass carbon electrode (MGCE), resulting in a compact negatively charged layer as well as a large charge-transfer resistance. While in the presence of miR-21, it hybridized with Cp to form a DNA-RNA heteroduplex. Due to the considerable cleavage preference for DNA in DNA-RNA hybrids, DSN hydrolyzed the target-binding part of the Cp while liberating the intact miR-21 to hybridize with a new Cp and initiate the second cycle of hydrolysis. In this way, a single miR-21 was able to trigger the permanent hydrolysis of multiple Cps. Finally, all Cps were digested. Thus, the negatively charged layer could not be formed, resulting in a small charge-transfer resistance. By employing the above strategy, the proposed biosensor achieved ultrahigh sensitivity toward miR-21 with a detection limit of 60aM. Meanwhile, the method showed little cross-hybridization among the closely related miRNA family members even at the single-base-mismatched level. Successful attempts were made in applying the approach to detect miR-21 in human serum samples of breast cancer patients.

  1. XPS and electrochemical impedance spectroscopy studies on effects of the porcelain firing process on surface and corrosion properties of two nickel-chromium dental alloys.

    PubMed

    Qiu, Jing; Tang, Chun-bo; Zhu, Zhi-jun; Zhou, Guo-xing; Wang, Jie; Yang, Yi; Wang, Guo-ping

    2013-11-01

    The aim of this study was to evaluate the effects of a simulated porcelain firing process on the surface, corrosion behavior and cell culture response of two nickel-chromium (Ni-Cr) dental alloys. A Be-free alloy and a Be-containing alloy were tested. Before porcelain firing, as-cast specimens were examined for surface composition using X-ray photoelectron spectroscopy and metallurgical phases using X-ray diffraction. Corrosion behaviors were evaluated using electrochemical impedance spectroscopy. 3T3 fibroblasts were cultured and exposed indirectly to specimens. MTT assays were counted after 3 and 6 days. The cell culture mediums exposed to specimens were analyzed for metal ion release. After porcelain firing, similar specimens were examined for the same properties. In both as-cast and fired conditions, the Be-free Ni-Cr alloy showed significantly more resistance to corrosion than the Be-containing Ni-Cr alloy, which exhibited BeNi phase. After porcelain firing, the corrosion resistance of the Be-free Ni-Cr alloy decreased statistically, corresponding with evident decreases of Cr and Ni oxides on the alloy surface. Also, the alloy's MTT assay decreased significantly corresponding with an obvious increase of Ni-ion release after the firing. For the Be-containing Ni-Cr alloy, the firing process led to increases of surface oxides and metallic Be, while its corrosion resistance and cell culture response were not significantly changed after porcelain firing. The results suggested that the corrosion resistance and biocompatibility of the Be-free Ni-Cr alloy decreased after porcelain firing, whereas the firing process had little effect on the same properties of the Be-containing Ni-Cr alloy.

  2. Kinetics of electrochemically controlled surface reactions on bulk and thin film metals studied with Fourier transform impedance spectroscopy and surface plasmon resonance techniques

    NASA Astrophysics Data System (ADS)

    Assiongbon, Kankoe A.

    2005-07-01

    In the work presented in this thesis, the surface sensitive electrochemical techniques of cyclic voltametry (CV), potential step (PS) and Fourier transform impedance spectroscopy (FT-EIS), as well as the optical technique of surface plasmon resonance (SPR), were used to probe a wide variety of surface processes at various metal/liquid interface. Three polycrystalline metals (Au, Ta and Cu) and a Cr-coated gold film were used for these studies in different aqueous environments. A combination of CV with FT-EIS and PS was used to investigate electronic and structural proprieties of a modified bulk electrode of Au. This experimental system involved under potential deposition (UPD) of Bi3+ on Au in a supporting aqueous electrolyte containing ClO-4 . UPD range of Bi3+ was determined, and adsorption kinetics of Bi3+ in the presence of coadsorbing anion, ClO-4 were quantified. Potentiodynamic growth of oxide films of Ta in the following electrolytes NaNO3, NaNO3 + 5wt% H2O2, NaOH and NaOH + 5wt% H2O2 had been investigated. The oxide films were grown in the range -0.1 → +0.4V (high electric field) at a scan rate of 10 mV/s. Time resolved A.C. impedance spectroscopy measurements in the frequency range (0.1--20 KHz) were performed to characterize the surface reactions of oxide formation. The results are interpreted in terms of charge conductivity O2- through the oxide film, and disintegration of H2O2 into OH-. In a high pH medium (pH 12), dissociation of H2O2 was catalytically enhanced. This led to destabilization of the electrogenerated tantalum oxide surface film in the form of a soluble hexatantalate species. In contrast with the electrolytes, NaNO3, NaNO3 + 5wt% H2O2, NaOH, where only the oxide growth was observed, the A.C. impedance spectroscopy measurements in NaOH + 5wt% H 2O2 showed competition between oxide formation and its removal. These results are relevant for chemical slurry design in chemical mechanical polishing (CMP) of Ta. Further investigations were

  3. Electrochemical impedance spectroscopy of biofilms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial activity that leads to the formation of biofilms on process equipment can accelerate corrosion, reduce heat transfer rates, and generally decrease process efficiencies. Additional concerns arise in the food and pharma industries where product quality and safety are a high priority. Pharmac...

  4. Application of impedance spectroscopy to SOFC research

    SciTech Connect

    Hsieh, G.; Mason, T.O.; Pederson, L.R.

    1996-12-31

    With the resurgence of interest in solid oxide fuel cells and other solid state electrochemical devices, techniques originally developed for characterizing aqueous systems are being adapted and applied to solid state systems. One of these techniques, three-electrode impedance spectroscopy, is particularly powerful as it allows characterization of subcomponent and interfacial properties. Obtaining accurate impedance spectra, however, is difficult as reference electrode impedance is usually non-negligible and solid electrolytes typically have much lower conductance than aqueous solutions. Faidi et al and Chechirlian et al have both identified problems associated with low conductivity media. Other sources of error are still being uncovered. Ford et al identified resistive contacts with large time constants as a possibility, while Me et al showed that the small contact capacitance of the reference electrode was at fault. Still others show that instrument limitations play a role. Using the voltage divider concept, a simplified model that demonstrates the interplay of these various factors, predicts the form of possible distortions, and offers means to minimize errors is presented.

  5. Fabrication of TiO2-NTs and TiO2-NTs covered honeycomb lattice and investigation of carrier densities in I-/I3- electrolyte by electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Baran, Evrim; Yazıcı, Birgül

    2015-12-01

    The TiO2 nanotubes (NTs) were produced by one-step (1S) and two-step (2S) anodization technique. Effects of various anodization potential and times on the growth of TiO2-NTs were investigated by using Field Emission-Scanning Electron Microscopy (FE-SEM). The crystal structure of the electrodes was determined with X-ray powder diffractometry (XRD). The most suitable potential and time for TiO2-NTs obtained by both of anodization methods were found to be 21 V and 4 h. XRD results indicated that 2S anodization technique provided better crystallinity. The electrochemical behaviors of the electrodes in acetonitrile electrolyte contained I-/I3- were examined by utilizing electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) techniques. Electrochemical results showed that 2S anodization technique increases the carrier densities (ND) value of TiO2-NTs, and flat band potential is shifted by 50 mV to more negative values.

  6. Microstructures and electrochemical behaviors of the friction stir welding dissimilar weld.

    PubMed

    Shen, Changbin; Zhang, Jiayan; Ge, Jiping

    2011-06-01

    By using optical microscope, the microstructures of 5083/6082 friction stir welding (FSW) weld and parent materials were analyzed. Meanwhile, at ambient temperature and in 0.2 mol/L NaHS03 and 0.6 mol/L NaCl solutionby gravimetric test, potentiodynamic polarization curve test, electrochemical impedance spectra (EIS) and scanning electron microscope (SEM) observation, the electrochemical behavior of 5083/6082 friction stir welding weld and parent materials were comparatively investigated by gravimetric test, potentiodynamic polarization curve test, electrochemical impedance spectra (EIS) and scanning electron microscope (SEM) observation. The results indicated that at given processing parameters, the anti-corrosion property of the dissimilar weld was superior to those of the 5083 and 6082 parent materials.

  7. Electron Impedances

    SciTech Connect

    P Cameron

    2011-12-31

    It is only recently, and particularly with the quantum Hall effect and the development of nanoelectronics, that impedances on the scale of molecules, atoms and single electrons have gained attention. In what follows the possibility that characteristic impedances might be defined for the photon and the single free electron is explored is some detail, the premise being that the concepts of electrical and mechanical impedances are relevant to the elementary particle. The scale invariant quantum Hall impedance is pivotal in this exploration, as is the two body problem and Mach's principle.

  8. Original implementation of Electrochemical Impedance Spectroscopy (EIS) in symmetric cells: Evaluation of post-mortem protocols applied to characterize electrode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Gordon, Isabel Jiménez; Genies, Sylvie; Si Larbi, Gregory; Boulineau, Adrien; Daniel, Lise; Alias, Mélanie

    2016-03-01

    Understanding ageing mechanisms of Li-ion batteries is essential for further optimizations. To determine performance loss causes, post-mortem analyses are commonly applied. For each type of post-mortem test, different sample preparation protocols are adopted. However, reports on the reliability of these protocols are rare. Herein, Li-ion pouch cells with LiNi1/3Mn1/3Co1/3O2 - polyvinylidene fluoride positive electrode, graphite-carboxymethyl cellulose-styrene rubber negative electrode and LiPF6 - carbonate solvents mixture electrolyte, are opened and electrodes are recovered following a specified protocol. Negative and positive symmetric cells are assembled and their impedances are recorded. A signal analysis is applied to reconstruct the Li-ion pouch cell impedance from the symmetric cells, then comparison against the pouch cell true impedance allows the evaluation of the sample preparation protocols. The results are endorsed by Transmission Electronic Microscopy (TEM) and Gas Chromatography - Mass Spectrometry (GC-MS) analyses. Carbonate solvents used to remove the salt impacts slightly the surface properties of both electrodes. Drying electrodes under vacuum at 25 °C produces an impedance increase, particularly very marked for the positive electrode. Drying at 50 °C under vacuum or/and exposition to the anhydrous room atmosphere is very detrimental.

  9. Electrochemical impedance based chiral analysis of anti-ascorbutic drug: l-Ascorbic acid and d-ascorbic acid using C-dots decorated conductive polymer nano-composite electrode.

    PubMed

    Pandey, Indu; Kant, Rama

    2016-03-15

    Clinical manifestations owing to l-ascorbic acid for scurvy as comparison to d-ascorbic acid and challenges of chiral purity are overcome by using chiral selective conductive polymer nanocomposite which mimics antibodies and enzymes. A novel chiral selective imprinted polyaniline-ferrocene-sulfonic acid film has been electrochemically fabricated on C-dots modified pencil graphite electrode. The performance of the obtained l-ascorbic acid or d-ascorbic acid chiral selective sensor was investigated by electrochemical impedance spectroscopy, cyclic and differential pulse voltammetry. The surface characteristics of the C-dots, chiral sensor before and after the de-doping of chiral d- and l-ascorbic acid were characterized by scanning electron microscopy, Raman spectroscopy and X-ray diffraction spectroscopy. Excellent recognition results were obtained by difference in electron transfer resistance. The proposed chiral sensor is capable of measuring d-ascorbic acid or l-ascorbic acid in aqueous as well as in real and commercial samples within the range of 0.020-0.187 nM and 0.003-0.232 nM with detection limit of 0.00073 nM and 0.00016 nM, respectively. The proposed method has also been examined for the chiral selective recognition of ascorbic acid isomers (d- and l-) quantitatively, in complicated matrices of real samples.

  10. Electrochemical impedance based chiral analysis of anti-ascorbutic drug: l-Ascorbic acid and d-ascorbic acid using C-dots decorated conductive polymer nano-composite electrode.

    PubMed

    Pandey, Indu; Kant, Rama

    2016-03-15

    Clinical manifestations owing to l-ascorbic acid for scurvy as comparison to d-ascorbic acid and challenges of chiral purity are overcome by using chiral selective conductive polymer nanocomposite which mimics antibodies and enzymes. A novel chiral selective imprinted polyaniline-ferrocene-sulfonic acid film has been electrochemically fabricated on C-dots modified pencil graphite electrode. The performance of the obtained l-ascorbic acid or d-ascorbic acid chiral selective sensor was investigated by electrochemical impedance spectroscopy, cyclic and differential pulse voltammetry. The surface characteristics of the C-dots, chiral sensor before and after the de-doping of chiral d- and l-ascorbic acid were characterized by scanning electron microscopy, Raman spectroscopy and X-ray diffraction spectroscopy. Excellent recognition results were obtained by difference in electron transfer resistance. The proposed chiral sensor is capable of measuring d-ascorbic acid or l-ascorbic acid in aqueous as well as in real and commercial samples within the range of 0.020-0.187 nM and 0.003-0.232 nM with detection limit of 0.00073 nM and 0.00016 nM, respectively. The proposed method has also been examined for the chiral selective recognition of ascorbic acid isomers (d- and l-) quantitatively, in complicated matrices of real samples. PMID:26499067

  11. Assessment of the ethanol oxidation activity and durability of Pt catalysts with or without a carbon support using Electrochemical Impedance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Saleh, Farhana S.; Easton, E. Bradley

    2014-01-01

    We compared the stability and performance of 3 commercially available Johnson Matthey catalysts with various Pt loadings (20, 40 and 100%) using two different accelerated durability testing (ADT) protocols. The various Pt-loaded catalysts were tested by means of a series of intermittent life tests (1, 200, 400, 1000, 2000, 3000 and 4000 cycles). The electrochemical surface area (ECSA) loss of electrode was investigated by electrochemical technique (CV). The use of EIS as an accelerated-testing protocol distinctly elucidates the extent of degradation of Johnson Matthey catalysts with various Pt loading. Using EIS, it was possible to show that Pt-black catalyst layers suffer from increased electronic resistance over the course of ADT which is not observed when a corrosion stable carbon support is present. The effect of Pt loading was further elucidated by comparing the electrocatalytic activity of the catalyst layers towards ethanol oxidation reaction (EOR). The catalyst layer with the lowest Pt loading showed the enhanced EOR performance.

  12. La2NiO4+δ infiltrated into gadolinium doped ceria as novel solid oxide fuel cell cathodes: Electrochemical performance and impedance modelling

    NASA Astrophysics Data System (ADS)

    Nicollet, C.; Flura, A.; Vibhu, V.; Rougier, A.; Bassat, J. M.; Grenier, J. C.

    2015-10-01

    This paper is devoted to the study of composite cathodes of La2NiO4+δ infiltrated into a Gd-doped ceria backbone. Porous Gd-doped ceria backbones are screen printed onto yttria-stabilized zirconia or Gd-doped ceria dense electrolytes, and infiltrated with a La and Ni nitrate solution (2:1 stoichiometry ratio). The influence of the preparation parameters on the polarization resistance, such as the concentration of the infiltration solution, the amount of infiltrated phase, the annealing temperature, the thickness of the electrode, and the nature of the electrolyte, is characterized by impedance spectroscopy performed on symmetrical cells. The optimization of these parameters results in a decrease of the polarization resistance down to 0.15 Ω cm2 at 600 °C. Using the Adler-Lane-Steele model, the modelling of the impedance diagrams leads to the determination of the ionic conductivity as well as the surface exchange rate of the infiltrated electrode.

  13. Combining Electrochemical Impedance Spectroscopy and Surface Plasmon Resonance into one Simultaneous Read-Out System for the Detection of Surface Interactions

    PubMed Central

    Vandenryt, Thijs; Pohl, Andrea; van Grinsven, Bart; Thoelen, Ronald; De Ceuninck, Ward; Wagner, Patrick; Opitz, Jörg

    2013-01-01

    In this article we describe the integration of impedance spectroscopy (EIS) and surface plasmon resonance (SPR) into one surface analytic device. A polydimethylsiloxane (PDMS) flow cell is created, matching the dimensions of a commercially available sensor chip used for SPR measurements. This flow cell allowed simultaneous measurements between an EIS and a SPR setup. After a successful integration, a proof of principle study was conducted to investigate any signs of interference between the two systems during a measurement. The flow cell was rinsed with 10 mM Tris-HCl and 1× PBS buffer in an alternating manner, while impedance and shifts of the resonance angle were monitored. After achieving a successful proof of principle, a usability test was conducted. It was assessed whether simultaneous detection occurred when: (i) Protein A is adsorbed to the gold surface of the chip; (ii) The non-occupied zone is blocked with BSA molecules and (iii) IgG1 is bound to the Protein A. The results indicate a successful merge between SPR and EIS. PMID:24172282

  14. Impedance Scaling and Impedance Control

    NASA Astrophysics Data System (ADS)

    Chou, W.; Griffin, J.

    1997-05-01

    When a machine becomes really large, such as the Really Large Hadron Collider (RLHC),(G. W. Foster and E. Malamud, Fermilab-TM-1976 (June, 1996).) of which the circumference could reach the order of megameters, beam instability could be an essential bottleneck. This paper studies the scaling of the instability threshold vs. machine size when the coupling impedance scales in a ``normal'' way. It is shown that the beam would be intrinsically unstable for the RLHC. As a possible solution to this problem, it is proposed to introduce local impedance inserts for controlling the machine impedance. In the longitudinal plane, this could be done by using a heavily detuned rf cavity (e.g., a biconical structure), which could provide large imaginary impedance with the right sign (i.e., inductive or capacitive) while keeping the real part small. In the transverse direction, a carefully designed variation of the cross section of a beam pipe could generate negative impedance that would partially compensate the transverse impedance in one plane.

  15. Impedance study of membrane dehydration and compression in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Le Canut, Jean-Marc; Latham, Ruth; Mérida, Walter; Harrington, David A.

    Electrochemical impedance spectroscopy (EIS) is used to measure drying and rehydration in proton exchange membrane fuel cells running under load. The hysteresis between forward and backward acquisition of polarization curves is shown to be largely due to changes in the membrane resistance. Drying tests are carried out with hydrogen and simulated reformate (hydrogen and carbon dioxide), and quasi-periodic drying and rehydration conditions are studied. The membrane hydration state is clearly linked to the high-frequency arc in the impedance spectrum, which increases in size for dry conditions indicating an increase in membrane resistance. Changes in impedance spectra as external compression is applied to the cell assembly show that EIS can separate membrane and interfacial effects, and that changes in membrane resistance dominate. Reasons for the presence of a capacitance in parallel with the membrane resistance are discussed.

  16. A physical interpretation of impedance at conducting polymer/electrolyte junctions

    SciTech Connect

    Stavrinidou, Eleni; Sessolo, Michele; Sanaur, Sébastien; Malliaras, George G.; Winther-Jensen, Bjorn

    2014-01-15

    We monitor the process of dedoping in a planar junction between an electrolyte and a conducting polymer using electrochemical impedance spectroscopy performed during moving front measurements. The impedance spectra are consistent with an equivalent circuit of a time varying resistor in parallel with a capacitor. We show that the resistor corresponds to ion transport in the dedoped region of the film, and can be quantitatively described using ion density and drift mobility obtained from the moving front measurements. The capacitor, on the other hand, does not depend on time and is associated with charge separation at the moving front. This work offers a physical description of the impedance of conducting polymer/electrolyte interfaces based on materials parameters.

  17. Comparison of the spectra of the cochlear microphonic and of the sound-elicited electrical impedance changes measured in scala media of the guinea pig.

    PubMed

    Hubbard, A E; Geisler, C D; Mountain, D C

    1979-08-01

    The harmonic structure of the cochlear microphonic (CM) and that of a sound-elicited signal which we have considered as an (apparent) changing resistance (CR) were simultaneously determined in scala media of the first turn of the guinea pig cochlea. We analyzed our data in the context of the Davis variable resistance hair-cell model (1965), which predicts CM and CR to be proportional to each other. But, plotted as functions of the sound-pressure level, CM and CR were found to have qualitatively similar but quantitatively disproportionate spectra. The preparations with the highest endolymphatic potential showed the least correspondence between the spectra of the two measured quantities. The phase angles of the fundamental components in CM and CR were equal within approximately 10 degrees, but the phase of the even harmonics of the two independent measures commonly differed by approximately 180 degrees at lower SPLs. Although most data were collected using 160-Hz tonal stimulation, tones with frequencies up to 1280 Hz produced qualitatively similar results. The CM and the CR both varied slightly with the level of the alternating current used to probe the CR. Considered on a quantitative basis, consistent with the accuracy of our measurements, any model which reduces to a fixed source, a fixed resistance, and a single linear, time-varying resistance cannot mimic the most significant, commonly found aspects of our CM and CR data. An alternate model incorporating a nonlinear, time-invariant resistance is able to account for some of the data. The output of the model is correctly considered a (time) changing resistance, or apparent changing resistance; but the model demonstrates that similar experimental results are not necessarily evidence for a time-varying resistor as originally proposed by Davis. PMID:512204

  18. Electrochemical Impedance Immunosensor Based on Self-Assembled Monolayers for Rapid Detection of Escherichia coli O157:H7 with Signal Amplification Using Lectin

    PubMed Central

    Li, Zhanming; Fu, Yingchun; Fang, Weihuan; Li, Yanbin

    2015-01-01

    Escherichia coli O157:H7 is a predominant foodborne pathogen with severe pathogenicity, leading to increasing attention given to rapid and sensitive detection. Herein, we propose an impedance biosensor using new kinds of screen-printed interdigitated microelectrodes (SPIMs) and wheat germ agglutinin (WGA) for signal amplification to detect E. coli O157:H7 with high sensitivity and time-efficiency. The SPIMs integrate the high sensitivity and short response time of the interdigitated electrodes and the low cost of the screen-printed electrodes. Self-assembling of bi-functional 3-dithiobis-(sulfosuccinimidyl-propionate) (DTSP) on the SPIMs was investigated and was proved to be able to improve adsorption quantity and stability of biomaterials. WGA was further adopted to enhance the signal taking advantage of the abundant lectin-binding sites on the bacteria surface. The immunosensor exhibited a detection limit of 102 cfu·mL−1, with a linear detection range from 102 to 107 cfu·mL−1 (r2 = 0.98). The total detection time was less than 1 h, showing its comparable sensitivity and rapid response. Furthermore, the low cost of one SPIM significantly reduced the detection cost of the biosensor. The biosensor may have great promise in food safety analysis and lead to a portable biosensing system for routine monitoring of foodborne pathogens. PMID:26251911

  19. Electrochemical Impedance Immunosensor Based on Self-Assembled Monolayers for Rapid Detection of Escherichia coli O157:H7 with Signal Amplification Using Lectin.

    PubMed

    Li, Zhanming; Fu, Yingchun; Fang, Weihuan; Li, Yanbin

    2015-01-01

    Escherichia coli O157:H7 is a predominant foodborne pathogen with severe pathogenicity, leading to increasing attention given to rapid and sensitive detection. Herein, we propose an impedance biosensor using new kinds of screen-printed interdigitated microelectrodes (SPIMs) and wheat germ agglutinin (WGA) for signal amplification to detect E. coli O157:H7 with high sensitivity and time-efficiency. The SPIMs integrate the high sensitivity and short response time of the interdigitated electrodes and the low cost of the screen-printed electrodes. Self-assembling of bi-functional 3-dithiobis-(sulfosuccinimidyl-propionate) (DTSP) on the SPIMs was investigated and was proved to be able to improve adsorption quantity and stability of biomaterials. WGA was further adopted to enhance the signal taking advantage of the abundant lectin-binding sites on the bacteria surface. The immunosensor exhibited a detection limit of 102 cfu·mL(-1), with a linear detection range from 10(2) to 10(7) cfu·mL(-1) (r2 = 0.98). The total detection time was less than 1 h, showing its comparable sensitivity and rapid response. Furthermore, the low cost of one SPIM significantly reduced the detection cost of the biosensor. The biosensor may have great promise in food safety analysis and lead to a portable biosensing system for routine monitoring of foodborne pathogens. PMID:26251911

  20. Cathode catalyst layers with ionomer to carbon mass ratios in the range 0-2 studied by electrochemical impedance spectroscopy, cyclic voltammetry, and performance measurements

    NASA Astrophysics Data System (ADS)

    Modestov, Alexander D.; Kapustin, Alexander V.; Avakov, Veniamin B.; Landgraf, Igor K.; Tarasevich, Mikhail R.

    2014-12-01

    Characteristics of the cathode catalyst layers (CCL) containing HiSPEC 9100 Pt/C catalyst and ionomer (I) in ionomer to carbon mass ratio (I/C) range 0-2 were studied. Pt electrochemically active surface area (ECSA) and electrode low frequency capacitance were found to be independent of I/C value. Ionic resistance of CCL was found strongly dependent of I/C value. It reaches maximum value at I/C∼0.3. Ionic resistance of CCL with I/C = 0.05 increased 7 fold with the shift of electrode potential (E) from 0.4 V to 1.05 vs. RHE. Ionic resistance of an imitating layer, which contained ionomer-free Ketjenblack EC-300J carbon, increased by a factor of 20 with the potential shift from 0.1 V to 1.05 V vs. RHE. Ionic conductivity in ionomer-free CCLs is ascribed to the presence of protons which originate from ionization of oxygen containing acidic surface groups of carbon support. Application to the CCL of potential positive relative to potential of zero charge of carbon support (pzc) draws protons to the counter electrode, decreasing the ionic conductivity of the CCL. Pt mass specific activity (Im) dependence on I/C mass ratio reaches maximum at I/C ∼ 1.

  1. Current density distribution in cylindrical Li-Ion cells during impedance measurements

    NASA Astrophysics Data System (ADS)

    Osswald, P. J.; Erhard, S. V.; Noel, A.; Keil, P.; Kindermann, F. M.; Hoster, H.; Jossen, A.

    2016-05-01

    In this work, modified commercial cylindrical lithium-ion cells with multiple separate current tabs are used to analyze the influence of tab pattern, frequency and temperature on electrochemical impedance spectroscopy. In a first step, the effect of different current tab arrangements on the impedance spectra is analyzed and possible electrochemical causes are discussed. In a second step, one terminal is used to apply a sinusoidal current while the other terminals are used to monitor the local potential distribution at different positions along the electrodes of the cell. It is observed that the characteristic decay of the voltage amplitude along the electrode changes non-linearly with frequency, where high-frequent currents experience a stronger attenuation along the current collector than low-frequent currents. In further experiments, the decay characteristic is controlled by the cell temperature, driven by the increasing resistance of the current collector and the enhanced kinetic and transport properties of the active material and electrolyte. Measurements indicate that the ac current distribution depends strongly on the frequency and the temperature. In this context, the challenges for electrochemical impedance spectroscopy as cell diagnostic technique for commercial cells are discussed.

  2. Sensitivity improvement of a sandwich-type ELISA immunosensor for the detection of different prostate-specific antigen isoforms in human serum using electrochemical impedance spectroscopy and an ordered and hierarchically organized interfacial supramolecular architecture.

    PubMed

    Gutiérrez-Zúñiga, Gabriela Guadalupe; Hernández-López, José Luis

    2016-01-01

    A gold millielectrode (GME) functionalized with a mixed (16-MHA + EG3SH) self-assembled monolayer (SAM) was used to fabricate an indirect enzyme-linked immunosorbent assay (ELISA) immunosensor for the sensitive detection of prostate-specific antigen (PSA), a prostate cancer (PCa) biomarker, in human serum samples. To address and minimize the issue of non-specific protein adsorption, an organic matrix (amine-PEG3-biotin/avidin) was assembled on the previously functionalized electrode surface to build up an ordered and hierarchically organized interfacial supramolecular architecture: Au/16-MHA/EG3SH/amine-PEG3-biotin/avidin. The electrode was then exposed to serum samples at different concentrations of a sandwich-type immunocomplex molecule ((Btn)Ab-AgPSA-(HRP)Ab), and its interfacial properties were characterized using electrochemical impedance spectroscopy (EIS). Calibration curves for polarization resistance (RP) and capacitance (1/C) vs. total and free PSA concentrations were obtained and their analytical quality parameters were determined. This approach was compared with results obtained from a commercially available ELISA immunosensor. The results obtained in this work showed that the proposed immunosensor can be successfully applied to analyze serum samples of patients representative of the Mexican population.

  3. Sensitivity improvement of a sandwich-type ELISA immunosensor for the detection of different prostate-specific antigen isoforms in human serum using electrochemical impedance spectroscopy and an ordered and hierarchically organized interfacial supramolecular architecture.

    PubMed

    Gutiérrez-Zúñiga, Gabriela Guadalupe; Hernández-López, José Luis

    2016-01-01

    A gold millielectrode (GME) functionalized with a mixed (16-MHA + EG3SH) self-assembled monolayer (SAM) was used to fabricate an indirect enzyme-linked immunosorbent assay (ELISA) immunosensor for the sensitive detection of prostate-specific antigen (PSA), a prostate cancer (PCa) biomarker, in human serum samples. To address and minimize the issue of non-specific protein adsorption, an organic matrix (amine-PEG3-biotin/avidin) was assembled on the previously functionalized electrode surface to build up an ordered and hierarchically organized interfacial supramolecular architecture: Au/16-MHA/EG3SH/amine-PEG3-biotin/avidin. The electrode was then exposed to serum samples at different concentrations of a sandwich-type immunocomplex molecule ((Btn)Ab-AgPSA-(HRP)Ab), and its interfacial properties were characterized using electrochemical impedance spectroscopy (EIS). Calibration curves for polarization resistance (RP) and capacitance (1/C) vs. total and free PSA concentrations were obtained and their analytical quality parameters were determined. This approach was compared with results obtained from a commercially available ELISA immunosensor. The results obtained in this work showed that the proposed immunosensor can be successfully applied to analyze serum samples of patients representative of the Mexican population. PMID:26703258

  4. Impedance Noise Identification for State-of-Health Prognostics

    SciTech Connect

    Jon P. Christophersen; Chester G. Motloch; John L. Morrison; Ian B. Donnellan; William H. Morrison

    2008-07-01

    Impedance Noise Identification is an in-situ method of measuring battery impedance as a function of frequency using a random small signal noise excitation source. Through a series of auto- and cross-correlations and Fast Fourier Transforms, the battery complex impedance as a function of frequency can be determined. The results are similar to those measured under a lab-scale electrochemical impedance spectroscopy measurement. The lab-scale measurements have been shown to correlate well with resistance and power data that are typically used to ascertain the remaining life of a battery. To this end, the Impedance Noise Identification system is designed to acquire the same type of data as an on-board tool. A prototype system is now under development, and results are being compared to standardized measurement techniques such as electrochemical impedance spectroscopy. A brief description of the Impedance Noise Identification hardware system and representative test results are presented.

  5. A multiplexed three-dimensional paper-based electrochemical impedance device for simultaneous label-free affinity sensing of total and glycated haemoglobin: The potential of using a specific single-frequency value for analysis.

    PubMed

    Boonyasit, Yuwadee; Chailapakul, Orawon; Laiwattanapaisal, Wanida

    2016-09-14

    A novel three-dimensional paper-based electrochemical impedance device (3D-PEID) is first introduced for measuring multiple diabetes markers. Herein, a simple 3D-PEID composed of a dual screen-printed electrode on wax-patterned paper coupled with a multilayer of magnetic paper was fabricated for label-free electrochemical detection. The results clearly demonstrated in a step-wise manner that the haptoglobin (Hp)-modified and 3-aminophenylboronic acid (APBA)-modified eggshell membranes (ESMs) were highly responsive to a clinically relevant range of total (0.5-20 g dL(-1); r(2) = 0.989) and glycated haemoglobin (HbA1c) (2.3%-14%; r(2) = 0.997) levels with detection limits (S/N = 3) of 0.08 g dL(-1) and 0.21%, respectively. The optimal binding frequencies of total haemoglobin and HbA1c to their specific recognition elements were 5.18 Hz and 9.99 Hz, respectively. The within-run coefficients of variation (CV) were 1.84%, 2.18%, 1.72%, and 2.01%, whereas the run-to-run CVs were 2.11%, 2.41%, 2.08%, and 2.21%, when assaying two levels of haemoglobin and HbA1c, respectively. The CVs for the haemoglobin and HbA1c levels measured on ten independently fabricated paper-based sheets were 1.96% and 2.10%, respectively. These results demonstrated that our proposed system achieved excellent precision for the simultaneous detection of total haemoglobin and HbA1c, with an acceptable reproducibility of fabrication. The long-term stability of the Hp-modified eggshell membrane (ESM) was 98.84% over a shelf-life of 4 weeks, enabling the possibility of storage or long-distance transport to remote regions, particularly in resource-limited settings; however, for the APBA-modified ESM, the stability was 92.35% over a one-week period. Compared with the commercial automated method, the results demonstrated excellent agreement between the techniques (p-value < 0.05), thus permitting the potential application of 3D-PEID for the monitoring of the glycaemic status in diabetic

  6. A multiplexed three-dimensional paper-based electrochemical impedance device for simultaneous label-free affinity sensing of total and glycated haemoglobin: The potential of using a specific single-frequency value for analysis.

    PubMed

    Boonyasit, Yuwadee; Chailapakul, Orawon; Laiwattanapaisal, Wanida

    2016-09-14

    A novel three-dimensional paper-based electrochemical impedance device (3D-PEID) is first introduced for measuring multiple diabetes markers. Herein, a simple 3D-PEID composed of a dual screen-printed electrode on wax-patterned paper coupled with a multilayer of magnetic paper was fabricated for label-free electrochemical detection. The results clearly demonstrated in a step-wise manner that the haptoglobin (Hp)-modified and 3-aminophenylboronic acid (APBA)-modified eggshell membranes (ESMs) were highly responsive to a clinically relevant range of total (0.5-20 g dL(-1); r(2) = 0.989) and glycated haemoglobin (HbA1c) (2.3%-14%; r(2) = 0.997) levels with detection limits (S/N = 3) of 0.08 g dL(-1) and 0.21%, respectively. The optimal binding frequencies of total haemoglobin and HbA1c to their specific recognition elements were 5.18 Hz and 9.99 Hz, respectively. The within-run coefficients of variation (CV) were 1.84%, 2.18%, 1.72%, and 2.01%, whereas the run-to-run CVs were 2.11%, 2.41%, 2.08%, and 2.21%, when assaying two levels of haemoglobin and HbA1c, respectively. The CVs for the haemoglobin and HbA1c levels measured on ten independently fabricated paper-based sheets were 1.96% and 2.10%, respectively. These results demonstrated that our proposed system achieved excellent precision for the simultaneous detection of total haemoglobin and HbA1c, with an acceptable reproducibility of fabrication. The long-term stability of the Hp-modified eggshell membrane (ESM) was 98.84% over a shelf-life of 4 weeks, enabling the possibility of storage or long-distance transport to remote regions, particularly in resource-limited settings; however, for the APBA-modified ESM, the stability was 92.35% over a one-week period. Compared with the commercial automated method, the results demonstrated excellent agreement between the techniques (p-value < 0.05), thus permitting the potential application of 3D-PEID for the monitoring of the glycaemic status in diabetic

  7. Effect of nanostructured graphene oxide on electrochemical activity of its composite with polyaniline titanium dioxide

    NASA Astrophysics Data System (ADS)

    Binh Phan, Thi; Thanh Luong, Thi; Mai, Thi Xuan; Thanh Thuy Mai, Thi; Tot Pham, Thi

    2016-03-01

    Graphene oxide (GO) significantly affects the electrochemical activity of its composite with polyanline titanium dioxide (TiO2). In this work various composites with different GO contents have been successfully synthesized by chemical method to compare not only their material properties but also electrochemical characteristics with each other. The results of an electrochemical impedance study showed that their electrochemical property has been improved due to the presence of GO in a composite matrix. The galvanodynamic polarization explained that among them the composite with GO/Ani ratio in the range of 1-14 exhibits a better performance compared to the other due to yielding a higher current desity (280 μA cm-2). The TEM and SEM images which presented the fibres of a composite bundle with the presence of PANi and TiO2 were examined by IR-spectra and x-ray diffraction, respectively.

  8. Opto-electrochemical spectroscopy of metals in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Habib, K.

    2016-03-01

    In the present investigation, holographic interferometry was utilized for the first time to determine the rate change of the electrical resistance of aluminium samples during the initial stage of anodisation processes in aqueous solution. In fact, because the resistance values in this investigation were obtained by holographic interferometry, electromagnetic method rather than electronic method, the abrupt rate change of the resistance was called electrical resistance-emission spectroscopy. The anodisation process of the aluminium samples was carried out by electrochemical impedance spectroscopy (EIS) in different sulphuric acid concentrations (1.0%-2.5% H2SO4) at room temperature. In the meantime, the real time holographic interferometry was used to determine the difference between the electrical resistance of two subsequent values, dR, as a function of the elapsed time of the EIS experiment for the aluminium samples in 1.0%, 1.5%, 2.0%, and 2.5% H2SO4 solutions. The electrical resistance-emission spectra of the present investigation represent a detailed picture of not only the rate change of the electrical resistance throughout the anodisation processes but also the spectra represent the rate change of the growth of the oxide films on the aluminium samples in different solutions. As a result, a new spectrometer was developed based on the combination of the holographic interferometry and electrochemical impedance spectroscopy for studying in situ the electrochemical behavior of metals in aqueous solutions.

  9. Rapid and molecular selective electrochemical sensing of phthalates in aqueous solution.

    PubMed

    Zia, Asif I; Mukhopadhyay, Subhas Chandra; Yu, Pak-Lam; Al-Bahadly, I H; Gooneratne, Chinthaka P; Kosel, J Rgen

    2015-05-15

    Reported research work presents real time non-invasive detection of phthalates in spiked aqueous samples by employing electrochemical impedance spectroscopy (EIS) technique incorporating a novel interdigital capacitive sensor with multiple sensing thin film gold micro-electrodes fabricated on native silicon dioxide layer grown on semiconducting single crystal silicon wafer. The sensing surface was functionalized by a self-assembled monolayer of 3-aminopropyltrietoxysilane (APTES) with embedded molecular imprinted polymer (MIP) to introduce selectivity for the di(2-ethylhexyl) phthalate (DEHP) molecule. Various concentrations (1-100 ppm) of DEHP in deionized MilliQ water were tested using the functionalized sensing surface to capture the analyte. Frequency response analyzer (FRA) algorithm was used to obtain impedance spectra so as to determine sample conductance and capacitance for evaluation of phthalate concentration in the sample solution. Spectrum analysis algorithm interpreted the experimentally obtained impedance spectra by applying complex nonlinear least square (CNLS) curve fitting in order to obtain electrochemical equivalent circuit and corresponding circuit parameters describing the kinetics of the electrochemical cell. Principal component analysis was applied to deduce the effects of surface immobilized molecular imprinted polymer layer on the evaluated circuit parameters and its electrical response. The results obtained by the testing system were validated using commercially available high performance liquid chromatography diode array detector system. PMID:25218198

  10. Equivalent Circuits For AC-Impedance Analysis Of Corrosion

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1992-01-01

    Report presents investigation of equivalent circuits for ac-impedance analysis of corrosion. Impedance between specimen and electrolyte measured as function of frequency. Data used to characterize corrosion electrochemical system in terms of equivalent circuit. Eleven resistor/capacitor equivalent-circuit models were analyzed.

  11. ADVANCES IN IMPEDANCE THEORY

    SciTech Connect

    Stupakov, G.; /SLAC

    2009-06-05

    We review recent progress in the following areas of the impedance theory: calculation of impedance of tapers and small angle collimators; optical approximation and parabolic equation for the high-frequency impedance; impedance due to resistive inserts in a perfectly conducting pipe.

  12. Effect of low-temperature conditions on passive layer growth in Li intercalation materials: In situ impedance study

    SciTech Connect

    Barsoukov, E.; Kim, J.H.; Kim, J.H.; Yoon, C.O.; Lee, H.

    1998-08-01

    Electrochemical impedance spectroscopy has been applied to investigate the formation of insulating layers at the surfaces of microscopic particles of mesocarbon microbeads (MCMB), graphite, and hard carbon during the first Li-intercalation into these materials at ambient temperature as well as at {minus}20 C. Investigations were carried out in a three-electrode sandwich cell, designed for impedance measurements in the frequency range 64 kHz to 5 mHz. The impedance spectra, obtained in the potential range 1.5 and 0.02 V during the first charge, were analyzed by complex nonlinear least square fits. A new model, taking into account the porous structure of the intercalation material, electrochemical processes at the interface, as well as spherical diffusion of Li ions toward the centers of the particles, has been used for this analysis. The first intercalation at {minus}20 C results in formation of an insulating layer, which is about 90 times thinner than in the room-temperature case, as concluded from an analysis of experimental results. The irreversible capacity loss, which is 1.3 times larger at {minus}20 C that at room temperature, is ascribed to the formation of a porous precipitate of electrolyte decomposition products on the particle surface. Additional Li intercalation at room temperature results in an irreversible capacity loss of 26% from the initial value, and formation of a composite layer, including low-temperature and room-temperature deposited components.

  13. UNIVERSAL AUTO-CALIBRATION FOR A RAPID BATTERY IMPEDANCE SPECTRUM MEASUREMENT DEVICE

    SciTech Connect

    Jon P. Christophersen; John L. Morrison; William H. Morrison

    2014-03-01

    Electrochemical impedance spectroscopy has been shown to be a valuable tool for diagnostics and prognostics of energy storage devices such as batteries and ultra-capacitors. Although measurements have been typically confined to laboratory environments, rapid impedance spectrum measurement techniques have been developed for on-line, embedded applications as well. The prototype hardware for the rapid technique has been validated using lithium-ion batteries, but issues with calibration had also been identified. A new, universal automatic calibration technique was developed to address the identified issues while also enabling a more simplified approach. A single, broad-frequency range is used to calibrate the system and then scaled to the actual range and conditions used when measuring a device under test. The range used for calibration must be broad relative to the expected measurement conditions for the scaling to be successful. Validation studies were performed by comparing the universal calibration approach with data acquired from targeted calibration ranges based on the expected range of performance for the device under test. First, a mid-level shunt range was used for calibration and used to measure devices with lower and higher impedance. Next, a high excitation current level was used for calibration, followed by measurements using lower currents. Finally, calibration was performed over a wide frequency range and used to measure test articles with a lower set of frequencies. In all cases, the universal calibration approach compared very well with results acquired following a targeted calibration. Additionally, the shunts used for the automated calibration technique were successfully characterized such that the rapid impedance measurements compare very well with laboratory-scale measurements. These data indicate that the universal approach can be successfully used for onboard rapid impedance spectra measurements for a broad set of test devices and range of

  14. Characterization of protein-immobilized polystyrene nanoparticles using impedance spectroscopy.

    PubMed

    Park, Soo-In; Lee, Sang-Yup

    2014-10-01

    A novel approach for characterization of non-conductive protein-immobilized nanoparticles using AC impedance spectroscopy combined with conductive atomic force microscopy was examined. As AC impedance spectroscopy can provide information on diverse electrical properties such as capacitance and inductance, it is applicable to the characterization of non-conductive substances. Several non-conductive protein-immobilized polystyrene nanoparticles were analyzed using AC impedance spectroscopy, and their impedance spectra were used as markers for nanoparticle identification. Analyses of impedance signals using an electrical circuit model established that the capacitance and inductance of each nanoparticle changed with the adsorbed protein and that impedance spectral differences were characteristic properties of the proteins. From this study, AC impedance spectroscopy was shown to be a useful tool for characterization of non-conductive nanoparticles and is expected to be applicable to the development of sensors for nanomaterials. PMID:25942903

  15. Zinc oxide nanostructures for electrochemical cortisol biosensing

    NASA Astrophysics Data System (ADS)

    Vabbina, Phani Kiran; Kaushik, Ajeet; Tracy, Kathryn; Bhansali, Shekhar; Pala, Nezih

    2014-05-01

    In this paper, we report on fabrication of a label free, highly sensitive and selective electrochemical cortisol immunosensors using one dimensional (1D) ZnO nanorods (ZnO-NRs) and two dimensional nanoflakes (ZnO-NFs) as immobilizing matrix. The synthesized ZnO nanostructures (NSs) were characterized using scanning electron microscopy (SEM), selective area diffraction (SAED) and photoluminescence spectra (PL) which showed that both ZnO-NRs and ZnO-NFs are single crystalline and oriented in [0001] direction. Anti-cortisol antibody (Anti-Cab) are used as primary capture antibodies to detect cortisol using electrochemical impedance spectroscopy (EIS). The charge transfer resistance increases linearly with increase in cortisol concentration and exhibits a sensitivity of 3.078 KΩ. M-1 for ZnO-NRs and 540 Ω. M -1 for ZnO-NFs. The developed ZnO-NSs based immunosensor is capable of detecting cortisol at 1 pM. The observed sensing parameters are in physiological range. The developed sensors can be integrated with microfluidic system and miniaturized potentiostat to detect cortisol at point-of-care.

  16. Wakefields and coupling impedances

    NASA Astrophysics Data System (ADS)

    Kurennoy, Sergey

    1995-02-01

    After a short introduction of the wake potentials and coupling impedances, a few new results in impedance calculations are discussed. The first example is a new analytical method for calculating impedances of axisymmetric structures in the low frequency range, below the cutoff frequency of the vacuum chamber. The second example demonstrates that even very small discontinuities on a smooth waveguide can result in appearance of trapped modes, with frequencies slightly below the waveguide cutoff frequency. The high-frequency (above the cutoff) behavior of the coupling impedance of many small discontinuities is discussed in the third example.

  17. FTIR spectra and normal-mode analysis of a tetranuclear Manganese adamantane-like complex in two electrochemically prepared oxidation states: Relevance to the oxygen-evolving complex of Photosystem II

    SciTech Connect

    Visser, Hendrik; Dube, Christopher E.; Armstrong, William H.; Sauer, Kenneth; Yachandra, Vittal K.

    2002-03-19

    The IR spectra and normal-mode analysis of the adamantane-like compound [Mn4O6(bpea)4]n+ in two oxidation states, MnIV4 and MnIIIMnIV3, that are relevant to the oxygen-evolving complex of photosystem II are presented. Mn-O vibrational modes are identified with isotopic exchange, 16O->18O, of the mono-(mu)-oxo bridging atoms in the complex. IR spectra of the MnIIIMnIV3 species are obtained by electrochemical reduction of the MnIV4 species using a spectroelectrochemical cell, based on attenuated total reflection [Visser et al. Anal Chem 2001, 73, 4374-4378]. A novel method of subtraction is used to reduce background contributions from solvent and ligand modes, and the difference and double-difference spectra are used in identifying Mn-O bridging modes that are sensitive to oxidation state change. Two strong IR bands are observed for the MnIV4 species at 745 and 707 cm-1 and a weaker band at 510 cm-1. Upon reduction, the MnIIIMnIV3 species exhibits two strong IR bands at 745 and 680 cm-1, and several weaker bands are observed in the 510 - 425 cm-1 range. A normal mode analysis is performed to assign all the relevant bridging modes in the oxidized MnIV4 and reduced MnIIIMnIV3 species. The calculated force constants for the MnIV4 species are = 3.15 mdynAngstrom, = 0.55 mdyn/Angstrom, and = 0.20 mdyn/Angstrom. The force constants for the MnIIIMnIV3 species are = 3.10 mdyn/Angstrom, = 2.45 mdyn/Angstrom, = 0.40, and = 0.15 mdyn/Angstrom. This study provides insights for the identification of Mn-O modes in the IR spectra of the photosynthetic oxygen-evolving complex during its catalytic cycle.

  18. Interface electric properties of Si/organic hybrid solar cells using impedance spectroscopy analysis

    NASA Astrophysics Data System (ADS)

    Wang, Dan; Zhu, Juye; Ding, Li; Gao, Pingqi; Pan, Xiaoyin; Sheng, Jiang; Ye, Jichun

    2016-05-01

    The internal resistance and capacitance of Si/organic hybrid solar cells (Si-HSC) based on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) are investigated by electrochemical impedance spectroscopy (EIS). Three types of Nyquist plots in Si-HSC are observed firstly at different bias voltages, while suitable equivalent circuit models are established to evaluate the details of interface carrier transfer and recombination. In particular, the carrier transport property of the PEDOT:PSS film responds at a high frequency (6 × 104-1 × 106 Hz) in three-arc spectra. Therefore, EIS could help us deeply understand the electronic properties of Si-HSC for developing high performance devices.

  19. Method of estimating pulse response using an impedance spectrum

    DOEpatents

    Morrison, John L; Morrison, William H; Christophersen, Jon P; Motloch, Chester G

    2014-10-21

    Electrochemical Impedance Spectrum data are used to predict pulse performance of an energy storage device. The impedance spectrum may be obtained in-situ. A simulation waveform includes a pulse wave with a period greater than or equal to the lowest frequency used in the impedance measurement. Fourier series coefficients of the pulse train can be obtained. The number of harmonic constituents in the Fourier series are selected so as to appropriately resolve the response, but the maximum frequency should be less than or equal to the highest frequency used in the impedance measurement. Using a current pulse as an example, the Fourier coefficients of the pulse are multiplied by the impedance spectrum at corresponding frequencies to obtain Fourier coefficients of the voltage response to the desired pulse. The Fourier coefficients of the response are then summed and reassembled to obtain the overall time domain estimate of the voltage using the Fourier series analysis.

  20. AC impedance study of degradation of porous nickel battery electrodes

    NASA Technical Reports Server (NTRS)

    Lenhart, Stephen J.; Macdonald, D. D.; Pound, B. G.

    1987-01-01

    AC impedance spectra of porous nickel battery electrodes were recorded periodically during charge/discharge cycling in concentrated KOH solution at various temperatures. A transmission line model (TLM) was adopted to represent the impedance of the porous electrodes, and various model parameters were adjusted in a curve fitting routine to reproduce the experimental impedances. Degradation processes were deduced from changes in model parameters with electrode cycling time. In developing the TLM, impedance spectra of planar (nonporous) electrodes were used to represent the pore wall and backing plate interfacial impedances. These data were measured over a range of potentials and temperatures, and an equivalent circuit model was adopted to represent the planar electrode data. Cyclic voltammetry was used to study the characteristics of the oxygen evolution reaction on planar nickel electrodes during charging, since oxygen evolution can affect battery electrode charging efficiency and ultimately electrode cycle life if the overpotential for oxygen evolution is sufficiently low.

  1. Synthesis, spectroscopic and electrochemical performance of pasted β-nickel hydroxide electrode in alkaline electrolyte

    NASA Astrophysics Data System (ADS)

    Shruthi, B.; Bheema Raju, V.; Madhu, B. J.

    2015-01-01

    β-Nickel hydroxide (β-Ni(OH)2) was successfully synthesized using precipitation method. The structure and property of the β-Ni(OH)2 were characterized by X-ray diffraction (XRD), Fourier Transform infra-red (FT-IR), Raman spectra and thermal gravimetric-differential thermal analysis (TG-DTA). The results of the FTIR spectroscopy and TG-DTA studies indicate that the β-Ni(OH)2 contains water molecules and anions. The microstructural and composition studies have been performed using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) analysis. A pasted-type electrode is prepared using β-Ni(OH)2 powder as the active material on a nickel sheet as a current collector. Cyclic voltammetry (CV) and Electrochemical impedance spectroscopy (EIS) studies were performed to evaluate the electrochemical performance of the β-Ni(OH)2 electrode in 6 M KOH electrolyte. CV curves showed a pair of strong redox peaks as a result of the Faradaic redox reactions of β-Ni(OH)2. The proton diffusion coefficient (D) for the present β-Ni(OH)2 electrode material is found to be 1.44 × 10-12 cm2 s-1. Further, electrochemical impedance studies confirmed that the β-Ni(OH)2 electrode reaction processes are diffusion controlled.

  2. Growth, characterization and electrochemical properties of hierarchical CuO nanostructures for supercapacitor applications

    SciTech Connect

    Krishnamoorthy, Karthikeyan; Kim, Sang-Jae

    2013-09-01

    Graphical abstract: - Highlights: • Hierarchical CuO nanostructures were grown on Cu foil. • Monoclinic phase of CuO was grown. • XPS analysis revealed the presence of Cu(2p{sub 3/2}) and Cu(2p{sub 1/2}) on the surfaces. • Specific capacitance of 94 F/g was achieved for the CuO using cyclic voltammetry. • Impedance spectra show their pseudo capacitor applications. - Abstract: In this paper, we have investigated the electrochemical properties of hierarchical CuO nanostructures for pseudo-supercapacitor device applications. Moreover, the CuO nanostructures were formed on Cu substrate by in situ crystallization process. The as-grown CuO nanostructures were characterized using X-ray diffraction (XRD), Fourier transform-infra red spectroscopy (FT-IR), X-ray photoelectron spectroscopy and field emission-scanning electron microscope (FE-SEM) analysis. The XRD and FT-IR analysis confirm the formation of monoclinic CuO nanostructures. FE-SEM analysis shows the formation of leave like hierarchical structures of CuO with high uniformity and controlled density. The electrochemical analysis such as cyclic voltammetry and electrochemical impedance spectroscopy studies confirms the pseudo-capacitive behavior of the CuO nanostructures. Our experimental results suggest that CuO nanostructures will create promising applications of CuO toward pseudo-supercapacitors.

  3. Microfabricated AC impedance sensor

    DOEpatents

    Krulevitch, Peter; Ackler, Harold D.; Becker, Frederick; Boser, Bernhard E.; Eldredge, Adam B.; Fuller, Christopher K.; Gascoyne, Peter R. C.; Hamilton, Julie K.; Swierkowski, Stefan P.; Wang, Xiao-Bo

    2002-01-01

    A microfabricated instrument for detecting and identifying cells and other particles based on alternating current (AC) impedance measurements. The microfabricated AC impedance sensor includes two critical elements: 1) a microfluidic chip, preferably of glass substrates, having at least one microchannel therein and with electrodes patterned on both substrates, and 2) electrical circuits that connect to the electrodes on the microfluidic chip and detect signals associated with particles traveling down the microchannels. These circuits enable multiple AC impedance measurements of individual particles at high throughput rates with sufficient resolution to identify different particle and cell types as appropriate for environmental detection and clinical diagnostic applications.

  4. Electrochemical biosensors and nanobiosensors

    PubMed Central

    Hammond, Jules L.; Formisano, Nello; Carrara, Sandro; Tkac, Jan

    2016-01-01

    Electrochemical techniques have great promise for low-cost miniaturised easy-to-use portable devices for a wide range of applications–in particular, medical diagnosis and environmental monitoring. Different techniques can be used for biosensing, with amperometric devices taking the central role due to their widespread application in glucose monitoring. In fact, glucose biosensing takes an approximately 70% share of the biosensor market due to the need for diabetic patients to monitor their sugar levels several times a day, making it an appealing commercial market. In this review, we present the basic principles of electrochemical biosensor devices. A description of the different generations of glucose sensors is used to describe in some detail the operation of amperometric sensors and how the introduction of mediators can enhance the performance of the sensors. Electrochemical impedance spectroscopy is a technique being increasingly used in devices due to its ability to detect variations in resistance and capacitance upon binding events. Novel advances in electrochemical sensors, due to the use of nanomaterials such as carbon nanotubes and graphene, are presented as well as future directions that the field is taking. PMID:27365037

  5. Electrochemical biosensors and nanobiosensors.

    PubMed

    Hammond, Jules L; Formisano, Nello; Estrela, Pedro; Carrara, Sandro; Tkac, Jan

    2016-06-30

    Electrochemical techniques have great promise for low-cost miniaturised easy-to-use portable devices for a wide range of applications-in particular, medical diagnosis and environmental monitoring. Different techniques can be used for biosensing, with amperometric devices taking the central role due to their widespread application in glucose monitoring. In fact, glucose biosensing takes an approximately 70% share of the biosensor market due to the need for diabetic patients to monitor their sugar levels several times a day, making it an appealing commercial market.In this review, we present the basic principles of electrochemical biosensor devices. A description of the different generations of glucose sensors is used to describe in some detail the operation of amperometric sensors and how the introduction of mediators can enhance the performance of the sensors. Electrochemical impedance spectroscopy is a technique being increasingly used in devices due to its ability to detect variations in resistance and capacitance upon binding events. Novel advances in electrochemical sensors, due to the use of nanomaterials such as carbon nanotubes and graphene, are presented as well as future directions that the field is taking.

  6. Electrochemical biosensors and nanobiosensors.

    PubMed

    Hammond, Jules L; Formisano, Nello; Estrela, Pedro; Carrara, Sandro; Tkac, Jan

    2016-06-30

    Electrochemical techniques have great promise for low-cost miniaturised easy-to-use portable devices for a wide range of applications-in particular, medical diagnosis and environmental monitoring. Different techniques can be used for biosensing, with amperometric devices taking the central role due to their widespread application in glucose monitoring. In fact, glucose biosensing takes an approximately 70% share of the biosensor market due to the need for diabetic patients to monitor their sugar levels several times a day, making it an appealing commercial market.In this review, we present the basic principles of electrochemical biosensor devices. A description of the different generations of glucose sensors is used to describe in some detail the operation of amperometric sensors and how the introduction of mediators can enhance the performance of the sensors. Electrochemical impedance spectroscopy is a technique being increasingly used in devices due to its ability to detect variations in resistance and capacitance upon binding events. Novel advances in electrochemical sensors, due to the use of nanomaterials such as carbon nanotubes and graphene, are presented as well as future directions that the field is taking. PMID:27365037

  7. Electrochemical characterization of exfoliated graphene

    NASA Astrophysics Data System (ADS)

    Wasala, Milinda

    In this research we have investigated electrochemical and impedance characteristics of liquid phase exfoliated graphene electrodes. The exfoliated graphene electrodes were characterized in Electrochemical Double Layer Capacitors (EDLCs) geometry. Liquid phase exfoliation was performed on bulk graphite powder in order to produces few layer graphene flakes in large quantities. The exfoliation processes produced few layer graphene based materials with increased specific surface area and were found to have suitable electrochemical charge storage capacities. Electrochemical evaluation and performance of exfoliated graphene electrodes were tested with Cyclic Voltammetry, constant current charging discharging and Electrochemical Impedance Spectroscopy (EIS) at ambient conditions. We have used several electrolytes in order to evaluate the effect of electrolyte in charge storage capacities. Specific capacitance value of ~ 47F/g and ~ 262F/g was measured for aqueous and ionic electrolytes respectively. These values are at least an order of magnitude higher than those obtained by using EDLC's electrodes fabricated with the bulk graphite powder. In addition these EDLC electrodes give consistently good performance over a wide range of scan rates and voltage windows. These encouraging results illustrate the exciting potential for high performance electrical energy storage devices based on liquid phase exfoliated graphene electrodes.

  8. Vascular impedance analysis in human pulmonary circulation.

    PubMed

    Zhou, Qinlian; Gao, Jian; Huang, Wei; Yen, Michael

    2006-01-01

    Vascular impedance is determined by morphometry and mechanical properties of the vascular system, as well as the rheology of the blood. The interactions between all these factors are complicated and difficult to investigate solely by experiments. A mathematical model representing the entire system of human pulmonary circulation was constructed based on experimentally measured morphometric and elasticity data of the vessels. The model consisted of 16 orders of arteries and 15 orders of veins. The pulmonary arteries and veins were considered as elastic tubes and their impedance was calculated based on Womersley's theory. The flow in capillaries was described by the "sheet-flow" theory. The model yielded an impedance modulus spectrum that fell steeply from a high value at 0 Hz to a minimum around 1.5 Hz. At about 4 Hz, it reached a second high and then oscillated around a relatively small value at higher frequencies. Characteristic impedance was 27.9 dyn-sec/cm5. Influence of variations in vessel geometry and elasticity on impedance spectra was analyzed. Simulation results showed good agreement with experimental measurements. PMID:16817653

  9. Battery electrochemical nonlinear/dynamic SPICE model

    SciTech Connect

    Glass, M.C.

    1996-12-31

    An Integrated Battery Model has been produced which accurately represents DC nonlinear battery behavior together with transient dynamics. The NiH{sub 2} battery model begins with a given continuous-function electrochemical math model. The math model for the battery consists of the sum of two electrochemical process DC currents, which are a function of the battery terminal voltage. This paper describes procedures for realizing a voltage-source SPICE model which implements the electrochemical equations using behavioral sources. The model merges the essentially DC non-linear behavior of the electrochemical model, together with the empirical AC dynamic terminal impedance from measured data. Thus the model integrates the short-term linear impedance behavior, with the long-term nonlinear DC resistance behavior. The long-duration non-Faradaic capacitive behavior of the battery is represented by a time constant. Outputs of the model include battery voltage/current, state-of-charge, and charge-current efficiency.

  10. Electrochemical corrosion studies in low conductivity propellants

    NASA Technical Reports Server (NTRS)

    Blue, G. D.; Moran, C. M.; Distefano, S.

    1986-01-01

    The Jet Propulsion Laboratory is investigating the possibility of developing advanced electrochemical techniques as accelerated compatibility tests for metal/propellant systems which overcome the problems associated with the low conductivity of the liquid propellants (e.g., hydrazines, nitrogen tetroxide). Both DC techniques and AC electrochemical impedance spectroscopy are being evaluated. Progress has been made in experiments involving stainless steel with hydrazine and nitrogen tetroxide propellants.

  11. Statistical Properties of Antenna Impedance in an Electrically Large Cavity

    SciTech Connect

    WARNE,LARRY K.; LEE,KELVIN S.H.; HUDSON,H. GERALD; JOHNSON,WILLIAM A.; JORGENSON,ROY E.; STRONACH,STEPHEN L.

    2000-12-13

    This paper presents models and measurements of antenna input impedance in resonant cavities at high frequencies.The behavior of input impedance is useful in determining the transmission and reception characteristics of an antenna (as well as the transmission characteristics of certain apertures). Results are presented for both the case where the cavity is undermoded (modes with separate and discrete spectra) as well as the over moded case (modes with overlapping spectra). A modal series is constructed and analyzed to determine the impedance statistical distribution. Both electrically small as well as electrically longer resonant and wall mounted antennas are analyzed. Measurements in a large mode stirred chamber cavity are compared with calculations. Finally a method based on power arguments is given, yielding simple formulas for the impedance distribution.

  12. Validation of an Impedance Education Method in Flow

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Jones, Michael G.; Parrott, Tony L.

    2004-01-01

    This paper reports results of a research effort to validate a method for educing the normal incidence impedance of a locally reacting liner, located in a grazing incidence, nonprogressive acoustic wave environment with flow. The results presented in this paper test the ability of the method to reproduce the measured normal incidence impedance of a solid steel plate and two soft test liners in a uniform flow. The test liners are known to be locally react- ing and exhibit no measurable amplitude-dependent impedance nonlinearities or flow effects. Baseline impedance spectra for these liners were therefore established from measurements in a conventional normal incidence impedance tube. A key feature of the method is the expansion of the unknown impedance function as a piecewise continuous polynomial with undetermined coefficients. Stewart's adaptation of the Davidon-Fletcher-Powell optimization algorithm is used to educe the normal incidence impedance at each Mach number by optimizing an objective function. The method is shown to reproduce the measured normal incidence impedance spectrum for each of the test liners, thus validating its usefulness for determining the normal incidence impedance of test liners for a broad range of source frequencies and flow Mach numbers. Nomenclature

  13. Sulfur nanocrystals anchored graphene composite with highly improved electrochemical performance for lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Dong, Zimin; Wang, Xiuli; Zhao, Xuyang; Tu, Jiangping; Su, Qingmei; Du, Gaohui

    2014-12-01

    Two kinds of graphene-sulfur composites with 50 wt% of sulfur are prepared using hydrothermal method and thermal mixing, respectively. Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray Spectra mapping show that sulfur nanocrystals with size of ∼5 nm dispersed on graphene sheets homogeneously for the sample prepared by hydrothermal method (NanoS@G). While for the thermal mixed graphene-sulfur composite (S-G mixture), sulfur shows larger and uneven size (50-200 nm). X-ray Photoelectron Spectra (XPS) reveals the strong chemical bonding between the sulfur nanocrystals and graphene. Comparing with the S-G mixture, the NanoS@G composite shows highly improved electrochemical performance as cathode for lithium-sulfur (Li-S) battery. The NanoS@G composite delivers an initial capacity of 1400 mAh g-1 with the sulfur utilization of 83.7% at a current density of 335 mA g-1. The capacity keeps above 720 mAh g-1 over 100 cycles. The strong adherence of the sulfur nanocrystals on graphene immobilizes sulfur and polysulfides species and suppressed the "shuttle effect", resulting higher coulombic efficiency and better capacity retention. Electrochemical impedance also suggests that the strong bonding enabled rapid electronic/ionic transport and improved electrochemical kinetics, therefore good rate capability is obtained. These results demonstrate that the NanoS@G composite is a very promising candidate for high-performance Li-S batteries.

  14. Electrochemical immunosensor constructed using TiO2 nanotubes as immobilization scaffold and tracing tag.

    PubMed

    Huo, Xiaohe; Liu, Peipei; Zhu, Jie; Liu, Xiaoqiang; Ju, Huangxian

    2016-11-15

    A ternary TiO2 nanotube (TNT) composite and a signal antibody and horseradish peroxidase (HRP) functionalized TNT were designed as an electrode scaffold for immobilization of high quantity of capture antibody and a tracing tag for immunosensing, respectively. The polyaniline (PANI) was coated on TNTs by chemical oxidative polymerization, and gold nanoparticles were deposited on TNT-PANI with a routine chemical reduction. Various techniques including scanning electron microscopy, energy dispersive X-ray, transmission electron microscope, X-ray diffraction, Fourier transform infrared spectra, X-ray photoelectron spectra, impedance and electrochemical techniques were used to characterize the nano-materials. Using bis(sulfosuccinimidyl) suberate as amino cross-linker, the TNT composite could be further functionalized with protein G' for oriented immobilization of capture antibody on electrode surface. Upon sandwich-type immunoreaction, the signal antibody on the tracing tag was quantitatively captured on the surface to generate sensitive electrochemical response with a H2O2 mediated HRP catalytic reaction. With α-fetoprotein as an analyte model, the immunosensor showed a linear range of 0.01-350ngmL(-1) with a detection limit of 1.5pgmL(-1). The accelerated electron transfer by the ternary composite, oriented immobilization of capture antibody and high loading of HRP on the TNT tracing tag greatly amplified the electrochemical signal, and led to the superior performance of the immunoassay.

  15. Electrochemical immunosensor constructed using TiO2 nanotubes as immobilization scaffold and tracing tag.

    PubMed

    Huo, Xiaohe; Liu, Peipei; Zhu, Jie; Liu, Xiaoqiang; Ju, Huangxian

    2016-11-15

    A ternary TiO2 nanotube (TNT) composite and a signal antibody and horseradish peroxidase (HRP) functionalized TNT were designed as an electrode scaffold for immobilization of high quantity of capture antibody and a tracing tag for immunosensing, respectively. The polyaniline (PANI) was coated on TNTs by chemical oxidative polymerization, and gold nanoparticles were deposited on TNT-PANI with a routine chemical reduction. Various techniques including scanning electron microscopy, energy dispersive X-ray, transmission electron microscope, X-ray diffraction, Fourier transform infrared spectra, X-ray photoelectron spectra, impedance and electrochemical techniques were used to characterize the nano-materials. Using bis(sulfosuccinimidyl) suberate as amino cross-linker, the TNT composite could be further functionalized with protein G' for oriented immobilization of capture antibody on electrode surface. Upon sandwich-type immunoreaction, the signal antibody on the tracing tag was quantitatively captured on the surface to generate sensitive electrochemical response with a H2O2 mediated HRP catalytic reaction. With α-fetoprotein as an analyte model, the immunosensor showed a linear range of 0.01-350ngmL(-1) with a detection limit of 1.5pgmL(-1). The accelerated electron transfer by the ternary composite, oriented immobilization of capture antibody and high loading of HRP on the TNT tracing tag greatly amplified the electrochemical signal, and led to the superior performance of the immunoassay. PMID:27261885

  16. Testing and analyses of electrochemical cells using frequency response

    NASA Technical Reports Server (NTRS)

    Norton, O. A., Jr.; Thomas, D. L.

    1992-01-01

    The feasibility of electrochemical impedance spectroscopy as a method for analyzing battery state of health and state of charge was investigated. Porous silver, zinc, nickel, and cadmium electrodes as well as silver/zinc cells were studied. State of charge could be correlated with impedance data for all but the nickel electrodes. State of health was correlated with impedance data for two silver/zinc cells, one apparently good and the other dead. The experimental data were fit to equivalent circuit models.

  17. Impedance modelling of pipes

    NASA Astrophysics Data System (ADS)

    Creasy, M. Austin

    2016-03-01

    Impedance models of pipes can be used to estimate resonant frequencies of standing waves and model acoustic pressure of closed and open ended pipes. Modelling a pipe with impedance methods allows additional variations to the pipe to be included in the overall model as a system. Therefore an actuator can be attached and used to drive the system and the impedance model is able to include the dynamics of the actuator. Exciting the pipe system with a chirp signal allows resonant frequencies to be measured in both the time and frequency domain. The measurements in the time domain are beneficial for introducing undergraduates to resonances without needing an understanding of fast Fourier transforms. This paper also discusses resonant frequencies in open ended pipes and how numerous texts incorrectly approximate the resonant frequencies for this specific pipe system.

  18. Measurement of steel corrosion in concrete by impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Bartholomew, Paul; Sumsion, Eric; Guthrie, Spencer; Mazzeo, Brian

    2010-10-01

    Steel corrosion is a major problem for aging bridge structures. The steel corrodes as chloride ions migrate to the buried steel. The properties of the corroded steel-concrete interface change due to the corrosion and can be measured by impedance spectroscopy. A new spectrometer was built to measure concrete slabs. A fitting function to the impedance spectra was used to determine relevant parameters correlated with corrosion. Data from the laboratory and the field demonstrate the utility of this technique.

  19. Twelve years evolution of skin as seen by electrical impedance

    NASA Astrophysics Data System (ADS)

    Nicander, Ingrid; Emtestam, Lennart; Åberg, Peter; Ollmar, Stig

    2010-04-01

    Twelve years ago we reported an electrical impedance baseline study related to age, sex and body locations. The results showed significant differences between different anatomical locations and ages. In this study, the same participants were recalled to explore how the skin had evolved at the individual level over time. A total of 50 subjects, divided into an older and a younger group, were recalled for measurements of electrical impedance at eight anatomical locations. Readings were taken with an electrical impedance spectrometer. Information was extracted from the impedance spectra using indices based on magnitude and phase at two frequencies as in the earlier study. All included body sites had undergone alterations over time, and the size of the changes varied at different locations. The results also showed that changes in the younger group were different over time compared with the older group. In conclusion: Electrical impedance can be used to monitor skin evolution over time and baseline characteristics differ between various locations.

  20. Platinum nanoparticles functionalized nitrogen doped graphene platform for sensitive electrochemical glucose biosensing.

    PubMed

    Yang, Zhanjun; Cao, Yue; Li, Juan; Jian, Zhiqin; Zhang, Yongcai; Hu, Xiaoya

    2015-04-29

    In this work, we reported an efficient platinum nanoparticles functionalized nitrogen doped graphene (PtNPs@NG) nanocomposite for devising novel electrochemical glucose biosensor for the first time. The fabricated PtNPs@NG and biosensor were characterized using transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, static water contact angle, UV-vis spectroscopy, electrochemical impedance spectra and cyclic voltammetry, respectively. PtNPs@NG showed large surface area and excellent biocompatibility, and enhanced the direct electron transfer between enzyme molecules and electrode surface. The glucose oxidase (GOx) immobilized on PtNPs@NG nanocomposite retained its bioactivity, and exhibited a surface controlled, quasi-reversible and fast electron transfer process. The constructed glucose biosensor showed wide linear range from 0.005 to 1.1mM with high sensitivity of 20.31 mA M(-1) cm(-2). The detection limit was calculated to be 0.002 mM at signal-to-noise of 3, which showed 20-fold decrease in comparison with single NG-based electrochemical biosensor for glucose. The proposed glucose biosensor also demonstrated excellent selectivity, good reproducibility, acceptable stability, and could be successfully applied in the detection of glucose in serum samples at the applied potential of -0.33 V. This research provided a promising biosensing platform for the development of excellent electrochemical biosensors.

  1. Platinum nanoparticles functionalized nitrogen doped graphene platform for sensitive electrochemical glucose biosensing.

    PubMed

    Yang, Zhanjun; Cao, Yue; Li, Juan; Jian, Zhiqin; Zhang, Yongcai; Hu, Xiaoya

    2015-04-29

    In this work, we reported an efficient platinum nanoparticles functionalized nitrogen doped graphene (PtNPs@NG) nanocomposite for devising novel electrochemical glucose biosensor for the first time. The fabricated PtNPs@NG and biosensor were characterized using transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, static water contact angle, UV-vis spectroscopy, electrochemical impedance spectra and cyclic voltammetry, respectively. PtNPs@NG showed large surface area and excellent biocompatibility, and enhanced the direct electron transfer between enzyme molecules and electrode surface. The glucose oxidase (GOx) immobilized on PtNPs@NG nanocomposite retained its bioactivity, and exhibited a surface controlled, quasi-reversible and fast electron transfer process. The constructed glucose biosensor showed wide linear range from 0.005 to 1.1mM with high sensitivity of 20.31 mA M(-1) cm(-2). The detection limit was calculated to be 0.002 mM at signal-to-noise of 3, which showed 20-fold decrease in comparison with single NG-based electrochemical biosensor for glucose. The proposed glucose biosensor also demonstrated excellent selectivity, good reproducibility, acceptable stability, and could be successfully applied in the detection of glucose in serum samples at the applied potential of -0.33 V. This research provided a promising biosensing platform for the development of excellent electrochemical biosensors. PMID:25847159

  2. Thermodynamic and Kinetic Properties of the Electrochemical Cell.

    ERIC Educational Resources Information Center

    Smith, Donald E.

    1983-01-01

    Describes basic characteristics of the electrochemical cell. Also describes basic principles of electrochemical procedures and use of these concepts to explain use of the term "primarily" in discussions of methods primarily responsive to equilibrium cell potential, bulk ohmic resistance, and the Faradaic impedance. (JN)

  3. Superconducting active impedance converter

    DOEpatents

    Ginley, David S.; Hietala, Vincent M.; Martens, Jon S.

    1993-01-01

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductor allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology.

  4. Superconducting active impedance converter

    DOEpatents

    Ginley, D.S.; Hietala, V.M.; Martens, J.S.

    1993-11-16

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductors allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology. 12 figures.

  5. A Batteryless Sensor ASIC for Implantable Bio-Impedance Applications.

    PubMed

    Rodriguez, Saul; Ollmar, Stig; Waqar, Muhammad; Rusu, Ana

    2016-06-01

    The measurement of the biological tissue's electrical impedance is an active research field that has attracted a lot of attention during the last decades. Bio-impedances are closely related to a large variety of physiological conditions; therefore, they are useful for diagnosis and monitoring in many medical applications. Measuring living tissues, however, is a challenging task that poses countless technical and practical problems, in particular if the tissues need to be measured under the skin. This paper presents a bio-impedance sensor ASIC targeting a battery-free, miniature size, implantable device, which performs accurate 4-point complex impedance extraction in the frequency range from 2 kHz to 2 MHz. The ASIC is fabricated in 150 nm CMOS, has a size of 1.22 mm × 1.22 mm and consumes 165 μA from a 1.8 V power supply. The ASIC is embedded in a prototype which communicates with, and is powered by an external reader device through inductive coupling. The prototype is validated by measuring the impedances of different combinations of discrete components, measuring the electrochemical impedance of physiological solution, and performing ex vivo measurements on animal organs. The proposed ASIC is able to extract complex impedances with around 1 Ω resolution; therefore enabling accurate wireless tissue measurements. PMID:26372646

  6. High-precision impedance spectroscopy: a strategy demonstrated on PZT.

    PubMed

    Boukamp, Bernard A; Blank, Dave H A

    2011-12-01

    Electrochemical impedance spectroscopy (EIS) has been recognized as a very powerful tool for studying charge and mass transport and transfer in a wide variety of electrically or electrochemically active systems. Sophisticated modeling programs make it possible to extract parameters from the impedance data, thus contributing to a better understanding of the system or material properties. For an accurate analysis, a correct modeling function is needed; this is often in the form of an equivalent circuit. It is not always possible to define the modeling function from visual inspection of the impedance dispersion. Small contributions to the overall dispersion can be masked, and hence overlooked. In this publication, a strategy is presented for high-precision impedance data analysis. A Kramers-Kronig test is used for the essential data validation. An iterative process of partial analysis and subtraction assists in deconvoluting the impedance spectrum, yielding both a vi- able model function and a set of necessary starting values for the full complex nonlinear least squares (CNLS) modeling. The advantage and possibilities of this strategy are demonstrated with an analysis of the ionic and electronic conductivity of lead zirconate titanate (PZT) as functions of temperature and oxygen partial pressure. PMID:23443688

  7. Impedances of Tevatron separators

    SciTech Connect

    K. Y. Ng

    2003-05-28

    The impedances of the Tevatron separators are revisited and are found to be negligibly small in the few hundred MHz region, except for resonances at 22.5 MHz. The later are contributions from the power cables which may drive head-tail instabilities if the bunch is long enough.

  8. Longitudinal impedance of RHIC

    SciTech Connect

    Blaskiewicz, M.; Brennan, J. M.; Mernick, K.

    2015-05-03

    The longitudinal impedance of the two RHIC rings has been measured using the effect of potential well distortion on longitudinal Schottky measurements. For the blue RHIC ring Im(Z/n) = 1.5±0.2Ω. For the yellow ring Im(Z/n) = 5.4±1Ω.

  9. Implantable Impedance Plethysmography

    PubMed Central

    Theodor, Michael; Ruh, Dominic; Ocker, Martin; Spether, Dominik; Förster, Katharina; Heilmann, Claudia; Beyersdorf, Friedhelm; Manoli, Yiannos; Zappe, Hans; Seifert, Andreas

    2014-01-01

    We demonstrate by theory, as well as by ex vivo and in vivo measurements that impedance plethysmography, applied extravascularly directly on large arteries, is a viable method for monitoring various cardiovascular parameters, such as blood pressure, with high accuracy. The sensor is designed as an implant to monitor cardiac events and arteriosclerotic progression over the long term. PMID:25123467

  10. Recycler short kicker beam impedance

    SciTech Connect

    Crisp, Jim; Fellenz, Brian; /Fermilab

    2009-07-01

    Measured longitudinal and calculated transverse beam impedance is presented for the short kicker magnets being installed in the Fermilab Recycler. Fermi drawing number ME-457159. The longitudinal impedance was measured with a stretched wire and the Panofsky equation was used to estimate the transverse impedance. The impedance of 3319 meters (the Recycler circumference) of stainless vacuum pipe is provided for comparison. Although measurements where done to 3GHz, impedance was negligible above 30MHz. The beam power lost to the kicker impedance is shown for a range of bunch lengths. The measurements are for one kicker assuming a rotation frequency of 90KHz. Seven of these kickers are being installed.

  11. Bioelectrical impedance analysis of bovine milk fat

    NASA Astrophysics Data System (ADS)

    Veiga, E. A.; Bertemes-Filho, P.

    2012-12-01

    Three samples of 250ml at home temperature of 20°C were obtained from whole, low fat and fat free bovine UHT milk. They were analysed by measuring both impedance spectra and dc conductivity in order to establish the relationship between samples related to fat content. An impedance measuring system was developed, which is based on digital oscilloscope, a current source and a FPGA. Data was measured by the oscilloscope in the frequency 1 kHz to 100 kHz. It was showed that there is approximately 7.9% difference in the conductivity between whole and low fat milk whereas 15.9% between low fat and free fat one. The change of fatness in the milk can be significantly sensed by both impedance spectra measurements and dc conductivity. This result might be useful for detecting fat content of milk in a very simple way and also may help the development of sensors for measuring milk quality, as for example the detection of mastitis.

  12. Use of impedance spectroscopy to investigate factors that influence the performance and durability of proton exchange membrane (PEM) fuel cells

    NASA Astrophysics Data System (ADS)

    Roy, Sunil K.

    Impedance spectroscopy provides the opportunity for in-situ identification and quantification of physical processes and has been used extensively to study the behavior of the fuel cell. However, a key question to be answered is whether the features seen in the impedance response are caused by an artifact or represent a physical process taking place in the system. The measurement model developed by our group can be used to identify the frequency ranges unaffected by bias errors associated with instrument artifacts and non-stationary behavior. Impedance measurements were performed with the 850C fuel-cell test station supplied by Scribner Associates and with a Gamry Instruments FC350 impedance analyzer coupled with a Dynaload electronic load. All electrochemical measurements were performed with a two-electrode cell in which the anode served as a pseudo-reference electrode. The experiments were conducted in galavanostatic mode for a frequency range of 0.001-3000 Hz with 10 mA peak-to-peak sinusoidal perturbation, and ten points were collected per frequency decade. Ultra pure hydrogen was used as the anode fuel, and compressed air was used as oxidant. The measurement model was used to show that low-frequency inductive loops were, in some cases, fully self consistent, and, therefore, the inductive loops could be attributed to processes occurring in the fuel cell. Then we developed first-principle models that incorporate processes that may be responsible for the inductive response seen at low frequencies. We found that side reactions producing hydrogen peroxide intermediates and reactions causing Pt deactivation could yield inductive loops. These side reactions and the intermediates can degrade fuel cell components such as membranes and electrodes, thereby reducing the lifetime the fuel cells. The hypothesized reaction involving of peroxide and PtO formation were supported by microstructural characterization. A more sensitive manner of using impedance spectroscopy to gain

  13. Impedance calculation for ferrite inserts

    SciTech Connect

    Breitzmann, S.C.; Lee, S.Y.; Ng, K.Y.; /Fermilab

    2005-01-01

    Passive ferrite inserts were used to compensate the space charge impedance in high intensity space charge dominated accelerators. They study the narrowband longitudinal impedance of these ferrite inserts. they find that the shunt impedance and the quality factor for ferrite inserts are inversely proportional to the imaginary part of the permeability of ferrite materials. They also provide a recipe for attaining a truly passive space charge impedance compensation and avoiding narrowband microwave instabilities.

  14. Impedance spectroscopy analysis of human odorant binding proteins immobilized on nanopore arrays for biochemical detection.

    PubMed

    Lu, Yanli; Zhang, Diming; Zhang, Qian; Huang, Yixuan; Luo, Senbiao; Yao, Yao; Li, Shuang; Liu, Qingjun

    2016-05-15

    Human odorant-binding proteins (hOBPs) not only can bind and transport odorants in the surrounding environment for sensing smells, but also play important roles in transmitting lots of biomolecules in different organs. Utilizing the properties of hOBPs, an electrochemical biosensor with nanopore array was developed to detect specific biomolecular ligands, such as aldehydes and fatty acids. The highly ordered nanopores of anodic aluminum oxide with diameter of 20-40 nm were fabricated with two-step oxidation. Through 2-carboxyethyl phosphonic acid, hOBPs were self-assembled on nanopores as the sensing membrane. With nanopore arrays, the impedance spectra showed quite different electron transfer processes in the frequency spectra, which could be characterized by the electron transfer resistance and electrical resistance of the porous membrane. Under stimulation of biomolecular ligands, series resistance of nanopores and hOBPs increased and showed a concentration-dependence feature, while the electron transfer resistance hardly changed. The nanopore based biosensor could sensitively detect biological ligands of benzaldehyde, docosahexaenoic acid, and lauric acid, which were closely related to or were potential biomarkers for cancers and other serious diseases. Equipped with hOBPs, the sensor exhibited promising potentials both in odorant and biomolecule detection for olfactory biosensing and in disease diagnosis and evaluation for biochemical detection. PMID:26710343

  15. Acoustic ground impedance meter

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J. (Inventor)

    1984-01-01

    A method and apparatus are presented for measuring the acoustic impedance of a surface in which the surface is used to enclose one end of the chamber of a Helmholz resonator. Acoustic waves are generated in the neck of the resonator by a piston driven by a variable speed motor through a cam assembly. The acoustic waves are measured in the chamber and the frequency of the generated acoustic waves is measured by an optical device. These measurements are used to compute the compliance and conductance of the chamber and surface combined. The same procedure is followed with a calibration plate having infinite acoustic impedance enclosing the chamber of the resonator to compute the compliance and conductance of the chamber alone. Then by subtracting, the compliance and conductance for the surface is obtained.

  16. Superconducting active impedance converter

    SciTech Connect

    Ginley, D.S.; Hietala, V.M.; Martens, J.S.

    1992-12-31

    This invention is comprised of a transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductor allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10--80 K temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology.

  17. Impedance Measurement Box

    ScienceCinema

    Christophersen, Jon

    2016-07-12

    Energy storage devices, primarily batteries, are now more important to consumers, industries and the military. With increasing technical complexity and higher user expectations, there is also a demand for highly accurate state-of-health battery assessment techniques. IMB incorporates patented, proprietary, and tested capabilities using control software and hardware that can be part of an embedded monitoring system. IMB directly measures the wideband impedance spectrum in seconds during battery operation with no significant impact on service life. It also can be applied to batteries prior to installation, confirming health before entering active service, as well as during regular maintenance. For more information about this project, visit http://www.inl.gov/rd100/2011/impedance-measurement-box/

  18. Impedance Measurement Box

    SciTech Connect

    Christophersen, Jon

    2011-01-01

    Energy storage devices, primarily batteries, are now more important to consumers, industries and the military. With increasing technical complexity and higher user expectations, there is also a demand for highly accurate state-of-health battery assessment techniques. IMB incorporates patented, proprietary, and tested capabilities using control software and hardware that can be part of an embedded monitoring system. IMB directly measures the wideband impedance spectrum in seconds during battery operation with no significant impact on service life. It also can be applied to batteries prior to installation, confirming health before entering active service, as well as during regular maintenance. For more information about this project, visit http://www.inl.gov/rd100/2011/impedance-measurement-box/

  19. Impedance Measurement Box

    SciTech Connect

    Morrison, William

    2014-11-20

    The IMB 50V software provides functionality for design of impedance measurement tests or sequences of tests, execution of these tests or sequences, processing measured responses and displaying and saving of the results. The software consists of a Graphical User Interface that allows configuration of measurement parameters and test sequencing, a core engine that controls test sequencing, execution of measurements, processing and storage of results and a hardware/software data acquisition interface with the IMB hardware system.

  20. Electrochemical behavior of a magnesium galvanic anode under ASTM test method G 97-89 conditions

    SciTech Connect

    Genesca, J.; Betancourt, L.; Rodriguez, C.

    1996-07-01

    The electrochemical behavior of a magnesium galvanic anode in an aerated 5 g/L calcium sulfate + 0.1 g/L magnesium hydroxide solution was investigated by measuring electrochemical impedance under the conditions of ASTM Test Method G 97-89. Impedance spectra showed the capacitance of a porous layer (C{sub po}) in the high-frequency region, the resistive component (R{sub po}) of the porous layer (R{sub po}) in the frequency range between 100 Hz and 1,000 Hz, and the resistance of charge transfer (R{sub t}) in the low-frequency region. R{sub po} and R{sub t} increased with time, whereas C{sub po} decreased with immersion time. Since the resistance of a film is proportional to its resistivity and thickness, an increase in R{sub po} was interpreted to mean passivation increased with immersion time. This increase in protection with time provided evidence for the existence of a protective layer over the magnesium anode surface. This layer was identified as Mg(OH){sub 2} using x-ray diffraction of corrosion products formed on the magnesium anode.

  1. Gynecologic electrical impedance tomograph

    NASA Astrophysics Data System (ADS)

    Korjenevsky, A.; Cherepenin, V.; Trokhanova, O.; Tuykin, T.

    2010-04-01

    Electrical impedance tomography extends to the new and new areas of the medical diagnostics: lungs, breast, prostate, etc. The feedback from the doctors who use our breast EIT diagnostic system has induced us to develop the 3D electrical impedance imaging device for diagnostics of the cervix of the uterus - gynecologic impedance tomograph (GIT). The device uses the same measuring approach as the breast imaging system: 2D flat array of the electrodes arranged on the probe with handle is placed against the body. Each of the 32 electrodes of the array is connected in turn to the current source while the rest electrodes acquire the potentials on the surface. The current flows through the electrode of the array and returns through the remote electrode placed on the patient's limb. The voltages are measured relative to another remote electrode. The 3D backprojection along equipotential surfaces is used to reconstruct conductivity distribution up to approximately 1 cm in depth. Small number of electrodes enables us to implement real time imaging with a few frames per sec. rate. The device is under initial testing and evaluation of the imaging capabilities and suitability of usage.

  2. Acoustic ground impedance meter

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1981-01-01

    A compact, portable instrument was developed to measure the acoustic impedance of the ground, or other surfaces, by direct pressure-volume velocity measurement. A Helmholz resonator, constructed of heavy-walled stainless steel but open at the bottom, is positioned over the surface having the unknown impedance. The sound source, a cam-driven piston of known stroke and thus known volume velocity, is located in the neck of the resonator. The cam speed is a variable up to a maximum 3600 rpm. The sound pressure at the test surface is measured by means of a microphone flush-mounted in the wall of the chamber. An optical monitor of the piston displacement permits measurement of the phase angle between the volume velocity and the sound pressure, from which the real and imaginary parts of the impedance can be evaluated. Measurements using a 5-lobed cam can be made up to 300 Hz. Detailed design criteria and results on a soil sample are presented.

  3. Enhanced Electrochemical Catalytic Efficiencies of Electrochemically Deposited Platinum Nanocubes as a Counter Electrode for Dye-Sensitized Solar Cells.

    PubMed

    Wei, Yu-Hsuan; Tsai, Ming-Chi; Ma, Chen-Chi M; Wu, Hsuan-Chung; Tseng, Fan-Gang; Tsai, Chuen-Horng; Hsieh, Chien-Kuo

    2015-12-01

    Platinum nanocubes (PtNCs) were deposited onto a fluorine-doped tin oxide glass by electrochemical deposition (ECD) method and utilized as a counter electrode (CE) for dye-sensitized solar cells (DSSCs). In this study, we controlled the growth of the crystalline plane to synthesize the single-crystal PtNCs at room temperature. The morphologies and crystalline nanostructure of the ECD PtNCs were examined by field emission scanning electron microscopy and high-resolution transmission electron microscopy. The surface roughness of the ECD PtNCs was examined by atomic force microscopy. The electrochemical properties of the ECD PtNCs were analyzed by cyclic voltammetry, Tafel polarization, and electrochemical impedance spectra. The Pt loading was examined by inductively coupled plasma mass spectrometry. The DSSCs were assembled via an N719 dye-sensitized titanium dioxide working electrode, an iodine-based electrolyte, and a CE. The photoelectric conversion efficiency (PCE) of the DSSCs with the ECD PtNC CE was examined under the illumination of AM 1.5 (100 mWcm(-2)). The PtNCs in this study presented a single-crystal nanostructure that can raise the electron mobility to let up the charge-transfer impedance and promote the charge-transfer rate. In this work, the electrocatalytic mass activity (MA) of the Pt film and PtNCs was 1.508 and 4.088 mAmg(-1), respectively, and the MA of PtNCs was 2.71 times than that of the Pt film. The DSSCs with the pulse-ECD PtNC CE showed a PCE of 6.48 %, which is higher than the cell using the conventional Pt film CE (a PCE of 6.18 %). In contrast to the conventional Pt film CE which is fabricated by electron beam evaporation method, our pulse-ECD PtNCs maximized the Pt catalytic properties as a CE in DSSCs. The results demonstrated that the PtNCs played a good catalyst for iodide/triiodide redox couple reactions in the DSSCs and provided a potential strategy for electrochemical catalytic applications.

  4. Enhanced Electrochemical Catalytic Efficiencies of Electrochemically Deposited Platinum Nanocubes as a Counter Electrode for Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Wei, Yu-Hsuan; Tsai, Ming-Chi; Ma, Chen-Chi M.; Wu, Hsuan-Chung; Tseng, Fan-Gang; Tsai, Chuen-Horng; Hsieh, Chien-Kuo

    2015-12-01

    Platinum nanocubes (PtNCs) were deposited onto a fluorine-doped tin oxide glass by electrochemical deposition (ECD) method and utilized as a counter electrode (CE) for dye-sensitized solar cells (DSSCs). In this study, we controlled the growth of the crystalline plane to synthesize the single-crystal PtNCs at room temperature. The morphologies and crystalline nanostructure of the ECD PtNCs were examined by field emission scanning electron microscopy and high-resolution transmission electron microscopy. The surface roughness of the ECD PtNCs was examined by atomic force microscopy. The electrochemical properties of the ECD PtNCs were analyzed by cyclic voltammetry, Tafel polarization, and electrochemical impedance spectra. The Pt loading was examined by inductively coupled plasma mass spectrometry. The DSSCs were assembled via an N719 dye-sensitized titanium dioxide working electrode, an iodine-based electrolyte, and a CE. The photoelectric conversion efficiency (PCE) of the DSSCs with the ECD PtNC CE was examined under the illumination of AM 1.5 (100 mWcm-2). The PtNCs in this study presented a single-crystal nanostructure that can raise the electron mobility to let up the charge-transfer impedance and promote the charge-transfer rate. In this work, the electrocatalytic mass activity (MA) of the Pt film and PtNCs was 1.508 and 4.088 mAmg-1, respectively, and the MA of PtNCs was 2.71 times than that of the Pt film. The DSSCs with the pulse-ECD PtNC CE showed a PCE of 6.48 %, which is higher than the cell using the conventional Pt film CE (a PCE of 6.18 %). In contrast to the conventional Pt film CE which is fabricated by electron beam evaporation method, our pulse-ECD PtNCs maximized the Pt catalytic properties as a CE in DSSCs. The results demonstrated that the PtNCs played a good catalyst for iodide/triiodide redox couple reactions in the DSSCs and provided a potential strategy for electrochemical catalytic applications.

  5. Enhanced Electrochemical Catalytic Efficiencies of Electrochemically Deposited Platinum Nanocubes as a Counter Electrode for Dye-Sensitized Solar Cells.

    PubMed

    Wei, Yu-Hsuan; Tsai, Ming-Chi; Ma, Chen-Chi M; Wu, Hsuan-Chung; Tseng, Fan-Gang; Tsai, Chuen-Horng; Hsieh, Chien-Kuo

    2015-12-01

    Platinum nanocubes (PtNCs) were deposited onto a fluorine-doped tin oxide glass by electrochemical deposition (ECD) method and utilized as a counter electrode (CE) for dye-sensitized solar cells (DSSCs). In this study, we controlled the growth of the crystalline plane to synthesize the single-crystal PtNCs at room temperature. The morphologies and crystalline nanostructure of the ECD PtNCs were examined by field emission scanning electron microscopy and high-resolution transmission electron microscopy. The surface roughness of the ECD PtNCs was examined by atomic force microscopy. The electrochemical properties of the ECD PtNCs were analyzed by cyclic voltammetry, Tafel polarization, and electrochemical impedance spectra. The Pt loading was examined by inductively coupled plasma mass spectrometry. The DSSCs were assembled via an N719 dye-sensitized titanium dioxide working electrode, an iodine-based electrolyte, and a CE. The photoelectric conversion efficiency (PCE) of the DSSCs with the ECD PtNC CE was examined under the illumination of AM 1.5 (100 mWcm(-2)). The PtNCs in this study presented a single-crystal nanostructure that can raise the electron mobility to let up the charge-transfer impedance and promote the charge-transfer rate. In this work, the electrocatalytic mass activity (MA) of the Pt film and PtNCs was 1.508 and 4.088 mAmg(-1), respectively, and the MA of PtNCs was 2.71 times than that of the Pt film. The DSSCs with the pulse-ECD PtNC CE showed a PCE of 6.48 %, which is higher than the cell using the conventional Pt film CE (a PCE of 6.18 %). In contrast to the conventional Pt film CE which is fabricated by electron beam evaporation method, our pulse-ECD PtNCs maximized the Pt catalytic properties as a CE in DSSCs. The results demonstrated that the PtNCs played a good catalyst for iodide/triiodide redox couple reactions in the DSSCs and provided a potential strategy for electrochemical catalytic applications. PMID:26625891

  6. Electrochemical Engineering

    ERIC Educational Resources Information Center

    Alkire, Richard

    1976-01-01

    Discusses an electrochemical engineering course that combines transport phenomena and basic physical chemistry. Lecture notes and homework problems are used instead of a textbook; an outline of lecture topics is presented. (MLH)

  7. Electrochemical Techniques

    SciTech Connect

    Chen, Gang; Lin, Yuehe

    2008-07-20

    Sensitive and selective detection techniques are of crucial importance for capillary electrophoresis (CE), microfluidic chips, and other microfluidic systems. Electrochemical detectors have attracted considerable interest for microfluidic systems with features that include high sensitivity, inherent miniaturization of both the detection and control instrumentation, low cost and power demands, and high compatibility with microfabrication technology. The commonly used electrochemical detectors can be classified into three general modes: conductimetry, potentiometry, and amperometry.

  8. Impedance group summary

    NASA Astrophysics Data System (ADS)

    Blaskiewicz, M.; Dooling, J.; Dyachkov, M.; Fedotov, A.; Gluckstern, R.; Hahn, H.; Huang, H.; Kurennoy, S.; Linnecar, T.; Shaposhnikova, E.; Stupakov, G.; Toyama, T.; Wang, J. G.; Weng, W. T.; Zhang, S. Y.; Zotter, B.

    1999-12-01

    The impedance working group was charged to reply to the following 8 questions relevant to the design of high-intensity proton machines such as the SNS or the FNAL driver. These questions were first discussed one by one in the whole group, then each ne of them assigned to one member to summarize. On the lst morning these contributions were publicly read, re-discussed and re-written where required—hence they are not the opinion of a particular person, but rather the averaged opinion of all members of the working group. (AIP)

  9. Facile route to covalently-jointed graphene/polyaniline composite and it's enhanced electrochemical performances for supercapacitors

    NASA Astrophysics Data System (ADS)

    Qiu, Hanxun; Han, Xuebin; Qiu, Feilong; Yang, Junhe

    2016-07-01

    A polyaniline/graphene composite with covalently-bond is synthesized by a novel approach. In this way, graphene oxide is functionalized firstly by introducing amine groups onto the surface with the reduction of graphene oxide in the process and then served as the anchor sites for the growth of polyaniline (PANI) via in-situ polymerization. The composite material is characterized by electron microscopy, the resonant Raman spectra, X-ray diffraction, transform infrared spectroscopy and X-ray photoelectron spectroscopy. The electrochemical properties of the composite are measured by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charging/discharging. With the functionalization process, the graphene/polyaniline composite electrode exhibits remarkably enhanced electrochemical performance with specific capacitance of 489 F g-1 at 0.5 A g-1, which is superior to those of its individual components. The outstanding electrochemical performance of the hybrid can be attributed to its covalently synergistic effect between graphene and polyaniline, suggesting promising potentials for supercapacitors.

  10. Electrochemical performance of a solid oxide fuel cell with an anode based on Cu-Ni/CeO2 for methane direct oxidation

    NASA Astrophysics Data System (ADS)

    Hornés, Aitor; Escudero, María J.; Daza, Loreto; Martínez-Arias, Arturo

    2014-03-01

    A CuNi-CeO2/YSZ/LSF solid oxide fuel cell has been fabricated and tested with respect to its electrochemical activity for direct oxidation of dry methane. The electrodes have been prepared by impregnation of corresponding porous YSZ layers, using reverse microemulsions as impregnating medium for the anode (constituted by Cu-Ni at 1:1 atomic ratio in combination with CeO2). On the basis of I-V electrochemical testing complemented by impedance spectroscopy (IS) measurements it is shown the ability of the SOFC for direct oxidation of methane in a rather stable way. Differences in the behavior as a function of operating temperature (1023-1073 K) are also revealed and examined on the basis of analysis of IS spectra.

  11. Quartz tuning fork based microwave impedance microscopy

    NASA Astrophysics Data System (ADS)

    Cui, Yong-Tao; Ma, Eric Yue; Shen, Zhi-Xun

    2016-06-01

    Microwave impedance microscopy (MIM), a near-field microwave scanning probe technique, has become a powerful tool to characterize local electrical responses in solid state samples. We present the design of a new type of MIM sensor based on quartz tuning fork and electrochemically etched thin metal wires. Due to a higher aspect ratio tip and integration with tuning fork, such design achieves comparable MIM performance and enables easy self-sensing topography feedback in situations where the conventional optical feedback mechanism is not available, thus is complementary to microfabricated shielded stripline-type probes. The new design also enables stable differential mode MIM detection and multiple-frequency MIM measurements with a single sensor.

  12. The impedance response of LaY2Ni9 negative electrode materials after activation

    NASA Astrophysics Data System (ADS)

    Boussami, S.; Khaldi, C.; Lamloumi, J.; Mathlouthi, H.; Takenouti, H.; Vivier, V.

    2013-10-01

    The electrochemical impedance responses of the LaY2Ni9 alloy electrode after activation at different states of charge (SOC), immersion time in 7 M KOH and room temperature was studied. Electrochemical impedance spectrum of the metal hydride electrode obtained was interpreted by an equivalent circuit modeling including the different electrochemical processes taking place on the interface between the MH electrode and the electrolyte. The results indicate that the electrochemical reaction activity of hydride electrode was markedly enhanced with increasing state of charge. The hydrogen diffuses in the bulk of the alloy and this process is not the limiting step for the hydrogen absorption. During a long immersion time a continuous nanocrystalline corrosion scale appears and the modification of passive film toward more organized structure is concluded.

  13. In vitro electrochemical corrosion and cell viability studies on nickel-free stainless steel orthopedic implants.

    PubMed

    Salahinejad, Erfan; Hadianfard, Mohammad Jafar; Macdonald, Digby Donald; Sharifi-Asl, Samin; Mozafari, Masoud; Walker, Kenneth J; Rad, Armin Tahmasbi; Madihally, Sundararajan V; Tayebi, Lobat

    2013-01-01

    The corrosion and cell viability behaviors of nanostructured, nickel-free stainless steel implants were studied and compared with AISI 316L. The electrochemical studies were conducted by potentiodynamic polarization and electrochemical impedance spectroscopic measurements in a simulated body fluid. Cytocompatibility was also evaluated by the adhesion behavior of adult human stem cells on the surface of the samples. According to the results, the electrochemical behavior is affected by a compromise among the specimen's structural characteristics, comprising composition, density, and grain size. The cell viability is interpreted by considering the results of the electrochemical impedance spectroscopic experiments.

  14. In Vitro Electrochemical Corrosion and Cell Viability Studies on Nickel-Free Stainless Steel Orthopedic Implants

    PubMed Central

    Salahinejad, Erfan; Hadianfard, Mohammad Jafar; Macdonald, Digby Donald; Sharifi-Asl, Samin; Mozafari, Masoud; Walker, Kenneth J.; Rad, Armin Tahmasbi; Madihally, Sundararajan V.; Tayebi, Lobat

    2013-01-01

    The corrosion and cell viability behaviors of nanostructured, nickel-free stainless steel implants were studied and compared with AISI 316L. The electrochemical studies were conducted by potentiodynamic polarization and electrochemical impedance spectroscopic measurements in a simulated body fluid. Cytocompatibility was also evaluated by the adhesion behavior of adult human stem cells on the surface of the samples. According to the results, the electrochemical behavior is affected by a compromise among the specimen's structural characteristics, comprising composition, density, and grain size. The cell viability is interpreted by considering the results of the electrochemical impedance spectroscopic experiments. PMID:23630603

  15. Frequency response of electrochemical cells

    NASA Technical Reports Server (NTRS)

    Thomas, Daniel L.

    1989-01-01

    Impedance concepts can be applied to the analysis of battery electrodes, yielding information about the structure of the electrode and the processes occurring in the electrode. Structural parameters such as the specific area (surface area per gram of electrode) can be estimated. Electrode variables such as surface overpotential, ohmic losses, and diffusion limitations may be studied. Nickel and cadmium electrodes were studied by measuring the ac impedance as a function of frequency, and the specific areas that were determined were well within the range of specific areas determined from BET measurements. Impedance spectra were measured for the nickel and cadmium electrodes, and for a 20 A-hr NiCd battery as functions of the state of charge. More work is needed to determine the feasibility of using frequency response as a nondestructive testing technique for batteries.

  16. Electrochemical sensing of membrane potential and enzyme function using gallium arsenide electrodes functionalized with supported membranes.

    PubMed

    Gassull, Daniel; Ulman, Abraham; Grunze, Michael; Tanaka, Motomu

    2008-05-01

    We deposit phospholipid monolayers on highly doped p-GaAs electrodes that are precoated with methyl-mercaptobiphenyl monolayers and operate such a biofunctional electrolyte-insulator-semiconductor (EIS) setup as an analogue of a metal-oxide-semiconductor setup. Electrochemical impedance spectra measured over a wide frequency range demonstrate that the presence of a lipid monolayer remarkably slows down the diffusion of ions so that the membrane-functionalized GaAs can be subjected to electrochemical investigations for more than 3 days with no sign of degradation. The biofunctional EIS setup enables us to translate changes in the surface charge density Q and bias potentials Ubias into the change in the interface capacitance Cp. Since Cp is governed by the capacitance of semiconductor space charge region CSC, the linear relationships obtained for 1/Cp2 vs Q and 1/Cp2 vs Ubias suggests that Cp can be used to detect the surface charges with a high sensitivity (1 charge per 18 nm2). Furthermore, the kinetics of phospholipids degradation by phospholipase A2 can also be monitored by a significant decrease in diffusion coefficients through the membrane by a factor of 104. Thus, the operation of GaAs membrane composites established here allows for electrochemical sensing of surface potential and barrier capability of biological membranes in a quantitative manner.

  17. Ionospheric effects to antenna impedance

    NASA Technical Reports Server (NTRS)

    Bethke, K. H.

    1986-01-01

    The reciprocity between high power satellite antennas and the surrounding plasma are examined. The relevant plasma states for antenna impedance calculations are presented and plasma models, and hydrodynamic and kinetic theory, are discussed. A theory from which a variation in antenna impedance with regard to the radiated power can be calculated for a frequency range well above the plasma resonance frequency is give. The theory can include photo and secondary emission effects in antenna impedance calculations.

  18. Optically stimulated differential impedance spectroscopy

    DOEpatents

    Maxey, Lonnie C; Parks, II, James E; Lewis, Sr., Samuel A; Partridge, Jr., William P

    2014-02-18

    Methods and apparatuses for evaluating a material are described. Embodiments typically involve use of an impedance measurement sensor to measure the impedance of a sample of the material under at least two different states of illumination. The states of illumination may include (a) substantially no optical stimulation, (b) substantial optical stimulation, (c) optical stimulation at a first wavelength of light, (d) optical stimulation at a second wavelength of light, (e) a first level of light intensity, and (f) a second level of light intensity. Typically a difference in impedance between the impedance of the sample at the two states of illumination is measured to determine a characteristic of the material.

  19. IMPEDANCE OF FINITE LENGTH RESISTOR

    SciTech Connect

    KRINSKY, S.; PODOBEDOV, B.; GLUCKSTERN, R.L.

    2005-05-15

    We determine the impedance of a cylindrical metal tube (resistor) of radius a, length g, and conductivity {sigma}, attached at each end to perfect conductors of semi-infinite length. Our main interest is in the asymptotic behavior of the impedance at high frequency, k >> 1/a. In the equilibrium regime, , the impedance per unit length is accurately described by the well-known result for an infinite length tube with conductivity {sigma}. In the transient regime, ka{sup 2} >> g, we derive analytic expressions for the impedance and wakefield.

  20. Electrochemical cell

    DOEpatents

    Redey, Laszlo I.; Vissers, Donald R.; Prakash, Jai

    1994-01-01

    An electrochemical cell having a bimodal positive electrode, a negative electrode of an alkali metal, and a compatible electrolyte including an alkali metal salt molten at the cell operating temperature. The positive electrode has an electrochemically active layer of at least one transition metal chloride at least partially present as a charging product, and additives of bromide and/or iodide and sulfur in the positive electrode or the electrolyte. Electrode volumetric capacity is in excess of 400 Ah/cm.sup.3 ; the cell can be 90% recharged in three hours and can operate at temperatures below 160.degree. C. There is also disclosed a method of reducing the operating temperature and improving the overall volumetric capacity of an electrochemical cell and for producing a positive electrode having a BET area greater than 6.times.10.sup.4 cm.sup.2 /g of Ni.

  1. Electrochemical cell

    DOEpatents

    Redey, Laszlo I.; Vissers, Donald R.; Prakash, Jai

    1996-01-01

    An electrochemical cell having a bimodal positive electrode, a negative electrode of an alkali metal, and a compatible electrolyte including an alkali metal salt molten at the cell operating temperature. The positive electrode has an electrochemically active layer of at least one transition metal chloride at least partially present as a charging product, and additives of bromide and/or iodide and sulfur in the positive electrode or the electrolyte. Electrode volumetric capacity is in excess of 400 Ah/cm.sup.3 ; the cell can be 90% recharged in three hours and can operate at temperatures below 160.degree. C. There is also disclosed a method of reducing the operating temperature and improving the overall volumetric capacity of an electrochemical cell and for producing a positive electrode having a BET area greater than 6.times.10.sup.4 cm.sup.2 /g of Ni.

  2. Electrochemical cell

    DOEpatents

    Redey, L.I.; Vissers, D.R.; Prakash, J.

    1996-07-16

    An electrochemical cell is described having a bimodal positive electrode, a negative electrode of an alkali metal, and a compatible electrolyte including an alkali metal salt molten at the cell operating temperature. The positive electrode has an electrochemically active layer of at least one transition metal chloride at least partially present as a charging product, and additives of bromide and/or iodide and sulfur in the positive electrode or the electrolyte. Electrode volumetric capacity is in excess of 400 Ah/cm{sup 3}; the cell can be 90% recharged in three hours and can operate at temperatures below 160 C. There is also disclosed a method of reducing the operating temperature and improving the overall volumetric capacity of an electrochemical cell and for producing a positive electrode having a BET area greater than 6{times}10{sup 4}cm{sup 2}/g of Ni. 6 figs.

  3. Electrochemical storage

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1984-01-01

    The source of the problem within the individual single cell which is related to the stochastic properties of cell populations and to the actual electrochemistry and chemistry taking place is described. The complications which arise in multicell batteries to show how different electrochemistries might alleviate or accentuate these problems is described. The concept of the electrochemical system is introduced to show how certain shortcomings of the single cell/battery string concept can be circumvented. Some of these electrochemical systems permit performance characteristics that are impossible by using conventional battery design philosophies. Projections for energy density and performance characteristics of the concepts are addressed.

  4. Electrochemical micromachining

    PubMed

    Schuster; Kirchner; Allongue; Ertl

    2000-07-01

    The application of ultrashort voltage pulses between a tool electrode and a workpiece in an electrochemical environment allows the three-dimensional machining of conducting materials with submicrometer precision. The principle is based on the finite time constant for double-layer charging, which varies linearly with the local separation between the electrodes. During nanosecond pulses, the electrochemical reactions are confined to electrode regions in close proximity. This technique was used for local etching of copper and silicon as well as for local copper deposition. PMID:10884233

  5. Monolithically compatible impedance measurement

    DOEpatents

    Ericson, Milton Nance; Holcomb, David Eugene

    2002-01-01

    A monolithic sensor includes a reference channel and at least one sensing channel. Each sensing channel has an oscillator and a counter driven by the oscillator. The reference channel and the at least one sensing channel being formed integrally with a substrate and intimately nested with one another on the substrate. Thus, the oscillator and the counter have matched component values and temperature coefficients. A frequency determining component of the sensing oscillator is formed integrally with the substrate and has an impedance parameter which varies with an environmental parameter to be measured by the sensor. A gating control is responsive to an output signal generated by the reference channel, for terminating counting in the at least one sensing channel at an output count, whereby the output count is indicative of the environmental parameter, and successive ones of the output counts are indicative of changes in the environmental parameter.

  6. Impedance spectroscopy of reduced monoclinic zirconia.

    PubMed

    Eder, Dominik; Kramer, Reinhard

    2006-10-14

    Zirconia doped with low-valent cations (e.g. Y3+ or Ca2+) exhibits an exceptionally high ionic conductivity, making them ideal candidates for various electrochemical applications including solid oxide fuel cells (SOFC) and oxygen sensors. It is nevertheless important to study the undoped, monoclinic ZrO2 as a model system to construct a comprehensive picture of the electrical behaviour. In pure zirconia a residual number of anion vacancies remains because of contaminants in the material as well as the thermodynamic disorder equilibrium, but electronic conduction may also contribute to the observed conductivity. Reduction of zirconia in hydrogen leads to the adsorption of hydrogen and to the formation of oxygen vacancies, with their concentration affected by various parameters (e.g. reduction temperature and time, surface area, and water vapour pressure). However, there is still little known about the reactivities of defect species and their effect on the ionic and electronic conduction. Thus, we applied electrochemical impedance spectroscopy to investigate the electric performance of pure monoclinic zirconia with different surface areas in both oxidizing and reducing atmospheres. A novel equivalent circuit model including parallel ionic and electronic conduction has previously been developed for titania and is used herein to decouple the conduction processes. The concentration of defects and their formation energies were measured using volumetric oxygen titration and temperature programmed oxidation/desorption.

  7. Electrochemical capacitor

    DOEpatents

    Anderson, Marc A.; Liu, Kuo -Chuan; Mohr, Charles M.

    1999-10-05

    An inexpensive porous metal oxide material having high surface area, good conductivity and high specific capacitance is advantageously used in an electrochemical capacitor. The materials are formed in a sol-gel process which affords control over the properties of the resultant metal oxide materials.

  8. Electrochemical Engineering.

    ERIC Educational Resources Information Center

    Alkire, Richard C.

    1983-01-01

    Discusses engineering ramifications of electrochemistry, focusing on current/potential distribution, evaluation of trade-offs between influences of different phenomena, use of dimensionless numbers to assist in scale-over to new operating conditions, and economics. Also provides examples of electrochemical engineering education content related to…

  9. Electrochemical construction

    DOEpatents

    Einstein, Harry; Grimes, Patrick G.

    1983-08-23

    An electrochemical cell construction features a novel co-extruded plastic electrode in an interleaved construction with a novel integral separator-spacer. Also featured is a leak and impact resistant construction for preventing the spill of corrosive materials in the event of rupture.

  10. Electrochemical device

    DOEpatents

    Grimes, Patrick G.; Einstein, Harry; Bellows, Richard J.

    1988-01-12

    A tunnel protected electrochemical device features channels fluidically communicating between manifold, tunnels and cells. The channels are designed to provide the most efficient use of auxiliary power. The channels have a greater hydraulic pressure drop and electrical resistance than the manifold. This will provide a design with the optimum auxiliary energy requirements.

  11. Impedance analysis of porous carbon electrodes to predict rate capability of electric double-layer capacitors

    NASA Astrophysics Data System (ADS)

    Yoo, Hyun Deog; Jang, Jong Hyun; Ryu, Ji Heon; Park, Yuwon; Oh, Seung M.

    2014-12-01

    Electrochemical impedance analysis is performed to predict the rate capability of two commercial activated carbon electrodes (RP20 and MSP20) for electric double-layer capacitor. To this end, ac impedance data are fitted with an equivalent circuit that comprises ohmic resistance and impedance of intra-particle pores. To characterize the latter, ionic accessibility into intra-particle pores is profiled by using the fitted impedance parameters, and the profiles are transformed into utilizable capacitance plots as a function of charge-discharge rate. The rate capability that is predicted from the impedance analysis is well-matched with that observed from a charge-discharge rate test. It is found that rate capability is determined by ionic accessibility as well as ohmic voltage drop. A lower value in ionic accessibility for MSP20 is attributed to smaller pore diameter, longer length, and higher degree of complexity in pore structure.

  12. Impedance Eduction in Sound Fields With Peripherally Varying Liners and Flow

    NASA Technical Reports Server (NTRS)

    Watson, W. R.; Jones, M. G.

    2015-01-01

    A two-dimensional impedance eduction theory is extended to three-dimensional sound fields and peripherally varying duct liners. The approach is to first measure the acoustic pressure field at a series of flush-mounted wall microphones located around the periphery of the flow duct. The numerical solution for the acoustic pressure field at these microphones is also obtained by solving the three-dimensional convected Helmholtz equation using the finite element method. A quadratic objective function based on the difference between the measured and finite element solution is constructed and the unknown impedance function is obtained by minimizing this objective function. Impedance spectra educed for two uniform-structure liners (a wire-mesh and a conventional liner) and a hard-soft-hard peripherally varying liner (for which the soft segment is that of the conventional liner) are presented. Results are presented at three mean flow Mach numbers and fourteen sound source frequencies. The impedance spectra of the uniform-structure liners are also computed using a two-dimensional impedance eduction theory. The primary conclusions of the study are: 1) when measured data is used with the uniform-structure liners, the three-dimensional theory reproduces the same impedance spectra as the two-dimensional theory except for frequencies corresponding to very low or very high liner attenuation; and 2) good agreement between the educed impedance spectra of the uniform structure conventional liner and the soft segment of the peripherally varying liner is obtained.

  13. Impedance in School Screening Programs.

    ERIC Educational Resources Information Center

    Robarts, John T.

    1985-01-01

    This paper examines the controversy over use of impedance screening in public schools to identify students with hearing problems, including otitis media, a common ear condition in infants and young children. It cites research that questions the value of pure tone screening as a single test and raises critics' objections to the use of impedance,…

  14. Ultra-wideband impedance sensor

    DOEpatents

    McEwan, T.E.

    1999-03-16

    The ultra-wideband impedance sensor (UWBZ sensor, or Z-sensor) is implemented in differential and single-ended configurations. The differential UWBZ sensor employs a sub-nanosecond impulse to determine the balance of an impedance bridge. The bridge is configured as a differential sample-and-hold circuit that has a reference impedance side and an unknown impedance side. The unknown impedance side includes a short transmission line whose impedance is a function of the near proximity of objects. The single-ended UWBZ sensor eliminates the reference side of the bridge and is formed of a sample and hold circuit having a transmission line whose impedance is a function of the near proximity of objects. The sensing range of the transmission line is bounded by the two-way travel time of the impulse, thereby eliminating spurious Doppler modes from large distant objects that would occur in a microwave CW impedance bridge. Thus, the UWBZ sensor is a range-gated proximity sensor. The Z-sensor senses the near proximity of various materials such as metal, plastic, wood, petroleum products, and living tissue. It is much like a capacitance sensor, yet it is impervious to moisture. One broad application area is the general replacement of magnetic sensors, particularly where nonferrous materials need to be sensed. Another broad application area is sensing full/empty levels in tanks, vats and silos, e.g., a full/empty switch in water or petroleum tanks. 2 figs.

  15. Ultra-wideband impedance sensor

    DOEpatents

    McEwan, Thomas E.

    1999-01-01

    The ultra-wideband impedance sensor (UWBZ sensor, or Z-sensor) is implemented in differential and single-ended configurations. The differential UWBZ sensor employs a sub-nanosecond impulse to determine the balance of an impedance bridge. The bridge is configured as a differential sample-and-hold circuit that has a reference impedance side and an unknown impedance side. The unknown impedance side includes a short transmission line whose impedance is a function of the near proximity of objects. The single-ended UWBZ sensor eliminates the reference side of the bridge and is formed of a sample and hold circuit having a transmission line whose impedance is a function of the near proximity of objects. The sensing range of the transmission line is bounded by the two-way travel time of the impulse, thereby eliminating spurious Doppler modes from large distant objects that would occur in a microwave CW impedance bridge. Thus, the UWBZ sensor is a range-gated proximity sensor. The Z-sensor senses the near proximity of various materials such as metal, plastic, wood, petroleum products, and living tissue. It is much like a capacitance sensor, yet it is impervious to moisture. One broad application area is the general replacement of magnetic sensors, particularly where nonferrous materials need to be sensed. Another broad application area is sensing full/empty levels in tanks, vats and silos, e.g., a full/empty switch in water or petroleum tanks.

  16. Applications of electrochemical techniques in mineral analysis.

    PubMed

    Niu, Yusheng; Sun, Fengyue; Xu, Yuanhong; Cong, Zhichao; Wang, Erkang

    2014-09-01

    This review, covering reports published in recent decade from 2004 to 2013, shows how electrochemical (EC) techniques such as voltammetry, electrochemical impedance spectroscopy, potentiometry, coulometry, etc., have made significant contributions in the analysis of minerals such as clay, sulfide, oxide, and oxysalt. It was discussed based on the classifications of both the types of the used EC techniques and kinds of the analyzed minerals. Furthermore, minerals as electrode modification materials for EC analysis have also been summarized. Accordingly, research vacancies and future development trends in these areas are discussed.

  17. Enhanced capacitance of composite TiO2 nanotube/boron-doped diamond electrodes studied by impedance spectroscopy.

    PubMed

    Siuzdak, K; Bogdanowicz, R; Sawczak, M; Sobaszek, M

    2015-01-14

    We report on novel composite nanostructures based on boron-doped diamond thin films grown on top of TiO2 nanotubes. The nanostructures made of BDD-modified titania nanotubes showed an increase in activity and performance when used as electrodes in electrochemical environments. The BDD thin films (∼200-500 nm) were deposited using microwave plasma assisted chemical vapor deposition (MW PA CVD) onto anodically fabricated TiO2 nanotube arrays. The influence of boron-doping level, methane admixture and growth time on the performance of the Ti/TiO2/BDD electrode was studied in detail. Scanning electron microscopy (SEM) was applied to investigate the surface morphology and grain size distribution. Moreover, the chemical composition of TiO2/BDD electrodes was investigated by means of micro-Raman spectroscopy. The composite electrodes TiO2/BDD are characterized by a significantly higher capacitive current compared to BDD films deposited directly onto a Ti substrate. The novel composite electrode of TiO2 nanotube arrays overgrown by boron-doped diamond (BDD) immersed in 0.1 M NaNO3 can deliver a specific capacitance of 2.10, 4.79, and 7.46 mF cm(-2) at a scan rate of 10 mV s(-1) for a [B]/[C] ratio of 2k, 5k and 10k, respectively. The substantial improvement of electrochemical performance and the excellent rate capability could be attributed to the synergistic effect of TiO2 treatment in CH4 : H2 plasma and the high electrical conductivity of BDD layers. The analysis of electrochemical impedance spectra using an electric equivalent circuit allowed us to determine the surface area on the basis of the value of constant phase element.

  18. Enhanced capacitance of composite TiO2 nanotube/boron-doped diamond electrodes studied by impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Siuzdak, K.; Bogdanowicz, R.; Sawczak, M.; Sobaszek, M.

    2014-12-01

    We report on novel composite nanostructures based on boron-doped diamond thin films grown on top of TiO2 nanotubes. The nanostructures made of BDD-modified titania nanotubes showed an increase in activity and performance when used as electrodes in electrochemical environments. The BDD thin films (~200-500 nm) were deposited using microwave plasma assisted chemical vapor deposition (MW PA CVD) onto anodically fabricated TiO2 nanotube arrays. The influence of boron-doping level, methane admixture and growth time on the performance of the Ti/TiO2/BDD electrode was studied in detail. Scanning electron microscopy (SEM) was applied to investigate the surface morphology and grain size distribution. Moreover, the chemical composition of TiO2/BDD electrodes was investigated by means of micro-Raman spectroscopy. The composite electrodes TiO2/BDD are characterized by a significantly higher capacitive current compared to BDD films deposited directly onto a Ti substrate. The novel composite electrode of TiO2 nanotube arrays overgrown by boron-doped diamond (BDD) immersed in 0.1 M NaNO3 can deliver a specific capacitance of 2.10, 4.79, and 7.46 mF cm-2 at a scan rate of 10 mV s-1 for a [B]/[C] ratio of 2k, 5k and 10k, respectively. The substantial improvement of electrochemical performance and the excellent rate capability could be attributed to the synergistic effect of TiO2 treatment in CH4 : H2 plasma and the high electrical conductivity of BDD layers. The analysis of electrochemical impedance spectra using an electric equivalent circuit allowed us to determine the surface area on the basis of the value of constant phase element.

  19. Impedance-estimation methods, modeling methods, articles of manufacture, impedance-modeling devices, and estimated-impedance monitoring systems

    DOEpatents

    Richardson, John G.

    2009-11-17

    An impedance estimation method includes measuring three or more impedances of an object having a periphery using three or more probes coupled to the periphery. The three or more impedance measurements are made at a first frequency. Three or more additional impedance measurements of the object are made using the three or more probes. The three or more additional impedance measurements are made at a second frequency different from the first frequency. An impedance of the object at a point within the periphery is estimated based on the impedance measurements and the additional impedance measurements.

  20. I/O impedance controller

    DOEpatents

    Ruesch, Rodney; Jenkins, Philip N.; Ma, Nan

    2004-03-09

    There is disclosed apparatus and apparatus for impedance control to provide for controlling the impedance of a communication circuit using an all-digital impedance control circuit wherein one or more control bits are used to tune the output impedance. In one example embodiment, the impedance control circuit is fabricated using circuit components found in a standard macro library of a computer aided design system. According to another example embodiment, there is provided a control for an output driver on an integrated circuit ("IC") device to provide for forming a resistor divider network with the output driver and a resistor off the IC device so that the divider network produces an output voltage, comparing the output voltage of the divider network with a reference voltage, and adjusting the output impedance of the output driver to attempt to match the output voltage of the divider network and the reference voltage. Also disclosed is over-sampling the divider network voltage, storing the results of the over sampling, repeating the over-sampling and storing, averaging the results of multiple over sampling operations, controlling the impedance with a plurality of bits forming a word, and updating the value of the word by only one least significant bit at a time.

  1. Au-F127 strawberry-like nanospheres as an electrochemical interface for sensitive detection of carcinoembryonic antigen in real sample.

    PubMed

    Li, Juan; Xie, Hangqing; Liu, Yuhong; Ren, Hang; Zhao, Wenbo; Huang, Xiaohua

    2015-11-01

    Nanomaterial-based signal-amplification strategies hold a great promise in realizing sensitive biological detection. A simple label-free electrochemical immunosensor for sensitive detection of carcinoembryonic antigen (CEA) was developed by immobilizing anti-CEA antibodies onto the Au-F127 strawberry-like nanospheres modified glassy carbon electrode (Au-F127/GCE). The Au-F127 strawberry-like nanospheres offered a large surface and multifunctional substrate for the effective immobilization of anti-CEA and the existence of Au could accelerate electron transfer and make the electrochemical signal amplified. The Au-F127 nanocomposites and anti-CEA were characterized by transmission electron microscopy (TEM), polycrystalline electron diffraction ring pattern, ultra-violet visible (UV-vis) spectra and attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectra. Electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) were employed to verify the stepwise assembly of the immunosensor and evaluated the analytical performance of the fabricated immunosensor, respectively. The immunosensor showed a wide liner response range between 0.01 and 80 ng mL(-1) with a low detection limit of 0.24 pg mL(-1) at a signal-to-noise (S/N) ratio of 3. Additionally, the proposed method was successfully applied to determine CEA in human serum samples with satisfactory results. PMID:26452840

  2. Au-F127 strawberry-like nanospheres as an electrochemical interface for sensitive detection of carcinoembryonic antigen in real sample.

    PubMed

    Li, Juan; Xie, Hangqing; Liu, Yuhong; Ren, Hang; Zhao, Wenbo; Huang, Xiaohua

    2015-11-01

    Nanomaterial-based signal-amplification strategies hold a great promise in realizing sensitive biological detection. A simple label-free electrochemical immunosensor for sensitive detection of carcinoembryonic antigen (CEA) was developed by immobilizing anti-CEA antibodies onto the Au-F127 strawberry-like nanospheres modified glassy carbon electrode (Au-F127/GCE). The Au-F127 strawberry-like nanospheres offered a large surface and multifunctional substrate for the effective immobilization of anti-CEA and the existence of Au could accelerate electron transfer and make the electrochemical signal amplified. The Au-F127 nanocomposites and anti-CEA were characterized by transmission electron microscopy (TEM), polycrystalline electron diffraction ring pattern, ultra-violet visible (UV-vis) spectra and attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectra. Electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) were employed to verify the stepwise assembly of the immunosensor and evaluated the analytical performance of the fabricated immunosensor, respectively. The immunosensor showed a wide liner response range between 0.01 and 80 ng mL(-1) with a low detection limit of 0.24 pg mL(-1) at a signal-to-noise (S/N) ratio of 3. Additionally, the proposed method was successfully applied to determine CEA in human serum samples with satisfactory results.

  3. Electrochemical cell

    DOEpatents

    Redey, Laszlo I.; Vissers, Donald R.; Prakash, Jai

    1994-01-01

    An electrochemical cell having an alkali metal negative electrode such as sodium and a positive electrode including Ni or transition metals, separated by a .beta." alumina electrolyte and NaAlCl.sub.4 or other compatible material. Various concentrations of a bromine, iodine and/or sulfur containing additive and pore formers are disclosed, which enhance cell capacity and power. The pore formers may be the ammonium salts of carbonic acid or a weak organic acid or oxamide or methylcellulose.

  4. Electrochemical cell

    SciTech Connect

    Nagy, Z.; Yonco, R.M.; You, Hoydoo; Melendres, C.A.

    1991-04-23

    This invention is comprised of an electrochemical cell has a layer-type or sandwich configuration with a Teflon center section that houses working, reference and counter electrodes and defines a relatively narrow electrolyte cavity. The center section is surrounded on both sides with thin Teflon membranes. The membranes are pressed in place by a pair of Teflon inner frames which are in turn supported by a pair of outer metal frames. The pair of inner and outer frames are provided with corresponding, appropriately shaped slits that are in plane generally transverse to the plane of the working electrode and permit X-ray beams to enter and exit the cell through the Teflon membranes that cover the slits so that the interface between the working electrode and the electrolyte within the cell may be analyzed by transmission geometry. In one embodiment, the center section consists of two parts, one on top of the other. Alternatively, the center section of the electrochemical cell may consist of two intersliding pieces or may be made of a single piece of Teflon sheet material. The electrolyte cavity is shaped so that the electrochemical cell can be rotated 900 in either direction while maintaining the working-and counter electrodes submerged in the electrolyte.

  5. Electrochemical cell

    DOEpatents

    Redey, Laszlo I.; Myles, Kevin M.; Vissers, Donald R.; Prakash, Jai

    1996-01-01

    An electrochemical cell with a positive electrode having an electrochemically active layer of at least one transition metal chloride. A negative electrode of an alkali metal and a compatible electrolyte including an alkali metal salt molten at cell operating temperature is included in the cell. The electrolyte is present at least partially as a corrugated .beta." alumina tube surrounding the negative electrode interior to the positive electrode. The ratio of the volume of liquid electrolyte to the volume of the positive electrode is in the range of from about 0.1 to about 3. A plurality of stacked electrochemical cells is disclosed each having a positive electrode, a negative electrode of an alkali metal molten at cell operating temperature, and a compatible electrolyte. The electrolyte is at least partially present as a corrugated .beta." alumina sheet separating the negative electrode and interior to the positive electrodes. The alkali metal is retained in a porous electrically conductive ceramic, and seals for sealing the junctures of the electrolyte and the adjacent electrodes at the peripheries thereof.

  6. Electrochemical cell

    DOEpatents

    Nagy, Z.; Yonco, R.M.; You, H.; Melendres, C.A.

    1992-08-25

    An electrochemical cell has a layer-type or sandwich configuration with a Teflon center section that houses working, reference and counter electrodes and defines a relatively narrow electrolyte cavity. The center section is surrounded on both sides with thin Teflon membranes. The membranes are pressed in place by a pair of Teflon inner frames which are in turn supported by a pair of outer metal frames. The pair of inner and outer frames are provided with corresponding, appropriately shaped slits that are in plane generally transverse to the plane of the working electrode and permit X-ray beams to enter and exit the cell through the Teflon membranes that cover the slits so that the interface between the working electrode and the electrolyte within the cell may be analyzed by transmission geometry. In one embodiment, the center section consists of two parts, one on top of the other. Alternatively, the center section of the electrochemical cell may consist of two intersliding pieces or may be made of a single piece of Teflon sheet material. The electrolyte cavity is shaped so that the electrochemical cell can be rotated 90[degree] in either direction while maintaining the working and counter electrodes submerged in the electrolyte. 5 figs.

  7. Electrochemical cell

    DOEpatents

    Nagy, Zoltan; Yonco, Robert M.; You, Hoydoo; Melendres, Carlos A.

    1992-01-01

    An electrochemical cell has a layer-type or sandwich configuration with a Teflon center section that houses working, reference and counter electrodes and defines a relatively narrow electrolyte cavity. The center section is surrounded on both sides with thin Teflon membranes. The membranes are pressed in place by a pair of Teflon inner frames which are in turn supported by a pair of outer metal frames. The pair of inner and outer frames are provided with corresponding, appropriately shaped slits that are in plane generally transverse to the plane of the working electrode and permit X-ray beams to enter and exit the cell through the Teflon membranes that cover the slits so that the interface between the working electrode and the electrolyte within the cell may be analyzed by transmission geometry. In one embodiment, the center section consists of two parts, one on top of the other. Alternatively, the center section of the electrochemical cell may consist of two intersliding pieces or may be made of a single piece of Teflon sheet material. The electrolyte cavity is shaped so that the electrochemical cell can be rotated 90.degree. in either direction while maintaining the working and counter electrodes submerged in the electrolyte.

  8. Electrochemical cell

    DOEpatents

    Redey, L.I.; Myles, K.M.; Vissers, D.R.; Prakash, J.

    1996-07-02

    An electrochemical cell is described with a positive electrode having an electrochemically active layer of at least one transition metal chloride. A negative electrode of an alkali metal and a compatible electrolyte including an alkali metal salt molten at cell operating temperature is included in the cell. The electrolyte is present at least partially as a corrugated {beta}{double_prime} alumina tube surrounding the negative electrode interior to the positive electrode. The ratio of the volume of liquid electrolyte to the volume of the positive electrode is in the range of from about 0.1 to about 3. A plurality of stacked electrochemical cells is disclosed each having a positive electrode, a negative electrode of an alkali metal molten at cell operating temperature, and a compatible electrolyte. The electrolyte is at least partially present as a corrugated {beta}{double_prime} alumina sheet separating the negative electrode and interior to the positive electrodes. The alkali metal is retained in a porous electrically conductive ceramic, and seals for sealing the junctures of the electrolyte and the adjacent electrodes at the peripheries thereof. 8 figs.

  9. Studies on LiFePO 4 as cathode material using impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Schmidt, Jan Philipp; Chrobak, Thorsten; Ender, Moses; Illig, Jörg; Klotz, Dino; Ivers-Tiffée, Ellen

    Lithium iron phosphate is a promising cathode material for the use in hybrid electrical vehicles (HEV) meeting the demands of good stability during cycling and safe operation due to reduced risk of thermal runaway. However, slow solid state diffusion and poor electrical conductivity reduce power capability. For further improvement, the identification of the rate determining processes is necessary. Electrochemical impedance spectroscopy (EIS) has proven to be a powerful tool for the characterization of electrochemical systems. In this contribution a deconvolution of the impedance with the distribution of relaxation times (DRTs) is used to obtain a better resolution in frequency domain. Therewith, the relevant loss processes are identified and an impedance model is developed. Using DRT and CNLS-fit allows the determination of time constants and polarization resistances of all relevant loss processes. Furthermore, their temperature behavior is studied and a physical interpretation is provided.

  10. Determination of Electrochemical Performance and Thermo-Mechanical-Chemical Stability of SOFCs from Defect Modeling

    SciTech Connect

    Eric Wachsman; Keith L. Duncan

    2006-09-30

    room temperature. The results reveal that the flexural strength decreases significantly after heat treatment in very low oxygen partial pressure environments; however, in contrast, fracture toughness is increased by 30-40% when the oxygen partial pressure was decreased to 10{sup -20} to 10{sup -22} atm range. Fractographic studies show that microcracks developed at 800 oC upon hydrogen reduction are responsible for the decreased strength. To understand the role of microstructure on electrochemical performance, electrical impedance spectra from symmetric LSM/YSZ/LSM cells was de-convoluted to obtain the key electrochemical components of electrode performance, namely charge transfer resistance, surface diffusion of reactive species and bulk gas diffusion through the electrode pores. These properties were then related to microstructural features, such as triple-phase boundary length and tortuosity. From these experiments we found that the impedance due to oxygen adsorption obeys a power law with pore surface area, while the impedance due to charge transfer is found to obey a power-law with respect to triple phase boundary length. A model based on kinetic theory explaining the power-law relationships observed was then developed. Finally, during our EIS work on the symmetric LSM/YSZ/LSM cells a technique was developed to improve the quality of high-frequency impedance data and their subsequent de-convolution.

  11. Electrical impedance imaging of water distribution in the root zone

    NASA Astrophysics Data System (ADS)

    Newill, P.; Karadaglić, D.; Podd, F.; Grieve, B. D.; York, T. A.

    2014-05-01

    The paper describes a technique that is proposed for imaging water transport in and around the root zone of plants using distributed measurements of electrical impedance. The technique has the potential to analyse sub-surface phenotypes, for instance drought tolerance traits in crop breeding programmes. The technical aim is to implement an automated, low cost, instrument for high-throughput screening. Ultimately the technique is targeted at in-field, on-line, measurements. For demonstration purposes the present work considers measurements on laboratory scale rhizotrons housing growing maize plants. Each rhizotron is fitted with 60 electrodes in a rectangular array. To reduce electrochemical effects the capacitively coupled contactless conductivity (C4D) electrodes have an insulating layer on the surface and the resistance of the bulk material is deduced from spectroscopic considerations. Electrical impedance is measured between pairs of electrodes to build up a two-dimensional map. A modified electrical model of such electrodes is proposed which includes the resistive and reactive components of both the insulating layer and the bulk material. Measurements taken on a parallel-plate test cell containing water confirm that the C4D technique is able to measure electrical impedance. The test cell has been used to explore the effects of water content, compaction and temperature on measurements in soil. Results confirm that electrical impedance measurements are very sensitive to moisture content. Impedance fraction changes up to 20% are observed due to compaction up to a pressure of 0.21 kg cm-2 and a temperature fraction sensitivity of about 2%/°C. The effects of compaction and temperature are most significant under dry conditions. Measurements on growing maize reveal the changes in impedance across the rhizotron over a period of several weeks. Results are compared to a control vessel housing only soil.

  12. Input impedance of microstrip antennas

    NASA Technical Reports Server (NTRS)

    Deshpande, M. D.; Bailey, M. C.

    1982-01-01

    Using Richmond's reaction integral equation, an expression is derived for the input impedance of microstrip patch antennas excited by either a microstrip line or a coaxial probe. The effects of the finite substrate thickness, a dielectric protective cover, and associated surface waves are properly included by the use of the exact dyadic Green's function. Using the present formulation the input impedance of a rectangular microstrip antenna is determined and compared with experimental and earlier calculated results.

  13. Combined electromechanical impedance and fiber optic diagnosis of aerospace structures

    NASA Astrophysics Data System (ADS)

    Schlavin, Jon; Zagrai, Andrei; Clemens, Rebecca; Black, Richard J.; Costa, Joey; Moslehi, Behzad; Patel, Ronak; Sotoudeh, Vahid; Faridian, Fereydoun

    2014-03-01

    Electromechanical impedance is a popular diagnostic method for assessing structural conditions at high frequencies. It has been utilized, and shown utility, in aeronautic, space, naval, civil, mechanical, and other types of structures. By contrast, fiber optic sensing initially found its niche in static strain measurement and low frequency structural dynamic testing. Any low frequency limitations of the fiber optic sensing, however, are mainly governed by its hardware elements. As hardware improves, so does the bandwidth (frequency range * number of sensors) provided by the appropriate enabling fiber optic sensor interrogation system. In this contribution we demonstrate simultaneous high frequency measurements using fiber optic and electromechanical impedance structural health monitoring technologies. A laboratory specimen imitating an aircraft wing structure, incorporating surfaces with adjustable boundary conditions, was instrumented with piezoelectric and fiber optic sensors. Experiments were conducted at different structural boundary conditions associated with deterioration of structural health. High frequency dynamic responses were collected at multiple locations on a laboratory wing specimen and conclusions were drawn about correspondence between structural damage and dynamic signatures as well as correlation between electromechanical impedance and fiber optic sensors spectra. Theoretical investigation of the effect of boundary conditions on electromechanical impedance spectra is presented and connection to low frequency structural dynamics is suggested. It is envisioned that acquisition of high frequency structural dynamic responses with multiple fiber optic sensors may open new diagnostic capabilities for fiber optic sensing technologies.

  14. AC impedance analysis of polypyrrole thin films

    NASA Technical Reports Server (NTRS)

    Penner, Reginald M.; Martin, Charles R.

    1987-01-01

    The AC impedance spectra of thin polypyrrole films were obtained at open circuit potentials from -0.4 to 0.4 V vs SCE. Two limiting cases are discussed for which simplified equivalent circuits are applicable. At very positive potentials, the predominantly nonfaradaic AC impedance of polypyrrole is very similar to that observed previously for finite porous metallic films. Modeling of the data with the appropriate equivalent circuit permits effective pore diameter and pore number densities of the oxidized film to be estimated. At potentials from -0.4 to -0.3 V, the polypyrrole film is essentially nonelectronically conductive and diffusion of polymer oxidized sites with their associated counterions can be assumed to be linear from the film/substrate electrode interface. The equivalent circuit for the polypyrrole film at these potentials is that previously described for metal oxide, lithium intercalation thin films. Using this model, counterion diffusion coefficients are determined for both semi-infinite and finite diffusion domains. In addition, the limiting low frequency resistance and capacitance of the polypyrrole thin fims was determined and compared to that obtained previously for thicker films of the polymer. The origin of the observed potential dependence of these low frequency circuit components is discussed.

  15. Influence of implantation on the electrochemical properties of smooth and porous TiN coatings for stimulation electrodes

    NASA Astrophysics Data System (ADS)

    Meijs, S.; Sørensen, C.; Sørensen, S.; Rechendorff, K.; Fjorback, M.; Rijkhoff, N. J. M.

    2016-04-01

    Objective. To determine whether changes in electrochemical properties of porous titanium nitride (TiN) electrodes as a function of time after implantation are different from those of smooth TiN electrodes. Approach. Eight smooth and 8 porous TiN coated electrodes were implanted in 8 rats. Before implantation, voltage transients, cyclic voltammograms and impedance spectra were recorded in phosphate buffered saline (PBS). After implantation, these measurements were done weekly to investigate how smooth and porous electrodes were affected by implantation. Main results. The electrode capacitance of the porous TiN electrodes decreased more than the capacitance of the smooth electrodes due to acute implantation under fast measurement conditions (such as stimulation pulses). This indicates that protein adhesion presents a greater diffusion limitation for counter-ions for the porous than for the smooth electrodes. The changes in electrochemical properties during the implanted period were similar for smooth and porous TiN electrodes, indicating that cell adhesion poses a similar diffusion limitation for smooth and porous electrodes. Significance. This knowledge can be used to optimize the porous structure of the TiN film, so that the effect of protein adhesion on the electrochemical properties is diminished. Alternatively, an additional coating could be applied on the porous TiN that would prevent or minimize protein adhesion.

  16. Ultrafast electrochemical preparation of graphene/CoS nanosheet counter electrodes for efficient dye-sensitized solar cells

    DOE PAGESBeta

    Zhu, Chongyang; Zhu, Yimei; Min, Huihua; Xu, Feng; Chen, Jing; Dong, Hui; Tong, Ling; Sun, Litao

    2015-10-05

    Utilizing inexpensive, high-efficiency counter electrodes (CEs) to replace the traditional platinum counterparts in dye-sensitized solar cells (DSSCs) is worthwhile. In this paper, we detail how we synchronously prepared composite CEs of CoS nanosheet arrays and reduced graphene oxide (rGO) layers for the first time via a low temperature, ultrafast one-step electrochemical strategy. With this approach, the whole fabrication process of the composite CEs was only a small percentage of the average time (~15 hours) using other methods. The DSSC assembled with the rGO–CoS composite CE achieved an enhanced power conversion efficiency (PCE) of 8.34%, which is dramatically higher than 6.27%more » of pure CoS CE-based DSSC and even exceeds 7.50% of Pt CE-based DSSC. The outstanding PCE breakthrough is undoubtedly attributed to the enhancement in electrocatalytic ability of the rGO–CoS composite CE due to the incorporation of highly conducting rGO layers and the GO layers-induced growth of CoS nanosheet arrays with higher density and larger surface area. Therefore, lower charge-transfer resistance and higher exchange current density can be achieved as corroborated by the electrochemical impedance spectra (EIS) and Tafel polarization curves (TPCs). As a result, further experiments also proved that the electrochemical strategy exhibited its universality of fabricating other graphene-enhanced chalcogenide functional composite films.« less

  17. Enhanced electrochemical performance of mesoporous NiCo2O4 as an excellent supercapacitive alternative energy storage material

    NASA Astrophysics Data System (ADS)

    Bhojane, Prateek; Sen, Somaditya; Shirage, Parasharam M.

    2016-07-01

    Here we report the supercapacitive properties of mesoporous nickel cobalt oxide (NiCo2O4) synthesized by fast, inexpensive and facile chemical bath method, by avoiding high pressure, high temperature and chemical complexity. Physico-chemical characterization techniques such as X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), Raman Spectra, and nitrogen adsorption-desorption isotherm analysis is performed to characterize the electrode material. Brunauer-Emmett-Teller (BET) measurements reveal the surface area 52.86 m2 g-1 and from Barrett-Joyner-Halenda (BJH), typical pores size ranges between 10 and 50 nm, also confirms the mesoporosity. The electrochemical properties are measured by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charging/discharging. The synthesized material exhibits remarkably enhanced electrochemical performance with specific capacitance of 1130 F g-1 at 1 mV s-1 sweep rate and 1125 F g-1 at current density of 0.05 A g-1, highest without supporting base like carbon cloth, Ni-foam, Ti- foil used for direct growth (deposition) of electrode material. It is superior to those of its individual and hybrid components prepared by similar technique. Ragone plot shows high specific energy density (49.25 Wh kg-1) and corresponding specific power density (1851.31 W kg-1) even at high current density of 0.5 A g-1.

  18. Ultrafast electrochemical preparation of graphene/CoS nanosheet counter electrodes for efficient dye-sensitized solar cells

    SciTech Connect

    Zhu, Chongyang; Zhu, Yimei; Min, Huihua; Xu, Feng; Chen, Jing; Dong, Hui; Tong, Ling; Sun, Litao

    2015-10-05

    Utilizing inexpensive, high-efficiency counter electrodes (CEs) to replace the traditional platinum counterparts in dye-sensitized solar cells (DSSCs) is worthwhile. In this paper, we detail how we synchronously prepared composite CEs of CoS nanosheet arrays and reduced graphene oxide (rGO) layers for the first time via a low temperature, ultrafast one-step electrochemical strategy. With this approach, the whole fabrication process of the composite CEs was only a small percentage of the average time (~15 hours) using other methods. The DSSC assembled with the rGO–CoS composite CE achieved an enhanced power conversion efficiency (PCE) of 8.34%, which is dramatically higher than 6.27% of pure CoS CE-based DSSC and even exceeds 7.50% of Pt CE-based DSSC. The outstanding PCE breakthrough is undoubtedly attributed to the enhancement in electrocatalytic ability of the rGO–CoS composite CE due to the incorporation of highly conducting rGO layers and the GO layers-induced growth of CoS nanosheet arrays with higher density and larger surface area. Therefore, lower charge-transfer resistance and higher exchange current density can be achieved as corroborated by the electrochemical impedance spectra (EIS) and Tafel polarization curves (TPCs). As a result, further experiments also proved that the electrochemical strategy exhibited its universality of fabricating other graphene-enhanced chalcogenide functional composite films.

  19. Sensitive immunodetection through impedance measurements onto gold functionalized electrodes.

    PubMed

    Ameur, S; Martelet, C; Jaffrezic-Renault, N; Chovelon, J M

    2000-01-01

    This article deals with a direct electrochemical method of detecting antigens using new methods of functionalization of gold electrodes. Based on the reacting ability of gold with sulfhydryl groups, three protocols for the fixation of antibodies have been explored. They are based on either the self-assembling properties of functional thiols bearing long alkyl chains or the possibility of a direct coupling of antibody moieties. Coverage rates as high as 97% can be reached. The analysis of the electrochemical impedance behavior of such layers can lead to a sensitive method for the direct detection of the antibody/antigen interaction. The addition of a redox couple in the tested solution, acting as an amplifier, allowed detection limits for the antigens as low as a few picograms/milliliter to be reached. PMID:11209460

  20. Cervical cancer detection by electrical impedance in a Colombian setting

    NASA Astrophysics Data System (ADS)

    Miranda, David A.; Corzo, Sandra P.; González Correa, C. A.

    2013-04-01

    Electrical properties of normal and neoplastic cervical tissues in a heterogeneous group of 56 Colombian women were studied by electrical impedance spectroscopy and a model based on the Generalized Effective-Medium Theory of Induced Polarization (GEMTIP). Differences between the electrical bioimpedance spectra were correlated with cellular and tissue parameters. The analysis performed by the proposed model suggest that the number of different types of cellular layers that form the biological tissue, the intracellular and extracellular conductivity could be used to explain the differences between electrical bioimpedance spectra in normal and neoplastic tissues.

  1. Electrochemical cell

    DOEpatents

    Redey, L.I.; Vissers, D.R.; Prakash, J.

    1994-08-23

    An electrochemical cell is described having an alkali metal negative electrode such as sodium and a positive electrode including Ni or transition metals, separated by a [beta] alumina electrolyte and NaAlCl[sub 4] or other compatible material. Various concentrations of a bromine, iodine and/or sulfur containing additive and pore formers are disclosed, which enhance cell capacity and power. The pore formers may be the ammonium salts of carbonic acid or a weak organic acid or oxamide or methylcellulose. 6 figs.

  2. Electrochemical cell

    DOEpatents

    Kaun, Thomas D.

    1984-01-01

    An improved secondary electrochemical cell is disclosed having a negative electrode of lithium aluminum, a positive electrode of iron sulfide, a molten electrolyte of lithium chloride and potassium chloride, and the combination that the fully charged theoretical capacity of the negative electrode is in the range of 0.5-1.0 that of the positive electrode. The cell thus is negative electrode limiting during discharge cycling. Preferably, the negative electrode contains therein, in the approximate range of 1-10 volume % of the electrode, an additive from the materials of graphitized carbon, aluminum-iron alloy, and/or magnesium oxide.

  3. Electrochemical Approaches to Aptamer-Based Sensing

    NASA Astrophysics Data System (ADS)

    Xiao, Yi; Plaxco, Kevin W.

    Motivated by the potential convenience of electronic detection, a wide range of electrochemical, aptamer-based sensors have been reported since the first was described only in 2005. Although many of these are simply electrochemical, aptamer-based equivalents of traditional immunochemical approaches (e.g., sandwich and competition assays employing electroactive signaling moieties), others exploit the unusual physical properties of aptamers, properties that render them uniquely well suited for application to impedance and folding-based electrochemical sensors. In particular, the ability of electrode-bound aptamers to undergo reversible, binding-induced folding provides a robust, reagentless means of transducing target binding into an electronic signal that is largely impervious to nonspecific signals arising from contaminants. This capability enables the direct detection of specific proteins at physiologically relevant, picomolar concentrations in blood serum and other complex, contaminant-ridden sample matrices.

  4. Electrochemical attosyringe

    PubMed Central

    Laforge, François O.; Carpino, James; Rotenberg, Susan A.; Mirkin, Michael V.

    2007-01-01

    The ability to manipulate ultrasmall volumes of liquids is essential in such diverse fields as cell biology, microfluidics, capillary chromatography, and nanolithography. In cell biology, it is often necessary to inject material of high molecular weight (e.g., DNA, proteins) into living cells because their membranes are impermeable to such molecules. All techniques currently used for microinjection are plagued by two common problems: the relatively large injector size and volume of injected fluid, and poor control of the amount of injected material. Here we demonstrate the possibility of electrochemical control of the fluid motion that allows one to sample and dispense attoliter-to-picoliter (10−18 to 10−12 liter) volumes of either aqueous or nonaqueous solutions. By changing the voltage applied across the liquid/liquid interface, one can produce a sufficient force to draw solution inside a nanopipette and then inject it into an immobilized biological cell. A high success rate was achieved in injections of fluorescent dyes into cultured human breast cells. The injection of femtoliter-range volumes can be monitored by video microscopy, and current/resistance-based approaches can be used to control injections from very small pipettes. Other potential applications of the electrochemical syringe include fluid dispensing in nanolithography and pumping in microfluidic systems. PMID:17620612

  5. An electrochemistry-based impedance model for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Shengbo Eben; Wang, Baojin; Peng, Huei; Hu, Xiaosong

    2014-07-01

    Accurate models of lithium-ion batteries are important for analyzing and predicting battery dynamics and aging. This paper presents an electrochemistry-based impedance model for lithium-ion batteries to better understand the relationship between battery internal dynamics and external measurement. The proposed impedance model is a modified single particle model which balances between simplicity and accuracy. The model includes electrochemical impedance due to charge-transfer reaction, diffusion dynamics in the electrodes, effects of ion concentration, capacitance dispersion in the double layer, and anode insulating film growth, etc. The impedance tests for model validation were performed on two lithium-ion cells at ambient temperature and at different SOC levels. A particle swarm optimization method is employed to identify model parameters. The model accuracy under different conditions is compared with that of conventional Randles model and the parameter variations at different stage of the aging process are studied.

  6. Rapid Impedance Spectrum Measurements for Onboard State-of-Health Applications

    SciTech Connect

    Jon P. Christophersen; John L. Morrison; Chinh D. Ho

    2012-06-01

    Rapid impedance measurements can provide a useful online tool for improved state-of-health estimation. A validation study has been initiated at the Idaho National Laboratory for a rapid impedance technique known as Harmonic Compensated Synchronous Detection. This technique enables capturing the impedance spectra over a broad frequency range within about ten seconds. Commercially available lithium-ion cells are being calendar-life aged at 50°C with reference performance tests at 30°C every 32.5 days to gauge degradation The cells have completed the first set of reference performance tests and preliminary results are presented. The spectra change as a function of temperature and depth-of-discharge condition, as expected. The data indicate that the rapid impedance measurement technique is a benign measurement tool that can be successfully used to gauge changes in the corresponding pulse resistance.

  7. An electrochemical evaluation of new materials and methods for corrosion protection

    NASA Astrophysics Data System (ADS)

    Kus, Esra

    An electrochemical evaluation of various electrode/electrolyte systems was performed by means of electrochemical impedance spectroscopy (EIS) and other techniques. Each chapter in this thesis presents an individual project with a specific objective which serves an ultimate goal of finding better materials and methods of corrosion protection. An overview of new environmentally friendly and cost effective materials and corrosion protection methods is given in Chapter 1. The protective properties of non-toxic, environmentally friendly polymer coatings, which were developed in the purpose of minimizing biofouling and providing corrosion protection on steel, were investigated and discussed in Chapter 2. The corrosion resistance of steel panels coated with crosslinked siloxanes was evaluated using EIS. Differences in protective properties of the coatings were observed due to differences in the degree of fluorination, the way the films were cured and also the degree of crosslinking. In Chapter 3, a comparison of the corrosion behavior of nanocrystalline (NC) Al 5083 with that of the conventional alloy was made in order to determine what differences if any could be attributed to the NC microstructure. Pit growth rates decreased with time for both materials based on the analysis of the impedance spectra as a function of time. NC samples were resistant to intergranular corrosion whereas conventional Al 5083 was not. The concept of the bacterial battery is presented in Chapter 4. A galvanic cell with Cu and Al 2024 and an electrolyte containing Shewanella oneidensis MR-1 in a growth medium was prepared. A control cell, which did not contain the bacteria, was also tested. For the cell with MR-1 the maximum power values increased continuously with time, whereas in the control cell the maximum power output was obtained in the first day of exposure. The objective of the study presented in Chapter 5 was to examine the interaction of MR-1 with different metal surfaces in order to

  8. Report of the SSC impedance workshop

    SciTech Connect

    1985-10-28

    This workshop focused attention on the transverse, single-bunch instability and the detailed analysis of the broadband impedance which would drive it. Issues discussed included: (1) single bunch stability -- impact of impedance frequency shape, coupled-mode vs. fast blowup regimes, possible stopband structure; (2) numerical estimates of transverse impedance of inner bellows and sliding contact shielded bellows; (3) analytic estimates of pickup and kicker impedance contributions; and (4) feasibility studies of wire and beam measurements of component impedance.

  9. Direct and environmentally benign synthesis of manganese oxide/graphene composites from graphite for electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Lee, Hae-Min; Jeong, Gyoung Hwa; Kang, Doo Won; Kim, Sang-Wook; Kim, Chang-Koo

    2015-05-01

    We develop a direct and environmentally benign method to prepare manganese oxide (Mn3O4)/graphene composites via one-step hydrothermal synthesis from graphite without using strong acids and toxic reducing agents. Structural and morphological analyses reveals that the irregularly shaped Mn3O4 nanoparticles are well-dispersed on the graphene flakes. Cyclic voltammetry and galvanostatic charge-discharge tests indicate that the charge-storing mechanism of the Mn3O4/graphene composites is pseudocapacitive. The Mn3O4/graphene composite exhibits a specific capacitance of 367 F/g at a current density of 5 A/g. After 3000 charge-discharge cycles, the Mn3O4/graphene electrode retains 91.8% of its initial specific capacitance. From electrochemical impedance spectra, it is evident that the changes in both the equivalent series resistance and charge-transfer resistance of the Mn3O4/graphene electrode before and after 3000 charge-discharge cycles are small, indicating good cycling and electrochemical stability of the Mn3O4/graphene electrode.

  10. Impedances of Laminated Vacuum Chambers

    SciTech Connect

    Burov, A.; Lebedev, V.; /Fermilab

    2011-06-22

    First publications on impedance of laminated vacuum chambers are related to early 70s: those are of S. C. Snowdon [1] and of A. G. Ruggiero [2]; fifteen years later, a revision paper of R. Gluckstern appeared [3]. All the publications were presented as Fermilab preprints, and there is no surprise in that: the Fermilab Booster has its laminated magnets open to the beam. Being in a reasonable mutual agreement, these publications were all devoted to the longitudinal impedance of round vacuum chambers. The transverse impedance and the flat geometry case were addressed in more recent paper of K. Y. Ng [4]. The latest calculations of A. Macridin et al. [5] revealed some disagreement with Ref. [4]; this fact stimulated us to get our own results on that matter. Longitudinal and transverse impendances are derived for round and flat laminated vacuum chambers. Results of this paper agree with Ref. [5].

  11. Processing, microstructural evolution and electrochemical performance relationships in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Sarikaya, Ayhan

    The relationships between the processing parameters, microstructures and electrochemical performance of solid oxide fuel cell (SOFC) components were investigated. The operating regimes (i.e., reducing vs. oxidizing) as well as the elevated temperatures (e.g. 800°C) for their operation introduce several material challenges. Therefore, composite materials are employed to withstand operating conditions while providing sufficient electrochemical performance for fuel cell operation. Analyses on lanthanum-strontium manganite (LSM) - yttria stabilized zirconia (YSZ) compositions (45 vol%-55 vol%) by impedance spectroscopy demonstrated that two competing polarization mechanisms (i.e. charge-exchange and surface adsorption-diffusion of oxygen) limit performance. Optimization of microstructures resulted in total resistances as low as 0.040 Ohm cm2. Studies on Ag composites revealed that incorporation of up to 25 vol% oxide particles (LSM and YSZ) with sizes comparable to the Ag grains (~0.5 microm) can minimize the densification and coarsening of the Ag matrix. While the powder based oxide additions increased the stability limit of porous Ag composites from <550°C to 800°C, the use of nanostructured coatings increased the stability limit to 900°C for cathodes and current collectors. Investigations of Ni-YSZ anode microstructures demonstrated that uniform distribution of percolating isometric pores (>5 microm) allows forming desired continuous percolation of all phases (Ni, YSZ and pores) lowering activation polarization below 0.100 Ohm cm2 and maintaining significant electrical conductivity (>1000 S/cm). Identification of polarization mechanisms by deconvolution of impedance spectra and tailoring the corresponding microstructures was demonstrated as an effective method for optimization of SOFC components.

  12. Study of Influence of Electrode Geometry on Impedance Spectroscopy

    SciTech Connect

    Ahmed, Riaz; Reifsnider, Kenneth L

    2011-01-01

    Electrochemical Impedance Spectroscopy (EIS) is a powerful and proven tool for analyzing AC impedance response. A conventional three electrode EIS method was used to perform the investigation in the present study. Saturated potassium chloride solution was used as the electrolyte and three different material rods were used as working electrodes. Different configurations of electrode area were exposed to the electrolyte as an active area to investigate electrode geometry effects. Counter to working electrode distance was also altered while keeping the working electrode effective area constant to explore the AC response dependence on the variation of ion travel distance. Some controlled experiments were done to validate the experimental setup and to provide a control condition for comparison with experimental results. A frequency range of 100 mHz to 1 MHz was used for all experiments. In our analysis, we have found a noteworthy influence of electrode geometry on AC impedance response. For all electrodes, impedance decreases with the increase of effective area of the electrolyte. High frequency impedance is not as dependent on geometry as low frequency response. The observed phase shift angle drops in the high frequency region with increased working electrode area, whereas at low frequency the reverse is true. Resistance and capacitive reactance both decrease with an increase of area, but resistance response is more pronounce than reactance. For lower frequencies, small changes in working area produce very distinctive EIS variations. Electrode material as well as geometry was systematically varied in the present study. From these and other studies, we hope to develop a fundamental foundation for understanding specific changes in local geometry in fuel cell (and other) electrodes as a method of designing local morphology for specific performance.

  13. Electrochemical supercapacitors

    DOEpatents

    Rudge, Andrew J.; Ferraris, John P.; Gottesfeld, Shimshon

    1996-01-01

    A new class of electrochemical capacitors provides in its charged state a positive electrode including an active material of a p-doped material and a negative electrode including an active material of an n-doped conducting polymer, where the p-doped and n-doped materials are separated by an electrolyte. In a preferred embodiment, the positive and negative electrode active materials are selected from conducting polymers consisting of polythiophene, polymers having an aryl group attached in the 3-position, polymers having aryl and alkyl groups independently attached in the 3- and 4-positions, and polymers synthesized from bridged dimers having polythiophene as the backbone. A preferred electrolyte is a tetraalykyl ammonium salt, such as tetramethylammonium trifluoromethane sulphonate (TMATFMS), that provides small ions that are mobile through the active material, is soluble in acetonitrile, and can be used in a variety of capacitor configurations.

  14. Impedance characterization of AlGaN/GaN Schottky diodes with metal contacts

    NASA Astrophysics Data System (ADS)

    Donahue, M.; Lübbers, B.; Kittler, M.; Mai, P.; Schober, A.

    2013-04-01

    To obtain detailed information on structural and electrical properties of AlGaN/GaN Schottky diodes and to determine an appropriate equivalent circuit, impedance spectroscopy and impedance voltage profiling are employed over a frequency range of 1 MHz-1 Hz. In contrast to the commonly assumed parallel connection of capacitive and resistive elements, an equivalent circuit is derived from impedance spectra which utilizes the constant phase element and accounts for frequency dispersion and trap states. The trap density is estimated and is in good agreement with the literature values. The resulting reduced equivalent circuit consists of a capacitor and resistor connected in series.

  15. Evaluation of Wall Boundary Conditions for Impedance Eduction Using a Dual-Source Method

    NASA Technical Reports Server (NTRS)

    Watson, W. R.; Jones, M. G.

    2012-01-01

    The accuracy of the Ingard-Myers boundary condition and a recently proposed modified Ingard-Myers boundary condition is evaluated for use in impedance eduction under the assumption of uniform mean flow. The evaluation is performed at three centerline Mach numbers, using data acquired in a grazing flow impedance tube, using both upstream and downstream propagating sound sources, and on a database of test liners for which the expected behavior of the impedance spectra is known. The test liners are a hard-wall insert consisting of 12.6 mm thick aluminum, a linear liner without a facesheet consisting of a number of small diameter but long cylindrical channels embedded in a ceramic material, and two conventional nonlinear liners consisting of a perforated facesheet bonded to a honeycomb core. The study is restricted to a frequency range for which only plane waves are cut on in the hard-wall sections of the flow impedance tube. The metrics used to evaluate each boundary condition are 1) how well it educes the same impedance for upstream and downstream propagating sources, and 2) how well it predicts the expected behavior of the impedance spectra over the Mach number range. The primary conclusions of the study are that the same impedance is educed for upstream and downstream propagating sources except at the highest Mach number, that an effective impedance based on both the upstream and downstream measurements is more accurate than an impedance based on the upstream or downstream data alone, and that the Ingard-Myers boundary condition with an effective impedance produces results similar to that achieved with the modified Ingard-Myers boundary condition.

  16. Experimental impedance investigation of an ultracapacitor at different conditions for electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Hu, Xiaosong; Wang, Zhenpo; Sun, Fengchun; Dorrell, David G.

    2015-08-01

    Ultracapacitors (UCs) are being increasingly deployed as a short-term energy storage device in various energy systems including uninterruptable power supplies, electrified vehicles, renewable energy systems, and wireless communication. They exhibit excellent power density and energy efficiency. The dynamic behavior of a UC, however, strongly depends on its impedance characteristics. In this paper, the impedance characteristics of a commercial UC are experimentally investigated through the well-adopted Electrochemical Impedance Spectroscopy (EIS) technique. The implications of the UC operating conditions (i.e., temperature and state of charge (SOC)) to the impedance are systematically examined. The results show that the impedance is highly sensitive to the temperature and SOC; and the temperature effect is more significant. In particular, the coupling effect between the temperature and SOC is illustrated, as well as the high-efficiency SOC window, which is highlighted. To further verify the reliability of the EIS-based investigation and to probe the sensitivity of UC parameters to the operating conditions, a dynamic model is characterized by fitting the collected impedance data. The interdependence of UC parameters (i.e., capacitance and resistance elements) on the temperature and SOC is quantitatively revealed. The impedance-based model is demonstrated to be accurate in two driving-cycle tests.

  17. Storm Spectra

    NASA Technical Reports Server (NTRS)

    2007-01-01

    portion is defined by the day/night boundary (known as the terminator).

    These two images illustrate only a small fraction of the information contained in a single LEISA scan, highlighting just one aspect of the power of infrared spectra for atmospheric studies.

  18. Impedance of the amphibian lens.

    PubMed

    Duncan, G; Patmore, L; Pynsent, P B

    1981-03-01

    1. The electrical resistance of the perfused frog lens was measured using separate internal current passing and voltage measuring electrodes. 2. The resistance values obtained using voltage clamp and direct and alternating current techniques were in good agreement. 3. The voltage transients induced in response to current steps were multi-exponential in form. Increasing the external K concentration reduced both the amplitude of the voltage response and the rise time. 4. The impedance characteristics were investigated in more detail using alternating current analysis techniques. 5. In an equivalent-circuit modelling study it was assumed that there were two major pathways for current flow in the lens. The first through the surface membranes and the second through the inner fibre membranes via the narrow extracellular spaces. 6. The experimental impedance loci could not be adequately fitted by a simple two time constant model and a third time constant was introduced which may represent diffusion polarization effects in the extracellular spaces. 7. The three time constant model gave good and consistent fits to impedance data from a number of preparations. 8. The form of the impedance loci was also dependent on the external K concentration, but the only fitted parameter which changed consistently with external K was the surface membrane resistance (Rs).

  19. Characteristic impedance of microstrip lines

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.; Deshpande, M. D.

    1989-01-01

    The dyadic Green's function for a current embedded in a grounded dielectric slab is used to analyze microstrip lines at millimeter wave frequencies. The dyadic Green's function accounts accurately for fringing fields and dielectric cover over the microstrip line. Using Rumsey's reaction concept, an expression for the characteristic impedance is obtained. The numerical results are compared with other reported results.

  20. Impedance of the amphibian lens.

    PubMed Central

    Duncan, G; Patmore, L; Pynsent, P B

    1981-01-01

    1. The electrical resistance of the perfused frog lens was measured using separate internal current passing and voltage measuring electrodes. 2. The resistance values obtained using voltage clamp and direct and alternating current techniques were in good agreement. 3. The voltage transients induced in response to current steps were multi-exponential in form. Increasing the external K concentration reduced both the amplitude of the voltage response and the rise time. 4. The impedance characteristics were investigated in more detail using alternating current analysis techniques. 5. In an equivalent-circuit modelling study it was assumed that there were two major pathways for current flow in the lens. The first through the surface membranes and the second through the inner fibre membranes via the narrow extracellular spaces. 6. The experimental impedance loci could not be adequately fitted by a simple two time constant model and a third time constant was introduced which may represent diffusion polarization effects in the extracellular spaces. 7. The three time constant model gave good and consistent fits to impedance data from a number of preparations. 8. The form of the impedance loci was also dependent on the external K concentration, but the only fitted parameter which changed consistently with external K was the surface membrane resistance (Rs). PMID:6973626

  1. Calibration of electrical impedance tomography

    SciTech Connect

    Daily, W; Ramirez, A

    2000-05-01

    Over the past 10 years we have developed methods for imaging the electrical resistivity of soil and rock formations. These technologies have been called electrical resistance tomography of ERT (e.g. Daily and Owen, 1991). Recently we have been striving to extend this capability to include images of electric impedance--with a new nomenclature of electrical impedance tomography or EIT (Ramirez et al., 1999). Electrical impedance is simply a generalization of resistance. Whereas resistance is the zero frequency ratio of voltage and current, impedance includes both the magnitude and phase relationship between voltage and current at frequency. This phase and its frequency behavior is closely related to what in geophysics is called induced polarization or (Sumner, 1976). Why is this phase or IP important? IP is known to be related to many physical phenomena of importance so that image of IP will be maps of such things as mineralization and cation exchange IP (Marshall and Madden, 1959). Also, it is likely that IP, used in conjunction with resistivity, will yield information about the subsurface that can not be obtained by either piece of information separately. In order to define the accuracy of our technologies to image impedance we have constructed a physical model of known impedance that can be used as a calibration standard. It consists of 616 resistors, along with some capacitors to provide the reactive response, arranged in a three dimensional structure as in figure 1. Figure 2 shows the construction of the network and defines the coordinate system used to describe it. This network of components is a bounded and discrete version of the unbounded and continuous medium with which we normally work (the subsurface). The network has several desirable qualities: (1) The impedance values are known (to the accuracy of the component values). (2) The component values and their 3D distribution is easily controlled. (3) Error associated with electrode noise is eliminated. (4

  2. Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures

    SciTech Connect

    Zhu, Chengzhou; Yang, Guohai; Li, He; Du, Dan; Lin, Yuehe

    2014-10-29

    We report that considerable attention has been devoted to the integration of recognition elements with electronic elements to develop electrochemical sensors and biosensors.Various electrochemical devices, such as amperometric sensors, electrochemical impedance sensors, and electrochemical luminescence sensors as well as photoelectrochemical sensors, provide wide applications in the detection of chemical and biological targets in terms of electrochemical change of electrode interfaces. Here, this review focuses on recent advances in electrochemical sensors and biosensors based on nanomaterials and nanostructures during 2013 to 2014. The aim of this effort is to provide the reader with a clear and concise view of new advances in areas ranging from electrode engineering, strategies for electrochemical signal amplification, and novel electroanalytical techniques used in the miniaturization and integration of the sensors. Moreover, the authors have attempted to highlight areas of the latest and significant development of enhanced electrochemical nanosensors and nanobiosensors that inspire broader interests across various disciplines. Electrochemical sensors for small molecules, enzyme-based biosensors, genosensors, immunosensors, and cytosensors are reviewed herein (Figure 1). Such novel advances are important for the development of electrochemical sensors that open up new avenues and methods for future research. In conclusion, we recommend readers interested in the general principles of electrochemical sensors and electrochemical methods to refer to other excellent literature for a broad scope in this area.(3, 4) However, due to the explosion of publications in this active field, we do not claim that this Review includes all of the published works in the past two years and we apologize to the authors of excellent work, which is unintentionally left out.

  3. Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures

    DOE PAGESBeta

    Zhu, Chengzhou; Yang, Guohai; Li, He; Du, Dan; Lin, Yuehe

    2014-10-29

    We report that considerable attention has been devoted to the integration of recognition elements with electronic elements to develop electrochemical sensors and biosensors.Various electrochemical devices, such as amperometric sensors, electrochemical impedance sensors, and electrochemical luminescence sensors as well as photoelectrochemical sensors, provide wide applications in the detection of chemical and biological targets in terms of electrochemical change of electrode interfaces. Here, this review focuses on recent advances in electrochemical sensors and biosensors based on nanomaterials and nanostructures during 2013 to 2014. The aim of this effort is to provide the reader with a clear and concise view of new advancesmore » in areas ranging from electrode engineering, strategies for electrochemical signal amplification, and novel electroanalytical techniques used in the miniaturization and integration of the sensors. Moreover, the authors have attempted to highlight areas of the latest and significant development of enhanced electrochemical nanosensors and nanobiosensors that inspire broader interests across various disciplines. Electrochemical sensors for small molecules, enzyme-based biosensors, genosensors, immunosensors, and cytosensors are reviewed herein (Figure 1). Such novel advances are important for the development of electrochemical sensors that open up new avenues and methods for future research. In conclusion, we recommend readers interested in the general principles of electrochemical sensors and electrochemical methods to refer to other excellent literature for a broad scope in this area.(3, 4) However, due to the explosion of publications in this active field, we do not claim that this Review includes all of the published works in the past two years and we apologize to the authors of excellent work, which is unintentionally left out.« less

  4. Impedance spectroscopy study of anodic growth of zirconium oxide film in NaOH medium

    NASA Astrophysics Data System (ADS)

    Pauporté, T.; Finne, J.; Lincot, D.

    2005-06-01

    The growth of anodic oxide films on zirconium metal has been followed up to 300 V by electrochemical impedance spectroscopy and scanning electron microscopy. The maximum layer thickness is 720 nm, the dielectric constant of the film is measured at 19.5 and the growth constant is 2.4 nm V-1. Above 50 V, the presence of two impedance relaxations between 1 Hz and 200 kHz reveals a bilayered structure. This may be a consequence of a lower resistivity of the outer layer induced by some electrolytic solution infiltration into film defects.

  5. A comprehensive impedance journey to continuous microbial fuel cells.

    PubMed

    Sevda, Surajbhan; Chayambuka, Kudakwashe; Sreekrishnan, T R; Pant, Deepak; Dominguez-Benetton, Xochitl

    2015-12-01

    The aim of the present work was to characterize the impedance response of an air-cathode MFC operating in a continuous mode and to determine intrinsic properties that define its performance which are crucial to be controlled for scalability purposes. The limiting step on electricity generation is the anodic electrochemically-active biofilm, independently of the external resistance, Rext, utilized. However, for Rext below 3 kΩ the internal impedance of the bioanode remained invariable, in good correspondence to the power density profile. The hydraulic retention time (HRT) had an effect on the impedance of both the bioanode and the air-cathode and especially on the overall MFC. The lowest HRT at which the MFC was operable was 3h. Yet, the variation on the HRT did not have a significant impact on power generation. A two constant phase element-model was associated with the EIS response of both bioanode and air-cathode, respectively. Consistency was found between the CPE behaviour and the normal power-law distribution of local resistivity with a uniform dielectric constant, which represented consistent values with the electrical double layer, the Nernst diffusion layer and presumably the biofilm thickness. These results have future implications on MFC monitoring and control, as well as in providing critical parameters for scale-up. PMID:25921205

  6. Determination of Complex Microcalorimeter Parameters with Impedance Measurements

    NASA Technical Reports Server (NTRS)

    Saab, T.; Bandler, S. R.; Chervenak, J.; Figueroa-Feliciano, E.; Finkbeiner, F.; Iyomoto, N.; Kelley, R.; Kilbourne, C. A.; Lindeman, M. A.; Porter, F. S.; Sadleir, J.

    2005-01-01

    The proper understanding and modeling of a microcalorimeter s response requires the accurate knowledge of a handful of parameters, such as C, G, alpha, . . . . While a few of these, such 8s the normal state resistance and the total thermal conductance to the heat bath (G) are directly determined from the DC IV characteristics, some others, notoriously the heat capacity (C) and alpha, appear in degenerate combinations in most measurable quantities. The case of a complex microcalorimeter, i.e. one in which the absorber s heat capacity is connected by a finite thermal impedance to the sensor, and subsequently by another thermal impedance to the heat bath, results in an added ambiguity in the determination of the individual C's and G's. In general, the dependence of the microcalorimeter s complex impedance on these parameters varies with frequency. This variation allows us to determine the individual parameters by fitting the prediction of the microcalorimeter model to the impedance data. We describe in this paper our efforts at characterizing the Goddard X-ray microcalorimeters. Using the parameters determined with this method we them compare the pulse shape and noise spectra predicted by the microcalorimeter model to data taken with the same devices.

  7. Electrochemical hydrogen Storage Systems

    SciTech Connect

    Dr. Digby Macdonald

    2010-08-09

    closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to their hydride form. In addition to this experimental work, a parallel project was carried out to develop a new model of electrochemical impedance spectroscopy (EIS) that could be used to define the mechanisms of the electrochemical hydrogenation reactions. The EIS technique is capable of probing complex chemical and electrochemical reactions, and our model was written into a computer code that allowed the input of experimental EIS data and the extraction of kinetic parameters based on a best-fit analysis of theoretical reaction schemes. Finally, electrochemical methods for hydrogenating organic and metallo-organic materials have been explored.

  8. Electrochemical behaviour and surface characterisation of Zr exposed to an SBF solution containing glycine, in view of dental implant applications.

    PubMed

    Bozzini, Benedetto; Carlino, Paolo; Mele, Claudio

    2011-01-01

    Zr and Ti alloys are extensively used in the biomedical field owing to their optimal mechanical properties and excellent corrosion resistance. Fully ceramic implants based on zirconia are appealing with respect to the traditional Ti-based metallic ones for several reasons, such as: (i) improved aesthetic impact, (ii) better biocompatibility and (iii) better osteointegration. Nevertheless, fully ceramic implants exhibit serious mechanical and clinical drawbacks, chiefly brittleness and impossibility of post-implant position adjustments. In this paper we propose the novel approach of using a metal-based system, consisting of metallic Zr, for the bulk of the implant and an electrochemically grown zirconia coating, ensuring contact of the ceramic with the biological environment and isolation from the underlying metal. This solution combines the outstanding mechanical properties of the metal in the bulk with the optimal biochemical properties exclusively where they are needed: at the surface. The present paper-focussed on the electrochemical behaviour of the proposed system at the implant-wound and implant-growing bone interface-reports a time-dependent electrochemical corrosion study of zirconia-coated zirconium, performed in the following ways: (i) exposure and measurements in SBF (simulating the inorganic part of human plasma, relevant to wound chemistry), (ii) exposure and measurements in SBF with added glycine (the simplest, ubiquitous amino acid found in proteins), (iii) exposure in SBF with added glycine and measurements in SBF. Electrochemical impedance spectra were measured and interpreted with the equivalent-circuit approach, yielding estimates of the time-variation of the oxide film thickness and resistance were estimated. FT-IR, Surface Raman and VIS reflectance spectroscopies were used to characterise the surface before and after the exposure to SBF solutions. Spectroelectrochemical measurements revealed an higher corrosion resistance of the oxide films

  9. Impedance nanopore biosensor: influence of pore dimensions on biosensing performance.

    PubMed

    Kant, Krishna; Yu, Jingxian; Priest, Craig; Shapter, Joe G; Losic, Dusan

    2014-03-01

    Knowledge about electrochemical and electrical properties of nanopore structures and the influence of pore dimensions on these properties is important for the development of nanopore biosensing devices. The aim of this study was to explore the influence of nanopore dimensions (diameter and length) on biosensing performance using non-faradic electrochemical impedance spectroscopy (EIS). Nanoporous alumina membranes (NPAMs) prepared by self-ordered electrochemical anodization of aluminium were used as model nanopore sensing platforms. NPAMs with different pore diameters (25-65 nm) and lengths (4-18 μm) were prepared and the internal pore surface chemistry was modified by covalently attaching streptavidin and biotin. The performance of this antibody nanopore biosensing platform was evaluated using various concentrations of biotin as a model analyte. EIS measurements of pore resistivity and conductivity were carried out for pores with different diameters and lengths. The results showed that smaller pore dimensions of 25 nm and pore lengths up to 10 μm provide better biosensing performance.

  10. Dengue virus detection using impedance measured across nanoporous alumina membrane.

    PubMed

    Peh, Alister En Kai; Li, Sam Fong Yau

    2013-04-15

    The prevalence of dengue around the world makes it critical to develop a simple diagnostic device that can be easily handled by end users and provides fast results. In this paper, we described the use of a small and thin piece of alumina membrane, 60 μm thick and 13 mm in diameter as the sensing platform for the detection of dengue infection. The electrochemical setup is simplified by using the membrane as both the working and the counter electrode. This is achieved by coating both sides of the membrane with a submicron layer of platinum. Electrochemical impedance spectroscopy was utilized for the characterization of the immunosensor as well as the acquisition of data. The change in the pore resistance of the membrane displayed a good correlation with the concentration of the dengue 2 and dengue 3 viruses in plaque forming unit (PFU mL⁻¹), giving detection limit of 0.230 PFU mL⁻¹ and 0.710 PFU mL⁻¹ respectively. This thin piece of membrane sensor, coupled with the simple electrochemical setup, fast detection time of 40 min and high sensitivity, showed potential to be developed into a disposable point-of-care diagnostic tool for clinical uses.

  11. Microfluidic electrochemical reactors

    DOEpatents

    Nuzzo, Ralph G.; Mitrovski, Svetlana M.

    2011-03-22

    A microfluidic electrochemical reactor includes an electrode and one or more microfluidic channels on the electrode, where the microfluidic channels are covered with a membrane containing a gas permeable polymer. The distance between the electrode and the membrane is less than 500 micrometers. The microfluidic electrochemical reactor can provide for increased reaction rates in electrochemical reactions using a gaseous reactant, as compared to conventional electrochemical cells. Microfluidic electrochemical reactors can be incorporated into devices for applications such as fuel cells, electrochemical analysis, microfluidic actuation, pH gradient formation.

  12. Electrochemical reduction induced self-doping of Ti3+ for efficient water splitting performance on TiO2 based photoelectrodes.

    PubMed

    Zhang, Zhonghai; Hedhili, Mohamed Nejib; Zhu, Haibo; Wang, Peng

    2013-10-01

    Hetero-element doping (e.g., N, F, C) of TiO2 is inevitably accompanied by significantly increased structural defects due to the dopants' nature being foreign impurities. Very recently, in situ self-doping with homo-species (e.g., Ti(3+)) has been emerging as a rational solution to enhance TiO2 photoactivity within both UV and visible light regions. Herein we demonstrate that conventional electrochemical reduction is indeed a facile and effective strategy to induce in situ self-doping of Ti(3+) into TiO2 and the self-doped TiO2 photoelectrodes showed remarkably improved and very stable water splitting performance. In this study, hierarchical TiO2 nanotube arrays (TiO2 NTs) were chosen as TiO2 substrates and then electrochemically reduced under varying conditions to produce Ti(3+) self-doped TiO2 NTs (ECR-TiO2 NTs). The optimized saturation photocurrent density and photoconversion efficiency on the ECR-TiO2 NTs under simulated AM 1.5G illumination were identified to be 2.8 mA cm(-2) at 1.23 V vs. RHE and 1.27% respectively, which are the highest values ever reported for TiO2 based photoelectrodes. The electrochemical impedance spectra measurement confirms that the electrochemical induced Ti(3+) self-doping improved the electrical conductivity of the ECR-TiO2 NTs. The versatility and effectiveness of the electrochemical reduction method for Ti(3+) self-doping in P25 based TiO2 was also examined and confirmed.

  13. Controlled solvothermal synthesis and electrochemical performance of LiCoPO4 submicron single crystals as a cathode material for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Wu, Borong; Xu, Hongliang; Mu, Daobin; Shi, Lili; Jiang, Bing; Gai, Liang; Wang, Lei; Liu, Qi; Ben, Liubin; Wu, Feng

    2016-02-01

    The submicron single crystals of LiCoPO4 with 500 nm diameter are prepared by solvothermal method. The carbon coated sample is obtained using sucrose as carbon source under 650 °C subsequently. It is investigated that the solvent composition has an effect on the morphology and the electrochemical performance of the cathode material. The as-prepared samples are characterized with X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopic, dynamic light scattering, and Fourier transform infrared spectra. The electrochemical performance is evaluated by cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. The LiCoPO4/C cathode can reach an initial discharge capacity of 123.8 mA h g-1 at 0.1C, with a retention of 83% after 100 cycles. A discharge capacity of 84.9 mA h g-1 is still attainable when the rate is up to 2C. The good cycling performance and rate capability are contributed to the decrease of particle size along with the lower antisite defect concentration in the LCP crystals, and uniform carbon coating.

  14. The quantum Hall impedance standard

    NASA Astrophysics Data System (ADS)

    Schurr, J.; Kučera, J.; Pierz, K.; Kibble, B. P.

    2011-02-01

    Alternating current measurements of double-shielded quantum Hall devices have revealed a fascinating property of which only a quantum effect is capable: it can detect its own frequency dependence and convert it to a current dependence which can be used to eliminate both of them. According to an experimentally verified model, the residual frequency dependence is smaller than the measuring uncertainty of 1.3 × 10-9 kHz-1. In this way, a highly precise quantum standard of impedance can be established, without having to correct for any calculated frequency dependence and without the need for any artefact with a calculated frequency dependence. Nothing else like that is known to us and we hope that our results encourage other national metrology institutes to also apply it to impedance metrology and further explore its beautiful properties.

  15. 21 CFR 870.2750 - Impedance phlebograph.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Impedance phlebograph. 870.2750 Section 870.2750...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2750 Impedance phlebograph. (a) Identification. An impedance phlebograph is a device used to provide a visual display of...

  16. 21 CFR 870.2750 - Impedance phlebograph.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Impedance phlebograph. 870.2750 Section 870.2750...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2750 Impedance phlebograph. (a) Identification. An impedance phlebograph is a device used to provide a visual display of...

  17. 21 CFR 870.2770 - Impedance plethysmograph.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Impedance plethysmograph. 870.2770 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2770 Impedance plethysmograph. (a) Identification. An impedance plethysmograph is a device used to estimate peripheral...

  18. 21 CFR 870.2770 - Impedance plethysmograph.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Impedance plethysmograph. 870.2770 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2770 Impedance plethysmograph. (a) Identification. An impedance plethysmograph is a device used to estimate peripheral...

  19. 21 CFR 870.2750 - Impedance phlebograph.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Impedance phlebograph. 870.2750 Section 870.2750...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2750 Impedance phlebograph. (a) Identification. An impedance phlebograph is a device used to provide a visual display of...

  20. 21 CFR 870.2750 - Impedance phlebograph.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Impedance phlebograph. 870.2750 Section 870.2750...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2750 Impedance phlebograph. (a) Identification. An impedance phlebograph is a device used to provide a visual display of...

  1. 21 CFR 870.2770 - Impedance plethysmograph.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Impedance plethysmograph. 870.2770 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2770 Impedance plethysmograph. (a) Identification. An impedance plethysmograph is a device used to estimate peripheral...

  2. 21 CFR 870.2770 - Impedance plethysmograph.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Impedance plethysmograph. 870.2770 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2770 Impedance plethysmograph. (a) Identification. An impedance plethysmograph is a device used to estimate peripheral...

  3. Impedance analysis of acupuncture points and pathways

    NASA Astrophysics Data System (ADS)

    Teplan, Michal; Kukučka, Marek; Ondrejkovičová, Alena

    2011-12-01

    Investigation of impedance characteristics of acupuncture points from acoustic to radio frequency range is addressed. Discernment and localization of acupuncture points in initial single subject study was unsuccessfully attempted by impedance map technique. Vector impedance analyses determined possible resonant zones in MHz region.

  4. [Research on Electrical Impedance Tomography Technology].

    PubMed

    Chang, Feiba; Zhang, Hehua; Yan, Lexian; Yin, Jun

    2016-01-01

    This article reviews the principle of electrical impedance tomography imaging and measurement system; focuses on electrical impedance tomography imaging detection system of incentive mode and several typical image reconstruction algorithm of electrical impedance imaging; and objectively compares and effectively evaluates several image reconstruction algorithm.

  5. Buffered Electrochemical Polishing of Niobium

    SciTech Connect

    Gianluigi Ciovati; Tian, Hui; Corcoran, Sean

    2011-03-01

    The standard preparation of superconducting radio-frequency (SRF) cavities made of pure niobium include the removal of a 'damaged' surface layer, by buffered chemical polishing (BCP) or electropolishing (EP), after the cavities are formed. The performance of the cavities is characterized by a sharp degradation of the quality factor when the surface magnetic field exceeds about 90 mT, a phenomenon referred to as 'Q-drop.' In cavities made of polycrystalline fine grain (ASTM 5) niobium, the Q-drop can be significantly reduced by a low-temperature (? 120 °C) 'in-situ' baking of the cavity if the chemical treatment was EP rather than BCP. As part of the effort to understand this phenomenon, we investigated the effect of introducing a polarization potential during buffered chemical polishing, creating a process which is between the standard BCP and EP. While preliminary results on the application of this process to Nb cavities have been previously reported, in this contribution we focus on the characterization of this novel electrochemical process by measuring polarization curves, etching rates, surface finish, electrochemical impedance and the effects of temperature and electrolyte composition. In particular, it is shown that the anodic potential of Nb during BCP reduces the etching rate and improves the surface finish.

  6. Electrochemical deposition of conductive and adhesive polypyrrole-dopamine films.

    PubMed

    Kim, Semin; Jang, Lindy K; Park, Hyun S; Lee, Jae Young

    2016-01-01

    Electrode surfaces have been widely modified with electrically conductive polymers, including polypyrrole (PPY), to improve the performance of electrodes. To utilize conductive polymers for electrode modification, strong adhesion between the polymer films and electrode substrates should be ensured with high electrical/electrochemical activities. In this study, PPY films were electrochemically polymerized on electrodes (e.g., indium tin oxide (ITO)) with dopamine as a bio-inspired adhesive molecule. Efficient and fast PPY electrodeposition with dopamine (PDA/PPY) was found; the resultant PDA/PPY films exhibited greatly increased adhesion strengths of up to 3.7 ± 0.8 MPa and the modified electrodes had electrochemical impedances two to three orders of magnitude lower than that of an unmodified electrode. This electrochemical deposition of adhesive and conductive PDA/PPY offers a facile and versatile electrode modification for various applications, such as biosensors and batteries.

  7. Electrochemical deposition of conductive and adhesive polypyrrole-dopamine films

    PubMed Central

    Kim, Semin; Jang, Lindy K.; Park, Hyun S.; Lee, Jae Young

    2016-01-01

    Electrode surfaces have been widely modified with electrically conductive polymers, including polypyrrole (PPY), to improve the performance of electrodes. To utilize conductive polymers for electrode modification, strong adhesion between the polymer films and electrode substrates should be ensured with high electrical/electrochemical activities. In this study, PPY films were electrochemically polymerized on electrodes (e.g., indium tin oxide (ITO)) with dopamine as a bio-inspired adhesive molecule. Efficient and fast PPY electrodeposition with dopamine (PDA/PPY) was found; the resultant PDA/PPY films exhibited greatly increased adhesion strengths of up to 3.7 ± 0.8 MPa and the modified electrodes had electrochemical impedances two to three orders of magnitude lower than that of an unmodified electrode. This electrochemical deposition of adhesive and conductive PDA/PPY offers a facile and versatile electrode modification for various applications, such as biosensors and batteries. PMID:27459901

  8. Electrochemical deposition of conductive and adhesive polypyrrole-dopamine films.

    PubMed

    Kim, Semin; Jang, Lindy K; Park, Hyun S; Lee, Jae Young

    2016-01-01

    Electrode surfaces have been widely modified with electrically conductive polymers, including polypyrrole (PPY), to improve the performance of electrodes. To utilize conductive polymers for electrode modification, strong adhesion between the polymer films and electrode substrates should be ensured with high electrical/electrochemical activities. In this study, PPY films were electrochemically polymerized on electrodes (e.g., indium tin oxide (ITO)) with dopamine as a bio-inspired adhesive molecule. Efficient and fast PPY electrodeposition with dopamine (PDA/PPY) was found; the resultant PDA/PPY films exhibited greatly increased adhesion strengths of up to 3.7 ± 0.8 MPa and the modified electrodes had electrochemical impedances two to three orders of magnitude lower than that of an unmodified electrode. This electrochemical deposition of adhesive and conductive PDA/PPY offers a facile and versatile electrode modification for various applications, such as biosensors and batteries. PMID:27459901

  9. Electrochemical deposition of conductive and adhesive polypyrrole-dopamine films

    NASA Astrophysics Data System (ADS)

    Kim, Semin; Jang, Lindy K.; Park, Hyun S.; Lee, Jae Young

    2016-07-01

    Electrode surfaces have been widely modified with electrically conductive polymers, including polypyrrole (PPY), to improve the performance of electrodes. To utilize conductive polymers for electrode modification, strong adhesion between the polymer films and electrode substrates should be ensured with high electrical/electrochemical activities. In this study, PPY films were electrochemically polymerized on electrodes (e.g., indium tin oxide (ITO)) with dopamine as a bio-inspired adhesive molecule. Efficient and fast PPY electrodeposition with dopamine (PDA/PPY) was found; the resultant PDA/PPY films exhibited greatly increased adhesion strengths of up to 3.7 ± 0.8 MPa and the modified electrodes had electrochemical impedances two to three orders of magnitude lower than that of an unmodified electrode. This electrochemical deposition of adhesive and conductive PDA/PPY offers a facile and versatile electrode modification for various applications, such as biosensors and batteries.

  10. Constant current loop impedance measuring system that is immune to the effects of parasitic impedances

    NASA Technical Reports Server (NTRS)

    Anderson, Karl F. (Inventor)

    1994-01-01

    A constant current loop measuring system is provided for measuring a characteristic of an environment. The system comprises a first impedance positionable in the environment, a second impedance coupled in series with said first impedance and a parasitic impedance electrically coupled to the first and second impedances. A current generating device, electrically coupled in series with the first and second impedances, provides a constant current through the first and second impedances to produce first and second voltages across the first and second impedances, respectively, and a parasitic voltage across the parasitic impedance. A high impedance voltage measuring device measures a voltage difference between the first and second voltages independent of the parasitic voltage to produce a characteristic voltage representative of the characteristic of the environment.

  11. Non-destructive determination of impedance spectrum of fruit flesh under the skin

    NASA Astrophysics Data System (ADS)

    Vozáry, E.; Benkó, P.

    2010-04-01

    Impedance spectrum of fresh (intact) apples and of artificially bruised (pressed) apples was determined on the surface of skin with ECG electrodes (Fiab Spa). The magnitude and the phase angle of impedance were measured with a HP 4284A precision LCR meter. The open-short corrected spectra were approached a model consisting of serial resultant of an ohmic resistance and three distributed elements. Approach was performed with complex nonlinear least squares method by MathLab program. Variance analysis was performed (P<0.05) on impedance parameters (SPSS 12.0 for Windows). Parameters of the first distributed element can describe the impedance of apple skin, and parameters of the second and the third element can characterize the impedance of apple flesh. Parameters of the second and the third element are in good agreement with impedance parameters obtained from spectra measured directly on apple flesh without skin. The value of parameters resulted from measurement on apples with skin are sensitive to the degree of artificial bruises.

  12. Impedance spectroscopy of manganite films prepared by metalorganic chemical vapor deposition.

    PubMed

    Nakamura, Toshihiro; Homma, Kohei; Tachibana, Kunihide

    2011-09-01

    Polycrystalline Pr(1-x)CaxMnO3 (PCMO) films were prepared by liquid source metalorganic chemical vapor deposition using in situ infrared spectroscopic monitoring. The electric properties of the PCMO-based devices with Ni and Al electrodes (Ni-PCMO-Ni and Al-PCMO-Al devices) were studied by dc current-voltage (I-V) measurements and ac impedance spectroscopy. The current varied linearly with the applied voltage in Ni-PCMO-Ni devices, while nonlinear behavior was observed in I-V curves for Al-PCMO-Al devices. Impedance spectra were also different between Ni-PCMO-Ni and Al-PCMO-Al devices. The Cole-Cole plots for the Ni-PCMO-Ni devices showed only a single semicircular arc, which was assigned to the PCMO bulk impedance. Impedance spectra for the Al-PCMO-Al devices had two distinct components, which could be attributed to the PCMO bulk and to the interface between the PCMO film and the Al electrode, respectively. The bias dependence of the impedance spectra suggested that the resistance switching in the Al-PCMO-Al devices was mainly due to the resistance change in the interface between the film and the electrode. The metal electrode plays an important role in the resistance switching in the PCMO-based devices. The choice of the optimum metal electrodes is essential to the ReRAM application of the manganite-based devices.

  13. Rapid Impedance Spectrum Measurements for State-of-Health Assessment of Energy Storage Devices

    SciTech Connect

    Jon P. Christophersen; John L. Morrison; Chester G. Motloch; William H. Morrison

    2012-04-01

    Harmonic compensated synchronous detection (HCSD) is a technique that can be used to measure wideband impedance spectra within seconds based on an input sum-of-sines signal having a frequency spread separated by harmonics. The battery (or other energy storage device) is excited with a sum-of-sines current signal that has a duration of at least one period of the lowest frequency. The voltage response is then captured and synchronously detected at each frequency of interest to determine the impedance spectra. This technique was successfully simulated using a simplified battery model and then verified with commercially available Sanyo lithium-ion cells. Simulations revealed the presence of a start-up transient effect when only one period of the lowest frequency is included in the excitation signal. This transient effect appears to only influence the low-frequency impedance measurements and can be reduced when a longer input signal is used. Furthermore, lithium-ion cell testing has indicated that the transient effect does not seem to impact the charge transfer resistance in the mid-frequency region. The degradation rates for the charge transfer resistance measured from the HCSD technique were very similar to the changes observed from standardized impedance spectroscopy methods. Results from these studies, therefore, indicate that HCSD is a viable, rapid alternative approach to acquiring impedance spectra.

  14. Analysis of the transverse SPS beam coupling impedance with short and long bunches

    SciTech Connect

    Salvant,B.; Calaga, R.; de Maria, R.; Arduini, G.; Burkhardt, H.; Damerau, H.; Hofle, W.; Metral, E.; Papotti, G.; Rumolo, G.; Tomas, R.; White, S.

    2009-05-04

    The upgrade of the CERN Large Hadron Collider (LHC) would require a four- to five-fold increase of the single bunch intensity presently obtained in the Super Proton Synchrotron (SPS). Operating at such high single bunch intensities requires a detailed knowledge of the sources of SPS beam coupling impedance, so that longitudinal and transverse impedance reduction campaigns can be planned and performed effectively if needed. In this paper, the transverse impedance of the SPS is studied by injecting a single long bunch into the SPS, and observing its decay without RF. Longer bunches allow for higher frequency resolution of the longitudinal and transverse bunch spectra acquired with strip line couplers connected to a fast data acquisition. It also gives access to the frequency content of the transverse impedance. Results from measurements with short and long bunches in the SPS performed in 2008 are compared with simulations.

  15. Polyaniline-iron oxide nanohybrid film as multi-functional label-free electrochemical and biomagnetic sensor for catechol.

    PubMed

    Chandra, Sudeshna; Lang, Heinrich; Bahadur, Dhirendra

    2013-09-17

    Polyaniline-iron oxide magnetic nanohybrid was synthesized and characterized using various spectroscopic, microstructural and electrochemical techniques. The smart integration of Fe3O4 nanoparticles within the polyaniline (PANI) matrix yielded a mesoporous nanohybrid (Fe3O4@PANI) with high surface area (94 m(2) g(-1)) and average pore width of 12.8 nm. Catechol is quasi-reversibly oxidized to o-quinone and reduced at the Fe3O4@PANI modified electrodes. The amperometric current response toward catechol was evaluated using the nanohybrid and the sensitivity and detection limit were found to be 312 μA μL(-1) and 0.2 nM, respectively. The results from electrochemical impedance spectroscopy (EIS) indicated that the increased solution resistance (Rs) was due to elevated adsorption of catechol on the modified electrodes. Photoluminescence spectra showed ligand-to-metal charge transfer (LMCT) between p-π orbitals of the phenolate oxygen in catechol and the d-σ* metal orbital of Fe3O4@PANI nanohybrid. Potential dependent spectroelectrochemical behavior of Fe3O4@PANI nanohybrid toward catechol was studied using UV/vis/NIR spectroscopy. The binding activity of the biomagnetic particles to catechol through Brownian relaxation was evident from AC susceptibility measurements. The proposed sensor was used for successful recovery of catechol in tap water samples.

  16. Facile synthesis and electrochemical characterization of Sn4Ni3/C nanocomposites as anode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Ma, Ruguang; Lu, Zhouguang; Yang, Shiliu; Xi, Liujiang; Wang, Chundong; Wang, H. E.; Chung, C. Y.

    2012-12-01

    Sn4Ni3/C nanocomposites were synthesized by a pyrolyzing-annealing two-step strategy. The phase structure, carbon content and morphology of the nanocomposites were investigated. The results reveal that the crystallinity, carbon structure and purity were enhanced obviously after heat-treatment. Electrochemical performance was evaluated by cyclic voltammograms (CV), galvanostatic discharge/charge and electrochemical impedance spectra (EIS). The annealed Sn4Ni3/C powders deliver an initial charge capacity of 525.2 mA h g-1, 400 mA h g-1 over 10 cycles at 36 mA g-1, >300 mA h g-1 after 40 cycles at 72 mA g-1 and maintain 240 mA h g-1 for 40 cycles at 150 mA g-1. TEM investigation of the cycled electrodes shows the discharge/charge process neither destroyed the structure of nanocomposites nor changed the crystallinity of the materials. So the high capacity and stable cyclability are ascribed to the synergetic effect of ductile nickel and conductive carbon constituent and the influence of heat-treatment.

  17. Graphitic carbon nitride (g-C3N4) coated titanium oxide nanotube arrays with enhanced photo-electrochemical performance.

    PubMed

    Sun, Mingxuan; Fang, Yalin; Kong, Yuanyuan; Sun, Shanfu; Yu, Zhishui; Umar, Ahmad

    2016-08-01

    Herein, we report the successful formation of graphitic carbon nitride coated titanium oxide nanotube array thin films (g-C3N4/TiO2) via the facile thermal treatment of anodized Ti sheets over melamine. The proportion of C3N4 and TiO2 in the composite can be adjusted by changing the initial addition mass of melamine. The as-prepared samples are characterized by several techniques in order to understand the morphological, structural, compositional and optical properties. UV-vis absorption studies exhibit a remarkable red shift for the g-C3N4/TiO2 thin films as compared to the pristine TiO2 nanotubes. Importantly, the prepared composites exhibit an enhanced photocurrent and photo-potential under both UV-vis and visible light irradiation. Moreover, the observed maximum photo-conversion efficiency of the prepared composites is 1.59 times higher than that of the pristine TiO2 nanotubes. The optical and electrochemical impedance spectra analysis reveals that the better photo-electrochemical performance of the g-C3N4/TiO2 nanotubes is mainly due to the wider light absorption and reduced impedance compared to the bare TiO2 nanotube electrode. The presented work demonstrates a facile and simple method to fabricate g-C3N4/TiO2 nanotubes and clearly revealed that the introduction of g-C3N4 is a new and innovative approach to improve the photocurrent and photo-potential efficiencies of TiO2. PMID:27443233

  18. Graphitic carbon nitride (g-C3N4) coated titanium oxide nanotube arrays with enhanced photo-electrochemical performance.

    PubMed

    Sun, Mingxuan; Fang, Yalin; Kong, Yuanyuan; Sun, Shanfu; Yu, Zhishui; Umar, Ahmad

    2016-08-01

    Herein, we report the successful formation of graphitic carbon nitride coated titanium oxide nanotube array thin films (g-C3N4/TiO2) via the facile thermal treatment of anodized Ti sheets over melamine. The proportion of C3N4 and TiO2 in the composite can be adjusted by changing the initial addition mass of melamine. The as-prepared samples are characterized by several techniques in order to understand the morphological, structural, compositional and optical properties. UV-vis absorption studies exhibit a remarkable red shift for the g-C3N4/TiO2 thin films as compared to the pristine TiO2 nanotubes. Importantly, the prepared composites exhibit an enhanced photocurrent and photo-potential under both UV-vis and visible light irradiation. Moreover, the observed maximum photo-conversion efficiency of the prepared composites is 1.59 times higher than that of the pristine TiO2 nanotubes. The optical and electrochemical impedance spectra analysis reveals that the better photo-electrochemical performance of the g-C3N4/TiO2 nanotubes is mainly due to the wider light absorption and reduced impedance compared to the bare TiO2 nanotube electrode. The presented work demonstrates a facile and simple method to fabricate g-C3N4/TiO2 nanotubes and clearly revealed that the introduction of g-C3N4 is a new and innovative approach to improve the photocurrent and photo-potential efficiencies of TiO2.

  19. Noninvasive electrical impedance sensor for in vivo tissue discrimination at radio frequencies.

    PubMed

    Dai, Yu; Du, Jun; Yang, Qing; Zhang, Jianxun

    2014-09-01

    Compared to traditional open surgery, minimally invasive surgery (MIS) allows for a more rapid and less painful recovery. However, the lack of significant haptic feedback in MIS can make tissue discrimination difficult. This paper tests a noninvasive electrical impedance sensor for in vivo discrimination of tissue types in MIS. The sensor consists of two stainless steel spherical electrodes used to measure the impedance spectra over the frequency range of 200 kHz to 5 MHz. The sensor helps ensure free movement on an organ surface and prevents soft tissues from being injured during impedance measurement. Since the recorded electrical impedance is correlated with the force pressed on the electrode and the mechanical property of the tissue, the electrode-tissue contact impedance is calculated theoretically. We show that the standard deviation of the impedance ratio at each frequency point is sufficient to distinguish different tissue types. Both in vitro experiment in a pig kidney and in vivo experiment in rabbit organs were performed to demonstrate the feasibility of the electrical impedance sensor. The experimental results indicated that the sensor, used with the proposed data-processing method, provides accurate and reliable biological tissue discrimination.

  20. A Comparative Study of Four Impedance Eduction Methodologies Using Several Test Liners

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Jones, Michael G.

    2013-01-01

    A comparative study of four commonly used impedance eduction methods is presented for a range of liner structures and test conditions. Two of the methods are restricted to uniform flow while the other two accommodate both uniform and boundary layer flows. Measurements on five liner structures (a rigid-wall insert, a ceramic tubular liner, a wire mesh liner, a low porosity conventional liner, and a high porosity conventional liner) are obtained using the NASA Langley Grazing Flow Impedance Tube. The educed impedance of each liner is presented for forty-two test conditions (three Mach numbers and fourteen frequencies). In addition, the effects of moving the acoustic source from upstream to downstream and the refractive effects of the mean boundary layer on the wire mesh liner are investigated. The primary conclusions of the study are that: (1) more accurate results are obtained for the upstream source, (2) the uniform flow methods produce nearly identical impedance spectra at and below Mach 0.3 but significant scatter in the educed impedance occurs at the higher Mach number, (3) there is better agreement in educed impedance among the methods for the conventional liners than for the rigid-wall insert, ceramic, or wire mesh liner, and (4) the refractive effects of the mean boundary layer on the educed impedance of the wire mesh liner are generally small except at Mach 0.5.