DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Xiao-Ying; Liu, Bingwen; Yang, Li
2016-03-01
A microfluidic electrochemical device and process are detailed that provide chemical imaging and electrochemical analysis under vacuum at the surface of the electrode-sample or electrode-liquid interface in-situ. The electrochemical device allows investigation of various surface layers including diffuse layers at selected depths populated with, e.g., adsorbed molecules in which chemical transformation in electrolyte solutions occurs.
Enhanced electrochemical nanoring electrode for analysis of cytosol in single cells.
Zhuang, Lihong; Zuo, Huanzhen; Wu, Zengqiang; Wang, Yu; Fang, Danjun; Jiang, Dechen
2014-12-02
A microelectrode array has been applied for single cell analysis with relatively high throughput; however, the cells were typically cultured on the microelectrodes under cell-size microwell traps leading to the difficulty in the functionalization of an electrode surface for higher detection sensitivity. Here, nanoring electrodes embedded under the microwell traps were fabricated to achieve the isolation of the electrode surface and the cell support, and thus, the electrode surface can be modified to obtain enhanced electrochemical sensitivity for single cell analysis. Moreover, the nanometer-sized electrode permitted a faster diffusion of analyte to the surface for additional improvement in the sensitivity, which was evidenced by the electrochemical characterization and the simulation. To demonstrate the concept of the functionalized nanoring electrode for single cell analysis, the electrode surface was deposited with prussian blue to detect intracellular hydrogen peroxide at a single cell. Hundreds of picoamperes were observed on our functionalized nanoring electrode exhibiting the enhanced electrochemical sensitivity. The success in the achievement of a functionalized nanoring electrode will benefit the development of high throughput single cell electrochemical analysis.
Sharma, Vimal Kumar; Jelen, Frantisek; Trnkova, Libuse
2015-01-01
Interest in electrochemical analysis of purine nucleobases and few other important purine derivatives has been growing rapidly. Over the period of the past decade, the design of electrochemical biosensors has been focused on achieving high sensitivity and efficiency. The range of existing electrochemical methods with carbon electrode displays the highest rate in the development of biosensors. Moreover, modification of electrode surfaces based on nanomaterials is frequently used due to their extraordinary conductivity and surface to volume ratio. Different strategies for modifying electrode surfaces facilitate electron transport between the electrode surface and biomolecules, including DNA, oligonucleotides and their components. This review aims to summarize recent developments in the electrochemical analysis of purine derivatives, as well as discuss different applications. PMID:25594595
This study focuses on the application of electrochemical approaches to drinking water copper corrosion problems. Applying electrochemical approaches combined with copper solubility measurements, and solid surface analysis approaches were discussed. Tafel extrapolation and Electro...
This study focuses on the application of electrochemical approaches to drinking water copper corrosion problems. Applying electrochemical approaches combined with copper solubility measurements, and solid surface analysis approaches were discussed. Tafel extrapolation and Electro...
Plasmonic Imaging of Electrochemical Reactions of Single Nanoparticles.
Fang, Yimin; Wang, Hui; Yu, Hui; Liu, Xianwei; Wang, Wei; Chen, Hong-Yuan; Tao, N J
2016-11-15
Electrochemical reactions are involved in many natural phenomena, and are responsible for various applications, including energy conversion and storage, material processing and protection, and chemical detection and analysis. An electrochemical reaction is accompanied by electron transfer between a chemical species and an electrode. For this reason, it has been studied by measuring current, charge, or related electrical quantities. This approach has led to the development of various electrochemical methods, which have played an essential role in the understanding and applications of electrochemistry. While powerful, most of the traditional methods lack spatial and temporal resolutions desired for studying heterogeneous electrochemical reactions on electrode surfaces and in nanoscale materials. To overcome the limitations, scanning probe microscopes have been invented to map local electrochemical reactions with nanometer resolution. Examples include the scanning electrochemical microscope and scanning electrochemical cell microscope, which directly image local electrochemical reaction current using a scanning electrode or pipet. The use of a scanning probe in these microscopes provides high spatial resolution, but at the expense of temporal resolution and throughput. This Account discusses an alternative approach to study electrochemical reactions. Instead of measuring electron transfer electrically, it detects the accompanying changes in the reactant and product concentrations on the electrode surface optically via surface plasmon resonance (SPR). SPR is highly surface sensitive, and it provides quantitative information on the surface concentrations of reactants and products vs time and electrode potential, from which local reaction kinetics can be analyzed and quantified. The plasmonic approach allows imaging of local electrochemical reactions with high temporal resolution and sensitivity, making it attractive for studying electrochemical reactions in biological systems and nanoscale materials with high throughput. The plasmonic approach has two imaging modes: electrochemical current imaging and interfacial impedance imaging. The former images local electrochemical current associated with electrochemical reactions (faradic current), and the latter maps local interfacial impedance, including nonfaradic contributions (e.g., double layer charging). The plasmonic imaging technique can perform voltammetry (cyclic or square wave) in an analogous manner to the traditional electrochemical methods. It can also be integrated with bright field, dark field, and fluorescence imaging capabilities in one optical setup to provide additional capabilities. To date the plasmonic imaging technique has found various applications, including mapping of heterogeneous surface reactions, analysis of trace substances, detection of catalytic reactions, and measurement of graphene quantum capacitance. The plasmonic and other emerging optical imaging techniques (e.g., dark field and fluorescence microscopy), together with the scanning probe-based electrochemical imaging and single nanoparticle analysis techniques, provide new capabilities for one to study single nanoparticle electrochemistry with unprecedented spatial and temporal resolutions. In this Account, we focus on imaging of electrochemical reactions at single nanoparticles.
Catalysts for electrochemical generation of oxygen
NASA Technical Reports Server (NTRS)
Hagans, P.; Yeager, E.
1979-01-01
Several aspects of the electrolytic evolution of oxygen for use in life support systems are analyzed including kinetic studies of various metal and nonmetal electrode materials, the formation of underpotential films on electrodes, and electrode surface morphology and the use of single crystal metals. In order to investigate the role of surface morphology to electrochemical reactions, a low energy electron diffraction and an Auger electron spectrometer are combined with an electrochemical thin-layer cell allowing initial characterization of the surface, reaction run, and then a comparative surface analysis.
NASA Astrophysics Data System (ADS)
Lu, Yao; Xu, Wenji; Song, Jinlong; Liu, Xin; Xing, Yingjie; Sun, Jing
2012-12-01
The preparation of superhydrophobic surfaces on hydrophilic metal substrates depends on both surface microstructures and low surface energy modification. In this study, a simple and inexpensive electrochemical method for preparing robust superhydrophobic titanium surfaces is reported. The neutral sodium chloride solution is used as electrolyte. Fluoroalkylsilane (FAS) was used to reduce the surface energy of the electrochemically etched surface. Scanning electron microscopy (SEM) images, energy-dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR) spectra, and contact angle measurement are performed to characterize the morphological features, chemical composition, and wettability of the titanium surfaces. Stability and friction tests indicate that the prepared titanium surfaces are robust. The analysis of electrolyte, reaction process, and products demonstrates that the electrochemical processing is very inexpensive and environment-friendly. This method is believed to be easily adaptable for use in large-scale industry productions to promote the application of superhydrophobic titanium surfaces in aviation, aerospace, shipbuilding, and the military industry.
Effect of black clay soil moisture on the electrochemical behavior of API X70 pipeline steel
NASA Astrophysics Data System (ADS)
Hendi, R.; Saifi, H.; Belmokre, K.; Ouadah, M.; Smili, B.; Talhi, B.
2018-03-01
The effect of moisture content variation (20–100 wt.%) on the electrochemical behavior of API X70 pipeline steel buried in the soil of Skikda (East of Algeria) was studied using electrochemical techniques, scanning electron microscopy (SEM), X ray diffraction analysis (XRD) and weight loss measurement. The electrochemical measurements showed that the corrosion current Icorr is directly proportional to the moisture content up to 50 wt.%, beyond this content, this value becomes almost constant. The result were confirmed by electrochemical impedance spectroscopy; the capacitance of the double layer formed on the surface is the highest at 50 wt.%. A single time constant was detected by plotting the Bode diagrams. The steel surface degradation has been appreciated using the scanning electron microscopy observations. A few pitting corrosion at 20 wt.% moisture, followed by more degradation at 50 wt.% have been revealed. However, when the moisture amount exceeded 50 wt.%, the surface became entirely covered by a corrosion product. XRD analysis revealed the dominance of FeOOH and Fe3O4 phases on steel surface for a moisture content of 50 wt.%.
NASA Astrophysics Data System (ADS)
Nellist, Michael R.; Laskowski, Forrest A. L.; Qiu, Jingjing; Hajibabaei, Hamed; Sivula, Kevin; Hamann, Thomas W.; Boettcher, Shannon W.
2018-01-01
Heterogeneous electrochemical phenomena, such as (photo)electrochemical water splitting to generate hydrogen using semiconductors and/or electrocatalysts, are driven by the accumulated charge carriers and thus the interfacial electrochemical potential gradients that promote charge transfer. However, measurements of the "surface" electrochemical potential during operation are not generally possible using conventional electrochemical techniques, which measure/control the potential of a conducting electrode substrate. Here we show that the nanoscale conducting tip of an atomic force microscope cantilever can sense the surface electrochemical potential of electrocatalysts in operando. To demonstrate utility, we measure the potential-dependent and thickness-dependent electronic properties of cobalt (oxy)hydroxide phosphate (CoPi). We then show that CoPi, when deposited on illuminated haematite (α-Fe2O3) photoelectrodes, acts as both a hole collector and an oxygen evolution catalyst. We demonstrate the versatility of the technique by comparing surface potentials of CoPi-decorated planar and mesoporous haematite and discuss viability for broader application in the study of electrochemical phenomena.
NASA Astrophysics Data System (ADS)
Pham, Thao Thi-Hien; Sim, Sang Jun
2010-01-01
An electrochemical impedance immunosensor was developed for detecting the immunological interaction between human immunoglobulin (IgG) and protein A from Staphylococcus aureus based on the immobilization of human IgG on the surface of modified gold-coated magnetic nanoparticles. The nanoparticles with an Au shell and Fe oxide cores were functionalized by a self-assembled monolayer of 11-mercaptoundecanoic acid. The electrochemical analysis was conducted on the modified magnetic carbon paste electrodes with the nanoparticles. The magnetic nanoparticles were attached to the surface of the magnetic carbon paste electrodes via magnetic force. The cyclic voltammetry technique and electrochemical impedance spectroscopy measurements of the magnetic carbon paste electrodes coated with magnetic nanoparticles-human IgG complex showed changes in its alternating current (AC) response both after the modification of the surface of the electrode and the addition of protein A. The immunological interaction between human IgG on the surface of the modified magnetic carbon paste electrodes and protein A in the solution could be successfully monitored.
NASA Astrophysics Data System (ADS)
Jacobse, Leon; Huang, Yi-Fan; Koper, Marc T. M.; Rost, Marcel J.
2018-03-01
Platinum plays a central role in a variety of electrochemical devices and its practical use depends on the prevention of electrode degradation. However, understanding the underlying atomic processes under conditions of repeated oxidation and reduction inducing irreversible surface structure changes has proved challenging. Here, we examine the correlation between the evolution of the electrochemical signal of Pt(111) and its surface roughening by simultaneously performing cyclic voltammetry and in situ electrochemical scanning tunnelling microscopy (EC-STM). We identify a `nucleation and early growth' regime of nanoisland formation, and a `late growth' regime after island coalescence, which continues up to at least 170 cycles. The correlation analysis shows that each step site that is created in the `late growth' regime contributes equally strongly to both the electrochemical and the roughness evolution. In contrast, in the `nucleation and early growth' regime, created step sites contribute to the roughness, but not to the electrochemical signal.
El-Said, Waleed A; Yoon, Jinho; Choi, Jeong-Woo
2018-01-01
Discovering new anticancer drugs and screening their efficacy requires a huge amount of resources and time-consuming processes. The development of fast, sensitive, and nondestructive methods for the in vitro and in vivo detection of anticancer drugs' effects and action mechanisms have been done to reduce the time and resources required to discover new anticancer drugs. For the in vitro and in vivo detection of the efficiency, distribution, and action mechanism of anticancer drugs, the applications of electrochemical techniques such as electrochemical cell chips and optical techniques such as surface-enhanced Raman spectroscopy (SERS) have been developed based on the nanostructured surface. Research focused on electrochemical cell chips and the SERS technique have been reviewed here; electrochemical cell chips based on nanostructured surfaces have been developed for the in vitro detection of cell viability and the evaluation of the effects of anticancer drugs, which showed the high capability to evaluate the cytotoxic effects of several chemicals at low concentrations. SERS technique based on the nanostructured surface have been used as label-free, simple, and nondestructive techniques for the in vitro and in vivo monitoring of the distribution, mechanism, and metabolism of different anticancer drugs at the cellular level. The use of electrochemical cell chips and the SERS technique based on the nanostructured surface should be good tools to detect the effects and action mechanisms of anticancer drugs.
NASA Astrophysics Data System (ADS)
El-Said, Waleed A.; Yoon, Jinho; Choi, Jeong-Woo
2018-04-01
Discovering new anticancer drugs and screening their efficacy requires a huge amount of resources and time-consuming processes. The development of fast, sensitive, and nondestructive methods for the in vitro and in vivo detection of anticancer drugs' effects and action mechanisms have been done to reduce the time and resources required to discover new anticancer drugs. For the in vitro and in vivo detection of the efficiency, distribution, and action mechanism of anticancer drugs, the applications of electrochemical techniques such as electrochemical cell chips and optical techniques such as surface-enhanced Raman spectroscopy (SERS) have been developed based on the nanostructured surface. Research focused on electrochemical cell chips and the SERS technique have been reviewed here; electrochemical cell chips based on nanostructured surfaces have been developed for the in vitro detection of cell viability and the evaluation of the effects of anticancer drugs, which showed the high capability to evaluate the cytotoxic effects of several chemicals at low concentrations. SERS technique based on the nanostructured surface have been used as label-free, simple, and nondestructive techniques for the in vitro and in vivo monitoring of the distribution, mechanism, and metabolism of different anticancer drugs at the cellular level. The use of electrochemical cell chips and the SERS technique based on the nanostructured surface should be good tools to detect the effects and action mechanisms of anticancer drugs.
NASA Astrophysics Data System (ADS)
Suo, Xinkun; Abdoli, Leila; Liu, Yi; Xia, Peng; Yang, Guanjun; Li, Hua
2017-04-01
Copper coatings were fabricated on stainless steel plates by cold spraying. Attachment and colonization of Bacillus sp. on their surfaces in artificial seawater were characterized, and their effects on anticorrosion performances of the coatings were examined. Attached bacteria were observed using field emission scanning electron microscopy. Electrochemical behaviors including potentiodynamic polarization and electrochemical impedance spectroscopy with/without bacterial attachment were evaluated using commercial electrochemical analysis station Modulab. Results show that Bacillus sp. opt to settle on low-lying spots of the coating surfaces in early stage, followed by recruitment and attachment of extracellular polymeric substances (EPS) secreted through metabolism of Bacillus sp. The bacteria survive with the protection of EPS. An attachment model is proposed to illustrate the bacterial behaviors on the surfaces of the coatings. Electrochemical data show that current density under Bacillus sp. environment decreases compared to that without the bacteria. Charge-transfer resistance increases markedly in bacteria-containing seawater, suggesting that corrosion resistance increases and corrosion rate decreases. The influencing mechanism of bacteria settlement on corrosion resistance of the cold-sprayed copper coatings was discussed and elucidated.
Binder-induced surface structure evolution effects on Li-ion battery performance
NASA Astrophysics Data System (ADS)
Rezvani, S. J.; Pasqualini, M.; Witkowska, A.; Gunnella, R.; Birrozzi, A.; Minicucci, M.; Rajantie, H.; Copley, M.; Nobili, F.; Di Cicco, A.
2018-03-01
A comparative investigation on binder induced chemical and morphological evolution of Li4Ti5O12 electrodes was performed via X-ray photoemission spectroscopy, scanning electron microscopy, and electrochemical measurements. Composite electrodes were obtained using three different binders (PAA, PVdF, and CMC) with 80:10:10 ratio of active material:carbon:binder. The electrochemical performances of the electrodes, were found to be intimately correlated with the evolution of the microstructure of the electrodes, probed by XPS and SEM analysis. Our analysis shows that the surface chemistry, thickness of the passivation layers and the morphology of the electrodes are strongly dependent on the type of binders that significantly influence the electrochemical properties of the electrodes. These results point to a key role played by binders in optimization of the battery performance and improve our understanding of the previously observed and unexplained electrochemical properties of these electrodes.
Electrochemical micro/nano-machining: principles and practices.
Zhan, Dongping; Han, Lianhuan; Zhang, Jie; He, Quanfeng; Tian, Zhao-Wu; Tian, Zhong-Qun
2017-03-06
Micro/nano-machining (MNM) is becoming the cutting-edge of high-tech manufacturing because of the increasing industrial demand for supersmooth surfaces and functional three-dimensional micro/nano-structures (3D-MNS) in ultra-large scale integrated circuits, microelectromechanical systems, miniaturized total analysis systems, precision optics, and so on. Taking advantage of no tool wear, no surface stress, environmental friendliness, simple operation, and low cost, electrochemical micro/nano-machining (EC-MNM) has an irreplaceable role in MNM. This comprehensive review presents the state-of-art of EC-MNM techniques for direct writing, surface planarization and polishing, and 3D-MNS fabrications. The key point of EC-MNM is to confine electrochemical reactions at the micro/nano-meter scale. This review will bring together various solutions to "confined reaction" ranging from electrochemical principles through technical characteristics to relevant applications.
Cao, Jun-Tao; Zhu, Ying-Di; Rana, Rohit Kumar; Zhu, Jun-Jie
2014-01-15
A novel microfluidic platform integrated with a flexible PDMS-based electrochemical cytosensor was developed for real-time monitoring of the proliferation and apoptosis of HeLa cells. The PDMS-gold film, which had a conductive smooth surface and was semi-transparent, facilitated electrochemical measurements and optical microscope observations. We observed distinct increases and decreases in peak current intensity, corresponding to cell proliferation in culture medium and apoptosis in the presence of an anticancer drug, respectively. This electrochemical analysis method permitted real-time, label-free monitoring of cell behavior, and the electrochemical results were confirmed with optical microscopy. The flexible microfluidic electrochemical platform presented here is suitable for on-site monitoring of cell behavior in microenvironments. © 2013 Elsevier B.V. All rights reserved.
Electrochemical annealing of nanoporous gold by application of cyclic potential sweeps
Sharma, Abeera; Bhattarai, Jay K.; Alla, Allan J.; Demchenko, Alexei V.; Stine, Keith J.
2015-01-01
An electrochemical method for annealing the pore sizes of nanoporous gold is reported. The pore sizes of nanoporous gold can be increased by electrochemical cycling with the upper potential limit being just at the onset of gold oxide formation. This study has been performed in electrolyte solutions including potassium chloride, sodium nitrate and sodium perchlorate. Scanning electron microscopy images have been used for ligament and pore size analysis. We examine the modifications of nanoporous gold due to annealing using electrochemical impedance spectroscopy, and cyclic voltammetry and offer a comparison of the surface coverage using the gold oxide stripping method as well as the method in which electrochemically accessible surface area is determined by using a diffusing redox probe. The effect of additives adsorbed on the nanoporous gold surface when subjected to annealing in different electrolytes as well as the subsequent structural changes in nanoporous gold are also reported. The effect of the annealing process on the application of nanoporous gold as a substrate for glucose electro-oxidation is briefly examined. PMID:25649027
Electrochemical characteristics of calcium-phosphatized AZ31 magnesium alloy in 0.9 % NaCl solution.
Hadzima, Branislav; Mhaede, Mansour; Pastorek, Filip
2014-05-01
Magnesium alloys suffer from their high reactivity in common environments. Protective layers are widely created on the surface of magnesium alloys to improve their corrosion resistance. This article evaluates the influence of a calcium-phosphate layer on the electrochemical characteristics of AZ31 magnesium alloy in 0.9 % NaCl solution. The calcium phosphate (CaP) layer was electrochemically deposited in a solution containing 0.1 M Ca(NO3)2, 0.06 M NH4H2PO4 and 10 ml l(-1) of H2O2. The formed surface layer was composed mainly of brushite [(dicalcium phosphate dihidrate (DCPD)] as proved by energy-dispersive X-ray analysis. The surface morphology was observed by scanning electron microscopy. Immersion test was performed in order to observe degradation of the calcium phosphatized surfaces. The influence of the phosphate layer on the electrochemical characteristics of AZ31, in 0.9 % NaCl solution, was evaluated by potentiodynamic measurements and electrochemical impedance spectroscopy. The obtained results were analysed by the Tafel-extrapolation method and equivalent circuits method. The results showed that the polarization resistance of the DCPD-coated surface is about 25 times higher than that of non-coated surface. The CaP electro-deposition process increased the activation energy of corrosion process.
NASA Astrophysics Data System (ADS)
Li, Ang; He, Renyue; Bian, Zhuo; Song, Huaihe; Chen, Xiaohong; Zhou, Jisheng
2018-06-01
Self-assembled hierarchical CuO nanostructures with fractal structures were prepared by a mild method and exhibited excellent lithium storage properties, certain of which even demonstrated a high reversible capacity of 827 mAh g-1 at a rate of 0.1 C. An interesting phenomenon was observed that the electrochemical performance varies along with the structure complexity, and the products with higher surface factal dimensions exhibited larger capability and better cyclability. Structural and electrochemical analysis methods were used to explore the lithiation kinetics of the samples and the reasons for the outstanding electrochemical performances related to the complexities of hierarchical nanostructures and the irregularities of surface and mass distribution.
Xu, Xihua; Sun, Zhipeng; Ansari, K. R.; Lin, Yuanhua
2017-01-01
The corrosion mitigation efficiency of biotin drug for mild steel in 15% hydrochloric acid was thoroughly investigated by weight loss and electrochemical methods. The surface morphology was studied by the contact angle, scanning electrochemical microscopy, atomic force microscopy and scanning electron microscopy methods. Quantum chemical calculation and Fukui analysis were done to correlate the experimental and theoretical data. The influence of the concentration of inhibitor, immersion time, temperature, activation energy, enthalpy and entropy has been reported. The mitigation efficiency of biotin obtained by all methods was in good correlation with each other. Polarization studies revealed that biotin acted as a mixed inhibitor. The adsorption of biotin was found to obey the Langmuir adsorption isotherm. Surface studies showed the hydrophobic nature of the steel with inhibitor and vindicated the formation of a film on the metal surface that reduced the corrosion rate. PMID:29308235
Zhu, Lin; Wei, Bo; Wang, Zhihong; Chen, Kongfa; Zhang, Haiwu; Zhang, Yaohui; Huang, Xiqiang; Lü, Zhe
2016-09-08
The understanding of surface chemistry changes on oxygen electrodes is critical for the development of reversible solid oxide fuel cell (RSOFC). Here, we report for the first time that the electrochemical potentials can drastically affect the surface composition and hence the electrochemical activity and stability of PrBaCo2 O5+δ (PBCO) electrodes. Anodic polarization degrades the activity of the PBCO electrode, whereas the cathodic bias could recover its performance. Alternating anodic/cathodic polarization for 180 h confirms this behavior. Microstructure and chemical analysis clearly show that anodic bias leads to the accumulation and segregation of insulating nanosized BaO on the electrode surface, whereas cathodic polarization depletes the surface species. Therefore, a mechanism based on the segregation and incorporation of BaO species under electrochemical potentials is considered to be responsible for the observed deactivation and recovery process, respectively. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Sund, James B.; Causey, Corey P.; Wolter, Scott D.; Parker, Charles B.; Stoner, Brian R.; Toone, Eric J.; Glass, Jeffrey T.
2014-05-01
The surface of conducting diamond was functionalized with a terminal thiol group that is capable of binding and detecting nitrogen-oxygen species. The functionalization process employed multiple steps starting with doped diamond films grown by plasma enhanced chemical vapor deposition followed by hydrogen termination and photochemical attachment of a chemically protected amine alkene. The surface tether was deprotected to reveal the amine functionality, which enabled the tether to be extended with surface chemistry to add a terminal thiol moiety for electrochemical sensing applications. Each step of the process was validated using X-ray photoelectron spectroscopy analysis.
NASA Astrophysics Data System (ADS)
Kang, Young C.
The following work is the study to evaluate the impact of corrosion inhibitors on the copper metal in drinking water and to investigate the corrosion mechanism in the presence and absence of inhibitors. Electrochemical experiments were conducted to understand the effect of specific corrosion inhibitors in synthetic drinking water which was prepared with controlled specific water quality parameters. Water chemistry was studied by Inductively Coupled Plasma--Atomic Emission Spectroscopy (ICP--AES) to investigate the copper leaching rate with time. Surface morphology, crystallinity of corrosion products, copper oxidation status, and surface composition were characterized by various solid surface analysis methods, such as Scanning Electron Microscopy/Energy--Dispersive Spectrometry (SEM/EDS), Grazing-Incidence-angle X-ray Diffraction (GIXRD), X-ray Photoelectron Spectroscopy (XPS), and Time-of-Flight Secondary Ions Mass Spectrometry (ToF-SIMS). The purpose of the first set of experiments was to test various electrochemical techniques for copper corrosion for short term before studying a long term loop system. Surface analysis techniques were carried out to identify and study the corrosion products that form on the fresh copper metal surface when copper coupons were exposed to test solutions for 2 days of experiments time. The second phase of experiments was conducted with a copper pipe loop system in a synthetic tap water over an extended period of time, i.e., 4 months. Copper release and electrochemically measured corrosion activity profiles were monitored carefully with and without corrosion inhibitor, polyphosphate. A correlation between the copper released into the solution and the electrochemically measured corrosion activities was also attempted. To investigate corrosion products on the copper pipe samples, various surface analysis techniques were applied in this study. Especially, static mass spectra acquisition and element distribution mapping were carried out by ToF-SIMS. Dynamic SIMS provided shallow depth profile of corroded copper sample. The third set of the experiments was related to electrochemical noise (EN) measurement through copper coupons to pipes. Calculating corrosion rate of a metal and predicting exactly how long it lasts are problematic since the metal corrosion may be caused by combined corrosion types. Many other metals undergo not only uniform corrosion, but localized corrosion. Uniform corrosion may be conducive for copper pipe to prevent it from further severe corrosion and form passivated film, but localized corrosion causes pinhole leaks and limits the copper pipe applications. The objective of this set of experiment is to discuss the application of electrochemical noise approaches to drinking water copper corrosion problems. Specially, a fundamental description of EN is presented including a discussion of how to interpret the results and technique limitations. Although it was indicated with electrochemical analysis that the corrosion activity was affected by orthophosphate addition in the short-term test, no copper-phosphate complex or compound was found by copper surface characterization. Apparently, orthophosphate can inhibit corrosion by adsorption on the copper surface, but cannot form solid complexes with copper in such a short time, 2 days. When polyphosphate was added into recirculating copper pipe system, copper level increased and polarization resistance decreased. Greenish blue residue on the copper pipe was suspected as copper phosphate complex and corrosion inhibition mechanism was proposed.
Electrochemical Corrosion of Stainless Steel in Thiosulfate Solutions Relevant to Gold Leaching
NASA Astrophysics Data System (ADS)
Choudhary, Lokesh; Wang, Wei; Alfantazi, Akram
2016-01-01
This study aims to characterize the electrochemical corrosion behavior of stainless steel in the ammoniacal thiosulfate gold leaching solutions. Electrochemical corrosion response was investigated using potentiodynamic polarization and electrochemical impedance spectroscopy, while the semi-conductive properties and the chemical composition of the surface film were characterized using Mott-Schottky analysis and X-ray photoelectron spectroscopy, respectively. The morphology of the corroded specimens was analyzed using scanning electron microscopy. The stainless steel 316L showed no signs of pitting in the ammoniacal thiosulfate solutions.
Xia, Ning; Liu, Ke; Zhou, Yingying; Li, Yuanyuan; Yi, Xinyao
2017-01-01
miRNAs have emerged as new biomarkers for the detection of a wide variety of cancers. By employing duplex-specific nuclease for signal amplification and gold nanoparticles (AuNPs) as the carriers of detection probes, a novel electrochemical assay of miRNAs was performed. The method is based on conversion of the well-known colorimetric assay into electrochemical analysis with enhanced sensitivity. DNA capture probes immobilized on the electrode surface and ferrocene (Fc)-labeled DNA detection probes (denoted “Fc-DNA-Fc”) presented in the solution induced the assembly of positively charged AuNPs on the electrode surface through the electrostatic interaction. As a result, a large number of Fc-DNA-Fc molecules were attached on the electrode surface, thus amplifying the electrochemical signal. When duplex-specific nuclease was added to recycle the process of miRNA-initiated digestion of the immobilized DNA probes, Fc-DNA-Fc-induced assembly of AuNPs on the electrode surface could not occur. This resulted in a significant fall in the oxidation current of Fc. The current was found to be inversely proportional to the concentration of miRNAs in the range of 0–25 fM, and a detection limit of 0.1 fM was achieved. Moreover, this work presents a new method for converting colorimetric assays into sensitive electrochemical analyses, and thus would be valuable for design of novel chemical/biosensors. PMID:28761341
Influence of albumin on the electrochemical behaviour of Zr in phosphate buffered saline solutions.
Wang, Lu-Ning; Huang, Xian-Qiu; Shinbine, Alyssa; Luo, Jing-Li
2013-02-01
The corrosion behaviour of Zr in phosphate buffered saline (PBS) solutions with various concentrations (0-4 g L(-1)) of albumin was studied by electrochemical techniques and surface analysis. Addition of albumin to PBS solutions moved the open circuit potential (OCP) to less nobler direction. OCP, polarization resistance and impedance increased and the corrosion current decreased over immersion duration. At early stages of immersion, the resistance was increased with the concentration of albumin because of the high adsorption kinetics of albumin on metal. After the long term immersion, the resistance in PBS without albumin was higher than PBS with albumin owing to the anodic dissolution effect of albumin on metal. According to the analysis of effective capacitances, a normal distribution of time-constants was proposed to estimate the surface film on Zr. A corrosion mechanism of Zr in PBS with different albumin was proposed based on electrochemical analysis.
Polypeptide Functional Surface for the Aptamer Immobilization: Electrochemical Cocaine Biosensing.
Bozokalfa, Guliz; Akbulut, Huseyin; Demir, Bilal; Guler, Emine; Gumus, Z Pınar; Odaci Demirkol, Dilek; Aldemir, Ebru; Yamada, Shuhei; Endo, Takeshi; Coskunol, Hakan; Timur, Suna; Yagci, Yusuf
2016-04-05
Electroanalytical technologies as a beneficial subject of modern analytical chemistry can play an important role for abused drug analysis which is crucial for both legal and social respects. This article reports a novel aptamer-based biosensing procedure for cocaine analysis by combining the advantages of aptamers as selective recognition elements with the well-known advantages of biosensor systems such as the possibility of miniaturization and automation, easy fabrication and modification, low cost, and sensitivity. In order to construct the aptasensor platform, first, polythiophene bearing polyalanine homopeptide side chains (PT-Pala) was electrochemically coated onto the surface of an electrode and then cocaine aptamer was attached to the polymer via covalent conjugation chemistry. The stepwise modification of the surface was confirmed by electrochemical characterization. The designed biosensing system was applied for the detection of cocaine and its metabolite, benzoylecgonine (BE), which exhibited a linear correlation in the range from 2.5 up to 10 nM and 0.5 up to 50 μM for cocaine and BE, respectively. In order to expand its practical application, the proposed method was successfully tested for the analysis of synthetic biological fluids.
NASA Astrophysics Data System (ADS)
Zhuo, Zengqing; Hu, Jiangtao; Duan, Yandong; Yang, Wanli; Pan, Feng
2016-07-01
We performed soft x-ray absorption spectroscopy (sXAS) and a quantitative analysis of the transition metal redox in the LiMn0.5Fe0.5PO4 electrodes upon electrochemical cycling. In order to circumvent the complication of the surface reactions with organic electrolyte at high potential, the LiMn0.5Fe0.5PO4 electrodes are cycled with aqueous electrolyte. The analysis of the transitional metal L-edge spectra allows a quantitative determination of the redox evolution of Mn and Fe during the electrochemical cycling. The sXAS analysis reveals the evolving Mn oxidation states in LiMn0.5Fe0.5PO4. We found that electrochemically inactive Mn2+ is formed on the electrode surface during cycling. Additionally, the signal indicates about 20% concentration of Mn4+ at the charged state, providing a strong experimental evidence of the disproportional reaction of Mn3+ to Mn2+ and Mn4+ on the surface of the charged LiMn0.5Fe0.5PO4 electrodes.
Ustarroz, Jon; Geboes, Bart; Vanrompay, Hans; Sentosun, Kadir; Bals, Sara; Breugelmans, Tom; Hubin, Annick
2017-05-17
Nanoporous Pt nanoparticles (NPs) are promising fuel cell catalysts due to their large surface area and increased electrocatalytic activity toward the oxygen reduction reaction (ORR). Herein, we report on the influence of the growth mechanisms on the surface properties of electrodeposited Pt dendritic NPs with large surface areas. The electrochemically active surface was studied by hydrogen underpotential deposition (H UPD) and compared for the first time to high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) quantitative 3D electron tomography of individual nanoparticles. Large nucleation overpotential leads to a large surface coverage of roughened spheroids, which provide a large roughness factor (R f ) but low mass-specific electrochemically active surface area (EASA). Lowering the nucleation overpotential leads to highly porous Pt NPs with pores stretching to the center of the structure. At the expense of smaller R f , the obtained EASA values of these structures are in the range of those of large surface area supported fuel cell catalysts. The active surface area of the Pt dendritic NPs was measured by electron tomography, and it was found that the potential cycling in the H adsorption/desorption and Pt oxidation/reduction region, which is generally performed to determine the EASA, leads to a significant reduction of that surface area due to a partial collapse of their dendritic and porous morphology. Interestingly, the extrapolation of the microscopic tomography results in macroscopic electrochemical parameters indicates that the surface properties measured by H UPD are comparable to the values measured on individual NPs by electron tomography after the degradation caused by the H UPD measurement. These results highlight that the combination of electrochemical and quantitative 3D surface analysis techniques is essential to provide insights into the surface properties, the electrochemical stability, and, hence, the applicability of these materials. Moreover, it indicates that care must be taken with widely used electrochemical methods of surface area determination, especially in the case of large surface area and possibly unstable nanostructures, since the measured surface can be strongly affected by the measurement itself.
Del Río, Jonathan Sabaté; Svobodova, Marketa; Bustos, Paulina; Conejeros, Pablo; O'Sullivan, Ciara K
2016-12-01
Electrochemical detection of solid-phase isothermal recombinase polymerase amplification (RPA) of Piscirickettsia salmonis in salmon genomic DNA is reported. The electrochemical biosensor was constructed by surface functionalization of gold electrodes with a thiolated forward primer specific to the genomic region of interest. Solid-phase RPA and primer elongation were achieved in the presence of the specific target sequence and biotinylated reverse primers. The formation of the subsequent surface-tethered duplex amplicons was electrochemically monitored via addition of streptavidin-linked HRP upon completion of solid-phase RPA. Successful quantitative amplification and detection were achieved in less than 1 h at 37 °C, calibrating with PCR-amplified genomic DNA standards and achieving a limit of detection of 5 · 10 -8 μg ml -1 (3 · 10 3 copies in 10 μl). The presented system was applied to the analysis of eight real salmon samples, and the method was also compared to qPCR analysis, observing an excellent degree of correlation. Graphical abstract Schematic of use of electrochemical RPA for detection of Psiricketessia salmonis in salmon liver.
Körbahti, Bahadır K; Taşyürek, Selin
2015-03-01
Electrochemical oxidation and process optimization of ampicillin antibiotic at boron-doped diamond electrodes (BDD) were investigated in a batch electrochemical reactor. The influence of operating parameters, such as ampicillin concentration, electrolyte concentration, current density, and reaction temperature, on ampicillin removal, COD removal, and energy consumption was analyzed in order to optimize the electrochemical oxidation process under specified cost-driven constraints using response surface methodology. Quadratic models for the responses satisfied the assumptions of the analysis of variance well according to normal probability, studentized residuals, and outlier t residual plots. Residual plots followed a normal distribution, and outlier t values indicated that the approximations of the fitted models to the quadratic response surfaces were very good. Optimum operating conditions were determined at 618 mg/L ampicillin concentration, 3.6 g/L electrolyte concentration, 13.4 mA/cm(2) current density, and 36 °C reaction temperature. Under response surface optimized conditions, ampicillin removal, COD removal, and energy consumption were obtained as 97.1 %, 92.5 %, and 71.7 kWh/kg CODr, respectively.
Nawaz, Muhammad Azhar Hayat; Rauf, Sajid; Catanante, Gaelle; Nawaz, Mian Hasnain; Nunes, Gilvanda; Marty, Jean Louis; Hayat, Akhtar
2016-10-06
Thin films of organic moiety functionalized carbon nanotubes (CNTs) from a very well-dispersed aqueous solution were designed on a screen printed transducer surface through a single step directed assembly methodology. Very high density of CNTs was obtained on the screen printed electrode surface, with the formation of a thin and uniform layer on transducer substrate. Functionalized CNTs were characterized by X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and Brunauer-Emmett- Teller (BET) surface area analyzer methodologies, while CNT coated screen printed transducer platform was analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The proposed methodology makes use of a minimum amount of CNTs and toxic solvents, and is successfully demonstrated to form thin films over macroscopic areas of screen printed carbon transducer surface. The CNT coated screen printed transducer surface was integrated in the fabrication of electrochemical aptasensors for breast cancer biomarker analysis. This CNT coated platform can be applied to immobilize enzymes, antibodies and DNA in the construction of biosensor for a broad spectrum of applications.
Nawaz, Muhammad Azhar Hayat; Rauf, Sajid; Catanante, Gaelle; Nawaz, Mian Hasnain; Nunes, Gilvanda; Louis Marty, Jean; Hayat, Akhtar
2016-01-01
Thin films of organic moiety functionalized carbon nanotubes (CNTs) from a very well-dispersed aqueous solution were designed on a screen printed transducer surface through a single step directed assembly methodology. Very high density of CNTs was obtained on the screen printed electrode surface, with the formation of a thin and uniform layer on transducer substrate. Functionalized CNTs were characterized by X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and Brunauer–Emmett–Teller (BET) surface area analyzer methodologies, while CNT coated screen printed transducer platform was analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The proposed methodology makes use of a minimum amount of CNTs and toxic solvents, and is successfully demonstrated to form thin films over macroscopic areas of screen printed carbon transducer surface. The CNT coated screen printed transducer surface was integrated in the fabrication of electrochemical aptasensors for breast cancer biomarker analysis. This CNT coated platform can be applied to immobilize enzymes, antibodies and DNA in the construction of biosensor for a broad spectrum of applications. PMID:27782067
The Sulphur Poisoning Behaviour of Gadolinia Doped Ceria Model Systems in Reducing Atmospheres
Gerstl, Matthias; Nenning, Andreas; Iskandar, Riza; Rojek-Wöckner, Veronika; Bram, Martin; Hutter, Herbert; Opitz, Alexander Karl
2016-01-01
An array of analytical methods including surface area determination by gas adsorption using the Brunauer, Emmett, Teller (BET) method, combustion analysis, XRD, ToF-SIMS, TEM and impedance spectroscopy has been used to investigate the interaction of gadolinia doped ceria (GDC) with hydrogen sulphide containing reducing atmospheres. It is shown that sulphur is incorporated into the GDC bulk and might lead to phase changes. Additionally, high concentrations of silicon are found on the surface of model composite microelectrodes. Based on these data, a model is proposed to explain the multi-facetted electrochemical degradation behaviour encountered during long term electrochemical measurements. While electrochemical bulk properties of GDC stay largely unaffected, the surface polarisation resistance is dramatically changed, due to silicon segregation and reaction with adsorbed sulphur. PMID:28773771
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jun; Liu, Guodong; Wu, Hong
2008-01-01
In this paper, we demonstrate an electrochemical high-throughput sensing platform for simple, sensitive detection of PSA based on QD labels. This sensing platform uses a microplate for immunoreactions and disposable screen-printed electrodes (SPE) for electrochemical stripping analysis of metal ions released from QD labels. With the 96-well microplate, capturing antibodies are conveniently immobilized to the well surface, and the process of immunoreaction is easily controlled. The formed sandwich complexes on the well surface are also easily isolated from reaction solutions. In particular, a microplate-based electrochemical assay can make it feasible to conduct a parallel analysis of several samples or multiplemore » protein markers. This assay offers a number of advantages including (1) simplicity, cost-effectiveness, (2) high sensitivity, (3) capability to sense multiple samples or targets in parallel, and (4) a potentially portable device with an SPE array implanted in the microplate. This PSA assay is sensitive because it uses two amplification processes: (1) QDs as a label for enhancing electrical signal since secondary antibodies are linked to QDs that contain a large number of metal atoms and (2) there is inherent signal amplification for electrochemical stripping analysis—preconcentration of metal ion onto the electrode surface for amplifying electrical signals. Therefore, the high sensitivity of this method, stemming from dual signal amplification via QD labels and pre-concentration, allows low concentration levels to be detected while using small sample volumes. Thus, this QD-based electrochemical detection approach offers a simple, rapid, cost-effective, and high throughput assay of PSA.« less
Local Fine Structural Insight into Mechanism of Electrochemical Passivation of Titanium.
Wang, Lu; Yu, Hongying; Wang, Ke; Xu, Haisong; Wang, Shaoyang; Sun, Dongbai
2016-07-20
Electrochemically formed passive film on titanium in 1.0 M H2SO4 solution and its thickness, composition, chemical state, and local fine structure are examined by Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and X-ray absorption fine structure. AES analysis reveals that the thickness and composition of oxide film are proportional to the reciprocal of current density in potentiodynamic polarization. XPS depth profiles of the chemical states of titanium exhibit the coexistence of various valences cations in the surface. Quantitative X-ray absorption near edge structure analysis of the local electronic structure of the topmost surface (∼5.0 nm) shows that the ratio of [TiO2]/[Ti2O3] is consistent with that of passivation/dissolution of electrochemical activity. Theoretical calculation and analysis of extended X-ray absorption fine structure spectra at Ti K-edge indicate that both the structures of passivation and dissolution are distorted caused by the appearance of two different sites of Ti-O and Ti-Ti. And the bound water in the topmost surface plays a vital role in structural disorder confirmed by XPS. Overall, the increase of average Ti-O coordination causes the electrochemical passivation, and the dissolution is due to the decrease of average Ti-Ti coordination. The structural variations of passivation in coordination number and interatomic distance are in good agreement with the prediction of point defect model.
Adsorption of cadmium by activated carbon cloth: influence of surface oxidation and solution pH.
Rangel-Mendez, J R; Streat, M
2002-03-01
The surface of activated carbon cloth (ACC), based on polyacrylonitrile fibre as a precursor, was oxidised using nitric acid, ozone and electrochemical oxidation to enhance cadmium ion exchange capacity. Modified adsorbents were physically and chemically characterised by pH titration, direct titration, X-ray photoelectron spectroscopy, elemental analysis, surface area and porosimetry, and scanning electron microscopy. BET surface area decreased after oxidation, however, the total ion exchange capacity increased by a factor of approximately 3.5 compared to the commercial as-received ACC. A very significant increase in cadmium uptake, by a factor of 13, was observed for the electrochemically oxidised ACC. Equilibrium sorption isotherms were determined at pH 4, 5 and 6 and these showed that cadmium uptake increased with increasing pH. There was clear evidence of physical damage to ozone-oxidised fibre, however, acid and electrochemically oxidised samples were completely stable.
Surface Modification of the LiFePO4 Cathode for the Aqueous Rechargeable Lithium Ion Battery.
Tron, Artur; Jo, Yong Nam; Oh, Si Hyoung; Park, Yeong Don; Mun, Junyoung
2017-04-12
The LiFePO 4 surface is coated with AlF 3 via a simple chemical precipitation for aqueous rechargeable lithium ion batteries (ARLBs). During electrochemical cycling, the unfavorable side reactions between LiFePO 4 and the aqueous electrolyte (1 M Li 2 SO 4 in water) leave a highly resistant passivation film, which causes a deterioration in the electrochemical performance. The coated LiFePO 4 by 1 wt % AlF 3 has a high discharge capacity of 132 mAh g -1 and a highly improved cycle life, which shows 93% capacity retention even after 100 cycles, whereas the pristine LiFePO 4 has a specific capacity of 123 mAh g -1 and a poor capacity retention of 82%. The surface analysis results, which include X-ray photoelectron spectroscopy and transmission electron microscopy results, show that the AlF 3 coating material is highly effective for reducing the detrimental surface passivation by relieving the electrochemical side reactions of the fragile aqueous electrolyte. The AlF 3 coating material has good compatibility with the LiFePO 4 cathode material, which mitigates the surface diffusion obstacles, reduces the charge-transfer resistances and improves the electrochemical performance and surface stability of the LiFePO 4 material in aqueous electrolyte solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuo, Zengqing; Olalde-Velasco, Paul.; Chin, Timothy
We performed a comparative study of the soft x-ray absorption spectroscopy of the LiMn2O4 and Li1.15Mn1.85O4 electrode materials with a quantitative analysis of the Mn oxidation states. The revealed redox evolution of Mn upon the electrochemical cycling clarifies the effect of the excess Li in the materials, which naturally explains the different electrochemical performance. The spectral analysis perfectly agrees with the different initial cycling capacities of the two materials. The results show unambiguously that Mn3+ starts to dominate the electrode surface after only one cycle. More importantly, the data show that, while LiMn2O4 electrodes follow the nominal Mn redox evolution,more » the formation of Mn3+ on the electrode surface is largely retarded for the Li1.15Mn1.85O4 during most of the electrochemical process. Such a different surface Mn redox behavior leads to differences in the detrimental effects of Mn2+ formation on the surface, which is observed directly after only two cycles. Our results provide strong evidence that a key effect of the (bulk) excess Li doping is actually due to processes on the electrode surfaces.« less
Zhuo, Zengqing; Olalde-Velasco, Paul.; Chin, Timothy; ...
2017-02-27
We performed a comparative study of the soft x-ray absorption spectroscopy of the LiMn2O4 and Li1.15Mn1.85O4 electrode materials with a quantitative analysis of the Mn oxidation states. The revealed redox evolution of Mn upon the electrochemical cycling clarifies the effect of the excess Li in the materials, which naturally explains the different electrochemical performance. The spectral analysis perfectly agrees with the different initial cycling capacities of the two materials. The results show unambiguously that Mn3+ starts to dominate the electrode surface after only one cycle. More importantly, the data show that, while LiMn2O4 electrodes follow the nominal Mn redox evolution,more » the formation of Mn3+ on the electrode surface is largely retarded for the Li1.15Mn1.85O4 during most of the electrochemical process. Such a different surface Mn redox behavior leads to differences in the detrimental effects of Mn2+ formation on the surface, which is observed directly after only two cycles. Our results provide strong evidence that a key effect of the (bulk) excess Li doping is actually due to processes on the electrode surfaces.« less
Sun, Kai; Chang, Yong; Zhou, Binbin; Wang, Xiaojin; Liu, Lin
2017-01-01
This article presents a general method for the detection of protein kinase with a peptide-like kinase inhibitor as the bioreceptor, and it was done by converting gold nanoparticles (AuNPs)-based colorimetric assay into sensitive electrochemical analysis. In the colorimetric assay, the kinase-specific aptameric peptide triggered the aggregation of AuNPs in solution. However, the specific binding of peptide to the target protein (kinase) inhibited its ability to trigger the assembly of AuNPs. In the electrochemical analysis, peptides immobilized on a gold electrode and presented as solution triggered together the in situ formation of AuNPs-based network architecture on the electrode surface. Nevertheless, the formation of peptide–kinase complex on the electrode surface made the peptide-triggered AuNPs assembly difficult. Electrochemical impedance spectroscopy was used to measure the change in surface property in the binding events. When a ferrocene-labeled peptide (Fc-peptide) was used in this design, the network of AuNPs/Fc-peptide produced a good voltammetric signal. The competitive assay allowed for the detection of protein kinase A with a detection limit of 20 mU/mL. This work should be valuable for designing novel optical or electronic biosensors and likely lead to many detection applications. PMID:28331314
NASA Astrophysics Data System (ADS)
Meng, Long; Guo, Zhan-cheng; Qu, Jing-kui; Qi, Tao; Guo, Qiang; Hou, Gui-hua; Dong, Peng-yu; Xi, Xin-guo
2018-01-01
A chemical precipitation-thermal decomposition method was developed to synthesize Co3O4 nanoparticles using cobalt liquor obtained from the atmospheric pressure acid leaching process of nickel laterite ores. The effects of the precursor reaction temperature, the concentration of Co2+, and the calcination temperature on the specific surface area, morphology, and the electrochemical behavior of the obtained Co3O4 particles were investigated. The precursor basic cobaltous carbonate and cobaltosic oxide products were characterized and analyzed by Fourier transform infrared spectroscopy, thermogravimetric differential thermal analysis, X-ray diffraction, field-emission scanning electron microscopy, specific surface area analysis, and electrochemical analysis. The results indicate that the specific surface area of the Co3O4 particles with a diameter of 30 nm, which were obtained under the optimum conditions of a precursor reaction temperature of 30°C, 0.25 mol/L Co2+, and a calcination temperature of 350°C, was 48.89 m2/g. Electrodes fabricated using Co3O4 nanoparticles exhibited good electrochemical properties, with a specific capacitance of 216.3 F/g at a scan rate of 100 mV/s.
NASA Astrophysics Data System (ADS)
Yivlialin, Rossella; Penconi, Marta; Bussetti, Gianlorenzo; Biroli, Alessio Orbelli; Finazzi, Marco; Duò, Lamberto; Bossi, Alberto
2018-06-01
Organic molecules have been proposed as promising candidates for electrode protection in acidic electrolytes. The use of tetraphenyl-porphines (H2TPP) as graphite surface-protecting agents in sulphuric acid (H2SO4) is one of the newest. With the aim of unveiling the mechanism of such a protective effect, in this paper we test the stability of a H2TPP thin film immersed in perchloric and phosphoric acid solutions that differently interact with porphyrins. The protective role of H2TPP is tested in the electrochemical potential range where the pristine graphite undergoes an oxidation process that erodes the surface and eventually exfoliate the stratified crystal. The electrochemical analysis is performed in a three-electrode cell, while the surface morphology is monitored ex-situ and in-situ by atomic force microscopy. Electrospray mass analysis is also employed to investigate the presence of H2TPP fragments in the solution. We find that the organic film is not stable in perchloric solution, while it is stable and avoids graphite surface corrosion in phosphoric acid solution. These results provide a rationale for the role played by free-base porphines in graphite protection.
Paloukis, Fotios; Papazisi, Kalliopi M; Dintzer, Thierry; Papaefthimiou, Vasiliki; Saveleva, Viktoriia A; Balomenou, Stella P; Tsiplakides, Dimitrios; Bournel, Fabrice; Gallet, Jean-Jacques; Zafeiratos, Spyridon
2017-08-02
Understanding the surface chemistry of electrode materials under gas environments is important in order to control their performance during electrochemical and catalytic applications. This work compares the surface reactivity of Ni/YSZ and La 0.75 Sr 0.25 Cr 0.9 Fe 0.1 O 3 , which are commonly used types of electrodes in solid oxide electrochemical devices. In situ synchrotron-based near-ambient pressure photoemission and absorption spectroscopy experiments, assisted by theoretical spectral simulations and combined with microscopy and electrochemical measurements, are used to monitor the effect of the gas atmosphere on the chemical state, the morphology, and the electrical conductivity of the electrodes. It is shown that the surface of both electrode types readjusts fast to the reactive gas atmosphere and their surface composition is notably modified. In the case of Ni/YSZ, this is followed by evident changes in the oxidation state of nickel, while for La 0.75 Sr 0.25 Cr 0.9 Fe 0.1 O 3 , a fine adjustment of the Cr valence and strong Sr segregation is observed. An important difference between the two electrodes is their capacity to maintain adsorbed hydroxyl groups on their surface, which is expected to be critical for the electrocatalytic properties of the materials. The insight gained from the surface analysis may serve as a paradigm for understanding the effect of the gas environment on the electrochemical performance and the electrical conductivity of the electrodes.
Heterogeneous Electrochemical Immunoassay of Hippuric Acid on the Electrodeposited Organic Films
Choi, Young-Bong; Kim, Nam-Hyuk; Kim, Seung-Hoi; Tae, Gun-Sik; Kim, Hyug-Han
2014-01-01
By directly coordinating hippuric acid (HA) to the ferrate (Fe) as an electron transfer mediator, we synthesized a Fe-HA complex, which shows a good electrochemical signal and thus enables the electrochemical immunoanalysis for HA. We electrodeposited organic films containing imidazole groups on the electrode surface and then bonded Ni ion (positive charge) to induce immobilization of Fe-HA (negative charge) through the electrostatic interaction. The heterogeneous competitive immunoassay system relies on the interaction between immobilized Fe-HA antigen conjugate and free HA antigen to its antibody (anti-HA). The electric signal becomes weaker due to the hindered electron transfer reaction when a large-sized HA antibody is bound onto the Fe-HA. However, in the presence of HA, the electric signal increases because free HA competitively reacts with the HA antibody prior to actual reaction and thus prevents the HA antibody from interacting with Fe-HA at the electrode surface. This competition reaction enabled an electrochemical quantitative analysis of HA concentration with a detection limit of 0.5 μg mL−1, and thus allowed us to develop a simple and rapid electrochemical immunosensor. PMID:25313491
Solvothermal and electrochemical synthetic method of HKUST-1 and its methane storage capacity
NASA Astrophysics Data System (ADS)
Wahyu Lestari, Witri; Adreane, Marisa; Purnawan, Candra; Fansuri, Hamzah; Widiastuti, Nurul; Budi Rahardjo, Sentot
2016-02-01
A comparison synthetic strategy of Metal-Organic Frameworks, namely, Hongkong University of Techhnology-1 {HKUST-1[Cu3(BTC)]2} (BTC = 1,3,5-benzene-tri-carboxylate) through solvothermal and electrochemical method in ethanol:water (1:1) has been conducted. The obtained material was analyzed using powder X-ray diffraction, Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Thermo-Gravimetric Analysis (TGA) and Surface Area Analysis (SAA). While the voltage in the electrochemical method are varied, ranging from 12 to 15 Volt. The results show that at 15 V the texture of the material has the best degree of crystallinity and comparable with solvothermal product. This indicated from XRD data and supported by the SEM image to view the morphology. The thermal stability of the synthesized compounds is up to 320 °C. The shape of the nitrogen sorption isotherm of the compound corresponds to type I of the IUPAC adsorption isotherm classification for microporous materials with BET surface area of 629.2 and 324.3 m2/g (for solvothermal and electrochemical product respectively) and promising for gas storage application. Herein, the methane storage capacities of these compounds are also tested.
NASA Astrophysics Data System (ADS)
Ramezanzadeh, B.; Arman, S. Y.; Mehdipour, M.; Markhali, B. P.
2014-01-01
In this study, the corrosion inhibition properties of two similar heterocyclic compounds namely benzotriazole (BTA) and benzothiazole (BNS) inhibitors on copper in 1.0 M H2SO4 solution were studied by electrochemical techniques as well as surface analysis. The results showed that corrosion inhibition of copper largely depends on the molecular structure and concentration of the inhibitors. The effect of DC trend on the interpretation of electrochemical noise (ECN) results in time domain was evaluated by moving average removal (MAR) method. Accordingly, the impact of square and Hanning window functions as drift removal methods in frequency domain was studied. After DC trend removal, a good trend was observed between electrochemical noise (ECN) data and the results obtained from EIS and potentiodynamic polarization. Furthermore, the shot noise theory in frequency domain was applied to approach the charge of each electrochemical event (q) from the potential and current noise signals.
Stress corrosion cracking of titanium alloys
NASA Technical Reports Server (NTRS)
May, R. C.; Beck, F. H.; Fontana, M. G.
1971-01-01
Experiments were conducted to study (1) the basic electrochemical behavior of titanium in acid chloride solutions and (2) the response of the metal to dynamic straining in the same evironment. The aim of this group of experiments was to simulate, as nearly as possible, the actual conditions which exist at the tip of a crack. One of the foremost theories proposed to explain the propagation of stress corrosion cracks is a hydrogen embrittlement theory involving the precipitation of embrittling titanium hydrides inside the metal near the crack tip. An initial survey of the basic electrochemical literature indicated that surface hydrides play a critical role in the electrochemistry of titanium in acid solutions. A comprehensive analysis of the effect of surface films, particularly hydrides, on the electrochemical behavior of titanium in these solution is presented.
Pulse electrochemical meso/micro/nano ultraprecision machining technology.
Lee, Jeong Min; Kim, Young Bin; Park, Jeong Woo
2013-11-01
This study demonstrated meso/micro/nano-ultraprecision machining through electrochemical reactions using intermittent DC pulses. The experiment focused on two machining methods: (1) pulse electrochemical polishing (PECP) of stainless steel, and (2) pulse electrochemical nano-patterning (PECNP) on a silicon (Si) surface, using atomic force microscopy (AFM) for fabrication. The dissolution reaction at the stainless steel surface following PECP produced a very clean, smooth workpiece. The advantages of the PECP process included improvements in corrosion resistance, deburring of the sample surface, and removal of hydrogen from the stainless steel surface as verified by time-of-flight secondary-ion mass spectrometry (TOF-SIMS). In PECNP, the electrochemical reaction generated within water molecules produced nanoscale oxide textures on a Si surface. Scanning probe microscopy (SPM) was used to evaluate nanoscale-pattern processing on a Si wafer surface produced by AFM-PECNP For both processes using pulse electrochemical reactions, three-dimensional (3-D) measurements and AFM were used to investigate the changes on the machined surfaces. Preliminary results indicated the potential for advancing surface polishing techniques and localized micro/nano-texturing technology using PECP and PECNP processes.
NASA Astrophysics Data System (ADS)
Sulyma, Christopher Michael
This report will investigate fundamental properties of materials involved in integrated circuit (IC) manufacturing. Individual materials (one at a time) are studied in different electrochemical environmental solutions to better understand the kinetics associated with the polishing process. Each system tries to simulate a real CMP environment in order to compare our findings with what is currently used in industry. To accomplish this, a variety of techniques are used. The voltage pulse modulation technique is useful for electrochemical processing of metal and alloy surfaces by utilizing faradaic reactions like electrodeposition and electrodissolution. A theoretical framework is presented in chapter 4 to facilitate quantitative analysis of experimental data (current transients) obtained in this approach. A typical application of this analysis is demonstrated for an experimental system involving electrochemical removal of copper surface layers, a relatively new process for abrasive-free electrochemical mechanical planarization of copper lines used in the fabrication of integrated circuits. Voltage pulse modulated electrodissolution of Cu in the absence of mechanical polishing is activated in an acidic solution of oxalic acid and hydrogen peroxide. The current generated by each applied voltage step shows a sharp spike, followed by a double-exponential decay, and eventually attains the rectangular shape of the potential pulses. For the second system in chapter 5, open-circuit potential measurements, cyclic voltammetry and Fourier transform impedance spectroscopy have been used to study pH dependent surface reactions of Cu and Ta rotating disc electrodes (RDEs) in aqueous solutions of succinic acid (SA, a complexing agent), hydrogen peroxide (an oxidizer), and ammonium dodecyl sulfate (ADS, a corrosion inhibitor for Cu). The surface chemistries of these systems are relevant for the development of a single-slurry approach to chemical mechanical planarization (CMP) of Cu lines and Ta barriers in the fabrication of semiconductor devices. It is shown that in non-alkaline solutions of H2O2, the SA-promoted surface complexes of Cu and Ta can potentially support chemically enhanced material removal in low-pressure CMP of surface topographies overlying fragile low-k dielectrics. ADS can suppress Cu dissolution without significantly affecting the surface chemistry of Ta. Chapter 6 discusses anodic corrosion of Ta, which is examined as a possible route to voltage induced removal of Ta for potential applications in electrochemical mechanical planarization (ECMP) of diffusion barriers. This strategy involves electro-oxidation of Ta in the presence of NO3- anions to form mechanically weak surface oxide films, followed by removal of the oxide layers by moderate mechanical abrasion. This NO3 - system is compared with a reference solution of Br -. In both electrolytes, the voltammetric currents of anodic oxidation exhibit oscillatory behaviors in the initial cycles of slow (5 mV s-1) voltage scans. The frequencies of these current oscillations are show signature attributes of localized pitting or general surface corrosion caused by Br- or NO3 -, respectively. Scanning electron microscopy, cyclic voltammetry, polarization resistance measurements, and time resolved Fourier transform impedance spectroscopy provide additional details about these corrosion mechanism. Apart from their relevance in the context of ECMP, the results also address certain fundamental aspects of pitting and general corrosions. The general protocols necessary to combine and analyze the results of D.C. and A.C. electrochemical measurements involving such valve metal corrosion systems are discussed in detail. In chapter 7 potassium salts of certain oxyanions (nitrate, sulfate and phosphate in particular) are shown to serve as effective surface-modifying agents in chemically enhanced, low-pressure chemical mechanical planarization (CMP) of Ta and TaN barrier layers for interconnect structures. The surface reactions that form the basis of this CMP strategy are investigated here in detail using the electrochemical techniques of cyclic voltammetry, open circuit potential analysis, polarization resistance measurements, and Fourier transform impedance spectroscopy. The results suggest that forming structurally weak oxide layers on the CMP samples is a key to achieving the goal of chemically controlled CMP of Ta/TaN at low down-pressures. (Abstract shortened by UMI.)
Electrochemical behavior of Al in a non-aqueous alkyl carbonate solution containing LiBOB salt
NASA Astrophysics Data System (ADS)
Myung, Seung-Taek; Natsui, Hiroshi; Sun, Yang-Kook; Yashiro, Hitoshi
Aluminum was studied as a current collector for rechargeable lithium batteries to understand electrochemical and passivation behavior. Electrochemical polarization tests, in situ scratch polarization tests and time-of-flight secondary ion mass spectroscopy (ToF-SIMS) analysis in lithium bis-oxalato borate (LiBOB)-containing alkyl carbonate solution were conducted. The Al foil did not follow the alloy and de-alloy process with the LiBOB salt in electrolyte at 0 V vs. Li/Li + in the cathodic sweep. During the anodic scan to the noble direction, the absence of an oxidation peak up to 3 V vs. Li/Li + indicated that the air-formed oxide layer of Al was not reduced to metal. Oxide-free Al surfaces made by the in situ scratch test during the electrochemical polarization resulted in abrupt alloy formation with Li at 0 V vs. Li/Li +, but the newly formed surface formed passive films at higher potential with oxygen, namely, Al-O compound, as confirmed by ToF-SIMS.
Lee, Mi-Ri; Na, Seong-Hun; Park, Hwa-Sun; Suh, Su-Jeong
2014-12-01
The effect of thiourea on the electrochemical nucleation of tin on a copper substrate from a sulfate bath was studied using voltammetry, chronoamperometry, electrochemical impedance spectroscopy, and scanning electron microscopy. Without thiourea, electrodeposition of tin showed very poor surface coverage. However, re-nucleation and growth of tin occurred after the addition of thiourea. In particular, very rapid re-nucleation and growth behavior of tin were observed when up to 6 g/L of thiourea was added. Furthermore, impedance analysis allowed the estimation of the change in the growth behavior of tin when up to 6 g/L of thiourea was added.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latanision, R.M.
1990-12-01
Electrochemical corrosion is pervasive in virtually all engineering systems and in virtually all industrial circumstances. Although engineers now understand how to design systems to minimize corrosion in many instances, many fundamental questions remain poorly understood and, therefore, the development of corrosion control strategies is based more on empiricism than on a deep understanding of the processes by which metals corrode in electrolytes. Fluctuations in potential, or current, in electrochemical systems have been observed for many years. To date, all investigations of this phenomenon have utilized non-deterministic analyses. In this work it is proposed to study electrochemical noise from a deterministicmore » viewpoint by comparison of experimental parameters, such as first and second order moments (non-deterministic), with computer simulation of corrosion at metal surfaces. In this way it is proposed to analyze the origins of these fluctuations and to elucidate the relationship between these fluctuations and kinetic parameters associated with metal dissolution and cathodic reduction reactions. This research program addresses in essence two areas of interest: (a) computer modeling of corrosion processes in order to study the electrochemical processes on an atomistic scale, and (b) experimental investigations of fluctuations in electrochemical systems and correlation of experimental results with computer modeling. In effect, the noise generated by mathematical modeling will be analyzed and compared to experimental noise in electrochemical systems. 1 fig.« less
NASA Astrophysics Data System (ADS)
Izquierdo, Javier; Bolat, Georgiana; Cimpoesu, Nicanor; Trinca, Lucia Carmen; Mareci, Daniel; Souto, Ricardo Manuel
2016-11-01
A new titanium base Ti-21Nb-15Ta-6Zr alloy covered with hydroxyapatite-zirconia (HA-ZrO2) by pulsed laser deposition (PLD) technique was characterized regarding its corrosion resistance in simulated physiological Ringer's solution at 37 °C. For the sake of comparison, Ti-6Al-4V standard implant alloy, with and without hydroxyapatite-zirconia coating, was also characterized. Multiscale electrochemical analysis using both conventional averaging electrochemical techniques, namely electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization, and spatially-resolved microelectrochemical techniques (scanning electrochemical microscopy, SECM) were used to investigate the electrochemical behaviour of the materials. In addition, scanning electron microscopy evidenced that no relevant surface morphology changes occurred on the materials upon immersion in the simulated physiological solution, despite variations in their electrochemical behaviour. Although uncoated metals appear to show better performances during conventional corrosion tests, the response is still quite similar for the HA-ZrO2 coated materials while providing superior resistance towards electron transfer due to the formation of a more dense film on the surface, thus effectively behaving as a passive material. It is believed corrosion of the HA-ZrO2 coated Ti-21Nb-15Ta-6Zr alloy will have negligible effect upon biochemical and cellular events at the bone-implant interface and could facilitate osseointegration.
Xu, Kai-Xuan; Guo, Mei-Hong; Huang, Yu-Ping; Li, Xiao-Dong; Sun, Jian-Jun
2018-04-01
A highly sensitive and rapid method of in-situ surface-enhanced Raman spectroscopy (SERS) combining with electrochemical preconcentration (EP) in detecting malachite green (MG) in aquaculture water was established. Ag nanoparticles (AgNPs) were synthesized and spread onto the surface of gold electrodes after centrifuging to produce SERS-active substrates. After optimizing the pH values, preconcentration potentials and times, in-situ EP-SERS detection was carried out. A sensitive and rapid analysis of the low-concentration MG was accomplished within 200s and the limit of detection was 2.4 × 10 -16 M. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Uk Su; Morita, Noboru; Lee, Deug Woo; Jun, Martin; Park, Jeong Woo
2017-05-01
Pulse electrochemical nanopatterning, a non-contact scanning probe lithography process using ultrashort voltage pulses, is based primarily on an electrochemical machining process using localized electrochemical oxidation between a sharp tool tip and the sample surface. In this study, nanoscale oxide patterns were formed on silicon Si (100) wafer surfaces via electrochemical surface nanopatterning, by supplying external pulsed currents through non-contact atomic force microscopy. Nanoscale oxide width and height were controlled by modulating the applied pulse duration. Additionally, protruding nanoscale oxides were removed completely by simple chemical etching, showing a depressed pattern on the sample substrate surface. Nanoscale two-dimensional oxides, prepared by a localized electrochemical reaction, can be defined easily by controlling physical and electrical variables, before proceeding further to a layer-by-layer nanofabrication process.
NASA Astrophysics Data System (ADS)
Gómez, José J. Arroyo; Zubieta, Carolina; Ferullo, Ricardo M.; García, Silvana G.
2016-02-01
The electrochemical formation of Au nanoparticles on a highly ordered pyrolytic graphite (HOPG) substrate using conventional electrochemical techniques and ex-situ AFM is reported. From the potentiostatic current transients studies, the Au electrodeposition process on HOPG surfaces was described, within the potential range considered, by a model involving instantaneous nucleation and diffusion controlled 3D growth, which was corroborated by the microscopic analysis. Initially, three-dimensional (3D) hemispherical nanoparticles distributed on surface defects (step edges) of the substrate were observed, with increasing particle size at more negative potentials. The double potential pulse technique allowed the formation of rounded deposits at low deposition potentials, which tend to form lines of nuclei aligned in defined directions leading to 3D ordered structures. By choosing suitable nucleation and growth pulses, one-dimensional (1D) deposits were possible, preferentially located on step edges of the HOPG substrate. Quantum-mechanical calculations confirmed the tendency of Au atoms to join selectively on surface defects, such as the HOPG step edges, at the early stages of Au electrodeposition.
Properties of anodic oxides grown on a hafnium–tantalum–titanium thin film library
Mardare, Andrei Ionut; Ludwig, Alfred; Savan, Alan; Hassel, Achim Walter
2014-01-01
A ternary thin film combinatorial materials library of the valve metal system Hf–Ta–Ti obtained by co-sputtering was studied. The microstructural and crystallographic analysis of the obtained compositions revealed a crystalline and textured surface, with the exception of compositions with Ta concentration above 48 at.% which are amorphous and show a flat surface. Electrochemical anodization of the composition spread thin films was used for analysing the growth of the mixed surface oxides. Oxide formation factors, obtained from the potentiodynamic anodization curves, as well as the dielectric constants and electrical resistances, obtained from electrochemical impedance spectroscopy, were mapped along two dimensions of the library using a scanning droplet cell microscope. The semiconducting properties of the anodic oxides were mapped using Mott–Schottky analysis. The degree of oxide mixing was analysed qualitatively using x-ray photoelectron spectroscopy depth profiling. A quantitative analysis of the surface oxides was performed and correlated to the as-deposited metal thin film compositions. In the concurrent transport of the three metal cations during oxide growth a clear speed order of Ti > Hf > Ta was proven. PMID:27877648
NASA Astrophysics Data System (ADS)
Attarzadeh, Farid Reza; Elmkhah, Hassan; Fattah-Alhosseini, Arash
2017-02-01
In this study, the electrochemical behaviors of pure titanium (Ti) and nanostructured (NS) Ti-coated AISI 304 stainless steel (SS) in strongly acidic solutions of H2SO4 were investigated and compared. A type of physical vapor deposition method, cathodic arc evaporation, was applied to deposit NS Ti on 304 SS. Scanning electron microscope and X-ray diffraction were used to characterize surface coating morphology. Potentiodynamic polarization, electrochemical impedance spectroscopy, and Mott-Schottky (M-S) analysis were used to evaluate the passive behavior of the samples. Electrochemical measurements revealed that the passive behavior of NS Ti coating was better than that of pure Ti in 0.1 and 0.01 M H2SO4 solutions. M-S analysis indicated that the passive films behaved as n-type semiconductors in H2SO4 solutions and the deposition method did not affect the semiconducting type of passive films formed on the coated samples. In addition, this analysis showed that the NS Ti coating had lower donor densities. Finally, all electrochemical tests showed that the passive behavior of the Ti-coated samples was superior, mainly due to the formation of thicker, yet less defective passive films.
NASA Astrophysics Data System (ADS)
Yang, Dan; Qiu, Wenmei; Xu, Jingcai; Han, Yanbing; Jin, Hongxiao; Jin, Dingfeng; Peng, Xiaoling; Hong, Bo; Li, Ji; Ge, Hongliang; Wang, Xinqing
2015-12-01
Modifications with different acids (HNO3, H2SO4, HCl and HF, respectively) were introduced to treat the activated carbons (ACs) surface. The microstructures and surface chemical properties were discussed by X-ray diffraction (XRD), thermogravimetric analysis (TGA), ASAP, Raman spectra and Fourier transform infrared (FTIR) spectra. The ACs electrode-based supercapacitors were assembled with 6 mol ṡ L-1 KOH electrolyte. The electrochemical properties were studied by galvanostatic charge-discharge and cyclic voltammetry. The results indicated that although the BET surface area of modified ACs decreased, the functional groups were introduced and the ash contents were reduced on the surface of ACs, receiving larger specific capacitance to initial AC. The specific capacitance of ACs modified with HCl, H2SO4, HF and HNO3 increased by 31.4%, 23%, 21% and 11.6%, respectively.
Kinetic mechanism for modeling of electrochemical reactions.
Cervenka, Petr; Hrdlička, Jiří; Přibyl, Michal; Snita, Dalimil
2012-04-01
We propose a kinetic mechanism of electrochemical interactions. We assume fast formation and recombination of electron donors D- and acceptors A+ on electrode surfaces. These mediators are continuously formed in the electrode matter by thermal fluctuations. The mediators D- and A+, chemically equivalent to the electrode metal, enter electrochemical interactions on the electrode surfaces. Electrochemical dynamics and current-voltage characteristics of a selected electrochemical system are studied. Our results are in good qualitative agreement with those given by the classical Butler-Volmer kinetics. The proposed model can be used to study fast electrochemical processes in microsystems and nanosystems that are often out of the thermal equilibrium. Moreover, the kinetic mechanism operates only with the surface concentrations of chemical reactants and local electric potentials, which facilitates the study of electrochemical systems with indefinable bulk.
ELLIPSOMETRY OF ELECTROCHEMICAL SURFACE LAYERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muller, R.H.
1977-06-01
Ellipsometry is concerned with the analysis and interpretation of changes in the state of polarization caused by reflection. The technique has found increasing interest in recent years for the measurement of thin films because it is unusually sensitive, disturbs the object minimally and can be applied to surfaces contained in any optically transparent medium. Film thicknesses amenable to measurement range from fractional monoatomic coverage to microscopic thicknesses. The measurement of changes in the state of polarization of light due to reflection provides an unusually sensitive tool for observing surface layers in any optically transparent environment. A fast, self-compensating ellipsometer hasmore » been used to observe the electrochemical formation of reacted surface layers. The optical effect of mass-transport boundary layers and component imperfections have been taken into account in the interpretation of results.« less
Mechanistic Analysis of Mechano-Electrochemical Interaction in Silicon Electrodes with Surface Film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, Ankit; Mukherjee, Partha P.
2017-11-17
High-capacity anode materials for lithium-ion batteries, such as silicon, are prone to large volume change during lithiation/delithiation which may cause particle cracking and disintegration, thereby resulting in severe capacity fade and reduction in cycle life. In this work, a stochastic analysis is presented in order to understand the mechano-electrochemical interaction in silicon active particles along with a surface film during cycling. Amorphous silicon particles exhibiting single-phase lithiation incur lower amount of cracking as compared to crystalline silicon particles exhibiting two-phase lithiation for the same degree of volumetric expansion. Rupture of the brittle surface film is observed for both amorphous andmore » crystalline silicon particles and is attributed to the large volumetric expansion of the silicon active particle with lithiation. The mechanical property of the surface film plays an important role in determining the amount of degradation in the particle/film assembly. A strategy to ameliorate particle cracking in silicon active particles is proposed.« less
Ehrensberger, Mark T; Sivan, Shiril; Gilbert, Jeremy L
2010-06-15
An electrochemically controlled system has been developed which allows for cell culture directly on electrically polarized metal surfaces with simultaneous control and assessment of the electrochemical current, potential, and impedance of the interface. This system was utilized in this study to assess the interactions between electrochemically polarized commercially pure titanium (cpTi) and MC3T3 preosteoblast cells. Cells were cultured on CpTi for 24 h at static potentials between -1000 mV and +1000 mV vs. Ag/AgCl and cell morphology (SEM and cell area) and viability (MTT and Live-Dead assay) were assessed along with the electrochemical current densities and surface oxide impedance properties. The results indicate that cathodic polarization in the range of -600 mV to -1000 mV markedly reduces the spreading and viability of cells cultured directly on cpTi within 24 h, while anodic polarization (-300 mV to +1000 mV) out to 72 h shows no difference in cell behavior as compared to the OCP condition. Analysis of the relationship between the cell outcomes and the electrochemical current densities and impedance indicated the presence of voltage-dependent electrochemical thresholds (cathodic current density, i(c) > 1.0 microA/cm(2), R(p) < 10(5) Omega cm(2)) which may control the biocompatibility of cpTi. In addition, these outcomes have direct clinical significance for modular orthopedic implants whose potential can shift, via fretting corrosion, down into the range of potentials exhibiting poor cell behavior. (c) 2009 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Madhan Kumar, A.; Fida Hassan, S.; Sorour, Ahmad A.; Paramsothy, M.; Gupta, M.
2018-06-01
In this present investigation, AZ31 alloy nanocomposite was prepared with the inclusion of Al2O3 nanoparticles using innovative disintegrated melt deposition (DMD) process followed by hot extrusion to improve the corrosion resistance and in vitro biocompatibility in simulated body fluid (SBF). This investigation systematically inspected the degradation performances of AZ31 alloy with Al2O3 nanoparticles through hydrogen evolution, weight loss and electrochemical methods in SBF. Further, the surface microstructure with the in vitro mineralization of the alloys in SBF was characterized by XRD, XPS, and SEM/EDS analysis. It was seen that the addition of Al2O3 nanoparticles significantly decreased the weight loss of AZ31 alloy substrates after 336 h of exposure in SBF. The corrosion resistance of the monolithic and nanocomposite samples was evaluated using potentiodynamic polarization tests, electrochemical impedance spectroscopy measurements in short- and long-term periods. Accordingly, the electrochemical analysis in SBF showed that the corrosion resistance performance of the AZ31 alloy enhanced considerably due to the incorporation of Al2O3 nanoparticles as reinforcement. Moreover, the rapid formation of bone-like apatite layer on the surface of the nanocomposite substrate demonstrated a good bioactivity of the nanocomposite samples in SBF.
Surface engineered porous silicon for stable, high performance electrochemical supercapacitors
Oakes, Landon; Westover, Andrew; Mares, Jeremy W.; Chatterjee, Shahana; Erwin, William R.; Bardhan, Rizia; Weiss, Sharon M.; Pint, Cary L.
2013-01-01
Silicon materials remain unused for supercapacitors due to extreme reactivity of silicon with electrolytes. However, doped silicon materials boast a low mass density, excellent conductivity, a controllably etched nanoporous structure, and combined earth abundance and technological presence appealing to diverse energy storage frameworks. Here, we demonstrate a universal route to transform porous silicon (P-Si) into stable electrodes for electrochemical devices through growth of an ultra-thin, conformal graphene coating on the P-Si surface. This graphene coating simultaneously passivates surface charge traps and provides an ideal electrode-electrolyte electrochemical interface. This leads to 10–40X improvement in energy density, and a 2X wider electrochemical window compared to identically-structured unpassivated P-Si. This work demonstrates a technique generalizable to mesoporous and nanoporous materials that decouples the engineering of electrode structure and electrochemical surface stability to engineer performance in electrochemical environments. Specifically, we demonstrate P-Si as a promising new platform for grid-scale and integrated electrochemical energy storage. PMID:24145684
Surface engineered porous silicon for stable, high performance electrochemical supercapacitors.
Oakes, Landon; Westover, Andrew; Mares, Jeremy W; Chatterjee, Shahana; Erwin, William R; Bardhan, Rizia; Weiss, Sharon M; Pint, Cary L
2013-10-22
Silicon materials remain unused for supercapacitors due to extreme reactivity of silicon with electrolytes. However, doped silicon materials boast a low mass density, excellent conductivity, a controllably etched nanoporous structure, and combined earth abundance and technological presence appealing to diverse energy storage frameworks. Here, we demonstrate a universal route to transform porous silicon (P-Si) into stable electrodes for electrochemical devices through growth of an ultra-thin, conformal graphene coating on the P-Si surface. This graphene coating simultaneously passivates surface charge traps and provides an ideal electrode-electrolyte electrochemical interface. This leads to 10-40X improvement in energy density, and a 2X wider electrochemical window compared to identically-structured unpassivated P-Si. This work demonstrates a technique generalizable to mesoporous and nanoporous materials that decouples the engineering of electrode structure and electrochemical surface stability to engineer performance in electrochemical environments. Specifically, we demonstrate P-Si as a promising new platform for grid-scale and integrated electrochemical energy storage.
Surface engineered porous silicon for stable, high performance electrochemical supercapacitors
NASA Astrophysics Data System (ADS)
Oakes, Landon; Westover, Andrew; Mares, Jeremy W.; Chatterjee, Shahana; Erwin, William R.; Bardhan, Rizia; Weiss, Sharon M.; Pint, Cary L.
2013-10-01
Silicon materials remain unused for supercapacitors due to extreme reactivity of silicon with electrolytes. However, doped silicon materials boast a low mass density, excellent conductivity, a controllably etched nanoporous structure, and combined earth abundance and technological presence appealing to diverse energy storage frameworks. Here, we demonstrate a universal route to transform porous silicon (P-Si) into stable electrodes for electrochemical devices through growth of an ultra-thin, conformal graphene coating on the P-Si surface. This graphene coating simultaneously passivates surface charge traps and provides an ideal electrode-electrolyte electrochemical interface. This leads to 10-40X improvement in energy density, and a 2X wider electrochemical window compared to identically-structured unpassivated P-Si. This work demonstrates a technique generalizable to mesoporous and nanoporous materials that decouples the engineering of electrode structure and electrochemical surface stability to engineer performance in electrochemical environments. Specifically, we demonstrate P-Si as a promising new platform for grid-scale and integrated electrochemical energy storage.
NASA Astrophysics Data System (ADS)
Shangguan, Enbo; Chang, Zhaorong; Tang, Hongwei; Yuan, Xiao-Zi; Wang, Haijiang
In this paper we compare the behavior of non-spherical and spherical β-Ni(OH) 2 as cathode materials for Ni-MH batteries in an attempt to explore the effect of microstructure and surface properties of β-Ni(OH) 2 on their electrochemical performances. Non-spherical β-Ni(OH) 2 powders with a high-density are synthesized using a simple polyacrylamide (PAM) assisted two-step drying method. X-ray diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM), thermogravimetric/differential thermal analysis (TG-DTA), Brunauer-Emmett-Teller (BET) testing, laser particle size analysis, and tap-density testing are used to characterize the physical properties of the synthesized products. Electrochemical characterization, including cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and a charge/discharge test, is also performed. The results show that the non-spherical β-Ni(OH) 2 materials exhibit an irregular tabular shape and a dense solid structure, which contains many overlapped sheet nano crystalline grains, and have a high density of structural disorder and a large specific surface area. Compared with the spherical β-Ni(OH) 2, the non-spherical β-Ni(OH) 2 materials have an enhanced discharge capacity, higher discharge potential plateau and superior cycle stability. This performance improvement can be attributable to a higher proton diffusion coefficient (4.26 × 10 -9 cm 2 s -1), better reaction reversibility, and lower electrochemical impedance of the synthesized material.
Low-dimensional carbon and MXene-based electrochemical capacitor electrodes.
Yoon, Yeoheung; Lee, Keunsik; Lee, Hyoyoung
2016-04-29
Due to their unique structure and outstanding intrinsic physical properties such as extraordinarily high electrical conductivity, large surface area, and various chemical functionalities, low-dimension-based materials exhibit great potential for application in electrochemical capacitors (ECs). The electrical properties of electrochemical capacitors are determined by the electrode materials. Because energy charge storage is a surface process, the surface properties of the electrode materials greatly influence the electrochemical performance of the cell. Recently, graphene, a single layer of sp(2)-bonded carbon atoms arrayed into two-dimensional carbon nanomaterial, has attracted wide interest as an electrode material for electrochemical capacitor applications due to its unique properties, including a high electrical conductivity and large surface area. Several low-dimensional materials with large surface areas and high conductivity such as onion-like carbons (OLCs), carbide-derived carbons (CDCs), carbon nanotubes (CNTs), graphene, metal hydroxide, transition metal dichalcogenides (TMDs), and most recently MXene, have been developed for electrochemical capacitors. Therefore, it is useful to understand the current issues of low-dimensional materials and their device applications.
Skopalová, Jana; Barták, Petr; Bednář, Petr; Tomková, Hana; Ingr, Tomáš; Lorencová, Iveta; Kučerová, Pavla; Papoušek, Roman; Borovcová, Lucie; Lemr, Karel
2018-01-25
A carbon fiber brush electrode (CFBE) was newly designed and used as a substrate for both controlled potential electrolysis and atmospheric solids analysis probe (ASAP) mass spectrometry. Electropolymerized and strongly adsorbed products of electrolysis were directly desorbed and ionized from the electrode surface. Electrochemical properties of the electrode investigated by cyclic voltammetry revealed large electroactive surface area (23 ± 3 cm 2 ) at 1.3 cm long array of carbon fibers with diameter 6-9 μm. Some products of electrochemical oxidation of pentabromophenol and 2,4,6-tribromophenol formed a compact layer on the carbon fibers and were analyzed using ASAP. Eleven new oligomeric products were identified including quinones and biphenoquinones. These compounds were not observed previously in electrolyzed solutions by liquid or gas chromatography/mass spectrometry. The thickness around 58 nm and 45 nm of the oxidation products layers deposited on carbon fibers during electrolysis of pentabromophenol and 2,4,6-tribromophenol, respectively, was estimated from atomic force microscopy analysis and confirmed by scanning electron microscopy with energy-dispersive X-ray spectroscopy measurements. Copyright © 2017 Elsevier B.V. All rights reserved.
Electrochemical modification of nickel surfaces for efficient glycerol electrooxidation
NASA Astrophysics Data System (ADS)
Houache, Mohamed S. E.; Cossar, Emily; Ntais, Spyridon; Baranova, Elena A.
2018-01-01
The Glycerol electrooxidation reaction (GEOR) was investigated on nickel electrode in alkaline media following a sinusoidal-wave treatment in a solution of 0.1 M Na2SO4 + 30 mM ascorbic acid. This treatment significantly increased the catalytic activity of Ni towards the GEOR. The electrochemical active surface area showed a six-fold increase, while the current density of glycerol oxidation was enhanced over nine times with a concurrent onset potential decrease by 45 mV. SEM analysis before and after the treatment revealed some morphology changes through the formation of additional grooves and pits on the Ni surface. XPS confirmed that before the treatment, the surface consists of Ni metal in addition to NiO, Ni(OH)2 and NiOOH, whereas after the treatment, 97% of the surface is Ni hydroxide composed of Ni2+ and Ni3+. Chronoamperommetry coupled with in-situ polarization modulation infrared-reflection absorption spectroscopy (PM-IRRAS) for simultaneous analysis of products on the Ni surface and in the bulk solution showed that the main reaction products on both untreated and treated Ni surfaces are glyceraldehyde, carbonyl, carboxylate ions and some carbon dioxide.
NASA Astrophysics Data System (ADS)
Zhao, Jinlong; Xu, Dake; Shahzad, M. Babar; Kang, Qiang; Sun, Ying; Sun, Ziqing; Zhang, Shuyuan; Ren, Ling; Yang, Chunguang; Yang, Ke
2016-11-01
The resistance for pitting corrosion, passive film stability and antibacterial performance of 316L-Cu SS passivated by nitric acid solution containing certain concentration of copper sulfate, were studied by electrochemical cyclic polarization, electrochemical impedance spectroscopy (EIS) and co-culture with bacteria. Inductively coupled plasma mass spectrometry (ICP-MS) was used to analyze the Cu2+ ions release from 316L-Cu SS surface. XPS analysis proved that the enrichment of CuO, Cr2O3 and Cr(OH)3 on the surface of specimen could simultaneously guarantee a better corrosion resistance and stable antibacterial properties. The biocompatibility evaluation determined by RTCA assay also indicated that the 316L-Cu SS after antibacterial passivation was completely biocompatible.
Spatial and temporal control of the diazonium modification of sp2 carbon surfaces.
Kirkman, Paul M; Güell, Aleix G; Cuharuc, Anatolii S; Unwin, Patrick R
2014-01-08
Interest in the controlled chemical functionalization of sp(2) carbon materials using diazonium compounds has been recently reignited, particularly as a means to generate a band gap in graphene. We demonstrate local diazonium modification of pristine sp(2) carbon surfaces, with high control, at the micrometer scale through the use of scanning electrochemical cell microscopy (SECCM). Electrochemically driven diazonium patterning is investigated at a range of driving forces, coupled with surface analysis using atomic force microscopy (AFM) and Raman spectroscopy. We highlight how the film density, level of sp(2)/sp(3) rehybridization and the extent of multilayer formation can be controlled, paving the way for the use of localized electrochemistry as a route to controlled diazonium modification.
Patel, Anisha N; McKelvey, Kim; Unwin, Patrick R
2012-12-19
Graphite-based electrodes (graphite, graphene, and nanotubes) are used widely in electrochemistry, and there is a long-standing view that graphite step edges are needed to catalyze many reactions, with the basal surface considered to be inert. In the present work, this model was tested directly for the first time using scanning electrochemical cell microscopy reactive patterning and shown to be incorrect. For the electro-oxidation of dopamine as a model process, the reaction rate was measured at high spatial resolution across a surface of highly oriented pyrolytic graphite. Oxidation products left behind in a pattern defined by the scanned electrochemical cell served as surface-site markers, allowing the electrochemical activity to be correlated directly with the graphite structure on the nanoscale. This process produced tens of thousands of electrochemical measurements at different locations across the basal surface, unambiguously revealing it to be highly electrochemically active, with step edges providing no enhanced activity. This new model of graphite electrodes has significant implications for the design of carbon-based biosensors, and the results are additionally important for understanding electrochemical processes on related sp(2)-hybridized materials such as pristine graphene and nanotubes.
Surface and Electrochemical Properties of Polymer Brush-Based Redox Poly(Ionic Liquid).
Bui-Thi-Tuyet, Van; Trippé-Allard, Gaëlle; Ghilane, Jalal; Randriamahazaka, Hyacinthe
2016-10-26
Redox-active poly(ionic liquid) poly(3-(2-methacryloyloxy ethyl)-1-(N-(ferrocenylmethyl) imidazolium bis(trifluoromethylsulfonyl)imide deposited onto electrode surfaces has been prepared using surface-initiated atom transfer radical polymerization SI-ATRP. The process starts by electrochemical immobilization of initiator layer, and then methacrylate monomer carrying ferrocene and imidazolium units is polymerized in ionic liquid media via SI-ATRP process. The surfaces analyses of the polymer exhibit a well-defined polymer brushlike structure and confirm the presence of ferrocene and ionic moieties within the film. Furthermore, the electrochemical investigations of poly(redox-active ionic liquid) in different media demonstrate that the electron transfer is not restricted by the rate of counterion migration into/out of the polymer. The attractive electrochemical performance of these materials is further demonstrated by performing electrochemical measurement, of poly(ferrocene ionic liquid), in solvent-free electrolyte. The facile synthesis of such highly ordered electroactive materials based ionic liquid could be useful for the fabrication of nanostructured electrode suitable for performing electrochemistry in solvent free electrolyte. We also demonstrate possible applications of the poly(FcIL) as electrochemically reversible surface wettability system and as electrochemical sensor for the catalytic activity toward the oxidation of tyrosine.
Studies of electrode structures and dynamics using coherent X-ray scattering and imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, H.; Liu, Y.; Ulvestad, A.
2017-08-01
Electrochemical systems studied in situ with advanced surface X-ray scattering techniques are reviewed. The electrochemical systems covered include interfaces of single-crystals and nanocrystals with respect to surface modification, aqueous dissolution, surface reconstruction, and electrochemical double layers. An emphasis will be given on recent results by coherent X-ray techniques such as X-ray photon correlation spectroscopy, Bragg coherent diffraction imaging, and surface ptychography.
Bogdanowicz, Robert; Niedziałkowski, Paweł; Sobaszek, Michał; Burnat, Dariusz; Białobrzeska, Wioleta; Cebula, Zofia; Sezemsky, Petr; Koba, Marcin; Stranak, Vitezslav; Ossowski, Tadeusz; Śmietana, Mateusz
2018-04-27
In this work an application of optical fiber sensors for real-time optical monitoring of electrochemical deposition of ketoprofen during its anodic oxidation is discussed. The sensors were fabricated by reactive magnetron sputtering of indium tin oxide (ITO) on a 2.5 cm-long core of polymer-clad silica fibers. ITO tuned in optical properties and thickness allows for achieving a lossy-mode resonance (LMR) phenomenon and it can be simultaneously applied as an electrode in an electrochemical setup. The ITO-LMR electrode allows for optical monitoring of changes occurring at the electrode during electrochemical processing. The studies have shown that the ITO-LMR sensor’s spectral response strongly depends on electrochemical modification of its surface by ketoprofen. The effect can be applied for real-time detection of ketoprofen. The obtained sensitivities reached over 1400 nm/M (nm·mg −1 ·L) and 16,400 a.u./M (a.u.·mg −1 ·L) for resonance wavelength and transmission shifts, respectively. The proposed method is a valuable alternative for the analysis of ketoprofen within the concentration range of 0.25⁻250 μg mL −1 , and allows for its determination at therapeutic and toxic levels. The proposed novel sensing approach provides a promising strategy for both optical and electrochemical detection of electrochemical modifications of ITO or its surface by various compounds.
Ekechukwu, Amy A.
1994-01-01
A dropping electrolyte electrode for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions.
NASA Astrophysics Data System (ADS)
Nam, N. D.; Bui, Q. V.; Nhan, H. T.; Phuong, D. V.; Bian, M. Z.
2014-09-01
The corrosion resistance of a multilayered (NiP-Pd-Au) coating with various thicknesses of palladium (Pd) interlayer deposited on copper by an electroless method was investigated using electrochemical techniques including potentiodynamic polarization and electrochemical impedance spectroscopy. In addition, the surface finish was examined by x-ray diffraction analysis and scanning electron microscopy, and the contact angle of the liquid-solid interface was recorded. The corrosion resistance of the copper substrate was considerably improved by Pd interlayer addition. Increase of the thickness of the Pd interlayer enhanced the performance of the Cu-NiP-Pd-Au coating due to low porosity, high protective efficiency, high charge-transfer resistance, and contact angle. These are attributed to the diffusion of layers in the Cu-NiP-Pd-Au coating acting as a physical barrier layer, leading to the protection provided by the coating.
Computational analysis of species transport and electrochemical characteristics of a MOLB-type SOFC
NASA Astrophysics Data System (ADS)
Hwang, J. J.; Chen, C. K.; Lai, D. Y.
A multi-physics model coupling electrochemical kinetics with fluid dynamics has been developed to simulate the transport phenomena in mono-block-layer built (MOLB) solid oxide fuel cells (SOFC). A typical MOLB module is composed of trapezoidal flow channels, corrugated positive electrode-electrolyte-negative electrode (PEN) plates, and planar inter-connecters. The control volume-based finite difference method is employed for calculation, which is based on the conservation of mass, momentum, energy, species, and electric charge. In the porous electrodes, the flow momentum is governed by a Darcy model with constant porosity and permeability. The diffusion of reactants follows the Bruggman model. The chemistry within the plates is described via surface reactions with a fixed surface-to-volume ratio, tortuosity and average pore size. Species transports as well as the local variations of electrochemical characteristics, such as overpotential and current density distributions in the electrodes of an MOLB SOFC, are discussed in detail.
Photocatalytically Renewable Micro-electrochemical Sensor for Real-Time Monitoring of Cells.
Xu, Jia-Quan; Liu, Yan-Ling; Wang, Qian; Duo, Huan-Huan; Zhang, Xin-Wei; Li, Yu-Tao; Huang, Wei-Hua
2015-11-23
Electrode fouling and passivation is a substantial and inevitable limitation in electrochemical biosensing, and it is a great challenge to efficiently remove the contaminant without changing the surface structure and electrochemical performance. Herein, we propose a versatile and efficient strategy based on photocatalytic cleaning to construct renewable electrochemical sensors for cell analysis. This kind of sensor was fabricated by controllable assembly of reduced graphene oxide (RGO) and TiO2 to form a sandwiching RGO@TiO2 structure, followed by deposition of Au nanoparticles (NPs) onto the RGO shell. The Au NPs-RGO composite shell provides high electrochemical performance. Meanwhile, the encapsulated TiO2 ensures an excellent photocatalytic cleaning property. Application of this renewable microsensor for detection of nitric oxide (NO) release from cells demonstrates the great potential of this strategy in electrode regeneration and biosensing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhu, Lingtao; Wang, Xiaodan; Han, Yunxiu; Cai, Yingming; Jin, Jiahui; Wang, Hongmei; Xu, Liping; Wu, Ruijia
2018-03-01
An electrochemical sensor for detection of beef taste was designed in this study. This sensor was based on the structure of polyvinyl chloride/polypyrrole (PVC/PPy), which was polymerized onto the surface of a platinum (Pt) electrode to form a Pt-PPy-PVC film. Detecting by electrochemical methods, the sensor was well characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The sensor was applied to detect 10 rib-eye beef samples and the accuracy of the new sensor was validated by sensory evaluation and ion sensor detection. Several cluster analysis methods were used in the study to distinguish the beef samples. According to the obtained results, the designed sensor showed a high degree of association of electrochemical detection and sensory evaluation, which proved a fast and precise sensor for beef taste detection. Copyright © 2017 Elsevier Ltd. All rights reserved.
Modeling integrated photovoltaic–electrochemical devices using steady-state equivalent circuits
Winkler, Mark T.; Cox, Casandra R.; Nocera, Daniel G.; Buonassisi, Tonio
2013-01-01
We describe a framework for efficiently coupling the power output of a series-connected string of single-band-gap solar cells to an electrochemical process that produces storable fuels. We identify the fundamental efficiency limitations that arise from using solar cells with a single band gap, an arrangement that describes the use of currently economic solar cell technologies such as Si or CdTe. Steady-state equivalent circuit analysis permits modeling of practical systems. For the water-splitting reaction, modeling defines parameters that enable a solar-to-fuels efficiency exceeding 18% using laboratory GaAs cells and 16% using all earth-abundant components, including commercial Si solar cells and Co- or Ni-based oxygen evolving catalysts. Circuit analysis also provides a predictive tool: given the performance of the separate photovoltaic and electrochemical systems, the behavior of the coupled photovoltaic–electrochemical system can be anticipated. This predictive utility is demonstrated in the case of water oxidation at the surface of a Si solar cell, using a Co–borate catalyst.
Electrochemical Impedance Analysis of β-TITANIUM Alloys as Implants in Ringers Lactate Solution
NASA Astrophysics Data System (ADS)
Bhola, Rahul; Bhola, Shaily M.; Mishra, Brajendra; Olson, David L.
2010-02-01
Commercially pure titanium and two β-titanium alloys, TNZT and TMZF, have been characterized using various electrochemical techniques for their corrosion behavior in Ringers lactate solution. The variation of corrosion potential and solution pH with time has been discussed. Electrochemical Impedance Spectroscopy has been used to fit the results into a circuit model. The stability of the oxides formed on the surface of these alloys has been correlated with impedance phase angles. Cyclic Potentiodynamic Polarization has been used to compute the corrosion parameters for the alloys. TMZF is found to be a better β-alloy as compared to TNZT.
Surface characterization and cytotoxicity analysis of plasma sprayed coatings on titanium alloys.
Rahman, Zia Ur; Shabib, Ishraq; Haider, Waseem
2016-10-01
In the realm of biomaterials, metallic materials are widely used for load bearing joints due to their superior mechanical properties. Despite the necessity for long term metallic implants, there are limitations to their prolonged use. Naturally, oxides of titanium have low solubilities and form passive oxide film spontaneously. However, some inclusion and discontinuity spots in oxide film make implant to adopt the decisive nature. These defects heighten the dissolution of metal ions from the implant surface, which results in diminishing bio-integration of titanium implant. To increase the long-term metallic implant stability, surface modifications of titanium alloys are being carried out. In the present study, biomimetic coatings of plasma sprayed hydroxyapatite and titanium were applied to the surface of commercially pure titanium and Ti6Al4V. Surface morphology and surface chemistry were studied using scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. Cyclic potentiodynamic polarization and electrochemical impedance spectroscopy were carried out in order to study their electrochemical behavior. Moreover, cytotoxicity analysis was conducted for osteoblast cells by performing MTS assay. It is concluded that both hydroxyapatite and titanium coatings enhance corrosion resistance and improve cytocompatibility. Copyright © 2016 Elsevier B.V. All rights reserved.
A theoretical model to determine the capacity performance of shape-specific electrodes
NASA Astrophysics Data System (ADS)
Yue, Yuan; Liang, Hong
2018-06-01
A theory is proposed to explain and predict the electrochemical process during reaction between lithium ions and electrode materials. In the model, the process of reaction is proceeded into two steps, surface adsorption and diffusion of lithium ions. The surface adsorption is an instantaneous process for lithium ions to adsorb onto the surface sites of active materials. The diffusion of lithium ions into particles is determined by the charge-discharge condition. A formula to determine the maximum specific capacity of active materials at different charging rates (C-rates) is derived. The maximum specific capacity is correlated to characteristic parameters of materials and cycling - such as size, aspect ratio, surface area, and C-rate. Analysis indicates that larger particle size or greater aspect ratio of active materials and faster C-rates can reduce maximum specific capacity. This suggests that reducing particle size of active materials and slowing the charge-discharge speed can provide enhanced electrochemical performance of a battery cell. Furthermore, the model is validated by published experimental results. This model brings new understanding in quantification of electrochemical kinetics and capacity performance. It enables development of design strategies for novel electrodes and future generation of energy storage devices.
NASA Astrophysics Data System (ADS)
Ruiz-Luna, H.; Porcayo-Calderon, J.; Alvarado-Orozco, J. M.; Mora-García, A. G.; Martinez-Gomez, L.; Trápaga-Martínez, L. G.; Muñoz-Saldaña, J.
2017-12-01
The low-temperature electrochemical behavior of HVOF Ni-20Cr coatings was assessed. The coatings were evaluated in different conditions including as-sprayed, as-ground, and heat-treated in air and argon atmospheres. A detailed analysis of the coatings was carried out by means of XRD, SEM, and EPMA, prior and after the corrosion test. The corrosion rate was analyzed in a NaCl solution saturated with CO2. Results demonstrate that the use of a low-oxygen partial pressure favors the formation of a Cr2O3 layer on the surface of the coatings. According to the electrochemical results, the lower corrosion rates were obtained for the heat-treated coatings irrespective of the surface finishing, being the ground and argon heat-treated condition that shows the best corrosion performance. This behavior is due to the synergistic effect of the low-pressure heat treatment and the grinding processes. The grinding promotes a more homogeneous reaction area without surface heterogeneities such as voids, and the pre-oxidation treatment decreases the porosity content of the coating and also allows the growing of a Cr-rich oxide scale which acts as a barrier against the ions of the aqueous solution.
Renjith, Anu; Roy, Arun; Lakshminarayanan, V
2014-07-15
We describe here a simple electrodeposition process of forming thin films of noble metallic nanoparticles such as Au, Ag and Pd in deep eutectic solvents (DES). The method consists of anodic dissolution of the corresponding metal in DES followed by the deposition on the cathodic surface. The anodic dissolution process in DES overcomes the problems associated with copious hydrogen and oxygen evolution on the electrode surface when carried out in aqueous medium. The proposed method utilizes the inherent abilities of DES to act as a reducing medium while simultaneously stabilizing the nanoparticles that are formed. The mesoporous metal films were characterized by SEM, XRD and electrochemical techniques. Potential applications of these substrates in surface enhanced Raman spectroscopy and electrocatalysis have been investigated. A large enhancement of Raman signal of analyte was achieved on the mesoporous silver substrate after removing all the stabilizer molecules from the surface by calcination. The highly porous texture of the electrodeposited film provides superior electro catalytic performance for hydrogen evolution reaction (HER). The mechanisms of HER on the fabricated substrates were studied by Tafel analysis and electrochemical impedance spectroscopy (EIS). Copyright © 2014 Elsevier Inc. All rights reserved.
Surface morphology and electrochemical studies on polyaniline/CuO nano composites
NASA Astrophysics Data System (ADS)
Ashokkumar, S. P.; Vijeth, H.; Yesappa, L.; Niranjana, M.; Vandana, M.; Basappa, M.; Devendrappa, H.
2018-05-01
An electrochemically synthesized Polyaniline (PANI) and Polyaniline/copper oxide (PCN) nano composite have studied the morphology and electrochemical properties. The composite is characterized by X-ray diffraction (XRD) and surface morphology was studied using FESEM and electrochemical behavior is studied using cyclic voltammetry (CV) technique. The CV curves shows rectangular shaped curve and they have contribution to electrical double layer capacitance (EDCL).
NASA Astrophysics Data System (ADS)
Wang, Long; Ma, Yulin; Li, Qin; Zhou, Zhenxin; Cheng, Xinqun; Zuo, Pengjian; Du, Chunyu; Gao, Yunzhi; Yin, Geping
2017-09-01
1,3,6-Hexanetricarbonitrile (HTN) has been investigated as an electrolyte additive to improve the electrochemical performance of the Li1.2Ni0.13Co0.13Mn0.54O2 cathode at high operating voltage (4.8 V). Linear sweep voltammetry (LSV) results indicate that HTN can improve the oxidation potential of the electrolyte. The influences of HTN on the electrochemical behaviors and surface properties of the cathode at high voltage have been investigated by galvanostatic charge/discharge test, electrochemical impedance spectroscopy (EIS), and ex-situ physical characterizations. Charge-discharge results demonstrate that the capacity retention of the Li1.2Ni0.13Co0.13Mn0.54O2 cathode in 1% HTN-containing electrolyte after 150 cycles at 0.5 C is improved to 92.3%, which is much higher than that in the standard electrolyte (ED). Combined with the theoretical calculation, ICP tests, XRD and XPS analysis, more stable and homogeneous interface film is confirmed to form on the cathode surface with incorporation of HTN, meanwhile, the electrolyte decomposition and the cathode structural destruction are restrained effectively upon cycling at high voltage, leading to improved electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 cathode.
Methods and systems for in-situ electroplating of electrodes
Zappi, Guillermo Daniel; Zarnoch, Kenneth Paul; Huntley, Christian Andrew; Swalla, Dana Ray
2015-06-02
The present techniques provide electrochemical devices having enhanced electrodes with surfaces that facilitate operation, such as by formation of a porous nickel layer on an operative surface, particularly of the cathode. The porous metal layer increases the surface area of the electrode, which may result in increasing the efficiency of the electrochemical devices. The formation of the porous metal layer is performed in situ, that is, after the assembly of the electrodes into an electrochemical device. The in situ process offers a number of advantages, including the ability to protect the porous metal layer on the electrode surface from damage during assembly of the electrochemical device. The enhanced electrode and the method for its processing may be used in any number of electrochemical devices, and is particularly well suited for electrodes in an electrolyzer useful for splitting water into hydrogen and oxygen.
Liang, Zhenxing; Ahn, Hyun S; Bard, Allen J
2017-04-05
The hydrogen evolution reaction (HER) on Ni in alkaline media was investigated by scanning electrochemical microscopy under two operating modes. First, the substrate generation/tip collection mode was employed to extract the "true" cathodic current associated with the HER from the total current in the polarization curve. Compared to metallic Ni, the electrocatalytic activity of the HER is improved in the presence of the low-valence-state oxide of Ni. This result is in agreement with a previous claim that the dissociative adsorption of water can be enhanced at the Ni/Ni oxide interface. Second, the surface-interrogation scanning electrochemical microscopy (SI-SECM) mode was used to directly measure the coverage of the adsorbed hydrogen on Ni at given potentials. Simulation indicates that the hydrogen coverage follows a Frumkin isotherm with respect to the applied potential. On the basis of the combined analysis of the Tafel slope and surface hydrogen coverage, the rate-determining step is suggested to be the adsorption of hydrogen (Volmer step) in the investigated potential window.
Ekechukwu, A.A.
1994-07-05
A dropping electrolyte electrode is described for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions. 2 figures.
Pencil Graphite Electrodes: A Versatile Tool in Electroanalysis
2017-01-01
Due to their electrochemical and economical characteristics, pencil graphite electrodes (PGEs) gained in recent years a large applicability to the analysis of various types of inorganic and organic compounds from very different matrices. The electrode material of this type of working electrodes is constituted by the well-known and easy commercially available graphite pencil leads. Thus, PGEs are cheap and user-friendly and can be employed as disposable electrodes avoiding the time-consuming step of solid electrodes surface cleaning between measurements. When compared to other working electrodes PGEs present lower background currents, higher sensitivity, good reproducibility, and an adjustable electroactive surface area, permitting the analysis of low concentrations and small sample volumes without any deposition/preconcentration step. Therefore, this paper presents a detailed overview of the PGEs characteristics, designs and applications of bare, and electrochemically pretreated and chemically modified PGEs along with the corresponding performance characteristics like linear range and detection limit. Techniques used for bare or modified PGEs surface characterization are also reviewed. PMID:28255500
Chen, Daqun; Hu, Weihua
2017-04-18
Electrochemically mediated atom transfer radical polymerization (eATRP) initiates/controls the controlled/living ATRP chain propagation process by electrochemically generating (regenerating) the activator (lower-oxidation-state metal complex) from deactivator (higher-oxidation-state metal complex). Despite successful demonstrations in both of the homogeneous polymerization and heterogeneous systems (namely, surface-initiated ATRP, SI-ATRP), the eATRP process itself has never been in situ investigated, and important information regarding this process remains unrevealed. In this work, we report the first investigation of the electrochemically mediated SI-ATRP (eSI-ATRP) by rationally combining the electrochemical technique with real-time surface plasmon resonance (SPR). In the experiment, the potential of a SPR gold chip modified by the self-assembled monolayer of the ATRP initiator was controlled to electrochemically reduce the deactivator to activator to initiate the SI-ATRP, and the whole process was simultaneously monitored by SPR with a high time resolution of 0.1 s. It is found that it is feasible to electrochemically trigger/control the SI-ATRP and the polymerization rate is correlated to the potential applied to the gold chip. This work reveals important kinetic information for eSI-ATRP and offers a powerful platform for in situ investigation of such complicated processes.
Selective Solvent-Induced Stabilization of Polar Oxide Surfaces in an Electrochemical Environment
NASA Astrophysics Data System (ADS)
Yoo, Su-Hyun; Todorova, Mira; Neugebauer, Jörg
2018-02-01
The impact of an electrochemical environment on the thermodynamic stability of polar oxide surfaces is investigated for the example of ZnO(0001) surfaces immersed in water using density functional theory calculations. We show that solvation effects are highly selective: They have little effect on surfaces showing a metallic character, but largely stabilize semiconducting structures, particularly those that have a high electrostatic penalty in vacuum. The high selectivity is shown to have direct consequences for the surface phase diagram and explains, e.g., why certain surface structures could be observed only in an electrochemical environment.
NASA Astrophysics Data System (ADS)
Tseng, Yu-Chien; Li, Hsiao-Ling; Huang, Chun
2017-01-01
The surface hydrophilic activation of a polyethylene membrane separator was achieved using an atmospheric-pressure plasma jet. The surface of the atmospheric-pressure-plasma-treated membrane separator was found to be highly hydrophilic realized by adjusting the plasma power input. The variations in membrane separator chemical structure were confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Chemical analysis showed newly formed carbonyl-containing groups and high surface concentrations of oxygen-containing species on the atmospheric-pressure-plasma-treated polymeric separator surface. It also showed that surface hydrophilicity primarily increased from the polar component after atmospheric-pressure plasma treatment. The surface and pore structures of the polyethylene membrane separator were examined by scanning electron microscopy, revealing a slight alteration in the pore structure. As a result of the incorporation of polar functionalities by atmospheric-pressure plasma activation, the electrolyte uptake and electrochemical impedance of the atmospheric-pressure-plasma-treated membrane separator improved. The investigational results show that the separator surface can be controlled by atmospheric-pressure plasma surface treatment to tailor the hydrophilicity and enhance the electrochemical performance of lithium ion batteries.
A Single Electrochemical Probe Used for Analysis of Multiple Nucleic Acid Sequences
Mills, Dawn M.; Calvo-Marzal, Percy; Pinzon, Jeffer M.; Armas, Stephanie; Kolpashchikov, Dmitry M.; Chumbimuni-Torres, Karin Y.
2017-01-01
Electrochemical hybridization sensors have been explored extensively for analysis of specific nucleic acids. However, commercialization of the platform is hindered by the need for attachment of separate oligonucleotide probes complementary to a RNA or DNA target to an electrode’s surface. Here we demonstrate that a single probe can be used to analyze several nucleic acid targets with high selectivity and low cost. The universal electrochemical four-way junction (4J)-forming (UE4J) sensor consists of a universal DNA stem-loop (USL) probe attached to the electrode’s surface and two adaptor strands (m and f) which hybridize to the USL probe and the analyte to form a 4J associate. The m adaptor strand was conjugated with a methylene blue redox marker for signal ON sensing and monitored using square wave voltammetry. We demonstrated that a single sensor can be used for detection of several different DNA/RNA sequences and can be regenerated in 30 seconds by a simple water rinse. The UE4J sensor enables a high selectivity by recognition of a single base substitution, even at room temperature. The UE4J sensor opens a venue for a re-useable universal platform that can be adopted at low cost for the analysis of DNA or RNA targets. PMID:29371782
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dyatkin, Boris; Osti, Naresh C.; Zhang, Yu
In this paper, we investigate the aggregation, diffusion, and resulting electrochemical behavior of ionic liquids inside carbon electrodes with complex pore architectures and surface chemistries. Carbide-derived carbons (CDCs) with bimodal porosities and defunctionalized or oxidized electrode surfaces served as model electrode materials. Our goal was to obtain a fundamental understanding of room-temperature ionic liquid ion orientation, mobility, and electrosorption behavior. Neat 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide confined in CDCs was studied using an integrated experimental and modeling approach, consisting of quasielastic neutron scattering, small-angle neutron scattering, X-ray pair distribution function analysis, and electrochemical measurements, which were combined with molecular dynamics simulations. Our analysismore » shows that surface oxygen groups increase the diffusion of confined electrolytes. Consequently, the ions become more than twice as mobile in oxygen-rich pores. Although greater self-diffusion of ions translates into higher electrochemical mobilities in oxidized pores, bulk-like behavior of ions dominates in the larger mesopores and increases the overall capacitance in defunctionalized pores. Experimental results highlight strong confinement and surface effects of carbon electrodes on electrolyte behavior, and molecular dynamics simulations yield insight into diffusion and capacitance differences in specific pore regions. Finally, we demonstrate the significance of surface defects on electrosorption dynamics of complex electrolytes in hierarchical pore architectures of supercapacitor electrodes.« less
Dyatkin, Boris; Osti, Naresh C.; Zhang, Yu; ...
2017-12-05
In this paper, we investigate the aggregation, diffusion, and resulting electrochemical behavior of ionic liquids inside carbon electrodes with complex pore architectures and surface chemistries. Carbide-derived carbons (CDCs) with bimodal porosities and defunctionalized or oxidized electrode surfaces served as model electrode materials. Our goal was to obtain a fundamental understanding of room-temperature ionic liquid ion orientation, mobility, and electrosorption behavior. Neat 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide confined in CDCs was studied using an integrated experimental and modeling approach, consisting of quasielastic neutron scattering, small-angle neutron scattering, X-ray pair distribution function analysis, and electrochemical measurements, which were combined with molecular dynamics simulations. Our analysismore » shows that surface oxygen groups increase the diffusion of confined electrolytes. Consequently, the ions become more than twice as mobile in oxygen-rich pores. Although greater self-diffusion of ions translates into higher electrochemical mobilities in oxidized pores, bulk-like behavior of ions dominates in the larger mesopores and increases the overall capacitance in defunctionalized pores. Experimental results highlight strong confinement and surface effects of carbon electrodes on electrolyte behavior, and molecular dynamics simulations yield insight into diffusion and capacitance differences in specific pore regions. Finally, we demonstrate the significance of surface defects on electrosorption dynamics of complex electrolytes in hierarchical pore architectures of supercapacitor electrodes.« less
NASA Astrophysics Data System (ADS)
Martin, Elizabeth J.
Although the electrochemical behavior of metals used in orthopedic implants has been studied extensively, the material interactions with proteins during corrosion processes remains poorly understood. Some studies suggest that metal-protein interactions accelerate corrosion, while others suggest that proteins protect the material from degradation. Corrosion of implant materials is a major concern due to the metal ion release that can sometimes cause adverse local tissue reactions and ultimately, failure of the implant. The initial purpose of this research was therefore to study the corrosion behavior of CoCrMo, an alloy commonly used in hip replacements, with a quartz crystal microbalance (QCM) in physiologically relevant media. The QCM enables in situ characterization of surface changes accompanying corrosion and is sensitive to viscoelastic effects at its surface. Results of QCM studies in proteinaceous media showed film deposition on the alloy surface under electrochemical conditions that otherwise produced mass loss if proteins were not present in the electrolyte. Additional studies on pure Co, Cr, and Mo demonstrated that the protein films also form on Mo surfaces after a release of molybdate ions, suggesting that these ions are essential for film formation. The electrochemically generated protein films are reminiscent of carbonaceous films that form on implant surfaces in vivo, therefore a second goal of the research was to delineate mechanisms that cause the films to form. In the second stage of this research, electrochemical QCM tests were conducted on models of the CoCrMo system consisting of Cr electrodes in proteinaceous or polymeric media containing dissolved molybdate ions. Studies indicated that films can be generated through electrochemical processes so long as both amine functional groups and molybdate ions are present in the electrolyte solution. These results suggest that the films form due to an ionic cross-linking reaction between the positively charged amine groups in the proteins and the negatively charged molybdate ions. Results also indicated that film generation is controlled by the potential at the electrode surface. Numerical analysis on the model systems suggest that a drop in the local pH at the corroding electrode surface may influence film generation, but a critical concentration of molybdate-amine cross-links must be exceeded for gels to form. A final goal of this research was to develop a technique to characterize the viscoelastic properties of polymer films in liquid media using the QCM as a high-frequency rheometer. The work showed that by measuring frequency and dissipation shifts at multiple harmonics of the QCM resonant frequency, the viscoelastic phase angle, density-modulus product, and areal mass of a film submersed in liquid can be quantified in situ. The method was successfully applied to characterize the electrochemically generated protein films. Results implied that the films are composed of a weakly cross-linked network with properties similar to concentrated albumin solutions containing 40 wt% protein. The analysis technique can be extended to characterize any polymer film in a liquid environment, with applications including adsorption, self-assembly, or cell-substrate interactions.
Mun, Junyoung; Yim, Taeeun; Park, Jang Hoon; Ryu, Ji Heon; Lee, Sang Young; Kim, Young Gyu; Oh, Seung M
2014-08-29
Room-temperature ionic liquid (RTIL) electrolytes have attracted much attention for use in advanced, safe lithium-ion batteries (LIB) owing to their nonvolatility, high conductivity, and great thermal stability. However, LIBs containing RTIL-electrolytes exhibit poor cyclability because electrochemical side reactions cause problematic surface failures of the cathode. Here, we demonstrate that a thin, homogeneous surface film, which is electrochemically generated on LiCoO2 from an RTIL-electrolyte containing an unsaturated substituent on the cation (1-allyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide, AMPip-TFSI), can avert undesired side reactions. The derived surface film comprised of a high amount of organic species from the RTIL cations homogenously covered LiCoO2 with a <25 nm layer and helped suppress unfavorable thermal reactions as well as electrochemical side reactions. The superior performance of the cell containing the AMPip-TFSI electrolyte was further elucidated by surface, electrochemical, and thermal analyses.
NASA Astrophysics Data System (ADS)
Mun, Junyoung; Yim, Taeeun; Park, Jang Hoon; Ryu, Ji Heon; Lee, Sang Young; Kim, Young Gyu; Oh, Seung M.
2014-08-01
Room-temperature ionic liquid (RTIL) electrolytes have attracted much attention for use in advanced, safe lithium-ion batteries (LIB) owing to their nonvolatility, high conductivity, and great thermal stability. However, LIBs containing RTIL-electrolytes exhibit poor cyclability because electrochemical side reactions cause problematic surface failures of the cathode. Here, we demonstrate that a thin, homogeneous surface film, which is electrochemically generated on LiCoO2 from an RTIL-electrolyte containing an unsaturated substituent on the cation (1-allyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide, AMPip-TFSI), can avert undesired side reactions. The derived surface film comprised of a high amount of organic species from the RTIL cations homogenously covered LiCoO2 with a <25 nm layer and helped suppress unfavorable thermal reactions as well as electrochemical side reactions. The superior performance of the cell containing the AMPip-TFSI electrolyte was further elucidated by surface, electrochemical, and thermal analyses.
Mun, Junyoung; Yim, Taeeun; Park, Jang Hoon; Ryu, Ji Heon; Lee, Sang Young; Kim, Young Gyu; Oh, Seung M.
2014-01-01
Room-temperature ionic liquid (RTIL) electrolytes have attracted much attention for use in advanced, safe lithium-ion batteries (LIB) owing to their nonvolatility, high conductivity, and great thermal stability. However, LIBs containing RTIL-electrolytes exhibit poor cyclability because electrochemical side reactions cause problematic surface failures of the cathode. Here, we demonstrate that a thin, homogeneous surface film, which is electrochemically generated on LiCoO2 from an RTIL-electrolyte containing an unsaturated substituent on the cation (1-allyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide, AMPip-TFSI), can avert undesired side reactions. The derived surface film comprised of a high amount of organic species from the RTIL cations homogenously covered LiCoO2 with a <25 nm layer and helped suppress unfavorable thermal reactions as well as electrochemical side reactions. The superior performance of the cell containing the AMPip-TFSI electrolyte was further elucidated by surface, electrochemical, and thermal analyses. PMID:25168309
Selectively-etched nanochannel electrophoretic and electrochemical devices
Surh, Michael P.; Wilson, William D.; Barbee, Jr., Troy W.; Lane, Stephen M.
2004-11-16
Nanochannel electrophoretic and electrochemical devices having selectively-etched nanolaminates located in the fluid transport channel. The normally flat surfaces of the nanolaminate having exposed conductive (metal) stripes are selectively-etched to form trenches and baffles. The modifications of the prior utilized flat exposed surfaces increase the amount of exposed metal to facilitate electrochemical redox reaction or control the exposure of the metal surfaces to analytes of large size. These etched areas variously increase the sensitivity of electrochemical detection devices to low concentrations of analyte, improve the plug flow characteristic of the channel, and allow additional discrimination of the colloidal particles during cyclic voltammetry.
Selectively-etched nanochannel electrophoretic and electrochemical devices
Surh, Michael P [Livermore, CA; Wilson, William D [Pleasanton, CA; Barbee, Jr., Troy W.; Lane, Stephen M [Oakland, CA
2006-06-27
Nanochannel electrophoretic and electrochemical devices having selectively-etched nanolaminates located in the fluid transport channel. The normally flat surfaces of the nanolaminate having exposed conductive (metal) stripes are selectively-etched to form trenches and baffles. The modifications of the prior utilized flat exposed surfaces increase the amount of exposed metal to facilitate electrochemical redox reaction or control the exposure of the metal surfaces to analytes of large size. These etched areas variously increase the sensitivity of electrochemical detection devices to low concentrations of analyte, improve the plug flow characteristic of the channel, and allow additional discrimination of the colloidal particles during cyclic voltammetry.
Laser-assisted electrochemical micromachining of mould cavity on the stainless steel surface
NASA Astrophysics Data System (ADS)
Li, Xiaohai; Wang, Shuming; Wang, Dong; Tong, Han
2018-02-01
In order to fabricate the micro mould cavities with complex structures on 304 stainless steel, laser-assisted electrochemical micromachining (EMM) based on surface modification by fiber laser masking was studied,and a new device of laser-assisted EMM was developed. Laser marking on the surface of 304 stainless steel can first be realized by fiber laser heating scanning. Through analysis of X ray diffraction analysis (XRD), metal oxide layer with predefined pattern can be formed by laser marking, and phase transformation can also occur on the 304 stainless steel surface, which produce the laser masking layer with corrosion resistance. The stainless steel surface with laser masking layer is subsequently etched by EMM, the laser masking layer severs as the temporary protective layer without relying on lithography mask, the fabrication of formed electrodes is also avoided, so micro pattern cavities can fast be fabricated. The impacts on machining accuracy during EMM with laser masking were discussed to optimize machining parameters, such as machining voltage, electrolyte concentration, duty cycle of pulse power supply and electrode gap size, the typical mould cavities 23μm deep were fabricated under the optimized parameters.
Li, Shuang; Liu, Jinglong; Lu, Yanli; Zhu, Long; Li, Candong; Hu, Lijiang; Li, Jun; Jiang, Jing; Low, Szeshin; Liu, Qingjun
2018-06-01
Localized surface plasmon resonance (LSPR) induced charge separation were concentrated on the metal nanoparticles surface, which made it sensitive to the surface refractive index changes during optical sensing. Similarly, electrochemical detection was based on the electron transformation on the electrode surface. Herein, we fabricated a nanochip by decorating a nanocone-array substrate with gold nanoparticles and silver nanoparticles for dynamic electro-optical spectroscopy. Mercaptophenyl boronic acid (MPBA) was immobilized firmly on the nanochip by the metal-S bond for sensitive sialic acid sensing. Owing to the high stability of gold nanoparticles and the high sensitivity of silver nanoparticles, the nanochip showed good performance in LSPR detection with rich and high responses. Besides, the nanochip also showed sensitive electrical signals during electrochemical detection due to the excitation of the energetic charges from the nanoparticles surface to the reaction system. The dynamic electro-optical spectroscopy was based on a unique combination of LSPR and linear sweep voltammetry (LSV). On the one hand, electrochemical signals activated the electrons on the nanochip to promote the propagation and resonance of surface plasmon. On the other hand, LSPR concentrated the electrons on the nanochip surface, which made the electrons easily driven to enhance the current in electrochemical detection. Results showed that mutual promotion of electrochemical-LSPR on nanochip covered a linear dynamic range from 0.05 mM to 5 mM on selective sialic acid detection with a low detection limit of 17 μM. The synchronous amplification of the electro-optical response during electrochemical-LSPR, opened up a new perspective for efficient and sensitive biochemical detection. Copyright © 2018 Elsevier B.V. All rights reserved.
Post-test analysis of lithium-ion battery materials at Argonne National Laboratory
NASA Astrophysics Data System (ADS)
Bareno, Javier; Dietz-Rago, Nancy; Bloom, Ira
2014-03-01
Electrochemical performance is often limited by surface and interfacial reactions at the electrodes. However, routine handling of samples can alter the very surfaces that are the object of study. Our approach combines standardized testing of batteries with sample harvesting under inert atmosphere conditions. Cells of different formats are disassembled inside an Argon glove box with controlled water and oxygen concentrations below 2 ppm. Cell components are characterized in situ, guaranteeing that observed changes in physicochemical state are due to electrochemical operation, rather than sample manipulation. We employ a complementary set of spectroscopic, microscopic, electrochemical and metallographic characterization to obtain a complete picture of cell degradation mechanisms. The resulting information about observed degradation mechanisms is provided to materials developers, both academic and industrial, to suggest new strategies and speed up the Research & Development cycle of Li-ion and related technologies. This talk will describe Argonne's post-test analysis laboratory, with an emphasis on capabilities and opportunities for collaboration. Cell disassembly, sample harvesting procedures and recent results will be discussed. This work was performed under the auspices of the U.S. Department of Energy, Office of Vehicle Technologies, Hybrid and Electric Systems, under Contract No. DE-AC02-06CH11357.
Lai, Stanley C S; Lazenby, Robert A; Kirkman, Paul M; Unwin, Patrick R
2015-02-01
The nucleation and growth of metal nanoparticles (NPs) on surfaces is of considerable interest with regard to creating functional interfaces with myriad applications. Yet, key features of these processes remain elusive and are undergoing revision. Here, the mechanism of the electrodeposition of silver on basal plane highly oriented pyrolytic graphite (HOPG) is investigated as a model system at a wide range of length scales, spanning electrochemical measurements from the macroscale to the nanoscale using scanning electrochemical cell microscopy (SECCM), a pipette-based approach. The macroscale measurements show that the nucleation process cannot be modelled as either truly instantaneous or progressive, and that step edge sites of HOPG do not play a dominant role in nucleation events compared to the HOPG basal plane, as has been widely proposed. Moreover, nucleation numbers extracted from electrochemical analysis do not match those determined by atomic force microscopy (AFM). The high time and spatial resolution of the nanoscale pipette set-up reveals individual nucleation and growth events at the graphite basal surface that are resolved and analysed in detail. Based on these results, corroborated with complementary microscopy measurements, we propose that a nucleation-aggregative growth-detachment mechanism is an important feature of the electrodeposition of silver NPs on HOPG. These findings have major implications for NP electrodeposition and for understanding electrochemical processes at graphitic materials generally.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Pengyuan; Lanekoff, Ingela T.; Laskin, Julia
2012-07-03
The combination of electrochemistry (EC) and mass spectrometry (MS) is a powerful analytical tool for studying mechanisms of redox reactions, identification of products and intermediates, and online derivatization/recognition of analytes. This work reports a new coupling interface for EC/MS by employing nanospray desorption electrospray ionization (nano-DESI), a recently developed ambient ionization method. We demonstrate online coupling of nano-DESI-MS with a traditional electrochemical flow cell, in which the electrolyzed solution emanating from the cell is ionized by nano-DESI for MS analysis. Furthermore, we show first coupling of nano-DESI-MS with an interdigitated array (IDA) electrode enabling chemical analysis of electrolyzed samples directlymore » from electrode surfaces. Because of its inherent sensitivity, nano-DESI enables chemical analysis of small volumes and concentrations of sample solution. Specifically, good-quality signal of dopamine and its oxidized form, dopamine ortho-quinone, was obtained using 10 μL of 1 μM solution of dopamine on the IDA. Oxidation of dopamine, reduction of benzodiazepines, and electrochemical derivatization of thiol groups were used to demonstrate the performance of the technique. Our results show the potential of nano-DESI as a novel interface for electrochemical mass spectrometry research.« less
Printable Electrochemical Biosensors: A Focus on Screen-Printed Electrodes and Their Application
Yamanaka, Keiichiro; Vestergaard, Mun’delanji C.; Tamiya, Eiichi
2016-01-01
In this review we present electrochemical biosensor developments, focusing on screen-printed electrodes (SPEs) and their applications. In particular, we discuss how SPEs enable simple integration, and the portability needed for on-field applications. First, we briefly discuss the general concept of biosensors and quickly move on to electrochemical biosensors. Drawing from research undertaken in this area, we cover the development of electrochemical DNA biosensors in great detail. Through specific examples, we describe the fabrication and surface modification of printed electrodes for sensitive and selective detection of targeted DNA sequences, as well as integration with reverse transcription-polymerase chain reaction (RT-PCR). For a more rounded approach, we also touch on electrochemical immunosensors and enzyme-based biosensors. Last, we present some electrochemical devices specifically developed for use with SPEs, including USB-powered compact mini potentiostat. The coupling demonstrates the practical use of printable electrode technologies for application at point-of-use. Although tremendous advances have indeed been made in this area, a few challenges remain. One of the main challenges is application of these technologies for on-field analysis, which involves complicated sample matrices. PMID:27775661
Real-time subsecond voltammetric analysis of Pb in aqueous environmental samples.
Yang, Yuanyuan; Pathirathna, Pavithra; Siriwardhane, Thushani; McElmurry, Shawn P; Hashemi, Parastoo
2013-08-06
Lead (Pb) pollution is an important environmental and public health concern. Rapid Pb transport during stormwater runoff significantly impairs surface water quality. The ability to characterize and model Pb transport during these events is critical to mitigating its impact on the environment. However, Pb analysis is limited by the lack of analytical methods that can afford rapid, sensitive measurements in situ. While electrochemical methods have previously shown promise for rapid Pb analysis, they are currently limited in two ways. First, because of Pb's limited solubility, test solutions that are representative of environmental systems are not typically employed in laboratory characterizations. Second, concerns about traditional Hg electrode toxicity, stability, and low temporal resolution have dampened opportunities for in situ analyses with traditional electrochemical methods. In this paper, we describe two novel methodological advances that bypass these limitations. Using geochemical models, we first create an environmentally relevant test solution that can be used for electrochemical method development and characterization. Second, we develop a fast-scan cyclic voltammetry (FSCV) method for Pb detection on Hg-free carbon fiber microelectrodes. We assess the method's sensitivity and stability, taking into account Pb speciation, and utilize it to characterize rapid Pb fluctuations in real environmental samples. We thus present a novel real-time electrochemical tool for Pb analysis in both model and authentic environmental solutions.
NASA Astrophysics Data System (ADS)
Lee, Suk-Woo; Kim, Myeong-Seong; Jeong, Jun Hui; Kim, Dong-Hyun; Chung, Kyung Yoon; Roh, Kwang Chul; Kim, Kwang-Bum
2017-08-01
A surface coating of Li3PO4 was applied to a Ni-rich LiNi0.6Co0.2Mn0.2O2 (NCM) material to improve its thermal stability and electrochemical properties via a citric acid assisted sol-gel method. The addition of citric acid effectively suppressed the instant formation of Li3PO4 in solution, resulting in successful coating of the NCM surface. The improved thermal stability of NCM after Li3PO4 surface coating was demonstrated by differential scanning calorimetry (DSC) analysis and in situ time-resolved X-ray diffraction (TR-XRD). In particular, the TR-XRD results showed that the improved thermal stability after Li3PO4 surface coating originates from suppression of the phase transition of charged NCM at high temperatures. Furthermore, the charge-discharge tests demonstrated that Li3PO4-coated LiNi0.6Co0.2Mn0.2O2 (LP-NCM) has excellent electrochemical properties. LP-NCM exhibited a specific capacity of 192.7 mAh g-1, a capacity retention of 44.1% at 10 C, and a capacity retention of 79.7% after 100 cycles at a high cut-off voltage of 4.7 V; these values represent remarkably improved electrochemical properties compared with those of bare NCM. These improved thermal and electrochemical properties were mainly attributed to the improvement of the structural stability of the material and the suppression of the interface reaction between the cathode and the electrolyte owing to the Li3PO4 coating.
NASA Astrophysics Data System (ADS)
Wen, Yanli; Pei, Hao; Shen, Ye; Xi, Junjie; Lin, Meihua; Lu, Na; Shen, Xizhong; Li, Jiong; Fan, Chunhai
2012-11-01
MicroRNAs (miRNAs) have been identified as promising cancer biomarkers due to their stable presence in serum. As an alternative to PCR-based homogenous assays, surface-based electrochemical biosensors offer great opportunities for low-cost, point-of-care tests (POCTs) of disease-associated miRNAs. Nevertheless, the sensitivity of miRNA sensors is often limited by mass transport and crowding effects at the water-electrode interface. To address such challenges, we herein report a DNA nanostructure-based interfacial engineering approach to enhance binding recognition at the gold electrode surface and drastically improve the detection sensitivity. By employing this novel strategy, we can directly detect as few as attomolar (<1, 000 copies) miRNAs with high single-base discrimination ability. Given that this ultrasensitive electrochemical miRNA sensor (EMRS) is highly reproducible and essentially free of prior target labeling and PCR amplification, we also demonstrate its application by analyzing miRNA expression levels in clinical samples from esophageal squamous cell carcinoma (ESCC) patients.
Zhang, Hongxin; Bhat, Vinay V; Gallego, Nidia C; Contescu, Cristian I
2012-06-27
Graphene materials were synthesized by reduction of exfoliated graphite oxide and then thermally treated in nitrogen to improve the surface area and their electrochemical performance as electrical double-layer capacitor electrodes. The structural and surface properties of the prepared reduced graphite oxide (RGO) were investigated using atomic force microscopy, scanning electron microscopy, Raman spectra, X-ray diffraction pattern analysis, and nitrogen adsorption/desorption studies. RGO forms a continuous network of crumpled sheets, which consist of large amounts of few-layer and single-layer graphenes. Electrochemical studies were conducted by cyclic voltammetry, impedance spectroscopy, and galvanostatic charge-discharge measurements. The modified RGO materials showed enhanced electrochemical performance, with maximum specific capacitance of 96 F/g, energy density of 12.8 Wh/kg, and power density of 160 kW/kg. These results demonstrate that thermal treatment of RGO at selected conditions is a convenient and efficient method for improving its specific capacitance, energy, and power density.
Active and stable Ir@Pt core–shell catalysts for electrochemical oxygen reduction
Strickler, Alaina L.; Jackson, Ariel; Jaramillo, Thomas F.
2016-12-28
Electrochemical oxygen reduction is an important reaction for many sustainable energy technologies, such as fuel cells and metal–air batteries. Kinetic limitations of this reaction, expensive electrocatalysts, and catalyst instability, however, limit the commercial viability of such devices. Herein, we report an active Ir@Pt core–shell catalyst that combines platinum overlayers with nanostructure effects to tune the oxygen binding to the Pt surface, thereby achieving enhanced activity and stability for the oxygen reduction reaction. Ir@Pt nanoparticles with several shell thicknesses were synthesized in a scalable, inexpensive, one-pot polyol method. Electrochemical analysis demonstrates the activity and stability of the Ir@Pt catalyst, with specificmore » and mass activities increasing to 2.6 and 1.8 times that of commercial Pt/C (TKK), respectively, after 10 000 stability cycles. Furthermore, activity enhancement of the Ir@Pt catalyst is attributed to weakening of the oxygen binding to the Pt surface induced by the Ir core.« less
Active hydrogen evolution through lattice distortion in metallic MoTe2
NASA Astrophysics Data System (ADS)
Seok, Jinbong; Lee, Jun-Ho; Cho, Suyeon; Ji, Byungdo; Kim, Hyo Won; Kwon, Min; Kim, Dohyun; Kim, Young-Min; Oh, Sang Ho; Wng Kim, Sung; Lee, Young Hee; Son, Young-Woo; Yang, Heejun
2017-06-01
Engineering surface atoms of transition metal dichalcogenides (TMDs) is a promising way to design catalysts for efficient electrochemical reactions including the hydrogen evolution reaction (HER). However, materials processing based on TMDs, such as vacancy creation or edge exposure, for active HER, has resulted in insufficient atomic-precision lattice homogeneity and a lack of clear understanding of HER over 2D materials. Here, we report a durable and effective HER at atomically defined reaction sites in 2D layered semimetallic MoTe2 with intrinsic turnover frequency (TOF) of 0.14 s-1 at 0 mV overpotential, which cannot be explained by the traditional volcano plot analysis. Unlike former electrochemical catalysts, the rate-determining step of the HER on the semimetallic MoTe2, hydrogen adsorption, drives Peierls-type lattice distortion that, together with a surface charge density wave, unexpectedly enhances the HER. The active HER using unique 2D features of layered TMDs enables an optimal design of electrochemical catalysts and paves the way for a hydrogen economy.
Cyclically optimized electrochemical processes
NASA Astrophysics Data System (ADS)
Ruedisueli, Robert Louis
It has been frequently observed in experiment and industry practice that electrochemical processes (deposition, dissolution, fuel cells) operated in an intermittent or cyclic (AC) mode show improvements in efficiency and/or quality and yield over their steady (DC) mode of operation. Whether rationally invoked by design or empirically tuned-in, the optimal operating frequency and duty cycle is dependent upon the dominant relaxation time constant for the process in question. The electrochemical relaxation time constant is a function of: double-layer and reaction intermediary pseudo-capacitances, ion (charge) transport via electrical migration (mobility), and diffusion across a concentration gradient to electrode surface reaction sites where charge transfer and species incorporation or elimination occurs. The rate determining step dominates the time constant for the reaction or process. Electrochemical impedance spectroscopy (EIS) and piezoelectric crystal electrode (PCE) response analysis have proven to be useful tools in the study and identification of reaction mechanisms. This work explains and demonstrates with the electro-deposition of copper the application of EIS and PCE measurement and analysis to the selection of an optimum cyclic operating schedule, an optimum driving frequency for efficient, sustained cyclic (pulsed) operation.
Casanova-Moreno, J; Bizzotto, D
2015-02-17
Electrostatic control of the orientation of fluorophore-labeled DNA strands immobilized on an electrode surface has been shown to be an effective bioanalytical tool. Modulation techniques and later time-resolved measurements were used to evaluate the kinetics of the switching between lying and standing DNA conformations. These measurements, however, are the result of a convolution between the DNA "switching" response time and the other frequency limited responses in the measurement. In this work, a method for analyzing the response of a potential driven DNA sensor is presented by calculating the potential effectively dropped across the electrode interface (using electrochemical impedance spectroscopy) as opposed to the potential applied to the electrochemical cell. This effectively deconvolutes the effect of the charging time on the observed frequency response. The corrected response shows that DNA is able to switch conformation faster than previously reported using modulation techniques. This approach will ensure accurate measurements independent of the electrochemical system, removing the uncertainty in the analysis of the switching response, enabling comparison between samples and measurement systems.
Andrei, Veronica; Sharpe, Erica; Vasilescu, Alina; Andreescu, Silvana
2016-08-15
We report the development and characterization of a disposable single use electrochemical sensor based on the oxidase-like activity of nanoceria particles for the detection of phenolic antioxidants. The use of nanoceria in the sensor design enables oxidation of phenolic compounds, particularly those with ortho-dihydroxybenzene functionality, to their corresponding quinones at the surface of a screen printed carbon electrode. Detection is carried out by electrochemical reduction of the resulting quinone at a low applied potential of -0.1V vs the Ag/AgCl electrode. The sensor was optimized and characterized with respect to particle loading, applied potential, response time, detection limit, linear concentration range and sensitivity. The method enabled rapid detection of common phenolic antioxidants including caffeic acid, gallic acid and quercetin in the µM concentration range, and demonstrated good functionality for the analysis of antioxidant content in several wine samples. The intrinsic oxidase-like activity of nanoceria shows promise as a robust tool for sensitive and cost effective analysis of antioxidants using electrochemical detection. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dubal, Deepak P.; Gund, Girish S.; Holze, Rudolf; Lokhande, Chandrakant D.
2013-11-01
The hierarchical structures of nanosheets, micro-roses and micro-woolen like CuO nanosheets were directly fabricated on stainless steel via surfactant-free and inexpensive chemical bath deposition (CBD) method. Further, these CuO nanostructures demonstrate excellent surface properties like uniform surface morphology, high surface area and uniform pore size distribution of CuO samples. The electrochemical properties of CuO nanostructures have been investigated by cyclic voltammetry, charge-discharge and electrochemical impedance spectroscopy techniques. The electrochemical studies of the CuO samples show obvious influence of surface properties on the pseudocapacitance performance. The maximum specific capacitances of nanosheets, micro-roses and micro-woolen like CuO nanosheets are found to be 303 Fg-1, 279 Fg-1 and 346 Fg-1, respectively at 5 mV s-1 scan rate. Further, the EIS analysis shows lower ESR value, high power performance, excellent rate as well as frequency response of micro-woolen like CuO sample. The Ragone plot ascertains better power and energy densities of all three CuO nanostructured samples than other electrical energy storage devices. The long-term cycling performance of CuO is examined at different scan rates and the morphology changes of the electrode materials were studied. Present investigation suggests the inexpensive CBD approach for fine-tuning surface properties of oxide materials for energy storage applications.
Ronen, Avner; Duan, Wenyan; Wheeldon, Ian; Walker, Sharon; Jassby, David
2015-11-03
Bacterial biofilm formation on membrane surfaces remains a serious challenge in water treatment systems. The impact of low voltages on microbial attachment to electrically conducting ultrafiltration membranes was investigated using a direct observation cross-flow membrane system mounted on a fluorescence microscope. Escherichia coli and microparticle deposition and detachment rates were measured as a function of the applied electrical potential to the membrane surface. Selecting bacteria and particles with low surface charge minimized electrostatic interactions between the bacteria and charged membrane surface. Application of an electrical potential had a significant impact on the detachment of live bacteria in comparison to dead bacteria and particles. Image analysis indicated that when a potential of 1.5 V was applied to the membrane/counter electrode pair, the percent of dead bacteria was 32±2.1 and 67±3.6% when the membrane was used as a cathode or anode, respectively, while at a potential of 1 V, 92±2.4% were alive. The application of low electrical potentials resulted in the production of low (μM) concentrations of hydrogen peroxide (HP) through the electroreduction of oxygen. The electrochemically produced HP reduced microbial cell viability and increased cellular permeability. Exposure to low concentrations of electrochemically produced HP on the membrane surface prevents bacterial attachment, thus ensuring biofilm-free conditions during membrane filtration operations.
Hao, Yuwei; Li, Yingying; Zhang, Feilong; Cui, Haijun; Hu, Jinsong; Meng, Jingxin; Wang, Shutao
2018-03-23
Highly efficient cell capture and release with low background are urgently required for early diagnosis of diseases such as cancer. Herein, we report an electrochemical responsive superhydrophilic surface exhibiting specific cell capture and release with high yields and extremely low nonspecific adhesion. Through electrochemical deposition, 3-substituted thiophene derivatives are deposited onto indium tin oxide (ITO) nanowire arrays with 4-n-nonylbenzeneboronic acid (BA) as dopant, fabricating the electrochemical responsive superhydrophilic surfaces. The molecular recognition between sialic acids over-expressed on the cell membrane and doped BAs endows the electrochemical responsive surfaces with the ability to capture and release targeted cancer cells. By adjusting the substituent group of thiophene derivatives, the surface wettability can be readily regulated and further utilized for reducing nonspecific cell adhesion. Significantly, the released cells still maintain a high proliferation ability, which indicates that the applied potential does not significantly harm the cells. Therefore, these results may provide a new strategy to achieve advanced functions of biomedical materials, such as low nonspecific adhesion. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Ke; Ilton, Eugene S.; Antonio, Mark R.
2015-05-19
Reduction of U(VI) to U(IV) on mineral surfaces has been considered as a one-step two electron process. However, stabilized U(V), with no evidence of U(IV), found in recent studies indicates U(VI) can undergo a one electron reduction to U(V) without further progression to U(IV). We investigated the mechanisms of uranium reduction by reducing U(VI) electrochemically on a magnetite electrode at pH 3.4 . The one electron reduction of U(VI) was first confirmed using the cyclic voltammetry method. Formation of nano-size uranium precipitates on the surface of magnetite at reducing potentials and dissolution of the solids at oxidizing potentials were observedmore » by in situ electrochemical AFM. XPS analysis of the magnetite electrodes polarized in uranium solutions at voltages from 0.1 ~ 0.9 V (vs. Ag/AgCl) showed the presence of only U(V) and U(VI). The highest amount of U(V) relative to U(VI) was prepared at 0.7 V, where the longest average U–Oaxial distance of 2.05 ± 0.01 Å was evident in the same sample revealed by EXAFS analysis. The results demonstrate that the electrochemical reduction of U(VI) on magnetite only yields U(V), even at a potential of 0.9 V, which favors the one-electron reduction mechanism. U(V) did not disproportionate but stabilized on magnetite through precipitation of mixed-valence state U(VI)/U(V) solids.« less
NASA Astrophysics Data System (ADS)
Liu, X. M.; Wu, S. L.; Chu, Paul K.; Chung, C. Y.; Chu, C. L.; Yeung, K. W. K.; Lu, W. W.; Cheung, K. M. C.; Luk, K. D. K.
2007-01-01
Water plasma immersion ion implantation (PIII) was conducted on orthopedic NiTi shape memory alloy to enhance the surface electrochemical characteristics. The surface composition of the NiTi alloy before and after H 2O-PIII was determined by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) was utilized to determine the roughness and morphology of the NiTi samples. Potentiodynamic polarization tests and electrochemical impedance spectroscopy (EIS) were carried out to investigate the surface electrochemical behavior of the control and H 2O-PIII NiTi samples in simulated body fluids (SBF) at 37 °C as well as the mechanism. The H 2O-PIII NiTi sample showed a higher breakdown potential ( Eb) than the control sample. Based on the AFM results, two different physical models with related equivalent electrical circuits were obtained to fit the EIS data and explain the surface electrochemical behavior of NiTi in SBF. The simulation results demonstrate that the higher resistance of the oxide layer produced by H 2O-PIII is primarily responsible for the improvement in the surface corrosion resistance.
Ye, Sang-Ho; Jang, Yong-Seok; Yun, Yeo-Heung; Shankarraman, Venkat; Woolley, Joshua R; Hong, Yi; Gamble, Lara J; Ishihara, Kazuhiko; Wagner, William R
2013-07-02
Siloxane functionalized phosphorylcholine (PC) or sulfobetaine (SB) macromolecules (PCSSi or SBSSi) were synthesized to act as surface modifying agents for degradable metallic surfaces to improve acute blood compatibility and slow initial corrosion rates. The macromolecules were synthesized using a thiol-ene radical photopolymerization technique and then utilized to modify magnesium (Mg) alloy (AZ31) surfaces via an anhydrous phase deposition of the silane functional groups. X-ray photoelectron spectroscopy surface analysis results indicated successful surface modification based on increased nitrogen and phosphorus or sulfur composition on the modified surfaces relative to unmodified AZ31. In vitro acute thrombogenicity assessment after ovine blood contact with the PCSSi and SBSSi modified surfaces showed a significant decrease in platelet deposition and bulk phase platelet activation compared with the control alloy surfaces. Potentiodynamic polarization and electrochemical impedance spectroscopy data obtained from electrochemical corrosion testing demonstrated increased corrosion resistance for PCSSi- and SBSSi-modified AZ31 versus unmodified surfaces. The developed coating technique using PCSSi or SBSSi showed promise in acutely reducing both the corrosion and thrombotic processes, which would be attractive for application to blood contacting devices, such as vascular stents, made from degradable Mg alloys.
Catalysts for electrochemical generation of oxygen
NASA Technical Reports Server (NTRS)
Hagans, P.; Yeager, E.
1978-01-01
Single crystal surfaces of platinum and gold and transition metal oxides of the spinel type were studied to find more effective catalysts for the electrolytic evolution of oxygen and to understand the mechanism and kinetics for the electrocatalysis in relation to the surface electronic and lattice properties of the catalyst. The single crystal studies involve the use of low energy electron diffraction (LEED) and Auger electron spectroscopy as complementary tools to the electrochemical measurements. Modifications to the transfer system and to the thin-layer electrochemical cell used to facilitate the transfer between the ultrahigh vacuum environment of the electron surface physics equipment and the electrochemical environment with a minimal possibility of changes in the surface structure, are described. The electrosorption underpotential deposition of Pb onto the Au(111), (100) and (110) single crystal surfaces with the thin-layer cell-LEED-Auger system is discussed as well as the synthesis of spinels for oxygen evolution studies.
Lubricant-impregnated surfaces for electrochemical applications, and devices and systems using same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solomon, Brian Richmond; Chen, Xinwei; Chiang, Yet-Ming
In certain embodiments, the invention relates to an electrochemical device having a liquid lubricant impregnated surface. At least a portion of the interior surface of the electrochemical device includes a portion that includes a plurality of solid features disposed therein. The plurality of solid features define a plurality of regions therebetween. A lubricant is disposed in the plurality of regions which retain the liquid lubricant in the plurality of regions during operation of the device. An electroactive phase comes in contact with at least the portion of the interior surface. The liquid lubricant impregnated surface introduces a slip at themore » surface when the electroactive phase flows along the surface. The electroactive phase may be a yield stress fluid.« less
Shen, Bo; Wen, Xianghua; Korshin, Gregory V
2018-05-14
Herein, the rotating disk electrode technique was used for the first time to investigate the effects of mass-transfer limitations and pH on the electrochemical oxidation of CPX, to determine the kinetics of CPX oxidation and to explore intrinsic mechanisms during the electron transfer process. Firstly, cyclic voltammetry revealed that an obvious irreversible CPX oxidation peak was observed within the potential window from 0.70 to 1.30 V at all pHs. Based on the Levich equation, the electrochemical oxidation of CPX in the electron transfer process was found to be controlled by both diffusion and kinetic processes when pH = 2, 5, 7 and 9; the diffusion coefficient of CPX at pH = 2 was calculated to be 1.5 × 10-7 cm2 s-1. Kinetic analysis indicated that the reaction on the electrode surface was adsorption-controlled compared to a diffusion process; the surface concentration of electroactive species was estimated to be 1.15 × 10-9 mol cm-2, the standard rate constant of the surface reaction was calculated to be 1.37 s-1, and CPX oxidation was validated to be a two-electron transfer process. Finally, a possible CPX oxidation pathway during the electron transfer process was proposed. The electrochemical degradation of CPX on a Ti-based anode was also conducted subsequently to investigate the electrochemical oxidation of CPX in the indirect oxidation process in bulk solutions. The effects of pH and current density were determined and compared to related literature results. The oxidation of CPX at different pHs is believed to be the result of a counterbalance between favorable and unfavorable factors, namely electromigration and side reactions of oxygen evolution, respectively. The effects of current density indicated a diffusion- and reaction-controlled process at low currents followed by a reaction-controlled process at high currents. The results presented in this study provide better understanding of the electrochemical oxidation of CPX and would enable the development of new treatment methods based on electrochemistry.
Yabuuchi, Naoaki; Yoshii, Kazuhiro; Myung, Seung-Taek; Nakai, Izumi; Komaba, Shinichi
2011-03-30
Lithium-excess manganese layered oxides, which are commonly described by the chemical formula zLi(2)MnO(3)-(1-z)LiMeO(2) (Me = Co, Ni, Mn, etc.), are of great importance as positive electrode materials for rechargeable lithium batteries. In this Article, Li(x)Co(0.13)Ni(0.13)Mn(0.54)O(2-δ) samples are prepared from Li(1.2)Ni(0.13)Co(0.13)Mn(0.54)O(2) (or 0.5Li(2)MnO(3)-0.5LiCo(1/3)Ni(1/3)Mn(1/3)O(2)) by an electrochemical oxidation/reduction process in an electrochemical cell to study a reaction mechanism in detail before and after charging across a voltage plateau at 4.5 V vs Li/Li(+). Changes of the bulk and surface structures are examined by synchrotron X-ray diffraction (SXRD), X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectroscopy (SIMS). SXRD data show that simultaneous oxygen and lithium removal at the voltage plateau upon initial charge causes the structural rearrangement, including a cation migration process from metal to lithium layers, which is also supported by XAS. This is consistent with the mechanism proposed in the literature related to the Li-excess manganese layered oxides. Oxygen removal associated with the initial charge on the high voltage plateau causes oxygen molecule generation in the electrochemical cells. The oxygen molecules in the cell are electrochemically reduced in the subsequent discharge below 3.0 V, leading to the extra capacity. Surface analysis confirms the formation of the oxygen containing species, such as lithium carbonate, which accumulates on the electrode surface. The oxygen containing species are electrochemically decomposed upon second charge above 4.0 V. The results suggest that, in addition to the conventional transition metal redox reactions, at least some of the reversible capacity for the Li-excess manganese layered oxides originates from the electrochemical redox reaction of the oxygen molecules at the electrode surface.
Controlled Atmosphere High Temperature SPM for electrochemical measurements
NASA Astrophysics Data System (ADS)
Vels Hansen, K.; Sander, C.; Koch, S.; Mogensen, M.
2007-03-01
A new controlled atmosphere high temperature SPM has been designed and build for the purpose of performing electrochemical measurements on solid oxide fuel cell materials. The first tests show that images can be obtained at a surface temperature of 465°C in air with a standard AFM AC probe. The aim is to produce images at a surface temperature of 800°C with electrically conducting ceramic probes as working electrodes that can be positioned at desired locations at the surface for electrochemical measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wixtroma, Alex I.; Buhlera, Jessica E.; Reece, Charles E.
2013-06-01
Recent research has shown that choline chloride-based solutions can be used to replace acid-based electrochemical polishing solutions. In this study niobium metal was successfully deposited on the surface of copper substrate via electrochemical deposition using a novel choline chloride-based ionic liquid. The niobium metal used for deposition on the Cu had been dissolved in the solution from electrochemical polishing of a solid niobium piece prior to the deposition. The visible coating on the surface of the Cu was analyzed using scanning electron microscopy (SEM) and electron dispersive x-ray spectroscopy (EDX). This deposition method effectively recycles previously dissolved niobium from electrochemicalmore » polishing.« less
Towards First Principles-Based Prediction of Highly Accurate Electrochemical Pourbaix Diagrams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Zhenhua; Chan, Maria K. Y.; Zhao, Zhi-Jian
2015-08-13
Electrochemical potential/pH (Pourbaix) diagrams underpin many aqueous electrochemical processes and are central to the identification of stable phases of metals for processes ranging from electrocatalysis to corrosion. Even though standard DFT calculations are potentially powerful tools for the prediction of such diagrams, inherent errors in the description of transition metal (hydroxy)oxides, together with neglect of van der Waals interactions, have limited the reliability of such predictions for even the simplest pure metal bulk compounds, and corresponding predictions for more complex alloy or surface structures are even more challenging. In the present work, through synergistic use of a Hubbard U correction,more » a state-of-the-art dispersion correction, and a water-based bulk reference state for the calculations, these errors are systematically corrected. The approach describes the weak binding that occurs between hydroxyl-containing functional groups in certain compounds in Pourbaix diagrams, corrects for self-interaction errors in transition metal compounds, and reduces residual errors on oxygen atoms by preserving a consistent oxidation state between the reference state, water, and the relevant bulk phases. The strong performance is illustrated on a series of bulk transition metal (Mn, Fe, Co and Ni) hydroxides, oxyhydroxides, binary, and ternary oxides, where the corresponding thermodynamics of redox and (de)hydration are described with standard errors of 0.04 eV per (reaction) formula unit. The approach further preserves accurate descriptions of the overall thermodynamics of electrochemically-relevant bulk reactions, such as water formation, which is an essential condition for facilitating accurate analysis of reaction energies for electrochemical processes on surfaces. The overall generality and transferability of the scheme suggests that it may find useful application in the construction of a broad array of electrochemical phase diagrams, including both bulk Pourbaix diagrams and surface phase diagrams of interest for corrosion and electrocatalysis.« less
Observation of Single-Protein and DNA Macromolecule Collisions on Ultramicroelectrodes.
Dick, Jeffrey E; Renault, Christophe; Bard, Allen J
2015-07-08
Single-molecule detection is the ultimate sensitivity in analytical chemistry and has been largely unavailable in electrochemical analysis. Here, we demonstrate the feasibility of detecting electrochemically inactive single biomacromolecules, such as enzymes, antibodies, and DNA, by blocking a solution redox reaction when molecules adsorb and block electrode sites. By oxidizing a large concentration of potassium ferrocyanide on an ultramicroelectrode (UME, radius ≤150 nm), time-resolved, discrete adsorption events of antibodies, enzymes, DNA, and polystyrene nanospheres can be differentiated from the background by their "footprint". Further, by assuming that the mass transport of proteins to the electrode surface is controlled mainly by diffusion, a size estimate using the Stokes-Einstein relationship shows good agreement of electrochemical data with known protein sizes.
NASA Astrophysics Data System (ADS)
Huy, Tran Quang; Hanh, Nguyen Thi Hong; Van Chung, Pham; Anh, Dang Duc; Nga, Phan Thi; Tuan, Mai Anh
2011-06-01
In this paper, we describes different methods to immobilize Japanese encephalitis virus (JEV) antibodies in human serum onto the interdigitated surface of a microelectrode sensor for optimizing electrochemical detection: (1) direct covalent binding to the silanized surface, (2) binding to the silanized surface via a cross-linker of glutaraldehyde (GA), (3) binding to glutaraldehyde/silanized surface via goat anti-human IgG polyclonal antibody and (4) binding to glutaraldehyde/silanized surface via protein A (PrA). Field emission scanning electron microscopy, Fourier transform infrared spectrometry, and fluorescence microscopy are used to verify the characteristics of antibodies on the interdigitated surface after the serum antibodies immobilization. The analyzed results indicate that the use of protein A is an effective choice for immobilization and orientation of antibodies in serum for electrochemical biosensors. This study provides an advantageous immobilization method of serum containing antiviral antibodies to develop electrochemical biosensors for preliminary screening of viruses in clinical samples from outbreaks.
Corrosion of orthodontic brackets in different spices: in vitro study.
Chaturvedi, T P
2014-01-01
Moist environment in the mouth varies and causes variable amounts of corrosion of dental materials. This is of concern particularly when metallic implants, metallic fillings, orthodontic appliances are placed in the hostile electrolytic environment in the human mouth. Components of diet rich in salt and spices are important factors influencing the corrosion of metallic appliances placed in the oral cavity. To study in vitro corrosion of orthodontic metallic brackets immersed in solutions of salt and spices in artificial saliva. Orthodontic brackets were used for corrosion studies in artificial saliva, salt, and spices using electrochemical technique and surface analysis. Electrochemical studies using different parameters were done in solutions of artificial saliva containing salt and spices. Photomicrographs from the optical microscope were also obtained. RESULTS of corrosion studies have clearly demonstrated that certain spices such as turmeric and coriander are effective in reducing corrosion, whereas salt and red chili have been found to enhance it. Surface analysis of small pits present on the surface of the as-received bracket will initiate corrosion which leads to more pitting.
Florian, David C; Melia, Michael A; Steuer, Fritz W; Briglia, Bruce F; Purzycki, Michael K; Scully, John R; Fitz-Gerald, James M
2017-05-11
As a lightweight metal with mechanical properties similar to natural bone, Mg and its alloys are great prospects for biodegradable, load bearing implants. However, rapid degradation and H 2 gas production in physiological media has prevented widespread use of Mg alloys. Surface heterogeneities in the form of intermetallic particles dominate the corrosion response. This research shows that surface homogenization significantly improved the biological corrosion response observed during immersion in simulated body fluid (SBF). The laser processed Mg alloy exhibited a 50% reduction in mass loss and H 2 evolution after 24 h of immersion in SBF when compared to the wrought, cast alloy. The laser processed samples exhibited increased wettability as evident from wetting angle studies, further suggesting improved biocompatibility. Electrochemical analysis by potentiodynamic polarization measurements showed that the anodic and cathodic kinetics were reduced following laser processing and are attributed to the surface chemical homogeneity.
Gao, Tao; Li, Liudi; Wang, Bei; Zhi, Jun; Xiang, Yang; Li, Genxi
2016-10-18
Artificial control of cell adhesion on smart surface is an on-demand technique in areas ranging from tissue engineering, stem cell differentiation, to the design of cell-based diagnostic system. In this paper, we report an electrochemical system for dynamic control of cell catch-and-release, which is based on the redox-controlled host-guest interaction. Experimental results reveal that the interaction between guest molecule (ferrocene, Fc) and host molecule (β-cyclodextrin, β-CD) is highly sensitive to electrochemical stimulus. By applying a reduction voltage, the uncharged Fc can bind to β-CD that is immobilized at the electrode surface. Otherwise, it is disassociated from the surface as a result of electrochemical oxidation, thus releasing the captured cells. The catch-and-release process on this voltage-responsive surface is noninvasive with the cell viability over 86%. Moreover, because Fc can act as an electrochemical probe for signal readout, the integration of this property has further extended the ability of this system to cell detection. Electrochemical signal has been greatly enhanced for cell detection by introducing branched polymer scaffold that are carrying large quantities of Fc moieties. Therefore, a minimum of 10 cells can be analyzed. It is anticipated that such redox-controlled system can be an important tool in biological and biomedical research, especially for electrochemical stimulated tissue engineering and cell-based clinical diagnosis.
NASA Astrophysics Data System (ADS)
Li, Xiaowei; Minamimoto, Hiro; Murakoshi, Kei
2018-05-01
The vibrational characteristics of ligand-capped lead sulfide (PbS) quantum dots (QDs) were clarified via electrochemical surface-enhanced Raman spectroscopy (EC-SERS) using a hybridized system of gold (Au) nanodimers and PbS QDs under electrochemical potential control. Enhanced electromagnetic field caused by the coupling of QDs with plasmonic Au nanodimers allowed the characteristic behavior of the ligand oleic acid (OA) on the PbS QD surface to be detected under electrochemical potential control. Binding modes between the QDs and OA molecules were characterized using synchronous two-dimensional correlation spectra at distinct electrochemical potentials, confirming that the bidentate bridging mode was probably the most stable mode even under relatively negative potential polarization. Changes in binding modes and molecular orientations resulted in fluctuations in EC-SERS spectra. The present observations strongly recommend the validity of the QD-plasmonic nanostructure coupled system for sensitive molecular detection via EC-SERS.
Zhang, Kegui; Yang, Wenzhong; Xu, Bin; Chen, Yun; Yin, Xiaoshuang; Liu, Ying; Zuo, Huanzhen
2018-05-01
A natural carbohydrate polymer, konjac glucomanan, has been extracted from commercial product and studied as a green corrosion inhibitor for AA5052 aluminium alloy in 3.5 wt% NaCl solution by high-performance gel permeation chromatography (GPC), thermo gravimetric analysis (TGA), Fourier-transform infrared (FT-IR) spectra, electrochemical measurement and surface characterization techniques. The results of GPC measurements suggest the weight-average molecular weight and the number-average molecular weight of KGM with 98.2% purity are 1.61 × 10 5 g/mol and 1.54 × 10 5 g/mol, respectively. Potentiodynamic polarization curves show konjac glucomanan behaves as a mixed-type inhibitor with dominant anodic effect and that its maximum efficiency at 200 ppm is 94%. Electrochemical impedance spectroscopy (EIS) studies reveal the resistance of oxide film is approximately two orders of magnitude greater than the resistance of adsorbed inhibitor layer and that they both increase with KGM concentration. Moreover, in-situ electrochemical noise (EN) detection demonstrates that the growth and propagation stages of the pitting corrosion germinating on metal surface are blocked by polysaccharide additive, which is confirmed by the surface analysis of aluminium alloy using scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and Raman spectroscopy. At last, it is found that the addition of KGM makes it harder for water droplet containing NaCl to wet the metallic substrate. Copyright © 2018 Elsevier Inc. All rights reserved.
Surface alloying of aluminum with molybdenum by high-current pulsed electron beam
NASA Astrophysics Data System (ADS)
Xia, Han; Zhang, Conglin; Lv, Peng; Cai, Jie; Jin, Yunxue; Guan, Qingfeng
2018-02-01
The surface alloying of pre-coated molybdenum (Mo) film on aluminum (Al) substrate by high-current pulsed electron beam (HCPEB) was investigated. The microstructure and phase analysis were conducted by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that Mo particles were dissolved into Al matrix to form alloying layer, which was composed of Mo, Al and acicular or equiaxed Al5Mo phases after surface alloying. Meanwhile, various structure defects such as dislocation loops, high-density dislocations and dislocation walls were observed in the alloying surface. The corrosion resistance was tested by using potentiodynamic polarization curves and electrochemical impedance spectra (EIS). Electrochemical results indicate that all the alloying samples had better corrosion resistance in 3.5 wt% NaCl solution compared to initial sample. The excellent corrosion resistance is mainly attributed to the combined effect of the structure defects and the addition of Mo element to form a more stable passive film.
Theoretical Study on Sers of Wagging Vibrations of Benzyl Radical Adsorbed on Silver Electrodes
NASA Astrophysics Data System (ADS)
Wu, De-Yin; Chen, Yan-Li; Tian, Zhong-Qun
2016-06-01
Electrochemical surface-enhanced Raman spectroscopy (EC-SERS) has been used to characterize adsorbed species widely but reaction intermediates rarely on electrodes. In previous studies, the observed SERS signals were proposed from surface benzyl species due to the electrochemical reduction of benzyl chloride on silver electrode surfaces. In this work, we reinvestigated the vibrational assignments of benzyl chloride and benzyl radical as the reaction intermediate. On the basis of density functional theoretical (DFT) calculations and normal mode analysis, our systematical results provide more reasonable new assignments for both surface species. Further, we investigated adsorption configurations, binding energies, and vibrational frequency shifts of benzyl radical interacting with silver. Our calculated results show that the wagging vibration displays significant vibrational frequency shift, strong coupling with some intramolecular modes in the phenyl ring, and significant changes in intensity of Raman signals. The study also provides absolute Raman intensity in benzyl halides and discuss the enhancement effect mainly due to the binding interaction with respect to free benzyl radical.
Aptamer-based detection of plasma proteins by an electrochemical assay coupled to magnetic beads.
Centi, Sonia; Tombelli, Sara; Minunni, Maria; Mascini, Marco
2007-02-15
The DNA thrombin aptamer has been extensively investigated, and the coupling of this aptamer to different transduction principles has demonstrated the wide applicability of aptamers as bioreceptors in bioanalytical assays. The goal of this work was to design an aptamer-based sandwich assay with electrochemical detection for thrombin analysis in complex matrixes, using a simple target capturing step by aptamer-functionalized magnetic beads. The conditions for the aptamer immobilization and for the protein binding have been first optimized by surface plasmon resonance, and then transferred to the electrochemical-based assay performed onto screen-printed electrodes. The assay was then applied to the analysis of thrombin in buffer, spiked serum, and plasma and high sensitivity and specificity were found. Moreover, thrombin was generated in situ in plasma by the conversion of its precursor prothrombin, and the formation of thrombin was followed at different times. The concentrations detected by the electrochemical assay were in agreement with a simulation software that mimics the formation of thrombin over time (thrombogram). The proposed work demonstrates that the high specificity of aptamers together with the use of magnetic beads are the key features for aptamer-based analysis in complex matrixes, opening the possibility of a real application to diagnostics or medical investigation.
Junqueira, João R C; de Araujo, William R; Salles, Maiara O; Paixão, Thiago R L C
2013-01-30
A simple and fast electrochemical method for quantitative analysis of picric acid explosive (nitro-explosive) based on its electrochemical reduction at copper surfaces is reported. To achieve a higher sample throughput, the electrochemical sensor was adapted in a flow injection system. Under optimal experimental conditions, the peak current response increases linearly with picric acid concentration over the range of 20-300 μmol L(-1). The repeatability of the electrode response in the flow injection analysis (FIA) configuration was evaluated as 3% (n=10), and the detection limit of the method was estimated to be 6.0 μmol L(-1) (S/N=3). The sample throughput under optimised conditions was estimated to be 550 samples h(-1). Peroxide explosives like triacetone triperoxide (TATP) and hexamethylene triperoxide diamine (HMTD) were tested as potential interfering substances for the proposed method, and no significant interference by these explosives was noticed. The proposed method has interesting analytical parameters, environmental applications, and low cost compared with other electroanalytical methods that have been reported for the quantification of picric acid. Additionally, the possibility to develop an in situ device for the detection of picric acid using a disposable sensor was evaluated. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Meng, Jianbing; Dong, Xiaojuan; Wei, Xiuting; Yin, Zhanmin
2014-03-01
Hard anti-adhesion surfaces, with low roughness and wear resistance, on aluminium substrates of rubber plastic moulds were fabricated via a new coupling method of liquid plasma and electrochemical machining. With the aid of liquid plasma thermal polishing and electrochemical anodic dissolution, micro/nano-scale binary structures were prepared as the base of the anti-adhesion surfaces. The anti-adhesion behaviours of the resulting aluminium surfaces were analysed by a surface roughness measuring instrument, a scanning electron microscope (SEM), a Fourier-transform infrared spectrophotometer (FTIR), an X-ray diffractometer (XRD), an optical contact angle meter, a digital Vickers micro-hardness (Hv) tester, and electronic universal testing. The results show that, after the liquid plasma and electrochemical machining, micro/nano-scale binary structures composed of micro-scale pits and nano-scale elongated boss structures were present on the sample surfaces. As a result, the anti-adhesion surfaces fabricated by the above coupling method have good anti-adhesion properties, better wear resistance and lower roughness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Jianbing, E-mail: jianbingmeng@126.com; Dong, Xiaojuan; Wei, Xiuting
Hard anti-adhesion surfaces, with low roughness and wear resistance, on aluminium substrates of rubber plastic moulds were fabricated via a new coupling method of liquid plasma and electrochemical machining. With the aid of liquid plasma thermal polishing and electrochemical anodic dissolution, micro/nano-scale binary structures were prepared as the base of the anti-adhesion surfaces. The anti-adhesion behaviours of the resulting aluminium surfaces were analysed by a surface roughness measuring instrument, a scanning electron microscope (SEM), a Fourier-transform infrared spectrophotometer (FTIR), an X-ray diffractometer (XRD), an optical contact angle meter, a digital Vickers micro-hardness (Hv) tester, and electronic universal testing. The resultsmore » show that, after the liquid plasma and electrochemical machining, micro/nano-scale binary structures composed of micro-scale pits and nano-scale elongated boss structures were present on the sample surfaces. As a result, the anti-adhesion surfaces fabricated by the above coupling method have good anti-adhesion properties, better wear resistance and lower roughness.« less
Nonenzymatic Wearable Sensor for Electrochemical Analysis of Perspiration Glucose.
Zhu, Xiaofei; Ju, Yinhui; Chen, Jian; Liu, Deye; Liu, Hong
2018-05-25
We report a nonenzymatic wearable sensor for electrochemical analysis of perspiration glucose. Multipotential steps are applied on a Au electrode, including a high negative pretreatment potential step for proton reduction which produces a localized alkaline condition, a moderate potential step for electrocatalytic oxidation of glucose under the alkaline condition, and a positive potential step to clean and reactivate the electrode surface for the next detection. Fluorocarbon-based materials were coated on the Au electrode for improving the selectivity and robustness of the sensor. A fully integrated wristband is developed for continuous real-time monitoring of perspiration glucose during physical activities, and uploading the test result to a smartphone app via Bluetooth.
Multi-layer seal for electrochemical devices
Chou, Yeong-Shyung [Richland, WA; Meinhardt, Kerry D [Kennewick, WA; Stevenson, Jeffry W [Richland, WA
2010-11-16
Multi-layer seals are provided that find advantageous use for reducing leakage of gases between adjacent components of electrochemical devices. Multi-layer seals of the invention include a gasket body defining first and second opposing surfaces and a compliant interlayer positioned adjacent each of the first and second surfaces. Also provided are methods for making and using the multi-layer seals, and electrochemical devices including said seals.
Multi-layer seal for electrochemical devices
Chou, Yeong-Shyung [Richland, WA; Meinhardt, Kerry D [Kennewick, WA; Stevenson, Jeffry W [Richland, WA
2010-09-14
Multi-layer seals are provided that find advantageous use for reducing leakage of gases between adjacent components of electrochemical devices. Multi-layer seals of the invention include a gasket body defining first and second opposing surfaces and a compliant interlayer positioned adjacent each of the first and second surfaces. Also provided are methods for making and using the multi-layer seals, and electrochemical devices including said seals.
Superwetting and aptamer functionalized shrink-induced high surface area electrochemical sensors.
Hauke, A; Kumar, L S Selva; Kim, M Y; Pegan, J; Khine, M; Li, H; Plaxco, K W; Heikenfeld, J
2017-08-15
Electrochemical sensing is moving to the forefront of point-of-care and wearable molecular sensing technologies due to the ability to miniaturize the required equipment, a critical advantage over optical methods in this field. Electrochemical sensors that employ roughness to increase their microscopic surface area offer a strategy to combatting the loss in signal associated with the loss of macroscopic surface area upon miniaturization. A simple, low-cost method of creating such roughness has emerged with the development of shrink-induced high surface area electrodes. Building on this approach, we demonstrate here a greater than 12-fold enhancement in electrochemically active surface area over conventional electrodes of equivalent on-chip footprint areas. This two-fold improvement on previous performance is obtained via the creation of a superwetting surface condition facilitated by a dissolvable polymer coating. As a test bed to illustrate the utility of this approach, we further show that electrochemical aptamer-based sensors exhibit exceptional signal strength (signal-to-noise) and excellent signal gain (relative change in signal upon target binding) when deployed on these shrink electrodes. Indeed, the observed 330% gain we observe for a kanamycin sensor is 2-fold greater than that seen on planar gold electrodes. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhu, Jing; Gan, Haiying; Wu, Jie; Ju, Huangxian
2018-04-17
A bipedal molecular machine powered surface programmatic chain reaction was designed for electrochemical signal amplification and highly sensitive electrochemical detection of protein. The bipedal molecular machine was built through aptamer-target specific recognition for the binding of one target protein with two DNA probes, which hybridized with surface-tethered hairpin DNA 1 (H1) via proximity effect to expose the prelocked toehold domain of H1 for the hybridization of ferrocene-labeled hairpin DNA 2 (H2-Fc). The toehold-mediated strand displacement reaction brought the electrochemical signal molecule Fc close to the electrode and meanwhile released the bipedal molecular machine to traverse the sensing surface by the surface programmatic chain reaction. Eventually, a large number of duplex structures of H1-H2 with ferrocene groups facing to the electrode were formed on the sensor surface to generate an amplified electrochemical signal. Using thrombin as a model target, this method showed a linear detection range from 2 pM to 20 nM with a detection limit of 0.76 pM. The proposed detection strategy was enzyme-free and allowed highly sensitive and selective detection of a variety of protein targets by using corresponding DNA-based affinity probes, showing potential application in bioanalysis.
Konikkara, Niketha; Kennedy, L John; Vijaya, J Judith
2016-11-15
Utilization of crust leather waste (CLW) as precursors for the preparation of hierarchical porous carbons (HPC) were investigated. HPCs were prepared from CLW by pre-carbonization followed by chemical activation using KOH at relatively high temperatures. Textural properties of HPC's showed an extent of micro-and mesoporosity with maximum BET surface area of 716m(2)/g. Inducements of graphitic planes in leather waste derived carbons were observed from X-ray diffraction and HR-TEM analysis. Microstructure, thermal behavior and surface functional groups were identified using FT-Raman, thermo gravimetric analysis and FT-IR techniques. HPCs were evaluated for electrochemical properties by cyclic voltammetry (CV), galvanostatic charge/discharge (GCD) and electrochemical impedance spectroscopy (EIS) by three electrode system. CLC9 sample showed a maximum capacitance of 1960F/g in 1M KCl electrolyte. Results achieved from rectangular curves of CV, GCD symmetric curves and Nyquist plots show that the leather waste carbon is suitable to fabricate supercapacitors as it possess high specific capacitance and electrochemical cycle stability. The present study proposes an effective method for solid waste management in leather industry by the way of converting toxic leather waste to new graphitic porous carbonaceous materials as a potential candidate for energy storage devices. Copyright © 2016 Elsevier B.V. All rights reserved.
Understanding the nanoscale redox-behavior of iron-anodes for rechargeable iron-air batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weinrich, Henning; Come, Jérémy; Tempel, Hermann
Iron-air cells provide a promising and resource-efficient alternative battery concept with superior area specific power density characteristics compared to state-of-the-art Li-air batteries and potentially superior energy density characteristics compared to present Li-ion batteries. Understanding charge-transfer reactions at the anode-electrolyte interface is the key to develop high-performance cells. By employing in-situ electrochemical atomic force microscopy (in-situ EC-AFM), in-depth insight into the electrochemically induced surface reaction processes on iron in concentrated alkaline electrolyte is obtained. The results highlight the formation and growth of the redox-layer on iron over the course of several oxidation/reduction cycles. By this means, a direct correlation between topographymore » changes and the corresponding electrochemical reactions at the nanoscale could unambiguously be established. Here in this paper, the twofold character of the nanoparticulate redox-layer in terms of its passivating character and its contribution to the electrochemical reactions is elucidated. Furthermore, the evolution of single nanoparticles on the iron electrode surface is evaluated in unprecedented and artifact-free detail. Based on the dedicated topography analysis, a detailed structural model for the evolution of the redox-layer which is likewise elementary for corrosion science and battery research is derived.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Guodong; Lin, Yuehe
2005-09-15
Electrochemical sensor for detection of organophosphate (OP) pesticides and nerve agents using zirconia (ZrO₂) nanoparticles as selective sorbents is presented. Zirconia nanoparticles were electrodynamically deposited onto the polycrystalline gold electrode by cyclic voltammetry. Because of a strong affinity of zirconia to the phosphoric group, nitroaromatic OPs strongly bind to the ZrO₂ nanoparticle surface. The electrochemical characterization and anodic stripping voltammetric performance of bound OPs were evaluated using cyclic voltammetric and square-wave voltammetric (SWV) analysis. SWV was used to monitor the amount of bound OPs and provide simple, fast, and facile quantitative methods for nitroaromatic OP compounds. The sensor surface canmore » be regenerated by successively running SWV scanning. Operational parameters, including the amount of nanoparticles, adsorption time, and the pH of the reaction medium have been optimized. The stripping voltammetric response is highly linear over the 5–200 ng/mL (ppb) methyl parathion range examined (2-min adsorption), with a detection limit of 1 ng/mL (10 min accumulation), and good precision (RSD=5.3 %, n = 10). The promising stripping voltammetric performances open new opportunities for fast, simple, and sensitive analyzing of OPs in environmental and biological samples. These findings can lead to a widespread use of electrochemical sensors to detect OP contaminates.« less
NASA Astrophysics Data System (ADS)
Zheng, Dongdong; Qiang, Yujie; Xu, Shenying; Li, Wenpo; Yu, Shanshan; Zhang, Shengtao
2017-02-01
Metal oxides have emerged as one kind of important supercapacitor electrode materials. Herein, we report hierarchical MnO2 nanosheets prepared of indium tin oxide (ITO) coated glass substrates via a hybrid two-step protocol, including a cathodic electrodeposition technique and a hydrothermal process. The samples are characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) with energy dispersive X-ray spectroscopy (EDX), and transmission electron microscope (TEM). SEM and TEM images show that the as-synthesized MnO2 nanosheets are hierarchical and porous, which could increase the active surface and short paths for fast ion diffusion. The results of nitrogen adsorption-desorption analysis indicate that the BET surface area of the MnO2 nanosheets is 53.031 m2 g-1. Furthermore, the electrochemical properties of the MnO2 are elucidated by cyclic voltammograms (CV), galvanostatic charge-discharge (GCD) tests, and electrochemical impedance spectroscopy (EIS) in 0.1 M Na2SO4 electrolyte. The electrochemical results demonstrate that the as-grown MnO2 nanosheet exhibits an excellent specific capacitance of 335 F g-1 at 0.5 A g-1 when it is applied as a potential electrode material for an electrochemical supercapacitor. Additionally, the MnO2 nanosheet electrode also presents high rate capability and good cycling stability with 91.8% retention after 1000 cycles. These excellent properties indicate that the hierarchical MnO2 nanosheets are a potential electrode material for electrochemical supercapacitors.
Lee, Kang; Choe, Han-Cheol
2016-02-01
In this study, we prepared magnesium (Mg) doped nano-phase hydroxyapatite (HAp) films on the TiO2 nano-network surface using electrochemical deposition method. Ti-6Al-4V ELI surface was anodized in 5 M NaOH solution at 0.3 A for 10 min. Nano-network TiO2 surface were formed by these anodization steps which acted as templates and anchorage for growth of the Mg doped HAp during subsequent pulsed electrochemical deposition process at 85 degrees C. The phase and morphologies of HAp deposits were influenced by the Mg ion concentration.
2015-01-01
The oxygen exchange activity of mixed conducting oxide surfaces has been widely investigated, but a detailed understanding of the corresponding reaction mechanisms and the rate-limiting steps is largely still missing. Combined in situ investigation of electrochemically polarized model electrode surfaces under realistic temperature and pressure conditions by near-ambient pressure (NAP) XPS and impedance spectroscopy enables very surface-sensitive chemical analysis and may detect species that are involved in the rate-limiting step. In the present study, acceptor-doped perovskite-type La0.6Sr0.4CoO3-δ (LSC), La0.6Sr0.4FeO3-δ (LSF), and SrTi0.7Fe0.3O3-δ (STF) thin film model electrodes were investigated under well-defined electrochemical polarization as cathodes in oxidizing (O2) and as anodes in reducing (H2/H2O) atmospheres. In oxidizing atmosphere all materials exhibit additional surface species of strontium and oxygen. The polaron-type electronic conduction mechanism of LSF and STF and the metal-like mechanism of LSC are reflected by distinct differences in the valence band spectra. Switching between oxidizing and reducing atmosphere as well as electrochemical polarization cause reversible shifts in the measured binding energy. This can be correlated to a Fermi level shift due to variations in the chemical potential of oxygen. Changes of oxidation states were detected on Fe, which appears as FeIII in oxidizing atmosphere and as mixed FeII/III in H2/H2O. Cathodic polarization in reducing atmosphere leads to the reversible formation of a catalytically active Fe0 phase. PMID:26877827
Báez, Daniela F.; Pardo, Helena; Laborda, Ignacio; Marco, José F.; Yáñez, Claudia; Bollo, Soledad
2017-01-01
For the first time a critical analysis of the influence that four different graphene oxide reduction methods have on the electrochemical properties of the resulting reduced graphene oxides (RGOs) is reported. Starting from the same graphene oxide, chemical (CRGO), hydrothermal (hTRGO), electrochemical (ERGO), and thermal (TRGO) reduced graphene oxide were produced. The materials were fully characterized and the topography and electroactivity of the resulting glassy carbon modified electrodes were also evaluated. An oligonucleotide molecule was used as a model of DNA electrochemical biosensing. The results allow for the conclusion that TRGO produced the RGOs with the best electrochemical performance for oligonucleotide electroanalysis. A clear shift in the guanine oxidation peak potential to lower values (~0.100 V) and an almost two-fold increase in the current intensity were observed compared with the other RGOs. The electrocatalytic effect has a multifactorial explanation because the TRGO was the material that presented a higher polydispersity and lower sheet size, thus exposing a larger quantity of defects to the electrode surface, which produces larger physical and electrochemical areas. PMID:28677654
NASA Astrophysics Data System (ADS)
Ma, Juanjuan; Liu, Lin; Chen, Qian; Yang, Min; Wang, Danping; Tong, Zhiwei; Chen, Zhong
2017-03-01
Elaborate design and synthesis of efficient and stable non-Pt electrocatalysts for some renewable energy related conversion/storage processes are one of the major goals of sustainable chemistry. Herein, we report a facile method to fabricate Co porphyrin functionalized electrochemically reduced graphene oxide (CoTMPyP/ERGO) thin film by direct assembly of oppositely charged tetrakis(N-methylpyridyl) porphyrinato cobalt (CoTMPyP) and GO nanosheets under mild conditions followed by an electrochemical reduction procedure. STEM analysis confirms that CoTMPyP nanoaggregates are homogeneously distributed over the graphene surface. The electrochemical properties of CoTMPyP/ERGO were investigated by cyclic voltammetry, linear sweep voltammetry and electrochemical impedance spectroscopy. The results demonstrate that CoTMPyP/ERGO nanohybrid film can serve as excellent electrocatalyst for hydrogen evolution in alkaline solution with high activity and stability. The intimate contact and efficient electron transfer between CoTMPyP and ERGO, as well as the crumpled structure, contribute to the improvement of the electrocatalytic performance.
NASA Astrophysics Data System (ADS)
Agilan, P.; Rajendran, N.
2018-05-01
Titania nanotube arrays (TNTA) have attracted increasing attention due to their outstanding properties and potential applications in biomedical field. Fabrication of titania nanotubes on titanium surface enhances the biocompatibility. Polyaniline (PANI) is one of the best conducting polymers with remarkable corrosion resistance and reasonable biocompatibility. In this work, the corrosion resistance and biocompatibility of polyaniline encapsulated TiO2 nanotubes for orthopaedic applications were investigated. The vertically oriented, highly ordered TiO2 nanotubes were fabricated on titanium by electrochemical anodization process using fluoride containing electrolytes. The anodization parameters viz., voltage, pH, time and electrolyte concentration were optimized to get orderly arranged TNTA. Further, the conducting polymer PANI was encapsulated on TNTA by electropolymerization process to enhance the corrosion resistance. The nanostructure of the fabricated TNTA and polyaniline encapsulated titania nanotube arrays (PANI-TNTA) were investigated by HR SEM analysis. The formed phases and functional groups were find using XRD, ATR-FTIR. The hydrophilic surface of TNTA and PANI-TNTA was identified by water contact angle studies. The corrosion behavior of specimens was evaluated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization studies. In-vitro immersion studies were carried out in simulated body fluid solution (Hanks' solution) to evaluate the bioactivity of the TNTA and PANI-TNTA. The surface morphological studies revealed the formation of PANI on the TNTA surface. Formation of hydroxyapatite (HAp) on the surfaces of TNTA and PANI-TNTA enhanced the bioactivity and corrosion resistance.
Qiao, Guang-yan; Zhang, Li-xia; Wang, Jue; Shen, Qing-ping; Su, Jian-sheng
2014-08-01
To investigate the effect of epigallocatechin gallate (EGCG) on the surface properties of nickel-chromium dental alloys after electrochemical corrosion. The surface morphology and surface structure of nickel-chromium dental alloys were examined by stereomicroscope and scanning electron microscopy before and after electrochemical tests in 0 g/L and 1.0 g/L EGCG artificial saliva. The surface element component and chemical states of nickel-chromium dental alloys were analyzed by X-ray photoelectron spectrograph after electrochemical tests in 0 g/L and 1.0 g/L EGCG artificial saliva. More serious corrosion happened on the surface of nickel-chromium alloy in 1.0 g/L EGCG artificial saliva than in 0 g/L EGCG. The diameters of corrosion pits were smaller, and the dendrite structure of the alloy surface was not affected in 0 g/L EGCG. While the diameters of corrosion pits were larger, the dendritic interval of the alloy surface began to merge, and the dendrite structure was fuzzy in 1.0 g/L EGCG. In addition, the O, Ni, Cr, Be, C and Mo elements were detected on the surface of nickel-chromium alloys after sputtered for 120 s in 0 g/L EGCG and 1.0 g/L EGCG artificial saliva after electrochemical corrosion, and the surface oxides were mainly NiO and Cr(2)O(3). Compared with 0 g/L EGCG artificial saliva, the content of O, NiO and Cr(2)O(3) were lower in 1.0 g/L EGCG. The results of surface morphology and the corrosion products both show that the corrosion resistance of nickel-chromium alloys become worse and the oxide content of corrosion products on the surface reduce in 1.0 g/L EGCG artificial saliva.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Berkel, Gary J; Kertesz, Vilmos
2009-01-01
This paper reports on the conversion of a liquid microjunction surface sampling probe (LMJ-SSP) into a two electrode electrochemical cell using a conductive sample surface and the probe as the two electrodes with an appropriate battery powered circuit. With this LMJ-SSP, two-electrode cell arrangement, tagging of analyte thiol functionalities (in this case peptide cysteine residues) with hydroquinone tags was initiated electrochemically using a hydroquinone doped solution when the analyte either was initially in solution or was sampled from a surface. Efficient tagging (~90%), at flow rates of 5-10 L/min, could be achieved for up to at least two cysteines onmore » a peptide. The high tagging efficiency observed was explained with a simple kinetic model. In general, the incorporation of a two-electrode electrochemical cell, or other multiple electrode arrangement, into the LMJ-SSP is expected to add to the versatility of this approach for surface sampling and ionization coupled with mass spectrometric detection.« less
Methods for making a multi-layer seal for electrochemical devices
Chou, Yeong-Shyung [Richland, WA; Meinhardt, Kerry D [Kennewick, WA; Stevenson, Jeffry W [Richland, WA
2007-05-29
Multi-layer seals are provided that find advantageous use for reducing leakage of gases between adjacent components of electrochemical devices. Multi-layer seals of the invention include a gasket body defining first and second opposing surfaces and a compliant interlayer positioned adjacent each of the first and second surfaces. Also provided are methods for making and using the multi-layer seals, and electrochemical devices including said seals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Ke; Ilton, Eugene S.; Antonio, Mark R.
2015-05-19
Reduction of U(VI) to U(VI) on mineral surfaces is often considered a one-step two-electron process. However, stabilized U(V), with no evidence of U(IV), found in recent studies Indicates U(VI) can undergo a one-electron reduction to U(V) without further progression to U(VI),. We investigated reduction pathways of uranium by reducing U(VI) electrochemically on a, magnetite electrode at,pH 3.4. Cyclic voltammetry confirms the one-electron reduction of U(VI) . Formation of nanosize uranium precipitates on the magnetite surface at reducing potentials and dissolution of the solids at oxidizing potentials are observed by in situ electrochemical atomic force microscopy. XPS, analysis Of the magnetitemore » electrodes polarized in uranium solutions at voltages - from -0.1 to -0.9 V (E-U(VI)/U(V)(0)= -0.135 V vs Ag/AgCl) show the presence of, only U(V) and U(VI). The sample with the highest U(V)/U(VI) ratio was prepared at -0.7 V, where the longest average U-O-axial distance of 2.05 + 0.01 A was evident in the same sample revealed by extended X-ray absorption fine structure analysis. The results demonstrate that the electrochemical reduction of U(VI) On magnetite only yields,U(V), even at a potential of -0.9 V, which favors the one-electron reduction mechanism, U(V) does not disproportionate but stabilizes on magnetite through precipitation Of mixed-valence state -U(V)/U(VI) solids.« less
Development of binary and ternary titanium alloys for dental implants.
Cordeiro, Jairo M; Beline, Thamara; Ribeiro, Ana Lúcia R; Rangel, Elidiane C; da Cruz, Nilson C; Landers, Richard; Faverani, Leonardo P; Vaz, Luís Geraldo; Fais, Laiza M G; Vicente, Fabio B; Grandini, Carlos R; Mathew, Mathew T; Sukotjo, Cortino; Barão, Valentim A R
2017-11-01
The aim of this study was to develop binary and ternary titanium (Ti) alloys containing zirconium (Zr) and niobium (Nb) and to characterize them in terms of microstructural, mechanical, chemical, electrochemical, and biological properties. The experimental alloys - (in wt%) Ti-5Zr, Ti-10Zr, Ti-35Nb-5Zr, and Ti-35Nb-10Zr - were fabricated from pure metals. Commercially pure titanium (cpTi) and Ti-6Al-4V were used as controls. Microstructural analysis was performed by means of X-ray diffraction and scanning electron microscopy. Vickers microhardness, elastic modulus, dispersive energy spectroscopy, X-ray excited photoelectron spectroscopy, atomic force microscopy, surface roughness, and surface free energy were evaluated. The electrochemical behavior analysis was conducted in a body fluid solution (pH 7.4). The albumin adsorption was measured by the bicinchoninic acid method. Data were evaluated through one-way ANOVA and the Tukey test (α=0.05). The alloying elements proved to modify the alloy microstructure and to enhance the mechanical properties, improving the hardness and decreasing the elastic modulus of the binary and ternary alloys, respectively. Ti-Zr alloys displayed greater electrochemical stability relative to that of controls, presenting higher polarization resistance and lower capacitance. The experimental alloys were not detrimental to albumin adsorption. The experimental alloys are suitable options for dental implant manufacturing, particularly the binary system, which showed a better combination of mechanical and electrochemical properties without the presence of toxic elements. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Liu, Haijing; Cao, Yinliang; Wang, Feng; Huang, Yaqin
2014-01-22
Novel hierarchical lamellar porous carbon (HLPC) with high BET specific surface area of 2730 m(2) g(-1) and doped by nitrogen atoms has been synthesized from the fish scale without any post-synthesis treatment, and applied to support the platinum (Pt) nanoparticle (NP) catalysts (Pt/HLPC). The Pt NPs could be highly dispersed on the porous surface of HLPC with a narrow size distribution centered at ca. 2.0 nm. The results of the electrochemical analysis reveal that the electrochemical active surface area (ECSA) of Pt/HLPC is larger than the Pt NP electrocatalyst supported on the carbon black (Pt/Vulcan XC-72). Compared with the Pt/Vulcan XC-72, the Pt/HLPC exhibits larger current density, lower overpotential, and enhanced catalytic activity toward the oxygen reduction reaction (ORR) through the direct four-electron pathway. The improved catalytic activity is mainly attributed to the high BET specific surface area, hierarchical porous structures and the nitrogen-doped surface property of HLPC, indicating the superiority of HLPC as a promising support material for the ORR electrocatalysts.
NASA Astrophysics Data System (ADS)
Petruš, Ondrej; Oriňak, Andrej; Oriňaková, Renáta; Orságová Králová, Zuzana; Múdra, Erika; Kupková, Miriam; Kovaľ, Karol
2017-11-01
Two types of metallised nanocavities (single and hybrid) were fabricated by colloid lithography followed by electrochemical deposition of Ni and subsequently Ag layers. Introductory Ni deposition step iniciates more homogenous decoration of nanocavities with Ag nanoparticles. Silver nanocavity decoration has been so performed with lower nucleation rate and with Ag nanoparticles homogeinity increase. By this, two step Ni and Ag deposition trough polystyrene nanospheres (100, 300, 500, 700, 900 nm), the various Ag surfaces were obtained. Ni layer formation in the first step of deposition enabled more precise controlling of Ag film deposition and thus final Ag surface morphology. Prepared substrates were tested as active surfaces in SERS application. The best SERS signal enhancement was observed at 500 nm Ag nanocavities with normalised thickness Ni layer ∼0.5. Enhancement factor has been established at value 1.078 × 1010; time stability was determined within 13 weeks; charge distribution at nanocavity Ag surfaces as well as reflection spectra were calculated by FDTD method. Newly prepared nanocavity surface can be applied in SERS analysis, predominantly.
NASA Astrophysics Data System (ADS)
Sofiah, A. G. N.; Kananathan, J.; Samykano, M.; Ulakanathan, S.; Lah, N. A. C.; Harun, W. S. W.; Sudhakar, K.; Kadirgama, K.; Ngui, W. K.; Siregar, J. P.
2017-10-01
This paper investigates the influence of the electrolytic bath temperature on the morphology and physical properties of nickel (Ni) nanowires electrochemically deposited into the anodic alumina oxide porous membrane (AAO). The synthesis was performed using nickel sulfate hexahydrate (NiSO4.6H2O) and boric acid (H3BO3) as an electrolytic bath for the electrochemical deposition of Ni nanowires. During the experiment, the electrolyte bath temperature varied from 40°C, 80°C, and 120°C. After the electrochemical deposition process, AAO templates cleaned with distilled water preceding to dissolution in sodium hydroxide (NaOH) solution to obtain free-standing Ni nanowires. Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive Spectroscopy (EDX) and X-ray Diffraction (XRD) analysis were employed to characterize the morphology and physical properties of the synthesized Ni nanowires. Finding reveals the electrodeposition bath temperature significantly influences the morphology and physical properties of the synthesized Ni nanowires. Rougher surface texture, larger crystal size, and longer Ni nanowires obtained as the deposition bath temperature increased. From the physical properties properties analysis, it can be concluded that deposition bath temperature influence the physical properties of Ni nanowires.
Electrochemically induced annealing of stainless-steel surfaces.
Burstein, G T; Hutchings, I M; Sasaki, K
2000-10-19
Modification of the surface properties of metals without affecting their bulk properties is of technological interest in demanding applications where surface stability and hardness are important. When austenitic stainless steel is heavily plastically deformed by grinding or rolling, a martensitic phase transformation occurs that causes significant changes in the bulk and surface mechanical properties of the alloy. This martensitic phase can also be generated in stainless-steel surfaces by cathodic charging, as a consequence of lattice strain generated by absorbed hydrogen. Heat treatment of the steel to temperatures of several hundred degrees can result in loss of the martensitic structure, but this alters the bulk properties of the alloy. Here we show that martensitic structures in stainless steel can be removed by appropriate electrochemical treatment in aqueous solutions at much lower temperature than conventional annealing treatments. This electrochemically induced annealing process allows the hardness of cold-worked stainless steels to be maintained, while eliminating the brittle martensitic phase from the surface. Using this approach, we are able to anneal the surface and near-surface regions of specimens that contain rolling-induced martensite throughout their bulk, as well as those containing surface martensite induced by grinding. Although the origin of the electrochemical annealing process still needs further clarification, we expect that this treatment will lead to further development in enhancing the surface properties of metals.
Zhang, Fan; Nemeth, Karoly; Bareno, Javier; ...
2016-03-03
The feasibility of synthesizing functionalized h-BN (FBN) via the reaction between molten LiOH and solid h-BN is studied for the first time and its first ever application as an electrode material in Li-ion batteries is evaluated. Density functional theory (DFT) calculations are performed to provide mechanistic understanding of the possible electrochemical reactions derived from the FBN. Various materials characterizations reveal that the melt-solid reaction can lead to exfoliation and functionalization of h-BN simultaneously, while electrochemical analysis proves that the FBN can reversibly store charges through surface redox reactions with good cycle stability and coulombic efficiency. As a result, the DFTmore » calculations have provided physical insights into the observed electrochemical properties derived from the FBN.« less
Ye, Sang-Ho; Jang, Yong-Seok; Yun, Yeo-Heung; Shankarraman, Venkat; Woolley, Joshua R.; Hong, Yi; Gamble, Lara J.; Ishihara, Kazuhiko; Wagner, William R.
2013-01-01
Siloxane functionalized phosphorylcholine (PC) or sulfobetaine (SB) macromolecules (PCSSi or SBSSi) were synthesized to act as surface modifying agents for degradable metallic surfaces to improve acute blood compatibility and slow initial corrosion rates. The macromolecules were synthesized using a thiol-ene radical photopolymerization technique and then utilized to modify magnesium (Mg) alloy (AZ31) surfaces via an anhydrous phase deposition of the silane functional groups. X-ray photoelectron spectroscopy surface analysis results indicated successful surface modification based on increased nitrogen and phosphorus or sulfur composition on the modified surfaces relative to unmodified AZ31. In vitro acute thrombogenicity assessment after ovine blood contact with the PCSSi and SBSSi modified surfaces showed a significant decrease in platelet deposition and bulk phase platelet activation compared with the control alloy surfaces. Potentiodynamic polarization and electrochemical impedance spectroscopy data obtained from electrochemical corrosion testing demonstrated increased corrosion resistance for PCSSi and SBSSi modified AZ31 versus unmodified surfaces. The developed coating technique using PCSSi or SBSSi showed promise in acutely reducing both the corrosion and thrombotic processes, which would be attractive for application to blood contacting devices, such as vascular stents, made from degradable Mg alloys. PMID:23705967
Sohail, Manzar; De Marco, Roland; Jarolímová, Zdeňka; Pawlak, Marcin; Bakker, Eric; He, Ning; Latonen, Rose-Marie; Lindfors, Tom; Bobacka, Johan
2015-09-29
The transportation and accumulation of redox active species at the buried interface between glassy carbon electrodes and plasticized polymeric membranes have been studied using synchrotron radiation X-ray photoelectron spectroscopy (SR-XPS), near edge X-ray absorption fine structure (NEXAFS), in situ electrochemical Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy, cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). Ferrocene tagged poly(vinyl chloride) [FcPVC], ferrocene (Fc), and its derivatives together with tetracyanoquinodimethane (TCNQ) doped plasticized polymeric membrane electrodes have been investigated, so as to extend the study of the mechanism of this reaction chemistry to different time scales (both small and large molecules with variable diffusion coefficients) using a range of complementary electrochemical and surface analysis techniques. This study also provides direct spectroscopic evidence for the transportation and electrochemical reactivity of redox active species, regardless of the size of the electrochemically reactive molecule, at the buried interface of the substrate electrode. With all redox dopants, when CA electrolysis was performed, redox active species were undetectable (<1 wt % of signature elements or below the detection limit of SR-XPS and NEXAFS) in the outermost surface layers of the membrane, while a high concentration of redox species was located at the electrode substrate as a consequence of the deposition of the reaction product (Fc(+)-anion complex) at the buried interface between the electrode and the membrane. This reaction chemistry for redox active species within plasticized polymeric membranes may be useful in the fashioning of multilayered polymeric devices (e.g., chemical sensors, organic electronic devices, protective laminates, etc.) based on an electrochemical tunable deposition of redox molecules at the buried substrate electrode beneath the membrane.
Electrochemical investigations of advanced materials for microelectronic and energy storage devices
NASA Astrophysics Data System (ADS)
Goonetilleke, Pubudu Chaminda
A broad range of electrochemical techniques are employed in this work to study a selected set of advanced materials for applications in microelectronics and energy storage devices. The primary motivation of this study has been to explore the capabilities of certain modern electrochemical techniques in a number of emerging areas of material processing and characterization. The work includes both aqueous and non-aqueous systems, with applications in two rather general areas of technology, namely microelectronics and energy storage. The sub-systems selected for investigation are: (i) Electrochemical mechanical and chemical mechanical planarization (ECMP and CMP, respectively), (ii) Carbon nanotubes in combination with room temperature ionic liquids (ILs), and (iii) Cathode materials for high-performance Li ion batteries. The first group of systems represents an important building block in the fabrication of microelectronic devices. The second and third groups of systems are relevant for new energy storage technologies, and have generated immense interests in recent years. A common feature of these different systems is that they all are associated with complex surface reactions that dictate the performance of the devices based on them. Fundamental understanding of these reactions is crucial to further development and expansion of their associated technologies. It is the complex mechanistic details of these surface reactions that we address using a judicious combination of a number of state of the art electrochemical techniques. The main electrochemical techniques used in this work include: (i) Cyclic voltammetry (CV) and slow scan cyclic voltammetry (SSCV, a special case of CV); (ii) Galvanostatic (or current-controlled) measurements; (iii) Electrochemical impedance spectroscopy (EIS), based on two different methodologies, namely, Fourier transform EIS (FT-EIS, capable of studying fast reaction kinetics in a time-resolved mode), and EIS using frequency response analysis (employed to study slow reactions such as solid state diffusion of Li). The designs of both the experimental equipment and the control variables change for studying the different aqueous and non-aqueous systems. The protocols for data analysis also change depending on the systems. In addition, it often becomes necessary to combine different aspects of the different experimental methods to obtain the necessary information about the system(s) under study. The experimental strategies and the associated theoretical considerations for developing these strategies are discussed in appropriate contexts of this work. CNT electrodes in combination with IL electrolytes are potentially important for electrochemical super-capacitors. We have carried out electrochemical investigation of such a system involving a paper-electrode of multiwall CNT in the IL of 1-Ethyl-3-methyl imidazolium ethylsulfate (EMIM-EtSO4). Our study concentrated on the analytical aspects of cyclic voltammetry (CV) to probe the double layer capacitance of these relatively unconventional systems. (that involve rather large charge-discharge time constants). Both theoretical and experimental aspects of CV for such systems have been discussed, focusing in particular, on the effects of faradaic side-reactions, electrolyte resistance and voltage scan speeds. The results have been analyzed using an electrode equivalent circuit model, demonstrating a method to account for the typical artifacts expected in CV of CNT-IL interfaces. Chemical-mechanical planarization (CMP) of copper has now become an integral part of modern semiconductor fabrication technology. Recently, electrochemical-mechanical planarization (ECMP) has emerged as a possible extension of CMP, where through voltage-activated removal of Cu surface layers, one can substantially minimize the down-force necessary for mechanical polishing However, the detailed electrochemical factors that are central to designing efficient abrasive-free electrolytes for ECMP are not clearly understood at the present time. The present work has addressed this issue by studying the relative electrochemical effects of selected different chemical additives. Controlling the surface reactions (that is controlling the voltage-induced material removal) in ECMP requires a carefully designed combination of a number of electrochemical input variables (voltage activation program and electrolyte composition). We have studied the main experimental factors for designing these parameters, using triangular and rectangular-voltage-pulse modulated dissolution of Cu in electrolytes of different chemical compositions. Applications of rechargeable Li ion batteries have considerably expanded in recent years. As a result, research activities involving material-fabrication and characterization for these batteries also have expanded during this period. The importance of studying these specific materials lies in the fact that the cathode plays a major role in its contribution to the battery performance LiMn2O4 cathodes are being considered for next generation of Li ion batteries. The current work focuses on a specific problem commonly associated with Li cathode systems, namely surface film formation on the cathodes. LiMn2O4 cathodes tend to develop native surface films in carbonate electrolytes. By combining D.C. SSCV with A.C. EIS, we have studied how these films would react with an electrolyte of LiBF4 in ethylene and diethyl carbonates. We have demonstrated that such reactions could affect the measurement of the characteristic electrochemical parameters of the cathode, namely the intercalation capacitance, initial capacity-loss, coulometric titration profiles, and the solid state diffusion coefficient of Li+. A generalized framework for data analysis, based on the considerations of electrode equivalent circuits, has been used to combine the results of the D.C. and A.C. measurements.
Fabricating porous silicon carbide
NASA Technical Reports Server (NTRS)
Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)
1994-01-01
The formation of porous SiC occurs under electrochemical anodization. A sample of SiC is contacted electrically with nickel and placed into an electrochemical cell which cell includes a counter electrode and a reference electrode. The sample is encapsulated so that only a bare semiconductor surface is exposed. The electrochemical cell is filled with an HF electrolyte which dissolves the SiC electrochemically. A potential is applied to the semiconductor and UV light illuminates the surface of the semiconductor. By controlling the light intensity, the potential and the doping level, a porous layer is formed in the semiconductor and thus one produces porous SiC.
Pseudo-Capacitors: SPPS Deposition and Electrochemical Analysis of α-MoO3 and Mo2N Coatings
NASA Astrophysics Data System (ADS)
Golozar, Mehdi; Chien, Ken; Lian, Keryn; Coyle, Thomas W.
2013-06-01
Solution precursor plasma spraying (SPPS) is a novel thermal spray process in which a solution precursor is injected into the high-temperature zone of a DC-arc plasma jet to allow solvent evaporation from the precursor droplets, solute precipitation, and precipitate pyrolysis prior to substrate impact. This investigation explored the potential of SPPS to fabricate α-MoO3 coatings with fine grain sizes, high porosity levels, and high surface area: characteristics needed for application as pseudo-capacitor electrodes. Since molybdenum nitride has shown a larger electrochemical stability window and higher specific area capacitance, the α-MoO3 deposits were subsequently converted into molybdenum nitride. A multistep heat-treatment procedure resulted in a topotactic phase-transformation mechanism, which retained the high surface area lath-shaped features of the original α-MoO3. The electrochemical behaviors of molybdenum oxide and molybdenum nitride deposits formed under different deposition conditions were studied using cyclic voltammetry to assess the influence of the resulting microstructure on the charge storage behavior and potential for use in pseudo-capacitors.
Herrada, Rosa Alhelí; Medel, Alejandro; Manríquez, Federico; Sirés, Ignasi; Bustos, Erika
2016-12-05
After intense years of great development, the electrochemical technologies have become very suitable alternatives in niche markets like industrial wastewater reclamation and soil remediation. A key role to achieve a high efficiency in such treatments is played by the characteristics of the coating of the electrodes employed. This paper compares three techniques, namely immersion, painting and electrophoresis, for the preparation of IrO2-Ta2O5ǀTi, so-called dimensionally stable anodes (DSA(®)). The quality of the coatings has been investigated by means of surface and electrochemical analysis. Their ability to generate hydroxyl radicals and degrade aqueous solutions of hydrocarbons like phenanthrene, naphthalene and fluoranthene has been thoroughly assessed. Among the synthesis techniques, electrophoretic deposition yielded the best results, with DSA(®) electrodes exhibiting a homogeneous surface coverage that led to a good distribution of active sites, thus producing hydroxyl radicals that were able to accelerate the degradation of hydrocarbons. Copyright © 2016 Elsevier B.V. All rights reserved.
Effect of Acidified Feronia elephantum Leaf Extract on the Corrosion Behavior of Mild Steel
NASA Astrophysics Data System (ADS)
Muthukrishnan, Pitchaipillai; Prakash, Periakaruppan; Ilayaraja, Murugan; Jeyaprabha, Balasubramanian; Shankar, Karikalan
2015-03-01
Mild steel is used as a structural material for pipes, tank, reaction vessels, etc. which are known to corrode invariably in contact with various solvents. From the view point of a nation's economy and financial implications of corrosion hazard, it is necessary to adopt appropriate means and ways to reduce the losses due to corrosion. The use of eco-friendly corrosion inhibitors are increasing day by day. Feronia elephantum leaf extract (FELE) has been tested as eco-friendly corrosion inhibitor for A262 mild steel in 1 M H2SO4 and 1 M HCl solutions using non-electrochemical (Gravimetric, X-ray diffraction analysis, scanning electron microscopy, and Fourier transform infrared spectroscopy) and electrochemical techniques (open circuit potential, potentiostatic polarization, and electrochemical impedance measurements). The protection efficiency is found to increase with increase in FELE concentration but decrease with temperature, which is suggestive of physical adsorption mechanism. The adsorption of FELE on mild steel surface obeys the Langmuir adsorption isotherm. SEM results confirm the formation of a protective layer by FELE over mild steel surface.
NASA Astrophysics Data System (ADS)
Abdalla, Khalid; Zuhailawati, H.; Rahmat, Azmi; Azizan, A.
2017-02-01
Activation pretreatment with nickel acetate solution at various concentrations was performed prior to the phosphating step to enhance the corrosion resistance of carbon steel substrates. The activation solution was studied over various concentrations: 10, 50, and 100 g/L. The effects of these concentrations on surface characteristics and microstructural evolution of the coated samples were characterized by scanning electron microscopy and energy-dispersive spectroscopy. The electrochemical behavior was evaluated using potentiodynamic polarization curves, electrochemical impedance spectroscopy, and immersion test in a 3.5 pct NaCl solution. Significant increases in the nucleation sites and surface coverage of zinc phosphate coating were observed as the concentration of activation solution reached 50 g/L. The electrochemical analysis revealed that the activation treatment with 50 g/L nickel acetate solution significantly improved the protection ability of the zinc phosphate coating. The corrosion current density of activated phosphate coating with 50 g/L was reduced by 64.64 and 13.22 pct, compared to the coatings obtained with activation solutions of 10 and 100 g/L, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alia, Shaun M.; Hurst, Katherine E.; Kocha, Shyam S.
Determining the surface areas of electrocatalysts is critical for separating the key properties of area-specific activity and electrochemical surface area from mass activity. Hydrogen underpotential deposition and carbon monoxide oxidation are typically used to evaluate iridium (Ir) surface areas, but are ineffective on oxides and can be sensitive to surface oxides formed on Ir metals. Mercury underpotential deposition is presented in this study as an alternative, able to produce reasonable surface areas on Ir and Ir oxide nanoparticles, and able to produce similar surface areas prior to and following characterization in oxygen evolution. Reliable electrochemical surface areas allow for comparativemore » studies of different catalyst types and the characterization of advanced oxygen evolution catalysts. Lastly, they also enable the study of catalyst degradation in durability testing, both areas of increasing importance within electrolysis and electrocatalysis.« less
Alia, Shaun M.; Hurst, Katherine E.; Kocha, Shyam S.; ...
2016-06-02
Determining the surface areas of electrocatalysts is critical for separating the key properties of area-specific activity and electrochemical surface area from mass activity. Hydrogen underpotential deposition and carbon monoxide oxidation are typically used to evaluate iridium (Ir) surface areas, but are ineffective on oxides and can be sensitive to surface oxides formed on Ir metals. Mercury underpotential deposition is presented in this study as an alternative, able to produce reasonable surface areas on Ir and Ir oxide nanoparticles, and able to produce similar surface areas prior to and following characterization in oxygen evolution. Reliable electrochemical surface areas allow for comparativemore » studies of different catalyst types and the characterization of advanced oxygen evolution catalysts. Lastly, they also enable the study of catalyst degradation in durability testing, both areas of increasing importance within electrolysis and electrocatalysis.« less
Nano-Electrochemistry and Nano-Electrografting with an Original Combined AFM-SECM
Ghorbal, Achraf; Grisotto, Federico; Charlier, Julienne; Palacin, Serge; Goyer, Cédric; Demaille, Christophe; Ben Brahim, Ammar
2013-01-01
This study demonstrates the advantages of the combination between atomic force microscopy and scanning electrochemical microscopy. The combined technique can perform nano-electrochemical measurements onto agarose surface and nano-electrografting of non-conducting polymers onto conducting surfaces. This work was achieved by manufacturing an original Atomic Force Microscopy-Scanning ElectroChemical Microscopy (AFM-SECM) electrode. The capabilities of the AFM-SECM-electrode were tested with the nano-electrografting of vinylic monomers initiated by aryl diazonium salts. Nano-electrochemical and technical processes were thoroughly described, so as to allow experiments reproducing. A plausible explanation of chemical and electrochemical mechanisms, leading to the nano-grafting process, was reported. This combined technique represents the first step towards improved nano-processes for the nano-electrografting. PMID:28348337
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Cheolwoong; Yan, Bo; Kang, Huixiao
2016-08-06
In order to investigate geometric and electrochemical characteristics of Li ion battery electrode with different packing densities, lithium cobalt oxide (LiCoO 2) cathode electrodes were fabricated from a 94:3:3 (wt%) mixture of LiCoO 2, polymeric binder, and super-P carbon black and calendered to different densities. A synchrotron X-ray nano-computed tomography system with a spatial resolution of 58.2 nm at the Advanced Photon Source of the Argonne National Laboratory was employed to obtain three dimensional morphology data of the electrodes. The morphology data were then quantitatively analyzed to characterize their geometric properties, such as porosity, tortuosity, specific surface area, and poremore » size distribution. The geometric and electrochemical analysis reveal that high packing density electrodes have smaller average pore size and narrower pore size distribution, which improves the electrical contact between carbon-binder matrix and LiCoO 2 particles. The better contact improves the capacity and rate capability by reducing the possibility of electrically isolated LiCoO 2 particles and increasing the electrochemically active area. The results show that increase of packing density results in higher tortuosity, but electrochemically active area is more crucial to cell performance than tortuosity at up to 3.6 g/cm 3 packing density and 4 C rate.« less
Ehrensberger, Mark T; Gilbert, Jeremy L
2010-05-01
The measurement of electrochemical impedance is a valuable tool to assess the electrochemical environment that exists at the surface of metallic biomaterials. This article describes the development and validation of a new technique, potential step impedance analysis (PSIA), to assess the electrochemical impedance of materials whose interface with solution can be modeled as a simplified Randles circuit that is modified with a constant phase element. PSIA is based upon applying a step change in voltage to a working electrode and analyzing the subsequent current transient response in a combined time and frequency domain technique. The solution resistance, polarization resistance, and interfacial capacitance are found directly in the time domain. The experimental current transient is numerically transformed to the frequency domain to determine the constant phase exponent, alpha. This combined time and frequency approach was tested using current transients generated from computer simulations, from resistor-capacitor breadboard circuits, and from commercially pure titanium samples immersed in phosphate buffered saline and polarized at -800 mV or +1000 mV versus Ag/AgCl. It was shown that PSIA calculates equivalent admittance and impedance behavior over this range of potentials when compared to standard electrochemical impedance spectroscopy. This current transient approach characterizes the frequency response of the system without the need for expensive frequency response analyzers or software. Copyright 2009 Wiley Periodicals, Inc.
High Power Electrochemical Capacitors
2012-03-23
electrochemical properties of vanadium oxide aerogels prepared by a freeze-drying process. Journal of the Electrochemical Society, 2004. 151(5): p...Electrochemical Society, 2002. 149(1): p. A26-A30. 12. Rolison, D.R. and B. Dunn, Electrically conductive oxide aerogels : new materials in...surface area vanadium oxide aerogels . Electrochemical and Solid-State Letters, 2000. 3(10): p. 457-459. 14. Shembel, E., et al., Synthesis, investigation
Superhydrophobic surfaces by electrochemical processes.
Darmanin, Thierry; Taffin de Givenchy, Elisabeth; Amigoni, Sonia; Guittard, Frederic
2013-03-13
This review is an exhaustive representation of the electrochemical processes reported in the literature to produce superhydrophobic surfaces. Due to the intensive demand in the elaboration of superhydrophobic materials using low-cost, reproducible and fast methods, the use of strategies based on electrochemical processes have exponentially grown these last five years. These strategies are separated in two parts: the oxidation processes, such as oxidation of metals in solution, the anodization of metals or the electrodeposition of conducting polymers, and the reduction processed such as the electrodeposition of metals or the galvanic deposition. One of the main advantages of the electrochemical processes is the relative easiness to produce various surface morphologies and a precise control of the structures at a micro- or a nanoscale. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Weitzner, Stephen E.; Dabo, Ismaila
2017-11-01
The detailed atomistic modeling of electrochemically deposited metal monolayers is challenging due to the complex structure of the metal-solution interface and the critical effects of surface electrification during electrode polarization. Accurate models of interfacial electrochemical equilibria are further challenged by the need to include entropic effects to obtain accurate surface chemical potentials. We present an embedded quantum-continuum model of the interfacial environment that addresses each of these challenges and study the underpotential deposition of silver on the gold (100) surface. We leverage these results to parametrize a cluster expansion of the electrified interface and show through grand canonical Monte Carlo calculations the crucial need to account for variations in the interfacial dipole when modeling electrodeposited metals under finite-temperature electrochemical conditions.
NASA Astrophysics Data System (ADS)
Al-Tabbakh, A. A. A.; Al-Zubaidi, A. B.; Kamarulzaman, N.
2016-03-01
A lithiated transition-metal oxide material was successfully synthesized by a combustion method for Li-ion battery. The material was characterized using thermogravimetric and particle size analyzers, scanning electron microscope and X-ray diffractometer. The calcined powders of the material exhibited a finite size distribution and a single phase of pure layered structure of space group Roverline{3} m . An innovative method was developed to calculate the material electrochemical capacity based on considerations of the crystal structure and contributions of Li ions from specified unit cells at the surfaces and in the interiors of the material particles. Results suggested that most of the Li ions contributing to the electrochemical current originated from the surface region of the material particles. It was possible to estimate the thickness of the most delithiated region near the particle surfaces at any delithiation depth accurately. Furthermore, results suggested that the core region of the particles remained electrochemically inaccessible in the conventional applied voltages. This result was justified by direct quantitative comparison of specific capacity values calculated from the particle size distribution with those measured experimentally. The present analysis is believed to be of some value for estimation of the failure mechanism in cathode compounds, thus assisting the development of Li-ion batteries.
NASA Astrophysics Data System (ADS)
Fattah-alhosseini, Arash; Asgari, Hamed
2018-05-01
In the present study, electrochemical behavior of as-cast Mg-Y-RE-Zr alloy (RE: rare-earth alloying elements) was investigated using electrochemical tests in phosphate buffer solutions (X Na3PO4 + Y Na2HPO4). X-ray diffraction techniques and Scanning electron microscopy equipped with energy dispersive x-ray spectroscopy were used to investigate the microstructure and phases of the experimental alloy. Different electrochemical tests such as potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS) and Mott-Schottky (M-S) analysis were carried out in order to study the electrochemical behavior of the experimental alloy in phosphate buffer solutions. The PDP curves and EIS measurements indicated that the passive behavior of the as-cast Mg-Y-RE-Zr alloy in phosphate buffer solutions was weakened by an increase in the pH, which is related to formation of an imperfect and less protective passive layer on the alloy surface. The presence of the insoluble zirconium particles along with high number of intermetallic phases of RE elements mainly Mg24Y5 in the magnesium matrix can deteriorate the corrosion performance of the alloy by disrupting the protective passive layer that is formed at pH values over 11. These insoluble zirconium particles embedded in the matrix can detrimentally influence the passivation. The M-S analysis revealed that the formed passive layers on Mg-Y-RE-Zr alloy behaved as an n-type semiconductor. An increase in donor concentration accompanying solutions of higher alkalinity is thought to result in the formation of a less resistive passive layer.
Pelit, Füsun Okçu; Pelit, Levent; Dizdaş, Tuğberk Nail; Aftafa, Can; Ertaş, Hasan; Yalçınkaya, E E; Türkmen, Hayati; Ertaş, F N
2015-02-15
This report comprises the novel usage of polythiophene - ionic liquid modified clay surfaces for solid phase microextraction (SPME) fiber production to improve the analysis of pesticides in fruit juice samples. Montmorillonite (Mmt) clay intercalated with ionic liquids (IL) was co-deposited with polythiophene (PTh) polymer coated electrochemically on an SPME fiber. The surface of the fibers were characterized by using scanning electron microscopy (SEM). Operational parameters effecting the extraction efficiency namely; the sample volume and pH, adsorption temperature and time, desorption temperature and time, stirring rate and salt amount were optimized. In order to reveal the major effects, these eight factors were selected and Plackett-Burman Design was constructed. The significant parameters detected; adsorption and temperature along with the stirring rate, were further investigated by Box-Behnken design. Under optimized conditions, calibration graphs were plotted and detection limits were calculated in the range of 0.002-0.667ng mL(-1). Relative standard deviations were no higher than 18%. Overall results have indicated that this novel PTh-IL-Mmt SPME surface developed by the aid of electrochemical deposition could offer a selective and sensitive head space analysis for the selected pesticide residues. Copyright © 2014 Elsevier B.V. All rights reserved.
She, Zuxin; Li, Qing; Wang, Zhongwei; Li, Longqin; Chen, Funan; Zhou, Juncen
2012-08-01
A novel method for controllable fabrication of a superhydrophobic CuO surface on AZ91D magnesium alloy is reported in this paper. Hierarchical structure composed of micro/nano-featherlike CuO was obtained by electrodeposition of Cu-Zn alloy coating and subsequently an electrochemical anodic treatment in alkaline solution. After modification with lauric acid, the surface became hydrophobicity/superhydrophobicity. The formation of featherlike CuO structures was controllable by varying the coating composition. By applying SEM, ICP-AES, and water contact angle analysis, the effects of coating composition on the surface morphology and hydrophobicity of the as-prepared surfaces were detailedly studied. The results indicated that at the optimal condition, the surface showed a good superhydrophobicity with a water contact angle as high as 155.5 ± 1.3° and a sliding angle as low as about 3°. Possible growth mechanism of featherlike CuO hierarchical structure was discussed. Additionally, the anticorrosion effect of the superhydrophobic surface was studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements. The interface model for anticorrosion mechanism of superhydrophobic surface in corrosive medium was proposed. Besides, the mechanical stability test indicated that the resulting superhydrophobic surfaces have good mechanical stability.
Electrochemical Deposition of Si-Ca/P on Nanotube Formed Beta Ti Alloy by Cyclic Voltammetry Method.
Jeong, Yong-Hoon; Choe, Han-Cheol
2015-08-01
The purpose of this study was to investigate electrochemical deposition of Si-Ca/P on nanotube formed Ti-35Nb-10Zr alloy by cyclic voltammetry method. Electrochemical deposition of Si substituted Ca/P was performed by pulsing the applied potential on nanotube formed surface. The surface characteristics were observed by field-emission scanning electron microscopy, X-ray diffractometer, and potentiodynamic polarization test. The phase structure and surface morphologies of Si-Ca/P deposition were affected by deposition cycles. From the anodic polarization test, nanotube formed surface at 20 V showed the high corrosion resistance with lower value of Icorr, I300, and Ipass.
Surface-Electrochemical Sensor for the Measurement of Anti-Cholinesterase Activity
NASA Astrophysics Data System (ADS)
Matsuura, Hiroaki; Sato, Yukari; Yabuki, Soichi; Sawaguchi, Takahiro; Mizutani, Fumio
An organophosphorus pesticide, ethylthiometon (0.01-0.2 ppm) was determined by using a surface-electrochemical sensor system: the monolayer formation (chemisorption)-reductive desorption of thiocholine was applied to monitor the activity change of cholinesterase caused by the pesticide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kendig, M.W.; Fadner, T.A.
1985-02-01
The forces responsible for the meniscus formed during the dynamic displacement of a 0.1 M H/sub 3/BO/sub 3/ + 0.5 M NaClO/sub 4/ solution by oil from a copper surface depend on the electrochemical potential of the copper and on an active component in the oil. For a nonpolar mineral oil containing oleic acid, a negative potential applied to copper produces hydrophilic behavior of the copper surface in the aqueous phase. This result is attribute largely to electrochemical destabilization of metallic soaps and possibly to electroosmotic transport.
Corrosion of NiTi Wires with Cracked Oxide Layer
NASA Astrophysics Data System (ADS)
Racek, Jan; Šittner, Petr; Heller, Luděk; Pilch, Jan; Petrenec, Martin; Sedlák, Petr
2014-07-01
Corrosion behavior of superelastic NiTi shape memory alloy wires with cracked TiO2 surface oxide layers was investigated by electrochemical corrosion tests (Electrochemical Impedance Spectroscopy, Open Circuit Potential, and Potentiodynamic Polarization) on wires bent into U-shapes of various bending radii. Cracks within the oxide on the surface of the bent wires were observed by FIB-SEM and TEM methods. The density and width of the surface oxide cracks dramatically increase with decreasing bending radius. The results of electrochemical experiments consistently show that corrosion properties of NiTi wires with cracked oxide layers (static load keeps the cracks opened) are inferior compared to the corrosion properties of the straight NiTi wires covered by virgin uncracked oxides. Out of the three methods employed, the Electrochemical Impedance Spectroscopy seems to be the most appropriate test for the electrochemical characterization of the cracked oxide layers, since the impedance curves (Nyquist plot) of differently bent NiTi wires can be associated with increasing state of the surface cracking and since the NiTi wires are exposed to similar conditions as the surfaces of NiTi implants in human body. On the other hand, the potentiodynamic polarization test accelerates the corrosion processes and provides clear evidence that the corrosion resistance of bent superelastic NiTi wires degrades with oxide cracking.
Yang, Xiaolong; Song, Jinlong; Liu, Junkai; Liu, Xin; Jin, Zhuji
2017-08-18
Superhydrophobic-superhydrophilic patterned surfaces have attracted more and more attention due to their great potential applications in the fog harvest process. In this work, we developed a simple and universal electrochemical-etching method to fabricate the superhydrophobic-superhydrophilic patterned surface on metal superhydrophobic substrates. The anti-electrochemical corrosion property of superhydrophobic substrates and the dependence of electrochemical etching potential on the wettability of the fabricated dimples were investigated on Al samples. Results showed that high etching potential was beneficial for efficiently producing a uniform superhydrophilic dimple. Fabrication of long-term superhydrophilic dimples on the Al superhydrophobic substrate was achieved by combining the masked electrochemical etching and boiling-water immersion methods. A long-term wedge-shaped superhydrophilic dimple array was fabricated on a superhydrophobic surface. The fog harvest test showed that the surface with a wedge-shaped pattern array had high water collection efficiency. Condensing water on the pattern was easy to converge and depart due to the internal Laplace pressure gradient of the liquid and the contact angle hysteresis contrast on the surface. The Furmidge equation was applied to explain the droplet departing mechanism and to control the departing volume. The fabrication technique and research of the fog harvest process may guide the design of new water collection devices.
Martín-Yerga, Daniel; Álvarez-Martos, Isabel; Blanco-López, M Carmen; Henry, Charles S; Fernández-Abedul, M Teresa
2017-08-15
In this work, we report a simple and yet efficient stencil-printed electrochemical platform that can be integrated into the caps of sample containers and thus, allows in-field quantification of Cd(II) and Pb(II) in river water samples. The device exploits the low-cost features of carbon (as electrode material) and paper/polyester transparency sheets (as substrate). Electrochemical analysis of the working electrodes prepared on different substrates (polyester transparency sheets, chromatographic, tracing and office papers) with hexaammineruthenium(III) showed that their electroactive area and electron transfer kinetics are highly affected by the porosity of the material. Electrodes prepared on transparency substrates showed the best electroanalytical performance for the simultaneous determination of Cd(II) and Pb(II) by square-wave anodic stripping voltammetry. Interestingly, the temperature and time at which the carbon ink was cured had significant effect on the electrochemical response, especially the capacitive current. The amount of Cd and Pb on the electrode surface can be increased about 20% by in situ electrodeposition of bismuth. The electrochemical platform showed a linear range comprised between 1 and 200 μg/L for both metals, sensitivity of analysis of 0.22 and 0.087 μA/ppb and limits of detection of 0.2 and 0.3 μg/L for Cd(II) and Pb(II), respectively. The analysis of river water samples was done directly in the container where the sample was collected, which simplifies the procedure and approaches field analysis. The developed point-of-need detection system allowed simultaneous determination of Cd(II) and Pb(II) in those samples using the standard addition method with precise and accurate results. Copyright © 2017 Elsevier B.V. All rights reserved.
Wörner, Michael; Lioubashevski, Oleg; Basel, Matthew T; Niebler, Sandra; Gogritchiani, Eliso; Egner, Nicole; Heinz, Christian; Hoferer, Jürgen; Cipolloni, Michela; Janik, Katharine; Katz, Evgeny; Braun, Andre M; Willner, Itamar; Niederweis, Michael; Bossmann, Stefan H
2007-06-01
Nanostructures with long-term stability at the surface of gold electrodes are generated by reconstituting the porin MspA from Mycobacterium smegmatis into a specially designed monolayer of long-chain lipid surfactant on gold. Tailored surface coverage of gold electrodes with long-chain surfactants is achieved by electrochemically assisted deposition of organic thiosulfates (Bunte salts). The subsequent reconstitution of the octameric-pore MspA is guided by its extraordinary self-assembling properties. Importantly, electrochemical reduction of copper(II) yields copper nanoparticles within the MspA nanopores. Electrochemical impedance spectroscopy, reflection electron microscopy, and atomic force microscopy (AFM) show that: 1) the MspA pores within the self-assembled monolayer (SAM) are monodisperse and electrochemically active, 2) MspA reconstitutes in SAMs and with a 10-nm thickness, 3) AFM is a suitable method to detect pores within SAMs, and 4) the electrochemical reduction of Cu2+ to Cu0 under overpotential conditions starts within the MspA pores.
Park, Geon Woo; Jeon, Sang Kwon; Yang, Jin Yong; Choi, Sung Dae; Kim, Geon Joong
2016-05-01
RGO/Resol carbon composites were prepared from a mixture of reduced GO and a low-molecular-weight phenolic resin (Resol) solution. The effects of the calcination temperature, amount of Resol added and KOH treatment on the electrochemical performance of the RGO/Resol composites were investigated. The physical and electrochemical properties of the composite materials were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Brunauer, Emmett and Teller (BET) surface areas measurements, and cyclic voltammetry (CV). The relationships between their physical properties and their electrochemical performance were examined for use as super-capacitors (SCs). The RGO/Resol composite calcined at 400 degrees C after the KOH loading showed dramatically improved electrochemical properties, showing a high BET surface and capacitance of 2190 m2/g and 220 F/g, respectively. The RGO/Resol composites calcined after the KOH treatment showed much better capacitor performance than those treated only thermally at the same temperature without KOH impregnation. The fabrication of high surface electrodes was essential for improving the SCs properties.
Congur, Gulsah; Senay, Hilal; Turkcan, Ceren; Canavar, Ece; Erdem, Arzum; Akgol, Sinan
2013-06-28
The aim of this study is (i) to prepare estrone-imprinted nanospheres (nano-EST-MIPs) and (ii) to integrate them into the electrochemical sensor as a recognition layer. N-methacryloyl-(l)-phenylalanine (MAPA) was chosen as the complexing monomer. Firstly, estrone (EST) was complexed with MAPA and the EST-imprinted poly(2-hyroxyethylmethacrylate-co-N-methacryloyl-(l)-phenylalanine) [EST-imprinted poly(HEMA-MAPA)] nanospheres were synthesized by surfactant- free emulsion polymerization method. The specific surface area of the EST-imprinted poly(HEMA-MAPA) nanospheres was found to be 1275 m2/g with a size of 163.2 nm in diameter. According to the elemental analysis results, the nanospheres contained 95.3 mmole MAPA/g nanosphere. The application of EST specific MIP nanospheres for the development of an electrochemical biosensor was introduced for the first time in our study by using electrochemical impedance spectroscopy (EIS) technique. This nano-MIP based sensor presented a great specificity and selectivity for EST.
Dissecting anode swelling in commercial lithium-ion batteries
NASA Astrophysics Data System (ADS)
Zhang, Ningxin; Tang, Huaqiong
2012-11-01
An innovative method is applied to investigate anode swelling during electrochemical processes in commercial lithium-ion batteries. Cathode surface is partially covered with a piece of paste to block the transportation of lithium ion from active material during charging/discharging, and the corresponding part on the anode film shows no formation of Li-graphite compounds during different electrochemical processes, which is confirmed by XRD analysis. The increases of anode thickness within and outside lithiated zone are measured, and defined as electrochemical swelling and physical swelling respectively. The microscopic lattice expansion of graphite due to lithiation process correlates to mesoscopic electrochemical swelling synchronically, while physical swelling tends to decrease steadily with time. The relationship among the microscopic stress due to lithium-ion intercalation, the mesoscopic stress resulting in anode swelling, and the macroscopic rippling of pouch cell after a large number of cycle test, is analyzed and correlated in terms of stress evolution across different scales, and suggestions for solving anode swelling are provided.
NASA Astrophysics Data System (ADS)
Janardhanan, Vinod M.; Deutschmann, Olaf
Direct internal reforming in solid oxide fuel cell (SOFC) results in increased overall efficiency of the system. Present study focus on the chemical and electrochemical process in an internally reforming anode supported SOFC button cell running on humidified CH 4 (3% H 2 O). The computational approach employs a detailed multi-step model for heterogeneous chemistry in the anode, modified Butler-Volmer formalism for the electrochemistry and Dusty Gas Model (DGM) for the porous media transport. Two-dimensional elliptic model equations are solved for a button cell configuration. The electrochemical model assumes hydrogen as the only electrochemically active species. The predicted cell performances are compared with experimental reports. The results show that model predictions are in good agreement with experimental observation except the open circuit potentials. Furthermore, the steam content in the anode feed stream is found to have remarkable effect on the resulting overpotential losses and surface coverages of various species at the three-phase boundary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Huixiao; Lim, Cheolwoong; Li, Tianyi
The impact of calendering process on the geometric characteristics and electrochemical performance of LiNi1/3Mn1/3Co1/3O2 (NMC) electrode was investigated in this study. The geometric properties of NMC electrodes with different calendering conditions, such as porosity, pore size distribution, particle size distribution, specific surface area and tortuosity were calculated from the computed tomography data of the electrodes. A synchrotron transmission X-ray microscopy tomography system at the Advanced Photon Source of the Argonne National Laboratory was employed to obtain the tomography data. The geometric and electrochemical analysis show that calendering can increase the electrochemically active area, which improves rate capability. However, more calenderingmore » will result in crushing of NMC particles, which can reduce the electrode capacity at relatively high C rates. This study shows that the optimum electrochemical performance of NMC electrode at 94:3:3 weight ratio of NMC:binder:carbon black can be achieved by calendering to 3.0 g/cm3 NMC density.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wixtrom, Alex I.; Buhler, Jessica E.; Reece, Charles E.
2013-06-01
Recent research has shown that choline chloride (vitamin B4)-based solutions can be used as a greener alternative to acid-based electrochemical polishing solutions. This study demonstrated a successful method for electrochemical deposition of niobium compounds onto the surface of copper substrates using a novel choline chloride-based ionic liquid. Niobium ions present in the ionic liquid solution were dissolved into the solution prior to deposition via electrochemical polishing of solid niobium. A black coating was clearly visible on the surface of the Cu following deposition. This coating was analyzed using scanning electron microscopy (SEM), electron dispersive X-ray spectroscopy (EDX), atomic force microscopymore » (AFM), and X-ray fluorescence spectroscopy (XRF). This ionic liquid-based electrochemical deposition method effectively recycles previously dissolved niobium from electrochemical polishing of superconducting radio frequency (SRF) cavities.« less
Tortolini, Cristina; Sanzò, Gabriella; Antiochia, Riccarda; Mazzei, Franco; Favero, Gabriele
2017-01-01
Electrochemical biosensors provide an attractive means of analyzing the content of a biological sample due to the direct conversion of a biological event to an electronic signal. The signal transduction and the general performance of electrochemical biosensors are often determined by the surface architectures that connect the sensing element to the biological sample at the nanometer scale. The most common surface modification techniques, the various electrochemical transduction mechanisms, and the choice of the recognition receptor molecules all influence the ultimate sensitivity of the sensor. We show herein a novel electrochemical biosensing platform based on the coupling of two different nanostructured materials (gold nanoparticles and fullerenols) displaying interesting electrochemical features. The use of these nanomaterials improved the electrochemical performance of the proposed biosensor.An application of the nanostructured enzyme-based biosensor has been developed for evaluating the detection of polyphenols either in buffer solution or in real wine samples.
Aidoud, Roumaissa; Kahoul, Abdelkrim; Naamoune, Farid
2017-01-01
The antiscale properties of the aqueous extract of olive (Olea europaea L.) leaves as a natural scale inhibitor for stainless steel surface in Hammam raw water were investigated using chronoamperometry (CA) and electrochemical impedance spectroscopy techniques in conjunction with a microscopic examination. The X-ray diffraction analysis reveals that the scale deposited over the pipe walls consists of pure CaCO 3 calcite. The CA, in accordance with electrochemical impedance spectra and scanning electron microscopy, shows that the inhibition efficiency increases with increasing extract concentration. This efficiency is considerably reduced as the temperature is increased.
Graphene Based Electrochemical Sensors and Biosensors: A Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Yuyan; Wang, Jun; Wu, Hong
2010-05-01
Graphene, emerging as a true 2-dimensional material, has received increasing attention due to its unique physicochemical properties (high surface area, excellent conductivity, high mechanical strength, and ease of functionalization and mass production). This article selectively reviews recent advances in graphene-based electrochemical sensors and biosensors. In particular, graphene for direct electrochemistry of enzyme, its electrocatalytic activity toward small biomolecules (hydrogen peroxide, NADH, dopamine, etc.), and graphene-based enzyme biosensors have been summarized in more detail; Graphene-based DNA sensing and environmental analysis have been discussed. Future perspectives in this rapidly developing field are also discussed.
Cyclodextrins Based Electrochemical Sensors for Biomedical and Pharmaceutical Analysis.
Lenik, Joanna
2017-01-01
Electrochemical sensors are very convenient devices, as they may be used in a lot of fields starting from the food industry to environmental monitoring and medical diagnostics. They offer the values of simple design, reversible and reproducible measurements, as well as ensuring precise and accurate analytical information. Compared with other methods, electrochemical sensors are relatively simple as well as having low costs, which has led to intensive development, especially in the field of medicine and pharmaceuticals within the last decade. Recently, the number of publications covering the determination of aminoacids, dopamine, cholesterol, uric acid, biomarkers, vitamins and other pharmaceutical and biological compounds has significantly increased. Many possible types of such sensors and biosensors have been proposed: owing to the kind of the detection-potentiometric voltametric, amperometry, and the materials that can be used for, e.g. designing molecular architecture of the electrode/solution interface, carbon paste, carbon nanotubes, glass carbon, graphite, graphene, PVC, conductive polymers and/or nanoparticles. The active compounds which provide the complex formation with analyte (in the case of non-current techniques) or activate biomolecules electrochemically by particle recognition and selective preconcentration of analyte on the electrode surface (in the case of current techniques) are the most recently used cyclodextrins. These macrocyclic compounds have the ability to interact with a large diversity of guest particles to form complexes of the type of guest host, for example, with particles from drugs, biomolecules, through their hydrophilic outer surface and lipophilic inner cavities. Cyclodextrins have been the subject of frequent electrochemical studies that focused mostly on both their interactions in a solid state and in solution. The process of preparing of CDs modified electrodes would, consequently, open new avenues for new electrochemical sensors and, therefore, widen their use in biomedical and drug analysis. This review presents information on manufacturing techniques and performances of these sensors and biosensors. The opportunities for these sensors to carry out biomedical and pharmaceutical researches are demonstrated. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Methylene blue not ferrocene: Optimal reporters for electrochemical detection of protease activity.
González-Fernández, Eva; Avlonitis, Nicolaos; Murray, Alan F; Mount, Andrew R; Bradley, Mark
2016-10-15
Electrochemical peptide-based biosensors are attracting significant attention for the detection and analysis of proteins. Here we report the optimisation and evaluation of an electrochemical biosensor for the detection of protease activity using self-assembled monolayers (SAMs) on gold surfaces, using trypsin as a model protease. The principle of detection was the specific proteolytic cleavage of redox-tagged peptides by trypsin, which causes the release of the redox reporter, resulting in a decrease of the peak current as measured by square wave voltammetry. A systematic enhancement of detection was achieved through optimisation of the properties of the redox-tagged peptide; this included for the first time a side-by-side study of the applicability of two of the most commonly applied redox reporters used for developing electrochemical biosensors, ferrocene and methylene blue, along with the effect of changing both the nature of the spacer and the composition of the SAM. Methylene blue-tagged peptides combined with a polyethylene-glycol (PEG) based spacer were shown to be the best platform for trypsin detection, leading to the highest fidelity signals (characterised by the highest sensitivity (signal gain) and a much more stable background than that registered when using ferrocene as a reporter). A ternary SAM (T-SAM) configuration, which included a PEG-based dithiol, minimised the non-specific adsorption of other proteins and was sensitive towards trypsin in the clinically relevant range, with a Limit of Detection (LoD) of 250pM. Kinetic analysis of the electrochemical response with time showed a good fit to a Michaelis-Menten surface cleavage model, enabling the extraction of values for kcat and KM. Fitting to this model enabled quantitative determination of the solution concentration of trypsin across the entire measurement range. Studies using an enzyme inhibitor and a range of real world possible interferents demonstrated a selective response to trypsin cleavage. This indicates that a PEG-based peptide, employing methylene blue as redox reporter, and deposited on an electrode as a ternary SAM configuration, is a suitable platform to develop clinically-relevant and quantitative electrochemical peptide-based protease biosensing. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Dongrui
Corrosion inhibitors as effective anti-corrosion applications were widely studied and drawn much attention in both academe and industrial area. In this work, a systematic work, including inhibitors selection, anti-corrosion property and characterization, influence on scale formation, testing system design and so on, were reported. The corrosion inhibition performance of four imidazolium ionic liquids in carbon dioxide saturated NaCl solution was investigated by using electrochemical and surface analysis technologies. The four compounds are 1-ethyl-3-methylimidazolium chloride (a), 1-butyl-3-methylimidazolium chloride (b), 1-hexyl-3-methylimidazolium chloride (c), 1-decyl-3-methylimidazolium chloride (d). Under the testing conditions, compound d showed the highest inhibition efficiency and selected as the main object of further study. As a selected representative formula, 1-decyl-3-methylimidazolium chloride was studied in detail about its corrosion inhibition performance on mild steel in carbon dioxide saturated NaCl brine at pH 3.8 and 6.8. Electrochemical and surface analysis techniques were used to characterize the specimen corrosion process during the immersion in the blank and inhibiting solutions. The precorrosion of specimen surface showed significant and different influences on the anti-corrosion property of DMICL at pH 3.8 and 6.8. The corrosion inhibition efficiency (IE) was calculated based on parameters obtained from electrochemical techniques; the achieved IE was higher than 98% at the 25th hour for the steel with a well-polished surface at pH 3.8. The fitting parameters obtained from electrochemical data helped to account for the interfacial changes. As proved in previous research, 1-decyl-3-methylimidazolium chloride could be used as good corrosion inhibitors under certain conditions. However, under other conditions, such chemicals, as well as other species in oil transporting system, could be a factor influencing the evolution of protective surface inorganic layer. In this part, the FeCO3 layer evolution process for API 5L X52 carbon steel in CO2-saturated NaCl brine in the absence and in the presence of 1-decyl-3-methylimidazolium chloride ionic liquid was characterized using electrochemical techniques. Two models were developed to account for the interfacial evolution: the first model considered the balance of positive and negative charges at the interface of the metal and electrolyte in blank solution, while the second one considered the layer coverage and evolution with the imidazolium compound. The corrosion testing system is scientifically and practically critical for corrosion testing and simulations. In this part, a flowing fluid loop cell (FFLC) system was constructed to simulate the corrosion environment in the pipeline. Main content of this work include the construction of the flowing fluid cell loop (FFLC) system, as well as FFLC-based corrosion/anticorrosion tests under simulated acid conditions. Electrochemical Impedance Spectroscopy (EIS) and Linear Polarization Resistance (LPR) were used as prime techniques to quantify and characterize the corrosion behaviors of carbon steel specimen. The Eff vs. Reynolds number (Re) plots for the specimen located in the chamber and in the loop branch were provided.
Zhang, Zhiyong; Chi, Miaofang; Veith, Gabriel M.; ...
2016-08-08
Here we report an efficient electrochemical conversion of CO 2 to CO on surface-activated bismuth nanoparticles (NPs) in acetonitrile (MeCN) under ambient conditions, with the assistance of 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([bmim][OTf]). Through the comparison between electrodeposited Bi films (Bi-ED) and different types of Bi NPs, we, for the first time, demonstrate the effects of catalyst’s size and surface condition on organic phase electrochemical CO 2 reduction. Our study reveals that the surface inhibiting layer (hydrophobic surfactants and Bi 3+ species) formed during the synthesis and purification process hinders the CO 2 reduction, leading to a 20% drop in Faradaic efficiency formore » CO evolution (FE CO). Bi particle size showed a significant effect on FE CO when the surface of Bi was air-oxidized, but this effect of size on FE CO became negligible on surface-activated Bi NPs. After the surface activation (hydrazine treatment) that effectively removed the native inhibiting layer, activated 36-nm Bi NPs exhibited an almost-quantitative conversion of CO 2 to CO (96.1% FE CO), and a mass activity for CO evolution (MA CO) of 15.6 mA mg –1, which is three-fold higher than the conventional Bi-ED, at ₋2.0 V (vs Ag/AgCl). Ultimately, this work elucidates the importance of the surface activation for an efficient electrochemical CO 2 conversion on metal NPs and paves the way for understanding the CO 2 electrochemical reduction mechanism in nonaqueous media.« less
NASA Astrophysics Data System (ADS)
Yan, X. Y.; Chen, G. X.; Liu, J. W.
2018-03-01
A kind of superhydrophobic copper surface with micro-nanocomposite structure has been successfully fabricated by employing a silk-screen printing aided electrochemical machining method. At first silk-screen printing technology has been used to form a column point array mask, and then the microcolumn array would be fabricated by electrochemical machining (ECM) effect. In this study, the drop contact angles have been studied and scanning electron microscopy (SEM) has been used to study the surface characteristic of the workpiece. The experiment results show that the micro-nanocomposite structure with cylindrical array can be successfully fabricated on the metal surface. And the maximum contact angle is 151° when the fluoroalkylsilane ethanol solution was used to modify the machined surface in this study.
Study of yttrium 4-nitrocinnamate to promote surface interactions with AS1020 steel
NASA Astrophysics Data System (ADS)
Hien, P. V.; Vu, N. S. H.; Thu, V. T. H.; Somers, A.; Nam, N. D.
2017-08-01
Yttrium 4-nitrocinnamate (Y(4-NO2Cin)3) was added to an aqueous chloride solution and studied as a possible corrosion inhibition system. Electrochemical techniques and surface analysis have been powerful tools to better understand the corrosion and inhibition processes of mild steel in 0.01 M NaCl solution. A combination of scanning electron microscopy (SEM), atomic force microscopy (AFM), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), Potentiodynamic polarization (PD), electrochemical impedance spectroscopy (EIS) and wire beam electrode (WBE) techniques was found to be useful in the characterization of this system. The result indicated that Y(4-NO2Cin)3 is able to effectively inhibit corrosion at a low concentration of 0.45 mM. Surface analysis clearly shows that the surface of steel coupons exposed to Y(4-NO2Cin)3 solution remained uniform and smooth, whereas the surface of steel coupons exposed to solution without inhibitor addition was severely corroded. The results suggest that Y(4-NO2Cin)3 behaves as a mixed inhibitor and mitigates corrosion by promoting random distribution of minor anodes. These are attributed to the formation of metal species bonding to the 4-nitrocinnamate component and hydrolysis of the Y(4-NO2Cin)3 to form oxide/hydroxides as a protective film layer.
Electrode for electrochemical cell
Kaun, T.D.; Nelson, P.A.; Miller, W.E.
1980-05-09
An electrode structure for a secondary electrochemical cell includes an outer enclosure defining a compartment containing electrochemical active material. The enclosure includes a rigid electrically conductive metal sheet with perforated openings over major side surfaces. The enclosure can be assembled as first and second trays each with a rigid sheet of perforated electrically conductive metal at major side surfaces and normally extending flanges at parametric margins. The trays can be pressed together with moldable active material between the two to form an expandable electrode. A plurality of positive and negative electrodes thus formed are arranged in an alternating array with porous frangible interelectrode separators within the housing of the secondary electrochemical cell.
Electrode for electrochemical cell
Kaun, Thomas D.; Nelson, Paul A.; Miller, William E.
1981-01-01
An electrode structure for a secondary electrochemical cell includes an outer enclosure defining a compartment containing electrochemical active material. The enclosure includes a rigid electrically conductive metal sheet with perforated openings over major side surfaces. The enclosure can be assembled as first and second trays each with a rigid sheet of perforated electrically conductive metal at major side surfaces and normally extending flanges at parametric margins. The trays can be pressed together with moldable active material between the two to form an expandable electrode. A plurality of positive and negative electrodes thus formed are arranged in an alternating array with porous frangible interelectrode separators within the housing of the secondary electrochemical cell.
Electrochemical CO 2 Reduction on Oxide-Derived Cu Surface with Various Oxide Thicknesses
Liang, Zhixiu; Fu, Jie; Vukmirovic, Miomir B.; ...
2018-03-26
Here, cuprous oxide on copper foil electrodes prepared via electrochemical deposition and thermal annealing are investigated towards CO 2 electrochemical reduction at low overpotential. The thickness of the electrochemical deposited Cu 2O was controlled by varying the constant-current deposition time. The surface morphology and roughness were examined with SEM and CV respectively. The electrode fabricated by cuprous oxide deposited for 20 min demonstrated the best faradic efficiency (7.02%) and specific activity (0.123 mA/cm 2) towards format/formic acid formation at -0.5 V vs. RHE in CO 2 saturated 0.5 M K 2CO 3 among studied samples.
Electrochemical CO 2 Reduction on Oxide-Derived Cu Surface with Various Oxide Thicknesses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Zhixiu; Fu, Jie; Vukmirovic, Miomir B.
Here, cuprous oxide on copper foil electrodes prepared via electrochemical deposition and thermal annealing are investigated towards CO 2 electrochemical reduction at low overpotential. The thickness of the electrochemical deposited Cu 2O was controlled by varying the constant-current deposition time. The surface morphology and roughness were examined with SEM and CV respectively. The electrode fabricated by cuprous oxide deposited for 20 min demonstrated the best faradic efficiency (7.02%) and specific activity (0.123 mA/cm 2) towards format/formic acid formation at -0.5 V vs. RHE in CO 2 saturated 0.5 M K 2CO 3 among studied samples.
Effect of annealing on the sub-bandgap, defects and trapping states of ZnO nanostructures
NASA Astrophysics Data System (ADS)
Wahyuono, Ruri Agung; Hermann-Westendorf, Felix; Dellith, Andrea; Schmidt, Christa; Dellith, Jan; Plentz, Jonathan; Schulz, Martin; Presselt, Martin; Seyring, Martin; Rettenmeyer, Markus; Dietzek, Benjamin
2017-02-01
Annealing treatment was applied to different mesoporous ZnO nanostructures prepared by wet chemical synthesis, i.e. nanoflowers (NFs), spherical aggregates (SPs), and nanorods (NRs). The sub-bandgap, defect properties as well as the trapping state characteristics after annealing were characterized spectroscopically, including ultrasensitive photothermal deflection spectroscopy (PDS), photoluminescence and photo-electrochemical methods. The comprehensive experimental analysis reveals that annealing alters both the bandgap and the sub-bandgap. The defect concentration and the density of surface traps in the ZnO nanostructures are suppressed upon annealing as deduced from photoluminescence and open-circuit voltage decay analysis. The photo-electrochemical investigations reveal that the surface traps dominate the near conduction band edge of ZnO and, hence, lead to high recombination rates when used in DSSCs. The density of bulk traps in ZnO SPs is higher than that in ZnO NFs and ZnO NRs and promote lower recombination loss between photoinjected electrons with the electrolyte-oxidized species on the surface. The highest power conversion efficiency of ZnO NFs-, ZnO SPs-, and ZnO NRs-based DSSC obtained in our system is 2.0, 4.5, and 1.8%, respectively.
Yumak, Tugrul; Kuralay, Filiz; Muti, Mihrican; Sinag, Ali; Erdem, Arzum; Abaci, Serdar
2011-09-01
In this study, ZnO nanoparticles (ZNP) of approximately 30 nm in size were synthesized by the hydrothermal method and characterized by X-ray diffraction (XRD), Braun-Emmet-Teller (BET) N2 adsorption analysis and transmission electron microscopy (TEM). ZnO nanoparticles enriched with poly(vinylferrocenium) (PVF+) modified single-use graphite electrodes were then developed for the electrochemical monitoring of nucleic acid hybridization related to the Hepatitis B Virus (HBV). Firstly, the surfaces of polymer modified and polymer-ZnO nanoparticle modified single-use pencil graphite electrodes (PGEs) were characterized using scanning electron microscopy (SEM). The electrochemical behavior of these electrodes was also investigated using differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). Subsequently, the polymer-ZnO nanoparticle modified PGEs were evaluated for the electrochemical detection of DNA based on the changes at the guanine oxidation signals. Various modifications in DNA oligonucleotides and probe concentrations were examined in order to optimize the electrochemical signals that were generated by means of nucleic acid hybridization. After the optimization studies, the sequence-selective DNA hybridization was investigated in the case of a complementary amino linked probe (target), or noncomplementary (NC) sequences, or target and mismatch (MM) mixture in the ratio of (1:1). Copyright © 2011 Elsevier B.V. All rights reserved.
Electrochemical and thermal grafting of alkyl grignard reagents onto (100) silicon surfaces.
Vegunta, Sri Sai S; Ngunjiri, Johnpeter N; Flake, John C
2009-11-03
Passivation of (100) silicon surfaces using alkyl Grignard reagents is explored via electrochemical and thermal grafting methods. The electrochemical behavior of silicon in methyl or ethyl Grignard reagents in tetrahydrofuran is investigated using cyclic voltammetry. Surface morphology and chemistry are investigated using atomic force microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy (XPS). Results show that electrochemical pathways provide an efficient and more uniform passivation method relative to thermal methods, and XPS results demonstrate that electrografted terminations are effective at limiting native oxide formation for more than 55 days in ambient conditions. A two-electron per silicon mechanism is proposed for electrografting a single (1:1) alkyl group per (100) silicon atom. The mechanism includes oxidation of two Grignard species and subsequent hydrogen abstraction and alkylation reaction resulting in a covalent attachment of alkyl groups with silicon.
Electrochemical nitridation of metal surfaces
Wang, Heli; Turner, John A.
2015-06-30
Electrochemical nitridation of metals and the produced metals are disclosed. An exemplary method of electrochemical nitridation of metals comprises providing an electrochemical solution at low temperature. The method also comprises providing a three-electrode potentiostat system. The method also comprises stabilizing the three-electrode potentiostat system at open circuit potential. The method also comprises applying a cathodic potential to a metal.
Electric Arc and Electrochemical Surface Texturing Technologies
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Rutledge, Sharon K.; Snyder, Scott A.
1997-01-01
Surface texturing of conductive materials can readily be accomplished by means of a moving electric arc which produces a plasma from the environmental gases as well as from the vaporized substrate and arc electrode materials. As the arc is forced to move across the substrate surface, a condensate from the plasma re-deposits an extremely rough surface which is intimately mixed and attached to the substrate material. The arc textured surfaces produce greatly enhanced thermal emittance and hold potential for use as high temperature radiator surfaces in space, as well as in systems which use radiative heat dissipation such as computer assisted tomography (CAT) scan systems. Electrochemical texturing of titanium alloys can be accomplished by using sodium chloride solutions along with ultrasonic agitation to produce a random distribution of craters on the surface. The crater size and density can be controlled to produce surface craters appropriately sized for direct bone in-growth of orthopaedic implants. Electric arc texturing and electrochemical texturing techniques, surface properties and potential applications will be presented.
Nanotubular surface modification of metallic implants via electrochemical anodization technique.
Wang, Lu-Ning; Jin, Ming; Zheng, Yudong; Guan, Yueping; Lu, Xin; Luo, Jing-Li
2014-01-01
Due to increased awareness and interest in the biomedical implant field as a result of an aging population, research in the field of implantable devices has grown rapidly in the last few decades. Among the biomedical implants, metallic implant materials have been widely used to replace disordered bony tissues in orthopedic and orthodontic surgeries. The clinical success of implants is closely related to their early osseointegration (ie, the direct structural and functional connection between living bone and the surface of a load-bearing artificial implant), which relies heavily on the surface condition of the implant. Electrochemical techniques for modifying biomedical implants are relatively simple, cost-effective, and appropriate for implants with complex shapes. Recently, metal oxide nanotubular arrays via electrochemical anodization have become an attractive technique to build up on metallic implants to enhance the biocompatibility and bioactivity. This article will thoroughly review the relevance of electrochemical anodization techniques for the modification of metallic implant surfaces in nanoscale, and cover the electrochemical anodization techniques used in the development of the types of nanotubular/nanoporous modification achievable via electrochemical approaches, which hold tremendous potential for bio-implant applications. In vitro and in vivo studies using metallic oxide nanotubes are also presented, revealing the potential of nanotubes in biomedical applications. Finally, an outlook of future growth of research in metallic oxide nanotubular arrays is provided. This article will therefore provide researchers with an in-depth understanding of electrochemical anodization modification and provide guidance regarding the design and tuning of new materials to achieve a desired performance and reliable biocompatibility.
Nanotubular surface modification of metallic implants via electrochemical anodization technique
Wang, Lu-Ning; Jin, Ming; Zheng, Yudong; Guan, Yueping; Lu, Xin; Luo, Jing-Li
2014-01-01
Due to increased awareness and interest in the biomedical implant field as a result of an aging population, research in the field of implantable devices has grown rapidly in the last few decades. Among the biomedical implants, metallic implant materials have been widely used to replace disordered bony tissues in orthopedic and orthodontic surgeries. The clinical success of implants is closely related to their early osseointegration (ie, the direct structural and functional connection between living bone and the surface of a load-bearing artificial implant), which relies heavily on the surface condition of the implant. Electrochemical techniques for modifying biomedical implants are relatively simple, cost-effective, and appropriate for implants with complex shapes. Recently, metal oxide nanotubular arrays via electrochemical anodization have become an attractive technique to build up on metallic implants to enhance the biocompatibility and bioactivity. This article will thoroughly review the relevance of electrochemical anodization techniques for the modification of metallic implant surfaces in nanoscale, and cover the electrochemical anodization techniques used in the development of the types of nanotubular/nanoporous modification achievable via electrochemical approaches, which hold tremendous potential for bio-implant applications. In vitro and in vivo studies using metallic oxide nanotubes are also presented, revealing the potential of nanotubes in biomedical applications. Finally, an outlook of future growth of research in metallic oxide nanotubular arrays is provided. This article will therefore provide researchers with an in-depth understanding of electrochemical anodization modification and provide guidance regarding the design and tuning of new materials to achieve a desired performance and reliable biocompatibility. PMID:25258532
Characterization of Nanopipettes.
Perry, David; Momotenko, Dmitry; Lazenby, Robert A; Kang, Minkyung; Unwin, Patrick R
2016-05-17
Nanopipettes are widely used in electrochemical and analytical techniques as tools for sizing, sequencing, sensing, delivery, and imaging. For all of these applications, the response of a nanopipette is strongly affected by its geometry and surface chemistry. As the size of nanopipettes becomes smaller, precise geometric characterization is increasingly important, especially if nanopipette probes are to be used for quantitative studies and analysis. This contribution highlights the combination of data from voltage-scanning ion conductivity experiments, transmission electron microscopy and finite element method simulations to fully characterize nanopipette geometry and surface charge characteristics, with an accuracy not achievable using existing approaches. Indeed, it is shown that presently used methods for characterization can lead to highly erroneous information on nanopipettes. The new approach to characterization further facilitates high-level quantification of the behavior of nanopipettes in electrochemical systems, as demonstrated herein for a scanning ion conductance microscope setup.
He, Ping; Liu, Hongtao; Li, Zhiying; Liu, Yang; Xu, Xiudong; Li, Jinghong
2004-11-09
The use of room-temperature ionic liquids (RTILs) as media for electrochemical application is very attractive. In this work, the electrochemical deposition of silver was investigated at a glassy carbon electrode in hydrophobic 1-n-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6) and hydrophilic 1-n-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4) RTILs and in KNO3 aqueous solution by cyclic voltammetric and potentiostatic transient techniques. The voltammograms showed the presence of reduction and oxidation peaks associated with the deposition and dissolution of silver from AgBF4 in both BMIMPF6 and BMIMBF(4), resembling the redox behavior of AgNO3 in KNO3 aqueous solution. A crossover loop was observed in all the cyclic voltammograms of these electrochemical systems, indicating a nucleation process. From the analysis of the experimental current transients, it was shown that the electrochemical deposition process of silver in these media was characteristic of 3D nucleation with diffusion-controlled hemispherical growth, and the silver nucleation closely followed the response predicted for progressive nucleation in BMIMPF6 and instantaneous nucleation in KNO3 aqueous solution, respectively. Compared with these two cases, the electrochemical deposition of silver in BMIMBF4 deviated from both the instantaneous and progressive nucleation models, which could be controlled by mixed kinetics and diffusion. On the basis of the experimental results, it was shown that parameters such as viscosity and water miscibility of RTILs would affect the electrodeposition behavior of silver. Atom force microscopy was employed to probe the surface morphology of the silver deposit, and it showed that the shining electrodeposit of silver was fairly dense and separate nanoclusters of <100 nm were in evidence, corresponding to an island growth model. The strongly enhanced Raman scattering from the monolayer film of 4-mercaptobenzoic acid demonstrated that as-prepared silver nanoparticular film was surface-enhanced Raman scattering (SERS) active. The enhancement factor was calculated to be up to 9.0 x 10(5) and 1.0 x 10(6) for the silver film obtained in BMIMPF6 and BMIMBF4 RTILs, respectively.
NASA Astrophysics Data System (ADS)
Benea, Lidia
2018-06-01
There are two applied electrochemical methods in our group in order to obtain advanced functional surfaces on materials: (i) direct electrochemical synthesis by electro-codeposition process and (ii) anodization of materials to form nanoporous oxide layers followed by electrodeposition of hydroxyapatite or other bioactive molecules and compounds into porous film. Electrodeposition is a process of low energy consumption, and therefore very convenient for the surface modification of various types of materials. Electrodeposition is a powerful method compared with other methods, which led her to be adopted and spread rapidly in nanotechnology to obtain nanostructured layers and films. Nanoporous thin oxide layers on titanum alloys as support for hydroxyapatite or other biomolecules electrodeposition in view of biomedical applications could be obtained by electrochemical methods. For surface modification of titanium or titanium alloys to improve the biocompatibility or osseointegration, the two steps must be fulfilled; the first is controlled growth of oxide layer followed by second being biomolecule electrodeposition into nanoporous formed titanium oxide layer.
NASA Astrophysics Data System (ADS)
Bang, Joon Hyuk; Lee, Hye-Min; An, Kay-Hyeok; Kim, Byung-Joo
2017-09-01
This study aimed to understand the impact of CO2 activation of commercial activated carbons (AC) on the changes in pore characteristics and the electrochemical property. The surface structure of manufactured AC was observed with a X-ray diffraction (XRD); the pore characteristics were analyzed at N2/77 K isothermal absorption using the Brunauer-Emmett-Teller (BET) and Dubinin-Radushkevich (DR) equations. In addition, the electrochemical characteristics were analyzed by means of an electrolyte of 1 M (C2H5)4NBF4/propylene carbonate, using a charge/discharge test, cyclic voltammetry (CV), and impedance. The N2/77 K isothermal absorption curve of the manufactured AC falls under Type I in the classification of the International Union of Pure and Applied Chemistry (IUPAC) and was found to largely comprise micropores. The specific surface area increased from 1690 m2/g to 2290 m2/g, and the pore volume grew from 0.80 cm3/g to 1.10 cm3/g. The analysis of electrochemical characteristics also found that the specific capacity increased from 17 F/g to 20 F/g (in a full cell condition). Based on these results, we were able to determine the pore characteristics of commercial AC through an additional activation process, which consequently allowed us to manufacture the AC with an advanced electrochemical property.
Wang, Jiamian; Wang, Xiuyun; Wu, Shuo; Song, Jie; Zhao, Yanqiu; Ge, Yanqiu; Meng, Changgong
2016-02-04
Silver nanoclusters and graphene oxide nanocomposite (AgNCs/GRO) is synthesized and functionalized with detection antibody for highly sensitive electrochemical sensing of carcinoembryonic antigen (CEA), a model tumor marker involved in many cancers. AgNCs with large surface area and abundant amount of low-coordinated sites are synthesized with DNA as template and exhibit high catalytic activity towards the electrochemical reduction of H2O2. GRO is employed to assemble with AgNCs because it has large specific surface area, super electronic conductivity and strong π-π stacking interaction with the hydrophobic bases of DNA, which can further improve the catalytic ability of the AgNCs. Using AgNCs/GRO as signal amplification tag, an enzyme-free electrochemical immunosensing protocol is designed for the highly sensitive detection of CEA on the capture antibody functionalized immunosensing interface. Under optimal conditions, the designed immunosensor exhibits a wide linear range from 0.1 pg mL(-1) to 100 ng mL(-1) and a low limit of detection of 0.037 pg mL(-1). Practical sample analysis reveals the sensor has good accuracy and reproducibility, indicating the great application prospective of the AgNCs/GRO in fabricating highly sensitive immunosensors, which can be extended to the detection of various kinds of low abundance disease related proteins. Copyright © 2015 Elsevier B.V. All rights reserved.
Surface treatment influences electrochemical stability of cpTi exposed to mouthwashes.
Beline, Thamara; Garcia, Camila S; Ogawa, Erika S; Marques, Isabella S V; Matos, Adaias O; Sukotjo, Cortino; Mathew, Mathew T; Mesquita, Marcelo F; Consani, Rafael X; Barão, Valentim A R
2016-02-01
The role of surface treatment on the electrochemical behavior of commercially pure titanium (cpTi) exposed to mouthwashes was tested. Seventy-five disks were divided into 15 groups according to surface treatment (machined, sand blasted with Al2O3, and acid etched) and electrolyte solution (artificial saliva — control, 0.12% chlorhexidine digluconate, 0.05% cetylpyridinium chloride, 0.2% sodium fluoride, and 1.5% hydrogen peroxide) (n = 5). Open-circuit-potential and electrochemical impedance spectroscopy were conducted at baseline and after 7 and 14 days of immersion in each solution. Potentiodynamic test and total weight loss of disks were performed after 14 days of immersion. Scanning electron microscopy, energy dispersive spectroscopy, white light interferometry and profilometry were conducted for surface characterization before and after the electrochemical tests. Sandblasting promoted the lowest polarization resistance (Rp) (P b .0001) and the highest capacitance (CPE) (P b .006), corrosion current density (Icorr) and corrosion rate (P b .0001). In contrast, acid etching increased Rp and reduced CPE, independent to the mouthwash; while hydrogen peroxide reduced Rp (P b .008) and increased Icorr and corrosion rate (P b .0001). The highest CPE values were found for hydrogen peroxide and 0.2% sodium fluoride. Immersion for longer period improved the electrochemical stability of cpTi (P b .05). In conclusion, acid etching enhanced the electrochemical stability of cpTi. Hydrogen peroxide and sodium fluoride reduced the resistance to corrosion of cpTi, independent to the surface treatment. Chlorhexidine gluconate and cetylpyridinium chloride did not alter the corrosive behavior of cpTi.
Analysis of telomerase activity based on a spired DNA tetrahedron TS primer.
Li, Yan; Wen, Yanli; Wang, Lele; Liang, Wen; Xu, Li; Ren, Shuzhen; Zou, Ziying; Zuo, Xiaolei; Fan, Chunhai; Huang, Qing; Liu, Gang; Jia, Nengqin
2015-05-15
The development of sensitive telomerase biosensors is hindered by the restricted accessibility of telomere strand (TS) primer and the limited enzyme reaction space, which is mainly confined by the vertical distance. In this work, we designed an electrochemical telomerase biosensor based on a spired DNA tetrahedron TS primer (STTS). By adding a rigid dsDNA spire onto the top of the DNA tetrahedron, we successfully regulated the distance between the TS primer and the surface, and thus greatly facilitated the telomerase elongation on surface. The signal-to-noise ratio was 2 times higher than TSP without the spire structure. The limit of detection was calculated to be lower than 10 HeLa cells, which is at least 2 magnitudes lower than other surface extension-based electrochemical telomerase sensors without amplification. The practicability of STTS sensor was also demonstrated by analysing various other cell lines including cancer cells, stem cells of high telomerase activity and somatic cells of low telomerase activity. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Faur, Maria; Faur, Mircea; Weinberg, Irving; Goradia, Manju; Vargas, Carlos
1991-01-01
An extensive experimental study was conducted using various electrolytes in an effort to find an appropriate electrolyte for anodic dissolution of InP. From the analysis of electrochemical characteristics in the dark and under different illumination levels, x ray photoelectron spectroscopy and SEM/Nomarski inspection of the surfaces, it was determined that the anodic dissolution of InP front surface layers by FAP electrolyte is a very good choice for rendering smooth surfaces, free of oxides and contaminants and with good electrical characteristics. The FAP electrolyte, based on HF, CH3COOH, and H2O2 appears to be inherently superior to previously reported electrolytes for performing accurate EC-V profiling of InP at current densities of up to 0.3 mA/sq cm. It can also be used for accurate electrochemical revealing of either precipitates or dislocation density with application to EPD mapping as a function of depth, and for defect revealing of multilayer InP structures at any depth and/or at the interfaces.
Peculiarities of steel and alloy electrochemical and corrosion behavior after laser processing
NASA Astrophysics Data System (ADS)
Kuzmenko, Tat'yana G.; Kosyrev, Feliks K.; Rodin, Anatoly V.; Sayapin, V. P.
1997-04-01
Different types of laser processing can significantly increase the corrosion resistance of constructive materials, secure higher levels of metal properties in comparison with standard protection from corrosion and can be successfully used for industrial application. The research carried out in TRINITI during the last 10 years allowed us to create a data base about corrosion behavior in different chemical media of various metals, alloys and steels after welding, melting, surface alloying, etc. on technological continuous-wave carbon-dioxide-laser with average power up to 5 kilowatt. The investigated materials were subdivided into two groups: (1) without changes of phases composition after laser processing (pure metals, stainless steels); and (2) exposed to structural and phase changes under laser-matter interaction (carbon steels with different carbon content). It has allowed us to investigate the peculiarities of corrosion process mechanism depending on matter surface structure and phase composition both on laser irradiation regimes. Our research was based on the high sensitive electrochemical analysis combined with other corrosion and physical methods. The essential principles of electrochemical analysis are next. There are two main processes on metal under the interaction with electrolyte solution: anodic reaction -- which means the metal oxidation or transition of metal kations into solution; cathodic reaction -- the reoxidation of the ions or molecular of the solution. They are characterizing by the values of current densities and the rates of these reactions are dependent upon the potential arising on the metal-solution frontier. The electrochemical reactions kinetic investigations gives a unique possibility for the research of metal structure and corrosion behavior even in the case of small thickness of laser processed layers.
NASA Astrophysics Data System (ADS)
Luo, Yu; Shi, Yixiang; Li, Wenying; Cai, Ningsheng
2018-03-01
CO/CO2 are the major gas reactant/product in the fuel electrode of reversible solid oxide cells (RSOC). This study proposes a two-charge-transfer-step mechanism to describe the reaction and transfer processes of CO-CO2 electrochemical conversion on a patterned Ni electrode of RSOC. An elementary reaction model is developed to couple two charge transfer reactions, C(Ni)+O2-(YSZ) ↔ CO(Ni)+(YSZ) +2e- and CO(Ni)+O2-(YSZ) ↔ CO2(Ni)+(YSZ)+2e-, with adsorption/desorption, surface chemical reactions and surface diffusion. This model well validates in both solid oxide electrolysis cell (SOEC) and solid oxide fuel cell (SOFC) modes by the experimental data from a patterned Ni electrode with 10 μm stripe width at different pCO (0-0.25 atm), pCO2 (0-0.35 atm) and operating temperature (600-700 °C). This model indicates SOEC mode is dominated by charge transfer step C(Ni)+O2-(YSZ)↔CO(Ni)+(YSZ) +2e-, while SOFC mode by CO(Ni)+ O2-(YSZ)↔CO2(Ni)+(YSZ)+2e- on the patterned Ni electrode. The sensitivity analysis shows charge transfer step is the major rate-determining step for RSOC, besides, surface diffusion of CO and CO2 as well as CO2 adsorption also plays a significant role in the electrochemical reaction of SOEC while surface diffusion of CO and CO2 desorption could be co-limiting in SOFC.
The aqueous electrochemistry of carbon-based surfaces-investigation by scanning tunneling microscopy
NASA Astrophysics Data System (ADS)
Mühl, T.; Myhra, S.
2007-04-01
Electro-oxidation of carbon-based materials will lead to conversion of the solid to CO2/CO at the anode, with H2 being produced at the cathode. Recent voltammetric investigations of carbon nano-tubes and single crystal graphite have shown that only edge sites and other defect sites are electrochemically active. Local oxidation of diamond-like carbon films (DLC) by an STM tip in moist air followed by imaging allows correlation of topographical change with electro-chemical conditions and surface reactivity. The results may have implications for lithographic processing of carbon surfaces, and may have relevance for electrochemical H2 production.
NASA Astrophysics Data System (ADS)
Song, Y. Z.; Li, X.; Song, Y.; Cheng, Z. P.; Zhong, H.; Xu, J. M.; Lu, J. S.; Wei, C. G.; Zhu, A. F.; Wu, F. Y.; Xu, J.
2013-01-01
Gold nanoparticles on the surface of multi-walled carbon nanotubes with glassy carbon electrode were prepared using electrochemical synthesis method. The thin films of gold Nanoparticles/multi-walled carbon nanotubes were characterized by scanning electron microscopy, powder X-ray diffraction, and cyclic voltammetry. Electrochemical behavior of adrenaline hydrochloride at gold nanoparticles/multi-walled carbon nanotube modified glassy carbon electrode was investigated. A simple, sensitive, and inexpensive method for determination of adrenaline hydrochloride was proposed.
NASA Astrophysics Data System (ADS)
Miara, Lincoln James
Solid oxide fuel cells (SOFCs) have the potential to replace conventional stationary power generation technologies; however, there are major obstacles to commercialization, the most problematic of which is poor cathode performance. Commercialization of SOFCs will follow when the mechanisms occurring at the cathode are more thoroughly understood and adapted for market use. The catalytic reduction of oxygen occurring in SOFC cathodes consists of many elementary steps such as gas phase diffusion, chemical and/or electrochemical reactions which lead to the adsorption and dissociation of molecular oxygen onto the cathode surface, mass transport of oxygen species along the surface and/or through the bulk of the cathode, and full reduction and incorporation of the oxygen at the cathode/electrolyte two or three phase boundary. Electrochemical impedance spectroscopy (EIS) is the main technique used to identify the occurrence of these different processes, but when this technique is used without an explicit model describing the kinetics it is difficult to unravel the interdependence of each of these processes. The purpose of this dissertation is to identify the heterogeneous reactions occurring at the cathode of an SOFC by combining experimental EIS results with mathematical models describing the time dependent behavior of the system. This analysis is performed on two different systems. In the first case, experimental EIS results from patterned half cells composed of Ca-doped lanthanum manganite (LCM)| yttria-doped ZrO2 (YSZ) are modeled to investigate the temperature and partial pressure of oxygen, pO2, dependence of oxygen adsorption/dissociation onto the LCM surface, surface diffusion of atomic oxygen, and electrochemical reduction and incorporation of the oxygen into the electrolyte in the vicinity of the triple phase boundary (TPB). This model determines the time-independent state-space equations from which the Faradaic admittance transfer function is obtained. The unknown rate constants (kad, k des, k1, k1¯ ), and parameters (Ds, Q°, n) arising from the governing equations are estimated from a combination of experiments, mathematical analysis, and numerical data analysis. In the second system, dense patterned films of cathode with composition: La0.6Sr0.4Co0.2Fe0.8O3-delta (LSCF-6428) were fabricated on Ga-doped CeO2 coated YSZ substrates. These samples were analyzed by EIS over a temperature and pO 2 range of 600--800 °C and 10-3--1.00 atm, respectively. To understand the EIS results, a 2-dimensional model was developed which accounted for surface oxygen exchange, and both surface and bulk transport of oxygen to the electrolyte interface. The results were obtained by numerically solving a stationary partial differential equation describing the oxygen vacancy distribution in the cathode. From these results, the model impedance was derived and then fitted to the experimental EIS results. From the fitting results the contributions to the impedance from each of the processes were estimated. Also, the surface exchange rate was estimated over the experimental operating conditions. Finally, the results suggest that the surface diffusion occurred by an interstitial type mechanism in this material. The cathode surface is intimately involved in most of the oxygen reduction processes; however, the surface structure and chemistry is typically treated as an extension of the bulk without consideration of the actual surface properties. Recent evidence suggests that significant changes occur to the surface during operation which in turn leads to changes in electrochemical performance. To investigate these phenomena, well-oriented thin films (250 nm in thickness) of Sr-doped lanthanum manginite (LSM) films were grown on single crystals of YSZ (111). Films which were cathodically biased with a -1 V applied dc potential were compared to control samples. The cathodic bias results in both an enhancement in electrochemical performance and a change in surface chemistry. The changes in electrochemical performance were monitored by ES, while the surface changes were tracked with a combination of soft x-ray techniques such as x-ray photoemission spectroscopy and x-ray absorption spectroscopy. The soft x-ray results indicated that the removal of surface passivating phases (i.e., SrO and MnO) are correlated with improved performance. This work demonstrates the success of estimating fundamental parameters, such as diffusivity and surface coverage, from experimental EIS results using a physically realistic model without, as is commonly done, assuming a specific rate limiting step or using an ambiguous equivalent circuit. This allows researchers to fabricate designer cathodes by selecting materials with optimal kinetic properties such as rapid oxygen dissociation and rapid oxygen transport in (or on) the cathode, independent of geometry.
Kalinin, Sergei V; Balke, Nina; Kumar, Amit; Dudney, Nancy J; Jesse, Stephen
2014-05-06
A method and system for probing mobile ion diffusivity and electrochemical reactivity on a nanometer length scale of a free electrochemically active surface includes a control module that biases the surface of the material. An electrical excitation signal is applied to the material and induces the movement of mobile ions. An SPM probe in contact with the surface of the material detects the displacement of mobile ions at the surface of the material. A detector measures an electromechanical strain response at the surface of the material based on the movement and reactions of the mobile ions. The use of an SPM tip to detect local deformations allows highly reproducible measurements in an ambient environment without visible changes in surface structure. The measurements illustrate effective spatial resolution comparable with defect spacing and well below characteristic grain sizes of the material.
Tribolayer Formation in a Metal-on-Metal (MoM) Hip Joint: An Electrochemical Investigation
Mathew, MT; Nagelli, C; Pourzal, R; Fischer, A; Laurent, MP; Jacobs, JJ; Wimmer, MA
2013-01-01
The demand for total hip replacement (THR) surgery is increasing in the younger population due to faster rehabilitation and more complete restoration of function. Up to 2009, metal-on-metal (MoM) hip joint bearings were a popular choice due to their design flexibility, post-operative stability and relatively low wear rates. The main wear mechanisms that occur along the bearing surface of MoM joints are tribochemical reactions that deposit a mixture of wear debris, metal ions and organic matrix of decomposed proteins known as a tribolayer. No in-depth electrochemical studies have been reported on the structure and characteristics of this tribolayer or about the parameters involved in its formation. In this study, we conducted an electrochemical investigation of different surfaces (bulk-like: control, nano-crystalline: new implant and tribolayer surface: retrieved implant) made out of two commonly used hip CoCrMo alloys (high-carbon and low-carbon). As per ASTM standard, cyclic polarization tests and electrochemical impedance spectroscopy tests were conducted. The results obtained from electrochemical parameters for different surfaces clearly indicated a reduction in corrosion for the tribolayer surface (Icorr: 0.76 μA/cm2). Further, polarization resistance (Rp:2.39±0.60MΩ/cm2) and capacitance (Cdl:15.20±0.75 μF/cm2) indicated variation in corrosion kinetics for the tribolayer surface, that attributed to its structure and stability in a simulated body environment. PMID:24099949
NASA Astrophysics Data System (ADS)
Zhao, Kun; Wang, Yaowu; Feng, Naixiang
2018-02-01
An electrochemical method for the preparation of an Al-Ti master alloy in Al electrolysis melts of Na3AlF6-Al2O3-LiF at 980°C was investigated. The Ti-reducing slag (5.24 wt.% Ti in the Ti-reducing slag) was obtained from the aluminothermic reduction of Na2TiF6. The cold test (i.e., the aluminothermic reduction process without applying any voltages) result revealed the capability of the Al cathode to reduce the Ti slag, and the recovery rate could reach 45.8% at 980°C over 3.5 h with the addition of 10 wt.% Ti-reducing slag. In contrast, the recovery rate of Ti after electrolysis at 3.0 V could reach 99.2%. Thus, the electrochemical treatment for Ti-reducing slag is a cooperative process involving aluminothermic and electrochemical reduction reactions. Electrochemical analysis indicated that the Ti ions are reduced to metallic Ti according to Ti4+ → Ti3+ → Ti. An Al-Ti alloy layer could be prepared on the external surface of the Mo electrode after electrolysis with the addition of 12 wt.% Ti-reducing slag.
STM, SECPM, AFM and Electrochemistry on Single Crystalline Surfaces
Wolfschmidt, Holger; Baier, Claudia; Gsell, Stefan; Fischer, Martin; Schreck, Matthias; Stimming, Ulrich
2010-01-01
Scanning probe microscopy (SPM) techniques have had a great impact on research fields of surface science and nanotechnology during the last decades. They are used to investigate surfaces with scanning ranges between several 100 μm down to atomic resolution. Depending on experimental conditions, and the interaction forces between probe and sample, different SPM techniques allow mapping of different surface properties. In this work, scanning tunneling microscopy (STM) in air and under electrochemical conditions (EC-STM), atomic force microscopy (AFM) in air and scanning electrochemical potential microscopy (SECPM) under electrochemical conditions, were used to study different single crystalline surfaces in electrochemistry. Especially SECPM offers potentially new insights into the solid-liquid interface by providing the possibility to image the potential distribution of the surface, with a resolution that is comparable to STM. In electrocatalysis, nanostructured catalysts supported on different electrode materials often show behavior different from their bulk electrodes. This was experimentally and theoretically shown for several combinations and recently on Pt on Au(111) towards fuel cell relevant reactions. For these investigations single crystals often provide accurate and well defined reference and support systems. We will show heteroepitaxially grown Ru, Ir and Rh single crystalline surface films and bulk Au single crystals with different orientations under electrochemical conditions. Image studies from all three different SPM methods will be presented and compared to electrochemical data obtained by cyclic voltammetry in acidic media. The quality of the single crystalline supports will be verified by the SPM images and the cyclic voltammograms. Furthermore, an outlook will be presented on how such supports can be used in electrocatalytic studies. PMID:28883327
Electrochemical surface modification of titanium in dentistry.
Kim, Kyo-Han; Ramaswamy, Narayanan
2009-01-01
Titanium and its alloys have good biocompatibility with body cells and tissues and are widely used for implant applications. However, clinical procedures place more stringent and tough requirements on the titanium surface necessitating artificial surface treatments. Among the many methods of titanium surface modification, electrochemical techniques are simple and cheap. Anodic oxidation is the anodic electrochemical technique while electrophoretic and cathodic depositions are the cathodic electrochemical techniques. By anodic oxidation it is possible to obtain desired roughness, porosity and chemical composition of the oxide. Anodic oxidation at high voltages can improve the crystallinity of the oxide. The chief advantage of this technique is doping of the coating of the bath constituents and incorporation of these elements improves the properties of the oxide. Electrophoretic deposition uses hydroxyapatite (HA) powders dispersed in a suitable solvent at a particular pH. Under these operating conditions these particles acquire positive charge and coatings are obtained on the cathodic titanium by applying an external electric field. These coatings require a post-sintering treatment to improve the coating properties. Cathodic deposition is another type of electrochemical method where HA is formed in situ from an electrolyte containing calcium and phosphate ions. It is also possible to alter structure and/or chemistry of the obtained deposit. Nano-grained HA has higher surface energy and greater biological activity and therefore emphasis is being laid to produce these coatings by cathodic deposition.
NASA Astrophysics Data System (ADS)
ur Rahman, Zia; Deen, K. M.; Cano, Lawrence; Haider, Waseem
2017-07-01
Corrosion resistance and biocompatibility of 316L stainless steel implants depend on the surface features and the nature of the passive film. The influence of electropolishing on the surface topography, surface free energy and surface chemistry was determined by atomic force microscopy, contact angle meter and X-ray photoelectron spectroscopy, respectively. The electropolishing of 316L stainless steel was conducted at the oxygen evolution potential (EPO) and below the oxygen evolution potential (EPBO). Compared to mechanically polished (MP) and EPO, the EPBO sample depicted lower surface roughness (Ra = 6.07 nm) and smaller surface free energy (44.21 mJ/m2). The relatively lower corrosion rate (0.484 mpy) and smaller passive current density (0.619 μA/cm2) as determined from cyclic polarization scans was found to be related with the presence of OH, Cr(III), Fe(0), Fe(II) and Fe(III) species at the surface. These species assured the existence of relatively uniform passive oxide film over EPBO surface. Moreover, the relatively large charge transfer (Rct) and passive film resistance (Rf) registered by EPBO sample from impedance spectroscopy analysis confirmed its better electrochemical performance. The in vitro response of these polished samples toward MC3T3 pre-osteoblast cell proliferation was determined to be directly related with their surface and electrochemical properties.
Eksin, Ece; Zor, Erhan; Erdem, Arzum; Bingol, Haluk
2017-06-15
Recently, the low-cost effective biosensing systems based on advanced nanomaterials have received a key attention for development of novel assays for rapid and sequence-specific nucleic acid detection. The electrochemical biosensor based on reduced graphene oxide (rGO) modified disposable pencil graphite electrodes (PGEs) were developed herein for electrochemical monitoring of DNA, and also for monitoring of biointeraction occurred between anticancer drug, Daunorubicin (DNR), and DNA. First, rGO was synthesized chemically and characterized by using UV-Vis, TGA, FT-IR, Raman Spectroscopy and SEM techniques. Then, the quantity of rGO assembling onto the surface of PGE by passive adsorption was optimized. The electrochemical behavior of rGO-PGEs was examined by cyclic voltammetry (CV). rGO-PGEs were then utilized for electrochemical monitoring of surface-confined interaction between DNR and DNA using differential pulse voltammetry (DPV) technique. Additionally, voltammetric results were complemented with electrochemical impedance spectroscopy (EIS) technique. Electrochemical monitoring of DNR and DNA was resulted with satisfying detection limits 0.55µM and 2.71µg/mL, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.
Electrochemical sensors and biosensors based on less aggregated graphene.
Bo, Xiangjie; Zhou, Ming; Guo, Liping
2017-03-15
As a novel single-atom-thick sheet of sp 2 hybridized carbon atoms, graphene (GR) has attracted extensive attention in recent years because of its unique and remarkable properties, such as excellent electrical conductivity, large theoretical specific surface area, and strong mechanical strength. However, due to the π-π interaction, GR sheets are inclined to stack together, which may seriously degrade the performance of GR with the unique single-atom layer. In recent years, an increasing number of GR-based electrochemical sensors and biosensors are reported, which may reflect that GR has been considered as a kind of hot and promising electrode material for electrochemical sensor and biosensor construction. However, the active sites on GR surface induced by the irreversible GR aggregations would be deeply secluded inside the stacked GR sheets and therefore are not available for the electrocatalysis. So the alleviation or the minimization of the aggregation level for GR sheets would facilitate the exposure of active sites on GR and effectively upgrade the performance of GR-based electrochemical sensors and biosensors. Less aggregated GR with low aggregation and high dispersed structure can be used in improving the electrochemical activity of GR-based electrochemical sensors or biosensors. In this review, we summarize recent advances and new progress for the development of electrochemical sensors based on less aggregated GR. To achieve such goal, many strategies (such as the intercalation of carbon materials, surface modification, and structural engineering) have been applied to alleviate the aggregation level of GR in order to enhance the performance of GR-based electrochemical sensors and biosensors. Finally, the challenges associated with less aggregated GR-based electrochemical sensors and biosensors as well as related future research directions are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
Hod, Idan; Sampson, Matthew D.; Deria, Pravas; ...
2015-09-18
Realization of heterogeneous electrochemical CO 2-to-fuel conversion via molecular catalysis under high-flux conditions requires the assembly of large quantities of reactant-accessible catalysts on conductive surfaces. As a proof of principle, we demonstrate that electrophoretic deposition of thin films of an appropriately chosen metal–organic framework (MOF) material is an effective method for immobilizing the needed quantity of catalyst. For electrocatalytic CO 2 reduction, we used a material that contains functionalized Fe-porphyrins as catalytically competent, redox-conductive linkers. The approach yields a high effective surface coverage of electrochemically addressable catalytic sites (~10 15 sites/cm 2). The chemical products of the reduction, obtained withmore » ~100% Faradaic efficiency, are mixtures of CO and H 2. The results validate the strategy of using MOF chemistry to obtain porous, electrode-immobilized, networks of molecular catalysts having competency for energy-relevant electrochemical reactions.« less
Hernandez-Jaimes, C; Lobato-Calleros, C; Sosa, E; Bello-Pérez, L A; Vernon-Carter, E J; Alvarez-Ramirez, J
2015-06-25
The electrochemical properties of gelatinized starch dispersions (GSD; 5% w/w) from different botanical sources were studied using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) tests over a platinum surface. The phenomenological modelling of EIS data using equivalent circuits indicated that after gelatinization the electrical resistance was determined mainly by the resistance of insoluble material (i.e., ghosts). Sonication of the GSD disrupted the ghost microstructure, and produced an increase in electrical conductivity by reducing the resistance of the insoluble material. The CV data showed three oxidation peaks at potentials where glucose solutions displayed oxidation waves. It is postulated that hydrolysis at the bulk and electrocatalyzed oxidation on the Pt-surface are reactions involved in the starch transformation. Starches peak intensity increased with the amylose content, suggesting that the amylose-rich matrix played an important role in the charge transfer in the electrolytic system. Copyright © 2015 Elsevier Ltd. All rights reserved.
Restructuring of an Ir(210) electrode surface by potential cycling
Soliman, Khaled A; Kolb, Dieter M; Jacob, Timo
2014-01-01
Summary This study addresses the electrochemical surface faceting and restructuring of Ir(210) single crystal electrodes. Cyclic voltammetry measurements and in situ scanning tunnelling microscopy are used to probe structural changes and variations in the electrochemical behaviour after potential cycling of Ir(210) in 0.1 M H2SO4. Faceted structures are obtained electrochemically as a function of time by cycling at a scanrate of 1 V·s−1 between −0.28 and 0.70 V vs SCE, i.e., between the onset of hydrogen evolution and the surface oxidation regime. The electrochemical behaviour in sulfuric acid solution is compared with that of thermally faceted Ir(210), which shows a sharp characteristic voltammetric peak for (311) facets. Structures similar to thermally-induced faceted Ir(210) are obtained electrochemically, which typically correspond to polyoriented facets at nano-pyramids. These structures grow anisotropically in a preferred direction and reach a height of about 5 nm after 4 h of cycling. The structural changes are reflected in variations of the electrocatalytic activity towards carbon monoxide adlayer oxidation. PMID:25247118
Restructuring of an Ir(210) electrode surface by potential cycling.
Soliman, Khaled A; Kolb, Dieter M; Kibler, Ludwig A; Jacob, Timo
2014-01-01
This study addresses the electrochemical surface faceting and restructuring of Ir(210) single crystal electrodes. Cyclic voltammetry measurements and in situ scanning tunnelling microscopy are used to probe structural changes and variations in the electrochemical behaviour after potential cycling of Ir(210) in 0.1 M H2SO4. Faceted structures are obtained electrochemically as a function of time by cycling at a scanrate of 1 V·s(-1) between -0.28 and 0.70 V vs SCE, i.e., between the onset of hydrogen evolution and the surface oxidation regime. The electrochemical behaviour in sulfuric acid solution is compared with that of thermally faceted Ir(210), which shows a sharp characteristic voltammetric peak for (311) facets. Structures similar to thermally-induced faceted Ir(210) are obtained electrochemically, which typically correspond to polyoriented facets at nano-pyramids. These structures grow anisotropically in a preferred direction and reach a height of about 5 nm after 4 h of cycling. The structural changes are reflected in variations of the electrocatalytic activity towards carbon monoxide adlayer oxidation.
Huang, Yi-Fan; Kooyman, Patricia J.; Koper, Marc T. M.
2016-01-01
Understanding the atomistic details of how platinum surfaces are oxidized under electrochemical conditions is of importance for many electrochemical devices such as fuel cells and electrolysers. Here we use in situ shell-isolated nanoparticle-enhanced Raman spectroscopy to identify the intermediate stages of the electrochemical oxidation of Pt(111) and Pt(100) single crystals in perchloric acid. Density functional theory calculations were carried out to assist in assigning the experimental Raman bands by simulating the vibrational frequencies of possible intermediates and products. The perchlorate anion is suggested to interact with hydroxyl phase formed on the surface. Peroxo-like and superoxo-like two-dimensional (2D) surface oxides and amorphous 3D α-PtO2 are sequentially formed during the anodic polarization. Our measurements elucidate the process of the electrochemical oxidation of platinum single crystals by providing evidence for the structure-sensitive formation of a 2D platinum-(su)peroxide phase. These results may contribute towards a fundamental understanding of the mechanism of degradation of platinum electrocatalysts. PMID:27514695
Analysis and Modeling of Boundary Layer Separation Method (BLSM).
Pethő, Dóra; Horváth, Géza; Liszi, János; Tóth, Imre; Paor, Dávid
2010-09-01
Nowadays rules of environmental protection strictly regulate pollution material emission into environment. To keep the environmental protection laws recycling is one of the useful methods of waste material treatment. We have developed a new method for the treatment of industrial waste water and named it boundary layer separation method (BLSM). We apply the phenomena that ions can be enriched in the boundary layer of the electrically charged electrode surface compared to the bulk liquid phase. The main point of the method is that the boundary layer at correctly chosen movement velocity can be taken out of the waste water without being damaged, and the ion-enriched boundary layer can be recycled. Electrosorption is a surface phenomenon. It can be used with high efficiency in case of large electrochemically active surface of electrodes. During our research work two high surface area nickel electrodes have been prepared. The value of electrochemically active surface area of electrodes has been estimated. The existence of diffusion part of the double layer has been experimentally approved. The electrical double layer capacity has been determined. Ion transport by boundary layer separation has been introduced. Finally we have tried to estimate the relative significance of physical adsorption and electrosorption.
Oxide modified air electrode surface for high temperature electrochemical cells
Singh, Prabhakar; Ruka, Roswell J.
1992-01-01
An electrochemical cell is made having a porous cermet electrode (16) and a porous lanthanum manganite electrode (14), with solid oxide electrolyte (15) between them, where the lanthanum manganite surface next to the electrolyte contains a thin discontinuous layer of high surface area cerium oxide and/or praseodymium oxide, preferably as discrete particles (30) in contact with the air electrode and electrolyte.
Electrochemical Corrosion Characteristics of Arc-Ion-Plated AlTiN Coating for Marine Application.
Lee, Jung-Hyung; Kim, MyoungJun; Kim, Seong-Jong
2016-02-01
In this study, aluminum titanium nitride (AlTiN) coating was deposited by arc ion plating onto mirror finish STS 304 plate. The surface and cross-section of the coating was characterized by SEM and EDX analysis. Several electrochemical corrosion experiments were performed including rest potential measurement, potentiodynamic polarization experiment and Tafel analysis. The result of the experiments indicated that the AlTiN coating presented lower corrosion current density than the substrate material (STS 304) under uniform corrosion environment. It was also observed that AlTiN coating may have a risk of being attacked by localized corrosion attack such as pitting when pores or micro/nano particles in the coating are exposed to chloride ion containing corrosion environment, especially marine environment.
Mohammad Shiri, Hamid; Ehsani, Ali; Jalali Khales, Mina
2017-11-01
A novel electrosynthetic method was introduced to synthesize of Sm 2 O 3 nanoparticles and furthermore, for improving the electrochemical performance of conductive polymer, hybrid POAP/Sm 2 O 3 films have then been fabricated by POAP electropolymerization in the presence of Sm 2 O 3 nanoparticles as active electrodes for electrochemical supercapacitors. The structure, morphology, chemical composition of Sm 2 O 3 nanoparticles was examined. Surface and electrochemical analyses have been used for characterization of Sm 2 O 3 and POAP/Sm 2 O 3 composite films. Different electrochemical methods including galvanostatic charge discharge experiments, cyclic voltammetry and electrochemical impedance spectroscopy have been applied to study the system performance. The supercapacity behavior of the composite film was attributed to the (i) high active surface area of the composite, (ii) charge transfer along the polymer chain due to the conjugation form of the polymer and finally (iii) synergism effect between conductive polymer and Sm 2 O 3 nanoparticles. Copyright © 2017 Elsevier Inc. All rights reserved.
Neupane, Dharmendra; Nepal, Bishal; Mikhaylov, Vasilii; Stine, Keith J.
2018-01-01
Nanoporous gold (np-Au), because of its high surface area-to-volume ratio, excellent conductivity, chemical inertness, physical stability, biocompatibility, easily tunable pores, and plasmonic properties, has attracted much interested in the field of nanotechnology. It has promising applications in the fields of catalysis, bio/chemical sensing, drug delivery, biomolecules separation and purification, fuel cell development, surface-chemistry-driven actuation, and supercapacitor design. Many chemical and electrochemical procedures are known for the preparation of np-Au. Recently, researchers are focusing on easier and controlled ways to tune the pores and ligaments size of np-Au for its use in different applications. Electrochemical methods have good control over fine-tuning pore and ligament sizes. The np-Au electrodes that are prepared using electrochemical techniques are robust and are easier to handle for their use in electrochemical biosensing. Here, we review different electrochemical strategies for the preparation, post-modification, and characterization of np-Au along with the synergistic use of both electrochemistry and np-Au for applications in biosensing. PMID:29547580
Bhattarai, Jay K; Neupane, Dharmendra; Nepal, Bishal; Mikhaylov, Vasilii; Demchenko, Alexei V; Stine, Keith J
2018-03-16
Nanoporous gold (np-Au), because of its high surface area-to-volume ratio, excellent conductivity, chemical inertness, physical stability, biocompatibility, easily tunable pores, and plasmonic properties, has attracted much interested in the field of nanotechnology. It has promising applications in the fields of catalysis, bio/chemical sensing, drug delivery, biomolecules separation and purification, fuel cell development, surface-chemistry-driven actuation, and supercapacitor design. Many chemical and electrochemical procedures are known for the preparation of np-Au. Recently, researchers are focusing on easier and controlled ways to tune the pores and ligaments size of np-Au for its use in different applications. Electrochemical methods have good control over fine-tuning pore and ligament sizes. The np-Au electrodes that are prepared using electrochemical techniques are robust and are easier to handle for their use in electrochemical biosensing. Here, we review different electrochemical strategies for the preparation, post-modification, and characterization of np-Au along with the synergistic use of both electrochemistry and np-Au for applications in biosensing.
Mechano-Electrochemical Interaction Gives Rise to Strain Relaxation in Sn Electrodes
Barai, Pallab; Huang, Bo; Dillon, Shen J.; ...
2016-01-01
Tin (Sn) anode active particles were electrochemically lithiated during simultaneous imaging in a scanning electron microscope. Relationships among the reaction mechanism, active particle local strain rate, particle size, and microcrack formation are elucidated to demonstrate the importance of strain relaxation due to mechano-electrochemical interaction in Sn-based electrodes under electrochemical cycling. At low rates of operation, due to significant creep relaxation, large Sn active particles, of size 1 μm, exhibit no significant surface crack formation. Microcrack formation within Sn active particles occurs due to two different mechanisms: (i)large concentration gradient induced stress at the two-phase interface, and (ii) high volume expansionmore » induced stress at the surface of the active particles. From the present study, it can be concluded that majority of the microcracks evolve at or near the particle surface due to high volume expansion induced tension. Concentration gradient induced damage prevails near the center of the active particle, though significantly smaller in magnitude. Comparison with experimental results indicates that at operating conditions of C/2, even 500 nm sized Sn active particles remain free from surface crack formation, which emphasizes the importance of creep relaxation. A phase map has been developed to demonstrate the preferred mechano-electrochemical window of operation of Sn-based electrodes.« less
Sun, Chia-Liang; Lee, Hsin-Hsien; Yang, Jen-Ming; Wu, Ching-Chou
2011-04-15
In this study, a graphene/Pt-modified glassy carbon (GC) electrode was created to simultaneously characterize ascorbic acid (AA), dopamine (DA), and uric acid (UA) levels via cyclic voltammetry (CV) and differential pulse voltammetry (DPV). During the preparation of the nanocomposite, size-selected Pt nanoparticles with a mean diameter of 1.7 nm were self-assembled onto the graphene surface. In the simultaneous detection of the three aforementioned analytes using CV, the electrochemical potential differences among the three detected peaks were 185 mV (AA to DA), 144 mV (DA to UA), and 329 mV (AA and UA), respectively. In comparison to the CV results of bare GC and graphene-modified GC electrodes, the large electrochemical potential difference that is achieved via the use of the graphene/Pt nanocomposites is essential to the distinguishing of these three analytes. An optimized adsorption of size-selected Pt colloidal nanoparticles onto the graphene surface results in a graphene/Pt nanocomposite that can provide a good platform for the routine analysis of AA, DA, and UA. Copyright © 2011 Elsevier B.V. All rights reserved.
Real-time thermal imaging of solid oxide fuel cell cathode activity in working condition.
Montanini, Roberto; Quattrocchi, Antonino; Piccolo, Sebastiano A; Amato, Alessandra; Trocino, Stefano; Zignani, Sabrina C; Faro, Massimiliano Lo; Squadrito, Gaetano
2016-09-01
Electrochemical methods such as voltammetry and electrochemical impedance spectroscopy are effective for quantifying solid oxide fuel cell (SOFC) operational performance, but not for identifying and monitoring the chemical processes that occur on the electrodes' surface, which are thought to be strictly related to the SOFCs' efficiency. Because of their high operating temperature, mechanical failure or cathode delamination is a common shortcoming of SOFCs that severely affects their reliability. Infrared thermography may provide a powerful tool for probing in situ SOFC electrode processes and the materials' structural integrity, but, due to the typical design of pellet-type cells, a complete optical access to the electrode surface is usually prevented. In this paper, a specially designed SOFC is introduced, which allows temperature distribution to be measured over all the cathode area while still preserving the electrochemical performance of the device. Infrared images recorded under different working conditions are then processed by means of a dedicated image processing algorithm for quantitative data analysis. Results reported in the paper highlight the effectiveness of infrared thermal imaging in detecting the onset of cell failure during normal operation and in monitoring cathode activity when the cell is fed with different types of fuels.
NASA Astrophysics Data System (ADS)
Shrivastava, Megha; Kumari, Reeta; Parra, Mohammad Ramzan; Pandey, Padmini; Siddiqui, Hafsa; Haque, Fozia Z.
2017-11-01
In this report we present the successful enhancement in electroluminescence (EL) in nanostructured n-type porous silicon (PS) with an idea of embedding luminophorous Molybdenum disulfide (MoS2) quantum dots (QD's). Electrochemical anodization technique was used for the formation of PS surface and MoS2 QD's were prepared using the electrochemical route. Spin coating technique was employed for the proper incorporation of MoS2 QD's within the PS nanostructures. The crystallographic analysis was performed using X-ray diffraction (XRD), Raman and Fourier transform infrared (FT-IR) spectroscopy techniques. However, surface morphology was determined using Transmission electron microscopy (TEM) and Atomic force microscopy (AFM). The optical measurements were performed on photoluminescence (PL) spectrophotometer; additionally for electroluminescence (EL) study special arrangement of instrumental setup was made at laboratory level which provides novelty to this work. A diode prototype was made comprising Ag/MoS2:PS/Silicon/Ag for EL study. The MoS2:PS shows a remarkable concentration dependent enhancement in PL as well as in EL intensities, which paves a way to better utilize this strategy in optoelectronic device applications.
Tip-Enhanced Raman Voltammetry: Coverage Dependence and Quantitative Modeling.
Mattei, Michael; Kang, Gyeongwon; Goubert, Guillaume; Chulhai, Dhabih V; Schatz, George C; Jensen, Lasse; Van Duyne, Richard P
2017-01-11
Electrochemical atomic force microscopy tip-enhanced Raman spectroscopy (EC-AFM-TERS) was employed for the first time to observe nanoscale spatial variations in the formal potential, E 0' , of a surface-bound redox couple. TERS cyclic voltammograms (TERS CVs) of single Nile Blue (NB) molecules were acquired at different locations spaced 5-10 nm apart on an indium tin oxide (ITO) electrode. Analysis of TERS CVs at different coverages was used to verify the observation of single-molecule electrochemistry. The resulting TERS CVs were fit to the Laviron model for surface-bound electroactive species to quantitatively extract the formal potential E 0' at each spatial location. Histograms of single-molecule E 0' at each coverage indicate that the electrochemical behavior of the cationic oxidized species is less sensitive to local environment than the neutral reduced species. This information is not accessible using purely electrochemical methods or ensemble spectroelectrochemical measurements. We anticipate that quantitative modeling and measurement of site-specific electrochemistry with EC-AFM-TERS will have a profound impact on our understanding of the role of nanoscale electrode heterogeneity in applications such as electrocatalysis, biological electron transfer, and energy production and storage.
Fast Preparation of Porous MnO/C Microspheres as Anode Materials for Lithium-Ion Batteries
Su, Jing; Liang, Hao; Gong, Xian-Nian; Lv, Xiao-Yan; Long, Yun-Fei; Wen, Yan-Xuan
2017-01-01
Porous MnO/C microspheres have been successfully fabricated by a fast co-precipitation method in a T-shaped microchannel reactor. The structures, compositions, and electrochemical performances of the obtained MnO/C microspheres are characterized by X-ray diffraction, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (HRTEM), Brunauer–Emmett–Teller analysis, charge-discharge testing, cyclic voltammograms, and electrochemical impedance spectra. Experimental results reveal that the as-prepared MnO/C, with a specific surface area of 96.66 m2·g−1 and average pore size of 24.37 nm, exhibits excellent electrochemical performance, with a discharge capacity of 655.4 mAh·g−1 after cycling 50 times at 1 C and capacities of 808.3, 743.7, 642.6, 450.1, and 803.1 mAh·g−1 at 0.2, 0.5, 1, 2, and 0.2 C, respectively. Moreover, the controlled method of using a microchannel reactor, which can produce larger specific surface area porous MnO/C with improved cycling performance by shortening lithium-ion diffusion distances, can be easily applied in real production on a large scale. PMID:28587120
Marsili, Enrico; Rollefson, Janet B.; Baron, Daniel B.; Hozalski, Raymond M.; Bond, Daniel R.
2008-01-01
While electrochemical characterization of enzymes immobilized on electrodes has become common, there is still a need for reliable quantitative methods for study of electron transfer between living cells and conductive surfaces. This work describes growth of thin (<20 μm) Geobacter sulfurreducens biofilms on polished glassy carbon electrodes, using stirred three-electrode anaerobic bioreactors controlled by potentiostats and nondestructive voltammetry techniques for characterization of viable biofilms. Routine in vivo analysis of electron transfer between bacterial cells and electrodes was performed, providing insight into the main redox-active species participating in electron transfer to electrodes. At low scan rates, cyclic voltammetry revealed catalytic electron transfer between cells and the electrode, similar to what has been observed for pure enzymes attached to electrodes under continuous turnover conditions. Differential pulse voltammetry and electrochemical impedance spectroscopy also revealed features that were consistent with electron transfer being mediated by an adsorbed catalyst. Multiple redox-active species were detected, revealing complexity at the outer surfaces of this bacterium. These techniques provide the basis for cataloging quantifiable, defined electron transfer phenotypes as a function of potential, electrode material, growth phase, and culture conditions and provide a framework for comparisons with other species or communities. PMID:18849456
Electrochemical and Dry Sand Impact Erosion Studies on Carbon Steel
Naz, M. Y.; Ismail, N. I.; Sulaiman, S. A.; Shukrullah, S.
2015-01-01
This study investigated the dry and aqueous erosion of mild steel using electrochemical and dry sand impact techniques. In dry sand impact experiments, mild steel was eroded with 45 μm and 150 μm sand particles. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and micro-hardness techniques were used to elaborate the surface morphology of the eroded samples. The results revealed significant change in morphology of the eroded samples. In-depth analysis showed that although the metal erosion due to larger particles was significantly higher, the fines also notably damaged the metal surface. The surface damages were appreciably reduced with decrease in impact angle of the accelerated particles. The maximum damages were observed at an impact angle of 90°. The hardness of the samples treated with 45 μm and 150 μm sand remained in the range of 88.34 to 102.31 VHN and 87.7 to 97.55 VHN, respectively. In electrochemical experiments, a triple electrode probe was added into the metal treatment process. The linear polarization resistance (LPR) measurements were performed in slurries having 5% (by weight) of sand particles. LPR of the samples treated with 45 μm and 150 μm sand slurries was calculated about 949 Ω.cm2 and 809 Ω.cm2, respectively. PMID:26561231
Electrochemical and Dry Sand Impact Erosion Studies on Carbon Steel.
Naz, M Y; Ismail, N I; Sulaiman, S A; Shukrullah, S
2015-11-12
This study investigated the dry and aqueous erosion of mild steel using electrochemical and dry sand impact techniques. In dry sand impact experiments, mild steel was eroded with 45 μm and 150 μm sand particles. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and micro-hardness techniques were used to elaborate the surface morphology of the eroded samples. The results revealed significant change in morphology of the eroded samples. In-depth analysis showed that although the metal erosion due to larger particles was significantly higher, the fines also notably damaged the metal surface. The surface damages were appreciably reduced with decrease in impact angle of the accelerated particles. The maximum damages were observed at an impact angle of 90°. The hardness of the samples treated with 45 μm and 150 μm sand remained in the range of 88.34 to 102.31 VHN and 87.7 to 97.55 VHN, respectively. In electrochemical experiments, a triple electrode probe was added into the metal treatment process. The linear polarization resistance (LPR) measurements were performed in slurries having 5% (by weight) of sand particles. LPR of the samples treated with 45 μm and 150 μm sand slurries was calculated about 949 Ω.cm(2) and 809 Ω.cm(2), respectively.
An, Yarui; Jiang, Xiaoli; Bi, Wenji; Chen, Hua; Jin, Litong; Zhang, Shengping; Wang, Chuangui; Zhang, Wen
2012-02-15
A novel electrochemical immunosensor for sensitive detection of α-synuclein (α-SYN), a very important neuronal protein, has been developed based on dual signal amplification strategy. Herein, G4-polyamidoamine dendrimer-encapsulated Au nanoparticles (PAMAM-Au nanocomposites) were covalently bound on the poly-o-aminobenzoic acid (poly-o-ABA), which was initially electropolymerized on the electrode surface to perform abundant carboxyl groups. The formed immunosensor platform, PAMAM-Au, was proved to provide numerous amino groups to allow highly dense immobilization of antigen, and facilitate the improvement of electrochemical responses as well. Subsequently, the enhanced gold nanoparticle labels ({HRP-Ab(2)-GNPs}) were fabricated by immobilizing horseradish peroxidase-secondary antibody (HRP-Ab(2)) on the surface of gold nanoparticles (GNPs). After an immunoassay process, the {HRP-Ab(2)-GNPs} labels were introduced onto the electrode surface, and produced an electrocatalytic response by reduction of hydrogen peroxide (H(2)O(2)) in the presence of enzymatically oxidized thionine. On the basis of the dual signal amplification of PAMAM-Au and {HRP-Ab(2)-GNPs} labels, the designed immunosensor displayed an excellent analytical performance with high sensitivity and stability. This developed strategy was successfully proved as a simple, cost-effective method, and could be easily extended to other protein analysis schemes. Copyright © 2011 Elsevier B.V. All rights reserved.
Guo, Xiaoling; Wang, Qian; Li, Jinlian; Cui, Jiwen; Zhou, Shi; Hao, Sue; Wu, Dongmei
2015-02-15
Developing a reliable and cost-effective miniaturized electroanalysis tool is of vital importance for cell electrochemical analysis. In this work, a novel mini-electrochemical system has been constructed for trace detection of cell samples. The mini-electrochemical system was constructed by integrating a pencil graphite modified by threonine (PT/PGE) as working electrode, an Ag/AgCl (Sat'd) as reference electrode, platinum wire as counter electrode and a micropipet tip as electrochemical cell. The mini-electrochemical system not only saved dramatically usage of samples from 500 μL in traditional electrochemical system to 10 μL, but also possessed an adjustable active surface area by changing the length of PT/PGE immersed into the cell suspension from 3mm to 15 mm, and the linear equation was ipa = 2.25 l-2.64 (R(2) = 0.990). The system was successfully used in detection of MCF-7 cells, and a nonlinear exponent relationship between peak current and the cell number range from 3.0 × l0(3) to 7.0 × l0(6) cells mL(-1) was established firstly with the index equation ipa = 59.557 e (-C/1.709)-71.486 (R(2) = 0.954). Finally, the system was used for evaluating the sensitivity of cyclophosphamide on MCF-7 cell, and the result was corresponded well with that of MTT assay. The proposed system is sufficiently simple, cheap and easy operated, and could be applied in electrochemical detection of other biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Park, Joong Sun; An, Jihwan; Lee, Min Hwan; ...
2015-11-01
In this study, we report systematic investigation of the surface properties of yttria-stabilized zirconia (YSZ) electrolytes with the control of the grain boundary (GB) density at the surface, and its effects on electrochemical activities. The GB density of thin surface layers deposited on single crystal YSZ substrates is controlled by changing the annealing temperature (750-1450 °C). Higher oxygen reduction reactions (ORR) kinetics is observed in samples annealed at lower temperatures. The higher ORR activity is ascribed to the higher GB density at the YSZ surface where 'mobile' oxide ion vacancies are more populated. Meanwhile, oxide ion vacancies concurrently created withmore » yttrium segregation at the surface at the higher annealing temperature are considered inactive to oxygen incorporation reactions. Our results provide additional insight into the interplay between the surface chemistry, microstructures, and electrochemical activity. They potentially provide important guidelines for engineering the electrolyte electrode interfaces of solid oxide fuel cells for higher electrochemical performance.« less
Attachment chemistry of aromatic compounds on a Silicon(100) surface
NASA Astrophysics Data System (ADS)
Henriksson, Anders; Nishiori, Daiki; Maeda, Hiroaki; Miyachi, Mariko; Yamanoi, Yoshinori; Nishihara, Hiroshi
2018-03-01
A mild method was developed for the chemical attachment of aromatic compounds directly onto a hydrogen-terminated Si(100) (H-Si(100)) surface. In the presence of palladium catalyst and base, 4-iodophenylferrocene and a π-conjugated iron complex were attached to H-Si(100) electrodes and hydrogen-terminated silicon nanowires (H-SiNWs), both of which have predominant dihydride species on their surfaces. The reactions were conducted in 1,4-dioxane at 100 °C and the immobilization of both 4-ferrocenylphenyl group and π-conjugated molecular wires were confirmed and quantified by XPS and electrochemical measurements. We reported densely packed monolayer whose surface coverage (Γ), estimated from the electrochemical measurements are in analogue to similar monolayers prepared via thermal or light induced hydrosilylation reactions with alkenes or alkynes. The increase in electrochemical response observed on nanostructured silicon surfaces corresponds well to the increase in surface area, those strongly indicating that this method may be applied for the functionalization of electrodes with a variety of surface topographies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xingbo
The key innovation of this project is the synergy of the high temperature sensor technology based on the science of electrochemical measurement and state-of-the-art wireless communication technology. A novel self-powered wireless high temperature electrochemical sensor system has been developed for coal-fired boilers used for power generation. An initial prototype of the in-situ sensor demonstrated the capability of the wireless communication system in the laboratory and in a pilot plant (Industrial USC Boiler Setting) environment to acquire electrochemical potential and current signals during the corrosion process. Uniform and localized under-coal ash deposit corrosion behavior of Inconel 740 superalloy has been studiedmore » at different simulated coal ash hot corrosion environments using the developed sensor. Two typical potential noise patterns were found to correlate with the oxidation and sulfidation stages in the hot coal ash corrosion process. Two characteristic current noise patterns indicate the extent of the corrosion. There was a good correlation between the responses of electrochemical test data and the results from corroded surface analysis. Wireless electrochemical potential and current noise signals from a simulated coal ash hot corrosion process were concurrently transmitted and recorded. The results from the performance evaluation of the sensor confirm a high accuracy in the thermodynamic and kinetic response represented by the electrochemical noise and impedance test data.« less
del Río, A I; Molina, J; Bonastre, J; Cases, F
2009-12-15
Synthetic solutions of hydrolysed C.I. Reactive Orange 4, a monoazo textile dye commercially named Procion Orange MX-2R (PMX2R) and colour index number C.I. 18260, was exposed to electrochemical treatment under galvanostatic conditions and Na2SO4 as electrolyte. The influence of the electrochemical process as well as the applied current density was evaluated. Ti/SnO2-Sb-Pt and stainless steel electrodes were used as anode and cathode, respectively, and the intermediates generated on the cathode during electrochemical reduction were investigated. Aliquots of the solutions treated were analysed by UV-visible and FTIR-ATR spectroscopy confirming the presence of aromatic structures in solution when an electro-reduction was carried out. Electro-oxidation degraded both the azo group and aromatic structures. HPLC measures revealed that all processes followed pseudo-first order kinetics and decolourisation rates showed a considerable dependency on the applied current density. CV experiments and XPS analyses were carried out to study the behaviour of both PMX2R and intermediates and to analyse the state of the cathode after the electrochemical reduction, respectively. It was observed the presence of a main intermediate in solution after an electrochemical reduction whose chemical structure is similar to 2-amino-1,5-naphthalenedisulphonic acid. Moreover, the analysis of the cathode surface after electrochemical reduction reveals the presence of a coating layer with organic nature.
Electrochemical Biosensors - Sensor Principles and Architectures
Grieshaber, Dorothee; MacKenzie, Robert; Vörös, Janos; Reimhult, Erik
2008-01-01
Quantification of biological or biochemical processes are of utmost importance for medical, biological and biotechnological applications. However, converting the biological information to an easily processed electronic signal is challenging due to the complexity of connecting an electronic device directly to a biological environment. Electrochemical biosensors provide an attractive means to analyze the content of a biological sample due to the direct conversion of a biological event to an electronic signal. Over the past decades several sensing concepts and related devices have been developed. In this review, the most common traditional techniques, such as cyclic voltammetry, chronoamperometry, chronopotentiometry, impedance spectroscopy, and various field-effect transistor based methods are presented along with selected promising novel approaches, such as nanowire or magnetic nanoparticle-based biosensing. Additional measurement techniques, which have been shown useful in combination with electrochemical detection, are also summarized, such as the electrochemical versions of surface plasmon resonance, optical waveguide lightmode spectroscopy, ellipsometry, quartz crystal microbalance, and scanning probe microscopy. The signal transduction and the general performance of electrochemical sensors are often determined by the surface architectures that connect the sensing element to the biological sample at the nanometer scale. The most common surface modification techniques, the various electrochemical transduction mechanisms, and the choice of the recognition receptor molecules all influence the ultimate sensitivity of the sensor. New nanotechnology-based approaches, such as the use of engineered ion-channels in lipid bilayers, the encapsulation of enzymes into vesicles, polymersomes, or polyelectrolyte capsules provide additional possibilities for signal amplification. In particular, this review highlights the importance of the precise control over the delicate interplay between surface nano-architectures, surface functionalization and the chosen sensor transducer principle, as well as the usefulness of complementary characterization tools to interpret and to optimize the sensor response. PMID:27879772
Jampasa, Sakda; Siangproh, Weena; Duangmal, Kiattisak; Chailapakul, Orawon
2016-11-01
A simple and highly sensitive electrochemical sensor based on an electrochemically reduced graphene oxide-modified screen-printed carbon electrode (ERGO-SPCE) for the simultaneous determination of sunset yellow (SY) and tartrazine (TZ) was proposed. An ERGO film was coated onto the electrode surface using a cyclic voltammetric method and then characterized by scanning electron microscopy (SEM). In 0.1M phosphate buffer at a pH of 6, the two oxidation peaks of SY and TZ appeared separately at 0.41 and 0.70V, respectively. Surprisingly, the electrochemical response remarkably increased approximately 90- and 20-fold for SY and TZ, respectively, using the modified electrode in comparison to the unmodified electrode. The calibration curves exhibited linear ranges from 0.01 to 20.0µM for SY and from 0.02 to 20.0µM for TZ. The limits of detection were found to be 0.50 and 4.50nM (at S/N=3) for SY and TZ, respectively. Furthermore, this detection platform provided very high selectivity for the measurement of both colorants. This electrochemical sensor was successfully applied to determine the amount of SY and TZ in commercial beverages. Comparison of the results obtained from this proposed method to those obtained by an in-house standard technique proved that this developed method has good agreement in terms of accuracy for practical applications. This sensor offers an inexpensive, rapid and sensitive determination. The proposed system is therefore suitable for routine analysis and should be an alternative method for the analysis of food colorants. Copyright © 2016 Elsevier B.V. All rights reserved.
Imaging of biological macromolecules on mica in humid air by scanning electrochemical microscopy
Fan, Fu-Ren F.; Bard, Allen J.
1999-01-01
Imaging of DNA, keyhole limpet hemocyanin, mouse monoclonal IgG, and glucose oxidase on a mica substrate has been accomplished by scanning electrochemical microscopy with a tungsten tip. The technique requires the use of a high relative humidity to form a thin film of water on the mica surface that allows electrochemical reactions to take place at the tip and produce a faradaic current (≈1 pA) that can be used to control tip position. The effect of relative humidity and surface pretreatment with buffer solutions on the ionic conductivity of a mica surface was investigated to find appropriate conditions for imaging. Resolution of the order of 1 nm was obtained. PMID:10588687
NASA Astrophysics Data System (ADS)
Pfaffmann, Lukas; Birkenmaier, Claudia; Müller, Marcus; Bauer, Werner; Mitsch, Tim; Feinauer, Julian; Krämer, Yvonne; Scheiba, Frieder; Hintennach, Andreas; Schleid, Thomas; Schmidt, Volker; Ehrenberg, Helmut
2016-03-01
Negative electrodes of lithium-ion batteries generally consist of graphite-based active materials. In order to realize batteries with a high current density and therefore accelerated charging processes, the intercalation of lithium and the diffusion processes of these carbonaceous materials must be understood. In this paper, we visualized the electrochemical active surface area for three different anode materials using a novel OsO4 staining method in combination with scanning electron microscopy techniques. The diffusion behavior of these three anode materials is investigated by potentiostatic intermittent titration technique measurements. From those we determine the diffusion coefficient with and without consideration of the electrochemical active surface area.
Bin Hamzah, Hairul Hisham; Keattch, Oliver; Covill, Derek; Patel, Bhavik Anil
2018-06-14
Additive manufacturing also known as 3D printing is being utilised in electrochemistry to reproducibly develop complex geometries with conductive properties. In this study, we explored if the electrochemical behavior of 3D printed acrylonitrile butadiene styrene (ABS)/carbon black electrodes was influenced by printing direction. The electrodes were printed in both horizontal and vertical directions. The horizsontal direction resulted in a smooth surface (HPSS electrode) and a comparatively rougher surface (HPRS electrode) surface. Electrodes were characterized using cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. For various redox couples, the vertical printed (VP) electrode showed enhanced current response when compared the two electrode surfaces generated by horizontal print direction. No differences in the capacitive response was observed, indicating that the conductive surface area of all types of electrodes were identical. The VP electrode had reduced charge transfer resistance and uncompensated solution resistance when compared to the HPSS and HPRS electrodes. Overall, electrodes printed in a vertical direction provide enhanced electrochemical performance and our study indicates that print orientation is a key factor that can be used to enhance sensor performance.
Samide, Adriana; Tutunaru, Bogdan
2011-01-01
A Schiff base, namely N-(2-hydroxybenzylidene) thiosemicarbazide (HBTC), was investigated as inhibitor for carbon steel in saline water (SW) using electrochemical measurements such as: potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The morphology of the surfaces before and after corrosion was examined by Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM/EDS). The results showed that HBTC acts as corrosion inhibitor in SW by suppressing simultaneously the cathodic and anodic processes via adsorption on the surface which followed the Langmuir adsorption isotherm; the polarization resistance (R(p)) and inhibition efficiency (IE) increased with each HBTC concentration increase. SEM/EDS analysis showed at this stage that the main product of corrosion is a non-stoichiometric amorphous Fe(3+) oxyhydroxide, consisting of a mixture of Fe(3+) oxyhydroxides, α-FeOOH and/or γ-FeOOH, α-FeOOH/γ-FeOOH and Fe(OH)(3).
Non-Enzymatic Glucose Sensor Composed of Carbon-Coated Nano-Zinc Oxide
Chung, Ren-Jei; Wang, An-Ni; Liao, Qing-Liang; Chuang, Kai-Yu
2017-01-01
Nowadays glucose detection is of great importance in the fields of biological, environmental, and clinical analyzes. In this research, we report a zinc oxide (ZnO) nanorod powder surface-coated with carbon material for non-enzymatic glucose sensor applications through a hydrothermal process and chemical vapor deposition method. A series of tests, including crystallinity analysis, microstructure observation, and electrochemical property investigations were carried out. For the cyclic voltammetric (CV) glucose detection, the low detection limit of 1 mM with a linear range from 0.1 mM to 10 mM was attained. The sensitivity was 2.97 μA/cm2mM, which is the most optimized ever reported. With such good analytical performance from a simple process, it is believed that the nanocomposites composed of ZnO nanorod powder surface-coated with carbon material are promising for the development of cost-effective non-enzymatic electrochemical glucose biosensors with high sensitivity. PMID:28336869
Zu, Lei; Cui, Xiuguo; Jiang, Yanhua; Hu, Zhongkai; Lian, Huiqin; Liu, Yang; Jin, Yushun; Li, Yan; Wang, Xiaodong
2015-01-01
Mesoporous polyaniline-silica nanocomposites with a full interpenetrating structure for pseudocapacitors were synthesized via the vapor phase approach. The morphology and structure of the nanocomposites were deeply investigated by scanning electron microscopy, infrared spectroscopy, X-ray diffraction, thermal gravimetric analysis and nitrogen adsorption-desorption tests. The results present that the mesoporous nanocomposites possess a uniform particle morphology and full interpenetrating structure, leading to a continuous conductive polyaniline network with a large specific surface area. The electrochemical performances of the nanocomposites were tested in a mixed solution of sulfuric acid and potassium iodide. With the merits of a large specific surface area and suitable pore size distribution, the nanocomposite showed a large specific capacitance (1702.68 farad (F)/g) due to its higher utilization of the active material. This amazing value is almost three-times larger than that of bulk polyaniline when the same mass of active material was used. PMID:28788006
Durability test with fuel starvation using a Pt/CNF catalyst in PEMFC.
Jung, Juhae; Park, Byungil; Kim, Junbom
2012-01-05
In this study, a catalyst was synthesized on carbon nanofibers [CNFs] with a herringbone-type morphology. The Pt/CNF catalyst exhibited low hydrophilicity, low surface area, high dispersion, and high graphitic behavior on physical analysis. Electrodes (5 cm2) were prepared by a spray method, and the durability of the Pt/CNF was evaluated by fuel starvation. The performance was compared with a commercial catalyst before and after accelerated tests. The fuel starvation caused carbon corrosion with a reverse voltage drop. The polarization curve, EIS, and cyclic voltammetry were analyzed in order to characterize the electrochemical properties of the Pt/CNF. The performance of a membrane electrode assembly fabricated from the Pt/CNF was maintained, and the electrochemical surface area and cell resistance showed the same trend. Therefore, CNFs are expected to be a good support in polymer electrolyte membrane fuel cells.
Durability test with fuel starvation using a Pt/CNF catalyst in PEMFC
2012-01-01
In this study, a catalyst was synthesized on carbon nanofibers [CNFs] with a herringbone-type morphology. The Pt/CNF catalyst exhibited low hydrophilicity, low surface area, high dispersion, and high graphitic behavior on physical analysis. Electrodes (5 cm2) were prepared by a spray method, and the durability of the Pt/CNF was evaluated by fuel starvation. The performance was compared with a commercial catalyst before and after accelerated tests. The fuel starvation caused carbon corrosion with a reverse voltage drop. The polarization curve, EIS, and cyclic voltammetry were analyzed in order to characterize the electrochemical properties of the Pt/CNF. The performance of a membrane electrode assembly fabricated from the Pt/CNF was maintained, and the electrochemical surface area and cell resistance showed the same trend. Therefore, CNFs are expected to be a good support in polymer electrolyte membrane fuel cells. PMID:22221426
Sangeetha, Y; Meenakshi, S; SairamSundaram, C
2015-01-01
The biopolymer N-(2-hydroxy-3-trimethyl ammonium)propyl chitosan chloride (HTACC) was synthesised and its influence as a novel corrosion inhibitor on mild steel in 1M HCl was studied using gravimetric and electrochemical experiments. The compound obtained was characterised using FTIR and NMR studies. The inhibition efficiency increased with the increase in concentration and reached a maximum of 98.9% at 500 ppm concentration. Polarisation studies revealed that HTACC acts both as anodic and cathodic inhibitor. Electrochemical impedance studies confirmed that the inhibition is through adsorption on the metal surface. The extent of inhibition exhibits a negative trend with increase in temperature. Langmuir isotherm provides the best description on the adsorption nature of the inhibitor. SEM analysis indicated the presence of protective film formed by the inhibitor on the metal surface. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Xin, Shengchang; Yang, Na; Gao, Fei; Zhao, Jing; Li, Liang; Teng, Chao
2017-08-01
Three-dimensional carbon nanotube frameworks have been prepared via pyrolysis of polypyrrole nanotube aerogels that are synthesized by the simultaneous self-degraded template synthesis and hydrogel assembly followed by freeze-drying. The microstructure and composition of the materials are investigated by thermal gravimetric analysis, Raman spectrum, X-ray photoelectron spectroscopy, transmission electron microscopy, and specific surface analyzer. The results confirm the formation of three-dimensional carbon nanotube frameworks with low density, high mechanical properties, and high specific surface area. Compared with PPy aerogel precursor, the as-prepared three-dimensional carbon nanotube frameworks exhibit outstanding adsorption capacity towards organic dyes. Moreover, electrochemical tests show that the products possess high specific capacitance, good rate capability and excellent cycling performance with no capacitance loss over 1000 cycles. These characteristics collectively indicate the potential of three-dimensional polypyrrole-derived carbon nanotube framework as a promising macroscopic device for the applications in environmental and energy storages.
Optical, electrochemical and hydrophilic properties of Y2O3 doped TiO2 nanocomposite films.
Zhang, Xiangchao; Yang, Huaming; Tang, Aidong
2008-12-25
The 5% Y2O3 doped TiO2 nanocomposite film (YTF) deposited on ITO glass substrate has been synthesized by the sol-gel dip-coating method. The as-synthesized samples were characterized using X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), voltage-current (V-I), electrochemical impedance spectroscopy (EIS) and ultraviolet-visible (UV-vis) analysis technologies. The crystalline structure, surface morphology and surface chemical composition of YTF sample have been primarily investigated. The results demonstrate that YTF is anatase crystalline phase with thickness of 480 nm and consists of spherical shape particles with a grain size of about 15.8 nm. The binding energy appears as a chemical shift, and relatively more Y and Ti species are present on the surface, indicating that active surfaces of the nanocomposite film have been enhanced with more oxygen vacancies Vö due to doping Y2O3 to TiO2. The absorption edge of YTF has a red shift, and the optical properties of YTF in visible light region have been obviously improved. The water contact angle is about 8 degrees after daylight lamp irradiation 60 min. An equivalent circuit model provided a reliable description for the electrochemical systems. Based on the Mott-Schottky equation, the donor concentration (ND) for YTF is 1.05 x 10(20) cm(-3), which enhances 1 order of magnitude than that for pure TiO2 film (TF), the flat-band potential (V(fb)) and the space charge layer (d(sc)) obviously decreased. With the incorporation of Y2O3 into TiO2, the optical, electrochemical and photoinduced hydrophilic properties of YTF in visible light region have obviously improved, indicating that YTF shows promising applications in solar energy conversion, self-cleaning and other potential fields.
NASA Astrophysics Data System (ADS)
Schmidt, Hans Christian; Homberg, Werner; Orive, Alejandro Gonzalez; Grundmeier, Guido; Hordych, Illia; Maier, Hans Jürgen
2018-05-01
In this study the manufacture of aluminium-steel blanks by cold pressure welding and their preparation for a welding process through electrochemical surface treatment are investigated and discussed. The cold pressure welding process was done with an incremental rolling tool that allows for the partial pressure welding of two blanks along a prepared path. The influence of the surface preparation by electrochemical deposition of bond promoting organosilane-based agents and roughening on a nano-scale is investigated and compared to conventional surface treatments. Coating the surfaces with a thin organosilane-based film incorporating specific functional groups should promote additional bonding between the mating oxide layers; its influence on the total weld strength is studied. Pressure welding requires suitable process strategies, and the current advances in the proposed incremental rolling process for the combination of mild steel and aluminium are presented.
Park, Su-Jung; Jang, Jae-Myung
2011-08-01
Electrochemical depositions of HAp nanoparticles onto Ultra-fine TiO2 nanotube layer were carried out by the electrochemical reaction in mixed electrolyte of 1.6 M (NH4)H2PO4 + 0.8 M NH4F containing 0.15 and 0.25 wt% HAp. The Ca/P ratios of the HAp nanoparticles were evaluated by EDS analysis and their values were 1.53 and 1.66 respectively. The distribution quantity of Ca and P were remained at the middle region of TiO2 nanotube, but the Ti element was mainly stayed at the bottom of barrier layer from the result of line scanning diagram. Especially, adsorbed phosphate ions facilitated nucleation of nanophase calcium phosphate material inside the TiO2 nanotubu layer that resulted in vertical growth of HAp nanoparticles. These surfaces and structures were all effective for biocompatibility from the SBF tests.
Corrosion control is a concern for many drinking water utilities. The Lead and Copper Rule established a regulatory need to maintain a corrosion control program. Other corrosion-related issues such as “red” water resulting from excessive iron corrosion and copper pinhole leaks ...
Kumar, Madhan; Drew, Robin; Al-Aqeeli, Nasser
2017-01-01
The bioactivity and the corrosion protection for a novel nano-grained Ti-20Nb-13Zr at % alloy were examined in a simulated body fluid (SBF). The effect of the SPS’s temperature on the corrosion performance was investigated. The phases and microstructural details of the developed alloy were analyzed by XRD (X-ray Diffraction), SEM (Scanning Electron Microscopy), and TEM (Transmission Electron Microscope). The electrochemical study was investigated using linear potentiodynamic polarization and electrochemical impedance spectroscopy in a SBF, and the bioactivity was examined by immersing the developed alloy in a SBF for 3, 7, and 14 days. The morphology of the depositions after immersion was examined using SEM. Alloy surface analysis after immersion in the SBF was characterized by XPS (X-ray Photoelectron Spectroscopy). The results of the bioactivity test in SBF revealed the growth of a hydroxyapatite layer on the surface of the alloy. The analysis of XPS showed the formation of protective oxides of TiO2, Ti2O3, ZrO2, Nb2O5, and a Ca3(PO4)2 compound (precursor of hydroxyapatite) deposited on the alloy surface, indicating that the presented alloy can stimulate bone formation. The corrosion resistance increased by increasing the sintering temperature and the highest corrosion resistance was obtained at 1200 °C. The improved corrosion protection was found to be related to the alloy densification. The bioactivity and the corrosion resistance of the developed nanostructured alloy in a SBF renders the nanostructured Ti-20Nb-13Zr alloy a promising candidate as an implant material. PMID:29280956
Doubek, Gustavo; Sekol, Ryan C.; Li, Jinyang; ...
2015-12-22
Precise control over catalyst surface composition and structure is necessary to improve the function of electrochemical systems. To that end, bulk metallic glass (BMG) alloys with atomically dispersed elements provide a highly processable, nanoscale platform for electrocatalysis and surface modification. Here we report on nanostructures of Pt-based BMGs that are modified with various subtractive and additive processes to improve their electrochemical performance.
Praveen, P; Jyothsna, U; Nair, Priya; Ravi, Soumya; Balakrishnan, A; Subramanian, K R V; Nair, A Sreekumaran; Nair, V Shantikumar; Sivakumar, N
2013-08-01
The present study provides the first reports of a novel approach of electrophoretic co-deposition technique by which titanium foils are coated with LiFePO4-carbon nanocomposites synthesized by sol gel route and processed into high-surface area cathodes for lithium ion batteries. The study elucidates how sucrose additions as carbon source can affect the surface morphology and the redox reaction behaviors underlying these cathodes and thereby enhance the battery performance. The phase and morphological analysis were done using XRD and XPS where the LiFePO4 formed was confirmed to be a high purity orthorhombic system. From the analysis of the relevant electrochemical parameters using cyclic voltammetry and electrochemical impedance spectroscopy, a 20% increment and 90% decrement in capacity and impedance values were observed respectively. The composite electrodes also exhibited a specific capacity of 130 mA h/g. It has been shown that cathodes based on such composite systems can allow significant room for improvement in the cycling performance at the electrode/electrolyte interface.
McArdle, Trevor; McNamara, Thomas P; Fei, Fan; Singh, Kulveer; Blanford, Christopher F
2015-11-18
Two surface analysis techniques, dual polarization interferometry (DPI) and analysis by an electrochemical quartz crystal microbalance with dissipation capability (E-QCM-D), were paired to find the deposition conditions that give the highest and most stable electrocatalytic activity per adsorbed mass of enzyme. Layers were formed by adsorption from buffered solutions of bilirubin oxidase from Myrothecium verrucaria at pH 6.0 to planar surfaces, under high enzyme loading (≥1 mg mL(-1)) for contact periods of up to 2 min. Both unmodified and carboxylate-functionalized gold-coated sensors showed that a deposition solution concentration of 10-25 mg mL(-1) gave the highest activity per mass of adsorbed enzyme with an effective catalytic rate constant (k(cat)) of about 60 s(-1). The densification of adsorbed layers observed by DPI correlated with reduced bioactivity observed by parallel E-QCM-D measurements. Postadsorption changes in thickness and density observed by DPI were incorporated into Kelvin-Voigt models of the QCM-D response. The modeled response matched experimental observations when the adlayer viscosity tripled after adsorption.
Vilian, A T Ezhil; An, Suyeong; Choe, Sang Rak; Kwak, Cheol Hwan; Huh, Yun Suk; Lee, Jonghwi; Han, Young-Kyu
2016-12-15
A three dimensional reduced graphene oxide/polyurethane (RGO-PU) porous material with connected pores was prepared by physical adsorption of RGO onto the surface of porous PU. The porous PU was prepared by directional melt crystallization of a solvent, which produced high pores with controlled orientation. The prepared RGO-PU was characterized by scanning electron microscopy, spectroscopy and electro-chemical methods. The RGO-PU porous material revealed better electrochemical performance, which might be attributed to the robust structure, superior conductivity, large surface area, and good flexibility. Differential pulse voltammetry (DPV) analysis of DA using the RGO-PU exhibited a linear response range over a wide DA concentration of 100-1150pM, with the detection limit of 1pM. This sensor exhibited outstanding anti-interference ability towards co-existing molecules with good stability, sensitivity, and reproducibility. Furthermore, the fabricated sensor was successfully applied for the quantitative analysis of DA in human serum and urine samples with acceptable recovery, which indicates its feasibility for practical application. Copyright © 2016 Elsevier B.V. All rights reserved.
Li, Zhiyang; Leung, Calvin; Gao, Fan; Gu, Zhiyong
2015-01-01
In this paper, vertically aligned Pt nanowire arrays (PtNWA) with different lengths and surface roughnesses were fabricated and their electrochemical performance toward hydrogen peroxide (H2O2) detection was studied. The nanowire arrays were synthesized by electroplating Pt in nanopores of anodic aluminum oxide (AAO) template. Different parameters, such as current density and deposition time, were precisely controlled to synthesize nanowires with different surface roughnesses and various lengths from 3 μm to 12 μm. The PtNWA electrodes showed better performance than the conventional electrodes modified by Pt nanowires randomly dispersed on the electrode surface. The results indicate that both the length and surface roughness can affect the sensing performance of vertically aligned Pt nanowire array electrodes. Generally, longer nanowires with rougher surfaces showed better electrochemical sensing performance. The 12 μm rough surface PtNWA presented the largest sensitivity (654 μA·mM−1·cm−2) among all the nanowires studied, and showed a limit of detection of 2.4 μM. The 12 μm rough surface PtNWA electrode also showed good anti-interference property from chemicals that are typically present in the biological samples such as ascorbic, uric acid, citric acid, and glucose. The sensing performance in real samples (river water) was tested and good recovery was observed. These Nafion-free, vertically aligned Pt nanowires with surface roughness control show great promise as versatile electrochemical sensors and biosensors. PMID:26404303
3D surface topography study of the biofunctionalized nanocrystalline Ti-6Zr-4Nb/Ca-P
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakubowicz, J., E-mail: jaroslaw.jakubowicz@put.poznan.pl; Adamek, G.; Jurczyk, M.U.
2012-08-15
In this work surface of the sintered Ti-6Zr-4Nb nanocrystalline alloy was electrochemically biofunctionalized. The porous surface was produced by anodic oxidation in 1 M H{sub 3}PO{sub 4} + 2%HF electrolyte at 10 V for 30 min. Next the calcium-phosphate (Ca-P) layer was deposited, onto the formed porous surface, using cathodic potential - 5 V kept for 60 min in 0.042 M Ca(NO{sub 3}){sub 2} + 0.025 M (NH{sub 4}){sub 2}HPO{sub 4} + 0.1 M HCl electrolyte. The deposited Ca-P layer anchored in the pores. The biofunctionalized surface was studied by XRD, SEM and EDS. In vitro tests culture of normalmore » human osteoblast (NHOst) cells showed very good cells proliferation, colonization and multilayering. Using optical profiler, roughness and hybrid 3D surface topography parameters were estimated. Correlation between surface composition, morphology, roughness and biocompatibility results was done. It has been shown by us that surface with appropriate chemical composition and topography, after combined electrochemical anodic and cathodic surface treatment, supports osteoblast adhesion and proliferation. 3D topography measurements using optical profiler play a key role in the biomaterials surface analysis. - Highlights: Black-Right-Pointing-Pointer Nanocrystalline Ti-6Zr-4Nb/Ca-P material was produced for hard tissue implant applications. Black-Right-Pointing-Pointer Calcium-phosphate results in surface biofunctionalization. Black-Right-Pointing-Pointer The biofunctionalized surface shows good in-vitro behavior.« less
NASA Astrophysics Data System (ADS)
Yilmaz, Gamze
This thesis is essentially oriented to develop low-cost nanostructured transition metal (nickel and vanadium) oxides and sulfides with high energy density, power density and electrochemical stability via strategies of structural design, hybridization, functionalization and surface engineering. Metal oxide and metal oxide/sulfide hybrid nanostructures in several designs, including hierarchical porous nanostructures, hollow polyhedrons, nanocubes, nanoframes, octopod nanoframes, and nanocages, were synthesized to study the contribution of structural design, compositional engineering, functionalization and surface engineering to the electrochemical properties of the materials. Modulated compositional and structural features disclosed the opportunities of large accessible active sites, facile ion transport, robustness and enhanced electrical conductivity. The best electrochemical performance with merits of highest energy density (38.9 Wh kg-1), power density (7.4 kW kg-1) and electrochemical stability (90.9% after 10000 cycles) was obtained for nickel cobalt layered double hydroxide/cobalt sulfide (NiCo-LDH/Co9S8) hybrid hollow polyhedron structure.
NASA Astrophysics Data System (ADS)
Girón, L.; Aperador, W.; Tirado, L.; Franco, F.; Caicedo, J. C.
2017-08-01
The anodized AZ31B magnesium alloys were synthesized via electrodeposition processes. The aim of this work was to determine the electrochemical behavior of magnesium alloys by using anodized alloys as a protective coating. The anodized alloys were characterized by x-ray diffraction, exhibiting the crystallography orientation for Mg and MgO phases. The x-ray photoelectron spectroscopy was used to determine the chemical composition of anodized magnesium alloys. By using electrochemical impedance spectroscopy and Tafel curves, it was possible to estimate the electrochemical behavior of anodized AZ31B magnesium alloys in Hank's balanced salt solution (HBSS). Scanning electron microscopy was performed to analyze chemical changes and morphological surface changes on anodized Mg alloys due to the reaction in HBSS/anodized magnesium surface interface. Electrochemical behavior in HBSS indicates that the coatings may be a promising material for biomedical industry.
Wei, Yan; Mo, Xiaoju; Zhang, Pengchao; Li, Yingying; Liao, Jingwen; Li, Yongjun; Zhang, Jinxing; Ning, Chengyun; Wang, Shutao; Deng, Xuliang; Jiang, Lei
2017-06-27
Control of stem cell behaviors at solid biointerfaces is critical for stem-cell-based regeneration and generally achieved by engineering chemical composition, topography, and stiffness. However, the influence of dynamic stimuli at the nanoscale from solid biointerfaces on stem cell fate remains unclear. Herein, we show that electrochemical switching of a polypyrrole (Ppy) array between nanotubes and nanotips can alter surface adhesion, which can strongly influence mechanotransduction activation and guide differentiation of mesenchymal stem cells (MSCs). The Ppy array, prepared via template-free electrochemical polymerization, can be reversibly switched between highly adhesive hydrophobic nanotubes and poorly adhesive hydrophilic nanotips through an electrochemical oxidation/reduction process, resulting in dynamic attachment and detachment to MSCs at the nanoscale. Multicyclic attachment/detachment of the Ppy array to MSCs can activate intracellular mechanotransduction and osteogenic differentiation independent of surface stiffness and chemical induction. This smart surface, permitting transduction of nanoscaled dynamic physical inputs into biological outputs, provides an alternative to classical cell culture substrates for regulating stem cell fate commitment. This study represents a general strategy to explore nanoscaled interactions between stem cells and stimuli-responsive surfaces.
Al-Harbi, Albandaree K.
2018-01-01
The electrochemical behavior of the oxide layers on two metal-metal glassy alloys, Fe78Co9Cr10Mo2Al1 (VX9)and Fe49Co49V2 (VX50) (at.%), were studied using electrochemical techniques including electrochemical frequency modulation (EFM), electrochemical impedance spectroscopy (EIS) and cyclic polarization (CP) measurements. The morphology and composition of the alloy surfaces were investigated using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The corrosion rate and surface roughness of both alloys increased as the concentration of NaOH in aqueous solution was raised. The presence of some protective elements in the composition of the alloys led to the formation of a spontaneous passive layer on the alloy surface. The higher resistance values of both alloys were associated with the magnitude of the dielectric properties of the passive films formed on their surfaces. Both alloys are classified as having outstanding resistance to corrosion, which results from the formation of a passive film that acts as an efficient barrier to corrosion in alkaline solution. PMID:29337992
Emran, Khadijah M; Al-Harbi, Albandaree K
2018-01-01
The electrochemical behavior of the oxide layers on two metal-metal glassy alloys, Fe78Co9Cr10Mo2Al1 (VX9)and Fe49Co49V2 (VX50) (at.%), were studied using electrochemical techniques including electrochemical frequency modulation (EFM), electrochemical impedance spectroscopy (EIS) and cyclic polarization (CP) measurements. The morphology and composition of the alloy surfaces were investigated using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The corrosion rate and surface roughness of both alloys increased as the concentration of NaOH in aqueous solution was raised. The presence of some protective elements in the composition of the alloys led to the formation of a spontaneous passive layer on the alloy surface. The higher resistance values of both alloys were associated with the magnitude of the dielectric properties of the passive films formed on their surfaces. Both alloys are classified as having outstanding resistance to corrosion, which results from the formation of a passive film that acts as an efficient barrier to corrosion in alkaline solution.
Kaliginedi, Veerabhadrarao; Ozawa, Hiroaki; Kuzume, Akiyoshi; Maharajan, Sivarajakumar; Pobelov, Ilya V; Kwon, Nam Hee; Mohos, Miklos; Broekmann, Peter; Fromm, Katharina M; Haga, Masa-aki; Wandlowski, Thomas
2015-11-14
Here we report the first study on the electrochemical energy storage application of a surface-immobilized ruthenium complex multilayer thin film with anion storage capability. We employed a novel dinuclear ruthenium complex with tetrapodal anchoring groups to build well-ordered redox-active multilayer coatings on an indium tin oxide (ITO) surface using a layer-by-layer self-assembly process. Cyclic voltammetry (CV), UV-Visible (UV-Vis) and Raman spectroscopy showed a linear increase of peak current, absorbance and Raman intensities, respectively with the number of layers. These results indicate the formation of well-ordered multilayers of the ruthenium complex on ITO, which is further supported by the X-ray photoelectron spectroscopy analysis. The thickness of the layers can be controlled with nanometer precision. In particular, the thickest layer studied (65 molecular layers and approx. 120 nm thick) demonstrated fast electrochemical oxidation/reduction, indicating a very low attenuation of the charge transfer within the multilayer. In situ-UV-Vis and resonance Raman spectroscopy results demonstrated the reversible electrochromic/redox behavior of the ruthenium complex multilayered films on ITO with respect to the electrode potential, which is an ideal prerequisite for e.g. smart electrochemical energy storage applications. Galvanostatic charge-discharge experiments demonstrated a pseudocapacitor behavior of the multilayer film with a good specific capacitance of 92.2 F g(-1) at a current density of 10 μA cm(-2) and an excellent cycling stability. As demonstrated in our prototypical experiments, the fine control of physicochemical properties at nanometer scale, relatively good stability of layers under ambient conditions makes the multilayer coatings of this type an excellent material for e.g. electrochemical energy storage, as interlayers in inverted bulk heterojunction solar cell applications and as functional components in molecular electronics applications.
Cui, Lin; Li, Yueying; Lu, Mengfei; Tang, Bo; Zhang, Chun-Yang
2018-01-15
Polynucleotide kinase (PNK) plays an essential role in cellular nucleic acid metabolism and the cellular response to DNA damage. However, conventional methods for PNK assay suffer from low sensitivity and involve multiple steps. Herein, we develop a simply electrochemical method for sensitive detection of PNK activity on the basis of Au nanoparticle (AuNP)-mediated lambda exonuclease cleavage-induced signal amplification. We use [Ru(NH 3 ) 6 ] 3+ as the electrochemically active indicator and design two DNA strands (i.e., strand 1 and strand 2) to sense PNK. The assembly of strand 2 on the AuNP surface leads to the formation of AuNP-strand 2 conjugates which can be subsequently immobilized on the gold electrode through the hybridization of strand 1 with strand 2 for the generation of a high electrochemical signal. The presence of PNK induces the phosphorylation of the strand 2-strand 1 hybrid and the subsequent cleavage of double-stranded DNA (dsDNA) by lambda exonuclease, resulting in the release of AuNP-strand 2 conjugates and [Ru(NH 3 ) 6 ] 3+ from the gold electrode surface and consequently the decrease of electrochemical signal. The PNK activity can be simply monitored by the measurement of [Ru(NH 3 ) 6 ] 3+ peak current signal. This assay is very sensitive with a detection limit of as low as 7.762 × 10 -4 UmL -1 and exhibits a large dynamic range from 0.001 to 10UmL -1 . Moreover, this method can be used to screen the PNK inhibitors, and it shows excellent performance in real sample analysis, thus holding great potential for further applications in biological researches and clinic diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Golub, Eyal; Pelossof, Gilad; Freeman, Ronit; Zhang, Hong; Willner, Itamar
2009-11-15
Metallic or semiconductor nanoparticles (NPs) are used as labels for the electrochemical, photoelectrochemical, or surface plasmon resonance (SPR) detection of cocaine using a common aptasensor configuration. The aptasensors are based on the use of two anticocaine aptamer subunits, where one subunit is assembled on a Au support, acting as an electrode or a SPR-active surface, and the second aptamer subunit is labeled with Pt-NPs, CdS-NPs, or Au-NPs. In the different aptasensor configurations, the addition of cocaine results in the formation of supramolecular complexes between the NPs-labeled aptamer subunits and cocaine on the metallic surface, allowing the quantitative analysis of cocaine. The supramolecular Pt-NPs-aptamer subunits-cocaine complex allows the detection of cocaine by the electrocatalyzed reduction of H(2)O(2). The photocurrents generated by the CdS-NPs-labeled aptamer subunits-cocaine complex, in the presence of triethanol amine as a hole scavenger, allows the photoelectrochemical detection of cocaine. The supramolecular Au-NPs-aptamer subunits-cocaine complex generated on the Au support allows the SPR detection of cocaine through the reflectance changes stimulated by the electronic coupling between the localized plasmon of the Au-NPs and the surface plasmon wave. All aptasensor configurations enable the analysis of cocaine with a detection limit in the range of 10(-6) to 10(-5) M. The major advantage of the sensing platform is the lack of background interfering signals.
NASA Astrophysics Data System (ADS)
Guilinger, T. R.; Kelly, M. J.; Scully, J. R.; Christensen, T. M.; Ingersoll, D.; Knapp, J. A.; Ewing, R. I.; Casey, W. H.; Tsao, S. S.
1990-09-01
We describe several electrochemical methods used to investigate the possibility of cold fusion phenomena in palladium and titanium tritide cathodes. We performed long-term (up to 77 days) electrolysis experiments with electrochemical cells of the University of Utah type at current densities as high as 1 A/cm2, while monitoring neutron and tritium levels. With some cells, we pulsed the current to determine if neutron bursts would result. In another cell, we used titanium tritide as the cathode to determine if D-T reactions yielding neutrons would occur. In no instance were levels of neutrons or tritium significantly above background except in the titanium tritide cell where isotopic exchange, occcurring between the electrode and the electrolyte, resulted in significant tritium levels. We also combined x-ray photoelectron spectroscopy (XPS) and electrochemical hydrogen permeation experiments to determine the effectiveness of various Pd surface treatment procedures on the resultant electrochemical hydrogen absorption efficiency. Electroanalytical and thermal desorption/gas analysis techniques indicated the maximum loading of H in Pd was to a ratio of H∶Pd=0.8.
NASA Astrophysics Data System (ADS)
Malek Hosseini, S. M. B.; Baizaee, S. M.; Naderi, Hamid Reza; Dare Kordi, Ali
2018-01-01
Excimer laser was used for reduction and exfoliation of graphite oxide (GO) at room temperature under air ambient. The prepared excimer laser reduced graphite oxide (XLRGO) is characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), nitrogen adsorption/desorption (BET method), X-ray diffraction (XRD), X-ray photoemission spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and UV-vis absorption techniques for surface, structural functional groups and band gap analysis. Electrochemical properties are investigated using cyclic voltammetry, galvanostatic charge-discharge, electrochemical impedance spectroscopy (EIS) and continues cyclic voltammetry (CCV) in 0.5 M Na2SO4 as electrolyte. Electrochemical investigations revealed that XLRGO electrode has enhanced supercapacitive performance including specific capacitance of 299 F/g at a scan rate of 2 mV/s. Furthermore, CCV measurement showed that XLRGO electrode kept 97.8% of its initial capacitance/capacity after 4000 cycles. The obtained results from electrochemical investigations confirm that the reduction of GO by using an excimer laser produces high-quality graphene for supercapacitor applications without the need for additional operations.
Pitting corrosion as a mixed system: coupled deterministic-probabilistic simulation of pit growth
NASA Astrophysics Data System (ADS)
Ibrahim, Israr B. M.; Fonna, S.; Pidaparti, R.
2018-05-01
Stochastic behavior of pitting corrosion poses a unique challenge in its computational analysis. However, it also stems from electrochemical activity causing general corrosion. In this paper, a framework for corrosion pit growth simulation based on the coupling of the Cellular Automaton (CA) and Boundary Element Methods (BEM) is presented. The framework assumes that pitting corrosion is controlled by electrochemical activity inside the pit cavity. The BEM provides the prediction of electrochemical activity given the geometrical data and polarization curves, while the CA is used to simulate the evolution of pit shapes based on electrochemical activity provided by BEM. To demonstrate the methodology, a sample case of local corrosion cells formed in pitting corrosion with varied dimensions and polarization functions is considered. Results show certain shapes tend to grow in certain types of environments. Some pit shapes appear to pose a higher risk by being potentially significant stress raisers or potentially increasing the rate of corrosion under the surface. Furthermore, these pits are comparable to commonly observed pit shapes in general corrosion environments.
Electrochemical characterization of organosilane-functionalized nanostructured ITO surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pruna, R., E-mail: rpruna@el.ub.edu; Palacio, F.; López, M.
2016-08-08
The electroactivity of nanostructured indium tin oxide (ITO) has been investigated for its further use in applications such as sensing biological compounds by the analysis of redox active molecules. ITO films were fabricated by using electron beam evaporation at different substrate temperatures and subsequently annealed for promoting their crystallization. The morphology of the deposited material was monitored by scanning electron microscopy, confirming the deposition of either thin films or nanowires, depending on the substrate temperature. Electrochemical surface characterization revealed a 45 % increase in the electroactive surface area of nanostructured ITO with respect to thin films, one third lower than themore » geometrical surface area variation determined by atomic force microscopy. ITO surfaces were functionalized with a model organic molecule known as 6-(ferrocenyl)hexanethiol. The chemical attachment was done by means of a glycidoxy compound containing a reactive epoxy group, the so-called 3-glycidoxypropyltrimethoxy-silane. ITO functionalization was useful for determining the benefits of nanostructuration on the surface coverage of active molecules. Compared to ITO thin films, an increase in the total peak height of 140 % was observed for as-deposited nanostructured electrodes, whereas the same measurement for annealed electrodes resulted in an increase of more than 400 %. These preliminary results demonstrate the ability of nanostructured ITO to increase the surface-to-volume ratio, conductivity and surface area functionalization, features that highly benefit the performance of biosensors.« less
Taghdisi, Seyed Mohammad; Danesh, Noor Mohammad; Emrani, Ahmad Sarreshtehdar; Ramezani, Mohammad; Abnous, Khalil
2015-11-15
Cocaine is a strong central nervous system stimulant and one of the most commonly abused drugs. In this study, an electrochemical aptasensor was designed for sensitive and selective detection of cocaine, based on single-walled carbon nanotubes (SWNTs), gold electrode and complimentary strand of aptamer (CS). This electrochemical aptasensor inherits properties of SWNTs and gold such as large surface area and high electrochemical conductivity, as well as high affinity and selectivity of aptamer toward its target and the stronger interaction of SWNTs with single-stranded DNA (ssDNA) than double-stranded DNA (dsDNA). In the absence of cocaine, a little amount of SWNTs bind to Aptamer-CS-modified electrode, so that the electrochemical signal is weak. In the presence of cocaine, aptamer binds to cocaine, leaves the surface of electrode. So that, a large amount of SWNTs bind to CS-modified electrode, generating to a strong electrochemical signal. The designed electrochemical aptasensor showed good selectivity toward cocaine with a limit of detection (LOD) as low as 105 pM. Moreover, the fabricated electrochemical aptasensor was successfully applied to detect cocaine in serum with a LOD as low as 136 pM. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Siyang; Chen, Xiang; Zhao, Jiayue; Su, Junming; Zhang, Congcong; Huang, Tao; Wu, Jianhua; Yu, Aishui
2018-01-01
Ni-rich cathode materials attract ongoing interest due to their high specific capacity (∼200 mAh g-1). However, these materials suffer rapid capacity fading when charged to a high voltage and cycled at elevated temperature. In this study, we propose a facile method to reconstruct the surface structure of LiNi0.6Co0.2Mn0.2O2 via Nb modification, which integrates the merits of partial Nb5+ doping in the pristine structure and surface Li3NbO4 coating. The obtained results from Rietveld refinement and high resolution transmission electron microscopy confirm that Nb5+ is partially doped into Li+ sites within the surface lattice. Further ex-situ powder X-ray diffraction and kinetic analysis using electrochemical impedance spectroscopy reveal that Nb modification stabilizes the layered structure and facilitates the charge transfer process. Owing to the robust surface structure, 1 mol% Nb modified LiNi0.6Co0.2Mn0.2O2 delivers a discharge capacity of 160.9 mAh g-1 with 91% capacity retention after 100 cycles at 3.0-4.5 V, whereas the discharge capacity of the pristine sample drops to 139.6 mAh g-1, corresponding to 78% of its initial value. The presence of Nb5+ in the Li layer exhibits positive effects on stability of layered structure, and the surface Li3NbO4 coating layer increases interfacial stability, which results in superior electrochemical performance.
Zhang, Jing-Jing; Cheng, Fang-Fang; Zheng, Ting-Ting; Zhu, Jun-Jie
2017-03-15
Quantifying the glycan expression status on cell surfaces is of vital importance for insight into the glycan function in biological processes and related diseases. Here we developed a versatile aptasensor for electrochemical quantification of cell surface glycan by taking advantage of the cell-specific aptamer, and the lectin-functionalized gold nanoparticles acting as both a glycan recognition unit and a signal amplification probe. To construct the aptasensor, amine-functionalized mucin 1 protein (MUC1) aptamer was first covalently conjugated to carboxylated-magnetic beads (MBs) using the succinimide coupling (EDC-NHS) method. On the basis of the specific recognition between aptamer and MUC1 protein that overexpressed on the surface of MCF-7 cells, the aptamer conjugated MBs showed a predominant capability for cell capture with high selectivity. Moreover, a lectin-based nanoprobe was designed by noncovalent assembly of concanavalin A (ConA) on gold nanoparticles (AuNPs). This nanoprobe incorporated the abilities of both the specific carbohydrate recognition and the signal amplification based on the gold-promoted reduction of silver ions. By coupling with electrochemical stripping analysis, the proposed sandwich-type cytosensor showed an excellent analytical performance for the ultrasensitive detection of MCF-7 cells and quantification of cell surface glycan. More importantly, taking advantage of Con A-gold nanoprobe catalyzed silver enhancement, the proposed method was further used for naked-eye tracking glycolytic inhibition in living cells. This aptasensor holds great promise as a new point-of-care diagnostic tool for analyzing glycan expression on living cells and further helps cancer diagnosis and treatment. Copyright © 2016 Elsevier B.V. All rights reserved.
[Electrochemical detection of toxin gene in Listeria monocytogenes].
Wu, Ling-Wei; Liu, Quan-Jun; Wu, Zhong-Wei; Lu, Zu-Hong
2010-05-01
Listeria monocytogenes (LM) is a food-borne pathogen inducing listeriosis, an illness characterized by encephalitis, septicaemia, and meningitis. Listeriolysin O (LLO) is absolutely required for virulence by L. monocytogenes, and is found only in virulent strains of the species. One of the best ways to detect and confirm the pathogen is detection of one of the virulence factors, LLO, produced by the microorganism. This paper focused on the electrical method used to detect the LLO toxin gene in food products and organism without labeling the target DNA. The electrochemical sensor was obtained by immobilizing single-stranded oligonucleotides onto the gold electrode with the mercaptan activated by N-hydroxysulfosuccinimide (NHS) and N-(3-dimethylamion)propyl-N'-ethyl carbodiimidehydrochloride (EDC). The hy-bridization reaction that occurred on the electrode surface was evidenced by Cyclic Voltammetry (CV) analysis using [Co(phen)3](ClO4)3 as an indicator. The covalently immobilized single-stranded DNA could selectively hybridize to its complementary DNA in solution to form double-stranded DNA on the gold surface. A significant increase of the peak cur-rent of Cyclic Voltammetry (CV) upon hybridization of immobilized ssDNA with PCR amplification products in the solu-tion was observed. This peak current change was used to monitor the amount of PCR amplification products. Factors deter-mining the sensitivity of the electrochemical assay, such as DNA target concentration and hybridization conditions, were investigated. The coupling of DNA to the electrochemical sensors has the potential of the quantitative evaluation of gene.
Low, Kim-Fatt; Rijiravanich, Patsamon; Singh, Kirnpal Kaur Banga; Surareungchai, Werasak; Yean, Chan Yean
2015-04-01
An ultrasensitive electrochemical genosensing assay was developed for the sequence-specific detection of Vibrio cholerae DNA using magnetic beads as the biorecognition surface and gold nanoparticle-loaded latex microspheres (latex-AuNPs) as a signal-amplified hybridization tag. This biorecognition surface was prepared by immobilizing specific biotinylated capturing probes onto the streptavidin-coupled magnetic beads. Fabricating a hybridization tag capable of amplifying the electrochemical signal involved loading multiple AuNPs onto polyelectrolyte multilayer film-coated poly(styrene-co-acrylic acid) latex microspheres as carrier particles. The detection targets, single-stranded 224-bp asymmetric PCR amplicons of the V. cholerae lolB gene, were sandwich-hybridized to magnetic bead-functionalized capturing probes and fluorescein-labeled detection probes and tagged with latex-AuNPs. The subsequent electrochemical stripping analysis of chemically dissolved AuNPs loaded onto the latex microspheres allowed for the quantification of the target amplicons. The high-loading capacity of the AuNPs on the latex microspheres for sandwich-type dual-hybridization genosensing provided eminent signal amplification. The genosensing variables were optimized, and the assay specificity was demonstrated. The clinical applicability of the assay was evaluated using spiked stool specimens. The current signal responded linearly to the different V. cholerae concentrations spiked into stool specimens with a detection limit of 2 colony-forming units (CFU)/ml. The proposed latex-AuNP-based magnetogenosensing platform is promising, exhibits an effective amplification performance, and offers new opportunities for the ultrasensitive detection of other microbial pathogens.
Electrodeposition of gold nanoparticles on aryl diazonium monolayer functionalized HOPG surfaces.
González, M C R; Orive, A G; Salvarezza, R C; Creus, A H
2016-01-21
Gold nanoparticle electrodeposition on a modified HOPG surface with a monolayer organic film based on aryl diazonium chemistry has been studied. This organic monolayer is electrochemically grown with the use of 2,2-diphenyl-1-picrylhydrazyl (DPPH), a radical scavenger. The electrodeposition of gold on this modified surface is highly favored resulting in an AuNP surface density comparable to that found on glassy carbon. AuNPs grow only in the areas covered by the organic monolayer leaving free clean HOPG zones. A progressive mechanism for the nucleation and growth is followed giving hemispherical AuNPs, homogeneously distributed on the surface and their sizes can be well controlled by the applied electrodeposition potential. By using AFM, C-AFM and electrochemical measurements with the aid of two redox probes, namely Fe(CN)6(4-)/Fe(CN)6(3-) and dopamine, relevant results about the electrochemical modified surface as well as the gold nanoparticles electrodeposited on them are obtained.
Energy efficient synthesis of boranes
Thorn, David L [Los Alamos, NM; Tumas, William [Los Alamos, NM; Schwarz, Daniel E [Los Alamos, NM; Burrell, Anthony K [Los Alamos, NM
2012-01-24
The reaction of halo-boron compounds (B--X compounds, compounds having one or more boron-halogen bonds) with silanes provides boranes (B--H compounds, compounds having one or more B--H bonds) and halosilanes. Inorganic hydrides, such as surface-bound silane hydrides (Si--H) react with B--X compounds to form B--H compounds and surface-bound halosilanes. The surface bound halosilanes are converted back to surface-bound silanes electrochemically. Halo-boron compounds react with stannanes (tin compounds having a Sn--H bond) to form boranes and halostannanes (tin compounds having a Sn--X bond). The halostannanes are converted back to stannanes electrochemically or by the thermolysis of Sn-formate compounds. When the halo-boron compound is BCl.sub.3, the B--H compound is B.sub.2H.sub.6, and where the reducing potential is provided electrochemically or by the thermolysis of formate.
Energy efficient synthesis of boranes
Thorn, David L.; Tumas, William; Schwarz, Daniel E.; Burrell, Anthony K.
2010-11-23
The reaction of halo-boron compounds (B--X compounds, compounds having one or more boron-halogen bonds) with silanes provides boranes (B--H compounds, compounds having one or more B--H bonds) and halosilanes. Inorganic hydrides, such as surface-bound silane hydrides (Si--H) react with B--X compounds to form B--H compounds and surface-bound halosilanes. The surface bound halosilanes are converted back to surface-bound silanes electrochemically. Halo-boron compounds react with stannanes (tin compounds having a Sn--H bond) to form boranes and halostannanes (tin compounds having a Sn--X bond). The halostannanes are converted back to stannanes electrochemically or by the thermolysis of Sn-formate compounds. When the halo-boron compound is BCl.sub.3, the B--H compound is B.sub.2H.sub.6, and where the reducing potential is provided electrochemically or by the thermolysis of formate.
NASA Astrophysics Data System (ADS)
Taer, E.; Kurniasih, B.; Sari, F. P.; Zulkifli, Taslim, R.; Sugianto, Purnama, A.; Apriwandi, Susanti, Y.
2018-02-01
The particle size analysis for supercapacitor carbon electrodes from rubber wood sawdust (SGKK) has been done successfully. The electrode particle size was reviewed against the properties such as density, degree of crystallinity, surface morphology and specific capacitance. The variations in particle size were made by different treatment on the grinding and sieving process. The sample particle size was distinguished as 53-100 µm for 20 h (SA), 38-53 µm for 20 h (SB) and < 38 µm with variations of grinding time for 40 h (SC) and 80 h (SD) respectively. All of the samples were activated by 0.4 M KOH solution. Carbon electrodes were carbonized at temperature of 600oC in N2 gas environment and then followed by CO2 gas activation at a temperature of 900oC for 2 h. The densities for each variation in the particle size were 1.034 g cm-3, 0.849 g cm-3, 0.892 g cm-3 and 0.982 g cm-3 respectively. The morphological study identified the distance between the particles more closely at 38-53 µm (SB) particle size. The electrochemical properties of supercapacitor cells have been investigated using electrochemical methods such as impedance spectroscopy and charge-discharge at constant current using Solatron 1280 tools. Electrochemical properties testing results have shown SB samples with a particle size of 38-53 µm produce supercapacitor cells with optimum capacitive performance.
Li, Dong; Guo, Xiaolei; Song, Haoran; Sun, Tianyi; Wan, Jiafeng
2018-06-05
Graphite-like material is widely used for preparing various electrodes for wastewater treatment. To enhance the electrochemical degradation efficiency of Nano-graphite (Nano-G) anode, RuO 2 -TiO 2 /Nano-G composite anode was prepared through the sol-gel method and hot-press technology. RuO 2 -TiO 2 /Nano-G composite was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and N 2 adsorption-desorption. Results showed that RuO 2 , TiO 2 and Nano-G were composited successfully, and RuO 2 and TiO 2 nanoparticles were distributed uniformly on the surface of Nano-G sheet. Specific surface area of RuO 2 -TiO 2 /Nano-G composite was higher than that of TiO 2 /Nano-G composite and Nano-G. Electrochemical performances of RuO 2 -TiO 2 /Nano-G anode were investigated by cyclic voltammetry, electrochemical impedance spectroscopy. RuO 2 -TiO 2 /Nano-G anode was applied to electrochemical degradation of ceftriaxone. The generation of hydroxyl radical (OH) was measured. Results demonstrated that RuO 2 -TiO 2 /Nano-G anode displayed enhanced electrochemical degradation efficiency towards ceftriaxone and yield of OH, which is derived from the synergetic effect between RuO 2 , TiO 2 and Nano-G, which enhance the specific surface area, improve the electrochemical oxidation activity and lower the charge transfer resistance. Besides, the possible degradation intermediates and pathways of ceftriaxone sodium were identified. This study may provide a viable and promising prospect for RuO 2 -TiO 2 /Nano-G anode towards effective electrochemical degradation of antibiotics from wastewater. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nur, Adrian; Rahmawati, Alifah; Ilmi, Noor Izzati
Synthesis of nanosized of hydroxyapatite (HA) by electrochemical pulsed direct current (PDC) method has been studied. The aim of this work is to study the influence of various PDC parameters (pH initial, electrode distance, duty cycle, frequency, and amplitude) on particle surface area of HA powders. The electrochemical synthesis was prepared in solution Ca{sup 2+}/EDTA{sup 4−}/PO{sub 4}{sup 3+} at concentration 0.25/0.25/0.15 M for 24 h. The electrochemical cell was consisted of two carbon rectangular electrodes connected to a function generator to produce PDC. There were two treatments for particles after electrosynthesized, namely without aging and aged for 2 days atmore » 40 °C. For both cases, the particles were filtered and washed by demineralized water to eliminate the impurities and unreacted reactants. Then, the particles were dried at 100 °C for 2 days. The dried particles were characterized by X-ray diffraction, surface area analyzer, scanning electron microscopy (SEM), Fourier transform infrared spectra and thermogravimetric and differential thermal analysis. HA particles can be produced when the initial pH > 6. The aging process has significant effect on the produced HA particles. SEM images of HA particles showed that the powders consisted of agglomerates composed of fine crystallites and have morphology plate-like and sphere. The surface area of HA particles is in the range of 25 – 91 m{sup 2}/g. The largest particle surface area of HA was produced at 4 cm electrode distance, 80% cycle duty, frequency 0.1 Hz, amplitude 9 V and with aging process.« less
Probing Local Ionic Dynamics in Functional Oxides: From Nanometer to Atomic Scale
NASA Astrophysics Data System (ADS)
Kalinin, Sergei
2014-03-01
Vacancy-mediated electrochemical reactions in oxides underpin multiple applications ranging from electroresistive memories, to chemical sensors to energy conversion systems such as fuel cells. Understanding the functionality in these systems requires probing reversible (oxygen reduction/evolution reaction) and irreversible (cathode degradation and activation, formation of conductive filaments) electrochemical processes. In this talk, I summarize recent advances in probing and controlling these transformations locally on nanometer level using scanning probe microscopy. The localized tip concentrates the electric field in the nanometer scale volume of material, inducing local transition. Measured simultaneously electromechanical response (piezoresponse) or current (conductive AFM) provides the information on the bias-induced changes in material. Here, I illustrate how these methods can be extended to study local electrochemical transformations, including vacancy dynamics in oxides such as titanates, LaxSr1-xCoO3, BiFeO3, and YxZr1-xO2. The formation of electromechanical hysteresis loops and their bias-, temperature- and environment dependences provide insight into local electrochemical mechanisms. In materials such as lanthanum-strontium cobaltite, mapping both reversible vacancy motion and vacancy ordering and static deformation is possible, and can be corroborated by post mortem STEM/EELS studies. In ceria, a broad gamut of electrochemical behaviors is observed as a function of temperature and humidity. The possible strategies for elucidation ionic motion at the electroactive interfaces in oxides using high-resolution electron microscopy and combined ex-situ and in-situ STEM-SPM studies are discussed. In the second part of the talk, probing electrochemical phenomena on in-situ grown surfaces with atomic resolution is illustrated. I present an approach based on the multivariate statistical analysis of the coordination spheres of individual atoms to reveal preferential structures and symmetries. The relevant statistical techniques including k-means clustering, principal component analysis, and Baesian unmixing are briefly intriduced. This approach is illustrated for several systems, including chemical phase identification, mapping ferroic variants, and probing topological and structural defects, and provides real space view on surface atomic processes. Research supported (SVK) by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division and partially performed at the Center for Nanophase Materials Sciences (AK, SJ), a DOE-BES user facility.
NASA Astrophysics Data System (ADS)
Derr, Igor; Bruns, Michael; Langner, Joachim; Fetyan, Abdulmonem; Melke, Julia; Roth, Christina
2016-09-01
Electrochemical degradation (ED) of carbon felt electrodes was investigated by cycling of a flow through all-vanadium redox flow battery (VRFB) and conducting half-cell measurements with two reference electrodes inside the test bench. ED was detected using half-cell and full-cell electrochemical impedance spectroscopy (EIS) at different states of charge (SOC). Reversing the polarity of the battery to recover cell performance was performed with little success. Renewing the electrolyte after a certain amount of cycles restored the capacity of the battery. X-ray photoelectron spectroscopy (XPS) reveals that the amount of surface functional increases by more than a factor of 3 for the negative side as well as for the positive side. Scanning electron microscope (SEM) images show a peeling of the fiber surface after cycling the felts, which leads to a loss of electrochemically active surface area (ECSA). Long term cycling shows that ED has a stronger impact on the negative half-cell [V(II)/V(III)] than the positive half-cell [V(IV)/V(V)] and that the negative half-cell is the rate-determining half-cell for the VRFB.
NASA Astrophysics Data System (ADS)
Benea, L.; Dănăilă, E.; Ponthiaux, P.
2017-02-01
Porous Ti and Ti alloys have received increasing research interest for bone tissue engineering, especially for dental and orthopaedic implants because they provide cell ingrowths and vascularization, improving of adhesion and osseointegration. The tribocorrosion process is encountered in orthopaedic and dentistry applications, since it is known that the implants are often exposed to simultaneous chemical/electrochemical and mechanical stresses. The purpose of this study was to carry out a systematic investigation of the tribo-electrochemical performance of porous TiO2-ZrO2 thin film formed by anodization of Ti-10Zr alloy surface in an artificial saliva solution and to compare the resulted performance with that of the untreated Ti-10Zr alloy surface in order to be applied for biomedical use. The in situ electrochemical technique used for investigation of tribo-electrochemical degradation was the open circuit potential (OCP) measurement performed before, during and after sliding tests. The results presented herein show that controlled anodic oxidation method can significantly improve the tribocorrosion and friction performances of Ti-10Zr alloy surface intended for biomedical applications.
NASA Astrophysics Data System (ADS)
Pothipor, Chammari; Lertvachirapaiboon, Chutiparn; Shinbo, Kazunari; Kato, Keizo; Kaneko, Futao; Ounnunkad, Kontad; Baba, Akira
2018-02-01
An electrochemically synthesized graphene oxide (GO)/poly(3,4-ethylenedioxythiophene) (PEDOT)/poly(styrene sulfonate) (PSS) thin film-based electrochemical surface plasmon resonance (EC-SPR) sensor chip was developed and employed for the detection of human immunoglobulin G (IgG). GO introduced the carboxylic group on the film surface, which also allowed electrochemical control, for the immobilization of the anti-IgG antibody via covalent bonding through amide coupling reaction. The SPR sensitivity of the detection was improved under the control by applying an electrochemical potential, by which the sensitivity was increased by the increment in applied potential. Among the open-circuit and different applied potentials in the range of -1.0 to 0.50 V, the EC-SPR immunosensor at an applied potential of 0.50 V exhibited the highest sensitivity of 6.08 × 10-3 mL µg-1 cm-2 and linearity in the human IgG concentration range of 1.0 to 10 µg mL-1 with a relatively low detection limit of 0.35 µg mL-1. The proposed sensor chip is promising for immunosensing at the physiological level.
Penta, Virgil; Pirvu, Cristian; Demetrescu, Ioana
2014-01-01
The main objective of the current paper is to show that electrochemical impedance spectroscopy (EIS) could be a method for evaluating and predicting of ProTaper rotary file system clinical lifespan. This particular aspect of everyday use of the endodontic files is of great importance in each dental practice and has profound clinical implications. The method used for quantification resides in the electrochemical impedance spectroscopy theory and has in its main focus the characteristics of the surface titanium oxide layer. This electrochemical technique has been adapted successfully to identify the quality of the Ni-Ti files oxide layer. The modification of this protective layer induces changes in corrosion behavior of the alloy modifying the impedance value of the file. In order to assess the method, 14 ProTaper sets utilized on different patients in a dental clinic have been submitted for testing using EIS. The information obtained in regard to the surface oxide layer has offered an indication of use and proves that the said layer evolves with each clinical application. The novelty of this research is related to an electrochemical technique successfully adapted for Ni-Ti file investigation and correlation with surface and clinical aspects.
NASA Astrophysics Data System (ADS)
Satyanarayana, M.; Kumar, V. Sunil; Gobi, K. Vengatajalabathy
2016-04-01
In this research, silver nanoparticles (SNPs) are prepared on the surface of carbon nanotubes via chitosan, a biopolymer linkage. Here chitosan act as stabilizing agent for nanoparticles and forms a network on the surface of carbon nanotubes. Synthesized silver nanoparticles-MWCNT hybrid composite is characterized by UV-Visible spectroscopy, XRD analysis, and FESEM with EDS to evaluate the structural and chemical properties of the nanocomposite. The electrocatalytic activity of the fabricated SNP-MWCNT hybrid modified glassy carbon electrode has been evaluated by cyclic voltammetry and electrochemical impedance analysis. The silver nanoparticles are of size ˜35 nm and are well distributed on the surface of carbon nanotubes with chitosan linkage. The prepared nanocomposite shows efficient electrocatalytic properties with high active surface area and excellent electron transfer behaviour.
Li, Da; Liu, Jingquan; Barrow, Colin J; Yang, Wenrong
2014-08-04
We describe a new electrochemical detection approach towards single protein molecules (microperoxidase-11, MP-11), which are attached to the surface of graphene nanosheets. The non-covalently functionalized graphene nanosheets exhibit enhanced electroactive surface area, where amplified redox current is produced when graphene nanosheets collide with the electrode.
NASA Astrophysics Data System (ADS)
Wang, Zhongwei; Yan, Yu; Su, Yanjing; Qiao, Lijie
2017-06-01
The subsurface microstructures of metallic implants play a key role in bio-tribocorrosion. Due to wear or change of local environment, the implant surface can have inhomogeneous electrochemical corrosion properties. In this work, the effect of electrochemical corrosion conditions on the subsurface microstructure evolution of CoCrMo alloys for artificial joints was investigated. Transmission electron microscope (TEM) was employed to observe the subsurface microstructures of worn areas at different applied potentials in a simulated physiological solution. The results showed that applied potentials could affect the severity of the subsurface deformation not only by changing the surface passivation but also affecting the adsorption of protein on the alloy surface.
Körbahti, Bahadır K.; Demirbüken, Pelin
2017-01-01
Electrochemical oxidation of resorcinol in aqueous medium using boron-doped diamond anode (BDD) was investigated in a batch electrochemical reactor in the presence of Na2SO4 supporting electrolyte. The effect of process parameters such as resorcinol concentration (100–500 g/L), current density (2–10 mA/cm2), Na2SO4 concentration (0–20 g/L), and reaction temperature (25–45°C) was analyzed on electrochemical oxidation using response surface methodology (RSM). The optimum operating conditions were determined as 300 mg/L resorcinol concentration, 8 mA/cm2 current density, 12 g/L Na2SO4 concentration, and 34°C reaction temperature. One hundred percent of resorcinol removal and 89% COD removal were obtained in 120 min reaction time at response surface optimized conditions. These results confirmed that the electrochemical mineralization of resorcinol was successfully accomplished using BDD anode depending on the process conditions, however the formation of intermediates and by-products were further oxidized at much lower rate. The reaction kinetics were evaluated at optimum conditions and the reaction order of electrochemical oxidation of resorcinol in aqueous medium using BDD anode was determined as 1 based on COD concentration with the activation energy of 5.32 kJ/mol that was supported a diffusion-controlled reaction. PMID:29082225
Synthesis and properties of ternary mixture of nickel/cobalt/tin oxides for supercapacitors
NASA Astrophysics Data System (ADS)
Ferreira, C. S.; Passos, R. R.; Pocrifka, L. A.
2014-12-01
The present study reports the synthesis and morphological, structural and electrochemical characterization of ternary oxides mixture containing nickel, cobalt and tin. The ternary oxide is synthesized by Pechini method with subsequent deposition onto a titanium substrate in a thin-film form. XRD and EDS analysis confirm the formation of ternary film with amorphous nature. SEM analysis show that cracks on the film favor the gain of the surface area that is an interesting feature for electrochemical capacitors. The ternary film is investigated in KOH electrolyte solution using cyclic voltammetry and charge-discharge study with a specific capacitance of 328 F g-1, and a capacitance retention of 86% over 600 cycles. The values of specific power and specific energy was 345.7 W kg-1 and 18.92 Wh kg-1, respectively.
Sol-gel Technology and Advanced Electrochemical Energy Storage Materials
NASA Technical Reports Server (NTRS)
Chu, Chung-tse; Zheng, Haixing
1996-01-01
Advanced materials play an important role in the development of electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. The sol-gel process is a versatile solution for use in the fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. This processing technique is particularly useful in producing porous materials with high surface area and low density, two of the most desirable characteristics for electrode materials. In addition,the porous surface of gels can be modified chemically to create tailored surface properties, and inorganic/organic micro-composites can be prepared for improved material performance device fabrication. Applications of several sol-gel derived electrode materials in different energy storage devices are illustrated in this paper. V2O5 gels are shown to be a promising cathode material for solid state lithium batteries. Carbon aerogels, amorphous RuO2 gels and sol-gel derived hafnium compounds have been studied as electrode materials for high energy density and high power density electrochemical capacitors.
Lim, Young-Kyun; Lee, Eung-Seok; Lee, Choong-Hyun; Lim, Dae-Soon
2018-08-10
In the study, a hollow boron-doped diamond (BDD) nanostructure electrode is fabricated to increase the reactive surface area for electrochemical applications. Tungsten oxide nanorods are deposited on the silicon substrate as a template by the hot filament chemical vapor deposition (HFCVD) method. The template is coated with a 100 nm BDD layer deposited by HFCVD to form a core-shell nanostructure. The WO x core is finally electrochemically dissolved to form hollow BDD nanostructure. The fabricated hollow BDD nanostructure electrode is investigated via scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The specific surface areas of the electrodes were analyzed and compared by using Brunauer-Emmett-Teller method. Furthermore, cyclic voltammetry and chronocoulometry are used to investigate the electrochemical characteristics and the reactive surface area of the as-prepared hollow BDD nanostructure electrode. A hollow BDD nanostructure electrode exhibits a reactive area that is 15 times that of a planar BDD thin electrode.
Mareci, D; Bolat, G; Izquierdo, J; Crimu, C; Munteanu, C; Antoniac, I; Souto, R M
2016-03-01
Biodegradable magnesium-calcium (MgCa) alloy is a very attractive biomaterial. Two MgCa alloys below the solid solubility of Ca were considered, as to solely investigate the effect of Ca content on the behavior of magnesium and the pH changes associated to metal dissolution. X-ray diffraction analysis and optical microscopy showed that both Mg-0.63Ca and Mg-0.89Ca alloys were solely composed of α(Mg) phase. Degradation characteristics and electrochemical characterization of MgCa alloys were investigated during exposure to Ringer's solution at 37 °C by electrochemical impedance spectroscopy and scanning electrochemical microscopy. The impedance behavior showed both capacitive and inductive features that are related to the alloy charge transfer reaction and the relaxation of the absorbed corrosion compounds, and can be described in terms of an equivalent circuit. Scanning electron microscopy (SEM) was employed to view the surface morphology of the MgCa samples after 1 week immersion in Ringer's solution showing extensive precipitation of corrosion products, whereas the substrate shows evidence of a non-uniform corrosion process. Energy dispersive analysis showed that the precipitates contained oxygen, calcium, magnesium and chlorine, and the Mg:Ca ratios were smaller than in the alloys. Scanning electrochemical microscopy (SECM) was used to visualize local pH changes associated to these physicochemical processes with high spatial resolution. The occurrence of pH variations in excess of 3 units between anodic and cathodic half-cell reactions was monitored in situ. Copyright © 2015 Elsevier B.V. All rights reserved.
Arulraj, Abraham Daniel; Vijayan, Muthunanthevar; Vasantha, Vairathevar Sivasamy
2015-10-29
An ultrasensitive and highly selective electrochemical sensor for the determination of p-nitrophenol (p-NP) was developed based on electrochemically treated nano polypyrrole/sodium dodecyl sulphate film (ENPPy/SDS film) modified glassy carbon electrode. The nano polypyrrole/sodium dodecyl sulphate film (NPPy/SDS film) was prepared and treated electrochemically in phosphate buffer solution. The surface morphology and elemental analysis of treated and untreated NPPy/SDS film were characterized by FESEM and EDX analysis, respectively. Wettability of polymer films were analysed by contact angle test. The hydrophilic nature of the polymer film decreased after electrochemical treatment. Effect of the pH of electrolyte and thickness of the ENPPy/SDS film on determination of p-NP was optimised by cyclic voltammetry. Under the optimised conditions, the p-NP was determined from the oxidation peak of p-hydroxyaminophenol which was formed from the reduction of p-NP in the reduction segment of cyclic voltammetry. A very good linear detection range (from 0.1 nM to 100 μM) and the best LOD (0.1 nM) were obtained for p-NP with very good selectivity. This detection limit is below to the allowed limit in drinking water, 0.43 μM, proposed by the U.S. Environmental Protection Agency (EPA) and earlier reports. Moreover, ENPPy/SDS film based sensor exhibits high sensitivity (4.4546 μA μM(-1)) to p-NP. Experimental results show that it is a fast and simple sensor for p-NP. Copyright © 2015 Elsevier B.V. All rights reserved.
Sun, Shuwei; Yin, Yanfeng; Wan, Ning; ...
2015-06-24
For Li-rich layered cathode materials considerable attention has been paid owing to their high capacity performance for Li-ion batteries (LIBs). In our work, layered Li-rich Li[Li 0.2Ni 0.17Co 0.07Mn 0.56]O 2 nanoparticles are surface-modified with AlF 3 through a facile chemical deposition method. The AlF 3 surface layers have little impact on the structure of the material and act as buffers to prevent the direct contact of the electrode with the electrolyte; thus, they enhance the electrochemical performance significantly. The 3 wt% AlF 3-coated Li-rich electrode exhibits the best cycling capability and has a considerably enhanced capacity retention of 83.1%more » after 50 cycles. Moreover, the rate performance and thermal stability of the 3 wt% AlF3-coated electrode are also clearly improved. Finally, surface analysis indicates that the AlF 3 coating layer can largely suppress the undesirable growth of solid electrolyte interphase (SEI) film and, therefore, stabilizes the structure upon cycling.« less
NASA Astrophysics Data System (ADS)
Feng, Y. P.; Sinha, S. K.; Melendres, C. A.; Lee, D. D.
1996-02-01
We have studied the electrochemically-induced pitting process on a Cu electrode in NaHCO 3 solution using in-situ X-ray off-specular reflectivity measurements. The morphology and growth dynamics of the localized corrosion sites or pits were studied as the applied potential was varied from the cathodic region where the Cu surface is relatively free of oxide films to the anodic region where surface roughening occurs by general corrosion with concomitant formation of an oxide film. Quantitative analysis of the experimental results indicates that early pitting proceeds in favor of nucleation of pit clusters over individual pit growth. It was found that the lateral distribution of the pits is not random but exhibits a short-range order as evidenced by the appearance of a side peak in the transverse off-specular reflectivity. The position, height, and width of the peak was modeled to yield the average size, nearest-neighbor distance (within any one of the clusters), and over-all density of the pits averaged over the entire illuminated surface. In addition, measurements of the longitudinal off-specular reflectivity indicate a bimodal depth distribution for the pits, suggesting a “film breaking” type of pitting mechanism.
A Study on Corrosion Inhibitor for Mild Steel in Ethanol Fuel Blend
Vu, Nguyen Si Hoai; Hien, Pham Van; Man, Tran Van; Hanh Thu, Vu Thi; Tri, Mai Dinh
2017-01-01
The main aim of this study is to investigate Aganonerion polymorphum leaf-ethyl acetate extract (APL-EAE) and its inhibiting effect for steel in ethanol fuel blend. The immersion test, electrochemical and surface analysis techniques were successfully carried out in this research. Scanning electron microscope images indicated that the ethanol fuel blend induced pitting corrosion of steel. Remarkably, the surface of the sample containing 1000 ppm APL-EAE is smoother than the others submerged in different conditions. The electrochemical impedance spectroscopy result shows that APL-EAE has formed a good protective layer, preventing corrosive factors from hitting the steel surface. The potentiodynamic polarization data argue that the corrosion inhibition efficiency was strengthened with the increase of APL-EAE concentration. The Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy demonstrated less intensity of Fe peaks, higher intensity of C1s peak and the appearance of organic peaks (N1s, P2p, O1s) from specimens with and without APL-EAE addition. Therefore, the results suggest the formation of the protective film on steel surface and affirm that APL-EAE has served as an effective corrosion inhibitor for steel in ethanol fuel blend. PMID:29301224
A Study on Corrosion Inhibitor for Mild Steel in Ethanol Fuel Blend.
Vu, Nguyen Si Hoai; Hien, Pham Van; Man, Tran Van; Hanh Thu, Vu Thi; Tri, Mai Dinh; Nam, Nguyen Dang
2017-12-31
The main aim of this study is to investigate Aganonerion polymorphum leaf-ethyl acetate extract (APL-EAE) and its inhibiting effect for steel in ethanol fuel blend. The immersion test, electrochemical and surface analysis techniques were successfully carried out in this research. Scanning electron microscope images indicated that the ethanol fuel blend induced pitting corrosion of steel. Remarkably, the surface of the sample containing 1000 ppm APL-EAE is smoother than the others submerged in different conditions. The electrochemical impedance spectroscopy result shows that APL-EAE has formed a good protective layer, preventing corrosive factors from hitting the steel surface. The potentiodynamic polarization data argue that the corrosion inhibition efficiency was strengthened with the increase of APL-EAE concentration. The Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy demonstrated less intensity of Fe peaks, higher intensity of C 1s peak and the appearance of organic peaks (N 1s , P 2p , O 1s ) from specimens with and without APL-EAE addition. Therefore, the results suggest the formation of the protective film on steel surface and affirm that APL-EAE has served as an effective corrosion inhibitor for steel in ethanol fuel blend.
Sarkar, A; Kerr, J B; Cairns, E J
2013-07-22
Carbon-supported Pt@Au "core-shell" nanoparticles with varying surface concentration of platinum atoms have been synthesized using a novel redox-mediated synthesis approach. The synthesis technique allows for a selective deposition of platinum atoms on the surface of prefabricated gold nanoparticles. Energy dispersive spectroscopic analyses in a scanning electron microscope reveal that the platinum to gold atomic ratios are close to the nominal values, validating the synthesis scheme. X-ray diffraction data indicate an un-alloyed structure. The platinum to gold surface atomic ratio determined from cyclic voltammetry and copper under-potential deposition experiments reveal good agreement with the calculated values at low platinum concentration. However, there is an increase in non-uniformity in the deposition process upon increasing the platinum concentration. Koutecky-Levich analysis of the samples indicates a transition of the total number of electrons transferred (n) in the electrochemical oxygen reduction reaction from two to four electrons upon increasing the surface concentration of platinum atoms. Furthermore, the data indicate that isolated platinum atoms can reduce molecular oxygen but via a two-electron route. Moreover, successful four-electron reduction of molecular oxygen requires clusters of platinum atoms. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Reddy, M. Jeevan Kumar; Ryu, Sung Hun; Shanmugharaj, A. M.
2015-12-01
With the objective of developing new advanced composite materials that can be used as anodes for lithium ion batteries (LIBs), herein we describe the synthesis of SnO2 pillared carbon using various alkylamine (hexylamine; dodecylamine and octadecylamine) grafted graphene oxides and butyl trichlorotin precursors followed by its calcination at 500 °C for 2 h. While the grafted alkylamine induces crystalline growth of SnO2 pillars, thermal annealing of alkylamine grafted graphene oxide results in the formation of amorphous carbon coated graphene. Field emission scanning electron microscopy (FE-SEM) results reveal the successful formation of SnO2 pillared carbon on the graphene surface. X-ray diffraction (XRD), transmission electron microscopy (TEM) and Raman spectroscopy characterization corroborates the formation of rutile SnO2 crystals on the graphene surface. A significant rise in the BET surface area is observed for SnO2 pillared carbon, when compared to pristine GO. Electrochemical characterization studies of SnO2 pillared carbon based anode materials showed an enhanced lithium storage capacity and fine cyclic performance in comparison with pristine GO. The initial specific capacities of SnO2 pillared carbon are observed to be 1379 mA h g-1, 1255 mA h g-1 and 1360 mA h g-1 that decrease to 750 mA h g-1, 643 mA h g-1 and 560 mA h g-1 depending upon the chain length of grafted alkylamine on the graphene surface respectively. Electrochemical impedance spectral analysis reveals that the exchange current density of SnO2 pillared carbon based electrodes is higher, corroborating its enhanced electrochemical activity in comparison with GO based electrodes.With the objective of developing new advanced composite materials that can be used as anodes for lithium ion batteries (LIBs), herein we describe the synthesis of SnO2 pillared carbon using various alkylamine (hexylamine; dodecylamine and octadecylamine) grafted graphene oxides and butyl trichlorotin precursors followed by its calcination at 500 °C for 2 h. While the grafted alkylamine induces crystalline growth of SnO2 pillars, thermal annealing of alkylamine grafted graphene oxide results in the formation of amorphous carbon coated graphene. Field emission scanning electron microscopy (FE-SEM) results reveal the successful formation of SnO2 pillared carbon on the graphene surface. X-ray diffraction (XRD), transmission electron microscopy (TEM) and Raman spectroscopy characterization corroborates the formation of rutile SnO2 crystals on the graphene surface. A significant rise in the BET surface area is observed for SnO2 pillared carbon, when compared to pristine GO. Electrochemical characterization studies of SnO2 pillared carbon based anode materials showed an enhanced lithium storage capacity and fine cyclic performance in comparison with pristine GO. The initial specific capacities of SnO2 pillared carbon are observed to be 1379 mA h g-1, 1255 mA h g-1 and 1360 mA h g-1 that decrease to 750 mA h g-1, 643 mA h g-1 and 560 mA h g-1 depending upon the chain length of grafted alkylamine on the graphene surface respectively. Electrochemical impedance spectral analysis reveals that the exchange current density of SnO2 pillared carbon based electrodes is higher, corroborating its enhanced electrochemical activity in comparison with GO based electrodes. Electronic supplementary information (ESI) available: XPS, FE-SEM, FE-TEM, TGA FT-IR, EIS, CV of and charge discharge profiles of RGO-SnO2 composites. See DOI: 10.1039/c5nr06680h
Zheng, Tingting; Fu, Jia-Ju; Hu, Lihui; Qiu, Fan; Hu, Minjin; Zhu, Jun-Jie; Hua, Zi-Chun; Wang, Hui
2013-06-04
The variable susceptibility to the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) treatment observed in various types of leukemia cells is related to the difference in the expression levels of death receptors, DR4 and DR5, on the cell surfaces. Quantifying the DR4/DR5 expression status on leukemia cell surfaces is of vital importance to the development of diagnostic tools to guide death receptor-based leukemia treatment. Taking the full advantages of novel nanobiotechnology, we have developed a robust electrochemical cytosensing approach toward ultrasensitive detection of leukemia cells with detection limit as low as ~40 cells and quantitative evaluation of DR4/DR5 expression on leukemia cell surfaces. The optimization of electron transfer and cell capture processes at specifically tailored nanobiointerfaces and the incorporation of multiple functions into rationally designed nanoprobes provide unique opportunities of integrating high specificity and signal amplification on one electrochemical cytosensor. The high sensitivity and selectivity of this electrochemical cytosensing approach also allows us to evaluate the dynamic alteration of DR4/DR5 expression on the surfaces of living cells in response to drug treatments. Using the TRAIL-resistant HL-60 cells and TRAIL-sensitive Jurkat cells as model cells, we have further verified that the TRAIL susceptibility of various types of leukemia cells is directly correlated to the surface expression levels of DR4/DR5. This versatile electrochemical cytosensing platform is believed to be of great clinical value for the early diagnosis of human leukemia and the evaluation of therapeutic effects on leukemia patients after radiation therapy or drug treatment.
Electrochemically induced actuation of liquid metal marbles
NASA Astrophysics Data System (ADS)
Tang, Shi-Yang; Sivan, Vijay; Khoshmanesh, Khashayar; O'Mullane, Anthony P.; Tang, Xinke; Gol, Berrak; Eshtiaghi, Nicky; Lieder, Felix; Petersen, Phred; Mitchell, Arnan; Kalantar-Zadeh, Kourosh
2013-06-01
Controlled actuation of soft objects with functional surfaces in aqueous environments presents opportunities for liquid phase electronics, novel assembled super-structures and unusual mechanical properties. We show the extraordinary electrochemically induced actuation of liquid metal droplets coated with nanoparticles, so-called ``liquid metal marbles''. We demonstrate that nanoparticle coatings of these marbles offer an extra dimension for affecting the bipolar electrochemically induced actuation. The nanoparticles can readily migrate along the surface of liquid metals, upon the application of electric fields, altering the capacitive behaviour and surface tension in a highly asymmetric fashion. Surprising actuation behaviours are observed illustrating that nanoparticle coatings can have a strong effect on the movement of these marbles. This significant novel phenomenon, combined with unique properties of liquid metal marbles, represents an exciting platform for enabling diverse applications that cannot be achieved using rigid metal beads.Controlled actuation of soft objects with functional surfaces in aqueous environments presents opportunities for liquid phase electronics, novel assembled super-structures and unusual mechanical properties. We show the extraordinary electrochemically induced actuation of liquid metal droplets coated with nanoparticles, so-called ``liquid metal marbles''. We demonstrate that nanoparticle coatings of these marbles offer an extra dimension for affecting the bipolar electrochemically induced actuation. The nanoparticles can readily migrate along the surface of liquid metals, upon the application of electric fields, altering the capacitive behaviour and surface tension in a highly asymmetric fashion. Surprising actuation behaviours are observed illustrating that nanoparticle coatings can have a strong effect on the movement of these marbles. This significant novel phenomenon, combined with unique properties of liquid metal marbles, represents an exciting platform for enabling diverse applications that cannot be achieved using rigid metal beads. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00185g
NASA Astrophysics Data System (ADS)
Silina, Yuliya E.; Meier, Florian; Nebolsin, Valeriy A.; Koch, Marcus; Volmer, Dietrich A.
2014-05-01
A simple approach for synthesis of palladium and silver nanostructures with readily adjustable morphologies was developed using galvanic electrochemical deposition, for application to surface-assisted laser desorption/ionization (SALDI) of small biological molecules. A range of fatty acids, triglycerides, carbohydrates, and antibiotics were investigated to assess the performance of the new materials. Intense analyte cations were generated from the galvanic surfaces upon UV laser irradiation such as potassium adducts for a film thickness <100 nm (originating from impurities of the electrolyte solution) and Pd and Ag cluster ions for films with a thickness >120 nm. Possible laser desorption/ionization mechanisms of these galvanic structures are discussed. The films exhibited self-organizing abilities and adjustable morphologies by changing electrochemical parameters. They did not require any stabilizing agents and were inexpensive and very easy to produce. SALDI analysis showed that the materials were stable under ambient conditions and analytical results with excellent measurement reproducibility and detection sensitivity similar to MALDI were obtained. Finally, we applied the galvanic surfaces to fast screening of natural oils with minimum sample preparation.
NASA Astrophysics Data System (ADS)
Solehudin, Agus; Nurdin, Isdiriayani
2014-03-01
Corrosion and inhibition studies on API 5LX65 carbon steel in chloride solution containing various concentrations of benzotriazole has been conducted at temperature of 70°C using Electrochemical Impedance Spectroscopy (EIS). Corroded carbon steel surface with and without inhibitor have been observed using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Energy Dispersive Spectroscopy (EDS). The objectives of this research are to study the performance of benzotriazole as corrosion inhibitors. The experimental results of carbon steel corrosion in 3.5% NaCl solution containing 500 mg/l H2S at different BTAH concentrations showed that corrosion rate of carbon steel decreases with increasing of BTAH concentrations from 0 to 10 mmol/l. The inhibition efficiency of BTAH was found to be affected by its concentration. The optimum efficiency obtained of BTAH is 93% at concentration of 5 mmol/l. The result of XRD and EDS analysis reveal the iron sulfide (FeS) formation on corroded carbon steel surface without inhibitor. The EDS spectrum show the Nitrogen (N) bond on carbon steel surface inhibited by BTAH.
NASA Technical Reports Server (NTRS)
Arepalli, S.; Fireman, H.; Huffman, C.; Maloney, P.; Nikolaev, P.; Yowell, L.; Kim, K.; Kohl, P. A.; Higgins, C. D.; Turano, S. P.
2005-01-01
Electrochemical double-layer capacitors, or supercapacitors, have tremendous potential as high-power energy sources for use in low-weight hybrid systems for space exploration. Electrodes based on single-wall carbon nanotubes (SWCNTs) offer exceptional power and energy performance due to the high surface area, high conductivity, and the ability to functionalize the SWCNTs to optimize capacitor properties. This paper will report on the preparation of electrochemical capacitors incorporating SWCNT electrodes and their performance compared with existing commercial technology. Preliminary results indicate that substantial increases in power and energy density are possible. The effects of nanotube growth and processing methods on electrochemical capacitor performance is also presented. The compatibility of different SWCNTs and electrolytes was studied by varying the type of electrolyte ions that accumulate on the high-surface-area electrodes.
NASA Astrophysics Data System (ADS)
Hussein, M. A.; Kumar, A. Madhan; Yilbas, Bekir S.; Al-Aqeeli, N.
2017-11-01
Despite the widespread application of Ti alloy in the biomedical field, surface treatments are typically applied to improve its resistance to corrosion and wear. A newly developed biomedical Ti-20Nb-13Zr at.% alloy (TNZ) was laser-treated in nitrogen environment to improve its surface characteristics with corrosion protection performance. Surface modification of the alloy by laser was performed through a Nd:YAG laser. The structural and surface morphological alterations in the laser nitrided layer were investigated by XRD and a FE-SEM. The mechanical properties have been evaluated using nanoindentation for laser nitride and as-received samples. The corrosion protection behavior was estimated using electrochemical corrosion analysis in a physiological medium (SBF). The obtained results revealed the production of a dense and compact film of TiN fine grains (micro-/nanosize) with 9.1 µm below the surface. The mechanical assessment results indicated an improvement in the modulus of elasticity, hardness, and resistance of the formed TiN layer to plastic deformation. The electrochemical analysis exhibited that the surface protection performance of the laser nitrided TNZ substrates in the SBF could be considerably enhanced compared to that of the as-received alloy due to the presence of fine grains in the TiN layer resulting from laser nitriding. Furthermore, the untreated and treated Ti-20Nb-13Zr alloy exhibited higher corrosion resistance than the CpTi and Ti6Al4V commercial alloys. The improvements in the surface hardness and corrosion properties of Ti alloy in a simulated body obtained using laser nitriding make this approach a suitable candidate for enhancing the properties of biomaterials.
DNA microdevice for electrochemical detection of Escherichia coli 0157:H7 molecular markers.
Berganza, J; Olabarria, G; García, R; Verdoy, D; Rebollo, A; Arana, S
2007-04-15
An electrochemical DNA sensor based on the hybridization recognition of a single-stranded DNA (ssDNA) probe immobilized onto a gold electrode to its complementary ssDNA is presented. The DNA probe is bound on gold surface electrode by using self-assembled monolayer (SAM) technology. An optimized mixed SAM with a blocking molecule preventing the nonspecific adsorption on the electrode surface has been prepared. In this paper, a DNA biosensor is designed by means of the immobilization of a single stranded DNA probe on an electrochemical transducer surface to recognize specifically Escherichia coli (E. coli) 0157:H7 complementary target DNA sequence via cyclic voltammetry experiments. The 21 mer DNA probe including a C6 alkanethiol group at the 5' phosphate end has been synthesized to form the SAM onto the gold surface through the gold sulfur bond. The goal of this paper has been to design, characterise and optimise an electrochemical DNA sensor. In order to investigate the oligonucleotide probe immobilization and the hybridization detection, experiments with different concentration of DNA and mismatch sequences have been performed. This microdevice has demonstrated the suitability of oligonucleotide Self-assembled monolayers (SAMs) on gold as immobilization method. The DNA probes deposited on gold surface have been functional and able to detect changes in bases sequence in a 21-mer oligonucleotide.
Morphology in electrochemically grown conducting polymer films
Rubinstein, Israel; Gottesfeld, Shimshon; Sabatani, Eyal
1992-01-01
A conducting polymer film with an improved space filling is formed on a metal electrode surface. A self-assembling monolayer is formed directly on the metal surface where the monolayer has a first functional group that binds to the metal surface and a second chemical group that forms a chemical bonding site for molecules forming the conducting polymer. The conducting polymer is then conventioonally deposited by electrochemical deposition. In one example, a conducting film of polyaniline is formed on a gold electrode surface with an intermediate monolayer of p-aminothiophenol.
Morphology in electrochemically grown conducting polymer films
Rubinstein, I.; Gottesfeld, S.; Sabatani, E.
1992-04-28
A conducting polymer film with an improved space filling is formed on a metal electrode surface. A self-assembling monolayer is formed directly on the metal surface where the monolayer has a first functional group that binds to the metal surface and a second chemical group that forms a chemical bonding site for molecules forming the conducting polymer. The conducting polymer is then conventionally deposited by electrochemical deposition. In one example, a conducting film of polyaniline is formed on a gold electrode surface with an intermediate monolayer of p-aminothiophenol. 2 figs.
Passivation of Si(111) surfaces with electrochemically grafted thin organic films
NASA Astrophysics Data System (ADS)
Roodenko, K.; Yang, F.; Hunger, R.; Esser, N.; Hinrichs, K.; Rappich, J.
2010-09-01
Ultra thin organic films (about 5 nm thick) of nitrobenzene and 4-methoxydiphenylamine were deposited electrochemically on p-Si(111) surfaces from benzene diazonium compounds. Studies based on atomic force microscopy, infrared spectroscopic ellipsometry and x-ray photoelectron spectroscopy showed that upon exposure to atmospheric conditions the oxidation of the silicon interface proceed slower on organically modified surfaces than on unmodified hydrogen passivated p-Si(111) surfaces. Effects of HF treatment on the oxidized organic/Si interface and on the organic layer itself are discussed.
The synthesis of Fe3O4/MWCNT nanocomposites from local iron sands for electrochemical sensors
NASA Astrophysics Data System (ADS)
Rahmawati, Retno; Taufiq, Ahmad; Sunaryono, Yuliarto, Brian; Suyatman, Nugraha, Noviandri, Indra; Setyorini, Dian Ayu; Kurniadi, Deddy
2018-05-01
The aim of this research is producing the electrochemical sensor, especially for working electrodes based on the nanocomposites of multi-walled carbon nanotube (MWCNT) and magnetite (Fe3O4) nanoparticles from iron sands. The sonochemical method by ultrasonic horn was successfully used for the synthesis of the nanocomposites. The characterizations of the sample were conducted via X-Ray Diffractometer (XRD), Fourier Transform Infra-Red (FTIR) Spectrometer, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Brunauer-Emmett-Teller (BET) method for surface area, Vibrating Sample Magnetometer (VSM) and Cyclic Voltammetry (CV). The analysis of X-Ray Diffraction (XRD) pattern showed two phases of crystalline, namely MWCNT and Fe3O4, peak of MWCNT comes from (002) plan while peaks of Fe3O4 come from (2 2 0), (3 1 1), (4 0 0), (4 2 2), (5 1 1), and (4 4 0) plans. From XRD data, MWCNT has a hexagonal structure and Fe3O4 has inverse spinel cubic structure, respectively. The FTIR spectra revealed that the functionalization process of MWCNT successfully generated carboxyl and carbonyl groups to bind Fe3O4 on MWCNT surfaces. Moreover, the functional groups of Fe-O bonding that showed the existence of Fe3O4 in the nanocomposites were also detected in those spectra. Meanwhile, the SEM and TEM images showed that the nanoparticles of Fe3O4 attached on the MWCNT surface and formed agglomeration between particles due to magnetic forces. Through Brunauer-Emmett-Teller (BET) method, it is identified that the nanocomposite has a large surface area 318 m2/g that makes this material very suitable for electrochemical sensor applications. Moreover, the characterization of magnetic properties via Vibrating Sample Magnetometer (VSM) showed that the nanocomposites have superparamagnetic behavior at room temperature and the presence of the MWCNT reduced the magnetic properties of Fe3O4. Lastly, the electrochemical characterization with Cyclic Voltammetry (CV) proved that Fe3O4/MWCNT nanocomposites with iron sands as the starting materials have high sensitivity and serve as excellent electron transfer materials. Based on the results of the research, the Fe3O4/MWCNT nanocomposites from iron sands are much recommended for electrochemical sensor.
Kang, Minkyung; Bullions, Erin
2017-01-01
Single nanoparticle (NP) electrochemical impacts is a rapidly expanding field of fundamental electrochemistry, with applications from electrocatalysis to electroanalysis. These studies, which involve monitoring the electrochemical (usually current–time, I–t) response when a NP from solution impacts with a collector electrode, have the scope to provide considerable information on the properties of individual NPs. Taking the widely studied oxidative dissolution of individual silver nanoparticles (Ag NPs) as an important example, we present measurements with unprecedented noise (< 5 pA) and time resolution (time constant 100 μs) that are highly revealing of Ag NP dissolution dynamics. Whereas Ag NPs of diameter, d = 10 nm are mostly dissolved in a single event (on the timescale of the measurements), a wide variety of complex processes operate for NPs of larger diameter (d ≥ 20 nm). Detailed quantitative analysis of the I–t features, consumed charge, event duration and impact frequency leads to a major conclusion: Ag NPs undergo sequential partial stripping (oxidative dissolution) events, where a fraction of a NP is electrochemically oxidized, followed by the NP drifting away and back to the tunnelling region before the next partial stripping event. As a consequence, analysis of the charge consumed by single events (so-called “impact coulometry”) cannot be used as a general method to determine the size of colloidal NPs. However, a proper analysis of the I–t responses provides highly valuable information on the transient physicochemical interactions between NPs and polarized surfaces. PMID:28553474
Monitoring Tensile Fatigue of Superelastic NiTi Wire in Liquids by Electrochemical Potential
NASA Astrophysics Data System (ADS)
Racek, Jan; Stora, Marc; Šittner, Petr; Heller, Luděk; Kopeček, Jaromir; Petrenec, Martin
2015-06-01
Fatigue of superelastic NiTi wires was investigated by cyclic tension in simulated biofluid. The state of the surface of the fatigued NiTi wire was monitored by following the evolution of the electrochemical open circuit potential (OCP) together with macroscopic stresses and strains. The ceramic TiO2 oxide layer on the NiTi wire surface cannot withstand the large transformation strain and fractures in the first cycle. Based on the analysis of the results of in situ OCP experiments and SEM observation of cracks, it is claimed that the cycled wire surface develops mechanochemical reactions at the NiTi/liquid interface leading to cumulative generation of hydrogen, uptake of the hydrogen by the NiTi matrix, local loss of the matrix strength, crack transfer into the NiTi matrix, accelerated crack growth, and ultimately to the brittle fracture of the wire. Fatigue degradation is thus claimed to originate from the mechanochemical processes occurring at the excessively deforming surface not from the accumulation of defects due to energy dissipative bulk deformation processes. Ironically, combination of the two exciting properties of NiTi—superelasticity due to martensitic transformation and biocompatibility due to the protective TiO2 surface oxide layer—leads to excessive fatigue damage during cyclic mechanical loading in biofluids.
Neural Cell Chip Based Electrochemical Detection of Nanotoxicity
Kafi, Md. Abdul; Cho, Hyeon-Yeol; Choi, Jeong Woo
2015-01-01
Development of a rapid, sensitive and cost-effective method for toxicity assessment of commonly used nanoparticles is urgently needed for the sustainable development of nanotechnology. A neural cell with high sensitivity and conductivity has become a potential candidate for a cell chip to investigate toxicity of environmental influences. A neural cell immobilized on a conductive surface has become a potential tool for the assessment of nanotoxicity based on electrochemical methods. The effective electrochemical monitoring largely depends on the adequate attachment of a neural cell on the chip surfaces. Recently, establishment of integrin receptor specific ligand molecules arginine-glycine-aspartic acid (RGD) or its several modifications RGD-Multi Armed Peptide terminated with cysteine (RGD-MAP-C), C(RGD)4 ensure farm attachment of neural cell on the electrode surfaces either in their two dimensional (dot) or three dimensional (rod or pillar) like nano-scale arrangement. A three dimensional RGD modified electrode surface has been proven to be more suitable for cell adhesion, proliferation, differentiation as well as electrochemical measurement. This review discusses fabrication as well as electrochemical measurements of neural cell chip with particular emphasis on their use for nanotoxicity assessments sequentially since inception to date. Successful monitoring of quantum dot (QD), graphene oxide (GO) and cosmetic compound toxicity using the newly developed neural cell chip were discussed here as a case study. This review recommended that a neural cell chip established on a nanostructured ligand modified conductive surface can be a potential tool for the toxicity assessments of newly developed nanomaterials prior to their use on biology or biomedical technologies. PMID:28347059
Johnson, Alicia S.; Mehl, Benjamin T.; Martin, R. Scott
2015-01-01
In this work, a polystyrene (PS)-polydimethylsiloxane (PDMS) hybrid device was developed to enable the integration of cell culture with analysis by microchip electrophoresis and electrochemical detection. It is shown that this approach combines the fundamental advantages of PDMS devices (the ability to integrate pumps and valves) and PS devices (the ability to permanently embed fluidic tubing and electrodes). The embedded fused-silica capillary enables high temporal resolution measurements from off-chip cell culture dishes and the embedded electrodes provide close to real-time analysis of small molecule neurotransmitters. A novel surface treatment for improved (reversible) adhesion between PS and PDMS is described using a chlorotrimethylsilane stamping method. It is demonstrated that a Pd decoupler is efficient at handling the high current (and cathodic hydrogen production) resulting from use of high ionic strength buffers needed for cellular analysis; thus allowing an electrophoretic separation and in-channel detection. The separation of norepinephrine (NE) and dopamine (DA) in highly conductive biological buffers was optimized using a mixed surfactant system. This PS-PDMS hybrid device integrates multiple processes including continuous sampling from a cell culture dish, on-chip pump and valving technologies, microchip electrophoresis, and electrochemical detection to monitor neurotransmitter release from PC 12 cells. PMID:25663849
Electrochemical Approach for Effective Antifouling and Antimicrobial Surfaces.
Gaw, Sheng Long; Sarkar, Sujoy; Nir, Sivan; Schnell, Yafit; Mandler, Daniel; Xu, Zhichuan J; Lee, Pooi See; Reches, Meital
2017-08-09
Biofouling, the adsorption of organisms to a surface, is a major problem today in many areas of our lives. This includes: (i) health, as biofouling on medical device leads to hospital-acquired infections, (ii) water, since the accumulation of organisms on membranes and pipes in desalination systems harms the function of the system, and (iii) energy, due to the heavy load of the organic layer that accumulates on marine vessels and causes a larger consumption of fuel. This paper presents an effective electrochemical approach for generating antifouling and antimicrobial surfaces. Distinct from previously reported antifouling or antimicrobial electrochemical studies, we demonstrate the formation of a hydrogen gas bubble layer through the application of a low-voltage square-waveform pulses to the conductive surface. This electrochemically generated gas bubble layer serves as a separation barrier between the surroundings and the target surface where the adhesion of bacteria can be deterred. Our results indicate that this barrier could effectively reduce the adsorption of bacteria to the surface by 99.5%. We propose that the antimicrobial mechanism correlates with the fundamental of hydrogen evolution reaction (HER). HER leads to an arid environment that does not allow the existence of live bacteria. In addition, we show that this drought condition kills the preadhered bacteria on the surface due to water stress. This work serves as the basis for the exploration of future self-sustainable antifouling techniques such as incorporating it with photocatalytic and photoelectrochemical reactions.
Renewable-reagent electrochemical sensor
Wang, Joseph; Olsen, Khris B.
1999-01-01
A new electrochemical probe(s) design allowing for continuous (renewable) reagent delivery. The probe comprises an integrated membrane-sampling/electrochemical sensor that prevents interferences from surface-active materials and greatly extends the linear range. The probe(s) is useful for remote or laboratory-based monitoring in connection with microdialysis sampling and electrochemical measurements of metals and organic compounds that are not readily detected in the absence of reacting with the compound. Also disclosed is a method of using the probe(s).
Method of depositing epitaxial layers on a substrate
Goyal, Amit
2003-12-30
An epitaxial article and method for forming the same includes a substrate having a textured surface, and an electrochemically deposited substantially single orientation epitaxial layer disposed on and in contact with the textured surface. The epitaxial article can include an electromagnetically active layer and an epitaxial buffer layer. The electromagnetically active layer and epitaxial buffer layer can also be deposited electrochemically.
Lithographically defined microporous carbon structures
Burckel, David Bruce; Washburn, Cody M.; Polsky, Ronen; Brozik, Susan M.; Wheeler, David R.
2013-01-08
A lithographic method is used to fabricate porous carbon structures that can provide electrochemical electrodes having high surface area with uniform and controllable dimensions, providing enormous flexibility to tailor the electrodes toward specific applications. Metal nanoparticles deposited on the surface of the porous carbon electrodes exhibit ultra small dimensions with uniform size distribution. The resulting electrodes are rugged, electrically conductive and show excellent electrochemical behavior.
Electrochemical method for defect delineation in silicon-on-insulator wafers
Guilinger, Terry R.; Jones, Howland D. T.; Kelly, Michael J.; Medernach, John W.; Stevenson, Joel O.; Tsao, Sylvia S.
1991-01-01
An electrochemical method for defect delineation in thin-film SOI or SOS wafers in which a surface of a silicon wafer is electrically connected so as to control the voltage of the surface within a specified range, the silicon wafer is then contacted with an electrolyte, and, after removing the electrolyte, defects and metal contamination in the silicon wafer are identified.
NASA Astrophysics Data System (ADS)
Wu, D. C.; Li, Lu; Liang, G. Y.; Guo, Y. L.; Wu, H. B.
Amorphous Mg 65Ni 27La 8 alloy is prepared by melt-spinning. The alloy surface is modified using different contents of graphite to improve the performances of the Mg 65Ni 27La 8 electrodes. In detail, the electrochemical properties of (Mg 65Ni 27La 8) + xC (x = 0-0.4) electrodes are studied systematically, where x is the mass ratio of graphite to alloy. Experimental results reveal that the discharge capacity, cycle life, discharge potential characteristics and electrochemical kinetics of the electrodes are all improved. The surface modification enhances the electrocatalytic activity of the alloy, reduces the contact resistance of the electrodes and obstructs the formation of Mg(OH) 2 on the alloy surface. An optimal content of graphite has been obtained. The (Mg 65Ni 27La 8) + 0.25 C electrode has the largest discharge capacity of 827 mA h g -1, which is 1.47 times as large as that of the electrode without graphite, and the best electrochemical kinetics. Further increasing of graphite content will lead to the increase of contact resistance and activation energy for charge-transfer reaction of the electrode, resulting in the degradation of electrode performance.
Arruda, Thomas M; Kumar, Amit; Jesse, Stephen; Veith, Gabriel M; Tselev, Alexander; Baddorf, Arthur P; Balke, Nina; Kalinin, Sergei V
2013-09-24
The application of electric bias across tip-surface junctions in scanning probe microscopy can readily induce surface and bulk electrochemical processes that can be further detected though changes in surface topography, Faradaic or conductive currents, or electromechanical strain responses. However, the basic factors controlling tip-induced electrochemical processes, including the relationship between applied tip bias and the thermodynamics of local processes, remains largely unexplored. Using the model Li-ion reduction reaction on the surface in Li-ion conducting glass ceramic, we explore the factors controlling Li-metal formation and find surprisingly strong effects of atmosphere and back electrode composition on the process. We find that reaction processes are highly dependent on the nature of the counter electrode and environmental conditions. Using a nondepleting Li counter electrode, Li particles could grow significantly larger and faster than a depleting counter electrode. Significant Li ion depletion leads to the inability for further Li reduction. Time studies suggest that Li diffusion replenishes the vacant sites after ∼12 h. These studies suggest the feasibility of SPM-based quantitative electrochemical studies under proper environmental controls, extending the concepts of ultramicroelectrodes to the single-digit nanometer scale.
Review-Physicochemical hydrodynamics of gas bubbles in two phase electrochemical systems.
Taqieddin, Amir; Nazari, Roya; Rajic, Ljiljana; Alshawabkeh, Akram
2017-01-01
Electrochemical systems suffer from poor management of evolving gas bubbles. Improved understanding of bubbles behavior helps to reduce overpotential, save energy and enhance the mass transfer during chemical reactions. This work investigates and reviews the gas bubbles hydrodynamics, behavior, and management in electrochemical cells. Although the rate of bubble growth over the electrode surface is well understood, there is no reliable prediction of bubbles break-off diameter from the electrode surface because of the complexity of bubbles motion near the electrode surface. Particle Image Velocimetry (PIV) and Laser Doppler Anemometry (LDA) are the most common experimental techniques to measure bubble dynamics. Although the PIV is faster than LDA, both techniques are considered expensive and time-consuming. This encourages adapting Computational Fluid Dynamics (CFD) methods as an alternative to study bubbles behavior. However, further development of CFD methods is required to include coalescence and break-up of bubbles for better understanding and accuracy. The disadvantages of CFD methods can be overcome by using hybrid methods. The behavior of bubbles in electrochemical systems is still a complex challenging topic which requires a better understanding of the gas bubbles hydrodynamics and their interactions with the electrode surface and bulk liquid, as well as between the bubbles itself.
NASA Astrophysics Data System (ADS)
Rizwan, M.; Ahmad, A.; Deen, K. M.; Haider, W.
2014-11-01
Titanium and its alloys are most widely used as implant materials due to their excellent biocompatibility, mechanical properties and chemical stability. In this study Nitrogen ions of known dosage were implanted over cp-Ti by Pelletron accelerator with beam energy of 0.25 MeV.The atomic force microscopy of bare and nitrogen implanted specimens confirmed increase in surface roughness with increase in nitrogen ions concentration. X-ray diffraction patterns of ions implanted surfaces validated the formation of TiN0.3 and Ti3N2-xnitride phases. The tendency to form passive film and electrochemical behavior of these surfaces in ringer lactate (RL) solution was evaluated by Potentiodynamic polarization and electrochemical impedance spectroscopy respectively. It is proved that nitrogen ions implantation was beneficial to reduce corrosion rate and stabilizing passive film by increasing charge transfer resistance in RL. It was concluded that morphology and proliferation of Mesenchymal Stem Cells on nitrogen ions implanted surfaces strongly depends on surface roughness and nitride phases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsuji, Yoichiro; Yamamoto, Osamu; Matsuda, Hiromu
2000-07-01
Ti-V-Cr bcc-type solid solution alloys can absorb a large amount of hydrogen and be applied to active materials of the negative electrode in Ni-MH batteries. However, because of the insolubility of Ni into these alloys, the electrochemical characteristics like discharge capacity and cycle life were poor. In order to increase the discharge capacity of hydrogen absorbing alloy electrodes, Ti-V-Cr bcc-type alloy powders were sintered with Ni in order to form Ni contained surface layer on the alloy surface. As sintering temperature rose up, the surface composition changed from TiNi to Ti{sub 2}Ni. TiNi surface layer showed better electrochemical characteristics. Formore » the Ni adding method, Ni electroless plating was preferred because of good adhesion. As a result of optimized conditions, a discharge capacity of 570 mAh/g and an improvement of cycle life were achieved.« less
Electrochemical machining process for forming surface roughness elements on a gas turbine shroud
Lee, Ching-Pang; Johnson, Robert Alan; Wei, Bin; Wang, Hsin-Pang
2002-01-01
The back side recessed cooling surface of a shroud defining in part the hot gas path of a turbine is electrochemically machined to provide surface roughness elements and spaces therebetween to increase the heat transfer coefficient. To accomplish this, an electrode with insulating dielectric portions and non-insulating portions is disposed in opposition to the cooling surface. By passing an electrolyte between the cooling surface and electrode and applying an electrical current between the electrode and a shroud, roughness elements and spaces therebetween are formed in the cooling surface in opposition to the insulating and non-insulating portions of the electrode, hence increasing the surface area and heat transfer coefficient of the shroud.
Selectivity and Sensitivity of Ultrathin Monolayer Electrodes
NASA Astrophysics Data System (ADS)
Cheng, Quan
The objective of this work is to build a molecular architecture on the electrode surface with a well-defined morphology and desirable electrochemical characteristics. The goal is accomplished by means of self-assembly of thioctic acid, a sulfur-terminated organic molecule with a short alkyl chain and a hydrophilic carboxylic headgroup, on a gold electrode. Characterization of the monolayer structure and the electrochemical response of the monolayer electrodes is performed by means of capacitance measurements and voltammetry. Investigation of the capacitance of the self-assembled monolayers provides insight into the macroscopic permeability of the films and reveals that penetration of solvent/ions into the thioctic acid monolayer film occurs extensively. Voltammetric results demonstrate that permselectivity of the monolayer electrode can be obtained as a result of the induced electrostatic interactions between the monolayer interface and the electroactive species. Measurement of the voltammetric response of the redox probes at the monolayers as a function of the electrolyte concentration and composition is used to qualitatively analyze the effect of electrolyte on response. A model describing the role of the interfacial charge in the electrochemical response of the monolayers as a function of the solution composition and surface smoothness is proposed. A strategy is developed to further explore the applications of the monolayer electrodes to control the electrochemical response of the biological molecules such as catecholamines. The ability to control the surface hydrophobicity of the monolayer electrodes through coadsorption of thioctic acid and hexanethiol, to display different electrochemical properties towards biological molecules is tested. The optimum conditions for detection of the biological molecules on the monolayer electrodes are discussed. In order to pursue selective analysis in microenvironments, the thioctic acid monolayer formed on the ultramicroelectrodes (UME) is investigated, demonstrating high permselectivity and high sensitivity of the monolayer modified UMEs. Because of the more effective mass transport to the UMEs, effects of electrolyte on the monolayer response can be characterized facilely. Amperometric pH sensing on the thioctic acid UMEs using a redox mediator is discussed. Finally, the thioctic acid monolayer microelectrode is applied to investigate direct electrochemistry of a redox protein, cytochrome c. A sketch for developing a biosensor via mediation effects using the monolayer assembly is proposed.
Synthesis of porous NiO/CeO2 hybrid nanoflake arrays as a platform for electrochemical biosensing
NASA Astrophysics Data System (ADS)
Cui, Jiewu; Luo, Jinbao; Peng, Bangguo; Zhang, Xinyi; Zhang, Yong; Wang, Yan; Qin, Yongqiang; Zheng, Hongmei; Shu, Xia; Wu, Yucheng
2015-12-01
Porous NiO/CeO2 hybrid nanoflake arrays fabricated by a facile hydrothermal method were employed as substrates for electrochemical biosensors. The resulting NiO/CeO2 hybrid nanoflake arrays with a large specific surface area and good biocompatibility presented an excellent platform for electrochemical biosensing.Porous NiO/CeO2 hybrid nanoflake arrays fabricated by a facile hydrothermal method were employed as substrates for electrochemical biosensors. The resulting NiO/CeO2 hybrid nanoflake arrays with a large specific surface area and good biocompatibility presented an excellent platform for electrochemical biosensing. Electronic supplementary information (ESI) available: Optical photographs of the as-prepared samples, SEM, TEM, EDS, XRD and BET data of the samples are presented, I-t curves of glucose biosensors based on NiO and NiO/CeO2 NFAs, EIS results of different electrodes. See DOI: 10.1039/c5nr05924k
Ramana, G Venkata; Kumar, P Sampath; Srikanth, Vadali V S S; Padya, Balaji; Jain, P K
2015-02-01
A composite constituted by carbon nanopipes (CNPs) and polyaniline nanofibers (PANi NFs) is synthesized using in-situ chemical oxidative polymerization. Owing to its electrochemical activity the composite is found to be suitable as a working electrode material in hybrid type supercapacitors. Microstructural and phase analyses of the composite showed that (i) CNP surfaces are coated with PANi and (ii) PANi coated CNPs are distributed among PANi NFs. The composite shows an excellent electrochemical activity and a high specific capacitance of ~224.39 F/g. The electro-chemical activity of the composite is explicated in correlation with crystallinity, intrinsic oxidation state, and doping degree of PANi in the composite. The electro-chemical activity of the composite is also explicated in correlation with BET surface area and ordered meso-porosity pertaining to the composite. Charge/discharge curves indicate that the specific capacitance of the composite is a result of electric double-layer capacitance offered by CNPs and Faradaic pseudo capacitance offered by PANi NFs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ha, Jong-Keun; Song, Ju-Seok; Cho, Gyu-Bong
Highlights: • Sn-based nanoparticles are fabricated by using the pulsed wire evaporation method. • The electrodes are prepared by mixing the graphene and coating the surface. • Coating the surface of electrode is used with brushing of simple and facile method. • The electrochemical measurements are performed with galvanostatic experiments. • The coating electrode maintains capacity nearly of 501 mAh g{sup −1} up to 100 cycles. - Abstract: Sn-based nanoparticles are prepared with the O{sub 2} concentrations in chamber of Ar atmosphere (by v/v) by using the pulsed wire evaporation (PWE) method. The prepared electrodes are only Sn-based powder electrode,more » its binder coating electrode and Sn-based powder/graphene nanocomposite electrode. Morphology and structure of the synthesized powders and electrodes are investigated with a field emission scanning electron microscope (FE-SEM) and an X-ray diffraction (XRD) analysis. The electrochemical measurements were performed with galvanostatic cycling experiments using a coin type cell of CR2032 (Ø20, T3.2 mm). The binder coating electrode is superior to others and maintains delithiation capacity nearly of 501 mAh g{sup −1} as 58.3% of first delithiation capacity at 0.2 C-rate up to 100 cycles.« less
Oh, Misoon; Kim, Seok
2012-01-01
Polyaniline (PANI)/activated carbon (AC) composites were prepared by a chemical oxidation polymerization. To find an optimum ratio between PANI and AC which shows superior electrochemical properties, the preparation was carried out in changing the amount of added aniline monomers. The morphology of prepared composites was investigated by scanning electron microscopy (SEM) and transmission electron microscope (TEM). The structural and thermal properties were investigated by Fourier transform infrared spectra (FT-IR) and thermal gravimetric analysis (TGA), respectively. The electrochemical properties were characterized by cyclic voltammetry (CV). Composites showed a summation of capacitances that consisted of two origins. One is double-layer capacitance by ACs and the other is faradic capacitance by redox reaction of PANI. Fiber-like PANIs are coated on the surface of ACs and they contribute to the large surface for redox reaction. The vacancy among fibers provided the better diffusion and accessibility of ion. High capacitances of composites were originated from the network structure having vacancy made by PANI fibers. It was found that the composite prepared with 5 ml of aniline monomer and 0.25 g of AC showed the highest capacitance. Capacitance of 771 F/g was obtained at a scan rate of 5 mV/s.
Enhanced Photoelectrochemical Performance of Cuprous Oxide/Graphene Nanohybrids
2017-01-01
Combination of an oxide semiconductor with a highly conductive nanocarbon framework (such as graphene or carbon nanotubes) is an attractive avenue to assemble efficient photoelectrodes for solar fuel generation. To fully exploit the possible synergies of the hybrid formation, however, precise knowledge of these systems is required to allow rational design and morphological engineering. In this paper, we present the controlled electrochemical deposition of nanocrystalline p-Cu2O on the surface of different graphene substrates. The developed synthetic protocol allowed tuning of the morphological features of the hybrids as deduced from electron microscopy. (Photo)electrochemical measurements (including photovoltammetry, electrochemical impedance spectroscopy, photocurrent transient analysis) demonstrated better performance for the 2D graphene containing photoelectrodes, compared to the bare Cu2O films, the enhanced performance being rooted in suppressed charge carrier recombination. To elucidate the precise role of graphene, comparative studies were performed with carbon nanotube (CNT) films and 3D graphene foams. These studies revealed, after allowing for the effect of increased surface area, that the 3D graphene substrate outperformed the other two nanocarbons. Its interconnected structure facilitated effective charge separation and transport, leading to better harvesting of the generated photoelectrons. These hybrid assemblies are shown to be potentially attractive candidates in photoelectrochemical energy conversion schemes, namely CO2 reduction. PMID:28460518
Cycles till failure of silver-zinc cells with competing failure modes - Preliminary data analysis
NASA Technical Reports Server (NTRS)
Sidik, S. M.; Leibecki, H. F.; Bozek, J. M.
1980-01-01
The data analysis of cycles to failure of silver-zinc electrochemical cells with competing failure modes is presented. The test ran 129 cells through charge-discharge cycles until failure; preliminary data analysis consisted of response surface estimate of life. Batteries fail through low voltage condition and an internal shorting condition; a competing failure modes analysis was made using maximum likelihood estimation for the extreme value life distribution. Extensive residual plotting and probability plotting were used to verify data quality and selection of model.
Maduraiveeran, Govindhan; Sasidharan, Manickam; Ganesan, Vellaichamy
2018-04-30
Introduction of novel functional nanomaterials and analytical technologies signify a foremost possibility for the advance of electrochemical sensor and biosensor platforms/devices for a broad series of applications including biological, biomedical, biotechnological, clinical and medical diagnostics, environmental and health monitoring, and food industries. The design of sensitive and selective electrochemical biological sensor platforms are accomplished conceivably by offering new surface modifications, microfabrication techniques, and diverse nanomaterials with unique properties for in vivo and in vitro medical analysis via relating a sensibly planned electrode/solution interface. The advantageous attributes such as low-cost, miniaturization, energy efficient, easy fabrication, online monitoring, and the simultaneous sensing capability are the driving force towards continued growth of electrochemical biosensing platforms, which have fascinated the interdisciplinary research arenas spanning chemistry, material science, biological science, and medical industries. The electrochemical biosensor platforms have potential applications in the early-stage detection and diagnosis of disease as stout and tunable diagnostic and therapeutic systems. The key aim of this review is to emphasize the newest development in the design of sensing and biosensing platforms based on functional nanomaterials for biological and biomedical applications. High sensitivity and selectivity, fast response, and excellent durability in biological media are all critical aspects which will also be wisely addressed. Potential applications of electrochemical sensor and biosensor platforms based on advanced functional nanomaterials for neuroscience diagnostics, clinical, point-of-care diagnostics and medical industries are also concisely presented. Copyright © 2017 Elsevier B.V. All rights reserved.
Rivera-Serrano, Nilka; Pagan, Miraida; Colón-Rodríguez, Joanisse; Fuster, Christian; Vélez, Román; Almodovar-Faria, Jose; Jiménez-Rivera, Carlos; Cunci, Lisandro
2018-02-06
In this study, electrochemical impedance spectroscopy was used for the first time to study the adsorption of dopamine in carbon fiber microelectrodes. In order to show a proof-of-concept, static and dynamic measurements were taken at potentials ranging from -0.4 to 0.8 V versus Ag|AgCl to demonstrate the versatility of this technique to study dopamine without the need of its oxidation. We used electrochemical impedance spectroscopy and single frequency electrochemical impedance to measure different concentrations of dopamine as low as 1 nM. Moreover, the capacitance of the microelectrodes surface was found to decrease due to dopamine adsorption, which is dependent on its concentration. The effect of dissolved oxygen and electrochemical oxidation of the surface in the detection of dopamine was also studied. Nonoxidized and oxidized carbon fiber microelectrodes were prepared and characterized by optical microscopy, scanning electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. Optimum working parameters of the electrodes, such as frequency and voltage, were obtained for better measurement. Electrochemical impedance of dopamine was determined at different concentration, voltages, and frequencies. Finally, dynamic experiments were conducted using a flow cell and single frequency impedance in order to study continuous and real-time measurements of dopamine.
NASA Astrophysics Data System (ADS)
Sainio, Carlyn Anne
Copper will be replacing aluminum as the interconnect material in silicon integrated circuits. Chemical mechanical planarization (CMP) in combination with an inlaid metal interconnection scheme has been utilized to pattern copper interconnects. The thesis describes an attempt to understand the electrochemistry of copper in slurries used for CMP. Steady-state electrochemical potential measurements, linear polarization resistance determinations, and potentiodynamic and potentiostatic polarization scans have been used in order to characterize the mechanism by which copper is removed during CMP. Electrochemical measurements were implemented on a rotating disk assembly to simulate conditions during CMP. Experiments were performed on both bulk copper samples and blanket copper thin films sputter deposited onto silicon wafers. Electrochemical potential measurements have been used in conjunction with potential-pH diagrams to determine the possible copper species which are stable during CMP. Electrochemical results were correlated to CMP experiments to determine slurry compositions with optimum potential-pH ranges for copper planarization. The results indicate that such studies present an opportunity to isolate the electrochemical and chemical effects from the mechanical effects in the CMP of metals and to determine the dependencies of each of these effects on the other. CMP of copper was controlled by the removal of native or non-native surface films. High CMP rates were achieved by matching the rates of film formation and copper and film dissolution. During CMP, surface films are abraded, allowing increased dissolution of copper until the surface film reforms. When the surface was indented by abrasive particles, the corrosion rate of the exposed copper increased by two orders of magnitude. Etchants (i.e. ammonia or nitric acid) were necessary for high CMP rates (120-240 nm/min) and to minimize scratching. CMP rates of copper in 1 volume percent NHsb4OH and 0.7 volume percent HNOsb3 with 0.0016 weight percent KMnOsb4 were comparable. Electrochemical characterization can narrow the possible slurry compositions that may be used for polishing. Also, the possibility of implementing electrochemical techniques to detect the endpoint of polishing was investigated. Although electrochemical measurements in ammonia-based slurries did not indicate when tantalum was exposed, similar measurements may be used to determine when polishing pads should be replaced.
Electrochemical chloride extraction : influence of concrete surface on treatment.
DOT National Transportation Integrated Search
2002-10-01
One bridge restoration technique available for reducing corrosion-induced concrete deterioration, which removes : chloride ions while simultaneously realkalizing the concrete adjacent to the steel, is electrochemical chloride extraction : (ECE). Stud...
Electrochemical Chloride Extraction : Influence of Concrete Surface on Treatment
DOT National Transportation Integrated Search
2002-09-01
One bridge restoration technique available for reducing corrosion-induced concrete deterioration, which removes chloride ions while simultaneously realkalizing the concrete adjacent to the steel, is electrochemical chloride extraction (ECE). Studies ...
Seki, Takakazu; So, Christopher R; Page, Tamon R; Starkebaum, David; Hayamizu, Yuhei; Sarikaya, Mehmet
2018-02-06
The nanoscale self-organization of biomolecules, such as proteins and peptides, on solid surfaces under controlled conditions is an important issue in establishing functional bio/solid soft interfaces for bioassays, biosensors, and biofuel cells. Electrostatic interaction between proteins and surfaces is one of the most essential parameters in the adsorption and self-assembly of proteins on solid surfaces. Although the adsorption of proteins has been studied with respect to the electrochemical surface potential, the self-assembly of proteins or peptides forming well-organized nanostructures templated by lattice structure of the solid surfaces has not been studied in the relation to the surface potential. In this work, we utilize graphite-binding peptides (GrBPs) selected by the phage display method to investigate the relationship between the electrochemical potential of the highly ordered pyrolytic graphite (HOPG) and peptide self-organization forming long-range-ordered structures. Under modulated electrical bias, graphite-binding peptides form various ordered structures, such as well-ordered nanowires, dendritic structures, wavy wires, amorphous (disordered) structures, and islands. A systematic investigation of the correlation between peptide sequence and self-organizational characteristics reveals that the presence of the bias-sensitive amino acid modules in the peptide sequence has a significant effect on not only surface coverage but also on the morphological features of self-assembled structures. Our results show a new method to control peptide self-assembly by means of applied electrochemical bias as well as peptide design-rules for the construction of functional soft bio/solid interfaces that could be integrated in a wide range of practical implementations.
Salahinejad, Erfan; Hadianfard, Mohammad Jafar; Macdonald, Digby Donald; Sharifi-Asl, Samin; Mozafari, Masoud; Walker, Kenneth J; Rad, Armin Tahmasbi; Madihally, Sundararajan V; Tayebi, Lobat
2013-01-01
The corrosion and cell viability behaviors of nanostructured, nickel-free stainless steel implants were studied and compared with AISI 316L. The electrochemical studies were conducted by potentiodynamic polarization and electrochemical impedance spectroscopic measurements in a simulated body fluid. Cytocompatibility was also evaluated by the adhesion behavior of adult human stem cells on the surface of the samples. According to the results, the electrochemical behavior is affected by a compromise among the specimen's structural characteristics, comprising composition, density, and grain size. The cell viability is interpreted by considering the results of the electrochemical impedance spectroscopic experiments.
Busó-Rogero, C; Herrero, E; Bandlow, J; Comas-Vives, A; Jacob, Timo
2013-11-14
The co-adsorption of CO and OH on two Pt stepped surfaces vicinal to the (111) orientation has been evaluated by means of density functional theory (DFT) calculations. Focusing on Pt(533) and Pt(221), which contain (100) and (111)-steps, respectively, we find that (111)-steps should be more reactive towards CO oxidation than surfaces containing (100)-steps. The DFT results are compared with electrochemical experiments on the CO adsorption and oxidation on these vicinal surfaces.
Determination of the Electrochemical Area of Screen-Printed Electrochemical Sensing Platforms.
García-Miranda Ferrari, Alejandro; Foster, Christopher W; Kelly, Peter J; Brownson, Dale A C; Banks, Craig E
2018-06-08
Screen-printed electrochemical sensing platforms, due to their scales of economy and high reproducibility, can provide a useful approach to translate laboratory-based electrochemistry into the field. An important factor when utilising screen-printed electrodes (SPEs) is the determination of their real electrochemical surface area, which allows for the benchmarking of these SPEs and is an important parameter in quality control. In this paper, we consider the use of cyclic voltammetry and chronocoulometry to allow for the determination of the real electrochemical area of screen-printed electrochemical sensing platforms, highlighting to experimentalists the various parameters that need to be diligently considered and controlled in order to obtain useful measurements of the real electroactive area.
Chen, Daqun; Mei, Yihong; Hu, Weihua; Li, Chang Ming
2018-05-15
For sensitive immunoassay, it is essentially important to immobilize antibody on a surface with high density and full retention of their recognition activity. Bio-inspired polydopamine (PDA) thin film has been widely utilized as a reactive coating to immobilize antibody on various surfaces. We herein report that the antibody immobilization capacity of PDA thin film is electrochemically enhanced by applying an oxidative potential to convert the surface catechol group to reactive quinone group. Quantitative surface plasmon resonance (SPR) investigation unveils that upon proper electrochemical oxidization, the antibody loading capacity of PDA film is significantly improved (up to 27%) and is very close to the theoretically maximal capacity of a planar surface if concentrated antibody solution is used. Using prostate-specific antigen (PSA) as a model target, it is further demonstrated that the SPR immunoassay sensitivity is greatly enhanced due to the improved antibody immobilization. This work offers an efficient strategy to enhance the reactivity of PDA film towards nucleophiles, and may also facilitate its immunoassay application among others. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ai Cheng; Dai, Ziyu; Chen, Baowei
2008-12-01
We describe a novel electrochemical branched-DNA (bDNA) assay for polymerase chain reaction (PCR)-free detection and quantification of p185 BCR-ABL leukemia fusion transcript in the population of messenger RNA (mRNA) extracted from cell lines. The bDNA amplifier carrying high loading of alkaline phosphatase (ALP) tracers was used to amplify targets signal. The targets were captured on microplate well surfaces through cooperative sandwich hybridization prior to the labeling of bDNA. The activity of captured ALP was monitored by square-wave voltammetric (SWV) analysis of the electroactive enzymatic product in the presence of 1-napthyl-phosphate. The specificity and sensitivity of assay enabled direct detection ofmore » target transcript in as little as 4.6 ng mRNA without PCR amplification. In combination with the use of a well-quantified standard, the electrochemical bDNA assay was capable of direct use for a PCR-free quantitative analysis of target transcript in total mRNA population. The approach thus provides a simple, sensitive, accurate and quantitative tool alternate to the RQ-PCR for early disease diagnosis.« less
NASA Astrophysics Data System (ADS)
Glenneberg, Jens; Bardenhagen, Ingo; Langer, Frederieke; Busse, Matthias; Kun, Robert
2017-08-01
In this paper we present investigations on the morphological and electrochemical changes of lithium phosphorous oxynitride (LiPON) under mechanically bent conditions. Therefore, two types of electrochemical cells with LiPON thin films were prepared by physical vapor deposition. First, symmetrical cells with two blocking electrodes (Cu/LiPON/Cu) were fabricated. Second, to simulate a more application-related scenario cells with one blocking and one non-blocking electrode (Cu/LiPON/Li/Cu) were analyzed. In order to investigate mechanical distortion induced transport property changes in LiPON layers the cells were deposited on a flexible polyimide substrate. Morphology of the as-prepared samples and deviations from the initial state after applying external stress by bending the cells over different radii were investigated by Focused Ion Beam- Scanning Electron Microscopy (FIB-SEM) cross-section and surface images. Mechanical stress induced changes in the impedance were evaluated by time-resolved electrochemical impedance spectroscopy (EIS). Due to the formation of a stable, ion-conducting solid electrolyte interphase (SEI), cells with lithium show decreased impedance values. Furthermore, applying mechanical stress to the cells results in a further reduction of the electrolyte resistance. These results are supported by finite element analysis (FEA) simulations.
Jodra, Adrián; López, Miguel Ángel; Escarpa, Alberto
2015-02-15
An electrochemical magnetoimmunosensor involving magnetic beads and disposable carbon screen-printed electrode (CSPE) for Fumonosins (FB1, FB2 and FB3) has been developed and evaluated through a certified reference material (CRM) and beer samples. Once the immunochemical reactions took place on the magnetic beads solution, they were confined on the surface of CSPE, where electrochemical detection is achieved through the addition of suitable substrate and mediator for enzymatic tracer (Horseradish peroxidase--HRP). A remarkable detection limit of 0.33 μg L(-1), outstanding repeatability and reproducibility (RSD(intraday) of 5.6% and 2.9%; RSD(interday) of 6.9% and 6.0%; both for 0 and 5 μg L(-1) FB1 respectively), and excellent accuracy with recovery rate of 85-96% showed the suggested approach to be a very suitable screening tool for the analysis of Fumonisin B1 and B2 in food samples. A simultaneous simplified calibration and analysis protocol allows a fast and reliable determination of Fumonisin in beer samples with recovery rate of 87-105%. This strategy enhanced the analytical merits of immunosensor approach towards truly disposable tools for food-safety monitoring. Copyright © 2014 Elsevier B.V. All rights reserved.
Current Technologies of Electrochemical Immunosensors: Perspective on Signal Amplification.
Cho, Il-Hoon; Lee, Jongsung; Kim, Jiyeon; Kang, Min-Soo; Paik, Jean Kyung; Ku, Seockmo; Cho, Hyun-Mo; Irudayaraj, Joseph; Kim, Dong-Hyung
2018-01-12
An electrochemical immunosensor employs antibodies as capture and detection means to produce electrical charges for the quantitative analysis of target molecules. This sensor type can be utilized as a miniaturized device for the detection of point-of-care testing (POCT). Achieving high-performance analysis regarding sensitivity has been one of the key issues with developing this type of biosensor system. Many modern nanotechnology efforts allowed for the development of innovative electrochemical biosensors with high sensitivity by employing various nanomaterials that facilitate the electron transfer and carrying capacity of signal tracers in combination with surface modification and bioconjugation techniques. In this review, we introduce novel nanomaterials (e.g., carbon nanotube, graphene, indium tin oxide, nanowire and metallic nanoparticles) in order to construct a high-performance electrode. Also, we describe how to increase the number of signal tracers by employing nanomaterials as carriers and making the polymeric enzyme complex associated with redox cycling for signal amplification. The pros and cons of each method are considered throughout this review. We expect that these reviewed strategies for signal enhancement will be applied to the next versions of lateral-flow paper chromatography and microfluidic immunosensor, which are considered the most practical POCT biosensor platforms.
Current Technologies of Electrochemical Immunosensors: Perspective on Signal Amplification
Cho, Il-Hoon; Kim, Jiyeon; Kang, Min-soo; Paik, Jean Kyung; Ku, Seockmo; Cho, Hyun-Mo; Irudayaraj, Joseph; Kim, Dong-Hyung
2018-01-01
An electrochemical immunosensor employs antibodies as capture and detection means to produce electrical charges for the quantitative analysis of target molecules. This sensor type can be utilized as a miniaturized device for the detection of point-of-care testing (POCT). Achieving high-performance analysis regarding sensitivity has been one of the key issues with developing this type of biosensor system. Many modern nanotechnology efforts allowed for the development of innovative electrochemical biosensors with high sensitivity by employing various nanomaterials that facilitate the electron transfer and carrying capacity of signal tracers in combination with surface modification and bioconjugation techniques. In this review, we introduce novel nanomaterials (e.g., carbon nanotube, graphene, indium tin oxide, nanowire and metallic nanoparticles) in order to construct a high-performance electrode. Also, we describe how to increase the number of signal tracers by employing nanomaterials as carriers and making the polymeric enzyme complex associated with redox cycling for signal amplification. The pros and cons of each method are considered throughout this review. We expect that these reviewed strategies for signal enhancement will be applied to the next versions of lateral-flow paper chromatography and microfluidic immunosensor, which are considered the most practical POCT biosensor platforms. PMID:29329274
The Nickel(111)/Alkaline Electrolyte Interface
NASA Technical Reports Server (NTRS)
Wang, Kuilong; Chottiner, G. S.; Scherson, D. A.; Reid, Margaret A.
1991-01-01
The electrochemical properties of Ni (111) prepared and characterized in ultra high vacuum, UHV, by surface analytical techniques have been examined in alkaline media by cyclic voltammetry using an UHV-electrochemical cell transfer system designed and built in this laboratory. Prior to the transfer, the Ni(111) surfaces were exposed to saturation coverages of CO in UHV in an attempt to protect the surface from possible contamination with other gases during the transfer. Temperature Programmed Desorption, TPD, of CO-dosed Ni (111) surfaces displaying sharp c(4x2), LEED patterns, subsequently exposed to water-saturated Ar at atmospheric pressure in an auxiliary UHV compatible chamber and finally transferred back to the main UHV chamber, yielded CO2 and water as the only detectable products. This indicates that the CO-dosed surfaces react with water and/or bicarbonate and hydroxide as the most likely products. Based on the integration of the TPD peaks, the combined amounts of H2O and CO2 were found to be on the order of a single monolayer. The reacted c(4x2)CO/Ni(111) layer seems to protect the surface from undergoing spontaneous oxidation in strongly alkaline solutions. This was evidenced by the fact that the open circuit potential observed immediately after contact with deaerated 0.1 M KOH was about 0.38 V vs. DHE, drifting slightly towards more negative values prior to initiating the voltametric scans. The average ratio of the integrated charge obtained in the first positive linear scan in the range of 0.35 to 1.5 V vs. DHE (initiated at the open circuit potential) and the first (and subsequent) linear negative scans in the same solution yielded for various independent runs a value of 3.5 +/- 0.3. Coulometric analysis of the cyclic voltammetry curves indicate that the electrochemically formed oxyhydroxide layer involves a charge equivalent to 3.2 +/- 0.4 layers of Ni metal.
Lateral electrochemical etching of III-nitride materials for microfabrication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Jung
Conductivity-selective lateral etching of III-nitride materials is described. Methods and structures for making vertical cavity surface emitting lasers with distributed Bragg reflectors via electrochemical etching are described. Layer-selective, lateral electrochemical etching of multi-layer stacks is employed to form semiconductor/air DBR structures adjacent active multiple quantum well regions of the lasers. The electrochemical etching techniques are suitable for high-volume production of lasers and other III-nitride devices, such as lasers, HEMT transistors, power transistors, MEMs structures, and LEDs.
Renewable-reagent electrochemical sensor
Wang, J.; Olsen, K.B.
1999-08-24
A new electrochemical probe(s) design allowing for continuous (renewable) reagent delivery is described. The probe comprises an integrated membrane sampling/electrochemical sensor that prevents interferences from surface-active materials and greatly extends the linear range. The probe(s) is useful for remote or laboratory-based monitoring in connection with microdialysis sampling and electrochemical measurements of metals and organic compounds that are not readily detected in the absence of reacting with the compound. Also disclosed is a method of using the probe(s). 19 figs.
Nanoscale visualization of redox activity at lithium-ion battery cathodes.
Takahashi, Yasufumi; Kumatani, Akichika; Munakata, Hirokazu; Inomata, Hirotaka; Ito, Komachi; Ino, Kosuke; Shiku, Hitoshi; Unwin, Patrick R; Korchev, Yuri E; Kanamura, Kiyoshi; Matsue, Tomokazu
2014-11-17
Intercalation and deintercalation of lithium ions at electrode surfaces are central to the operation of lithium-ion batteries. Yet, on the most important composite cathode surfaces, this is a rather complex process involving spatially heterogeneous reactions that have proved difficult to resolve with existing techniques. Here we report a scanning electrochemical cell microscope based approach to define a mobile electrochemical cell that is used to quantitatively visualize electrochemical phenomena at the battery cathode material LiFePO4, with resolution of ~100 nm. The technique measures electrode topography and different electrochemical properties simultaneously, and the information can be combined with complementary microscopic techniques to reveal new perspectives on structure and activity. These electrodes exhibit highly spatially heterogeneous electrochemistry at the nanoscale, both within secondary particles and at individual primary nanoparticles, which is highly dependent on the local structure and composition.
Hao, Xu; Quansheng, Yuan; Dan, Shao; Honghui, Yang; Jidong, Liang; Jiangtao, Feng; Wei, Yan
2015-04-09
PbO2 electrode modified by [Fe(CN)6](3-) (marked as FeCN-PbO2) was prepared by electro-deposition method and used for the electrochemical degradation of alkali lignin (AL). The surface morphology and the structure of the electrodes were characterized by scanning electronic microscopy (SEM) and X-ray diffraction (XRD), respectively. The stability and electrochemical activity of FeCN-PbO2 electrode were characterized by accelerated life test, linear sweep voltammetry, electrochemical impedance spectrum (EIS) and AL degradation. The results showed that [Fe(CN)6](3-) increased the average grain size of PbO2 and formed a compact surface coating. The service lifetime of FeCN-PbO2 electrode was 287.25 h, which was longer than that of the unmodified PbO2 electrode (100.5h). The FeCN-PbO2 electrode showed higher active surface area and higher oxygen evolution potential than that of the unmodified PbO2 electrode. In electrochemical degradation tests, the apparent kinetics coefficient of FeCN-PbO2 electrode was 0.00609 min(-1), which was higher than that of unmodified PbO2 electrode (0.00419 min(-1)). The effects of experimental parameters, such as applied current density, initial AL concentration, initial pH value and solution temperature, on electrochemical degradation of AL by FeCN-PbO2 electrode were evaluated. Copyright © 2015 Elsevier B.V. All rights reserved.
Achilleos, Demetra S; Hatton, T Alan
2015-06-01
With the current rising world demand for energy sufficiency, there is an increased necessity for the development of efficient energy storage devices. To address these needs, the scientific community has focused on the improvement of the electrochemical properties of the most well known energy storage devices; the Li-ion batteries and electrochemical capacitors, also called supercapacitors. Despite the fact that supercapacitors exhibit high power densities, good reversibility and long cycle life, they still exhibit lower energy densities than batteries, which limit their practical application. Various strategies have been employed to circumvent this problem, specifically targetting an increase in the specific capacitance and the broadening of the potential window of operation of these systems. In recent years, sophisticated surface design and engineering of hierarchical hybrid nanostructures has facilitated significant improvements in the specific and volumetric storage capabilities of supercapacitors. These nanostructured electrodes exhibit higher surface areas for ion adsorption and reduced ion diffusion lengths for the electrolyte ions. Significant advances have also been achieved in broadening the electrochemical window of operation of these systems, as realized via the development of asymmetric two-electrode cells consisting of nanocomposite positive and negative electrodes with complementary electrochemical windows, which operate in environmentally benign aqueous media. We provide an overview of the diverse approaches, in terms of chemistry and nanoscale architecture, employed recently for the development of asymmetric supercapacitors of improved electrochemical performance. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ho, Mui Yen; Khiew, Poi Sim; Isa, Dino; Chiu, Wee Siong
2014-11-01
In present study, the electrochemical performance of eco-friendly and cost-effective titanium oxide (TiO2)-based and zinc oxide-based nanocomposite electrodes were studied in neutral aqueous Na2SO3 electrolyte, respectively. The electrochemical properties of these composite electrodes were studied using cyclic voltammetry (CV), galvanostatic charge-discharge (CD) and electrochemical impedance spectroscopy (EIS). The experimental results reveal that these two nanocomposite electrodes achieve the highest specific capacitance at fairly low oxide loading onto activated carbon (AC) electrodes, respectively. Considerable enhancement of the electrochemical properties of TiO2/AC and ZnO/AC nanocomposite electrodes is achieved via synergistic effects contributed from the nanostructured metal oxides and the high surface area mesoporous AC. Cations and anions from metal oxides and aqueous electrolyte such as Ti4+, Zn2+, Na+ and SO32- can occupy some pores within the high-surface-area AC electrodes, forming the electric double layer at the electrode-electrolyte interface. Additionally, both TiO2 and ZnO nanoparticles can provide favourable surface adsorption sites for SO32- anions which subsequently facilitate the faradaic processes for pseudocapacitive effect. These two systems provide the low cost material electrodes and the low environmental impact electrolyte which offer the increased charge storage without compromising charge storage kinetics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satyanarayana, M.; Kumar, V. Sunil; Gobi, K. Vengatajalabathy, E-mail: drkvgobi@gmail.com, E-mail: satyam.nitw@gmail.com
In this research, silver nanoparticles (SNPs) are prepared on the surface of carbon nanotubes via chitosan, a biopolymer linkage. Here chitosan act as stabilizing agent for nanoparticles and forms a network on the surface of carbon nanotubes. Synthesized silver nanoparticles-MWCNT hybrid composite is characterized by UV-Visible spectroscopy, XRD analysis, and FESEM with EDS to evaluate the structural and chemical properties of the nanocomposite. The electrocatalytic activity of the fabricated SNP-MWCNT hybrid modified glassy carbon electrode has been evaluated by cyclic voltammetry and electrochemical impedance analysis. The silver nanoparticles are of size ∼35 nm and are well distributed on the surface ofmore » carbon nanotubes with chitosan linkage. The prepared nanocomposite shows efficient electrocatalytic properties with high active surface area and excellent electron transfer behaviour.« less
Surface phenomenon in Electrochemical Systems
NASA Astrophysics Data System (ADS)
Gupta, Tanya
Interfaces play a critical role in the performance of electrochemical systems. This thesis focusses on interfaces in batteries and covers aspects of interfacial morphologies of metal anodes, including Silicon, Lithium and Zinc. Growth and cycling of electrochemically grown Lithium and Zinc metal structures is investigated. A new morphology of Zinc, called Hyper Dendritic Zinc is introduced. It is cycled against Prussian Blue Analogues and is shown to improve the performance of this couple significantly. Characterization of materials is done using various electron microscopy techniques ranging from Low Energy Electron Microscope (LEEM), to high energy Transmission Electron Microscope (TEM). LEEM is used for capturing subtle surface phenomenon occurring during epitaxial process of electrolyte on anode. The system studied is Silicon (100) during Chemical Vapor Deposition of Ethylene Carbonate. A strain driven relaxation theory is modeled to explain the unusual restructuring of Si substrate. The other extreme, TEM, is often used to study electrochemical processes, without clear understanding of how the high-energy electron beam can influence the sample under investigation. Here, we study the radiolysis in liquid cell TEM and emphasize on the enhancement of radiation dose at interfaces of the liquid due to generation of secondary and backscattered electrons from adjoining materials. It is shown that this effect is localized in a 10 nm region around the interface and can play a dominating role if there is an interface of liquid with heavy metals like Gold and Platinum which are frequently used as electrode materials. This analysis can be used to establish guidelines for experimentalists to follow, for accurate interpretation of their results.
NASA Astrophysics Data System (ADS)
Choi, Jeong-Hee; Ha, Chung-Wan; Choi, Hae-Young; Shin, Heon-Cheol; Lee, Sang-Min
2017-11-01
The electrochemical comparison between Sb2S3 and its composite with carbon (Sb2S3/C) involved by sodium ion carrier are explained by enhanced kinetics, particularly with respect to improved interfacial conductivity by surface modulation by carbon. Sb2S3 and Sb2S3/C are synthesized by a high energy mechanical milling process. The successful synthesis of these materials is confirmed with X-ray diffraction (XRD), scanning electron microscopy, and transmission electron microscopy (TEM). As an anode material for sodium ion batteries, Sb2S3 exhibits an initial sodiation/desodiation capacity of 1,021/523 mAh g-1 whereas the Sb2S3/C composite exhibits a higher reversible capacity (642 mAh g-1). Furthermore, the cycle performance and rate capability of the Sb2S3/C composite are estimated to be much better than those of Sb and Sb2S3. Electrochemical impedance spectroscopy analysis shows that the Sb2S3/C composite exhibited charge transfer resistance and surface film resistance much lower than Sb2S3. X-ray photoelectron spectroscopy analyses of both electrodes demonstrate that NaF layer on Sb2S3/C composite electrode leads to the better electrochemical performances. In order to clarify the electrochemical reaction mechanism, ex-situ XRD based on differential capacity plots and ex-situ HR-TEM analyses of the Sb2S3/C composite electrode are carried out and its reaction mechanism was established.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Gongwei; Zheng, Dong; Liu, Dan
Fundamental research of sulfur redox reactions on well-defined controlled model electrode surfaces can provide new information to design high-performance lithium-sulfur batteries. In this paper, we study the electrochemical reduction and oxidation of sulfur on the nanostructured HOPG electrodes with pure basal planes, step plans, and pure edge planes. Finally, our results directly indicate that electrochemical reduction and oxidation of sulfur is significantly affected by the carbon surface structure, namely, the electrochemical reversibility of sulfur redox reaction is much better on edge plane, compared with basal plane and step plane.
Wang, Gongwei; Zheng, Dong; Liu, Dan; ...
2017-04-28
Fundamental research of sulfur redox reactions on well-defined controlled model electrode surfaces can provide new information to design high-performance lithium-sulfur batteries. In this paper, we study the electrochemical reduction and oxidation of sulfur on the nanostructured HOPG electrodes with pure basal planes, step plans, and pure edge planes. Finally, our results directly indicate that electrochemical reduction and oxidation of sulfur is significantly affected by the carbon surface structure, namely, the electrochemical reversibility of sulfur redox reaction is much better on edge plane, compared with basal plane and step plane.
Selective high-resolution electrodeposition on semiconductor defect patterns.
Schmuki, P; Erickson, L E
2000-10-02
We report a new principle and technique that allows one to electrodeposit material patterns of arbitrary shape down to the submicrometer scale. We demonstrate that an electrochemical metal deposition reaction can be initiated selectively at surface defects created in a p-type Si(100) substrate by Si (++) focused ion beam bombardment. The key principle is that, for cathodic electrochemical polarization of p-type material in the dark, breakdown of the blocking Schottky barrier at the semiconductor/electrolyte interface occurs at significantly lower voltages at implanted locations than for an unimplanted surface. This difference in the threshold voltages is exploited to achieve selective electrochemical deposition.
Planar fuel cell utilizing nail current collectors for increased active surface area
George, Thomas J.; Meacham, G. B. Kirby
2002-03-26
A plurality of nail current collector members are useful in the gas flow passages of an electrochemical device to optimize the active surfaces of the device and to provide structural support. In addition, the thicknesses of cathode and anode layers within the electrochemical device are varied according to current flow through the device to reduce resistance and increase operating efficiency.
Electrochemical polishing of thread fastener test specimens of nickel-chromium iron alloys
Kephart, Alan R.
1991-01-01
An electrochemical polishing device and method for selective anodic dissolution of the surface of test specimens comprised, for example, of nickel-chromium-iron alloys, which provides for uniform dissolution at the localized sites to remove metal through the use of a coiled wire electrode (cathode) placed in the immediate proximity of the working, surface resulting in a polished and uniform grain boundary.
Planar fuel cell utilizing nail current collectors for increased active surface area
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, Thomas J.; Meacham, G.B. Kirby
1999-11-26
A plurality of nail current collector members are useful in the gas flow passages of an electrochemical device to optimize the active surfaces of the device and to provide structural support. In addition, the thicknesses of cathode and anode layers within the electrochemical device are varied according to current flow through the device to reduce resistance and increase operating efficiency.
NASA Astrophysics Data System (ADS)
Song, Y. Z.; Song, Y.; Cheng, Z. P.; Zhou, J. F.; Wei, C.
2013-01-01
Electrochemical synthesis of gold nanoparticles on the surface of pyrolytic graphite using penicillin as a stabilizing reagent was proposed. The gold nanoparticles were characterized by scanning electron microscopy, cyclic voltammetry, IR spectra, UV spectra, and powder X-ray diffraction spectra. The electro-chemical catalysis of penicillin for α-naphthylamine was demonstrated.
NASA Technical Reports Server (NTRS)
Mcelroy, J. F.
1990-01-01
Viewgraphs on SPE regenerative hydrogen/oxygen fuel cells for extraterrestrial surface and microgravity applications are presented. Topics covered include: hydrogen-oxygen regenerative fuel cell energy storage system; electrochemical cell reactions; SPE cell voltage stability; passive water removal SPE fuel cell; fuel cell performance; SPE water electrolyzers; hydrophobic oxygen phase separator; hydrophilic/electrochemical hydrogen phase separator; and unitized regenerative fuel cell.
Gevaerd, Ava; Blaskievicz, Sirlon F; Zarbin, Aldo J G; Orth, Elisa S; Bergamini, Márcio F; Marcolino-Junior, Luiz H
2018-07-30
The modification of electrode surfaces has been the target of study for many researchers in order to improve the analytical performance of electrochemical sensors. Herein, the use of an imidazole-functionalized graphene oxide (GO-IMZ) as an artificial enzymatic active site for voltammetric determination of progesterone (P4) is described for the first time. The morphology and electrochemical performance of electrode modified with GO-IMZ were characterized by scanning electron microscopy and cyclic voltammetry, respectively. Under optimized conditions, the proposed sensor showed a synergistic effect of the GO sheets and the imidazole groups anchored on its backbone, which promoted a significant enhancement on electrochemical reduction of P4. Figures of merits such as linear dynamic response for P4 concentration ranging from 0.22 to 14.0 μmol L -1 , limit of detection of 68 nmol L -1 and limit of quantification and 210 nmol L -1 were found. In addition, presented a higher sensitivity, 426 nA L µmol -1 , when compared to the unmodified electrode. Overall, the proposed device showed to be a promising platform for a simple, rapid, and direct analysis of progesterone. Copyright © 2018 Elsevier B.V. All rights reserved.
Chng, Chu’Er; Sofer, Zdenek; Pumera, Martin; Bonanni, Alessandra
2016-01-01
There is a huge interest in doped graphene and how doping can tune the material properties for the specific application. It was recently demonstrated that the effect of doping can have different influence on the electrochemical detection of electroactive probes, depending on the analysed probe, on the structural characteristics of the graphene materials and on the type and amount of heteroatom used for the doping. In this work we wanted to investigate the effect of doping on graphene materials used as platform for the detection of catechin, a standard probe which is commonly used for the measurement of polyphenols in food and beverages. To this aim we compared undoped graphene with boron-doped graphene and nitrogen doped graphene platforms for the electrochemical detection of standard catechin oxidation. Finally, the material providing the best electrochemical performance was employed for the analysis of real samples. We found that the undoped graphene, possessing lower amount of oxygen functionalities, higher density of defects and larger electroactive surface area provided the best electroanalytical performance for the determination of catechin in commercial beer samples. Our findings are important for the development of novel graphene platforms for the electrochemical assessment of food quality. PMID:26861507
Nanomaterial-Based Electrochemical Immunosensors for Clinically Significant Biomarkers
Ronkainen, Niina J.; Okon, Stanley L.
2014-01-01
Nanotechnology has played a crucial role in the development of biosensors over the past decade. The development, testing, optimization, and validation of new biosensors has become a highly interdisciplinary effort involving experts in chemistry, biology, physics, engineering, and medicine. The sensitivity, the specificity and the reproducibility of biosensors have improved tremendously as a result of incorporating nanomaterials in their design. In general, nanomaterials-based electrochemical immunosensors amplify the sensitivity by facilitating greater loading of the larger sensing surface with biorecognition molecules as well as improving the electrochemical properties of the transducer. The most common types of nanomaterials and their properties will be described. In addition, the utilization of nanomaterials in immunosensors for biomarker detection will be discussed since these biosensors have enormous potential for a myriad of clinical uses. Electrochemical immunosensors provide a specific and simple analytical alternative as evidenced by their brief analysis times, inexpensive instrumentation, lower assay cost as well as good portability and amenability to miniaturization. The role nanomaterials play in biosensors, their ability to improve detection capabilities in low concentration analytes yielding clinically useful data and their impact on other biosensor performance properties will be discussed. Finally, the most common types of electroanalytical detection methods will be briefly touched upon. PMID:28788700
NASA Astrophysics Data System (ADS)
Matinise, N.; Mayedwa, N.; Fuku, X. G.; Mongwaketsi, N.; Maaza, M.
2018-05-01
The research work involved the development of a better, inexpensive, reliable, easily and accurate way for the fabrication of Cobalt (II, III) oxide (Co3O4) nanoparticles through a green synthetic method using Moringa Oleifera extract. The electrochemical activity, crystalline structure, morphology, isothermal behaviour and optical properties of Co3O4 nanoparticles were studied using various characterization techniques. The X-ray diffraction (XRD) and Energy Dispersive X-ray Spectroscopy (EDS) analysis confirmed the formation of Co3O4 nanoparticles. The pseudo-capacitor behaviour of spinel Co3O4 nanoparticles on Nickel foam electrode was investigated by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) in 3M KOH solution. The CV curve revealed a pairs of redox peaks, indicating the pseudo-capacitive characteristics of the Ni/Co3O4 electrode. EIS results showed a small semicircle and Warburg impedance, indicating that the electrochemical process on the surface electrode is kinetically and diffusion controlled. The charge-discharge results indicating that the specific capacitance Ni/Co3O4 electrode is approximately 1060 F/g at a discharge current density of at 2 A/g.
NASA Astrophysics Data System (ADS)
Chng, Chu'Er; Sofer, Zdenek; Pumera, Martin; Bonanni, Alessandra
2016-02-01
There is a huge interest in doped graphene and how doping can tune the material properties for the specific application. It was recently demonstrated that the effect of doping can have different influence on the electrochemical detection of electroactive probes, depending on the analysed probe, on the structural characteristics of the graphene materials and on the type and amount of heteroatom used for the doping. In this work we wanted to investigate the effect of doping on graphene materials used as platform for the detection of catechin, a standard probe which is commonly used for the measurement of polyphenols in food and beverages. To this aim we compared undoped graphene with boron-doped graphene and nitrogen doped graphene platforms for the electrochemical detection of standard catechin oxidation. Finally, the material providing the best electrochemical performance was employed for the analysis of real samples. We found that the undoped graphene, possessing lower amount of oxygen functionalities, higher density of defects and larger electroactive surface area provided the best electroanalytical performance for the determination of catechin in commercial beer samples. Our findings are important for the development of novel graphene platforms for the electrochemical assessment of food quality.
Sun, Aili; Qi, Qingan; Wang, Xuannian; Bie, Ping
2014-07-15
For the first time, a sensitive electrochemical aptasensor for thrombin (TB) was developed by using porous platinum nanotubes (PtNTs) labeled with hemin/G-quadruplex and glucose dehydrogenase (GDH) as labels. Porous PtNTs with large surface area exhibited the peroxidase-like activity. Coupling with GDH and hemin/G-quadruplex as NADH oxidase and HRP-mimicking DNAzyme, the cascade signal amplification was achieved by the following ways: in the presence of glucose and NAD(+) in the working buffer, GDH electrocatalyzed the oxidation of glucose with the production of NADH. Then, hemin/G-quadruplex as NADH oxidase catalyzed the oxidation of NADH to in situ generate H2O2. Based on the corporate electrocatalysis of PtNTs and hemin/G-quadruplex toward H2O2, the electrochemical signal was significantly amplified, allowing the detection limit of TB down to 0.15 pM level. Moreover, the proposed strategy was simple because the intercalated hemin offered the readout signal, avoiding the adding of additional redox mediator as signal donator. Such an electrochemical aptasensor is highly promising for sensitive detection of other proteins in clinical diagnostics. Copyright © 2014 Elsevier B.V. All rights reserved.
Xia, Ning; Zhang, Youjuan; Wei, Xin; Huang, Yaping; Liu, Lin
2015-06-09
MicroRNAs (MiRNAs) have been regarded as clinically important biomarkers and drug discovery targets. In this work, we reported a simple and ultrasensitive electrochemical method for miRNAs detection based on single enzyme amplification and electrochemical-chemical-chemical (ECC) redox cycling. Specifically, upon contact with the target miRNAs, the hairpin structure of biotinylated DNA immobilized on gold electrode was destroyed and the biotin group in DNA was forced away from the electrode surface, allowing for the coupling of streptavidin-conjugated alkaline phosphatase (SA-ALP). Then, ascorbic acid (AA, the enzymatic product of ALP) triggered the ECC redox cycling with ferrocene methanol (FcM) and tris(2-carboxyethyl)phosphine (TCEP) as the redox mediator and the chemical reducing reagent, respectively. The method was more sensitive than that with horseradish peroxidase (HRP) or glucose oxidase (GOx) triggered recycling since one ALP molecule captured by one target miRNA molecule promoted the production of thousands of AA. Analytical merits (e.g., detection limit, dynamic range, specificity, regeneration and reproducibility) were evaluated. The feasibility of the method for analysis of miRNA-21 in human serum has also been demonstrated. Copyright © 2015 Elsevier B.V. All rights reserved.
The application of graphene for in vitro and in vivo electrochemical biosensing.
Janegitz, Bruno Campos; Silva, Tiago Almeida; Wong, Ademar; Ribovski, Laís; Vicentini, Fernando Campanhã; Taboada Sotomayor, Maria Del Pilar; Fatibello-Filho, Orlando
2017-03-15
Advances in analysis are required for rapid and reliable clinical diagnosis. Graphene is a 2D material that has been extensively used in the development of devices for the medical proposes due to properties such as an elevated surface area and excellent electrical conductivity. On the other hand, architectures have been designed with the incorporation of different biological recognition elements such as antibodies/antigens and DNA probes for the proposition of immunosensors and genosensors. This field presents a great progress in the last few years, which have opened up a wide range of applications. Here, we highlight a rather comprehensive overview of the interesting properties of graphene for in vitro, in vivo, and point-of-care electrochemical biosensing. In the course of the paper, we first introduce graphene, electroanalytical methods (potentiometry, voltammetry, amperometry and electrochemical impedance spectroscopy) followed by an overview of the prospects and possible applications of this material in electrochemical biosensors. In this context, we discuss some relevant trends including the monitoring of multiple biomarkers for cancer diagnostic, implantable devices for in vivo sensing and, development of point-of-care devices to real-time diagnostics. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Choi, Yong Hyun; Min, Junhong; Cho, Sungbo
2015-06-01
Analysis on the interaction between proteins and cells is required for understanding the cellular behaviour and response. In this article, we characterized the adhesion and growth of 293/GFP cells on fetal bovine serum (FBS) coated indium tin oxide (ITO) electrode. Using optical and electrochemical measurement, it was able to detect the adsorption of the protein on the surface of the ITO electrode dependent on the concentration of the protein in the immersing solution or the immersing time. An increase in the amount of the adsorbed serum protein resulted in a decrease in anodic peak current and an increase in the charge transfer resistance extracted from the equivalent circuit fitting analysis. More cells adhered and proliferated on the ITO electrode which was pre-immersed in FBS medium rather than bare electrode. The effect of the FBS on cell behaviors was reflected in the impedance monitoring of cells at 21.5 kHz.
NASA Astrophysics Data System (ADS)
Gupta, Sanju; Price, Carson
2015-10-01
Hybrid electrode comprising an electric double-layer capacitor of graphene nanosheets and a pseudocapacitor of the electrically conducting polymers namely, polyaniline; PAni and polypyrrole; PPy are constructed that exhibited synergistic effect with excellent electrochemical performance as thin film supercapacitors for alternative energy. The hybrid supercapacitors were prepared by layer-by-layer (LbL) assembly based on controlled electrochemical polymerization followed by reduction of graphene oxide electrochemically producing ErGO, for establishing intimate electronic contact through nanoscale architecture and chemical stability, producing a single bilayer of (PAni/ErGO)1, (PPy/ErGO)1, (PAni/GO)1 and (PPy/GO)1. The rationale design is to create thin films that possess interconnected graphene nanosheets (GNS) with polymer nanostructures forming well-defined tailored interfaces allowing sufficient surface adsorption and faster ion transport due to short diffusion distances. We investigated their electrochemical properties and performance in terms of gravimetric specific capacitance, Cs, from cyclic voltammograms. The LbL-assembled bilayer films exhibited an excellent Cs of ≥350 F g-1 as compared with constituents (˜70 F g-1) at discharge current density of 0.3 A g-1 that outperformed many other hybrid supercapacitors. To gain deeper insights into the physical-chemical interfacial processes occurring at the electrode/electrolyte interface that govern their operation, we have used scanning electrochemical microscopy (SECM) technique in feedback and probe approach modes. We present our findings from viewpoint of reinforcing the role played by heterogeneous electrode surface composed of nanoscale graphene sheets (conducting) and conducting polymers (semiconducting) backbone with ordered polymer chains via higher/lower probe current distribution maps. Also targeted is SECM imaging that allowed to determine electrochemical (re)activity of surface ion adsorption sites density at solid/liquid interface.
Reddy, M Jeevan Kumar; Ryu, Sung Hun; Shanmugharaj, A M
2016-01-07
With the objective of developing new advanced composite materials that can be used as anodes for lithium ion batteries (LIBs), herein we describe the synthesis of SnO2 pillared carbon using various alkylamine (hexylamine; dodecylamine and octadecylamine) grafted graphene oxides and butyl trichlorotin precursors followed by its calcination at 500 °C for 2 h. While the grafted alkylamine induces crystalline growth of SnO2 pillars, thermal annealing of alkylamine grafted graphene oxide results in the formation of amorphous carbon coated graphene. Field emission scanning electron microscopy (FE-SEM) results reveal the successful formation of SnO2 pillared carbon on the graphene surface. X-ray diffraction (XRD), transmission electron microscopy (TEM) and Raman spectroscopy characterization corroborates the formation of rutile SnO2 crystals on the graphene surface. A significant rise in the BET surface area is observed for SnO2 pillared carbon, when compared to pristine GO. Electrochemical characterization studies of SnO2 pillared carbon based anode materials showed an enhanced lithium storage capacity and fine cyclic performance in comparison with pristine GO. The initial specific capacities of SnO2 pillared carbon are observed to be 1379 mA h g(-1), 1255 mA h g(-1) and 1360 mA h g(-1) that decrease to 750 mA h g(-1), 643 mA h g(-1) and 560 mA h g(-1) depending upon the chain length of grafted alkylamine on the graphene surface respectively. Electrochemical impedance spectral analysis reveals that the exchange current density of SnO2 pillared carbon based electrodes is higher, corroborating its enhanced electrochemical activity in comparison with GO based electrodes.
Schmidt, Igor; Gad, Alaaeldin; Scholz, Gregor; Boht, Heidi; Martens, Michael; Schilling, Meinhard; Suryo Wasisto, Hutomo; Waag, Andreas; Schröder, Uwe
2017-08-15
Microbial electrochemical technologies (METs) are one of the emerging green bioenergy domains that are utilizing microorganisms for wastewater treatment or electrosynthesis. Real-time monitoring of bioprocess during operation is a prerequisite for understanding and further improving bioenergy harvesting. Optical methods are powerful tools for this, but require transparent, highly conductive and biocompatible electrodes. Whereas indium tin oxide (ITO) is a well-known transparent conductive oxide, it is a non-ideal platform for biofilm growth. Here, a straightforward approach of surface modification of ITO anodes with gold (Au) is demonstrated, to enhance direct microbial biofilm cultivation on their surface and to improve the produced current densities. The trade-off between the electrode transmittance (critical for the underlying integrated sensors) and the enhanced growth of biofilms (crucial for direct monitoring) is studied. Au-modified ITO electrodes show a faster and reproducible biofilm growth with three times higher maximum current densities and about 6.9 times thicker biofilms compared to their unmodified ITO counterparts. The electrochemical analysis confirms the enhanced performance and the reversibility of the ITO/Au electrodes. The catalytic effect of Au on the ITO surface seems to be the key factor of the observed performance improvement since the changes in the electrode conductivity and their surface wettability are relatively small and in the range of ITO. An integrated platform for the ITO/Au transparent electrode with light-emitting diodes was fabricated and its feasibility for optical biofilm thickness monitoring is demonstrated. Such transparent electrodes with embedded catalytic metals can serve as multifunctional windows for biofilm diagnostic microchips. Copyright © 2017 Elsevier B.V. All rights reserved.
Takahashi, Yasufumi; Shevchuk, Andrew I; Novak, Pavel; Murakami, Yumi; Shiku, Hitoshi; Korchev, Yuri E; Matsue, Tomokazu
2010-07-28
We described a hybrid system of scanning electrochemical microscopy (SECM) and scanning ion conductance microscopy (SICM) with ion current feedback nanopositioning control for simultaneous imaging of noncontact topography and spatial distribution of electrochemical species. A nanopipette/nanoring electrode probe provided submicrometer resolution of the electrochemical measurement on surfaces with complex topology. The SECM/SICM probe had an aperture radius of 220 nm. The inner and outer radii of the SECM Au nanoring electrode were 330 and 550 nm, respectively. Characterization of the probe was performed with scanning electron microscopy (SEM), cyclic voltammetry (CV), and approach curve measurements. SECM/SICM was applied to simultaneous imaging of topography and electrochemical responses of enzymes (horse radish peroxidase (HRP) and glucose oxidase (GOD)) and single live cells (A6 cells, superior cervical ganglion (SCG) cells, and cardiac myocytes). The measurements revealed the distribution of activity of the enzyme spots on uneven surfaces with submicrometer resolution. SECM/SICM acquired high resolution topographic images of cells together with the map of electrochemical signals. This combined technique was also applied to the evaluation of the permeation property of electroactive species through cellular membranes.
Apparatus and method for controlling plating uniformity
Hachman Jr., John T.; Kelly, James J.; West, Alan C.
2004-10-12
The use of an insulating shield for improving the current distribution in an electrochemical plating bath is disclosed. Numerical analysis is used to evaluate the influence of shield shape and position on plating uniformity. Simulation results are compared to experimental data for nickel deposition from a nickel--sulfamate bath. The shield is shown to improve the average current density at a plating surface.
NASA Astrophysics Data System (ADS)
Cheraghi, Somaye; Taher, Mohammad Ali; Karimi-Maleh, Hassan
2017-10-01
In this work, we suggested a carbon paste electrode improved with 1-methyl-3-octylimidazolium tetrafluoroborate (1-M-3-OITFB) and ZnO/CNTs nanocomposite (1-M-3-OITFB/ZnO/CNTs/CPE) for electrochemical determination of raloxifene (RXF) as a non-steroidal selective estrogen receptor regulator. The cyclic and differential pulse voltammetric methods were apply for investigation of RXF electrochemical response at a surface of 1-M-3-OITFB/ZnO/CNTs/CPE. Under the best experimental conditions, the 1-M-3-OITFB/ZnO/CNTs/CPE showed a wide linear dynamic range of 0.08 - 400.0 μM. We detected a detection limit of 0.04 μM for RXF analysis using differential pulse voltammetric method (DPV). The 1-M-3-OITFB/ZnO/CNTs/CPE showed high performance ability to RXF analysis in trace amounts on pharmaceutical and clinical preparations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gershinsky, G; Yoo, HD; Gofer, Y
Electrochemical, surface, and structural studies related to rechargeable Mg batteries were carried out with monolithic thin-film cathodes comprising layered V2O5 and MoO3. The reversible intercalation reactions of these electrodes with Mg ion in nonaqueous Mg salt solutions were explored using a variety of analytical tools. These included slow-scan rate cyclic voltammetry (SSCV), chrono-potentiometry (galvanostatic cycling), Raman and photoelectron spectroscopies, high-resolution microscopy, and XRD. The V2O5 electrodes exhibited reversible Mg-ion intercalation at capacities around 150-180 mAh g(-1) with 100% efficiency. A capacity of 220 mAh g(-1) at >95% efficiency was obtained with MoO3 electrodes. By applying the electrochemical driving force sufficientlymore » slowly it was possible to measure the electrodes at equilibrium conditions and verify by spectroscopy, microscopy, and diffractometry that these electrodes undergo fully reversible structural changes upon Mg-ion insertion/deinsertion cycling.« less
Influence of Pore Characteristics on Electrochemical and Biological Behavior of Ti Foams
NASA Astrophysics Data System (ADS)
Salehi, Akram; Barzegar, Faezeh; Amini Mashhadi, Hossein; Nokhasteh, Samira; Abravi, Mohammad Sadegh
2017-08-01
This study reports on titanium (Ti) foams produced using the powder metallurgy technique. During the investigation, the cross-sectional area and perimeter distributions of the pores within the foam were measured. Metallographic image processing analysis software combined with scanning electron microscopic images demonstrated that the pore size and circularity were affected by varying the volume percentage of the space-holder material. The corrosion resistance was investigated using electrochemical impedance spectroscopy and cyclic polarization tests. MG-63 osteoblast-like cells were used to study the biocompatibility and to evaluate the cell attachment, viability, and alkaline phosphatase activity. Analytical results indicated that 50 and 60 vol.% samples were suitable for biomedical applications. Because of the high degree of interconnectivity in the 60 and 70% porosity samples, the electrochemical parameters produced similar results. The corrosion rate of the porous samples showed that the amount of dissolved Ti was at an acceptable level that can be ejected by the body. Applying a fluoridated hydroxyapatite coating significantly increased the osteoblast cell functions on the porous surface.
Chemically-modified graphenes for oxidation of DNA bases: analytical parameters.
Goh, Madeline Shuhua; Bonanni, Alessandra; Ambrosi, Adriano; Sofer, Zdeněk; Pumera, Martin
2011-11-21
We studied the electroanalytical performances of chemically-modified graphenes (CMGs) containing different defect densities and amounts of oxygen-containing groups, namely graphite oxide (GPO), graphene oxide (GO), thermally reduced graphene oxide (TR-GO) and electrochemically reduced graphene oxide (ER-GO) by comparing the sensitivity, selectivity, linearity and repeatability towards the oxidation of DNA bases. We have observed that for differential pulse voltammetric (DPV) detection of adenine and cytosine, all CMGs showed enhanced sensitivity to oxidation, while for guanine and thymine, ER-GO and TR-GO exhibited much improved sensitivity over bare glassy carbon (GC) as well as over GPO and GO. There is also significant selectivity enhancement when using GPO for adenine and TR-GO for thymine. Our results have uncovered that the differences in surface functionalities, structure and defects of various CMGs largely influence their electrochemical behaviour in detecting the oxidation of DNA bases. The findings in this report will provide a useful guide for the future development of label-free electrochemical devices for DNA analysis.
Said, Zafar; Allagui, Anis; Abdelkareem, Mohammad Ali; Alawadhi, Hussain; Elsaid, Khaled
2018-06-15
Carbon-based nanofluids are viewed as promising thermal fluids for heat transfer applications. However, other properties, such as electrical conductivity and electrochemical behavior, are usually overlooked and rarely investigated despite their importance for the overall performance characterization of a given application. In this study, we synthesized PAN-based carbon nanofibers (CNF) by electrospinning, and characterized them using electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, and thermogravimetric analysis. Thermoelectrical and electrochemical measurements were carried out on nanofluids. We found that, although CNF nanofluids exhibit good thermal and electrical properties with a negligible corrosive effect, the suspensions tend to sediment within a few days. However, acid treatment of CNF (F-CNF), which resulted in the shortening of the fibers and the appearance of surface-oxygenated species, made F-CNF-based nanofluids exhibit superior stability in water that extended for more than 90 days, with consistent and superior thermal and electrical properties. Copyright © 2018 Elsevier Inc. All rights reserved.
Effect of Gas Pressure on Polarization of SOFC Cathode Prepared by Plasma Spray
NASA Astrophysics Data System (ADS)
Li, Cheng-Xin; Wang, Zhun-Zhun; Liu, Shuai; Li, Chang-Jiu
2013-06-01
A cermet-supported tubular SOFC was fabricated using thermal spray. The cell performance was investigated at temperatures from 750 to 900 °C and pressures from 0.1 to 0.5 MPa to examine the effect of operating gas pressure on the cell performance. The influence of gas pressure on the cathodic polarization was studied through the electrochemical impedance approach to examine the controlling electrochemical processes during cell operation. Results show that increasing the operating gas pressure improves the power output performance significantly. When the gas pressure is increased from 0.1 to 0.3 MPa, the maximum power density is increased by a factor of 32% at a temperature of 800 °C. The cathode polarization decreases significantly with the increase of the gas pressure. The electrochemical analysis shows that the main control processes of the cathode reaction are the oxygen species transfer at the three-phase boundary and oxygen diffusion on the surface or in the bulk of the cathode, which are enhanced with increasing gas pressure.
Development and Testing of High Surface Area Iridium Anodes for Molten Oxide Electrolysis
NASA Technical Reports Server (NTRS)
Shchetkovskiy, Anatoliy; McKechnie, Timothy; Sadoway, Donald R.; Paramore, James; Melendez, Orlando; Curreri, Peter A.
2010-01-01
Processing of lunar regolith into oxygen for habitat and propulsion is needed to support future space missions. Direct electrochemical reduction of molten regolith is an attractive method of processing, because no additional chemical reagents are needed. The electrochemical processing of molten oxides requires high surface area, inert anodes. Such electrodes need to be structurally robust at elevated temperatures (1400-1600?C), be resistant to thermal shock, have good electrical conductivity, be resistant to attack by molten oxide (silicate), be electrochemically stable and support high current density. Iridium with its high melting point, good oxidation resistance, superior high temperature strength and ductility is the most promising candidate for anodes in high temperature electrochemical processes. Several innovative concepts for manufacturing such anodes by electrodeposition of iridium from molten salt electrolyte (EL-Form? process) were evaluated. Iridium electrodeposition to form of complex shape components and coating was investigated. Iridium coated graphite, porous iridium structure and solid iridium anodes were fabricated. Testing of electroformed iridium anodes shows no visible degradation. The result of development, manufacturing and testing of high surface, inert iridium anodes will be presented.
Development and Testing of High Surface Area Iridium Anodes for Molten Oxide Electrolysis
NASA Technical Reports Server (NTRS)
Shchetkovskiy, Anatoliy; McKechnie, Timothy; Sadoway, Donald R.; Paramore, James; Melendez, Orlando; Curreri, Peter A.
2010-01-01
Processing of lunar regolith into oxygen for habitat and propulsion is needed to support future space missions. Direct electrochemical reduction of molten regolith is an attractive method of processing, because no additional chemical reagents are needed. The electrochemical processing of molten oxides requires high surface area, inert anodes. Such electrodes need to be structurally robust at elevated temperatures (1400-1600 C), be resistant to thermal shock, have good electrical conductivity, be resistant to attack by molten oxide (silicate), be electrochemically stable and support high current density. Iridium with its high melting point, good oxidation resistance, superior high temperature strength and ductility is the most promising candidate for anodes in high temperature electrochemical processes. Several innovative concepts for manufacturing such anodes by electrodeposition of iridium from molten salt electrolyte (EL-Form process) were evaluated. Iridium electrodeposition to form of complex shape components and coating was investigated. Iridium coated graphite, porous iridium structure and solid iridium anodes were fabricated. Testing of electroformed iridium anodes shows no visible degradation. The result of development, manufacturing and testing of high surface, inert iridium anodes will be presented.
Guan, Cao; Wang, John
2016-10-01
Electrode materials play a decisive role in almost all electrochemical energy storage devices, determining their overall performance. Proper selection, design and fabrication of electrode materials have thus been regarded as one of the most critical steps in achieving high electrochemical energy storage performance. As an advanced nanotechnology for thin films and surfaces with conformal interfacial features and well controllable deposition thickness, atomic layer deposition (ALD) has been successfully developed for deposition and surface modification of electrode materials, where there are considerable issues of interfacial and surface chemistry at atomic and nanometer scale. In addition, ALD has shown great potential in construction of novel nanostructured active materials that otherwise can be hardly obtained by other processing techniques, such as those solution-based processing and chemical vapor deposition (CVD) techniques. This review focuses on the recent development of ALD for the design and delivery of advanced electrode materials in electrochemical energy storage devices, where typical examples will be highlighted and analyzed, and the merits and challenges of ALD for applications in energy storage will also be discussed.
Electrochemical Polishing Applications and EIS of a Vitamin B{sub 4}-Based Ionic Liquid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wixtrom, Alex I.; Buhler, Jessica E.; Reece, Charles E.
2013-01-01
Modern particle accelerators require minimal interior surface roughness for Niobium superconducting radio frequency (SRF) cavities. Polishing of the Nb is currently achieved via electrochemical polishing with concentrated mixtures of sulfuric and hydrofluoric acids. This acid-based approach is effective at reducing the surface roughness to acceptable levels for SRF use, but due to acid-related hazards and extra costs (including safe disposal of used polishing solutions), an acid-free method would be preferable. This study focuses on an alternative electrochemical polishing method for Nb, using a novel ionic liquid solution containing choline chloride, also known as Vitamin B{sub 4} (VB{sub 4}). Potentiostatic electrochemicalmore » impedance spectroscopy (EIS) was also performed on the VB4-based system. Nb polished using the VB4-based method was found to have a final surface roughness comparable to that achieved via the acid-based method, as assessed by atomic force microscopy (AFM). These findings indicate that acid-free VB{sub 4}-based electrochemical polishing of Nb represents a promising replacement for acid-based methods of SRF cavity preparation.« less
2016-01-01
Electrode materials play a decisive role in almost all electrochemical energy storage devices, determining their overall performance. Proper selection, design and fabrication of electrode materials have thus been regarded as one of the most critical steps in achieving high electrochemical energy storage performance. As an advanced nanotechnology for thin films and surfaces with conformal interfacial features and well controllable deposition thickness, atomic layer deposition (ALD) has been successfully developed for deposition and surface modification of electrode materials, where there are considerable issues of interfacial and surface chemistry at atomic and nanometer scale. In addition, ALD has shown great potential in construction of novel nanostructured active materials that otherwise can be hardly obtained by other processing techniques, such as those solution‐based processing and chemical vapor deposition (CVD) techniques. This review focuses on the recent development of ALD for the design and delivery of advanced electrode materials in electrochemical energy storage devices, where typical examples will be highlighted and analyzed, and the merits and challenges of ALD for applications in energy storage will also be discussed. PMID:27840793
NASA Astrophysics Data System (ADS)
Cardenas, Nelson; Kyrish, Matthew; Taylor, Daniel; Fraelich, Margaret; Lechuga, Oscar; Claytor, Richard; Claytor, Nelson
2015-03-01
Electro-Chemical Polishing is routinely used in the anodizing industry to achieve specular surface finishes of various metals products prior to anodizing. Electro-Chemical polishing functions by leveling the microscopic peaks and valleys of the substrate, thereby increasing specularity and reducing light scattering. The rate of attack is dependent of the physical characteristics (height, depth, and width) of the microscopic structures that constitute the surface finish. To prepare the sample, mechanical polishing such as buffing or grinding is typically required before etching. This type of mechanical polishing produces random microscopic structures at varying depths and widths, thus the electropolishing parameters are determined in an ad hoc basis. Alternatively, single point diamond turning offers excellent repeatability and highly specific control of substrate polishing parameters. While polishing, the diamond tool leaves behind an associated tool mark, which is related to the diamond tool geometry and machining parameters. Machine parameters such as tool cutting depth, speed and step over can be changed in situ, thus providing control of the spatial frequency of the microscopic structures characteristic of the surface topography of the substrate. By combining single point diamond turning with subsequent electro-chemical etching, ultra smooth polishing of both rotationally symmetric and free form mirrors and molds is possible. Additionally, machining parameters can be set to optimize post polishing for increased surface quality and reduced processing times. In this work, we present a study of substrate surface finish based on diamond turning tool mark spatial frequency with subsequent electro-chemical polishing.
NASA Astrophysics Data System (ADS)
Hao, Tianqi; Wang, Wei; Yu, Dan
2018-05-01
Multiwalled nanotubes/cotton composite was prepared firstly as conductive fabric, and then, polyaniline (PANI) doped with multi-walled carbon nanotubes (MWCNTs) were fabricated on the conductive fabric to make flexible cotton-based supercapacitor electrodes. The doping of MWCNTs cannot only provide good conductivity and large specific surface area of the electrode, but also help to increase the loading of aniline monomer in the polyaniline polymerization. Field emission scanning electron microscopy was applied to observe the surface morphology of the composite, and Fourier transform infrared and Energy dispersion spectrum were used to analysis the existence of PANI. Electrochemical tests were adopted to measure the electrochemical performance. The results demonstrated the multivariate mixture composite flexible electrode exhibited a specific capacitance of 590.93 F g-1 at a scan rate of 0.001 V s-1 and an excellent capacitance retention of 89% at 0.1 V s-1 after 3000 cycles. Based on our method, the cycle stability of the composite was great and so was the capacitance retention.
Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries
Shi, Feifei; Song, Zhichao; Ross, Philip N.; Somorjai, Gabor A.; Ritchie, Robert O.; Komvopoulos, Kyriakos
2016-01-01
Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural path for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives. PMID:27297565
NASA Astrophysics Data System (ADS)
Hao, Tianqi; Wang, Wei; Yu, Dan
2018-07-01
Multiwalled nanotubes/cotton composite was prepared firstly as conductive fabric, and then, polyaniline (PANI) doped with multi-walled carbon nanotubes (MWCNTs) were fabricated on the conductive fabric to make flexible cotton-based supercapacitor electrodes. The doping of MWCNTs cannot only provide good conductivity and large specific surface area of the electrode, but also help to increase the loading of aniline monomer in the polyaniline polymerization. Field emission scanning electron microscopy was applied to observe the surface morphology of the composite, and Fourier transform infrared and Energy dispersion spectrum were used to analysis the existence of PANI. Electrochemical tests were adopted to measure the electrochemical performance. The results demonstrated the multivariate mixture composite flexible electrode exhibited a specific capacitance of 590.93 F g-1 at a scan rate of 0.001 V s-1 and an excellent capacitance retention of 89% at 0.1 V s-1 after 3000 cycles. Based on our method, the cycle stability of the composite was great and so was the capacitance retention.
Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries
Shi, Feifei; Song, Zhichao; Ross, Philip N.; ...
2016-06-14
Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural pathmore » for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives.« less
Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries
NASA Astrophysics Data System (ADS)
Shi, Feifei; Song, Zhichao; Ross, Philip N.; Somorjai, Gabor A.; Ritchie, Robert O.; Komvopoulos, Kyriakos
2016-06-01
Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural path for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives.
Performance Optimization Control of ECH using Fuzzy Inference Application
NASA Astrophysics Data System (ADS)
Dubey, Abhay Kumar
Electro-chemical honing (ECH) is a hybrid electrolytic precision micro-finishing technology that, by combining physico-chemical actions of electro-chemical machining and conventional honing processes, provides the controlled functional surfaces-generation and fast material removal capabilities in a single operation. Process multi-performance optimization has become vital for utilizing full potential of manufacturing processes to meet the challenging requirements being placed on the surface quality, size, tolerances and production rate of engineering components in this globally competitive scenario. This paper presents an strategy that integrates the Taguchi matrix experimental design, analysis of variances and fuzzy inference system (FIS) to formulate a robust practical multi-performance optimization methodology for complex manufacturing processes like ECH, which involve several control variables. Two methodologies one using a genetic algorithm tuning of FIS (GA-tuned FIS) and another using an adaptive network based fuzzy inference system (ANFIS) have been evaluated for a multi-performance optimization case study of ECH. The actual experimental results confirm their potential for a wide range of machining conditions employed in ECH.
Vaddiraju, Santhisagar; Legassey, Allen; Qiang, Liangliang; Wang, Yan; Burgess, Diane J; Papadimitrakopoulos, Fotios
2013-03-01
Needle-implantable sensors have shown to provide reliable continuous glucose monitoring for diabetes management. In order to reduce tissue injury during sensor implantation, there is a constant need for device size reduction, which imposes challenges in terms of sensitivity and reliability, as part of decreasing signal-to-noise and increasing layer complexity. Herein, we report sensitivity enhancement via electrochemical surface rebuilding of the working electrode (WE), which creates a three-dimensional nanoporous configuration with increased surface area. The gold WE was electrochemically rebuilt to render its surface nanoporous followed by decoration with platinum nanoparticles. The efficacy of such process was studied using sensor sensitivity against hydrogen peroxide (H2O2). For glucose detection, the WE was further coated with five layers, namely, (1) polyphenol, (2) glucose oxidase, (3) polyurethane, (4) catalase, and (5) dexamethasone-releasing poly(vinyl alcohol)/poly(lactic-co-glycolic acid) composite. The amperometric response of the glucose sensor was noted in vitro and in vivo. Scanning electron microscopy revealed that electrochemical rebuilding of the WE produced a nanoporous morphology that resulted in a 20-fold enhancement in H2O2 sensitivity, while retaining >98% selectivity. This afforded a 4-5-fold increase in overall glucose response of the glucose sensor when compared with a control sensor with no surface rebuilding and fittable only within an 18 G needle. The sensor was able to reproducibly track in vivo glycemic events, despite the large background currents typically encountered during animal testing. Enhanced sensor performance in terms of sensitivity and large signal-to-noise ratio has been attained via electrochemical rebuilding of the WE. This approach also bypasses the need for conventional and nanostructured mediators currently employed to enhance sensor performance. © 2013 Diabetes Technology Society.
NASA Astrophysics Data System (ADS)
Dmitriyeva, Olga; Hamm, Steven C.; Knies, David L.; Cantwell, Richard; McConnell, Matt
2018-05-01
Our previous work experimentally demonstrated the enhancement of electrochemical hydrogen insertion into palladium by modifying the chemical composition of the cathode surface with Pb, Pt and Bi, referred to as surface promoters. The experiment demonstrated that an optimal combination of the surface promoters led to an increase in hydrogen fugacity of more than three orders of magnitude, while maintaining the same current density. This manuscript discusses the application of Density Functional Theory (DFT) to elucidate the thermodynamics and kinetics of observed enhancement of electrochemical hydrogen insertion into palladium. We present theoretical simulations that: (1) establish the elevation of hydrogen's chemical potential on Pb and Bi surfaces to enhance hydrogen insertion, (2) confirm the increase of a Tafel activation barrier that results in a decrease of the reaction rate at the given hydrogen overpotential, and (3) explain why the surface promoter's coverage needs to be non-uniform, namely to allow hydrogen insertion into palladium bulk while simultaneously locking hydrogen below the surface (the corking effect). The discussed DFT-based method can be used for efficient scanning of different material configurations to design a highly effective hydrogen storage system.
High Surface Area Dendrite Nanoelectrodes for Electrochemistry
NASA Astrophysics Data System (ADS)
Nesbitt, Nathan; Glover, Jennifer; Goyal, Saurabh; Simidjiysky, Svetoslav; Naughton, Michael
2014-03-01
Solution-based electrodeposition of metal using a low ion concentration, surface passivation agents, and/or electrochemical crystal conditioning has allowed for the formation of high surface area metal electrodes, useful for Raman spectroscopy and electrochemical sensors. Additionally, high frequency electrical oscillations have been used to electrically connect co-planar electrodes, a process called directed electrochemical nanowire assembly (DENA). These approaches aim to control the crystal face that metal atoms in solution will nucleate onto, thus causing anisotropic growth of metal crystals. However, DENA has not been used to create high surface area electrodes, and no study has been conducted on the effect of micron-scale surface topography on the initial nucleation of metal crystals on the electrode surface. When DENA is used to create a high surface area electrode, such a texture has a strong impact on the subsequent topography of the three dimensional dendritic structures by limiting the areal density of crystals on the electrode surface. Such structures both demonstrate unique physics concerning the nucleation of metal dendrites, and offer a unique and highly facile fabrication method of high surface area electrodes, useful for chemical and biological sensing. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. (DGE-1258923).
Smart Nanocomposites of Cu-Hemin Metal-Organic Frameworks for Electrochemical Glucose Biosensing
He, Juan; Yang, Han; Zhang, Yayun; Yu, Jie; Miao, Longfei; Song, Yonghai; Wang, Li
2016-01-01
Herein, a smart porous material, Cu-hemin metal-organic-frameworks (Cu-hemin MOFs), was synthesized via assembling of Cu2+ with hemin to load glucose oxidase (GOD) for electrochemical glucose biosensing for the first time. The formation of the Cu-hemin MOFs was verified by scanning electron microscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, N2 adsorption/desorption isotherms, UV-vis absorption spectroscopy, fluorescence spectroscopy, thermal analysis and electrochemical techniques. The results indicated that the Cu-hemin MOFs showed a ball-flower-like hollow cage structure with a large specific surface area and a large number of mesopores. A large number of GOD molecules could be successfully loaded in the pores of Cu-hemin MOFs to keep their bioactivity just like in a solution. The GOD/Cu-hemin MOFs exhibited both good performance toward oxygen reduction reaction via Cu-hemin MOFs and catalytic oxidation of glucose via GOD, superior to other GOD/MOFs and GOD/nanomaterials. Accordingly, the performance of GOD/Cu-hemin MOFs-based electrochemical glucose sensor was enhanced greatly, showing a wide linear range from 9.10 μM to 36.0 mM and a low detection limit of 2.73 μM. Moreover, the sensor showed satisfactory results in detection of glucose in human serum. This work provides a practical design of new electrochemical sensing platform based on MOFs and biomolecules. PMID:27811998
Uniyal, Shivani; Sharma, Rajesh Kumar
2018-09-30
Chlorpyrifos (CP), an organophosphate insecticide is broadly used in the agricultural and industrial sectors to control a broad-spectrum of insects of economically important crops. CP detection has been gaining prominence due to its widespread contamination in different environmental matrices, high acute toxicity, and potential to cause long-term environmental and ecological damage even at trace levels. Traditional chromatographic methods for CP detection are complex and require sample preparation and highly skilled personnel for their operation. Over the past decades, electrochemical biosensors have emerged as a promising technology for CP detection as these circumvent deficiencies associated with classical chromatographic techniques. The advantageous features such as appreciable detection limit, miniaturization, sensitivity, low-cost and onsite detection potential are the propulsive force towards sustainable growth of electrochemical biosensing platforms. Recent development in enzyme immobilization methods, novel surface modifications, nanotechnology and fabrication techniques signify a foremost possibility for the design of electrochemical biosensing platforms with improved sensitivity and selectivity. The prime objective of this review is to accentuate the recent advances in the design of biosensing platforms based on diverse biomolecules and biomimetic molecules with unique properties, which would potentially fascinate their applicability for detection of CP residues in real samples. The review also covers the sensing principle of the prime biomolecule and biomimetic molecule based electrochemical biosensors along with their analytical performance, advantages and shortcomings. Present challenges and future outlooks in the field of electrochemical biosensors based CP detection are also discussed. This deep analysis of electrochemical biosensors will provide research directions for further approaching towards commercial development of the broad range of organophosphorus compounds. Copyright © 2018 Elsevier B.V. All rights reserved.
A novel in situ electrochemical NMR cell with a palisade gold film electrode
NASA Astrophysics Data System (ADS)
Ni, Zu-Rong; Cui, Xiao-Hong; Cao, Shuo-Hui; Chen, Zhong
2017-08-01
In situ electrochemical nuclear magnetic resonance (EC-NMR) has attracted considerable attention because of its ability to directly observe real-time electrochemical processes. Therefore, minimizing the incompatibility between the electrochemical device and NMR detection has become an important challenge. A circular thin metal film deposited on the outer surface of a glass tube with a thickness considerably less than the metal skin depth is considered to be the ideal working electrode. In this study, we demonstrate that such a thin film electrode still has a great influence on the radio frequency field homogeneity in the detective zone of the NMR spectrometer probe and provide theoretical and experimental confirmation of its electromagnetic shielding. Furthermore, we propose a novel palisade gold film device to act as the working electrode. The NMR nutation behavior of protons shows that the uniformity of the radio frequency field is greatly improved, increasing the sensitivity in NMR detection. Another advantage of the proposed device is that an external reference standard adapted to the reaction compound can be inserted as a probe to determine the fluctuation of the physico-chemical environment and achieve high-accuracy quantitative NMR analysis. A three-chamber electrochemical device based on the palisade gold film design was successfully fabricated and the in situ electrochemical NMR performance was validated in a standard 5 mm NMR probe by acquiring voltammograms and high-resolution NMR spectra to characterize the electrochemically generated species. The evolution of in situ EC-NMR spectrum monitoring of the redox transformation between p-benzoquinone and hydroquinone demonstrates the ability of the EC-NMR device to simultaneously quantitatively determine the reactants and elucidate the reaction mechanism at the molecular level.
Truta, Liliana A A N A; Moreira, Felismina T C; Sales, M Goreti F
2018-06-01
Monitoring cancer biomarkers in biological fluids has become a key tool for disease diagnosis, which should be of easy access anywhere in the world. The possibility of reducing basic requirements in the field of electrochemical biosensing may open doors in this direction. This work proposes for this purpose an innovative electrochemical immunosensing system using a photovoltaic cell as an electrical reading box. Immunosensing ensures accuracy, the electrochemical-ground of the device ensures sensitivity and detectability, and the photovoltaic cell drives the system towards electrical autonomy. As proof-of-concept, Carcinoembryonic antigen (CEA) was used herein, a cancer biomarker of clinical relevance. In brief, a conductive glass with a fluorine doped tin oxide film was used as conductive support and modified with anti-CEA by means of a bottom-up approach. All stages involved in the biochemical modification of the FTO surface were followed by electrochemical techniques, namely electrochemical impedance spectroscopy and cyclic voltammetry. This electrode acted as counter electrode of a dye-sensitized solar cells, and the electrical output of this cell was monitored for the different concentrations of CEA. Under optimized conditions, the device displayed a linear behaviour against CEA concentration, from 5 pg/mL to 15 ng/mL. The immunosensor was applied to the analysis of CEA in urine from healthy individual and spiked with the antigen. Overall, the presented approach demonstrates that photovoltaic cells may be employed as an electrical reading box of electrochemical biosensors, yielding a new direction towards autonomous electrochemical biosensing. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Mass spectrometric methods for monitoring redox processes in electrochemical cells.
Oberacher, Herbert; Pitterl, Florian; Erb, Robert; Plattner, Sabine
2015-01-01
Electrochemistry (EC) is a mature scientific discipline aimed to study the movement of electrons in an oxidation-reduction reaction. EC covers techniques that use a measurement of potential, charge, or current to determine the concentration or the chemical reactivity of analytes. The electrical signal is directly converted into chemical information. For in-depth characterization of complex electrochemical reactions involving the formation of diverse intermediates, products and byproducts, EC is usually combined with other analytical techniques, and particularly the hyphenation of EC with mass spectrometry (MS) has found broad applicability. The analysis of gases and volatile intermediates and products formed at electrode surfaces is enabled by differential electrochemical mass spectrometry (DEMS). In DEMS an electrochemical cell is sampled with a membrane interface for electron ionization (EI)-MS. The chemical space amenable to EC/MS (i.e., bioorganic molecules including proteins, peptides, nucleic acids, and drugs) was significantly increased by employing electrospray ionization (ESI)-MS. In the simplest setup, the EC of the ESI process is used to analytical advantage. A limitation of this approach is, however, its inability to precisely control the electrochemical potential at the emitter electrode. Thus, particularly for studying mechanistic aspects of electrochemical processes, the hyphenation of discrete electrochemical cells with ESI-MS was found to be more appropriate. The analytical power of EC/ESI-MS can further be increased by integrating liquid chromatography (LC) as an additional dimension of separation. Chromatographic separation was found to be particularly useful to reduce the complexity of the sample submitted either to the EC cell or to ESI-MS. Thus, both EC/LC/ESI-MS and LC/EC/ESI-MS are common. © 2013 The Authors. Mass Spectrometry Reviews published by Wiley Periodicals, Inc.
Mass spectrometric methods for monitoring redox processes in electrochemical cells
Oberacher, Herbert; Pitterl, Florian; Erb, Robert; Plattner, Sabine
2015-01-01
Electrochemistry (EC) is a mature scientific discipline aimed to study the movement of electrons in an oxidation–reduction reaction. EC covers techniques that use a measurement of potential, charge, or current to determine the concentration or the chemical reactivity of analytes. The electrical signal is directly converted into chemical information. For in-depth characterization of complex electrochemical reactions involving the formation of diverse intermediates, products and byproducts, EC is usually combined with other analytical techniques, and particularly the hyphenation of EC with mass spectrometry (MS) has found broad applicability. The analysis of gases and volatile intermediates and products formed at electrode surfaces is enabled by differential electrochemical mass spectrometry (DEMS). In DEMS an electrochemical cell is sampled with a membrane interface for electron ionization (EI)-MS. The chemical space amenable to EC/MS (i.e., bioorganic molecules including proteins, peptides, nucleic acids, and drugs) was significantly increased by employing electrospray ionization (ESI)-MS. In the simplest setup, the EC of the ESI process is used to analytical advantage. A limitation of this approach is, however, its inability to precisely control the electrochemical potential at the emitter electrode. Thus, particularly for studying mechanistic aspects of electrochemical processes, the hyphenation of discrete electrochemical cells with ESI-MS was found to be more appropriate. The analytical power of EC/ESI-MS can further be increased by integrating liquid chromatography (LC) as an additional dimension of separation. Chromatographic separation was found to be particularly useful to reduce the complexity of the sample submitted either to the EC cell or to ESI-MS. Thus, both EC/LC/ESI-MS and LC/EC/ESI-MS are common. PMID:24338642
NASA Astrophysics Data System (ADS)
Ji, Woo-Soo; Jang, Young-Wook; Kim, Jung-Gu
2011-06-01
Flue gas desulfurization systems (FGDs) are operated in severely corrosive environments that cause sulfuric acid dew-point corrosion. The corrosion behavior of low-alloy steels was tested using electrochemical techniques (electrochemical impedance spectroscopy, potentiodynamic tests, potentiostatic tests), and the corrosion products were analyzed by scanning electron microscopy and X-ray photoelectron spectroscopy. The electrochemical results showed that alloying W with small amounts of Sb, Cu, and Co improves the corrosion resistance of steels. The results of surface analyses showed that the surface of the steels alloyed with W consisted of W oxides and higher amounts of Sb and Cu oxides. This suggests that the addition of W promotes the formation of a protective WO3 film, in addition to Sb2O5 and CuO films on the surface.
Electrochemical characterization of p(+)n and n(+)p diffused InP structures
NASA Technical Reports Server (NTRS)
Wilt, David M.; Faur, Maria; Faur, Mircea; Goradia, M.; Vargas-Aburto, Carlos
1993-01-01
The relatively well documented and widely used electrolytes for characterization and processing of Si and GaAs-related materials and structures by electrochemical methods are of little or no use with InP because the electrolytes presently used either dissolve the surface preferentially at the defect areas or form residual oxides and introduce a large density of surface states. Using an electrolyte which was newly developed for anodic dissolution of InP, and was named the 'FAP' electrolyte, accurate characterization of InP related structures including nature and density of surface states, defect density, and net majority carrier concentration, all as functions of depth was performed. A step-by-step optimization of n(+)p and p(+)n InP structures made by thermal diffusion was done using the electrochemical techniques, and resulted in high performance homojunction InP structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Zonghai; Amine, Khalil; Belharouak, Ilias
An active material for an electrochemical device wherein a surface of the active material is modified by a surface modification agent, wherein the surface modification agent is an organometallic compound.
Electrochemical immunoassay for tumor markers based on hydrogels.
Yin, Shuang; Ma, Zhanfang
2018-05-08
Hydrogel-based electrochemical immunoassays exhibit a large surface-to-volume ratio, excellent biocompatibility, unique stimuli-responsive behavior, high permeability and hydrophilicity and, thus, have shown great potential in the sensitive and accurate detection of tumor markers. Electrochemical immunosensing techniques for tumor markers based on hydrogels have greatly progressed in recent years. Areas covered: In this review, the authors describe the recent advances of hydrogel-based electrochemical immunosensing interface of tumor markers based on the different functions of hydrogels including conductive, catalytic, redox, stimuli-responsive and antifouling hydrogels. Expert commentary: Hydrogels have been successfully employed in electrochemical immunoassay of tumor markers, which is accountable to their unique properties. For further exploitation of hydrogel-based electrochemical biosensors, more variety of hydrogels need be fabricated with improved functionality.
Electrochemical sensor for monitoring electrochemical potentials of fuel cell components
Kunz, Harold R.; Breault, Richard D.
1993-01-01
An electrochemical sensor comprised of wires, a sheath, and a conduit can be utilized to monitor fuel cell component electric potentials during fuel cell shut down or steady state. The electrochemical sensor contacts an electrolyte reservoir plate such that the conduit wicks electrolyte through capillary action to the wires to provide water necessary for the electrolysis reaction which occurs thereon. A voltage is applied across the wires of the electrochemical sensor until hydrogen evolution occurs at the surface of one of the wires, thereby forming a hydrogen reference electrode. The voltage of the fuel cell component is then determined with relation to the hydrogen reference electrode.
Salahinejad, Erfan; Hadianfard, Mohammad Jafar; Macdonald, Digby Donald; Sharifi-Asl, Samin; Mozafari, Masoud; Walker, Kenneth J.; Rad, Armin Tahmasbi; Madihally, Sundararajan V.; Tayebi, Lobat
2013-01-01
The corrosion and cell viability behaviors of nanostructured, nickel-free stainless steel implants were studied and compared with AISI 316L. The electrochemical studies were conducted by potentiodynamic polarization and electrochemical impedance spectroscopic measurements in a simulated body fluid. Cytocompatibility was also evaluated by the adhesion behavior of adult human stem cells on the surface of the samples. According to the results, the electrochemical behavior is affected by a compromise among the specimen's structural characteristics, comprising composition, density, and grain size. The cell viability is interpreted by considering the results of the electrochemical impedance spectroscopic experiments. PMID:23630603
Electrochemical Carbonitriding of 316L Stainless Steel in Molten Salt System
NASA Astrophysics Data System (ADS)
Ren, Yanjie; Xiao, Bo; Chen, Yaqing; Chen, Jian; Chen, Jianlin
This paper reports an electrochemical route for carbonitriding 316L stainless steel in molten salts. Carbonitriding process was accomplished in molten alkaline chloride (LiCl/KCl) with the addition of KNO2 at 480∘C using a three-electrode system in which a carbon sheet was the counter electrode. The carbonitriding layer of 316L stainless steel obtained by potentiostatic electrolysis was analyzed by several physical techniques. The results showed that a compact layer with a thickness of about 7μm formed after the treatment. According to X-ray diffraction analysis, chromium nitride and carbide formed on the surface of carbonitriding layer. The microhardness of the carbonitriding layer is HV 336, as compared to HV 265 for the substrate.
Stacked graphene nanofibers for electrochemical oxidation of DNA bases.
Ambrosi, Adriano; Pumera, Martin
2010-08-21
In this article, we show that stacked graphene nanofibers (SGNFs) demonstrate superior electrochemical performance for oxidation of DNA bases over carbon nanotubes (CNTs). This is due to an exceptionally high number of accessible graphene sheet edges on the surface of the nanofibers when compared to carbon nanotubes, as shown by transmission electron microscopy and Raman spectroscopy. The oxidation signals of adenine, guanine, cytosine, and thymine exhibit two to four times higher currents than on CNT-based electrodes. SGNFs also exhibit higher sensitivity than do edge-plane pyrolytic graphite, glassy carbon, or graphite microparticle-based electrodes. We also demonstrate that influenza A(H1N1)-related strands can be sensitively oxidized on SGNF-based electrodes, which could therefore be applied to label-free DNA analysis.
Kokulnathan, Thangavelu; Kumar, Jeyaraj Vinoth; Chen, Shen-Ming; Karthik, Raj; Elangovan, Arumugam; Muthuraj, Velluchamy
2018-06-01
In the modern world, the contamination of ecosystem by human and veterinary pharmaceutical drugs through the metabolic excretion, improper disposal/industrial waste has been subjected to a hot issue. Therefore, exploitation of exclusive structured material and reliable technique is a necessary task to the precise detection of drugs. With this regards, we made an effort for the fabrication of novel one-dimensional (1D) stannous tungstate nanorods (β-SnW NRs) via simple sonochemical approach and used as an electrochemical sensor for the detection of antipsychotic drug chlorpromazine (CPZ) for the first time. The crystallographic structure, surface topology, elemental compositions and their distributions and ionic states were enquired by different spectroscopic techniques such as XRD, FTIR, SEM, EDS, elemental mapping and XPS analysis. The developed β-SnW NRs/GCE sensor exhibits a rapid and sensitive electrochemical response towards CPZ sensing with wide linear response range (0.01-457 µM), high sensitivity (2.487 µA µM -1 cm -2 ), low detection limit (0.003 µM) and excellent selectivity. Besides, the as-proposed electrochemical sensor was successfully applied to real sample analysis in commercial CPZ drug and biological fluids and the acquired recovery results are quite satisfactory. The proposed sonochemical method for the preparation of β-SnW NRs is low cost, very simple, fast and efficient for sensor applications. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bhat, T. S.; Shinde, A. V.; Devan, R. S.; Teli, A. M.; Ma, Y. R.; Kim, J. H.; Patil, P. S.
2018-01-01
The present work deals with the synthesis of lead selenide (PbSe) thin films by simple and cost-effective chemical bath deposition method with variation in deposition time. The structural, morphological, and electrochemical properties of as-deposited thin films were examined using characterization techniques such as X-ray diffraction spectroscopy (XRD), field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy. XRD reveals formation of rock salt phase cubic structured PbSe. FE-SEM images show the formation of microcubic structured morphology. The existence of the PbSe is confirmed from the XPS analysis. On the other hand, CV curves show four reaction peaks corresponding to oxidation [PbSe and Pb(OH)2] and reduction (PbO2 and Pb(OH)2) at the surface of PbSe thin films. The PbSe:2 sample deposited for 80 min. shows maximum specific capacitance of 454 ± 5 F g- 1 obtained at 0.25 mA cm- 2 current density. The maximum energy density of 69 Wh kg- 1 was showed by PbSe:2 electrode with a power density of 1077 W kg- 1. Furthermore, electrochemical impedance studies of PbSe:2 thin film show 80 ± 3% cycling stability even after 500 CV cycles. Such results show the importance of microcubic structured PbSe thin film as an anode in supercapacitor devices.
Martin, Daniel J.; McCarthy, Brian D.; Donley, Carrie L.; ...
2014-12-04
Here, a Ni(ii) complex with nitrogen and sulfur donor ligands degrades electrochemically in the presence of acid in acetonitrile to form an electrode adsorbed film that catalytically evolves hydrogen.
NASA Astrophysics Data System (ADS)
Gu, Yuan; Ying, Kang; Shen, Dongsheng; Huang, Lijie; Ying, Xianbin; Huang, Haoqian; Cheng, Kun; Chen, Jiazheng; Zhou, Yuyang; Chen, Ting; Feng, Huajun
2017-12-01
Titanium is under consideration as a potential stable bio-anode because of its high conductivity, suitable mechanical properties, and electrochemical inertness in the operating potential window of bio-electrochemical systems; however, its application is limited by its poor electron-transfer capacity with electroactive bacteria and weak ability to form biofilms on its hydrophobic surface. This study reports an effective and low-cost way to convert a hydrophobic titanium alloy surface into a hydrophilic surface that can be used as a bio-electrode with higher electron-transfer rates. Pyrolytic gas of sewage sludge is used to modify the titanium alloy. The current generation, anodic biofilm formation surface, and hydrophobicity are systematically investigated by comparing bare electrodes with three modified electrodes. Maximum current density (15.80 A/m2), achieved using a modified electrode, is 316-fold higher than that of the bare titanium alloy electrode (0.05 A/m2) and that achieved by titanium alloy electrodes modified by other methods (12.70 A/m2). The pyrolytic gas-modified titanium alloy electrode can be used as a high-performance and scalable bio-anode for bio-electrochemical systems because of its high electron-transfer rates, hydrophilic nature, and ability to achieve high current density.
Review—Physicochemical hydrodynamics of gas bubbles in two phase electrochemical systems
Taqieddin, Amir; Nazari, Roya; Rajic, Ljiljana; Alshawabkeh, Akram
2018-01-01
Electrochemical systems suffer from poor management of evolving gas bubbles. Improved understanding of bubbles behavior helps to reduce overpotential, save energy and enhance the mass transfer during chemical reactions. This work investigates and reviews the gas bubbles hydrodynamics, behavior, and management in electrochemical cells. Although the rate of bubble growth over the electrode surface is well understood, there is no reliable prediction of bubbles break-off diameter from the electrode surface because of the complexity of bubbles motion near the electrode surface. Particle Image Velocimetry (PIV) and Laser Doppler Anemometry (LDA) are the most common experimental techniques to measure bubble dynamics. Although the PIV is faster than LDA, both techniques are considered expensive and time-consuming. This encourages adapting Computational Fluid Dynamics (CFD) methods as an alternative to study bubbles behavior. However, further development of CFD methods is required to include coalescence and break-up of bubbles for better understanding and accuracy. The disadvantages of CFD methods can be overcome by using hybrid methods. The behavior of bubbles in electrochemical systems is still a complex challenging topic which requires a better understanding of the gas bubbles hydrodynamics and their interactions with the electrode surface and bulk liquid, as well as between the bubbles itself. PMID:29731515
Electrochemical Sensors for Clinic Analysis
Wang, You; Xu, Hui; Zhang, Jianming; Li, Guang
2008-01-01
Demanded by modern medical diagnosis, advances in microfabrication technology have led to the development of fast, sensitive and selective electrochemical sensors for clinic analysis. This review addresses the principles behind electrochemical sensor design and fabrication, and introduces recent progress in the application of electrochemical sensors to analysis of clinical chemicals such as blood gases, electrolytes, metabolites, DNA and antibodies, including basic and applied research. Miniaturized commercial electrochemical biosensors will form the basis of inexpensive and easy to use devices for acquiring chemical information to bring sophisticated analytical capabilities to the non-specialist and general public alike in the future. PMID:27879810
Method for vacuum pressing electrochemical cell components
NASA Technical Reports Server (NTRS)
Andrews, Craig C. (Inventor); Murphy, Oliver J. (Inventor)
2004-01-01
Assembling electrochemical cell components using a bonding agent comprising aligning components of the electrochemical cell, applying a bonding agent between the components to bond the components together, placing the components within a container that is essentially a pliable bag, and drawing a vacuum within the bag, wherein the bag conforms to the shape of the components from the pressure outside the bag, thereby holding the components securely in place. The vacuum is passively maintained until the adhesive has cured and the components are securely bonded. The bonding agent used to bond the components of the electrochemical cell may be distributed to the bonding surface from distribution channels in the components. To prevent contamination with bonding agent, some areas may be treated to produce regions of preferred adhesive distribution and protected regions. Treatments may include polishing, etching, coating and providing protective grooves between the bonding surfaces and the protected regions.
Electrochemical Polishing Applications and EIS of a Novel Choline Chloride-Based Ionic Liquid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wixtrom, Alex I.; Buhler, Jessica E.; Reece, Charles E.
2013-06-01
Minimal surface roughness is a critical feature for high-field superconducting radio frequency (SRF) cavities used to engineer particle accelerators. Current methods for polishing Niobium cavities typically utilize solutions containing a mixture of concentrated sulfuric and hydrofluoric acid. Polishing processes such as these are effective, yet there are many hazards and costs associated with the use (and safe disposal) of the concentrated acid solutions. An alternative method for electrochemical polishing of the cavities was explored using a novel ionic liquid solution containing choline chloride. Potentiostatic electrochemical impedance spectroscopy (EIS) was used to analyze the ionic polishing solution. Final surface roughness ofmore » the Nb was found to be comparable to that of the acid-polishing method, as assessed by atomic force microscopy (AFM). This indicates that ionic liquid-based electrochemical polishing of Nb is a viable replacement for acid-based methods for preparation of SRF cavities.« less
Fabrication and Performance Study on Individual Zno Nanowires Based Bioelectrode
NASA Astrophysics Data System (ADS)
Zhao, Yanguang; Yan, Xiaoqin; Kang, Zhuo; Lin, Pei
2012-08-01
One-dimensional zinc oxide nanowires (ZnO NWs) have unique advantages for use in biosensors as follows: oxide stable surface, excellent biosafety, high specific surface area, high isoelectric point (IEP = 9.5). In this work, we have prepared a kind of electrochemical bioelectrode based on individual ZnO NWs. Here, ZnO NWs with high quality were successfully synthesized by CVD method, which were characterized by scanning electron microscopy, X-ray diffraction and photoluminescence. Then the Raman spectra and electrical characterization demonstrated the adsorption of uricase on ZnO wires. At last, a series of electrochemical measurements were carried out by using an electrochemical workstation with a conventional three-electrode system to obtain the cyclic voltammetry characteristics of the bioelectrodes. The excellent performance of the fabricated bioelectrode implies the potential application for single ZnO nanowire to construct electrochemical biosensor for the detection of uric acid.
Pilehvar, Sanaz; Dierckx, Tarryn; Blust, Ronny; Breugelmans, Tom; De Wael, Karolien
2014-01-01
We report on the aptadetection of chloramphenicol (CAP) using electrochemical impedance spectroscopy. The detection principle is based on the changes of the interfacial properties of the electrode after the interaction of the ssDNA aptamers with the target molecules. The electrode surface is partially blocked due to the formation of the aptamer-CAP complex, resulting in an increase of the interfacial electron-transfer resistance of the redox probe detected by electrochemical impedance spectroscopy or cyclic voltammetry. We observed that the ratio of polarization resistance had a linear relationship with the concentrations of CAP in the range of 1.76–127 nM, and a detection limit of 1.76 nM was obtained. The covalent binding of CAP-aptamer on the electrode surface combined with the unique properties of aptamers and impedimetric transduction leads to the development of a stable and sensitive electrochemical aptasensor for CAP. PMID:25004156
NASA Technical Reports Server (NTRS)
Kim, Jae-Woo; Choi, Sang H.; Lillehei, Peter T.; King, Glen C.; Watt, Gerald D.; Chu, Sang-Hyon; Park, Yeonjoon; Thibeault, Sheila
2004-01-01
Platinum-cored ferritins were synthesized as electrocatalysts by electrochemical biomineralization of immobilized apoferritin with platinum. The platinum cored ferritin was fabricated by exposing the immobilized apoferritin to platinum ions at a reduction potential. On the platinum-cored ferritin, oxygen is reduced to water with four protons and four electrons generated from the anode. The ferritin acts as a nano-scale template, a biocompatible cage, and a separator between the nanoparticles. This results in a smaller catalyst loading of the electrodes for fuel cells or other electrochemical devices. In addition, the catalytic activity of the ferritin-stabilized platinum nanoparticles is enhanced by the large surface area and particle size phenomena. The work presented herein details the immobilization of ferritin with various surface modifications, the electrochemical biomineralization of ferritin with different inorganic cores, and the fabrication of self-assembled 2-D arrays with thiolated ferritin.
Current Progress of Nanomaterials in Molecularly Imprinted Electrochemical Sensing.
Zhong, Chunju; Yang, Bin; Jiang, Xinxin; Li, Jianping
2018-01-02
Nanomaterials have received much attention during the past decade because of their excellent optical, electronic, and catalytic properties. Nanomaterials possess high chemical reactivity, also high surface energy. Thus, provide a stable immobilization platform for biomolecules, while preserving their reactivity. Due to the conductive and catalytic properties, nanomaterials can also enhance the sensitivity of molecularly imprinted electrochemical sensors by amplifying the electrode surface, increasing the electron transfer, and catalyzing the electrochemical reactions. Molecularly imprinted polymers that contain specific molecular recognition sites can be designed for a particular target analyte. Incorporating nanomaterials into molecularly imprinted polymers is important because nanomaterials can improve the response signal, increase the sensitivity, and decrease the detection limit of the sensors. This study describes the classification of nanomaterials in molecularly imprinted polymers, their analytical properties, and their applications in the electrochemical sensors. The progress of the research on nanomaterials in molecularly imprinted polymers and the application of nanomaterials in molecularly imprinted polymers is also reviewed.
NASA Astrophysics Data System (ADS)
Edathazhe, Akhila B.; Shashikala, H. D.
2018-03-01
The phosphate glass with composition 11Na2O-15BaO-29CaO-45P2O5 was coated on biomedical implant materials such as stainless steel 316 L, duplex stainless steel (DSS) 2205 and Ti6Al4V alloy by thermal enamelling method. The structural properties and composition of glass coated substrates were studied by x-ray diffraction (XRD), Scanning electron microscopy (SEM) and Energy dispersive x-ray spectroscopy (EDS) analysis. The coatings were partially crystalline in nature with porous structure and pore size varied from micro to nanometer range. The polarization curve was obtained for uncoated and coated substrates from electrochemical corrosion test which was conducted at 37 °C in Hank’s balanced salt solution (HBSS). The corrosion resistance of 316 L substrate increased after coating, whereas it decreased in case of DSS 2205 and Ti6Al4V. The XRD and SEM/EDS studies indicated the bioactive hydroxyapatite (HAp) layer formation on all the coated surfaces after electrochemical corrosion test, which improved the corrosion resistance. The observed electrochemical corrosion behavior can be explained based on protective HAp layer formation, composition and diffusion of ions on glass coated surfaces. The in-vitro bioactivity test was carried out at 37 °C in HBS solution for 14 days under static conditions for uncoated and coated substrates. pH and ion release rate measurements from the coated samples were conducted to substantiate the electrochemical corrosion test. The lower ion release rates of Na+ and Ca2+ from coated 316 L supported its higher electrochemical corrosion resistance among coated samples. Among the uncoated substrates, DSS showed higher electrochemical corrosion resistance. Amorphous calcium-phosphate (ACP) layer formation on all the coated substrates after in-vitro bioactivity test was confirmed by XRD, SEM/EDS and ion release measurements. The present work is a comparative study of corrosion resistance and bioactivity of glass coated and uncoated biomedical implants such as 316 L, DSS and Ti6Al4V.
NASA Astrophysics Data System (ADS)
Cougnon, C.; Lebègue, E.; Pognon, G.
2015-01-01
Modified activated carbon (Norit S-50) electrodes with electrochemical double layer (EDL) capacitance and redox capacitance contributions to the electric charge storage were tested in 1 M H2SO4 to quantify the benefit and the limitation of the surface redox reactions on the electrochemical performances of the resulting pseudo-capacitive materials. The electrochemical performances of an electrochemically anodized carbon electrode and a catechol-modified carbon electrode, which make use both EDL capacitance of the porous structure of the carbon and redox capacitance, were compared to the performances obtained for the pristine carbon. Nitrogen gas adsorption measurements have been used for studying the impact of the grafting on the BET surface area, pore size distribution, pore volume and average pore diameter. The electrochemical behavior of carbon materials was studied by cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The EIS data were discussed by using a complex capacitance model that allows defining the characteristic time constant, the global capacitance and the frequency at which the maximum charge stored is reached. The EIS measurements were achieved at different dc potential values where a redox activity occurs and the evolution of the capacitance and the capacitive relaxation time with the electrode potential are presented. Realistic galvanostatic charge/discharge measurements performed at different current rates corroborate the results obtained by impedance.
Towards uniformly dispersed battery electrode composite materials: Characteristics and performance
Yo Han Kwon; Takeuchi, Esther S.; Huie, Matthew M.; ...
2016-01-14
Battery electrodes are complex mesoscale systems comprised of electroactive components, conductive additives, and binders. In this report, methods for processing electrodes with dispersion of the components are described. To investigate the degree of material dispersion, a spin-coating technique was adopted to provide a thin, uniform layer that enabled observation of the morphology. Distinct differences in the distribution profile of the electrode components arising from individual materials physical affinities were readily identified. Hansen solubility parameter (HSP) analysis revealed pertinent surface interactions associated with materials dispersivity. Further studies demonstrated that HSPs can provide an effective strategy to identify surface modification approaches formore » improved dispersions of battery electrode materials. Specifically, introduction of surfactantlike functionality such as oleic acid (OA) capping and P3HT-conjugated polymer wrapping on the surface of nanomaterials significantly enhanced material dispersity over the composite electrode. The approach to the surface treatment on the basis of HSP study can facilitate design of composite electrodes with uniformly dispersed morphology and may contribute to enhancing their electrical and electrochemical behaviors. The conductivity of the composites and their electrochemical performance was also characterized. In conclusion, the study illustrates the importance of considering electronic conductivity, electron transfer, and ion transport in the design of environments incorporating active nanomaterials.« less
Kumar, Sudershan; Vashisht, Hemlata; Olasunkanmi, Lukman O.; Bahadur, Indra; Verma, Hemant; Singh, Gurmeet; Obot, Ime B.; Ebenso, Eno E.
2016-01-01
Polyurethane based tri-block copolymers namely poly(N-vinylpyrrolidone)-b-polyurethane-b-poly(N-vinylpyrrolidone) (PNVP-PU) and poly(dimethylaminoethylmethacrylate)-b-polyurethane-b-poly(dimethylaminoethylmethacrylate) (PDMAEMA-PU) were synthesized through atom transfer radical polymerization (ATRP) mechanism. The synthesized polymers were characterized using nuclear magnetic resonance (NMR) spectroscopy and gel permeation chromatography (GPC) methods. The corrosion inhibition performances of the compounds were investigated on mild steel (MS) in 0.5 M H2SO4 medium using electrochemical measurements, surface analysis, quantum chemical calculations and molecular dynamic simulations (MDS). Potentiodynamic polarization (PDP) measurements revealed that the polymers are mixed-type corrosion inhibitors. Electrochemical impedance spectroscopy (EIS) measurements showed that the polymers inhibit MS corrosion by adsorbing on MS surface to form pseudo-capacitive interface. The inhibitive effects of the polymers increase with increasing concentration and decrease with increasing temperature. The adsorption of both the polymers on MS surface obey the Langmuir adsorption isotherm and involves both physisorption and chemisorption mechanisms. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses showed that the polymers formed protective film on MS surface and shield it from direct acid attack. Quantum chemical calculations and molecular dynamic simulations studies corroborate experimental results. PMID:27515383
Towards uniformly dispersed battery electrode composite materials: Characteristics and performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yo Han Kwon; Takeuchi, Esther S.; Huie, Matthew M.
Battery electrodes are complex mesoscale systems comprised of electroactive components, conductive additives, and binders. In this report, methods for processing electrodes with dispersion of the components are described. To investigate the degree of material dispersion, a spin-coating technique was adopted to provide a thin, uniform layer that enabled observation of the morphology. Distinct differences in the distribution profile of the electrode components arising from individual materials physical affinities were readily identified. Hansen solubility parameter (HSP) analysis revealed pertinent surface interactions associated with materials dispersivity. Further studies demonstrated that HSPs can provide an effective strategy to identify surface modification approaches formore » improved dispersions of battery electrode materials. Specifically, introduction of surfactantlike functionality such as oleic acid (OA) capping and P3HT-conjugated polymer wrapping on the surface of nanomaterials significantly enhanced material dispersity over the composite electrode. The approach to the surface treatment on the basis of HSP study can facilitate design of composite electrodes with uniformly dispersed morphology and may contribute to enhancing their electrical and electrochemical behaviors. The conductivity of the composites and their electrochemical performance was also characterized. In conclusion, the study illustrates the importance of considering electronic conductivity, electron transfer, and ion transport in the design of environments incorporating active nanomaterials.« less
Zeitler, Elizabeth L.; Ertem, Mehmed Z.; Pander, III, James E.; ...
2015-10-21
A recently proposed mechanism for electrochemical CO 2 reduction on Pt (111) catalyzed by aqueous acidic pyridine solutions suggests that the observed redox potential of ca. -600 mV vs. SCE is due to the one-electron reduction of pyridinium through proton coupled electron transfer (PCET) to form H atoms adsorbed on the Pt surface (H ads). The initial pyridinium reduction was probed isotopically via deuterium substitution. A combined experimental and theoretical analysis found equilibrium isotope effects (EIE) due to deuterium substitution at the acidic pyridinium site. A shift in the cathodic cyclic voltammetric half wave potential of -25 mV was observed,more » consistent with the theoretical prediction of -40 mV based on the recently proposed reaction mechanism where pyridinium is essential to establish a high concentration of Bronsted acid in contact with the substrate CO 2 and with the Pt surface. A prefeature in the cyclic voltammogram was examined under isotopic substitution and indicated an H-ads intermediate in pyridinium reduction. In conclusion, the theoretical prediction and observation of an BM supported the assignment of the cathodic wave to the proposed reduction of pyridinium through PCET forming H ads and eventually H 2 on the Pt surface.« less
Electrocatalytic oxidation of cellulose at a gold electrode.
Sugano, Yasuhito; Latonen, Rose-Marie; Akieh-Pirkanniemi, Marceline; Bobacka, Johan; Ivaska, Ari
2014-08-01
The electrochemical properties of cellulose dissolved in NaOH solution at a Au surface were investigated by cyclic voltammetry, FTIR spectroscopy, the electrochemical quartz crystal microbalance technique, and electrochemical impedance spectroscopy. The reaction products were characterized by SEM, TEM, and FTIR and NMR spectroscopy. The results imply that cellulose is irreversibly oxidized. Adsorption and desorption of hydroxide ions at the Au surface during potential cycling have an important catalytic role in the reaction (e.g., approach of cellulose to the electrode surface, electron transfer, adsorption/desorption of the reaction species at the electrode surface). Moreover, two types of cellulose derivatives were obtained as products. One is a water-soluble cellulose derivative in which some hydroxyl groups are oxidized to carboxylic groups. The other derivative is a water-insoluble hybrid material composed of cellulose and Au nanoparticles (≈4 nm). Furthermore, a reaction scheme of the electrocatalytic oxidation of cellulose at a gold electrode in a basic medium is proposed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chandaluri, Chanchayya Gupta; Pelossof, Gilad; Tel-Vered, Ran; Shenhar, Roy; Willner, Itamar
2016-01-20
ITO electrodes modified with a nanopatterned film of polystyrene-block-poly(2-vinylpyridine), PS-b-P2VP, where the P2VP domains are quaternized with iodomethane, are used for selective deposition of redox-active materials. Electrochemical studies (cyclic voltammetry, Faradaic impedance measurements) indicate that the PS domains insulate the conductive surface toward redox labels in solution. In turn, the quaternized P2VP domains electrostatically attract negatively charged redox labels solubilized in the electrolyte solution, resulting in an effective electron transfer between the electrode and the redox label. This phenomenon is implemented for the selective deposition of the electroactive Prussian blue on the nanopatterned surface and for the electrochemical deposition of Au nanoparticles, modified with a monolayer of p-aminothiophenol/2-mercaptoethanesulfonic acid, on the quaternized P2VP domains. The patterned Prussian blue-modified surface enables controlling the wettability properties by the content of the electrochemically deposited Prussian blue. Controlled wettability is unattainable with the homopolymer-modified surface, attesting to the role of the nanopattern.
B P, Charitha; Rao, Padmalatha
2018-06-01
This work emphasizes the corrosion inhibition ability of pullulan, an environmentally benign fungal polysaccharide on acid corrosion of 6061Aluminum-15% (v) SiC (P) composite material (Al-CM). The electrochemical measurements such as potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) studies were carried out for the corrosion inhibition studies. Conditions were optimized to obtain maximum inhibition efficiency, by performing the experiment at varying concentrations of inhibitor, in the temperature range of 308K- 323K. Surface morphology studies were done to reaffirm the adsorption of inhibitor on the surface of composite material. Pullulan acted as mixed type of inhibitor with a maximum efficiency of 89% at 303K for the addition of 1.0 gL -1 of inhibitor. Evaluation of kinetic and thermodynamic parameters revealed that inhibitor underwent physical adsorption onto the surface of Al-CM and obeyed Freundlich adsorption isotherm. The surface characterization like SEM-EDX, AFM confirmed the adsorption of pullulan molecule. Pullulan can be considered as effective, eco friendly green inhibitor for the corrosion control of Al-CM. Copyright © 2018 Elsevier B.V. All rights reserved.
Binder-free carbon nanotube electrode for electrochemical removal of chromium.
Wang, Haitao; Na, Chongzheng
2014-11-26
Electrochemical treatment of chromium-containing wastewater has the advantage of simultaneously reducing hexavalent chromium (CrVI) and reversibly adsorbing the trivalent product (CrIII), thereby minimizing the generation of waste for disposal and providing an opportunity for resource reuse. The application of electrochemical treatment of chromium is often limited by the available electrochemical surface area (ESA) of conventional electrodes with flat surfaces. Here, we report the preparation and evaluation of carbon nanotube (CNT) electrodes consisting of vertically aligned CNT arrays directly grown on stainless steel mesh (SSM). We show that the 3-D organization of CNT arrays increases ESA up to 13 times compared to SSM. The increase of ESA is correlated with the length of CNTs, consistent with a mechanism of roughness-induced ESA enhancement. The increase of ESA directly benefits CrVI reduction by proportionally accelerating reduction without compromising the electrode's ability to adsorb CrIII. Our results suggest that the rational design of electrodes with hierarchical structures represents a feasible approach to improve the performance of electrochemical treatment of contaminated water.
Formation of mixed organic layers by stepwise electrochemical reduction of diazonium compounds.
Santos, Luis; Ghilane, Jalal; Lacroix, Jean Christophe
2012-03-28
This work describes the formation of a mixed organic layer covalently attached to a carbon electrode. The strategy adopted is based on two successive electrochemical reductions of diazonium salts. First, bithiophene phenyl (BTB) diazonium salt is reduced using host/guest complexation in a water/cyclodextrin (β-CD) solution. The resulting layer consists of grafted BTB oligomers and cyclodextrin that can be removed from the surface. The electrochemical response of several outer-sphere redox probes on such BTB/CD electrodes is close to that of a diode, thanks to the easily p-dopable oligo(BTB) moieties. When CD is removed from the surface, pinholes are created and this diode like behavior is lost. Following this, nitrophenyl (NP) diazonium is reduced to graft a second component. Electrochemical study shows that upon grafting NP insulating moieties, the diode-like behavior of the layer is restored which demonstrates that NP is grafted predominately in the empty spaces generated by β-CD desorption. As a result, a mixed BTB/NP organic layer covalently attached to a carbon electrode is obtained using a stepwise electrochemical reduction of two diazonium compounds.
Advanced hydrogen electrode for hydrogen-bromide battery
NASA Technical Reports Server (NTRS)
Kosek, Jack A.; Laconti, Anthony B.
1987-01-01
Binary platinum alloys are being developed as hydrogen electrocatalysts for use in a hydrogen bromide battery system. These alloys were varied in terms of alloy component mole ratio and heat treatment temperature. Electrocatalyst evaluation, performed in the absence and presence of bromide ion, includes floating half cell polarization studies, electrochemical surface area measurements, X ray diffraction analysis, scanning electron microscopy analysis and corrosion measurements. Results obtained to date indicate a platinum rich alloy has the best tolerance to bromide ion poisoning.
Electrochemical cell structure including an ionomeric barrier
Lambert, Timothy N.; Hibbs, Michael
2017-06-20
An apparatus includes an electrochemical half-cell comprising: an electrolyte, an anode; and an ionomeric barrier positioned between the electrolyte and the anode. The anode may comprise a multi-electron vanadium phosphorous alloy, such as VP.sub.x, wherein x is 1-5. The electrochemical half-cell is configured to oxidize the vanadium and phosphorous alloy to release electrons. A method of mitigating corrosion in an electrochemical cell includes disposing an ionomeric barrier in a path of electrolyte or ion flow to an anode and mitigating anion accumulation on the surface of the anode.
Nanomaterials for Electrochemical Immunosensing
Pan, Mingfei; Gu, Ying; Yun, Yaguang; Li, Min; Jin, Xincui; Wang, Shuo
2017-01-01
Electrochemical immunosensors resulting from a combination of the traditional immunoassay approach with modern biosensors and electrochemical analysis constitute a current research hotspot. They exhibit both the high selectivity characteristics of immunoassays and the high sensitivity of electrochemical analysis, along with other merits such as small volume, convenience, low cost, simple preparation, and real-time on-line detection, and have been widely used in the fields of environmental monitoring, medical clinical trials and food analysis. Notably, the rapid development of nanotechnology and the wide application of nanomaterials have provided new opportunities for the development of high-performance electrochemical immunosensors. Various nanomaterials with different properties can effectively solve issues such as the immobilization of biological recognition molecules, enrichment and concentration of trace analytes, and signal detection and amplification to further enhance the stability and sensitivity of the electrochemical immunoassay procedure. This review introduces the working principles and development of electrochemical immunosensors based on different signals, along with new achievements and progress related to electrochemical immunosensors in various fields. The importance of various types of nanomaterials for improving the performance of electrochemical immunosensor is also reviewed to provide a theoretical basis and guidance for the further development and application of nanomaterials in electrochemical immunosensors. PMID:28475158
Effects of surface coating of Y(OH) 3 on the electrochemical performance of spherical Ni(OH) 2
NASA Astrophysics Data System (ADS)
Fan, Jing; Yang, Yifu; Yu, Peng; Chen, Weihua; Shao, Huixia
The effects of surface coating of Y(OH) 3 on the electrochemical performance of spherical Ni(OH) 2 were studied by cyclic voltammetry (CV) with soft-embedded electrode (SE-E). The coating was performed by chemical surface precipitation under different conditions. The structure, morphology, chemical composition and electrochemical properties of two different samples with surface coating of Y(OH) 3 were characterized and compared. The results show that a two-step oxidation process exists in the oxidation procedure of spherical Ni(OH) 2 corresponding to the formation of Ni(III) and Ni(IV), respectively. The conversion of Ni(III) to Ni(IV) is regarded as a side reaction in which Ni(IV) species is not stable. The presence of Y(OH) 3 on the particle surface can restrain the side reactions, especially the formation of Ni(IV). The application of coated Ni(OH) 2 to sealed Ni-MH batteries yielded a charge acceptance of about 88% at 60 °C. The results manifest that the high-temperature performance of Ni(OH) 2 electrode is related to the distribution of the adding elements in surface oxide layer of Ni(OH) 2, the sample with dense and porous coating surface, larger relative surface content and higher utilization ratio of yttrium is more effective.
Lee, Sang Chul; Benck, Jesse D.; Tsai, Charlie; ...
2015-12-01
Amorphous MoS x is a highly active, earth-abundant catalyst for the electrochemical hydrogen evolution reaction. Previous studies have revealed that this material initially has a composition of MoS 3, but after electrochemical activation, the surface is reduced to form an active phase resembling MoS 2 in composition and chemical state. However, structural changes in the Mo Sx catalyst and the mechanism of the activation process remain poorly understood. In this study, we employ transmission electron microscopy (TEM) to image amorphous MoS x catalysts activated under two hydrogen-rich conditions: ex situ in an electrochemical cell and in situ in an environmentalmore » TEM. For the first time, we directly observe the formation of crystalline domains in the MoS x catalyst after both activation procedures as well as spatially localized changes in the chemical state detected via electron energy loss spectroscopy. Using density functional theory calculations, we investigate the mechanisms for this phase transformation and find that the presence of hydrogen is critical for enabling the restructuring process. Our results suggest that the surface of the amorphous MoS x catalyst is dynamic: while the initial catalyst activation forms the primary active surface of amorphous MoS 2, continued transformation to the crystalline phase during electrochemical operation could contribute to catalyst deactivation. Finally, these results have important implications for the application of this highly active electrocatalyst for sustainable H 2 generation.« less
Interface design for CMOS-integrated Electrochemical Impedance Spectroscopy (EIS) biosensors.
Manickam, Arun; Johnson, Christopher Andrew; Kavusi, Sam; Hassibi, Arjang
2012-10-29
Electrochemical Impedance Spectroscopy (EIS) is a powerful electrochemical technique to detect biomolecules. EIS has the potential of carrying out label-free and real-time detection, and in addition, can be easily implemented using electronic integrated circuits (ICs) that are built through standard semiconductor fabrication processes. This paper focuses on the various design and optimization aspects of EIS ICs, particularly the bio-to-semiconductor interface design. We discuss, in detail, considerations such as the choice of the electrode surface in view of IC manufacturing, surface linkers, and development of optimal bio-molecular detection protocols. We also report experimental results, using both macro- and micro-electrodes to demonstrate the design trade-offs and ultimately validate our optimization procedures.
NASA Astrophysics Data System (ADS)
Kozak, J.; Gulbinowicz, D.; Gulbinowicz, Z.
2009-05-01
The need for complex and accurate three dimensional (3-D) microcomponents is increasing rapidly for many industrial and consumer products. Electrochemical machining process (ECM) has the potential of generating desired crack-free and stress-free surfaces of microcomponents. This paper reports a study of pulse electrochemical micromachining (PECMM) using ultrashort (nanoseconds) pulses for generating complex 3-D microstructures of high accuracy. A mathematical model of the microshaping process with taking into consideration unsteady phenomena in electrical double layer has been developed. The software for computer simulation of PECM has been developed and the effects of machining parameters on anodic localization and final shape of machined surface are presented.
Carbon nanotube-based aptasensor for sensitive electrochemical detection of whole-cell Salmonella.
Hasan, Md Rakibul; Pulingam, Thiruchelvi; Appaturi, Jimmy Nelson; Zifruddin, Anis Nadyra; Teh, Swe Jyan; Lim, Teck Wei; Ibrahim, Fatimah; Leo, Bey Fen; Thong, Kwai Lin
2018-08-01
In this study, an amino-modified aptasensor using multi-walled carbon nanotubes (MWCNTs)-deposited ITO electrode was prepared and evaluated for the detection of pathogenic Salmonella bacteria. An amino-modified aptamer (ssDNA) which binds selectively to whole-cell Salmonella was immobilised on the COOH-rich MWCNTs to produce the ssDNA/MWCNT/ITO electrode. The morphology of the MWCNT before and after interaction with the aptamers were observed using scanning electron microscopy (SEM). Cyclic voltammetry and electrochemical impedance spectroscopy techniques were used to investigate the electrochemical properties and conductivity of the aptasensor. The results showed that the impedance measured at the ssDNA/MWCNT/ITO electrode surface increased after exposure to Salmonella cells, which indicated successful binding of Salmonella on the aptamer-functionalised surface. The developed ssDNA/MWCNT/ITO aptasensor was stable and maintained linearity when the scan rate was increased from 10 mV s -1 to 90 mV s -1 . The detection limit of the ssDNA/MWCNT/ITO aptasensor, determined from the sensitivity analysis, was found to be 5.5 × 10 1 cfu mL -1 and 6.7 × 10 1 cfu mL -1 for S. Enteritidis and S. Typhimurium, respectively. The specificity test demonstrated that Salmonella bound specifically to the ssDNA/MWCNT/ITO aptasensor surface, when compared with non-Salmonella spp. The prepared aptasensor was successfully applied for the detection of Salmonella in food samples. Copyright © 2018 Elsevier Inc. All rights reserved.
Heydari-Bafrooei, Esmaeil; Amini, Maryam; Ardakani, Mehdi Hatefi
2016-11-15
A sensitive aptasensor based on a robust nanocomposite of titanium dioxide nanoparticles, multiwalled carbon nanotubes (MWCNT), chitosan and a novel synthesized Schiff base (SB) (TiO2/MWCNT/CHIT/SB) on the surface of a glassy carbon electrode (GCE) was developed for thrombin detection. The resultant nanocomposite can provide a large surface area, excellent electrocatalytic activity, and high stability, which would improve immobilization sites for biological molecules, allow remarkable amplification of the electrochemical signal and contribute to improved sensitivity. Thrombin aptamers were simply immobilized onto the TiO2-MWCNT/CHIT-SB nanocomposite matrix through simple π - π stacking and electrostatic interactions between CHIT/SB and aptamer strands. The electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to analyze the surface characterization of unmodified GCE and TiO2-MWCNT/CHIT-SB modified GCE, and also the interaction between aptamer and thrombin. In the presence of thrombin, the aptamer on the adsorbent layer captures the target on the electrode interface, which makes a barrier for electrons and inhibits electron transfer, thereby resulting in decreased DPV and increased impedance signals of the TiO2-MWCNT/CHIT-SB modified GCE. Furthermore, the proposed aptasensor has a very low LOD of 1.0fmolL(-1) thrombin within the detection range of 0.00005-10nmolL(-1). The aptasensor also presents high specificity and reproducibility for thrombin, which is unaffected by the coexistence of other proteins. Clinical application was performed with analysis of the thrombin levels in blood and CSF samples obtained from patients with MS, Parkinson, Epilepsy and Polyneuropathy using both the aptasensor and commercial ELISA kit. The results revealed the proposed system to be a promising candidate for clinical analysis of thrombin. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Chun-Hsien; Hutchison, James H.; Postlethwaite, Timothy A.; Richardson, John N.; Murray, R. W.
1994-07-01
Chlorosilylated platinum oxide electrode surfaces can be generated by reaction of SiCl4 vapor with an electrochemically prepared monolayer of platinum oxide. A variety of nucleophilic agents (such as alcohols, amines, thiols, and Grignard reagents) can be used to displace chloride and thereby functionalize the metal surface. Electroactive surfaces prepared with ferrocene methanol as the nucleophile show that derivatization by small molecules can achieve coverages on the order of a full monolayer. Surfaces modified with long-chain alkyl groups efficiently block electrode reactions of redox probes dissolved in the contacting solution, but other electrochemical (double layer capacitance and surface coverage) and contact angle measurements suggest that these molecule films are not highly ordered, self-assembled monolayers.
NASA Astrophysics Data System (ADS)
Wang, Zhu; Zhang, Lei; Tang, Xian; Zhang, Ziru; Lu, Minxu
2017-11-01
The protectiveness and characterization of passive films formed at various potentials in H2S-containing environments were studied using electrochemical measurements and surface analysis method. The corrosion resistance of 316L in H2S-containing environment decreases with the applied potential. The Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) results indicate that Ni participates in the film formation, which results in the corresponding enrichment in the passive film. The oxidization degree analysis indicates that metallic elements are present in the passive film. Sulfide ions are significantly favored in the passive film at higher potentials, which is responsible for the breakdown of passive film.
NASA Technical Reports Server (NTRS)
Feagans, P. L.
1972-01-01
Electro-chemical grinding technique has rotation speed control, constant feed rates, and contour control. Hypersonic engine parts of nickel alloys can be almost 100% machined, keeping tool pressure at virtual zero. Technique eliminates galling and permits constant surface finish and burr-free interrupted cutting.
Anderson, Marc A.; Liu, Kuo -Chuan; Mohr, Charles M.
1999-10-05
An inexpensive porous metal oxide material having high surface area, good conductivity and high specific capacitance is advantageously used in an electrochemical capacitor. The materials are formed in a sol-gel process which affords control over the properties of the resultant metal oxide materials.
Burgess, Mark; Hernández-Burgos, Kenneth; Cheng, Kevin J; Moore, Jeffrey S; Rodríguez-López, Joaquín
2016-06-21
Elucidating the impact of interactions between the electrolyte and electroactive species in redox active polymers is key to designing better-performing electrodes for electrochemical energy storage and conversion. Here, we present on the improvement of the electrochemical activity of poly(para-nitrostyrene) (PNS) in solution and as a film by exploiting the ionic interactions between reduced PNS and K(+), which showed increased reactivity when compared to tetrabutylammonium (TBA(+))- and Li(+)-containing electrolytes. While cyclic voltammetry enabled the study of the effects of cations on the electrochemical reversibility and the reduction potential of PNS, scanning electrochemical microscopy (SECM) provided new tools to probe the ionic and redox reactivity of this system. Using an ion-sensitive Hg SECM tip allowed to probe the ingress of ions into PNS redox active films, while surface interrogation SECM (SI-SECM) measured the specific kinetics of PNS and a solution phase mediator in the presence of the tested electrolytes. SI-SECM measurements illustrated that the interrogation kinetics of PNS in the presence of K(+) compared to TBA(+) and Li(+) are greatly enhanced under the same surface concentration of adsorbed radical anion, exhibiting up to a 40-fold change in redox kinetics. We foresee using this new application of SECM methods for elucidating optimal interactions that enhance polymer reactivity for applications in redox flow batteries.
NASA Astrophysics Data System (ADS)
Chen, Xuerong; Ji, Liudi; Zhou, Yikai; Wu, Kangbing
2016-05-01
Various gold nanoparticles (AuNPs) were in-situ prepared on the electrode surface through electrochemical reduction under different potentials such as -0.60, -0.50, -0.40, -0.30 and -0.20 V. The reduction potentials heavily affect the surface morphology and electrochemical activity of AuNPs such as effective area and catalytic ability, as confirmed using atomic force microscopy and electrochemical impedance spectroscopy. The electrochemical behaviors of tetrabromobisphenol A (TBBPA), a widely-existed pollutant with severe adverse health effects, were studied. The oxidation activity of TBBPA enhances obviously on the surface of AuNPs, and the signal improvements of TBBPA show difference on the prepared AuNPs. Interestingly, the existence of 2-mercaptobenzothiazole (MBT) further improves the oxidation signals of TBBPA on AuNPs. The synergetic enhancement effects of AuNPs and MBT were studied using cyclic voltammetry and chronocoulometry. The numerous nano-scaled gold particles together with the strong hydrophobic interaction between TBBPA and the assembled MBT on AuNPs jointly provide highly-effective accumulation for TBBPA. As a result, a sensitive and simple electrochemical method was developed for the direct determination of TBBPA, with detection limit of 0.12 μg L-1 (0.22 nM). The practical applications in water samples manifest that this new sensing system is accurate and feasible.
Choi, Woong-Kirl; Kim, Seong-Hyun; Choi, Seung-Geon; Lee, Eun-Sang
2018-01-01
Ultra-precision products which contain a micro-hole array have recently shown remarkable demand growth in many fields, especially in the semiconductor and display industries. Photoresist etching and electrochemical machining are widely known as precision methods for machining micro-holes with no residual stress and lower surface roughness on the fabricated products. The Invar shadow masks used for organic light-emitting diodes (OLEDs) contain numerous micro-holes and are currently machined by a photoresist etching method. However, this method has several problems, such as uncontrollable hole machining accuracy, non-etched areas, and overcutting. To solve these problems, a machining method that combines photoresist etching and electrochemical machining can be applied. In this study, negative photoresist with a quadrilateral hole array pattern was dry coated onto 30-µm-thick Invar thin film, and then exposure and development were carried out. After that, photoresist single-side wet etching and a fusion method of wet etching-electrochemical machining were used to machine micro-holes on the Invar. The hole machining geometry, surface quality, and overcutting characteristics of the methods were studied. Wet etching and electrochemical fusion machining can improve the accuracy and surface quality. The overcutting phenomenon can also be controlled by the fusion machining. Experimental results show that the proposed method is promising for the fabrication of Invar film shadow masks. PMID:29351235
In situ cell culture monitoring on a Ti-6Al-4V surface by electrochemical techniques.
García-Alonso, M C; Saldaña, L; Alonso, C; Barranco, V; Muñoz-Morris, M A; Escudero, M L
2009-05-01
In this work, the in situ interaction between Ti-6Al-4V alloy and osteoblastic cells has been studied by electrochemical techniques as a function of time. The interaction has been monitored for cell adhesion and growth of human osteoblastic Saos-2 cells on Ti-6Al-4V samples. The study has been carried out by electrochemical techniques, e.g., studying the evolution of corrosion potential with exposure time and by electrochemical impedance spectroscopy. The impedance results have been analyzed by using different equivalent circuit models that simulate the interface state at each testing time. The adhesion of the osteoblastic cells on the Ti-6Al-4V alloy leads to surface areas with different cell coverage rates, thus showing the different responses in the impedance diagrams with time. The effect of the cells on the electrochemical response of Ti-6Al-4V alloy is clearly seen after 4 days of testing, in which two isolated and well-differentiated time constants are clearly observed. One of these is associated with the presence of the cells and the other with a passive film on the Ti-6Al-4V alloy. After 7 days of culture, the system is governed by a resistive component over a wide frequency range which is associated with an increase in the cell coverage rate on the surface due to the extracellular matrix.
Yang, Zhanjun; Cao, Yue; Li, Juan; Jian, Zhiqin; Zhang, Yongcai; Hu, Xiaoya
2015-04-29
In this work, we reported an efficient platinum nanoparticles functionalized nitrogen doped graphene (PtNPs@NG) nanocomposite for devising novel electrochemical glucose biosensor for the first time. The fabricated PtNPs@NG and biosensor were characterized using transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, static water contact angle, UV-vis spectroscopy, electrochemical impedance spectra and cyclic voltammetry, respectively. PtNPs@NG showed large surface area and excellent biocompatibility, and enhanced the direct electron transfer between enzyme molecules and electrode surface. The glucose oxidase (GOx) immobilized on PtNPs@NG nanocomposite retained its bioactivity, and exhibited a surface controlled, quasi-reversible and fast electron transfer process. The constructed glucose biosensor showed wide linear range from 0.005 to 1.1mM with high sensitivity of 20.31 mA M(-1) cm(-2). The detection limit was calculated to be 0.002 mM at signal-to-noise of 3, which showed 20-fold decrease in comparison with single NG-based electrochemical biosensor for glucose. The proposed glucose biosensor also demonstrated excellent selectivity, good reproducibility, acceptable stability, and could be successfully applied in the detection of glucose in serum samples at the applied potential of -0.33 V. This research provided a promising biosensing platform for the development of excellent electrochemical biosensors. Copyright © 2015 Elsevier B.V. All rights reserved.
Biocompatibility evaluation of sputtered zirconium-based thin film metallic glass-coated steels.
Subramanian, Balasubramanian; Maruthamuthu, Sundaram; Rajan, Senthilperumal Thanka
2015-01-01
Thin film metallic glasses comprised of Zr48Cu36Al8Ag8 (at.%) of approximately 1.5 μm and 3 μm in thickness were prepared using magnetron sputtering onto medical grade 316L stainless steel. Their structural and mechanical properties, in vitro corrosion, and antimicrobial activity were analyzed. The amorphous thin film metallic glasses consisted of a single glassy phase, with an absence of any detectable peaks corresponding to crystalline phases. Elemental composition close to the target alloy was noted from EDAX analysis of the thin film. The surface morphology of the film showed a smooth surface on scanning electron microscopy and atomic force microscopy. In vitro electrochemical corrosion studies indicated that the zirconium-based metallic glass could withstand body fluid, showing superior resistance to corrosion and electrochemical stability. Interactions between the coated surface and bacteria were investigated by agar diffusion, solution suspension, and wet interfacial contact methods. The results indicated a clear zone of inhibition against the growth of microorganisms such as Escherichia coli and Staphylococcus aureus, confirming the antimicrobial activity of the thin film metallic glasses. Cytotoxicity studies using L929 fibroblast cells showed these coatings to be noncytotoxic in nature.
Biocompatibility evaluation of sputtered zirconium-based thin film metallic glass-coated steels
Subramanian, Balasubramanian; Maruthamuthu, Sundaram; Rajan, Senthilperumal Thanka
2015-01-01
Thin film metallic glasses comprised of Zr48Cu36Al8Ag8 (at.%) of approximately 1.5 μm and 3 μm in thickness were prepared using magnetron sputtering onto medical grade 316L stainless steel. Their structural and mechanical properties, in vitro corrosion, and antimicrobial activity were analyzed. The amorphous thin film metallic glasses consisted of a single glassy phase, with an absence of any detectable peaks corresponding to crystalline phases. Elemental composition close to the target alloy was noted from EDAX analysis of the thin film. The surface morphology of the film showed a smooth surface on scanning electron microscopy and atomic force microscopy. In vitro electrochemical corrosion studies indicated that the zirconium-based metallic glass could withstand body fluid, showing superior resistance to corrosion and electrochemical stability. Interactions between the coated surface and bacteria were investigated by agar diffusion, solution suspension, and wet interfacial contact methods. The results indicated a clear zone of inhibition against the growth of microorganisms such as Escherichia coli and Staphylococcus aureus, confirming the antimicrobial activity of the thin film metallic glasses. Cytotoxicity studies using L929 fibroblast cells showed these coatings to be noncytotoxic in nature. PMID:26491304
Carino, Emily V; Newman, Daniel J; Connell, Justin G; Kim, Chaerin; Brushett, Fikile R
2017-10-31
Irreversible changes to the morphology of glassy carbon (GC) electrodes at potentials between 3.5 and 4.5 V vs Li/Li + in propylene carbonate (PC) solvent containing lithium hexafluorophosphate (LiPF 6 ) are reported. Analysis of cyclic voltammetry (CV) experiments in the range of 3.0 to 6.0 V shows that the capacitance of the electrochemical double-layer increased irreversibly beginning at potentials as low as 3.5 V. These changes resulted from nonfaradaic interactions, and were not due to oxidative electrochemical decomposition of the electrode and electrolyte, anion intercalation, nor caused by the presence of water, a common impurity in organic electrolyte solutions. Atomic force microscopy (AFM) images revealed that increasing the potential of a bare GC surface from 3.0 to 4.5 V resulted in a 6× increase in roughness, in good agreement with the changes in double-layer capacitance. Treating the GC surface via exposure to trichloromethylsilane vapors resulted in a stable double-layer capacitance between 3.0 and 4.5 V, and this treatment also correlated with less roughening. These results inform future efforts aimed at controlling surface composition and morphology of carbon electrodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carino, Emily V.; Newman, Daniel J.; Connell, Justin G.
In this paper, irreversible changes to the morphology of glassy carbon (GC) electrodes at potentials between 3.5 and 4.5 V vs Li/Li + in propylene carbonate (PC) solvent containing lithium hexafluorophosphate (LiPF 6) are reported. Analysis of cyclic voltammetry (CV) experiments in the range of 3.0 to 6.0 V shows that the capacitance of the electrochemical double -layer increased irreversibly beginning at potentials as low as 3.5 V. These changes resulted from nonfaradaic interactions, and were not due to oxidative electrochemical decomposition of the electrode and electrolyte, anion intercalation, nor caused by the presence of water, a common impurity inmore » organic electrolyte solutions. Atomic force microscopy (AFM) images revealed that increasing the potential of a bare GC surface from 3.0 to 4.5 V resulted in a 6X increase in roughness, in good agreement with the changes in double -layer capacitance. Treating the GC surface via exposure to trichloromethylsilane vapors resulted in a stable double -layer capacitance between 3.0 and 4.5 V, and this treatment also correlated with less roughening. Lastly, these results inform future efforts aimed at controlling surface composition and morphology of carbon electrodes.« less