Sample records for electrochemical studies simulating

  1. In vitro electrochemical corrosion and cell viability studies on nickel-free stainless steel orthopedic implants.

    PubMed

    Salahinejad, Erfan; Hadianfard, Mohammad Jafar; Macdonald, Digby Donald; Sharifi-Asl, Samin; Mozafari, Masoud; Walker, Kenneth J; Rad, Armin Tahmasbi; Madihally, Sundararajan V; Tayebi, Lobat

    2013-01-01

    The corrosion and cell viability behaviors of nanostructured, nickel-free stainless steel implants were studied and compared with AISI 316L. The electrochemical studies were conducted by potentiodynamic polarization and electrochemical impedance spectroscopic measurements in a simulated body fluid. Cytocompatibility was also evaluated by the adhesion behavior of adult human stem cells on the surface of the samples. According to the results, the electrochemical behavior is affected by a compromise among the specimen's structural characteristics, comprising composition, density, and grain size. The cell viability is interpreted by considering the results of the electrochemical impedance spectroscopic experiments.

  2. Study on electrochemical corrosion mechanism of steel foot of insulators for HVDC lines

    NASA Astrophysics Data System (ADS)

    Zheng, Weihua; Sun, Xiaoyu; Fan, Youping

    2017-09-01

    The main content of this paper is the mechanism of electrochemical corrosion of insulator steel foot in HVDC transmission line, and summarizes five commonly used artificial electrochemical corrosion accelerated test methods in the world. Various methods are analyzed and compared, and the simulation test of electrochemical corrosion of insulator steel feet is carried out by water jet method. The experimental results show that the experimental environment simulated by water jet method is close to the real environment. And the three suspension modes of insulators in the actual operation, the most serious corrosion of the V type suspension hardware, followed by the tension string suspension, and the linear string corrosion rate is the slowest.

  3. In Vitro Electrochemical Corrosion and Cell Viability Studies on Nickel-Free Stainless Steel Orthopedic Implants

    PubMed Central

    Salahinejad, Erfan; Hadianfard, Mohammad Jafar; Macdonald, Digby Donald; Sharifi-Asl, Samin; Mozafari, Masoud; Walker, Kenneth J.; Rad, Armin Tahmasbi; Madihally, Sundararajan V.; Tayebi, Lobat

    2013-01-01

    The corrosion and cell viability behaviors of nanostructured, nickel-free stainless steel implants were studied and compared with AISI 316L. The electrochemical studies were conducted by potentiodynamic polarization and electrochemical impedance spectroscopic measurements in a simulated body fluid. Cytocompatibility was also evaluated by the adhesion behavior of adult human stem cells on the surface of the samples. According to the results, the electrochemical behavior is affected by a compromise among the specimen's structural characteristics, comprising composition, density, and grain size. The cell viability is interpreted by considering the results of the electrochemical impedance spectroscopic experiments. PMID:23630603

  4. Development and Use of a Cyclic Voltammetry Simulator to Introduce Undergraduate Students to Electrochemical Simulations

    ERIC Educational Resources Information Center

    Brown, Jay H.

    2015-01-01

    Cyclic voltammetry (CV) is a popular technique for the study of electrochemical mechanisms because the method can provide useful information on the redox couple. The technique involves the application of a potential ramp on an unstirred solution while the current is monitored, and then the ramp is reversed for a return sweep. CV is sometimes…

  5. Simulation of electrochemical behavior in Lithium ion battery during discharge process.

    PubMed

    Chen, Yong; Huo, Weiwei; Lin, Muyi; Zhao, Li

    2018-01-01

    An electrochemical Lithium ion battery model was built taking into account the electrochemical reactions. The polarization was divided into parts which were related to the solid phase and the electrolyte mass transport of species, and the electrochemical reactions. The influence factors on battery polarization were studied, including the active material particle radius and the electrolyte salt concentration. The results showed that diffusion polarization exist in the positive and negative electrodes, and diffusion polarization increase with the conducting of the discharge process. The physicochemical parameters of the Lithium ion battery had the huge effect on cell voltage via polarization. The simulation data show that the polarization voltage has close relationship with active material particle size, discharging rate and ambient temperature.

  6. Simulation of electrochemical behavior in Lithium ion battery during discharge process

    PubMed Central

    Chen, Yong; Lin, Muyi; Zhao, Li

    2018-01-01

    An electrochemical Lithium ion battery model was built taking into account the electrochemical reactions. The polarization was divided into parts which were related to the solid phase and the electrolyte mass transport of species, and the electrochemical reactions. The influence factors on battery polarization were studied, including the active material particle radius and the electrolyte salt concentration. The results showed that diffusion polarization exist in the positive and negative electrodes, and diffusion polarization increase with the conducting of the discharge process. The physicochemical parameters of the Lithium ion battery had the huge effect on cell voltage via polarization. The simulation data show that the polarization voltage has close relationship with active material particle size, discharging rate and ambient temperature. PMID:29293535

  7. Thermo-electrochemical analysis of lithium ion batteries for space applications using Thermal Desktop

    NASA Astrophysics Data System (ADS)

    Walker, W.; Ardebili, H.

    2014-12-01

    Lithium-ion batteries (LIBs) are replacing the Nickel-Hydrogen batteries used on the International Space Station (ISS). Knowing that LIB efficiency and survivability are greatly influenced by temperature, this study focuses on the thermo-electrochemical analysis of LIBs in space orbit. Current finite element modeling software allows for advanced simulation of the thermo-electrochemical processes; however the heat transfer simulation capabilities of said software suites do not allow for the extreme complexities of orbital-space environments like those experienced by the ISS. In this study, we have coupled the existing thermo-electrochemical models representing heat generation in LIBs during discharge cycles with specialized orbital-thermal software, Thermal Desktop (TD). Our model's parameters were obtained from a previous thermo-electrochemical model of a 185 Amp-Hour (Ah) LIB with 1-3 C (C) discharge cycles for both forced and natural convection environments at 300 K. Our TD model successfully simulates the temperature vs. depth-of-discharge (DOD) profiles and temperature ranges for all discharge and convection variations with minimal deviation through the programming of FORTRAN logic representing each variable as a function of relationship to DOD. Multiple parametrics were considered in a second and third set of cases whose results display vital data in advancing our understanding of accurate thermal modeling of LIBs.

  8. Preliminary results of the comparison of the electrochemical behavior of a thioether and biphenyl

    NASA Technical Reports Server (NTRS)

    Morales, W.; Jones, W. R.

    1983-01-01

    An electrochemical cell was constructed to explore the feasibility of using electrochemical techniques to simulate the tribochemistry of various substances. The electrochemical cell was used to study and compare the behavior of a thioether 1,3-bis(phenylthio) benzene and biphenyl. It is found that under controlled conditions biphenyl undergoes a reversible reduction to a radical anion whereas the thioether undergoes an irreversible reduction yielding several products. The results are discussed in relationship to boundary lubrication.

  9. Atomistic Simulation and Electronic Structure of Lithium Doped Ionic Liquids: Structure, Transport, and Electrochemical Stability

    NASA Technical Reports Server (NTRS)

    Haskins, Justin B.; Bauschlicher, Charles W.; Lawson, John W.

    2015-01-01

    Zero-temperature density functional theory (DFT), density functional theory molecular dynamics (DFT-MD), and classical molecular dynamics using polarizable force fields (PFF-MD) are employed to evaluate the influence of Lithium ion on the structure, transport, and electrochemical stability of three potential ionic liquid electrolytes: N--methyl-N-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([pyr14][TFSI]), N--methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide ([pyr13][FSI]), and 1-ethyl-3--methylimidazolium boron tetrafluoride ([EMIM][BF4]). We characterize the Lithium ion solvation shell through zero-temperature DFT simulations of [Li(Anion)sub n](exp n-1) -clusters, DFT-MD simulations of isolated lithium ions in small ionic liquid systems, and PFF-MD simulations with high Li-doping levels in large ionic liquid systems. At low levels of Li-salt doping, highly stable solvation shells having 2-3 anions are seen in both [pyr14][TFSI] and [pyr13][FSI], while solvation shells with 4 anions dominate in [EMIM][BF sub 4]. At higher levels of doping, we find the formation of complex Li-network structures that increase the frequency of 4 anion-coordinated solvation shells. A comparison of computational and experimental Raman spectra for a wide range of [Li(Anion) sub n](exp n -1) - clusters shows that our proposed structures are consistent with experiment. We estimate the ion diffusion coefficients and quantify both size and simulation time effects. We find estimates of lithium ion diffusion are a reasonable order of magnitude and can be corrected for simulation time effects. Simulation size, on the other hand, is also important, with diffusion coefficients from long PFF-MD simulations of small cells having 20-40% error compared to large-cell values. Finally, we compute the electrochemical window using differences in electronic energy levels of both isolated cation/anion pairs and small ionic liquid systems with Li-salt doping. The single pair and liquid-phase systems provide similar estimates of electrochemical window, while Li-doping in the liquid-phase systems results in electrochemical windows little changed from the neat systems. Pure and hybrid functionals systematically provide an upper and lower bound, respectively, to the experimental electrochemical window for the systems studied here.

  10. The Mathematical Modeling and Computer Simulation of Electrochemical Micromachining Using Ultrashort Pulses

    NASA Astrophysics Data System (ADS)

    Kozak, J.; Gulbinowicz, D.; Gulbinowicz, Z.

    2009-05-01

    The need for complex and accurate three dimensional (3-D) microcomponents is increasing rapidly for many industrial and consumer products. Electrochemical machining process (ECM) has the potential of generating desired crack-free and stress-free surfaces of microcomponents. This paper reports a study of pulse electrochemical micromachining (PECMM) using ultrashort (nanoseconds) pulses for generating complex 3-D microstructures of high accuracy. A mathematical model of the microshaping process with taking into consideration unsteady phenomena in electrical double layer has been developed. The software for computer simulation of PECM has been developed and the effects of machining parameters on anodic localization and final shape of machined surface are presented.

  11. The fuel cell model of abiogenesis: a new approach to origin-of-life simulations.

    PubMed

    Barge, Laura M; Kee, Terence P; Doloboff, Ivria J; Hampton, Joshua M P; Ismail, Mohammed; Pourkashanian, Mohamed; Zeytounian, John; Baum, Marc M; Moss, John A; Lin, Chung-Kuang; Kidd, Richard D; Kanik, Isik

    2014-03-01

    In this paper, we discuss how prebiotic geo-electrochemical systems can be modeled as a fuel cell and how laboratory simulations of the origin of life in general can benefit from this systems-led approach. As a specific example, the components of what we have termed the "prebiotic fuel cell" (PFC) that operates at a putative Hadean hydrothermal vent are detailed, and we used electrochemical analysis techniques and proton exchange membrane (PEM) fuel cell components to test the properties of this PFC and other geo-electrochemical systems, the results of which are reported here. The modular nature of fuel cells makes them ideal for creating geo-electrochemical reactors with which to simulate hydrothermal systems on wet rocky planets and characterize the energetic properties of the seafloor/hydrothermal interface. That electrochemical techniques should be applied to simulating the origin of life follows from the recognition of the fuel cell-like properties of prebiotic chemical systems and the earliest metabolisms. Conducting this type of laboratory simulation of the emergence of bioenergetics will not only be informative in the context of the origin of life on Earth but may help in understanding whether life might emerge in similar environments on other worlds.

  12. Theoretical and Experimental Study of the Primary Current Distribution in Parallel-Plate Electrochemical Reactors

    ERIC Educational Resources Information Center

    Vazquez Aranda, Armando I.; Henquin, Eduardo R.; Torres, Israel Rodriguez; Bisang, Jose M.

    2012-01-01

    A laboratory experiment is described to determine the primary current distribution in parallel-plate electrochemical reactors. The electrolyte is simulated by conductive paper and the electrodes are segmented to measure the current distribution. Experiments are reported with the electrolyte confined to the interelectrode gap, where the current…

  13. Best Practices for Operando Battery Experiments: Influences of X-ray Experiment Design on Observed Electrochemical Reactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borkiewicz, O. J.; Wiaderek, Kamila M.; Chupas, Peter J.

    Dynamic properties and multiscale complexities governing electrochemical energy storage in batteries are most ideally interrogated under simulated operating conditions within an electrochemical cell. We assess how electrochemical reactivity can be impacted by experiment design, including the X-ray measurements or by common features or adaptations of electrochemical cells that enable X-ray measurements.

  14. An electrochemical modeling of lithium-ion battery nail penetration

    NASA Astrophysics Data System (ADS)

    Chiu, Kuan-Cheng; Lin, Chi-Hao; Yeh, Sheng-Fa; Lin, Yu-Han; Chen, Kuo-Ching

    2014-04-01

    Nail penetration into a battery pack, resulting in a state of short-circuit and thus burning, is likely to occur in electric car collisions. To demonstrate the behavior of a specific battery when subject to such incidents, a standard nail penetration test is usually performed; however, conducting such an experiment is money consuming. The purpose of this study is to propose a numerical electrochemical model that can simulate the test accurately. This simulation makes two accurate predictions. First, we are able to model short-circuited lithium-ion batteries (LIBs) via electrochemical governing equations so that the mass and charge transfer effect could be considered. Second, the temperature variation of the cell during and after nail penetration is accurately predicted with the help of simulating the temperature distribution of thermal runaway cells by thermal abuse equations. According to this nail penetration model, both the onset of battery thermal runaway and the cell temperature profile of the test are obtained, both of which are well fitted with our experimental results.

  15. Unravelling the electrochemical double layer by direct probing of the solid/liquid interface

    PubMed Central

    Favaro, Marco; Jeong, Beomgyun; Ross, Philip N.; Yano, Junko; Hussain, Zahid; Liu, Zhi; Crumlin, Ethan J.

    2016-01-01

    The electrochemical double layer plays a critical role in electrochemical processes. Whilst there have been many theoretical models predicting structural and electrical organization of the electrochemical double layer, the experimental verification of these models has been challenging due to the limitations of available experimental techniques. The induced potential drop in the electrolyte has never been directly observed and verified experimentally, to the best of our knowledge. In this study, we report the direct probing of the potential drop as well as the potential of zero charge by means of ambient pressure X-ray photoelectron spectroscopy performed under polarization conditions. By analyzing the spectra of the solvent (water) and a spectator neutral molecule with numerical simulations of the electric field, we discern the shape of the electrochemical double layer profile. In addition, we determine how the electrochemical double layer changes as a function of both the electrolyte concentration and applied potential. PMID:27576762

  16. Electrochemical stability and postmortem studies of Pt/SiC catalysts for polymer electrolyte membrane fuel cells.

    PubMed

    Stamatin, Serban N; Speder, Jozsef; Dhiman, Rajnish; Arenz, Matthias; Skou, Eivind M

    2015-03-25

    In the presented work, the electrochemical stability of platinized silicon carbide is studied. Postmortem transmission electron microscopy and X-ray photoelectron spectroscopy were used to document the change in the morphology and structure upon potential cycling of Pt/SiC catalysts. Two different potential cycle aging tests were used in order to accelerate the support corrosion, simulating start-up/shutdown and load cycling. On the basis of the results, we draw two main conclusions. First, platinized silicon carbide exhibits improved electrochemical stability over platinized active carbons. Second, silicon carbide undergoes at least mild oxidation if not even silicon leaching.

  17. Computer Aided Battery Engineering Consortium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pesaran, Ahmad

    A multi-national lab collaborative team was assembled that includes experts from academia and industry to enhance recently developed Computer-Aided Battery Engineering for Electric Drive Vehicles (CAEBAT)-II battery crush modeling tools and to develop microstructure models for electrode design - both computationally efficient. Task 1. The new Multi-Scale Multi-Domain model framework (GH-MSMD) provides 100x to 1,000x computation speed-up in battery electrochemical/thermal simulation while retaining modularity of particles and electrode-, cell-, and pack-level domains. The increased speed enables direct use of the full model in parameter identification. Task 2. Mechanical-electrochemical-thermal (MECT) models for mechanical abuse simulation were simultaneously coupled, enabling simultaneous modelingmore » of electrochemical reactions during the short circuit, when necessary. The interactions between mechanical failure and battery cell performance were studied, and the flexibility of the model for various batteries structures and loading conditions was improved. Model validation is ongoing to compare with test data from Sandia National Laboratories. The ABDT tool was established in ANSYS. Task 3. Microstructural modeling was conducted to enhance next-generation electrode designs. This 3- year project will validate models for a variety of electrodes, complementing Advanced Battery Research programs. Prototype tools have been developed for electrochemical simulation and geometric reconstruction.« less

  18. Study of lipid peroxidation and ascorbic acid protective role in large unilamellar vesicles from a new electrochemical performance.

    PubMed

    Barroso, M Fátima; Luna, M Alejandra; Moyano, Fernando; Delerue-Matos, Cristina; Correa, N Mariano; Molina, Patricia G

    2018-04-01

    In this contribution an electrochemical study is described for the first time of lipid peroxidation and the role of antioxidant on lipid protection using large unilamellar vesicles (LUVs). In order to simulate the cell membrane, LUVs composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) were used. A vesicle-modified electrode was constructed by immobilizing DOPC LUVs onto carbon paste electrodes (CPEs). Lipid peroxidation was studied electrochemically by incubating the vesicle-modified electrodes with hydroxyl (HO) radicals generated via the Fenton reaction. Oxidative damage induced by HO was verified by using square wave voltammetry (SWV) and was indirectly measured by the increase of electrochemical peak current to [Fe(CN) 6 ] 4- which was used as the electrochemical label. Ascorbic acid (AA) was used as the antioxidant model in order to study its efficacy on free radical scavenging. The decrease of the electrochemical signal confirms the protective key role promoted by AA in the prevention of lipid peroxidation in vesicles. Through microscopy, it was possible to observe morphologic modification on vesicle structures after lipid peroxidation in the presence or absence of AA. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Electrochemical durability of heat-treated carbon nanospheres as catalyst supports for proton exchange membrane fuel cells.

    PubMed

    Lv, Haifeng; Wu, Peng; Wan, Wei; Mu, Shichun

    2014-09-01

    Carbon nanospheres is wildly used to support noble metal nanocatalysts in proton exchange membrane (PEM) fuel cells, however they show a low resistance to electrochemical corrosion. In this study, the N-doped treatment of carbon nanospheres (Vulcan XC-72) is carried out in ammonia gas. The effect of heating treatment (up to 1000 degrees C) on resistances to electrochemical oxidation of the N-doped carbon nanospheres (HNC) is investigated. The resistance to electrochemical oxidation of carbon supports and stability of the catalysts are investigated with potentiostatic oxidation and accelerated durability test by simulating PEM fuel cell environment. The HNC exhibit a higher resistance to electrochemical oxidation than traditional Vulcan XC-72. The results show that the N-doped carbon nanospheres have a great potential application in PEM fuel cells.

  20. Efficient electron open boundaries for simulating electrochemical cells

    NASA Astrophysics Data System (ADS)

    Zauchner, Mario G.; Horsfield, Andrew P.; Todorov, Tchavdar N.

    2018-01-01

    Nonequilibrium electrochemistry raises new challenges for atomistic simulation: we need to perform molecular dynamics for the nuclear degrees of freedom with an explicit description of the electrons, which in turn must be free to enter and leave the computational cell. Here we present a limiting form for electron open boundaries that we expect to apply when the magnitude of the electric current is determined by the drift and diffusion of ions in a solution and which is sufficiently computationally efficient to be used with molecular dynamics. We present tight-binding simulations of a parallel-plate capacitor with nothing, a dimer, or an atomic wire situated in the space between the plates. These simulations demonstrate that this scheme can be used to perform molecular dynamics simulations when there is an applied bias between two metal plates with, at most, weak electronic coupling between them. This simple system captures some of the essential features of an electrochemical cell, suggesting this approach might be suitable for simulations of electrochemical cells out of equilibrium.

  1. Electrochemical carbon dioxide concentrator subsystem math model. [for manned space station

    NASA Technical Reports Server (NTRS)

    Marshall, R. D.; Carlson, J. N.; Schubert, F. H.

    1974-01-01

    A steady state computer simulation model has been developed to describe the performance of a total six man, self-contained electrochemical carbon dioxide concentrator subsystem built for the space station prototype. The math model combines expressions describing the performance of the electrochemical depolarized carbon dioxide concentrator cells and modules previously developed with expressions describing the performance of the other major CS-6 components. The model is capable of accurately predicting CS-6 performance over EDC operating ranges and the computer simulation results agree with experimental data obtained over the prediction range.

  2. Unravelling the electrochemical double layer by direct probing of the solid/liquid interface

    DOE PAGES

    Favaro, Marco; Jeong, Beomgyun; Ross, Philip N.; ...

    2016-08-31

    The electrochemical double layer plays a critical role in electrochemical processes. Whilst there have been many theoretical models predicting structural and electrical organization of the electrochemical double layer, the experimental verification of these models has been challenging due to the limitations of available experimental techniques. The induced potential drop in the electrolyte has never been directly observed and verified experimentally, to the best of our knowledge. In this study, we report the direct probing of the potential drop as well as the potential of zero charge by means of ambient pressure X-ray photoelectron spectroscopy performed under polarization conditions. By analyzingmore » the spectra of the solvent (water) and a spectator neutral molecule with numerical simulations of the electric field, we discern the shape of the electrochemical double layer profile. In addition, we determine how the electrochemical double layer changes as a function of both the electrolyte concentration and applied potential.« less

  3. Determination of psychostimulants and their metabolites by electrochemistry linked on-line to flowing atmospheric pressure afterglow mass spectrometry.

    PubMed

    Smoluch, Marek; Mielczarek, Przemyslaw; Reszke, Edward; Hieftje, Gary M; Silberring, Jerzy

    2014-09-07

    The flowing atmospheric pressure afterglow (FAPA) ion source operates in the ambient atmosphere and has been proven to be a promising tool for direct and rapid determination of numerous compounds. Here we linked a FAPA-MS system to an electrochemical flow cell for the identification of drug metabolites generated electrochemically in order to study simulated metabolic pathways. Psychostimulants and their metabolites produced by electrochemistry (EC) were detected on-line by FAPA-MS. The FAPA source has never been used before for an on-line connection with liquid flow, neither for identification of products generated in an electrochemical flow cell. The system was optimized to achieve the highest ionization efficiency by adjusting several parameters, including distances and angles between the ion source and the outlet of the EC system, the high voltage for plasma generation, flow-rates, and EC parameters. Simulated metabolites from tested compounds [methamphetamine (MAF), para-methoxy-N-methylamphetamine (PMMA), dextromethorphan (DXM), and benzydamine (BAM)] were formed in the EC cell at various pH levels. In all cases the main products were oxidized substrates and compounds after N-demethylation. Generation of such products and their thorough on-line identification confirm that the cytochrome P450 - driven metabolism of pharmaceuticals can be efficiently simulated in an electrochemical cell; this approach may serve as a step towards predictive pharmacology using a fast and robust design.

  4. Molecular Simulation Results on Charged Carbon Nanotube Forest-Based Supercapacitors.

    PubMed

    Muralidharan, Ajay; Pratt, Lawrence R; Hoffman, Gary G; Chaudhari, Mangesh I; Rempe, Susan B

    2018-06-22

    Electrochemical double-layer capacitances of charged carbon nanotube (CNT) forests with tetraethyl ammonium tetrafluoro borate electrolyte in propylene carbonate are studied on the basis of molecular dynamics simulation. Direct molecular simulation of the filling of pore spaces of the forest is feasible even with realistic, small CNT spacings. The numerical solution of the Poisson equation based on the extracted average charge densities then yields a regular experimental dependence on the width of the pore spaces, in contrast to the anomalous pattern observed in experiments on other carbon materials and also in simulations on planar slot-like pores. The capacitances obtained have realistic magnitudes but are insensitive to electric potential differences between the electrodes in this model. This agrees with previous calculations on CNT forest supercapacitors, but not with experiments which have suggested electrochemical doping for these systems. Those phenomena remain for further theory/modeling work. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Electrochemical degradation, kinetics & performance studies of solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Das, Debanjan

    Linear and Non-linear electrochemical characterization techniques and equivalent circuit modelling were carried out on miniature and sub-commercial Solid Oxide Fuel Cell (SOFC) stacks as an in-situ diagnostic approach to evaluate and analyze their performance under the presence of simulated alternative fuel conditions. The main focus of the study was to track the change in cell behavior and response live, as the cell was generating power. Electrochemical Impedance Spectroscopy (EIS) was the most important linear AC technique used for the study. The distinct effects of inorganic components usually present in hydrocarbon fuel reformates on SOFC behavior have been determined, allowing identification of possible "fingerprint" impedance behavior corresponding to specific fuel conditions and reaction mechanisms. Critical electrochemical processes and degradation mechanisms which might affect cell performance were identified and quantified. Sulfur and siloxane cause the most prominent degradation and the associated electrochemical cell parameters such as Gerisher and Warburg elements are applied respectively for better understanding of the degradation processes. Electrochemical Frequency Modulation (EFM) was applied for kinetic studies in SOFCs for the very first time for estimating the exchange current density and transfer coefficients. EFM is a non-linear in-situ electrochemical technique conceptually different from EIS and is used extensively in corrosion work, but rarely used on fuel cells till now. EFM is based on exploring information obtained from non-linear higher harmonic contributions from potential perturbations of electrochemical systems, otherwise not obtained by EIS. The baseline fuel used was 3 % humidified hydrogen with a 5-cell SOFC sub-commercial planar stack to perform the analysis. Traditional methods such as EIS and Tafel analysis were carried out at similar operating conditions to verify and correlate with the EFM data and ensure the validity of the obtained information. The obtained values closely range from around 11 mA cm-2 - 16 mA cm -2 with reasonable repeatability and excellent accuracy. The potential advantages of EFM compared to traditional methods were realized and our primary aim at demonstrating this technique on a SOFC system are presented which can act as a starting point for future research efforts in this area. Finally, an approach based on in-situ State of Health tests by EIS was formulated and investigated to understand the most efficient fuel conditions for suitable long term operation of a solid oxide fuel cell stack under power generation conditions. The procedure helped to reflect the individual effects of three most important fuel characteristics CO/H2 volumetric ratio, S/C ratio and fuel utilization under the presence of a simulated alternative fuel at 0.4 A cm-2. Variation tests helped to identify corresponding electrochemical/chemical processes, narrow down the most optimum operating regimes considering practical behavior of simulated reformer-SOFC system arrangements. At the end, 8 different combinations of the optimized parameters were tested long term with the stack, and the most efficient blend was determined.

  6. Splitting algorithm for numerical simulation of Li-ion battery electrochemical processes

    NASA Astrophysics Data System (ADS)

    Iliev, Oleg; Nikiforova, Marina A.; Semenov, Yuri V.; Zakharov, Petr E.

    2017-11-01

    In this paper we present a splitting algorithm for a numerical simulation of Li-ion battery electrochemical processes. Liion battery consists of three domains: anode, cathode and electrolyte. Mathematical model of electrochemical processes is described on a microscopic scale, and contains nonlinear equations for concentration and potential in each domain. On the interface of electrodes and electrolyte there are the Lithium ions intercalation and deintercalation processes, which are described by Butler-Volmer nonlinear equation. To approximate in spatial coordinates we use finite element methods with discontinues Galerkin elements. To simplify numerical simulations we develop the splitting algorithm, which split the original problem into three independent subproblems. We investigate the numerical convergence of the algorithm on 2D model problem.

  7. Effects of water plasma immersion ion implantation on surface electrochemical behavior of NiTi shape memory alloys in simulated body fluids

    NASA Astrophysics Data System (ADS)

    Liu, X. M.; Wu, S. L.; Chu, Paul K.; Chung, C. Y.; Chu, C. L.; Yeung, K. W. K.; Lu, W. W.; Cheung, K. M. C.; Luk, K. D. K.

    2007-01-01

    Water plasma immersion ion implantation (PIII) was conducted on orthopedic NiTi shape memory alloy to enhance the surface electrochemical characteristics. The surface composition of the NiTi alloy before and after H 2O-PIII was determined by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) was utilized to determine the roughness and morphology of the NiTi samples. Potentiodynamic polarization tests and electrochemical impedance spectroscopy (EIS) were carried out to investigate the surface electrochemical behavior of the control and H 2O-PIII NiTi samples in simulated body fluids (SBF) at 37 °C as well as the mechanism. The H 2O-PIII NiTi sample showed a higher breakdown potential ( Eb) than the control sample. Based on the AFM results, two different physical models with related equivalent electrical circuits were obtained to fit the EIS data and explain the surface electrochemical behavior of NiTi in SBF. The simulation results demonstrate that the higher resistance of the oxide layer produced by H 2O-PIII is primarily responsible for the improvement in the surface corrosion resistance.

  8. Detection of stress corrosion cracking and general corrosion of mild steel in simulated defense nuclear waste solutions using electrochemical noise analysis

    NASA Astrophysics Data System (ADS)

    Edgemon, G. L.; Danielson, M. J.; Bell, G. E. C.

    1997-06-01

    Underground waste tanks fabricated from mild steel store more than 253 million liters of high level radioactive waste from 50 years of weapons production at the Hanford Site. The probable modes of corrosion failures are reported as nitrate stress corrosion cracking and pitting. In an effort to develop a waste tank corrosion monitoring system, laboratory tests were conducted to characterize electrochemical noise data for both uniform and localized corrosion of mild steel and other materials in simulated waste environments. The simulated waste solutions were primarily composed of ammonium nitrate or sodium nitrate and were held at approximately 97°C. The electrochemical noise of freely corroding specimens was monitored, recorded and analyzed for periods ranging between 10 and 500 h. At the end of each test period, the specimens were examined to correlate electrochemical noise data with corrosion damage. Data characteristic of uniform corrosion and stress corrosion cracking are presented.

  9. Deterministic analysis of processes at corroding metal surfaces and the study of electrochemical noise in these systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latanision, R.M.

    1990-12-01

    Electrochemical corrosion is pervasive in virtually all engineering systems and in virtually all industrial circumstances. Although engineers now understand how to design systems to minimize corrosion in many instances, many fundamental questions remain poorly understood and, therefore, the development of corrosion control strategies is based more on empiricism than on a deep understanding of the processes by which metals corrode in electrolytes. Fluctuations in potential, or current, in electrochemical systems have been observed for many years. To date, all investigations of this phenomenon have utilized non-deterministic analyses. In this work it is proposed to study electrochemical noise from a deterministicmore » viewpoint by comparison of experimental parameters, such as first and second order moments (non-deterministic), with computer simulation of corrosion at metal surfaces. In this way it is proposed to analyze the origins of these fluctuations and to elucidate the relationship between these fluctuations and kinetic parameters associated with metal dissolution and cathodic reduction reactions. This research program addresses in essence two areas of interest: (a) computer modeling of corrosion processes in order to study the electrochemical processes on an atomistic scale, and (b) experimental investigations of fluctuations in electrochemical systems and correlation of experimental results with computer modeling. In effect, the noise generated by mathematical modeling will be analyzed and compared to experimental noise in electrochemical systems. 1 fig.« less

  10. Mechanistic Study of the Validity of Using Hydroxyl Radical Probes To Characterize Electrochemical Advanced Oxidation Processes.

    PubMed

    Jing, Yin; Chaplin, Brian P

    2017-02-21

    The detection of hydroxyl radicals (OH • ) is typically accomplished by using reactive probe molecules, but prior studies have not thoroughly investigated the suitability of these probes for use in electrochemical advanced oxidation processes (EAOPs), due to the neglect of alternative reaction mechanisms. In this study, we investigated the suitability of four OH • probes (coumarin, p-chlorobenzoic acid, terephthalic acid, and p-benzoquinone) for use in EAOPs. Experimental results indicated that both coumarin and p-chlorobenzoic acid are oxidized via direct electron transfer reactions, while p-benzoquinone and terephthalic acid are not. Coumarin oxidation to form the OH • adduct product 7-hydroxycoumarin was found at anodic potentials lower than that necessary for OH • formation. Density functional theory (DFT) simulations found a thermodynamically favorable and non-OH • mediated pathway for 7-hydroxycoumarin formation, which is activationless at anodic potentials > 2.10 V/SHE. DFT simulations also provided estimates of E° values for a series of OH • probe compounds, which agreed with voltammetry results. Results from this study indicated that terephthalic acid is the most appropriate OH • probe compound for the characterization of electrochemical and catalytic systems.

  11. A Model Approach to the Electrochemical Cell: An Inquiry Activity

    ERIC Educational Resources Information Center

    Cullen, Deanna M.; Pentecost, Thomas C.

    2011-01-01

    In an attempt to address some student misconceptions in electrochemistry, this guided-inquiry laboratory was devised to give students an opportunity to use a manipulative that simulates the particulate-level activity within an electrochemical cell, in addition to using an actual electrochemical cell. Students are led through a review of expected…

  12. Simulation of lubricating behavior of a thioether liquid lubricant by an electrochemical method

    NASA Technical Reports Server (NTRS)

    Morales, W.

    1984-01-01

    An electrochemical cell was constructed to explore the possible radical anion forming behavior of a thioether liquid lubricant. The electrochemical behavior of the thioether was compared with the electrochemical behavior of biphenyl, which is known to form radical anions. Under controlled conditions biphenyl undergoes a reversible reaction to a radical anion, whereas the thioether undergoes an irreversible reduction yielding several products. These results are discussed in relation to boundary lubrication.

  13. Biocorrosion studies of TiO2 nanoparticle-coated Ti-6Al-4V implant in simulated biofluids

    NASA Astrophysics Data System (ADS)

    Zaveri, Nikita; McEwen, Gerald D.; Karpagavalli, Ramji; Zhou, Anhong

    2010-06-01

    The corrosion behaviors of the TiO2 nanoparticles coated bioimplant Ti-6Al-4V exposed to three different simulated biofluids (SBF), namely, (1) NaCl solution, (2) Hank's solution, and (3) Cigada solution, were studied by using micro-Raman spectroscopy, electrochemical techniques, and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS). The different electrochemical impedance spectroscopy models were applied to fit the data obtained from the implants before and after the coating of TiO2 nanoparticles (50-100 nm). It was found that the TiO2 nanoparticle coatings increased the thickness of the pre-existing oxide layer on the Ti-6Al-4V surface, serving to improve the bioimplant corrosion resistance.

  14. Comparison of TiO2 photocatalysis, electrochemically assisted Fenton reaction and direct electrochemistry for simulation of phase I metabolism reactions of drugs.

    PubMed

    Ruokolainen, Miina; Gul, Turan; Permentier, Hjalmar; Sikanen, Tiina; Kostiainen, Risto; Kotiaho, Tapio

    2016-02-15

    The feasibility of titanium dioxide (TiO2) photocatalysis, electrochemically assisted Fenton reaction (EC-Fenton) and direct electrochemical oxidation (EC) for simulation of phase I metabolism of drugs was studied by comparing the reaction products of buspirone, promazine, testosterone and 7-ethoxycoumarin with phase I metabolites of the same compounds produced in vitro by human liver microsomes (HLM). Reaction products were analysed by UHPLC-MS. TiO2 photocatalysis simulated the in vitro phase I metabolism in HLM more comprehensively than did EC-Fenton or EC. Even though TiO2 photocatalysis, EC-Fenton and EC do not allow comprehensive prediction of phase I metabolism, all three methods produce several important metabolites without the need for demanding purification steps to remove the biological matrix. Importantly, TiO2 photocatalysis produces aliphatic and aromatic hydroxylation products where direct EC fails. Furthermore, TiO2 photocatalysis is an extremely rapid, simple and inexpensive way to generate oxidation products in a clean matrix and the reaction can be simply initiated and quenched by switching the UV lamp on/off. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. In situ electrochemical high-energy X-ray diffraction using a capillary working electrode cell geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Matthias J.; Bedford, Nicholas M.; Jiang, Naisheng

    The ability to generate new electrochemically active materials for energy generation and storage with improved properties will likely be derived from an understanding of atomic-scale structure/function relationships during electrochemical events. Here, the design and implementation of a new capillary electrochemical cell designed specifically forin situhigh-energy X-ray diffraction measurements is described. By increasing the amount of electrochemically active material in the X-ray path while implementing low-Zcell materials with anisotropic scattering profiles, an order of magnitude enhancement in diffracted X-ray signal over traditional cell geometries for multiple electrochemically active materials is demonstrated. This signal improvement is crucial for high-energy X-ray diffraction measurementsmore » and subsequent Fourier transformation into atomic pair distribution functions for atomic-scale structural analysis. As an example, clear structural changes in LiCoO 2under reductive and oxidative conditions using the capillary cell are demonstrated, which agree with prior studies. Accurate modeling of the LiCoO 2diffraction data using reverse Monte Carlo simulations further verifies accurate background subtraction and strong signal from the electrochemically active material, enabled by the capillary working electrode geometry.« less

  16. Destructive impact of molecular noise on nanoscale electrochemical oscillators

    NASA Astrophysics Data System (ADS)

    Cosi, Filippo G.; Krischer, Katharina

    2017-06-01

    We study the loss of coherence of electrochemical oscillations on meso- and nanosized electrodes with numeric simulations of the electrochemical master equation for a prototypical electrochemical oscillator, the hydrogen peroxide reduction on Pt electrodes in the presence of halides. On nanoelectrodes, the electrode potential changes whenever a stochastic electron-transfer event takes place. Electrochemical reaction rate coefficients depend exponentially on the electrode potential and become thus fluctuating quantities as well. Therefore, also the transition rates between system states become time-dependent which constitutes a fundamental difference to purely chemical nanoscale oscillators. Three implications are demonstrated: (a) oscillations and steady states shift in phase space with decreasing system size, thereby also decreasing considerably the oscillating parameter regions; (b) the minimal number of molecules necessary to support correlated oscillations is more than 10 times as large as for nanoscale chemical oscillators; (c) the relation between correlation time and variance of the period of the oscillations predicted for chemical oscillators in the weak noise limit is only fulfilled in a very restricted parameter range for the electrochemical nano-oscillator.

  17. Entrainment in an electrochemical forced oscillator as a method of classification of chemical species-a new strategy to develop a chemical sensor

    NASA Astrophysics Data System (ADS)

    Nakata, S.; Yoshikawa, K.; Kawakami, H.

    1992-10-01

    We propose a new sensing method of varios chemical species based on information on the mode of entrainment in an electrochemically forced oscillator. It is demonstrated that the presence of one of the four basic taste compounds (salty, sweet, bitter, and sour) changes the mode of entrainment in a unique way. Thus a characteristics change of the entrainment allows us to obtain information on the properties of the electrochemical system. The response of the mode of entrainment to the taste compounds is related to the nonlinear properties of the studied electrochemical system, i.e., its voltage dependent capacitance and conductance. The experimental results are compared with computer simulations of a model system in which the capacitance is a nonlinear function of the voltage.

  18. Pitting corrosion as a mixed system: coupled deterministic-probabilistic simulation of pit growth

    NASA Astrophysics Data System (ADS)

    Ibrahim, Israr B. M.; Fonna, S.; Pidaparti, R.

    2018-05-01

    Stochastic behavior of pitting corrosion poses a unique challenge in its computational analysis. However, it also stems from electrochemical activity causing general corrosion. In this paper, a framework for corrosion pit growth simulation based on the coupling of the Cellular Automaton (CA) and Boundary Element Methods (BEM) is presented. The framework assumes that pitting corrosion is controlled by electrochemical activity inside the pit cavity. The BEM provides the prediction of electrochemical activity given the geometrical data and polarization curves, while the CA is used to simulate the evolution of pit shapes based on electrochemical activity provided by BEM. To demonstrate the methodology, a sample case of local corrosion cells formed in pitting corrosion with varied dimensions and polarization functions is considered. Results show certain shapes tend to grow in certain types of environments. Some pit shapes appear to pose a higher risk by being potentially significant stress raisers or potentially increasing the rate of corrosion under the surface. Furthermore, these pits are comparable to commonly observed pit shapes in general corrosion environments.

  19. Hydrodynamics of an electrochemical membrane bioreactor.

    PubMed

    Wang, Ya-Zhou; Wang, Yun-Kun; He, Chuan-Shu; Yang, Hou-Yun; Sheng, Guo-Ping; Shen, Jin-You; Mu, Yang; Yu, Han-Qing

    2015-05-22

    An electrochemical membrane bioreactor (EMBR) has recently been developed for energy recovery and wastewater treatment. The hydrodynamics of the EMBR would significantly affect the mass transfers and reaction kinetics, exerting a pronounced effect on reactor performance. However, only scarce information is available to date. In this study, the hydrodynamic characteristics of the EMBR were investigated through various approaches. Tracer tests were adopted to generate residence time distribution curves at various hydraulic residence times, and three hydraulic models were developed to simulate the results of tracer studies. In addition, the detailed flow patterns of the EMBR were acquired from a computational fluid dynamics (CFD) simulation. Compared to the tank-in-series and axial dispersion ones, the Martin model could describe hydraulic performance of the EBMR better. CFD simulation results clearly indicated the existence of a preferential or circuitous flow in the EMBR. Moreover, the possible locations of dead zones in the EMBR were visualized through the CFD simulation. Based on these results, the relationship between the reactor performance and the hydrodynamics of EMBR was further elucidated relative to the current generation. The results of this study would benefit the design, operation and optimization of the EMBR for simultaneous energy recovery and wastewater treatment.

  20. Hydrodynamics of an Electrochemical Membrane Bioreactor

    PubMed Central

    Wang, Ya-Zhou; Wang, Yun-Kun; He, Chuan-Shu; Yang, Hou-Yun; Sheng, Guo-Ping; Shen, Jin-You; Mu, Yang; Yu, Han-Qing

    2015-01-01

    An electrochemical membrane bioreactor (EMBR) has recently been developed for energy recovery and wastewater treatment. The hydrodynamics of the EMBR would significantly affect the mass transfers and reaction kinetics, exerting a pronounced effect on reactor performance. However, only scarce information is available to date. In this study, the hydrodynamic characteristics of the EMBR were investigated through various approaches. Tracer tests were adopted to generate residence time distribution curves at various hydraulic residence times, and three hydraulic models were developed to simulate the results of tracer studies. In addition, the detailed flow patterns of the EMBR were acquired from a computational fluid dynamics (CFD) simulation. Compared to the tank-in-series and axial dispersion ones, the Martin model could describe hydraulic performance of the EBMR better. CFD simulation results clearly indicated the existence of a preferential or circuitous flow in the EMBR. Moreover, the possible locations of dead zones in the EMBR were visualized through the CFD simulation. Based on these results, the relationship between the reactor performance and the hydrodynamics of EMBR was further elucidated relative to the current generation. The results of this study would benefit the design, operation and optimization of the EMBR for simultaneous energy recovery and wastewater treatment. PMID:25997399

  1. Electrochemical push-pull probe: from scanning electrochemical microscopy to multimodal altering of cell microenvironment.

    PubMed

    Bondarenko, Alexandra; Cortés-Salazar, Fernando; Gheorghiu, Mihaela; Gáspár, Szilveszter; Momotenko, Dmitry; Stanica, Luciana; Lesch, Andreas; Gheorghiu, Eugen; Girault, Hubert H

    2015-04-21

    To understand biological processes at the cellular level, a general approach is to alter the cells' environment and to study their chemical responses. Herein, we present the implementation of an electrochemical push-pull probe, which combines a microfluidic system with a microelectrode, as a tool for locally altering the microenvironment of few adherent living cells by working in two different perturbation modes, namely electrochemical (i.e., electrochemical generation of a chemical effector compound) and microfluidic (i.e., infusion of a chemical effector compound from the pushing microchannel, while simultaneously aspirating it through the pulling channel, thereby focusing the flow between the channels). The effect of several parameters such as flow rate, working distance, and probe inclination angle on the affected area of adherently growing cells was investigated both theoretically and experimentally. As a proof of concept, localized fluorescent labeling and pH changes were purposely introduced to validate the probe as a tool for studying adherent cancer cells through the control over the chemical composition of the extracellular space with high spatiotemporal resolution. A very good agreement between experimental and simulated results showed that the electrochemical perturbation mode enables to affect precisely only a few living cells localized in a high-density cell culture.

  2. Electrochemical carbon dioxide concentrator: Math model

    NASA Technical Reports Server (NTRS)

    Marshall, R. D.; Schubert, F. H.; Carlson, J. N.

    1973-01-01

    A steady state computer simulation model of an Electrochemical Depolarized Carbon Dioxide Concentrator (EDC) has been developed. The mathematical model combines EDC heat and mass balance equations with empirical correlations derived from experimental data to describe EDC performance as a function of the operating parameters involved. The model is capable of accurately predicting performance over EDC operating ranges. Model simulation results agree with the experimental data obtained over the prediction range.

  3. Electrochemical production and use of free chlorine for pollutant removal: an experimental design approach.

    PubMed

    Antonelli, Raissa; de Araújo, Karla Santos; Pires, Ricardo Francisco; Fornazari, Ana Luiza de Toledo; Granato, Ana Claudia; Malpass, Geoffroy Roger Pointer

    2017-10-28

    The present paper presents the study of (1) the optimization of electrochemical-free chlorine production using an experimental design approach, and (2) the application of the optimum conditions obtained for the application in photo-assisted electrochemical degradation of simulated textile effluent. In the experimental design the influence of inter-electrode gap, pH, NaCl concentration and current was considered. It was observed that the four variables studied are significant for the process, with NaCl concentration and current being the most significant variables for free chlorine production. The maximum free chlorine production was obtained at a current of 2.33 A and NaCl concentrations in 0.96 mol dm -3 . The application of the optimized conditions with simultaneous UV irradiation resulted in up to 83.1% Total Organic Carbon removal and 100% of colour removal over 180 min of electrolysis. The results indicate that a systematic (statistical) approach to the electrochemical treatment of pollutants can save time and reagents.

  4. Anodized titanium and stainless steel in contact with CFRP: an electrochemical approach considering galvanic corrosion.

    PubMed

    Mueller, Yves; Tognini, Roger; Mayer, Joerg; Virtanen, Sannakaisa

    2007-09-15

    The combination of different materials in an implant gives the opportunity to better fulfill the requirements that are needed to improve the healing process. However, using different materials increases the risk of galvanic coupling corrosion. In this study, coupling effects of gold-anodized titanium, stainless steel for biomedical applications, carbon fiber reinforced polyetheretherketone (CFRP), and CFRP containing tantalum fibers are investigated electrochemically and by long-term immersion experiments in simulated body fluid (SBF). Potentiodynamic polarization experiments (i/E curves) and electrochemical impedance spectroscopy (EIS) of the separated materials showed a passive behavior of the metallic samples. Anodized titanium showed no corrosion attacks, whereas stainless steel is highly susceptibility for localized corrosion. On the other side, an active dissolution behavior of both of the CFRPs in the given environment could be determined, leading to delaminating of the carbon fibers from the matrix. Long-term immersion experiments were carried out using a set-up especially developed to simulate coupling conditions of a point contact fixator system (PC-Fix) in a biological environment. Electrochemical data were acquired in situ during the whole immersion time. The results of the immersion experiments correlate with the findings of the electrochemical investigation. Localized corrosion attacks were found on stainless steel, whereas anodized titanium showed no corrosion attacks. No significant differences between the two CFRP types could be found. Galvanic coupling corrosion in combination with crevice conditions and possible corrosion mechanisms are discussed. Copyright 2007 Wiley Periodicals, Inc.

  5. An electrochemical investigation of TMJ implant metal alloys in an artificial joint fluid environment: the influence of pH variation.

    PubMed

    Royhman, Dmitry; Radhakrishnan, Rashmi; Yuan, Judy Chia-Chun; Mathew, Mathew T; Mercuri, Louis G; Sukotjo, Cortino

    2014-10-01

    To investigate the corrosion behaviour of commonly used TMJ implants alloys (CoCrMo and Ti6Al4V) under simulated physiological conditions. Corrosion behaviour was evaluated using standard electrochemical corrosion techniques and galvanic corrosion techniques as per ASTM standards. Standard electrochemical tests (E(corr), I(corr), R(p) and C(f)) were conducted in bovine calf serum (BCS), as a function of alloys type and different pHs. Galvanic corrosion tests were conducted in BCS at a pH of 7.6. Alloy surfaces were characterized using white-light interferometry (WLI) and scanning electron microscopy (SEM). The potentiodynamic test results exhibited the enhanced passive layer growth and a better corrosion resistance of Ti6Al4V compared to CoCrMo. Electrochemical impedance spectroscopy measurements demonstrated the influence of protein as a function of pH on corrosion mechanisms/kinetics. Galvanic coupling was not a major contributor to corrosion. SEM and WLI images demonstrated a significantly higher in surface roughness in CoCrMo after corrosion. The results of this study suggest that Ti6Al4V shows superior corrosion behaviour to CoCrMo due to its strong passive layer, simulated joint fluid components can affect the electrochemical nature of the metal/electrolyte interface as a function of pH, and the galvanic effect of coupling CoCrMo and Ti6Al4V in a single joint is weak. Published by Elsevier Ltd.

  6. Passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solution

    NASA Astrophysics Data System (ADS)

    Luo, Hong; Su, Huaizhi; Dong, Chaofang; Li, Xiaogang

    2017-04-01

    In this paper, the passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solutions at different pH was evaluated by potentiodynamic measurements, electrochemical impedance spectroscopy. The composition of the passive film and surface morphology were investigated by X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), and scanning electron microscopy, respectively. The results reveal that metastable pitting susceptibility, stable pitting corrosion, and composition of the passive film are influenced by pH value. After long time immersion, a bilayer structure passive film can be formed in this environment. The appearance of molybdates on the outermost surface layer, further enhancing the stability of the passive film. Moreover, the good pitting corrosion resistance of 316L stainless steel in simulated concrete pore solution without carbonated is mainly due to the presence of high Cr/Fe ratio and molybdates ions within the passive film.

  7. Electrochemical characterization of pulsed layer deposited hydroxyapatite-zirconia layers on Ti-21Nb-15Ta-6Zr alloy for biomedical application

    NASA Astrophysics Data System (ADS)

    Izquierdo, Javier; Bolat, Georgiana; Cimpoesu, Nicanor; Trinca, Lucia Carmen; Mareci, Daniel; Souto, Ricardo Manuel

    2016-11-01

    A new titanium base Ti-21Nb-15Ta-6Zr alloy covered with hydroxyapatite-zirconia (HA-ZrO2) by pulsed laser deposition (PLD) technique was characterized regarding its corrosion resistance in simulated physiological Ringer's solution at 37 °C. For the sake of comparison, Ti-6Al-4V standard implant alloy, with and without hydroxyapatite-zirconia coating, was also characterized. Multiscale electrochemical analysis using both conventional averaging electrochemical techniques, namely electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization, and spatially-resolved microelectrochemical techniques (scanning electrochemical microscopy, SECM) were used to investigate the electrochemical behaviour of the materials. In addition, scanning electron microscopy evidenced that no relevant surface morphology changes occurred on the materials upon immersion in the simulated physiological solution, despite variations in their electrochemical behaviour. Although uncoated metals appear to show better performances during conventional corrosion tests, the response is still quite similar for the HA-ZrO2 coated materials while providing superior resistance towards electron transfer due to the formation of a more dense film on the surface, thus effectively behaving as a passive material. It is believed corrosion of the HA-ZrO2 coated Ti-21Nb-15Ta-6Zr alloy will have negligible effect upon biochemical and cellular events at the bone-implant interface and could facilitate osseointegration.

  8. Electrochemistry in hollow-channel paper analytical devices.

    PubMed

    Renault, Christophe; Anderson, Morgan J; Crooks, Richard M

    2014-03-26

    In the present article we provide a detailed analysis of fundamental electrochemical processes in a new class of paper-based analytical devices (PADs) having hollow channels (HCs). Voltammetry and amperometry were applied under flow and no flow conditions yielding reproducible electrochemical signals that can be described by classical electrochemical theory as well as finite-element simulations. The results shown here provide new and quantitative insights into the flow within HC-PADs. The interesting new result is that despite their remarkable simplicity these HC-PADs exhibit electrochemical and hydrodynamic behavior similar to that of traditional microelectrochemical devices.

  9. Mathematical modeling and computer simulation of isoelectric focusing with electrochemically defined ampholytes

    NASA Technical Reports Server (NTRS)

    Palusinski, O. A.; Allgyer, T. T.; Mosher, R. A.; Bier, M.; Saville, D. A.

    1981-01-01

    A mathematical model of isoelectric focusing at the steady state has been developed for an M-component system of electrochemically defined ampholytes. The model is formulated from fundamental principles describing the components' chemical equilibria, mass transfer resulting from diffusion and electromigration, and electroneutrality. The model consists of ordinary differential equations coupled with a system of algebraic equations. The model is implemented on a digital computer using FORTRAN-based simulation software. Computer simulation data are presented for several two-component systems showing the effects of varying the isoelectric points and dissociation constants of the constituents.

  10. Laboratory Experiments on the Electrochemical Remediation of the Environment

    ERIC Educational Resources Information Center

    Ibanez, Jorge G.; Tellez-Giron, Monica; Alvarez, Diana

    2004-01-01

    Ferrate, which is a strong iron oxidant for removing pollutants from water, is developed electrochemically in the laboratory, and used for experiments simulating environmental situations. Thus, ferrate is a powerful oxidizing agent capable of destroying an immense variety of contaminants.

  11. Ion concentrations and velocity profiles in nanochannel electroosmotic flows

    NASA Astrophysics Data System (ADS)

    Qiao, R.; Aluru, N. R.

    2003-03-01

    Ion distributions and velocity profiles for electroosmotic flow in nanochannels of different widths are studied in this paper using molecular dynamics and continuum theory. For the various channel widths studied in this paper, the ion distribution near the channel wall is strongly influenced by the finite size of the ions and the discreteness of the solvent molecules. The classical Poisson-Boltzmann equation fails to predict the ion distribution near the channel wall as it does not account for the molecular aspects of the ion-wall and ion-solvent interactions. A modified Poisson-Boltzmann equation based on electrochemical potential correction is introduced to account for ion-wall and ion-solvent interactions. The electrochemical potential correction term is extracted from the ion distribution in a smaller channel using molecular dynamics. Using the electrochemical potential correction term extracted from molecular dynamics (MD) simulation of electroosmotic flow in a 2.22 nm channel, the modified Poisson-Boltzmann equation predicts the ion distribution in larger channel widths (e.g., 3.49 and 10.00 nm) with good accuracy. Detailed studies on the velocity profile in electro-osmotic flow indicate that the continuum flow theory can be used to predict bulk fluid flow in channels as small as 2.22 nm provided that the viscosity variation near the channel wall is taken into account. We propose a technique to embed the velocity near the channel wall obtained from MD simulation of electroosmotic flow in a narrow channel (e.g., 2.22 nm wide channel) into simulation of electroosmotic flow in larger channels. Simulation results indicate that such an approach can predict the velocity profile in larger channels (e.g., 3.49 and 10.00 nm) very well. Finally, simulation of electroosmotic flow in a 0.95 nm channel indicates that viscosity cannot be described by a local, linear constitutive relationship that the continuum flow theory is built upon and thus the continuum flow theory is not applicable for electroosmotic flow in such small channels.

  12. Multiscale modeling and characterization for performance and safety of lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pannala, Sreekanth; Turner, John A.; Allu, Srikanth

    Lithium-ion batteries are highly complex electrochemical systems whose performance and safety are governed by coupled nonlinear electrochemical-electrical-thermal-mechanical processes over a range of spatiotemporal scales. In this paper we describe a new, open source computational framework for Lithium-ion battery simulations that is designed to support a variety of model types and formulations. This framework has been used to create three-dimensional cell and battery pack models that explicitly simulate all the battery components (current collectors, electrodes, and separator). The models are used to predict battery performance under normal operations and to study thermal and mechanical safety aspects under adverse conditions. The modelmore » development and validation are supported by experimental methods such as IR-imaging, X-ray tomography and micro-Raman mapping.« less

  13. Multiscale modeling and characterization for performance and safety of lithium-ion batteries

    DOE PAGES

    Pannala, Sreekanth; Turner, John A.; Allu, Srikanth; ...

    2015-08-19

    Lithium-ion batteries are highly complex electrochemical systems whose performance and safety are governed by coupled nonlinear electrochemical-electrical-thermal-mechanical processes over a range of spatiotemporal scales. In this paper we describe a new, open source computational framework for Lithium-ion battery simulations that is designed to support a variety of model types and formulations. This framework has been used to create three-dimensional cell and battery pack models that explicitly simulate all the battery components (current collectors, electrodes, and separator). The models are used to predict battery performance under normal operations and to study thermal and mechanical safety aspects under adverse conditions. The modelmore » development and validation are supported by experimental methods such as IR-imaging, X-ray tomography and micro-Raman mapping.« less

  14. Preparation of Al-Si Master Alloy by Electrochemical Reduction of Volcanic Rock in Cryolite Molten Salt

    NASA Astrophysics Data System (ADS)

    Liu, Aimin; Shi, Zhongning; Xu, Junli; Hu, Xianwei; Gao, Bingliang; Wang, Zhaowen

    2016-06-01

    Volcanic rock found in the Longgang Volcano Group in Jilin Province of China has properties essentially similar to Apollo lunar soils and previously prepared lunar soil simulants, such as Johnson Space Center Lunar simulant and Minnesota Lunar simulant. In this study, an electrochemical method of preparation of Al-Si master alloy was investigated in 52.7 wt.%NaF-47.3 wt.%AlF3 melt adding 5 wt.% volcanic rock at 1233 K. The cathodic electrochemical process was studied by cyclic voltammetry, and the results showed that the cathodic reduction of Si(IV) is a two-step reversible diffusion-controlled reaction. Si(IV) is reduced to Si(II) by two electron transfers at -1.05 V versus platinum quasi-reference electrode in 52.7 wt.%NaF-47.3 wt.%AlF3 molten salt adding 5 wt.% volcanic rock, while the reduction peak at -1.18 V was the co-deposition of aluminum and silicon. In addition, the cathodic product obtained by galvanostatic electrolysis for 4 h was analyzed by means of x-ray diffraction, x-ray fluorescence, scanning electron microscopy and energy dispersive spectrometry. The results showed that the phase compositions of the products are Al, Si, Al5FeSi, and Al3.21Si0.47, while the components are 90.5 wt.% aluminum, 4.4 wt.% silicon, 1.9 wt.% iron, and 0.2 wt.% titanium.

  15. Electrochemical and passive behaviour of tin alloyed ferritic stainless steel in concrete environment

    NASA Astrophysics Data System (ADS)

    Luo, Hong; Su, Huaizhi; Li, Baosong; Ying, Guobing

    2018-05-01

    In the present work, the electrochemical behavior and semiconducting properties of a tin alloyed ferritic stainless steel in simulated concrete solution in presence of NaCl were estimated by conventional electrochemical methods such as potentiodynamic polarization, electrochemical impedance spectroscopy, and capacitance measurement (Mott-Schottky approach). The surface passive film was analyzed by X-ray photoelectron spectroscopy. The results revealed a good agreement between pitting corrosion, electrochemical behaviour, and electronic properties. The p and n-type bilayer structure passive film were observed. The increase of Sn4+ oxide species in the passive film shows no beneficial effects on the pitting corrosion. In addition, the dehydration of the passive film was further discussed.

  16. Bioactivity and electrochemical behavior of hydroxyapatite-silicon-multi walled carbon nano-tubes composite coatings synthesized by EPD on NiTi alloys in simulated body fluid.

    PubMed

    Khalili, V; Khalil-Allafi, J; Frenzel, J; Eggeler, G

    2017-02-01

    In order to improve the surface bioactivity of NiTi bone implant and corrosion resistance, hydroxyapatite coating with addition of 20wt% silicon, 1wt% multi walled carbon nano-tubes and both of them were deposited on a NiTi substrate using a cathodic electrophoretic method. The apatite formation ability was estimated using immersion test in the simulated body fluid for 10days. The SEM images of the surface of coatings after immersion in simulated body fluid show that the presence of silicon in the hydroxyapatite coatings accelerates in vitro growth of apatite layer on the coatings. The Open-circuit potential and electrochemical impedance spectroscopy were measured to evaluate the electrochemical behavior of the coatings in the simulated body fluid at 37°C. The results indicate that the compact structure of hydroxyapatite-20wt% silicon and hydroxyapatite-20wt% silicon-1wt% multi walled carbon nano-tubes coatings could efficiently increase the corrosion resistance of NiTi substrate. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Electrochemistry of Prebiotic Early Earth Hydrothermal Chimney Systems

    NASA Astrophysics Data System (ADS)

    Hermis, N.; Barge, L. M.; Chin, K. B.; LeBlanc, G.; Cameron, R.

    2017-12-01

    Hydrothermal chimneys are self-organizing chemical garden precipitates generated from geochemical disequilibria within sea-vent environments, and have been proposed as a possible setting for the emergence of life because they contain mineral catalysts and transect ambient pH / Eh / chemical gradients [1]. We simulated the growth of hydrothermal chimneys in early Earth vent systems by using different hydrothermal simulants such as sodium sulfide (optionally doped with organic molecules) which were injected into an early Earth ocean simulant containing dissolved ferrous iron, nickel, and bicarbonate [2]. Chimneys on the early Earth would have constituted flow-through reactors, likely containing Fe/Ni-sulfide catalysts that could have driven proto-metabolic electrochemical reactions. The electrochemical activity of the chimney system was characterized non-invasively by placing electrodes at different locations across the chimney wall and in the ocean to analyze the bulk properties of surface charge potential in the chimney / ocean / hydrothermal fluid system. We performed in-situ characterization of the chimney using electrochemical impedance spectroscopy (EIS) which allowed us to observe the changes in physio-chemical behavior of the system through electrical spectra of capacitance and impedance over a wide range of frequencies during the metal sulfide chimney growth. The electrochemical properties of hydrothermal chimneys in natural systems persist due to the disequilibria maintained between the ocean and hydrothermal fluid. When the injection in our experiment (analogous to fluid flow in a vent) stopped, we observed a corresponding decline in open circuit voltage across the chimney wall, though the impedance of the precipitate remained lor. Further work is needed to characterize the electrochemistry of simulated chimney systems by controlling response factors such as electrode geometry and environmental conditions, in order to simulate electrochemical reactions that may have occurred in similar systems on the early Earth. [1] Russell, MJ et al. 2014. Astrobiology,14, 4, 308-343. [2] Barge, LM et al. (2015) Journal of Visualized Experiments, 105, DOI: 10.3791/53015.

  18. Electrochemistry-mass spectrometry for in-vitro determination of selected chemotherapeutics and their electrochemical products in comparison to in-vivo approach.

    PubMed

    Szultka-Mlynska, Malgorzata; Buszewski, Boguslaw

    2016-11-01

    Chemotherapeutics are among the most frequently prescribed medications in modern medicine. They are widely prescribed; however, problems with organisms developing resistance to these drugs means that their efficacy may be lost, so care should be taken to avoid unnecessary prescription. It is therefore of great interest to study the detailed metabolism of these biologically active compounds. This study aimed at developing an efficient analytical protocol for the determination of in-vitro electrochemical products of selected antibiotic drugs (amoxicillin, cefotaxime, fluconazole, linezolid, metronidazole and moxifloxacin). Combination of electrochemistry (EC) and mass spectrometry (MS) was applied for the in-vitro determination of the studied antibiotics and their electrochemical products. To identify the structure of the detected electrochemical products, MS/MS experiments were performed. This was one of the first applications of the EC system for generation of electrochemical products produced from antibiotic drugs. Adjustment of appropriate conditions and such parameters as the potential value, mobile phase (pH), working electrode and temperature had significant influence on electrochemical simulations and the creation of selected derivatives. Consequently, several working electrodes were evaluated for this purpose. In most of the studied cases, mainly two types of products were observed. One corresponded to an increase in mass by 14Da, which can be explained by a process consisting of oxidation (+16 m/z) and dehydrogenation (-2 m/z); The second in turn showed mass reduction by 14Da, which can be attributed to the loss of -CH2 as a result of N-demethylation. The performed experiments consisted of two stages: electrochemical oxidation of the analyzed samples (phase I of metabolic transformation), and addition of glutathione (GSH) for follow-up reactions (phase II conjunction). The electrochemical results were compared to in-vivo experiments by analyzing urine samples from patients after antibiotic drugs have been administered.. Overall, the comparison of electrochemistry to in-vivo experiments shows the high potential of EC-MS as a fast analytical tool in the prediction of electrochemical conversion that could be applied to therapeutic drug monitoring and pharmacokinetic studies as well. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Development of Self-Powered Wireless-Ready High Temperature Electrochemical Sensors for In-Situ Corrosion Monitoring for Boiler Tubes in Next Generation Coal-based Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xingbo

    The key innovation of this project is the synergy of the high temperature sensor technology based on the science of electrochemical measurement and state-of-the-art wireless communication technology. A novel self-powered wireless high temperature electrochemical sensor system has been developed for coal-fired boilers used for power generation. An initial prototype of the in-situ sensor demonstrated the capability of the wireless communication system in the laboratory and in a pilot plant (Industrial USC Boiler Setting) environment to acquire electrochemical potential and current signals during the corrosion process. Uniform and localized under-coal ash deposit corrosion behavior of Inconel 740 superalloy has been studiedmore » at different simulated coal ash hot corrosion environments using the developed sensor. Two typical potential noise patterns were found to correlate with the oxidation and sulfidation stages in the hot coal ash corrosion process. Two characteristic current noise patterns indicate the extent of the corrosion. There was a good correlation between the responses of electrochemical test data and the results from corroded surface analysis. Wireless electrochemical potential and current noise signals from a simulated coal ash hot corrosion process were concurrently transmitted and recorded. The results from the performance evaluation of the sensor confirm a high accuracy in the thermodynamic and kinetic response represented by the electrochemical noise and impedance test data.« less

  20. A model-based understanding of solid-oxide electrolysis cells (SOECs) for syngas production by H2O/CO2 co-electrolysis

    NASA Astrophysics Data System (ADS)

    Menon, Vikram; Fu, Qingxi; Janardhanan, Vinod M.; Deutschmann, Olaf

    2015-01-01

    High temperature co-electrolysis of H2O and CO2 offers a promising route for syngas (H2, CO) production via efficient use of heat and electricity. The performance of a SOEC during co-electrolysis is investigated by focusing on the interactions between transport processes and electrochemical parameters. Electrochemistry at the three-phase boundary is modeled by a modified Butler-Volmer approach that considers H2O electrolysis and CO2 electrolysis, individually, as electrochemically active charge transfer pathways. The model is independent of the geometrical structure. A 42-step elementary heterogeneous reaction mechanism for the thermo-catalytic chemistry in the fuel electrode, the dusty gas model (DGM) to account for multi-component diffusion through porous media, and a plug flow model for flow through the channels are used in the model. Two sets of experimental data are reproduced by the simulations, in order to deduce parameters of the electrochemical model. The influence of micro-structural properties, inlet cathode gas velocity, and temperature are discussed. Reaction flow analysis is performed, at OCV, to study methane production characteristics and kinetics during co-electrolysis. Simulations are carried out for configurations ranging from simple one-dimensional electrochemical button cells to quasi-two-dimensional co-flow planar cells, to demonstrate the effectiveness of the computational tool for performance and design optimization.

  1. Simultaneously Coupled Mechanical-Electrochemical-Thermal Simulation of Lithium-Ion Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, C.; Santhanagopalan, S.; Sprague, M. A.

    2016-07-28

    Understanding the combined electrochemical-thermal and mechanical response of a system has a variety of applications, for example, structural failure from electrochemical fatigue and the potential induced changes of material properties. For lithium-ion batteries, there is an added concern over the safety of the system in the event of mechanical failure of the cell components. In this work, we present a generic multi-scale simultaneously coupled mechanical-electrochemical-thermal model to examine the interaction between mechanical failure and electrochemical-thermal responses. We treat the battery cell as a homogeneous material while locally we explicitly solve for the mechanical response of individual components using a homogenizationmore » model and the electrochemical-thermal responses using an electrochemical model for the battery. A benchmark problem is established to demonstrate the proposed modeling framework. The model shows the capability to capture the gradual evolution of cell electrochemical-thermal responses, and predicts the variation of those responses under different short-circuit conditions.« less

  2. Simultaneously Coupled Mechanical-Electrochemical-Thermal Simulation of Lithium-Ion Cells: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chao; Santhanagopalan, Shriram; Sprague, Michael A.

    2016-08-01

    Understanding the combined electrochemical-thermal and mechanical response of a system has a variety of applications, for example, structural failure from electrochemical fatigue and the potential induced changes of material properties. For lithium-ion batteries, there is an added concern over the safety of the system in the event of mechanical failure of the cell components. In this work, we present a generic multi-scale simultaneously coupled mechanical-electrochemical-thermal model to examine the interaction between mechanical failure and electrochemical-thermal responses. We treat the battery cell as a homogeneous material while locally we explicitly solve for the mechanical response of individual components using a homogenizationmore » model and the electrochemical-thermal responses using an electrochemical model for the battery. A benchmark problem is established to demonstrate the proposed modeling framework. The model shows the capability to capture the gradual evolution of cell electrochemical-thermal responses, and predicts the variation of those responses under different short-circuit conditions.« less

  3. Pitting Behavior of L415 Pipeline Steel in Simulated Leaching Liquid Environment

    NASA Astrophysics Data System (ADS)

    Wan, H. X.; Yang, X. J.; Liu, Z. Y.; Song, D. D.; Du, C. W.; Li, X. G.

    2017-02-01

    The corrosion behavior and laws of the west-east gas pressure pipeline of L415 steel were studied in simulated leaching liquid. The failure of the L415 steel during the pressure testing process was investigated using electrochemical polarization, electrochemical impedance spectroscopy, and immersion test. The corrosion rate of the L415 steel increased with ion concentration in the leaching liquid. This rate reached about 0.8 mm a-1 and belonged to the severe corrosion grade. Pitting corrosion was observed in various simulated solutions with different aggressive species concentrations. The original ion concentration in the leaching liquid (1×) is the key factor influencing pitting initiation and development. Pitting showed easy nucleation, and its growth rate was relatively slow, in the basic simulating solution of the leach liquid (i.e., the ion content is compactable to the real condition in the rust on the inner steel pipe surface). Pitting was also highly sensitive and easily grew in the solution with doubled ion concentration in the basic simulating solution (2×). A uniform corrosion, instead of pitting, mainly occurred when the ion concentration was up to 10× of the basic solution.

  4. Stress corrosion cracking of titanium alloys

    NASA Technical Reports Server (NTRS)

    May, R. C.; Beck, F. H.; Fontana, M. G.

    1971-01-01

    Experiments were conducted to study (1) the basic electrochemical behavior of titanium in acid chloride solutions and (2) the response of the metal to dynamic straining in the same evironment. The aim of this group of experiments was to simulate, as nearly as possible, the actual conditions which exist at the tip of a crack. One of the foremost theories proposed to explain the propagation of stress corrosion cracks is a hydrogen embrittlement theory involving the precipitation of embrittling titanium hydrides inside the metal near the crack tip. An initial survey of the basic electrochemical literature indicated that surface hydrides play a critical role in the electrochemistry of titanium in acid solutions. A comprehensive analysis of the effect of surface films, particularly hydrides, on the electrochemical behavior of titanium in these solution is presented.

  5. Electrochemical stability and corrosion resistance of Ti-Mo alloys for biomedical applications.

    PubMed

    Oliveira, N T C; Guastaldi, A C

    2009-01-01

    Electrochemical behavior of pure Ti and Ti-Mo alloys (6-20wt.% Mo) was investigated as a function of immersion time in electrolyte simulating physiological media. Open-circuit potential values indicated that all Ti-Mo alloys studied and pure Ti undergo spontaneous passivation due to spontaneously formed oxide film passivating the metallic surface, in the chloride-containing solution. It also indicated that the addition of Mo to pure Ti up to 15wt.% seems to improve the protection characteristics of its spontaneous oxides. Electrochemical impedance spectroscopy (EIS) studies showed high impedance values for all samples, increasing with immersion time, indicating an improvement in corrosion resistance of the spontaneous oxide film. The fit obtained suggests a single passive film present on the metals' surface, improving their resistance with immersion time, presenting the highest values to Ti-15Mo alloy. Potentiodynamic polarization showed a typical valve-metal behavior, with anodic formation of barrier-type oxide films, without pitting corrosion, even in chloride-containing solution. In all cases, the passive current values were quite small, and decrease after 360h of immersion. All these electrochemical results suggest that the Ti-15Mo alloy is a promising material for orthopedic devices, since electrochemical stability is directly associated with biocompatibility and is a necessary condition for applying a material as biomaterial.

  6. A biofilm microreactor system for simultaneous electrochemical and nuclear magnetic resonance techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renslow, Ryan S.; Babauta, Jerome T.; Majors, Paul D.

    2014-03-01

    In order to fully understand electrochemically active biofilms and the limitations to their scale-up in industrial biofilm reactors, a complete picture of the microenvironments inside the biofilm is needed. Nuclear magnetic resonance (NMR) techniques are ideally suited for the study of biofilms and for probing their microenvironments because these techniques allow for non-invasive interrogation and in situ monitoring with high resolution. By combining NMR with simultaneous electrochemical techniques, it is possible to sustain and study live electrochemically active biofilms. Here, we introduce a novel biofilm microreactor system that allows for simultaneous electrochemical and NMR techniques (EC-NMR) at the microscale. Microreactorsmore » were designed with custom radiofrequency resonator coils, which allowed for NMR measurements of biofilms growing on polarized gold electrodes. For an example application of this system, we grew Geobacter sulfurreducens biofilms. NMR was used to investigate growth media flow velocities, which were compared to simulated laminar flow, and electron donor concentrations inside the biofilms. We use Monte Carlo error analysis to estimate standard deviations of the electron donor concentration measurements within the biofilm. The EC-NMR biofilm microreactor system can ultimately be used to correlate extracellular electron transfer rates with metabolic reactions and explore extracellular electron transfer mechanisms.« less

  7. Effect of alkyl branches on the thermal stability of quaternary ammonium cations in organic electrolytes for electrochemical double layer capacitors.

    PubMed

    Ahn, Yong Nam; Lee, Sung Hoon; Lee, Goo Soo; Kim, Hyunbin

    2017-08-02

    Quaternary ammoniums are cations having widespread use in organic electrolytes for high performance electrochemical double layer capacitors (EDLCs) due to their various advantages such as high electrochemical stability and inexpensive production cost. However, the decomposition of quaternary ammoniums via Hofmann elimination hinders their applications for EDLCs operating at elevated temperatures. This study systematically investigates the reactivity of four different quaternary ammoniums (tetraethyl-, triethylmethyl-, diethyldimethyl-, and trimethylethyl-ammonium) in EDLC by utilizing density functional theory calculations and Brownian dynamics simulations complemented with molecular dynamics simulations. It is found that ammonium stability reduces upon increasing the number of ethyl branches that have a stronger positive charge than the methyl groups. However, the contribution of the entropy change to the reaction free energy makes trimethylethylammonium less stable than diethyldimethylammonium at room temperature although the former has less ethyl branches than the latter. Trimethylethylammonium becomes the most stable at a high temperature of 488 K above which the activation free energy becomes effectively negligible and thus the number of reactive sites determines the overall stability. The fundamental understanding of the ammonium decompositions through Hofmann elimination demonstrated in this study is expected to contribute to developing new long-life organic electrolyte systems for high-temperature applications.

  8. Electrochemical Corrosion and In Vitro Bioactivity of SiO2:ZrO2-Coated 316L Stainless Steel in Simulated Body Fluid

    NASA Astrophysics Data System (ADS)

    Srinivasan, A.; Rajendran, N.

    2015-08-01

    The effect of Si:Zr ratio on the in vitro bioactivity and electrochemical corrosion behavior of SiO2:ZrO2-mixed oxide-coated 316L stainless steel (SS) was evaluated in simulated body fluid (SBF) solution for 72, 120, and 168 h. Growth of Hydroxyapatite (HAp) was accelerated when Si content in the coating was increased. The Zr content in the coating improved the corrosion resistance of 316L SS rather than accelerating the HAp growth. When the Si:Zr ratio was 50:50, the coating exhibited significant improvement in corrosion resistance as well as HAp growth. The mechanism of HAp growth was proposed based on the change in surface zeta potential values of the coatings. Potentiodynamic polarization studies revealed about 10 and 5 times reduction in corrosion current density ( i corr) values for SiO2:ZrO2 (50:50)-coated 316L SS after 168 h of immersion compared to SiO2, ZrO2, and Si:Zr (70:30) coatings in SBF solutions thus confirming the superior corrosion resistance. The equivalent circuit parameters derived from electrochemical impedance spectroscopy studies further confirmed significant improvement in charge transfer resistance value even after 168 h of exposure.

  9. In situ cell culture monitoring on a Ti-6Al-4V surface by electrochemical techniques.

    PubMed

    García-Alonso, M C; Saldaña, L; Alonso, C; Barranco, V; Muñoz-Morris, M A; Escudero, M L

    2009-05-01

    In this work, the in situ interaction between Ti-6Al-4V alloy and osteoblastic cells has been studied by electrochemical techniques as a function of time. The interaction has been monitored for cell adhesion and growth of human osteoblastic Saos-2 cells on Ti-6Al-4V samples. The study has been carried out by electrochemical techniques, e.g., studying the evolution of corrosion potential with exposure time and by electrochemical impedance spectroscopy. The impedance results have been analyzed by using different equivalent circuit models that simulate the interface state at each testing time. The adhesion of the osteoblastic cells on the Ti-6Al-4V alloy leads to surface areas with different cell coverage rates, thus showing the different responses in the impedance diagrams with time. The effect of the cells on the electrochemical response of Ti-6Al-4V alloy is clearly seen after 4 days of testing, in which two isolated and well-differentiated time constants are clearly observed. One of these is associated with the presence of the cells and the other with a passive film on the Ti-6Al-4V alloy. After 7 days of culture, the system is governed by a resistive component over a wide frequency range which is associated with an increase in the cell coverage rate on the surface due to the extracellular matrix.

  10. Geological and technological evaluation of gold-bearing mineral material after photo-electrochemical activation leaching

    NASA Astrophysics Data System (ADS)

    Manzyrev, DV

    2017-02-01

    The paper reports the lab test results on simulation of heap leaching of unoxidized rebellious ore extracted from deep levels of Pogromnoe open pit mine, with different flowsheets and photo-electrochemically activated solutions. It has been found that pre-treatment of rebellious ore particles -10 mm in size by photo-electrochemically activated solutions at the stage preceding agglomeration with the use of rich cyanide solutions enhances gold recovery by 6%.

  11. In-situ electrochemical study of interaction of tribology and corrosion in artificial hip prosthesis simulators.

    PubMed

    Yan, Yu; Dowson, Duncan; Neville, Anne

    2013-02-01

    The second generation Metal-on-Metal (MoM) hip replacements have been considered as an alternative to commonly used Polyethylene-on-Metal (PoM) joint prostheses due to polyethylene wear debris induced osteolysis. However, the role of corrosion and the biofilm formed under tribological contact are still not fully understood. Enhanced metal ion concentrations have been reported widely from hair, blood and urine samples of patients who received metal hip replacements and in isolated cases when abnormally high levels have caused adverse local tissue reactions. An understanding of the origin of metal ions is really important in order to design alloys for reduced ion release. Reciprocating pin-on-plate wear tester is a standard instrument to assess the interaction of corrosion and wear. However, more realistic hip simulator can provide a better understanding of tribocorrosion process for hip implants. It is very important to instrument the conventional hip simulator to enable electrochemical measurements. In this study, simple reciprocating pin-on-plate wear tests and hip simulator tests were compared. It was found that metal ions originated from two sources: (a) a depassivation of the contacting surfaces due to tribology (rubbing) and (b) corrosion of nano-sized wear particles generated from the contacting surfaces. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Catalytic and electrochemical behaviour of solid oxide fuel cell operated with simulated-biogas mixtures

    NASA Astrophysics Data System (ADS)

    Dang-Long, T.; Quang-Tuyen, T.; Shiratori, Y.

    2016-06-01

    Being produced from organic matters of wastes (bio-wastes) through a fermentation process, biogas mainly composed of CH4 and CO2 and can be considered as a secondary energy carrier derived from solar energy. To generate electricity from biogas through the electrochemical process in fuel cells is a state-of-the-art technology possessing higher energy conversion efficiency without harmful emissions compared to combustion process in heat engines. Getting benefits from high operating temperature such as direct internal reforming ability and activation of electrochemical reactions to increase overall system efficiency, solid oxide fuel cell (SOFC) system operated with biogas becomes a promising candidate for distributed power generator for rural applications leading to reductions of environmental issues caused by greenhouse effects and bio-wastes. CO2 reforming of CH4 and electrochemical oxidation of the produced syngas (H2-CO mixture) are two main reaction processes within porous anode material of SOFC. Here catalytic and electrochemical behavior of Ni-ScSZ (scandia stabilized-zirconia) anode in the feed of CH4-CO2 mixtures as simulated-biogas at 800 °C were evaluated. The results showed that CO2 had strong influences on both reaction processes. The increase in CO2 partial pressure resulted in the decrease in anode overvoltage, although open-circuit voltage was dropped. Besides that, the simulation result based on a power-law model for equimolar CH4-CO2 mixture revealed that coking hazard could be suppressed along the fuel flow channel in both open-circuit and closed-circuit conditions.

  13. Coupling of Mechanical Behavior of Lithium Ion Cells to Electrochemical-Thermal (ECT) Models for Battery Crush

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chao; Santhanagopalan, Shriram; Pesaran, Ahmad

    Vehicle crashes can lead to crushing of the battery, damaging lithium ion battery cells and causing local shorts, heat generation, and thermal runaway. Simulating all the physics and geometries at the same time is challenging and takes a lot of effort; thus, simplifications are needed. We developed a material model for simultaneously modeling the mechanical-electrochemical-thermal behavior, which predicted the electrical short, voltage drop, and thermal runaway behaviors followed by a mechanical abuse-induced short. The effect of short resistance on the battery cell performance was studied.

  14. Electrochemical investigations of Cr-Ni-Mo stainless steel used in urology

    NASA Astrophysics Data System (ADS)

    Przondziono, J.; Walke, W.

    2011-05-01

    The influence of chemical passivation process on physical and chemical characteristics of samples made of X2CrNiMo 17-7-2 steel with differentiated hardening, in the solution simulating the environment of human urine was analysed in the study. Wire obtained in cold drawing process is used for the production of stents and appliances in urological treatment. Proper roughness of the surface was obtained through mechanical working - grinding (Ra = 0,40 μn) and electrochemical polishing (Ra = 0,12 μn). Chemical passivation process was carried out in 40% solution of HN03 within 60 minutes in the temperature of 65°C. The tests of corrosion resistance were made on the ground of registered anodic polarisation curves and Stern method. For evaluation of phenomena occurring on the surface of tested steel, electrochemical impedance spectroscopy (EIS) was applied.

  15. Influence of albumin and inorganic ions on electrochemical corrosion behavior of plasma electrolytic oxidation coated magnesium for surgical implants

    NASA Astrophysics Data System (ADS)

    Wan, Peng; Lin, Xiao; Tan, LiLi; Li, Lugee; Li, WeiRong; Yang, Ke

    2013-10-01

    Magnesium and its alloys are of great interest for biodegradable metallic devices. However, the degradation behavior and mechanisms of magnesium treated with coating in physiological environment in the presence of organic compound such as albumin have not been elucidated. In this study, the plasma electrolytic oxidation coated magnesium immersed in four different simulated body fluids: NaCl, PBS and with the addition of albumin to investigate the influence of protein and inorganic ions on degradation behavior by electrochemical methods. The results of electrochemical tests showed that aggressive corrosion took place in 0.9 wt.% NaCl solution; whereas albumin can act as an inhibitor, its adsorption impeded further dissolution of the coating. The mechanism was attributed to the synergistic effect of protein adsorption and precipitation of insoluble salts.

  16. Numerical Study of the Buoyancy-Driven Flow in a Four-Electrode Rectangular Electrochemical Cell

    NASA Astrophysics Data System (ADS)

    Sun, Zhanyu; Agafonov, Vadim; Rice, Catherine; Bindler, Jacob

    2009-11-01

    Two-dimensional numerical simulation is done on the buoyancy-driven flow in a four-electrode rectangular electrochemical cell. Two kinds of electrode layouts, the anode-cathode-cathode-anode (ACCA) and the cathode-anode-anode-cathode (CAAC) layouts, are studied. In the ACCA layout, the two anodes are placed close to the channel outlets while the two cathodes are located between the two anodes. The CAAC layout can be converted from the ACCA layout by applying higher electric potential on the two middle electrodes. Density gradient was generated by the electrodic reaction I3^-+2e^- =3I^-. When the electrochemical cell is accelerated axially, buoyancy-driven flow occurs. In our model, electro-neutrality is assumed except at the electrodes. The Navier-Stokes equations with the Boussinesq approximation and the Nernst-Planck equations are employed to model the momentum and mass transports, respectively. It is found that under a given axial acceleration, the electrolyte density between the two middle electrodes determines the bulk flow through the electrochemical cell. The cathodic current difference is found to be able to measure the applied acceleration. Other important electro-hydrodynamic characteristics are also discussed.

  17. Laser irradiation of Mg-Al-Zn alloy: Reduced electrochemical kinetics and enhanced performance in simulated body fluid.

    PubMed

    Florian, David C; Melia, Michael A; Steuer, Fritz W; Briglia, Bruce F; Purzycki, Michael K; Scully, John R; Fitz-Gerald, James M

    2017-05-11

    As a lightweight metal with mechanical properties similar to natural bone, Mg and its alloys are great prospects for biodegradable, load bearing implants. However, rapid degradation and H 2 gas production in physiological media has prevented widespread use of Mg alloys. Surface heterogeneities in the form of intermetallic particles dominate the corrosion response. This research shows that surface homogenization significantly improved the biological corrosion response observed during immersion in simulated body fluid (SBF). The laser processed Mg alloy exhibited a 50% reduction in mass loss and H 2 evolution after 24 h of immersion in SBF when compared to the wrought, cast alloy. The laser processed samples exhibited increased wettability as evident from wetting angle studies, further suggesting improved biocompatibility. Electrochemical analysis by potentiodynamic polarization measurements showed that the anodic and cathodic kinetics were reduced following laser processing and are attributed to the surface chemical homogeneity.

  18. Atomic-Scale Simulation of Electrochemical Processes at Electrode/Water Interfaces under Referenced Bias Potential.

    PubMed

    Bouzid, Assil; Pasquarello, Alfredo

    2018-04-19

    Based on constant Fermi-level molecular dynamics and a proper alignment scheme, we perform simulations of the Pt(111)/water interface under variable bias potential referenced to the standard hydrogen electrode (SHE). Our scheme yields a potential of zero charge μ pzc of ∼0.22 eV relative to the SHE and a double layer capacitance C dl of ≃19 μF cm -2 , in excellent agreement with experimental measurements. In addition, we study the structural reorganization of the electrical double layer for bias potentials ranging from -0.92 eV to +0.44 eV and find that O down configurations, which are dominant at potentials above the pzc, reorient to favor H down configurations as the measured potential becomes negative. Our modeling scheme allows one to not only access atomic-scale processes at metal/water interfaces, but also to quantitatively estimate macroscopic electrochemical quantities.

  19. Capacity Loss Studies on High Capacity Li-ion Cells for the Orbiter Advanced Hydraulic Power System

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith A.; Irlbeck, Bradley W.

    2004-01-01

    Contents include the following: Introduction. Physical and electrochemical characteristics. Performance evaluation. Rate performance. Internal resistance. Performance at different temperatures. Safety evaluation. Overcharge. Overdischarge. External short. Simulated internal short. Heat-to-vent. Vibration. Drop rest. Vent and burst pressure.

  20. Catalytic and electrochemical behaviour of solid oxide fuel cell operated with simulated-biogas mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dang-Long, T., E-mail: 3TE14098G@kyushu-u.ac.jp; Quang-Tuyen, T., E-mail: tran.tuyen.quang.314@m.kyushu-u.ac.jp; Shiratori, Y., E-mail: shiratori.yusuke.500@m.kyushu-u.ac.jp

    2016-06-03

    Being produced from organic matters of wastes (bio-wastes) through a fermentation process, biogas mainly composed of CH{sub 4} and CO{sub 2} and can be considered as a secondary energy carrier derived from solar energy. To generate electricity from biogas through the electrochemical process in fuel cells is a state-of-the-art technology possessing higher energy conversion efficiency without harmful emissions compared to combustion process in heat engines. Getting benefits from high operating temperature such as direct internal reforming ability and activation of electrochemical reactions to increase overall system efficiency, solid oxide fuel cell (SOFC) system operated with biogas becomes a promising candidatemore » for distributed power generator for rural applications leading to reductions of environmental issues caused by greenhouse effects and bio-wastes. CO{sub 2} reforming of CH{sub 4} and electrochemical oxidation of the produced syngas (H{sub 2}–CO mixture) are two main reaction processes within porous anode material of SOFC. Here catalytic and electrochemical behavior of Ni-ScSZ (scandia stabilized-zirconia) anode in the feed of CH{sub 4}–CO{sub 2} mixtures as simulated-biogas at 800 °C were evaluated. The results showed that CO{sub 2} had strong influences on both reaction processes. The increase in CO{sub 2} partial pressure resulted in the decrease in anode overvoltage, although open-circuit voltage was dropped. Besides that, the simulation result based on a power-law model for equimolar CH{sub 4}−CO{sub 2} mixture revealed that coking hazard could be suppressed along the fuel flow channel in both open-circuit and closed-circuit conditions.« less

  1. Scanning electrochemical microscopy of menadione-glutathione conjugate export from yeast cells

    PubMed Central

    Mauzeroll, Janine; Bard, Allen J.

    2004-01-01

    The uptake of menadione (2-methyl-1,4-naphthoquinone), which is toxic to yeast cells, and its expulsion as a glutathione complex were studied by scanning electrochemical microscopy. The progression of the in vitro reaction between menadione and glutathione was monitored electrochemically by cyclic voltammetry and correlated with the spectroscopic (UV–visible) behavior. By observing the scanning electrochemical microscope tip current of yeast cells suspended in a menadione-containing solution, the export of the conjugate from the cells with time could be measured. Similar experiments were performed on immobilized yeast cell aggregates stressed by a menadione solution. From the export of the menadione-glutathione conjugate detected at a 1-μm-diameter electrode situated 10 μm from the cells, a flux of about 30,000 thiodione molecules per second per cell was extracted. Numerical simulations based on an explicit finite difference method further revealed that the observation of a constant efflux of thiodione from the cells suggested the rate was limited by the uptake of menadione and that the efflux through the glutathione-conjugate pump was at least an order of magnitude faster. PMID:15148374

  2. Effect of electrode intrusion on pressure drop and electrochemical performance of an all-vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Jayanti, S.

    2017-08-01

    In this paper, we present a study of the effect of electrode intrusion into the flow channel in an all-vanadium redox flow battery. Permeability, pressure drop and electrochemical performance have been measured in a cell with active area 100 cm2and 414 cm2 fitted with a carbon felt electrode of thickness of 3, 6 or 9 mm compressed to 1.5, 2.5 or 4 mm, respectively, during assembly. Results show that the pressure drop is significantly higher than what can be expected in the thick electrode case while its electrochemical performance is lower. Detailed flow analysis using computational fluid dynamics simulations in two different flow fields shows that both these results can be attributed to electrode intrusion into the flow channel leading to increased resistance to electrolyte flow through the electrode. A correlation is proposed to evaluate electrode intrusion depth as a function of compression.

  3. Electrochemical Synthesis and Kinetic Evaluation of Electrooxidation of Acetaminophen in the Presence of Antidepressant Drugs

    PubMed Central

    Nematollahi, Davood; Feyzi Barnaji, Bahareh; Amani, Ameneh

    2015-01-01

    With the aim of obtaining information about drug-drug interaction (DDI) between acetaminophen and some of antidepressant drugs (fluoxetine, sertraline and nortriptyline), in the present work we studied the electrochemical oxidation of acetaminophen (paracetamol) in the presence of these drugs by means of cyclic voltammetry and Controlled-potential coulometry. The reaction between N-acetyl-p-benzoquinone-imine (NAPQI) produced from electrooxidation of acetaminophen and antidepressant drugs (see scheme 1) cause to reduce the concentration of NAPQI and decreases the effective concentration of antidepressants. The cyclic voltammetric data were analyzed by digital simulation to measure the homogeneous parameters for the suggesting electrode mechanism. The calculated observed homogeneous rate constants (kobs) for the reaction of electrochemically generated N-acetyl-para benzoquinn-imine with antidepressant drugs was found to vary in the order kobsnortriptyline > kobssertraline > kobsfluxetine at biological pH. PMID:26664378

  4. First principles modeling of the metal-electrolyte interface: A novel approach to the study of the electrochemical interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez-Serra, Maria Victoria

    2016-09-12

    The research objective of this proposal is the computational modeling of the metal-electrolyte interface purely from first principles. The accurate calculation of the electrostatic potential at electrically biased metal-electrolyte interfaces is a current challenge for periodic “ab-initio” simulations. It is also an essential requisite for predicting the correspondence between the macroscopic voltage and the microscopic interfacial charge distribution in electrochemical fuel cells. This interfacial charge distribution is the result of the chemical bonding between solute and metal atoms, and therefore cannot be accurately calculated with the use of semi-empirical classical force fields. The project aims to study in detail themore » structure and dynamics of aqueous electrolytes at metallic interfaces taking into account the effect of the electrode potential. Another side of the project is to produce an accurate method to simulate the water/metal interface. While both experimental and theoretical surface scientists have made a lot of progress on the understanding and characterization of both atomistic structures and reactions at the solid/vacuum interface, the theoretical description of electrochemical interfaces is still lacking behind. A reason for this is that a complete and accurate first principles description of both the liquid and the metal interfaces is still computationally too expensive and complex, since their characteristics are governed by the explicit atomic and electronic structure built at the interface as a response to environmental conditions. This project will characterize in detail how different theoretical levels of modeling describer the metal/water interface. In particular the role of van der Waals interactions will be carefully analyzed and prescriptions to perform accurate simulations will be produced.« less

  5. Mechanical and electrochemical response of a LiCoO 2 cathode using reconstructed microstructures

    DOE PAGES

    Mendoza, Hector; Roberts, Scott Alan; Brunini, Victor; ...

    2016-01-01

    As LiCoO 2 cathodes are charged, delithiation of the LiCoO 2 active material leads to an increase in the lattice spacing, causing swelling of the particles. When these particles are packed into a bicontinuous, percolated network, as is the case in a battery electrode, this swelling leads to the generation of significant mechanical stress. In this study we performed coupled electrochemical-mechanical simulations of the charging of a LiCoO 2 cathode in order to elucidate the mechanisms of stress generation and the effect of charge rate and microstructure on these stresses. Energy dispersive spectroscopy combined with scanning electron microscopy imaging wasmore » used to create 3D reconstructions of a LiCoO 2 cathode, and the Conformal Decomposition Finite Element Method is used to automatically generate computational meshes on this reconstructed microstructure. Replacement of the ideal solution Fickian diffusion model, typically used in battery simulations, with a more general non-ideal solution model shows substantially smaller gradients of lithium within particles than is typically observed in the literature. Using this more general model, lithium gradients only appear at states of charge where the open-circuit voltage is relatively constant. While lithium gradients do affect the mechanical stress state in the particles, the maximum stresses are always found in the fully-charged state and are strongly affected by the local details of the microstructure and particle-to-particle contacts. These coupled electrochemical-mechanical simulations begin to yield insight into the partitioning of volume change between reducing pore space and macroscopically swelling the electrode. Lastly, preliminary studies that include the presence of the polymeric binder suggest that it can greatly impact stress generation and that it is an important area for future research.« less

  6. Materials for electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Simon, Patrice; Gogotsi, Yury

    2008-11-01

    Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. The discovery that ion desolvation occurs in pores smaller than the solvated ions has led to higher capacitance for electrochemical double layer capacitors using carbon electrodes with subnanometre pores, and opened the door to designing high-energy density devices using a variety of electrolytes. Combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries. The use of carbon nanotubes has further advanced micro-electrochemical capacitors, enabling flexible and adaptable devices to be made. Mathematical modelling and simulation will be the key to success in designing tomorrow's high-energy and high-power devices.

  7. Materials for electrochemical capacitors.

    PubMed

    Simon, Patrice; Gogotsi, Yury

    2008-11-01

    Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. The discovery that ion desolvation occurs in pores smaller than the solvated ions has led to higher capacitance for electrochemical double layer capacitors using carbon electrodes with subnanometre pores, and opened the door to designing high-energy density devices using a variety of electrolytes. Combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries. The use of carbon nanotubes has further advanced micro-electrochemical capacitors, enabling flexible and adaptable devices to be made. Mathematical modelling and simulation will be the key to success in designing tomorrow's high-energy and high-power devices.

  8. Advancing from Rules of Thumb: Quantifying the Effects of Small Density Changes in Mass Transport to Electrodes. Understanding Natural Convection.

    PubMed

    Ngamchuea, Kamonwad; Eloul, Shaltiel; Tschulik, Kristina; Compton, Richard G

    2015-07-21

    Understanding mass transport is prerequisite to all quantitative analysis of electrochemical experiments. While the contribution of diffusion is well understood, the influence of density gradient-driven natural convection on the mass transport in electrochemical systems is not. To date, it has been assumed to be relevant only for high concentrations of redox-active species and at long experimental time scales. If unjustified, this assumption risks misinterpretation of analytical data obtained from scanning electrochemical microscopy (SECM) and generator-collector experiments, as well as analytical sensors utilizing macroelectrodes/microelectrode arrays. It also affects the results expected from electrodeposition. On the basis of numerical simulation, herein it is demonstrated that even at less than 10 mM concentrations and short experimental times of tens of seconds, density gradient-driven natural convection significantly affects mass transport. This is evident from in-depth numerical simulation for the oxidation of hexacyanoferrate (II) at various electrode sizes and electrode orientations. In each case, the induced convection and its influence on the diffusion layer established near the electrode are illustrated by maps of the velocity fields and concentration distributions evolving with time. The effects of natural convection on mass transport and chronoamperometric currents are thus quantified and discussed for the different cases studied.

  9. An Ab Initio and Kinetic Monte Carlo Simulation Study of Lithium Ion Diffusion on Graphene

    PubMed Central

    Zhong, Kehua; Yang, Yanmin; Xu, Guigui; Zhang, Jian-Min; Huang, Zhigao

    2017-01-01

    The Li+ diffusion coefficients in Li+-adsorbed graphene systems were determined by combining first-principle calculations based on density functional theory with Kinetic Monte Carlo simulations. The calculated results indicate that the interactions between Li ions have a very important influence on lithium diffusion. Based on energy barriers directly obtained from first-principle calculations for single-Li+ and two-Li+ adsorbed systems, a new equation predicting energy barriers with more than two Li ions was deduced. Furthermore, it is found that the temperature dependence of Li+ diffusion coefficients fits well to the Arrhenius equation, rather than meeting the equation from electrochemical impedance spectroscopy applied to estimate experimental diffusion coefficients. Moreover, the calculated results also reveal that Li+ concentration dependence of diffusion coefficients roughly fits to the equation from electrochemical impedance spectroscopy in a low concentration region; however, it seriously deviates from the equation in a high concentration region. So, the equation from electrochemical impedance spectroscopy technique could not be simply used to estimate the Li+ diffusion coefficient for all Li+-adsorbed graphene systems with various Li+ concentrations. Our work suggests that interactions between Li ions, and among Li ion and host atoms will influence the Li+ diffusion, which determines that the Li+ intercalation dependence of Li+ diffusion coefficient should be changed and complex. PMID:28773122

  10. Electrochemistry coupled to (LC-)MS for the simulation of oxidative biotransformation reactions of PAHs.

    PubMed

    Wigger, Tina; Seidel, Albrecht; Karst, Uwe

    2017-06-01

    Electrochemistry coupled to liquid chromatography and mass spectrometry was used for simulating the biological and environmental fate of polycyclic aromatic hydrocarbons (PAHs) as well as for studying the PAH degradation behavior during electrochemical remediation. Pyrene and benzo[a]pyrene were selected as model compounds and oxidized within an electrochemical thin-layer cell equipped with boron-doped diamond electrode. At potentials of 1.2 and 1.6 V vs. Pd/H 2 , quinones were found to be the major oxidation products for both investigated PAHs. These quinones belong to a large group of PAH derivatives referred to as oxygenated PAHs, which have gained increasing attention in recent years due to their high abundance in the environment and their significant toxicity. Separation of oxidation products allowed the identification of two pyrene quinone and three benzo[a]pyrene quinone isomers, all of which are known to be formed via photooxidation and during mammalian metabolism. The good correlation between electrochemically generated PAH quinones and those formed in natural processes was also confirmed by UV irradiation experiments and microsomal incubations. At potentials higher than 2.0 V, further degradation of the initial oxidation products was observed which highlights the capability of electrochemistry to be used as remediation technique. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Welding Thermal Simulation and Corrosion Study of X-70 Deep Sea Pipeline Steel

    NASA Astrophysics Data System (ADS)

    Zhang, Weipeng; Li, Zhuoran; Gao, Jixiang; Peng, Zhengwu

    2017-12-01

    Gleeble thermomechanical processing machine was used to simulate coarse grain heat affected zone (CGHAZ) of API X-70 thick wall pipeline steel used in deep sea. Microstructures and corresponding corrosion behavior of the simulated CGHAZs using different cooling rate were investigated and compared to the as-received material by scanning electron microscope and electrochemical experiments carried out in 3.5 wt. % NaCl solution. Results of this study show that the as-received samples exhibited a little bit higher corrosion resistance than the simulated CGHAZs. Among 3 sets of simulation experiments, the maximum corrosion tendency was exhibited at the t8/5 = 20 s with the most martensite-austensite (M-A) microstructure and highest corrosion potential was shown at the t8/5 = 60 s.

  12. A New PC and LabVIEW Package Based System for Electrochemical Investigations

    PubMed Central

    Stević, Zoran; Andjelković, Zoran; Antić, Dejan

    2008-01-01

    The paper describes a new PC and LabVIEW software package based system for electrochemical research. An overview of well known electrochemical methods, such as potential measurements, galvanostatic and potentiostatic method, cyclic voltammetry and EIS is given. Electrochemical impedance spectroscopy has been adapted for systems containing large capacitances. For signal generation and recording of the response of investigated electrochemical cell, a measurement and control system was developed, based on a PC P4. The rest of the hardware consists of a commercially available AD-DA converter and an external interface for analog signal processing. The interface is a result of authors own research. The software platform for desired measurement methods is LabVIEW 8.2 package, which is regarded as a high standard in the area of modern virtual instruments. The developed system was adjusted, tested and compared with commercially available system and ORCAD simulation. PMID:27879794

  13. Electrochemical study of pre- and post-transition corrosion of Zr alloys in PWR coolant

    NASA Astrophysics Data System (ADS)

    Macák, Jan; Novotný, Radek; Sajdl, Petr; Renčiuková, Veronika; Vrtílková, Věra

    Corrosion properties of Zr-Sn and Zr-Nb zirconium alloys were studied under simulated PWR conditions (or, more exactly, VVER conditions — boric acid, potassium hydroxide, lithium hydroxide) at temperatures up to 340°C and 15MPa using in-situ electrochemical impedance spectroscopy (EIS) and polarization measurements. EIS spectra were obtained in a wide range of frequencies (typically 100kHz — 100μHz). It enabled to gain information of both dielectric properties of oxide layers developing on the Zr-alloys surface and of the kinetics of the corrosion process and the associated charge and mass transfer phenomena. Experiments were run for more than 380 days; thus, the study of all the corrosion stages (pre-transition, transition, post-transition) was possible.

  14. Science Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1986

    1986-01-01

    Describes 26 different activities, experiments, demonstrations, and computer simulations in various topics in science. Includes instructional activities dealing with mural ecology, surface area/volume ratios, energy transfer in ecosystems, electrochemical simulations, alternating and direct current, terminal velocity, measuring the size of the…

  15. A Database for Comparative Electrochemical Performance of Commercial 18650-Format Lithium-Ion Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barkholtz, Heather M.; Fresquez, Armando; Chalamala, Babu R.

    Lithium-ion batteries are a central technology to our daily lives with widespread use in mobile devices and electric vehicles. These batteries are also beginning to be widely used in electric grid infrastructure support applications which have stringent safety and reliability requirements. Typically, electrochemical performance data is not available for modelers to validate their simulations, mechanisms, and algorithms for lithium-ion battery performance and lifetime. In this paper, we report on the electrochemical performance of commercial 18650 cells at a variety of temperatures and discharge currents. We found that LiFePO 4 is temperature tolerant for discharge currents at or below 10 Amore » whereas LiCoO 2, LiNi xCo yAl 1-x-yO 2, and LiNi 0.80Mn 0.15Co 0.05O 2 exhibited optimal electrochemical performance when the temperature is maintained at 15°C. LiNi xCo yAl 1-x-yO 2 showed signs of lithium plating at lower temperatures, evidenced by irreversible capacity loss and emergence of a high-voltage differential capacity peak. Furthermore, all cells need to be monitored for self-heating, as environment temperature and high discharge currents may elicit an unintended abuse condition. Overall, this study shows that lithium-ion batteries are highly application-specific and electrochemical behavior must be well understood for safe and reliable operation. Additionally, data collected in this study is available for anyone to download for further analysis and model validation.« less

  16. A Database for Comparative Electrochemical Performance of Commercial 18650-Format Lithium-Ion Cells

    DOE PAGES

    Barkholtz, Heather M.; Fresquez, Armando; Chalamala, Babu R.; ...

    2017-09-08

    Lithium-ion batteries are a central technology to our daily lives with widespread use in mobile devices and electric vehicles. These batteries are also beginning to be widely used in electric grid infrastructure support applications which have stringent safety and reliability requirements. Typically, electrochemical performance data is not available for modelers to validate their simulations, mechanisms, and algorithms for lithium-ion battery performance and lifetime. In this paper, we report on the electrochemical performance of commercial 18650 cells at a variety of temperatures and discharge currents. We found that LiFePO 4 is temperature tolerant for discharge currents at or below 10 Amore » whereas LiCoO 2, LiNi xCo yAl 1-x-yO 2, and LiNi 0.80Mn 0.15Co 0.05O 2 exhibited optimal electrochemical performance when the temperature is maintained at 15°C. LiNi xCo yAl 1-x-yO 2 showed signs of lithium plating at lower temperatures, evidenced by irreversible capacity loss and emergence of a high-voltage differential capacity peak. Furthermore, all cells need to be monitored for self-heating, as environment temperature and high discharge currents may elicit an unintended abuse condition. Overall, this study shows that lithium-ion batteries are highly application-specific and electrochemical behavior must be well understood for safe and reliable operation. Additionally, data collected in this study is available for anyone to download for further analysis and model validation.« less

  17. Tribolayer Formation in a Metal-on-Metal (MoM) Hip Joint: An Electrochemical Investigation

    PubMed Central

    Mathew, MT; Nagelli, C; Pourzal, R; Fischer, A; Laurent, MP; Jacobs, JJ; Wimmer, MA

    2013-01-01

    The demand for total hip replacement (THR) surgery is increasing in the younger population due to faster rehabilitation and more complete restoration of function. Up to 2009, metal-on-metal (MoM) hip joint bearings were a popular choice due to their design flexibility, post-operative stability and relatively low wear rates. The main wear mechanisms that occur along the bearing surface of MoM joints are tribochemical reactions that deposit a mixture of wear debris, metal ions and organic matrix of decomposed proteins known as a tribolayer. No in-depth electrochemical studies have been reported on the structure and characteristics of this tribolayer or about the parameters involved in its formation. In this study, we conducted an electrochemical investigation of different surfaces (bulk-like: control, nano-crystalline: new implant and tribolayer surface: retrieved implant) made out of two commonly used hip CoCrMo alloys (high-carbon and low-carbon). As per ASTM standard, cyclic polarization tests and electrochemical impedance spectroscopy tests were conducted. The results obtained from electrochemical parameters for different surfaces clearly indicated a reduction in corrosion for the tribolayer surface (Icorr: 0.76 μA/cm2). Further, polarization resistance (Rp:2.39±0.60MΩ/cm2) and capacitance (Cdl:15.20±0.75 μF/cm2) indicated variation in corrosion kinetics for the tribolayer surface, that attributed to its structure and stability in a simulated body environment. PMID:24099949

  18. Steady-State Electrodiffusion from the Nernst-Planck Equation Coupled to Local Equilibrium Monte Carlo Simulations.

    PubMed

    Boda, Dezső; Gillespie, Dirk

    2012-03-13

    We propose a procedure to compute the steady-state transport of charged particles based on the Nernst-Planck (NP) equation of electrodiffusion. To close the NP equation and to establish a relation between the concentration and electrochemical potential profiles, we introduce the Local Equilibrium Monte Carlo (LEMC) method. In this method, Grand Canonical Monte Carlo simulations are performed using the electrochemical potential specified for the distinct volume elements. An iteration procedure that self-consistently solves the NP and flux continuity equations with LEMC is shown to converge quickly. This NP+LEMC technique can be used in systems with diffusion of charged or uncharged particles in complex three-dimensional geometries, including systems with low concentrations and small applied voltages that are difficult for other particle simulation techniques.

  19. A dual-electrochemical cell to study the biocorrosion of stainless steel.

    PubMed

    Lopes, F A; Perrin, S; Féron, D

    2007-01-01

    The presence of microorganisms on metal surfaces can alter the local physical/chemical conditions and lead to microbiologically influenced corrosion (MIC). The goal of the present work was to study the effect of a mixed aerobic-anaerobic biofilm on the behaviour of stainless steel (316 L) in underground conditions. Rather than testing different bacteria or consortia, investigations were based on the mechanisms of MIC. Mixed biofilms were simulated by the addition of glucose oxidase to reproduce the aerobic conditions and by sulphide or sulphate-reducing bacteria (SRB) for the anaerobic conditions. A double thermostated electrochemical cell has been developed to study the coupling between aerobic and anaerobic conditions. Results suggested a transfer of electrons from the stainless steel sample of the anaerobic cell to the stainless steel sample of the aerobic one. Inorganic sulphide was replaced by SRB in the anaerobic cell revealing an increase of the galvanic current which may be explained by an effect of lactate and/or acetate on the anodic reaction or by a high sulphide concentration in the biofilm. The results of this study underline that the dual-electrochemical cell system is representative of phenomena present in natural environments and should be considered as an option when studying MIC.

  20. New insights into the electrochemical desorption of alkanethiol SAMs on gold

    PubMed Central

    Pensa, Evangelina; Vericat, Carolina; Grumelli, Doris; Salvarezza, Roberto C.; Park, Sung Hyun; Longo, Gabriel S.; Szleifer, Igal

    2012-01-01

    A combination of Polarization Modulation Infrared Reflection Absorption Spectroscopy (PMIRRAS) under electrochemical control, Electrochemical Scanning Tunneling Microscopy (ECSTM) and Molecular Dynamics (MD) simulations has been used to shed light on the reductive desorption process of dodecanethiol (C12) and octadecanethiol (C18) SAMs on gold in aqueous electrolytes. Experimental PMIRRAS, ECSTM and MD simulations data for C12 desorption are consistent with formation of randomly distributed micellar aggregates stabilized by Na+ ions, coexisting with a lying-down phase of molecules. The analysis of pit and Au island coverage before and after desorption is consistent with the thiolate-Au adatoms models. On the other hand, PMIRRAS and MD data for C18 indicate that the desorbed alkanethiolates adopt a Na+ ion-stabilized bilayer of interdigitated alkanethiolates, with no evidence of lying down molecules. MD simulations also show that both the degree of order and tilt angle of the desorbed alkanethiolates change with the surface charge on the metal, going from bilayers to micelles. These results demonstrate the complexity of the alkanethiol desorption in the presence of water and the fact that chain length and counterions play a key role in a complex structure. PMID:22870508

  1. Pyrite oxidation under simulated acid rain weathering conditions.

    PubMed

    Zheng, Kai; Li, Heping; Wang, Luying; Wen, Xiaoying; Liu, Qingyou

    2017-09-01

    We investigated the electrochemical corrosion behavior of pyrite in simulated acid rain with different acidities and at different temperatures. The cyclic voltammetry, polarization curve, and electrochemical impedance spectroscopy results showed that pyrite has the same electrochemical interaction mechanism under different simulated acid rain conditions, regardless of acidity or environmental temperature. Either stronger acid rain acidity or higher environmental temperature can accelerate pyrite corrosion. Compared with acid rain having a pH of 5.6 at 25 °C, the prompt efficiency of pyrite weathering reached 104.29% as the acid rain pH decreased to 3.6, and it reached 125.31% as environmental temperature increased to 45 °C. Increasing acidity dramatically decreases the charge transfer resistance, and increasing temperature dramatically decreases the passivation film resistance, when other conditions are held constant. Acid rain always causes lower acidity mine drainage, and stronger acidity or high environmental temperatures cause serious acid drainage. The natural parameters of latitude, elevation, and season have considerable influence on pyrite weathering, because temperature is an important influencing factor. These experimental results are of direct significance for the assessment and management of sulfide mineral acid drainage in regions receiving acid rain.

  2. Guar gum as efficient non-toxic inhibitor of carbon steel corrosion in phosphoric acid medium: Electrochemical, surface, DFT and MD simulations studies

    NASA Astrophysics Data System (ADS)

    Messali, M.; Lgaz, H.; Dassanayake, R.; Salghi, R.; Jodeh, S.; Abidi, N.; Hamed, O.

    2017-10-01

    Guar gum is a water-soluble, nonionic, nontoxic, biodegradable and biocompatible hetero polysaccharide with unlimited number of industrial applications. In this study, guar gum was evaluated as a natural inhibitor of carbon steel (CS) corrosion in 2 M H3PO4 solution. The characteristic effect of guar gum on the steel corrosion was studied at concentration ranges from 0.1 to 1.0 g/L at 298-328 K by weight loss and electrochemical methods. Obtained results showed that, the inhibition efficiency (η%) of guar gum decreased slightly when the temperature increased and increased by increasing the inhibitor concentration reaching the maximum value at 1.0 g/L. The adsorption of guar gum on steel surface was studied by the Temkin adsorption model. EIS measurements indicate that the values of the polarization resistance (Rp) of CS in presence of guar gum are significantly higher than that of the untreated surface. Steel surface coated with guar gum was analyzed by SEM, FTIR and XRD. The quantum calculations using DFT method and Molecular Dynamic (MD) simulations were performed to define the relationship between inhibition performance of investigated compound and their molecular structure.

  3. Electrochemical studies on zirconium and its biocompatible alloys Ti-50Zr at.% and Zr-2.5Nb wt.% in simulated physiologic media.

    PubMed

    Oliveira, Nilson T C; Biaggio, Sonia R; Rocha-Filho, Romeu C; Bocchi, Nerilso

    2005-09-01

    Different electrochemical studies were carried out for Zr and its biocompatible alloys Ti-50Zr at.% and Zr-2.5Nb wt.% in solutions simulating physiologic media, Ringer and PBS (phosphate buffered saline) solutions. The results from rest-potential measurements showed that the three materials are spontaneously passivated in both solutions and that the Ti-50Zr alloy has the greatest tendency for spontaneous oxide formation. Some corrosion parameters (such as the pitting and repassivation potentials) were obtained via cyclic voltammetry in both solutions, revealing that the Ti-50Zr has the best corrosion protection while Zr has the worst. On the other hand, the pre-anodization (up to 8 V vs. SCE) of the alloys in a 0.15 mol/L Na2SO4 solution led to a significant improvement in their protection against pitting corrosion when exposed to the Ringer solution. Elemental analyses by EDX showed that during pitting corrosion, there is no preferential corrosion of any of the alloying elements (Zr, Ti, Nb). Copyright (c) 2005 Wiley Periodicals, Inc.

  4. Novel Electrochemical Raman Spectroscopy Enabled by Water Immersion Objective.

    PubMed

    Zeng, Zhi-Cong; Hu, Shu; Huang, Sheng-Chao; Zhang, Yue-Jiao; Zhao, Wei-Xing; Li, Jian-Feng; Jiang, Chaoyang; Ren, Bin

    2016-10-04

    Electrochemical Raman spectroscopy is a powerful molecular level diagnostic technique for in situ investigation of adsorption and reactions on various material surfaces. However, there is still a big room to improve the optical path to meet the increasing request of higher detection sensitivity and spatial resolution. Herein, we proposed a novel electrochemical Raman setup based on a water immersion objective. It dramatically reduces mismatch of the refractive index in the light path. Consequently, significant improvement in detection sensitivity and spatial resolution has been achieved from both Zemax simulation and the experimental results. Furthermore, the thickness of electrolyte layer could be expanded to 2 mm without any influence on the signal collection. Such a thick electrolyte layer allows a much normal electrochemical response during the spectroelectrochemical investigations of the methanol oxidation.

  5. Porphyrins as Corrosion Inhibitors for N80 Steel in 3.5% NaCl Solution: Electrochemical, Quantum Chemical, QSAR and Monte Carlo Simulations Studies.

    PubMed

    Singh, Ambrish; Lin, Yuanhua; Quraishi, Mumtaz A; Olasunkanmi, Lukman O; Fayemi, Omolola E; Sasikumar, Yesudass; Ramaganthan, Baskar; Bahadur, Indra; Obot, Ime B; Adekunle, Abolanle S; Kabanda, Mwadham M; Ebenso, Eno E

    2015-08-18

    The inhibition of the corrosion of N80 steel in 3.5 wt. % NaCl solution saturated with CO2 by four porphyrins, namely 5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphyrin (HPTB), 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphyrin (T4PP), 4,4',4″,4‴-(porphyrin-5,10,15,20-tetrayl)tetrakis(benzoic acid) (THP) and 5,10,15,20-tetraphenyl-21H,23H-porphyrin (TPP) was studied using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, scanning electrochemical microscopy (SECM) and scanning electron microscopy (SEM) techniques. The results showed that the inhibition efficiency, η% increases with increasing concentration of the inhibitors. The EIS results revealed that the N80 steel surface with adsorbed porphyrins exhibited non-ideal capacitive behaviour with reduced charge transfer activity. Potentiodynamic polarization measurements indicated that the studied porphyrins acted as mixed type inhibitors. The SECM results confirmed the adsorption of the porphyrins on N80 steel thereby forming a relatively insulated surface. The SEM also confirmed the formation of protective films of the porphyrins on N80 steel surface thereby protecting the surface from direct acid attack. Quantum chemical calculations, quantitative structure activity relationship (QSAR) were also carried out on the studied porphyrins and the results showed that the corrosion inhibition performances of the porphyrins could be related to their EHOMO, ELUMO, ω, and μ values. Monte Carlo simulation studies showed that THP has the highest adsorption energy, while T4PP has the least adsorption energy in agreement with the values of σ from quantum chemical calculations.

  6. An improved theoretical electrochemical-thermal modelling of lithium-ion battery packs in electric vehicles

    NASA Astrophysics Data System (ADS)

    Amiribavandpour, Parisa; Shen, Weixiang; Mu, Daobin; Kapoor, Ajay

    2015-06-01

    A theoretical electrochemical thermal model combined with a thermal resistive network is proposed to investigate thermal behaviours of a battery pack. The combined model is used to study heat generation and heat dissipation as well as their influences on the temperatures of the battery pack with and without a fan under constant current discharge and variable current discharge based on electric vehicle (EV) driving cycles. The comparison results indicate that the proposed model improves the accuracy in the temperature predication of the battery pack by 2.6 times. Furthermore, a large battery pack with four of the investigated battery packs in series is simulated in the presence of different ambient temperatures. The simulation results show that the temperature of the large battery pack at the end of EV driving cycles can reach to 50 °C or 60 °C in high ambient temperatures. Therefore, thermal management system in EVs is required to maintain the battery pack within the safe temperature range.

  7. Convective heat transfer in a measurement cell for scanning electrochemical microscopy.

    PubMed

    Novev, Javor K; Compton, Richard G

    2016-11-21

    Electrochemical experiments, especially those performed with scanning electrochemical microscopy (SECM), are often carried out without taking special care to thermostat the solution; it is usually assumed that its temperature is homogeneous and equal to the ambient. The present study aims to test this assumption via numerical simulations of the heat transfer in a particular system - the typical measurement cell for SECM. It is assumed that the temperature of the solution is initially homogeneous but different from that of its surroundings; convective heat transfer in the solution and the surrounding air is taken into account within the framework of the Boussinesq approximation. The hereby presented theoretical treatment indicates that an initial temperature difference of the order of 1 K dissipates with a characteristic time scale of ∼1000 s; the thermal equilibration is accompanied by convective flows with a maximum velocity of ∼10 -4 m s -1 ; furthermore, the temporal evolution of the temperature profile is influenced by the sign of the initial difference. These results suggest that, unless the temperature of the solution is rigorously controlled, convection may significantly compromise the interpretation of data from SECM and other electrochemical techniques, which is usually done on the basis of diffusion-only models.

  8. Effects of H2S/HS- on Stress Corrosion Cracking Behavior of X100 Pipeline Steel Under Simulated Sulfate-Reducing Bacteria Metabolite Conditions

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Li, Z.; Liu, Z. Y.; Li, X. G.; Wang, S. Q.

    2017-04-01

    The effect of H2S/HS-, which simulates the main metabolites of sulfate-reducing bacteria (SRB), on the electrochemical and stress corrosion cracking (SCC) behaviors of X100 steel was investigated in a near-neutral solution. The results showed that different H2S/HS- contents mainly affected the cathodic process of X100 electrochemical corrosion. As the concentration of H2S/HS- increased, the corrosion potential was shifted negatively, the corrosion current density was considerably increased, and the corrosion rate was linearly increased. Different rust layers with shifting structures were formed under different conditions and had different effects on electrochemical behaviors. However, sulfide mainly promoted local corrosion processes. With the synergistic effects of stress and H2S/HS-, SCC susceptibility was considerably enhanced. The accelerated process of hydrogen evolution by sulfide was crucial in enhancing SCC processes. In brief, the trace H2S/HS- generated by SRB metabolites played a positive role in promoting SCC.

  9. Experimental characterization of electrochemically polymerized polycarbazole film and study of its behavior with different metals contacts

    NASA Astrophysics Data System (ADS)

    Srivastava, Aditi; Chakrabarti, P.

    2017-12-01

    In this paper, we present the method of fabrication, experimental characterization, and comparison of electrical parameters of semiconducting polycarbazole film with different rectifying metals contacts. Electrochemical polymerization and deposition of organic semiconductor, i.e., polycarbazole on ITO-coated glass substrate, were performed using an electrochemical workstation. Experimental characterization of the prepared polymer film was done in respect of morphology, absorption, bandgap, and thickness. The stability and electro-activity of polycarbazole film were verified by the cyclic voltammetric method. Study of the behavior of prepared polycarbazole film with the different metals contacts such as Aluminum, Copper, Tungsten, and Tin has been done using semiconductor device analyzer. Various electrical parameters such as barrier height, ideality factor, and reverse saturation current have been extracted with different metal contacts, and the values were compared and contrasted. The nature of I- V characteristic of polycarbazole film in non-contact mode has also been analyzed using scanning tunneling microscope. The rectifying I- V characteristics obtained with different metals contacts have also been validated by the simulation on Deckbuild platform of the of ATLAS® software tool from Silvaco Inc.

  10. Multiscale modeling of a rectifying bipolar nanopore: Comparing Poisson-Nernst-Planck to Monte Carlo

    NASA Astrophysics Data System (ADS)

    Matejczyk, Bartłomiej; Valiskó, Mónika; Wolfram, Marie-Therese; Pietschmann, Jan-Frederik; Boda, Dezső

    2017-03-01

    In the framework of a multiscale modeling approach, we present a systematic study of a bipolar rectifying nanopore using a continuum and a particle simulation method. The common ground in the two methods is the application of the Nernst-Planck (NP) equation to compute ion transport in the framework of the implicit-water electrolyte model. The difference is that the Poisson-Boltzmann theory is used in the Poisson-Nernst-Planck (PNP) approach, while the Local Equilibrium Monte Carlo (LEMC) method is used in the particle simulation approach (NP+LEMC) to relate the concentration profile to the electrochemical potential profile. Since we consider a bipolar pore which is short and narrow, we perform simulations using two-dimensional PNP. In addition, results of a non-linear version of PNP that takes crowding of ions into account are shown. We observe that the mean field approximation applied in PNP is appropriate to reproduce the basic behavior of the bipolar nanopore (e.g., rectification) for varying parameters of the system (voltage, surface charge, electrolyte concentration, and pore radius). We present current data that characterize the nanopore's behavior as a device, as well as concentration, electrical potential, and electrochemical potential profiles.

  11. Multiscale modeling of a rectifying bipolar nanopore: Comparing Poisson-Nernst-Planck to Monte Carlo.

    PubMed

    Matejczyk, Bartłomiej; Valiskó, Mónika; Wolfram, Marie-Therese; Pietschmann, Jan-Frederik; Boda, Dezső

    2017-03-28

    In the framework of a multiscale modeling approach, we present a systematic study of a bipolar rectifying nanopore using a continuum and a particle simulation method. The common ground in the two methods is the application of the Nernst-Planck (NP) equation to compute ion transport in the framework of the implicit-water electrolytemodel. The difference is that the Poisson-Boltzmann theory is used in the Poisson-Nernst-Planck (PNP) approach, while the Local Equilibrium Monte Carlo (LEMC) method is used in the particle simulation approach (NP+LEMC) to relate the concentration profile to the electrochemical potential profile. Since we consider a bipolar pore which is short and narrow, we perform simulations using two-dimensional PNP. In addition, results of a non-linear version of PNP that takes crowding of ions into account are shown. We observe that the mean field approximation applied in PNP is appropriate to reproduce the basic behavior of the bipolar nanopore (e.g., rectification) for varying parameters of the system (voltage, surface charge,electrolyte concentration, and pore radius). We present current data that characterize the nanopore's behavior as a device, as well as concentration, electrical potential, and electrochemical potential profiles.

  12. A time-based potential step analysis of electrochemical impedance incorporating a constant phase element: a study of commercially pure titanium in phosphate buffered saline.

    PubMed

    Ehrensberger, Mark T; Gilbert, Jeremy L

    2010-05-01

    The measurement of electrochemical impedance is a valuable tool to assess the electrochemical environment that exists at the surface of metallic biomaterials. This article describes the development and validation of a new technique, potential step impedance analysis (PSIA), to assess the electrochemical impedance of materials whose interface with solution can be modeled as a simplified Randles circuit that is modified with a constant phase element. PSIA is based upon applying a step change in voltage to a working electrode and analyzing the subsequent current transient response in a combined time and frequency domain technique. The solution resistance, polarization resistance, and interfacial capacitance are found directly in the time domain. The experimental current transient is numerically transformed to the frequency domain to determine the constant phase exponent, alpha. This combined time and frequency approach was tested using current transients generated from computer simulations, from resistor-capacitor breadboard circuits, and from commercially pure titanium samples immersed in phosphate buffered saline and polarized at -800 mV or +1000 mV versus Ag/AgCl. It was shown that PSIA calculates equivalent admittance and impedance behavior over this range of potentials when compared to standard electrochemical impedance spectroscopy. This current transient approach characterizes the frequency response of the system without the need for expensive frequency response analyzers or software. Copyright 2009 Wiley Periodicals, Inc.

  13. The Passive Film Growth Mechanism of New Corrosion-Resistant Steel Rebar in Simulated Concrete Pore Solution: Nanometer Structure and Electrochemical Study

    PubMed Central

    Jiang, Jin-yang; Wang, Danqian; Chu, Hong-yan; Ma, Han; Liu, Yao; Gao, Yun; Shi, Jinjie; Sun, Wei

    2017-01-01

    An elaborative study was carried out on the growth mechanism and properties of the passive film for a new kind of alloyed corrosion-resistant steel (CR steel). The passive film naturally formed in simulated concrete pore solutions (pH = 13.3). The corrosion resistance was evaluated by various methods including open circuit potential (OCP), linear polarization resistance (LPR) measurements, and electrochemical impedance spectroscopy (EIS). Meanwhile, the 2205 duplex stainless steel (SS steel) was evaluated for comparison. Moreover, the passive film with CR steel was studied by means of X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Atomic Force Microscope (AFM), and the Mott‑Schottky approach. The results showed that the excellent passivity of CR steel could be detected in a high alkaline environment. The grain boundaries between the fine passive film particles lead to increasing Cr oxide content in the later passivation stage. The filling of cation vacancies in the later passivation stage as well as the orderly crystalized inner layer contributed to the excellent corrosion resistance of CR steel. A passive film growth model for CR steel was proposed. PMID:28772772

  14. The Passive Film Growth Mechanism of New Corrosion-Resistant Steel Rebar in Simulated Concrete Pore Solution: Nanometer Structure and Electrochemical Study.

    PubMed

    Jiang, Jin-Yang; Wang, Danqian; Chu, Hong-Yan; Ma, Han; Liu, Yao; Gao, Yun; Shi, Jinjie; Sun, Wei

    2017-04-14

    An elaborative study was carried out on the growth mechanism and properties of the passive film for a new kind of alloyed corrosion-resistant steel (CR steel). The passive film naturally formed in simulated concrete pore solutions (pH = 13.3). The corrosion resistance was evaluated by various methods including open circuit potential (OCP), linear polarization resistance (LPR) measurements, and electrochemical impedance spectroscopy (EIS). Meanwhile, the 2205 duplex stainless steel (SS steel) was evaluated for comparison. Moreover, the passive film with CR steel was studied by means of X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Atomic Force Microscope (AFM), and the Mott‑Schottky approach. The results showed that the excellent passivity of CR steel could be detected in a high alkaline environment. The grain boundaries between the fine passive film particles lead to increasing Cr oxide content in the later passivation stage. The filling of cation vacancies in the later passivation stage as well as the orderly crystalized inner layer contributed to the excellent corrosion resistance of CR steel. A passive film growth model for CR steel was proposed.

  15. Ionic liquid structure, dynamics, and electrosorption in carbon electrodes with bimodal pores and heterogeneous surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyatkin, Boris; Osti, Naresh C.; Zhang, Yu

    In this paper, we investigate the aggregation, diffusion, and resulting electrochemical behavior of ionic liquids inside carbon electrodes with complex pore architectures and surface chemistries. Carbide-derived carbons (CDCs) with bimodal porosities and defunctionalized or oxidized electrode surfaces served as model electrode materials. Our goal was to obtain a fundamental understanding of room-temperature ionic liquid ion orientation, mobility, and electrosorption behavior. Neat 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide confined in CDCs was studied using an integrated experimental and modeling approach, consisting of quasielastic neutron scattering, small-angle neutron scattering, X-ray pair distribution function analysis, and electrochemical measurements, which were combined with molecular dynamics simulations. Our analysismore » shows that surface oxygen groups increase the diffusion of confined electrolytes. Consequently, the ions become more than twice as mobile in oxygen-rich pores. Although greater self-diffusion of ions translates into higher electrochemical mobilities in oxidized pores, bulk-like behavior of ions dominates in the larger mesopores and increases the overall capacitance in defunctionalized pores. Experimental results highlight strong confinement and surface effects of carbon electrodes on electrolyte behavior, and molecular dynamics simulations yield insight into diffusion and capacitance differences in specific pore regions. Finally, we demonstrate the significance of surface defects on electrosorption dynamics of complex electrolytes in hierarchical pore architectures of supercapacitor electrodes.« less

  16. Ionic liquid structure, dynamics, and electrosorption in carbon electrodes with bimodal pores and heterogeneous surfaces

    DOE PAGES

    Dyatkin, Boris; Osti, Naresh C.; Zhang, Yu; ...

    2017-12-05

    In this paper, we investigate the aggregation, diffusion, and resulting electrochemical behavior of ionic liquids inside carbon electrodes with complex pore architectures and surface chemistries. Carbide-derived carbons (CDCs) with bimodal porosities and defunctionalized or oxidized electrode surfaces served as model electrode materials. Our goal was to obtain a fundamental understanding of room-temperature ionic liquid ion orientation, mobility, and electrosorption behavior. Neat 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide confined in CDCs was studied using an integrated experimental and modeling approach, consisting of quasielastic neutron scattering, small-angle neutron scattering, X-ray pair distribution function analysis, and electrochemical measurements, which were combined with molecular dynamics simulations. Our analysismore » shows that surface oxygen groups increase the diffusion of confined electrolytes. Consequently, the ions become more than twice as mobile in oxygen-rich pores. Although greater self-diffusion of ions translates into higher electrochemical mobilities in oxidized pores, bulk-like behavior of ions dominates in the larger mesopores and increases the overall capacitance in defunctionalized pores. Experimental results highlight strong confinement and surface effects of carbon electrodes on electrolyte behavior, and molecular dynamics simulations yield insight into diffusion and capacitance differences in specific pore regions. Finally, we demonstrate the significance of surface defects on electrosorption dynamics of complex electrolytes in hierarchical pore architectures of supercapacitor electrodes.« less

  17. Corrosion Performance of Stainless Steels in a Simulated Launch Environment

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Vinje, Rubiela D.; MacDowell, Louis

    2004-01-01

    At the Kennedy Space Center, NASA relies on stainless steel (SS) tubing to supply the gases and fluids required to launch the Space Shuttle. 300 series SS tubing has been used for decades but the highly corrosive environment at the launch pad has proven to be detrimental to these alloys. An upgrade with higher alloy content materials has become necessary in order to provide a safer and long lasting launch facility. In the effort to find the most suitable material to replace the existing AISI 304L SS ([iNS S30403) and AISI 316L SS (UNS S31603) shuttle tubing, a study involving atmospheric exposure at the corrosion test site near the launch pads and electrochemical measurements is being conducted. This paper presents the results of an investigation in which stainless steels of the 300 series, 304L, 316L, and AISI 317L SS (UNS S31703) as well as highly alloyed stainless steels 254-SMO (UNS S32154), AL-6XN (N08367) and AL29-4C ([iNS S44735) were evaluated using direct current (DC) electrochemical techniques under conditions designed to simulate those found at the Space Shuttle Launch pad. The electrochemical results were compared to the atmospheric exposure data and evaluated for their ability to predict the long-term corrosion performance of the alloys.

  18. Electrochemical Corrosion and In vitro Biocompatibility Performance of AZ31Mg/Al2O3 Nanocomposite in Simulated Body Fluid

    NASA Astrophysics Data System (ADS)

    Madhan Kumar, A.; Fida Hassan, S.; Sorour, Ahmad A.; Paramsothy, M.; Gupta, M.

    2018-06-01

    In this present investigation, AZ31 alloy nanocomposite was prepared with the inclusion of Al2O3 nanoparticles using innovative disintegrated melt deposition (DMD) process followed by hot extrusion to improve the corrosion resistance and in vitro biocompatibility in simulated body fluid (SBF). This investigation systematically inspected the degradation performances of AZ31 alloy with Al2O3 nanoparticles through hydrogen evolution, weight loss and electrochemical methods in SBF. Further, the surface microstructure with the in vitro mineralization of the alloys in SBF was characterized by XRD, XPS, and SEM/EDS analysis. It was seen that the addition of Al2O3 nanoparticles significantly decreased the weight loss of AZ31 alloy substrates after 336 h of exposure in SBF. The corrosion resistance of the monolithic and nanocomposite samples was evaluated using potentiodynamic polarization tests, electrochemical impedance spectroscopy measurements in short- and long-term periods. Accordingly, the electrochemical analysis in SBF showed that the corrosion resistance performance of the AZ31 alloy enhanced considerably due to the incorporation of Al2O3 nanoparticles as reinforcement. Moreover, the rapid formation of bone-like apatite layer on the surface of the nanocomposite substrate demonstrated a good bioactivity of the nanocomposite samples in SBF.

  19. Modeling the hydrodynamic and electrochemical efficiency of semi-solid flow batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunini, VE; Chiang, YM; Carter, WC

    2012-05-01

    A mathematical model of flow cell operation incorporating hydrodynamic and electrochemical effects in three dimensions is developed. The model and resulting simulations apply to recently demonstrated high energy-density semi-solid flow cells. In particular, state of charge gradients that develop during low flow rate operation and their effects on the spatial non-uniformity of current density within flow cells are quantified. A one-dimensional scaling model is also developed and compared to the full three-dimensional simulation. The models are used to demonstrate the impact of the choice of electrochemical couple on flow cell performance. For semi-solid flow electrodes, which can use solid activemore » materials with a wide variety of voltage-capacity responses, we find that cell efficiency is maximized for electrochemical couples that have a relatively flat voltage vs. capacity curve, operated under slow flow conditions. For example, in flow electrodes limited by macroscopic charge transport, an LiFePO4-based system requires one-third the polarization to reach the same cycling rate as an LiCoO2-based system, all else being equal. Our conclusions are generally applicable to high energy density flow battery systems, in which flow rates can be comparatively low for a given required power. (C) 2012 Elsevier Ltd. All rights reserved.« less

  20. Influence of engine coolant composition on the electrochemical degradation behavior of EPDM radiator hoses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vroomen, G.L.M.; Lievens, S.S.; Maes, J.P.

    1999-08-01

    EPDM (ethylene-propylene rubber) has been used for more than 25 years as the main elastomer in radiator hoses because it offers a well-balanced price/performance ratio in this field of application. Some years ago the automotive and rubber industry became aware of a problem called electrochemical degradation and cracking. Cooling systems broke down due to a typical cracking failure of some radiator hoses. Different test methods were developed to simulate and solve the problem on laboratory scale. The influence of different variables with respect to the electrochemical degradation and cracking. Cooling systems broke down due to a typical cracking failure ofmore » some radiator hoses. Different test methods were developed to simulate and solve the problem on laboratory scale. The influence of different variables with respect to the electrochemical degradation process has been investigated, but until recently the influence of the engine coolant was ignored. Using a test method developed by DSM elastomers, the influence of the composition of the engine coolant as well as of the EPDM composition has now been evaluated. This paper gives an overview of test results with different coolant technologies and offers a plausible explanation of the degradation mechanisms as a function of the elastomer composition.« less

  1. Electron-rich driven electrochemical solid-state amorphization in Li-Si alloys.

    PubMed

    Wang, Zhiguo; Gu, Meng; Zhou, Yungang; Zu, Xiaotao; Connell, Justin G; Xiao, Jie; Perea, Daniel; Lauhon, Lincoln J; Bang, Junhyeok; Zhang, Shengbai; Wang, Chongmin; Gao, Fei

    2013-09-11

    The physical and chemical behaviors of materials used in energy storage devices, such as lithium-ion batteries (LIBs), are mainly controlled by an electrochemical process, which normally involves insertion/extraction of ions into/from a host lattice with a concurrent flow of electrons to compensate charge balance. The fundamental physics and chemistry governing the behavior of materials in response to the ions insertion/extraction is not known. Herein, a combination of in situ lithiation experiments and large-scale ab initio molecular dynamics simulations are performed to explore the mechanisms of the electrochemically driven solid-state amorphization in Li-Si systems. We find that local electron-rich condition governs the electrochemically driven solid-state amorphization of Li-Si alloys. This discovery provides the fundamental explanation of why lithium insertion in semiconductor and insulators leads to amorphization, whereas in metals, it leads to a crystalline alloy. The present work correlates electrochemically driven reactions with ion insertion, electron transfer, lattice stability, and phase equilibrium.

  2. Electron-Rich Driven Electrochemical Solid-State Amorphization in Li-Si Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhiguo; Gu, Meng; Zhou, Yungang

    2013-08-14

    The physical and chemical behaviors of materials used in energy storage devices, such as lithium-ion batteries (LIBs), are mainly controlled by an electrochemical process, which normally involves insertion/extraction of ions into/from a host lattice with a concurrent flow of electrons to compensate charge balance. The fundamental physics and chemistry governing the behavior of materials in response to the ions insertion/extraction is not known. Herein, a combination of in situ lithiation experiments and large-scale ab initio molecular dynamics simulations are performed to explore the mechanisms of the electrochemically driven solid-state amorphization in Li-Si systems. We find that local electron-rich condition governsmore » the electrochemically driven solid-state amorphization of Li-Si alloys. This discovery provides the fundamental explanation of why lithium insertion in semiconductor and insulators leads to amorphization, whereas in metals, it leads to a crystalline alloy. The present work correlates electrochemically driven reactions with ion insertion, electron transfer, lattice stability and phase equilibrium.« less

  3. Rapid diagnosis of multidrug resistance in cancer by electrochemical sensor based on carbon nanotubes-drug supramolecular nanocomposites.

    PubMed

    Zhang, Haijun; Jiang, Hui; Sun, Feifei; Wang, Huangping; Zhao, Juan; Chen, Baoan; Wang, Xuemei

    2011-03-15

    The multidrug resistance (MDR) in cancer is a major chemotherapy obstacle, rendering many currently available chemotherapeutic drugs ineffective. The aim of this study was to explore the new strategy to early diagnose the MDR by electrochemical sensor based on carbon nanotubes-drug supramolecular interaction. The carbon nanotubes modified glassy carbon electrodes (CNTs/GCE) were directly immersed into the cells suspension of the sensitive leukemia cells K562 and/or its MDR cells K562/A02 to detect the response of the electrochemical probe of daunorubicin (DNR) residues after incubated with cells for 1h. The fresh evidence from the electrochemical studies based on CNTs/GCE demonstrated that the homogeneous, label-free strategy could directly measure the function of cell membrane transporters in MDR cancer cells, identify the cell phenotype (sensitive or MDR). When the different ratios of the sensitive leukemia cells K562 and its MDR ones K562/A02 were applied as a model of MDR levels to simulate the MDR occurrence in cancer, the cathodic peak current showed good linear response to the fraction of MDR with a correlation coefficient of 0.995. Therefore, the MDR fraction can be easily predicted based on the calibration curve of the cathodic peak current versus the fraction of MDR. These results indicated that the sensing strategy could provide a powerful tool for assessment of MDR in cancer. The new electrochemical sensor based on carbon nanotubes-drug supramolecular nanocomposites could represent promising approach in the rapid diagnosis of MDR in cancer. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. An electrochemical approach to development of a method for accele strength evaluation of hard tissue replacement materials

    NASA Astrophysics Data System (ADS)

    Lee, Byung Jun; Kim, Min Gun

    2003-04-01

    To develop a method of accelerating the strength evaluation of hard tissue replacement materials (Ti-6Al-4V alloy) with an electrochemical approach in the short term, corrosion tests were carried out on Ti-6Al-4V alloy) by means of applying a uniform current to a simulated physiological environment and the potental difference was scanned to check the variations in the resistance of the specimens. As a result, the corrosion behavior was monitored by scanning the potential difference and an empirical formula for controlling the corrosion behavior of the Ti-6Al-4V alloy in the simulated physiological environment was proposed.

  5. Fabrication and Demonstration of Mercury Disc-Well Probes for Stripping-Based Cyclic Voltammetry Scanning Electrochemical Microscopy.

    PubMed

    Barton, Zachary J; Rodríguez-López, Joaquín

    2017-03-07

    Scanning electrochemical microscopy (SECM) is a rising technique for the study of energy storage materials. Hg-based probes allow the extension of SECM investigations to ionic processes, but the risk of irreversible Hg amalgam saturation limits their operation to rapid timescales and dilute analyte solutions. Here, we report a novel fabrication protocol for Hg disc-well ultramicroelectrodes (UMEs), which retain access to stripping information but are less susceptible to amalgam saturation than traditional Hg sphere-caps or thin-films. The amalgamation and stripping behaviors of Hg disc-well UMEs are compared to those of traditional Hg sphere-cap UMEs and corroborated with data from finite element simulations. The improved protection against amalgam saturation allows Hg disc-wells to operate safely in highly concentrated environments at long timescales. The utility of the probes for bulk measurements extends also to SECM studies, where the disc geometry facilitates small tip-substrate gaps and improves both spatial and temporal resolution. Because they can carry out slow, high-resolution anodic stripping voltammetry approaches and imaging in concentrated solutions, Hg disc-well electrodes fill a new analytical niche for studies of ionic reactivity and are a valuable addition to the electrochemical toolbox.

  6. Initial investigation of the corrosion stability of craniofacial implants.

    PubMed

    Beline, Thamara; Vechiato Filho, Aljomar José; Wee, Alvin G; Sukotjo, Cortino; Dos Santos, Daniela Micheline; Brandão, Thaís Bianca; Barão, Valentim Adelino Ricardo

    2018-01-01

    Although craniofacial implants have been used for retention of facial prostheses, failures are common. Titanium undergoes corrosion in the oral cavity, but the corrosion of craniofacial implants requires evaluation. The purpose of this in vitro study was to investigate the corrosion stability of commercially pure titanium (CP Ti) exposed to simulated human perspiration at 2 different pH levels (5.5 and 8). Fifteen titanium disks were divided into 3 groups (n=5 per group). The control group was subjected to simulated body fluid (SBF) (control). Disks from the 2 experimental groups were immersed in simulated alkaline perspiration (SA K P) and simulated acidic perspiration (SA C P). Electrochemical tests, including open circuit potential (3600 seconds), electrochemical impedance spectroscopy, and potentiodynamic tests were performed according to the standardized method of 3-cell electrodes. Data were analyzed by 1-way ANOVA and the Tukey honestly significant difference tests (α=.05). Simulated human perspiration reduced the corrosion stability of CP Ti (P<.05). The SBF group presented the lowest capacitance values (P<.05). SA K P and SA C P groups showed increased values of capacitance and showed no statistically significant differences (P>.05) from each other. The increase in capacitance suggests that the acceleration of the ionic exchanges between the CP Ti and the electrolyte leads to a lower corrosion resistance. SA K P reduced the oxide layer resistance of CP Ti (P<.05), and an increased corrosion rate was noted in both simulated human perspiration groups. Craniofacial implants can corrode when in contact with simulated human perspiration, whereas alkaline perspiration shows a more deleterious effect. Perspiration induces a more corrosive effect than simulated body fluid. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  7. A New PC and LabVIEW Package Based System for Electrochemical Investigations.

    PubMed

    Stević, Zoran; Andjelković, Zoran; Antić, Dejan

    2008-03-15

    The paper describes a new PC and LabVIEW software package based system forelectrochemical research. An overview of well known electrochemical methods, such aspotential measurements, galvanostatic and potentiostatic method, cyclic voltammetry andEIS is given. Electrochemical impedance spectroscopy has been adapted for systemscontaining large capacitances. For signal generation and recording of the response ofinvestigated electrochemical cell, a measurement and control system was developed, basedon a PC P4. The rest of the hardware consists of a commercially available AD-DA converterand an external interface for analog signal processing. The interface is a result of authorsown research. The software platform for desired measurement methods is LabVIEW 8.2package, which is regarded as a high standard in the area of modern virtual instruments. Thedeveloped system was adjusted, tested and compared with commercially available systemand ORCAD simulation.

  8. A methodology for thermodynamic simulation of high temperature, internal reforming fuel cell systems

    NASA Astrophysics Data System (ADS)

    Matelli, José Alexandre; Bazzo, Edson

    This work presents a methodology for simulation of fuel cells to be used in power production in small on-site power/cogeneration plants that use natural gas as fuel. The methodology contemplates thermodynamics and electrochemical aspects related to molten carbonate and solid oxide fuel cells (MCFC and SOFC, respectively). Internal steam reforming of the natural gas hydrocarbons is considered for hydrogen production. From inputs as cell potential, cell power, number of cell in the stack, ancillary systems power consumption, reformed natural gas composition and hydrogen utilization factor, the simulation gives the natural gas consumption, anode and cathode stream gases temperature and composition, and thermodynamic, electrochemical and practical efficiencies. Both energetic and exergetic methods are considered for performance analysis. The results obtained from natural gas reforming thermodynamics simulation show that the hydrogen production is maximum around 700 °C, for a steam/carbon ratio equal to 3. As shown in the literature, the found results indicate that the SOFC is more efficient than MCFC.

  9. Corrosion inhibition performance of imidazolium ionic liquids and their influence on surface ferrous carbonate layer formation

    NASA Astrophysics Data System (ADS)

    Yang, Dongrui

    Corrosion inhibitors as effective anti-corrosion applications were widely studied and drawn much attention in both academe and industrial area. In this work, a systematic work, including inhibitors selection, anti-corrosion property and characterization, influence on scale formation, testing system design and so on, were reported. The corrosion inhibition performance of four imidazolium ionic liquids in carbon dioxide saturated NaCl solution was investigated by using electrochemical and surface analysis technologies. The four compounds are 1-ethyl-3-methylimidazolium chloride (a), 1-butyl-3-methylimidazolium chloride (b), 1-hexyl-3-methylimidazolium chloride (c), 1-decyl-3-methylimidazolium chloride (d). Under the testing conditions, compound d showed the highest inhibition efficiency and selected as the main object of further study. As a selected representative formula, 1-decyl-3-methylimidazolium chloride was studied in detail about its corrosion inhibition performance on mild steel in carbon dioxide saturated NaCl brine at pH 3.8 and 6.8. Electrochemical and surface analysis techniques were used to characterize the specimen corrosion process during the immersion in the blank and inhibiting solutions. The precorrosion of specimen surface showed significant and different influences on the anti-corrosion property of DMICL at pH 3.8 and 6.8. The corrosion inhibition efficiency (IE) was calculated based on parameters obtained from electrochemical techniques; the achieved IE was higher than 98% at the 25th hour for the steel with a well-polished surface at pH 3.8. The fitting parameters obtained from electrochemical data helped to account for the interfacial changes. As proved in previous research, 1-decyl-3-methylimidazolium chloride could be used as good corrosion inhibitors under certain conditions. However, under other conditions, such chemicals, as well as other species in oil transporting system, could be a factor influencing the evolution of protective surface inorganic layer. In this part, the FeCO3 layer evolution process for API 5L X52 carbon steel in CO2-saturated NaCl brine in the absence and in the presence of 1-decyl-3-methylimidazolium chloride ionic liquid was characterized using electrochemical techniques. Two models were developed to account for the interfacial evolution: the first model considered the balance of positive and negative charges at the interface of the metal and electrolyte in blank solution, while the second one considered the layer coverage and evolution with the imidazolium compound. The corrosion testing system is scientifically and practically critical for corrosion testing and simulations. In this part, a flowing fluid loop cell (FFLC) system was constructed to simulate the corrosion environment in the pipeline. Main content of this work include the construction of the flowing fluid cell loop (FFLC) system, as well as FFLC-based corrosion/anticorrosion tests under simulated acid conditions. Electrochemical Impedance Spectroscopy (EIS) and Linear Polarization Resistance (LPR) were used as prime techniques to quantify and characterize the corrosion behaviors of carbon steel specimen. The Eff vs. Reynolds number (Re) plots for the specimen located in the chamber and in the loop branch were provided.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalnaus, Sergiy; Kumar, Abhishek; Lebrun-Grandie, Damien T.

    Safety is a key element of any device designed to store energy, in particular electrochemical batteries, which convert energy of chemical reactions to electrical energy. Safety considerations are especially important when applied to large automotive batteries designed for propulsion of electric vehicles (EV). The high amount of energy stored in EV battery packs translates to higher probability of fire in case of severe deformation of battery compartment due to automotive crash or impact caused by road debris. While such demand for safety has resulted in heavier protection of battery enclosure, the mechanisms leading to internal short circuit due to deformationmore » of the battery are not well understood even on the level of a single electrochemical cell. Moreover, not all internal shorts result in thermal runaway, and thus a criterion for catastrophic failure needs to be developed. This report summarizes the effort to pinpoint the critical deformation necessary to trigger a short via experimental study on large format automotive Li-ion cells in a rigid spherical indentation configuration. Cases of single cells and cell stacks undergoing indentation were investigated. Mechanical properties of cell components were determined via experimental testing and served as input for constitutive models of Finite Element (FE) analysis. The ability of the model to predict the behavior of cell(s) under spherical indentation and to predict failure leading to internal short circuit was validated against experiments. The necessity of resolving pairs of negative and positive electrodes in the FE formulation is clearly demonstrated by comparing layer-resolved simulations with simulations involving batteries with homogenized material properties. Finally, a coupled solution of electrochemical-electrical-thermal (EET) problem on a Nissan Leaf battery module was demonstrated towards the goal of extending the simulations to module level.« less

  11. Ab initio molecular dynamics simulations of the initial stages of solid-electrolyte interphase formation on lithium ion battery graphitic anodes.

    PubMed

    Leung, Kevin; Budzien, Joanne L

    2010-07-07

    The decomposition of ethylene carbonate (EC) during the initial growth of solid-electrolyte interphase (SEI) films at the solvent-graphitic anode interface is critical to lithium ion battery operations. Ab initio molecular dynamics simulations of explicit liquid EC/graphite interfaces are conducted to study these electrochemical reactions. We show that carbon edge terminations are crucial at this stage, and that achievable experimental conditions can lead to surprisingly fast EC breakdown mechanisms, yielding decomposition products seen in experiments but not previously predicted.

  12. Modeling and Simulations in Photoelectrochemical Water Oxidation: From Single Level to Multiscale Modeling.

    PubMed

    Zhang, Xueqing; Bieberle-Hütter, Anja

    2016-06-08

    This review summarizes recent developments, challenges, and strategies in the field of modeling and simulations of photoelectrochemical (PEC) water oxidation. We focus on water splitting by metal-oxide semiconductors and discuss topics such as theoretical calculations of light absorption, band gap/band edge, charge transport, and electrochemical reactions at the electrode-electrolyte interface. In particular, we review the mechanisms of the oxygen evolution reaction, strategies to lower overpotential, and computational methods applied to PEC systems with particular focus on multiscale modeling. The current challenges in modeling PEC interfaces and their processes are summarized. At the end, we propose a new multiscale modeling approach to simulate the PEC interface under conditions most similar to those of experiments. This approach will contribute to identifying the limitations at PEC interfaces. Its generic nature allows its application to a number of electrochemical systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Study of electrochemical properties of thin film materials obtained using plasma technologies for production of electrodes for pacemakers

    NASA Astrophysics Data System (ADS)

    Obrezkov, O. I.; Vinogradov, V. P.; Krauz, V. I.; Mozgrin, D. V.; Guseva, I. A.; Andreev, E. S.; Zverev, A. A.; Starostin, A. L.

    2016-09-01

    Studies of thin film materials (TFM) as coatings of tips of pacemaker electrodes implanted into the human heart have been performed. TFM coatings were deposited in vacuum by arc magnetron discharge plasma, by pulsed discharge of “Plasma Focus”, and by electron beam evaporation. Simulation of electric charge transfer to the heart in physiological blood- imitator solution and determination of electrochemical properties of the coatings were carried out. TFM of highly developed surface of contact with tissue was produced by argon plasma spraying of titanium powder with subsequent coating by titanium nitride in vacuum arc assisted by Ti ion implantation. The TFM coatings of pacemaker electrode have passed necessary clinical tests and were used in medical practice. They provide low voltage myocardium stimulation thresholds within the required operating time.

  14. Development of self-powered wireless high temperature electrochemical sensor for in situ corrosion monitoring of coal-fired power plant.

    PubMed

    Aung, Naing Naing; Crowe, Edward; Liu, Xingbo

    2015-03-01

    Reliable wireless high temperature electrochemical sensor technology is needed to provide in situ corrosion information for optimal predictive maintenance to ensure a high level of operational effectiveness under the harsh conditions present in coal-fired power generation systems. This research highlights the effectiveness of our novel high temperature electrochemical sensor for in situ coal ash hot corrosion monitoring in combination with the application of wireless communication and an energy harvesting thermoelectric generator (TEG). This self-powered sensor demonstrates the successful wireless transmission of both corrosion potential and corrosion current signals to a simulated control room environment. Copyright © 2014 ISA. All rights reserved.

  15. Indirect electrocatalytic degradation of cyanide at nitrogen-doped carbon nanotube electrodes.

    PubMed

    Wiggins-Camacho, Jaclyn D; Stevenson, Keith J

    2011-04-15

    Nitrogen-doped carbon nanotube (N-CNT) mat electrodes exhibit high catalytic activity toward O(2) reduction, which can be exploited for the remediation of free cyanide (CN(-)). During the electrochemical O(2) reduction process, the hydroperoxide anion (HO(2)(-)) is formed and then reacts to chemically oxidize cyanide (CN(-)) to form cyanate (OCN(-)). The proposed electrochemical-chemical (EC) mechanism for CN(-) remediation at N-CNTs is supported by cyclic voltammetry and bulk electrolysis, and the formation of OCN(-) is confirmed via spectroscopic methods and electrochemical simulations. Our results indicate that by exploiting their catalytic behavior for O(2) reduction, N-CNTs can efficiently convert toxic CN(-) to the nontoxic OCN(-).

  16. Flow Visualization of Low Prandtl Number Fluids using Electrochemical Measurements

    NASA Technical Reports Server (NTRS)

    Crunkleton, D.; Anderson, T.; Narayanan, R.; Labrosse, G.

    2003-01-01

    It is well established that residual flows exist in contained liquid metal processes. In 1-g processing, buoyancy forces often drive these flows and their magnitudes can be substantial. It is also known that residual flows can exist during microgravity processing, and although greatly reduced in magnitude, they can influence the properties of the processed materials. Unfortunately, there are very few techniques to visualize flows in opaque, high temperature liquid metals, and those available are not easily adapted to flight investigation. In this study, a novel technique is developed that uses liquid tin as the model fluid and solid-state electrochemical cells constructed from Yttria-Stabilized Zirconia (YSZ) to establish and measure dissolved oxygen boundary conditions. The melt serves as a common electrode for each of the electrochemical cells in this design, while independent reference electrodes are maintained at the outside surfaces of the electrolyte. By constructing isolated electrochemical cells at various locations along the container walls, oxygen is introduced or extracted by imposing a known electrical potential or passing a given current between the melt and the reference electrode. This programmed titration then establishes a known oxygen concentration boundary condition at the selected electrolyte-melt interface. Using the other cells, the concentration of oxygen at the electrolyte-melt interface is also monitored by measuring the open-circuit potentials developed between the melt and reference electrodes. Thus the electrochemical cells serve to both establish boundary conditions for the passive tracer and sense its path. Rayleigh-Benard convection was used to validate the electrochemical approach to flow visualization. Thus, a numerical characterization of the second critical Rayleigh numbers in liquid tin was conducted for a variety of Cartesian aspect ratios. The extremely low Prandtl number of tin represents the lowest value studied numerically. Additionally, flow field oscillations are visualized and the effect of tilt on convecting systems is quantified. Experimental studies of the effect of convection in liquid tin are presented. Three geometries are studied: (1) double electrochemical cell with vertical concentration gradients; (2) double cell with horizontal concentration gradients; and (3) multiple cells with vertical temperature gradients. The first critical Rayleigh number transition is detected with geometry (1) and it is concluded that current measurements are not as affected by convection as EMF measurements. The system is compared with numerical simulations in geometry (2), and oscillating convection is detected with geometry (3).

  17. Magnetic field effects on electrochemical metal depositions.

    PubMed

    Bund, Andreas; Ispas, Adriana; Mutschke, Gerd

    2008-04-01

    This paper discusses recent experimental and numerical results from the authors' labs on the effects of moderate magnetic (B) fields in electrochemical reactions. The probably best understood effect of B fields during electrochemical reactions is the magnetohydrodynamic (MHD) effect. In the majority of cases it manifests itself in increased mass transport rates which are a direct consequence of Lorentz forces in the bulk of the electrolyte. This enhanced mass transport can directly affect the electrocrystallization. The partial currents for the nucleation of nickel in magnetic fields were determined using an in situ micro-gravimetric technique and are discussed on the basis of the nucleation model of Heerman and Tarallo. Another focus of the paper is the numerical simulation of MHD effects on electrochemical metal depositions. A careful analysis of the governing equations shows that many MHD problems must be treated in a 3D geometry. In most cases there is a complex interplay of natural and magnetically driven convection.

  18. Ab Initio Simulations and Electronic Structure of Lithium-Doped Ionic Liquids: Structure, Transport, and Electrochemical Stability.

    PubMed

    Haskins, Justin B; Bauschlicher, Charles W; Lawson, John W

    2015-11-19

    Density functional theory (DFT), density functional theory molecular dynamics (DFT-MD), and classical molecular dynamics using polarizable force fields (PFF-MD) are employed to evaluate the influence of Li(+) on the structure, transport, and electrochemical stability of three potential ionic liquid electrolytes: N-methyl-N-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([pyr14][TFSI]), N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide ([pyr13][FSI]), and 1-ethyl-3-methylimidazolium boron tetrafluoride ([EMIM][BF4]). We characterize the Li(+) solvation shell through DFT computations of [Li(Anion)n]((n-1)-) clusters, DFT-MD simulations of isolated Li(+) in small ionic liquid systems, and PFF-MD simulations with high Li-doping levels in large ionic liquid systems. At low levels of Li-salt doping, highly stable solvation shells having two to three anions are seen in both [pyr14][TFSI] and [pyr13][FSI], whereas solvation shells with four anions dominate in [EMIM][BF4]. At higher levels of doping, we find the formation of complex Li-network structures that increase the frequency of four anion-coordinated solvation shells. A comparison of computational and experimental Raman spectra for a wide range of [Li(Anion)n]((n-1)-) clusters shows that our proposed structures are consistent with experiment. We then compute the ion diffusion coefficients and find measures from small-cell DFT-MD simulations to be the correct order of magnitude, but influenced by small system size and short simulation length. Correcting for these errors with complementary PFF-MD simulations, we find DFT-MD measures to be in close agreement with experiment. Finally, we compute electrochemical windows from DFT computations on isolated ions, interacting cation/anion pairs, and liquid-phase systems with Li-doping. For the molecular-level computations, we generally find the difference between ionization energy and electron affinity from isolated ions and interacting cation/anion pairs to provide upper and lower bounds, respectively, to experiment. In the liquid phase, we find the difference between the lowest unoccupied and highest occupied electronic levels in pure and hybrid functionals to provide lower and upper bounds, respectively, to experiment. Li-doping in the liquid-phase systems results in electrochemical windows little changed from the neat systems.

  19. Effect of Molybdenum on the Corrosion Behavior of High-Entropy Alloys CoCrFeNi 2 and CoCrFeNi 2 Mo 0.25 under Sodium Chloride Aqueous Conditions

    DOE PAGES

    Rodriguez, Alvaro A.; Tylczak, Joseph H.; Gao, Michael C.; ...

    2018-01-01

    The corrosion behavior of high-entropy alloys (HEAs) CoCrFeNi 2 and CoCrFeNi 2 Mo 0.25 was investigated in 3.5 wt. percent sodium chloride (NaCl) at 25°C by electrochemical methods. Their corrosion parameters were compared to those of HASTELLOY® C-276 (UNS N10276) and stainless steel 316L (UNS 31600) to assess the suitability of HEAs for potential industrial applications in NaCl simulating seawater type environments. The corrosion rates were calculated using corrosion current determined from electrochemical experiments for each of the alloys. In addition, potentiodynamic polarization measurements can indicate active, passive, and transpassive behavior of the metal as well as potential susceptibility to pittingmore » corrosion. Cyclic voltammetry (CV) can confirm the alloy susceptibility to pitting corrosion. Electrochemical impedance spectroscopy (EIS) elucidates the corrosion mechanism under studied conditions. The results of the electrochemical experiments and scanning electron microscopy (SEM) analyses of the corroded surfaces revealed general corrosion on alloy CoCrFeNi 2 Mo 0.25 and HASTELLOY C-276 and pitting corrosion on alloy CoCrFeNi 2 and stainless steel 316L.« less

  20. Effect of Molybdenum on the Corrosion Behavior of High-Entropy Alloys CoCrFeNi 2 and CoCrFeNi 2 Mo 0.25 under Sodium Chloride Aqueous Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Alvaro A.; Tylczak, Joseph H.; Gao, Michael C.

    The corrosion behavior of high-entropy alloys (HEAs) CoCrFeNi 2 and CoCrFeNi 2 Mo 0.25 was investigated in 3.5 wt. percent sodium chloride (NaCl) at 25°C by electrochemical methods. Their corrosion parameters were compared to those of HASTELLOY® C-276 (UNS N10276) and stainless steel 316L (UNS 31600) to assess the suitability of HEAs for potential industrial applications in NaCl simulating seawater type environments. The corrosion rates were calculated using corrosion current determined from electrochemical experiments for each of the alloys. In addition, potentiodynamic polarization measurements can indicate active, passive, and transpassive behavior of the metal as well as potential susceptibility to pittingmore » corrosion. Cyclic voltammetry (CV) can confirm the alloy susceptibility to pitting corrosion. Electrochemical impedance spectroscopy (EIS) elucidates the corrosion mechanism under studied conditions. The results of the electrochemical experiments and scanning electron microscopy (SEM) analyses of the corroded surfaces revealed general corrosion on alloy CoCrFeNi 2 Mo 0.25 and HASTELLOY C-276 and pitting corrosion on alloy CoCrFeNi 2 and stainless steel 316L.« less

  1. Effect of cation on diffusion coefficient of ionic liquids at onion-like carbon electrodes.

    PubMed

    Van Aken, Katherine L; McDonough, John K; Li, Song; Feng, Guang; Chathoth, Suresh M; Mamontov, Eugene; Fulvio, Pasquale F; Cummings, Peter T; Dai, Sheng; Gogotsi, Yury

    2014-07-16

    While most supercapacitors are limited in their performance by the stability of the electrolyte, using neat ionic liquids (ILs) as the electrolyte can expand the voltage window and temperature range of operation. In this study, ILs with bis(trifluoromethylsulfonyl)imide (Tf2N) as the anion were investigated as the electrolyte in onion-like carbon-based electrochemical capacitors. To probe the influence of cations on the electrochemical performance of supercapacitors, three different cations were used: 1-ethyl-3-methylimidazolium, 1-hexyl-3-methylimidazolium and 1,6-bis(3-methylimidazolium-1-yl). A series of electrochemical characterization tests was performed using cyclic voltammetry (CV), galvanostatic cycling and electrochemical impedance spectroscopy (EIS). Diffusion coefficients were measured using EIS and correlated with quasielastic neutron scattering and molecular dynamics simulation. These three techniques were used in parallel to confirm a consistent trend between the three ILs. It was found that the IL with the smaller sized cation had a larger diffusion coefficient, leading to a higher capacitance at faster charge-discharge rates. Furthermore, the IL electrolyte performance was correlated with increasing temperature, which limited the voltage stability window and led to the formation of a solid electrolyte interphase on the carbon electrode surface, evident in both the CV and EIS experiments.

  2. Electrochemical disinfection of simulated ballast water on PbO2/graphite felt electrode.

    PubMed

    Chen, Shuiping; Hu, Weidong; Hong, Jianxun; Sandoe, Steve

    2016-04-15

    A novel PbO2/graphite felt electrode was constructed by electrochemical deposition of PbO2 on graphite felt and characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) analysis. The prepared electrode is a viable technology for inactivation of Escherichia coli, Enterococcus faecalis, and Artemia salina as indicator organisms in simulated ballast water treatment, which meets the International Maritime Organization (IMO) Regulation D-2. The effects of contact time and current density on inactivation were investigated. An increase in current density generally had a beneficial effect on the inactivation of the three species. E.faecalis and A.salina were more resistant to electrochemical disinfection than E. coli. The complete disinfection of E.coli was achieved in <8min at an applied current density of 253A/m(2). Complete inactivation of E. faecalis and A.salina was achieved at the same current density after 60 and 40min of contact time, respectively. A. salina inactivation follows first-order kinetics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Electrochemical reduction behavior of simplified simulants of vitrified radioactive waste in molten CaCl2

    NASA Astrophysics Data System (ADS)

    Katasho, Yumi; Yasuda, Kouji; Nohira, Toshiyuki

    2018-05-01

    The electrochemical reduction of two types of simplified simulants of vitrified radioactive waste, simulant 1 (glass component only: SiO2, B2O3, Na2O, Al2O3, CaO, Li2O, and ZnO) and simulant 2 (also containing long-lived fission product oxides, ZrO2, Cs2O, PdO, and SeO2), was investigated in molten CaCl2 at 1103 K. The behavior of each element was predicted from the potential-pO2- diagram constructed from thermodynamic data. After the immersion of simulant 1 into molten CaCl2 without electrolysis, the dissolution of Na, Li, and Cs was confirmed by inductively coupled plasma atomic emission spectrometry and mass spectrometry analysis of the samples. The scanning electron microscopy/energy dispersive X-ray and X-ray diffraction analyses of simulants 1 and 2 electrolyzed at 0.9 V vs. Ca2+/Ca confirmed that most of SiO2 had been reduced to Si. After the electrolysis of simulants 1 and 2, Al, Zr, and Pd remained in the solid phase. In addition, SeO2 was found to remain partially in the solid phase and partially evaporate, although a small quantity dissolved into the molten salt.

  4. Effect of surface modification by nitrogen ion implantation on the electrochemical and cellular behaviors of super-elastic NiTi shape memory alloy.

    PubMed

    Maleki-Ghaleh, H; Khalil-Allafi, J; Sadeghpour-Motlagh, M; Shakeri, M S; Masoudfar, S; Farrokhi, A; Beygi Khosrowshahi, Y; Nadernezhad, A; Siadati, M H; Javidi, M; Shakiba, M; Aghaie, E

    2014-12-01

    The aim of this investigation was to enhance the biological behavior of NiTi shape memory alloy while preserving its super-elastic behavior in order to facilitate its compatibility for application in human body. The surfaces of NiTi samples were bombarded by three different nitrogen doses. Small-angle X-ray diffraction was employed for evaluating the generated phases on the bombarded surfaces. The electrochemical behaviors of the bare and surface-modified NiTi samples were studied in simulated body fluid (SBF) using electrochemical impedance and potentio-dynamic polarization tests. Ni ion release during a 2-month period of service in the SBF environment was evaluated using atomic absorption spectrometry. The cellular behavior of nitrogen-modified samples was studied using fibroblast cells. Furthermore, the effect of surface modification on super-elasticity was investigated by tensile test. The results showed the improvement of both corrosion and biological behaviors of the modified NiTi samples. However, no significant change in the super-elasticity was observed. Samples modified at 1.4E18 ion cm(-2) showed the highest corrosion resistance and the lowest Ni ion release.

  5. Inhibitive Effect of Molybdate Ions on the Electrochemical Behavior of Steel Rebar in Simulated Concrete Pore Solution

    NASA Astrophysics Data System (ADS)

    Bensabra, Hakim; Franczak, Agnieszka; Aaboubi, Omar; Azzouz, Noureddine; Chopart, Jean-Paul

    2017-01-01

    Several compounds tested as corrosion inhibitors have proven to possess good effectiveness in protection of steel rebar in concrete. However, most of them are considered as pollutant compounds, which limits their use. The aim of this work is to investigate the inhibitive effect of sodium molybdate, which is considered as a nonpollutant compound, against pitting corrosion of steel rebar in simulated concrete pore solution. Corrosion behaviors of steel in different solutions were studied by means of corrosion potential, potentiodynamic polarization, and electrochemical impedance spectroscopy. The results indicate that the addition of sodium molybdate to the chlorinated solution decreases significantly the corrosion rate of steel. Due to its passivating character, the sodium molybdate inhibitor promotes the formation of a stable passive layer on the surface of steel, acting as a physical barrier against chloride ions, on one hand, and consolidating the passivation mechanism of steel, on the other. The optimal inhibition rate is given by the concentration of molybdate ions, corresponding to a [MoO4 2-]/[Cl-] that is equal to 0.5.

  6. In-vitro biodegradation and corrosion-assisted cracking of a coated magnesium alloy in modified-simulated body fluid.

    PubMed

    Jafari, Sajjad; Singh Raman, R K

    2017-09-01

    A calcium phosphate coating was directly synthesized on AZ91D magnesium (Mg) alloy. Resistance of this coating to corrosion in a modified-simulated body fluid (m-SBF) was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Mechanical properties of the bare and coated alloy were investigated using slow strain rate tensile (SSRT) and fatigue testing in air and m-SBF. Very little is reported in the literature on human-body-fluid-assisted cracking of Mg alloys, viz., resistance to corrosion fatigue (CF) and stress corrosion cracking (SCC). This study has a particular emphasis on the effect of bio-compatible coatings on mechanical and electrochemical degradations of Mg alloys for their applications as implants. The results suggest the coating to improve the general as well as pitting corrosion resistance of the alloy. The coating also provides visible improvement in resistance to SCC, but little improvement in CF resistance. This is explained on the basis of pitting behaviour in the presence and absence of the coating. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Enhanced electrochemical nanoring electrode for analysis of cytosol in single cells.

    PubMed

    Zhuang, Lihong; Zuo, Huanzhen; Wu, Zengqiang; Wang, Yu; Fang, Danjun; Jiang, Dechen

    2014-12-02

    A microelectrode array has been applied for single cell analysis with relatively high throughput; however, the cells were typically cultured on the microelectrodes under cell-size microwell traps leading to the difficulty in the functionalization of an electrode surface for higher detection sensitivity. Here, nanoring electrodes embedded under the microwell traps were fabricated to achieve the isolation of the electrode surface and the cell support, and thus, the electrode surface can be modified to obtain enhanced electrochemical sensitivity for single cell analysis. Moreover, the nanometer-sized electrode permitted a faster diffusion of analyte to the surface for additional improvement in the sensitivity, which was evidenced by the electrochemical characterization and the simulation. To demonstrate the concept of the functionalized nanoring electrode for single cell analysis, the electrode surface was deposited with prussian blue to detect intracellular hydrogen peroxide at a single cell. Hundreds of picoamperes were observed on our functionalized nanoring electrode exhibiting the enhanced electrochemical sensitivity. The success in the achievement of a functionalized nanoring electrode will benefit the development of high throughput single cell electrochemical analysis.

  8. Intermediate stages of electrochemical oxidation of single-crystalline platinum revealed by in situ Raman spectroscopy

    PubMed Central

    Huang, Yi-Fan; Kooyman, Patricia J.; Koper, Marc T. M.

    2016-01-01

    Understanding the atomistic details of how platinum surfaces are oxidized under electrochemical conditions is of importance for many electrochemical devices such as fuel cells and electrolysers. Here we use in situ shell-isolated nanoparticle-enhanced Raman spectroscopy to identify the intermediate stages of the electrochemical oxidation of Pt(111) and Pt(100) single crystals in perchloric acid. Density functional theory calculations were carried out to assist in assigning the experimental Raman bands by simulating the vibrational frequencies of possible intermediates and products. The perchlorate anion is suggested to interact with hydroxyl phase formed on the surface. Peroxo-like and superoxo-like two-dimensional (2D) surface oxides and amorphous 3D α-PtO2 are sequentially formed during the anodic polarization. Our measurements elucidate the process of the electrochemical oxidation of platinum single crystals by providing evidence for the structure-sensitive formation of a 2D platinum-(su)peroxide phase. These results may contribute towards a fundamental understanding of the mechanism of degradation of platinum electrocatalysts. PMID:27514695

  9. Microstructure and corrosion study of porous Mg-Zn-Ca alloy in simulated body fluid

    NASA Astrophysics Data System (ADS)

    Annur, Dhyah; Erryani, Aprilia; Lestari, Franciska P.; Nyoman Putrayasa, I.; Gede, P. A.; Kartika, Ika

    2017-03-01

    Magnesium alloys had been considered as promising biomedical devices due to their biocompatibility and biodegradability. In this present work, microstructure and corrosion properties of Mg-Zn-Ca-CaCO3 porous magnesium alloy were examined. Porous metals were fabricated through powder metallurgy process with CaCO3 addition as a foaming agent. CaCO3 content was varied (1, 5, and 10%wt) followed by sintering process in 650 °C in Argon atmosphere for 10 and 15 h. The microstructure of the resulted alloys was analyzed by scanning electron microscopy (SEM) equipped with energy dispersive spectrometry data (EDS). Further, to examine corrosion properties, electrochemical test were conducted using G750 Gamry Instrument in accordance with ASTM standard G5-94 in simulated body fluid (Hank’s solution). As it was predicted, increasing content of foaming agent was in line with the increasing of pore formation. The electrochemical testing indicated corrosion rate would increase along with the increasing of foaming agent. The porous Mg-Zn-Ca alloy which has more porosity and connecting area will corrode much faster because it can transport the solution containing chloride ion which accelerated the chemical reaction. Highest corrosion resistance was given by Mg-Zn-Ca-1CaCO3-10 h sintering with potential corrosion of  -1.59 VSCE and corrosion rate of 1.01 mmpy. From the microstructure after electrochemical testing, it was revealed that volcano shaped structure and crack would occur after exposure to Hank’s solution

  10. Electrochemical Impedance Spectroscopy of Alloys in a Simulated Space Shuttle Launch Environment

    NASA Technical Reports Server (NTRS)

    Calle, L. M.; Kolody, M. R.; Vinje, R. D.; Whitten, M. C.; Li, D.

    2005-01-01

    Corrosion studies began at NASA/Kennedy Space Center in 1966 during the Gemini/Apollo Programs with the evaluation of long-term protective coatings for the atmospheric protection of carbon steel. An outdoor exposure facility on the beach near the launch pad was established for this purpose at that time. The site has provided over 35 years of technical information on the evaluation of the long-term corrosion performance of many materials and coatings as well as on maintenance procedures. Results from these evaluations have helped NASA find new materials and processes that increase the safety and reliability of our flight hardware, launch structures, and ground support equipment. The launch environment at the Kennedy Space Center (KSC) is extremely corrosive due to the combination of ocean salt spray, heat, humidity, and sunlight. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pad were rendered even more severe by the acidic exhaust from the solid rocket boosters. Over the years, many materials have been evaluated for their corrosion performance under conditions similar to those found at the launch pads. These studies have typically included atmospheric exposure and evaluation with conventional electrochemical methods such as open circuit potential (OCP) measurements, polarization techniques, and electrochemical impedance spectroscopy (EIS). The atmosphere at the Space Shuttle launch site is aggressive to most metals and causes severe pitting in many of the common stainless steel alloys such as type 304L stainless steel (304L SS). A study was undertaken to find a more corrosion resistant material to replace the existing 304L SS tubing. This paper presents the results from atmospheric exposure as well as electrochemical measurements on the corrosion resistance of AL-6XN (UNS N08367) and 254-SMO (UNS S32154). Type 304L SS (UNS S30403) was used as a control. Conditions at the Space Shuttle launch pad were simulated by using a hydrochloric acid (HC1) and alumina (Al203) slurry rinse for the atmospheric exposure and an electrolyte consisting of 3.55% sodium chloride (NaC1) with increased concentrations of hydrochloric acid (HC1) for the electrochemical measurements. The results from both types of measurements revealed the superior corrosion performance of the higher-alloyed materials. Unlike 304L SS, 254-SMO and AL-6XN exhibited a significantly improved resistance to corrosion as the concentration of hydrochloric acid in he 3.55% NaCl electrolyte solution was increased.

  11. A Study of the Mechanism of the Hydrogen Evolution Reaction on Nickel by Surface Interrogation Scanning Electrochemical Microscopy.

    PubMed

    Liang, Zhenxing; Ahn, Hyun S; Bard, Allen J

    2017-04-05

    The hydrogen evolution reaction (HER) on Ni in alkaline media was investigated by scanning electrochemical microscopy under two operating modes. First, the substrate generation/tip collection mode was employed to extract the "true" cathodic current associated with the HER from the total current in the polarization curve. Compared to metallic Ni, the electrocatalytic activity of the HER is improved in the presence of the low-valence-state oxide of Ni. This result is in agreement with a previous claim that the dissociative adsorption of water can be enhanced at the Ni/Ni oxide interface. Second, the surface-interrogation scanning electrochemical microscopy (SI-SECM) mode was used to directly measure the coverage of the adsorbed hydrogen on Ni at given potentials. Simulation indicates that the hydrogen coverage follows a Frumkin isotherm with respect to the applied potential. On the basis of the combined analysis of the Tafel slope and surface hydrogen coverage, the rate-determining step is suggested to be the adsorption of hydrogen (Volmer step) in the investigated potential window.

  12. Degradation of graphene coated copper in simulated proton exchange membrane fuel cell environment: Electrochemical impedance spectroscopy study

    NASA Astrophysics Data System (ADS)

    Ren, Y. J.; Anisur, M. R.; Qiu, W.; He, J. J.; Al-Saadi, S.; Singh Raman, R. K.

    2017-09-01

    Metallic materials are most suitable for bipolar plates of proton exchange membrane fuel cell (PEMFC) because they possess the required mechanical strength, durability, gas impermeability, acceptable cost and are suitable for mass production. However, metallic bipolar plates are prone to corrosion or they can passivate under PEMFC environment and interrupt the fuel cell operation. Therefore, it is highly attractive to develop corrosion resistance coating that is also highly conductive. Graphene fits these criteria. Graphene coating is developed on copper by chemical vapor deposition (CVD) with an aim to improving corrosion resistance of copper under PEMFC condition. The Raman Spectroscopy shows the graphene coating to be multilayered. The electrochemical degradation of graphene coated copper is investigated by electrochemical impedance spectroscopy (EIS) in 0.5 M H2SO4 solution at room temperature. After exposure to the electrolyte for up to 720 h, the charge transfer resistance (Rt) of the graphene coated copper is ∼3 times greater than that of the bare copper, indicating graphene coatings could improve the corrosion resistance of copper bipolar plates.

  13. Recent Advances in Voltammetry

    PubMed Central

    Batchelor-McAuley, Christopher; Kätelhön, Enno; Barnes, Edward O; Compton, Richard G; Laborda, Eduardo; Molina, Angela

    2015-01-01

    Recent progress in the theory and practice of voltammetry is surveyed and evaluated. The transformation over the last decade of the level of modelling and simulation of experiments has realised major advances such that electrochemical techniques can be fully developed and applied to real chemical problems of distinct complexity. This review focuses on the topic areas of: multistep electrochemical processes, voltammetry in ionic liquids, the development and interpretation of theories of electron transfer (Butler–Volmer and Marcus–Hush), advances in voltammetric pulse techniques, stochastic random walk models of diffusion, the influence of migration under conditions of low support, voltammetry at rough and porous electrodes, and nanoparticle electrochemistry. The review of the latter field encompasses both the study of nanoparticle-modified electrodes, including stripping voltammetry and the new technique of ‘nano-impacts’. PMID:26246984

  14. DISCUSSION ON "ELECTROCHEMICAL AND RAMAN SPECTROSCOPIC STUDIES OF THE INFLUENCE OF CHLORINATED SOLVENTS ON THE CORROSION BEHAVIOUR OF IRON IN BORATE BUFFER AND IN SIMULATED GROUNDWATER (CORROSION SCIENCE 2000;42:1921-1939)." (R827117)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  15. High damage tolerance of electrochemically lithiated silicon

    PubMed Central

    Wang, Xueju; Fan, Feifei; Wang, Jiangwei; Wang, Haoran; Tao, Siyu; Yang, Avery; Liu, Yang; Beng Chew, Huck; Mao, Scott X.; Zhu, Ting; Xia, Shuman

    2015-01-01

    Mechanical degradation and resultant capacity fade in high-capacity electrode materials critically hinder their use in high-performance rechargeable batteries. Despite tremendous efforts devoted to the study of the electro–chemo–mechanical behaviours of high-capacity electrode materials, their fracture properties and mechanisms remain largely unknown. Here we report a nanomechanical study on the damage tolerance of electrochemically lithiated silicon. Our in situ transmission electron microscopy experiments reveal a striking contrast of brittle fracture in pristine silicon versus ductile tensile deformation in fully lithiated silicon. Quantitative fracture toughness measurements by nanoindentation show a rapid brittle-to-ductile transition of fracture as the lithium-to-silicon molar ratio is increased to above 1.5. Molecular dynamics simulations elucidate the mechanistic underpinnings of the brittle-to-ductile transition governed by atomic bonding and lithiation-induced toughening. Our results reveal the high damage tolerance in amorphous lithium-rich silicon alloys and have important implications for the development of durable rechargeable batteries. PMID:26400671

  16. High damage tolerance of electrochemically lithiated silicon

    NASA Astrophysics Data System (ADS)

    Wang, Xueju; Fan, Feifei; Wang, Jiangwei; Wang, Haoran; Tao, Siyu; Yang, Avery; Liu, Yang; Beng Chew, Huck; Mao, Scott X.; Zhu, Ting; Xia, Shuman

    2015-09-01

    Mechanical degradation and resultant capacity fade in high-capacity electrode materials critically hinder their use in high-performance rechargeable batteries. Despite tremendous efforts devoted to the study of the electro-chemo-mechanical behaviours of high-capacity electrode materials, their fracture properties and mechanisms remain largely unknown. Here we report a nanomechanical study on the damage tolerance of electrochemically lithiated silicon. Our in situ transmission electron microscopy experiments reveal a striking contrast of brittle fracture in pristine silicon versus ductile tensile deformation in fully lithiated silicon. Quantitative fracture toughness measurements by nanoindentation show a rapid brittle-to-ductile transition of fracture as the lithium-to-silicon molar ratio is increased to above 1.5. Molecular dynamics simulations elucidate the mechanistic underpinnings of the brittle-to-ductile transition governed by atomic bonding and lithiation-induced toughening. Our results reveal the high damage tolerance in amorphous lithium-rich silicon alloys and have important implications for the development of durable rechargeable batteries.

  17. Electrochemical removal of tannins from aqueous solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buso, A.; Balbo, L.; Giomo, M.

    2000-02-01

    The application of electrochemical methods to remove tannins from wastewater was investigated. Gallotannic acid was used as the reference substance. Electrochemical experiments were performed using platinum electrodes. Macroscale potentiostatic or galvanostatic electrolyses were carried out with sodium sulfate or sodium chloride as supporting electrolytes, to analyze direct and indirect oxidation processes. Operating variables such as pH and chloride concentration were considered to determine their influence on the efficiency and energy consumption of the process. The simulation of a pilot plant was carried out with a mathematical model, the parameters of which were determined by fitting of experimental profiles. The resultsmore » of a preliminary investigation on the oxidation-coagulation process using sacrificial electrodes are also reported.« less

  18. Effect of electrochemical corrosion on the subsurface microstructure evolution of a CoCrMo alloy in albumin containing environment

    NASA Astrophysics Data System (ADS)

    Wang, Zhongwei; Yan, Yu; Su, Yanjing; Qiao, Lijie

    2017-06-01

    The subsurface microstructures of metallic implants play a key role in bio-tribocorrosion. Due to wear or change of local environment, the implant surface can have inhomogeneous electrochemical corrosion properties. In this work, the effect of electrochemical corrosion conditions on the subsurface microstructure evolution of CoCrMo alloys for artificial joints was investigated. Transmission electron microscope (TEM) was employed to observe the subsurface microstructures of worn areas at different applied potentials in a simulated physiological solution. The results showed that applied potentials could affect the severity of the subsurface deformation not only by changing the surface passivation but also affecting the adsorption of protein on the alloy surface.

  19. Numerical simulation of coupled electrochemical and transport processes in battery systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liaw, B.Y.; Gu, W.B.; Wang, C.Y.

    1997-12-31

    Advanced numerical modeling to simulate dynamic battery performance characteristics for several types of advanced batteries is being conducted using computational fluid dynamics (CFD) techniques. The CFD techniques provide efficient algorithms to solve a large set of highly nonlinear partial differential equations that represent the complex battery behavior governed by coupled electrochemical reactions and transport processes. The authors have recently successfully applied such techniques to model advanced lead-acid, Ni-Cd and Ni-MH cells. In this paper, the authors briefly discuss how the governing equations were numerically implemented, show some preliminary modeling results, and compare them with other modeling or experimental data reportedmore » in the literature. The authors describe the advantages and implications of using the CFD techniques and their capabilities in future battery applications.« less

  20. Influence of mill scale and rust layer on the corrosion resistance of low-alloy steel in simulated concrete pore solution

    NASA Astrophysics Data System (ADS)

    Shi, Jin-jie; Ming, Jing

    2017-01-01

    Electrochemical impedance spectroscopy, cyclic potentiodynamic polarization measurements, and scanning electron microscopy in conjunction with energy-dispersive X-ray spectroscopy were used to investigate the influence of mill scale and rust layer on the passivation capability and chloride-induced corrosion behaviors of conventional low-carbon (LC) steel and low-alloy (LA) steel in simulated concrete pore solution. The results show that mill scale exerts different influences on the corrosion resistance of both steels at various electrochemical stages. We propose that the high long-term corrosion resistance of LA steel is mainly achieved through the synergistic effect of a gradually formed compact, adherent and well-distributed Cr-enriched inner rust layer and the physical barrier protection effect of mill scale.

  1. Electrochemical characterization of AISI 316L stainless steel in contact with simulated body fluid under infection conditions.

    PubMed

    López, Danián Alejandro; Durán, Alicia; Ceré, Silvia Marcela

    2008-05-01

    Titanium and cobalt alloys, as well as some stainless steels, are among the most frequently used materials in orthopaedic surgery. In industrialized countries, stainless steel devices are used only for temporary implants due to their lower corrosion resistance in physiologic media when compared to other alloys. However, due to economical reasons, the use of stainless steel alloys for permanent implants is very common in developing countries. The implantation of foreign bodies is sometimes necessary in the modern medical practice. However, the complex interactions between the host and the can implant weaken the local immune system, increasing the risk of infections. Therefore, it is necessary to further study these materials as well as the characteristics of the superficial film formed in physiologic media in infection conditions in order to control their potential toxicity due to the release of metallic ions in the human body. This work presents a study of the superficial composition and the corrosion resistance of AISI 316L stainless steel and the influence of its main alloying elements when they are exposed to an acidic solution that simulates the change of pH that occurs when an infection develops. Aerated simulated body fluid (SBF) was employed as working solution at 37 degrees C. The pH was adjusted to 7.25 and 4 in order to reproduce normal body and disease state respectively. Corrosion resistance was measured by means of electrochemical impedance spectroscopy (EIS) and anodic polarization curves.

  2. Chemical and Electrochemical Processing of Aluminum Dross Using Molten Salts

    NASA Astrophysics Data System (ADS)

    Yan, Xiao Y.

    2008-04-01

    A novel molten salt process was investigated, where Al, as metal or contained in Al2O3 and AlN, was recovered from Al dross by chemical or direct electrochemical reduction in electrolytic cells. Electrolysis experiments were carried out under argon at temperatures from 1123 to 1243 K. In order to better understand the reduction behavior, the as-received Al dross was simulated using simplified systems, including pure Al2O3, pure AlN, an Al2O3/AlN binary mixture, and an Al2O3/AlN/Al ternary mixture. The reduction of the as-received dross was also studied experimentally. The studies showed that solid Al2O3 was chemically reduced by the Ca in a Ca-saturated Ca-CaCl2 melt to form Al2Ca or electrochemically reduced to Al-rich Al-Ca alloys and that the Al value in the Al2O3 was easily recovered from the Al drosses. It was found experimentally that solid AlN in the drosses could not be calciothermically reduced to any extent, consistent with thermodynamic evaluations. It was also found that the direct electrochemical reduction of the AlN in the drosses was confined to three phase boundaries (3PBs) between the AlN, the electrolyte, and the current collector and could not be enhanced by using the LiCl-containing chloride melt or the chloride-fluoride melts studied. The presence of Al powder in the Al2O3/AlN mixture facilitated the direct electrochemical reduction of both Al2O3 and AlN. The reduction mechanisms are discussed based upon the present experimental observations. Flow sheets for recovering the metallic Al and the Al in the Al2O3 and AlN from Al dross are finally proposed.

  3. Hydroxyl radical generation in electro-Fenton process with a gas-diffusion electrode: Linkages with electro-chemical generation of hydrogen peroxide and iron redox cycle.

    PubMed

    Yatagai, Tomonori; Ohkawa, Yoshiko; Kubo, Daichi; Kawase, Yoshinori

    2017-01-02

    The hydroxyl radical generation in an electro-Fenton process with a gas-diffusion electrode which is strongly linked with electro-chemical generation of hydrogen peroxide and iron redox cycle was studied. The OH radical generation subsequent to electro-chemical generations of H 2 O 2 was examined under the constant potential in the range of Fe 2+ dosage from 0 to 1.0 mM. The amount of generated OH radical initially increased and gradually decreased after the maximum was reached. The initial rate of OH radical generation increased for the Fe 2+ dosage <0.25 mM and at higher Fe 2+ dosages remained constant. At higher Fe 2+ dosages the precipitation of Fe might inhibit the enhancement of OH radical generation. The experiments for decolorization and total organic carbon (TOC) removal of azo-dye Orange II by the electro-Fenton process were conducted and the quick decolorization and slow TOC removal of Orange II were found. To quantify the linkages of OH radical generation with dynamic behaviors of electro-chemically generated H 2 O 2 and iron redox cycle and to investigate effects of OH radical generation on the decolorization and TOC removal of Orange II, novel reaction kinetic models were developed. The proposed models could satisfactory clarify the linkages of OH radical generation with electro-chemically generated H 2 O 2 and iron redox cycle and simulate the decolorization and TOC removal of Orange II by the electro-Fenton process.

  4. Noise characteristics of nanoscaled redox-cycling sensors: investigations based on random walks.

    PubMed

    Kätelhön, Enno; Krause, Kay J; Singh, Pradyumna S; Lemay, Serge G; Wolfrum, Bernhard

    2013-06-19

    We investigate noise effects in nanoscaled electrochemical sensors using a three-dimensional simulation based on random walks. The presented approach allows the prediction of time-dependent signals and noise characteristics for redox cycling devices of arbitrary geometry. We demonstrate that the simulation results closely match experimental data as well as theoretical expectations with regard to measured currents and noise power spectra. We further analyze the impact of the sensor design on characteristics of the noise power spectrum. Specific transitions between independent noise sources in the frequency domain are indicative of the sensor-reservoir coupling and can be used to identify stationary design features or time-dependent blocking mechanisms. We disclose the source code of our simulation. Since our approach is highly flexible with regard to the implemented boundary conditions, it opens up the possibility for integrating a variety of surface-specific molecular reactions in arbitrary electrochemical systems. Thus, it may become a useful tool for the investigation of a wide range of noise effects in nanoelectrochemical sensors.

  5. Electrochemical characterization of bulk and thin film copper in ammonia- and nitric acid-based slurries for chemical mechanical planarization of interconnects

    NASA Astrophysics Data System (ADS)

    Sainio, Carlyn Anne

    Copper will be replacing aluminum as the interconnect material in silicon integrated circuits. Chemical mechanical planarization (CMP) in combination with an inlaid metal interconnection scheme has been utilized to pattern copper interconnects. The thesis describes an attempt to understand the electrochemistry of copper in slurries used for CMP. Steady-state electrochemical potential measurements, linear polarization resistance determinations, and potentiodynamic and potentiostatic polarization scans have been used in order to characterize the mechanism by which copper is removed during CMP. Electrochemical measurements were implemented on a rotating disk assembly to simulate conditions during CMP. Experiments were performed on both bulk copper samples and blanket copper thin films sputter deposited onto silicon wafers. Electrochemical potential measurements have been used in conjunction with potential-pH diagrams to determine the possible copper species which are stable during CMP. Electrochemical results were correlated to CMP experiments to determine slurry compositions with optimum potential-pH ranges for copper planarization. The results indicate that such studies present an opportunity to isolate the electrochemical and chemical effects from the mechanical effects in the CMP of metals and to determine the dependencies of each of these effects on the other. CMP of copper was controlled by the removal of native or non-native surface films. High CMP rates were achieved by matching the rates of film formation and copper and film dissolution. During CMP, surface films are abraded, allowing increased dissolution of copper until the surface film reforms. When the surface was indented by abrasive particles, the corrosion rate of the exposed copper increased by two orders of magnitude. Etchants (i.e. ammonia or nitric acid) were necessary for high CMP rates (120-240 nm/min) and to minimize scratching. CMP rates of copper in 1 volume percent NHsb4OH and 0.7 volume percent HNOsb3 with 0.0016 weight percent KMnOsb4 were comparable. Electrochemical characterization can narrow the possible slurry compositions that may be used for polishing. Also, the possibility of implementing electrochemical techniques to detect the endpoint of polishing was investigated. Although electrochemical measurements in ammonia-based slurries did not indicate when tantalum was exposed, similar measurements may be used to determine when polishing pads should be replaced.

  6. Electric terminal performance and characterization of solid oxide fuel cells and systems

    NASA Astrophysics Data System (ADS)

    Lindahl, Peter Allan

    Solid Oxide Fuel Cells (SOFCs) are electrochemical devices which can effect efficient, clean, and quiet conversion of chemical to electrical energy. In contrast to conventional electricity generation systems which feature multiple discrete energy conversion processes, SOFCs are direct energy conversion devices. That is, they feature a fully integrated chemical to electrical energy conversion process where the electric load demanded of the cell intrinsically drives the electrochemical reactions and associated processes internal to the cell. As a result, the cell's electric terminals provide a path for interaction between load side electric demand and the conversion side processes. The implication of this is twofold. First, the magnitude and dynamic characteristics of the electric load demanded of the cell can directly impact the long-term efficacy of the cell's chemical to electrical energy conversion. Second, the electric terminal response to dynamic loads can be exploited for monitoring the cell's conversion side processes and used in diagnostic analysis and degradation-mitigating control schemes. This dissertation presents a multi-tier investigation into this electric terminal based performance characterization of SOFCs through the development of novel test systems, analysis techniques and control schemes. First, a reference-based simulation system is introduced. This system scales up the electric terminal performance of a prototype SOFC system, e.g. a single fuel cell, to that of a full power-level stack. This allows realistic stack/load interaction studies while maintaining explicit ability for post-test analysis of the prototype system. Next, a time-domain least squares fitting method for electrochemical impedance spectroscopy (EIS) is developed for reduced-time monitoring of the electrochemical and physicochemical mechanics of the fuel cell through its electric terminals. The utility of the reference-based simulator and the EIS technique are demonstrated through their combined use in the performance testing of a hybrid-source power management (HSPM) system designed to allow in-situ EIS monitoring of a stack under dynamic loading conditions. The results from the latter study suggest that an HSPM controller allows an opportunity for in-situ electric terminal monitoring and control-based mitigation of SOFC degradation. As such, an exploration of control-based SOFC degradation mitigation is presented and ideas for further work are suggested.

  7. Embroidered electrochemical sensors on gauze for rapid quantification of wound biomarkers.

    PubMed

    Liu, Xiyuan; Lillehoj, Peter B

    2017-12-15

    Electrochemical sensors are an attractive platform for analytical measurements due to their high sensitivity, portability and fast response time. These attributes also make electrochemical sensors well suited for wearable applications which require excellent flexibility and durability. Towards this end, we have developed a robust electrochemical sensor on gauze via a unique embroidery fabrication process for quantitative measurements of wound biomarkers. For proof of principle, this biosensor was used to detect uric acid, a biomarker for wound severity and healing, in simulated wound fluid which exhibits high specificity, good linearly from 0 to 800µM, and excellent reproducibility. Continuous sensing of uric acid was also performed using this biosensor which reveals that it can generate consistent and accurate measurements for up to 7h. Experiments to evaluate the robustness of the embroidered gauze sensor demonstrate that it offers excellent resilience against mechanical stress and deformation, making it a promising wearable platform for assessing and monitoring wound status in situ. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A reconfigurable liquid metal antenna driven by electrochemically controlled capillarity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, M.; Adams, J. J., E-mail: jjadams2@ncsu.edu; Trlica, C.

    2015-05-21

    We describe a new electrochemical method for reversible, pump-free control of liquid eutectic gallium and indium (EGaIn) in a capillary. Electrochemical deposition (or removal) of a surface oxide on the EGaIn significantly lowers (or increases) its interfacial tension as a means to induce the liquid metal in (or out) of the capillary. A fabricated prototype demonstrates this method in a reconfigurable antenna application in which EGaIn forms the radiating element. By inducing a change in the physical length of the EGaIn, the operating frequency of the antenna tunes over a large bandwidth. This purely electrochemical mechanism uses low, DC voltagesmore » to tune the antenna continuously and reversibly between 0.66 GHz and 3.4 GHz resulting in a 5:1 tuning range. Gain and radiation pattern measurements agree with electromagnetic simulations of the device, and its measured radiation efficiency varies from 41% to 70% over its tuning range.« less

  9. Electrochemical product detection of an asymmetric convective polymerase chain reaction.

    PubMed

    Duwensee, Heiko; Mix, Maren; Stubbe, Marco; Gimsa, Jan; Adler, Marcel; Flechsig, Gerd-Uwe

    2009-10-15

    For the first time, we describe the application of heated microwires for an asymmetric convective polymerase chain reaction (PCR) in a modified PCR tube in a small volume. The partly single-stranded product was labeled with the electrochemically active compound osmium tetroxide bipyridine using a partially complementary protective strand with five mismatches compared to the single-stranded product. The labeled product could be successfully detected at a gold electrode modified with a complementary single-stranded capture probe immobilized via a thiol-linker. Our simple thermo-convective PCR yielded electrochemically detectable products after only 5-10 min. A significant discrimination between complementary and non-complementary target was possible using different immobilized capture probes. The total product yield was approx. half the amount of the classical thermocycler PCR. Numerical simulations describing the thermally driven convective PCR explain the received data. Discrimination between complementary capture probes and non-complementary capture probes was performed using square-wave voltammetry. The coupling of asymmetric thermo-convective PCR with electrochemical detection is very promising for future compact DNA sensor devices.

  10. Protein labeling reactions in electrochemical microchannel flow: Numerical simulation and uncertainty propagation

    NASA Astrophysics Data System (ADS)

    Debusschere, Bert J.; Najm, Habib N.; Matta, Alain; Knio, Omar M.; Ghanem, Roger G.; Le Maître, Olivier P.

    2003-08-01

    This paper presents a model for two-dimensional electrochemical microchannel flow including the propagation of uncertainty from model parameters to the simulation results. For a detailed representation of electroosmotic and pressure-driven microchannel flow, the model considers the coupled momentum, species transport, and electrostatic field equations, including variable zeta potential. The chemistry model accounts for pH-dependent protein labeling reactions as well as detailed buffer electrochemistry in a mixed finite-rate/equilibrium formulation. Uncertainty from the model parameters and boundary conditions is propagated to the model predictions using a pseudo-spectral stochastic formulation with polynomial chaos (PC) representations for parameters and field quantities. Using a Galerkin approach, the governing equations are reformulated into equations for the coefficients in the PC expansion. The implementation of the physical model with the stochastic uncertainty propagation is applied to protein-labeling in a homogeneous buffer, as well as in two-dimensional electrochemical microchannel flow. The results for the two-dimensional channel show strong distortion of sample profiles due to ion movement and consequent buffer disturbances. The uncertainty in these results is dominated by the uncertainty in the applied voltage across the channel.

  11. Time resolved impedance spectroscopy analysis of lithium phosphorous oxynitride - LiPON layers under mechanical stress

    NASA Astrophysics Data System (ADS)

    Glenneberg, Jens; Bardenhagen, Ingo; Langer, Frederieke; Busse, Matthias; Kun, Robert

    2017-08-01

    In this paper we present investigations on the morphological and electrochemical changes of lithium phosphorous oxynitride (LiPON) under mechanically bent conditions. Therefore, two types of electrochemical cells with LiPON thin films were prepared by physical vapor deposition. First, symmetrical cells with two blocking electrodes (Cu/LiPON/Cu) were fabricated. Second, to simulate a more application-related scenario cells with one blocking and one non-blocking electrode (Cu/LiPON/Li/Cu) were analyzed. In order to investigate mechanical distortion induced transport property changes in LiPON layers the cells were deposited on a flexible polyimide substrate. Morphology of the as-prepared samples and deviations from the initial state after applying external stress by bending the cells over different radii were investigated by Focused Ion Beam- Scanning Electron Microscopy (FIB-SEM) cross-section and surface images. Mechanical stress induced changes in the impedance were evaluated by time-resolved electrochemical impedance spectroscopy (EIS). Due to the formation of a stable, ion-conducting solid electrolyte interphase (SEI), cells with lithium show decreased impedance values. Furthermore, applying mechanical stress to the cells results in a further reduction of the electrolyte resistance. These results are supported by finite element analysis (FEA) simulations.

  12. Biological properties of nanostructured Ti incorporated with Ca, P and Ag by electrochemical method.

    PubMed

    Li, Baoe; Hao, Jingzu; Min, Yang; Xin, Shigang; Guo, Litong; He, Fei; Liang, Chunyong; Wang, Hongshui; Li, Haipeng

    2015-06-01

    TiO2 nanotube arrays were synthesized on Ti surface by anodic oxidation. The elements of Ca and P were simultaneously incorporated during nanotubes growth in SBF electrolyte, and then Ag was introduced to nanotube arrays by cathodic deposition, which endowed the good osseointegration and antibacterial property of Ti. The bioactivity of the Ti surface was evaluated by simulated body fluid soaking test. The biocompatibility was investigated by in vitro cell culture test. And the antibacterial effect against Staphylococcus aureus was examined by the bacterial counting method. The results showed that the incorporation of Ca, P and Ag elements had no significant influence on the formation of nanotube arrays on Ti surface during electrochemical treatment. Compared to the polished or nanotubular Ti surface, TiO2 nanotube arrays incorporated with Ca, P and Ag increased the formation of bone-like apatite in simulated body fluid, enhanced cell adhesion and proliferation, and inhibited the bacterial growth. Based on these results, it can be concluded that the nanostructured Ti incorporated with Ca, P and Ag by electrochemical method has promising applications as implant material. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid.

    PubMed

    Kannan, M Bobby; Raman, R K Singh

    2008-05-01

    The successful applications of magnesium-based alloys as degradable orthopaedic implants are mainly inhibited due to their high degradation rates in physiological environment and consequent loss in the mechanical integrity. This study examines the degradation behaviour and the mechanical integrity of calcium-containing magnesium alloys using electrochemical techniques and slow strain rate test (SSRT) method, respectively, in modified-simulated body fluid (m-SBF). Potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) results showed that calcium addition enhances the general and pitting corrosion resistances of magnesium alloys significantly. The corrosion current was significantly lower in AZ91Ca alloy than that in AZ91 alloy. Furthermore, AZ91Ca alloy exhibited a five-fold increase in the surface film resistance than AZ91 alloy. The SSRT results showed that the ultimate tensile strength and elongation to fracture of AZ91Ca alloy in m-SBF decreased only marginally (approximately 15% and 20%, respectively) in comparison with these properties in air. The fracture morphologies of the failed samples are discussed in the paper. The in vitro study suggests that calcium-containing magnesium alloys to be a promising candidate for their applications in degradable orthopaedic implants, and it is worthwhile to further investigate the in vivo corrosion behaviour of these alloys.

  14. Experimental and theoretical studies on inhibition of mild steel corrosion by some synthesized polyurethane tri-block co-polymers

    PubMed Central

    Kumar, Sudershan; Vashisht, Hemlata; Olasunkanmi, Lukman O.; Bahadur, Indra; Verma, Hemant; Singh, Gurmeet; Obot, Ime B.; Ebenso, Eno E.

    2016-01-01

    Polyurethane based tri-block copolymers namely poly(N-vinylpyrrolidone)-b-polyurethane-b-poly(N-vinylpyrrolidone) (PNVP-PU) and poly(dimethylaminoethylmethacrylate)-b-polyurethane-b-poly(dimethylaminoethylmethacrylate) (PDMAEMA-PU) were synthesized through atom transfer radical polymerization (ATRP) mechanism. The synthesized polymers were characterized using nuclear magnetic resonance (NMR) spectroscopy and gel permeation chromatography (GPC) methods. The corrosion inhibition performances of the compounds were investigated on mild steel (MS) in 0.5 M H2SO4 medium using electrochemical measurements, surface analysis, quantum chemical calculations and molecular dynamic simulations (MDS). Potentiodynamic polarization (PDP) measurements revealed that the polymers are mixed-type corrosion inhibitors. Electrochemical impedance spectroscopy (EIS) measurements showed that the polymers inhibit MS corrosion by adsorbing on MS surface to form pseudo-capacitive interface. The inhibitive effects of the polymers increase with increasing concentration and decrease with increasing temperature. The adsorption of both the polymers on MS surface obey the Langmuir adsorption isotherm and involves both physisorption and chemisorption mechanisms. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses showed that the polymers formed protective film on MS surface and shield it from direct acid attack. Quantum chemical calculations and molecular dynamic simulations studies corroborate experimental results. PMID:27515383

  15. Characterization of Nanopipettes.

    PubMed

    Perry, David; Momotenko, Dmitry; Lazenby, Robert A; Kang, Minkyung; Unwin, Patrick R

    2016-05-17

    Nanopipettes are widely used in electrochemical and analytical techniques as tools for sizing, sequencing, sensing, delivery, and imaging. For all of these applications, the response of a nanopipette is strongly affected by its geometry and surface chemistry. As the size of nanopipettes becomes smaller, precise geometric characterization is increasingly important, especially if nanopipette probes are to be used for quantitative studies and analysis. This contribution highlights the combination of data from voltage-scanning ion conductivity experiments, transmission electron microscopy and finite element method simulations to fully characterize nanopipette geometry and surface charge characteristics, with an accuracy not achievable using existing approaches. Indeed, it is shown that presently used methods for characterization can lead to highly erroneous information on nanopipettes. The new approach to characterization further facilitates high-level quantification of the behavior of nanopipettes in electrochemical systems, as demonstrated herein for a scanning ion conductance microscope setup.

  16. Three dimensional electrochemical simulation of solid oxide fuel cell cathode based on microstructure reconstructed by marching cubes method

    NASA Astrophysics Data System (ADS)

    He, An; Gong, Jiaming; Shikazono, Naoki

    2018-05-01

    In the present study, a model is introduced to correlate the electrochemical performance of solid oxide fuel cell (SOFC) with the 3D microstructure reconstructed by focused ion beam scanning electron microscopy (FIB-SEM) in which the solid surface is modeled by the marching cubes (MC) method. Lattice Boltzmann method (LBM) is used to solve the governing equations. In order to maintain the geometries reconstructed by the MC method, local effective diffusivities and conductivities computed based on the MC geometries are applied in each grid, and partial bounce-back scheme is applied according to the boundary predicted by the MC method. From the tortuosity factor and overpotential calculation results, it is concluded that the MC geometry drastically improves the computational accuracy by giving more precise topology information.

  17. Cation effect on small phosphonium based ionic liquid electrolytes with high concentrations of lithium salt

    NASA Astrophysics Data System (ADS)

    Chen, Fangfang; Kerr, Robert; Forsyth, Maria

    2018-05-01

    Ionic liquid electrolytes with high alkali salt concentrations have displayed some excellent electrochemical properties, thus opening up the field for further improvements to liquid electrolytes for lithium or sodium batteries. Fundamental computational investigations into these high concentration systems are required in order to gain a better understanding of these systems, yet they remain lacking. Small phosphonium-based ionic liquids with high concentrations of alkali metal ions have recently shown many promising results in experimental studies, thereby prompting us to conduct further theoretical exploration of these materials. Here, we conducted a molecular dynamics simulation on four small phosphonium-based ionic liquids with 50 mol. % LiFSI salt, focusing on the effect of cation structure on local structuring and ion diffusional and rotational dynamics—which are closely related to the electrochemical properties of these materials.

  18. Stress Corrosion Cracking of Ni-Fe-Cr Alloys Relevant to Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Persaud, Suraj

    Stress corrosion cracking (SCC) of Ni-Fe-Cr alloys and weld metals was investigated in simulated environments representative of high temperature water used in the primary and secondary circuits of nuclear power plants. The mechanism of primary water SCC (PWSCC) was studied in Alloys 600, 690, 800 and Alloy 82 dissimilar metal welds using the internal oxidation model as a guide. Initial experiments were carried out in a 480°C hydrogenated steam environment considered to simulate high temperature reducing primary water. Ni alloys underwent classical internal oxidation intragranularly resulting in the expulsion of the solvent metal, Ni, to the surface. Selective intergranular oxidation of Cr in Alloy 600 resulted in embrittlement, while other alloys were resistant owing to their increased Cr contents. Atom probe tomography was used to determine the short-circuit diffusion path used for Ni expulsion at a sub-nanometer scale, which was concluded to be oxide-metal interfaces. Further exposures of Alloys 600 and 800 were done in 315°C simulated primary water and intergranular oxidation tendency was comparable to 480°C hydrogenated steam. Secondary side work involved SCC experiments and electrochemical measurements, which were done at 315°C in acid sulfate solutions. Alloy 800 C-rings were found to undergo acid sulfate SCC (AcSCC) to a depth of up to 300 microm in 0.55 M sulfate solution at pH 4.3. A focused-ion beam was used to extract a crack tip from a C-ring and high resolution analytical electron microscopy revealed a duplex oxide structure and the presence of sulfur. Electrochemical measurements were taken on Ni alloys to complement crack tip analysis; sulfate was concluded to be the aggressive anion in mixed sulfate and chloride systems. Results from electrochemical measurements and crack tip analysis suggested a slip dissolution-type mechanism to explain AcSCC in Ni alloys.

  19. Insights into Lithium-ion battery degradation and safety mechanisms from mesoscale simulations using experimentally reconstructed mesostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Scott A.; Mendoza, Hector; Brunini, Victor E.

    Battery performance, while observed at the macroscale, is primarily governed by the bicontinuous mesoscale network of the active particles and a polymeric conductive binder in its electrodes. Manufacturing processes affect this mesostructure, and therefore battery performance, in ways that are not always clear outside of empirical relationships. Directly studying the role of the mesostructure is difficult due to the small particle sizes (a few microns) and large mesoscale structures. Mesoscale simulation, however, is an emerging technique that allows the investigation into how particle-scale phenomena affect electrode behavior. In this manuscript, we discuss our computational approach for modeling electrochemical, mechanical, andmore » thermal phenomena of lithium-ion batteries at the mesoscale. Here, we review our recent and ongoing simulation investigations and discuss a path forward for additional simulation insights.« less

  20. Insights into Lithium-ion battery degradation and safety mechanisms from mesoscale simulations using experimentally reconstructed mesostructures

    DOE PAGES

    Roberts, Scott A.; Mendoza, Hector; Brunini, Victor E.; ...

    2016-10-20

    Battery performance, while observed at the macroscale, is primarily governed by the bicontinuous mesoscale network of the active particles and a polymeric conductive binder in its electrodes. Manufacturing processes affect this mesostructure, and therefore battery performance, in ways that are not always clear outside of empirical relationships. Directly studying the role of the mesostructure is difficult due to the small particle sizes (a few microns) and large mesoscale structures. Mesoscale simulation, however, is an emerging technique that allows the investigation into how particle-scale phenomena affect electrode behavior. In this manuscript, we discuss our computational approach for modeling electrochemical, mechanical, andmore » thermal phenomena of lithium-ion batteries at the mesoscale. Here, we review our recent and ongoing simulation investigations and discuss a path forward for additional simulation insights.« less

  1. Engineering of Organic Nanocrystals by Electrocrystallization

    NASA Astrophysics Data System (ADS)

    Kilani, Mohamed

    This work discusses the experimental and theoretical methods used to control the morphology of nanocrystals. The hypothesis of the thermodynamic/kinetic control of the morphology was verified. We applied the electrocrystallization to make K(def)TCP nanocrystals and we tuned the electrochemical parameters to determine their influence on the nanocrystals morphologies. The characterization was mainly performed with AFM and FE-SEM. We presented in this work the possibility to control the morphology of K(def)TCP using the electrochemical parameters. The obtained shapes ranged from nanorods to rhombohedral shape, which is reported for the first time. The observed growth behavior was modeled and simulated with a method based on Monte-Carlo techniques. The simulation results show a qualitative match with the experimental findings. This work contributes to the understanding of the crystal growth behavior and the thermodynamic/kinetic morphology transition using electrocrystallization.

  2. A transfer function type of simplified electrochemical model with modified boundary conditions and Padé approximation for Li-ion battery: Part 2. Modeling and parameter estimation

    NASA Astrophysics Data System (ADS)

    Yuan, Shifei; Jiang, Lei; Yin, Chengliang; Wu, Hongjie; Zhang, Xi

    2017-06-01

    The electrochemistry-based battery model can provide physics-meaningful knowledge about the lithium-ion battery system with extensive computation burdens. To motivate the development of reduced order battery model, three major contributions have been made throughout this paper: (1) the transfer function type of simplified electrochemical model is proposed to address the current-voltage relationship with Padé approximation method and modified boundary conditions for electrolyte diffusion equations. The model performance has been verified under pulse charge/discharge and dynamic stress test (DST) profiles with the standard derivation less than 0.021 V and the runtime 50 times faster. (2) the parametric relationship between the equivalent circuit model and simplified electrochemical model has been established, which will enhance the comprehension level of two models with more in-depth physical significance and provide new methods for electrochemical model parameter estimation. (3) four simplified electrochemical model parameters: equivalent resistance Req, effective diffusion coefficient in electrolyte phase Deeff, electrolyte phase volume fraction ε and open circuit voltage (OCV), have been identified by the recursive least square (RLS) algorithm with the modified DST profiles under 45, 25 and 0 °C. The simulation results indicate that the proposed model coupled with RLS algorithm can achieve high accuracy for electrochemical parameter identification in dynamic scenarios.

  3. Redox Bulk Energy Storage System Study, Volume 1

    NASA Technical Reports Server (NTRS)

    Ciprios, G.; Erskine, W., Jr.; Grimes, P. G.

    1977-01-01

    Opportunities were found for electrochemical energy storage devices in the U.S. electric utility industry. Application requirements for these devices were defined, including techno-economic factors. A new device, the Redox storage battery was analyzed. The Redox battery features a decoupling of energy storage and power conversion functions. General computer methods were developed to simulate Redox system operations. These studies showed that the Redox system is potentially attractive if certain performance goals can be achieved. Pathways for reducing the cost of the Redox system were identified.

  4. Three-Dimensional Transport Modeling for Proton Exchange Membrane(PEM) Fuel Cell with Micro Parallel Flow Field

    PubMed Central

    Lee, Pil Hyong; Han, Sang Seok; Hwang, Sang Soon

    2008-01-01

    Modeling and simulation for heat and mass transport in micro channel are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize fuel cell designs before building a prototype for engineering application. In this study, we used a single-phase, fully three dimensional simulation model for PEMFC that can deal with both anode and cathode flow field for examining the micro flow channel with electrochemical reaction. The results show that hydrogen and oxygen were solely supplied to the membrane by diffusion mechanism rather than convection transport, and the higher pressure drop at cathode side is thought to be caused by higher flow rate of oxygen at cathode. And it is found that the amount of water in cathode channel was determined by water formation due to electrochemical reaction plus electro-osmotic mass flux directing toward the cathode side. And it is very important to model the back diffusion and electro-osmotic mass flux accurately since the two flux was closely correlated each other and greatly influenced for determination of ionic conductivity of the membrane which directly affects the performance of fuel cell. PMID:27879774

  5. Use of UO 2 films for electrochemical studies

    NASA Astrophysics Data System (ADS)

    Miserque, F.; Gouder, T.; Wegen, D. H.; Bottomley, P. D. W.

    2001-10-01

    UO 2 films have been prepared by dc reactive sputtering of a uranium metal target in an Ar/O 2 atmosphere. We have used the films deposited on gold substrates as working electrodes for electrochemical investigations as simulating the surfaces of fuel pellets. Film composition was determined by photoelectron spectroscopy (XPS and UPS) and X-ray diffraction (XRD). The oxide stoichiometry as a function of deposition conditions was determined and the appropriate conditions for UO 2.0 formation established. AC impedance and cyclic voltammetry measurements were performed. A double RC electrical equivalent circuit was used to fit the data from impedance measurements, similar to those used in unirradiated UO 2 or spent fuel pellets. However due to the porosity or adhesion defects on the thin films that permitted a direct contact between the solution and the gold substrate, we were obliged to add a contribution simulating the water-gold system. Cyclic voltammetry measurements show the influence of pH on the dissolution mechanism. Alkaline solutions permit the formation of an oxidised layer (UO 2.33) which is not present in the acidic solutions. In both pH=2 and pH=6 solutions, a U VI species layer is formed.

  6. Effects of pH and elevated glucose levels on the electrochemical behavior of dental implants.

    PubMed

    Tamam, Evsen; Turkyilmaz, Ilser

    2014-04-01

    Implant failure is more likely to occur in persons with medically compromising systemic conditions, such as diabetes related to high blood glucose levels and inflammatory diseases related to pH levels lower than those in healthy people. The aim of this study was to investigate the effects of lower pH level and simulated- hyperglycemia on implant corrosion as these effects are critical to biocompatibility and osseointegration. The electrochemical corrosion properties of titanium implants were studied in four different solutions: Ringer's physiological solution at pH = 7.0 and pH = 5.5 and Ringer's physiological solution containing 15 mM dextrose at pH = 7 and pH = 5.5. Corrosion behaviors of dental implants were determined by cyclic polarization test and electrochemical impedance spectroscopy. Surface alterations were studied using a scanning electron microscope. All test electrolytes led to apparent differences in corrosion behavior of the implants. The implants under conditions of test exhibited statistically significant increases in I(corr) from 0.2372 to 1.007 μAcm(-2), corrosion rates from 1.904 to 8.085 mpy, and a decrease in polarization resistances from 304 to 74 Ω. Implants in dextrose-containing solutions were more prone to corrosion than those in Ringer's solutions alone. Increasing the acidity also yielded greater corrosion rates for the dextrose-containing solutions and the solutions without dextrose.

  7. Synthesis and electrochemical study of a hybrid structure based on PDMS-TEOS and titania nanotubes for biomedical applications

    NASA Astrophysics Data System (ADS)

    Castro, António G. B.; Bastos, Alexandre C.; Galstyan, Vardan; Faglia, Guido; Sberveglieri, Giorgio; Salvado, Isabel M. Miranda

    2014-09-01

    Metallic implants and devices are widely used in the orthopedic and orthodontic clinical areas. However, several problems regarding their adhesion with the living tissues and inflammatory responses due to the release of metallic ions to the medium have been reported. The modification of the metallic surfaces and the use of biocompatible protective coatings are two approaches to solve such issues. In this study, in order to improve the adhesion properties and to increase the corrosion resistance of metallic Ti substrates we have obtained a hybrid structure based on TiO2 nanotubular arrays and PDMS-TEOS films. TiO2 nanotubes have been prepared with two different diameters by means of electrochemical anodization. PDMS-TEOS films have been prepared by the sol-gel method. The morphological and the elemental analysis of the structures have been investigated by scanning electron microscopy and energy dispersive spectroscopy (EDS). Electrochemical impedance spectroscopy (EIS) and polarization curves have been performed during immersion of the samples in Kokubo’s simulated body fluid (SBF) at 37 °C to study the effect of structure layers and tube diameter on the protective properties. The obtained results show that the modification of the surface structure of TiO2 and the application of PDMS-TEOS film is a promising strategy for the development of implant materials.

  8. Optimization on electrochemical synthesis of HKUST-1 as candidate catalytic material for Green diesel production

    NASA Astrophysics Data System (ADS)

    Lestari, W. W.; Nugraha, R. E.; Winarni, I. D.; Adreane, M.; Rahmawati, F.

    2016-04-01

    In the effort to support the discovery of new renewable energy sources in Indonesia, biofuel is one of promising options. The conversion of vegetable oil into ready-biofuel, especially green diesel, needs several steps, one of which is a hydrogenation or hydro-deoxygenation reaction. In this case, the catalyst plays a very important role regarding to its activity and selectivity, and Metal-Organic Frameworks (MOFs) becoming a new generation of heterogeneous catalyst in this area. In this research, a preliminary study to optimize electrochemical synthesis of the catalytic material based on MOFs, namely HKUST-1 [Cu3(BTC)2], has been conducted. Some electrochemical reaction parameters were tested, for example by modifying the electrochemical synthetic conditions, i.e. by performing variation of voltages (12, 13, 14, and 15 Volt), temperatures (RT, 40, 60, and 80 °C) and solvents (ethanol, water, methanol and dimethyl-formamide (DMF)). Material characterization was carried out by XRD, SEM, FTIR, DTA/TG and SAA. The results showed that the optimum synthetic conditions of HKUST-1 are performed at room temperature in a solvent combination of water: ethanol (1: 1) and a voltage of 15 Volt for 2 hours. The XRD-analysis revealed that the resulted peaks are identical to the simulated powder pattern generated from single crystal data and comparable to the peaks of solvothermal method. However, the porosity of the resulting material through electrochemical method is still in the range of micro-pore according to IUPAC and 50% smaller than the porosity resulted from solvothermal synthesis. The corresponding compounds are thermally stable until 300 °C according to TG/DTA.

  9. Tracking of electrochemical impedance of batteries

    NASA Astrophysics Data System (ADS)

    Piret, H.; Granjon, P.; Guillet, N.; Cattin, V.

    2016-04-01

    This paper presents an evolutionary battery impedance estimation method, which can be easily embedded in vehicles or nomad devices. The proposed method not only allows an accurate frequency impedance estimation, but also a tracking of its temporal evolution contrary to classical electrochemical impedance spectroscopy methods. Taking into account constraints of cost and complexity, we propose to use the existing electronics of current control to perform a frequency evolutionary estimation of the electrochemical impedance. The developed method uses a simple wideband input signal, and relies on a recursive local average of Fourier transforms. The averaging is controlled by a single parameter, managing a trade-off between tracking and estimation performance. This normalized parameter allows to correctly adapt the behavior of the proposed estimator to the variations of the impedance. The advantage of the proposed method is twofold: the method is easy to embed into a simple electronic circuit, and the battery impedance estimator is evolutionary. The ability of the method to monitor the impedance over time is demonstrated on a simulator, and on a real Lithium ion battery, on which a repeatability study is carried out. The experiments reveal good tracking results, and estimation performance as accurate as the usual laboratory approaches.

  10. Photo-Electrochemical Treatment of Reactive Dyes in Wastewater and Reuse of the Effluent: Method Optimization

    PubMed Central

    Sala, Mireia; López-Grimau, Víctor; Gutiérrez-Bouzán, Carmen

    2014-01-01

    In this work, the efficiency of a photo-electrochemical method to remove color in textile dyeing effluents is discussed. The decolorization of a synthetic effluent containing a bi-functional reactive dye was carried out by applying an electrochemical treatment at different intensities (2 A, 5 A and 10 A), followed by ultraviolet irradiation. The combination of both treatments was optimized. The final percentage of effluent decolorization, the reduction of halogenated organic volatile compound and the total organic carbon removal were the determinant factors in the selection of the best treatment conditions. The optimized method was applied to the treatment of nine simulated dyeing effluents prepared with different reactive dyes in order to compare the behavior of mono, bi, and tri-reactive dyes. Finally, the nine treated effluents were reused in new dyeing processes and the color differences (DECMC (2:1)) with respect to a reference were evaluated. The influence of the effluent organic matter removal on the color differences was also studied. The reuse of the treated effluents provides satisfactory dyeing results, and an important reduction in water consumption and salt discharge is achieved. PMID:28788251

  11. Refined method for predicting electrochemical windows of ionic liquids and experimental validation studies.

    PubMed

    Zhang, Yong; Shi, Chaojun; Brennecke, Joan F; Maginn, Edward J

    2014-06-12

    A combined classical molecular dynamics (MD) and ab initio MD (AIMD) method was developed for the calculation of electrochemical windows (ECWs) of ionic liquids. In the method, the liquid phase of ionic liquid is explicitly sampled using classical MD. The electrochemical window, estimated by the energy difference between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), is calculated at the density functional theory (DFT) level based on snapshots obtained from classical MD trajectories. The snapshots were relaxed using AIMD and quenched to their local energy minima, which assures that the HOMO/LUMO calculations are based on stable configurations on the same potential energy surface. The new procedure was applied to a group of ionic liquids for which the ECWs were also experimentally measured in a self-consistent manner. It was found that the predicted ECWs not only agree with the experimental trend very well but also the values are quantitatively accurate. The proposed method provides an efficient way to compare ECWs of ionic liquids in the same context, which has been difficult in experiments or simulation due to the fact that ECW values sensitively depend on experimental setup and conditions.

  12. Determining the inertial states of low Prandtl number fluids using electrochemical cells

    NASA Astrophysics Data System (ADS)

    Crunkleton, Daniel Wray

    The quality of crystals grown from the melt is often deteriorated by the presence of buoyancy-induced convection, produced by temperature or concentration inhomogenities. It is, therefore, important to develop techniques to visualize such flows. In this study, a novel technique is developed that uses solid-state electrochemical cells to establish and measure dissolved oxygen boundary conditions. To visualize convection, a packet of oxygen is electrochemically introduced at a specific location in the melt. As the fluid convects, this oxygen packet follows the flow, acting as a tracer. Electrochemical sensors located along the enclosure then detect the oxygen as it passes. Over sufficiently long times, oxygen diffusion is important; consequently, the oxygen diffusivity in the fluid is measured. This diffusivity is determined using both transient and steady state experiments with tin and tin-lead alloys as model fluids. It is concluded that the presence of convection due to solutal gradients and/or tilt increases the measured diffusivity by one-half to one order of magnitude. The oxygen diffusivity in tin-lead alloys is measured and the results show that the alloy diffusivities are lower than those of the corresponding pure metals. This concentration functionality is explained with a multicomponent diffusion model and shows good agreement. Rayleigh-Benard convection was used to validate the electrochemical approach to flow visualization. Thus, a numerical characterization of the second critical Rayleigh numbers in liquid tin was conducted for a variety of Cartesian aspect ratios. The extremely low Prandtl number of tin represents the lowest value studied numerically. Additionally, flow field oscillations are visualized and the effect of tilt on convecting systems is quantified. Finally, experimental studies of the effect of convection in liquid tin are presented. Three geometries are studied: (1) double cell with vertical concentration gradients; (2) double cell with horizontal concentration gradients; and (3) multiple cell with vertical temperature gradients. The first critical Rayleigh number transition is detected with geometry (1) and it is concluded that current measurements are not as affected by convection as EMF measurements. The system is compared with numerical simulations in geometry (2), and oscillating convection is detected with geometry (3).

  13. C3H7NO2S effect on concrete steel-rebar corrosion in 0.5 M H2SO4 simulating industrial/microbial environment

    NASA Astrophysics Data System (ADS)

    Okeniyi, Joshua Olusegun; Nwadialo, Christopher Chukwuweike; Olu-Steven, Folusho Emmanuel; Ebinne, Samaru Smart; Coker, Taiwo Ebenezer; Okeniyi, Elizabeth Toyin; Ogbiye, Adebanji Samuel; Durotoye, Taiwo Omowunmi; Badmus, Emmanuel Omotunde Oluwasogo

    2017-02-01

    This paper investigates C3H7NO2S (Cysteine) effect on the inhibition of reinforcing steel corrosion in concrete immersed in 0.5 M H2SO4, for simulating industrial/microbial environment. Different C3H7NO2S concentrations were admixed, in duplicates, in steel-reinforced concrete samples that were partially immersed in the acidic sulphate environment. Electrochemical monitoring techniques of open circuit potential, as per ASTM C876-91 R99, and corrosion rate, by linear polarization resistance, were then employed for studying anticorrosion effect in steel-reinforced concrete samples by the organic hydrocarbon admixture. Analyses of electrochemical test-data followed ASTM G16-95 R04 prescriptions including probability distribution modeling with significant testing by Kolmogorov-Smirnov and student's t-tests statistics. Results established that all datasets of corrosion potential distributed like the Normal, the Gumbel and the Weibull distributions but that only the Weibull model described all the corrosion rate datasets in the study, as per the Kolmogorov-Smirnov test-statistics. Results of the student's t-test showed that differences of corrosion test-data between duplicated samples with the same C3H7NO2S concentrations were not statistically significant. These results indicated that 0.06878 M C3H7NO2S exhibited optimal inhibition efficiency η = 90.52±1.29% on reinforcing steel corrosion in the concrete samples immersed in 0.5 M H2SO4, simulating industrial/microbial service-environment.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Li; He, YaLing; Tao, Wen -Quan

    The electrode of a vanadium redox flow battery generally is a carbon fibre-based porous medium, in which important physicochemical processes occur. In this work, pore-scale simulations are performed to study complex multiphase flow and reactive transport in the electrode by using the lattice Boltzmann method (LBM). Four hundred fibrous electrodes with different fibre diameters and porosities are reconstructed. Both the permeability and diffusivity of the reconstructed electrodes are predicted and compared with empirical relationships in the literature. Reactive surface area of the electrodes is also evaluated and it is found that existing empirical relationship overestimates the reactive surface under lowermore » porosities. Further, a pore-scale electrochemical reaction model is developed to study the effects of fibre diameter and porosity on electrolyte flow, V II/V III transport, and electrochemical reaction at the electrolyte-fibre surface. Finally, evolution of bubble cluster generated by the side reaction is studied by adopting a LB multiphase flow model. Effects of porosity, fibre diameter, gas saturation and solid surface wettability on average bubble diameter and reduction of reactive surface area due to coverage of bubbles on solid surface are investigated in detail. It is found that gas coverage ratio is always lower than that adopted in the continuum model in the literature. Furthermore, the current pore-scale studies successfully reveal the complex multiphase flow and reactive transport processes in the electrode, and the simulation results can be further upscaled to improve the accuracy of the current continuum-scale models.« less

  15. Quantitative study of electrophoretic and electroosmotic enhancement during alternating current iontophoresis across synthetic membranes.

    PubMed

    Yan, Guang; Li, S Kevin; Peck, Kendall D; Zhu, Honggang; Higuchi, William I

    2004-12-01

    One of the primary safety and tolerability limitations of direct current iontophoresis is the potential for electrochemical burns associated with the necessary current densities and/or application times required for effective treatment. Alternating current (AC) transdermal iontophoresis has the potential to eliminate electrochemical burns that are frequently observed during direct current transdermal iontophoresis. Although it has been demonstrated that the intrinsic permeability of skin can be increased by applying low-to-moderate AC voltages, transdermal transport phenomena and enhancement under AC conditions have not been systematically studied and are not well understood. The aim of the present work was to study the fundamental transport mechanisms of square-wave AC iontophoresis using a synthetic membrane system. The model synthetic membrane used was a composite Nuclepore membrane. AC frequencies ranging from 20 to 1000 Hz and AC fields ranging from 0.25 to 0.5 V/membrane were investigated. A charged permeant, tetraethyl ammonium, and a neutral permeant, arabinose, were used. The transport studies showed that flux was enhanced by increasing the AC voltage and decreasing AC frequency. Two theoretical transport models were developed: one is a homogeneous membrane model; the other is a heterogeneous membrane model. Experimental transport data were compared with computer simulations based on these models. Excellent agreement between model predictions and experimental data was observed when the data were compared with the simulations from the heterogeneous membrane model. (c) 2004 Wiley-Liss, Inc. and the American Pharmacists Association

  16. The effect of functionalized polycarboxylate structures as corrosion inhibitors in a simulated concrete pore solution

    NASA Astrophysics Data System (ADS)

    Fazayel, A. S.; Khorasani, M.; Sarabi, A. A.

    2018-05-01

    In this study, the effects of polycarboxylate derivatives with different comonomers and functional groups on the control or reduction of corrosion in steel specimens were evaluated through electrochemical impedance spectroscopy (EIS) and potentiodynamic analysis. A highly alkaline contaminated concrete pore solution (CPS) containing chlorides was used to simulate the pitting corrosion, and according to the results, the mechanism of inhibitive action was determined. Both the inhibition efficiency and pitting corrosion inhibition of methacrylate-copolymers were in the order of poly methacrylate-co acrylamide > poly methacrylate-co-2-acrylamido-2 methylpropane sulfonic acid > poly methacrylate-co-hydroxyethyl methacrylate. In addition, the corrosion potential of steel specimens in all studied concentrations of NaCl with different concentrations of polymethacrylate-co acrylamide (as the best inhibitor in this study) in saturated Ca(OH)2 solution showed almost an identical trend. Polymethacrylic acid-co-acrylamide showed a 92.35% inhibitor efficiency in the saturated Ca(OH)2 solution containing 1.8 wt.% chlorides and could effectively reduce the corrosion rate. Even at 3.5 wt.% of NaCl, this inhibitor could remarkably reduce the destructive effect of chloride ion attacks on the steel surface and passive film. The inhibition effect of these polymeric inhibitors seemed to be due to the formation of a barrier layer on the metal surface, approved by the well-known adsorption mechanism of organic molecules at the metal/solution interface. The results of SEM, EDS and AFM investigations were also in agreement with the outcomes of electrochemical studies.

  17. Electrochemical Impedance Spectroscopy and Corrosion Behavior of Co/CeO2 Nanocomposite Coatings in Simulating Body Fluid Solution

    NASA Astrophysics Data System (ADS)

    Benea, Lidia

    2013-02-01

    A series of Co/CeO2 (25 nm) nanocomposite coating materials by electrodeposition were successfully prepared containing different cerium oxide composition in the cobalt-plating bath. Stainless steel (304L) was used as support material for nanocomposite coatings. The nano-CeO2 is uniformly incorporated into cobalt matrix, and the effect on surface morphologies was identified by scanning electron microscopy with energy-dispersive X-ray analysis. Codeposition of nano-CeO2 particles with cobalt disturbs the regular surface morphology of the cobalt coatings. It should be noted that the as-prepared Co/CeO2 nanocomposite coatings were found to be much superior in corrosion resistance over those of pure cobalt coatings materials based on a series of electrochemical impedance spectroscopy measurements in simulating body fluid solution. With increase in the nano-CeO2 particles concentration in the cobalt electrolyte, it is observed that the corrosion resistance of Co/CeO2 increases. Co/CeO2 nanocomposite coatings have higher polarization resistance as compared with pure cobalt layers in simulating body fluid solution.

  18. Corrosion resistance of NiTi in fluoride and acid environments.

    PubMed

    Benyahia, Hicham; Ebntouhami, Mohamed; Forsal, Issam; Zaoui, Fatima; Aalloula, Elhoussine

    2009-12-01

    The aim of our study was to assess in the laboratory the electrochemical behavior of nickel-titanium alloy (NiTi) by simulating the aggressive conditions found in the mouth (notably fluoride and acidity) in order to determine its biocompatibility. The impact of fluoride and pH acid on the corrosion resistance of orthodontic NiTi was studied using classic electrochemical measurement techniques including follow-up over time of the corrosion potential, polarization measurements and impedance spectroscopy. In addition, scanning electron microscopy was used to evaluate the status of the alloy surface before and after immersion in the different media. The results demonstrated the particularly low corrosion resistance of NiTi alloy in the presence of fluorides. In an acidic environment, the alloy showed greater resistance thanks to the passivation phenomenon. The synergistic action of fluoride and ph Acid on NiTi corrosion was not clearly demonstrated. Copyright 2009 Collège Européen d'Orthodontie. Published by Elsevier Masson SAS.. All rights reserved.

  19. Electrochemical Transport Phenomena in Hybrid Pseudocapacitors under Galvanostatic Cycling

    DOE PAGES

    d'Entremont, Anna L.; Girard, Henri -Louis; Wang, Hainan; ...

    2015-11-18

    Here, this study aims to provide insights into the electrochemical transport and interfacial phenomena in hybrid pseudocapacitors under galvanostatic cycling. Pseudocapacitors are promising electrical energy storage devices for applications requiring large power density. They also involve complex, coupled, and multiscale physical phenomena that are difficult to probe experimentally. The present study performed detailed numerical simulations for a hybrid pseudocapacitor with planar electrodes and binary, asymmetric electrolyte under various cycling conditions, based on a first-principles continuum model accounting simultaneously for charge storage by electric double layer (EDL) formation and by faradaic reactions with intercalation. Two asymptotic regimes were identified corresponding tomore » (i) dominant faradaic charge storage at low current and low frequency or (ii) dominant EDL charge storage at high current and high frequency. Analytical expressions for the intercalated ion concentration and surface overpotential were derived for both asymptotic regimes. Features of typical experimentally measured cell potential were physically interpreted. These insights could guide the optimization of hybrid pseudocapacitors.« less

  20. High damage tolerance of electrochemically lithiated silicon

    DOE PAGES

    Wang, Xueju; Fan, Feifei; Wang, Jiangwei; ...

    2015-09-24

    Mechanical degradation and resultant capacity fade in high-capacity electrode materials critically hinder their use in high-performance rechargeable batteries. Despite tremendous efforts devoted to the study of the electro–chemo–mechanical behaviours of high-capacity electrode materials, their fracture properties and mechanisms remain largely unknown. In this paper, we report a nanomechanical study on the damage tolerance of electrochemically lithiated silicon. Our in situ transmission electron microscopy experiments reveal a striking contrast of brittle fracture in pristine silicon versus ductile tensile deformation in fully lithiated silicon. Quantitative fracture toughness measurements by nanoindentation show a rapid brittle-to-ductile transition of fracture as the lithium-to-silicon molar ratiomore » is increased to above 1.5. Molecular dynamics simulations elucidate the mechanistic underpinnings of the brittle-to-ductile transition governed by atomic bonding and lithiation-induced toughening. Finally, our results reveal the high damage tolerance in amorphous lithium-rich silicon alloys and have important implications for the development of durable rechargeable batteries.« less

  1. Corrosion mechanism and model of pulsed DC microarc oxidation treated AZ31 alloy in simulated body fluid

    NASA Astrophysics Data System (ADS)

    Gu, Yanhong; Chen, Cheng-fu; Bandopadhyay, Sukumar; Ning, Chengyun; Zhang, Yongjun; Guo, Yuanjun

    2012-06-01

    This paper addresses the effect of pulse frequency on the corrosion behavior of microarc oxidation (MAO) coatings on AZ31 Mg alloys in simulated body fluid (SBF). The MAO coatings were deposited by a pulsed DC mode at four different pulse frequencies of 300 Hz, 500 Hz, 1000 Hz and 3000 Hz with a constant pulse ratio. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests were used for corrosion rate and electrochemical impedance evaluation. The corroded surfaces were examined by X-ray diffraction (XRD), X-ray fluorescence (XRF) and optical microscopy. All the results exhibited that the corrosion resistance of MAO coating produced at 3000 Hz is superior among the four frequencies used. The XRD spectra showed that the corrosion products contain hydroxyapatite, brucite and quintinite. A model for corrosion mechanism and corrosion process of the MAO coating on AZ31 Mg alloy in the SBF is proposed.

  2. Product selectivity control induced by using liquid-liquid parallel laminar flow in a microreactor.

    PubMed

    Amemiya, Fumihiro; Matsumoto, Hideyuki; Fuse, Keishi; Kashiwagi, Tsuneo; Kuroda, Chiaki; Fuchigami, Toshio; Atobe, Mahito

    2011-06-07

    Product selectivity control based on a liquid-liquid parallel laminar flow has been successfully demonstrated by using a microreactor. Our electrochemical microreactor system enables regioselective cross-coupling reaction of aldehyde with allylic chloride via chemoselective cathodic reduction of substrate by the combined use of suitable flow mode and corresponding cathode material. The formation of liquid-liquid parallel laminar flow in the microreactor was supported by the estimation of benzaldehyde diffusion coefficient and computational fluid dynamics simulation. The diffusion coefficient for benzaldehyde in Bu(4)NClO(4)-HMPA medium was determined to be 1.32 × 10(-7) cm(2) s(-1) by electrochemical measurements, and the flow simulation using this value revealed the formation of clear concentration gradient of benzaldehyde in the microreactor channel over a specific channel length. In addition, the necessity of the liquid-liquid parallel laminar flow was confirmed by flow mode experiments.

  3. A Finite Length Cylinder Model for Mixed Oxide-Ion and Electron Conducting Cathodes Suited for Intermediate-Temperature Solid Oxide Fuel Cells

    DOE PAGES

    Jin, Xinfang; Wang, Jie; Jiang, Long; ...

    2016-03-25

    A physics-based model is presented to simulate the electrochemical behavior of mixed ion and electron conducting (MIEC) cathodes for intermediate-temperature solid oxide fuel cells. Analytic solutions for both transient and impedance models based on a finite length cylinder are derived. These solutions are compared to their infinite length counterparts. The impedance solution is also compared to experimental electrochemical impedance spectroscopy data obtained from both a traditional well-established La 0.6Sr 0.4Co 0.2Fe 0.8O 3-δ (LSCF) cathode and a new SrCo 0.9Nb 0.1O 3-δ (SCN) porous cathode. Lastly, the impedance simulations agree well with the experimental values, demonstrating that the new modelsmore » can be used to extract electro-kinetic parameters of MIEC SOFC cathodes.« less

  4. Dissolution and precipitation behaviors of silicon-containing ceramic coating on Mg-Zn-Ca alloy in simulated body fluid.

    PubMed

    Pan, Yaokun; Chen, Chuanzhong; Wang, Diangang; Huang, Danlan

    2014-10-01

    We prepared Si-containing and Si-free coatings on Mg-1.74Zn-0.55Ca alloy by micro-arc oxidation. The dissolution and precipitation behaviors of Si-containing coating in simulated body fluid (SBF) were discussed. Corrosion products were characterized by scanning electron microscope (SEM), X-ray diffractometer (XRD), fourier transform infrared spectrometer (FT-IR) and X-ray photoelectron spectrometer (XPS). Electrochemical workstation, inductively coupled plasma atomic emission spectrometer (ICP-AES), flame atomic absorption spectrophotometer (AAS) and pH meter were employed to detect variations of electrochemical parameter and ions concentration respectively. Results indicate that the fast formation of calcium phosphates is closely related to the SiOx(n-) groups, which induce the heterogeneous nucleation of amorphous hydroxyapatite (HA) by sorption of calcium and phosphate ions. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Electrochemical Evaluation of Stainless Steels in Acidified Sodium Chloride Solutions

    NASA Technical Reports Server (NTRS)

    Calle, L. M.; MacDowell, L. G.; Vinje, R. D.

    2004-01-01

    This paper presents the results of an investigation in which several 300-series stainless steels (SS): AISI S30403 SS (UNS S30403), AISI 316L SS (UNS S31603), and AISI 317L SS (LINS S31703), as well as highly-alloyed: SS 254-SMO (UNS S32154), AL-6XN (N08367) and AL29-4C (UNS S44735), were evaluated using DC electrochemical techniques in three different electrolyte solutions. The solutions consisted of neutral 3.55% NaCl, 3.55% NaCl in 0.1N HCl, and 3.55% NaCl in 1.0N HCl. These solutions were chosen to simulate environments that are less, similar, and more aggressive, respectively, than the conditions at the Space Shuttle launch pads. The electrochemical test results were compared to atmospheric exposure data and evaluated for their ability to predict the long-term corrosion performance of the subject alloys. The electrochemical measurements for the six alloys indicated that the higher-alloyed SS 254-SMO, AL29-4C, and AL-6XN exhibited significantly higher resistance to localized corrosion than the 300-series SS. There was a correlation between the corrosion performance of the alloys during a two-year atmospheric exposure and the corrosion rates calculated from electrochemical (polarization resistance) measurements.

  6. In-vitro bioactivity and electrochemical behavior of polyaniline encapsulated titania nanotube arrays for biomedical applications

    NASA Astrophysics Data System (ADS)

    Agilan, P.; Rajendran, N.

    2018-05-01

    Titania nanotube arrays (TNTA) have attracted increasing attention due to their outstanding properties and potential applications in biomedical field. Fabrication of titania nanotubes on titanium surface enhances the biocompatibility. Polyaniline (PANI) is one of the best conducting polymers with remarkable corrosion resistance and reasonable biocompatibility. In this work, the corrosion resistance and biocompatibility of polyaniline encapsulated TiO2 nanotubes for orthopaedic applications were investigated. The vertically oriented, highly ordered TiO2 nanotubes were fabricated on titanium by electrochemical anodization process using fluoride containing electrolytes. The anodization parameters viz., voltage, pH, time and electrolyte concentration were optimized to get orderly arranged TNTA. Further, the conducting polymer PANI was encapsulated on TNTA by electropolymerization process to enhance the corrosion resistance. The nanostructure of the fabricated TNTA and polyaniline encapsulated titania nanotube arrays (PANI-TNTA) were investigated by HR SEM analysis. The formed phases and functional groups were find using XRD, ATR-FTIR. The hydrophilic surface of TNTA and PANI-TNTA was identified by water contact angle studies. The corrosion behavior of specimens was evaluated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization studies. In-vitro immersion studies were carried out in simulated body fluid solution (Hanks' solution) to evaluate the bioactivity of the TNTA and PANI-TNTA. The surface morphological studies revealed the formation of PANI on the TNTA surface. Formation of hydroxyapatite (HAp) on the surfaces of TNTA and PANI-TNTA enhanced the bioactivity and corrosion resistance.

  7. Multilayer porous structures of HVPE and MOCVD grown GaN for photonic applications

    NASA Astrophysics Data System (ADS)

    Braniste, T.; Ciers, Joachim; Monaico, Ed.; Martin, D.; Carlin, J.-F.; Ursaki, V. V.; Sergentu, V. V.; Tiginyanu, I. M.; Grandjean, N.

    2017-02-01

    In this paper we report on a comparative study of electrochemical processes for the preparation of multilayer porous structures in hydride vapor phase epitaxy (HVPE) and metal organic chemical vapor phase deposition (MOCVD) grown GaN. It was found that in HVPE-grown GaN, multilayer porous structures are obtained due to self-organization processes leading to a fine modulation of doping during the crystal growth. However, these processes are not totally under control. Multilayer porous structures with a controlled design have been produced by optimizing the technological process of electrochemical etching in MOCVD-grown samples, consisting of five pairs of thin layers with alternating-doping profiles. The samples have been characterized by SEM imaging, photoluminescence spectroscopy, and micro-reflectivity measurements, accompanied by transfer matrix analysis and simulations by a method developed for the calculation of optical reflection spectra. We demonstrate the applicability of the produced structures for the design of Bragg reflectors.

  8. Mechanistic insights into electrochemical reduction of CO2 over Ag using density functional theory and transport models

    PubMed Central

    Goodpaster, Jason D.; Weber, Adam Z.

    2017-01-01

    Electrochemical reduction of CO2 using renewable sources of electrical energy holds promise for converting CO2 to fuels and chemicals. Since this process is complex and involves a large number of species and physical phenomena, a comprehensive understanding of the factors controlling product distribution is required. While the most plausible reaction pathway is usually identified from quantum-chemical calculation of the lowest free-energy pathway, this approach can be misleading when coverages of adsorbed species determined for alternative mechanism differ significantly, since elementary reaction rates depend on the product of the rate coefficient and the coverage of species involved in the reaction. Moreover, cathode polarization can influence the kinetics of CO2 reduction. Here, we present a multiscale framework for ab initio simulation of the electrochemical reduction of CO2 over an Ag(110) surface. A continuum model for species transport is combined with a microkinetic model for the cathode reaction dynamics. Free energies of activation for all elementary reactions are determined from density functional theory calculations. Using this approach, three alternative mechanisms for CO2 reduction were examined. The rate-limiting step in each mechanism is **COOH formation at higher negative potentials. However, only via the multiscale simulation was it possible to identify the mechanism that leads to a dependence of the rate of CO formation on the partial pressure of CO2 that is consistent with experiments. Simulations based on this mechanism also describe the dependence of the H2 and CO current densities on cathode voltage that are in strikingly good agreement with experimental observation. PMID:28973926

  9. Electrochemical Corrosion and In Vitro Bioactivity of Nano-Grained Biomedical Ti-20Nb-13Zr Alloy in a Simulated Body Fluid

    PubMed Central

    Kumar, Madhan; Drew, Robin; Al-Aqeeli, Nasser

    2017-01-01

    The bioactivity and the corrosion protection for a novel nano-grained Ti-20Nb-13Zr at % alloy were examined in a simulated body fluid (SBF). The effect of the SPS’s temperature on the corrosion performance was investigated. The phases and microstructural details of the developed alloy were analyzed by XRD (X-ray Diffraction), SEM (Scanning Electron Microscopy), and TEM (Transmission Electron Microscope). The electrochemical study was investigated using linear potentiodynamic polarization and electrochemical impedance spectroscopy in a SBF, and the bioactivity was examined by immersing the developed alloy in a SBF for 3, 7, and 14 days. The morphology of the depositions after immersion was examined using SEM. Alloy surface analysis after immersion in the SBF was characterized by XPS (X-ray Photoelectron Spectroscopy). The results of the bioactivity test in SBF revealed the growth of a hydroxyapatite layer on the surface of the alloy. The analysis of XPS showed the formation of protective oxides of TiO2, Ti2O3, ZrO2, Nb2O5, and a Ca3(PO4)2 compound (precursor of hydroxyapatite) deposited on the alloy surface, indicating that the presented alloy can stimulate bone formation. The corrosion resistance increased by increasing the sintering temperature and the highest corrosion resistance was obtained at 1200 °C. The improved corrosion protection was found to be related to the alloy densification. The bioactivity and the corrosion resistance of the developed nanostructured alloy in a SBF renders the nanostructured Ti-20Nb-13Zr alloy a promising candidate as an implant material. PMID:29280956

  10. Development of adaptive control applied to chaotic systems

    NASA Astrophysics Data System (ADS)

    Rhode, Martin Andreas

    1997-12-01

    Continuous-time derivative control and adaptive map-based recursive feedback control techniques are used to control chaos in a variety of systems and in situations that are of practical interest. The theoretical part of the research includes the review of fundamental concept of control theory in the context of its applications to deterministic chaotic systems, the development of a new adaptive algorithm to identify the linear system properties necessary for control, and the extension of the recursive proportional feedback control technique, RPF, to high dimensional systems. Chaos control was applied to models of a thermal pulsed combustor, electro-chemical dissolution and the hyperchaotic Rossler system. Important implications for combustion engineering were suggested by successful control of the model of the thermal pulsed combustor. The system was automatically tracked while maintaining control into regions of parameter and state space where no stable attractors exist. In a simulation of the electrochemical dissolution system, application of derivative control to stabilize a steady state, and adaptive RPF to stabilize a period one orbit, was demonstrated. The high dimensional adaptive control algorithm was applied in a simulation using the Rossler hyperchaotic system, where a period-two orbit with two unstable directions was stabilized and tracked over a wide range of a system parameter. In the experimental part, the electrochemical system was studied in parameter space, by scanning the applied potential and the frequency of the rotating copper disk. The automated control algorithm is demonstrated to be effective when applied to stabilize a period-one orbit in the experiment. We show the necessity of small random perturbations applied to the system in order to both learn the dynamics and control the system at the same time. The simultaneous learning and control capability is shown to be an important part of the active feedback control.

  11. Alkaline Hydrothermal Vents as Electrochemical Reactors Driving an Auto-Trophic Origin of Life

    NASA Astrophysics Data System (ADS)

    Camprubi, E.; Lane, N.

    2017-07-01

    We report the reduction of CO2 to formaldehyde under simulated alkaline hydrothermal conditions. Formaldehyde is transformed into relevant sugars via the formose reaction. Acetyl phosphate can also be synthesised and phosphorylates organic molecules.

  12. Radiation induced dissolution of UO 2 based nuclear fuel - A critical review of predictive modelling approaches

    NASA Astrophysics Data System (ADS)

    Eriksen, Trygve E.; Shoesmith, David W.; Jonsson, Mats

    2012-01-01

    Radiation induced dissolution of uranium dioxide (UO 2) nuclear fuel and the consequent release of radionuclides to intruding groundwater are key-processes in the safety analysis of future deep geological repositories for spent nuclear fuel. For several decades, these processes have been studied experimentally using both spent fuel and various types of simulated spent fuels. The latter have been employed since it is difficult to draw mechanistic conclusions from real spent nuclear fuel experiments. Several predictive modelling approaches have been developed over the last two decades. These models are largely based on experimental observations. In this work we have performed a critical review of the modelling approaches developed based on the large body of chemical and electrochemical experimental data. The main conclusions are: (1) the use of measured interfacial rate constants give results in generally good agreement with experimental results compared to simulations where homogeneous rate constants are used; (2) the use of spatial dose rate distributions is particularly important when simulating the behaviour over short time periods; and (3) the steady-state approach (the rate of oxidant consumption is equal to the rate of oxidant production) provides a simple but fairly accurate alternative, but errors in the reaction mechanism and in the kinetic parameters used may not be revealed by simple benchmarking. It is essential to use experimentally determined rate constants and verified reaction mechanisms, irrespective of whether the approach is chemical or electrochemical.

  13. Electrochemical Behavior of Biomedical Titanium Alloys Coated with Diamond Carbon in Hanks' Solution

    NASA Astrophysics Data System (ADS)

    Gnanavel, S.; Ponnusamy, S.; Mohan, L.; Radhika, R.; Muthamizhchelvan, C.; Ramasubramanian, K.

    2018-03-01

    Biomedical implants in the knee and hip are frequent failures because of corrosion and stress on the joints. To solve this important problem, metal implants can be coated with diamond carbon, and this coating plays a critical role in providing an increased resistance to implants toward corrosion. In this study, we have employed diamond carbon coating over Ti-6Al-4V and Ti-13Nb-13Zr alloys using hot filament chemical vapor deposition method which is well-established coating process that significantly improves the resistance toward corrosion, wears and hardness. The diamond carbon-coated Ti-13Nb-13Zr alloy showed an increased microhardness in the range of 850 HV. Electrochemical impedance spectroscopy and polarization studies in SBF solution (simulated body fluid solution) were carried out to understand the in vitro behavior of uncoated as well as coated titanium alloys. The experimental results showed that the corrosion resistance of Ti-13Nb-13Zr alloy is relatively higher when compared with diamond carbon-coated Ti-6Al-4V alloys due to the presence of β phase in the Ti-13Nb-13Zr alloy. Electrochemical impedance results showed that the diamond carbon-coated alloys behave as an ideal capacitor in the body fluid solution. Moreover, the stability in mechanical properties during the corrosion process was maintained for diamond carbon-coated titanium alloys.

  14. Computational analysis of species transport and electrochemical characteristics of a MOLB-type SOFC

    NASA Astrophysics Data System (ADS)

    Hwang, J. J.; Chen, C. K.; Lai, D. Y.

    A multi-physics model coupling electrochemical kinetics with fluid dynamics has been developed to simulate the transport phenomena in mono-block-layer built (MOLB) solid oxide fuel cells (SOFC). A typical MOLB module is composed of trapezoidal flow channels, corrugated positive electrode-electrolyte-negative electrode (PEN) plates, and planar inter-connecters. The control volume-based finite difference method is employed for calculation, which is based on the conservation of mass, momentum, energy, species, and electric charge. In the porous electrodes, the flow momentum is governed by a Darcy model with constant porosity and permeability. The diffusion of reactants follows the Bruggman model. The chemistry within the plates is described via surface reactions with a fixed surface-to-volume ratio, tortuosity and average pore size. Species transports as well as the local variations of electrochemical characteristics, such as overpotential and current density distributions in the electrodes of an MOLB SOFC, are discussed in detail.

  15. Electrochemical oxidation of wine polyphenols in the presence of sulfur dioxide.

    PubMed

    Makhotkina, Olga; Kilmartin, Paul A

    2013-06-12

    Electrochemical oxidation of three representative wine polyphenols (catechin, caffeic acid, and quercetin) in the presence of sulfur dioxide in a model wine solution (pH = 3.3) was investigated. The oxidation was undertaken using chronoamperometry at a rotating glassy carbon rod electrode, and the reaction products were characterized by HPLC-MS. The mechanism of electrochemical oxidation of polyphenols in the presence of sulfur dioxide was proposed to be an ECEC mechanism. The polyphenols first underwent a one-electron oxidation to a semiquinone radical, which can be reduced back to the original polyphenol by sulfur dioxide, or further oxidized to the quinone form. In the cases of caffeic acid and catechin, the quinone combined with sulfur dioxide and produced new derivatives. The quercetin quinone underwent further chemical transformations, producing several new compounds. The proposed mechanisms were confirmed by digital simulation of cyclic voltammograms.

  16. Multi-scale modelling of supercapacitors: From molecular simulations to a transmission line model

    NASA Astrophysics Data System (ADS)

    Pean, C.; Rotenberg, B.; Simon, P.; Salanne, M.

    2016-09-01

    We perform molecular dynamics simulations of a typical nanoporous-carbon based supercapacitor. The organic electrolyte consists in 1-ethyl-3-methylimidazolium and hexafluorophosphate ions dissolved in acetonitrile. We simulate systems at equilibrium, for various applied voltages. This allows us to determine the relevant thermodynamic (capacitance) and transport (in-pore resistivities) properties. These quantities are then injected in a transmission line model for testing its ability to predict the charging properties of the device. The results from this macroscopic model are in good agreement with non-equilibrium molecular dynamics simulations, which validates its use for interpreting electrochemical impedance experiments.

  17. An Electrochemical Study on the Copolymer Formed from Piperazine and Aniline Monomers.

    PubMed

    Dkhili, Samiha; López-Bernabeu, Sara; Kedir, Chahineze Nawel; Huerta, Francisco; Montilla, Francisco; Besbes-Hentati, Salma; Morallon, Emilia

    2018-06-14

    A study on the electrochemical oxidation of piperazine and its electrochemical copolymerization with aniline in acidic medium is presented. It was found that the homopolymerization of piperazine cannot be achieved under electrochemical conditions. A combination of electrochemistry, in situ Fourier transform infrared (FTIR), and ex situ X-ray photoelectron spectroscopy (XPS) spectroscopies was used to characterize both the chemical structure and the redox behavior of an electrochemically synthesized piperazine⁻aniline copolymer. The electrochemical sensing properties of the deposited material were also tested against ascorbic acid and dopamine as redox probes.

  18. Kinetic mechanism for modeling of electrochemical reactions.

    PubMed

    Cervenka, Petr; Hrdlička, Jiří; Přibyl, Michal; Snita, Dalimil

    2012-04-01

    We propose a kinetic mechanism of electrochemical interactions. We assume fast formation and recombination of electron donors D- and acceptors A+ on electrode surfaces. These mediators are continuously formed in the electrode matter by thermal fluctuations. The mediators D- and A+, chemically equivalent to the electrode metal, enter electrochemical interactions on the electrode surfaces. Electrochemical dynamics and current-voltage characteristics of a selected electrochemical system are studied. Our results are in good qualitative agreement with those given by the classical Butler-Volmer kinetics. The proposed model can be used to study fast electrochemical processes in microsystems and nanosystems that are often out of the thermal equilibrium. Moreover, the kinetic mechanism operates only with the surface concentrations of chemical reactants and local electric potentials, which facilitates the study of electrochemical systems with indefinable bulk.

  19. Hybrid power supplies: A capacitor-assisted battery

    NASA Astrophysics Data System (ADS)

    Catherino, Henry A.; Burgel, Joseph F.; Shi, Peter L.; Rusek, Andrew; Zou, Xiulin

    A hybrid electrochemical power supply is a concept that circumvents the need for designing any single power source to meet some extraordinary application requirement. A hybrid allows using components designed for near optimal operation without having to make unnecessary performance sacrifices. In many cases some additional synergistic effects appear. In this study, an electrochemical capacitor was employed as a power assist for a battery. An engine starting load was numerically modeled in the time domain and simulations were carried out. Actual measurements were then taken on the cranking of a diesel engine removed from a 5.0-tonne military truck and cranked in an environmental chamber. The cranking currents delivered by each power source were measured in the accessible current loops. This permitted the model parameters to be identified and, by doing that, studies using the analytical model demonstrated the merit of this hybrid application. The general system response of the battery/capacitor configuration was then modeled as a function of temperature. Doing this revealed electrical the interaction between the hybrid components. This study illustrates another case for advocating hybridized power systems.

  20. A Combined Theoretical and Experimental Study for Silver Electroplating

    PubMed Central

    Liu, Anmin; Ren, Xuefeng; An, Maozhong; Zhang, Jinqiu; Yang, Peixia; Wang, Bo; Zhu, Yongming; Wang, Chong

    2014-01-01

    A novel method combined theoretical and experimental study for environmental friendly silver electroplating was introduced. Quantum chemical calculations and molecular dynamic (MD) simulations were employed for predicting the behaviour and function of the complexing agents. Electronic properties, orbital information, and single point energies of the 5,5-dimethylhydantoin (DMH), nicotinic acid (NA), as well as their silver(I)-complexes were provided by quantum chemical calculations based on density functional theory (DFT). Adsorption behaviors of the agents on copper and silver surfaces were investigated using MD simulations. Basing on the data of quantum chemical calculations and MD simulations, we believed that DMH and NA could be the promising complexing agents for silver electroplating. The experimental results, including of electrochemical measurement and silver electroplating, further confirmed the above prediction. This efficient and versatile method thus opens a new window to study or design complexing agents for generalized metal electroplating and will vigorously promote the level of this research region. PMID:24452389

  1. TREATMENT TANK CORROSION STUDIES FOR THE ENHANCED CHEMICAL CLEANING PROCESS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiersma, B.

    2011-08-24

    Radioactive waste is stored in high level waste tanks on the Savannah River Site (SRS). Savannah River Remediation (SRR) is aggressively seeking to close the non-compliant Type I and II waste tanks. The removal of sludge (i.e., metal oxide) heels from the tank is the final stage in the waste removal process. The Enhanced Chemical Cleaning (ECC) process is being developed and investigated by SRR to aid in Savannah River Site (SRS) High-Level Waste (HLW) as an option for sludge heel removal. Corrosion rate data for carbon steel exposed to the ECC treatment tank environment was obtained to evaluate themore » degree of corrosion that occurs. These tests were also designed to determine the effect of various environmental variables such as temperature, agitation and sludge slurry type on the corrosion behavior of carbon steel. Coupon tests were performed to estimate the corrosion rate during the ECC process, as well as determine any susceptibility to localized corrosion. Electrochemical studies were performed to develop a better understanding of the corrosion mechanism. The tests were performed in 1 wt.% and 2.5 wt.% oxalic acid with HM and PUREX sludge simulants. The following results and conclusions were made based on this testing: (1) In 1 wt.% oxalic acid with a sludge simulant, carbon steel corroded at a rate of less than 25 mpy within the temperature and agitation levels of the test. No susceptibility to localized corrosion was observed. (2) In 2.5 wt.% oxalic acid with a sludge simulant, the carbon steel corrosion rates ranged between 15 and 88 mpy. The most severe corrosion was observed at 75 C in the HM/2.5 wt.% oxalic acid simulant. Pitting and general corrosion increased with the agitation level at this condition. No pitting and lower general corrosion rates were observed with the PUREX/2.5 wt.% oxalic acid simulant. The electrochemical and coupon tests both indicated that carbon steel is more susceptible to localized corrosion in the HM/oxalic acid environment than in the PUREX/oxalic acid environment. (3) The corrosion rates for PUREX/8 wt.% oxalic acid were greater than or equal to those observed for the PUREX/2.5 wt.% oxalic acid. No localized corrosion was observed in the tests with the 8 wt.% oxalic acid. Testing with HM/8 wt.% oxalic acid simulant was not performed. Thus, a comparison with the results with 2.5 wt.% oxalic acid, where the corrosion rate was 88 mpy and localized corrosion was observed at 75 C, cannot be made. (4) The corrosion rates in 1 and 2.5 wt.% oxalic acid solutions were temperature dependent: (a) At 50 C, the corrosion rates ranged between 90 to 140 mpy over the 30 day test period. The corrosion rates were higher under stagnant conditions. (b) At 75 C, the initial corrosion rates were as high as 300 mpy during the first day of exposure. The corrosion rates increased with agitation. However, once the passive ferrous oxalate film formed, the corrosion rate decreased dramatically to less than 20 mpy over the 30 day test period. This rate was independent of agitation. (5) Electrochemical testing indicated that for oxalic acid/sludge simulant mixtures the cathodic reaction has transport controlled reaction kinetics. The literature suggests that the dissolution of the sludge produces a di-oxalatoferrate ion that is reduced at the cathodic sites. The cathodic reaction does not appear to involve hydrogen evolution. On the other hand, electrochemical tests demonstrated that the cathodic reaction for corrosion of carbon steel in pure oxalic acid involves hydrogen evolution. (6) Agitation of the oxalic acid/sludge simulant mixtures typically resulted in a higher corrosion rates for both acid concentrations. The transport of the ferrous ion away from the metal surface results in a less protective ferrous oxalate film. (7) A mercury containing species along with aluminum, silicon and iron oxides was observed on the interior of the pits formed in the HM/2.5 wt.% oxalic acid simulant at 75 C. The pitting rates in the agitated and non-agitated solution were 2 mils/day and 1 mil/day, respectively. A mechanism by which the mercury interacts with the aluminum and silicon oxides in this simulant to accelerate corrosion was proposed.« less

  2. Surface morphology and electrochemical studies on polyaniline/CuO nano composites

    NASA Astrophysics Data System (ADS)

    Ashokkumar, S. P.; Vijeth, H.; Yesappa, L.; Niranjana, M.; Vandana, M.; Basappa, M.; Devendrappa, H.

    2018-05-01

    An electrochemically synthesized Polyaniline (PANI) and Polyaniline/copper oxide (PCN) nano composite have studied the morphology and electrochemical properties. The composite is characterized by X-ray diffraction (XRD) and surface morphology was studied using FESEM and electrochemical behavior is studied using cyclic voltammetry (CV) technique. The CV curves shows rectangular shaped curve and they have contribution to electrical double layer capacitance (EDCL).

  3. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1984

    1984-01-01

    Presents an experiment which links mass spectrometry to gas chromatography. Also presents a simulation of iron extraction using a ZX81 computer and discussions of Fehling versus Benedict's solutions, transition metal ammine complexes, electrochemical and other chemical series, and a simple model of dynamic equilibria. (JN)

  4. Science Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1987

    1987-01-01

    Contains 21 articles ranging from instructional experiments to topical information. Deals with investigation of plant rust diseases, using computers to teach biology, plant roots, a biotechnology curriculum, the corrosion of oxides, electrochemical simulations, the Reimer-Tiemann reaction, the oxidation of aldehydes, and the extraction of iodine…

  5. Pore-scale study of multiphase reactive transport in fibrous electrodes of vanadium redox flow batteries

    DOE PAGES

    Chen, Li; He, YaLing; Tao, Wen -Quan; ...

    2017-07-21

    The electrode of a vanadium redox flow battery generally is a carbon fibre-based porous medium, in which important physicochemical processes occur. In this work, pore-scale simulations are performed to study complex multiphase flow and reactive transport in the electrode by using the lattice Boltzmann method (LBM). Four hundred fibrous electrodes with different fibre diameters and porosities are reconstructed. Both the permeability and diffusivity of the reconstructed electrodes are predicted and compared with empirical relationships in the literature. Reactive surface area of the electrodes is also evaluated and it is found that existing empirical relationship overestimates the reactive surface under lowermore » porosities. Further, a pore-scale electrochemical reaction model is developed to study the effects of fibre diameter and porosity on electrolyte flow, V II/V III transport, and electrochemical reaction at the electrolyte-fibre surface. Finally, evolution of bubble cluster generated by the side reaction is studied by adopting a LB multiphase flow model. Effects of porosity, fibre diameter, gas saturation and solid surface wettability on average bubble diameter and reduction of reactive surface area due to coverage of bubbles on solid surface are investigated in detail. It is found that gas coverage ratio is always lower than that adopted in the continuum model in the literature. Furthermore, the current pore-scale studies successfully reveal the complex multiphase flow and reactive transport processes in the electrode, and the simulation results can be further upscaled to improve the accuracy of the current continuum-scale models.« less

  6. Preparation of Co3O4 conical nanotube and its application in calcium ion biosensor

    NASA Astrophysics Data System (ADS)

    Yuan, Hongwen; Ma, Chi; Geng, Junlong; Zhang, Liqiang; Cui, Hai; Liu, Cunzhi

    2018-02-01

    Calcium ion (Ca2+) is an important ion involved in body life activities, and its content detection in biomedical field owns great significance. In this study, we fabricated Co3O4 conical nanotube on F-doped tin oxide (FTO) substrate for detecting Ca2+. Co3O4 is fabricated through a hydrothermal method and demonstrates a regular hexagon structure, with a length of 5-10 μm and wall thickness of 30 nm. The structure and morphology of Co3O4 were characterized by X-ray diffraction (XRD), scanning electron microscope, and transmission electron microscopy, respectively. In addition, then, we used electrochemical technique to characterize the Ca2+ concentration in the simulated body fluid. The detection of Ca2+ is originated from the electrochemical reaction of hydrogen peroxide using Co3O4 as a catalyst, in which Ca2+ plays a significant role for accelerating the decomposition of hydrogen peroxide catalytic performance. By monitoring the electron transfer signals changes during the electrochemical reaction, we can quickly quantify the Ca2+ concentrations. It is found that this Ca2+ sensor owns a wide detection range (0.1-1.1 mM), a low detection limit (3.767 μM), and good anti-interference ability.

  7. Numerical Study on the Effect of Electrode Polarity on Desulfurization in Direct Current Electroslag Remelting Process

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Liu, Yu; Wang, Fang; Li, Guangqiang; Li, Baokuan; Qiao, Wenwei

    2017-10-01

    In order to clarify the influence of electrode polarity on desulfurization in direct current (DC) electroslag remelting process, a transient three-dimensional coupled mathematical model has been established. The finite volume method was invoked to simultaneously solve the mass, momentum, energy, and species conservation equations. The Joule heating and Lorentz force were fully coupled through calculating Maxwell's equations with the assistance of the magnetic potential vector. The motion of the metal-slag interface was described by using the volume of fluid approach. An auxiliary metallurgical kinetics module was introduced to determine the thermochemical and the electrochemical reaction rates. A reasonable agreement between the measured data and the simulated results are observed. A longer time and a larger area for the desulfurization can be provided by the metal pool-slag interface when compared with the metal droplet-slag interface. The electrochemical transfer rate at the metal pool-slag interface is positive in the DC reverse polarity (DCRP) remelting, while in the DC straight polarity (DCSP) remelting, the electrochemical transfer rate is negative at this interface. The desulfurization progress in the DCSP remelting thus is fall behind that in the DCRP remelting. The desulfurization rate of the DCRP remelting is around 70 pct and the rate of the DCSP remelting is about 40 pct.

  8. The electrochemistry of carbon steel in simulated concrete pore water in boom clay repository environments

    NASA Astrophysics Data System (ADS)

    MacDonald, D. D.; Saleh, A.; Lee, S. K.; Azizi, O.; Rosas-Camacho, O.; Al-Marzooqi, A.; Taylor, M.

    2011-04-01

    The prediction of corrosion damage of canisters to experimentally inaccessible times is vitally important in assessing various concepts for the disposal of High Level Nuclear Waste. Such prediction can only be made using deterministic models, whose predictions are constrained by the time-invariant natural laws. In this paper, we describe the measurement of experimental electrochemical data that will allow the prediction of damage to the carbon steel overpack of the super container in Belgium's proposed Boom Clay repository by using the Point Defect Model (PDM). PDM parameter values are obtained by optimizing the model on experimental, wide-band electrochemical impedance spectroscopy data.

  9. Electrochemical Characterization of a Low Modulus Ti-35.5Nb-7.3Zr-5.7Ta Alloy in a Simulated Body Fluid Using Eis for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Bhola, R.; Bhola, S. M.; Mishra, B.; Ayers, R. A.; Olson, D. L.

    2011-06-01

    Electrochemical characterization of the low modulus Ti-35.5Nb-7.3Zr-5.7Ta beta alloy (TNZT) has been performed in phosphate buffer saline solution at 37 °C using the non destructive electrochemical impedance spectroscopy technique. Measurements were performed at various immersion intervals at the open circuit potential (OCP), which was also monitored with time. Results obtained for TNZT alloy have been compared with those for the commercially used Ti-6Al-4V mixed alloy (Ti64) and the commercially pure titanium (Ti2) alpha alloy. Potentiodynamic polarization was performed to supplement the data obtained from EIS analysis. The TNZT alloy exhibits a two time constant impedance response, whereas the Ti64 and Ti2 alloys display a one time constant behavior. Human fetal osteoblast cells show a better adhesion and a higher cell count for the TNZT alloy compared to the other two alloys. The present investigation is an effort to understand the correlation between the electrochemical, morphological and cellular characteristics of titanium alloys to qualify them for implant applications.

  10. Electrochemical aptamer-based nanosensor fabricated on single Au nanowire electrodes for adenosine triphosphate assay.

    PubMed

    Wang, Dongmei; Xiao, Xiaoqing; Xu, Shen; Liu, Yong; Li, Yongxin

    2018-01-15

    In this work, single Au nanowire electrodes (AuNWEs) were fabricated by laser-assisted pulling/hydrofluoric acid (HF) etching process, which then were characterized by transmission electron microscopy (TEM), electrochemical method and finite-element simulation. The as-prepared single AuNWEs were used to construct electrochemical aptamer-based nanosensors (E-AB nanosensors) based on the formation of Au-S bond that duplex DNA tagged with methylene blue (MB) was modified on the surface of electrode. In the presence of adenosine triphosphate (ATP), the MB-labeled aptamer dissociated from the duplex DNA due to the strong specific affinity between aptamer and target, which lead to the reduction of MB electrochemical signals. Moreover, BSA was employed to further passivate electrode surface bonding sites for the stable of the sensor. The as-prepared E-AB nanosensor has been used for ATP assay with excellent sensitivity and selectivity, even in a complex system like cerebrospinal fluid of rat brain. Considering the unique properties of good stability, larger surface area and smaller overall dimensions, this E-AB nanosensor should be an ideal platform for widely sensing applications in living bio-system. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Relationship Between pH and Electrochemical Corrosion Behavior of Thermal-Sprayed Ni-Al-Coated Q235 Steel in Simulated Soil Solutions

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Wu, Xin-qiang; Ke, Wei; Xu, Song; Feng, Bing; Hu, Bo-tao

    2017-09-01

    Electrochemical corrosion behavior of a thermal-sprayed Ni-Al-coated Q235 steel was investigated in the simulated soil solutions at different pH values using measurements of potentiodynamic polarization curves and electrochemical impedance spectroscopy as well as surface analyses including x-ray diffraction analysis, scanning electron microscope equipped with an energy-dispersive x-ray spectroscopy and x-ray photoelectron spectroscopy. The results showed that the corrosion resistance of the Ni-Al-coated Q235 steel was dependent on the pH of the test solution. From pH = 3.53 to pH = 4.79, the corrosion resistance of the coated steel increased rapidly. In the pH range from 4.79 to 12.26, the corrosion resistance exhibited no significant change. At pH 13.25, the corrosion resistance of the sample was found to decrease. The calculated corrosion rate of Ni-Al-coated Q235 steel was lower than that of the uncoated Q235 steel and galvanized steel in all the test solutions. Over a wide range of pH values, the Ni-Al-coated Q235 steel exhibited extremely good corrosion resistance. The experimental data together with the potential-pH diagrams provided a basis for a detailed discussion of the related corrosion mechanisms of the coated steel.

  12. Mechanistic insights into electrochemical reduction of CO 2 over Ag using density functional theory and transport models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Meenesh R.; Goodpaster, Jason D.; Weber, Adam Z.

    Electrochemical reduction of CO 2 using renewable sources of electrical energy holds promise for converting CO 2 to fuels and chemicals. Since this process is complex and involves a large number of species and physical phenomena, a comprehensive understanding of the factors controlling product distribution is required. While the most plausible reaction pathway is usually identified from quantum-chemical calculation of the lowest free-energy pathway, this approach can be misleading when coverages of adsorbed species determined for alternative mechanism differ significantly, since elementary reaction rates depend on the product of the rate coefficient and the coverage of species involved in themore » reaction. Moreover, cathode polarization can influence the kinetics of CO 2 reduction. Here in this work, we present a multiscale framework for ab initio simulation of the electrochemical reduction of CO 2 over an Ag(110) surface. A continuum model for species transport is combined with a microkinetic model for the cathode reaction dynamics. Free energies of activation for all elementary reactions are determined from density functional theory calculations. Using this approach, three alternative mechanisms for CO 2 reduction were examined. The rate-limiting step in each mechanism is **COOH formation at higher negative potentials. However, only via the multiscale simulation was it possible to identify the mechanism that leads to a dependence of the rate of CO formation on the partial pressure of CO 2 that is consistent with experiments. Additionally, simulations based on this mechanism also describe the dependence of the H 2 and CO current densities on cathode voltage that are in strikingly good agreement with experimental observation.« less

  13. Mechanistic insights into electrochemical reduction of CO 2 over Ag using density functional theory and transport models

    DOE PAGES

    Singh, Meenesh R.; Goodpaster, Jason D.; Weber, Adam Z.; ...

    2017-10-02

    Electrochemical reduction of CO 2 using renewable sources of electrical energy holds promise for converting CO 2 to fuels and chemicals. Since this process is complex and involves a large number of species and physical phenomena, a comprehensive understanding of the factors controlling product distribution is required. While the most plausible reaction pathway is usually identified from quantum-chemical calculation of the lowest free-energy pathway, this approach can be misleading when coverages of adsorbed species determined for alternative mechanism differ significantly, since elementary reaction rates depend on the product of the rate coefficient and the coverage of species involved in themore » reaction. Moreover, cathode polarization can influence the kinetics of CO 2 reduction. Here in this work, we present a multiscale framework for ab initio simulation of the electrochemical reduction of CO 2 over an Ag(110) surface. A continuum model for species transport is combined with a microkinetic model for the cathode reaction dynamics. Free energies of activation for all elementary reactions are determined from density functional theory calculations. Using this approach, three alternative mechanisms for CO 2 reduction were examined. The rate-limiting step in each mechanism is **COOH formation at higher negative potentials. However, only via the multiscale simulation was it possible to identify the mechanism that leads to a dependence of the rate of CO formation on the partial pressure of CO 2 that is consistent with experiments. Additionally, simulations based on this mechanism also describe the dependence of the H 2 and CO current densities on cathode voltage that are in strikingly good agreement with experimental observation.« less

  14. Kinetics of nickel electrodeposition from low electrolyte concentration and at a narrow interelectrode gap

    NASA Astrophysics Data System (ADS)

    Widayatno, Tri

    2015-12-01

    Electrodeposition of nickel onto copper in a system of low Ni2+ concentration and at a narrow interelectrode gap has been carried out. This electrochemical system was required for maskless pattern transfer through electroplating (Enface technique). Kinetics of Electrochemical reaction of Nickel is relatively slow, where such electrochemical system has never been used in this technology. Study on the kinetics of the electrochemical reaction of nickel in such system is essential due to the fact that the quality of an electrodeposited nickel is affected by kinetics. Analytical and graphical methods were utilised to determine kinetic parameters. The kinetic model was approximated by Butler-Volmer and j-η equation. Kinetic parameters such as exchange current density (j0) and charge transfer coefficient (α) were also graphically determined using the plot of η vs. log|j| known as Tafel plot. The polarisation data for an unstirred 0.19 M nickel sulfamate solution at 0.5 mV/s scan rate and RDE system was used. The results indicate that both methods are fairly accurate. For the analytical, the Tafel slope, the exchange current density, and charge transfer coefficient were found to be 149 mV/dec, 1.60 × 10-4 mA/cm2, and 0.39 respectively, whilst for the graphical method were 159 mV/dec, 3.16 × 10-4 mA/cm2, and 0.37. The kinetics parameters in this current study were also compared to those in literature. Significant differences were observed which might be due to the effect of composition and concentration of the electrolytes, operating temperature, and pH leading to the different reaction mechanism. However, the results obtained in this work are in the range of acceptable values. These kinetic parameters will then be used in further study of nickel deposition by modelling and simulation

  15. Plasmonic Imaging of Electrochemical Reactions of Single Nanoparticles.

    PubMed

    Fang, Yimin; Wang, Hui; Yu, Hui; Liu, Xianwei; Wang, Wei; Chen, Hong-Yuan; Tao, N J

    2016-11-15

    Electrochemical reactions are involved in many natural phenomena, and are responsible for various applications, including energy conversion and storage, material processing and protection, and chemical detection and analysis. An electrochemical reaction is accompanied by electron transfer between a chemical species and an electrode. For this reason, it has been studied by measuring current, charge, or related electrical quantities. This approach has led to the development of various electrochemical methods, which have played an essential role in the understanding and applications of electrochemistry. While powerful, most of the traditional methods lack spatial and temporal resolutions desired for studying heterogeneous electrochemical reactions on electrode surfaces and in nanoscale materials. To overcome the limitations, scanning probe microscopes have been invented to map local electrochemical reactions with nanometer resolution. Examples include the scanning electrochemical microscope and scanning electrochemical cell microscope, which directly image local electrochemical reaction current using a scanning electrode or pipet. The use of a scanning probe in these microscopes provides high spatial resolution, but at the expense of temporal resolution and throughput. This Account discusses an alternative approach to study electrochemical reactions. Instead of measuring electron transfer electrically, it detects the accompanying changes in the reactant and product concentrations on the electrode surface optically via surface plasmon resonance (SPR). SPR is highly surface sensitive, and it provides quantitative information on the surface concentrations of reactants and products vs time and electrode potential, from which local reaction kinetics can be analyzed and quantified. The plasmonic approach allows imaging of local electrochemical reactions with high temporal resolution and sensitivity, making it attractive for studying electrochemical reactions in biological systems and nanoscale materials with high throughput. The plasmonic approach has two imaging modes: electrochemical current imaging and interfacial impedance imaging. The former images local electrochemical current associated with electrochemical reactions (faradic current), and the latter maps local interfacial impedance, including nonfaradic contributions (e.g., double layer charging). The plasmonic imaging technique can perform voltammetry (cyclic or square wave) in an analogous manner to the traditional electrochemical methods. It can also be integrated with bright field, dark field, and fluorescence imaging capabilities in one optical setup to provide additional capabilities. To date the plasmonic imaging technique has found various applications, including mapping of heterogeneous surface reactions, analysis of trace substances, detection of catalytic reactions, and measurement of graphene quantum capacitance. The plasmonic and other emerging optical imaging techniques (e.g., dark field and fluorescence microscopy), together with the scanning probe-based electrochemical imaging and single nanoparticle analysis techniques, provide new capabilities for one to study single nanoparticle electrochemistry with unprecedented spatial and temporal resolutions. In this Account, we focus on imaging of electrochemical reactions at single nanoparticles.

  16. Preparation of porous nitrogen-doped titanium dioxide microspheres and a study of their photocatalytic, antibacterial and electrochemical activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, S.; Chu, W., E-mail: chuwei65@yahoo.com.cn; Huang, Y.Y.

    Graphical abstract: Porous N-doped TiO{sub 2} microspheres were prepared for the first time via plasma technique. The sample exhibited better photocatalytic activity, photoinduced inactivation activity and better electrochemical activity than those of TiO{sub 2} microspheres and P25. Display Omitted Highlights: ► Porous N-doped TiO{sub 2} microspheres were prepared via nitrogen plasma technique. ► Plasma treatment did not affect the porous structure of the TiO{sub 2} microspheres. ► With the plasma treatment, the N contents in the samples increased. ► Their photocatalytic, antibacterial and electrochemical activities were studied. -- Abstract: Nitrogen-doped titanium dioxide (N-doped TiO{sub 2}) microspheres with porous structure weremore » prepared via the nitrogen-assisted glow discharge plasma technique at room temperature for the first time. The samples were characterized by X-ray diffraction, scanning electron microscopy, nitrogen adsorption–desorption measurement, UV–Vis diffuse reflectance spectra, photoluminescence spectroscopy and X-ray photoelectron spectroscopy. The results indicated that the plasma treatment did not affect the porous structure of the TiO{sub 2} microspheres. With the plasma treatment, the N contents in the samples increased. During the photocatalytic degradation of methylene blue under simulative sunlight irradiation, the sample after plasma treatment for 60 min (N-TiO{sub 2}-60) exhibited higher photocatalytic activity than those of the TiO{sub 2} microspheres, P25 and other N-doped TiO{sub 2} microspheres. Furthermore, the N-TiO{sub 2}-60 showed excellent antibacterial activities towards Escherichia coli under visible irradiation. These should be attributed to the enhancement of the visible light region absorption for TiO{sub 2} after N-doping. Electrochemical data demonstrated that the N-doping not only enhanced the electrochemical activity of TiO{sub 2}, but also improved the reversibility of Li insertion/extraction reactions and the rate behavior of TiO{sub 2} during charge–discharge cycles.« less

  17. Novel Electrochemical Test Bench for Evaluating the Functional Fatigue Life of Biomedical Alloys

    NASA Astrophysics Data System (ADS)

    Ijaz, M. F.; Dubinskiy, S.; Zhukova, Y.; Korobkova, A.; Pustov, Y.; Brailovski, V.; Prokoshkin, S.

    2017-08-01

    The aim of the present work was first to develop and validate a test bench that simulates the in vitro conditions to which the biomedical implants will be actually subjected in vivo. For the preliminary application assessments, the strain-controlled fatigue tests of biomedically pure Ti and Ti-Nb-Zr alloy in simulated body fluid were undertaken. The in situ open-circuit potential measurements from the test bench demonstrated a strong dependence on the dynamic cycling and kind of material under testing. The results showed that during fatigue cycling, the passive oxide film formed on the surface of Ti-Nb-Zr alloy was more resistant to fatigue degradation when compared with pure Ti. The Ti-Nb-Zr alloy exhibited prolonged fatigue life when compared with pure Ti. The fractographic features of both materials were also characterized using scanning electron microscopy. The electrochemical results and the fractographic evidence confirmed that the prolonged functional fatigue life of the Ti-Nb-Zr alloy is apparently ascribable to the reversible martensitic phase transformation.

  18. Free energy landscape of electrocatalytic CO2 reduction to CO on aqueous FeN4 center embedded graphene studied by ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Sheng, Tian; Sun, Shi-Gang

    2017-11-01

    Experiments have found that the porphyrin-like FeN4 site in Fe-N-C materials is highly efficient for the electrochemical reduction of CO2 into CO. In this work, we investigated the reduction mechanisms on FeN4 embedded graphene layer catalyst with some explicit water molecules by combining the constrained ab initio molecular dynamics simulations and thermodynamic integrations. The reaction free energy and electron transfer in each elementary step were identified. The initial CO2 activation was identified to go through the first electron transfer to form adsorbed CO2- anion and the CO desorption was the rate limiting step in the overall catalytic cycle.

  19. A computation study on the interplay between surface morphology and electrochemical performance of patterned thin film electrodes for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Gur, Sourav; Frantziskonis, George N.; Aifantis, Katerina E.

    2017-08-01

    Recent experiments illustrate that the morphology of the electrode surface impacts the voltage - capacity curves and long term cycling performance of Li-ion batteries. The present study systematically explores the role of the electrode surface morphology and uncertainties in the reactions that occur during electrochemical cycling, by performing kinetic Monte Carlo (kMC) simulations using the lattice Boltzmann method (LBM). This allows encoding of the inherent stochasticity at discrete microscale reaction events over the deterministic mean field reaction dynamics that occur in Li-ion cells. The electrodes are taken to be dense thin films whose surfaces are patterned with conical, trapezoidal, dome-shaped, or pillar-shaped structures. It is shown that the inherent perturbations in the reactions together with the characteristics of the electrode surface configuration can significantly improve battery performance, mainly because patterned surfaces, as opposed to flat surfaces, result in a smaller voltage drop. The most efficient pattern was the trapezoidal, which is consistent with experimental evidence on Si patterned electrodes.

  20. Molecular aspects of the Eu3+/Eu2+ redox reaction at the interface between a molten salt and a metallic electrode

    NASA Astrophysics Data System (ADS)

    Pounds, Michael A.; Salanne, Mathieu; Madden, Paul A.

    2015-09-01

    We perform molecular dynamics simulations of a system consisting of Eu3+ and Eu2+ species dissolved in a high-temperature KCl electrolyte between two metallic electrodes. The interaction potential includes ion polarisation effects, and a constant electric potential is maintained within the electrodes by allowing the atomic charges to fluctuate in response to the environment. This setup allows us to study the electrochemical Eu3+/Eu2+ reaction in the framework of Marcus theory. Numerous studies have pointed to the highly structured nature of ionic liquids and molten salts close to solid surfaces which is not accounted for in the conventional mean-field description of this interface that underpins the theories of electrochemical reaction rates. Here we examine the influence on the kinetics of the charge-transfer event of the electrical potential across the electrode-electrolyte interface and on the effect of the presence of charged surface on the coordination structure and energetics of the ions in the region important for the charge-transfer event.

  1. Nonlinear Dynamical Analysis of Fibrillation

    NASA Astrophysics Data System (ADS)

    Kerin, John A.; Sporrer, Justin M.; Egolf, David A.

    2013-03-01

    The development of spatiotemporal chaotic behavior in heart tissue, termed fibrillation, is a devastating, life-threatening condition. The chaotic behavior of electrochemical signals, in the form of spiral waves, causes the muscles of the heart to contract in an incoherent manner, hindering the heart's ability to pump blood. We have applied the mathematical tools of nonlinear dynamics to large-scale simulations of a model of fibrillating heart tissue to uncover the dynamical modes driving this chaos. By studying the evolution of Lyapunov vectors and exponents over short times, we have found that the fibrillating tissue is sensitive to electrical perturbations only in narrow regions immediately in front of the leading edges of spiral waves, especially when these waves collide, break apart, or hit the edges of the tissue sample. Using this knowledge, we have applied small stimuli to areas of varying sensitivity. By studying the evolution of the effects of these perturbations, we have made progress toward controlling the electrochemical patterns associated with heart fibrillation. This work was supported by the U.S. National Science Foundation (DMR-0094178) and Research Corporation.

  2. Stainless steel surface biofunctionalization with PMMA-bioglass coatings: compositional, electrochemical corrosion studies and microbiological assay.

    PubMed

    Floroian, L; Samoila, C; Badea, M; Munteanu, D; Ristoscu, C; Sima, F; Negut, I; Chifiriuc, M C; Mihailescu, I N

    2015-06-01

    A solution is proposed to surpass the inconvenience caused by the corrosion of stainless steel implants in human body fluids by protection with thin films of bioactive glasses or with composite polymer-bioactive glass nanostructures. Our option was to apply thin film deposition by matrix-assisted pulsed laser evaporation (MAPLE) which, to the difference to other laser or plasma techniques insures the protection of a more delicate material (a polymer in our case) against degradation or irreversible damage. The coatings composition, modification and corrosion resistance were investigated by FTIR and electrochemical techniques, under conditions which simulate their biological interaction with the human body. Mechanical testing demonstrates the adhesion, durability and resistance to fracture of the coatings. The coatings biocompatibility was assessed by in vitro studies and by flow cytometry. Our results support the unrestricted usage of coated stainless steel as a cheap alternative for human implants manufacture. They will be more accessible for lower prices in comparison with the majority present day fabrication of implants using Ti or Ti alloys.

  3. Hybrid Coatings Enriched with Tetraethoxysilane for Corrosion Mitigation of Hot-Dip Galvanized Steel in Chloride Contaminated Simulated Concrete Pore Solutions

    PubMed Central

    Figueira, Rita B.; Callone, Emanuela; Silva, Carlos J. R.; Pereira, Elsa V.; Dirè, Sandra

    2017-01-01

    Hybrid sol-gel coatings, named U(X):TEOS, based on ureasilicate matrices (U(X)) enriched with tetraethoxysilane (TEOS), were synthesized. The influence of TEOS addition was studied on both the structure of the hybrid sol-gel films as well as on the electrochemical properties. The effect of TEOS on the structure of the hybrid sol-gel films was investigated by solid state Nuclear Magnetic Resonance. The dielectric properties of the different materials were investigated by electrochemical impedance spectroscopy. The corrosion behavior of the hybrid coatings on HDGS was studied in chloride-contaminated simulated concrete pore solutions (SCPS) by polarization resistance measurements. The roughness of the HDGS coated with hybrids was also characterized by atomic force microscopy. The structural characterization of the hybrid materials proved the effective reaction between Jeffamine® and 3-isocyanate propyltriethoxysilane (ICPTES) and indicated that the addition of TEOS does not seem to affect the organic structure or to increase the degree of condensation of the hybrid materials. Despite the apparent lack of influence on the hybrids architecture, the polarization resistance measurements confirmed that TEOS addition improves the corrosion resistance of the hybrid coatings (U(X):TEOS) in chloride-contaminated SCPS when compared to samples prepared without any TEOS (U(X)). This behavior could be related to the decrease in roughness of the hybrid coatings (due TEOS addition) and to the different metal coating interaction resulting from the increase of the inorganic component in the hybrid matrix. PMID:28772667

  4. Redox Control and Hydrogen Production in Sediment Caps Using Carbon Cloth Electrodes

    PubMed Central

    Sun, Mei; Yan, Fei; Zhang, Ruiling; Reible, Danny D.; Lowry, Gregory V.; Gregory, Kelvin B.

    2010-01-01

    Sediment caps that degrade contaminants can improve their ability to contain contaminants relative to sand and sorbent-amended caps, but few methods to enhance contaminant degradation in sediment caps are available. The objective of this study was to determine if, carbon electrodes emplaced within a sediment cap at poised potential could create a redox gradient and provide electron donor for the potential degradation of contaminants. In a simulated sediment cap overlying sediment from the Anacostia River (Washington, DC), electrochemically induced redox gradients were developed within 3 days and maintained over the period of the test (~100 days). Hydrogen and oxygen were produced by water electrolysis at the electrode surfaces and may serve as electron donor and acceptor for contaminant degradation. Electrochemical and geochemical factors that may influence hydrogen production were studied. Hydrogen production displayed zero order kinetics with ~75% coulombic efficiency and rates were proportional to the applied potential between 2.5V to 5V and not greatly affected by pH. Hydrogen production was promoted by increasing ionic strength and in the presence of natural organic matter. Graphite electrode-stimulated degradation of tetrachlorobenzene in a batch reactor was dependent on applied voltage and production of hydrogen to a concentration above the threshold for biological dechlorination. These findings suggest that electrochemical reactive capping can potentially be used to create “reactive” sediments caps capable of promoting chemical or biological transformations of contaminants within the cap. PMID:20879761

  5. Theoretical analysis and simulation study of low-power CMOS electrochemical impedance spectroscopy biosensor in 55 nm deeply depleted channel technology for cell-state monitoring

    NASA Astrophysics Data System (ADS)

    Itakura, Keisuke; Kayano, Keisuke; Nakazato, Kazuo; Niitsu, Kiichi

    2018-01-01

    We present an impedance-detection complementary metal oxide semiconductor (CMOS) biosensor circuit for cell-state observation. The proposed biosensor can measure the expected impedance values encountered by a cell-state observation measurement system within a 0.1-200 MHz frequency range. The proposed device is capable of monitoring the intracellular conditions necessary for real-time cell-state observation, and can be fabricated using a 55 nm deeply depleted channel CMOS process. Operation of the biosensor circuit with 0.9 and 1.7 V supply voltages is verified via a simulated program with integrated circuit emphasis (SPICE) simulation. The power consumption is 300 µW. Further, the standby power consumption is 290 µW, indicating that this biosensor is a low-power instrument suitable for use in Internet of Things (IoT) devices.

  6. Atomistic insights into deep eutectic electrolytes: the influence of urea on the electrolyte salt LiTFSI in view of electrochemical applications.

    PubMed

    Lesch, Volker; Heuer, Andreas; Rad, Babak R; Winter, Martin; Smiatek, Jens

    2016-10-19

    The influence of urea on the conducting salt lithium bis-(trifluoromethanesulfonyl)-imide (LiTFSI) in terms of lithium ion coordination numbers and lithium ion transport properties is studied via atomistic molecular dynamics simulations. Our results indicate that the presence of urea favors the formation of a deep eutectic electrolyte with pronounced ion conductivities which can be explained by a competition between urea and TFSI in occupying the first coordination shell around lithium ions. All simulation findings verify that high urea concentrations lead to a significant increase of ionic diffusivities and an occurrence of relatively high lithium transference numbers in good agreement with experimental results. The outcomes of our study point at the possible application of deep eutectic electrolytes as ion conducting materials in lithium ion batteries.

  7. Mapping the Free Energy of Lithium Solvation in the Protic Ionic Liquid Ethylammonuim Nitrate: A Metadynamics Study.

    PubMed

    Kachmar, Ali; Carignano, Marcelo; Laino, Teodoro; Iannuzzi, Marcella; Hutter, Jürg

    2017-08-10

    Understanding lithium solvation and transport in ionic liquids is important due to their possible application in electrochemical devices. Using first-principles simulations aided by a metadynamics approach we study the free-energy landscape for lithium ions at infinite dilution in ethylammonium nitrate, a protic ionic liquid. We analyze the local structure of the liquid around the lithium cation and obtain a quantitative picture in agreement with experimental findings. Our simulations show that the lowest two free energy minima correspond to conformations with the lithium ion being solvated either by three or four nitrate ions with a transition barrier between them of 0.2 eV. Other less probable conformations having different solvation pattern are also investigated. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Electrochemical de-alloying in two dimensions: role of the local atomic environment

    NASA Astrophysics Data System (ADS)

    Damian, A.; Maroun, F.; Allongue, P.

    2016-07-01

    We investigate by in situ scanning tunnelling microscopy (STM) the potential dependence of the electrochemical dealloying of NiPd monoatomic layers electrodeposited on Au(111). The dealloying process is achieved by Ni selective dissolution and was studied as a function of NiPd composition: for an alloy with a Ni content >=70%, quasi-complete Ni dissolution is achieved at a potential of -0.9 VMSE whereas for a Ni content <70%, Ni dissolution at the same potential drastically slows down after the removal of small amounts of Ni. The alloy morphology at this ``passivation state'' is characterized by the presence of holes in the alloy monolayer with evidence for the Pd enrichment at the hole edges. These findings are confirmed by Monte Carlo simulations. Further Ni dissolution at passivation was achieved by applying more positive potentials which depend on the alloy composition. These results allowed us to determine the correlation between the Ni dissolution onset potential and the local Pd content.

  9. Laboratory Experiments on the Electrochemical Remediation of Environment. Part 4: Color Removal of Simulated Wastewater by Electrocoagulation-Electroflotation

    NASA Astrophysics Data System (ADS)

    Ibanez, Jorge G.; Singh, M. M.; Szafran, Z.

    1998-08-01

    Due to the large production of aqueous waste streams from textile mills and dye production plants, several processes have been under intense study. Electrochemical processes offer some distinctive advantages, including effects due to: 1) the production of electrolysis gases, and 2) the production of polyvalent cations from the oxidation of corrodible anodes (like Fe and Al). The gas bubbles can carry the pollutant to the top of the solution where it can be more easily concentrated, collected and removed. The metallic ions can react with the OH- ions produced at the cathode during the evolution of H2 gas to yield insoluble hydroxides that will adsorb pollutants out of the solution and also contribute to coagulation by neutralizing any negatively charged colloidal particles that might be present. In this experiment an iron electrode (paper clip) is used in conjunction with pH indicator dyes, so dramatic color changes will be noticed.

  10. Self-Assembled Protein Nanofilter for Trapping Polysulfides and Promoting Li+ Transport in Lithium-Sulfur Batteries.

    PubMed

    Fu, Xuewei; Li, Chunhui; Wang, Yu; Scudiero, Louis; Liu, Jin; Zhong, Wei-Hong

    2018-05-17

    The diffusion of polysulfides in lithium-sulfur (Li-S) batteries represents a critical issue deteriorating the electrochemical performance. Here, borrowing the concepts from air filtration, we design and fabricate a protein-based nanofilter for effectively trapping polysulfides but facilitating Li + transport. The unique porous structures are formed through a protein-directed self-assembly process, and the surfaces are functionalized by the protein residues. The experiments and molecular simulation results demonstrate that our polysulfide nanofilter can effectively trap the dissolved polysulfides and promote Li + transport in Li-S batteries. When the polysulfide nanofilter is added in a Li-S battery, the electrochemical performance of the battery is significantly improved. Moreover, the contribution of the protein nanofilter to the ion transport is further analyzed by correlating filter properties and battery performance. This study is of universal significance for the understanding, design, and fabrication of advanced battery interlayers that can help realize good management of the ion transport inside advanced energy storage devices.

  11. Characterization of physiochemical properties of polymeric and electrochemical materials for aerospace flight

    NASA Technical Reports Server (NTRS)

    Rock, M.; Kunigahalli, V.; Khan, S.; Mcnair, A.

    1984-01-01

    Nickel-cadmium rechargeable batteries are a vital and reliable energy storage source for aerospace applications. As the demand for longer life and more reliable space batteries increases, the understanding and solving of cell aging factors and mechanisms become essential. Over the years, many cell designs and manufacturing process changes have been developed and implemented. Cells fabricated with various design features were life cycled in a simulated low-Earth orbit regime. Following the test program, a comprehensive electrochemical analysis of cell components was undertaken to study cell degradation mechanisms. Discharge voltage degradation or voltage plateau has been observed during orbit cycling, but, its cause and explanation have been the subject of much discussion. A Hg/HgO reference electrode was used to monitor the reference versus each electrode potential during the discharge of a cycled cell. The results indicate that the negative electrode was responsible for the voltage plateau. Cell analysis revealed large crystals of cadmium hydroxide on the surface of the negative electrode and throughout the separator.

  12. Wireless programmable electrochemical drug delivery micropump with fully integrated electrochemical dosing sensors.

    PubMed

    Sheybani, Roya; Cobo, Angelica; Meng, Ellis

    2015-08-01

    We present a fully integrated implantable electrolysis-based micropump with incorporated EI dosing sensors. Wireless powering and data telemetry (through amplitude and frequency modulation) were utilized to achieve variable flow control and a bi-directional data link with the sensors. Wireless infusion rate control (0.14-1.04 μL/min) and dose sensing (bolus resolution of 0.55-2 μL) were each calibrated separately with the final circuit architecture and then simultaneous wireless flow control and dose sensing were demonstrated. Recombination detection using the dosing system, as well as, effects of coil separation distance and misalignment in wireless power and data transfer were studied. A custom-made normally closed spring-loaded ball check valve was designed and incorporated at the reservoir outlet to prevent backflow of fluids as a result of the reverse pressure gradient caused by recombination of electrolysis gases. Successful delivery, infusion rate control, and dose sensing were achieved in simulated brain tissue.

  13. Extraction of Carbon Dioxide and Hydrogen from Seawater by an Electrochemical Acidification Cell. Part 3. Scaled-up Mobile Unit Studies (Calendar Year 2011)

    DTIC Science & Technology

    2012-05-30

    Electrochemical Acidification Cell Part III: Scaled-up Mobile Unit Studies (Calendar Year 2011) May 30, 2012 Approved for public release; distribution is...Hydrogen from Seawater by an Electrochemical Acidification Cell Part III: Scaled-up Mobile Unit Studies (Calendar Year 2011) Heather D. Willauer, Dennis R...Unclassified Unlimited Unclassified Unlimited Unclassified Unlimited 41 Heather D. Willauer (202) 767-2673 Electrochemical acidification cell Carbon

  14. Scale-dependent diffusion anisotropy in nanoporous silicon

    PubMed Central

    Kondrashova, Daria; Lauerer, Alexander; Mehlhorn, Dirk; Jobic, Hervé; Feldhoff, Armin; Thommes, Matthias; Chakraborty, Dipanjan; Gommes, Cedric; Zecevic, Jovana; de Jongh, Petra; Bunde, Armin; Kärger, Jörg; Valiullin, Rustem

    2017-01-01

    Nanoporous silicon produced by electrochemical etching of highly B-doped p-type silicon wafers can be prepared with tubular pores imbedded in a silicon matrix. Such materials have found many technological applications and provide a useful model system for studying phase transitions under confinement. This paper reports a joint experimental and simulation study of diffusion in such materials, covering displacements from molecular dimensions up to tens of micrometers with carefully selected probe molecules. In addition to mass transfer through the channels, diffusion (at much smaller rates) is also found to occur in directions perpendicular to the channels, thus providing clear evidence of connectivity. With increasing displacements, propagation in both axial and transversal directions is progressively retarded, suggesting a scale-dependent, hierarchical distribution of transport resistances (“constrictions” in the channels) and of shortcuts (connecting “bridges”) between adjacent channels. The experimental evidence from these studies is confirmed by molecular dynamics (MD) simulation in the range of atomistic displacements and rationalized with a simple model of statistically distributed “constrictions” and “bridges” for displacements in the micrometer range via dynamic Monte Carlo (DMC) simulation. Both ranges are demonstrated to be mutually transferrable by DMC simulations based on the pore space topology determined by electron tomography. PMID:28106047

  15. Effect of cold deformation on the electrochemical behaviour of 304L stainless steel in contaminated sulfuric acid environment

    NASA Astrophysics Data System (ADS)

    Luo, Hong; Su, Huaizhi; Ying, Guobing; Dong, Chaofang; Li, Xiaogang

    2017-12-01

    The effect of cold deformation on the microstructure and electrochemical corrosion behaviour of 304L stainless steel in contaminated sulfuric acid solutions (simulated proton exchange membrane fuel cells environments) were evaluated using electron backscatter diffraction analyses, electrochemical measurements, and surface analyses. The internal microstructure,including the grain sizes, angles of the grain boundaries, low coincidence site lattice boundaries, and phase transformations, was changed due to the cold deformation. No noticeable modifications of the pitting corrosion potential were observed during the various deformations, except for a slight enhancement in the passive current density with an increase in the deformation. The CrO3 and metal Ni species in the passive film were investigated after deformation. After heavy deformation (greater than 60%), nickel oxides were detected. Moreover, the Cr/Fe and O2-/OH- ratios in the passive film were higher before deformation, and they decreased with an increase in the deformation level.

  16. Electrochemical Impedance Spectroscopy of Conductive Polymer Coatings

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; MacDowell, Louis G.

    1996-01-01

    Electrochemical impedance spectroscopy (EIS) was used to investigate the corrosion protection performance of twenty nine proprietary conductive polymer coatings for cold rolled steel under immersion in 3.55 percent NaCl. Corrosion potential as well as Bode plots of the data were obtained for each coating after one hour immersion, All coatings, with the exception of one, have a corrosion potential that is higher in the positive direction than the corrosion potential of bare steel under the same conditions. Group A consisted of twenty one coatings with Bode plots indicative of the capacitive behavior characteristic of barrier coatings. An equivalent circuit consisting of a capacitor in series with a resistor simulated the experimental EIS data for these coatings very well. Group B consisted of eight coatings that exhibited EIS spectra showing an inflection point which indicates that two time constants are present. This may be caused by an electrochemical process taking place which could be indicitive of coating failing. These coatings have a lower impedance that those in Group A.

  17. Modification of electrochemically deposited apatite using supercritical water.

    PubMed

    Ban, S; Hasegawa, J

    2001-12-01

    Supercritical water was used as a modification method of electrochemically deposited apatite on pure titanium. The apatites were coated on a commercially pure titanium plate using a hydrothermal-electrochemical method. A constant direct current at 12.5 mA/cm2 was loaded for 1 hr at 25, 60, 100, 150 and 200 degrees C in an electrolyte containing calcium and phosphate ions. The deposited apatite on the titanium substrate was stored in supercritical water at 450 degrees C under 45 MPa for 8 hr. With this treatment, the crystallinity of the apatites increased, sharp edges of the deposited apatites were rounded off, and the bonding strength of the titanium substrate to the deposited apatites significantly increased. On the other hand, weight loss in 0.01 N HCl decreased and the weight gain rate in a simulated body fluid also decreased with this treatment. It is suggested that the modification using supercritical water improved the mechanical strength of the deposited apatite, but worsened its bioactivity.

  18. Exploring As-Cast PbCaSn-Mg Anodes for Improved Performance in Copper Electrowinning

    NASA Astrophysics Data System (ADS)

    Yuwono, Jodie A.; Clancy, Marie; Chen, Xiaobo; Birbilis, Nick

    2018-06-01

    Lead calcium tin (PbCaSn) alloys are the common anodes used in copper electrowinning (Cu EW). Given a large amount of energy consumed in Cu EW process, anodes with controlled oxygen evolution reaction (OER) kinetics and a lower OER overpotential are advantageous for reducing the energy consumption. To date, magnesium (Mg) has never been studied as an alloying element for EW anodes. As-cast PbCaSn anodes with the addition of Mg were examined herein, revealing an improved performance compared to that of the industrial standard PbCaSn anode. The alloy performances in the early stages of anode life and passivation were established from electrochemical studies which were designed to simulate industrial Cu EW process. The 24-hour polarization testing revealed that the Mg alloying depolarizes the anode potential up to 80 mV; thus, resulting in a higher Cu EW efficiency. In addition, scanning electron microscopy and X-ray photoelectron spectroscopy revealed that the alteration of the alloy microstructure and the corresponding interfacial reactions contribute to the changes of the anode electrochemical performances. The present study reveals for the first time the potency of Mg alloying in reducing the overpotential of PbCaSn anode.

  19. Conceptual Design Tool to Analyze Electrochemically-Powered Micro Air Vehicles

    DTIC Science & Technology

    2011-03-01

    technology polarization curve ( PEMFC ) ................................... 103  Figure 50.  Aerodynamic CA results, simulations 1-16...114  Figure 54.  Future technology polarization curve ( PEMFC ...Phosphoric Acid Fuel Cell PEMFC Proton Exchange Membrane or Polymer Electrolyte Membrane QPROP A Motor and Propeller Matching Program RC Radio Controlled

  20. Modeling and simulation of the fluid flow in wire electrochemical machining with rotating tool (wire ECM)

    NASA Astrophysics Data System (ADS)

    Klocke, F.; Herrig, T.; Zeis, M.; Klink, A.

    2017-10-01

    Combining the working principle of electrochemical machining (ECM) with a universal rotating tool, like a wire, could manage lots of challenges of the classical ECM sinking process. Such a wire-ECM process could be able to machine flexible and efficient 2.5-dimensional geometries like fir tree slots in turbine discs. Nowadays, established manufacturing technologies for slotting turbine discs are broaching and wire electrical discharge machining (wire EDM). Nevertheless, high requirements on surface integrity of turbine parts need cost intensive process development and - in case of wire-EDM - trim cuts to reduce the heat affected rim zone. Due to the process specific advantages, ECM is an attractive alternative manufacturing technology and is getting more and more relevant for sinking applications within the last few years. But ECM is also opposed with high costs for process development and complex electrolyte flow devices. In the past, few studies dealt with the development of a wire ECM process to meet these challenges. However, previous concepts of wire ECM were only suitable for micro machining applications. Due to insufficient flushing concepts the application of the process for machining macro geometries failed. Therefore, this paper presents the modeling and simulation of a new flushing approach for process assessment. The suitability of a rotating structured wire electrode in combination with an axial flushing for electrodes with high aspect ratios is investigated and discussed.

  1. Beneficial effects of amino acid-functionalized graphene nanosheets incorporated in the photoanode material of dye-sensitized solar cells: A practical and theoretical study

    NASA Astrophysics Data System (ADS)

    Taki, Mahmood; Rezaei, Behzad; Fani, Najmeh; Borandeh, Sedigheh; Abdolmaleki, Amir; Ensafi, Ali A.

    2017-05-01

    In this research, covalently functionalized graphene oxide (GO) with some biocompatible amino acids were incorporated to the TiO2 film and employed as the photoanodes of dye-sensitized solar cells (DSSCs). Electrochemical analysis of the amino acids-functionalized graphene oxide (AFGs) confirmed that the attached amino acids could be acted as a reducing agent of the GO. The photovoltaic performance of the assembled DSSCs under illumination of simulated AM 1.5 sunlight (100 mW cm-2) showed an enhancement of about 4.1 and 1.8 fold for the solar cell assembled with the tyrosine-functionalized GO in relation to the control solar cells constructed with GO-TiO2 composite and blank TiO2 film, respectively. These results were in accordance with electron life time and transport time resulted from the open circuit voltage decay (OCVD), electrochemical impedance spectroscopy (EIS) and intensity modulated photocurrent spectroscopy (IMPS) analysis. The density functional theory (DFT) calculations exhibited a proper spacial arrangement for the tyrosine-GO structure that could improve electron transfer between the adjucent GO sheets. Density of electronic states (DOS) exhibited a gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy levels for the simulated AFG structures. This effect could facilitate the light adsorption process in near-IR region.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renslow, Ryan S.; Babauta, Jerome T.; Kuprat, Andrew P.

    Electrochemically active biofilms have a unique form of respiration in which they utilize solid external materials as terminal electron acceptors for their metabolism. Currently, two primary mechanisms have been identified for long-range extracellular electron transfer (EET): a diffusion- and a conduction-based mechanism. Evidence in the literature suggests that some biofilms, particularly Shewanella oneidensis, produce the requisite components for both mechanisms. In this study, a generic model is presented that incorporates the diffusion- and the conduction-based mechanisms and allows electrochemically active biofilms to utilize both simultaneously. The model was applied to S. oneidensis and Geobacter sulfurreducens biofilms using experimentally generated datamore » found in the literature. Our simulation results show that 1) biofilms having both mechanisms available, especially if they can interact, may have a metabolic advantage over biofilms that can use only a single mechanism; 2) the thickness of G. sulfurreducens biofilms is likely not limited by conductivity; 3) accurate intrabiofilm diffusion coefficient values are critical for current generation predictions; and 4) the local biofilm potential and redox potential are two distinct parameters and cannot be assumed to have identical values. Finally, we determined that simulated cyclic and squarewave voltammetry based on our model are currently not capable of determining the specific percentages of extracellular electron transfer mechanisms in a biofilm. The developed model will be a critical tool for designing experiments to explain EET mechanisms.« less

  3. Morphological and Electrochemical Characterization of Nanostructured Li 4Ti 5O 12 Electrodes Using Multiple Imaging Mode Synchrotron X-ray Computed Tomography

    DOE PAGES

    Kashkooli, Ali Ghorbani; Foreman, Evan; Farhad, Siamak; ...

    2017-09-21

    In this study, synchrotron X-ray computed tomography has been utilized using two different imaging modes, absorption and Zernike phase contrast, to reconstruct the real three-dimensional (3D) morphology of nanostructured Li 4Ti 5O 12 (LTO) electrodes. The morphology of the high atomic number active material has been obtained using the absorption contrast mode, whereas the percolated solid network composed of active material and carbon-doped polymer binder domain (CBD) has been obtained using the Zernike phase contrast mode. The 3D absorption contrast image revealed that some LTO nano-particles tend to agglomerate and form secondary micro-sized particles with varying degrees of sphericity. Themore » tortuosity of electrode’s pore and solid phases were found to have directional dependence, different from Bruggeman’s tortuosity commonly used in macro-homogeneous models. The electrode’s heterogeneous structure was investigated by developing a numerical model to simulate galvanostatic discharge process using the Zernike phase contrast mode. The inclusion of CBD in the Zernike phase contrast results in an integrated percolated network of active material and CBD that is highly suited for continuum modeling. As a result, the simulation results highlight the importance of using the real 3D geometry since the spatial distribution of physical and electrochemical properties have a strong non-uniformity due to microstructural heterogeneities.« less

  4. The theory of cyclic voltammetry of electrochemically heterogeneous surfaces: comparison of different models for surface geometry and applications to highly ordered pyrolytic graphite.

    PubMed

    Ward, Kristopher R; Lawrence, Nathan S; Hartshorne, R Seth; Compton, Richard G

    2012-05-28

    The cyclic voltammetry at electrodes composed of multiple electroactive materials, where zones of one highly active material are distributed over a substrate of a second, less active material, is investigated by simulation. The two materials are assumed to differ in terms of their electrochemical rate constants towards any given redox couple. For a one-electron oxidation or reduction, the effect on voltammetry of the size and relative surface coverages of the zones as well as the rate constant of the slower zone are considered for systems where it is much slower than the rate constant of the faster zones. The occurrence of split peak cyclic voltammetry where two peaks are observed in the forward sweep, is studied in terms of the diffusional effects present in the system. A number of surface geometries are compared: specifically the more active zones are modelled as long, thin bands, as steps in the surface, as discs, and as rings (similar to a partially blocked electrode). Similar voltammetry for the band, step and ring models is seen but the disc geometry shows significant differences. Finally, the simulation technique is applied to the modelling of highly-ordered pyrolytic graphite (HOPG) surface and experimental conditions under which it may be possible to observe split peak voltammetry are predicted.

  5. Caprylate Salts Based on Amines as Volatile Corrosion Inhibitors for Metallic Zinc: Theoretical and Experimental Studies.

    PubMed

    Valente, Marco A G; Teixeira, Deiver A; Azevedo, David L; Feliciano, Gustavo T; Benedetti, Assis V; Fugivara, Cecílio S

    2017-01-01

    The interaction of volatile corrosion inhibitors (VCI), caprylate salt derivatives from amines, with zinc metallic surfaces is assessed by density functional theory (DFT) computer simulations, electrochemical impedance (EIS) measurements and humid chamber tests. The results obtained by the different methods were compared, and linear correlations were obtained between theoretical and experimental data. The correlations between experimental and theoretical results showed that the molecular size is the determining factor in the inhibition efficiency. The models used and experimental results indicated that dicyclohexylamine caprylate is the most efficient inhibitor.

  6. Study the formation of porous surface layer for a new biomedical titanium alloy

    NASA Astrophysics Data System (ADS)

    Talib Mohammed, Mohsin; Diwan, Abass Ali; Ali, Osamah Ihsan

    2018-03-01

    In the present work, chemical treatment using hydrogen peroxide (H2O2) oxidation and subsequent thermal treatment was applied to create a uniform porous layer over the surface of a new metastable β-Ti alloy. The results revealed that this oxidation treatment can create a stable ultrafine porous film over the oxidized surface. This promoted the electrochemical characteristics of H2O2-treated Ti-Zr-Nb (TZN) alloy system, presenting nobler corrosion behavior in simulated body fluid (SBF) comparing with untreated sample.

  7. Chemically induced porosity on BiVO4 films produced by double magnetron sputtering to enhance the photo-electrochemical response.

    PubMed

    Thalluri, Sitaramanjaneya Mouli; Rojas, Roberto Mirabal; Rivera, Osmary Depablos; Hernández, Simelys; Russo, Nunzio; Rodil, Sandra Elizabeth

    2015-07-21

    Double magnetron sputtering (DMS) is an efficient system that is well known because of its precise control of the thin film synthesizing process over any kind of substrate. Here, DMS has been adopted to synthesize BiVO4 films over a conducting substrate (FTO), using metallic vanadium and ceramic Bi2O3 targets simultaneously. The films were characterized using different techniques, such as X-ray diffraction (XRD), UV-Vis spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM) and profilometry. The photo-electrochemical analysis was performed using linear scan voltammetry, chronoamperometry and electrochemical impedance spectroscopy (EIS) under the illumination of simulated solar light at 1 Sun. The photocurrent density of the sputtered BiVO4 thin films could be improved from 0.01 mA cm(-2) to 1.19 mA cm(-2) at 1.23 V vs. RHE by chemical treatment using potassium hydroxide (KOH). The effect of KOH was the removal of impurities from the grain boundaries, leading to a more porous structure and more pure crystalline monoclinic BiVO4 particles. Such variations in the microstructure as well as the improvement of the charge transfer properties of the BiVO4 film after the KOH treatment were confirmed and studied in depth by EIS analysis.

  8. Model anodes and anode models for understanding the mechanism of hydrogen oxidation in solid oxide fuel cells.

    PubMed

    Bessler, Wolfgang G; Vogler, Marcel; Störmer, Heike; Gerthsen, Dagmar; Utz, Annika; Weber, André; Ivers-Tiffée, Ellen

    2010-11-14

    This article presents a literature review and new results on experimental and theoretical investigations of the electrochemistry of solid oxide fuel cell (SOFC) model anodes, focusing on the nickel/yttria-stabilized zirconia (Ni/YSZ) materials system with operation under H(2)/H(2)O atmospheres. Micropatterned model anodes were used for electrochemical characterization under well-defined operating conditions. Structural and chemical integrity was confirmed by ex situ pre-test and post-test microstructural and chemical analysis. Elementary kinetic models of reaction and transport processes were used to assess reaction pathways and rate-determining steps. The comparison of experimental and simulated electrochemical behaviors of pattern anodes shows quantitative agreement over a wide range of operating conditions (p(H(2)) = 8×10(2) - 9×10(4) Pa, p(H(2)O) = 2×10(1) - 6×10(4) Pa, T = 400-800 °C). Previously published experimental data on model anodes show a strong scatter in electrochemical performance. Furthermore, model anodes exhibit a pronounced dynamics on multiple time scales which is not reproduced in state-of-the-art models and which is also not observed in technical cermet anodes. Potential origin of these effects as well as consequences for further steps in model anode and anode model studies are discussed.

  9. Effect of concentration of hyaluronic acid and NaCl on corrosion behavior of 316L austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Bansod, Ankur V.; Khobragade, Nilay N.; Giradkar, Karansagar V.; Patil, Awanikumar P.

    2017-11-01

    Due to low cost and easily available material, 316L stainless steel (SS) is used for biomedical implants. The electrochemical corrosion behavior of 316L (SS) was studied as a function of the concentration of simulated biological fluid (hyaluronic acid), the influence of Cl- and the combined effect of NaCl and hyaluronic acid (HA). For the electrochemical tests, potentiodynamic polarization test and electrochemical impedance spectroscopy (EIS) were undertaken. With the increase in HA concentration, corrosion rate increases. Whereas, with the addition of NaCl to HA the solution, the corrosion resistance of the sample was enhanced. Also, in pure NaCl solution, the corrosion current density (i corr) increased as compared to bare HA and HA  +  NaCl. This is due to the adhesion property of the HA on the sample surface. EIS result agrees with the findings of potentiodynamic polarization tests. X-ray photoelectron spectroscopy (XPS) was executed to analyze the passive film formed in the solution of HA and NaCl on 316L SS. XPS spectra confirms the formation of the passive film containing chromium oxide and hydroxides. Also, the formation of MoO2 helps in improving better corrosion resistance. The peak of nitrogen was observed in the sample immersed in HA solution. Scanning electron microscope (SEM) was carried out to analyze the surface morphology.

  10. Stochasticity of Pores Interconnectivity in Li–O 2 Batteries and its Impact on the Variations in Electrochemical Performance

    DOE PAGES

    Torayev, Amangeldi; Rucci, Alexis J.; Magusin, Pieter C. M. M.; ...

    2018-01-17

    While large dispersions in electrochemical performance have been reported for lithium oxygen batteries in the literature, they have not been investigated in any depth. The variability in the results is often assumed to arise from differences in cell design, electrode structure, handling and cell preparation at different times. An accurate theoretical framework turns out to be needed to get a better insight into the mechanisms underneath and to interpreting experimental results. Here, we develop and use a pore network model to simulate the electrochemical performance of three-dimensionally resolved lithium-oxygen cathode mesostructures obtained from TXM nano-computed tomography images. Here, we applymore » this model to the 3D reconstructed object of a Super P carbon electrode and calculate discharge curves, using identical conditions, for four different zones in the electrode and their reversed configurations. The resulting galvanostatic discharge curves show some dispersion, (both in terms of capacity and overpotential) which we attribute to the way pores are connected with each other. Based on these results, we propose that the stochastic nature of pores interconnectivity and the microscopic arrangement of pores can lead, at least partially, to the variations in electrochemical results observed experimentally.« less

  11. Stochasticity of Pores Interconnectivity in Li–O 2 Batteries and its Impact on the Variations in Electrochemical Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torayev, Amangeldi; Rucci, Alexis J.; Magusin, Pieter C. M. M.

    While large dispersions in electrochemical performance have been reported for lithium oxygen batteries in the literature, they have not been investigated in any depth. The variability in the results is often assumed to arise from differences in cell design, electrode structure, handling and cell preparation at different times. An accurate theoretical framework turns out to be needed to get a better insight into the mechanisms underneath and to interpreting experimental results. Here, we develop and use a pore network model to simulate the electrochemical performance of three-dimensionally resolved lithium-oxygen cathode mesostructures obtained from TXM nano-computed tomography images. Here, we applymore » this model to the 3D reconstructed object of a Super P carbon electrode and calculate discharge curves, using identical conditions, for four different zones in the electrode and their reversed configurations. The resulting galvanostatic discharge curves show some dispersion, (both in terms of capacity and overpotential) which we attribute to the way pores are connected with each other. Based on these results, we propose that the stochastic nature of pores interconnectivity and the microscopic arrangement of pores can lead, at least partially, to the variations in electrochemical results observed experimentally.« less

  12. Structural Evolution of Electrochemically Lithiated MoS2 Nanosheets and the Role of Carbon Additive in Li-Ion Batteries

    PubMed Central

    2016-01-01

    Understanding the structure and phase changes associated with conversion-type materials is key to optimizing their electrochemical performance in Li-ion batteries. For example, molybdenum disulfide (MoS2) offers a capacity up to 3-fold higher (∼1 Ah/g) than the currently used graphite anodes, but they suffer from limited Coulombic efficiency and capacity fading. The lack of insights into the structural dynamics induced by electrochemical conversion of MoS2 still hampers its implementation in high energy-density batteries. Here, by combining ab initio density-functional theory (DFT) simulation with electrochemical analysis, we found new sulfur-enriched intermediates that progressively insulate MoS2 electrodes and cause instability from the first discharge cycle. Because of this, the choice of conductive additives is critical for the battery performance. We investigate the mechanistic role of carbon additive by comparing equal loading of standard Super P carbon powder and carbon nanotubes (CNTs). The latter offer a nearly 2-fold increase in capacity and a 45% reduction in resistance along with Coulombic efficiency of over 90%. These insights into the phase changes during MoS2 conversion reactions and stabilization methods provide new solutions for implementing cost-effective metal sulfide electrodes, including Li–S systems in high energy-density batteries. PMID:27818575

  13. Aptamer-based detection of plasma proteins by an electrochemical assay coupled to magnetic beads.

    PubMed

    Centi, Sonia; Tombelli, Sara; Minunni, Maria; Mascini, Marco

    2007-02-15

    The DNA thrombin aptamer has been extensively investigated, and the coupling of this aptamer to different transduction principles has demonstrated the wide applicability of aptamers as bioreceptors in bioanalytical assays. The goal of this work was to design an aptamer-based sandwich assay with electrochemical detection for thrombin analysis in complex matrixes, using a simple target capturing step by aptamer-functionalized magnetic beads. The conditions for the aptamer immobilization and for the protein binding have been first optimized by surface plasmon resonance, and then transferred to the electrochemical-based assay performed onto screen-printed electrodes. The assay was then applied to the analysis of thrombin in buffer, spiked serum, and plasma and high sensitivity and specificity were found. Moreover, thrombin was generated in situ in plasma by the conversion of its precursor prothrombin, and the formation of thrombin was followed at different times. The concentrations detected by the electrochemical assay were in agreement with a simulation software that mimics the formation of thrombin over time (thrombogram). The proposed work demonstrates that the high specificity of aptamers together with the use of magnetic beads are the key features for aptamer-based analysis in complex matrixes, opening the possibility of a real application to diagnostics or medical investigation.

  14. Performance of vegetative and fruits Zn/Cu based electrochemical cell

    NASA Astrophysics Data System (ADS)

    Khan, Md. Kamrul Alam, Prof. _., Dr.

    2017-01-01

    We have studied the performance of PKL, Aloe Vera, Tomato and Lemon juice electrochemical Cells without load condition for 1:1 Zn/Cu based electrodes. It was studied the variation of Open circuit voltage (Voc), Short current (Isc) and Maximum Power (Pmax) with the variation of time for PKL, Aloe Vera, Tomato and Lemon juice electrochemical Cells. It was seen from the research observation that the discharge characteristic of the PKL electrochemical cell was more efficient than the other three Aloe Vera, Tomato and Lemon juice electrochemical Cells. Because the Open circuit voltage (Voc), Short current (Isc) and Maximum Power (Pmax) are more stable and steady than the others three Aloe Vera, Tomato and Lemon juice electrochemical Cells. Furthermore, to enhance the performance we have also studied the secondary salt effect by using the NaCl as an electrolyte with the PKL, Aloe Vera and Lemon juice electrochemical Cells. Most of the results have been tabulated and graphically discussed. I am grateful to the authority of the Science and technology ministry,Bangladesh for financial support during the research work.

  15. Fundamental Studies Connected with Electrochemical Energy Storage

    NASA Technical Reports Server (NTRS)

    Buck, E.; Sen, R.

    1974-01-01

    Papers are presented which deal with electrochemical research activities. Emphasis is placed on electrochemical energy storage devices. Topics discussed include: adsorption of dendrite inhibitors on zinc; proton discharge process; electron and protron transfer; quantum mechanical formulation of electron transfer rates; and theory of electrochemical kinetics in terms of two models of activation; thermal and electrostatic.

  16. Spatially-resolved mapping of history-dependent coupled electrochemical and electronical behaviors of electroresistive NiO

    DOE PAGES

    Sugiyama, Issei; Kim, Yunseok; Jesse, Stephen; ...

    2014-10-22

    Bias-induced oxygen ion dynamics underpins a broad spectrum of electroresistive and memristive phenomena in oxide materials. Although widely studied by device-level and local voltage-current spectroscopies, the relationship between electroresistive phenomena, local electrochemical behaviors, and microstructures remains elusive. Here, the interplay between history-dependent electronic transport and electrochemical phenomena in a NiO single crystalline thin film with a number of well-defined defect types is explored on the nanometer scale using an atomic force microscopy-based technique. A variety of electrochemically-active regions were observed and spatially resolved relationship between the electronic and electrochemical phenomena was revealed. The regions with pronounced electroresistive activity were furthermore » correlated with defects identified by scanning transmission electron microscopy. Using fully coupled mechanical-electrochemical modeling, we illustrate that the spatial distribution of strain plays an important role in electrochemical and electroresistive phenomena. In conclusion, these studies illustrate an approach for simultaneous mapping of the electronic and ionic transport on a single defective structure level such as dislocations or interfaces, and pave the way for creating libraries of defect-specific electrochemical responses.« less

  17. Modeling and simulation of a direct ethanol fuel cell: An overview

    NASA Astrophysics Data System (ADS)

    Abdullah, S.; Kamarudin, S. K.; Hasran, U. A.; Masdar, M. S.; Daud, W. R. W.

    2014-09-01

    The commercialization of Direct Ethanol Fuel Cells (DEFCs) is still hindered because of economic and technical reasons. Fundamental scientific research is required to more completely understanding the complex electrochemical behavior and engineering technology of DEFCs. To use the DEFC system in real-world applications, fast, reliable, and cost-effective methods are needed to explore this complex phenomenon and to predict the performance of different system designs. Thus, modeling and simulation play an important role in examining the DEFC system as well as in designing an optimized DEFC system. The current DEFC literature shows that modeling studies on DEFCs are still in their early stages and are not able to describe the DEFC system as a whole. Potential DEFC applications and their current status are also presented.

  18. Electrochemical Properties of LaNi(sub 5-x)Ge(sub x) Alloys in Ni-MH Batteries

    NASA Technical Reports Server (NTRS)

    Bowman, R. C., Jr.; Witham, C.

    1997-01-01

    Electrochemical studies were performed on LaNi(sub 5-x)Ge(sub x) metal hydride alloys with 0 <= x <= 0.5. We carried out single-electrode studies to understand the effects of the Ge substituent on the hydrogen absorption characteristics, the electrochemical capacity, and the electrochemical kinetics of hydrogen absorption and desorption.

  19. Interfacial characteristics of propylene carbonate and validation of simulation models for electrochemical applications

    NASA Astrophysics Data System (ADS)

    You, Xinli

    Supercapacitors have occupy an indispensable role in today's energy storage systems due to their high power density and long life. The introduction of car- bon nanotube (CNT) forests as electrode offers the possibility of nano-scale design and high capacitance. We have performed molecular dynamics simulations on a CNT forest-based electrochemical double-layer capacitor (EDLC) and a widely used electrolyte solution (tetra-ethylammonium tetra-fluoroborate in propylene carbonate, TEABF4 /PC). We compare corresponding primitive model and atomically detailed model of TEABF4 /P, emphasizing the significance of ion clustering in electrolytes. The molecular dynamic simulation results suggests that the arrangement of closest neigh- bors leads to the formation of cation-anion chains or rings. Fuoss's discussion of ion-pairing model provides the approximation for a primitive model of 1-1 electrolyte is not broadly satisfactory for both primitive and atomically detailed cases. A more general Poisson statistical assumption is shown to be satisfactory when coordina- tion numbers are low, as is likely to be the case when ion-pairing initiates. We examined the Poisson-based model over a range of concentrations for both models of TEABF4 /P, and the atomically detailed model results identified solvent-separated nearest-neighbor ion-pairs. Large surface areas plays an essential role in nanomaterial properties, which calls for an accurate description of interfaces through modeling. We studied propylene carbonate, a widely used solvent in EDLC systems. PC wets graphite with a contact angle of 31°. The MD simulation model reproduced this contact angle after reduction 40% of the strength of graphite-C atom Lennard-Jones interactions with the solvent. The critical temperature of PC was accurately evaluated by extrapolating the PC liquid-vapor surface tensions. PC molecules tend to lie flat on the PC liquid-vapor surface, and project the propyl carbon toward the vapor phase. Liquid PC simulations also provide basic data for construction of accurate information to assist in device- level modeling of EDLCs. The most serious uncertainty with previous simulations of CNT based EDLCs was definition of the actual composition of the pores. Therefore, direct simulations of filling of CNT forest based electrochemical double-layer capacitors with TEABF4 /P solution was performed. Those calculation characterize the charging and discharg- ing process, including rates of charging responses, the possibility of bubble forma- tion, and kinetic properties with confinement. The mobilities of ions and solvent was investigated through mean square displacement (MSD) and velocity autocorrela- tion functions (VACF). The memory kernel was extracted from VACF by discretized linear-equation solving and a specialized Fourier transform method, results implies the existence of dielectric friction. With the interest in chemical features of EDLCs, a multi-scale theory was de- veloped to embed high resolution ab initio molecular dynamics (AIMD) methods into studies of EDLCs. This theory was based on McMillan-Mayer theory, potential dis- tribution approach, and quasi-chemical theory. The quasi-chemical theory allow us to break-up the free energies into packing, outer-shell and chemical contributions, where the last part can be done by AIMD directly. For the primitive model of TEABF4 /P, Gaussian statistical models are effective for these outer-shell contributions. And the Gaussian approximation is more efficient than the Bennett method in achieving an accurate mean activity coefficient.

  20. Static and Dynamic Measurement of Dopamine Adsorption in Carbon Fiber Microelectrodes Using Electrochemical Impedance Spectroscopy.

    PubMed

    Rivera-Serrano, Nilka; Pagan, Miraida; Colón-Rodríguez, Joanisse; Fuster, Christian; Vélez, Román; Almodovar-Faria, Jose; Jiménez-Rivera, Carlos; Cunci, Lisandro

    2018-02-06

    In this study, electrochemical impedance spectroscopy was used for the first time to study the adsorption of dopamine in carbon fiber microelectrodes. In order to show a proof-of-concept, static and dynamic measurements were taken at potentials ranging from -0.4 to 0.8 V versus Ag|AgCl to demonstrate the versatility of this technique to study dopamine without the need of its oxidation. We used electrochemical impedance spectroscopy and single frequency electrochemical impedance to measure different concentrations of dopamine as low as 1 nM. Moreover, the capacitance of the microelectrodes surface was found to decrease due to dopamine adsorption, which is dependent on its concentration. The effect of dissolved oxygen and electrochemical oxidation of the surface in the detection of dopamine was also studied. Nonoxidized and oxidized carbon fiber microelectrodes were prepared and characterized by optical microscopy, scanning electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. Optimum working parameters of the electrodes, such as frequency and voltage, were obtained for better measurement. Electrochemical impedance of dopamine was determined at different concentration, voltages, and frequencies. Finally, dynamic experiments were conducted using a flow cell and single frequency impedance in order to study continuous and real-time measurements of dopamine.

  1. Electrochemical study of aluminum corrosion in boiling high purity water

    NASA Technical Reports Server (NTRS)

    Draley, J. E.; Legault, R. A.

    1969-01-01

    Electrochemical study of aluminum corrosion in boiling high-purity water includes an equation relating current and electrochemical potential derived on the basis of a physical model of the corrosion process. The work involved an examination of the cathodic polarization behavior of 1100 aluminum during aqueous oxidation.

  2. Elucidation of the Biological Redox Chemistry of Purines Using Electrochemical Techniques.

    ERIC Educational Resources Information Center

    Dryhurst, Glenn; And Others

    1983-01-01

    Electrochemical studies can give insights into the chemical aspects of enzymatic and in vivo redox reactions of naturally occurring organic compounds. This is illustrated by studies of the electrochemical oxidation of the purinem uric acid. The discussion is limited to information at pH 7 or greater. (JN)

  3. Electrochemical Performance of Ni-MOFs for Supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Yujuan; Song, Lili; Han, Yinghui; Wang, Guangyou

    2018-03-01

    In this work, the Ni-MOFs of electrode material has been synthesized, characterized and studied for the electrochemical properties of electrode materials. The effects of the doping amount of Ni, calcination temperature and time were studied in detail. The results suggested that the electrochemical properties were obviously improved by the Ni-MOFs of electrode material and the best preparation conditions can also improve the electrochemical properties of electrode materials. These results open a way for the design of tailored MOFs as electrode materials for supercapacitors.

  4. Effect of carbon nano tube working electrode thickness on charge transport kinetics and photo-electrochemical characteristics of dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Gacemi, Yahia; Cheknane, Ali; Hilal, Hikmat S.

    2018-02-01

    Physiochemical processes at the photo-electrode and the counter electrode of dye sensitized solar cells (DSSCs) involving having carbon nanotubes (CNTs) instead of the TiO2 layer, within the working electrode, are simulated in this work. Attention is paid to find the effect of CNT layer thickness on photo-electrochemical (PEC) characteristics of the CNT-DSSCs. Comparison with other conventional TiO2-DSSC systems, taking into account the working electrode film thickness, is also described here. To achieve these goals, a model is presented to explain charge transport and electron recombination which involve electron photo-excitation in dye molecules, injection of electrons from the excited dye to CNT working electrode conduction band, diffusion of electrons inside the CNT electrode, charge transfer between oxidized dye and (I-) and recombination of electrons. The simulation is based on solving non-linear equations using the Newton-Raphson numerical method. This concept is proposed for modelling numerical Faradaic impedance at the photo-electrode and the platinum counter electrode. It then simulates the cell impedance spectrum describing the locus of the three semicircles in the Nyquist diagram. The transient equivalent circuit model is also presented based on optimizing current-voltage curves of CNT-DSSCs so as to optimize the fill factor (FF) and conversion efficiency (η). The results show that the simulated characteristics of CNT-DSSCs, with different active CNT layer thicknesses, are superior to conventional TiO2-DSSCs.

  5. A network thermodynamic two-port element to represent the coupled flow of salt and current. Improved alternative for the equivalent circuit.

    PubMed Central

    Mikulecky, D C

    1979-01-01

    A two-port for coupled salt and current flow is created by using the network thermodynamic approach in the same manner as that for coupled solute and volume flow (Mikulecky et al., 1977b; Mikulecky, 1977). This electrochemical two-port has distinct advantages over the equivalent circuit representation and overcomes difficulties pointed out by Finkelstein and Mauro (1963). The electrochemical two-port is used to produce a schematic diagram of the coupled flows through a tissue. The network is superimposable on the tissue morphology and preserves the physical qualities of the flows and forces in each part of an organized structure (e.g., an epithelium). The topological properties are manipulated independently from the constitutive (flow-force) relations. The constitutive relations are chosen from a number of alternatives depending on the detail and rigor desired. With the topology and constitutive parameters specified, the steady-state behavior is simulated with a network simulation program. By using capacitance to represent the filling and depletion of compartments, as well as the traditional electrical capacitances, time-dependent behavior is also simulated. Nonlinear effects arising from the integration of equations describing local behavior (e.g., the Nernst-Planck equations) are dealt with explicitly. The network thermodynamic approach provides a simple, straightforward method for representing a system diagrammatically and then simulating the system's behavior from the diagram with a minimum of mathematical manipulation. PMID:262391

  6. X-ray photoelectron spectroscopy and electrochemical studies of mild steel FeE500 passivation in concrete simulated water

    NASA Astrophysics Data System (ADS)

    Miserque, F.; Huet, B.; Azou, G.; Bendjaballah, D.; L'Hostis, V.

    2006-11-01

    In the context of the prediction of the long-term behaviour of reinforced concrete structures involved in the nuclear waste storage, the corrosion mechanisms of steels have to be assessed. When mild steel rebars are embedded in concrete, the chemical environment of the reinforcement is progressively modified, due to the carbonation of the concrete matrix. This modification leads to the variation of iron oxides properties formed at the steel/concrete interface, and the active corrosion can be initiated. The aim of this study is to evaluate the passivation behaviour and to provide insights into the depassivation of mild steel in concrete pore solution. In a young concrete, due to the alkalinity of the interstitial solution, steel reinforcement remains passive. Immersion tests of mild steel substrate in various alkaline solutions (from pH 13 to 10) have been performed. Due to the low thickness of the corrosion layers formed, X-ray photoelectron spectroscopy has been used to characterize them. In the passive domain, the corrosion products are similar for the various solutions. The corrosion layer is composed of a mixture of Fe3+ and Fe2+. A similar approach is used to determine the depassivation mechanism. The effect of various components such as carbonates, sulfates and silicates resulting from the dissolution of minerals of cement during the carbonation process is investigated. In addition to the surface analysis, the evolution of the electrochemical behaviour as function of the solution nature (pH) is evaluated with the help of electrochemical measurements (free corrosion potential, cyclic voltamperometry).

  7. The electrochemical generation of useful chemical species from lunar materials

    NASA Technical Reports Server (NTRS)

    Tsai, Kan J.; Kuchynka, Daniel J.; Sammells, Anthony F.

    1989-01-01

    The current status of work on an electrochemical technology for the simultaneous generation of oxygen and lithium from a Li2O containing molten salt (Li2O-LiCl-LiF) is discussed. The electrochemical cell utilizes an oxygen vacancy conducting solid electrolyte, yttria-stabilized zirconia, to effect separation between the oxygen evolving and lithium reduction half-cell reactions. The cell, which operates at 700 to 800 C, possesses rapid electrode kinetics at the lithium-alloy electrode with exchange current density values being greater than 60 mA/sq cm, showing high reversibility for this reaction. When used in the electrolytic mode, lithium produced at the negative electrode would be continuously removed from the cell for later use (under lunar conditions) as an easily storable reducting agent (compared to H2) for the chemical refining of lunar ores via the general reaction: 2Li + MO yields Li2O + M where MO represents a lunar ore. Emphasis to this time has been on the simulated lunar ore ilmenite (FeTiO3), which we have found becomes chemically reduced by Li at 432 C. Furthermore, both Fe2O3 and TiO2 have been reduced by Li to give the corresponding metal. This electrochemical approach provides a convenient route for producing metals under lunar conditions and oxygen for the continuous maintenance of human habitats on the Moon's surface. Because of the high reversibility of this electrochemical system, it has also formed the basis for the lithium-oxygen secondary battery. This secondary lithium-oxygen battery system posses the highest theoretical energy density yet investigated.

  8. The electrochemical generation of useful chemical species from lunar materials

    NASA Astrophysics Data System (ADS)

    Tsai, Kan J.; Kuchynka, Daniel J.; Sammells, Anthony F.

    1989-03-01

    The current status of work on an electrochemical technology for the simultaneous generation of oxygen and lithium from a Li2O containing molten salt (Li2O-LiCl-LiF) is discussed. The electrochemical cell utilizes an oxygen vacancy conducting solid electrolyte, yttria-stabilized zirconia, to effect separation between the oxygen evolving and lithium reduction half-cell reactions. The cell, which operates at 700 to 800 C, possesses rapid electrode kinetics at the lithium-alloy electrode with exchange current density values being greater than 60 mA/sq cm, showing high reversibility for this reaction. When used in the electrolytic mode, lithium produced at the negative electrode would be continuously removed from the cell for later use (under lunar conditions) as an easily storable reducting agent (compared to H2) for the chemical refining of lunar ores via the general reaction: 2Li + MO yields Li2O + M where MO represents a lunar ore. Emphasis to this time has been on the simulated lunar ore ilmenite (FeTiO3), which we have found becomes chemically reduced by Li at 432 C. Furthermore, both Fe2O3 and TiO2 have been reduced by Li to give the corresponding metal. This electrochemical approach provides a convenient route for producing metals under lunar conditions and oxygen for the continuous maintenance of human habitats on the Moon's surface. Because of the high reversibility of this electrochemical system, it has also formed the basis for the lithium-oxygen secondary battery. This secondary lithium-oxygen battery system posses the highest theoretical energy density yet investigated.

  9. Semi-empirical long-term cycle life model coupled with an electrolyte depletion function for large-format graphite/LiFePO4 lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Park, Joonam; Appiah, Williams Agyei; Byun, Seoungwoo; Jin, Dahee; Ryou, Myung-Hyun; Lee, Yong Min

    2017-10-01

    To overcome the limitation of simple empirical cycle life models based on only equivalent circuits, we attempt to couple a conventional empirical capacity loss model with Newman's porous composite electrode model, which contains both electrochemical reaction kinetics and material/charge balances. In addition, an electrolyte depletion function is newly introduced to simulate a sudden capacity drop at the end of cycling, which is frequently observed in real lithium-ion batteries (LIBs). When simulated electrochemical properties are compared with experimental data obtained with 20 Ah-level graphite/LiFePO4 LIB cells, our semi-empirical model is sufficiently accurate to predict a voltage profile having a low standard deviation of 0.0035 V, even at 5C. Additionally, our model can provide broad cycle life color maps under different c-rate and depth-of-discharge operating conditions. Thus, this semi-empirical model with an electrolyte depletion function will be a promising platform to predict long-term cycle lives of large-format LIB cells under various operating conditions.

  10. Time of Flight Electrochemistry: Diffusion Coefficient Measurements Using Interdigitated Array (IDA) Electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Fei; Kolesov, Grigory; Parkinson, Bruce A.

    2014-09-26

    A simple and straightforward method for measuring diffusion coefficients using interdigitated array (IDA) electrodes is reported. The method does not require that the exact electrode area be known but depends only the size of the gap between the IDA electrode pairs. Electroactive molecules produced at the generator electrode of the IDA by a voltage step or scan can diffuse to the collector electrode and the time delay before the current for the reverse electrochemical reaction is detected at the collector is used to calculate the diffusion coefficient. The measurement of the diffusion rate of Ru(NH3)6+2 in aqueous solution has beenmore » used as an example measuring diffusion coefficients using this method. Additionally, a digital simulation of the electrochemical response of the IDA electrodes was used to simulate the entire current/voltage/time behavior of the system and verify the experimentally measured diffusion coefficients. This work was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the Department of Energy, Office of Science, Office of Basic Energy Sciences.« less

  11. Creating an Electronic Reference and Information Database for Computer-aided ECM Design

    NASA Astrophysics Data System (ADS)

    Nekhoroshev, M. V.; Pronichev, N. D.; Smirnov, G. V.

    2018-01-01

    The paper presents a review on electrochemical shaping. An algorithm has been developed to implement a computer shaping model applicable to pulse electrochemical machining. For that purpose, the characteristics of pulse current occurring in electrochemical machining of aviation materials have been studied. Based on integrating the experimental results and comprehensive electrochemical machining process data modeling, a subsystem for computer-aided design of electrochemical machining for gas turbine engine blades has been developed; the subsystem was implemented in the Teamcenter PLM system.

  12. Electrochemical concentration measurements for multianalyte mixtures in simulated electrorefiner salt

    NASA Astrophysics Data System (ADS)

    Rappleye, Devin Spencer

    The development of electroanalytical techniques in multianalyte molten salt mixtures, such as those found in used nuclear fuel electrorefiners, would enable in situ, real-time concentration measurements. Such measurements are beneficial for process monitoring, optimization and control, as well as for international safeguards and nuclear material accountancy. Electroanalytical work in molten salts has been limited to single-analyte mixtures with a few exceptions. This work builds upon the knowledge of molten salt electrochemistry by performing electrochemical measurements on molten eutectic LiCl-KCl salt mixture containing two analytes, developing techniques for quantitatively analyzing the measured signals even with an additional signal from another analyte, correlating signals to concentration and identifying improvements in experimental and analytical methodologies. (Abstract shortened by ProQuest.).

  13. Silicon-based photonic crystals fabricated using proton beam writing combined with electrochemical etching method

    PubMed Central

    2012-01-01

    A method for fabrication of three-dimensional (3D) silicon nanostructures based on selective formation of porous silicon using ion beam irradiation of bulk p-type silicon followed by electrochemical etching is shown. It opens a route towards the fabrication of two-dimensional (2D) and 3D silicon-based photonic crystals with high flexibility and industrial compatibility. In this work, we present the fabrication of 2D photonic lattice and photonic slab structures and propose a process for the fabrication of 3D woodpile photonic crystals based on this approach. Simulated results of photonic band structures for the fabricated 2D photonic crystals show the presence of TE or TM gap in mid-infrared range. PMID:22824206

  14. Study on the Carbonation Behavior of Cement Mortar by Electrochemical Impedance Spectroscopy

    PubMed Central

    Dong, Biqin; Qiu, Qiwen; Xiang, Jiaqi; Huang, Canjie; Xing, Feng; Han, Ningxu

    2014-01-01

    A new electrochemical model has been carefully established to explain the carbonation behavior of cement mortar, and the model has been validated by the experimental results. In fact, it is shown by this study that the electrochemical impedance behavior of mortars varies in the process of carbonation. With the cement/sand ratio reduced, the carbonation rate reveals more remarkable. The carbonation process can be quantitatively accessed by a parameter, which can be obtained by means of the electrochemical impedance spectroscopy (EIS)-based electrochemical model. It has been found that the parameter is a function of carbonation depth and of carbonation time. Thereby, prediction of carbonation depth can be achieved. PMID:28788452

  15. Study on the Carbonation Behavior of Cement Mortar by Electrochemical Impedance Spectroscopy.

    PubMed

    Dong, Biqin; Qiu, Qiwen; Xiang, Jiaqi; Huang, Canjie; Xing, Feng; Han, Ningxu

    2014-01-03

    A new electrochemical model has been carefully established to explain the carbonation behavior of cement mortar, and the model has been validated by the experimental results. In fact, it is shown by this study that the electrochemical impedance behavior of mortars varies in the process of carbonation. With the cement/sand ratio reduced, the carbonation rate reveals more remarkable. The carbonation process can be quantitatively accessed by a parameter, which can be obtained by means of the electrochemical impedance spectroscopy (EIS)-based electrochemical model. It has been found that the parameter is a function of carbonation depth and of carbonation time. Thereby, prediction of carbonation depth can be achieved.

  16. Electrochemical reduction of carbon dioxide. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaConti, A.B.; Molter, T.M.; Zagaja, J.A.

    1986-05-01

    Many researchers have studied the electrochemical reduction of carbon dioxide and related organic species to form concentrated liquid/gaseous products in laboratory-scale hardware. Hamilton Standard has developed a high pressure SPE electrolysis cell capable of reducing carbon dioxide streams to form pure, concentrated alcohols, carboxylic acids, and other hydrocarbons. The process is unique in that the byproducts of reaction include oxygen and, under some test conditions water. In addition, a relatively simple test system was designed and constructed permitting both batch and semibatch type electrochemical reduction studies. In this study, cathode materials were developed which 1) had a characteristic high hydrogenmore » overvoltage, and 2) possessed the intrinsic affinity for electrochemical reduction of the carbon dioxide species. In addition, suitable anode electrocatalyst materials were identified. Studies involving the electrochemical reduction of carbon dioxide required the ability to identify and quantify reaction products obtained during cell evaluation. Gas chromatographic techniques were developed along with the establishment of ion chromatographic methods permitting the analysis of organic reaction products. Hamilton Standard has evaluated electrochemical carbon dioxide reduction cells under a variety of test conditions.« less

  17. Biomimetic supercontainers for size-selective electrochemical sensing of molecular ions

    NASA Astrophysics Data System (ADS)

    Netzer, Nathan L.; Must, Indrek; Qiao, Yupu; Zhang, Shi-Li; Wang, Zhenqiang; Zhang, Zhen

    2017-04-01

    New ionophores are essential for advancing the art of selective ion sensing. Metal-organic supercontainers (MOSCs), a new family of biomimetic coordination capsules designed using sulfonylcalix[4]arenes as container precursors, are known for their tunable molecular recognition capabilities towards an array of guests. Herein, we demonstrate the use of MOSCs as a new class of size-selective ionophores dedicated to electrochemical sensing of molecular ions. Specifically, a MOSC molecule with its cavities matching the size of methylene blue (MB+), a versatile organic molecule used for bio-recognition, was incorporated into a polymeric mixed-matrix membrane and used as an ion-selective electrode. This MOSC-incorporated electrode showed a near-Nernstian potentiometric response to MB+ in the nano- to micro-molar range. The exceptional size-selectivity was also evident through contrast studies. To demonstrate the practical utility of our approach, a simulated wastewater experiment was conducted using water from the Fyris River (Sweden). It not only showed a near-Nernstian response to MB+ but also revealed a possible method for potentiometric titration of the redox indicator. Our study thus represents a new paradigm for the rational design of ionophores that can rapidly and precisely monitor molecular ions relevant to environmental, biomedical, and other related areas.

  18. Study of Rust Effect on the Corrosion Behavior of Reinforcement Steel Using Impedance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bensabra, Hakim; Azzouz, Noureddine

    2013-12-01

    Most studies on corrosion of steel reinforcement in concrete are conducted on steel samples with polished surface (free of all oxides) in order to reproduce the same experimental conditions. However, before embedding in concrete, the steel bars are often covered with natural oxides (rust), which are formed during exposure to the atmosphere. The presence of this rust may affect the electrochemical behavior of steel rebar in concrete. In order to understand the effect of rust on the corrosion behavior of reinforcement steel, potentiodynamic and electrochemical impedance spectroscopy (EIS) tests were carried out in a simulated concrete pore solution using steel samples with two different surface conditions: polished and rusted samples. The obtained results have shown that the presence of rust on the steel bar has a negative effect on its corrosion behavior, with or without the presence of chlorides. This detrimental effect can be explained by the fact that the rust provokes a decrease of the electrolyte resistance at the metal-concrete interface and reduces the repassivating ability. In addition, the rust layer acts as a barrier against the hydroxyl ion diffusion, which prevents the realkalinization phenomenon.

  19. Effect of Initial State of Lithium on the Propensity for Dendrite Formation: A Theoretical Study

    DOE PAGES

    Barai, Pallab; Higa, Kenneth; Srinivasan, Venkat

    2016-12-17

    Mechanical constraints have been widely used experimentally to prevent the growth of dendrites within lithium metal. The only article known to the authors that tries to theoretically understand how mechanical forces prevent dendrite growth was published by Monroe and Newman [J. Electrochem. Soc., 150 (10) A1377 (2005)]. Based on the assumption that surface tension prevents the growth of interfacial roughness, Monroe and Newman considered pre-stressed conditions of the lithium electrodes. This scenario indicates that prevention of dendrite growth by mechanical means is only possible by using electrolytes with shear modulus at least two times larger than that of lithium metal.more » Here, a different scenario of relaxed lithium metal (without any pre-existing surface stresses) has been considered in the present analysis. Deposition of lithium due to electrochemical reaction at the lithium/electrolyte interface induces compressive stress at the electrode, the electrolyte, and the newly deposited lithium metal. Present simulations indicate that during operation at low current densities, the scenario of relaxed lithium leads to no dendrites. Rather, the present study points to the importance of including the effect of current distribution to accurately capture the mechanical forces needed to prevent dendrite growth.« less

  20. Effect of Initial State of Lithium on the Propensity for Dendrite Formation: A Theoretical Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barai, Pallab; Higa, Kenneth; Srinivasan, Venkat

    Mechanical constraints have been widely used experimentally to prevent the growth of dendrites within lithium metal. The only article known to the authors that tries to theoretically understand how mechanical forces prevent dendrite growth was published by Monroe and Newman [J. Electrochem. Soc., 150 (10) A1377 (2005)]. Based on the assumption that surface tension prevents the growth of interfacial roughness, Monroe and Newman considered pre-stressed conditions of the lithium electrodes. This scenario indicates that prevention of dendrite growth by mechanical means is only possible by using electrolytes with shear modulus at least two times larger than that of lithium metal.more » Here, a different scenario of relaxed lithium metal (without any pre-existing surface stresses) has been considered in the present analysis. Deposition of lithium due to electrochemical reaction at the lithium/electrolyte interface induces compressive stress at the electrode, the electrolyte, and the newly deposited lithium metal. Present simulations indicate that during operation at low current densities, the scenario of relaxed lithium leads to no dendrites. Rather, the present study points to the importance of including the effect of current distribution to accurately capture the mechanical forces needed to prevent dendrite growth.« less

  1. A Multi-Phase Based Fluid-Structure-Microfluidic interaction sensor for Aerodynamic Shear Stress

    NASA Astrophysics Data System (ADS)

    Hughes, Christopher; Dutta, Diganta; Bashirzadeh, Yashar; Ahmed, Kareem; Qian, Shizhi

    2014-11-01

    A novel innovative microfluidic shear stress sensor is developed for measuring shear stress through multi-phase fluid-structure-microfluidic interaction. The device is composed of a microfluidic cavity filled with an electrolyte liquid. Inside the cavity, two electrodes make electrochemical velocimetry measurements of the induced convection. The cavity is sealed with a flexible superhydrophobic membrane. The membrane will dynamically stretch and flex as a result of direct shear cross-flow interaction with the seal structure, forming instability wave modes and inducing fluid motion within the microfluidic cavity. The shear stress on the membrane is measured by sensing the induced convection generated by membrane deflections. The advantages of the sensor over current MEMS based shear stress sensor technology are: a simplified design with no moving parts, optimum relationship between size and sensitivity, no gaps such as those created by micromachining sensors in MEMS processes. We present the findings of a feasibility study of the proposed sensor including wind-tunnel tests, microPIV measurements, electrochemical velocimetry, and simulation data results. The study investigates the sensor in the supersonic and subsonic flow regimes. Supported by a NASA SBIR phase 1 contract.

  2. Electrochemical study of Type 304 and 316L stainless steels in simulated body fluids and cell cultures.

    PubMed

    Tang, Yee-Chin; Katsuma, Shoji; Fujimoto, Shinji; Hiromoto, Sachiko

    2006-11-01

    The electrochemical corrosion behaviour of Type 304 and 316L stainless steels was studied in Hanks' solution, Eagle's minimum essential medium (MEM), serum containing medium (MEM with 10% of fetal bovine serum) without cells, and serum containing medium with cells over a 1-week period. Polarization resistance measurements indicated that the stainless steels were resistant to Hanks' and MEM solutions. Type 304 was more susceptible to pitting corrosion than Type 316L in Hanks' and MEM solutions. The uniform corrosion resistance of stainless steels, determined by R(p), was lower in culturing medium than in Hanks' and MEM. The low corrosion resistance was due to surface passive film with less protective to reveal high anodic dissolution rate. When cells were present, the initial corrosion resistance was low, but gradually increased after 3 days, consistent with the trend of cell coverage. The presence of cells was found to suppress the cathodic reaction, that is, oxygen reduction, and increase the uniform corrosion resistance as a consequence. On the other hand, both Type 304 and 316L stainless steels became more susceptible to pitting corrosion when they were covered with cells.

  3. In vitro simulation of fretting-corrosion in hip implant modular junctions: The influence of pH.

    PubMed

    Royhman, Dmitry; Patel, Megha; Jacobs, Joshua J; Wimmer, Markus A; Hallab, Nadim J; Mathew, Mathew T

    2018-02-01

    The fretting-corrosion behavior of mixed metal contacts is affected by various mechanical and electrochemical parameters. Crevice conditions at the junction and patient-specific pathologies can affect the pH of the prosthetic environment. The main objective of this study is to understand the effect of pH variation at the stem/head junction of the hip implant under fretting corrosion exposure. We hypothesized that pH will have a significant influence on the fretting-corrosion behavior hip implant modular junctions. A custom-made setup was used to evaluate the fretting corrosion behavior of hip implant modular junctions. A Newborn calf serum solution (30 g/L protein content) was used to simulate the synovial fluid environment. A sinusoidal fretting motion, with a displacement amplitude of +50 µm, was applied to the Ti alloy rod. The effects of pathology driven, periprosthetic pH variation were simulated at four different pH levels (3.0, 4.5, 6.0 and 7.6). Electrochemical and mechanical properties were evaluated before, during, and after the applied fretting motion. The impedance of the system was increased in response to the fretting motion. The hysteresis tangential load/displacement behavior was not affected by pH level. The worn surfaces of CoCrMo pins exhibited the presence of tribolayer or organic deposits, in the pH 4.5 group, which may explain the lower drop in potential and mass loss observed in that group. Mechanically dominated wear mechanisms, namely, adhesive wear was shown in the pH 7.6 group, which may account for a higher potential drop and metal content loss. This study suggests that the fretting-corrosion mechanisms in hip implant are affected by the pH levels of the surrounding environment and patient-specific factors. Copyright © 2017. Published by Elsevier Ltd.

  4. Electrochemically formed 3D hierarchical thin films of cobalt-manganese (Co-Mn) hexacyanoferrate hybrids for electrochemical applications

    NASA Astrophysics Data System (ADS)

    Alam Venugopal, Narendra Kumar; Joseph, James

    2016-02-01

    Here we report the feasibility of forming 3D nanostructured hexacyanoferates of Cobalt and Manganese (Co-MnHCF) on GC surface by a facile electrochemical method. This 3D architecture on glassy carbon electrode characterised systematically by voltammetry and other physical characterisation techniques like Field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and Fourier transform Infrared spectroscopy (FTIR) etc,. Electrochemical Quartz crystal microbalance (EQCM) studies helped out to calculate the total mass change during Co-MnHCF formation. Electrochemical studies reveal that the formal redox potentials of both Co and MnHCF films remained close to that of newly formed Co-MnHCF hybrid films. These 3D modified films were successfully applied for two different electrochemical applications i) For pseudocapacitor studies in KNO3 medium ii) Investigated the electrocatalytic behaviour of redox film towards water oxidation reaction in alkaline medium. Electrochemical performances of newly formed Co-MnHCF are compared with their individual transition metal (Co, Mn) hexacyanoferrates. The resulting material shows a specific capacitance of 350 F g-1 through its fast reversible redox reaction of electrochemically formed Co-MnHCF modified film. Interestingly we showed the overpotential of 450 mV (from its thermodynamic voltage 1.2 V) to attain its optimum current density of 10 mA cm-2 for O2 evolution in alkaline medium.

  5. Comparative study of the antioxidant capacity and polyphenol content of Douro wines by chemical and electrochemical methods.

    PubMed

    Rebelo, M J; Rego, R; Ferreira, M; Oliveira, M C

    2013-11-01

    A comparative study of the antioxidant capacity and polyphenols content of Douro wines by chemical (ABTS and Folin-Ciocalteau) and electrochemical methods (cyclic voltammetry and differential pulse voltammetry) was performed. A non-linear correlation between cyclic voltammetric results and ABTS or Folin-Ciocalteau data was obtained if all types of wines (white, muscatel, ruby, tawny and red wines) are grouped together in the same correlation plot. In contrast, a very good linear correlation was observed between the electrochemical antioxidant capacity determined by differential pulse voltammetry and the radical scavenging activity of ABTS. It was also found that the antioxidant capacity of wines evaluated by the electrochemical methods (expressed as gallic acid equivalents) depend on background electrolyte of the gallic acid standards, type of electrochemical signal (current or charge) and electrochemical technique. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Bicanonical ab Initio Molecular Dynamics for Open Systems.

    PubMed

    Frenzel, Johannes; Meyer, Bernd; Marx, Dominik

    2017-08-08

    Performing ab initio molecular dynamics simulations of open systems, where the chemical potential rather than the number of both nuclei and electrons is fixed, still is a challenge. Here, drawing on bicanonical sampling ideas introduced two decades ago by Swope and Andersen [ J. Chem. Phys. 1995 , 102 , 2851 - 2863 ] to calculate chemical potentials of liquids and solids, an ab initio simulation technique is devised, which introduces a fictitious dynamics of two superimposed but otherwise independent periodic systems including full electronic structure, such that either the chemical potential or the average fractional particle number of a specific chemical species can be kept constant. As proof of concept, we demonstrate that solvation free energies can be computed from these bicanonical ab initio simulations upon directly superimposing pure bulk water and the respective aqueous solution being the two limiting systems. The method is useful in many circumstances, for instance for studying heterogeneous catalytic processes taking place on surfaces where the chemical potential of reactants rather than their number is controlled and opens a pathway toward ab initio simulations at constant electrochemical potential.

  7. Origin of electrochemical, structural and transport properties in non-aqueous zinc electrolytes

    DOE PAGES

    Han, Sang -Don; Rajput, Nav Nidhi; Qu, Xiaohui; ...

    2016-01-14

    Through coupled experimental analysis and computational techniques, we uncover the origin of anodic stability for a range of nonaqueous zinc electrolytes. By examination of electrochemical, structural, and transport properties of nonaqueous zinc electrolytes with varying concentrations, it is demonstrated that the acetonitrile Zn(TFSI) 2, acetonitrile Zn(CF 3SO 3) 2, and propylene carbonate Zn(TFSI) 2 electrolytes can not only support highly reversible Zn deposition behavior on a Zn metal anode (≥99% of Coulombic efficiency), but also provide high anodic stability (up to ~3.8 V). The predicted anodic stability from DFT calculations is well in accordance with experimental results, and elucidates thatmore » the solvents play an important role in anodic stability of most electrolytes. Molecular dynamics (MD) simulations were used to understand the solvation structure (e.g., ion solvation and ionic association) and its effect on dynamics and transport properties (e.g., diffusion coefficient and ionic conductivity) of the electrolytes. Lastly, the combination of these techniques provides unprecedented insight into the origin of the electrochemical, structural, and transport properties in nonaqueous zinc electrolytes« less

  8. A novel method for identification of lithium-ion battery equivalent circuit model parameters considering electrochemical properties

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Lu, Jinling; Yuan, Shifei; Yang, Jun; Zhou, Xuan

    2017-03-01

    This paper proposes a novel parameter identification method for the lithium-ion (Li-ion) battery equivalent circuit model (ECM) considering the electrochemical properties. An improved pseudo two-dimension (P2D) model is established on basis of partial differential equations (PDEs), since the electrolyte potential is simplified from the nonlinear to linear expression while terminal voltage can be divided into the electrolyte potential, open circuit voltage (OCV), overpotential of electrodes, internal resistance drop, and so on. The model order reduction process is implemented by the simplification of the PDEs using the Laplace transform, inverse Laplace transform, Pade approximation, etc. A unified second order transfer function between cell voltage and current is obtained for the comparability with that of ECM. The final objective is to obtain the relationship between the ECM resistances/capacitances and electrochemical parameters such that in various conditions, ECM precision could be improved regarding integration of battery interior properties for further applications, e.g., SOC estimation. Finally simulation and experimental results prove the correctness and validity of the proposed methodology.

  9. Integration of thermocouple microelectrode in the scanning electrochemical microscope at variable temperatures: simultaneous temperature and electrochemical imaging and its kinetic studies.

    PubMed

    Pan, He; Zhang, Hailing; Lai, Junhui; Gu, Xiaoxin; Sun, Jianjun; Tang, Jing; Jin, Tao

    2017-03-24

    We describe herein a method for the simultaneous measurement of temperature and electrochemical signal with a new type of thermocouple microelectrode. The thermocouple microelectrode can be used not only as a thermometer but also as a scanning electrochemical microscope (SECM) tip in the reaction between tip-generated bromine and a heated Cu sample. The influence of temperature on the SECM imaging process and the related kinetic parameters have been studied, such as kinetic constant and activation energy.

  10. Integration of thermocouple microelectrode in the scanning electrochemical microscope at variable temperatures: simultaneous temperature and electrochemical imaging and its kinetic studies

    PubMed Central

    Pan, He; Zhang, Hailing; Lai, Junhui; Gu, Xiaoxin; Sun, Jianjun; Tang, Jing; Jin, Tao

    2017-01-01

    We describe herein a method for the simultaneous measurement of temperature and electrochemical signal with a new type of thermocouple microelectrode. The thermocouple microelectrode can be used not only as a thermometer but also as a scanning electrochemical microscope (SECM) tip in the reaction between tip-generated bromine and a heated Cu sample. The influence of temperature on the SECM imaging process and the related kinetic parameters have been studied, such as kinetic constant and activation energy. PMID:28338002

  11. Electrochemistry of Anilines. II. Oxidation to Dications, Electrochemical and uv/vis Spectroelectrochemical Investigation.

    DTIC Science & Technology

    1984-01-06

    NO-1 ARCUASSII 004-3K-40F /G74N L 2874 Lj6l 1.0= = aM22 1.2 1.1 1. 1. MICROCOP ’ RP’-OLLI’ION liT[* CHART %".NA. H~.Nt I -’AN, All - ,- A t$ CUeavr...The cyclic voltammogram of the methoxy compound -has been simulated by the orthogonal collocation method. Products of bulk electrolysis have been...spectroelectrochemical means. The cyclic volta-mocra. of the methoxy compound has been simulated by the orthoccna. collocation method. Products of bulk

  12. Modelling and validation of Proton exchange membrane fuel cell (PEMFC)

    NASA Astrophysics Data System (ADS)

    Mohiuddin, A. K. M.; Basran, N.; Khan, A. A.

    2018-01-01

    This paper is the outcome of a small scale fuel cell project. Fuel cell is an electrochemical device that converts energy from chemical reaction to electrical work. Proton Exchange Membrane Fuel Cell (PEMFC) is one of the different types of fuel cell, which is more efficient, having low operational temperature and fast start up capability results in high energy density. In this study, a mathematical model of 1.2 W PEMFC is developed and simulated using MATLAB software. This model describes the PEMFC behaviour under steady-state condition. This mathematical modeling of PEMFC determines the polarization curve, power generated, and the efficiency of the fuel cell. Simulation results were validated by comparing with experimental results obtained from the test of a single PEMFC with a 3 V motor. The performance of experimental PEMFC is little lower compared to simulated PEMFC, however both results were found in good agreement. Experiments on hydrogen flow rate also been conducted to obtain the amount of hydrogen consumed to produce electrical work on PEMFC.

  13. Oxygen reduction on a Pt(111) catalyst in HT-PEM fuel cells by density functional theory

    NASA Astrophysics Data System (ADS)

    Sun, Hong; Li, Jie; Almheiri, Saif; Xiao, Jianyu

    2017-08-01

    The oxygen reduction reaction plays an important role in the performance of high-temperature proton exchange membrane (HT-PEM) fuel cells. In this study, a molecular dynamics model, which is based on the density functional theory and couples the system's energy, the exchange-correlation energy functional, the charge density distribution function, and the simplified Kohn-Sham equation, was developed to simulate the oxygen reduction reaction on a Pt(111) surface. Additionally, an electrochemical reaction system on the basis of a four-electron reaction mechanism was also developed for this simulation. The reaction path of the oxygen reduction reaction, the product structure of each reaction step and the system's energy were simulated. It is found that the first step reaction of the first hydrogen ion with the oxygen molecule is the controlling step of the overall reaction. Increasing the operating temperature speeds up the first step reaction rate and slightly decreases its reaction energy barrier. Our results provide insight into the working principles of HT-PEM fuel cells.

  14. A study of X100 pipeline steel passivation in mildly alkaline bicarbonate solutions using electrochemical impedance spectroscopy under potentiodynamic conditions and Mott-Schottky

    NASA Astrophysics Data System (ADS)

    Gadala, Ibrahim M.; Alfantazi, Akram

    2015-12-01

    The key steps involved in X100 pipeline steel passivation in bicarbonate-based simulated soil solutions from the pre-passive to transpassive potential regions have been analyzed here using a step-wise anodizing-electrochemical impedance spectroscopy (EIS) routine. Pre-passive steps involve parallel dissolution-adsorption in early stages followed by clear diffusion-adsorption control shortly before iron hydroxide formation. Aggressive NS4 chlorides/sulfate promote steel dissolution whilst inhibiting diffusion in pre-passive steps. Diffusive and adsorptive effects remain during iron hydroxide formation, but withdraw shortly thereafter during its removal and the development of the stable iron carbonate passive layer. Passive layer protectiveness is evaluated using EIS fitting, current density analysis, and correlations with semiconductive parameters, consistently revealing improved robustness in colder, bicarbonate-rich, chloride/sulfate-free conditions. Ferrous oxide formation at higher potentials results in markedly lower impedances with disordered behavior, and the involvement of the iron(III) valence state is observed in Mott-Schottky tests exclusively for 75 °C conditions.

  15. Effect of povidone-iodine addition on the corrosion behavior of cp-Ti in normal saline.

    PubMed

    Bhola, Rahul; Bhola, Shaily M; Mishra, Brajendra; Olson, David L

    2010-05-01

    The effect of various concentrations of povidone-iodine (PI) on the corrosion behavior of a commercially pure titanium alloy (Ti-1) has been investigated in normal saline solution to simulate the povidone-iodine addition in an oral environment. The open circuit potential, electrochemical impedance spectroscopy and potentiodynamic polarization measurements have been used to characterize the electrochemical phenomena occurring on the alloy surface. The open circuit potential values for Ti-1 in various concentrations of PI shift considerably towards noble direction as compared to pure normal saline. In the potentiodynamic polarization curve for Ti-1 in various solutions, the cathodic current density has increased for all concentrations of PI and the anodic current density has decreased. Only the 0.1% PI concentration is able to inhibit corrosion of Ti-1 in normal saline and the other higher concentrations studied, accelerate corrosion. The EIS data for Ti-1 in normal saline and in various concentrations of PI follows a one time constant circuit, suggesting the formation of a single passive film on Ti-1 which is not altered by the addition of PI to normal saline.

  16. Degradation of magnesium and its alloys: dependence on the composition of the synthetic biological media.

    PubMed

    Mueller, Wolf-Dieter; de Mele, Monica Fernández Lorenzo; Nascimento, Maria Lucia; Zeddies, Miriam

    2009-08-01

    Magnesium and its alloys are highly degradable metals that are potentially useful as biomaterials, especially in orthopaedic and cardiovascular applications. However, the in vivo corrosion has proved to be too high. Because of the complexity of in vivo conditions, a careful study of the corrosion of magnesium in synthetic solutions that simulate the in vivo environment is necessary as a first approach to predict the actual in vivo situation. The aim of this work was to evaluate the influence of the electrolyte composition on the corrosion behavior of magnesium and two Mg-alloys in synthetic biological media. Pure magnesium and its alloys (AZ31 and LAE442) were employed in the experiments. Electrochemical potentiodynamic polarization curves were recorded in sodium chloride and PBS electrolytes with different chloride ion and albumin concentration. Optical and SEM observations complemented by EDX analysis were made. The results showed that magnesium corrosion is localized in chloride- and albumin-containing buffer solutions. They also showed that the chloride concentration and the presence of buffer and protein strongly affect the electrochemical behavior of magnesium and magnesium alloys.

  17. The role of ionic liquid electrolyte in an aluminum–graphite electrochemical cell

    DOE PAGES

    Agiorgousis, Michael L.; Sun, Yi -Yang; Zhang, Shengbai

    2017-02-17

    Using first-principles calculations and molecular dynamics simulation, we study the working mechanism in an aluminum–graphite electrochemical cell, which was recently reported to exhibit attractive performance. We exclude the possibility of Al 3+ cation intercalation into graphite as in standard Li-ion batteries. Instead, we show that the AlCl 4 – anion intercalation mechanism is thermodynamically feasible. By including the ionic liquid electrolyte in the overall redox reaction, we are able to reproduce the high voltage observed in experiment. The active involvement of electrolyte in the reaction suggests that the evaluation of energy density needs to take the electrolyte into consideration. Here,more » our proposed structural model is consistent with the new peaks appearing in X-ray diffraction from the intercalation compound. The high rate capability is explained by the ultralow diffusion barriers of the AlCl 4 intercalant. With the clarified working mechanism, it becomes clear that the high voltage of the Al–graphite cell is a result of the thermodynamic instability of the AlCl 4-intercalated graphite.« less

  18. First-principles calculation of electronic energy level alignment at electrochemical interfaces

    NASA Astrophysics Data System (ADS)

    Azar, Yavar T.; Payami, Mahmoud

    2017-08-01

    Energy level alignment at solid-solvent interfaces is an important step in determining the properties of electrochemical systems. The positions of conduction and valence band edges of a semiconductor are affected by its environment. In this study, using first-principles DFT calculation, we have determined the level shifts of the semiconductors TiO2 and ZnO at the interfaces with MeCN and DMF solvent molecules. The level shifts of semiconductor are obtained using the potential difference between the clean and exposed surfaces of asymmetric slabs. In this work, neglecting the effects of present ions in the electrolyte solution, we have shown that the solvent molecules give rise to an up-shift for the levels, and the amount of this shift varies with coverage. It is also shown that the shapes of density of states do not change sensibly near the gap. Molecular dynamics simulations of the interface have shown that at room temperatures the semiconductor surface is not fully covered by the solvent molecules, and one must use intermediate values in an static calculations.

  19. Pitting Corrosion Behaviour of New Corrosion-Resistant Reinforcement Bars in Chloride-Containing Concrete Pore Solution

    PubMed Central

    Liu, Yao; Chu, Hong-yan; Wang, Danqian; Ma, Han; Sun, Wei

    2017-01-01

    In this study, the pitting behaviour of a new corrosion-resistant alloy steel (CR) is compared to that of low-carbon steel (LC) in a simulated concrete pore solution with a chloride concentration of 5 mol/L. The electrochemical behaviour of the bars was characterised using linear polarisation resistance (LPR) and electrochemical impedance spectroscopy (EIS). The pitting profiles were detected by reflective digital holographic microscopy (DHM), scanning electron microscopy (SEM), and the chemical components produced in the pitting process were analysed by X-ray energy dispersive spectroscopy (EDS). The results show that the CR bars have a higher resistance to pitting corrosion than the LC bars. This is primarily because of the periodic occurrence of metastable pitting during pitting development. Compared to the pitting process in the LC bars, the pitting depth grows slowly in the CR bars, which greatly reduces the risk of pitting. The possible reason for this result is that the capability of the CR bars to heal the passivation film helps to restore the metastable pits to the passivation state. PMID:28777327

  20. Apatite layer growth on glassy Zr48Cu36Al8Ag8 sputtered titanium for potential biomedical applications

    NASA Astrophysics Data System (ADS)

    Thanka Rajan, S.; Karthika, M.; Bendavid, Avi; Subramanian, B.

    2016-04-01

    The bioactivity of magnetron sputtered thin film metallic glasses (TFMGs) of Zr48Cu36Al8Ag8 (at.%) on titanium substrates was tested for bio implant applications. The structural and elemental compositions of TFMGs were analyzed by XRD, XPS and EDAX. X-ray diffraction analysis displayed a broad hump around the incident angle of 30-50°, suggesting that the coatings possess a glassy structure. An in situ crystal growth of hydroxyapatite was observed by soaking the sputtered specimen in simulated body fluid (SBF). The nucleation and growth of a calcium phosphate (Ca-P) bone-like hydroxyapatite on Zr48Cu36Al8Ag8 (at.%) TFMG from SBF was investigated by using XRD, AFM and SEM. The presence of calcium and phosphorus elements was confirmed by EDAX and XPS. In vitro electrochemical corrosion studies indicated that the Zr-based TFMG coating sustain in the stimulated body-fluid (SBF), exhibiting superior corrosion resistance with a lower corrosion penetration rate and electrochemical stability than the bare crystalline titanium substrate.

  1. Electrochemical aspects of copper atmospheric corrosion in the presence of sodium chloride

    DOE PAGES

    Schindelholz, Eric John; Cong, Hongbo; Jove-Colon, Carlos F.; ...

    2018-04-26

    Here, this study describes the evolving state of electrolyte and corrosion processes associated with sodium chloride on copper at the initial stage of corrosion and the critical implications of this behavior on controlling kinetics and damage distributions. Sodium chloride droplets were placed on copper in humid conditions and the resulting electrolyte properties, corrosion products and damage were characterized over time using time-lapse imaging, micro Raman spectroscopy, TOF-SIMS and optical profilometry. Within minutes of NaCl droplet placement, NaOH-rich films resultant from oxygen reduction advanced stepwise from the droplets, leaving behind concentric trenching attack patterns suggestive of moving anode-cathode pairs at themore » alkaline film front. Corrosion attack under these spreading alkaline films was up to 10x greater than under the original NaCl drops. Furthermore, solid Cu 2Cl(OH) 3 shells formed over the surface of the NaCl drops within hours of exposure. Thermodynamic modeling along with immersed electrochemical experiments in simulated droplet and films electrolytes were used to rationalize this behavior and build a description of the rapidly evolving corroding system.« less

  2. Electrochemical aspects of copper atmospheric corrosion in the presence of sodium chloride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schindelholz, Eric John; Cong, Hongbo; Jove-Colon, Carlos F.

    Here, this study describes the evolving state of electrolyte and corrosion processes associated with sodium chloride on copper at the initial stage of corrosion and the critical implications of this behavior on controlling kinetics and damage distributions. Sodium chloride droplets were placed on copper in humid conditions and the resulting electrolyte properties, corrosion products and damage were characterized over time using time-lapse imaging, micro Raman spectroscopy, TOF-SIMS and optical profilometry. Within minutes of NaCl droplet placement, NaOH-rich films resultant from oxygen reduction advanced stepwise from the droplets, leaving behind concentric trenching attack patterns suggestive of moving anode-cathode pairs at themore » alkaline film front. Corrosion attack under these spreading alkaline films was up to 10x greater than under the original NaCl drops. Furthermore, solid Cu 2Cl(OH) 3 shells formed over the surface of the NaCl drops within hours of exposure. Thermodynamic modeling along with immersed electrochemical experiments in simulated droplet and films electrolytes were used to rationalize this behavior and build a description of the rapidly evolving corroding system.« less

  3. An experimental and modeling study of isothermal charge/discharge behavior of commercial Ni-MH cells

    NASA Astrophysics Data System (ADS)

    Pan, Y. H.; Srinivasan, V.; Wang, C. Y.

    In this study, a previously developed nickel-metal hydride (Ni-MH) battery model is applied in conjunction with experimental characterization. Important geometric parameters, including the active surface area and micro-diffusion length for both electrodes, are measured and incorporated in the model. The kinetic parameters of the oxygen evolution reaction are also characterized using constant potential experiments. Two separate equilibrium equations for the Ni electrode, one for charge and the other for discharge, are determined to provide a better description of the electrode hysteresis effect, and their use results in better agreement of simulation results with experimental data on both charge and discharge. The Ni electrode kinetic parameters are re-calibrated for the battery studied. The Ni-MH cell model coupled with the updated electrochemical properties is then used to simulate a wide range of experimental discharge and charge curves with satisfactory agreement. The experimentally validated model is used to predict and compare various charge algorithms so as to provide guidelines for application-specific optimization.

  4. Local probing of ionic diffusion by electrochemical strain microscopy: Spatial resolution and signal formation mechanisms

    NASA Astrophysics Data System (ADS)

    Morozovska, A. N.; Eliseev, E. A.; Balke, N.; Kalinin, S. V.

    2010-09-01

    Electrochemical insertion-deintercalation reactions are typically associated with significant change in molar volume of the host compound. This strong coupling between ionic currents and strains underpins image formation mechanisms in electrochemical strain microscopy (ESM), and allows exploring the tip-induced electrochemical processes locally. Here we analyze the signal formation mechanism in ESM, and develop the analytical description of operation in frequency and time domains. The ESM spectroscopic modes are compared to classical electrochemical methods including potentiostatic and galvanostatic intermittent titration, and electrochemical impedance spectroscopy. This analysis illustrates the feasibility of spatially resolved studies of Li-ion dynamics on the sub-10-nm level using electromechanical detection.

  5. An Anisotropic Multiphysics Model for Intervertebral Disk

    PubMed Central

    Gao, Xin; Zhu, Qiaoqiao; Gu, Weiyong

    2016-01-01

    Intervertebral disk (IVD) is the largest avascular structure in human body, consisting of three types of charged hydrated soft tissues. Its mechanical behavior is nonlinear and anisotropic, due mainly to nonlinear interactions among different constituents within tissues. In this study, a more realistic anisotropic multiphysics model was developed based on the continuum mixture theory and employed to characterize the couplings of multiple physical fields in the IVD. Numerical simulations demonstrate that this model is capable of systematically predicting the mechanical and electrochemical signals within the disk under various loading conditions, which is essential in understanding the mechanobiology of IVD. PMID:27099402

  6. A three-ions model of electrodiffusion kinetics in a nanochannel

    NASA Astrophysics Data System (ADS)

    Sebechlebská, Táňa; Neogrády, Pavel; Valent, Ivan

    2016-10-01

    Nanoscale electrodiffusion transport is involved in many electrochemical, technological and biological processes. Developments in computer power and numerical algorithms allow for solving full time-dependent Nernst-Planck and Poisson equations without simplifying approximations. We simulate spatio-temporal profiles of concentration and electric potential changes after a potential jump in a 10 nm channel with two cations (with opposite concentration gradients and different mobilities) and one anion (of uniform concentration). The temporal dynamics shows three exponential phases and damped oscillations of the electric potential. Despite the absence of surface charges in the studied model, an asymmetric current-voltage characteristic was observed.

  7. Caprylate Salts Based on Amines as Volatile Corrosion Inhibitors for Metallic Zinc: Theoretical and Experimental Studies

    PubMed Central

    Valente, Marco A. G.; Teixeira, Deiver A.; Azevedo, David L.; Feliciano, Gustavo T.; Benedetti, Assis V.; Fugivara, Cecílio S.

    2017-01-01

    The interaction of volatile corrosion inhibitors (VCI), caprylate salt derivatives from amines, with zinc metallic surfaces is assessed by density functional theory (DFT) computer simulations, electrochemical impedance (EIS) measurements and humid chamber tests. The results obtained by the different methods were compared, and linear correlations were obtained between theoretical and experimental data. The correlations between experimental and theoretical results showed that the molecular size is the determining factor in the inhibition efficiency. The models used and experimental results indicated that dicyclohexylamine caprylate is the most efficient inhibitor. PMID:28620602

  8. Thin calcium phosphate coatings on titanium by electrochemical deposition in modified simulated body fluid.

    PubMed

    Peng, Ping; Kumar, Sunil; Voelcker, Nicolas H; Szili, Endre; Smart, Roger St C; Griesser, Hans J

    2006-02-01

    Adherent and optically semitransparent thin calcium phosphate (CaP) films were electrochemically deposited on titanium substrates in a modified simulated body fluid at 37 degrees C. Coatings deposited by using periodic pulsed potentials showed better adhesion and better mechanical properties than coatings deposited with use of a constant potential. Scanning electron microscopy was used to study the morphology of the coatings. The coatings displayed a polydispersed porous structure with pores in the range of a few nanometers to 1 mum. Furthermore, X-ray diffractometry and the O(1s) satellite peaks in X-ray photoelectron spectroscopy indicated that the coatings possessed a similar surface chemistry to that of natural bone minerals. These results were confirmed by inductively coupled plasma optical emission spectrometry, which yielded a Ca:P ratio of 1.65, close to that of hydroxyapatite. Contact mode atomic force microscopy (AFM) showed the average thickness of the coatings was in the order of 200 nm. Root-mean-square (RMS) roughness values, also derived by AFM, were shown to be much higher on the titanium-CaP surfaces in comparison with untreated titanium substrates, with RMS values of about 300 and 110 nm, respectively. Cell culture experiments showed that the CaP surfaces are nontoxic to MG63 osteoblastic cells in vitro and were able to support cell growth for up to 4 days, outperforming the untreated titanium surface in a direct comparison. These easily prepared coatings show promise for hard-tissue biomaterials. (c) 2005 Wiley Periodicals, Inc.

  9. "Unexpected" behaviour of the internal resistance of a vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Rudolph, S.; Schröder, U.; Bayanov, I. M.; Hage-Packhäuser, S.

    2016-02-01

    This article presents the results of experimental and theoretical studies of energy losses owing to the internal resistance of vanadium redox flow batteries (VRFBs). A dependence of the internal cell resistance (ICR) on the electric current was measured and calculated. During the cyclic operation of a test battery, the internal resistance was halved by increasing the electric current from 3 A to 9 A. This is due to a strongly non-linear dependence of an over-potential of the electrochemical reactions on the current density. However, the energy efficiency does not increase due to a squared dependence of the energy losses on the increasing electric current. The energy efficiency of the test battery versus the electric current was measured and simulated. The deviation between the simulation results and experimental data is less than ±3.5%.

  10. Ion association at discretely-charged dielectric interfaces: Giant charge inversion

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Yong; Wu, Jianzhong

    2017-07-01

    Giant charge reversal has been identified for the first time by Monte Carlo simulation for a discretely charged surface in contact with a trivalent electrolyte solution. It takes place regardless of the surface charge density under study and the monovalent salt. In stark contrast to earlier predictions based on the 2-dimensional Wigner crystal model to describe strong correlation of counterions at the macroion surface, we find that giant charge reversal reflects an intricate interplay of ionic volume effects, electrostatic correlations, surface charge heterogeneity, and the dielectric response of the confined fluids. While the novel phenomenon is yet to be confirmed with experiment, the simulation results appear in excellent agreement with a wide range of existing observations in the subregime of charge inversion. Our findings may have far-reaching implications to understanding complex electrochemical phenomena entailing ionic fluids under dielectric confinements.

  11. PILOT SCALE REACTOR FOR ELECTROCHEMICAL DECHLORINATION OF MODEL CHLORINATED CONTAMINANTS

    EPA Science Inventory

    Electrochemical degradation (ECD) is a promising technology for in-situ remediation of diversely contaminated submarine matrices, by the application of low level DC electric fields. This study, prompted by successful bench-scale electrochemical dechlorination of Trichloroe...

  12. Characterization of Copper Corrosion Products in Drinking Water by Combining Electrochemical and Surface Analyses

    EPA Science Inventory

    This study focuses on the application of electrochemical approaches to drinking water copper corrosion problems. Applying electrochemical approaches combined with copper solubility measurements, and solid surface analysis approaches were discussed. Tafel extrapolation and Electro...

  13. Characterization of Copper Corrosion Products Formed in Drinking Water by Combining Electrochemical and Surface Analyses

    EPA Science Inventory

    This study focuses on the application of electrochemical approaches to drinking water copper corrosion problems. Applying electrochemical approaches combined with copper solubility measurements, and solid surface analysis approaches were discussed. Tafel extrapolation and Electro...

  14. Electrochemistry at Nanometer-Scaled Electrodes

    ERIC Educational Resources Information Center

    Watkins, John J.; Bo Zhang; White, Henry S.

    2005-01-01

    Electrochemical studies using nanometer-scaled electrodes are leading to better insights into electrochemical kinetics, interfacial structure, and chemical analysis. Various methods of preparing electrodes of nanometer dimensions are discussed and a few examples of their behavior and applications in relatively simple electrochemical experiments…

  15. Numerical Simulation of the Diffusion Processes in Nanoelectrode Arrays Using an Axial Neighbor Symmetry Approximation.

    PubMed

    Peinetti, Ana Sol; Gilardoni, Rodrigo S; Mizrahi, Martín; Requejo, Felix G; González, Graciela A; Battaglini, Fernando

    2016-06-07

    Nanoelectrode arrays have introduced a complete new battery of devices with fascinating electrocatalytic, sensitivity, and selectivity properties. To understand and predict the electrochemical response of these arrays, a theoretical framework is needed. Cyclic voltammetry is a well-fitted experimental technique to understand the undergoing diffusion and kinetics processes. Previous works describing microelectrode arrays have exploited the interelectrode distance to simulate its behavior as the summation of individual electrodes. This approach becomes limited when the size of the electrodes decreases to the nanometer scale due to their strong radial effect with the consequent overlapping of the diffusional fields. In this work, we present a computational model able to simulate the electrochemical behavior of arrays working either as the summation of individual electrodes or being affected by the overlapping of the diffusional fields without previous considerations. Our computational model relays in dividing a regular electrode array in cells. In each of them, there is a central electrode surrounded by neighbor electrodes; these neighbor electrodes are transformed in a ring maintaining the same active electrode area than the summation of the closest neighbor electrodes. Using this axial neighbor symmetry approximation, the problem acquires a cylindrical symmetry, being applicable to any diffusion pattern. The model is validated against micro- and nanoelectrode arrays showing its ability to predict their behavior and therefore to be used as a designing tool.

  16. Electrolysis Performance Improvement Concept Study (EPICS) flight experiment phase C/D

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Lee, M. G.

    1995-01-01

    The overall purpose of the Electrolysis Performance Improvement Concept Study flight experiment is to demonstrate and validate in a microgravity environment the Static Feed Electrolyzer concept as well as investigate the effect of microgravity on water electrolysis performance. The scope of the experiment includes variations in microstructural characteristics of electrodes and current densities in a static feed electrolysis cell configuration. The results of the flight experiment will be used to improve efficiency of the static feed electrolysis process and other electrochemical regenerative life support processes by reducing power and expanding the operational range. Specific technologies that will benefit include water electrolysis for propulsion, energy storage, life support, extravehicular activity, in-space manufacturing and in-space science in addition to other electrochemical regenerative life support technologies such as electrochemical carbon dioxide and oxygen separation, electrochemical oxygen compression and water vapor electrolysis. The Electrolysis Performance Improvement Concept Study flight experiment design incorporates two primary hardware assemblies: the Mechanical/Electrochemical Assembly and the Control/Monitor Instrumentation. The Mechanical/Electrochemical Assembly contains three separate integrated electrolysis cells along with supporting pressure and temperature control components. The Control/Monitor Instrumentation controls the operation of the experiment via the Mechanical/Electrochemical Assembly components and provides for monitoring and control of critical parameters and storage of experimental data.

  17. EXAFS/XANES studies of plutonium-loaded sodalite/glass waste forms

    NASA Astrophysics Data System (ADS)

    Richmann, Michael K.; Reed, Donald T.; Kropf, A. Jeremy; Aase, Scott B.; Lewis, Michele A.

    2001-09-01

    A sodalite/glass ceramic waste form is being developed to immobilize highly radioactive nuclear wastes in chloride form, as part of an electrochemical cleanup process. Two types of simulated waste forms were studied: where the plutonium was alone in an LiCl/KCl matrix and where simulated fission-product elements were added representative of the electrometallurgical treatment process used to recover uranium from spent nuclear fuel also containing plutonium and a variety of fission products. Extended X-ray absorption fine structure spectroscopy (EXAFS) and X-ray absorption near-edge spectroscopy (XANES) studies were performed to determine the location, oxidation state, and particle size of the plutonium within these waste form samples. Plutonium was found to segregate as plutonium(IV) oxide with a crystallite size of at least 4.8 nm in the non-fission-element case and 1.3 nm with fission elements present. No plutonium was observed within the sodalite in the waste form made from the plutonium-loaded LiCl/KCl eutectic salt. Up to 35% of the plutonium in the waste form made from the plutonium-loaded simulated fission-product salt may be segregated with a heavy-element nearest neighbor other than plutonium or occluded internally within the sodalite lattice.

  18. Potential-sensing electrochemical atomic force microscopy for in operando analysis of water-splitting catalysts and interfaces

    NASA Astrophysics Data System (ADS)

    Nellist, Michael R.; Laskowski, Forrest A. L.; Qiu, Jingjing; Hajibabaei, Hamed; Sivula, Kevin; Hamann, Thomas W.; Boettcher, Shannon W.

    2018-01-01

    Heterogeneous electrochemical phenomena, such as (photo)electrochemical water splitting to generate hydrogen using semiconductors and/or electrocatalysts, are driven by the accumulated charge carriers and thus the interfacial electrochemical potential gradients that promote charge transfer. However, measurements of the "surface" electrochemical potential during operation are not generally possible using conventional electrochemical techniques, which measure/control the potential of a conducting electrode substrate. Here we show that the nanoscale conducting tip of an atomic force microscope cantilever can sense the surface electrochemical potential of electrocatalysts in operando. To demonstrate utility, we measure the potential-dependent and thickness-dependent electronic properties of cobalt (oxy)hydroxide phosphate (CoPi). We then show that CoPi, when deposited on illuminated haematite (α-Fe2O3) photoelectrodes, acts as both a hole collector and an oxygen evolution catalyst. We demonstrate the versatility of the technique by comparing surface potentials of CoPi-decorated planar and mesoporous haematite and discuss viability for broader application in the study of electrochemical phenomena.

  19. MnO2 prepared by hydrothermal method and electrochemical performance as anode for lithium-ion battery.

    PubMed

    Feng, Lili; Xuan, Zhewen; Zhao, Hongbo; Bai, Yang; Guo, Junming; Su, Chang-Wei; Chen, Xiaokai

    2014-01-01

    Two α-MnO2 crystals with caddice-clew-like and urchin-like morphologies are prepared by the hydrothermal method, and their structure and electrochemical performance are characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), galvanostatic cell cycling, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). The morphology of the MnO2 prepared under acidic condition is urchin-like, while the one prepared under neutral condition is caddice-clew-like. The identical crystalline phase of MnO2 crystals is essential to evaluate the relationship between electrochemical performances and morphologies for lithium-ion battery application. In this study, urchin-like α-MnO2 crystals with compact structure have better electrochemical performance due to the higher specific capacity and lower impedance. We find that the relationship between electrochemical performance and morphology is different when MnO2 material used as electrochemical supercapacitor or as anode of lithium-ion battery. For lithium-ion battery application, urchin-like MnO2 material has better electrochemical performance.

  20. Role of Bismuth in the Electrokinetics of Silicon Photocathodes for Solar Rechargeable Vanadium Redox Flow Batteries.

    PubMed

    Flox, Cristina; Murcia-López, Sebastián; Carretero, Nina M; Ros, Carles; Morante, Juan R; Andreu, Teresa

    2018-01-10

    The ability of crystalline silicon to photoassist the V 3+ /V 2+ cathodic reaction under simulated solar irradiation, combined with the effect of bismuth have led to important electrochemical improvements. Besides the photovoltage supplied by the photovoltaics, additional decrease in the onset potentials, high reversibility of the V 3+ /V 2+ redox pair, and improvement in the electrokinetics were attained thanks to the addition of bismuth. In fact, Bi 0 deposition has shown to slightly decrease the photocurrent, but the significant enhancement in the charge transfer, reflected in the overall electrochemical performance clearly justifies its use as additive in a photoassisted system for maximizing the efficiency of solar charge to battery. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Influence of carbides and microstructure of CoCrMo alloys on their metallic dissolution resistance.

    PubMed

    Valero-Vidal, C; Casabán-Julián, L; Herraiz-Cardona, I; Igual-Muñoz, A

    2013-12-01

    CoCrMo alloys are passive and biocompatible materials widely used as joint replacements due to their good mechanical properties and corrosion resistance. Electrochemical behaviour of thermal treated CoCrMo alloys with different carbon content in their bulk alloy composition has been analysed. Both the amount of carbides in the CoCrMo alloys and the chemical composition of the simulated body fluid affect the electrochemical properties of these biomedical alloys, thus passive dissolution rate was influenced by the mentioned parameters. Lower percentage of carbon in the chemical composition of the bulk alloy and thermal treatments favour the homogenization of the surface (less amount of carbides), thus increasing the availability of Cr to form the oxide film and improving the corrosion resistance of the alloy. © 2013.

  2. Influence of hydroxyapatite on the corrosion resistance of the Ti-13Nb-13Zr alloy.

    PubMed

    Duarte, Laís T; Biaggio, Sonia R; Rocha-Filho, Romeu C; Bocchi, Nerilso

    2009-05-01

    Electrochemical analyses on the biocompatible alloy Ti-13Nb-13Zr wt% in an electrolyte simulating physiological medium (PBS solution) are reported. Hydroxyapatite (HA) films were obtained on the alloy by electrodeposition at constant cathodic current. Samples of the alloy covered with an anodic-oxide film or an anodic-oxide/HA film were analyzed by open circuit potential and electrochemical impedance spectroscopy measurements during 180 days in the PBS electrolyte. Analyses of the open-circuit potential (E (oc)) values indicated that the oxide/HA film presents better protection characteristics than the oxide only. This behavior was corroborated by the higher film resistances obtained from impedance data, indicating that, besides improving the alloy osteointegration, the hydroxyapatite film may also increase the corrosion protection of the biomaterial.

  3. New amine-type inhibitors for protecting low-carbon steels in hydrogen sulfide-containing neutral media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podobaev, N.I.; Atanasyan, T.K.; Lyashenko, L.F.

    The protecting action of polethylenepolyamine (PEPA) products was carried out by gravimetric and electrochemical methods in aerated and de-aerated 35 NaCl solutions and simulated waste water containing CaCl/sub 2/, NaCl, NaHCO/sub 3/, Na/sub 2/SO/sub 4/, and KBr, with addition of H/sub 2/S. Gravimetric and electrochemical measurements were carried out and results are presented. The influence on tanning agents on the physicomechanical and photographic properties of the positive emulsion Unibrom, Normal at thermostated aging for two days was shown. The results lead to the conclusion that the use of animals as tanning agents of the emulsion lead to improvement of themore » physicomechanical properties of the emulsion light sensitive layers.« less

  4. Electrochemical state and internal variables estimation using a reduced-order physics-based model of a lithium-ion cell and an extended Kalman filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stetzel, KD; Aldrich, LL; Trimboli, MS

    2015-03-15

    This paper addresses the problem of estimating the present value of electrochemical internal variables in a lithium-ion cell in real time, using readily available measurements of cell voltage, current, and temperature. The variables that can be estimated include any desired set of reaction flux and solid and electrolyte potentials and concentrations at any set of one-dimensional spatial locations, in addition to more standard quantities such as state of charge. The method uses an extended Kalman filter along with a one-dimensional physics-based reduced-order model of cell dynamics. Simulations show excellent and robust predictions having dependable error bounds for most internal variables.more » (C) 2014 Elsevier B.V. All rights reserved.« less

  5. Electrochemical performance and interfacial investigation on Si composite anode for lithium ion batteries in full cell

    NASA Astrophysics Data System (ADS)

    Shobukawa, Hitoshi; Alvarado, Judith; Yang, Yangyuchen; Meng, Ying Shirley

    2017-08-01

    Lithium ion batteries (LIBs) containing silicon (Si) as a negative electrode have gained much attention recently because they deliver high energy density. However, the commercialization of LIBs with Si anode is limited due to the unstable electrochemical performance associated with expansion and contraction during electrochemical cycling. This study investigates the electrochemical performance and degradation mechanism of a full cell containing Si composite anode and LiFePO4 (lithium iron phosphate (LFP)) cathode. Enhanced electrochemical cycling performance is observed when the full cell is cycled with fluoroethylene carbonate (FEC) additive compared to the standard electrolyte. To understand the improvement in the electrochemical performance, x-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM) are used. Based on the electrochemical behavior, FEC improves the reversibility of lithium ion diffusion into the solid electrolyte interphase (SEI) on the Si composite anode. Moreover, XPS analysis demonstrates that the SEI composition generated from the addition of FEC consists of a large amount of LiF and less carbonate species, which leads to better capacity retention over 40 cycles. The effective SEI successively yields more stable capacity retention and enhances the reversibility of lithium ion diffusion through the interphase of the Si anode, even at higher discharge rate. This study contributes to a basic comprehension of electrochemical performance and SEI formation of LIB full cells with a high loading Si composite anode.

  6. Electrochemical CO2 and O2 separation for crew and plant environments

    NASA Technical Reports Server (NTRS)

    Lee, M. G.; Grigger, David J.; Foerg, Sandra L.

    1992-01-01

    The study describes a closed ecosystem concept that includes electrochemical CO2 and O2 separators and a moisture condenser/separator for maintaining CO2, O2, and humidity levels in the crew and plant habitats at their respective optimal conditions. The key processes of this concept are aqueous electrolyte-based electrochemical CO2 and O2 separations. The principles and cell characteristics of these electrochemical gas separation processes are described. Also presented are descriptions of test hardware and the test results of the Electrochemical CO2 Separator (ECS) and the Electrochemical O2 Separator (EOS), and the combination of the ECS and the EOS. The test results proved that the ECS and EOS processes for the combined concept are viable.

  7. A perspective on the structural studies of inner membrane electrochemical potential-driven transporters.

    PubMed

    Lemieux, M Joanne

    2008-09-01

    Electrochemical potential-driven transporters represent a vast array of proteins with varied substrate specificities. While diverse in size and substrate specificity, they are all driven by electrochemical potentials. Over the past five years there have been increasing numbers of X-ray structures reported for this family of transporters. Structural information is available for five subfamilies of electrochemical potential-driven transporters. No structural information exists for the remaining 91 subfamilies. In this review, the various subfamilies of electrochemical potential-driven transporters are discussed. The seven reported structures for the electrochemical potential-driven transporters and the methods for their crystallization are also presented. With a few exceptions, overall crystallization trends have been very similar for the transporters despite their differences in substrate specificity and topology. Also discussed is why the structural studies on these transporters were successful while others are not as fruitful. With the plethora of transporters with unknown structures, this review provides incentive for crystallization of transporters in the remaining subfamilies for which no structural information exists.

  8. Solar promoted azo dye degradation and energy production in the bio-photoelectrochemical system with a g-C3N4/BiOBr heterojunction photocathode

    NASA Astrophysics Data System (ADS)

    Hou, Yanping; Gan, Yuanyuan; Yu, Zebin; Chen, Xixi; Qian, Lun; Zhang, Boge; Huang, Lirong; Huang, Jun

    2017-12-01

    In this study, a single-chamber bio-photoelectrochemical system (BPES), integrating advantages of bioelectrochemical system and photocatalysis process, is developed using a g-C3N4/BiOBr heterojunction photocathode for methyl orange (MO) degradation and simultaneous energy recovery. Photocatalytic activities of g-C3N4/BiOBr, g-C3N4 and BiOBr are characterized by UV-vis diffuse reflectance spectra (UV-vis DRS) and Photoluminescence (PL) spectra; and electrochemical activities of photocathodes are examined by linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS). Results show that with an applied voltage of 0.8 V and under simulated solar irradiation, MO decolorization with g-C3N4/BiOBr photocathode reaches 97.8% within 4 h, higher than those with g-C3N4 (85.3%) and BiOBr (87.3%) photocathodes. Likewise, higher hydrogen production rate (143.8 L m-3d-1) is observed using g-C3N4/BiOBr photocathode; while values for g-C3N4 and BiOBr photocathodes are 124.3 L m-3d-1 and 117.1 L m-3d-1, respectively. PL and EIS reveal that superior performance of g-C3N4/BiOBr photocathode can be attributed to more efficient separation of photogenerated electron-hole pairs, lower resistance and better charge transfer. Synergistic effect occurs among biological, electrochemical and photocatalytic processes in illuminated BPES for MO removal. Photocathode optimization and system stability evaluation are conducted. This study demonstrates that the BPES holds great potential for efficient refractory organics degradation and energy production.

  9. Drastic Effect of the Peptide Sequence on the Copper-Binding Properties of Tripeptides and the Electrochemical Behaviour of Their Copper(II) Complexes.

    PubMed

    Mena, Silvia; Mirats, Andrea; Caballero, Ana B; Guirado, Gonzalo; Barrios, Leoní A; Teat, Simon J; Rodriguez-Santiago, Luis; Sodupe, Mariona; Gamez, Patrick

    2018-04-06

    The binding and electrochemical properties of the complexes Cu II -HAH, Cu II -HWH, Cu II -Ac-HWH, Cu II -HHW, and Cu II -WHH have been studied by using NMR and UV/Vis spectroscopies, CV, and density functional calculations. The results obtained highlight the importance of the peptidic sequence on the coordination properties and, consequently, on the redox properties of their Cu II complexes. For Cu II -HAH and Cu II -HWH, no cathodic processes are observed up to -1.2 V; that is, the complexes exhibit very high stability towards copper reduction. This behaviour is associated with the formation of very stable square-planar (5,5,6)-membered chelate rings (ATCUN motif), which enclose two deprotonated amides. In contrast, for non-ATCUN Cu II -Ac-HWH, Cu II -HHW complexes, simulations seem to indicate that only one deprotonated amide is enclosed in the coordination sphere. In these cases, the main electrochemical feature is a reductive irreversible one electron-transfer process from Cu II to Cu I , accompanied with structural changes of the metal coordination sphere and reprotonation of the amide. Finally, for Cu II -WHH, two major species have been detected: one at low pH (<5), with no deprotonated amides, and another one at high pH (>10) with an ATCUN motif, both species coexisting at intermediate pH. The present study shows that the use of CV, using glassy carbon as a working electrode, is an ideal and rapid tool for the determination of the redox properties of Cu II metallopeptides. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Electrochemical inactivation of cyanobacteria and microcystin degradation using a boron-doped diamond anode - A potential tool for cyanobacterial bloom control.

    PubMed

    Meglič, Andrej; Pecman, Anja; Rozina, Tinkara; Leštan, Domen; Sedmak, Bojan

    2017-03-01

    Cyanobacterial blooms are global phenomena that can occur in calm and nutrient-rich (eutrophic) fresh and marine waters. Human exposure to cyanobacteria and their biologically active products is possible during water sports and various water activities, or by ingestion of contaminated water. Although the vast majority of harmful cyanobacterial products are confined to the interior of the cells, these are eventually released into the surrounding water following natural or artificially induced cell death. Electrochemical oxidation has been used here to damage cyanobacteria to halt their proliferation, and for microcystin degradation under in-vitro conditions. Partially spent Jaworski growth medium with no addition of supporting electrolytes was used. Electrochemical treatment resulted in the cyanobacterial loss of cell-buoyancy regulation, cell proliferation arrest, and eventual cell death. Microcystin degradation was studied separately in two basic modes of treatment: batch-wise flow, and constant flow, for electrolytic-cell exposure. Batch-wise exposure simulates treatment under environmental conditions, while constant flow is more appropriate for the study of boron-doped diamond electrode efficacy under laboratory conditions. The effectiveness of microcystin degradation was established using high-performance liquid chromatography-photodiode array detector analysis, while the biological activities of the products were estimated using a colorimetric protein phosphatase-1 inhibition assay. The results indicate potential for the application of electro-oxidation methods for the control of bloom events by taking advantage of specific intrinsic ecological characteristics of bloom-forming cyanobacteria. The applicability of the use of boron-doped diamond electrodes in remediation of water exposed to cyanobacteria bloom events is discussed. Copyright © 2016. Published by Elsevier B.V.

  11. On the reasons for low sulphur utilization in the lithium-sulphur batteries

    NASA Astrophysics Data System (ADS)

    Kolosnitsyn, V. S.; Kuzmina, E. V.; Karaseva, E. V.

    2015-01-01

    This work is to study the reasons for the relatively low efficiency of sulphur reduction (about 75%) in lithium-sulphur batteries. The two main reasons for that are suggested to be: the relatively low electrochemical activity of low order lithium polysulphides and blocking of the carbon framework of the sulphur electrode by insoluble products of electrochemical reactions - sulphur and lithium sulphide. The electrochemical activity of lithium polysulphides with different composition (Li2Sn, n = 2-6) has been studied in 1 M solutions of CF3SO3Li in sulfolane. It is shown that lithium polysulphides including lithium disulphide are able to electrochemically reduce with efficiency close to 100%. The electrochemical activity of lithium polysulphides decreases with the order. The order of lithium polysulphides affects the value of voltage of discharge plateaus but not the efficiency of sulphur reducing in the lithium polysulphides species. The relatively low efficiency of sulphur reduction in the lithium-sulphur batteries is more likely caused by blocking of carbon particles in the sulphur electrode by insoluble products of electrochemical reactions (sulphur and lithium sulphide). This prevents the electrochemical reduction of low order lithium polysulphides and especially lithium disulphide.

  12. Nature of the Electrochemical Properties of Sulphur Substituted LiMn2O4 Spinel Cathode Material Studied by Electrochemical Impedance Spectroscopy

    PubMed Central

    Bakierska, Monika; Świętosławski, Michał; Dziembaj, Roman; Molenda, Marcin

    2016-01-01

    In this work, nanostructured LiMn2O4 (LMO) and LiMn2O3.99S0.01 (LMOS1) spinel cathode materials were comprehensively investigated in terms of electrochemical properties. For this purpose, electrochemical impedance spectroscopy (EIS) measurements as a function of state of charge (SOC) were conducted on a representative charge and discharge cycle. The changes in the electrochemical performance of the stoichiometric and sulphur-substituted lithium manganese oxide spinels were examined, and suggested explanations for the observed dependencies were given. A strong influence of sulphur introduction into the spinel structure on the chemical stability and electrochemical characteristic was observed. It was demonstrated that the significant improvement in coulombic efficiency and capacity retention of lithium cell with LMOS1 active material arises from a more stable solid electrolyte interphase (SEI) layer. Based on EIS studies, the Li ion diffusion coefficients in the cathodes were estimated, and the influence of sulphur on Li+ diffusivity in the spinel structure was established. The obtained results support the assumption that sulphur substitution is an effective way to promote chemical stability and the electrochemical performance of LiMn2O4 cathode material. PMID:28773819

  13. Development of a Non-Invasive Biomonitoring Approach to Determine Exposure to the Organophosphorus Insecticide Chlorpyrifos in Rat Saliva

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timchalk, Chuck; Campbell, James A.; Liu, Guodong

    2007-03-01

    Abstract Non-invasive biomonitoring approaches are being developed using reliable portable analytical systems to quantify dosimetry utilizing readily obtainable body fluids, such as saliva. In the current study, rats were given single oral gavage doses (1, 10 or 50 mg/kg) of the insecticide chlorpyrifos (CPF), saliva and blood were collected from groups of animals (4/time-point) at 3, 6, and 12 hr post-dosing, and the samples were analyzed for the CPF metabolite trichlorpyridinol (TCP). Trichlorpyridinol was detected in both blood and saliva at all doses and the TCP concentration in blood exceeded saliva, although the kinetics in blood and saliva were comparable.more » A physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model for CPF incorporated a compartment model to describe the time-course of TCP in blood and saliva. The model adequately simulated the experimental results over the dose ranges evaluated. A rapid and sensitive sequential injection (SI) electrochemical immunoassay was developed to monitor TCP, and the reported detection limit for TCP in water was 6 ng/L. Computer model simulation in the range of the Allowable Daily Intake (ADI) or Reference Dose (RfD) for CPF (0.01-0.003 mg/kg/day) suggest that the electrochemical immunoassay had adequate sensitivity to detect and quantify TCP in saliva at these low exposure levels. To validate this approach further studies are needed to more fully understand the pharmacokinetics of CPF and TCP excretion in saliva. The utilization of saliva as a biomonitoring matrix, coupled to real-time quantitation and PBPK/PD modeling represents a novel approach with broad application for evaluating both occupational and environmental exposures to insecticides.« less

  14. In situ electrochemical detection of embryonic stem cell differentiation.

    PubMed

    Yea, Cheol-Heon; An, Jeung Hee; Kim, Jungho; Choi, Jeong-Woo

    2013-06-20

    Stem cell sensors have emerged as a promising technique to electrochemically monitor the functional status and viability of stem cells. However, efficient electrochemical analysis techniques are required for the development of effective electrochemical stem cell sensors. In the current study, we report a newly developed electrochemical cyclic voltammetry (CV) system to determine the status of mouse embryonic stem (ES) cells. 1-Naphthly phosphate (1-NP), which was dephosphorylated by alkaline phosphatase into a 1-naphthol on an undifferentiated mouse ES cell, was used as a substrate to electrochemically monitor the differentiation status of mouse ES cells. The peak current in the cyclic voltammetry of 1-NP increased linearly with the concentration of pure 1-NP (R(2)=0.9623). On the other hand, the peak current in the electrochemical responses of 1-NP decreased as the number of undifferentiated ES cells increased. The increased dephosphorylation of 1-NP to 1-naphthol made a decreased electrochemical signal. Non-toxicity of 1-NP was confirmed. In conclusion, the proposed electrochemical analysis system can be applied to an electrical stem cell chip for diagnosis, drug detection and on-site monitoring. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Apparatus and method for controlling plating uniformity

    DOEpatents

    Hachman Jr., John T.; Kelly, James J.; West, Alan C.

    2004-10-12

    The use of an insulating shield for improving the current distribution in an electrochemical plating bath is disclosed. Numerical analysis is used to evaluate the influence of shield shape and position on plating uniformity. Simulation results are compared to experimental data for nickel deposition from a nickel--sulfamate bath. The shield is shown to improve the average current density at a plating surface.

  16. A Mini-Electrochemical System with Integrated Micropipet Tip and Pencil Graphite Electrode for Measuring Cytotoxicity.

    PubMed

    Wu, Dong-Mei; Guo, Xiao-Ling; Wang, Qian; Li, Jin-Lian; Cui, Ji-Wen; Zhou, Shi; Hao, Su-E

    2017-01-01

    A novel mini-electrochemical system has been developed for evaluating cytotoxicity of anticancer drugs based on trace cell samples. The mini-electrochemical system was integrated by using pencil graphite modified with threonine as working electrode, an Ag/AgCl reference electrode and a micropipet tip as electrochemical cell. The mini-electrochemical system dramatically reduces sample volumes from 500 μL in a traditional electrochemical system to 10 μL, and exhibits excellent electrocatalytic activity toward oxidation of purine from MCF-7 cells due to increased sensitivity provided by threonine. Moreover, the relationship between peak current and the cell concentration in the range from 3.0 × l0 3 to 7.0 × l0 6 cells/mL was studied, and a nonlinear exponential relationship between them was established over a wide concentration range. In evaluating the effect of anticancer drugs on cell viability, the results of drug cytotoxicity test based on cyclophosphamide were in close agreement with classical 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assays. The proposed device is so simple, cheap, and easy to operate that it could be applied to single-use applications. The mini-electrochemical system proved to be a useful tool and can be applied to electrochemical studies of cancer cells as well as other biological samples such as proteins and DNA.

  17. Thermo-electrochemical evaluation of lithium-ion batteries for space applications

    NASA Astrophysics Data System (ADS)

    Walker, W.; Yayathi, S.; Shaw, J.; Ardebili, H.

    2015-12-01

    Advanced energy storage and power management systems designed through rigorous materials selection, testing and analysis processes are essential to ensuring mission longevity and success for space exploration applications. Comprehensive testing of Boston Power Swing 5300 lithium-ion (Li-ion) cells utilized by the National Aeronautics and Space Administration (NASA) to power humanoid robot Robonaut 2 (R2) is conducted to support the development of a test-correlated Thermal Desktop (TD) Systems Improved Numerical Differencing Analyzer (SINDA) (TD-S) model for evaluation of power system thermal performance. Temperature, current, working voltage and open circuit voltage measurements are taken during nominal charge-discharge operations to provide necessary characterization of the Swing 5300 cells for TD-S model correlation. Building from test data, embedded FORTRAN statements directly simulate Ohmic heat generation of the cells during charge-discharge as a function of surrounding temperature, local cell temperature and state of charge. The unique capability gained by using TD-S is demonstrated by simulating R2 battery thermal performance in example orbital environments for hypothetical extra-vehicular activities (EVA) exterior to a small satellite. Results provide necessary demonstration of this TD-S technique for thermo-electrochemical analysis of Li-ion cells operating in space environments.

  18. Charge Relaxation Dynamics of an Electrolytic Nanocapacitor

    PubMed Central

    2015-01-01

    Understanding ion relaxation dynamics in overlapping electric double layers (EDLs) is critical for the development of efficient nanotechnology-based electrochemical energy storage, electrochemomechanical energy conversion, and bioelectrochemical sensing devices as well as the controlled synthesis of nanostructured materials. Here, a lattice Boltzmann (LB) method is employed to simulate an electrolytic nanocapacitor subjected to a step potential at t = 0 for various degrees of EDL overlap, solvent viscosities, ratios of cation-to-anion diffusivity, and electrode separations. The use of a novel continuously varying and Galilean-invariant molecular-speed-dependent relaxation time (MSDRT) with the LB equation recovers a correct microscopic description of the molecular-collision phenomena and enhances the stability of the LB algorithm. Results for large EDL overlaps indicated oscillatory behavior for the ionic current density, in contrast to monotonic relaxation to equilibrium for low EDL overlaps. Further, at low solvent viscosities and large EDL overlaps, anomalous plasmalike spatial oscillations of the electric field were observed that appeared to be purely an effect of nanoscale confinement. Employing MSDRT in our simulations enabled modeling of the fundamental physics of the transient charge relaxation dynamics in electrochemical systems operating away from equilibrium wherein Nernst–Einstein relation is known to be violated. PMID:25678941

  19. An innovative hybrid 3D analytic-numerical model for air breathing parallel channel counter-flow PEM fuel cells.

    PubMed

    Tavčar, Gregor; Katrašnik, Tomaž

    2014-01-01

    The parallel straight channel PEM fuel cell model presented in this paper extends the innovative hybrid 3D analytic-numerical (HAN) approach previously published by the authors with capabilities to address ternary diffusion systems and counter-flow configurations. The model's core principle is modelling species transport by obtaining a 2D analytic solution for species concentration distribution in the plane perpendicular to the cannel gas-flow and coupling consecutive 2D solutions by means of a 1D numerical pipe-flow model. Electrochemical and other nonlinear phenomena are coupled to the species transport by a routine that uses derivative approximation with prediction-iteration. The latter is also the core of the counter-flow computation algorithm. A HAN model of a laboratory test fuel cell is presented and evaluated against a professional 3D CFD simulation tool showing very good agreement between results of the presented model and those of the CFD simulation. Furthermore, high accuracy results are achieved at moderate computational times, which is owed to the semi-analytic nature and to the efficient computational coupling of electrochemical kinetics and species transport.

  20. A Simulation Framework for Battery Cell Impact Safety Modeling Using LS-DYNA

    DOE PAGES

    Marcicki, James; Zhu, Min; Bartlett, Alexander; ...

    2017-02-04

    The development process of electrified vehicles can benefit significantly from computer-aided engineering tools that predict themultiphysics response of batteries during abusive events. A coupled structural, electrical, electrochemical, and thermal model framework has been developed within the commercially available LS-DYNA software. The finite element model leverages a three-dimensional mesh structure that fully resolves the unit cell components. The mechanical solver predicts the distributed stress and strain response with failure thresholds leading to the onset of an internal short circuit. In this implementation, an arbitrary compressive strain criterion is applied locally to each unit cell. A spatially distributed equivalent circuit model providesmore » an empirical representation of the electrochemical responsewith minimal computational complexity.The thermalmodel provides state information to index the electrical model parameters, while simultaneously accepting irreversible and reversible sources of heat generation. The spatially distributed models of the electrical and thermal dynamics allow for the localization of current density and corresponding temperature response. The ability to predict the distributed thermal response of the cell as its stored energy is completely discharged through the short circuit enables an engineering safety assessment. A parametric analysis of an exemplary model is used to demonstrate the simulation capabilities.« less

  1. Electrochemical biofilm control: a review.

    PubMed

    Sultana, Sujala T; Babauta, Jerome T; Beyenal, Haluk

    2015-01-01

    One of the methods of controlling biofilms that has widely been discussed in the literature is to apply a potential or electrical current to a metal surface on which the biofilm is growing. Although electrochemical biofilm control has been studied for decades, the literature is often conflicting, as is detailed in this review. The goals of this review are: (1) to present the current status of knowledge regarding electrochemical biofilm control; (2) to establish a basis for a fundamental definition of electrochemical biofilm control and requirements for studying it; (3) to discuss current proposed mechanisms; and (4) to introduce future directions in the field. It is expected that the review will provide researchers with guidelines on comparing datasets across the literature and generating comparable datasets. The authors believe that, with the correct design, electrochemical biofilm control has great potential for industrial use.

  2. Impedance spectroscopy study of a catechol-modified activated carbon electrode as active material in electrochemical capacitor

    NASA Astrophysics Data System (ADS)

    Cougnon, C.; Lebègue, E.; Pognon, G.

    2015-01-01

    Modified activated carbon (Norit S-50) electrodes with electrochemical double layer (EDL) capacitance and redox capacitance contributions to the electric charge storage were tested in 1 M H2SO4 to quantify the benefit and the limitation of the surface redox reactions on the electrochemical performances of the resulting pseudo-capacitive materials. The electrochemical performances of an electrochemically anodized carbon electrode and a catechol-modified carbon electrode, which make use both EDL capacitance of the porous structure of the carbon and redox capacitance, were compared to the performances obtained for the pristine carbon. Nitrogen gas adsorption measurements have been used for studying the impact of the grafting on the BET surface area, pore size distribution, pore volume and average pore diameter. The electrochemical behavior of carbon materials was studied by cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The EIS data were discussed by using a complex capacitance model that allows defining the characteristic time constant, the global capacitance and the frequency at which the maximum charge stored is reached. The EIS measurements were achieved at different dc potential values where a redox activity occurs and the evolution of the capacitance and the capacitive relaxation time with the electrode potential are presented. Realistic galvanostatic charge/discharge measurements performed at different current rates corroborate the results obtained by impedance.

  3. Ohmic resistance affects microbial community and electrochemical kinetics in a multi-anode microbial electrochemical cell

    EPA Science Inventory

    Multi-anode microbial electrochemical cells (MXCs) are considered as one of the most promising configurations for scale-up of MXCs, but fundamental understanding of anode kinetics governing current density is limited in the MXCs. In this study we first assessed microbial communi...

  4. The possibility of multi-layer nanofabrication via atomic force microscope-based pulse electrochemical nanopatterning

    NASA Astrophysics Data System (ADS)

    Kim, Uk Su; Morita, Noboru; Lee, Deug Woo; Jun, Martin; Park, Jeong Woo

    2017-05-01

    Pulse electrochemical nanopatterning, a non-contact scanning probe lithography process using ultrashort voltage pulses, is based primarily on an electrochemical machining process using localized electrochemical oxidation between a sharp tool tip and the sample surface. In this study, nanoscale oxide patterns were formed on silicon Si (100) wafer surfaces via electrochemical surface nanopatterning, by supplying external pulsed currents through non-contact atomic force microscopy. Nanoscale oxide width and height were controlled by modulating the applied pulse duration. Additionally, protruding nanoscale oxides were removed completely by simple chemical etching, showing a depressed pattern on the sample substrate surface. Nanoscale two-dimensional oxides, prepared by a localized electrochemical reaction, can be defined easily by controlling physical and electrical variables, before proceeding further to a layer-by-layer nanofabrication process.

  5. Real-time electrochemical LAMP: a rational comparative study of different DNA intercalating and non-intercalating redox probes.

    PubMed

    Martin, Alexandra; Bouffier, Laurent; Grant, Kathryn B; Limoges, Benoît; Marchal, Damien

    2016-06-20

    We present a comparative study of ten redox-active probes for use in real-time electrochemical loop-mediated isothermal amplification (LAMP). Our main objectives were to establish the criteria that need to be fulfilled for minimizing some of the current limitations of the technique and to provide future guidelines in the search for ideal redox reporters. To ensure a reliable comparative study, each redox probe was tested under similar conditions using the same LAMP reaction and the same entirely automatized custom-made real-time electrochemical device (designed for electrochemically monitoring in real-time and in parallel up to 48 LAMP samples). Electrochemical melt curve analyses were recorded immediately at the end of each LAMP reaction. Our results show that there are a number of intercalating and non-intercalating redox compounds suitable for real-time electrochemical LAMP and that the best candidates are those able to intercalate strongly into ds-DNA but not too much to avoid inhibition of the LAMP reaction. The strongest intercalating redox probes were finally shown to provide higher LAMP sensitivity, speed, greater signal amplitude, and cleaner-cut DNA melting curves than the non-intercalating molecules.

  6. Studies of electrode structures and dynamics using coherent X-ray scattering and imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, H.; Liu, Y.; Ulvestad, A.

    2017-08-01

    Electrochemical systems studied in situ with advanced surface X-ray scattering techniques are reviewed. The electrochemical systems covered include interfaces of single-crystals and nanocrystals with respect to surface modification, aqueous dissolution, surface reconstruction, and electrochemical double layers. An emphasis will be given on recent results by coherent X-ray techniques such as X-ray photon correlation spectroscopy, Bragg coherent diffraction imaging, and surface ptychography.

  7. MnO2 prepared by hydrothermal method and electrochemical performance as anode for lithium-ion battery

    PubMed Central

    2014-01-01

    Two α-MnO2 crystals with caddice-clew-like and urchin-like morphologies are prepared by the hydrothermal method, and their structure and electrochemical performance are characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), galvanostatic cell cycling, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). The morphology of the MnO2 prepared under acidic condition is urchin-like, while the one prepared under neutral condition is caddice-clew-like. The identical crystalline phase of MnO2 crystals is essential to evaluate the relationship between electrochemical performances and morphologies for lithium-ion battery application. In this study, urchin-like α-MnO2 crystals with compact structure have better electrochemical performance due to the higher specific capacity and lower impedance. We find that the relationship between electrochemical performance and morphology is different when MnO2 material used as electrochemical supercapacitor or as anode of lithium-ion battery. For lithium-ion battery application, urchin-like MnO2 material has better electrochemical performance. PMID:24982603

  8. Yttria-stabilized zirconia solid oxide electrolyte fuel cells: Monolithic solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    1990-10-01

    The monolithic solid oxide fuel cell (MSOFC) is currently under development for a variety of applications including coal-based power generation. The MSOFC is a design concept that places the thin components of a solid oxide fuel cell in lightweight, compact, corrugated structure, and so achieves high efficiency and excellent performance simultaneously with high power density. The MSOFC can be integrated with coal gasification plants and is expected to have high overall efficiency in the conversion of the chemical energy of coal to electrical energy. This report describes work aimed at: (1) assessing manufacturing costs for the MSOFC and system costs for a coal-based plant; (2) modifying electrodes and electrode/electrolyte interfaces to improve the electrochemical performance of the MSOFC; and (3) testing the performance of the MSOFC on hydrogen and simulated coal gas. Manufacturing costs for both the coflow and crossflow MSOFC's were assessed based on the fabrication flow charts developed by direct scaleup of tape calendering and other laboratory processes. Integrated coal-based MSOFC systems were investigated to determine capital costs and costs of electricity. Design criteria were established for a coal-fueled 200-Mw power plant. Four plant arrangements were evaluated, and plant performance was analyzed. Interfacial modification involved modification of electrodes and electrode/electrolyte interfaces to improve the MSOFC electrochemical performance. Work in the cathode and cathode/electrolyte interface was concentrated on modification of electrode porosity, electrode morphology, electrode material, and interfacial bonding. Modifications of the anode and anode/electrolyte interface included the use of additives and improvement of nickel distribution. Single cells have been tested for their electrochemical performance. Performance data were typically obtained with humidified H2 or simulated coal gas and air or oxygen.

  9. A low-power CMOS operational amplifier IC for a heterogeneous paper-based potentiostat

    NASA Astrophysics Data System (ADS)

    Bezuidenhout, P.; Land, K.; Joubert, T.-H.

    2016-02-01

    Electrochemical biosensing is used to detect specific analytes in fluids, such as bacterial and chemical contaminants. A common implementation of an electrochemical readout is a potentiostat, which usually includes potentiometric, amperometric, and impedimetric detection. Recently several researchers have developed small, low-cost, single-chip silicon-based potentiostats. With the advances in heterogeneous integration technology, low-power potentiostats can be implemented on paper and similar low cost substrates. This paper deals with the design of a low-power paper-based amperometric front-end for a low-cost and rapid detection environment. In amperometric detection a voltage signal is provided to a sensor system, while a small current value generated by an electrochemical redox reaction in the system is measured. In order to measure low current values, the noise of the circuit must be minimized, which is accomplished with a pre-amplification front-end stage, typically designed around an operational amplifier core. An appropriate circuit design for a low-power and low-cost amperometric front-end is identified, taking the heterogeneous integration of various components into account. The operational amplifier core is on a bare custom CMOS chip, which will be integrated onto the paper substrate alongside commercial off-the-shelf electronic components. A general-purpose low-power two-stage CMOS amplifier circuit is designed and simulated for the ams 350 nm 5 V process. After the layout design and verification, the IC was submitted for a multi-project wafer manufacturing run. The simulated results are a bandwidth of 2.4 MHz, a common-mode rejection ratio of 70.04 dB, and power dissipation of 0.154 mW, which are comparable with the analytical values.

  10. Insights into the Surface Reactivity of Cermet and Perovskite Electrodes in Oxidizing, Reducing, and Humid Environments.

    PubMed

    Paloukis, Fotios; Papazisi, Kalliopi M; Dintzer, Thierry; Papaefthimiou, Vasiliki; Saveleva, Viktoriia A; Balomenou, Stella P; Tsiplakides, Dimitrios; Bournel, Fabrice; Gallet, Jean-Jacques; Zafeiratos, Spyridon

    2017-08-02

    Understanding the surface chemistry of electrode materials under gas environments is important in order to control their performance during electrochemical and catalytic applications. This work compares the surface reactivity of Ni/YSZ and La 0.75 Sr 0.25 Cr 0.9 Fe 0.1 O 3 , which are commonly used types of electrodes in solid oxide electrochemical devices. In situ synchrotron-based near-ambient pressure photoemission and absorption spectroscopy experiments, assisted by theoretical spectral simulations and combined with microscopy and electrochemical measurements, are used to monitor the effect of the gas atmosphere on the chemical state, the morphology, and the electrical conductivity of the electrodes. It is shown that the surface of both electrode types readjusts fast to the reactive gas atmosphere and their surface composition is notably modified. In the case of Ni/YSZ, this is followed by evident changes in the oxidation state of nickel, while for La 0.75 Sr 0.25 Cr 0.9 Fe 0.1 O 3 , a fine adjustment of the Cr valence and strong Sr segregation is observed. An important difference between the two electrodes is their capacity to maintain adsorbed hydroxyl groups on their surface, which is expected to be critical for the electrocatalytic properties of the materials. The insight gained from the surface analysis may serve as a paradigm for understanding the effect of the gas environment on the electrochemical performance and the electrical conductivity of the electrodes.

  11. A review of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide electrolysis cells (SOECs): advanced materials and technology.

    PubMed

    Zheng, Yun; Wang, Jianchen; Yu, Bo; Zhang, Wenqiang; Chen, Jing; Qiao, Jinli; Zhang, Jiujun

    2017-03-06

    High-temperature solid oxide electrolysis cells (SOECs) are advanced electrochemical energy storage and conversion devices with high conversion/energy efficiencies. They offer attractive high-temperature co-electrolysis routes that reduce extra CO 2 emissions, enable large-scale energy storage/conversion and facilitate the integration of renewable energies into the electric grid. Exciting new research has focused on CO 2 electrochemical activation/conversion through a co-electrolysis process based on the assumption that difficult C[double bond, length as m-dash]O double bonds can be activated effectively through this electrochemical method. Based on existing investigations, this paper puts forth a comprehensive overview of recent and past developments in co-electrolysis with SOECs for CO 2 conversion and utilization. Here, we discuss in detail the approaches of CO 2 conversion, the developmental history, the basic principles, the economic feasibility of CO 2 /H 2 O co-electrolysis, and the diverse range of fuel electrodes as well as oxygen electrode materials. SOEC performance measurements, characterization and simulations are classified and presented in this paper. SOEC cell and stack designs, fabrications and scale-ups are also summarized and described. In particular, insights into CO 2 electrochemical conversions, solid oxide cell material behaviors and degradation mechanisms are highlighted to obtain a better understanding of the high temperature electrolysis process in SOECs. Proposed research directions are also outlined to provide guidelines for future research.

  12. Electrochemical characterization of corrosion in materials of grounding systems, simulating conditions of synthetic soils with characteristics of local soils

    NASA Astrophysics Data System (ADS)

    Salas, Y.; Guerrero, L.; Vera-Monroy, S. P.; Blanco, J.; Jimenez, C.

    2017-12-01

    The integrity of structures buried in earthing becomes relevant when analysing maintenance and replacement costs of these systems, as the deterioration is mainly due to two factors, namely: the failures caused in the electrical systems, which are due to the system. Failure in earthing due to corrosion at the interface cause an alteration in the structure of the component material and generates an undesirable resistivity that cause malfunction in this type of protection systems. Two local soils were chosen that were categorized as sandy loam and clay loam type, whose chemical characteristics were simulated by means of an electrolyte corresponding to the amount of ions present determined by a soil characterization based on the CICE (effective cation exchange coefficient), which allows us to deduce the percentage of chloride and sulphate ions present for the different levels established in the experimental matrix. The interaction of these soils with grounding electrodes is a complex problem involving many factors to consider. In this study, the rates and corrosion currents of the different soils on two types of electrodes, one copper and the other AISI 304 stainless steel, were approximated by electrochemical techniques such as potentiodynamic curves and electrochemical impedance spectra. Considerably higher speeds were determined for copper-type electrodes when compared to those based on steel. However, from the Nyquist diagrams, it was noted that copper electrodes have better electrical performance than steel ones. The soil with the highest ionic activity turned out to be the sandy loam. The clay loam soil presents a tendency to water retention and this may be the reason for the different behaviour with respect to ionic mobility. The diffusion control in the steel seems to alter the ionic mobility because its corrosion rates proved to be very similar regardless of the type of soil chemistry. In general, corrosion rates fell since tenths of a millimetre every year to the hundredths of a millimetre in the case of the steel-based electrode, which are relatively small corrosion rates.

  13. Synthesis, spectroscopic characterization and a comparative study of the corrosion inhibitive efficiency of an α-aminophosphonate and Schiff base derivatives: Experimental and theoretical investigations

    NASA Astrophysics Data System (ADS)

    Benbouguerra, Khalissa; Chafaa, Salah; Chafai, Nadjib; Mehri, Mouna; Moumeni, Ouahiba; Hellal, Abdelkader

    2018-04-01

    New α-aminophosphonate (α-APD) and Schiff base (E-NDPIMA) derivatives have been prepared and their structures ware proved by IR, UV-Vis, 1H, 13C and 31P NMR spectroscopy. Their inhibitive capacities on the XC48 carbon steel corrosion in 0.5 mol L-1 H2SO4 solution were explored by weight loss, Tafel polarization, electrochemical impedance spectroscopy (EIS) and atomic force microscope (AFM). Experimental results illustrate that the synthesized compounds are an effectives inhibitors and the adsorption of inhibitors molecules on the carbon steel surface obeys Langmuir adsorption isotherm. In addition, quantum chemical calculations performed with density function theory (DFT) method have been used to correlate the inhibition efficiency established experimentally. Also, the molecular dynamics simulations have been utilized to simulate the interactions between the inhibitors molecules and Fe (100) surface in aqueous solution.

  14. Adsorption of charged protein residues on an inorganic nanosheet: Computer simulation of LDH interaction with ion channel

    NASA Astrophysics Data System (ADS)

    Tsukanov, Alexey A.; Psakhie, Sergey G.

    2016-08-01

    Quasi-two-dimensional and hybrid nanomaterials based on layered double hydroxides (LDH), cationic clays, layered oxyhydroxides and hydroxides of metals possess large specific surface area and strong electrostatic properties with permanent or pH-dependent electric charge. Such nanomaterials may impact cellular electrostatics, changing the ion balance, pH and membrane potential. Selective ion adsorption/exchange may alter the transmembrane electrochemical gradient, disrupting potential-dependent cellular processes. Cellular proteins as a rule have charged residues which can be effectively adsorbed on the surface of layered hydroxide based nanomaterials. The aim of this study is to attempt to shed some light on the possibility and mechanisms of protein "adhesion" an LDH nanosheet and to propose a new direction in anticancer medicine, based on physical impact and strong electrostatics. An unbiased molecular dynamics simulation was performed and the combined process free energy estimation (COPFEE) approach was used.

  15. The effects of a SiO2 coating on the corrosion parameters cpTi and Ti-6Al-7Nb alloy

    PubMed Central

    Basiaga, Marcin; Walke, Witold; Paszenda, Zbigniew; Karasiński, Paweł; Szewczenko, Janusz

    2014-01-01

    The aim of this paper was to evaluate the usefulness of the sol-gel method application, to modificate the surface of the Ti6Al7Nb alloy and the cpTi titanium (Grade 4) with SiO2 oxide, applied on the vascular implants to improve their hemocompatibility. Mechanical treatment was followed by film deposition on surface of the titanium samples. An appropriate selection of the process parameters was verified in the studies of corrosion, using potentiodynamic and impedance method. A test was conducted in the solution simulating blood vessels environment, in simulated body fluid at t = 37.0 ± 1 °C and pH = 7.0 ± 0.2. Results showed varied electrochemical properties of the SiO2 film, depending on its deposition parameters. Correlations between corrosion resistance and layer adhesion to the substrate were observed, depending on annealing temperature. PMID:25482412

  16. Electrophoretic co-deposition of cellulose nanocrystals-45S5 bioactive glass nanocomposite coatings on stainless steel

    NASA Astrophysics Data System (ADS)

    Chen, Qiang; Yang, Yuyun; Pérez de Larraya, Uxua; Garmendia, Nere; Virtanen, Sannakaisa; Boccaccini, Aldo R.

    2016-01-01

    An organic-inorganic nanocomposite coating consisting of fibrous cellulose nanocrystals and 45S5 bioactive glass, intended as a bioactive surface for bone implants, was developed by a one-step electrophoretic deposition. The composition, surface roughness and wettability of the deposited coatings, influenced by the concentration of each component in the suspension, were controllable as a result of the simplicity of the coating technique. Bioactive glass particles were individually wrapped with porous cellulose layers, forming a porous coating with uniform thickness. Bioactivity test in simulated body fluid revealed a rapid hydroxyapatite formation on the deposited nanocomposite coating. Furthermore, electrochemical test was carried out to understand the corrosion behavior of the deposited coatings during incubation in simulated body fluid. According to the results of this study, the obtained cellulose-bioactive glass coatings with tunable properties represent a promising approach for biofunctionalization of metallic orthopedic implants.

  17. Electrochemical Studies on Minoxidil and Its Determination in Tablets by Differential-Pulse Polarography.

    DTIC Science & Technology

    1984-01-16

    AD-R76 981 ELECTROCHEMICAL STUDIES ON MINOXIDIL AND ITS j/j IDETERMINATION IN TABLETS BY..(U) UTAH UNIV SALT LAKE AS CITY DEPT OF CHEMISTRY L...INSTRUCTIONES 2. QVT CCESSIN ". 3 krCIPII-.,n I CATALOG Numtnk 22 ’TTE(d.t8v . TYPE OF R4EPORT a PERIOD COEd Electrochemical Studies on Minoxidil and... minoxidil in pharmaceutical dosage forms. The extracting . solvent was methani and the supporting electrolyte was 1.0 N sulphuric acid. L. An excellent

  18. Analysis of electrochemical noise (ECN) data in time and frequency domain for comparison corrosion inhibition of some azole compounds on Cu in 1.0 M H2SO4 solution

    NASA Astrophysics Data System (ADS)

    Ramezanzadeh, B.; Arman, S. Y.; Mehdipour, M.; Markhali, B. P.

    2014-01-01

    In this study, the corrosion inhibition properties of two similar heterocyclic compounds namely benzotriazole (BTA) and benzothiazole (BNS) inhibitors on copper in 1.0 M H2SO4 solution were studied by electrochemical techniques as well as surface analysis. The results showed that corrosion inhibition of copper largely depends on the molecular structure and concentration of the inhibitors. The effect of DC trend on the interpretation of electrochemical noise (ECN) results in time domain was evaluated by moving average removal (MAR) method. Accordingly, the impact of square and Hanning window functions as drift removal methods in frequency domain was studied. After DC trend removal, a good trend was observed between electrochemical noise (ECN) data and the results obtained from EIS and potentiodynamic polarization. Furthermore, the shot noise theory in frequency domain was applied to approach the charge of each electrochemical event (q) from the potential and current noise signals.

  19. Electrochemical Deposition of High Purity Silicon from Molten Salts

    NASA Astrophysics Data System (ADS)

    Haarberg, Geir Martin

    Several approaches were tried in order to develop an electrochemical route for producing high purity silicon from molten salts. SiO2, K2SiF6 and metallurgical silicon were used as the source of silicon. Molten electrolytes based on chloride (CaCl2-NaCl) and fluoride (LiF-KF) at temperatures from 550 - 900 oC were used. Transient electrochemical techniques were used to study the electrochemical behaviour of dissolved silicon species. Electrolysis experiments were carried out to deposit silicon.

  20. Electrochemical Deposition of High Purity Silicon in Molten Salts

    NASA Astrophysics Data System (ADS)

    Haarberg, Geir Martin

    Several approaches were tried in order to develop an electrochemical route for producing high purity silicon from molten salts. SiO2, K2SiF6 and metallurgical silicon were used as the source of silicon. Molten electrolytes based on chloride (CaCl2-NaCl) and fluoride (LiF-KF) at temperatures from 550 - 900 °C were used. Transient electrochemical techniques were used to study the electrochemical behaviour of dissolved silicon species. Electrolysis experiments were carried out to deposit silicon.

  1. Electrochemical Corrosion of Stainless Steel in Thiosulfate Solutions Relevant to Gold Leaching

    NASA Astrophysics Data System (ADS)

    Choudhary, Lokesh; Wang, Wei; Alfantazi, Akram

    2016-01-01

    This study aims to characterize the electrochemical corrosion behavior of stainless steel in the ammoniacal thiosulfate gold leaching solutions. Electrochemical corrosion response was investigated using potentiodynamic polarization and electrochemical impedance spectroscopy, while the semi-conductive properties and the chemical composition of the surface film were characterized using Mott-Schottky analysis and X-ray photoelectron spectroscopy, respectively. The morphology of the corroded specimens was analyzed using scanning electron microscopy. The stainless steel 316L showed no signs of pitting in the ammoniacal thiosulfate solutions.

  2. A Comprehensive Pitting Study of High Velocity Oxygen Fuel Inconel 625 Coating by Using Electrochemical Testing Techniques

    NASA Astrophysics Data System (ADS)

    Niaz, Akbar; Khan, Sajid Ullah

    2016-01-01

    In the present work, Inconel 625 was coated on a mild steel substrate using a high velocity oxygen fuel coating process. The pitting propensity of the coating was tested by using open circuit potential versus time, potentiodynamic polarization, electrochemical potentiokinetic reactivation, and scanning electrochemical microscopy. The pitting propensity of the coating was compared with bulk Inconel 625 alloy. The results confirmed that there were regions of different electrochemical activities on the coating which have caused pitting corrosion.

  3. Effect of poly(3,4-ethylenedioxythiophene) (PEDOT) in carbon-based composite electrodes for electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Lei, Chunhong; Wilson, Peter; Lekakou, Constantina

    Electrochemical double layer supercapacitor cells were fabricated and tested using composite electrodes of activated carbon with carbon black and poly(3,4-ethylenedioxythiophene) (PEDOT), and an organic electrolyte 1 M TEABF 4/PC solution. The effect of PEDOT on the performance of the EDLC cells was explored and the cells were characterised by electrochemical impedance spectroscopy (EIS), cyclic voltammetry and galvanostatic charge-discharge. A generalised equivalent circuit model was developed for which numerical simulations were performed to determine the properties and parameters of its components from the EIS data. It was found that the proposed model fitted successfully the data of all tested cells. PEDOT enhanced the electrode and cell capacitance via its pseudo-capacitance effect up to a maximum value for an optimum PEDOT loading and greatly increased the energy density of the cell while the maximum power density has been still maintained at supercapacitor levels. Furthermore, PEDOT replaced PVDF as a binder and harmful solvent release was reduced during electrode processing. Activated carbon-carbon black composite electrodes with PEDOT as binder were found to have specific capacitance superior to that of activated carbon-carbon black electrodes with PVDF binder.

  4. Characterization of interfacial reactions and oxide films on 316L stainless steel in various simulated PWR primary water environments

    NASA Astrophysics Data System (ADS)

    Chen, Junjie; Xiao, Qian; Lu, Zhanpeng; Ru, Xiangkun; Peng, Hao; Xiong, Qi; Li, Hongjuan

    2017-06-01

    The effect of water chemistry on the electrochemical and oxidizing behaviors of 316L SS was investigated in hydrogenated, deaerated and oxygenated PWR primary water at 310 °C. Water chemistry significantly influenced the electrochemical impedance spectroscopy parameters. The highest charge-transfer resistance and oxide-film resistance occurred in oxygenated water. The highest electric double-layer capacitance and constant phase element of the oxide film were in hydrogenated water. The oxide films formed in deaerated and hydrogenated environments were similar in composition but different in morphology. An oxide film with spinel outer particles and a compact and Cr-rich inner layer was formed in both hydrogenated and deaerated water. Larger and more loosely distributed outer oxide particles were formed in deaerated water. In oxygenated water, an oxide film with hematite outer particles and a porous and Ni-rich inner layer was formed. The reaction kinetics parameters obtained by electrochemical impedance spectroscopy measurements and oxidation film properties relating to the steady or quasi-steady state conditions in the time-period of measurements could provide fundamental information for understanding stress corrosion cracking processes and controlling parameters.

  5. Photocatalytic and electrochemical performance of three-Dimensional reduced graphene Oxide/WS2/Mg-doped ZnO composites

    NASA Astrophysics Data System (ADS)

    Yu, Weiwei; Chen, Xi'an; Mei, Wei; Chen, Chuansheng; Tsang, Yuenhong

    2017-04-01

    To improve the dispersion of reduced graphene oxide and enhance the photocatalytic property of reduced graphene oxide/Mg-doped ZnO composites (rGMZ), the reduced graphene oxide/WS2/Mg-doped ZnO composites (rGWMZ) were prepared by electrostatic self-assembly and coprecipitation methods. The effects of mass ratio of WS2 nanosheets to reduced graphene oxide (WS2/rGO wt.%) and calcination temperature on the photocatalytic and electrochemical property of rGWMZ composites were investigated. Experimental results showed that the photocatalytic efficiency of rGWMZ composites is three-fold compared with that of rGMZ composites when the WS2/rGO wt.% is 20.8% and calcination temperature is 500 °C, in which the degradation ratio Rhodamin B (RhB) can reach 95% within 15 min under the UV light and 90% within 90 min under simulated solar light. In addition, the rGWMZ show larger capacitance and smaller resistance than rGMZ. The enhancement for photocatalytic activity and electrochemical performance of rGWMZ is ascribed to improving the specific surface area, electrical conductivity and electronic storage capability because of the synergistic effect of rGO and WS2 nanosheets.

  6. The impact of surface composition on Tafel kinetics leading to enhanced electrochemical insertion of hydrogen in palladium

    NASA Astrophysics Data System (ADS)

    Dmitriyeva, Olga; Hamm, Steven C.; Knies, David L.; Cantwell, Richard; McConnell, Matt

    2018-05-01

    Our previous work experimentally demonstrated the enhancement of electrochemical hydrogen insertion into palladium by modifying the chemical composition of the cathode surface with Pb, Pt and Bi, referred to as surface promoters. The experiment demonstrated that an optimal combination of the surface promoters led to an increase in hydrogen fugacity of more than three orders of magnitude, while maintaining the same current density. This manuscript discusses the application of Density Functional Theory (DFT) to elucidate the thermodynamics and kinetics of observed enhancement of electrochemical hydrogen insertion into palladium. We present theoretical simulations that: (1) establish the elevation of hydrogen's chemical potential on Pb and Bi surfaces to enhance hydrogen insertion, (2) confirm the increase of a Tafel activation barrier that results in a decrease of the reaction rate at the given hydrogen overpotential, and (3) explain why the surface promoter's coverage needs to be non-uniform, namely to allow hydrogen insertion into palladium bulk while simultaneously locking hydrogen below the surface (the corking effect). The discussed DFT-based method can be used for efficient scanning of different material configurations to design a highly effective hydrogen storage system.

  7. Optimized performance of quasi-solid-state DSSC with PEO-bismaleimide polymer blend electrolytes filled with a novel procedure.

    PubMed

    Lee, Dong Ha; Sun, Kyung Chul; Qadir, Muhammad Bilal; Jeong, Sung Hoon

    2014-12-01

    Dye-sensitized solar cell (DSSC) is an attractive renewable energy technology currently under intense investigation. Electrolyte plays an important role in the photovoltaic performance of the DSSCs and many efforts have been contributed to study different kinds of electrolytes with various characteristics such as liquid electrolytes, polymer electrolytes and so on. In this study, DSSC is developed by using quasi-solid electrolyte and a novel procedure is adopted for filling this electrolyte. The quasi-solid-state electrolyte was prepared by mixing Poly ethylene oxide (PEO) and bismaleimide together and constitution was taken as PEO (15 wt%) at various bismaleimide concentrations (1, 3, 5 wt%). The novel procedure of filling electrolyte consists of three major steps (first step: filling liquid electrolyte, second step: vaporization of liquid electrolyte, third step: refilling quasi-solid-state electrolyte). The electrochemical and photovoltaic performances of DSSCs with these electrolytes were also investigated. The electrochemical impedance spectroscopy (EIS) indicated that TiO2/Dye/electrolyte impedance is reduced and electron lifetime is increased, and consequently efficiency of cell has been improved after using this novel procedure. The photovoltaic power conversion efficiency of 6.39% has been achieved under AM 1.5 simulated sunlight (100 W/cm2) through this novel procedure and by using specified blend of polymers.

  8. Dispersion of nanocrystalline Fe 3O 4 within composite electrodes: Insights on battery-related electrochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David C. Bock; Takeuchi, Kenneth J.; Pelliccione, Christopher J.

    2016-04-20

    Aggregation of nanosized materials in composite lithium-ion-battery electrodes can be a significant factor influencing electrochemical behavior. In this study, aggregation was controlled in magnetite, Fe 3O 4, composite electrodes via oleic acid capping and subsequent dispersion in a carbon black matrix. A heat treatment process was effective in the removal of the oleic acid capping agent while preserving a high degree of Fe 3O 4 dispersion. Electrochemical testing showed that Fe 3O 4 dispersion is initially beneficial in delivering a higher functional capacity, in agreement with continuum model simulations. However, increased capacity fade upon extended cycling was observed for themore » dispersed Fe 3O 4 composites relative to the aggregated Fe 3O 4 composites. X-ray absorption spectroscopy measurements of electrodes post cycling indicated that the dispersed Fe 3O 4 electrodes are more oxidized in the discharged state, consistent with reduced reversibility compared with the aggregated sample. Higher charge-transfer resistance for the dispersed sample after cycling suggests increased surface-film formation on the dispersed, high-surface-area nanocrystalline Fe 3O 4 compared to the aggregated materials. Furthermore, this study provides insight into the specific effects of aggregation on electrochemistry through a multiscale view of mechanisms for magnetite composite electrodes.« less

  9. Dispersion of Nanocrystalline Fe 3 O 4 within Composite Electrodes: Insights on Battery-Related Electrochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bock, David C.; Pelliccione, Christopher J.; Zhang, Wei

    2016-04-20

    Aggregation of nanosized materials in composite lithium-ion-battery electrodes can be a significant factor influencing electrochemical behavior. In this study, aggregation was controlled in magnetite, Fe 3O 4, composite electrodes via oleic acid capping and subsequent dispersion in a carbon black matrix. A heat treatment process was effective in the removal of the oleic acid capping agent while preserving a high degree of Fe 3O 4 dispersion. Electrochemical testing showed that Fe 3O 4 dispersion is initially beneficial in delivering a higher functional capacity, in agreement with continuum model simulations. However, increased capacity fade upon extended cycling was observed for themore » dispersed Fe 3O 4 composites relative to the aggregated Fe 3O 4 composites. X-ray absorption spectroscopy measurements of electrodes post cycling indicated that the dispersed Fe 3O 4 electrodes are more oxidized in the discharged state, consistent with reduced reversibility compared with the aggregated sample. Higher charge-transfer resistance for the dispersed sample after cycling suggests increased surface-film formation on the dispersed, high-surface-area nanocrystalline Fe 3O 4 compared to the aggregated materials. This study provides insight into the specific effects of aggregation on electrochemistry through a multiscale view of mechanisms for magnetite composite electrodes.« less

  10. Electrochemical method for measuring corrosion of metals in wood

    Treesearch

    Samuel L. Zelinka; Douglas Rammer

    2006-01-01

    Preliminary studies have shown that electrochemical methods, especially Electrochemical Impedance Spectroscopy (EIS), appear to have great promise for measuring the corrosion rate of metals in wood. One of the major reasons for using these techniques is the ability to maintain moisture content and temperature at conditions encountered in service while measuring the...

  11. Doping as a means to probe the potential dependence of dopamine adsorption on carbon-based surfaces: A first-principles study

    NASA Astrophysics Data System (ADS)

    Aarva, Anja; Laurila, Tomi; Caro, Miguel A.

    2017-06-01

    In this work, we study the adsorption characteristics of dopamine (DA), ascorbic acid (AA), and dopaminequinone (DAox) on carbonaceous electrodes. Our goal is to obtain a better understanding of the adsorption behavior of these analytes in order to promote the development of new carbon-based electrode materials for sensitive and selective detection of dopamine in vivo. Here we employ density functional theory-based simulations to reach a level of detail that cannot be achieved experimentally. To get a broader understanding of carbonaceous surfaces with different morphological characteristics, we compare three materials: graphene, diamond, and amorphous carbon (a-C). Effects of solvation on adsorption characteristics are taken into account via a continuum solvent model. Potential changes that take place during electrochemical measurements, such as cyclic voltammetry, can also alter the adsorption behavior. In this study, we have utilized doping as an indirect method to simulate these changes by shifting the work function of the electrode material. We demonstrate that sp2- and sp3-rich materials, as well as a-C, respond markedly different to doping. Also the adsorption behavior of the molecules studied here differs depending on the surface material and the change in the surface potential. In all cases, adsorption is spontaneous, but covalent bonding is not detected in vacuum. The aqueous medium has a large effect on the adsorption behavior of DAox, which reaches its highest adsorption energy on diamond when the potential is shifted to more negative values. In all cases, inclusion of the solvent enhances the charge transfer between the slab and DAox. Largest differences in adsorption energy between DA and AA are obtained on graphene. Gaining better understanding of the behavior of the different forms of carbon when used as electrode materials provides a means to rationalize the observed complex phenomena taking place at the electrodes during electrochemical oxidation/reduction of these biomolecules.

  12. New insights into the electrochemical behavior of acid orange 7: Convergent paired electrochemical synthesis of new aminonaphthol derivatives

    NASA Astrophysics Data System (ADS)

    Momeni, Shima; Nematollahi, Davood

    2017-02-01

    Electrochemical behavior of acid orange 7 has been exhaustively studied in aqueous solutions with different pH values, using cyclic voltammetry and constant current coulometry. This study has provided new insights into the mechanistic details, pH dependence and intermediate structure of both electrochemical oxidation and reduction of acid orange 7. Surprisingly, the results indicate that a same redox couple (1-iminonaphthalen-2(1H)-one/1-aminonaphthalen-2-ol) is formed from both oxidation and reduction of acid orange 7. Also, an additional purpose of this work is electrochemical synthesis of three new derivatives of 1-amino-4-(phenylsulfonyl)naphthalen-2-ol (3a-3c) under constant current electrolysis via electrochemical oxidation (and reduction) of acid orange 7 in the presence of arylsulfinic acids as nucleophiles. The results indicate that the electrogenerated 1-iminonaphthalen-2(1 H)-one participates in Michael addition reaction with arylsulfinic acids to form the 1-amino-3-(phenylsulfonyl)naphthalen-2-ol derivatives. The synthesis was carried out in an undivided cell equipped with carbon rods as an anode and cathode.

  13. Electrochemically active biofilms: facts and fiction. A review

    PubMed Central

    Babauta, Jerome; Renslow, Ryan; Lewandowski, Zbigniew; Beyenal, Haluk

    2014-01-01

    This review examines the electrochemical techniques used to study extracellular electron transfer in the electrochemically active biofilms that are used in microbial fuel cells and other bioelectrochemical systems. Electrochemically active biofilms are defined as biofilms that exchange electrons with conductive surfaces: electrodes. Following the electrochemical conventions, and recognizing that electrodes can be considered reactants in these bioelectrochemical processes, biofilms that deliver electrons to the biofilm electrode are called anodic, ie electrode-reducing, biofilms, while biofilms that accept electrons from the biofilm electrode are called cathodic, ie electrode-oxidizing, biofilms. How to grow these electrochemically active biofilms in bioelec-trochemical systems is discussed and also the critical choices made in the experimental setup that affect the experimental results. The reactor configurations used in bioelectrochemical systems research are also described and the authors demonstrate how to use selected voltammetric techniques to study extracellular electron transfer in bioelectrochemical systems. Finally, some critical concerns with the proposed electron transfer mechanisms in bioelectrochemical systems are addressed together with the prospects of bioelectrochemical systems as energy-converting and energy-harvesting devices. PMID:22856464

  14. BF 3-promoted electrochemical properties of quinoxaline in propylene carbonate

    DOE PAGES

    Carino, Emily V.; Diesendruck, Charles E.; Moore, Jeffrey S.; ...

    2015-02-04

    Electrochemical and density functional studies demonstrate that coordination of electrolyte constituents to quinoxalines modulates their electrochemical properties. Quinoxalines are shown to be electrochemically inactive in most electrolytes in propylene carbonate, yet the predicted reduction potential is shown to match computational estimates in acetonitrile. We find that in the presence of LiBF 4 and trace water, an adduct is formed between quinoxaline and the Lewis acid BF3, which then displays electrochemical activity at 1–1.5 V higher than prior observations of quinoxaline electrochemistry in non-aqueous media. Direct synthesis and testing of a bis-BF 3 quinoxaline complex further validates the assignment of themore » electrochemically active species, presenting up to a ~26-fold improvement in charging capacity, demonstrating the advantages of this adduct over unmodified quinoxaline in LiBF 4-based electrolyte. The use of Lewis acids to effectively “turn on” the electrochemical activity of organic molecules may lead to the development of new active material classes for energy storage applications.« less

  15. Tin Oxide Crystals Exposed by Low-Energy {110} Facets for Enhanced Electrochemical Heavy Metal Ions Sensing: X-ray Absorption Fine Structure Experimental Combined with Density-Functional Theory Evidence.

    PubMed

    Jin, Zhen; Yang, Meng; Chen, Shao-Hua; Liu, Jin-Huai; Li, Qun-Xiang; Huang, Xing-Jiu

    2017-02-21

    Herein, we revealed that the electrochemical behaviors on the detection of heavy metal ions (HMIs) would largely rely on the exposed facets of SnO 2 nanoparticles. Compared to the high-energy {221} facet, the low-energy {110} facet of SnO 2 possessed better electrochemical performance. The adsorption/desorption tests, density-functional theory (DFT) calculations, and X-ray absorption fine structure (XAFS) studies showed that the lower barrier energy of surface diffusion on {110} facet was critical for the superior electrochemical property, which was favorable for the ions diffusion on the electrode, and further leading the enhanced electrochemical performance. Through the combination of experiments and theoretical calculations, a reliable interpretation of the mechanism for electroanalysis of HMIs with nanomaterials exposed by different crystal facets has been provided. Furthermore, it provides a deep insight into understanding the key factor to improve the electrochemical performance for HMIs detection, so as to design high-performance electrochemical sensors.

  16. Electrochemical Analysis of Neurotransmitters

    NASA Astrophysics Data System (ADS)

    Bucher, Elizabeth S.; Wightman, R. Mark

    2015-07-01

    Chemical signaling through the release of neurotransmitters into the extracellular space is the primary means of communication between neurons. More than four decades ago, Ralph Adams and his colleagues realized the utility of electrochemical methods for the study of easily oxidizable neurotransmitters, such as dopamine, norepinephrine, and serotonin and their metabolites. Today, electrochemical techniques are frequently coupled to microelectrodes to enable spatially resolved recordings of rapid neurotransmitter dynamics in a variety of biological preparations spanning from single cells to the intact brain of behaving animals. In this review, we provide a basic overview of the principles underlying constant-potential amperometry and fast-scan cyclic voltammetry, the most commonly employed electrochemical techniques, and the general application of these methods to the study of neurotransmission. We thereafter discuss several recent developments in sensor design and experimental methodology that are challenging the current limitations defining the application of electrochemical methods to neurotransmitter measurements.

  17. A PVC/polypyrrole sensor designed for beef taste detection using electrochemical methods and sensory evaluation.

    PubMed

    Zhu, Lingtao; Wang, Xiaodan; Han, Yunxiu; Cai, Yingming; Jin, Jiahui; Wang, Hongmei; Xu, Liping; Wu, Ruijia

    2018-03-01

    An electrochemical sensor for detection of beef taste was designed in this study. This sensor was based on the structure of polyvinyl chloride/polypyrrole (PVC/PPy), which was polymerized onto the surface of a platinum (Pt) electrode to form a Pt-PPy-PVC film. Detecting by electrochemical methods, the sensor was well characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The sensor was applied to detect 10 rib-eye beef samples and the accuracy of the new sensor was validated by sensory evaluation and ion sensor detection. Several cluster analysis methods were used in the study to distinguish the beef samples. According to the obtained results, the designed sensor showed a high degree of association of electrochemical detection and sensory evaluation, which proved a fast and precise sensor for beef taste detection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Electrochemical Analysis of Neurotransmitters

    PubMed Central

    Bucher, Elizabeth S.; Wightman, R. Mark

    2016-01-01

    Chemical signaling through the release of neurotransmitters into the extracellular space is the primary means of communication between neurons. More than four decades ago, Ralph Adams and his colleagues realized the utility of electrochemical methods for the study of easily oxidizable neurotransmitters, such as dopamine, norepinephrine, and serotonin and their metabolites. Today, electrochemical techniques are frequently coupled to microelectrodes to enable spatially resolved recordings of rapid neurotransmitter dynamics in a variety of biological preparations spanning from single cells to the intact brain of behaving animals. In this review, we provide a basic overview of the principles underlying constant-potential amperometry and fast-scan cyclic voltammetry, the most commonly employed electrochemical techniques, and the general application of these methods to the study of neurotransmission. We thereafter discuss several recent developments in sensor design and experimental methodology that are challenging the current limitations defining the application of electrochemical methods to neurotransmitter measurements. PMID:25939038

  19. Electrochemically Reduced Graphene Oxide Multilayer Films as Efficient Counter Electrode for Dye-Sensitized Solar Cells

    PubMed Central

    Xu, Xiaobao; Huang, Dekang; Cao, Kun; Wang, Mingkui; Zakeeruddin, Shaik M.; Grätzel, Michael

    2013-01-01

    We report on a new counter electrode for dye-sensitized solar cells (DSCs), which is prepared using layer-by-layer assembly of negatively charged graphene oxide and positively charged poly (diallyldimethylammonium chloride) followed by an electrochemical reduction procedure. The DSC devises using the heteroleptic Ru complex C106TBA as sensitizer and this new counter electrode reach power conversion efficiencies of 9.5% and 7.6% in conjunction with low volatility and solvent free ionic liquid electrolytes, respectively. The new counter electrode exhibits good durability (60°C for 1000 h in a solar simulator, 100 mW cm−2) during the accelerated tests when used in combination with an ionic liquid electrolyte. This work identifies a new class of electro-catalysts with potential for low cost photovoltaic devices. PMID:23508212

  20. Self-assembly of an electronically conductive network through microporous scaffolds.

    PubMed

    Sebastian, H Bri; Bryant, Steven L

    2017-06-15

    Electron transfer spanning significant distances through a microporous structure was established via the self-assembly of an electronically conductive iridium oxide nanowire matrix enveloping the pore walls. Microporous formations were simulated using two scaffold materials of varying physical and chemical properties; paraffin wax beads, and agar gel. Following infiltration into the micropores, iridium nanoparticles self-assembled at the pore wall/ethanol interface. Subsequently, cyclic voltammetry was employed to electrochemically crosslink the metal, erecting an interconnected, and electronically conductive metal oxide nanowire matrix. Electrochemical and spectral characterization techniques confirmed the formation of oxide nanowire matrices encompassing lengths of at least 1.6mm, 400× distances previously achieved using iridium nanoparticles. Nanowire matrices were engaged as biofuel cell anodes, where electrons were donated to the nanowires by a glucose oxidizing enzyme. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. A novel model for through-silicon via (TSV) filling process simulation considering three additives and current density effect

    NASA Astrophysics Data System (ADS)

    Wang, Fuliang; Zhao, Zhipeng; Wang, Feng; Wang, Yan; Nie, Nantian

    2017-12-01

    Through-silicon via (TSV) filling by electrochemical deposition is still a challenge for 3D IC packaging, and three-component additive systems (accelerator, suppressor, and leveler) were commonly used in the industry to achieve void-free filling. However, models considering three additive systems and the current density effect have not been fully studied. In this paper, a novel three-component model was developed to study the TSV filling mechanism and process, where the interaction behavior of the three additives (accelerator, suppressor, and leveler) were considered, and the adsorption, desorption, and consumption coefficient of the three additives were changed with the current density. Based on this new model, the three filling types (seam void, ‘V’ shape, and key hole) were simulated under different current density conditions, and the filling results were verified by experiments. The effect of the current density on the copper ion concentration, additives surface coverage, and local current density distribution during the TSV filling process were obtained. Based on the simulation and experimental results, the diffusion-adsorption-desorption-consumption competition behavior between the suppressor, the accelerator, and the leveler were discussed. The filling mechanisms under different current densities were also analyzed.

  2. Electrochemical hydrogenation of thiophene on SPE electrodes

    NASA Astrophysics Data System (ADS)

    Huang, Haiyan; Yuan, Penghui; Yu, Ying; Chung, Keng H.

    2017-01-01

    Electrochemical reduction desulfurization is a promising technology for petroleum refining which is environmental friendly, low cost and able to achieve a high degree of automation. Electrochemical hydrogenation of thiophene was performed in a three-electrode system which SPE electrode was the working electrode. The electrochemical desulfurization was studied by cyclic voltammetry and bulk electrolysis with coulometry (BEC) techniques. The results of cyclic voltammetry showed that the electrochemical hydrogenation reduction reaction occurred at -0.4V. The BEC results showed that the currents generated from thiophene hydrogenation reactions increased with temperature. According to Arrhenius equation, activation energy of thiophene electrolysis was calculated and lower activation energy value indicated it was diffusion controlled reaction. From the products of electrolytic reactions, the mechanisms of electrochemical hydrogenation of thiophene were proposed, consisting of two pathways: openingring followed by hydrogenation, and hydrogenation followed by ring opening.

  3. Electrochemical Dissolution of Iridium and Iridium Oxide Particles in Acidic Media: Transmission Electron Microscopy, Electrochemical Flow Cell Coupled to Inductively Coupled Plasma Mass Spectrometry, and X-ray Absorption Spectroscopy Study.

    PubMed

    Jovanovič, Primož; Hodnik, Nejc; Ruiz-Zepeda, Francisco; Arčon, Iztok; Jozinović, Barbara; Zorko, Milena; Bele, Marjan; Šala, Martin; Šelih, Vid Simon; Hočevar, Samo; Gaberšček, Miran

    2017-09-13

    Iridium-based particles, regarded as the most promising proton exchange membrane electrolyzer electrocatalysts, were investigated by transmission electron microscopy and by coupling of an electrochemical flow cell (EFC) with online inductively coupled plasma mass spectrometry. Additionally, studies using a thin-film rotating disc electrode, identical location transmission and scanning electron microscopy, as well as X-ray absorption spectroscopy have been performed. Extremely sensitive online time-and potential-resolved electrochemical dissolution profiles revealed that Ir particles dissolve well below oxygen evolution reaction (OER) potentials, presumably induced by Ir surface oxidation and reduction processes, also referred to as transient dissolution. Overall, thermally prepared rutile-type IrO 2 particles are substantially more stable and less active in comparison to as-prepared metallic and electrochemically pretreated (E-Ir) analogues. Interestingly, under OER-relevant conditions, E-Ir particles exhibit superior stability and activity owing to the altered corrosion mechanism, where the formation of unstable Ir(>IV) species is hindered. Due to the enhanced and lasting OER performance, electrochemically pre-oxidized E-Ir particles may be considered as the electrocatalyst of choice for an improved low-temperature electrochemical hydrogen production device, namely a proton exchange membrane electrolyzer.

  4. Effect of surface roughness on the in vitro degradation behaviour of a biodegradable magnesium-based alloy

    NASA Astrophysics Data System (ADS)

    Walter, R.; Kannan, M. Bobby; He, Y.; Sandham, A.

    2013-08-01

    In this study, the in vitro degradation behaviour of AZ91 magnesium alloy with two different surface finishes was investigated using electrochemical impedance spectroscopy (EIS) in simulated body fluid (SBF). The polarisation resistance (Rp) of the rough surface alloy immersed in SBF for 3 h was ~30% lower as compared to that of the smooth surface alloy. After 12 h immersion in SBF, the Rp values for both the surface finishes decreased and were also similar. However, localised degradation occurred sooner, and to a noticeably higher severity in the rough surface alloy as compared to the smooth surface alloy.

  5. A systematic multiscale modeling and experimental approach to protect grain boundaries in magnesium alloys from corrosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horstemeyer, Mark R.; Chaudhuri, Santanu

    2015-09-30

    A multiscale modeling Internal State Variable (ISV) constitutive model was developed that captures the fundamental structure-property relationships. The macroscale ISV model used lower length scale simulations (Butler-Volmer and Electronics Structures results) in order to inform the ISVs at the macroscale. The chemomechanical ISV model was calibrated and validated from experiments with magnesium (Mg) alloys that were investigated under corrosive environments coupled with experimental electrochemical studies. Because the ISV chemomechanical model is physically based, it can be used for other material systems to predict corrosion behavior. As such, others can use the chemomechanical model for analyzing corrosion effects on their designs.

  6. Localized corrosion of 316L stainless steel with SiO2-CaO films obtained by means of sol-gel treatment.

    PubMed

    Vallet-Regí, M; Izquierdo-Barba, I; Gil, F J

    2003-11-01

    Sol-gel films on austenitic stainless steel (AISI 316L) polished wafer were prepared from sono-sols obtained from tetraethylorthosilane and hydrated calcium nitrate. However, pitting was observed in different places on the stainless steel surfaces. The corrosion resistance was evaluated by the polarization resistance in simulated body fluid environment at 37 degrees C. The critical current density, the passive current density, the corrosion potential, and the critical pitting potential were studied. The austenitic stainless steel 316L treated presents important electrochemical corrosion and consequently its application as endosseous implants is not possible. Copyright 2003 Wiley Periodicals, Inc.

  7. Electrochemical estrogen screen method based on the electrochemical behavior of MCF-7 cells.

    PubMed

    Li, Jinlian; Song, Jia; Bi, Sheng; Zhou, Shi; Cui, Jiwen; Liu, Jiguang; Wu, Dongmei

    2016-08-05

    It was an urgent task to develop quick, cheap and accurate estrogen screen method for evaluating the estrogen effect of the booming chemicals. In this study, the voltammetric behavior between the estrogen-free and normal fragmented MCF-7 cell suspensions were compared, and the electrochemical signal (about 0.68V attributed by xanthine and guanine) of the estrogen-free fragmented MCF-7 cell suspension was obviously lower than that of the normal one. The electrochemistry detection of ex-secretion purines showed that the ability of ex-secretion purines of cells sharp decreased due to the removing of endogenous estrogen. The results indicated that the electrochemical signal of MCF-7 cells was related to the level of intracellular estrogen. When the level of intracellular estrogen was down-regulated, the concentrations of the xanthine and hypoxanthine decreased, which led to the electrochemical signal of MCF-7 cells fall. Based on the electrochemical signal, the electrochemical estrogen screen method was established. The estrogen effect of estradiol, nonylphenol and bisphenol A was evaluated with the electrochemical method, and the result was accordant with that of MTT assay. The electrochemical estrogen screen method was simple, quickly, cheap, objective, and it exploits a new way for the evaluation of estrogenic effects of chemicals. Copyright © 2016. Published by Elsevier B.V.

  8. Effect of photoanode thickness on electrochemical performance of dye sensitized solar cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khatani, Mehboob, E-mail: mkhatani@hotmail.com; Hamid, Nor Hisham, E-mail: hishmid@petronas.com.my; Sahmer, Ahmed Zahrin, E-mail: azclement@yahoo.com

    2015-07-22

    The thickness of photoanode is crucial as it adsorbed a large amount of dye molecules that provide electrons for generation of electricity in dye sensitized solar cell (DSC). Thus, in order to realize the practical application of DSC, study on various thickness of photoanode need to be carried out to analyze its effect on the electrochemical behavior of dye sensitized solar cell. To enhance the conversion efficiency, an additional layer of TiO{sub 2} using TiCl{sub 4} treatment was deposited prior to the deposition of the photoanode (active area of 1cm{sup 2}) with the thickness of 6, 12, 18, 24, andmore » 30 µm on fluorine doped tin oxide (FTO) glass substrate. The resulting photoanode after the soak in N719 dye for more than 12hrs were used to be assembled in a test cell in combination with liquid electrolyte and counter electrode. The fabricated cells were characterized by solar simulator, ultraviolet-visible spectroscopy (UV-VIS), and electrochemical impedance spectroscopy (EIS). Scanning electron microscopy (SEM) was used to approximate the thickness of photoanode. An optimum power conversion efficiency of 4.54% was obtained for the cell fabricated with 18 µm photoanode thickness. This is attributed to the reduced resistance related to electron transport in the TiO{sub 2}/dye/electrolyte interface as proven by the EIS result. This led to the reduction of internal resistance, the increase in the electron life time and the improvement in the conversion efficiency.« less

  9. Effects of Salts and Metal Oxides on Electrochemical and Optical Properties of Streptococcus mutans

    NASA Astrophysics Data System (ADS)

    Kawai, Tsuyoshi; Nagame, Seigo; Kambara, Masaki; Yoshino, Katsumi

    1994-10-01

    The effects of calcium salts and metal oxide powders on electrochemical, optical and biological properties of Streptococcus mutans have been studied as a novel method to determine the strain. Electrochemical signals of Streptococcus mutans show remarkable decrease in the presence of saturated calcium salts such as CaHPO4, Ca3(PO4)2, and Ca5(PO4)3OH depending on the strains of Streptococcus mutans: Ingbritt, NCTC-10449, or GS-5. The number of viable cells also decreases upon addition of these powders. The effects of metal oxides such as ZnO and BaTiO3 on the electrochemical characteristics and photoluminescence of Streptococcus mutans have also been studied.

  10. Streamline three-dimensional thermal model of a lithium titanate pouch cell battery in extreme temperature conditions with module simulation

    NASA Astrophysics Data System (ADS)

    Jaguemont, Joris; Omar, Noshin; Martel, François; Van den Bossche, Peter; Van Mierlo, Joeri

    2017-11-01

    In this paper, the development of a three-dimensional (3D) lithium titanium oxide (LTO) pouch cell is presented to first better comprehend its thermal behavior within electrified vehicle applications, but also to propose a strong modeling base for future thermal management system. Current 3D-thermal models are based on electrochemical reactions which are in need for elaborated meshing effort and long computational time. There lacks a fast electro-thermal model which can capture voltage, current and thermal distribution variation during the whole process. The proposed thermal model is a reduce-effort temperature simulation approach involving a 0D-electrical model accommodating a 3D-thermal model to exclude electrochemical processes. The thermal model is based on heat-transfer theory and its temperature distribution prediction incorporates internal conduction and heat generation effect as well as convection. In addition, experimental tests are conducted to validate the model. Results show that both the heat dissipation rate and surface temperature uniformity data are in agreement with simulation results, which satisfies the application requirements for electrified vehicles. Additionally, a LTO battery pack sizing and modeling is also designed, applied and displays a non-uniformity of the cells under driving operation. Ultimately, the model will serve as a basis for the future development of a thermal strategy for LTO cells that operate in a large temperature range, which is a strong contribution to the existing body of scientific literature.

  11. Random walk on a leash: a simple single-molecule diffusion model for surface-tethered redox molecules with flexible linkers.

    PubMed

    Huang, Kuan-Chun; White, Ryan J

    2013-08-28

    We develop a random walk model to simulate the Brownian motion and the electrochemical response of a single molecule confined to an electrode surface via a flexible molecular tether. We use our simple model, which requires no prior knowledge of the physics of the molecular tether, to predict and better understand the voltammetric response of surface-confined redox molecules when motion of the redox molecule becomes important. The single molecule is confined to a hemispherical volume with a maximum radius determined by the flexible molecular tether (5-20 nm) and is allowed to undergo true three-dimensional diffusion. Distance- and potential-dependent electron transfer probabilities are evaluated throughout the simulations to generate cyclic voltammograms of the model system. We find that at sufficiently slow cyclic voltammetric scan rates the electrochemical reaction behaves like an adsorbed redox molecule with no mass transfer limitation; thus, the peak current is proportional to the scan rate. Conversely, at faster scan rates the diffusional motion of the molecule limits the simulated peak current, which exhibits a linear dependence on the square root of the scan rate. The switch between these two limiting regimes occurs when the diffusion layer thickness, (2Dt)(1/2), is ~10 times the tether length. Finally, we find that our model predicts the voltammetric behavior of a redox-active methylene blue tethered to an electrode surface via short flexible single-stranded, polythymine DNAs, allowing the estimation of diffusion coefficients for the end-tethered molecule.

  12. Macroscopic Modeling of a One-Dimensional Electrochemical Cell using the Poisson-Nernst-Planck Equations

    NASA Astrophysics Data System (ADS)

    Yan, David

    This thesis presents the one-dimensional equations, numerical method and simulations of a model to characterize the dynamical operation of an electrochemical cell. This model extends the current state-of-the art in that it accounts, in a primitive way, for the physics of the electrolyte/electrode interface and incorporates diffuse-charge dynamics, temperature coupling, surface coverage, and polarization phenomena. The one-dimensional equations account for a system with one or two mobile ions of opposite charge, and the electrode reaction we consider (when one is needed) is a one-electron electrodeposition reaction. Though the modeled system is far from representing a realistic electrochemical device, our results show a range of dynamics and behaviors which have not been observed previously, and explore the numerical challenges required when adding more complexity to a model. Furthermore, the basic transport equations (which are developed in three spatial dimensions) can in future accomodate the inclusion of additional physics, and coupling to more complex boundary conditions that incorporate two-dimensional surface phenomena and multi-rate reactions. In the model, the Poisson-Nernst-Planck equations are used to model diffusion and electromigration in an electrolyte, and the generalized Frumkin-Butler-Volmer equation is used to model reaction kinetics at electrodes. An energy balance equation is derived and coupled to the diffusion-migration equation. The model also includes dielectric polarization effects by introducing different values of the dielectric permittivity in different regions of the bulk, as well as accounting for surface coverage effects due to adsorption, and finite size "crowding", or steric effects. Advection effects are not modeled but could in future be incorporated. In order to solve the coupled PDE's, we use a variable step size second order scheme in time and finite differencing in space. Numerical tests are performed on a simplified system and the scheme's stability and convergence properties are discussed. While evaluating different methods for discretizing the coupled flux boundary condition, we discover a thresholding behaviour in the adaptive time stepper, and perform additional tests to investigate it. Finally, a method based on ghost points is chosen for its favorable numerical properties compared to the alternatives. With this method, we are able to run simulations with a large range of parameters, including any value of the nondimensionalized Debye length epsilon. The numerical code is first used to run simulations to explore the effects of polarization, surface coverage, and temperature. The code is also used to perform frequency sweeps of input signals in order to mimic impedance spectroscopy experiments. Finally, in Chapter 5, we use our model to apply ramped voltages to electrochemical systems, and show theoretical and simulated current-voltage curves for liquid and solid thin films, cells with blocking (polarized) electrodes, and electrolytes with background charge. Linear sweep and cyclic voltammetry techniques are important tools for electrochemists and have a variety of applications in engineering. Voltammetry has classically been treated with the Randles-Sevcik equation, which assumes an electroneutral supported electrolyte. No general theory of linear-sweep voltammetry is available, however, for unsupported electrolytes and for other situations where diffuse charge effects play a role. We show theoretical and simulated current-voltage curves for liquid and solid thin films, cells with blocking electrodes, and membranes with fixed background charge. The analysis focuses on the coupling of Faradaic reactions and diffuse charge dynamics, but capacitive charging of the double layers is also studied, for early time transients at reactive electrodes and for non-reactive blocking electrodes. The final chapter highlights the role of diffuse charge in the context of voltammetry, and illustrates which regimes can be approximated using simple analytical expressions and which require more careful consideration.

  13. Fundamentals, achievements and challenges in the electrochemical sensing of pathogens.

    PubMed

    Monzó, Javier; Insua, Ignacio; Fernandez-Trillo, Francisco; Rodriguez, Paramaconi

    2015-11-07

    Electrochemical sensors are powerful tools widely used in industrial, environmental and medical applications. The versatility of electrochemical methods allows for the investigation of chemical composition in real time and in situ. Electrochemical detection of specific biological molecules is a powerful means for detecting disease-related markers. In the last 10 years, highly-sensitive and specific methods have been developed to detect waterborne and foodborne pathogens. In this review, we classify the different electrochemical techniques used for the qualitative and quantitative detection of pathogens. The robustness of electrochemical methods allows for accurate detection even in heterogeneous and impure samples. We present a fundamental description of the three major electrochemical sensing methods used in the detection of pathogens and the advantages and disadvantages of each of these methods. In each section, we highlight recent breakthroughs, including the utilisation of microfluidics, immunomagnetic separation and multiplexing for the detection of multiple pathogens in a single device. We also include recent studies describing new strategies for the design of future immunosensing systems and protocols. The high sensitivity and selectivity, together with the portability and the cost-effectiveness of the instrumentation, enhances the demand for further development in the electrochemical detection of microbes.

  14. Current Density Scaling in Electrochemical Flow Capacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoyt, NC; Wainright, JS; Savinell, RF

    Electrochemical flow capacitors (EFCs) are a recently developed energy storage technology. One of the principal performance metrics of an EFC is the steady-state electrical current density that it can accept or deliver. Numerical models exist to predict this performance for specific cases, but here we present a study of how the current varies with respect to the applied cell voltage, flow rate, cell dimensions, and slurry properties using scaling laws. The scaling relationships are confirmed by numerical simulations and then subsequently by comparison to results from symmetric cell EFC experiments. This modeling approach permits the delimitation of three distinct operationalmore » regimes dependent on the values of two nondimensional combinations of the pertinent variables (specifically, a capacitive Graetz number and a conductivity ratio). Lastly, the models and nondimensional numbers are used to provide design guidance in terms of criteria for proper EFC operation. (C) The Author(s) 2015. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. All rights reserved.« less

  15. Phase-field modeling of chemical control of polarization stability and switching dynamics in ferroelectric thin films

    DOE PAGES

    Cao, Ye; Kalinin, Sergei V.

    2016-12-15

    Phase-field simulation (PFS) has revolutionized the understanding of domain structure and switching behavior in ferroelectric thin films and ceramics. Generally, PFS is based on the solution of (a set of) Landau-Ginzburg-Devonshire equations for a defined order parameter field(s) under physical boundary conditions (BCs) of fixed potential or charge. While well matched to the interfaces in bulk materials and devices, these BCs are generally not applicable to free ferroelectric surfaces. Here, we developed a self-consistent phase-field model with BCs based on electrochemical equilibria. We chose Pb(Zr 0.2Ti 0.8)O 3 ultrathin film consisting of (001) oriented single tetragonal domain ( Pz) asmore » a model system and systematically studied the effects of oxygen partial pressure, temperature, and surface ions on the ferroelectric state and compared it with the case of complete screening. We have further explored the polarization switching induced by the oxygen partial pressure and observed pronounced size effect induced by chemical screening. Finally, our paper thus helps to understand the emergent phenomena in ferroelectric thin films brought about by the electrochemical ionic surface compensations.« less

  16. Phase-field modeling of chemical control of polarization stability and switching dynamics in ferroelectric thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Ye; Kalinin, Sergei V.

    Phase-field simulation (PFS) has revolutionized the understanding of domain structure and switching behavior in ferroelectric thin films and ceramics. Generally, PFS is based on the solution of (a set of) Landau-Ginzburg-Devonshire equations for a defined order parameter field(s) under physical boundary conditions (BCs) of fixed potential or charge. While well matched to the interfaces in bulk materials and devices, these BCs are generally not applicable to free ferroelectric surfaces. Here, we developed a self-consistent phase-field model with BCs based on electrochemical equilibria. We chose Pb(Zr 0.2Ti 0.8)O 3 ultrathin film consisting of (001) oriented single tetragonal domain ( Pz) asmore » a model system and systematically studied the effects of oxygen partial pressure, temperature, and surface ions on the ferroelectric state and compared it with the case of complete screening. We have further explored the polarization switching induced by the oxygen partial pressure and observed pronounced size effect induced by chemical screening. Finally, our paper thus helps to understand the emergent phenomena in ferroelectric thin films brought about by the electrochemical ionic surface compensations.« less

  17. Modeling of electrochemical flow capacitors using Stokesian dynamics

    NASA Astrophysics Data System (ADS)

    Karzar Jeddi, Mehdi; Luo, Haoxiang; Cummings, Peter; Hatzell, Kelsey

    2017-11-01

    Electrochemical flow capacitors (EFCs) are supercapacitors designed to store electrical energy in the form of electrical double layer (EDL) near the surface of porous carbon particles. During its operation, a slurry of activated carbon beads and smaller carbon black particles is pumped between two flat and parallel electrodes. In the charging phase, ions in the electrolyte diffuse to the EDL, and electrical charges percolate through the dynamic network of particles from the flat electrodes; during the discharging phase, the process is reversed with the ions released to the bulk fluid and electrical charges percolating back through the network. In these processes, the relative motion and contact of particle of different sizes affect not only the rheology of the slurry but also charge transfer of the percolation network. In this study, we use Stoekesian dynamics simulation to investigate the role of hydrodynamic interactions of packed carbon particles in the charging/discharging behaviors of EFCs. We derived mobility functions for polydisperse spheres near a no-slip wall. A code is implemented and validated, and a simple charging model has been incorporated to represent charge transfer. Theoretical formulation and results demonstration will be presented in this talk.

  18. Electrochemical performance and durability of carbon supported Pt catalyst in contact with aqueous and polymeric proton conductors.

    PubMed

    Andersen, Shuang Ma; Skou, Eivind

    2014-10-08

    Significant differences in catalyst performance and durability are often observed between the use of a liquid electrolyte (e.g., sulfuric acid), and a solid polymer electrolyte (e.g., Nafion). To understand this phenomenon, we studied the electrochemical behavior of a commercially available carbon supported platinum catalyst in four different electrode structures: catalyst powder (CP), catalyst ionomer electrode (CIE), half membrane electrode assembly (HMEA), and full membrane electrode assembly (FMEA) in both ex situ and in situ experiments under a simulated start/stop cycle. We found that the catalyst performance and stability are very much influenced by the presence of the Nafion ionomers. The proton conducting phase provided by the ionomer and the self-assembled electrode structure render the catalysts a higher utilization and better stability. This is probably due to an enhanced dispersion, an improved proton-catalyst interface, the restriction of catalyst particle aggregation, and the improved stability of the ionomer phase especially after the lamination. Therefore, an innovative electrode HMEA design for ex-situ catalyst characterization is proposed. The electrode structure is identical to the one used in a real fuel cell, where the protons transport takes place solely through solid state proton conducting phase.

  19. Bias-dependent local structure of water molecules at an electrochemical interface

    NASA Astrophysics Data System (ADS)

    Pedroza, Luana; Brandimarte, Pedro; Rocha, Alexandre R.; Fernandez-Serra, Marivi

    2015-03-01

    Following the need for new - and renewable - sources of energy worldwide, fuel cells using electrocatalysts can be thought of as a viable option. Understanding the local structure of water molecules at the interfaces of the metallic electrodes is a key problem. Notably the system is under an external potential bias, which makes the task of simulating this setup difficult. A first principle description of all components of the system is the most appropriate methodology in order to advance understanding of electrochemical processes. There, the metal is usually charged. To correctly compute the effect of an external bias potential applied to electrodes, we combine density functional theory (DFT) and non-equilibrium Green's functions methods (NEGF), with and without van der Waals interactions. In this work, we apply this methodology to study the electronic properties and forces of one water molecule and water monolayer at the interface of gold electrodes. We find that the water molecule has a different torque direction depending on the sign of the bias applied. We also show that it changes the position of the most stable configuration indicating that the external bias plays an important role in the structural properties of the interface. We acknowledge financial support from FAPESP.

  20. Prediction of battery storage ageing and solid electrolyte interphase property estimation using an electrochemical model

    NASA Astrophysics Data System (ADS)

    Ashwin, T. R.; Barai, A.; Uddin, K.; Somerville, L.; McGordon, A.; Marco, J.

    2018-05-01

    Ageing prediction is often complicated due to the interdependency of ageing mechanisms. Research has highlighted that storage ageing is not linear with time. Capacity loss due to storing the battery at constant temperature can shed more light on parametrising the properties of the Solid Electrolyte Interphase (SEI); the identification of which, using an electrochemical model, is systematically addressed in this work. A new methodology is proposed where any one of the available storage ageing datasets can be used to find the property of the SEI layer. A sensitivity study is performed with different molecular mass and densities which are key parameters in modelling the thickness of the SEI deposit. The conductivity is adjusted to fine tune the rate of capacity fade to match experimental results. A correlation is fitted for the side reaction variation to capture the storage ageing in the 0%-100% SoC range. The methodology presented in this paper can be used to predict the unknown properties of the SEI layer which is difficult to measure experimentally. The simulation and experimental results show that the storage ageing model shows good accuracy for the cases at 50% and 90% and an acceptable agreement at 20% SoC.

  1. Sodium alginate: A promising biopolymer for corrosion protection of API X60 high strength carbon steel in saline medium.

    PubMed

    Obot, I B; Onyeachu, Ikenna B; Kumar, A Madhan

    2017-12-15

    Sodium alginate (SA), a polysaccharide biopolymer, has been studied as an effective inhibitor against the corrosion of API X60 steel in neutral 3.5% NaCl using gravimetric and electrochemical techniques (OCP, EIS and EFM). The inhibition efficiency of the SA increased with concentration but was lower at higher temperature (70°C). Electrochemical measurements showed that the SA shifted the steel corrosion potential to more positive value and reduced the kinetics of corrosion by forming an adsorbed layer which mitigated the steel surface wetting, based on contact angle measurement. SEM-EDAX was used to confirm the inhibition of SA on API X60 steel surfaces. The SA adsorbs on the steel surface through a physisorption mechanism using its carboxylate oxygen according to UV-vis and ATR-IR measurements, respectively. This phenomena result in decreased localized pitting corrosion of the API X60 steel in 3.5% NaCl solution. Theoretical results using quantum chemical calculations and Monte Carlo simulations provide further atomic level insights into the interaction of SA with steel surface. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Mapping Cd²⁺-induced membrane permeability changes of single live cells by means of scanning electrochemical microscopy.

    PubMed

    Filice, Fraser P; Li, Michelle S M; Henderson, Jeffrey D; Ding, Zhifeng

    2016-02-18

    Scanning Electrochemical Microscopy (SECM) is a powerful, non-invasive, analytical methodology that can be used to investigate live cell membrane permeability. Depth scan SECM imaging allowed for the generation of 2D current maps of live cells relative to electrode position in the x-z or y-z plane. Depending on resolution, one depth scan image can contain hundreds of probe approach curves (PACs). Individual PACs were obtained by simply extracting vertical cross-sections from the 2D image. These experimental PACs were overlaid onto theoretically generated PACs simulated at specific geometry conditions. Simulations were carried out using 3D models in COMSOL Multiphysics to determine the cell membrane permeability coefficients at different locations on the surface of the cells. Common in literature, theoretical PACs are generated using a 2D axially symmetric geometry. This saves on both compute time and memory utilization. However, due to symmetry limitations of the model, only one experimental PAC right above the cell can be matched with simulated PAC data. Full 3D models in this article were developed for the SECM system of live cells, allowing all experimental PACs over the entire cell to become usable. Cd(2+)-induced membrane permeability changes of single human bladder (T24) cells were investigated at several positions above the cell, displaced from the central axis. The experimental T24 cells under study were incubated with Cd(2+) in varying concentrations. It is experimentally observed that 50 and 100 μM Cd(2+) caused a decrease in membrane permeability, which was uniform across all locations over the cell regardless of Cd(2+) concentration. The Cd(2+) was found to have detrimental effects on the cell, with cells shrinking in size and volume, and the membrane permeability decreasing. A mapping technique for the analysis of the cell membrane permeability under the Cd(2+) stress is realized by the methodology presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Emergence of innovative properties by replacement of nitrogen atom with phosphorus atom in quaternary ammonium ionic liquids: Insights from ab initio calculations and MD simulations

    NASA Astrophysics Data System (ADS)

    Ghatee, Mohammad Hadi; Bahrami, Maryam

    2017-06-01

    We investigate to contrasting structure, dynamic and thermophysical properties of quaternary ammonium and phosphonium ionic liquids (ILs) based on triethylalkylammonium [N222n]+ and triethylalkylphosphonium [P222n]+ cations (n = 5, 8, 12) and (bis(trifluoromethylsulfonyl)imide) anion [NTf2]- by quantum chemical calculations (QCC) and molecular dynamics (MD) simulations. QCCs conform to previous studies, showing that phosphonium cation alkyl chain rotational-energy-barrier is lower than ammonium cation. These molecular nature leads to no appreciable differences in their liquid density. However, their simulated transport properties (self-diffusion, conductivity, etc) are appreciably different. In particular, viscosity of phosphoniums are much lower than ammoniums. Ammoniums make nano-scale structural domains larger than phosphoniums. Employed analysis, vector re-orientational dynamics, ion-pair lifetime and nanostructure domain are in favor of faster dynamic for phosphoniums than ammoniums. [NTf2]- anion features a long lived pairing with ammoniums than phosphoniums. Overall, phosphoniums possess higher transference number, higher conductivity, and appreciably lower viscosity favorable for higher electrochemical performances.

  4. Enhanced Proton Conductivity in Y-Doped BaZrO3 via Strain Engineering.

    PubMed

    Fluri, Aline; Marcolongo, Aris; Roddatis, Vladimir; Wokaun, Alexander; Pergolesi, Daniele; Marzari, Nicola; Lippert, Thomas

    2017-12-01

    The effects of stress-induced lattice distortions (strain) on the conductivity of Y-doped BaZrO 3 , a high-temperature proton conductor with key technological applications for sustainable electrochemical energy conversion, are studied. Highly ordered epitaxial thin films are grown in different strain states while monitoring the stress generation and evolution in situ. Enhanced proton conductivity due to lower activation energies is discovered under controlled conditions of tensile strain. In particular, a twofold increased conductivity is measured at 200 °C along a 0.7% tensile strained lattice. This is at variance with conclusions coming from force-field simulations or the static calculations of diffusion barriers. Here, extensive first-principles molecular dynamic simulations of proton diffusivity in the proton-trapping regime are therefore performed and found to agree with the experiments. The simulations highlight that compressive strain confines protons in planes parallel to the substrate, while tensile strain boosts diffusivity in the perpendicular direction, with the net result that the overall conductivity is enhanced. It is indeed the presence of the dopant and the proton-trapping effect that makes tensile strain favorable for proton conduction.

  5. A study for hypergolic vapor sensor development

    NASA Technical Reports Server (NTRS)

    Stetter, J. R.

    1977-01-01

    The use of an electrochemical technique for MMH and N02 measurement was investigated. Specific MMH and N02 electrochemical sensors were developed. Experimental techniques for preparation, handling, and analysis of hydrazine's vapor mixtures at ppb and ppm levels were developed. Two approaches to N02 instrument design were evaluated including specific adsorption and specific electrochemical reduction. Two approaches to hydrazines monitoring were evaluated including catalytic conversion to N0 with subsequent N0 detection and direct specific electrochemical oxidation. Two engineering prototype MMH/N02 monitors were designed and constructed.

  6. Reclamation of niobium compounds from ionic liquid electrochemical polishing of superconducting radio frequency cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wixtrom, Alex I.; Buhler, Jessica E.; Reece, Charles E.

    2013-06-01

    Recent research has shown that choline chloride (vitamin B4)-based solutions can be used as a greener alternative to acid-based electrochemical polishing solutions. This study demonstrated a successful method for electrochemical deposition of niobium compounds onto the surface of copper substrates using a novel choline chloride-based ionic liquid. Niobium ions present in the ionic liquid solution were dissolved into the solution prior to deposition via electrochemical polishing of solid niobium. A black coating was clearly visible on the surface of the Cu following deposition. This coating was analyzed using scanning electron microscopy (SEM), electron dispersive X-ray spectroscopy (EDX), atomic force microscopymore » (AFM), and X-ray fluorescence spectroscopy (XRF). This ionic liquid-based electrochemical deposition method effectively recycles previously dissolved niobium from electrochemical polishing of superconducting radio frequency (SRF) cavities.« less

  7. Development of a system for treatment of coconut industry wastewater using electrochemical processes followed by Fenton reaction.

    PubMed

    Gomes, Lúcio de Moura; Duarte, José Leandro da Silva; Pereira, Nathalia Marcelino; Martínez-Huitle, Carlos A; Tonholo, Josealdo; Zanta, Carmen Lúcia de Paiva E Silva

    2014-01-01

    The coconut processing industry generates a significant amount of liquid waste. New technologies targeting the treatment of industrial effluents have emerged, including advanced oxidation processes, the Fenton reaction, and electrochemical processes, which produce strong oxidizing species to remove organic matter. In this study we combined the Fenton reaction and electrochemical process to treat wastewater generated by the coconut industry. We prepared a synthetic wastewater consisting of a mixture of coconut milk and water and assessed how the Fenton reagents' concentration, the cathode material, the current density, and the implementation of associated technologies affect its treatment. Electrochemical treatment followed by the Fenton reaction diminished turbidity and chemical oxygen demand (COD) by 85 and 95%, respectively. The Fenton reaction followed by the electrochemical process reduced turbidity and COD by 93 and 85%, respectively. Therefore, a combination of the Fenton and electrochemical technologies can effectively treat the effluent from the coconut processing industry.

  8. The mechanical and electrochemical properties of bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Morrison, Mark Lee

    The objectives of this study were to define and model the electrochemical and mechanical behaviors of BMGs, in addition to the interactions between these. The electrochemical behaviors of Zr-, Ti-, and Ca-based BMGs have been studied in various environments. Moreover, the electrochemical behaviors of several common, crystalline materials have also been characterized in the same environments to facilitate comparisons. Mechanical characterization of the Vitreloy 105 alloy was conducted through four-point bend fatigue testing, as well as tensile testing with in situ thermography. After the electrochemical and mechanical behaviors of the Vit 105 BMG alloy were defined separately, the corrosion-fatigue behavior of this alloy was studied. Corrosion-fatigue tests were conducted in a 0.6 M NaCl electrolyte, identical to one of the environments in which the electrochemical behavior was previously defined. The environmental effect was found to be significant at most stress levels, with decreasing effects at higher stress levels due to decreasing time in the detrimental environment, and severely depressed the corrosion-fatigue endurance limit. Cyclic-anodic-polarization tests were conducted during cyclic loading to elucidate the effect of cyclic stresses on the electrochemical behavior. It was found that a stress range of 900 MPa resulted in active pitting at the open-circuit potentials. The degradation mechanism was determined to be stress-assisted dissolution, not hydrogen embrittlement. Finally, tensile tests were conducted with the Vit 105 BMG alloy with in situ infrared (IR) thermography to observe the evolution of shear bands during deformation. More importantly, the length, location, sequence, temperature evolution, and velocity of individual shear bands have been quantified through the use of IR thermography. Based upon all of these studies on a variety of BMG alloy systems, the most important factor in the mechanical and electrochemical behavior was found to be material quality and homogeneity. Therefore, future research on the improvement of BMG alloys should be focused on this area.

  9. Computational modeling of transport and electrochemical reactions in proton-exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Um, Sukkee

    A comprehensive, multi-physics computational fuel cell dynamics (CFCD) model integrating electrochemical kinetics, charge transport, mass transport (particularly water transport), and flow dynamics is developed in this thesis. The numerical model is validated against published experimental data and utilized to generate results that reveal the internal operation of a PEM fuel cell. A number of model applications are demonstrated in the present work. First, the CFCD model is applied to explore hydrogen dilution effects in the anode feed. Detailed two-dimensional electrochemical and flow/transport simulations are provided to examine substantial anode concentration polarization due to hydrogen depletion at the reaction sites. A transient simulation of the cell current response to a step change in cell voltage is also attempted to elucidate characteristics of the dynamic response of a fuel cell for the first time. After the two-dimensional computational study, the CFCD model is applied to illustrate three-dimensional interactions between mass transfer and electrochemical kinetics. Emphasis is placed on obtaining a fundamental understanding of fully three-dimensional flow in the air cathode with interdigitated flowfield design and how it impacts the transport and electrochemical reaction processes. The innovative design concept for enhanced oxygen transport to, and effective water removal from the cathode, is explored numerically. Next, an analytical study of water transport is performed to investigate various water transport regimes of practical interest. The axial locations characteristic of anode water loss and cathode flooding are predicted theoretically and compared with numerical results. A continuous stirred fuel cell reactor (CSFCR) model is also proposed for the limiting situation where the anode and cathode sides reach equilibrium in water concentration with a thin ionomer membrane in between. In addition to the analytical solutions, a detailed water transport model extending the CFCD framework is developed in which a unified water equation is arrived at using the equilibrium water uptake curve between the gas and membrane phases. Various modes of water transport, i.e. diffusion, convection, and electro-osmotic drag, are incorporated in the unified water transport equation. This water transport model is then applied to elucidate water management in three-dimensional fuel cells with dry to low humidified inlet gases after its validation against available experimental data with dry oxidant and fuel streams. An internal circulation of water with the aid of counter-flow design is found to be essential for low-humidity operation, for example, in portable application of a PEM fuel cell without external humidifier. Finally, to handle the most important issue associated with PEM fuel cells using reformate gas, namely the CO poisoning anode Pt catalysts, a major modification of the present CFCD model is made to include CO oxidation processes. A four-step CO poisoning mechanism is implemented here and anode species equation for CO is added to model the electro- and chemical-oxidation processes on the anode. Numerical results of CO poisoning effects using a commercial package, STAR-CD, are presented. Basic features of CO poisoning are delineated and discussed. Future research areas of the fuel cell modeling are also indicated. As an example, preliminary results of extending the CFCD model to include heat transfer using a commercial package, FLUENTRTM, are given to demonstrate the need for careful thermal management in a multi-cell stack design.

  10. Corrosion inhibition of mild steel in 1M HCl by D-glucose derivatives of dihydropyrido [2,3-d:6,5-d′] dipyrimidine-2, 4, 6, 8(1H,3H, 5H,7H)-tetraone

    PubMed Central

    Verma, Chandrabhan; Quraishi, M. A.; Kluza, K.; Makowska-Janusik, M.; Olasunkanmi, Lukman O.; Ebenso, Eno E.

    2017-01-01

    D-glucose derivatives of dihydropyrido-[2,3-d:6,5-d′]-dipyrimidine-2, 4, 6, 8(1H,3H, 5H,7H)-tetraone (GPHs) have been synthesized and investigated as corrosion inhibitors for mild steel in 1M HCl solution using gravimetric, electrochemical, surface, quantum chemical calculations and Monte Carlo simulations methods. The order of inhibition efficiencies is GPH-3 > GPH-2 > GPH-1. The results further showed that the inhibitor molecules with electron releasing (-OH, -OCH3) substituents exhibit higher efficiency than the parent molecule without any substituents. Polarization study suggests that the studied compounds are mixed-type but exhibited predominantly cathodic inhibitive effect. The adsorption of these compounds on mild steel surface obeyed the Langmuir adsorption isotherm. SEM, EDX and AFM analyses were used to confirm the inhibitive actions of the molecules on mild steel surface. Quantum chemical (QC) calculations and Monte Carlo (MC) simulations studies were undertaken to further corroborate the experimental results. PMID:28317849

  11. Nano-Electrochemistry and Nano-Electrografting with an Original Combined AFM-SECM

    PubMed Central

    Ghorbal, Achraf; Grisotto, Federico; Charlier, Julienne; Palacin, Serge; Goyer, Cédric; Demaille, Christophe; Ben Brahim, Ammar

    2013-01-01

    This study demonstrates the advantages of the combination between atomic force microscopy and scanning electrochemical microscopy. The combined technique can perform nano-electrochemical measurements onto agarose surface and nano-electrografting of non-conducting polymers onto conducting surfaces. This work was achieved by manufacturing an original Atomic Force Microscopy-Scanning ElectroChemical Microscopy (AFM-SECM) electrode. The capabilities of the AFM-SECM-electrode were tested with the nano-electrografting of vinylic monomers initiated by aryl diazonium salts. Nano-electrochemical and technical processes were thoroughly described, so as to allow experiments reproducing. A plausible explanation of chemical and electrochemical mechanisms, leading to the nano-grafting process, was reported. This combined technique represents the first step towards improved nano-processes for the nano-electrografting. PMID:28348337

  12. Active control of methanol carbonylation selectivity over Au/carbon anode by electrochemical potential.

    PubMed

    Funakawa, Akiyasu; Yamanaka, Ichiro; Otsuka, Kiyoshi

    2005-05-12

    Electrochemical oxidative carbonylation of methanol was studied over Au supported carbon anode in CO. The major carbonylation products were dimethyl oxalate (DMO) and dimethyl carbonate (DMC). The minor oxidation products were dimethoxy methane (DMM) and methyl formate (MF) from methanol and CO(2). Influences of various reaction conditions were studied on carbonylation activities and selectivities. The selectivities to DMO and DMC can be controlled by the electrochemical potential. Electrocatalysis of Au/carbon anode was studied by cyclic voltammetry (CV), stoichiometric reactions among Au(3+), methanol, and CO, and UV-vis spectra. The Au/carbon anode was characterized by XRD, SEM, and BE images before and after the carbonylation. These experimental facts strongly suggest that transition of oxidation states of Au affects changing of the carbonylation selectivities to DMO and DMC. Au(0) is the active species for the selective DMO formation by direct electrochemical carbonylation at low potentials (<+1.2 V (Ag/AgCl)). On the other hand, Au(3+) is the active spices for the selective DMC formation by indirect electrochemical carbonylation through Au(3+)/Au(+) redox at high potentials (>+1.3 V).

  13. Aptamer-based electrochemical sensors with aptamer-complementary DNA oligonucleotides as probe.

    PubMed

    Lu, Ying; Li, Xianchan; Zhang, Limin; Yu, Ping; Su, Lei; Mao, Lanqun

    2008-03-15

    This study describes a facile and general strategy for the development of aptamer-based electrochemical sensors with a high specificity toward the targets and a ready regeneration feature. Very different from the existing strategies for the development of electrochemical aptasensors with the aptamers as the probes, the strategy proposed here is essentially based on the utilization of the aptamer-complementary DNA (cDNA) oligonucleotides as the probes for electrochemical sensing. In this context, the sequences at both ends of the cDNA are tailor-made to be complementary and both the redox moiety (i.e., ferrocene in this study) and thiol group are labeled onto the cDNA. The labeled cDNA are hybridized with their respective aptamers (i.e., ATP- and thrombin-binding aptamers in this study) to form double-stranded DNA (ds-DNA) and the electrochemical aptasensors are prepared by self-assembling the labeled ds-DNA onto Au electrodes. Upon target binding, the aptamers confined onto electrode surface dissociate from their respective cDNA oligonucleotides into the solution and the single-stranded cDNA could thus tend to form a hairpin structure through the hybridization of the complementary sequences at both its ends. Such a conformational change of the cDNA resulting from the target binding-induced dissociation of the aptamers essentially leads to the change in the voltammetric signal of the redox moiety labeled onto the cDNA and thus constitutes the mechanism for the electrochemical aptasensors for specific target sensing. The aptasensors demonstrated here with the cDNA as the probe are readily regenerated and show good responses toward the targets. This study may offer a new and relatively general approach to electrochemical aptasensors with good analytical properties and potential applications.

  14. Electrochemistry for the Generation of Renewable Chemicals: One-Pot Electrochemical Deoxygenation of Xylose to δ-Valerolactone.

    PubMed

    James, Olusola O; Sauter, Waldemer; Schröder, Uwe

    2017-05-09

    In this study, the electrochemical conversion of xylose to δ-valerolactone via carbonyl intermediates is demonstrated. The conversion was achieved in aqueous media and at ambient conditions. This study also demonstrates that the feedstock for production of renewable chemicals and biofuels through electrochemistry can be extended to primary carbohydrate molecules. This is the first report on a one-pot electrochemical deoxygenation of xylose to δ-valerolactone. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Studies of electrochemical interfaces by TOF neutron reflectometry at the IBR-2 reactor

    NASA Astrophysics Data System (ADS)

    Petrenko, V. I.; Gapon, I. V.; Rulev, A. A.; Ushakova, E. E.; Kataev, E. Yu; Yashina, L. V.; Itkis, D. M.; Avdeev, M. V.

    2018-03-01

    The operation performance of electrochemical energy conversion and storage systems such as supercapacitors and batteries depends on the processes occurring at the electrochemical interfaces, where charge separation and chemical reactions occur. Here, we report about the tests of the neutron reflectometry cells specially designed for operando studies of structural changes at the electrochemical interfaces between solid electrodes and liquid electrolytes. The cells are compatible with anhydrous electrolytes with organic solvents, which are employed today in all lithium ion batteries and most supercapacitors. The sensitivity of neutron reflectometry applied at the time-of-flight (TOF) reflectometer at the pulsed reactor IBR-2 is discussed regarding the effect of solid electrolyte interphase (SEI) formation on metal electrode surface.

  16. Electrochemical performance of MXenes as K-ion battery anodes

    DOE PAGES

    Naguib, Michael; Adams, Ryan A.; Zhao, Yunpu; ...

    2017-05-31

    In this paper, we report on the electrochemical performance of two-dimensional transition metal carbonitrides as novel promising electrode materials in K-ion batteries. Titanium carbonitride, Ti 3CNT z, was investigated in detail using electrochemical galvanostatic cycling at various current densities. Finally, X-ray diffraction and X-ray photoelectron spectroscopy were used to study the potassiation mechanism and its structural changes.

  17. Study of electrochemical reduced graphene oxide and MnO2 heterostructure for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Jana, S. K.; Rao, V. P.; Banerjee, S.

    2013-02-01

    In this paper we have shown enhanced supercapacitive property of electrochemically reduced graphene oxide (ERGO) and manganese dioxide (MnO2) based heterostructure over single MnO2 thin film grown by electrochemical deposition on indium tin oxide (ITO). ERGO improves the electrical conduction leading to decrease of the internal resistance of the heterostructure.

  18. Characteristics for electrochemical machining with nanoscale voltage pulses.

    PubMed

    Lee, E S; Back, S Y; Lee, J T

    2009-06-01

    Electrochemical machining has traditionally been used in highly specialized fields, such as those of the aerospace and defense industries. It is now increasingly being applied in other industries, where parts with difficult-to-cut material, complex geometry and tribology, and devices of nanoscale and microscale are required. Electric characteristic plays a principal function role in and chemical characteristic plays an assistant function role in electrochemical machining. Therefore, essential parameters in electrochemical machining can be described current density, machining time, inter-electrode gap size, electrolyte, electrode shape etc. Electrochemical machining provides an economical and effective method for machining high strength, high tension and heat-resistant materials into complex shapes such as turbine blades of titanium and aluminum alloys. The application of nanoscale voltage pulses between a tool electrode and a workpiece in an electrochemical environment allows the three-dimensional machining of conducting materials with sub-micrometer precision. In this study, micro probe are developed by electrochemical etching and micro holes are manufactured using these micro probe as tool electrodes. Micro holes and microgroove can be accurately achieved by using nanoscale voltages pulses.

  19. Special cluster issue on tribocorrosion of dental materials

    NASA Astrophysics Data System (ADS)

    Mathew, Mathew T.; Stack, Margaret M.

    2013-10-01

    Tribocorrosion affects all walks of life from oil and gas conversion to biomedical materials. Wear can interact with corrosion to enhance it or impede it; conversely, corrosion can enhance or impede wear. The understanding of the interactions between physical and chemical phenomena has been greatly assisted by electrochemical and microscopic techniques. In dentistry, it is well recognized that erosion due to dissolution (a term physicists use to denote wear) of enamel can result in tooth decay; however, the effects of the oral environment, i.e. pH levels, electrochemical potential and any interactions due to the forces involved in chewing are not well understood. This special cluster issue includes investigations on the fundamentals of wear-corrosion interactions involved in simulated oral environments, including candidate dental implant and veneer materials. The issue commences with a fundamental study of titanium implants and this is followed by an analysis of the behaviour of commonly used temporomandibular devices in a synovial fluid-like environment. The analysis of tribocorrosion mechanisms of Ti6Al4V biomedical alloys in artificial saliva with different pHs is addressed and is followed by a paper on fretting wear, on hydroxyapatite-titanium composites in simulated body fluid, supplemented with protein (bovine serum albumin). The effects of acid treatments on tooth enamel, and as a surface engineering technique for dental implants, are investigated in two further contributions. An analysis of the physiological parameters of intraoral wear is addressed; this is followed by a study of candidate dental materials in common beverages such as tea and coffee with varying acidity and viscosity and the use of wear maps to identify the safety zones for prediction of material degradation in such conditions. Hence, the special cluster issue consists of a range of tribocorrosion contributions involving many aspects of dental tribocorrosion, from analysis of physiological approaches and tissue engineering to studying of the effects of the environments encountered in clinical practice and management which lead to tooth decay. A wide range of analytical techniques and tribocorrosion experimental approaches is used to simulate, assess and model the synergistic interactions of wear and corrosion, many of them leading to new insights. We hope it will lead to increased awareness of tribocorrosion phenomena for researchers and dental clinicians alike and 'food for thought' for further studies in this field.

  20. Real-Time Evaluation of Live Cancer Cells by an in Situ Surface Plasmon Resonance and Electrochemical Study.

    PubMed

    Wu, Changyu; Rehman, Fawad Ur; Li, Jingyuan; Ye, Jing; Zhang, Yuanyuan; Su, Meina; Jiang, Hui; Wang, Xuemei

    2015-11-11

    This work presents a new strategy of the combination of surface plasmon resonance (SPR) and electrochemical study for real-time evaluation of live cancer cells treated with daunorubicin (DNR) at the interface of the SPR chip and living cancer cells. The observations demonstrate that the SPR signal changes could be closely related to the morphology and mass changes of adsorbed cancer cells and the variation of the refractive index of the medium solution. The results of light microscopy images and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide studies also illustrate the release or desorption of HepG2 cancer cells, which were due to their apoptosis after treatment with DNR. It is evident that the extracellular concentration of DNR residue can be readily determined through electrochemical measurements. The decreases in the magnitudes of SPR signals were linearly related to cell survival rates, and the combination of SPR with electrochemical study could be utilized to evaluate the potential therapeutic efficiency of bioactive agents to cells. Thus, this label-free, real-time SPR-electrochemical detection technique has great promise in bioanalysis or monitoring of relevant treatment processes in clinical applications.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabhakaran, Venkateshkumar; Johnson, Grant E.; Wang, Bingbing

    Molecular-level understanding of electrochemical processes occurring at electrode-electrolyte interfaces (EEI) is key to the rational development of high-performance and sustainable electrochemical technologies. This article reports the development and first application of solid-state in situ electrochemical probes to study redox and catalytic processes occurring at well-defined EEI generated using soft-landing of mass- and charge-selected cluster ions (SL). In situ electrochemical probes with excellent mass transfer properties are fabricated using carefully-designed nanoporous ionic liquid membranes. SL enables deposition of pure active species that are not obtainable with other techniques onto electrode surfaces with precise control over charge state, composition, and kinetic energy.more » SL is, therefore, a unique tool for studying fundamental processes occurring at EEI. For the first time using an aprotic electrochemical probe, the effect of charge state (PMo12O403-/2-) and the contribution of building blocks of Keggin polyoxometalate (POM) clusters to redox processes are characterized by populating EEI with novel POM anions generated by electrospray ionization and gas phase dissociation. Additionally, a proton conducting electrochemical probe has been developed to characterize the reactive electrochemistry (oxygen reduction activity) of bare Pt clusters (Pt40 ~1 nm diameter), thus demonstrating the capability of the probe for studying reactions in controlled gaseous environments. The newly developed in situ electrochemical probes combined with ion SL provide a versatile method to characterize the EEI in solid-state redox systems and reactive electrochemistry at precisely-defined conditions. This capability will advance molecular-level understanding of processes occurring at EEI that are critical to many energy-related technologies.« less

  2. Redox-active Hybrid Materials for Pseudocapacitive Energy Storage

    NASA Astrophysics Data System (ADS)

    Boota, Muhammad

    Organic-inorganic hybrid materials show a great promise for the purpose of manufacturing high performance electrode materials for electrochemical energy storage systems and beyond. Molecular level combination of two best suited components in a hybrid material leads to new or sometimes exceptional sets of physical, chemical, mechanical and electrochemical properties that makes them attractive for broad ranges of applications. Recently, there has been growing interest in producing redox-active hybrid nanomaterials for energy storage applications where generally the organic component provides high redox capacitance and the inorganic component offers high conductivity and robust support. While organic-inorganic hybrid materials offer tremendous opportunities for electrochemical energy storage applications, the task of matching the right organic material out of hundreds of natural and nearly unlimited synthetic organic molecules to appropriate nanostructured inorganic support hampers their electrochemical energy storage applications. We aim to present the recent development of redox-active hybrid materials for pseudocapacitive energy storage. We will show the impact of combination of suitable organic materials with distinct carbon nanostructures and/or highly conductive metal carbides (MXenes) on conductivity, charge storage performance, and cyclability. Combined experimental and molecular simulation results will be discussed to shed light on the interfacial organic-inorganic interactions, pseudocapacitive charge storage mechanisms, and likely orientations of organic molecules on conductive supports. Later, the concept of all-pseudocapacitive organic-inorganic asymmetric supercapacitors will be highlighted which open up new avenues for developing inexpensive, sustainable, and high energy density aqueous supercapacitors. Lastly, future challenges and opportunities to further tailor the redox-active hybrids will be highlighted.

  3. Electrochemical synthesis of poly(pyrrole-co-o-anisidine)/chitosan composite films

    NASA Astrophysics Data System (ADS)

    Yalçınkaya, Süleyman; Çakmak, Didem

    2017-05-01

    In this study, poly(pyrrole-co-o-anisidine)/chitosan composite films were electrochemically synthesized in various monomers feed ratio (pyrrole: o-anisidine; 9:1, 7:3, 1:1, 3:7 and 1:9) of pyrrole and o-anisidine on the platinum electrode. Electrochemical synthesis of the composite films was carried out via cyclic voltammetry technique. They were characterized by FT-IR, cyclic voltammetry, SEM micrographs, digital images, TGA and DSC techniques. The SEM results indicated that the particle size of the composite decreased with increasing o-anisidine ratio and the films became more likely to be smooth morphology. The TGA results proved that the film of the composite with 1:1 ratio showed highest final degradation temperature and lowest weight loss (83%) compared to copolymer and 9:1 1:9 composite films. The 1:1 composite film had higher thermal stability than copolymer and the other composite films (9:1 1:9). Meanwhile, electrochemical studies exhibited that the 1/9 composite film had good electrochemical stability as well.

  4. Electrochemical regeneration of phenol-saturated activated carbon - proposal of a reactor.

    PubMed

    Zanella, Odivan; Bilibio, Denise; Priamo, Wagner Luiz; Tessaro, Isabel Cristina; Féris, Liliana Amaral

    2017-03-01

    An electrochemical process was used to investigate the activated carbon regeneration efficiency (RE) saturated with aromatics. For this purpose, an electrochemical reactor was developed and the operational conditions of this equipment were investigated, which is applied in activated carbon regeneration process. The influence of regeneration parameters such as processing time, the current used, the polarity and the processing fluid (electrolyte) were studied. The performance of electrochemical regeneration was evaluated by adsorption tests, using phenol as adsorbate. The increase in current applied and the process time was found to enhance the RE. Another aspect that indicated a better reactor performance was the type of electrolyte used, showing best results for NaCl. The polarity showed the highest influence on the process, when the cathodic regeneration was more efficient. The electrochemical regeneration process developed in this study presented regeneration capacities greater than 100% when the best process conditions were used, showing that this form of regeneration for activated carbon saturated with aromatics is very promising.

  5. Effect of uniaxial stress on the electrochemical properties of graphene with point defects

    NASA Astrophysics Data System (ADS)

    Szroeder, Paweł; Sagalianov, Igor Yu.; Radchenko, Taras M.; Tatarenko, Valentyn A.; Prylutskyy, Yuriy I.; Strupiński, Włodzimierz

    2018-06-01

    We report a calculational study of electron states and the resulting electrochemical properties of uniaxially strained graphene with point defects. For this study the reduction of ferricyanide to ferrocyanide serves as a benchmark electrochemical reaction. We find that the heterogeneous electron transfer activity of the perfect graphene electrode rises under uniaxial strain. However, evolution of the cathodic reaction rate depends on the direction of strain. For moderate lattice deformations, the zigzag strain improves electrochemical performance better than the armchair strain. Standard rate constant increases by 50% at the zigzag strain of 10%. Vacancies, covalently bonded moieties, charged adatoms and substitutional impurities in the zigzag strained graphene induce changes in the shape of the curve of the cathodic reaction rate. However, this changes do not translate into the electrocatalytic activity. Vacancies and covalently bonded moieties at concentration of 0.1% do not affect the electrochemical performance. Charged adatoms and substitutional impurities give a slight increase in the standard rate constant by, respectively, 2.2% and 3.4%.

  6. A U-bearing composite waste form for electrochemical processing wastes

    NASA Astrophysics Data System (ADS)

    Chen, X.; Ebert, W. L.; Indacochea, J. E.

    2018-04-01

    Metallic/ceramic composite waste forms are being developed to immobilize combined metallic and oxide waste streams generated during electrochemical recycling of used nuclear fuel. Composites were made for corrosion testing by reacting HT9 steel to represent fuel cladding, Zr and Mo to simulate metallic fuel waste, and a mixture of ZrO2, Nd2O3, and UO2 to represent oxide wastes. More than half of the added UO2 was reduced to metal and formed Fe-Zr-U intermetallics and most of the remaining UO2 and all of the Nd2O3 reacted to form zirconates. Fe-Cr-Mo intermetallics were also formed. Microstructure characterization of the intermetallic and ceramic phases that were generated and tests conducted to evaluate their corrosion behaviors indicate composite waste forms can accommodate both metallic and oxidized waste streams in durable host phases.

  7. A U-bearing composite waste form for electrochemical processing wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, X.; Ebert, W. L.; Indacochea, J. E.

    Metallic/ceramic composite waste forms are being developed to immobilize combined metallic and oxide waste streams generated during electrochemical recycling of used nuclear fuel. Composites were made for corrosion testing by reacting HT9 steel to represent fuel cladding, Zr and Mo to simulate metallic fuel waste, and a mixture of ZrO2, Nd2O3, and UO2 to represent oxide wastes. More than half of the added UO2 was reduced to metal and formed Fe-Zr-U intermetallics and most of the remaining UO2 and all of the Nd2O3 reacted to form zirconates. Fe-Cr-Mo intermetallics were also formed. Microstructure characterization of the intermetallic and ceramic phasesmore » that were generated and tests conducted to evaluate their corrosion behaviors indicate composite waste forms can accommodate both metallic and oxidized waste streams in durable host phases. (c) 2018 Elsevier B.V. All rights reserved.« less

  8. Electrochemical probing of high-level radioactive waste tanks containing washed sludge and precipitates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bickford, D.F.; Congdon, J.W.; Oblath, S.B.

    1987-01-01

    At the U.S. Department of Energy's Savannah River Plant, corrosion of carbon steel storage tanks containing alkaline, high-level radioactive waste is controlled by specification of limits on waste composition and temperature. Processes for the preparation of waste for final disposal will result in waste with low corrosion inhibitor concentrations and, in some cases, high aromatic organic concentrations, neither of which are characteristic of previous operations. Laboratory tests, conducted to determine minimum corrosion inhibitor levels indicated pitting of carbon steel near the waterline for proposed storage conditions. In situ electrochemical measurements of full-scale radioactive process demonstrations have been conducted to assessmore » the validity of laboratory tests. Probes included pH, Eh (potential relative to a standard hydrogen electrode), tank potential, and alloy coupons. In situ results are compared to those of the laboratory tests, with particular regard given to simulated solution composition.« less

  9. Improving the corrosion resistance of Mg-4.0Zn-0.2Ca alloy by micro-arc oxidation.

    PubMed

    Xia, Y H; Zhang, B P; Lu, C X; Geng, L

    2013-12-01

    In this paper, corrosion resistance of the Mg-4.0Zn-0.2Ca alloy was modified by micro-arc oxidation (MAO) process. The microstructure and phase constituents of MAO layer were characterized by SEM, XRD and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of MAO treated Mg-4.0Zn-0.2Ca alloy in the simulated body fluid were characterized by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The microstructure results indicated that a kind of ceramic film was composed by MgO and MgF2 was formed on the surface of Mg-4.0Zn-0.2Ca alloy after MAO treatment. The electrochemical test reveals that the corrosion resistance of MAO treated samples increase 1 order of magnitude. The mechanical intensity test showed that the MAO treated samples has suitable mechanical properties. © 2013.

  10. Real-time electrochemical impedance spectroscopy diagnosis of the solid oxide fuel cell for marine power applications

    NASA Astrophysics Data System (ADS)

    Nakajima, Hironori; Kitahara, Tatsumi

    2017-11-01

    We have investigated the behavior of an operating solid oxide fuel cell (SOFC) with supplying a simulated syngas to develop diagnosis method of the SOFC for marine power applications fueled with liquefied natural gas (LNG). We analyze the characteristics of a syngas-fueled intermediate temperature microtubular SOFC at 500 ∘C for accelerated deterioration by carbon deposition as a model case by electrochemical impedance spectroscopy (EIS) to in-situ find parameters useful for the real-time diagnosis. EIS analyses are performed by complex nonlinear least squares (CNLS) curve fitting to measured impedance spectra with an equivalent electric circuit model consisting of several resistances and capacitances attributed to the anode and cathode processes as well as Ohmic resistance of the cell. The characteristic changes of those circuit parameters by internal reforming and anode degradation are extracted, showing that they can be used for the real-time diagnosis of operating SOFCs.

  11. Corrosion Behavior of Steels in Supercritical CO 2 for Power Cycle Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Repukaiti, Richard; Teeter, Lucas; Ziomek-Moroz, Margaret

    In order to understand issues with corrosion of heat exchanger materials in direct supercritical carbon dioxide (sCO 2) power cycles, a series of autoclave exposure experiments and electrochemical experiments have been conducted. Corrosion behaviors of 347H stainless steel and P91 martensitic-ferrtic steel in sCO 2 environment have been compared. In autoclave exposure tests performed at 50°C- 245°C and 80 bar. Mass change measurements, surface characterization, and corrosion product analysis have been conducted to understand the corrosion behavior of steels in sCO 2 containing H 2O and O 2. Electrochemical tests performed at room temperature and 50°C, a simulation environment ofmore » water condensation phase with dissolved CO 2 was prepared to evaluate the corrosion resistance of materials. From both types of experiments, generally 347H showed higher corrosion resistance than P91.« less

  12. Variability of multilevel switching in scaled hybrid RS/CMOS nanoelectronic circuits: theory

    NASA Astrophysics Data System (ADS)

    Heittmann, Arne; Noll, Tobias G.

    2013-07-01

    A theory is presented which describes the variability of multilevel switching in scaled hybrid resistive-switching/CMOS nanoelectronic circuits. Variability is quantified in terms of conductance variation using the first two moments derived from the probability density function (PDF) of the RS conductance. For RS, which are based on the electrochemical metallization effect (ECM), this variability is - to some extent - caused by discrete events such as electrochemical reactions, which occur on atomic scale and are at random. The theory shows that the conductance variation depends on the joint interaction between the programming circuit and the resistive switch (RS), and explicitly quantifies the impact of RS device parameters and parameters of the programming circuit on the conductance variance. Using a current mirror as an exemplary programming circuit an upper limit of 2-4 bits (dependent on the filament surface area) is estimated as the storage capacity exploiting the multilevel capabilities of an ECM cell. The theoretical results were verified by Monte Carlo circuit simulations on a standard circuit simulation environment using an ECM device model which models the filament growth by a Poisson process. Contribution to the Topical Issue “International Semiconductor Conference Dresden-Grenoble - ISCDG 2012”, Edited by Gérard Ghibaudo, Francis Balestra and Simon Deleonibus.

  13. Phase I and phase II reductive metabolism simulation of nitro aromatic xenobiotics with electrochemistry coupled with high resolution mass spectrometry.

    PubMed

    Bussy, Ugo; Chung-Davidson, Yu-Wen; Li, Ke; Li, Weiming

    2014-11-01

    Electrochemistry combined with (liquid chromatography) high resolution mass spectrometry was used to simulate the general reductive metabolism of three biologically important nitro aromatic molecules: 3-trifluoromethyl-4-nitrophenol (TFM), niclosamide, and nilutamide. TFM is a pesticide used in the Laurential Great Lakes while niclosamide and nilutamide are used in cancer therapy. At first, a flow-through electrochemical cell was directly connected to a high resolution mass spectrometer to evaluate the ability of electrochemistry to produce the main reduction metabolites of nitro aromatic, nitroso, hydroxylamine, and amine functional groups. Electrochemical experiments were then carried out at a constant potential of -2.5 V before analysis of the reduction products by LC-HRMS, which confirmed the presence of the nitroso, hydroxylamine, and amine species as well as dimers. Dimer identification illustrates the reactivity of the nitroso species with amine and hydroxylamine species. To investigate xenobiotic metabolism, the reactivity of nitroso species to biomolecules was also examined. Binding of the nitroso metabolite to glutathione was demonstrated by the observation of adducts by LC-ESI(+)-HRMS and the characteristics of their MSMS fragmentation. In conclusion, electrochemistry produces the main reductive metabolites of nitro aromatics and supports the observation of nitroso reactivity through dimer or glutathione adduct formation.

  14. A novel electrochemical aptasensor based on single-walled carbon nanotubes, gold electrode and complimentary strand of aptamer for ultrasensitive detection of cocaine.

    PubMed

    Taghdisi, Seyed Mohammad; Danesh, Noor Mohammad; Emrani, Ahmad Sarreshtehdar; Ramezani, Mohammad; Abnous, Khalil

    2015-11-15

    Cocaine is a strong central nervous system stimulant and one of the most commonly abused drugs. In this study, an electrochemical aptasensor was designed for sensitive and selective detection of cocaine, based on single-walled carbon nanotubes (SWNTs), gold electrode and complimentary strand of aptamer (CS). This electrochemical aptasensor inherits properties of SWNTs and gold such as large surface area and high electrochemical conductivity, as well as high affinity and selectivity of aptamer toward its target and the stronger interaction of SWNTs with single-stranded DNA (ssDNA) than double-stranded DNA (dsDNA). In the absence of cocaine, a little amount of SWNTs bind to Aptamer-CS-modified electrode, so that the electrochemical signal is weak. In the presence of cocaine, aptamer binds to cocaine, leaves the surface of electrode. So that, a large amount of SWNTs bind to CS-modified electrode, generating to a strong electrochemical signal. The designed electrochemical aptasensor showed good selectivity toward cocaine with a limit of detection (LOD) as low as 105 pM. Moreover, the fabricated electrochemical aptasensor was successfully applied to detect cocaine in serum with a LOD as low as 136 pM. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Study on the electrochemical corrosion behavior of industrial boilers

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoyang; Huang, Song; Zhang, Wenpin; Feng, Qiang; Huang, Yong

    2018-06-01

    In this paper, industrial boilers are used as the research object, and Boilerentiodynamic polarization analysis of boiler steel is used to study the electrochemical corrosion behavior in the boiler water. The electrochemical corrosion nature and morphology of the samples were tested through experiments. The study shows: the corrosion resistance of the samples will decrease significantly with the increase of the operating time of boilers. Dissolved solids and Cl- in the boiler water will destroy the original protective film, of which the increase of its content is the main reason for the deterioration of the material properties.

  16. An electrochemical study of a liquid crystal used in information displays

    NASA Technical Reports Server (NTRS)

    Oglesby, D. M.; Kern, J. B.; Robertson, J. B.

    1974-01-01

    The operational lifetime of liquid crystal displays were investigated. Electrochemical reaction at the electrodes of the display can cause failure after 2000 to 3000 hours of operation. Studies using cyclic voltametry of electrochemical reactions of N (p-methoxybenzilidene p-butylaniline (MBBA), a nematic liquid crystal were made. These studies indicate the presence of a reversible reduction of MBBA at the cathode, and that the reduction product undergoes a further reaction leading to products which are not reversibly oxidized. It is concluded that the degradation of the liquid crystal in displays can be reduced with a suitable frequency of alternating voltage.

  17. Fretting-corrosion behavior in hip implant modular junctions: The influence of friction energy and pH variation.

    PubMed

    Royhman, Dmitry; Patel, Megha; Runa, Maria J; Wimmer, Markus A; Jacobs, Joshua J; Hallab, Nadim J; Mathew, Mathew T

    2016-09-01

    Recently, there has been increasing concern in the orthopedic community over the use of hip implant modular devices due to an increasing number of reports of early failure, failure that has been attributed to fretting-corrosion at modular interfaces. Much is still unknown about the electrochemical and mechanical degradation mechanisms associated with the use of such devices. Accordingly, the purpose of our study was to develop a methodology for testing the fretting-corrosion behavior of modular junctions. A fretting-corrosion apparatus was used to simulate the fretting-corrosion conditions of a CoCrMo hip implant head on a Ti6Al4V hip implant stem. The device features two perpendicularly-loaded CoCrMo pins that articulated against a Ti6Al4V rod. A sinusoidal fretting motion was applied to the rod at various displacement amplitudes (25, 50, 100, 150 and 200μm) at a constant load of 200N. Bovine calf serum at two different pH levels (3.0 and 7.6) was used to simulate the fluid environment around the joint. Experiments were conducted in two modes of electrochemical control - free-potential and potentiostatic. Electrochemical impedance spectroscopy tests were done before and after the fretting motion to assess changes in corrosion kinetics. In free potential mode, differences were seen in change in potential as a function of displacement amplitude. In general, VDrop (the drop in potential at the onset of fretting), VFretting, (the average potential during fretting), ΔVFretting (the change in potential from the onset of fretting to its termination) and VRecovery (the change in potential from the termination of fretting until stabilization) appeared linear at both pH levels, but showed drastic deviation from linearity at 100μm displacement amplitude. Subsequent EDS analysis revealed a large number of Ti deposits on the CoCrMo pin surfaces. Potentiostatic tests at both pH levels generally showed increasing current with increasing displacement amplitude. Electrochemical impedance spectroscopy measurements from free potential and potentiostatic tests indicated increased levels of resistance of the system after induction of the fretting motion. In free potential tests, the largest increase in impedance was found for the 100μm group. We conclude that the 100µm group exhibits deviations from linearity for several parameters, and this was most likely due to adhesive wear between Ti6Al4V and CoCrMo surfaces. Overall, the degradation of the system was dominated by wear at all pH levels, and displacement amplitudes. Copyright © 2016. Published by Elsevier Ltd.

  18. Preparation, electrochemical and spectral properties of free-base and manganese N-methyl-pyridylethynyl porphyrins.

    PubMed

    Lin, Ching-Yao; Chen, Yen-Chuan; Yao, Chi-Wen; Huang, Sung-Chou; Cheng, Yi-Hui

    2008-02-14

    Two series of free-base and manganese N-methyl-pyridylethynyl-5,15-biphenyl porphyrins were synthesized, and their UV-Visible, electrochemical and spectro-electrochemical properties were studied. Cyclic voltammetry experiments showed positive shifts in the reduction potentials and the UV-Visible spectra showed significant red-shifts in the absorption wavelengths of these porphyrins, indicating the effects of N-methyl-pyridylethynyl substituents.

  19. In-situ electrochemical transmission electron microscopy for battery research.

    PubMed

    Mehdi, B Layla; Gu, Meng; Parent, Lucas R; Xu, Wu; Nasybulin, Eduard N; Chen, Xilin; Unocic, Raymond R; Xu, Pinghong; Welch, David A; Abellan, Patricia; Zhang, Ji-Guang; Liu, Jun; Wang, Chong-Min; Arslan, Ilke; Evans, James; Browning, Nigel D

    2014-04-01

    The recent development of in-situ liquid stages for (scanning) transmission electron microscopes now makes it possible for us to study the details of electrochemical processes under operando conditions. As electrochemical processes are complex, care must be taken to calibrate the system before any in-situ/operando observations. In addition, as the electron beam can cause effects that look similar to electrochemical processes at the electrolyte/electrode interface, an understanding of the role of the electron beam in modifying the operando observations must also be understood. In this paper we describe the design, assembly, and operation of an in-situ electrochemical cell, paying particular attention to the method for controlling and quantifying the experimental parameters. The use of this system is then demonstrated for the lithiation/delithiation of silicon nanowires.

  20. Electrochemical studies of Copper, Tantalum and Tantalum Nitride surfaces in aqueous solutions for applications in chemical-mechanical and electrochemical-mechanical planarization

    NASA Astrophysics Data System (ADS)

    Sulyma, Christopher Michael

    This report will investigate fundamental properties of materials involved in integrated circuit (IC) manufacturing. Individual materials (one at a time) are studied in different electrochemical environmental solutions to better understand the kinetics associated with the polishing process. Each system tries to simulate a real CMP environment in order to compare our findings with what is currently used in industry. To accomplish this, a variety of techniques are used. The voltage pulse modulation technique is useful for electrochemical processing of metal and alloy surfaces by utilizing faradaic reactions like electrodeposition and electrodissolution. A theoretical framework is presented in chapter 4 to facilitate quantitative analysis of experimental data (current transients) obtained in this approach. A typical application of this analysis is demonstrated for an experimental system involving electrochemical removal of copper surface layers, a relatively new process for abrasive-free electrochemical mechanical planarization of copper lines used in the fabrication of integrated circuits. Voltage pulse modulated electrodissolution of Cu in the absence of mechanical polishing is activated in an acidic solution of oxalic acid and hydrogen peroxide. The current generated by each applied voltage step shows a sharp spike, followed by a double-exponential decay, and eventually attains the rectangular shape of the potential pulses. For the second system in chapter 5, open-circuit potential measurements, cyclic voltammetry and Fourier transform impedance spectroscopy have been used to study pH dependent surface reactions of Cu and Ta rotating disc electrodes (RDEs) in aqueous solutions of succinic acid (SA, a complexing agent), hydrogen peroxide (an oxidizer), and ammonium dodecyl sulfate (ADS, a corrosion inhibitor for Cu). The surface chemistries of these systems are relevant for the development of a single-slurry approach to chemical mechanical planarization (CMP) of Cu lines and Ta barriers in the fabrication of semiconductor devices. It is shown that in non-alkaline solutions of H2O2, the SA-promoted surface complexes of Cu and Ta can potentially support chemically enhanced material removal in low-pressure CMP of surface topographies overlying fragile low-k dielectrics. ADS can suppress Cu dissolution without significantly affecting the surface chemistry of Ta. Chapter 6 discusses anodic corrosion of Ta, which is examined as a possible route to voltage induced removal of Ta for potential applications in electrochemical mechanical planarization (ECMP) of diffusion barriers. This strategy involves electro-oxidation of Ta in the presence of NO3- anions to form mechanically weak surface oxide films, followed by removal of the oxide layers by moderate mechanical abrasion. This NO3 - system is compared with a reference solution of Br -. In both electrolytes, the voltammetric currents of anodic oxidation exhibit oscillatory behaviors in the initial cycles of slow (5 mV s-1) voltage scans. The frequencies of these current oscillations are show signature attributes of localized pitting or general surface corrosion caused by Br- or NO3 -, respectively. Scanning electron microscopy, cyclic voltammetry, polarization resistance measurements, and time resolved Fourier transform impedance spectroscopy provide additional details about these corrosion mechanism. Apart from their relevance in the context of ECMP, the results also address certain fundamental aspects of pitting and general corrosions. The general protocols necessary to combine and analyze the results of D.C. and A.C. electrochemical measurements involving such valve metal corrosion systems are discussed in detail. In chapter 7 potassium salts of certain oxyanions (nitrate, sulfate and phosphate in particular) are shown to serve as effective surface-modifying agents in chemically enhanced, low-pressure chemical mechanical planarization (CMP) of Ta and TaN barrier layers for interconnect structures. The surface reactions that form the basis of this CMP strategy are investigated here in detail using the electrochemical techniques of cyclic voltammetry, open circuit potential analysis, polarization resistance measurements, and Fourier transform impedance spectroscopy. The results suggest that forming structurally weak oxide layers on the CMP samples is a key to achieving the goal of chemically controlled CMP of Ta/TaN at low down-pressures. (Abstract shortened by UMI.)

  1. Insights into electrochemical reactions from ambient pressure photoelectron spectroscopy.

    PubMed

    Stoerzinger, Kelsey A; Hong, Wesley T; Crumlin, Ethan J; Bluhm, Hendrik; Shao-Horn, Yang

    2015-11-17

    The understanding of fundamental processes in the bulk and at the interfaces of electrochemical devices is a prerequisite for the development of new technologies with higher efficiency and improved performance. One energy storage scheme of great interest is splitting water to form hydrogen and oxygen gas and converting back to electrical energy by their subsequent recombination with only water as a byproduct. However, kinetic limitations to the rate of oxygen-based electrochemical reactions hamper the efficiency in technologies such as solar fuels, fuel cells, and electrolyzers. For these reactions, the use of metal oxides as electrocatalysts is prevalent due to their stability, low cost, and ability to store oxygen within the lattice. However, due to the inherently convoluted nature of electrochemical and chemical processes in electrochemical systems, it is difficult to isolate and study individual electrochemical processes in a complex system. Therefore, in situ characterization tools are required for observing related physical and chemical processes directly at the places where and while they occur and can help elucidate the mechanisms of charge separation and charge transfer at electrochemical interfaces. X-ray photoelectron spectroscopy (XPS), also known as ESCA (electron spectroscopy for chemical analysis), has been used as a quantitative spectroscopic technique that measures the elemental composition, as well as chemical and electronic state of a material. Building from extensive ex situ characterization of electrochemical systems, initial in situ studies were conducted at or near ultrahigh vacuum (UHV) conditions (≤10(-6) Torr) to probe solid-state electrochemical systems. However, through the integration of differential-pumping stages, XPS can now operate at pressures in the torr range, comprising a technique called ambient pressure XPS (AP-XPS). In this Account, we briefly review the working principles and current status of AP-XPS. We use several recent in situ studies on model electrochemical components as well as operando studies performed by our groups at the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory to illustrate that AP-XPS is both a chemically and an electrically specific tool since photoelectrons carry information on both the local chemistry and electrical potentials. The applications of AP-XPS to oxygen electrocatalysis shown in this Account span well-defined studies of (1) the oxide/oxygen gas interface, (2) the oxide/water vapor interface, and (3) operando measurements of half and full electrochemical cells. Using specially designed model devices, we can expose and isolate the electrode or interface of interest to the incident X-ray beam and AP-XPS analyzer to relate the electrical potentials to the composition/chemical state of the key components and interfaces. We conclude with an outlook on new developments of AP-XPS end stations, which may provide significant improvement in the observation of dynamics over a wide range of time scales, higher spatial resolution, and improved characterization of boundary or interface layers (solid/solid and liquid/solid).

  2. Understanding the Size-Dependent Sodium Storage Properties of Na2C6O6-Based Organic Electrodes for Sodium-Ion Batteries.

    PubMed

    Wang, Yaqun; Ding, Yu; Pan, Lijia; Shi, Ye; Yue, Zhuanghao; Shi, Yi; Yu, Guihua

    2016-05-11

    Organic electroactive materials represent a new generation of sustainable energy storage technology due to their unique features including environmental benignity, material sustainability, and highly tailorable properties. Here a carbonyl-based organic salt Na2C6O6, sodium rhodizonate (SR) dibasic, is systematically investigated for high-performance sodium-ion batteries. A combination of structural control, electrochemical analysis, and computational simulation show that rational morphological control can lead to significantly improved sodium storage performance. A facile antisolvent method was developed to synthesize microbulk, microrod, and nanorod structured SRs, which exhibit strong size-dependent sodium ion storage properties. The SR nanorod exhibited the best performance to deliver a reversible capacity of ∼190 mA h g(-1) at 0.1 C with over 90% retention after 100 cycles. At a high rate of 10 C, 50% of the capacity can be obtained due to enhanced reaction kinetics, and such high electrochemical activity maintains even at 80 °C. These results demonstrate a generic design route toward high-performance organic-based electrode materials for beyond Li-ion batteries. Using such a biomass-derived organic electrode material enables access to sustainable energy storage devices with low cost, high electrochemical performance and thermal stability.

  3. TEMPO Monolayers on Si(100) Electrodes: Electrostatic Effects by the Electrolyte and Semiconductor Space-Charge on the Electroactivity of a Persistent Radical.

    PubMed

    Zhang, Long; Vogel, Yan Boris; Noble, Benjamin B; Gonçales, Vinicius R; Darwish, Nadim; Brun, Anton Le; Gooding, J Justin; Wallace, Gordon G; Coote, Michelle L; Ciampi, Simone

    2016-08-03

    This work demonstrates the effect of electrostatic interactions on the electroactivity of a persistent organic free radical. This was achieved by chemisorption of molecules of 4-azido-2,2,6,6-tetramethyl-1-piperdinyloxy (4-azido-TEMPO) onto monolayer-modified Si(100) electrodes using a two-step chemical procedure to preserve the open-shell state and hence the electroactivity of the nitroxide radical. Kinetic and thermodynamic parameters for the surface electrochemical reaction are investigated experimentally and analyzed with the aid of electrochemical digital simulations and quantum-chemical calculations of a theoretical model of the tethered TEMPO system. Interactions between the electrolyte anions and the TEMPO grafted on highly doped, i.e., metallic, electrodes can be tuned to predictably manipulate the oxidizing power of surface nitroxide/oxoammonium redox couple, hence showing the practical importance of the electrostatics on the electrolyte side of the radical monolayer. Conversely, for monolayers prepared on the poorly doped electrodes, the electrostatic interactions between the tethered TEMPO units and the semiconductor-side, i.e., space-charge, become dominant and result in drastic kinetic changes to the electroactivity of the radical monolayer as well as electrochemical nonidealities that can be explained as an increase in the self-interaction "a" parameter that leads to the Frumkin isotherm.

  4. Square Wave Voltammetry of TNT at Gold Electrodes Modified with Self-Assembled Monolayers Containing Aromatic Structures

    PubMed Central

    Trammell, Scott A.; Zabetakis, Dan; Moore, Martin; Verbarg, Jasenka; Stenger, David A.

    2014-01-01

    Square wave voltammetry for the reduction of 2,4,6-trinitrotoluene (TNT) was measured in 100 mM potassium phosphate buffer (pH 8) at gold electrodes modified with self-assembled monolayers (SAMs) containing either an alkane thiol or aromatic ring thiol structures. At 15 Hz, the electrochemical sensitivity (µA/ppm) was similar for all SAMs tested. However, at 60 Hz, the SAMs containing aromatic structures had a greater sensitivity than the alkane thiol SAM. In fact, the alkane thiol SAM had a decrease in sensitivity at the higher frequency. When comparing the electrochemical response between simulations and experimental data, a general trend was observed in which most of the SAMs had similar heterogeneous rate constants within experimental error for the reduction of TNT. This most likely describes a rate limiting step for the reduction of TNT. However, in the case of the alkane SAM at higher frequency, the decrease in sensitivity suggests that the rate limiting step in this case may be electron tunneling through the SAM. Our results show that SAMs containing aromatic rings increased the sensitivity for the reduction of TNT when higher frequencies were employed and at the same time suppressed the electrochemical reduction of dissolved oxygen. PMID:25549081

  5. Ball Lightning–Aerosol Electrochemical Power Source or A Cloud of Batteries

    PubMed Central

    2007-01-01

    Despite numerous attempts, an adequate theoretical and experimental simulation of ball lightning still remains incomplete. According to the model proposed here, the processes of electrochemical oxidation within separate aerosol particles are the basis for this phenomenon, and ball lightning is a cloud of composite nano or submicron particles, where each particle is a spontaneously formed nanobattery which is short-circuited by the surface discharge because it is of such a small size. As free discharge-shorted current loops, aerosol nanobatteries are exposed to a powerful mutual magnetic dipole–dipole attraction. The gaseous products and thermal energy produced by each nanobattery as a result of the intra-particle self-sustaining electrochemical reactions, cause a mutual repulsion of these particles over short distances and prevent their aggregation, while a collectivization of the current loops of separate particles, due to the electric arc overlapping between adjacent particles, weakens their mutual magnetic attraction over short distances. Discharge currents in the range of several amperes to several thousand amperes as well as the pre-explosive mega ampere currents, generated in the reduction–oxidation reactions and distributed between all the aerosol particles, explain both the magnetic attraction between the elements of the ball lightning substance and the impressive electromagnetic effects of ball lightning.

  6. Single-Atom Catalysts of Precious Metals for Electrochemical Reactions.

    PubMed

    Kim, Jiwhan; Kim, Hee-Eun; Lee, Hyunjoo

    2018-01-10

    Single-atom catalysts (SACs), in which metal atoms are dispersed on the support without forming nanoparticles, have been used for various heterogeneous reactions and most recently for electrochemical reactions. In this Minireview, recent examples of single-atom electrocatalysts used for the oxygen reduction reaction (ORR), hydrogen oxidation reaction (HOR), hydrogen evolution reaction (HER), formic acid oxidation reaction (FAOR), and methanol oxidation reaction (MOR) are introduced. Many density functional theory (DFT) simulations have predicted that SACs may be effective for CO 2 reduction to methane or methanol production while suppressing H 2 evolution, and those cases are introduced here as well. Single atoms, mainly Pt single atoms, have been deposited on TiN or TiC nanoparticles, defective graphene nanosheets, N-doped covalent triazine frameworks, graphitic carbon nitride, S-doped zeolite-templated carbon, and Sb-doped SnO 2 surfaces. Scanning transmission electron microscopy, extended X-ray absorption fine structure measurement, and in situ infrared spectroscopy have been used to detect the single-atom structure and confirm the absence of nanoparticles. SACs have shown high mass activity, minimizing the use of precious metal, and unique selectivity distinct from nanoparticle catalysts owing to the absence of ensemble sites. Additional features that SACs should possess for effective electrochemical applications were also suggested. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Investigation of electrolyte leaching in the performance degradation of phosphoric acid-doped polybenzimidazole membrane-based high temperature fuel cells

    NASA Astrophysics Data System (ADS)

    Jeong, Yeon Hun; Oh, Kyeongmin; Ahn, Sungha; Kim, Na Young; Byeon, Ayeong; Park, Hee-Young; Lee, So Young; Park, Hyun S.; Yoo, Sung Jong; Jang, Jong Hyun; Kim, Hyoung-Juhn; Ju, Hyunchul; Kim, Jin Young

    2017-09-01

    Precise monitoring of electrolyte leaching in high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC) devices during lifetime tests is helpful in making a diagnosis of their quality changes and analyzing their electrochemical performance degradation. Here, we investigate electrolyte leaching in the performance degradation of phosphoric acid (PA)-doped polybenzimidazole (PBI) membrane-based HT-PEMFCs. We first perform quantitative analyses to measure PA leakage during cell operation by spectrophotometric means, and a higher PA leakage rate is detected when the current density is elevated in the cell. Second, long-term degradation tests under various current densities of the cells and electrochemical impedance spectroscopy (EIS) analysis are performed to examine the influence of PA loss on the membrane and electrodes during cell performance degradation. The combined results indicate that PA leakage affect cell performance durability, mostly due to an increase in charge transfer resistance and a decrease in the electrochemical surface area (ECSA) of the electrodes. Additionally, a three-dimensional (3-D) HT-PEMFC model is applied to a real-scale experimental cell, and is successfully validated against the polarization curves measured during various long-term experiments. The simulation results highlight that the PA loss from the cathode catalyst layer (CL) is a significant contributor to overall performance degradation.

  8. Catalysts for electrochemical generation of oxygen

    NASA Technical Reports Server (NTRS)

    Hagans, P.; Yeager, E.

    1978-01-01

    Single crystal surfaces of platinum and gold and transition metal oxides of the spinel type were studied to find more effective catalysts for the electrolytic evolution of oxygen and to understand the mechanism and kinetics for the electrocatalysis in relation to the surface electronic and lattice properties of the catalyst. The single crystal studies involve the use of low energy electron diffraction (LEED) and Auger electron spectroscopy as complementary tools to the electrochemical measurements. Modifications to the transfer system and to the thin-layer electrochemical cell used to facilitate the transfer between the ultrahigh vacuum environment of the electron surface physics equipment and the electrochemical environment with a minimal possibility of changes in the surface structure, are described. The electrosorption underpotential deposition of Pb onto the Au(111), (100) and (110) single crystal surfaces with the thin-layer cell-LEED-Auger system is discussed as well as the synthesis of spinels for oxygen evolution studies.

  9. Corrosion Studies of Wrought and Cast NASA-23 Alloy

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1997-01-01

    Corrosion studies were carried out for wrought and cast NASA-23 alloy using electrochemical methods. The scanning reference electrode technique (SRET), the polarization resistance technique (PR), and the electrochemical impedance spectroscopy (EIS) were employed. These studies corroborate the findings of stress corrosion studies performed earlier, in that the material is highly resistant to corrosion.

  10. A Micro-Electrochemical Study of Friction Stir Welded Aluminum 6061-T6

    NASA Technical Reports Server (NTRS)

    Hintze, Paul E.; Calle, Luz M.

    2005-01-01

    The corrosion behavior of friction stir welded Aluminum alloy 606 1-T6 was studied using a micro-electrochemical cell. The micro-electrochemical cell has a measurement area of about 0.25 square mm which allows for measurement of corrosion properties at a very small scale. The corrosion and breakdown potentials were measured at many points inside and outside the weld along lines perpendicular to the weld. The breakdown potential is approximately equal inside and outside the weld; however, it is lower in the narrow border between the weld and base material. The results of electrochemical measurements were correlated to micro-structural analysis. The corrosion behavior of the friction stir welded samples was compared to tungsten inert gas (TIG) welded samples of the same material.

  11. Improved Electrochemical Detection of Zinc Ions Using Electrode Modified with Electrochemically Reduced Graphene Oxide

    PubMed Central

    Kudr, Jiri; Richtera, Lukas; Nejdl, Lukas; Xhaxhiu, Kledi; Vitek, Petr; Rutkay-Nedecky, Branislav; Hynek, David; Kopel, Pavel; Adam, Vojtech; Kizek, Rene

    2016-01-01

    Increasing urbanization and industrialization lead to the release of metals into the biosphere, which has become a serious issue for public health. In this paper, the direct electrochemical reduction of zinc ions is studied using electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode (GCE). The graphene oxide (GO) was fabricated using modified Hummers method and was electrochemically reduced on the surface of GCE by performing cyclic voltammograms from 0 to −1.5 V. The modification was optimized and properties of electrodes were determined using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The determination of Zn(II) was performed using differential pulse voltammetry technique, platinum wire as a counter electrode, and Ag/AgCl/3 M KCl reference electrode. Compared to the bare GCE the modified GCE/ERGO shows three times better electrocatalytic activity towards zinc ions, with an increase of reduction current along with a negative shift of reduction potential. Using GCE/ERGO detection limit 5 ng·mL−1 was obtained. PMID:28787832

  12. Electrochemical synthesis of Sm2O3 nanoparticles: Application in conductive polymer composite films for supercapacitors.

    PubMed

    Mohammad Shiri, Hamid; Ehsani, Ali; Jalali Khales, Mina

    2017-11-01

    A novel electrosynthetic method was introduced to synthesize of Sm 2 O 3 nanoparticles and furthermore, for improving the electrochemical performance of conductive polymer, hybrid POAP/Sm 2 O 3 films have then been fabricated by POAP electropolymerization in the presence of Sm 2 O 3 nanoparticles as active electrodes for electrochemical supercapacitors. The structure, morphology, chemical composition of Sm 2 O 3 nanoparticles was examined. Surface and electrochemical analyses have been used for characterization of Sm 2 O 3 and POAP/Sm 2 O 3 composite films. Different electrochemical methods including galvanostatic charge discharge experiments, cyclic voltammetry and electrochemical impedance spectroscopy have been applied to study the system performance. The supercapacity behavior of the composite film was attributed to the (i) high active surface area of the composite, (ii) charge transfer along the polymer chain due to the conjugation form of the polymer and finally (iii) synergism effect between conductive polymer and Sm 2 O 3 nanoparticles. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Comparative study of label-free electrochemical immunoassay on various gold nanostructures

    NASA Astrophysics Data System (ADS)

    Rafique, S.; Gao, C.; Li, C. M.; Bhatti, A. S.

    2013-10-01

    Electrochemical methods such as amperometry and impedance spectroscopy provide the feasibility of label-free immunoassay. However, the performance of electrochemical interfaces varies with the shape of gold nanostructures. In the present work three types of gold nanostructures including pyramid, spherical, and rod-like nanostructures were electrochemically synthesized on the gold electrode and were further transformed into immunosensor by covalent binding of antibodies. As a model protein, a cancer biomarker, Carcinoembryonic Antigen (CEA) was detected using amperometric and impedimetric techniques on three nanostructured electrodes, which enabled to evaluate and compare the immunoassay's performance. It was found that all three immunosensors showed improved linear electrochemical response to the concentration of CEA compared to bare Au electrode. Among all the spherical gold nanostructure based immunosensors displayed superior performance. Under optimal condition, the immunosensors exhibited a limit of detection of 4.1 pg ml-1 over a concentration range of five orders of magnitude. This paper emphasizes that fine control over the geometry of nanostructures is essentially important for high-performance electrochemical immunoassay.

  14. Evaluation of Thymus vulgaris plant extract as an eco-friendly corrosion inhibitor for stainless steel 304 in acidic solution by means of electrochemical impedance spectroscopy, electrochemical noise analysis and density functional theory.

    PubMed

    Ehsani, A; Mahjani, M G; Hosseini, M; Safari, R; Moshrefi, R; Mohammad Shiri, H

    2017-03-15

    Inhibition performance of Thymus vulgaris plant leaves extract (thyme) as environmentally friendly (green) inhibitor for the corrosion protection of stainless steel (SS) type 304 in 1.0molL -1 HCl solution was studied by potentiodynamic polarization, electrochemical impedance (EIS) and electrochemical noise measurements (EN) techniques. The EN data were analyzed with FFT technique to make the spectral power density plots. The calculations were performed by MATLAB 2014a software. Geometry optimization and calculation of the structural and electronic properties of the molecular system of inhibitor have been carried out using UB3LYP/6-311++G ∗∗ level. Moreover, the results obtained from electrochemical noise analysis were compared with potentiodynamic polarization and electrochemical impedance spectroscopy. All of the used techniques showed positive effect of green inhibitor with increasing inhibitor concentration. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. COUPLED MULTI-ELECTRODE INVESTIGATION OF CREVICE CORROSION OF 316 STAINLESS STEEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    F. Bocher, J. R. Scully

    2006-01-30

    Crevice corrosion is currently studied using either one of two techniques depending on the data needed. The first method is a multi-crevice former over a metallic sample; this provides information on the severity of crevice corrosion (depth, position, frequency) but delivers little to no electrochemical information [1]. The second method involves the potentiodynamic or potentiostatic study of an uncreviced sample in model crevice solution or under a crevice former in aggressive solution [2]. Crevice corrosion is highly dependent on the position in the crevice. The distance from the crevice mouth will affect the depth of attack, the solution composition andmore » pH, and the ohmic drop and the true potential in the crevice [3-6]. These in turn affect the current density as a function of potential and position. An Multi-Channel Micro-Electrode Analyzer' (MMA) has been recently used to demonstrate the interaction between localized corrosion sites (pitting corrosion and intergranular corrosion) [7]. MMA can provide spatial resolution of electrochemical properties in the crevice. By coupling such a tool with scaling laws derived from experimental data (a simple equation linking the depth of crevice corrosion initiation to the crevice gap), it is possible to produce highly instrumented crevices, rescaled to enable spatial resolution of local corrosion processes. In this study, the use of multi-wires arrays (up to 100 closed packed wires simulating a planar electrode, divided in 10 distinctively controllable groups) electrically coupled through zero resistance ammeters enables the observation of the current evolution as a function of position inside and outside the crevice. For instance, the location of crevice initiation sites and propagation behavior can be studied under various conditions. Experiments can be conducted with various realistic variables. These can either be electrochemical (such as proximate cathode) or physical (crevice former material or position). Using new impedance-capable MMA, it is also possible to monitor the film breakdown and the early stages of crevice corrosion as a function of the wires position. In this talk, the use of multi-electrode array to study crevice corrosion of 316 stainless steel and a Ni-Cr-Mo alloy is reviewed.« less

  16. COUPLED MULTI-ELECTRODE INVESTIGATION OF CREVICE CORROSION OF 316 STAINLESS STEEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    F. Bocher and J. R. Scully

    2006-01-30

    Crevice corrosion is currently studied using either one of two techniques depending on the data needed. The first method is a multi-crevice former over a metallic sample; this provides information on the severity of crevice corrosion (depth, position, frequency) but delivers little to no electrochemical information [1]. The second method involves the potentiodynamic or potentiostatic study of an uncreviced sample in model crevice solution or under a crevice former in aggressive solution [2]. Crevice corrosion is highly dependent on the position in the crevice. The distance from the crevice mouth will affect the depth of attack, the solution composition andmore » pH, and the ohmic drop and the true potential in the crevice [3-6]. These in turn affect the current density as a function of potential and position. A Multi-Channel Micro-Electrode Analyzer (MMA) has been recently used to demonstrate the interaction between localized corrosion sites (pitting corrosion and intergranular corrosion) [7]. MMA can provide spatial resolution of electrochemical properties in the crevice. By coupling such a tool with scaling laws derived from experimental data (a simple equation linking the depth of crevice corrosion initiation to the crevice gap), it is possible to produce highly instrumented crevices, rescaled to enable spatial resolution of local corrosion processes. In this study, the use of multi-wires arrays (up to 100 closed packed wires simulating a planar electrode, divided in 10 distinctively controllable groups) electrically coupled through zero resistance ammeters enables the observation of the current evolution as a function of position inside and outside the crevice. For instance, the location of crevice initiation sites and propagation behavior can be studied under various conditions. Experiments can be conducted with various realistic variables. These can either be electrochemical (such as proximate cathode) or physical (crevice former material or position). Using new impedance-capable MMA, it is also possible to monitor the film breakdown and the early stages of crevice corrosion as a function of the wires position. In this talk, the use of multi-electrode array to study crevice corrosion of 316 stainless steel and a Ni-Cr-Mo alloy is reviewed.« less

  17. Electrochemical studies of aluminium 7075 reinforced with Al2O3/SiCp hybrid composites in acid chloride medium

    NASA Astrophysics Data System (ADS)

    Ravikumar, M.; Reddappa, H. N.; Suresh, R.

    2018-04-01

    The study of corrosion rate and the inhibition efficiency of inhibitor for Al 7075 and Al 7075/Al2O3/SiCp corrosion in 1 M hydrochloride acid solution under Laboratory temperature by electrochemical measurements process. The efficiency increases by increasing of wt. % of reinforcement. The premier efficiency 99.1% is observed in the presence of reinforcement. The Electrochemical Impedance spectroscopic (EIS) method exhibit the capacitive loop representing the corrosion effect was controlled by the charge transfer method.

  18. Corrosion Behavior of AZ91D Magnesium Alloy in Three Different Physiological Environments

    NASA Astrophysics Data System (ADS)

    Zhou, Juncen; Li, Qing; Zhang, Haixiao; Chen, Funan

    2014-01-01

    Magnesium alloys have been considered as promising biomedical materials and were studied in different physiological environments. In this work, corrosion behavior of AZ91D magnesium alloy in artificial saliva, simulated body fluid (SBF), and 3.5 wt.% NaCl solution was investigated using electrochemical techniques and a short-term immersion test. In contrast with other physiological environments, the amount of aggressive ions in artificial saliva is small. In addition, a protective film is formed on the surface of samples in artificial saliva. Experimental results suggest that corrosion resistance of AZ91D magnesium alloy in artificial saliva is better than that in c-SBF and 3.5 wt.% NaCl solution.

  19. Antitumor effects of electrochemical treatment

    PubMed Central

    González, Maraelys Morales; Zamora, Lisset Ortíz; Cabrales, Luis Enrique Bergues; Sierra González, Gustavo Victoriano; de Oliveira, Luciana Oliveira; Zanella, Rodrigo; Buzaid, Antonio Carlos; Parise, Orlando; Brito, Luciana Macedo; Teixeira, Cesar Augusto Antunes; Gomes, Marina das Neves; Moreno, Gleyce; Feo da Veiga, Venicio; Telló, Marcos; Holandino, Carla

    2013-01-01

    Electrochemical treatment is an alternative modality for tumor treatment based on the application of a low intensity direct electric current to the tumor tissue through two or more platinum electrodes placed within the tumor zone or in the surrounding areas. This treatment is noted for its great effectiveness, minimal invasiveness and local effect. Several studies have been conducted worldwide to evaluate the antitumoral effect of this therapy. In all these studies a variety of biochemical and physiological responses of tumors to the applied treatment have been obtained. By this reason, researchers have suggested various mechanisms to explain how direct electric current destroys tumor cells. Although, it is generally accepted this treatment induces electrolysis, electroosmosis and electroporation in tumoral tissues. However, action mechanism of this alternative modality on the tumor tissue is not well understood. Although the principle of Electrochemical treatment is simple, a standardized method is not yet available. The mechanism by which Electrochemical treatment affects tumor growth and survival may represent more complex process. The present work analyzes the latest and most important research done on the electrochemical treatment of tumors. We conclude with our point of view about the destruction mechanism features of this alternative therapy. Also, we suggest some mechanisms and strategies from the thermodynamic point of view for this therapy. In the area of Electrochemical treatment of cancer this tool has been exploited very little and much work remains to be done. Electrochemical treatment constitutes a good therapeutic option for patients that have failed the conventional oncology methods. PMID:23592904

  20. Study of the electrochemical oxidation and reduction of C.I. Reactive Orange 4 in sodium sulphate alkaline solutions.

    PubMed

    del Río, A I; Molina, J; Bonastre, J; Cases, F

    2009-12-15

    Synthetic solutions of hydrolysed C.I. Reactive Orange 4, a monoazo textile dye commercially named Procion Orange MX-2R (PMX2R) and colour index number C.I. 18260, was exposed to electrochemical treatment under galvanostatic conditions and Na2SO4 as electrolyte. The influence of the electrochemical process as well as the applied current density was evaluated. Ti/SnO2-Sb-Pt and stainless steel electrodes were used as anode and cathode, respectively, and the intermediates generated on the cathode during electrochemical reduction were investigated. Aliquots of the solutions treated were analysed by UV-visible and FTIR-ATR spectroscopy confirming the presence of aromatic structures in solution when an electro-reduction was carried out. Electro-oxidation degraded both the azo group and aromatic structures. HPLC measures revealed that all processes followed pseudo-first order kinetics and decolourisation rates showed a considerable dependency on the applied current density. CV experiments and XPS analyses were carried out to study the behaviour of both PMX2R and intermediates and to analyse the state of the cathode after the electrochemical reduction, respectively. It was observed the presence of a main intermediate in solution after an electrochemical reduction whose chemical structure is similar to 2-amino-1,5-naphthalenedisulphonic acid. Moreover, the analysis of the cathode surface after electrochemical reduction reveals the presence of a coating layer with organic nature.

  1. Spectroscopic evidence for intermediate species formed during aniline polymerization and polyaniline degradation.

    PubMed

    Planes, G A; Rodríguez, J L; Miras, M C; García, G; Pastor, E; Barbero, C A

    2010-09-21

    Spectroscopic methods are used to investigate the formation of low molecular mass intermediates during aniline (ANI) oxidation and polyaniline (PANI) degradation. Studying ANI anodic oxidation by in situ Fourier transform infrared spectroscopy (FTIRS) it is possible to obtain, for the first time, spectroscopic evidence for ANI dimers produced by head-to-tail (4-aminodiphenylamine, 4ADA) and tail-to-tail (benzidine, BZ) coupling of ANI cation radicals. The 4ADA dimer is adsorbed on the electrode surface during polymerization, as proved by cyclic voltammetry of thin PANI films and its infrared spectrum. This method also allows, with the help of computational simulations, to assign characteristic vibration frequencies for the different oxidation states of PANI. The presence of 4ADA retained inside thin polymer layers is established too. On the other hand, FTIRS demonstrates that the electrochemically promoted degradation of PANI renders p-benzoquinone as its main product. This compound, retained inside the film, is apparent in the cyclic voltammogram in the same potential region previously observed for 4ADA dimer. Therefore, applying in situ FTIRS is possible to distinguish between different chemical species (4ADA or p-benzoquinone) which give rise to voltammetric peaks in the same potential region. Indophenol and CO(2) are also detected by FTIRS during ANI oxidation and polymer degradation. The formation of CO(2) during degradation is confirmed by differential electrochemical mass spectroscopy. To the best of our knowledge, this is the first evidence of the oxidation of a conducting polymer to CO(2) by electrochemical means. The relevance of the production of different intermediate species towards PANI fabrication and applications is discussed.

  2. A design tool for predicting the capillary transport characteristics of fuel cell diffusion media using an artificial neural network

    NASA Astrophysics Data System (ADS)

    Kumbur, E. C.; Sharp, K. V.; Mench, M. M.

    Developing a robust, intelligent design tool for multivariate optimization of multi-phase transport in fuel cell diffusion media (DM) is of utmost importance to develop advanced DM materials. This study explores the development of a DM design algorithm based on artificial neural network (ANN) that can be used as a powerful tool for predicting the capillary transport characteristics of fuel cell DM. Direct measurements of drainage capillary pressure-saturation curves of the differently engineered DMs (5, 10 and 20 wt.% PTFE) were performed at room temperature under three compressions (0, 0.6 and 1.4 MPa) [E.C. Kumbur, K.V. Sharp, M.M. Mench, J. Electrochem. Soc. 154(12) (2007) B1295-B1304; E.C. Kumbur, K.V. Sharp, M.M. Mench, J. Electrochem. Soc. 154(12) (2007) B1305-B1314; E.C. Kumbur, K.V. Sharp, M.M. Mench, J. Electrochem. Soc. 154(12) (2007) B1315-B1324]. The generated benchmark data were utilized to systematically train a three-layered ANN framework that processes the feed-forward error back propagation methodology. The designed ANN successfully predicts the measured capillary pressures within an average uncertainty of ±5.1% of the measured data, confirming that the present ANN model can be used as a design tool within the range of tested parameters. The ANN simulations reveal that tailoring the DM with high PTFE loading and applying high compression pressure lead to a higher capillary pressure, therefore promoting the liquid water transport within the pores of the DM. Any increase in hydrophobicity of the DM is found to amplify the compression effect, thus yielding a higher capillary pressure for the same saturation level and compression.

  3. Phase Competition Induced Bio-Electrochemical Resistance and Bio-Compatibility Effect in Nanocrystalline Zr x -Cu100-x Thin Films.

    PubMed

    Badhirappan, Geetha Priyadarshini; Nallasivam, Vignesh; Varadarajan, Madhuri; Leobeemrao, Vasantha Priya; Bose, Sivakumar; Venugopal, Elakkiya; Rajendran, Selvakumar; Angleo, Peter Chrysologue

    2018-07-01

    Nano-crystalline Zrx-Cu100-x (x = 20-100 at.%) thin films with thickness ranging from 50 to 185 nm were deposited by magnetron co-sputtering with individual Zr and Cu targets. The as-sputtered thin films were characterized by Field Emission Scanning Electron Microscope (FE-SEM), Atomic Force Microscopy (AFM) and Glancing Incidence X-ray Diffraction (GIXRD) for structural and morphological properties. The crystallite size was found to decrease from 57 nm to 37 nm upon increasing the Zr content from 20 to 30 at.% with slight increase in the lattice strain from 0.17 to 0.33%. Further, increase in Zr content to 40 at.% leads to increase in the crystallite size to 57 nm due to stabilization of C10Zr7 phase along with the presence of nanocrystalline Cu-Zr phase. A bimodal distribution of grain size was observed from FE-SEM micrograph was attributed to the highest surface roughness in Zr30Cu70 thin films comprised of Cu10Zr7, Cu9Zr2, Cu-Zr intermetallic phases. In-vitro electrochemical behaviors of nano-crystalline Zrx-Cu100-x thin films in simulated body fluid (SBF) were investigated using potentiodynamic polarization studies. Electrochemical impedance spectroscopy (EIS) data fitting by equivalent electrical circuit fit model suggests that inner bulk layer contributes to high bio-corrosion resistance in Zrx-Cu100-x thin films with increase in Zr content. The results of cyto-compatibility assay suggested that Zr-Cu thin film did not introduce cytotoxicity to osteoblast cells, indicating its suitability as a bio-coating for minimally invasive medical devices.

  4. In situ solid-state electrochemistry of mass-selected ions at well-defined electrode–electrolyte interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabhakaran, Venkateshkumar; Johnson, Grant E.; Wang, Bingbing

    2016-11-07

    Molecular-level understanding of electrochemical processes occurring at electrode-electrolyte interfaces (EEI) is key to the rational development of high-performance and sustainable electrochemical technologies. This article reports the development and first application of solid-state in situ electrochemical probes to study redox and catalytic processes occurring at well-defined EEI generated using soft-landing of mass- and charge-selected cluster ions (SL). In situ electrochemical probes with excellent mass transfer properties are fabricated using carefully-designed nanoporous ionic liquid membranes. SL enables deposition of pure active species that are not obtainable with other techniques onto electrode surfaces with precise control over charge state, composition, and kinetic energy.more » SL is, therefore, a unique tool for studying fundamental processes occurring at EEI. For the first time using an aprotic electrochemical probe, the effect of charge state (PMo12O403-/2-) and the contribution of building blocks of Keggin polyoxometalate (POM) clusters to redox processes are characterized by populating EEI with novel POM anions generated by electrospray ionization and gas phase dissociation. Additionally, a proton conducting electrochemical probe has been developed to characterize the reactive electrochemistry (oxygen reduction activity) of bare Pt clusters (Pt40 ~1 nm diameter), thus demonstrating the capability of the probe for studying reactions in controlled gaseous environments. The newly developed in situ electrochemical probes combined with ion SL provide a versatile method to characterize the EEI in solid-state redox systems and reactive electrochemistry at precisely-defined conditions. This capability will advance molecular-level understanding of processes occurring at EEI that are critical to many energy-related technologies.« less

  5. The effect of strain hardening on resistance to electrochemical corrosion of wires for orthopaedics

    NASA Astrophysics Data System (ADS)

    Przondziono, J.; Walke, W.; Hadasik, E.; Szymszal, J.

    2012-05-01

    The purpose of this research is to evaluate electrochemical corrosion resistance of wire with modified surface, made of stainless steel of Cr-Ni-Mo type, widely used in implants for orthopaedics, depending on hardening created in the process of drawing. Tests have been carried out in the environment imitating human osseous tissue. Pitting corrosion was determined on the ground of registered anodic polarisation curves by means of potentiodynamic method with application of electrochemical testing system VoltaLab® PGP 201. Wire corrosion tests were carried out in Tyrode solution on samples that were electrochemically polished as well as electrochemically polished and finally chemically passivated. Initial material for tests was wire rod made of X2CrNiMo17-12-2 steel with diameter of 5.5 mm in supersaturated condition. Wire rod was drawn up to diameter of 1.35 mm. This work shows the course of flow curve of wire made of this grade of steel and mathematical form of yield stress function. The study also presents exemplary curves showing the dependence of polarisation resistance in strain function in the drawing process of electrochemically passivated and electrochemically polished and then chemically passivated wire.

  6. Preparation and characterization of zinc oxide nanoparticles and their sensor applications for electrochemical monitoring of nucleic acid hybridization.

    PubMed

    Yumak, Tugrul; Kuralay, Filiz; Muti, Mihrican; Sinag, Ali; Erdem, Arzum; Abaci, Serdar

    2011-09-01

    In this study, ZnO nanoparticles (ZNP) of approximately 30 nm in size were synthesized by the hydrothermal method and characterized by X-ray diffraction (XRD), Braun-Emmet-Teller (BET) N2 adsorption analysis and transmission electron microscopy (TEM). ZnO nanoparticles enriched with poly(vinylferrocenium) (PVF+) modified single-use graphite electrodes were then developed for the electrochemical monitoring of nucleic acid hybridization related to the Hepatitis B Virus (HBV). Firstly, the surfaces of polymer modified and polymer-ZnO nanoparticle modified single-use pencil graphite electrodes (PGEs) were characterized using scanning electron microscopy (SEM). The electrochemical behavior of these electrodes was also investigated using differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). Subsequently, the polymer-ZnO nanoparticle modified PGEs were evaluated for the electrochemical detection of DNA based on the changes at the guanine oxidation signals. Various modifications in DNA oligonucleotides and probe concentrations were examined in order to optimize the electrochemical signals that were generated by means of nucleic acid hybridization. After the optimization studies, the sequence-selective DNA hybridization was investigated in the case of a complementary amino linked probe (target), or noncomplementary (NC) sequences, or target and mismatch (MM) mixture in the ratio of (1:1). Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Study of Electrochemical Reduction of CO2 for Future Use in Secondary Microbial Electrochemical Technologies.

    PubMed

    Gimkiewicz, Carla; Hegner, Richard; Gutensohn, Mareike F; Koch, Christin; Harnisch, Falk

    2017-03-09

    The fluctuation and decentralization of renewable energy have triggered the search for respective energy storage and utilization. At the same time, a sustainable bioeconomy calls for the exploitation of CO 2 as feedstock. Secondary microbial electrochemical technologies (METs) allow both challenges to be tackled because the electrochemical reduction of CO 2 can be coupled with microbial synthesis. Because this combination creates special challenges, the electrochemical reduction of CO 2 was investigated under conditions allowing microbial conversions, that is, for their future use in secondary METs. A reproducible electrodeposition procedure of In on a graphite backbone allowed a systematic study of formate production from CO 2 with a high number of replicates. Coulomb efficiencies and formate production rates of up to 64.6±6.8 % and 0.013±0.002 mmol formate  h -1  cm -2 , respectively, were achieved. Electrode redeposition, reusability, and long-term performance were investigated. Furthermore, the effect of components used in microbial media, that is, yeast extract, trace elements, and phosphate salts, on the electrode performance was addressed. The results demonstrate that the integration of electrochemical reduction of CO 2 in secondary METs can become technologically relevant. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Exploiting differential electrochemical stripping behaviors of Fe3O4 nanocrystals toward heavy metal ions by crystal cutting.

    PubMed

    Yao, Xian-Zhi; Guo, Zheng; Yuan, Qing-Hong; Liu, Zhong-Gang; Liu, Jin-Huai; Huang, Xing-Jiu

    2014-08-13

    This study attempts to understand the intrinsic impact of different morphologies of nanocrystals on their electrochemical stripping behaviors toward heavy metal ions. Two differently shaped Fe3O4 nanocrystals, i.e., (100)-bound cubic and (111)-bound octahedral, have been synthesized for the experiments. Electrochemical results indicate that Fe3O4 nanocrystals with different shapes show different stripping behaviors toward heavy metal ions. Octahedral Fe3O4 nanocrystals show better electrochemical sensing performances toward the investigated heavy metal ions such as Zn(II), Cd(II), Pb(II), Cu(II), and Hg(II), in comparison with cubic ones. Specifically, Pb(II) is found to have the best stripping performance on both the (100) and (111) facets. To clarify these phenomena, adsorption abilities of as-prepared Fe3O4 nanocrystals have been investigated toward heavy metal ions. Most importantly, combined with theoretical calculations, their different electrochemical stripping behaviors in view of facet effects have been further studied and enclosed at the level of molecular/atom. Finally, as a trial to find a disposable platform completely free from noble metals, the potential application of the Fe3O4 nanocrystals for electrochemical detection of As(III) in drinking water is demonstrated.

  9. Pyrosequencing Reveals a Core Community of Anodic Bacterial Biofilms in Bioelectrochemical Systems from China

    PubMed Central

    Xiao, Yong; Zheng, Yue; Wu, Song; Zhang, En-Hua; Chen, Zheng; Liang, Peng; Huang, Xia; Yang, Zhao-Hui; Ng, I-Son; Chen, Bor-Yann; Zhao, Feng

    2015-01-01

    Bioelectrochemical systems (BESs) are promising technologies for energy and product recovery coupled with wastewater treatment, and the core microbial community in electrochemically active biofilm in BESs remains controversy. In the present study, 7 anodic communities from 6 bioelectrochemical systems in 4 labs in southeast, north and south-central of China are explored by 454 pyrosequencing. A total of 251,225 effective sequences are obtained for 7 electrochemically active biofilm samples at 3% cutoff level. While Alpha-, Beta-, and Gamma-proteobacteria are the most abundant classes (averaging 16.0–17.7%), Bacteroidia and Clostridia are the two sub-dominant and commonly shared classes. Six commonly shared genera i.e., Azospira, Azospirillum, Acinetobacter, Bacteroides, Geobacter, Pseudomonas, and Rhodopseudomonas dominate the electrochemically active communities and are defined as core genera. A total of 25 OTUs with average relative abundance >0.5% were selected and designated as core OTUs, and some species relating to these OTUs have been reported electrochemically active. Furthermore, cyclic voltammetry and chronoamperometry tests show that two strains from Acinetobacter guillouiae and Stappia indica, bacteria relate to two core OTUs, are electrochemically active. Using randomly selected bioelectrochemical systems, the study has presented extremely diverse bacterial communities in anodic biofilms, though, we still can suggest some potentially microbes for investigating the electrochemical mechanisms in bioelectrochemical systems. PMID:26733958

  10. Towards Next Generation Lithium-Sulfur Batteries: Non-Conventional Carbon Compartments/Sulfur Electrodes and Multi-Scale Analysis

    DOE PAGES

    Dysart, Arthur D.; Burgos, Juan C.; Mistry, Aashutosh; ...

    2016-02-09

    In this work, a novel heterofunctional, bimodal-porous carbon morphology, termed the carbon compartment (CC), is utilized as a sulfur host as a lithium-sulfur battery cathode. A multi-scale model explores the physics and chemistry of the lithium-sulfur battery cathode. The CCs are synthesized by a rapid, low cost process to improve electrode-electrolyte interfacial contact and accommodate volumetric expansion associated with sulfide formation. The CCs demonstrate high sulfur loading (47 %-wt. S) and ca. 700 mAh g -1 reversible capacity with high coulombic efficiency due to their unique structures. Density functional theory and ab initio Molecular Dynamics characterize the interface between themore » C/S composite and electrolyte during the sulfur reduction mechanism. Stochastic realizations of 3D electrode microstructures are reconstructed based on representative SEM images to study the influence of solid sulfur loading and lithium sulfide precipitation on microstructural and electrochemical properties. A macroscale electrochemical performance model is developed to analyze the performance of lithium-sulfur batteries. The combined multi-scale simulation studies explain key fundamentals of sulfur reduction and its relation to the polysulfide shuttle mechanism: how the process is affected due to the presence of carbon substrate, thermodynamics of lithium sulfide formation and deposition on carbon, and microstructural effects on the overall cell performance.« less

  11. Effect of boron addition on injection molded 316L stainless steel: mechanical, corrosion properties and in vitro bioactivity.

    PubMed

    Bayraktaroglu, Esra; Gulsoy, H Ozkan; Gulsoy, Nagihan; Er, Ozay; Kilic, Hasan

    2012-01-01

    The research was investigated the effect of boron additions on sintering characteristics, mechanical, corrosion properties and biocompatibility of injection molded austenitic grade 316L stainless steel. Addition of boron is promoted to get high density of sintered 316L stainless steels. The amount of boron plays a role in determining the sintered microstructure and all properties. In this study, 316L stainless steel powders have been used with the elemental NiB powders. A feedstock containing 62.5 wt% powders loading was molded at different injection molded temperature. The binders were completely removed from molded components by solvent and thermal debinding at different temperature. The debinded samples were sintered at different temperature for 60 min. Mechanical property, microstructural characterization and electrochemical property of the sintered samples were performed using tensile testing, hardness, optical, scanning electron microscopy and electrochemical corrosion experiments. Sintered samples were immersed in a simulated body fluid (SBF) with elemental concentrations that were comparable to those of human blood plasma for a total period of 15 days. Both materials were implanted in fibroblast culture for biocompatibility evaluations were carried out. Results of study showed that sintered 316L and 316L with NiB addition samples exhibited high mechanical and corrosion properties in a physiological environment. Especially, 316L with NiB addition can be used in some bioapplications.

  12. Corrosion behavior in high heat input welded heat-affected zone of Ni-free high-nitrogen Fe–18Cr–10Mn–N austenitic stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Joonoh, E-mail: mjo99@kims.re.kr; Ha, Heon-Young; Lee, Tae-Ho

    2013-08-15

    The pitting corrosion and interphase corrosion behaviors in high heat input welded heat-affected zone (HAZ) of a metastable high-nitrogen Fe–18Cr–10Mn–N austenitic stainless steel were explored through electrochemical tests. The HAZs were simulated using Gleeble simulator with high heat input welding condition of 300 kJ/cm and the peak temperature of the HAZs was changed from 1200 °C to 1350 °C, aiming to examine the effect of δ-ferrite formation on corrosion behavior. The electrochemical test results show that both pitting corrosion resistance and interphase corrosion resistance were seriously deteriorated by δ-ferrite formation in the HAZ and their aspects were different with increasingmore » δ-ferrite fraction. The pitting corrosion resistance was decreased by the formation of Cr-depleted zone along δ-ferrite/austenite (γ) interphase resulting from δ-ferrite formation; however it didn't depend on δ-ferrite fraction. The interphase corrosion resistance depends on the total amount of Cr-depleted zone as well as ferrite area and thus continuously decreased with increasing δ-ferrite fraction. The different effects of δ-ferrite fraction on pitting corrosion and interphase corrosion were carefully discussed in terms of alloying elements partitioning in the HAZ based on thermodynamic consideration. - Highlights: • Corrosion behavior in the weld HAZ of high-nitrogen austenitic alloy was studied. • Cr{sub 2}N particle was not precipitated in high heat input welded HAZ of tested alloy. • Pitting corrosion and interphase corrosion show a different behavior. • Pitting corrosion resistance was affected by whether or not δ-ferrite forms. • Interphase corrosion resistance was affected by the total amount of δ-ferrite.« less

  13. Altered swelling and ion fluxes in articular cartilage as a biomarker in osteoarthritis and joint immobilization: a computational analysis

    PubMed Central

    Manzano, Sara; Manzano, Raquel; Doblaré, Manuel; Doweidar, Mohamed Hamdy

    2015-01-01

    In healthy cartilage, mechano-electrochemical phenomena act together to maintain tissue homeostasis. Osteoarthritis (OA) and degenerative diseases disrupt this biological equilibrium by causing structural deterioration and subsequent dysfunction of the tissue. Swelling and ion flux alteration as well as abnormal ion distribution are proposed as primary indicators of tissue degradation. In this paper, we present an extension of a previous three-dimensional computational model of the cartilage behaviour developed by the authors to simulate the contribution of the main tissue components in its behaviour. The model considers the mechano-electrochemical events as concurrent phenomena in a three-dimensional environment. This model has been extended here to include the effect of repulsion of negative charges attached to proteoglycans. Moreover, we have studied the fluctuation of these charges owning to proteoglycan variations in healthy and pathological articular cartilage. In this sense, standard patterns of healthy and degraded tissue behaviour can be obtained which could be a helpful diagnostic tool. By introducing measured properties of unhealthy cartilage into the computational model, the severity of tissue degeneration can be predicted avoiding complex tissue extraction and subsequent in vitro analysis. In this work, the model has been applied to monitor and analyse cartilage behaviour at different stages of OA and in both short (four, six and eight weeks) and long-term (11 weeks) fully immobilized joints. Simulation results showed marked differences in the corresponding swelling phenomena, in outgoing cation fluxes and in cation distributions. Furthermore, long-term immobilized patients display similar swelling as well as fluxes and distribution of cations to patients in the early stages of OA, thus, preventive treatments are highly recommended to avoid tissue deterioration. PMID:25392400

  14. Effect of Glucose Concentration on Electrochemical Corrosion Behavior of Pure Titanium TA2 in Hanks’ Simulated Body Fluid

    PubMed Central

    Liu, Shuyue; Wang, Bing; Zhang, Peirong

    2016-01-01

    Titanium and its alloys have been widely used as implant materials due to their excellent mechanical property and biocompatibility. In the present study, the effect of glucose concentration on corrosion behavior of pure titanium TA2 in Hanks’ simulated body fluid is investigated by the electrochemical impedance spectrum (EIS) and potentiodynamic polarization methods. The range of glucose concentrations investigated in this research includes 5 mmol/L (limosis for healthy people), 7 mmol/L (after diet for healthy people), 10 mmol/L (limosis for hyperglycemia patient), and 12 mmol/L (after diet for hyperglycemia patient), as well as, 15 mmol/L and 20 mmol/L, which represent different body fluid environments. The results indicate that the pure titanium TA2 demonstrates the best corrosion resistance when the glucose concentration is less than 10 mmol/L, which shows that the pure titanium TA2 as implant material can play an effective role in the body fluids with normal and slight high glucose concentrations. Comparatively, the corrosion for the pure titanium implant is more probable when the glucose concentration is over 10 mmol/L due to the premature penetration through passive film on the material surface. Corrosion defects of pitting and crevice exist on the corroded surface, and the depth of corrosion is limited to three microns with a low corrosion rate. The oxidation film on the surface of pure titanium TA2 has a protective effect on the corrosion behavior of the implant inner material. The corrosion behavior of pure titanium TA2 will happen easily once the passive film has been penetrated through. The corrosion rate for TA2 implant will accelerate quickly and a pure titanium implant cannot be used. PMID:28773993

  15. Electrochemical studies on nanometal oxide-activated carbon composite electrodes for aqueous supercapacitors

    NASA Astrophysics Data System (ADS)

    Ho, Mui Yen; Khiew, Poi Sim; Isa, Dino; Chiu, Wee Siong

    2014-11-01

    In present study, the electrochemical performance of eco-friendly and cost-effective titanium oxide (TiO2)-based and zinc oxide-based nanocomposite electrodes were studied in neutral aqueous Na2SO3 electrolyte, respectively. The electrochemical properties of these composite electrodes were studied using cyclic voltammetry (CV), galvanostatic charge-discharge (CD) and electrochemical impedance spectroscopy (EIS). The experimental results reveal that these two nanocomposite electrodes achieve the highest specific capacitance at fairly low oxide loading onto activated carbon (AC) electrodes, respectively. Considerable enhancement of the electrochemical properties of TiO2/AC and ZnO/AC nanocomposite electrodes is achieved via synergistic effects contributed from the nanostructured metal oxides and the high surface area mesoporous AC. Cations and anions from metal oxides and aqueous electrolyte such as Ti4+, Zn2+, Na+ and SO32- can occupy some pores within the high-surface-area AC electrodes, forming the electric double layer at the electrode-electrolyte interface. Additionally, both TiO2 and ZnO nanoparticles can provide favourable surface adsorption sites for SO32- anions which subsequently facilitate the faradaic processes for pseudocapacitive effect. These two systems provide the low cost material electrodes and the low environmental impact electrolyte which offer the increased charge storage without compromising charge storage kinetics.

  16. Electrochemical Behavior of Pure Copper in Phosphate Buffer Solutions: A Comparison Between Micro- and Nano-Grained Copper

    NASA Astrophysics Data System (ADS)

    Imantalab, O.; Fattah-alhosseini, A.; Keshavarz, M. K.; Mazaheri, Y.

    2016-02-01

    In this work, electrochemical behavior of annealed (micro-) and nano-grained pure copper (fabricated by accumulative roll bonding process) in phosphate buffer solutions of various pH values ranging from 10.69 to 12.59 has been studied. Before any electrochemical measurements, evaluation of microstructure was obtained by optical microscope and transmission electron microscopy. To investigate the electrochemical behavior of the samples, the potentiodynamic polarization, Mott-Schottky analysis, and electrochemical impedance spectroscopy (EIS) were carried out. Potentiodynamic polarization plots and EIS measurements revealed that as a result of grain refinement, the passive behavior of the nano-grained sample was improved compared to that of annealed pure copper. Also, Mott-Schottky analysis indicated that the passive films behaved as p-type semiconductors and grain refinement did not change the semiconductor type of passive films.

  17. Electrochemical insertion of magnesium ions into V2O5 from aprotic electrolytes with varied water content.

    PubMed

    Yu, Long; Zhang, Xiaogang

    2004-10-01

    The electrochemical performance of V2O5 has been studied in propylene carbonate (PC)-containing magnesium perchlorate [Mg(ClO4)2] electrolytes in view of their application as positive electrode in the rechargeable magnesium batteries. V2O5 exhibited good properties in hosting magnesium ions and its electrochemical performance depended on the amount of H2O in the electrolytes. The highest first discharge specific capacities of V2O5 electrode was up to 158.6 mAh/g in 1 mol dm(-3) Mg(ClO4)2 + 1.79 mol dm(-3) H2O/PC electrolytes. Electrochemical impedance spectroscopy (EIS) and charging-discharging tests showed that a reasonable amount of H2O in the electrolyte solution facilitated the electrochemical performance of V2O5 electrodes.

  18. Detecting Corrosion Resistance of Coated Steel Rebars by Electrochemical Technique (eis)

    NASA Astrophysics Data System (ADS)

    Ryou, J.; Shah, S.

    Electrochemical impedance spectroscopy (EIS) is one of the electrochemical techniques used in materials science. The present measurements are used to evaluate the corrosion resistance of new types of coated steel rebar used in reinforced concrete. In this study, Si-based coating materials are used and evaluated, because adding Si to metals and alloys, including steel, generally increases their corrosion, oxidation, and erosion resistance. The result suggests that electrochemical impedance spectroscopy may be useful for monitoring corrosion activity on coated steel rebars. Based upon impedance changes, it appears that the silicon powder coating bonds well to the steel, and that the coating has a good performance.

  19. Menadione metabolism to thiodione in hepatoblastoma by scanning electrochemical microscopy

    PubMed Central

    Mauzeroll, Janine; Bard, Allen J.; Owhadian, Omeed; Monks, Terrence J.

    2004-01-01

    The cytotoxicity of menadione on hepatocytes was studied by using the substrate generation/tip collection mode of scanning electrochemical microscopy by exposing the cells to menadione and detecting the menadione-S-glutathione conjugate (thiodione) that is formed during the cellular detoxication process and is exported from the cell by an ATP-dependent pump. This efflux was electrochemically detected and allowed scanning electrochemical microscopy monitoring and imaging of single cells and groups of highly confluent live cells. Based on a constant flux model, ≈6 × 106 molecules of thiodione per cell per second are exported from monolayer cultures of Hep G2 cells. PMID:15601769

  20. Electrochemical CO 2 Reduction on Oxide-Derived Cu Surface with Various Oxide Thicknesses

    DOE PAGES

    Liang, Zhixiu; Fu, Jie; Vukmirovic, Miomir B.; ...

    2018-03-26

    Here, cuprous oxide on copper foil electrodes prepared via electrochemical deposition and thermal annealing are investigated towards CO 2 electrochemical reduction at low overpotential. The thickness of the electrochemical deposited Cu 2O was controlled by varying the constant-current deposition time. The surface morphology and roughness were examined with SEM and CV respectively. The electrode fabricated by cuprous oxide deposited for 20 min demonstrated the best faradic efficiency (7.02%) and specific activity (0.123 mA/cm 2) towards format/formic acid formation at -0.5 V vs. RHE in CO 2 saturated 0.5 M K 2CO 3 among studied samples.

Top