Sample records for electrochemically active particles

  1. Mechano-Electrochemical Interaction Gives Rise to Strain Relaxation in Sn Electrodes

    DOE PAGES

    Barai, Pallab; Huang, Bo; Dillon, Shen J.; ...

    2016-01-01

    Tin (Sn) anode active particles were electrochemically lithiated during simultaneous imaging in a scanning electron microscope. Relationships among the reaction mechanism, active particle local strain rate, particle size, and microcrack formation are elucidated to demonstrate the importance of strain relaxation due to mechano-electrochemical interaction in Sn-based electrodes under electrochemical cycling. At low rates of operation, due to significant creep relaxation, large Sn active particles, of size 1 μm, exhibit no significant surface crack formation. Microcrack formation within Sn active particles occurs due to two different mechanisms: (i)large concentration gradient induced stress at the two-phase interface, and (ii) high volume expansionmore » induced stress at the surface of the active particles. From the present study, it can be concluded that majority of the microcracks evolve at or near the particle surface due to high volume expansion induced tension. Concentration gradient induced damage prevails near the center of the active particle, though significantly smaller in magnitude. Comparison with experimental results indicates that at operating conditions of C/2, even 500 nm sized Sn active particles remain free from surface crack formation, which emphasizes the importance of creep relaxation. A phase map has been developed to demonstrate the preferred mechano-electrochemical window of operation of Sn-based electrodes.« less

  2. Electrochemical Dissolution of Iridium and Iridium Oxide Particles in Acidic Media: Transmission Electron Microscopy, Electrochemical Flow Cell Coupled to Inductively Coupled Plasma Mass Spectrometry, and X-ray Absorption Spectroscopy Study.

    PubMed

    Jovanovič, Primož; Hodnik, Nejc; Ruiz-Zepeda, Francisco; Arčon, Iztok; Jozinović, Barbara; Zorko, Milena; Bele, Marjan; Šala, Martin; Šelih, Vid Simon; Hočevar, Samo; Gaberšček, Miran

    2017-09-13

    Iridium-based particles, regarded as the most promising proton exchange membrane electrolyzer electrocatalysts, were investigated by transmission electron microscopy and by coupling of an electrochemical flow cell (EFC) with online inductively coupled plasma mass spectrometry. Additionally, studies using a thin-film rotating disc electrode, identical location transmission and scanning electron microscopy, as well as X-ray absorption spectroscopy have been performed. Extremely sensitive online time-and potential-resolved electrochemical dissolution profiles revealed that Ir particles dissolve well below oxygen evolution reaction (OER) potentials, presumably induced by Ir surface oxidation and reduction processes, also referred to as transient dissolution. Overall, thermally prepared rutile-type IrO 2 particles are substantially more stable and less active in comparison to as-prepared metallic and electrochemically pretreated (E-Ir) analogues. Interestingly, under OER-relevant conditions, E-Ir particles exhibit superior stability and activity owing to the altered corrosion mechanism, where the formation of unstable Ir(>IV) species is hindered. Due to the enhanced and lasting OER performance, electrochemically pre-oxidized E-Ir particles may be considered as the electrocatalyst of choice for an improved low-temperature electrochemical hydrogen production device, namely a proton exchange membrane electrolyzer.

  3. Continuous-feed electrochemical cell with nonpacking particulate electrode

    DOEpatents

    Cooper, John F.

    1995-01-01

    An electrochemical cell providing full consumption of electrochemically active particles in a nonpacking, electrolyte-permeable bed has a tapered cell cavity bounded by two nonparallel surfaces separated by a distance that promotes bridging of particles across the cavity. The gap/particle size ratio is maintained as the particles are consumed, decrease in size, and travel from the point of entry to the narrower end of the cell. A cell of this configuration supports a bed of low packing density maintained in a dynamic steady state by alternate formation and collapse of particle bridges across the gap and associated voids over the entire active area of the cell. The cell design can be applied to refuelable zinc/air cells and zinc/ferrocyanide storage batteries.

  4. Continuous-feed electrochemical cell with nonpacking particulate electrode

    DOEpatents

    Cooper, J.F.

    1995-07-18

    An electrochemical cell providing full consumption of electrochemically active particles in a nonpacking, electrolyte-permeable bed has a tapered cell cavity bounded by two nonparallel surfaces separated by a distance that promotes bridging of particles across the cavity. The gap/particle size ratio is maintained as the particles are consumed, decrease in size, and travel from the point of entry to the narrower end of the cell. A cell of this configuration supports a bed of low packing density maintained in a dynamic steady state by alternate formation and collapse of particle bridges across the gap and associated voids over the entire active area of the cell. The cell design can be applied to refuelable zinc/air cells and zinc/ferrocyanide storage batteries. 6 figs.

  5. Single particle electrochemical sensors and methods of utilization

    DOEpatents

    Schoeniger, Joseph [Oakland, CA; Flounders, Albert W [Berkeley, CA; Hughes, Robert C [Albuquerque, NM; Ricco, Antonio J [Los Gatos, CA; Wally, Karl [Lafayette, CA; Kravitz, Stanley H [Placitas, NM; Janek, Richard P [Oakland, CA

    2006-04-04

    The present invention discloses an electrochemical device for detecting single particles, and methods for using such a device to achieve high sensitivity for detecting particles such as bacteria, viruses, aggregates, immuno-complexes, molecules, or ionic species. The device provides for affinity-based electrochemical detection of particles with single-particle sensitivity. The disclosed device and methods are based on microelectrodes with surface-attached, affinity ligands (e.g., antibodies, combinatorial peptides, glycolipids) that bind selectively to some target particle species. The electrodes electrolyze chemical species present in the particle-containing solution, and particle interaction with a sensor element modulates its electrolytic activity. The devices may be used individually, employed as sensors, used in arrays for a single specific type of particle or for a range of particle types, or configured into arrays of sensors having both these attributes.

  6. Simulation of electrochemical behavior in Lithium ion battery during discharge process.

    PubMed

    Chen, Yong; Huo, Weiwei; Lin, Muyi; Zhao, Li

    2018-01-01

    An electrochemical Lithium ion battery model was built taking into account the electrochemical reactions. The polarization was divided into parts which were related to the solid phase and the electrolyte mass transport of species, and the electrochemical reactions. The influence factors on battery polarization were studied, including the active material particle radius and the electrolyte salt concentration. The results showed that diffusion polarization exist in the positive and negative electrodes, and diffusion polarization increase with the conducting of the discharge process. The physicochemical parameters of the Lithium ion battery had the huge effect on cell voltage via polarization. The simulation data show that the polarization voltage has close relationship with active material particle size, discharging rate and ambient temperature.

  7. Simulation of electrochemical behavior in Lithium ion battery during discharge process

    PubMed Central

    Chen, Yong; Lin, Muyi; Zhao, Li

    2018-01-01

    An electrochemical Lithium ion battery model was built taking into account the electrochemical reactions. The polarization was divided into parts which were related to the solid phase and the electrolyte mass transport of species, and the electrochemical reactions. The influence factors on battery polarization were studied, including the active material particle radius and the electrolyte salt concentration. The results showed that diffusion polarization exist in the positive and negative electrodes, and diffusion polarization increase with the conducting of the discharge process. The physicochemical parameters of the Lithium ion battery had the huge effect on cell voltage via polarization. The simulation data show that the polarization voltage has close relationship with active material particle size, discharging rate and ambient temperature. PMID:29293535

  8. Mechanistic Analysis of Mechano-Electrochemical Interaction in Silicon Electrodes with Surface Film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, Ankit; Mukherjee, Partha P.

    2017-11-17

    High-capacity anode materials for lithium-ion batteries, such as silicon, are prone to large volume change during lithiation/delithiation which may cause particle cracking and disintegration, thereby resulting in severe capacity fade and reduction in cycle life. In this work, a stochastic analysis is presented in order to understand the mechano-electrochemical interaction in silicon active particles along with a surface film during cycling. Amorphous silicon particles exhibiting single-phase lithiation incur lower amount of cracking as compared to crystalline silicon particles exhibiting two-phase lithiation for the same degree of volumetric expansion. Rupture of the brittle surface film is observed for both amorphous andmore » crystalline silicon particles and is attributed to the large volumetric expansion of the silicon active particle with lithiation. The mechanical property of the surface film plays an important role in determining the amount of degradation in the particle/film assembly. A strategy to ameliorate particle cracking in silicon active particles is proposed.« less

  9. Synthesis of Cubic-Shaped Pt Particles with (100) Preferential Orientation by a Quick, One-Step and Clean Electrochemical Method.

    PubMed

    Liu, Jie; Fan, Xiayue; Liu, Xiaorui; Song, Zhishuang; Deng, Yida; Han, Xiaopeng; Hu, Wenbin; Zhong, Cheng

    2017-06-07

    A new approach has been developed for in situ preparing cubic-shaped Pt particles with (100) preferential orientation on the surface of the conductive support by using a quick, one-step, and clean electrochemical method with periodic square-wave potential. The whole electrochemical deposition process is very quick (only 6 min is required to produce cubic Pt particles), without the use of particular capping agents. The shape and the surface structure of deposited Pt particles can be controlled by the lower and upper potential limits of the square-wave potential. For a frequency of 5 Hz and an upper potential limit of 1.0 V (vs saturated calomel electrode), as the lower potential limit decreases to the H adsorption potential region, the Pt deposits are changed from nearly spherical particles to cubic-shaped (100)-oriented Pt particles. High-resolution transmission electron microscopy and selected-area electron diffraction reveal that the formed cubic Pt particles are single-crystalline and enclosed by (100) facets. Cubic Pt particles exhibit characteristic H adsorption/desorption peaks corresponding to the (100) preferential orientation. Ge irreversible adsorption indicates that the fraction of wide Pt(100) surface domains is 47.8%. The electrocatalytic activities of different Pt particles are investigated by ammonia electro-oxidation, which is particularly sensitive to the amount of Pt(100) sites, especially larger (100) domains. The specific activity of cubic Pt particles is 3.6 times as high as that of polycrystalline spherical Pt particles, again confirming the (100) preferential orientation of Pt cubes. The formation of cubic-shaped Pt particles is related with the preferential electrochemical deposition and dissolution processes of Pt, which are coupled with the periodic desorption and adsorption processes of O-containing species and H adatoms.

  10. Geological and technological evaluation of gold-bearing mineral material after photo-electrochemical activation leaching

    NASA Astrophysics Data System (ADS)

    Manzyrev, DV

    2017-02-01

    The paper reports the lab test results on simulation of heap leaching of unoxidized rebellious ore extracted from deep levels of Pogromnoe open pit mine, with different flowsheets and photo-electrochemically activated solutions. It has been found that pre-treatment of rebellious ore particles -10 mm in size by photo-electrochemically activated solutions at the stage preceding agglomeration with the use of rich cyanide solutions enhances gold recovery by 6%.

  11. Electrochemical modelling of QD-phospholipid interactions.

    PubMed

    Zhang, Shengwen; Chen, Rongjun; Malhotra, Girish; Critchley, Kevin; Vakurov, Alexander; Nelson, Andrew

    2014-04-15

    The aggregation of quantum dots (QDs) and capping of individual QDs affects their activity towards biomembrane models. Electrochemical methods using a phospholipid layer on mercury (Hg) membrane model have been used to determine the phospholipid monolayer activity of thioglycollic acid (TGA) coated quantum dots (QDs) as an indicator of biomembrane activity. The particles were characterised for size and charge. The activity of the QDs towards dioleoyl phosphatidylcholine (DOPC) monolayers is pH dependent, and is most active at pH 8.2 within the pH range 8.2-6.5 examined in this work. This pH dependent activity is the result of increased particle aggregation coupled to decreasing surface charge emanating from the TGA carboxylic groups employed to stabilize the QD dispersion in aqueous media. Capping the QDs with CdS/ZnS lowers the particles' activity to phospholipid monolayers. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Influence of Particle Size Distribution on the Performance of Ionic Liquid-based Electrochemical Double Layer Capacitors

    PubMed Central

    Rennie, Anthony J. R.; Martins, Vitor L.; Smith, Rachel M.; Hall, Peter J.

    2016-01-01

    Electrochemical double layer capacitors (EDLCs) employing ionic liquid electrolytes are the subject of much research as they promise increased operating potentials, and hence energy densities, when compared with currently available devices. Herein we report on the influence of the particle size distribution of activated carbon material on the performance of ionic liquid based EDLCs. Mesoporous activated carbon was ball-milled for increasing durations and the resultant powders characterized physically (using laser diffraction, nitrogen sorption and SEM) and investigated electrochemically in the form of composite EDLC electrodes. A bi-modal particle size distribution was found for all materials demonstrating an increasing fraction of smaller particles with increased milling duration. In general, cell capacitance decreased with increased milling duration over a wide range of rates using CV and galvanostatic cycling. Reduced coulombic efficiency is observed at low rates (<25 mVs−1) and the efficiency decreases as the volume fraction of the smaller particles increases. Efficiency loss was attributed to side reactions, particularly electrolyte decomposition, arising from interactions with the smaller particles. The effect of reduced efficiency is confirmed by cycling for over 15,000 cycles, which has the important implication that diminished performance and reduced cycle life is caused by the presence of submicron-sized particles. PMID:26911531

  13. In Situ Radiographic Investigation of (De)Lithiation Mechanisms in a Tin-Electrode Lithium-Ion Battery.

    PubMed

    Sun, Fu; Markötter, Henning; Zhou, Dong; Alrwashdeh, Saad Sabe Sulaiman; Hilger, Andre; Kardjilov, Nikolay; Manke, Ingo; Banhart, John

    2016-05-10

    The lithiation and delithiation mechanisms of multiple-Sn particles in a customized flat radiography cell were investigated by in situ synchrotron radiography. For the first time, four (de)lithiation phenomena in a Sn-electrode battery system are highlighted: 1) the (de)lithiation behavior varies between different Sn particles, 2) the time required to lithiate individual Sn particles is markedly different from the time needed to discharge the complete battery, 3) electrochemical deactivation of originally electrochemically active particles is reported, and 4) a change of electrochemical behavior of individual particles during cycling is found and explained by dynamic changes of (de)lithiation pathways amongst particles within the electrode. These unexpected findings fundamentaly expand the understanding of the underlying (de)lithiation mechanisms inside commercial lithium-ion batteries (LIBs) and would open new design principles for high-performance next-generation LIBs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A theoretical model to determine the capacity performance of shape-specific electrodes

    NASA Astrophysics Data System (ADS)

    Yue, Yuan; Liang, Hong

    2018-06-01

    A theory is proposed to explain and predict the electrochemical process during reaction between lithium ions and electrode materials. In the model, the process of reaction is proceeded into two steps, surface adsorption and diffusion of lithium ions. The surface adsorption is an instantaneous process for lithium ions to adsorb onto the surface sites of active materials. The diffusion of lithium ions into particles is determined by the charge-discharge condition. A formula to determine the maximum specific capacity of active materials at different charging rates (C-rates) is derived. The maximum specific capacity is correlated to characteristic parameters of materials and cycling - such as size, aspect ratio, surface area, and C-rate. Analysis indicates that larger particle size or greater aspect ratio of active materials and faster C-rates can reduce maximum specific capacity. This suggests that reducing particle size of active materials and slowing the charge-discharge speed can provide enhanced electrochemical performance of a battery cell. Furthermore, the model is validated by published experimental results. This model brings new understanding in quantification of electrochemical kinetics and capacity performance. It enables development of design strategies for novel electrodes and future generation of energy storage devices.

  15. Particle size analysis on density, surface morphology and specific capacitance of carbon electrode from rubber wood sawdust

    NASA Astrophysics Data System (ADS)

    Taer, E.; Kurniasih, B.; Sari, F. P.; Zulkifli, Taslim, R.; Sugianto, Purnama, A.; Apriwandi, Susanti, Y.

    2018-02-01

    The particle size analysis for supercapacitor carbon electrodes from rubber wood sawdust (SGKK) has been done successfully. The electrode particle size was reviewed against the properties such as density, degree of crystallinity, surface morphology and specific capacitance. The variations in particle size were made by different treatment on the grinding and sieving process. The sample particle size was distinguished as 53-100 µm for 20 h (SA), 38-53 µm for 20 h (SB) and < 38 µm with variations of grinding time for 40 h (SC) and 80 h (SD) respectively. All of the samples were activated by 0.4 M KOH solution. Carbon electrodes were carbonized at temperature of 600oC in N2 gas environment and then followed by CO2 gas activation at a temperature of 900oC for 2 h. The densities for each variation in the particle size were 1.034 g cm-3, 0.849 g cm-3, 0.892 g cm-3 and 0.982 g cm-3 respectively. The morphological study identified the distance between the particles more closely at 38-53 µm (SB) particle size. The electrochemical properties of supercapacitor cells have been investigated using electrochemical methods such as impedance spectroscopy and charge-discharge at constant current using Solatron 1280 tools. Electrochemical properties testing results have shown SB samples with a particle size of 38-53 µm produce supercapacitor cells with optimum capacitive performance.

  16. Enhanced methane steam reforming activity and electrochemical performance of Ni0.9Fe0.1-supported solid oxide fuel cells with infiltrated Ni-TiO2 particles

    PubMed Central

    Li, Kai; Jia, Lichao; Wang, Xin; Pu, Jian; Chi, Bo; Li, Jian

    2016-01-01

    Ni0.9Fe0.1 alloy-supported solid oxide fuel cells with NiTiO3 (NTO) infiltrated into the cell support from 0 to 4 wt.% are prepared and investigated for CH4 steam reforming activity and electrochemical performance. The infiltrated NiTiO3 is reduced to TiO2-supported Ni particles in H2 at 650 °C. The reforming activity of the Ni0.9Fe0.1-support is increased by the presence of the TiO2-supported Ni particles; 3 wt.% is the optimal value of the added NTO, corresponding to the highest reforming activity, resistance to carbon deposition and electrochemical performance of the cell. Fueled wet CH4 at 100 mL min−1, the cell with 3 wt.% of NTO demonstrates a peak power density of 1.20 W cm−2 and a high limiting current density of 2.83 A cm−2 at 650 °C. It performs steadily for 96 h at 0.4 A cm−2 without the presence of deposited carbon in the Ni0.9Fe0.1-support and functional anode. Five polarization processes are identified by deconvoluting and data-fitting the electrochemical impedance spectra of the cells under the testing conditions; and the addition of TiO2-supported Ni particles into the Ni0.9Fe0.1-support reduces the polarization resistance of the processes ascribed to CH4 steam reforming and gas diffusion in the Ni0.9Fe0.1-support and functional anode. PMID:27775092

  17. Electrochemical behavior of zinc particles with silica based coatings as anode material for zinc air batteries with improved discharge capacity

    NASA Astrophysics Data System (ADS)

    Schmid, M.; Willert-Porada, M.

    2017-05-01

    Silica coatings on zinc particles as anode material for alkaline zinc air batteries are expected to reduce early formation of irreversible ZnO passivation layers during discharge by controlling zinc dissolution and precipitation of supersaturated zincates, Zn(OH)42-. Zinc particles were coated with SiO2 (thickness: 15 nm) by chemical solution deposition and with Zn2SiO4 (thickness: 20 nm) by chemical vapor deposition. These coatings formed a Si(OH)4 gel in aqueous KOH and retarded hydrogen evolution by 40%. By treatment in aqueous KOH and drying afterwards, the silica coatings were changed into ZnO-K2O·SiO2 layers. In this work, the electrochemical performance of such coated zinc particles is investigated by different electrochemical methods in order to gain a deeper understanding of the mechanisms of the coatings, which reduce zinc passivation. In particular, zinc utilization and changes in internal resistance are investigated. Moreover, methods for determination of diffusion coefficients, charge carrier numbers and activation energies for electrochemical oxidation are determined. SiO2-coated zinc particles show improved discharge capacity (CVD-coated zinc: 69% zinc utilization, CSD-coated zinc: 62% zinc utilization) as compared to as-received zinc (57% zinc utilization) at C/20 rate, by reducing supersaturation of zincates. Additionally, KOH-modified SiO2-coated zinc particles enhance rechargeability after 100% depth-of-discharge.

  18. A Modification of the Levich Model to Flux at a Rotating Disk in the presence of Planktonic Bacteria

    NASA Astrophysics Data System (ADS)

    Jones, Akhenaton-Andrew; Buie, Cullen

    2015-11-01

    The Levich model of flow at a rotating disk describes convective mass transport to a disk when edge effects and wall effects can be neglected. It is used to interpret electrochemical reaction kinetics and electrochemical impedance of flow systems. The solution has been shown to be invalid for high densities (~ 1 % v/v) of inert, non-motile nano-sized particles (<0.1 μm) and macro-particles (>1.5 μm), yet little work has been done for motile bacteria and bacterial sized particles. The influence of planktonic bacteria on rotating disk experiments is crucial for the evaluation of electrochemically active biofilms. In this work, we show that the presence of bacteria creates significant deviation from the ideal Levich model not shared by inert particles. We also study the impact of dead (fixed) bacteria on deviation form the Levich model. This work has implications for studies of microbial induced corrosion, microbial adhesion, and antibiotic transport to adhered biofilms preformed in rotating disk systems.

  19. Determination of precursor sites for pitting corrosion of polycrystalline titanium by using different techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garfias-Mesias, L.F.; Alodan, M.; James, P.I.

    1998-06-01

    Scanning electrochemical microscopy (SECM) in ferrocyanide and bromide solutions was used to locate active sites (pitting precursors) on polycrystalline Ti where oxidation of Br{sup {minus}} and Fe(CN){sub 6}{sup 4{minus}} was possible. Analysis of the electrochemically active sites was done by using electron microscopy (SEM), energy dispersive X-ray analysis (EDX), atomic force microscopy (AFM), and in situ confocal laser scanning microscopy (CLSM). In most cases, the active sites were found to be associated with particles (inclusions) which contained mainly Al and Si; however, some other areas not associated with particles were also found to be active. Although the size of themore » inclusions was normally smaller than 20 {micro}m, as revealed by SEM and AFM imaging, in some cases larger particles were also found. Pitting corrosion tests in bromide solution at potentials above 1.5 V{sub SCE} followed by EDX analysis inside the pits and in situ CLSM observation, confirmed that most of the localized attack started in the areas where particles had been located.« less

  20. Investigation of the degradation of different nickel anode types for alkaline fuel cells (AFCs)

    NASA Astrophysics Data System (ADS)

    Gülzow, E.; Schulze, M.; Steinhilber, G.

    Alkaline fuel cells (AFCs) have the opportunity of becoming important for mobile energy systems as, in contrast to other low temperature fuel cells, the alkaline type requires neither noble metal catalysts nor an expensive polymer electrolyte. In AFCs, nickel is used as anode catalyst in gas diffusion electrodes. The metal catalyst was mixed with polytetraflourethylene (PTFE) as organic binder in a knife mile and rolled onto a metal web in a calendar to prepare the electrode. After an activation process with hydrogen evolution at 5 mA/cm 2 for 18 h, the electrodes were stressed at constant loading in a half cell equipment. During the fuel cell operation, the electrochemical performance decreased due to changes of the polymer (PTFE) and of the metal particles in the electrode, which is described in detail in another paper. In this study, three types of electrodes were investigated. The first type of electrode is composed of pure Raney-nickel and PTFE powder, the nickel particles in the second electrode type were selected according to particle size and in the third electrode copper powder was added to the nickel powder not selected by size. The size selected nickel particles show a better electrochemical performance related to the non-selected catalyst, but due to the electrochemically induced disintegration of the nickel particles the electrochemical performance decreases stronger. The copper powder in the third electrode is added to improve the electronic conductivity of the nickel catalyst, but the copper is not stable under the electrochemical conditions in fuel cell operation. With all three anode types long-term experiments have been performed. The electrodes have been characterized after the electrochemical stressing to investigate the degradation processes.

  1. Synthesis and electrochemical performances of amorphous carbon-coated Sn Sb particles as anode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Zhong; Tian, Wenhuai; Liu, Xiaohe; Yang, Rong; Li, Xingguo

    2007-12-01

    The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles. The as-prepared composite materials show much improved electrochemical performances as anode materials for lithium-ion batteries compared with Sn-Sb alloy and carbon alone. This amorphous carbon-coated Sn-Sb particle is extremely promising anode materials for lithium secondary batteries and has a high potentiality in the future use.

  2. A single use electrochemical sensor based on biomimetic nanoceria for the detection of wine antioxidants.

    PubMed

    Andrei, Veronica; Sharpe, Erica; Vasilescu, Alina; Andreescu, Silvana

    2016-08-15

    We report the development and characterization of a disposable single use electrochemical sensor based on the oxidase-like activity of nanoceria particles for the detection of phenolic antioxidants. The use of nanoceria in the sensor design enables oxidation of phenolic compounds, particularly those with ortho-dihydroxybenzene functionality, to their corresponding quinones at the surface of a screen printed carbon electrode. Detection is carried out by electrochemical reduction of the resulting quinone at a low applied potential of -0.1V vs the Ag/AgCl electrode. The sensor was optimized and characterized with respect to particle loading, applied potential, response time, detection limit, linear concentration range and sensitivity. The method enabled rapid detection of common phenolic antioxidants including caffeic acid, gallic acid and quercetin in the µM concentration range, and demonstrated good functionality for the analysis of antioxidant content in several wine samples. The intrinsic oxidase-like activity of nanoceria shows promise as a robust tool for sensitive and cost effective analysis of antioxidants using electrochemical detection. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. On the reasons for low sulphur utilization in the lithium-sulphur batteries

    NASA Astrophysics Data System (ADS)

    Kolosnitsyn, V. S.; Kuzmina, E. V.; Karaseva, E. V.

    2015-01-01

    This work is to study the reasons for the relatively low efficiency of sulphur reduction (about 75%) in lithium-sulphur batteries. The two main reasons for that are suggested to be: the relatively low electrochemical activity of low order lithium polysulphides and blocking of the carbon framework of the sulphur electrode by insoluble products of electrochemical reactions - sulphur and lithium sulphide. The electrochemical activity of lithium polysulphides with different composition (Li2Sn, n = 2-6) has been studied in 1 M solutions of CF3SO3Li in sulfolane. It is shown that lithium polysulphides including lithium disulphide are able to electrochemically reduce with efficiency close to 100%. The electrochemical activity of lithium polysulphides decreases with the order. The order of lithium polysulphides affects the value of voltage of discharge plateaus but not the efficiency of sulphur reducing in the lithium polysulphides species. The relatively low efficiency of sulphur reduction in the lithium-sulphur batteries is more likely caused by blocking of carbon particles in the sulphur electrode by insoluble products of electrochemical reactions (sulphur and lithium sulphide). This prevents the electrochemical reduction of low order lithium polysulphides and especially lithium disulphide.

  4. Synthesis, Structure And Properties of Electrochemically Active Nanocomposites

    DTIC Science & Technology

    2003-05-01

    milling. Detailed systematic impedance analysis , electronic conductivity measurement and high-resolution electron microscopy studies have shown that...carbon particles determined by TEM analysis . Results of the studies so far have shown that Sn and Si-based nanocomposites appear to be quite promising... Analysis of the As-milled Powders 117 2. Electrochemical Characteristics of Si/SiC Nanocomposites 120 3. Microstructural/Morphological Analysis of

  5. Additive-mediated electrochemical synthesis of platelike copper crystals for methanol electrooxidation.

    PubMed

    Venkatasubramanian, Rajesh; He, Jibao; Johnson, Michael W; Stern, Ilan; Kim, Dae Ho; Pesika, Noshir S

    2013-10-29

    A room-temperature electrochemical approach to synthesizing anisotropic platelike copper microcrystals and nanocrystals in the presence of potassium bromide is presented. Morphological and elemental characterization was performed using SEM, TEM, and XRD to confirm the anisotropic morphology and crystal structure of the synthesized copper particles. A possible mechanism for explaining the anisotropic crystal growth is proposed on the basis of the preferential adsorption of bromide ions to selective crystal faces. The shape-dependent electrocatalytic property of copper particles is demonstrated by its enhanced catalytic activity for methanol oxidation. Further development of such anisotropic copper particles localized on an electrode surface will lead us to find a suitable alternative for noble metal-based electrocatalysts for the methanol oxidation reaction relevant to fuel cells.

  6. Electrode including porous particles with embedded active material for use in a secondary electrochemical cell

    DOEpatents

    Vissers, Donald R.; Nelson, Paul A.; Kaun, Thomas D.; Tomczuk, Zygmunt

    1978-04-25

    Particles of carbonaceous matrices containing embedded electrode active material are prepared for vibratory loading within a porous electrically conductive substrate. In preparing the particles, active materials such as metal chalcogenides, solid alloys of alkali or alkaline earth metals along with other metals and their oxides in powdered or particulate form are blended with a thermosetting resin and particles of a volatile to form a paste mixture. The paste is heated to a temperature at which the volatile transforms into vapor to impart porosity at about the same time as the resin begins to cure into a rigid, solid structure. The solid structure is then comminuted into porous, carbonaceous particles with the embedded active material.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Huixiao; Lim, Cheolwoong; Li, Tianyi

    The impact of calendering process on the geometric characteristics and electrochemical performance of LiNi1/3Mn1/3Co1/3O2 (NMC) electrode was investigated in this study. The geometric properties of NMC electrodes with different calendering conditions, such as porosity, pore size distribution, particle size distribution, specific surface area and tortuosity were calculated from the computed tomography data of the electrodes. A synchrotron transmission X-ray microscopy tomography system at the Advanced Photon Source of the Argonne National Laboratory was employed to obtain the tomography data. The geometric and electrochemical analysis show that calendering can increase the electrochemically active area, which improves rate capability. However, more calenderingmore » will result in crushing of NMC particles, which can reduce the electrode capacity at relatively high C rates. This study shows that the optimum electrochemical performance of NMC electrode at 94:3:3 weight ratio of NMC:binder:carbon black can be achieved by calendering to 3.0 g/cm3 NMC density.« less

  8. Analysis of geometric and electrochemical characteristics of lithium cobalt oxide electrode with different packing densities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Cheolwoong; Yan, Bo; Kang, Huixiao

    2016-08-06

    In order to investigate geometric and electrochemical characteristics of Li ion battery electrode with different packing densities, lithium cobalt oxide (LiCoO 2) cathode electrodes were fabricated from a 94:3:3 (wt%) mixture of LiCoO 2, polymeric binder, and super-P carbon black and calendered to different densities. A synchrotron X-ray nano-computed tomography system with a spatial resolution of 58.2 nm at the Advanced Photon Source of the Argonne National Laboratory was employed to obtain three dimensional morphology data of the electrodes. The morphology data were then quantitatively analyzed to characterize their geometric properties, such as porosity, tortuosity, specific surface area, and poremore » size distribution. The geometric and electrochemical analysis reveal that high packing density electrodes have smaller average pore size and narrower pore size distribution, which improves the electrical contact between carbon-binder matrix and LiCoO 2 particles. The better contact improves the capacity and rate capability by reducing the possibility of electrically isolated LiCoO 2 particles and increasing the electrochemically active area. The results show that increase of packing density results in higher tortuosity, but electrochemically active area is more crucial to cell performance than tortuosity at up to 3.6 g/cm 3 packing density and 4 C rate.« less

  9. Nanoscale visualization of redox activity at lithium-ion battery cathodes.

    PubMed

    Takahashi, Yasufumi; Kumatani, Akichika; Munakata, Hirokazu; Inomata, Hirotaka; Ito, Komachi; Ino, Kosuke; Shiku, Hitoshi; Unwin, Patrick R; Korchev, Yuri E; Kanamura, Kiyoshi; Matsue, Tomokazu

    2014-11-17

    Intercalation and deintercalation of lithium ions at electrode surfaces are central to the operation of lithium-ion batteries. Yet, on the most important composite cathode surfaces, this is a rather complex process involving spatially heterogeneous reactions that have proved difficult to resolve with existing techniques. Here we report a scanning electrochemical cell microscope based approach to define a mobile electrochemical cell that is used to quantitatively visualize electrochemical phenomena at the battery cathode material LiFePO4, with resolution of ~100 nm. The technique measures electrode topography and different electrochemical properties simultaneously, and the information can be combined with complementary microscopic techniques to reveal new perspectives on structure and activity. These electrodes exhibit highly spatially heterogeneous electrochemistry at the nanoscale, both within secondary particles and at individual primary nanoparticles, which is highly dependent on the local structure and composition.

  10. A facile production of microporous carbon spheres and their electrochemical performance in EDLC

    NASA Astrophysics Data System (ADS)

    Xia, Xiaohong; Shi, Lei; Liu, Hongbo; Yang, Li; He, Yuede

    2012-03-01

    In the absence of activation process, we prepared a series of carbon particles from saccharine, in which hydrothermal carbonization method was used. These particles have spherical or near-spherical morphology, controllable monodisperse particle size from the analyses of SEM. Raman and XRD results show that they are nongraphitizable. The BET surface area of these carbon spherules is around 400-500 m2 g-1 and the microporosity is about 84%, suggesting that the carbon particles are rich in micropores. The electrochemical behaviors were characterized by means of galvanostatic charging/discharging, cycle voltammetry and impedance spectroscopy. The results show that the specific capacitance of sucrose-based carbon spherule reached 164 F g-1 in 30% KOH electrolyte and a high volumetric capacitance over 170 F cm-3 was obtained. These carbon spherules could be promising materials for EDLC according to their facile preparation way, low cost and high packing density.

  11. Nanoparticle shape evolution and proximity effects during tip-induced electrochemical processes

    DOE PAGES

    Yang, Sangmo; Paranthaman, Mariappan Parans; Noh, Tae Won; ...

    2016-01-08

    The voltage spectroscopies in scanning probe microscopy (SPM) techniques are widely used to investigate the electrochemical processes in nanoscale volumes, which are important for current key applications, such as batteries, fuel cells, catalysts, and memristors. The spectroscopic measurements are commonly performed on a grid of multiple points to yield spatially resolved maps of reversible and irreversible electrochemical functionalities. Hence, the spacing between measurement points is an important parameter to be considered, especially for irreversible electrochemical processes. Here, we report nonlocal electrochemical dynamics in chains of Ag particles fabricated by the SPM tip on a silver ion solid electrolyte. When themore » grid spacing is small compared with the size of the formed Ag particles, anomalous chains of unequally sized particles with double periodicity evolve. This behavior is ascribed to a proximity effect during the tip-induced electrochemical process, specifically, size-dependent silver particle growth following the contact between the particles. In addition, fractal shape evolution of the formed Ag structures indicates that the growth-limiting process changes from Ag +/Ag redox reaction to Ag +-ion diffusion with the increase in the applied voltage and pulse duration. Our study shows that characteristic shapes of the electrochemical products are good indicators for determining the underlying growth-limiting process, and emergence of complex phenomena during spectroscopic mapping of electrochemical functionalities.« less

  12. Method of preparing porous, active material for use in electrodes of secondary electrochemical cells

    DOEpatents

    Vissers, Donald R.; Nelson, Paul A.; Kaun, Thomas D.; Tomczuk, Zygmunt

    1977-01-01

    Particles of carbonaceous matrices containing embedded electrode active material are prepared for vibratory loading within a porous electrically conductive substrate. In preparing the particles, active materials such as metal chalcogenides, solid alloys of alkali or alkaline earth metals along with other metals and their oxides in powdered or particulate form are blended with a thermosetting resin and particles of a volatile to form a paste mixture. The paste is heated to a temperature at which the volatile transforms into vapor to impart porosity at about the same time as the resin begins to cure into a rigid, solid structure.The solid structure is then comminuted into porous, carbonaceous particles with the embedded active material.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Sangmo; Paranthaman, Mariappan Parans; Noh, Tae Won

    The voltage spectroscopies in scanning probe microscopy (SPM) techniques are widely used to investigate the electrochemical processes in nanoscale volumes, which are important for current key applications, such as batteries, fuel cells, catalysts, and memristors. The spectroscopic measurements are commonly performed on a grid of multiple points to yield spatially resolved maps of reversible and irreversible electrochemical functionalities. Hence, the spacing between measurement points is an important parameter to be considered, especially for irreversible electrochemical processes. Here, we report nonlocal electrochemical dynamics in chains of Ag particles fabricated by the SPM tip on a silver ion solid electrolyte. When themore » grid spacing is small compared with the size of the formed Ag particles, anomalous chains of unequally sized particles with double periodicity evolve. This behavior is ascribed to a proximity effect during the tip-induced electrochemical process, specifically, size-dependent silver particle growth following the contact between the particles. In addition, fractal shape evolution of the formed Ag structures indicates that the growth-limiting process changes from Ag +/Ag redox reaction to Ag +-ion diffusion with the increase in the applied voltage and pulse duration. Our study shows that characteristic shapes of the electrochemical products are good indicators for determining the underlying growth-limiting process, and emergence of complex phenomena during spectroscopic mapping of electrochemical functionalities.« less

  14. Flowable Conducting Particle Networks in Redox-Active Electrolytes for Grid Energy Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatzell, K. B.; Boota, M.; Kumbur, E. C.

    2015-01-01

    This study reports a new hybrid approach toward achieving high volumetric energy and power densities in an electrochemical flow capacitor for grid energy storage. The electrochemical flow capacitor suffers from high self-discharge and low energy density because charge storage is limited to the available surface area (electric double layer charge storage). Here, we examine two carbon materials as conducting particles in a flow battery electrolyte containing the VO2+/VO2+ redox couple. Highly porous activated carbon spheres (CSs) and multi-walled carbon nanotubes (MWCNTs) are investigated as conducting particle networks that facilitate both faradaic and electric double layer charge storage. Charge storage contributionsmore » (electric double layer and faradaic) are distinguished for flow-electrodes composed of MWCNTs and activated CSs. A MWCNT flow-electrode based in a redox-active electrolyte containing the VO2+/VO2+ redox couple demonstrates 18% less self-discharge, 10 X more energy density, and 20 X greater power densities (at 20 mV s-1) than one based on a non-redox active electrolyte. Furthermore, a MWCNT redox-active flow electrode demonstrates 80% capacitance retention, and >95% coulombic efficiency over 100 cycles, indicating the feasibility of utilizing conducting networks with redox chemistries for grid energy storage.« less

  15. Flowable conducting particle networks in redox-active electrolytes for grid energy storage

    DOE PAGES

    Hatzell, K. B.; Boota, M.; Kumbur, E. C.; ...

    2015-01-09

    This paper reports a new hybrid approach toward achieving high volumetric energy and power densities in an electrochemical flow capacitor for grid energy storage. The electrochemical flow capacitor suffers from high self-discharge and low energy density because charge storage is limited to the available surface area (electric double layer charge storage). Here, we examine two carbon materials as conducting particles in a flow battery electrolyte containing the VO 2+/VO 2 + redox couple. Highly porous activated carbon spheres (CSs) and multi-walled carbon nanotubes (MWCNTs) are investigated as conducting particle networks that facilitate both faradaic and electric double layer charge storage.more » Charge storage contributions (electric double layer and faradaic) are distinguished for flow-electrodes composed of MWCNTs and activated CSs. A MWCNT flow-electrode based in a redox-active electrolyte containing the VO 2+/VO 2 + redox couple demonstrates 18% less self-discharge, 10 X more energy density, and 20 X greater power densities (at 20 mV s -1) than one based on a non-redox active electrolyte. Additionally, a MWCNT redox-active flow electrode demonstrates 80% capacitance retention, and >95% coulombic efficiency over 100 cycles, indicating the feasibility of utilizing conducting networks with redox chemistries for grid energy storage.« less

  16. Identical Location Transmission Electron Microscopy Imaging of Site-Selective Pt Nanocatalysts: Electrochemical Activation and Surface Disordering.

    PubMed

    Arán-Ais, Rosa M; Yu, Yingchao; Hovden, Robert; Solla-Gullón, Jose; Herrero, Enrique; Feliu, Juan M; Abruña, Héctor D

    2015-12-02

    We have employed identical location transmission electron microscopy (IL-TEM) to study changes in the shape and morphology of faceted Pt nanoparticles as a result of electrochemical cycling; a procedure typically employed for activating platinum surfaces. We find that the shape and morphology of the as-prepared hexagonal nanoparticles are rapidly degraded as a result of potential cycling up to +1.3 V. As few as 25 potential cycles are sufficient to cause significant degradation, and after about 500-1000 cycles the particles are dramatically degraded. We also see clear evidence of particle migration during potential cycling. These finding suggest that great care must be exercised in the use and study of shaped Pt nanoparticles (and related systems) as electrocatlysts, especially for the oxygen reduction reaction where high positive potentials are typically employed.

  17. Scalable Preparation of Ternary Hierarchical Silicon Oxide-Nickel-Graphite Composites for Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang , Jing; Bao, Wurigumula; Ma, Lu

    2015-11-09

    Silicon monoxide is a promising anode candidate because of its high theoretical capacity and good cycle performance. To solve the problems associated with this material, including large volume changes during charge-discharge processes, we report a ternary hierarchical silicon oxide–nickel–graphite composite prepared by a facile two-step ball-milling method. The composite consists of nano-Si dispersed silicon oxides embedded in nano-Ni/graphite matrices (Si@SiOx/Ni/graphite). In the composite, crystalline nano-Si particles are generated by the mechanochemical reduction of SiO by ball milling with Ni. These nano-Si dispersed oxides have abundant electrochemical activity and can provide high Li-ion storage capacity. Furthermore, the milled nano-Ni/graphite matrices stickmore » well to active materials and interconnect to form a crosslinked framework, which functions as an electrical highway and a mechanical backbone so that all silicon oxide particles become electrochemically active. Owing to these advanced structural and electrochemical characteristics, the composite enhances the utilization efficiency of SiO, accommodates its large volume expansion upon cycling, and has good ionic and electronic conductivity. The composite electrodes thus exhibit substantial improvements in electrochemical performance. This ternary hierarchical Si@SiOx/Ni/graphite composite is a promising candidate anode material for high-energy lithium-ion batteries. Additionally, the mechanochemical ball-milling method is low cost and easy to reproduce, indicating potential for the commercial production of the composite materials.« less

  18. Scalable Preparation of Ternary Hierarchical Silicon Oxide-Nickel-Graphite Composites for Lithium-Ion Batteries.

    PubMed

    Wang, Jing; Bao, Wurigumula; Ma, Lu; Tan, Guoqiang; Su, Yuefeng; Chen, Shi; Wu, Feng; Lu, Jun; Amine, Khalil

    2015-12-07

    Silicon monoxide is a promising anode candidate because of its high theoretical capacity and good cycle performance. To solve the problems associated with this material, including large volume changes during charge-discharge processes, we report a ternary hierarchical silicon oxide-nickel-graphite composite prepared by a facile two-step ball-milling method. The composite consists of nano-Si dispersed silicon oxides embedded in nano-Ni/graphite matrices (Si@SiOx /Ni/graphite). In the composite, crystalline nano-Si particles are generated by the mechanochemical reduction of SiO by ball milling with Ni. These nano-Si dispersed oxides have abundant electrochemical activity and can provide high Li-ion storage capacity. Furthermore, the milled nano-Ni/graphite matrices stick well to active materials and interconnect to form a crosslinked framework, which functions as an electrical highway and a mechanical backbone so that all silicon oxide particles become electrochemically active. Owing to these advanced structural and electrochemical characteristics, the composite enhances the utilization efficiency of SiO, accommodates its large volume expansion upon cycling, and has good ionic and electronic conductivity. The composite electrodes thus exhibit substantial improvements in electrochemical performance. This ternary hierarchical Si@SiOx /Ni/graphite composite is a promising candidate anode material for high-energy lithium-ion batteries. Additionally, the mechanochemical ball-milling method is low cost and easy to reproduce, indicating potential for the commercial production of the composite materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Cyclodextrins Based Electrochemical Sensors for Biomedical and Pharmaceutical Analysis.

    PubMed

    Lenik, Joanna

    2017-01-01

    Electrochemical sensors are very convenient devices, as they may be used in a lot of fields starting from the food industry to environmental monitoring and medical diagnostics. They offer the values of simple design, reversible and reproducible measurements, as well as ensuring precise and accurate analytical information. Compared with other methods, electrochemical sensors are relatively simple as well as having low costs, which has led to intensive development, especially in the field of medicine and pharmaceuticals within the last decade. Recently, the number of publications covering the determination of aminoacids, dopamine, cholesterol, uric acid, biomarkers, vitamins and other pharmaceutical and biological compounds has significantly increased. Many possible types of such sensors and biosensors have been proposed: owing to the kind of the detection-potentiometric voltametric, amperometry, and the materials that can be used for, e.g. designing molecular architecture of the electrode/solution interface, carbon paste, carbon nanotubes, glass carbon, graphite, graphene, PVC, conductive polymers and/or nanoparticles. The active compounds which provide the complex formation with analyte (in the case of non-current techniques) or activate biomolecules electrochemically by particle recognition and selective preconcentration of analyte on the electrode surface (in the case of current techniques) are the most recently used cyclodextrins. These macrocyclic compounds have the ability to interact with a large diversity of guest particles to form complexes of the type of guest host, for example, with particles from drugs, biomolecules, through their hydrophilic outer surface and lipophilic inner cavities. Cyclodextrins have been the subject of frequent electrochemical studies that focused mostly on both their interactions in a solid state and in solution. The process of preparing of CDs modified electrodes would, consequently, open new avenues for new electrochemical sensors and, therefore, widen their use in biomedical and drug analysis. This review presents information on manufacturing techniques and performances of these sensors and biosensors. The opportunities for these sensors to carry out biomedical and pharmaceutical researches are demonstrated. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. One step electrochemical synthesis of bimetallic PdAu supported on nafion–graphene ribbon film for ethanol electrooxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shendage, Suresh S., E-mail: sureshsshendage@gmail.com; Singh, Abilash S.; Nagarkar, Jayashree M., E-mail: jm.nagarkar@ictmumbai.edu.in

    2015-10-15

    Highlights: • Electrochemical deposition of bimetallic PdAu NPs. • Highly loaded PdAu NPs are obtained. • Nafion–graphene supported PdAu NPs shows good activity for ethanol electrooxidation. - Abstract: A nafion–graphene ribbon (Nf–GR) supported bimetallic PdAu nanoparticles (PdAu/Nf–GR) catalyst was prepared by electrochemical codeposition of Pd and Au at constant potential. The prepared catalyst was characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), transmission electron microscopy (TEM) and X-ray diffraction analysis (XRD). The average particle size of PdAu nanoparticles (NPs) determined from XRD was 3.5 nm. The electrocatalytic activity of the PdAu/Nf–GR catalyst was examined by cyclic voltametry.more » It was observed that the as prepared catalyst showed efficient activity and good stability for ethanol electrooxidation in alkaline medium.« less

  1. High capacitance of coarse-grained carbide derived carbon electrodes

    DOE PAGES

    Dyatkin, Boris; Gogotsi, Oleksiy; Malinovskiy, Bohdan; ...

    2016-01-01

    Here, we report exceptional electrochemical properties of supercapacitor electrodes composed of large, granular carbide-derived carbon (CDC) particles. We synthesized 70–250 μm sized particles with high surface area and a narrow pore size distribution, using a titanium carbide (TiC) precursor. Electrochemical cycling of these coarse-grained powders defied conventional wisdom that a small particle size is strictly required for supercapacitor electrodes and allowed high charge storage densities, rapid transport, and good rate handling ability. Moreover, the material showcased capacitance above 100 F g -1 at sweep rates as high as 250 mV s -1 in organic electrolyte. 250–1000 micron thick dense CDCmore » films with up to 80 mg cm -2 loading showed superior areal capacitances. The material significantly outperformed its activated carbon counterpart in organic electrolytes and ionic liquids. Furthermore, large internal/external surface ratio of coarse-grained carbons allowed the resulting electrodes to maintain high electrochemical stability up to 3.1 V in ionic liquid electrolyte. In addition to presenting novel insights into the electrosorption process, these coarse-grained carbons offer a pathway to low-cost, high-performance implementation of supercapacitors in automotive and grid-storage applications.« less

  2. High capacitance of coarse-grained carbide derived carbon electrodes

    NASA Astrophysics Data System (ADS)

    Dyatkin, Boris; Gogotsi, Oleksiy; Malinovskiy, Bohdan; Zozulya, Yuliya; Simon, Patrice; Gogotsi, Yury

    2016-02-01

    We report exceptional electrochemical properties of supercapacitor electrodes composed of large, granular carbide-derived carbon (CDC) particles. Using a titanium carbide (TiC) precursor, we synthesized 70-250 μm sized particles with high surface area and a narrow pore size distribution. Electrochemical cycling of these coarse-grained powders defied conventional wisdom that a small particle size is strictly required for supercapacitor electrodes and allowed high charge storage densities, rapid transport, and good rate handling ability. The material showcased capacitance above 100 F g-1 at sweep rates as high as 250 mV s-1 in organic electrolyte. 250-1000 micron thick dense CDC films with up to 80 mg cm-2 loading showed superior areal capacitances. The material significantly outperformed its activated carbon counterpart in organic electrolytes and ionic liquids. Furthermore, large internal/external surface ratio of coarse-grained carbons allowed the resulting electrodes to maintain high electrochemical stability up to 3.1 V in ionic liquid electrolyte. In addition to presenting novel insights into the electrosorption process, these coarse-grained carbons offer a pathway to low-cost, high-performance implementation of supercapacitors in automotive and grid-storage applications.

  3. Electrocatalytic properties of graphite nanofibers-supported platinum catalysts for direct methanol fuel cells.

    PubMed

    Park, Soo-Jin; Park, Jeong-Min; Seo, Min-Kang

    2009-09-01

    Graphite nanofibers (GNFs) treated at various temperatures were used as carbon supports to improve the efficiency of PtRu catalysts. The electrochemical properties of the PtRu/GNFs catalysts were then investigated to evaluate their potential for application in DMFCs. The results indicated that the particle size and dispersibility of PtRu in the catalysts were changed by heat treatment, and the electrochemical activity of the catalysts was improved. Consequently, it was found that heat treatments could have an influence on the surface and structural properties of GNFs, resulting in enhancing an electrocatalytic activity of the catalysts for DMFCs.

  4. Natural sisal fibers derived hierarchical porous activated carbon as capacitive material in lithium ion capacitor

    NASA Astrophysics Data System (ADS)

    Yang, Zhewei; Guo, Huajun; Li, Xinhai; Wang, Zhixing; Yan, Zhiliang; Wang, Yansen

    2016-10-01

    Lithium-ion capacitor (LIC) is a novel advanced electrochemical energy storage (EES) system bridging gap between lithium ion battery (LIB) and electrochemical capacitor (ECC). In this work, we report that sisal fiber activated carbon (SFAC) was synthesized by hydrothermal treatment followed by KOH activation and served as capacitive material in LIC for the first time. Different particle structure, morphology, specific surface area and heteroatoms affected the electrochemical performance of as-prepared materials and corresponding LICs. When the mass ratio of KOH to char precursor was 2, hierarchical porous structured SFAC-2 was prepared and exhibited moderate specific capacitance (103 F g-1 at 0.1 A g-1), superior rate capability and cyclic stability (88% capacity retention after 5000 cycles at 1 A g-1). The corresponding assembled LIC (LIC-SC2) with optimal comprehensive electrochemical performance, displayed the energy density of 83 Wh kg-1, the power density of 5718 W kg-1 and superior cyclic stability (92% energy density retention after 1000 cycles at 0.5 A g-1). It is worthwhile that the source for activated carbon is a natural and renewable one and the synthesis method is eco-friendly, which facilitate that hierarchical porous activated carbon has potential applications in the field of LIC and other energy storage systems.

  5. Heteroatom incorporated coke for electrochemical cell electrode

    DOEpatents

    Lewis, Irwin Charles; Greinke, Ronald Alfred

    1997-01-01

    This invention relates to an electrode for a coke/alkali metal electrochemical cell comprising: (a) calcined coke particles: (i) that contain at least 0.5 weight percent of nitrogen heteroatoms and at least 1.0 weight percent sulfur heteroatoms, and (ii) that have an average particle size from 2 microns to 40 microns with essentially no particles being greater than 50 microns. (b) a binder This invention also relates to a coke/alkali metal electrochemical cell comprising: (a) an electrode as described above, (b) a non-aqueous electrolytic solution comprising an organic aprotic solvent and an electrically conductive salt, and (c) a counterelectrode.

  6. Calendering effects on the physical and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 cathode

    NASA Astrophysics Data System (ADS)

    Zheng, Honghe; Tan, Li; Liu, Gao; Song, Xiangyun; Battaglia, Vincent S.

    2012-06-01

    Li[Ni1/3Mn1/3Co1/3]O2 cathode laminate containing 8% PVDF and 7% acetylene black is fabricated and calendered to different porosities. Calendering effects on the physical and electrochemical properties of the Li[Ni1/3Mn1/3Co1/3]O2 cathode are investigated. It is found that mechanical properties of the composite laminate strongly depend on the electrode porosity whereas the electronic conductivity is not significantly affected by calendering. Electrochemical performances including the specific capacity, the first coulombic efficiency, cycling performance and rate capability for the cathode at different porosities are compared. An optimized porosity of around 30-40% is identified. Electrochemical impedance spectroscopy (EIS) studies illustrate that calendering improves the electronic conductivity between active particles at relatively high porosities, but increases charge transfer resistance at electrode/electrolyte interface at relatively low porosities. An increase of activation energy of Li interfacial transfer for the electrode at 0% porosity indicates a relatively high barrier of activation at the electrode/electrolyte interface, which accounts for the poor rate capability of the electrode at extremely low porosity.

  7. Modeling of electrochemical flow capacitors using Stokesian dynamics

    NASA Astrophysics Data System (ADS)

    Karzar Jeddi, Mehdi; Luo, Haoxiang; Cummings, Peter; Hatzell, Kelsey

    2017-11-01

    Electrochemical flow capacitors (EFCs) are supercapacitors designed to store electrical energy in the form of electrical double layer (EDL) near the surface of porous carbon particles. During its operation, a slurry of activated carbon beads and smaller carbon black particles is pumped between two flat and parallel electrodes. In the charging phase, ions in the electrolyte diffuse to the EDL, and electrical charges percolate through the dynamic network of particles from the flat electrodes; during the discharging phase, the process is reversed with the ions released to the bulk fluid and electrical charges percolating back through the network. In these processes, the relative motion and contact of particle of different sizes affect not only the rheology of the slurry but also charge transfer of the percolation network. In this study, we use Stoekesian dynamics simulation to investigate the role of hydrodynamic interactions of packed carbon particles in the charging/discharging behaviors of EFCs. We derived mobility functions for polydisperse spheres near a no-slip wall. A code is implemented and validated, and a simple charging model has been incorporated to represent charge transfer. Theoretical formulation and results demonstration will be presented in this talk.

  8. Mechanical and electrochemical response of a LiCoO 2 cathode using reconstructed microstructures

    DOE PAGES

    Mendoza, Hector; Roberts, Scott Alan; Brunini, Victor; ...

    2016-01-01

    As LiCoO 2 cathodes are charged, delithiation of the LiCoO 2 active material leads to an increase in the lattice spacing, causing swelling of the particles. When these particles are packed into a bicontinuous, percolated network, as is the case in a battery electrode, this swelling leads to the generation of significant mechanical stress. In this study we performed coupled electrochemical-mechanical simulations of the charging of a LiCoO 2 cathode in order to elucidate the mechanisms of stress generation and the effect of charge rate and microstructure on these stresses. Energy dispersive spectroscopy combined with scanning electron microscopy imaging wasmore » used to create 3D reconstructions of a LiCoO 2 cathode, and the Conformal Decomposition Finite Element Method is used to automatically generate computational meshes on this reconstructed microstructure. Replacement of the ideal solution Fickian diffusion model, typically used in battery simulations, with a more general non-ideal solution model shows substantially smaller gradients of lithium within particles than is typically observed in the literature. Using this more general model, lithium gradients only appear at states of charge where the open-circuit voltage is relatively constant. While lithium gradients do affect the mechanical stress state in the particles, the maximum stresses are always found in the fully-charged state and are strongly affected by the local details of the microstructure and particle-to-particle contacts. These coupled electrochemical-mechanical simulations begin to yield insight into the partitioning of volume change between reducing pore space and macroscopically swelling the electrode. Lastly, preliminary studies that include the presence of the polymeric binder suggest that it can greatly impact stress generation and that it is an important area for future research.« less

  9. Size-dependent electrocatalytic activity of gold nanoparticles on HOPG and highly boron-doped diamond surfaces.

    PubMed

    Brülle, Tine; Ju, Wenbo; Niedermayr, Philipp; Denisenko, Andrej; Paschos, Odysseas; Schneider, Oliver; Stimming, Ulrich

    2011-12-06

    Gold nanoparticles were prepared by electrochemical deposition on highly oriented pyrolytic graphite (HOPG) and boron-doped, epitaxial 100-oriented diamond layers. Using a potentiostatic double pulse technique, the average particle size was varied in the range from 5 nm to 30 nm in the case of HOPG as a support and between < 1 nm and 15 nm on diamond surfaces, while keeping the particle density constant. The distribution of particle sizes was very narrow, with standard deviations of around 20% on HOPG and around 30% on diamond. The electrocatalytic activity towards hydrogen evolution and oxygen reduction of these carbon supported gold nanoparticles in dependence of the particle sizes was investigated using cyclic voltammetry. For oxygen reduction the current density normalized to the gold surface (specific current density) increased for decreasing particle size. In contrast, the specific current density of hydrogen evolution showed no dependence on particle size. For both reactions, no effect of the different carbon supports on electrocatalytic activity was observed.

  10. Rational Design of Bi Nanoparticles for Efficient Electrochemical CO 2 Reduction: The Elucidation of Size and Surface Condition Effects

    DOE PAGES

    Zhang, Zhiyong; Chi, Miaofang; Veith, Gabriel M.; ...

    2016-08-08

    Here we report an efficient electrochemical conversion of CO 2 to CO on surface-activated bismuth nanoparticles (NPs) in acetonitrile (MeCN) under ambient conditions, with the assistance of 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([bmim][OTf]). Through the comparison between electrodeposited Bi films (Bi-ED) and different types of Bi NPs, we, for the first time, demonstrate the effects of catalyst’s size and surface condition on organic phase electrochemical CO 2 reduction. Our study reveals that the surface inhibiting layer (hydrophobic surfactants and Bi 3+ species) formed during the synthesis and purification process hinders the CO 2 reduction, leading to a 20% drop in Faradaic efficiency formore » CO evolution (FE CO). Bi particle size showed a significant effect on FE CO when the surface of Bi was air-oxidized, but this effect of size on FE CO became negligible on surface-activated Bi NPs. After the surface activation (hydrazine treatment) that effectively removed the native inhibiting layer, activated 36-nm Bi NPs exhibited an almost-quantitative conversion of CO 2 to CO (96.1% FE CO), and a mass activity for CO evolution (MA CO) of 15.6 mA mg –1, which is three-fold higher than the conventional Bi-ED, at ₋2.0 V (vs Ag/AgCl). Ultimately, this work elucidates the importance of the surface activation for an efficient electrochemical CO 2 conversion on metal NPs and paves the way for understanding the CO 2 electrochemical reduction mechanism in nonaqueous media.« less

  11. Direct fabrication of gas diffusion cathode by pulse electrodeposition for proton exchange membrane water electrolysis

    NASA Astrophysics Data System (ADS)

    Park, Hyanjoo; Choe, Seunghoe; Kim, Hoyoung; Kim, Dong-Kwon; Cho, GeonHee; Park, YoonSu; Jang, Jong Hyun; Ha, Don-Hyung; Ahn, Sang Hyun; Kim, Soo-Kil

    2018-06-01

    Pt catalysts for water electrolysis were prepared on carbon paper by using both direct current and pulse electrodeposition. Controlling the mass transfer of Pt precursor in the electrolyte by varying the deposition potential enables the formation of various Pt particle shapes such as flower-like and polyhedral particles. Further control of the deposition parameters for pulse electrodeposition resulted in changes to the particle size and density. In particular, the upper potential of pulse was found to be the critical parameter controlling the morphology of the particles and their catalytic activity. In addition to the typical electrochemical measurements, Pt samples deposited on carbon paper were used as cathodes for a proton exchange membrane water electrolyser. This single cell test revealed that our Pt particle samples have exceptional mass activity while being cost effective.

  12. Polypyrrole Coated Cellulosic Substrate Modified by Copper Oxide as Electrode for Nitrate Electroreduction

    NASA Astrophysics Data System (ADS)

    Hamam, A.; Oukil, D.; Dib, A.; Hammache, H.; Makhloufi, L.; Saidani, B.

    2015-08-01

    The aim of this work is to synthesize polypyrrole (PPy) films on nonconducting cellulosic substrate and modified by copper oxide particles for use in the nitrate electroreduction process. Firstly, the chemical polymerization of polypyrrole onto cellulosic substrate is conducted by using FeCl3 as an oxidant and pyrrole as monomer. The thickness and topography of the different PPy films obtained were estimated using a profilometer apparatus. The electrochemical reactivity of the obtained electrodes was tested by voltamperometry technique and electrochemical impedance spectroscopy. Secondly, the modification of the PPy film surface by incorporation of copper oxide particles is conducted by applying a galvanostatic procedure from a CuCl2 solution. The SEM, EDX and XRD analysis showed the presence of CuO particles in the polymer films with dimensions less than 50 nm. From cyclic voltamperometry experiments, the composite activity for the nitrate electroreduction reaction was evaluated and the peak of nitrate reduction is found to vary linearly with initial nitrate concentration.

  13. Contribution of tin in electrochemical properties of zinc antimonate nanostructures: An electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Balasubramaniam, M.; Balakumar, S.

    2018-04-01

    Tin (Sn) doped ZnSb2O6 nanostructures was synthesized by chemical precipitation method and was used as an electrode material for supercapacitors to explore its electrochemical stability and potentiality as energy storage materials. Their characteristic structural, morphological and compositional features were investigated through XRD, FESEM and XPS analysis. Results showed that the nanostructures have well ordered crystalline features with spherical particle morphology. As the size and morphology are the vital parameters in exhibiting better electrochemical properties, the prepared nanostructures exhibited a significant specific capacitance of 222 F/g at a current density of 0.5 A/g respectively. While charging and discharging for 1000 cycles, the capacitance retention was enhanced to 105.0% which depicts the stability and activeness of electrochemical sites present in the Sn doped ZnSb2O6 nanostructures even after cycling. Hence, the inclusion of Sn into ZnSb2O6 has contributed in improving the electrochemical properties thereby it represents itself as a potential electrode material for supercapacitors.

  14. Preparation and evaluation of advanced electrocatalysts for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Stonehart, P.; Baris, J.; Hochmuth, J.; Pagliaro, P.

    1981-01-01

    Two cooperative phenomena are required the development of highly efficient porous electrocatalysts: (1) is an increase in the electrocatalytic activity of the catalyst particle; and (2) is the availability of that electrocatalyst particle for the electromechanical reaction. The two processes interact with each other so that improvements in the electrochemical activity must be coupled with improvements in the availability of the electrocatalyst for reaction. Cost effective and highly reactive electrocatalysts were developed. The utilization of the electrocatalyst particles in the porous electrode structures was analyzed. It is shown that a large percentage of the electrocatalyst in anode structures is not utilized. This low utilization translates directly into a noble metal cost penalty for the fuel cell.

  15. Electrochemical Reconstitution of Biomolecules for Applications as Electrocatalysts for the Bionanofuel Cell

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Woo; Choi, Sang H.; Lillehei, Peter T.; King, Glen C.; Watt, Gerald D.; Chu, Sang-Hyon; Park, Yeonjoon; Thibeault, Sheila

    2004-01-01

    Platinum-cored ferritins were synthesized as electrocatalysts by electrochemical biomineralization of immobilized apoferritin with platinum. The platinum cored ferritin was fabricated by exposing the immobilized apoferritin to platinum ions at a reduction potential. On the platinum-cored ferritin, oxygen is reduced to water with four protons and four electrons generated from the anode. The ferritin acts as a nano-scale template, a biocompatible cage, and a separator between the nanoparticles. This results in a smaller catalyst loading of the electrodes for fuel cells or other electrochemical devices. In addition, the catalytic activity of the ferritin-stabilized platinum nanoparticles is enhanced by the large surface area and particle size phenomena. The work presented herein details the immobilization of ferritin with various surface modifications, the electrochemical biomineralization of ferritin with different inorganic cores, and the fabrication of self-assembled 2-D arrays with thiolated ferritin.

  16. Heteroatom incorporated coke for electrochemical cell electrode

    DOEpatents

    Lewis, I.C.; Greinke, R.A.

    1997-06-17

    This invention relates to an electrode for a coke/alkali metal electrochemical cell comprising: (a) calcined coke particles: (1) that contain at least 0.5 weight percent of nitrogen heteroatoms and at least 1.0 weight percent sulfur heteroatoms, and (2) that have an average particle size from 2 microns to 40 microns with essentially no particles being greater than 50 microns and (b) a binder. This invention also relates to a coke/alkali metal electrochemical cell comprising: (a) an electrode as described above, (b) a non-aqueous electrolytic solution comprising an organic aprotic solvent and an electrically conductive salt, and (c) a counterelectrode. 5 figs.

  17. Effects of addition of different carbon materials on the electrochemical performance of nickel hydroxide electrode

    NASA Astrophysics Data System (ADS)

    Sierczynska, Agnieszka; Lota, Katarzyna; Lota, Grzegorz

    Nickel hydroxide is used as an active material in positive electrodes of rechargeable alkaline batteries. The capacity of nickel-metal hydride (Ni-MH) batteries depends on the specific capacity of the positive electrode and utilization of the active material because of the Ni(OH) 2/NiOOH electrode capacity limitation. The practical capacity of the positive nickel electrode depends on the efficiency of the conductive network connecting the Ni(OH) 2 particle with the current collector. As β-Ni(OH) 2 is a kind of semiconductor, the additives are necessary to improve the conductivity between the active material and the current collector. In this study the effect of adding different carbon materials (flake graphite, multi-walled carbon nanotubes (MWNT)) on the electrochemical performance of pasted nickel-foam electrode was established. A method of production of MWNT special type of catalysts had an influence on the performance of the nickel electrodes. The electrochemical tests showed that the electrode with added MWNT (110-170 nm diameter) exhibited better electrochemical properties in the chargeability, specific discharge capacity, active material utilization, discharge voltage and cycling stability. The nickel electrodes with MWNT addition (110-170 nm diameter) have exhibited a specific capacity close to 280 mAh g -1 of Ni(OH) 2, and the degree of active material utilization was ∼96%.

  18. Magnetic Particles Coupled to Disposable Screen Printed Transducers for Electrochemical Biosensing

    PubMed Central

    Yáñez-Sedeño, Paloma; Campuzano, Susana; Pingarrón, José M.

    2016-01-01

    Ultrasensitive biosensing is currently a growing demand that has led to the development of numerous strategies for signal amplification. In this context, the unique properties of magnetic particles; both of nano- and micro-size dimensions; have proved to be promising materials to be coupled with disposable electrodes for the design of cost-effective electrochemical affinity biosensing platforms. This review addresses, through discussion of selected examples, the way that nano- and micro-magnetic particles (MNPs and MMPs; respectively) have contributed significantly to the development of electrochemical affinity biosensors, including immuno-, DNA, aptamer and other affinity modes. Different aspects such as type of magnetic particles, assay formats, detection techniques, sensitivity, applicability and other relevant characteristics are discussed. Research opportunities and future development trends in this field are also considered. PMID:27681733

  19. Size-dependent electronic structure controls activity for ethanol electro-oxidation at Ptn/indium tin oxide (n = 1 to 14).

    PubMed

    von Weber, Alexander; Baxter, Eric T; Proch, Sebastian; Kane, Matthew D; Rosenfelder, Michael; White, Henry S; Anderson, Scott L

    2015-07-21

    Understanding the factors that control electrochemical catalysis is essential to improving performance. We report a study of electrocatalytic ethanol oxidation - a process important for direct ethanol fuel cells - over size-selected Pt centers ranging from single atoms to Pt14. Model electrodes were prepared by soft-landing of mass-selected Ptn(+) on indium tin oxide (ITO) supports in ultrahigh vacuum, and transferred to an in situ electrochemical cell without exposure to air. Each electrode had identical Pt coverage, and differed only in the size of Pt clusters deposited. The small Ptn have activities that vary strongly, and non-monotonically with deposited size. Activity per gram Pt ranges up to ten times higher than that of 5 to 10 nm Pt particles dispersed on ITO. Activity is anti-correlated with the Pt 4d core orbital binding energy, indicating that electron rich clusters are essential for high activity.

  20. Enhanced activity of CaFeMg layered double hydroxides-supported gold nanodendrites for the electrochemical evolution of oxygen and hydrogen in alkaline media

    NASA Astrophysics Data System (ADS)

    Havakeshian, Elaheh; Salavati, Hossein; Taei, Masoumeh; Hasheminasab, Fatemeh; Seddighi, Mohadeseh

    2018-02-01

    In this study, Au was electrodeposited on a support of CaFeMg layered double hydroxide and then, its catalytic activity was investigated for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Field emission scanning electron microscopy images showed that a uniform porous film of aggregated nano-particles of the LDH has been decorated with Au nanodendrite-like structures (AuNDs@LDH). The results obtained from polarization curves, Tafel plots and electrochemical impedance spectroscopy showed that the AuNDs@LDH exhibits lower overpotential, higher current density, faster kinetics and enhanced stability for both of the OER and HER, in comparison with the single AuNPs and LDH catalysts.

  1. Electrode With Porous Three-Dimensional Support

    DOEpatents

    Bernard, Patrick; Dauchier, Jean-Michel; Simonneau, Olivier

    1999-07-27

    Electrode including a paste containing particles of electrochemically active material and a conductive support consisting of a three-dimensional porous material comprising strands delimiting contiguous pores communicating via passages, characterized in that the average width L in .mu.m of said passages is related to the average diameter .O slashed. in .mu.m of said particles by the following equation, in which W and Y are dimensionless coefficients: wherein W=0.16 Y=1.69 X=202.4 .mu.m and Z=80 .mu.m

  2. Preparation and Properties of Hybrid Nanostructures of Zinc Tetraphenylporphyrinate and an Amphiphilic Copolymer of N-Vinylpyrrolidone in a Neutral Aqueous Buffer Solution

    NASA Astrophysics Data System (ADS)

    Kurmaz, S. V.; Gak, V. Yu.; Kurmaz, V. A.; Konev, D. V.

    2018-02-01

    Water-soluble forms of a hydrophobic dye, zinc tetraphenylporphyrinate, are obtained via its solubilization by polymer particles of the micellar type formed by a copolymer of N-vinylpyrrolidone with triethylene glycol dimethacrylate. Hydrodynamic radii R h and the size distribution of such particles in neutral aqueous buffer solutions are determined via dynamic light scattering. The electrochemical activity of the encapsulated dye is found, and its photochemical properties (absorption and fluorescence) are studied.

  3. Exclusive Ni-N4 Sites Realize Near-Unity CO Selectivity for Electrochemical CO2 Reduction.

    PubMed

    Li, Xiaogang; Bi, Wentuan; Chen, Minglong; Sun, Yuexiang; Ju, Huanxin; Yan, Wensheng; Zhu, Junfa; Wu, Xiaojun; Chu, Wangsheng; Wu, Changzheng; Xie, Yi

    2017-10-25

    Electrochemical reduction of carbon dioxide (CO 2 ) to value-added carbon products is a promising approach to reduce CO 2 levels and mitigate the energy crisis. However, poor product selectivity is still a major obstacle to the development of CO 2 reduction. Here we demonstrate exclusive Ni-N 4 sites through a topo-chemical transformation strategy, bringing unprecedentedly high activity and selectivity for CO 2 reduction. Topo-chemical transformation by carbon layer coating successfully ensures preservation of the Ni-N 4 structure to a maximum extent and avoids the agglomeration of Ni atoms to particles, providing abundant active sites for the catalytic reaction. The Ni-N 4 structure exhibits excellent activity for electrochemical reduction of CO 2 with particularly high selectivity, achieving high faradaic efficiency over 90% for CO in the potential range from -0.5 to -0.9 V and gives a maximum faradaic efficiency of 99% at -0.81 V with a current density of 28.6 mA cm -2 . We anticipate exclusive catalytic sites will shed new light on the design of high-efficiency electrocatalysts for CO 2 reduction.

  4. Electrochemical synthesis, characterisation and phytogenic properties of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Singaravelan, R.; Bangaru Sudarsan Alwar, S.

    2015-12-01

    This work exemplifies a simple and rapid method for the synthesis of silver nanodendrite with a novel electrochemical technique. The antibacterial activity of these silver nanoparticles (Ag NPs) against pathogenic bacteria was investigated along with the routine study of optical and spectral characterisation. The optical properties of the silver nanoparticles were characterised by diffuse reflectance spectroscopy. The optical band gap energy of the electrodeposited Ag NPs was determined from the diffuse reflectance using Kubelka-Munk formula. X-ray diffraction (XRD) studies were carried out to determine the crystalline nature of the silver nanoparticles which confirmed the formation of silver nanocrystals. The XRD pattern revealed that the electrodeposited Ag NPs were in the cubic geometry with dendrite preponderance. The average particle size and the peak broadening were deliberated using Debye-Scherrer equation and lattice strain due to the peak broadening was studied using Williamson-Hall method. Surface morphology of the Ag NPs was characterised by high-resolution scanning electron microscope and the results showed the high degree of aggregation in the particles. The antibacterial activity of the Ag NPs was evaluated and showed unprecedented level antibacterial activity against multidrug resistant strains such as Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumonia and Escherichia coli in combination with Streptomycin.

  5. In-situ preparation and unique electrochemical behavior of pore-embedding CoO/Co3O4 intermixed composite for Li+ rechargeable battery electrodes

    NASA Astrophysics Data System (ADS)

    Kim, Jin Kyu; Ju, Ji Young; Choi, Seul Ki; Unithrattil, Sanjith; Lee, Sun Sook; Kang, Yongku; Kim, Yongseon; Im, Won Bin; Choi, Sungho

    2018-02-01

    Electrochemically active CoO/Co3O4 co-existing microspheres with morphology-inherited porous particles is successfully synthesized via a simple solvothermal method. The as-prepared intermixed composite undergoes a monoxide CoO-preferred conversion reaction with an extremely enhanced capacity retention, ∼905 mA h g-1 after 250 cycles for discharge state, which is 1.6 times higher than the conventional CoOx-based anodes. Moreover, stable catalytic behavior of the electrocatalysts in Li-air cathodes of the given composites is also demonstrated. We believe that the extraordinarily enhanced electrode performance might be due to the novel pore-tempered microspheres packed with double electrochemically active centers of the CoO/Co3O4 composite effectively confine the detrimental volume exchange during the reversible cyclic reactions as well as the preserved multiple reactive sites for a reversible Li+ ⇄ LiOx reaction, which is advantageous for advanced Li rechargeable battery.

  6. Improvement of diamond-like carbon electrochemical corrosion resistance by addition of nanocrystalline diamond.

    PubMed

    Marciano, F R; Almeida, E C; Bonetti, L F; Corat, E J; Trava-Airoldi, V J

    2010-02-15

    Nanocrystalline diamond (NCD) particles were incorporated into diamond-like carbon (DLC) films in order to investigate NCD-DLC electrochemical corrosion resistance. The films were grown over 304 stainless steel using plasma-enhanced chemical vapor deposition. NCD particles were incorporated into DLC during the deposition process. The investigation of NCD-DLC electrochemical corrosion behavior was performed using potentiodynamic polarization against NaCl. NCD-DLC films presented more negative corrosion potential and lower anodic and cathodic current densities. The electrochemical analysis indicated that NCD-DLC films present superior impedance and polarization resistance compared to the pure DLC, which indicate that they are promising corrosion protective coatings in aggressive solutions. Copyright 2009 Elsevier Inc. All rights reserved.

  7. Method of bonding an interconnection layer on an electrode of an electrochemical cell

    DOEpatents

    Pal, U.B.; Isenberg, A.O.; Folser, G.R.

    1992-01-14

    An electrochemical cell containing an air electrode, contacting electrolyte and electronically conductive interconnection layer, and a fuel electrode, has the interconnection layer attached by: (A) applying a thin, closely packed, discrete layer of LaCrO[sub 3] particles, doped with an element selected from the group consisting of Ca, Sr, Co, Ba, Mg and their mixtures on a portion of the air electrode, and then (B) electrochemical vapor depositing a dense skeletal structure between and around the doped LaCrO[sub 3] particles. 2 figs.

  8. Design of lithium cobalt oxide electrodes with high thermal conductivity and electrochemical performance using carbon nanotubes and diamond particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Eungje; Salgado, Ruben Arash; Lee, Byeongdu

    Thermal management remains one of the major challenges in the design of safe and reliable Li-ion batteries. We show that composite electrodes assembled from commercially available 100 μm long carbon nanotubes (CNTs) and LiCoO2 (LCO) particles demonstrate the in-plane thermal conductivity of 205.8 W/m*K. This value exceeds the thermal conductivity of dry conventional laminated electrodes by about three orders of magnitude. The cross-plane thermal conductivity of CNT-based electrodes is in the same range as thermal conductivities of conventional laminated electrodes. The CNT-based electrodes demonstrate a similar capacity to conventional laminated design electrodes, but revealed a better rate performance and stability.more » The introduction of diamond particles into CNT-based electrodes further improves the rate performance. Our lightweight, flexible electrode design can potentially be a general platform for fabricating polymer binder- and aluminum and copper current collector- free electrodes from a broad range of electrochemically active materials with efficient thermal management.« less

  9. Low-Temperature Synthesis of Hierarchical Amorphous Basic Nickel Carbonate Particles for Water Oxidation Catalysis.

    PubMed

    Yang, Yisu; Liang, Fengli; Li, Mengran; Rufford, Thomas E; Zhou, Wei; Zhu, Zhonghua

    2015-07-08

    Amorphous nickel carbonate particles are catalysts for the oxygen evolution reaction (OER), which plays a critical role in the electrochemical splitting of water. The amorphous nickel carbonate particles can be prepared at a temperature as low as 60 °C by an evaporation-induced precipitation (EIP) method. The products feature hierarchical pore structures. The mass-normalized activity of the catalysts, measured at an overpotential of 0.35 V, was 55.1 A g(-1) , with a Tafel slope of only 60 mV dec(-1) . This catalytic activity is superior to the performance of crystalline NiOx particles and β-Ni(OH)2 particles, and compares favorably to state-of-the-art RuO2 catalysts. The activity of the amorphous nickel carbonate is remarkably stable during a 10 000 s chronoamperometry test. Further optimization of synthesis parameters reveals that the amorphous structure can be tuned by adjusting the H2 O/Ni ratio in the precursor mixture. These results suggest the potential application of easily prepared hierarchical basic nickel carbonate particles as cheap and robust OER catalysts with high activity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Redox active polymers and colloidal particles for flow batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavvalapalli, Nagarjuna; Moore, Jeffrey S.; Rodriguez-Lopez, Joaquin

    The invention provides a redox flow battery comprising a microporous or nanoporous size-exclusion membrane, wherein one cell of the battery contains a redox-active polymer dissolved in the non-aqueous solvent or a redox-active colloidal particle dispersed in the non-aqueous solvent. The redox flow battery provides enhanced ionic conductivity across the electrolyte separator and reduced redox-active species crossover, thereby improving the performance and enabling widespread utilization. Redox active poly(vinylbenzyl ethylviologen) (RAPs) and redox active colloidal particles (RACs) were prepared and were found to be highly effective redox species. Controlled potential bulk electrolysis indicates that 94-99% of the nominal charge on different RAPsmore » is accessible and the electrolysis products are stable upon cycling. The high concentration attainable (>2.0 M) for RAPs in common non-aqueous battery solvents, their electrochemical and chemical reversibility, and their hindered transport across porous separators make them attractive materials for non-aqueous redox flow batteries based on size-selectivity.« less

  11. Opto-electrochemical In Situ Monitoring of the Cathodic Formation of Single Cobalt Nanoparticles.

    PubMed

    Brasiliense, Vitor; Clausmeyer, Jan; Dauphin, Alice L; Noël, Jean-Marc; Berto, Pascal; Tessier, Gilles; Schuhmann, Wolfgang; Kanoufi, Fréderic

    2017-08-21

    Single-particle electrochemistry at a nanoelectrode is explored by dark-field optical microscopy. The analysis of the scattered light allows in situ dynamic monitoring of the electrodeposition of single cobalt nanoparticles down to a radius of 65 nm. Larger sub-micrometer particles are directly sized optically by super-localization of the edges and the scattered light contains complementary information concerning the particle redox chemistry. This opto-electrochemical approach is used to derive mechanistic insights about electrocatalysis that are not accessible from single-particle electrochemistry. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Synergetic enhancement of gold nanoparticles and 2-mercaptobenzothiazole as highly-sensitive sensing strategy for tetrabromobisphenol A

    NASA Astrophysics Data System (ADS)

    Chen, Xuerong; Ji, Liudi; Zhou, Yikai; Wu, Kangbing

    2016-05-01

    Various gold nanoparticles (AuNPs) were in-situ prepared on the electrode surface through electrochemical reduction under different potentials such as -0.60, -0.50, -0.40, -0.30 and -0.20 V. The reduction potentials heavily affect the surface morphology and electrochemical activity of AuNPs such as effective area and catalytic ability, as confirmed using atomic force microscopy and electrochemical impedance spectroscopy. The electrochemical behaviors of tetrabromobisphenol A (TBBPA), a widely-existed pollutant with severe adverse health effects, were studied. The oxidation activity of TBBPA enhances obviously on the surface of AuNPs, and the signal improvements of TBBPA show difference on the prepared AuNPs. Interestingly, the existence of 2-mercaptobenzothiazole (MBT) further improves the oxidation signals of TBBPA on AuNPs. The synergetic enhancement effects of AuNPs and MBT were studied using cyclic voltammetry and chronocoulometry. The numerous nano-scaled gold particles together with the strong hydrophobic interaction between TBBPA and the assembled MBT on AuNPs jointly provide highly-effective accumulation for TBBPA. As a result, a sensitive and simple electrochemical method was developed for the direct determination of TBBPA, with detection limit of 0.12 μg L-1 (0.22 nM). The practical applications in water samples manifest that this new sensing system is accurate and feasible.

  13. Electrochemical characterization of Pt-Ru-Pd catalysts for methanol oxidation reaction in direct methanol fuel cells.

    PubMed

    Choi, M; Han, C; Kim, I T; An, J C; Lee, J J; Lee, H K; Shim, J

    2011-01-01

    PtRuPd nanoparticles on carbon black were prepared and characterized as electrocatalysts for methanol oxidation reaction in direct methanol fuel cells. Nano-sized Pd (2-4 nm) particles were deposited on Pt/C and PtRu/C (commercial products) by a simple chemical reduction process. The structural and physical information of the PtRuPd/C were confirmed by TEM and XRD, and their electrocatalytic activities were measured by cyclic voltammetry and linear sweep voltammetry. The catalysts containing Pd showed higher electrocatalytic activity for methanol oxidation reaction than the other catalysts. This might be attributed to an increase in the electrochemical surface area of Pt, which is caused by the addition of Pd; this results in increased catalyst utilization.

  14. Ball Lightning–Aerosol Electrochemical Power Source or A Cloud of Batteries

    PubMed Central

    2007-01-01

    Despite numerous attempts, an adequate theoretical and experimental simulation of ball lightning still remains incomplete. According to the model proposed here, the processes of electrochemical oxidation within separate aerosol particles are the basis for this phenomenon, and ball lightning is a cloud of composite nano or submicron particles, where each particle is a spontaneously formed nanobattery which is short-circuited by the surface discharge because it is of such a small size. As free discharge-shorted current loops, aerosol nanobatteries are exposed to a powerful mutual magnetic dipole–dipole attraction. The gaseous products and thermal energy produced by each nanobattery as a result of the intra-particle self-sustaining electrochemical reactions, cause a mutual repulsion of these particles over short distances and prevent their aggregation, while a collectivization of the current loops of separate particles, due to the electric arc overlapping between adjacent particles, weakens their mutual magnetic attraction over short distances. Discharge currents in the range of several amperes to several thousand amperes as well as the pre-explosive mega ampere currents, generated in the reduction–oxidation reactions and distributed between all the aerosol particles, explain both the magnetic attraction between the elements of the ball lightning substance and the impressive electromagnetic effects of ball lightning.

  15. Method of bonding an interconnection layer on an electrode of an electrochemical cell

    DOEpatents

    Pal, Uday B.; Isenberg, Arnold O.; Folser, George R.

    1992-01-01

    An electrochemical cell containing an air electrode (16), contacting electrolyte and electronically conductive interconnection layer (26), and a fuel electrode, has the interconnection layer (26) attached by: (A) applying a thin, closely packed, discrete layer of LaCrO.sub.3 particles (30), doped with an element selected from the group consisting of Ca, Sr, Co, Ba, Mg and their mixtures on a portion of the air electrode, and then (B) electrochemical vapor depositing a dense skeletal structure (32) between and around the doped LaCrO.sub.3 particles (30).

  16. Employing Synergetic Effect of Doping and Thin Film Coating to Boost the Performance of Lithium-Ion Battery Cathode Particles

    PubMed Central

    Patel, Rajankumar L.; Jiang, Ying-Bing; Choudhury, Amitava; Liang, Xinhua

    2016-01-01

    Atomic layer deposition (ALD) has evolved as an important technique to coat conformal protective thin films on cathode and anode particles of lithium ion batteries to enhance their electrochemical performance. Coating a conformal, conductive and optimal ultrathin film on cathode particles has significantly increased the capacity retention and cycle life as demonstrated in our previous work. In this work, we have unearthed the synergetic effect of electrochemically active iron oxide films coating and partial doping of iron on LiMn1.5Ni0.5O4 (LMNO) particles. The ionic Fe penetrates into the lattice structure of LMNO during the ALD process. After the structural defects were saturated, the iron started participating in formation of ultrathin oxide films on LMNO particle surface. Owing to the conductive nature of iron oxide films, with an optimal film thickness of ~0.6 nm, the initial capacity improved by ~25% at room temperature and by ~26% at an elevated temperature of 55 °C at a 1C cycling rate. The synergy of doping of LMNO with iron combined with the conductive and protective nature of the optimal iron oxide film led to a high capacity retention (~93% at room temperature and ~91% at 55 °C) even after 1,000 cycles at a 1C cycling rate. PMID:27142704

  17. Numerical computation of central crack growth in an active particle of electrodes influenced by multiple factors

    NASA Astrophysics Data System (ADS)

    Zhang, Yuwei; Guo, Zhansheng

    2018-03-01

    Mechanical degradation, especially fractures in active particles in an electrode, is a major reason why the capacity of lithium-ion batteries fades. This paper proposes a model that couples Li-ion diffusion, stress evolution, and damage mechanics to simulate the growth of central cracks in cathode particles (LiMn2O4) by an extended finite element method by considering the influence of multiple factors. The simulation shows that particles are likely to crack at a high discharge rate, when the particle radius is large, or when the initial central crack is longer. It also shows that the maximum principal tensile stress decreases and cracking becomes more difficult when the influence of crack surface diffusion is considered. The fracturing process occurs according to the following stages: no crack growth, stable crack growth, and unstable crack growth. Changing the charge/discharge strategy before unstable crack growth sets in is beneficial to prevent further capacity fading during electrochemical cycling.

  18. Studies on metal hydride electrodes containing no binder additives

    NASA Astrophysics Data System (ADS)

    Rogulski, Z.; Dłubak, J.; Karwowska, M.; Krebs, M.; Pytlik, E.; Schmalz, M.; Gumkowska, A.; Czerwiński, A.

    Electrochemical properties of hydrogen storage alloys (AB 5 type: LaMm-Ni 4.1Al 0.3Mn 0.4Co 0.45) were studied in 6 M KOHaq using Limited Volume Electrode (LVE) method. Working electrodes were prepared by pressing alloy powder (without binding and conducting additives) into a metal net wire serving as a support and as a current collector. Cyclic voltammetry curves reveal well defined hydrogen sorption and desorption peaks which are separated from other faradic processes, such as surface oxidation. Voltammograms of LVE resemble the curves obtained by various authors for single particle metal alloy electrodes. Hydrogen diffusion coefficient calculated at room temperature for LV electrodes and for 100% state of charge reaches a constant value of ca. 3.3 × 10 -9 and 2.1 × 10 -10 cm 2 s -1, for chronoamperometric and chronopotentiometric measurements, respectively. A comparison of the electrodes with average alloy particle sizes of ca. 50 and 4 μm allows us to conclude that at room temperature hydrogen storage capability of AB 5 alloy studied is independent on the alloy particle size. On the other hand, reduction of the particle size increases alloy capacity at temperatures below -10 °C and reduces time of electrochemical activation of the electrode.

  19. Method of making sulfur tolerant composite cermet electrodes for solid oxide electrochemical cells

    DOEpatents

    Isenberg, Arnold O.

    1989-01-01

    An electrochemical apparatus is made containing an exterior electorde bonded to the exterior of a tubular, solid, oxygen ion conducting electrolyte where the electrolyte is also in contact with an interior electrode, said exterior electrode comprising particles of an electronic conductor contacting the electrolyte, where a ceramic metal oxide coating partially surrounds the particles and is bonded to the electrolyte, and where a coating of an ionic-electronic conductive material is attached to the ceramic metal oxide coating and to the exposed portions of the particles.

  20. Sulfur tolerant composite cermet electrodes for solid oxide electrochemical cells

    DOEpatents

    Isenberg, Arnold O.

    1987-01-01

    An electrochemical apparatus is made containing an exterior electrode bonded to the exterior of a tubular, solid, oxygen ion conducting electrolyte where the electrolyte is also in contact with an interior electrode, said exterior electrode comprising particles of an electronic conductor contacting the electrolyte, where a ceramic metal oxide coating partially surrounds the particles and is bonded to the electrolyte, and where a coating of an ionic-electronic conductive material is attached to the ceramic metal oxide coating and to the exposed portions of the particles.

  1. The Use of Spray-Dried Mn₃O₄/C Composites as Electrocatalysts for Li-O₂ Batteries.

    PubMed

    Yang, Hong-Kai; Chin, Chih-Chun; Chen, Jenn-Shing

    2016-11-07

    The electrocatalytic activities of Mn₃O₄/C composites are studied in lithium-oxygen (Li-O₂) batteries as cathode catalysts. The Mn₃O₄/C composites are fabricated using ultrasonic spray pyrolysis (USP) with organic surfactants as the carbon sources. The physical and electrochemical performance of the composites is characterized by X-ray diffraction, scanning electron microscopy, particle size analysis, Brunauer-Emmett-Teller (BET) measurements, elemental analysis, galvanostatic charge-discharge methods and rotating ring-disk electrode (RRDE) measurements. The electrochemical tests demonstrate that the Mn₃O₄/C composite that is prepared using Trition X-114 (TX114) surfactant has higher activity as a bi-functional catalyst and delivers better oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalytic performance in Li-O₂ batteries because there is a larger surface area and particles are homogeneous with a meso/macro porous structure. The rate constant ( k f ) for the production of superoxide radical (O₂ • - ) and the propylene carbonate (PC)-electrolyte decomposition rate constant ( k ) for M₃O₄/C and Super P electrodes are measured using RRDE experiments and analysis in the 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF₆)/PC electrolyte. The results show that TX114 has higher electrocatalytic activity for the first step of ORR to generate O₂ • - and produces a faster PC-electrolyte decomposition rate.

  2. Charging-free electrochemical system for harvesting low-grade thermal energy

    PubMed Central

    Yang, Yuan; Lee, Seok Woo; Ghasemi, Hadi; Loomis, James; Li, Xiaobo; Kraemer, Daniel; Zheng, Guangyuan; Cui, Yi; Chen, Gang

    2014-01-01

    Efficient and low-cost systems are needed to harvest the tremendous amount of energy stored in low-grade heat sources (<100 °C). Thermally regenerative electrochemical cycle (TREC) is an attractive approach which uses the temperature dependence of electrochemical cell voltage to construct a thermodynamic cycle for direct heat-to-electricity conversion. By varying temperature, an electrochemical cell is charged at a lower voltage than discharge, converting thermal energy to electricity. Most TREC systems still require external electricity for charging, which complicates system designs and limits their applications. Here, we demonstrate a charging-free TREC consisting of an inexpensive soluble Fe(CN)63−/4− redox pair and solid Prussian blue particles as active materials for the two electrodes. In this system, the spontaneous directions of the full-cell reaction are opposite at low and high temperatures. Therefore, the two electrochemical processes at both low and high temperatures in a cycle are discharge. Heat-to-electricity conversion efficiency of 2.0% can be reached for the TREC operating between 20 and 60 °C. This charging-free TREC system may have potential application for harvesting low-grade heat from the environment, especially in remote areas. PMID:25404325

  3. Correlating capacity and Li content in layered material for Li-ion battery using XRD and particle size distribution measurements

    NASA Astrophysics Data System (ADS)

    Al-Tabbakh, A. A. A.; Al-Zubaidi, A. B.; Kamarulzaman, N.

    2016-03-01

    A lithiated transition-metal oxide material was successfully synthesized by a combustion method for Li-ion battery. The material was characterized using thermogravimetric and particle size analyzers, scanning electron microscope and X-ray diffractometer. The calcined powders of the material exhibited a finite size distribution and a single phase of pure layered structure of space group Roverline{3} m . An innovative method was developed to calculate the material electrochemical capacity based on considerations of the crystal structure and contributions of Li ions from specified unit cells at the surfaces and in the interiors of the material particles. Results suggested that most of the Li ions contributing to the electrochemical current originated from the surface region of the material particles. It was possible to estimate the thickness of the most delithiated region near the particle surfaces at any delithiation depth accurately. Furthermore, results suggested that the core region of the particles remained electrochemically inaccessible in the conventional applied voltages. This result was justified by direct quantitative comparison of specific capacity values calculated from the particle size distribution with those measured experimentally. The present analysis is believed to be of some value for estimation of the failure mechanism in cathode compounds, thus assisting the development of Li-ion batteries.

  4. A concentrated electrolyte for zinc hexacyanoferrate electrodes in aqueous rechargeable zinc-ion batteries

    NASA Astrophysics Data System (ADS)

    Kim, D.; Lee, C.; Jeong, S.

    2018-01-01

    In this study, a concentrated electrolyte was applied in an aqueous rechargeable zinc-ion battery system with a zinc hexacyanoferrate (ZnHCF) electrode to improve the electrochemical performance by changing the hydration number of the zinc ions. To optimize the active material, ZnHCF was synthesized using aqueous solutions of zinc nitrate with three different concentrations. The synthesized materials exhibited some differences in structure, crystallinity, and particle size, as observed by X-ray diffraction and scanning electron microscopy. Subsequently, these well-structured materials were applied in electrochemical tests. A more than two-fold improvement in the charge/discharge capacities was observed when the concentrated electrolyte was used instead of the dilute electrolyte. Additionally, the cycling performance observed in the concentrated electrolyte was superior to that in the dilute electrolyte. This improvement in the electrochemical performance may result from a decrease in the hydration number of the zinc ions in the concentrated electrolyte.

  5. Boron-capped tris(glyoximato) cobalt clathrochelate as a precursor for the electrodeposition of nanoparticles catalyzing H2 evolution in water.

    PubMed

    Anxolabéhère-Mallart, Elodie; Costentin, Cyrille; Fournier, Maxime; Nowak, Sophie; Robert, Marc; Savéant, Jean-Michel

    2012-04-11

    Electrochemical investigation of a boron-capped tris(glyoximato)cobalt clathrochelate complex in the presence of acid reveals that the catalytic activity toward hydrogen evolution results from an electrodeposition of cobalt-containing nanoparticles on the electrode surface at a modest cathodic potential. The deposited particles act as remarkably active catalysts for H(2) production in water at pH 7. © 2012 American Chemical Society

  6. Citrus maxima (Pomelo) juice mediated eco-friendly synthesis of ZnO nanoparticles: Applications to photocatalytic, electrochemical sensor and antibacterial activities

    NASA Astrophysics Data System (ADS)

    Pavithra, N. S.; Lingaraju, K.; Raghu, G. K.; Nagaraju, G.

    2017-10-01

    In the present work, Zinc oxide nanoparticles (ZnO Nps) have been successfully prepared through a simple, effective and low cost solution combustion method using Zn (NO3)2·6H2O as an oxidizer, chakkota (Common name = Pomelo) fruit juice as novel fuel. X-ray diffraction pattern indicates the hexagonal wurtzite structure with average crystallite size of 22 nm. ZnO Nps were characterized with the aid of different spectroscopic techniques such as Raman spectroscopy, Fourier Transform Infrared spectroscopy, Photoluminescence and UV-Visible spectroscopy. FTIR shows characteristic ZnO vibrational mode at 393 cm- 1. SEM images show that the particles are agglomerated. TEM image shows the size of the particles are about 10-20 nm. Further, in order to establish practical applicability of the synthesized ZnO Nps, photocatalytic degradation of methylene blue (MB) dye as a model system was studied in presence of UV (665 nm) light. In addition to this, the antibacterial activity was screen against 3 bacterial strains and electrochemical sensor performance towards the quantification of dopamine at nano molar concentrations was also explored.

  7. Yoctomole electrochemical genosensing of Ebola virus cDNA by rolling circle and circle to circle amplification.

    PubMed

    Carinelli, S; Kühnemund, M; Nilsson, M; Pividori, M I

    2017-07-15

    This work addresses the design of an Ebola diagnostic test involving a simple, rapid, specific and highly sensitive procedure based on isothermal amplification on magnetic particles with electrochemical readout. Ebola padlock probes were designed to detect a specific L-gene sequence present in the five most common Ebola species. Ebola cDNA was amplified by rolling circle amplification (RCA) on magnetic particles. Further re-amplification was performed by circle-to-circle amplification (C2CA) and the products were detected in a double-tagging approach using a biotinylated capture probe for immobilization on magnetic particles and a readout probe for electrochemical detection by square-wave voltammetry on commercial screen-printed electrodes. The electrochemical genosensor was able to detect as low as 200 ymol, corresponding to 120 cDNA molecules of L-gene Ebola virus with a limit of detection of 33 cDNA molecules. The isothermal double-amplification procedure by C2CA combined with the electrochemical readout and the magnetic actuation enables the high sensitivity, resulting in a rapid, inexpensive, robust and user-friendly sensing strategy that offers a promising approach for the primary care in low resource settings, especially in less developed countries. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Boron doped ZnO embedded into reduced graphene oxide for electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Alver, Ü.; Tanrıverdi, A.

    2016-08-01

    In this work, reduced graphene oxide/boron doped zinc oxide (RGO/ZnO:B) composites were fabricated by a hydrothermal process and their electrochemical properties were investigated as a function of dopant concentration. First, boron doped ZnO (ZnO:B) particles was fabricated with different boron concentrations (5, 10, 15 and 20 wt%) and then ZnO:B particles were embedded into RGO sheets. The physical properties of sensitized composites were characterized by XRD and SEM. Characterization indicated that the ZnO:B particles with plate-like structure in the composite were dispersed on graphene sheets. The electrochemical properties of the RGO/ZnO:B composite were investigated through cyclic voltammetry, galvanostatic charge/discharge measurements in a 6 M KOH electrolyte. Electrochemical measurements show that the specific capacitance values of RGO/ZnO:B electrodes increase with increasing boron concentration. RGO/ZnO:B composite electrodes (20 wt% B) display the specific capacitance as high as 230.50 F/g at 5 mV/s, which is almost five times higher than that of RGO/ZnO (52.71 F/g).

  9. Electrodeposition of gold particles on aluminum substrates containing copper.

    PubMed

    Olson, Tim S; Atanassov, Plamen; Brevnov, Dmitri A

    2005-01-27

    Electrodeposition of adhesive metal films on aluminum is traditionally preceded by the zincate process, which activates the aluminum surface. This paper presents an alternative approach for activation of aluminum by using films containing 99.5% aluminum and 0.5% copper. Aluminum/copper films are made amenable for subsequent electrodeposition by anodization followed by chemical etching of aluminum oxide. The electrodeposition of gold is monitored with electrochemical impedance spectroscopy (EIS). Analysis of EIS data suggests that electrodeposition of gold increases the interfacial capacitance from values typical for electrodes with thin oxide layers to values typical for metal electrodes. Scanning electron microscopy examination of aluminum/copper films following gold electrodeposition shows the presence of gold particles with densities of 10(5)-10(7) particles cm(-2). The relative standard deviation of mean particle diameters is approximately 25%. Evaluation of the micrographs suggests that the electrodeposition occurs by instantaneous nucleation followed by growth of three-dimensional semispherical particles. The gold particles, which are electrically connected to the conductive aluminum/copper film, support a reversible faradaic process for a soluble redox couple. The deposited gold particles are suitable for subsequent metallization of aluminum and fabrication of particle-type films with interesting catalytic, electrical, and optical properties.

  10. Ternary Au/ZnO/rGO nanocomposites electrodes for high performance electrochemical storage devices

    NASA Astrophysics Data System (ADS)

    Chaudhary, Manchal; Doong, Ruey-an; Kumar, Nagesh; Tseng, Tseung Yuen

    2017-10-01

    The combination of metal and metal oxide nanoparticles with reduced graphene oxides (rGO) is an active electrode material for electrochemical storage devices. Herein, we have, for the first time, reported the fabrication of ternary Au/ZnO/rGO nanocomposites by using a rapid and environmentally friendly microwave-assisted hydrothermal method for high performance supercapacitor applications. The ZnO/rGO provides excellent electrical conductivity and good macro/mesopore structures, which can facilitate the rapid electrons and ions transport. The Au nanoparticles with particle sizes of 7-12 nm are homogeneously distributed onto the ZnO/rGO surface to enhance the electrochemical performance by retaining the capacitance at high current density. The Au/ZnO/rGO nanocomposites, prepared with the optimized rGO amount of 100 mg exhibit a high specific capacitance of 875 and 424 F g-1 at current densities of 1 and 20 A g-1, respectively, in 2 M KOH. In addition, the energy and power densities of ternary Au/ZnO/rGO can be up to 17.6-36.5 Wh kg-1 and 0.27-5.42 kW kg-1, respectively. Results obtained in this study clearly demonstrate the excellence of ternary Au/ZnO/rGO nanocomposites as the active electrode materials for electrochemical pseudocapacitor performance and can open an avenue to fabricate metal/metal oxide/rGO nanocomposites for electrochemical storage devices with both high energy and power densities.

  11. Amperometric sensing of hydrogen peroxide using glassy carbon electrode modified with copper nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sophia, J.; Muralidharan, G., E-mail: muraligru@gmail.com

    2015-10-15

    In this paper, fabrication of glassy carbon electrode (GCE) modified with nano copper particles is discussed. The modified electrode has been tested for the non-enzymatic electrochemical detection of hydrogen peroxide (H{sub 2}O{sub 2}). The copper nanoparticles (Cu NPs) were prepared employing a simple chemical reduction method. The presence of Cu NPs was confirmed through UV–visible (UV–vis) absorption spectroscopy and X-ray diffraction (XRD) analysis. The size and morphology of the particles were investigated using transmission electron microscopy (TEM). The electrochemical properties of the fabricated sensor were studied via cyclic voltammetry (CV), chronoamperometry and electrochemical impedance spectroscopy (EIS). The electrochemical sensor displayedmore » excellent performance features towards H{sub 2}O{sub 2} detection exhibiting wide linear range, low detection limit, swift response time, good reproducibility and stability.« less

  12. Electric Double-Layer Interaction between Dissimilar Charge-Conserved Conducting Plates.

    PubMed

    Chan, Derek Y C

    2015-09-15

    Small metallic particles used in forming nanostructured to impart novel optical, catalytic, or tribo-rheological can be modeled as conducting particles with equipotential surfaces that carry a net surface charge. The value of the surface potential will vary with the separation between interacting particles, and in the absence of charge-transfer or electrochemical reactions across the particle surface, the total charge of each particle must also remain constant. These two physical conditions require the electrostatic boundary condition for metallic nanoparticles to satisfy an equipotential whole-of-particle charge conservation constraint that has not been studied previously. This constraint gives rise to a global charge conserved constant potential boundary condition that results in multibody effects in the electric double-layer interaction that are either absent or are very small in the familiar constant potential or constant charge or surface electrochemical equilibrium condition.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nur, Adrian; Rahmawati, Alifah; Ilmi, Noor Izzati

    Synthesis of nanosized of hydroxyapatite (HA) by electrochemical pulsed direct current (PDC) method has been studied. The aim of this work is to study the influence of various PDC parameters (pH initial, electrode distance, duty cycle, frequency, and amplitude) on particle surface area of HA powders. The electrochemical synthesis was prepared in solution Ca{sup 2+}/EDTA{sup 4−}/PO{sub 4}{sup 3+} at concentration 0.25/0.25/0.15 M for 24 h. The electrochemical cell was consisted of two carbon rectangular electrodes connected to a function generator to produce PDC. There were two treatments for particles after electrosynthesized, namely without aging and aged for 2 days atmore » 40 °C. For both cases, the particles were filtered and washed by demineralized water to eliminate the impurities and unreacted reactants. Then, the particles were dried at 100 °C for 2 days. The dried particles were characterized by X-ray diffraction, surface area analyzer, scanning electron microscopy (SEM), Fourier transform infrared spectra and thermogravimetric and differential thermal analysis. HA particles can be produced when the initial pH > 6. The aging process has significant effect on the produced HA particles. SEM images of HA particles showed that the powders consisted of agglomerates composed of fine crystallites and have morphology plate-like and sphere. The surface area of HA particles is in the range of 25 – 91 m{sup 2}/g. The largest particle surface area of HA was produced at 4 cm electrode distance, 80% cycle duty, frequency 0.1 Hz, amplitude 9 V and with aging process.« less

  14. An investigation of the microstructure and mechanical properties of electrochemically coated Ag(4)Sn dental alloy particles condensed in vitro

    NASA Astrophysics Data System (ADS)

    Marquez, Jose Antonio

    As part of the ongoing scientific effort to develop a new amalgam-like material without mercury, a team of metallurgists and electrochemists at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland, announced in 1993 the development of a new Ag-Sn dental alloy system without mercury that sought to replace conventional dental amalgams. They used spherical Ag3Sn and Ag4Sn intermetallic dental alloy particles, commonly used in conventional dental alloys, and coated them with electrodeposited silver with newly-developed electrolytic and immersion techniques. The particles had relatively pure silver coatings that were closely adherent to the intermetalfic cores. These silver-coated particles, due to silver's plasticity at room temperature, were condensed into PlexiglasRTM molds with the aid of an acidic surface activating solution (HBF4) and a mechanical condensing device, producing a metal-matrix composite with Ag3,4Sn filler particles surrounded by a cold-welded silver matrix. Since silver strain hardens rather easily, the layers had to be condensed in less than 0.5 mm increments to obtain a dense structure. Mechanical testing at NIST produced compressive strength values equal to or greater than those of conventional dental amalgams. Because of its potential for eliminating mercury as a constituent in dental amalgam, this material created a stir in dental circles when first developed and conceivably could prove to be a major breakthrough in the field of dental restoratives. To date, the chief impediments to its approval for human clinical applications by the Food and Drug Administration are the potentially-toxic surface activating solution used for oxide reduction, and the high condensation pressures needed for cold welding because of the tendency for silver to strain harden. In this related study, the author, who has practiced general dentistry for 25 years, evaluates some of the mechanical and microstructural properties of these electrochemically coated particles when they are amalgamated with mercury. Because of patent restrictions for the coated particles that protect the cold-welding work being done at NIST, these particles necessarily had to include mercury as a constituent for this investigation. (Abstract shortened by UMI.)

  15. Free Electrons to Molecular Bonds and Back: Closing the Energetic Oxygen Reduction (ORR)-Oxygen Evolution (OER) Cycle Using Core-Shell Nanoelectrocatalysts.

    PubMed

    Strasser, Peter

    2016-11-15

    Nanomaterial science and electrocatalytic science have entered a successful "nanoelectrochemical" symbiosis, in which novel nanomaterials offer new frontiers for studies on electrocatalytic charge transfer, while electrocatalytic processes give meaning and often practical importance to novel nanomaterial concepts. Examples of this fruitful symbiosis are dealloyed core-shell nanoparticle electrocatalysts, which often exhibit enhanced kinetic charge transfer rates at greatly improved atom-efficiency. As such, they represent ideal electrocatalyst architectures for the acidic oxygen reduction reaction to water (ORR) and the acidic oxygen evolution reaction from water (OER) that require scarce Pt- and Ir-based catalysts. Together, these two reactions constitute the "O-cycle", a key elemental process loop in the field of electrochemical energy interconversion between electricity (free electrons) and molecular bonds (H 2 O/O 2 ), realized in the combination of water electrolyzers and hydrogen/oxygen fuel cells. In this Account, we describe our recent efforts to design, synthesize, understand, and test noble metal-poor dealloyed Pt and Ir core-shell nanoparticles for deployment in acidic polymer electrolyte membrane (PEM) electrolyzers and PEM fuel cells. Spherical dealloyed Pt core-shell particles, derived from PtNi 3 precursor alloys, showed favorable ORR activity. More detailed size-activity correlation studies further revealed that the 6-8 nm diameter range is a most desirable initial particle size range in order to maximize the particle Ni content after ORR testing and to preserve performance stability. Similarly, dealloyed and oxidized IrO x core-shell particles derived from Ni-rich Ir-Ni precursor particles proved highly efficient oxygen evolution reaction (OER) catalysts in acidic conditions. In addition to the noble metal savings in the particle cores, the Pt core-shell particles are believed to benefit in terms of their mass-based electrochemical kinetics from surface lattice strain effects that tune the adsorption energies and barriers of elementary steps. The molecular mechanism of the kinetic benefit of the dealloyed IrO x particle needs more attention, but there is mounting evidence for ligand hole effects in defect-rich IrO x shells that generate preactive oxygen centers.

  16. Self-healing of cracks formed in Silicon-Aluminum anodes electrochemically cycled at high lithiation rates

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Sandeep; Alpas, Ahmet T.

    2016-10-01

    Lithiation-induced volume changes in Si result in fracture and fragmentation of Si anodes in Li-ion batteries. This paper reports the self-healing behaviour of cracks observed in micron-sized Si particles dispersed in a ductile Al matrix of a Si-Al electrode electrochemically cycled vs. Li/Li+ using a high lithiation rate of 15.6 C. Cross-sectional high-resolution transmission electron microscopy and Raman spectroscopy revealed that an amorphous layer with a depth up to ∼100 nm was formed at the surface of Si particles. In-situ optical microscopy performed during electrochemical experiments revealed development of cracks in Si particles as the voltage decreased to 0.02 V during lithiation. Self-healing of cracks in Si particles occurred in two steps: i) arresting of the crack growth at the Si/Al interface as the surrounding Al matrix had a higher fracture toughness and thus acted as a barrier to crack propagation, and ii) closure of cracks due to compressive stresses applied to the crack faces by the amorphous zones formed on each side of the crack paths.

  17. Simplified fast neutron dosimeter

    DOEpatents

    Sohrabi, Mehdi

    1979-01-01

    Direct fast-neutron-induced recoil and alpha particle tracks in polycarbonate films may be enlarged for direct visual observation and automated counting procedures employing electrochemical etching techniques. Electrochemical etching is, for example, carried out in a 28% KOH solution at room temperature by applying a 2000 V peak-to-peak voltage at 1 kHz frequency. Such recoil particle amplification can be used for the detection of wide neutron dose ranges from 1 mrad. to 1000 rads. or higher, if desired.

  18. Nanostructured electrocatalysts with tunable activity and selectivity

    NASA Astrophysics Data System (ADS)

    Mistry, Hemma; Varela, Ana Sofia; Kühl, Stefanie; Strasser, Peter; Cuenya, Beatriz Roldan

    2016-04-01

    The field of electrocatalysis has undergone tremendous advancement in the past few decades, in part owing to improvements in catalyst design at the nanoscale. These developments have been crucial for the realization of and improvement in alternative energy technologies based on electrochemical reactions such as fuel cells. Through the development of novel synthesis methods, characterization techniques and theoretical methods, rationally designed nanoscale electrocatalysts with tunable activity and selectivity have been achieved. This Review explores how nanostructures can be used to control electrochemical reactivity, focusing on three model reactions: O2 electroreduction, CO2 electroreduction and ethanol electrooxidation. The mechanisms behind nanoscale control of reactivity are discussed, such as the presence of low-coordinated sites or facets, strain, ligand effects and bifunctional effects in multimetallic materials. In particular, studies of how particle size, shape and composition in nanostructures can be used to tune reactivity are highlighted.

  19. Preparation and Electrochemical Characterization of Mesoporous Polyaniline-Silica Nanocomposites as an Electrode Material for Pseudocapacitors

    PubMed Central

    Zu, Lei; Cui, Xiuguo; Jiang, Yanhua; Hu, Zhongkai; Lian, Huiqin; Liu, Yang; Jin, Yushun; Li, Yan; Wang, Xiaodong

    2015-01-01

    Mesoporous polyaniline-silica nanocomposites with a full interpenetrating structure for pseudocapacitors were synthesized via the vapor phase approach. The morphology and structure of the nanocomposites were deeply investigated by scanning electron microscopy, infrared spectroscopy, X-ray diffraction, thermal gravimetric analysis and nitrogen adsorption-desorption tests. The results present that the mesoporous nanocomposites possess a uniform particle morphology and full interpenetrating structure, leading to a continuous conductive polyaniline network with a large specific surface area. The electrochemical performances of the nanocomposites were tested in a mixed solution of sulfuric acid and potassium iodide. With the merits of a large specific surface area and suitable pore size distribution, the nanocomposite showed a large specific capacitance (1702.68 farad (F)/g) due to its higher utilization of the active material. This amazing value is almost three-times larger than that of bulk polyaniline when the same mass of active material was used. PMID:28788006

  20. Particle size and support effects in electrocatalysis.

    PubMed

    Hayden, Brian E

    2013-08-20

    Researchers increasingly recognize that, as with standard supported heterogeneous catalysts, the activity and selectivity of supported metal electrocatalysts are influenced by particle size, particle structure, and catalyst support. Studies using model supported heterogeneous catalysts have provided information about these effects. Similarly, model electrochemical studies on supported metal electrocatalysts can provide insight into the factors determining catalytic activity. High-throughput methods for catalyst synthesis and screening can determine systematic trends in activity as a function of support and particle size with excellent statistical certainty. In this Account, we describe several such studies investigating methods for dispersing precious metals on both carbon and oxide supports, with particular emphasis on the prospects for the development of low-temperature fuel-cell electrocatalysts. One key finding is a decrease in catalytic activity with decreasing particle size independent of the support for both oxygen reduction and CO oxidation on supported gold and platinum. For these reactions, there appears to be an intrinsic particle size effect that results in a loss of activity at particle sizes below 2-3 nm. A titania support, however, also increases activity of gold particles in the electrooxidation of CO and in the reduction of oxygen, with an optimum at 3 nm particle size. This optimum may represent the superposition of competing effects: a titania-induced enhanced activity versus deactivation at small particle sizes. The titania support shows catalytic activity at potentials where carbon-supported and bulk-gold surfaces are normally oxidized and CO electrooxidation is poisoned. On the other hand, platinum on amorphous titania shows a different effect: the oxidation reduction reaction is strongly poisoned in the same particle size range. We correlated the influence of the titania support with titania-induced changes in the surface redox behavior of the platinum particles. For both supported gold and platinum particles in electrocatalysis, we observe parallels to the effects of particle size and support in the equivalent heterogeneous catalysts. Studies of model supported-metal electrocatalysts, performs efficiently using high throughput synthetic and screening methodologies, will lead to a better understanding of the mechanisms responsible for support and particle size effects in electrocatalysis, and will drive the development of more effective and robust catalysts in the future.

  1. Mild in situ growth of platinum nanoparticles on multiwalled carbon nanotube-poly (vinyl alcohol) hydrogel electrode for glucose electrochemical oxidation

    NASA Astrophysics Data System (ADS)

    Liu, Shumin; Zheng, Yudong; Qiao, Kun; Su, Lei; Sanghera, Amendeep; Song, Wenhui; Yue, Lina; Sun, Yi

    2015-12-01

    This investigation describes an effective strategy to fabricate an electrochemically active hybrid hydrogel made from platinum nanoparticles that are highly dense, uniformly dispersed, and tightly embedded throughout the conducting hydrogel network for the electrochemical oxidation of glucose. A suspension of multiwalled carbon nanotubes and polyvinyl alcohol aqueous was coated on glassy carbon electrode by electrophoretic deposition and then physically crosslinked to form a three-dimensional porous conductive hydrogel network by a process of freezing and thawing. The network offered 3D interconnected mass-transport channels (around 200 nm) and confined nanotemplates for in situ growth of uniform platinum nanoparticles via the moderate reduction agent, ascorbic acid. The resulting hybrid hydrogel electrode membrane demonstrates an effective method for loading platinum nanoparticles on multiwalled carbon nanotubes by the electrostatic adsorption between multiwalled carbon nanotubes and platinum ions within porous hydrogel network. The average diameter of platinum nanoparticles is 37 ± 14 nm, which is less than the particle size by only using the moderate reduction agent. The hybrid hydrogel electrode membrane-coated glassy carbon electrode showed excellent electrocatalytic activity and good long-term stability toward glucose electrochemical oxidation. The glucose oxidation current exhibited a linear relationship with the concentration of glucose in the presence of chloride ions, promising for potential applications of implantable biofuel cells, biosensors, and electronic devices.

  2. Electrochemically Protected Copper(I)-Catalyzed Azide-Alkyne Cycloaddition

    PubMed Central

    Hong, Vu; Udit, Andrew K.; Evans, Richard A.; Finn, M.G.

    2012-01-01

    The copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction has found broad application in myriad fields. For the most demanding applications requiring high yields at low substrate concentrations, highly active but air-sensitive copper complexes must be used. We describe here the use of an electrochemical potential to maintain catalysts in the active Cu(I) oxidation state in the presence of air. The simple procedure efficiently achieves excellent yields of CuAAC products involving both small molecule and protein substrates without the use of potentially damaging chemical reducing agents. A new water-soluble carboxylated version of the popular tris(benzyltriazolylmethyl)amine (TBTA) ligand is described. Cyclic voltammetry revealed reversible or quasi-reversible electrochemical redox behavior of copper complexes of the TBTA derivative (2; E1/2 = 60 mV vs. Ag/AgCl), sulfonated bathophenanthroline (3; E1/2 = -60 mV), and sulfonated tris(benzimidazoylmethyl)amine (4; E1/2 ~ -70 mV), and showed catalytic turnover to be rapid relative to the voltammetry time scale. Under the influence of a -200 mV potential established using a reticulated vitreous carbon working electrode, CuSO4 and 3 formed a superior catalyst. Electrochemically-protected bioconjugations in air were performed using bacteriophage Qβ derivatized with azide moieties at surface lysine residues. The complete addressing of more than 600 reactive sites per particle was demonstrated within 12 hours of electrolysis with sub-stoichiometric quantities of Cu•3. PMID:18504727

  3. Microfluidic electrochemical sensor for on-line monitoring of aerosol oxidative activity.

    PubMed

    Sameenoi, Yupaporn; Koehler, Kirsten; Shapiro, Jeff; Boonsong, Kanokporn; Sun, Yele; Collett, Jeffrey; Volckens, John; Henry, Charles S

    2012-06-27

    Particulate matter (PM) air pollution has a significant impact on human morbidity and mortality; however, the mechanisms of PM-induced toxicity are poorly defined. A leading hypothesis states that airborne PM induces harm by generating reactive oxygen species in and around human tissues, leading to oxidative stress. We report here a system employing a microfluidic electrochemical sensor coupled directly to a particle-into-liquid sampler (PILS) system to measure aerosol oxidative activity in an on-line format. The oxidative activity measurement is based on the dithiothreitol (DTT) assay, where, after being oxidized by PM, the remaining reduced DTT is analyzed by the microfluidic sensor. The sensor consists of an array of working, reference, and auxiliary electrodes fabricated in a poly(dimethylsiloxane)-based microfluidic device. Cobalt(II) phthalocyanine-modified carbon paste was used as the working electrode material, allowing selective detection of reduced DTT. The electrochemical sensor was validated off-line against the traditional DTT assay using filter samples taken from urban environments and biomass burning events. After off-line characterization, the sensor was coupled to a PILS to enable on-line sampling/analysis of aerosol oxidative activity. Urban dust and industrial incinerator ash samples were aerosolized in an aerosol chamber and analyzed for their oxidative activity. The on-line sensor reported DTT consumption rates (oxidative activity) in good correlation with aerosol concentration (R(2) from 0.86 to 0.97) with a time resolution of approximately 3 min.

  4. Morphological and Electrochemical Characterization of Nanostructured Li 4Ti 5O 12 Electrodes Using Multiple Imaging Mode Synchrotron X-ray Computed Tomography

    DOE PAGES

    Kashkooli, Ali Ghorbani; Foreman, Evan; Farhad, Siamak; ...

    2017-09-21

    In this study, synchrotron X-ray computed tomography has been utilized using two different imaging modes, absorption and Zernike phase contrast, to reconstruct the real three-dimensional (3D) morphology of nanostructured Li 4Ti 5O 12 (LTO) electrodes. The morphology of the high atomic number active material has been obtained using the absorption contrast mode, whereas the percolated solid network composed of active material and carbon-doped polymer binder domain (CBD) has been obtained using the Zernike phase contrast mode. The 3D absorption contrast image revealed that some LTO nano-particles tend to agglomerate and form secondary micro-sized particles with varying degrees of sphericity. Themore » tortuosity of electrode’s pore and solid phases were found to have directional dependence, different from Bruggeman’s tortuosity commonly used in macro-homogeneous models. The electrode’s heterogeneous structure was investigated by developing a numerical model to simulate galvanostatic discharge process using the Zernike phase contrast mode. The inclusion of CBD in the Zernike phase contrast results in an integrated percolated network of active material and CBD that is highly suited for continuum modeling. As a result, the simulation results highlight the importance of using the real 3D geometry since the spatial distribution of physical and electrochemical properties have a strong non-uniformity due to microstructural heterogeneities.« less

  5. A chemically activated graphene-encapsulated LiFePO4 composite for high-performance lithium ion batteries.

    PubMed

    Ha, Jeonghyun; Park, Seung-Keun; Yu, Seung-Ho; Jin, Aihua; Jang, Byungchul; Bong, Sungyool; Kim, In; Sung, Yung-Eun; Piao, Yuanzhe

    2013-09-21

    A composite of modified graphene and LiFePO4 has been developed to improve the speed of charging-discharging and the cycling stability of lithium ion batteries using LiFePO4 as a cathode material. Chemically activated graphene (CA-graphene) has been successfully synthesized via activation by KOH. The as-prepared CA-graphene was mixed with LiFePO4 to prepare the composite. Microscopic observation and nitrogen sorption analysis have revealed the surface morphologies of CA-graphene and the CA-graphene/LiFePO4 composite. Electrochemical properties have also been investigated after assembling coin cells with the CA-graphene/LiFePO4 composite as a cathode active material. Interestingly, the CA-graphene/LiFePO4 composite has exhibited better electrochemical properties than the conventional graphene/LiFePO4 composite as well as bare LiFePO4, including exceptional speed of charging-discharging and excellent cycle stability. That is because the CA-graphene in the composite provides abundant porous channels for the diffusion of lithium ions. Moreover, it acts as a conducting network for easy charge transfer and as a divider, preventing the aggregation of LiFePO4 particles. Owing to these properties of CA-graphene, LiFePO4 could demonstrate enhanced and stably long-lasting electrochemical performance.

  6. The mechanistic exploration of porous activated graphene sheets-anchored SnO2 nanocrystals for application in high-performance Li-ion battery anodes.

    PubMed

    Yang, Yingchang; Ji, Xiaobo; Lu, Fang; Chen, Qiyuan; Banks, Craig E

    2013-09-28

    Porous activated graphene sheets have been for the first time exploited herein as encapsulating substrates for lithium ion battery (LIB) anodes. The as-fabricated SnO2 nanocrystals-porous activated graphene sheet (AGS) composite electrode exhibits improved electrochemical performance as an anode material for LIBs, such as better cycle performance and higher rate capability in comparison with graphene sheets, activated graphene sheets, bare SnO2 and SnO2-graphene sheet composites. The superior electrochemical performances of the designed anode can be ascribed to the porous AGS substrate, which improves the electrical conductivity of the electrode, inhibits agglomeration between particles and effectively buffers the strain from the volume variation during Li(+)-intercalation-de-intercalation and provides more cross-plane diffusion channels for Li(+) ions. As a result, the designed anode exhibits an outstanding capacity of up to 610 mA h g(-1) at a current density of 100 mA g(-1) after 50 cycles and a good rate performance of 889, 747, 607, 482 and 372 mA h g(-1) at a current density of 100, 200, 500, 1000, and 2000 mA g(-1), respectively. This work is of importance for energy storage as it provides a new substrate for the design and implementation of next-generation LIBs exhibiting exceptional electrochemical performances.

  7. Application Electrochemical Impedance Spectroscopy Methods to Evaluation Corrosion Behavior of Stainless steels 304 in Nanofluids Media

    NASA Astrophysics Data System (ADS)

    Hadi Prajitno, Djoko; Umar, Efrizon; Gustaman Syarif, Dani

    2017-01-01

    Corrosion is a common problem in many engineering metals and alloys. Electrochemical methods are commonly instrument to use as tool to study the corrosion behavior of the metals and alloy. This method was examined interaction between a surface of the metals and alloys in corrosive media. The present paper, the effects of nano particle ZrO2 as an additive to aqua de mineralized on the corrosion behavior of stainless steel were investigated. Electrochemical impedance spectroscopy (EIS) testing was performed in both de mineralized water and demineralized water contain nano particle 0,01% ZrO2 as Nano fluid. Surface morphology examination of the specimens showed that microstructure of stainless steel 304 alloys relatively unchanged after corrosion and EIS testing. According to the corrosion potential examination of the stainless steel 304 in nanofluid media, it showed that stainless steel 304 actively corroded in nanofluida media. The value of anodic Tafel slope stainless steel 304 in nanofluid higher compare with in demineralized water. Tafel polarization examination show that corrosion rate of stainless steel 304 in nanofluid higher compare with corrosin rate in demineralized media.EIS technique show that impedance of stainless steel 304 in nanofluid lower compare with in demineralized media, resulting in an increase in the corrosion rates of these stainless steel 304 specimens in nano fluids

  8. Electrochemical cell with powdered electrically insulative material as a separator

    DOEpatents

    Mathers, James P.; Olszanski, Theodore W.; Boquist, Carl W.

    1978-01-01

    A secondary electrochemical cell includes electrodes separated by a layer of electrically insulative powder. The powder includes refractory materials selected from the oxides and nitrides of metals and metaloids. The powdered refractory material, blended with electrolyte particles, can be compacted in layers with electrode materials to form an integral electrode structure or separately assembled into the cell. The assembled cell is heated to operating temperature leaving porous layers of electrically insulative, refractory particles, containing molten electrolyte between the electrodes.

  9. Method of preparing a powdered, electrically insulative separator for use in an electrochemical cell

    DOEpatents

    Cooper, Tom O.; Miller, William E.

    1978-01-01

    A secondary electrochemical cell includes electrodes separated by a layer of electrically insulative powder. The powder includes refractory materials selected from the oxides and nitrides of metals and metaloids. The powdered refractory material, blended with electrolyte particles, is compacted as layers onto an electrode to form an integral electrode structure and assembled into the cell. The assembled cell is heated to its operating temperature leaving porous layers of electrically insulative, refractory particles, containing molten electrolyte between the electrodes.

  10. Solvent effect in sonochemical synthesis of metal-alloy nanoparticles for use as electrocatalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okoli, Celest U.; Kuttiyiel, Kurian A.; Cole, Jesse

    Nanomaterials are now widely used in the fabrication of electrodes and electrocatalysts. In this paper, we report a sonochemical study of the synthesis of molybdenum and palladium alloy nanomaterials supported on functionalized carbon material in various solvents: hexadecane, ethanol, ethylene glycol, polyethylene glycol (PEG 400) and Ionic liquids (ILs). The objective was to identify simple and more environmentally friendly design and fabrication methods for nanomaterial synthesis that are suitable as electrocatalysts in electrochemical applications. The particles size and distribution of nanomaterials were compared on two different carbons as supports: activated carbon and multiwall carbon nanotubes (MWCNTs). The results show thatmore » carbon materials functionalized with ILs in ethanol/deionized water mixture solvent produced smaller particles sizes (3.00 ± 0.05 nm) with uniform distribution while in PEG 400, functionalized materials produced 4.00 ± 1 nm sized particles with uneven distribution (range). In hexadecane solvents with Polyvinylpyrrolidone (PVP) as capping ligands, large particle sizes (14.00 ± 1 nm) were produced with wide particle size distribution. Finally, the metal alloy nanoparticles produced in ILs without any external reducing agent have potential to exhibit a higher catalytic activity due to smaller particle size and uniform distribution.« less

  11. Solvent effect in sonochemical synthesis of metal-alloy nanoparticles for use as electrocatalysts

    DOE PAGES

    Okoli, Celest U.; Kuttiyiel, Kurian A.; Cole, Jesse; ...

    2017-10-03

    Nanomaterials are now widely used in the fabrication of electrodes and electrocatalysts. In this paper, we report a sonochemical study of the synthesis of molybdenum and palladium alloy nanomaterials supported on functionalized carbon material in various solvents: hexadecane, ethanol, ethylene glycol, polyethylene glycol (PEG 400) and Ionic liquids (ILs). The objective was to identify simple and more environmentally friendly design and fabrication methods for nanomaterial synthesis that are suitable as electrocatalysts in electrochemical applications. The particles size and distribution of nanomaterials were compared on two different carbons as supports: activated carbon and multiwall carbon nanotubes (MWCNTs). The results show thatmore » carbon materials functionalized with ILs in ethanol/deionized water mixture solvent produced smaller particles sizes (3.00 ± 0.05 nm) with uniform distribution while in PEG 400, functionalized materials produced 4.00 ± 1 nm sized particles with uneven distribution (range). In hexadecane solvents with Polyvinylpyrrolidone (PVP) as capping ligands, large particle sizes (14.00 ± 1 nm) were produced with wide particle size distribution. Finally, the metal alloy nanoparticles produced in ILs without any external reducing agent have potential to exhibit a higher catalytic activity due to smaller particle size and uniform distribution.« less

  12. Synthesis and Electrochemical Performance of Urea Assisted Pristine LiMn2O4 Cathode for Li Ion Batteries

    NASA Astrophysics Data System (ADS)

    Iqbal, Azhar; Iqbal, Yousaf; Khan, Abdul Majeed; Ahmed, Safeer

    2017-12-01

    We report the synthesis of electrochemically active LiMn2O4 nanoparticles at varied temperature and pH values by sol-gel method using urea as a chelating and combusting agent. The effect of pH and annealing temperature on the structure, morphology and electrochemical performance was evaluated. The results obtained by XRD, SEM, TEM, and FTIR show that LiMn2O4 has uniform porous morphology and highly crystalline particles that can be obtained at pH 7.0 and 8.0 and at a relatively lower temperature of 600°C. Cyclic voltammetry measurements showed reversible redox reactions with fast kinetics corresponding to Li ions intercalation/deintercalation at 600°C at neutral pH 7.0. Charge/discharge studies carried out at a current rate of 40 mA g-1 reveal that LiMn2O4 synthesized at 600°C and pH 7.0 has the best structural stability and excellent cycling performance.

  13. Preparation of crosslinked amphiphilic silver nanogel as thin film corrosion protective layer for steel.

    PubMed

    Atta, Ayman M; El-Mahdy, Gamal A; Al-Lohedan, Hamad A; Ezzat, Abdelrahman O

    2014-07-17

    Monodisperse silver nanoparticles were synthesized by a new developed method via reaction of AgNO3 and oleic acid with the addition of a trace amount of Fe3+ ions. Emulsion polymerization at room temperature was employed to prepare a core-shell silver nanoparticle with controllable particle size. N,N'-methylenebisacrylamide (MBA) and potassium peroxydisulfate (KPS) were used as a crosslinker, and as redox initiator system, respectively for crosslinking polymerization. The structure and morphology of the silver nanogels were characterized by Fourier transform infrared spectroscopy (FTIR), transmission and scanning electron microscopy (TEM and SEM). The effectiveness of the synthesized compounds as corrosion inhibitors for steel in 1 M HCl was investigated by various electrochemical techniques such as potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Monolayers of silver nanoparticle were self-assembled on the fresh active surface of the steel electrode and have been tested as a corrosion inhibitor for steel in 1 M HCl solution. The results of polarization measurements showed that nanogel particles act as a mixed type inhibitor.

  14. Synthesis of MOF-525 Derived Nanoporous Carbons with Different Particle Sizes for Supercapacitor Application.

    PubMed

    Chang, Ting-Hsiang; Young, Christine; Lee, Min-Han; Salunkhe, Rahul R; Alshehri, Saad M; Ahamad, Tansir; Islam, Md Tofazzal; Wu, Kevin C-W; Hossain, Md Shahriar A; Yamauchi, Yusuke; Ho, Kuo-Chuan

    2017-11-02

    Nanoporous carbon (NC) materials have attracted great research interest for supercapacitor applications, because of their excellent electrochemical and mechanical stability, good electrical conductivity, and high surface area. Although there are many reports on metal-organic framework (MOF)-derived carbon materials, previous synthetic studies have been hindered by imperfect control of particle sizes and shapes. Here, we show precise control of the particle sizes of MOF-525 from 100 nm to 750 nm. After conversion of MOF-525 to NC, the effects of variation of the particle size on the electrochemical performance have been carefully investigated. The results demonstrate that our NC is a potential candidate for practical supercapacitor applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Na intercalation in Fe-MIL-100 for aqueous Na-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavez, James S.; Harrison, Katharine L.; Sava Gallis, Dorina F.

    Here we report for the first time the feasibility of using metal–organic frameworks (MOFs) as electrodes for aqueous Na-ion batteries. We show that Fe-MIL-100, a known redox-active MOF, is electrochemically active in a Na aqueous electrolyte, under various compositions. Emphasis was placed on investigating the electrode–electrolyte interface, with a focus on identifying the relationship between additives in the composition of the working electrode, particle size and overall performance. We found that the energy storage capacity is primarily dependent on the binder additive in the composite; the best activity for this MOF is obtained with Nafion as a binder, owing tomore » its hydrophilic and ion conducting nature. Kynar-bound electrodes are clearly less effective, due to their hydrophobic character, which impedes wetting of the electrode. The binder-free systems show the poorest electrochemical activity. There is little difference in the overall performance as function of particle size (micro vs. nano), implying the storage capacities in this study are not limited by ionic and/or electronic conductivity. Excellent reversibility and high coulombic efficiency are achieved at higher potential ranges, observed after cycle 20. That is despite progressive capacity decay observed in the initial cycles. Importantly, structural analyses of cycled working electrodes confirm that the long range crystallinity remains mainly unaltered with cycling. These findings suggest that limited reversibility of the intercalated Na ions in the lower potential range, together with the gradual lack of available active sites in subsequent cycles is responsible for the rapid decay in capacity retention.« less

  16. Na intercalation in Fe-MIL-100 for aqueous Na-ion batteries

    DOE PAGES

    Chavez, James S.; Harrison, Katharine L.; Sava Gallis, Dorina F.

    2017-05-04

    Here we report for the first time the feasibility of using metal–organic frameworks (MOFs) as electrodes for aqueous Na-ion batteries. We show that Fe-MIL-100, a known redox-active MOF, is electrochemically active in a Na aqueous electrolyte, under various compositions. Emphasis was placed on investigating the electrode–electrolyte interface, with a focus on identifying the relationship between additives in the composition of the working electrode, particle size and overall performance. We found that the energy storage capacity is primarily dependent on the binder additive in the composite; the best activity for this MOF is obtained with Nafion as a binder, owing tomore » its hydrophilic and ion conducting nature. Kynar-bound electrodes are clearly less effective, due to their hydrophobic character, which impedes wetting of the electrode. The binder-free systems show the poorest electrochemical activity. There is little difference in the overall performance as function of particle size (micro vs. nano), implying the storage capacities in this study are not limited by ionic and/or electronic conductivity. Excellent reversibility and high coulombic efficiency are achieved at higher potential ranges, observed after cycle 20. That is despite progressive capacity decay observed in the initial cycles. Importantly, structural analyses of cycled working electrodes confirm that the long range crystallinity remains mainly unaltered with cycling. These findings suggest that limited reversibility of the intercalated Na ions in the lower potential range, together with the gradual lack of available active sites in subsequent cycles is responsible for the rapid decay in capacity retention.« less

  17. Ultrasmall TiO2 Nanoparticles in Situ Growth on Graphene Hybrid as Superior Anode Material for Sodium/Lithium Ion Batteries.

    PubMed

    Liu, Huiqiao; Cao, Kangzhe; Xu, Xiaohong; Jiao, Lifang; Wang, Yijing; Yuan, Huatang

    2015-06-03

    To inhibit the aggregation of TiO2 nanoparticles and to improve the electrochemical kinetics of TiO2 electrode, a hybrid material of ultrasmall TiO2 nanoparticles in situ grown on rGO nanosheets was obtained by ultraphonic and reflux methods. The size of the TiO2 particles was controlled about 10 nm, and these particles were evenly distributed across the rGO nanosheets. When used for the anode of a sodium ion battery, the electrochemical performance of this hybrid TiO2@rGO was much improved. A capacity of 186.6 mAh g(-1) was obtained after 100 cycles at 0.1 A g(-1), and 112.2 mAh g(-1) could be maintained at 1.0 A g(-1), showing a high capacity and good rate capability. On the basis of the analysis of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), the achieved excellent electrochemical performance was mainly attributed to the synergetic effect of well-dispersed ultrasmall TiO2 nanoparticles and conductive graphene network and the improved electrochemical kinetics. The superior electrochemical performance of this hybrid material on lithium storage further confirmed the positive effect of rGO.

  18. Reducing Iridium Loading in Oxygen Evolution Reaction Electrocatalysts Using Core–Shell Particles with Nitride Cores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tackett, Brian M.; Sheng, Wenchao; Kattel, Shyam

    Here, the oxygen evolution reaction (OER) has broad applications in electrochemical devices, but it often requires expensive and scarce Ir-based catalysts in acid electrolyte. Presented here is a framework to reduce Ir loading by combining core–shell iridium/metal nitride morphologies using in situ experiments and density functional theory (DFT) calculations. Several group VIII transition metal (Fe, Co, and Ni) nitrides are studied as core materials, with Ir/Fe 4N core–shell particles showing enhancement in both OER activity and stability. In situ X-ray absorption fine structure measurements are used to determine the structure and stability of the core–shell catalysts under OER conditions. DFTmore » calculations are used to demonstrate adsorbate binding energies as descriptors of the observed activity trends.« less

  19. Reducing Iridium Loading in Oxygen Evolution Reaction Electrocatalysts Using Core–Shell Particles with Nitride Cores

    DOE PAGES

    Tackett, Brian M.; Sheng, Wenchao; Kattel, Shyam; ...

    2018-02-16

    Here, the oxygen evolution reaction (OER) has broad applications in electrochemical devices, but it often requires expensive and scarce Ir-based catalysts in acid electrolyte. Presented here is a framework to reduce Ir loading by combining core–shell iridium/metal nitride morphologies using in situ experiments and density functional theory (DFT) calculations. Several group VIII transition metal (Fe, Co, and Ni) nitrides are studied as core materials, with Ir/Fe 4N core–shell particles showing enhancement in both OER activity and stability. In situ X-ray absorption fine structure measurements are used to determine the structure and stability of the core–shell catalysts under OER conditions. DFTmore » calculations are used to demonstrate adsorbate binding energies as descriptors of the observed activity trends.« less

  20. Electrochemical Catalyst-Support Effects and Their Stabilizing Role for IrOx Nanoparticle Catalysts during the Oxygen Evolution Reaction.

    PubMed

    Oh, Hyung-Suk; Nong, Hong Nhan; Reier, Tobias; Bergmann, Arno; Gliech, Manuel; Ferreira de Araújo, Jorge; Willinger, Elena; Schlögl, Robert; Teschner, Detre; Strasser, Peter

    2016-09-28

    Redox-active support materials can help reduce the noble-metal loading of a solid chemical catalyst while offering electronic catalyst-support interactions beneficial for catalyst durability. This is well known in heterogeneous gas-phase catalysis but much less discussed for electrocatalysis at electrified liquid-solid interfaces. Here, we demonstrate experimental evidence for electronic catalyst-support interactions in electrochemical environments and study their role and contribution to the corrosion stability of catalyst/support couples. Electrochemically oxidized Ir oxide nanoparticles, supported on high surface area carbons and oxides, were selected as model catalyst/support systems for the electrocatalytic oxygen evolution reaction (OER). First, the electronic, chemical, and structural state of the catalyst/support couple was compared using XANES, EXAFS, TEM, and depth-resolved XPS. While carbon-supported oxidized Ir particle showed exclusively the redox state (+4), the Ir/IrOx/ATO system exhibited evidence of metal/metal-oxide support interactions (MMOSI) that stabilized the metal particles on antimony-doped tin oxide (ATO) in sustained lower Ir oxidation states (Ir(3.2+)). At the same time, the growth of higher valent Ir oxide layers that compromise catalyst stability was suppressed. Then the electrochemical stability and the charge-transfer kinetics of the electrocatalysts were evaluated under constant current and constant potential conditions, where the analysis of the metal dissolution confirmed that the ATO support mitigates Ir(z+) dissolution thanks to a stronger MMOSI effect. Our findings raise the possibility that MMOSI effects in electrochemistry-largely neglected in the past-may be more important for a detailed understanding of the durability of oxide-supported nanoparticle OER catalysts than previously thought.

  1. Electrochemical systems configured to harvest heat energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seok Woo; Yang, Yuan; Ghasemi, Hadi

    Electrochemical systems for harvesting heat energy, and associated electrochemical cells and methods, are generally described. The electrochemical cells can be configured, in certain cases, such that at least a portion of the regeneration of the first electrochemically active material is driven by a change in temperature of the electrochemical cell. The electrochemical cells can be configured to include a first electrochemically active material and a second electrochemically active material, and, in some cases, the absolute value of the difference between the first thermogalvanic coefficient of the first electrochemically active material and the second thermogalvanic coefficient of the second electrochemically activemore » material is at least about 0.5 millivolts/Kelvin.« less

  2. Redox Active Polymers as Soluble Nanomaterials for Energy Storage.

    PubMed

    Burgess, Mark; Moore, Jeffrey S; Rodríguez-López, Joaquín

    2016-11-15

    It is an exciting time for exploring the synergism between the chemical and dimensional properties of redox nanomaterials for addressing the manifold performance demands faced by energy storage technologies. The call for widespread adoption of alternative energy sources requires the combination of emerging chemical concepts with redesigned battery formats. Our groups are interested in the development and implementation of a new strategy for nonaqueous flow batteries (NRFBs) for grid energy storage. Our motivation is to solve major challenges in NRFBs, such as the lack of membranes that simultaneously allow fast ion transport while minimizing redox active species crossover between anolyte (negative electrolyte) and catholyte (positive electrolyte) compartments. This pervasive crossover leads to deleterious capacity fade and materials underutilization. In this Account, we highlight redox active polymers (RAPs) and related polymer colloids as soluble nanoscopic energy storing units that enable the simple but powerful size-exclusion concept for NRFBs. Crossover of the redox component is suppressed by matching high molecular weight RAPs with simple and inexpensive nanoporous commercial separators. In contrast to the vast literature on the redox chemistry of electrode-confined polymer films, studies on the electrochemistry of solubilized RAPs are incipient. This is due in part to challenges in finding suitable solvents that enable systematic studies on high polymers. Here, viologen-, ferrocene- and nitrostyrene-based polymers in various formats exhibit properties that make amenable their electrochemical exploration as solution-phase redox couples. A main finding is that RAP solutions store energy efficiently and reversibly while offering chemical modularity and size versatility. Beyond the practicality toward their use in NRFBs, the fundamental electrochemistry exhibited by RAPs is fascinating, showing clear distinctions in behavior from that of small molecules. Whereas RAPs conveniently translate the redox properties of small molecules into a nanostructure, they give rise to charge transfer mechanisms and electrolyte interactions that elicit distinct electrochemical responses. To understand how the electrochemical characteristics of RAPs depend on molecular features, including redox moiety, macromolecular size, and backbone structure, a range of techniques has been employed by our groups, including voltammetry at macro- and microelectrodes, rotating disk electrode voltammetry, bulk electrolysis, and scanning electrochemical microscopy. RAPs rely on three-dimensional charge transfer within their inner bulk, which is an efficient process and allows quantitative electrolysis of particles of up to ∼800 nm in radius. Interestingly, we find that interactions between neighboring pendants create unique opportunities for fine-tuning their electrochemical reactivity. Furthermore, RAP interrogation toward the single particle limit promises to shed light on fundamental charge storage mechanisms.

  3. Structure and properties of composite iron-based coatings obtained by the electromechanical technique

    NASA Astrophysics Data System (ADS)

    Dubinskii, N. A.

    2007-09-01

    The influence of the electrolyte temperature and current density on the content of inclusions of powder particles in composite coatings obtained by the electrochemical technique has been investigated. It has been found that the wear resistance of iron coatings with inclusions of powder particles of aluminum, kaolin, and calcium silicate increases from 5 to 10 times compared to coating without inclusions of disperse particles, and the friction coefficient therewith decreases from 0.097 to 0.026. It has been shown that the mechanical properties of iron obtained by the method of electrochemical deposition depend on their fine structure. The regimes of deposition of iron-based coatings have been optimized.

  4. Studies of Aqueous and Non-Aqueous Electrochemical Interface for Applications in Microelectronic and Energy Storage Systems

    NASA Astrophysics Data System (ADS)

    Zheng, Jianping

    Various electrochemical techniques were utilized to study a wide range of electrochemical systems in this dissertation. Mainly they are grouped in three sections: 1) the conventional metal-aqueous systems for new applications in modern microelectronic devices, 2) unconventional ceramic-organic systems for applications in Li-ion batteries and 3) novel systems composed of ionic liquids and carbon series electrodes. The objects are to probe the electrochemical/chemical reactions and interfacial structures, which are the common features of the aforementioned systems. This dissertation mainly focuses on experimental aspects, however, some theories and new models used to elucidate the experiment data have also been developed and presented. Some new experimental techniques have been explored and their limitations and validity have also been discussed. Oxalic acid (OA)-based nonalkaline solutions with H2O 2 are found to support chemically mediated removal of Ta-oxide surface films on Ta. The associated surface reactions are critical for chemical mechanical planarization (CMP) of Ta barrier. In chapter 4, a Ta coupon electrode is used as a model system in abrasive-free solutions of OA and H2O 2, where the chemical component of CMP is selectively examined. In chapter 5, electrochemical impedance spectroscopy (EIS) is employed to study the competitive reactions of surface corrosion and passivating film formation on a Cu-rotating disc electrode (RDE) in pH-adjusted solutions of H2O2, acetic acid (HAc) and ammonium dodecyl sulfate (ADS). Micrometric LiMn2O4 particles are mechano-chemically modified by ball-milling to obtain a mixture of nano- and micro-scale particles. In chapter 6, this mixture is tested as a potential active cathode material for rapid-charge Li ion batteries, and also as a model system for studying the detailed kinetics of Li intercalation/de-intercalation in such electrodes. In chapter 7, cyclic voltammetry (CV) and EIS are compared as techniques for analyzing double layer capacitances of ionic liquids (ILs) at the surfaces of two carbon-based electrodes. These systems are relevant for energy storage supercapacitors and often are associated with unconventional electrochemical properties. In chapter 8, the electrochemical interfaces of a glassy carbon (GC) and a carbon nanotube (CNT) paper electrode have been studied in EmimBF 4 and BmimBF4 ILs using CV and EIS.

  5. Composite electrodes of activated carbon derived from cassava peel and carbon nanotubes for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Taer, E.; Iwantono, Yulita, M.; Taslim, R.; Subagio, A.; Salomo, Deraman, M.

    2013-09-01

    In this paper, a composite electrode was prepared from a mixture of activated carbon derived from precarbonization of cassava peel (CP) and carbon nanotubes (CNTs). The activated carbon was produced by pyrolysis process using ZnCl2 as an activation agent. A N2 adsorption-desorption analysis for the sample indicated that the BET surface area of the activated carbon was 1336 m2 g-1. Difference percentage of CNTs of 0, 5, 10, 15 and 20% with 5% of PVDF binder were added into CP based activated carbon in order to fabricate the composite electrodes. The morphology and structure of the composite electrodes were investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The SEM image observed that the distribution of CNTs was homogeneous between carbon particles and the XRD pattern shown the amorphous structure of the sample. The electrodes were fabricated for supercapacitor cells with 316L stainless steel as current collector and 1 M sulfuric acid as electrolyte. An electrochemical characterization was performed by using an electrochemical impedance spectroscopy (EIS) method using a Solatron 1286 instrument and the addition of CNTs revealed to improve the resistant and capacitive properties of supercapacitor cell.

  6. A simplified approach to predict performance degradation of a solid oxide fuel cell anode

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Zubair; Mehran, Muhammad Taqi; Song, Rak-Hyun; Lee, Jong-Won; Lee, Seung-Bok; Lim, Tak-Hyoung

    2018-07-01

    The agglomeration of nickel (Ni) particles in a Ni-cermet anode is a significant degradation phenomenon for solid oxide fuel cells (SOFCs). This work aims to predict the performance degradation of SOFCs due to Ni grain growth by using a simplified approach. Accelerated aging of Ni-scandia stabilized zirconia (SSZ) as an SOFC anode is carried out at 900 °C and subsequent microstructural evolution is investigated every 100 h up to 1000 h using scanning electron microscopy (SEM). The resulting morphological changes are quantified using a two-dimensional image analysis technique that yields the particle size, phase proportion, and triple phase boundary (TPB) point distribution. The electrochemical properties of an anode-supported SOFC are characterized using electrochemical impedance spectroscopy (EIS). The changes of particle size and TPB length in the anode as a function of time are in excellent agreement with the power-law coarsening model. This model is further combined with an electrochemical model to predict the changes in the anode polarization resistance. The predicted polarization resistances are in good agreement with the experimentally obtained values. This model for prediction of anode lifetime provides deep insight into the time-dependent Ni agglomeration behavior and its impact on the electrochemical performance degradation of the SOFC anode.

  7. Shape Modification and Size Classification of Microcrystalline Graphite Powder as Anode Material for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Wang, Cong; Gai, Guosheng; Yang, Yufen

    2018-03-01

    Natural microcrystalline graphite (MCG) composed of many crystallites is a promising new anode material for lithium-ion batteries (LiBs) and has received considerable attention from researchers. MCG with narrow particle size distribution and high sphericity exhibits excellent electrochemical performance. A nonaddition process to prepare natural MCG as a high-performance LiB anode material is described. First, raw MCG was broken into smaller particles using a pulverization system. Then, the particles were modified into near-spherical shape using a particle shape modification system. Finally, the particle size distribution was narrowed using a centrifugal rotor classification system. The products with uniform hemispherical shape and narrow size distribution had mean particle size of approximately 9 μm, 10 μm, 15 μm, and 20 μm. Additionally, the innovative pilot experimental process increased the product yield of the raw material. Finally, the electrochemical performance of the prepared MCG was tested, revealing high reversible capacity and good cyclability.

  8. Controllable synthesis of Co3O4 nanocrystals as efficient catalysts for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Li, Baoying; Zhang, Yihe; Du, Ruifeng; Liu, Lei; Yu, Xuelian

    2018-03-01

    The electrochemical oxygen reduction reaction (ORR) has received great attention due to its importance in fuel cells and metal-air batteries. Here, we present a simple approach to prepare non-noble metal catalyst-Co3O4 nanocrystals (NCs). The particle size and shape were simply controlled by different types and concentrations of metal precursor. Furthermore, different sizes and shapes of Co3O4 NCs are explored as electrocatalysts for ORR, and it has been observed that particles with a similar shape, and smaller particle size led to greater catalytic current densities because of the greater surface area. For particles with a comparable size, the shape or crystalline structure governed the activity of the electrocatalytic reactions. Most importantly, the 9 nm-Co3O4 were demonstrated to act as low-cost catalysts for the ORR with a similar performance to that of Pt catalysts.

  9. Synthesis and electrochemical characterization of TixTayAlzN1-δOγ for fuel cell catalyst supports

    NASA Astrophysics Data System (ADS)

    Wakabayashi, Ryo H.; Abruña, Héctor D.; DiSalvo, Francis J.

    2017-02-01

    Quinary TixTayAlzN1-δOγ of various compositions have been prepared by a co-precipitation method followed by ammonolysis. The nitride samples were examined as potential catalyst supports in polymer electrolyte membrane fuel cells. The nitride products crystallized in the rock salt (NaCl) structure over a wide range of compositions. The addition of Ta and Al was highly beneficial towards improving the chemical and electrochemical stability of TiN, without a significant loss of electrical conductivity. Platinum particles were successfully deposited on the (oxy)nitride samples, and the composite samples at some compositions were found to be comparable to Pt/carbon in their stability and catalytic activity even without optimizing the Pt deposition and dispersion processes.

  10. Pseudocapacitive Behaviors of Li2FeTiO4/C Hybrid Porous Nanotubes for Novel Lithium-Ion Battery Anodes with Superior Performances.

    PubMed

    Tang, Yakun; Liu, Lang; Zhao, Hongyang; Zhang, Yue; Kong, Ling Bing; Gao, Shasha; Li, Xiaohui; Wang, Lei; Jia, Dianzeng

    2018-06-20

    Hybrid nanotubes of cation disordered rock salt structured Li 2 FeTiO 4 nanoparticles embedded in porous CNTs were developed. Such unique hybrids with continuous 3D electron transportation paths and isolated small particles have been shown to be an ideal architecture that brought out enhanced electrochemical performances. Meanwhile, they exhibited improved extrinsic capacitive characteristics. In addition, we demonstrate a successful example to use cathode active material as anode for lithium-ion batteries (LIBs). More importantly, our hybrids had much superior electrochemical performances than most of the reported Li 4 Ti 5 O 12 -based nanocomposites. Therefore, it is concluded that Li 2 FeTiO 4 can be a prospective anode material for LIBs.

  11. Processing of Onion-like Carbon for Electrochemical Capacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Aken, Katherine L.; Maleski, Kathleen; Mathis, Tyler S.

    Multi-shell fullerenes known as onion-like carbon (OLC) are especially attractive in applications relative to energy storage, such as electrochemical capacitors, due to a near-spherical shape of particles, their nanoscale diameters and high conductivity leading to fast rate performance. Because of this, onion-like carbon can be fabricated into electrodes, used as a conductive additive, and may have potential in composites and additive manufacturing. However due to agglomeration of OLC particles, creating a stable, aqueous dispersion for ink production or formulating composites proves challenging. Also, we explore how attrition milling, acid treatment, and probe sonication can be employed to decrease agglomeration andmore » provide colloidal stability in aqueous media. We also investigate how the electrochemical performance changes with each processing step as well as the treatments in succession. When tested in electrochemical capacitors, the processing increases the capacitance by a factor of three, due to an added pseudocapacitive contribution which is not present in untreated OLC. As a result, the processing of OLC proves to be advantageous for the production of stable, aqueous solutions, which also exhibit improved electrochemical properties suitable for functional inks, conductive additives, and fabrication of composite electrodes.« less

  12. Conductive polymer/reduced graphene oxide/Au nano particles as efficient composite materials in electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Shabani Shayeh, J.; Ehsani, A.; Ganjali, M. R.; Norouzi, P.; Jaleh, B.

    2015-10-01

    Polyaniline/reduced graphene oxide/Au nano particles (PANI/rGO/AuNPs) as a hybrid supercapacitor were deposited on a glassy carbon electrode (GCE) by cyclic voltammetry (CV) method as ternary composites and their electrochemical performance was evaluated in acidic medium. Scanning electron micrographs clearly revealed the formation of nanocomposites on the surface of the working electrode. Scanning electron micrographs (SEM) clearly revealed the formation of nanocomposites on the surface of working electrode. Different electrochemical methods including galvanostatic charge-discharge (CD) experiments, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were carried out in order to investigate the applicability of the system as a supercapacitor. Based on the cyclic voltammogram results obtained, PANI/rGO/AuNPs gave higher specific capacitance, power and energy values than PANI at a current density of 1 mA cm-2. Specific capacitance (SC) of PANI and PANI/rGO/AuNPs electrodes calculated using CV method are 190 and 303 F g-1, respectively. The present study introduces new nanocomposite materials for electrochemical redox capacitors with advantages including long life cycle and stability due to synergistic effects of each component.

  13. Preparation of Ce- and La-Doped Li4Ti5O12 Nanosheets and Their Electrochemical Performance in Li Half Cell and Li4Ti5O12/LiFePO4 Full Cell Batteries

    PubMed Central

    Qin, Meng; Li, Yueming; Lv, Xiao-Jun

    2017-01-01

    This work reports on the synthesis of rare earth-doped Li4Ti5O12 nanosheets with high electrochemical performance as anode material both in Li half and Li4Ti5O12/LiFePO4 full cell batteries. Through the combination of decreasing the particle size and doping by rare earth atoms (Ce and La), Ce and La doped Li4Ti5O12 nanosheets show the excellent electrochemical performance in terms of high specific capacity, good cycling stability and excellent rate performance in half cells. Notably, the Ce-doped Li4Ti5O12 shows good electrochemical performance as anode in a full cell which LiFePO4 was used as cathode. The superior electrochemical performance can be attributed to doping as well as the nanosized particle, which facilitates transportation of the lithium ion and electron transportation. This research shows that the rare earth doped Li4Ti5O12 nanosheets can be suitable as a high rate performance anode material in lithium-ion batteries. PMID:28632167

  14. Processing of Onion-like Carbon for Electrochemical Capacitors

    DOE PAGES

    Van Aken, Katherine L.; Maleski, Kathleen; Mathis, Tyler S.; ...

    2017-02-04

    Multi-shell fullerenes known as onion-like carbon (OLC) are especially attractive in applications relative to energy storage, such as electrochemical capacitors, due to a near-spherical shape of particles, their nanoscale diameters and high conductivity leading to fast rate performance. Because of this, onion-like carbon can be fabricated into electrodes, used as a conductive additive, and may have potential in composites and additive manufacturing. However due to agglomeration of OLC particles, creating a stable, aqueous dispersion for ink production or formulating composites proves challenging. Also, we explore how attrition milling, acid treatment, and probe sonication can be employed to decrease agglomeration andmore » provide colloidal stability in aqueous media. We also investigate how the electrochemical performance changes with each processing step as well as the treatments in succession. When tested in electrochemical capacitors, the processing increases the capacitance by a factor of three, due to an added pseudocapacitive contribution which is not present in untreated OLC. As a result, the processing of OLC proves to be advantageous for the production of stable, aqueous solutions, which also exhibit improved electrochemical properties suitable for functional inks, conductive additives, and fabrication of composite electrodes.« less

  15. High strength porous support tubes for high temperature solid electrolyte electrochemical cells

    DOEpatents

    Rossing, Barry R.; Zymboly, Gregory E.

    1986-01-01

    A high temperature, solid electrolyte electrochemical cell is made, having an electrode and a solid electrolyte disposed on a porous, sintered support material containing thermally stabilized zirconia powder particles and from about 3 wt. % to about 45 wt. % of thermally stable oxide fibers.

  16. Electrochemical surface modification of titanium in dentistry.

    PubMed

    Kim, Kyo-Han; Ramaswamy, Narayanan

    2009-01-01

    Titanium and its alloys have good biocompatibility with body cells and tissues and are widely used for implant applications. However, clinical procedures place more stringent and tough requirements on the titanium surface necessitating artificial surface treatments. Among the many methods of titanium surface modification, electrochemical techniques are simple and cheap. Anodic oxidation is the anodic electrochemical technique while electrophoretic and cathodic depositions are the cathodic electrochemical techniques. By anodic oxidation it is possible to obtain desired roughness, porosity and chemical composition of the oxide. Anodic oxidation at high voltages can improve the crystallinity of the oxide. The chief advantage of this technique is doping of the coating of the bath constituents and incorporation of these elements improves the properties of the oxide. Electrophoretic deposition uses hydroxyapatite (HA) powders dispersed in a suitable solvent at a particular pH. Under these operating conditions these particles acquire positive charge and coatings are obtained on the cathodic titanium by applying an external electric field. These coatings require a post-sintering treatment to improve the coating properties. Cathodic deposition is another type of electrochemical method where HA is formed in situ from an electrolyte containing calcium and phosphate ions. It is also possible to alter structure and/or chemistry of the obtained deposit. Nano-grained HA has higher surface energy and greater biological activity and therefore emphasis is being laid to produce these coatings by cathodic deposition.

  17. Electrochemically protected copper(I)-catalyzed azide-alkyne cycloaddition.

    PubMed

    Hong, Vu; Udit, Andrew K; Evans, Richard A; Finn, M G

    2008-06-16

    The copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction has found broad application in myriad fields. For the most demanding applications that require high yields at low substrate concentrations, highly active but air-sensitive copper complexes must be used. We describe here the use of an electrochemical potential to maintain catalysts in the active Cu(I) oxidation state in the presence of air. This simple procedure efficiently achieves excellent yields of CuAAC products from both small-molecule and protein substrates without the use of potentially damaging chemical reducing agents. A new water-soluble carboxylated version of the popular tris(benzyltriazolylmethyl)amine (TBTA) ligand is also described. Cyclic voltammetry revealed reversible or quasi-reversible electrochemical redox behavior of copper complexes of the TBTA derivative (2; E(1/2)=60 mV vs. Ag/AgCl), sulfonated bathophenanthroline (3; E(1/2)=-60 mV), and sulfonated tris(benzimidazoylmethyl)amine (4; E(1/2) approximately -70 mV), and showed catalytic turnover to be rapid relative to the voltammetry time scale. Under the influence of a -200 mV potential that was established by using a reticulated vitreous carbon working electrode, CuSO4 and 3 formed a superior catalyst. Electrochemically protected bioconjugations in air were performed by using bacteriophage Qbeta that was derivatized with azide moieties at surface lysine residues. Complete derivatization of more than 600 reactive sites per particle was demonstrated within 12 h of electrolysis with substoichiometric quantities of Cu3.

  18. Characterization of Electrochemically Generated Silver

    NASA Technical Reports Server (NTRS)

    Adam, Niklas; Martinez, James; Carrier, Chris

    2014-01-01

    Silver biocide offers a potential advantage over iodine, the current state of the art in US spacecraft disinfection technology, in that silver can be safely consumed by the crew. Low concentrations of silver (<500 ppb) have been shown to kill bacteria in water systems and keep it safe for potability. Silver does not require hardware to remove it from a water system, and therefore can provide a simpler means for disinfecting water. The Russian segment of the International Space Station has utilized an electrochemically generated silver solution, which is colloidal in nature. To be able to reliably provide a silver biocide to drinking water by electrochemical means would reduce mass required for removing another biocide such as iodine from the water. This would also aid in crew time required to replace iodine removal cartridges. Future long term missions would benefit from electrochemically produced silver as the biocide could be produced on demand and requires only a small concentration to be effective. Since it can also be consumed safely, there is less mass in removal hardware and little consumables required for production. The goal of this project initially is to understand the nature of the electrochemically produced silver, the particle sizes produced by the electrochemical cell and the effect that voltage adjustment has on the particle size. In literature, it has been documented that dissolved oxygen and pH have an effect on the ionization of the electrochemical silver so those parameters would be measured and possibly adjusted to understand their effect on the silver.

  19. Electrochemical Method of Making Porous Particles Using a Constant Current Density

    NASA Technical Reports Server (NTRS)

    Ferrari, Mauro (Inventor); Cheng, Ming-Cheng (Inventor); Liu, Xuewu (Inventor)

    2014-01-01

    Provided is a particle that includes a first porous region and a second porous region that differs from the first porous region. Also provided is a particle that has a wet etched porous region and that does have a nucleation layer associated with wet etching. Methods of making porous particles are also provided.

  20. Activated alumina preparation and characterization: The review on recent advancement

    NASA Astrophysics Data System (ADS)

    Rabia, A. R.; Ibrahim, A. H.; Zulkepli, N. N.

    2018-03-01

    Aluminum and aluminum based material are significant industrial materials synthesis because of their abandonment, low weight and high-quality corrosion resistance. The most advances in aluminum processing are the ability to synthesize it's under suitable chemical composition and conditions, a porous structure can be formed on the surface. Activated alumina particles (AAP) synthesized by the electrochemically process from aluminum have gained serious attention, inexpensive material that can be employed for water filtration due to its active surface. Thus, the paper present a review study based on recent progress and advances in synthesizing activated alumina, various techniques currently being used in preparing activated alumina and its characteristics are studied and summarized

  1. Chemically modified graphite for electrochemical cells

    DOEpatents

    Greinke, R.A.; Lewis, I.C.

    1998-05-26

    This invention relates to chemically modified graphite particles: (a) that are useful in alkali metal-containing electrode of a electrochemical cell comprising: (1) the electrode, (2) a non-aqueous electrolytic solution comprising an organic aprotic solvent which solvent tends to decompose when the electrochemical cell is in use, and an electrically conductive salt of an alkali metal, and (3) a counter electrode; and (b) that are chemically modified with fluorine, chlorine, iodine or phosphorus to reduce such decomposition. This invention also relates to electrodes comprising such chemically modified graphite and a binder and to electrochemical cells containing such electrodes. 3 figs.

  2. Chemically modified graphite for electrochemical cells

    DOEpatents

    Greinke, Ronald Alfred; Lewis, Irwin Charles

    1998-01-01

    This invention relates to chemically modified graphite particles: (a) that are useful in alkali metal-containing electrode of a electrochemical cell comprising: (i) the electrode, (ii) a non-aqueous electrolytic solution comprising an organic aprotic solvent which solvent tends to decompose when the electrochemical cell is in use, and an electrically conductive salt of an alkali metal, and (iii) a counterelectrode; and (b) that are chemically modified with fluorine, chlorine, iodine or phosphorus to reduce such decomposition. This invention also relates to electrodes comprising such chemically modified graphite and a binder and to electrochemical cells containing such electrodes.

  3. Selectively-etched nanochannel electrophoretic and electrochemical devices

    DOEpatents

    Surh, Michael P.; Wilson, William D.; Barbee, Jr., Troy W.; Lane, Stephen M.

    2004-11-16

    Nanochannel electrophoretic and electrochemical devices having selectively-etched nanolaminates located in the fluid transport channel. The normally flat surfaces of the nanolaminate having exposed conductive (metal) stripes are selectively-etched to form trenches and baffles. The modifications of the prior utilized flat exposed surfaces increase the amount of exposed metal to facilitate electrochemical redox reaction or control the exposure of the metal surfaces to analytes of large size. These etched areas variously increase the sensitivity of electrochemical detection devices to low concentrations of analyte, improve the plug flow characteristic of the channel, and allow additional discrimination of the colloidal particles during cyclic voltammetry.

  4. Selectively-etched nanochannel electrophoretic and electrochemical devices

    DOEpatents

    Surh, Michael P [Livermore, CA; Wilson, William D [Pleasanton, CA; Barbee, Jr., Troy W.; Lane, Stephen M [Oakland, CA

    2006-06-27

    Nanochannel electrophoretic and electrochemical devices having selectively-etched nanolaminates located in the fluid transport channel. The normally flat surfaces of the nanolaminate having exposed conductive (metal) stripes are selectively-etched to form trenches and baffles. The modifications of the prior utilized flat exposed surfaces increase the amount of exposed metal to facilitate electrochemical redox reaction or control the exposure of the metal surfaces to analytes of large size. These etched areas variously increase the sensitivity of electrochemical detection devices to low concentrations of analyte, improve the plug flow characteristic of the channel, and allow additional discrimination of the colloidal particles during cyclic voltammetry.

  5. Overcoming the Instability of Nanoparticle-Based Catalyst Films in Alkaline Electrolyzers by using Self-Assembling and Self-Healing Films.

    PubMed

    Barwe, Stefan; Masa, Justus; Andronescu, Corina; Mei, Bastian; Schuhmann, Wolfgang; Ventosa, Edgar

    2017-07-10

    Engineering stable electrodes using highly active catalyst nanopowders for electrochemical water splitting remains a challenge. We report an innovative and general approach for attaining highly stable catalyst films with self-healing capability based on the in situ self-assembly of catalyst particles during electrolysis. The catalyst particles are added to the electrolyte forming a suspension that is pumped through the electrolyzer. Particles with negatively charged surfaces stick onto the anode, while particles with positively charged surfaces stick to the cathode. The self-assembled catalyst films have self-healing properties as long as sufficient catalyst particles are present in the electrolyte. The proof-of-concept was demonstrated in a non-zero gap alkaline electrolyzer using NiFe-LDH and Ni x B catalyst nanopowders for anode and cathode, respectively. Steady cell voltages were maintained for at least three weeks during continuous electrolysis at 50-100 mA cm -2 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Synthesis, characterization and optimization of platinum-alloy nanoparticle catalysts in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Srivastava, Ratndeep

    Renewable hydrogen-fuelled proton exchange membrane (PEMFC) fuel cells have consistently demonstrated great promise as a future source of energy due to their high conversion efficiency, lower temperature of operation and lack of greenhouse emissions. One of the major impediments in the commercialization of polymer electrolyte membrane fuel cells is the insufficient catalytic reactivity and higher cost of Pt electrocatalysts which are utilized for the electroreduction of oxygen from air. This dissertation focuses primarily on a family of Pt alloy fuel cell electrocatalysts referred to as de-alloyed core-shell electrocatalysts. These materials are bimetallic or multimetallic nanoparticles, mostly supported on conductive supports which were first described in a dissertation by Dr. S. Koh earlier in 2009.1 De-alloyed Pt nanoparticle electrocatalysts are formed from base metal rich binary Pt-M and ternary Pt-M1-M 2 (M, M1, M2 = Cu, Co, Ni, Fe and Cr) alloy nanoparticle precursors. The precursors are transformed and activated by electrochemical selective dissolution of the less noble metal component of the precursors (de-alloying). They have shown exceptional activity for oxygen reduction reaction (ORR) in idealized electrochemical half cell measurements, in particular rotating disk electrode experiments. However, these materials were never tested or implemented in realistic Membrane Electrode Assemblies (MEA) and single PEM fuel cells. The objective of this work was to implement de-alloyed Pt particle catalysts in realistic fuel cell electrode layers as well as a detailed characterization of their behavior and stability. The major challenges of MEA implementation consists of the behavior of the new nanostructured electrocatalysts inside the complex three-phase interface of polymer membrane ionomer, liquid water, metal catalyst, support, and reactant gas. Activity measurements were followed by medium and long-term durability analysis by potential cycling of the membrane electrode assemblies to high potentials. These de-alloyed catalysts show improved resistance to electro-chemical surface area degradation as compared to state of the art available commercial Pt/C catalysts. TEM imaging with combination of electrochemical characterization helps in determining the mechanisms for particle growth and failures. Anomalous small angle x-ray scattering (ASAXS) and x-ray diffraction (XRD) techniques were also used in the characterization of these materials.

  7. Single wall carbon nanotube supports for portable direct methanol fuel cells.

    PubMed

    Girishkumar, G; Hall, Timothy D; Vinodgopal, K; Kamat, Prashant V

    2006-01-12

    Single-wall and multiwall carbon nanotubes are employed as carbon supports in direct methanol fuel cells (DMFC). The morphology and electrochemical activity of single-wall and multiwall carbon nanotubes obtained from different sources have been examined to probe the influence of carbon support on the overall performance of DMFC. The improved activity of the Pt-Ru catalyst dispersed on carbon nanotubes toward methanol oxidation is reflected as a shift in the onset potential and a lower charge transfer resistance at the electrode/electrolyte interface. The evaluation of carbon supports in a passive air breathing DMFC indicates that the observed power density depends on the nature and source of carbon nanostructures. The intrinsic property of the nanotubes, dispersion of the electrocatalyst and the electrochemically active surface area collectively influence the performance of the membrane electrode assembly (MEA). As compared to the commercial carbon black support, single wall carbon nanotubes when employed as the support for anchoring the electrocatalyst particles in the anode and cathode sides of MEA exhibited a approximately 30% enhancement in the power density of a single stack DMFC operating at 70 degrees C.

  8. One-step electrochemical deposition of Schiff base cobalt complex as effective water oxidation catalyst

    NASA Astrophysics Data System (ADS)

    Huang, Binbin; Wang, Yan; Zhan, Shuzhong; Ye, Jianshan

    2017-02-01

    Schiff base metal complexes have been applied in many fields, especially, a potential homogeneous catalyst for water splitting. However, the high overpotential, time consumed synthesis process and complicated working condition largely limit their application. In the present work, a one-step approach to fabricate Schiff base cobalt complex modified electrode is developed. Microrod clusters (MRC) and rough spherical particles (RSP) can be obtained on the ITO electrode through different electrochemical deposition condition. Both of the MRC and RSP present favorable activity for oxygen evolution reaction (OER) compared to the commercial Co3O4, taking an overpotential of 650 mV and 450 mV to drive appreciable catalytic current respectively. The highly active and stable RSP shows a Tafel plot of 84 mV dec-1 and negligible decrease of the current density for 12 h bulk electrolysis. The synthesis strategy of effective and stable catalyst in this work provide a simple method to fabricate heterogeneous OER catalyst with Schiff base metal complex.

  9. From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties

    PubMed Central

    Byers, Chad P.; Zhang, Hui; Swearer, Dayne F.; Yorulmaz, Mustafa; Hoener, Benjamin S.; Huang, Da; Hoggard, Anneli; Chang, Wei-Shun; Mulvaney, Paul; Ringe, Emilie; Halas, Naomi J.; Nordlander, Peter; Link, Stephan; Landes, Christy F.

    2015-01-01

    The optical properties of metallic nanoparticles are highly sensitive to interparticle distance, giving rise to dramatic but frequently irreversible color changes. By electrochemical modification of individual nanoparticles and nanoparticle pairs, we induced equally dramatic, yet reversible, changes in their optical properties. We achieved plasmon tuning by oxidation-reduction chemistry of Ag-AgCl shells on the surfaces of both individual and strongly coupled Au nanoparticle pairs, resulting in extreme but reversible changes in scattering line shape. We demonstrated reversible formation of the charge transfer plasmon mode by switching between capacitive and conductive electronic coupling mechanisms. Dynamic single-particle spectroelectrochemistry also gave an insight into the reaction kinetics and evolution of the charge transfer plasmon mode in an electrochemically tunable structure. Our study represents a highly useful approach to the precise tuning of the morphology of narrow interparticle gaps and will be of value for controlling and activating a range of properties such as extreme plasmon modulation, nanoscopic plasmon switching, and subnanometer tunable gap applications. PMID:26665175

  10. Cytotoxic effect of galvanically coupled magnesium-titanium particles.

    PubMed

    Kim, Jua; Gilbert, Jeremy L

    2016-01-01

    Recent work has shown that reduction reactions at metallic biomaterial surfaces can induce significant killing of cells in proximity to the surface. To exploit this phenomenon for therapeutic purposes, for example, for cancer tumor killing or antibacterial effects (amongst other applications), magnesium metal particles, galvanically coupled to titanium by sputtering, have been evaluated for their cell-killing capability (i.e. cytotoxicity). Magnesium (Mg) particles large enough to prevent particle phagocytosis were investigated, so that only electrochemical reactions, and not particle toxicity per se, caused cytotoxic effects. Titanium (Ti) coated magnesium particles, as well as magnesium-only particles were introduced into MC3T3-E1 mouse pre-osteoblast cell cultures over a range of particle concentrations, and cells were observed to die in a dosage-dependent manner. Ti-coated magnesium particles killed more cells at lower particle concentration than magnesium alone (P<0.05), although the pH measured for magnesium and magnesium-titanium had no significant difference at similar particle concentrations. Complete cell killing occurred at 750μg/ml and 1500μg/ml for Mg-Ti and Mg, respectively. Thus, this work demonstrates that galvanically coupled Mg-Ti particles have a significant cell killing capability greater than Mg alone. In addition, when the pH associated with complete killing with particles was created using NaOH only (no particles), then the percentage of cells killed was significantly less (P<0.05). Together, these findings show that pH is not the sole factor associated with cell killing and that the electrochemical reactions, including the reduction reactions, play an important role. Reduction reactions on galvanically coupled Mg-Ti and Mg particles may generate reactive oxygen intermediates that are able to kill cells in close proximity to the particles and this approach may lead to potential therapies for infection and cancer. This paper demonstrates that during active corrosion of both Mg and Mg-Ti particles cells cultured with the particles are killed in a dose-dependent particle concentration fashion. Additionally, galvanically-coupled magnesium-titanium microparticles kill cells more effectively than magnesium particles alone. The killing effect was shown to not be due to pH shifts since no differences were seen for different particle types and pH adjusted medium without particles did not exhibit the same level of killing. The significance of this work is the recognition of this killing effect with Mg particles and the potential therapeutic applications in infection control and cancer treatment that this process may provide. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Effects of Ni particle morphology on cell performance of Na/NiCl2 battery

    NASA Astrophysics Data System (ADS)

    Kim, Mangi; Ahn, Cheol-Woo; Hahn, Byung-Dong; Jung, Keeyoung; Park, Yoon-Cheol; Cho, Nam-ung; Lee, Heesoo; Choi, Joon-Hwan

    2017-11-01

    Electrochemical reaction of Ni particle, one of active cathode materials in the Na/NiCl2 battery, occurs on the particle surface. The NiCl2 layer formed on the Ni particle surface during charging can disconnect the electron conduction path through Ni particles because the NiCl2 layer has very low conductivity. The morphology and size of Ni particles, therefore, need to be controlled to obtain high charge capacity and excellent cyclic retention. Effects of the Ni particle size on the cell performance were investigated using spherical Ni particles with diameters of 0.5 μm, 6 μm, and 50 μm. The charge capacities of the cells with spherical Ni particles increased when the Ni particle size becomes smaller because of their higher surface area but their charge capacities were significantly decreased with increasing cyclic tests owing to the disconnection of electron conduction path. The inferior cyclic retention of charge capacity was improved using reticular Ni particles which maintained the reliable connection for the electron conduction in the Na/NiCl2 battery. The charge capacity of the cell with the reticular Ni particles was higher than the cell with the small-sized spherical Ni particles approximately by 26% at 30th cycle.

  12. Method for removing strongly adsorbed surfactants and capping agents from metal to facilitate their catalytic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adzic, Radoslav R.; Gong, Kuanping; Cai, Yun

    A method of synthesizing activated electrocatalyst, preferably having a morphology of a nanostructure, is disclosed. The method includes safely and efficiently removing surfactants and capping agents from the surface of the metal structures. With regard to metal nanoparticles, the method includes synthesis of nanoparticle(s) in polar or non-polar solution with surfactants or capping agents and subsequent activation by CO-adsorption-induced surfactant/capping agent desorption and electrochemical oxidation. The method produces activated macroparticle or nanoparticle electrocatalysts without damaging the surface of the electrocatalyst that includes breaking, increasing particle thickness or increasing the number of low coordination sites.

  13. Graphene nanocomposites for electrochemical cell electrodes

    DOEpatents

    Zhamu, Aruna; Jang, Bor Z.; Shi, Jinjun

    2015-11-19

    A composite composition for electrochemical cell electrode applications, the composition comprising multiple solid particles, wherein (a) a solid particle is composed of graphene platelets dispersed in or bonded by a first matrix or binder material, wherein the graphene platelets are not obtained from graphitization of the first binder or matrix material; (b) the graphene platelets have a length or width in the range of 10 nm to 10 .mu.m; (c) the multiple solid particles are bonded by a second binder material; and (d) the first or second binder material is selected from a polymer, polymeric carbon, amorphous carbon, metal, glass, ceramic, oxide, organic material, or a combination thereof. For a lithium ion battery anode application, the first binder or matrix material is preferably amorphous carbon or polymeric carbon. Such a composite composition provides a high anode capacity and good cycling response. For a supercapacitor electrode application, the solid particles preferably have meso-scale pores therein to accommodate electrolyte.

  14. Effect of intermetallic phases on the anodic oxidation and corrosion of 5A06 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Li, Song-mei; Li, Ying-dong; Zhang, You; Liu, Jian-hua; Yu, Mei

    2015-02-01

    Intermetallic phases were found to influence the anodic oxidation and corrosion behavior of 5A06 aluminum alloy. Scattered intermetallic particles were examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) after pretreatment. The anodic film was investigated by transmission electron microscopy (TEM), and its corrosion resistance was analyzed by electrochemical impedance spectroscopy (EIS) and Tafel polarization in NaCl solution. The results show that the size of Al-Fe-Mg-Mn particles gradually decreases with the iron content. During anodizing, these intermetallic particles are gradually dissolved, leading to the complex porosity in the anodic film beneath the particles. After anodizing, the residual particles are mainly silicon-containing phases, which are embedded in the anodic film. Electrochemical measurements indicate that the porous anodic film layer is easily penetrated, and the barrier plays a dominant role in the overall protection. Meanwhile, self-healing behavior is observed during the long immersion time.

  15. Insights into Lithium-ion battery degradation and safety mechanisms from mesoscale simulations using experimentally reconstructed mesostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Scott A.; Mendoza, Hector; Brunini, Victor E.

    Battery performance, while observed at the macroscale, is primarily governed by the bicontinuous mesoscale network of the active particles and a polymeric conductive binder in its electrodes. Manufacturing processes affect this mesostructure, and therefore battery performance, in ways that are not always clear outside of empirical relationships. Directly studying the role of the mesostructure is difficult due to the small particle sizes (a few microns) and large mesoscale structures. Mesoscale simulation, however, is an emerging technique that allows the investigation into how particle-scale phenomena affect electrode behavior. In this manuscript, we discuss our computational approach for modeling electrochemical, mechanical, andmore » thermal phenomena of lithium-ion batteries at the mesoscale. Here, we review our recent and ongoing simulation investigations and discuss a path forward for additional simulation insights.« less

  16. Insights into Lithium-ion battery degradation and safety mechanisms from mesoscale simulations using experimentally reconstructed mesostructures

    DOE PAGES

    Roberts, Scott A.; Mendoza, Hector; Brunini, Victor E.; ...

    2016-10-20

    Battery performance, while observed at the macroscale, is primarily governed by the bicontinuous mesoscale network of the active particles and a polymeric conductive binder in its electrodes. Manufacturing processes affect this mesostructure, and therefore battery performance, in ways that are not always clear outside of empirical relationships. Directly studying the role of the mesostructure is difficult due to the small particle sizes (a few microns) and large mesoscale structures. Mesoscale simulation, however, is an emerging technique that allows the investigation into how particle-scale phenomena affect electrode behavior. In this manuscript, we discuss our computational approach for modeling electrochemical, mechanical, andmore » thermal phenomena of lithium-ion batteries at the mesoscale. Here, we review our recent and ongoing simulation investigations and discuss a path forward for additional simulation insights.« less

  17. CeLa enhanced corrosion resistance of Al-Cu-Mn-Mg-Fe alloy for lithium battery shell

    NASA Astrophysics Data System (ADS)

    Du, Jiandi; Ding, Dongyan; Zhang, Wenlong; Xu, Zhou; Gao, Yongjin; Chen, Guozhen; Chen, Weigao; You, Xiaohua; Chen, Renzong; Huang, Yuanwei; Tang, Jinsong

    2017-11-01

    Effects of CeLa addition on the localized corrosion and electrochemical corrosion behavior of Al-Cu-Mn-Mg-Fe lithium battery shell alloy were investigated by immersion testing and electrochemical testing in 0.6 M NaCl solution at different temperatures. Experimental results indicated that CeLa addition resulted in the formation of AlCuCe/La (Al8Cu4Ce and Al6Cu6La) local cathodes and corrosion activity of the main intermetallic particles decreased in the order of Al2CuMg, AlCuCe/La, Al6(Mn, Fe). Corrosion potential shifted positively due to CeLa alloying. Corrosion current density of the CeLa-containing alloy was lower than that of the CeLa-free alloy at room temperature. At room temperature, there was no obvious surface passivation for both alloys. At 80 °C CeLa addition resulted in a wide passive region at the anode polarization region. Electrochemical impedance spectroscopy (EIS) analysis also indicated that corrosion resistance of the CeLa-containing alloy was much higher than that of the CeLa-free alloy.

  18. Electrochemical synthesis of 1D core-shell Si/TiO2 nanotubes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Kowalski, Damian; Mallet, Jeremy; Thomas, Shibin; Nemaga, Abirdu Woreka; Michel, Jean; Guery, Claude; Molinari, Michael; Morcrette, Mathieu

    2017-09-01

    Silicon negative electrode for lithium ion battery was designed in the form of self-organized 1D core-shell nanotubes to overcome shortcomings linked to silicon volume expansion upon lithiation/delithiation typically occurring with Si nanoparticles. The negative electrode was formed on TiO2 nanotubes in two step electrochemical synthesis by means of anodizing of titanium and electrodeposition of silicon using ionic liquid electrolytes. Remarkably, it was found that the silicon grows perpendicularly to the z-axis of nanotube and therefore its thickness can be precisely controlled by the charge passed in the electrochemical protocol. Deposited silicon creates a continuous Si network on TiO2 nanotubes without grain boundaries and particle-particle interfaces, defining its electrochemical characteristics under battery testing. In the core-shell system the titania nanotube play a role of volume expansion stabilizer framework holding the nanostructured silicon upon lithiation/delithiation. The nature of Si shell and presence of titania core determine stable performance as negative electrode tested in half cell of CR2032 coin cell battery.

  19. Electrochemical magnetoimmunosensing approach for the sensitive detection of H9N2 avian influenza virus particles.

    PubMed

    Zhou, Chuan-Hua; Shu, Yun; Hong, Zheng-Yuan; Pang, Dai-Wen; Zhang, Zhi-Ling

    2013-09-01

    A novel electrochemical magnetoimmunosensor for fast and ultrasensitive detection of H9N2 avian influenza virus particles (H9N2 AIV) was designed based on the combination of high-efficiency immunomagnetic separation, enzyme catalytic amplification, and the biotin-streptavidin system. The reusable, homemade magneto Au electrode (M-AuE) was designed and used for the direct sensing. Immunocomplex-coated magnetic beads (IMBs) were easily accumulated on the surface of the M-AuE to obtain the catalytically reduced electrochemical signal of H2 O2 after the immunoreaction. The transducer was regenerated through a simple washing procedure, which made it possible to detect all the samples on a single electrode with higher reproducibility. The magnetic-bead-based electrochemical immunosensor showed better analytical performance than the planar-electrode-based immunosensor with the same sandwich construction. Amounts as low as 10 pg mL(-1) H9N2 AIV could be detected even in samples of chicken dung. This electrochemical magnetoimmunosensor not only provides a simple platform for the detection of the virus with high sensitivity, selectivity, and reproducibility but also shows great potential in the early diagnosis of diseases. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Magnetic MoS2 on multiwalled carbon nanotubes for sulfide sensing.

    PubMed

    Li, Chunxiang; Zhang, Dan; Wang, Jiankang; Hu, Pingan; Jiang, Zhaohua

    2017-07-04

    A novel hybrid metallic cobalt insided in multiwalled carbon nanotubles/molybdenum disulfide (Co@CNT/MoS 2 ) modified glass carbon electrode (GCE) was fabricated with a adhesive of Nafion suspension and used as chemical sensors for sulfide detection. Single-layered MoS 2 was coated on CNTs through magnetic traction force between paramagnetic monolayer MoS 2 and Co particles in CNTs. Co particles faciliated the collection of paramagnetic monolayer MoS 2 exfoliated from bulk MoS 2 in solution. Amperometric analysis, cycle voltammetry, cathodic stripping analysis and linear sweep voltammetry results showed the Co@CNT/MoS 2 modified GCE exhibited excellent electrochemical activity to sulfide in buffer solutions, but amperometric analysis was found to be more sensitive than the other methods. The amperometric response result indicated the Co@CNT/MoS 2 -modified GCE electrode was an excellent electrochemical sensor for detecting S 2- with a detection limit of 7.6 nM and sensitivity of 0.23 mA/μM. The proposed electrode was used for the determination of sulfide levels in hydrogen sulfide-pretreated fruits, and the method was also verified with recovery studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. High power density cell using nanostructured Sr-doped SmCoO3 and Sm-doped CeO2 composite powder synthesized by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Shimada, Hiroyuki; Yamaguchi, Toshiaki; Suzuki, Toshio; Sumi, Hirofumi; Hamamoto, Koichi; Fujishiro, Yoshinobu

    2016-01-01

    High power density solid oxide electrochemical cells were developed using nanostructure-controlled composite powder consisting of Sr-doped SmCoO3 (SSC) and Sm-doped CeO2 (SDC) for electrode material. The SSC-SDC nano-composite powder, which was synthesized by spray pyrolysis, had a narrow particle size distribution (D10, D50, and D90 of 0.59, 0.71, and 0.94 μm, respectively), and individual particles were spherical, composing of nano-size SSC and SDC fragments (approximately 10-15 nm). The application of the powder to a cathode for an anode-supported solid oxide fuel cell (SOFC) realized extremely fine cathode microstructure and excellent cell performance. The anode-supported SOFC with the SSC-SDC cathode achieved maximum power density of 3.65, 2.44, 1.43, and 0.76 W cm-2 at 800, 750, 700, and 650 °C, respectively, using humidified H2 as fuel and air as oxidant. This result could be explained by the extended electrochemically active region in the cathode induced by controlling the structure of the starting powder at the nano-order level.

  2. Steady-State Electrodiffusion from the Nernst-Planck Equation Coupled to Local Equilibrium Monte Carlo Simulations.

    PubMed

    Boda, Dezső; Gillespie, Dirk

    2012-03-13

    We propose a procedure to compute the steady-state transport of charged particles based on the Nernst-Planck (NP) equation of electrodiffusion. To close the NP equation and to establish a relation between the concentration and electrochemical potential profiles, we introduce the Local Equilibrium Monte Carlo (LEMC) method. In this method, Grand Canonical Monte Carlo simulations are performed using the electrochemical potential specified for the distinct volume elements. An iteration procedure that self-consistently solves the NP and flux continuity equations with LEMC is shown to converge quickly. This NP+LEMC technique can be used in systems with diffusion of charged or uncharged particles in complex three-dimensional geometries, including systems with low concentrations and small applied voltages that are difficult for other particle simulation techniques.

  3. Real-time electrochemical detection of hydrogen peroxide secretion in live cells by Pt nanoparticles decorated graphene-carbon nanotube hybrid paper electrode.

    PubMed

    Sun, Yimin; He, Kui; Zhang, Zefen; Zhou, Aijun; Duan, Hongwei

    2015-06-15

    In this work, we develop a new type of flexible and lightweight electrode based on highly dense Pt nanoparticles decorated free-standing graphene-carbon nanotube (CNT) hybrid paper (Pt/graphene-CNT paper), and explore its practical application as flexible electrochemical biosensor for the real-time tracking hydrogen peroxide (H2O2) secretion by live cells. For the fabrication of flexible nanohybrid electrode, the incorporation of CNT in graphene paper not only improves the electrical conductivity and the mechanical strength of graphene paper, but also increases its surface roughness and provides more nucleation sites for metal nanoparticles. Ultrafine Pt nanoparticles are further decorated on graphene-CNT paper by well controlled sputter deposition method, which offers several advantages such as defined particle size and dispersion, high loading density and strong adhesion between the nanoparticles and the substrate. Consequently, the resultant flexible Pt/graphene-CNT paper electrode demonstrates a variety of desirable electrochemical properties including large electrochemical active surface area, excellent electrocatalytic activity, high stability and exceptional flexibility. When used for nonenzymatic detection of H2O2, Pt/graphene-CNT paper exhibits outstanding sensing performance such as high sensitivity, selectivity, stability and reproducibility. The sensitivity is 1.41 µA µM(-1) cm(-2) with a linear range up to 25 µM and a low detection limit of 10 nM (S/N=3), which enables the resultant biosensor for the real-time tracking H2O2 secretion by live cells macrophages. Copyright © 2015. Published by Elsevier B.V.

  4. Three-dimensional finite element study on stress generation in synchrotron X-ray tomography reconstructed nickel-manganese-cobalt based half cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Linmin; Xiao, Xianghui; Wen, Youhai

    In this study, the stress generation caused by phase transitions and lithium intercalation of nickel-manganese-cobalt (NMC) based half cell with realistic 3D microstructures has been studied using finite element method. The electrochemical properties and discharged curves under various C rates are studied. The potential drops significantly with the increase of C rates. During the discharge process, for particles isolated from the conductive channels, several particles with no lithium ion intercalation are observed. For particles in the electrochemical network, the lithium ion concentration increases during the discharge process. The stress generation inside NMC particles is calculated coupled with lithium diffusion andmore » phase transitions. The results show the stresses near the concave and convex regions are the highest. The neck regions of the connected particles 2 can break and form several isolated particles. If the isolated particles are not connected with the electrically conductive materials such as carbon and binder, the capacity loses in battery. For isolated particles in the conductive channel, cracks are more likely to form on the surface. Moreover, stresses inside the particles increase dramatically when considering phase transitions. The phase transitions introduce an abrupt volume change and generate the strain mismatch, causing the stress increase.« less

  5. Patterning of colloidal particles in the galvanic microreactor

    NASA Astrophysics Data System (ADS)

    Jan, Linda

    A Cu-Au galvanic microreactor is used to demonstrate the autonomous patterning of two-dimensional colloidal crystals with spatial and orientational order which are adherent to the electrode substrate. The microreactor is comprised of a patterned array of copper and gold microelectrodes in a coplanar arrangement that is immersed in a dilute hydrochloric acid solution in which colloidal polystyrene microspheres are suspended. During the electrochemical dissolution of copper, polystyrene colloids are transported to the copper electrodes. The spatial arrangement of the electrodes determines whether the colloids initiate aggregation at the edges or centers of the copper electrodes. Depending on the microreactor parameters, two-dimensional colloidal crystals can form and adhere to the electrode. This thesis investigates the mechanisms governing the autonomous particle motion, the directed particle trajectory (inner- versus edge-aggregation) as affected by the spatial patterning of the electrodes, and the adherence of the colloidal particles onto the substrate. Using in situ current density measurements, particle velocimetry, and order-of-magnitude arguments, it is shown that particle motion is governed by bulk fluid motion and electrophoresis induced by the electrochemical reactions. Bulk electrolyte flow is most likely driven by electrochemical potential gradients of reaction products formed during the inhomogeneous copper dissolution, particularly due to localized high current density at the electrode junction. Preferential aggregation of the colloidal particles resulting in inner- and edge-aggregation is influenced by changes to the flow pattern in response to difference in current density profiles as affected by the spatial patterning of the electrode. Finally, by determining the onset of particle cementation through particle tracking analysis, and by monitoring the deposition of reaction products through the observation of color changes of the galvanic electrodes in situ, it is shown that particle cementation coincides with the precipitation and deposition of reaction products. The precipitation process is caused by shifts in the chemical equilibria of the microreactor due to changes in the composition of the electrolyte during the reactions, which can be used to control particle cementation. The corrosion driven transport, deposition and adherence of colloidal particles at corrosion sites have implications for the development of autonomous self-healing materials.

  6. An efficient visible-light photocatalyst prepared by modifying AgBr particles with a small amount of activated carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Desong, E-mail: dswang06@126.com; Zhao, Mangmang; Luo, Qingzhi

    2016-04-15

    Highlights: • An efficient visible-light photocatalyst was prepared by modifying AgBr particles. • A small amount of activated carbon was used to modify AgBr particles. • The modified AgBr exhibited improved visible-light photocatalytic performances. - Abstract: An efficient visible-light photocatalyst was successfully prepared by modifying AgBr particles with a small amount of activated carbon (AC) via a simple chemical precipitation approach. The AC/AgBr composite was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, UV–vis diffuse reflection spectroscopy, photoluminescence spectroscopy, electrochemical impedance spectroscopy. The photocatalytic performances of the AC/AgBr composite were investigated by evaluating photodegradation of methyl orange (MO)more » and phenol under visible light irradiation, and the effects of the AC content in the composite, concentrations of AC/AgBr composite and MO, carrier scavengers on MO photodegradation rate were systematically investigated. The results indicated that the modification of AC can hardly change the crystalline and crystal size of AgBr particles, while significantly improve their specific surface areas, visible-light absorption and separation efficiency of photogenerated electron–hole pairs. Compared with pure AgBr, the AC/AgBr composite exhibited drastically enhanced visible-light photocatalytic activity and stability. The photogenerated electrons and holes, hydroxyl radicals are responsible to the photodegradation of organic pollutants, and the photogenerated holes are the main active species. On the basis of the results and the properties of AC and AgBr, the visible-light photocatalytic mechanism of the AC/AgBr composite was discussed.« less

  7. Investigation of catalytic activity towards oxygen reduction reaction of Pt dispersed on boron doped graphene in acid medium.

    PubMed

    Pullamsetty, Ashok; Sundara, Ramaprabhu

    2016-10-01

    Boron doped graphene was prepared by a facile method and platinum (Pt) decoration over boron doped graphene was done in various chemical reduction methods such as sodium borohydride (NaBH4), polyol and modified polyol. X-ray diffraction analysis indicates that the synthesized catalyst particles are present in a nanocrystalline structure and transmission and scanning electron microscopy were employed to investigate the morphology and particle distribution. The electrochemical properties were investigated with the help of the rotating disk electrode (RDE) technique and cyclic voltammetry. The results show that the oxygen reduction reaction (ORR) takes place by a four-electron process. The kinetics of the ORR was evaluated using K-L and Tafel plots. The electrocatalyst obtained in modified polyol reduction method has shown the better catalytic activity compared to other two electrocatalysts. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Processes for making dense, spherical active materials for lithium-ion cells

    DOEpatents

    Kang, Sun-Ho [Naperville, IL; Amine, Khalil [Downers Grove, IL

    2011-11-22

    Processes are provided for making dense, spherical mixed-metal carbonate or phosphate precursors that are particularly well suited for the production of active materials for electrochemical devices such as lithium ion secondary batteries. Exemplified methods include precipitating dense, spherical particles of metal carbonates or metal phosphates from a combined aqueous solution using a precipitating agent such as ammonium hydrogen carbonate, sodium hydrogen carbonate, or a mixture that includes sodium hydrogen carbonate. Other exemplified methods include precipitating dense, spherical particles of metal phosphates using a precipitating agent such as ammonium hydrogen phosphate, ammonium dihydrogen phosphate, sodium phosphate, sodium hydrogen phosphate, sodium dihydrogen phosphate, or a mixture of any two or more thereof. Further provided are compositions of and methods of making dense, spherical metal oxides and metal phosphates using the dense, spherical metal precursors. Still further provided are electrodes and batteries using the same.

  9. Performance of carbon nanofiber supported Pd-Ni catalysts for electro-oxidation of ethanol in alkaline medium

    NASA Astrophysics Data System (ADS)

    Maiyalagan, T.; Scott, Keith

    Carbon nanofibers (CNF) supported Pd-Ni nanoparticles have been prepared by chemical reduction with NaBH 4 as a reducing agent. The Pd-Ni/CNF catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical voltammetry analysis. TEM showed that the Pd-Ni particles were quite uniformly distributed on the surface of the carbon nanofiber with an average particle size of 4.0 nm. The electro-catalytic activity of the Pd-Ni/CNF for oxidation of ethanol was examined by cyclic voltammetry (CV). The onset potential was 200 mV lower and the peak current density four times higher for ethanol oxidation for Pd-Ni/CNF compared to that for Pd/C. The effect of an increase in temperature from 20 to 60 °C had a great effect on increasing the ethanol oxidation activity.

  10. Electrochemical Synthesis of Bismuth Particles: Tuning Particle Shape through Substrate Type within a Narrow Potential Window

    PubMed Central

    Bilican, Doga; Fornell, Jordina; Sort, Jordi; Pellicer, Eva

    2017-01-01

    Bismuth (Bi) electrodeposition was studied on Si/Ti/Au, FTO-, and ITO-coated glasses from acidic nitrate solutions with and without gluconate within a narrow potential window (ΔE = 80 mV). This potential range was sufficient to observe a change in particle shape, from polyhedrons (including hexagons) to dendrites, the trend being slightly different depending on substrate activity. In all cases, though, the formation of dendrites was favoured as the applied potential was made more negative. Bi particles were more uniformly distributed over the substrate when sodium gluconate was added to the electrolyte. X-ray diffraction analyses of dendrites grown at −0.28 V indicated that they exhibit the rhombohedral phase of Bi and are predominantly oriented along the (003) plane. This orientation is exacerbated at the lowest applied potential (−0.20 V vs. Ag|AgCl) on glass/ITO substrate, for which completed and truncated hexagons are observed from the top view scanning electron microscopy images. PMID:28772402

  11. Core-shell Li2S@Li3PS4 nanoparticles incorporated into graphene aerogel for lithium-sulfur batteries with low potential barrier and overpotential

    NASA Astrophysics Data System (ADS)

    Jiao, Zheng; Chen, Lu; Si, Jian; Xu, Chuxiong; Jiang, Yong; Zhu, Ying; Yang, Yaqing; Zhao, Bing

    2017-06-01

    Lithium sulfide as a promising cathode material not only have a high theoretical specific capacity, but also can be paired with Li-free anode material to avoid potential safety issues. However, how to prepare high electrochemical performance material is still challenge. Herein, we present a facile way to obtain high crystal quality Li2S nanomaterials with average particle size of about 55 nm and coated with Li3PS4 to form the nano-scaled core-shell Li2S@Li3PS4 composite. Then nano-Li2S@Li3PS4/graphene aerogel is prepared by a simple liquid infiltration-evaporation coating process and used directly as a composite cathode without metal substrate for lithium-sulfur batteries. Electrochemical tests demonstrate that the composite delivers a high discharge capacity of 934.4 mAh g-1 in the initial cycle and retains 485.5 mAh g-1 after 100 cycles at 0.1 C rate. In addition, the composite exhibits much lower potential barrier (∼2.40 V) and overpotential compared with previous reports, indicating that Li2S needs only a little energy to be activated. The excellent electrochemical performances could be attributed to the tiny particle size of Li2S and the superionic conducting Li3PS4 coating layer, which can shorten Li-ion and electron diffusion paths, improve the ionic conductivity, as well as retarding polysulfides dissolution into the electrolyte to some extent.

  12. A generalized electrochemical aggregative growth mechanism.

    PubMed

    Ustarroz, Jon; Hammons, Joshua A; Altantzis, Thomas; Hubin, Annick; Bals, Sara; Terryn, Herman

    2013-08-07

    The early stages of nanocrystal nucleation and growth are still an active field of research and remain unrevealed. In this work, by the combination of aberration-corrected transmission electron microscopy (TEM) and electrochemical characterization of the electrodeposition of different metals, we provide a complete reformulation of the Volmer-Weber 3D island growth mechanism, which has always been accepted to explain the early stages of metal electrodeposition and thin-film growth on low-energy substrates. We have developed a Generalized Electrochemical Aggregative Growth Mechanism which mimics the atomistic processes during the early stages of thin-film growth, by incorporating nanoclusters as building blocks. We discuss the influence of new processes such as nanocluster self-limiting growth, surface diffusion, aggregation, and coalescence on the growth mechanism and morphology of the resulting nanostructures. Self-limiting growth mechanisms hinder nanocluster growth and favor coalescence driven growth. The size of the primary nanoclusters is independent of the applied potential and deposition time. The balance between nucleation, nanocluster surface diffusion, and coalescence depends on the material and the overpotential, and influences strongly the morphology of the deposits. A small extent of coalescence leads to ultraporous dendritic structures, large surface coverage, and small particle size. Contrarily, full recrystallization leads to larger hemispherical monocrystalline islands and smaller particle density. The mechanism we propose represents a scientific breakthrough from the fundamental point of view and indicates that achieving the right balance between nucleation, self-limiting growth, cluster surface diffusion, and coalescence is essential and opens new, exciting possibilities to build up enhanced supported nanostructures using nanoclusters as building blocks.

  13. Solid oxide electrochemical cell fabrication process

    DOEpatents

    Dollard, Walter J.; Folser, George R.; Pal, Uday B.; Singhal, Subhash C.

    1992-01-01

    A method to form an electrochemical cell (12) is characterized by the steps of thermal spraying stabilized zirconia over a doped lanthanum manganite air electrode tube (14) to provide an electrolyte layer (15), coating conductive particles over the electrolyte, pressurizing the outside of the electrolyte layer, feeding halide vapors of yttrium and zirconium to the outside of the electrolyte layer and feeding a source of oxygen to the inside of the electrolyte layer, heating to cause oxygen reaction with the halide vapors to close electrolyte pores if there are any and to form a metal oxide coating on and between the particles and provide a fuel electrode (16).

  14. Characterization of interfacial reactions and oxide films on 316L stainless steel in various simulated PWR primary water environments

    NASA Astrophysics Data System (ADS)

    Chen, Junjie; Xiao, Qian; Lu, Zhanpeng; Ru, Xiangkun; Peng, Hao; Xiong, Qi; Li, Hongjuan

    2017-06-01

    The effect of water chemistry on the electrochemical and oxidizing behaviors of 316L SS was investigated in hydrogenated, deaerated and oxygenated PWR primary water at 310 °C. Water chemistry significantly influenced the electrochemical impedance spectroscopy parameters. The highest charge-transfer resistance and oxide-film resistance occurred in oxygenated water. The highest electric double-layer capacitance and constant phase element of the oxide film were in hydrogenated water. The oxide films formed in deaerated and hydrogenated environments were similar in composition but different in morphology. An oxide film with spinel outer particles and a compact and Cr-rich inner layer was formed in both hydrogenated and deaerated water. Larger and more loosely distributed outer oxide particles were formed in deaerated water. In oxygenated water, an oxide film with hematite outer particles and a porous and Ni-rich inner layer was formed. The reaction kinetics parameters obtained by electrochemical impedance spectroscopy measurements and oxidation film properties relating to the steady or quasi-steady state conditions in the time-period of measurements could provide fundamental information for understanding stress corrosion cracking processes and controlling parameters.

  15. Effect of carbon source on the morphology and electrochemical performances of LiFePO4/C nanocomposites.

    PubMed

    Liu, Shuxin; Wang, Haibin; Yin, Hengbo; Wang, Hong; He, Jichuan

    2014-03-01

    The carbon coated LiFePO4 (LiFePO4/C) nanocomposites materials were successfully synthesized by sol-gel method. The microstructure and morphology of LiFePO4/C nanocomposites were characterized by X-ray diffraction, Raman spectroscopy and scanning electron microscopy. The results showed that the carbon layers decomposed by different dispersant and carbon source had different graphitization degree, and the sugar could decompose to form more graphite-like structure carbon. The carbon source and heat-treatment temperature had some effect on the particle size and morphology, the sample LFP-S700 synthesized by adding sugar as carbon source at 700 degrees C had smaller particle size, uniform size distribution and spherical shape. The electrochemical behavior of LiFePO4/C nanocomposites was analyzed using galvanostatic measurements and cyclic voltammetry (CV). The results showed that the sample LFP-S700 had higher discharge specific capacities, higher apparent lithium ion diffusion coefficient and lower charge transfer resistance. The excellent electrochemical performance of sample LFP-S700 could be attributed to its high graphitization degree of carbon, smaller particle size and uniform size distribution.

  16. Effect of Cerium Oxide on Morphologies and Electrochemical Properties of Ni-W-P Coating on AZ91D Magnesium

    NASA Astrophysics Data System (ADS)

    Sun, Wan-chang; Xu, Jia-Min; Wang, Yuan; Guo, Fang; Jia, Zong-Wei

    2017-12-01

    AZ91D magnesium alloy substrate was first pretreated in a phosphoric acid to obtain a phosphate coating, and then, the electroless ternary Ni-W-P coating was deposited using a sulfate nickel bath. The morphologies of the Ni-W-P coating were observed by using scanning electron microscope, the deposition rate of the coating was examined with the method of gravimetric analysis, and the phase analysis was identified by x-ray diffractometer. Electrochemical property was tested by means of an electrochemical analyzer. The results indicated that the addition of an optimum concentration of CeO2 (cerium oxide) particles could evidently improve the deposition rate and the stability of the plating bath. However, it acted as an inhibiting effect as the concentration of CeO2 particles exceeded to 8 mg/L in the sulfate nickel bath. The results also revealed that the morphology of Ni-W-P coating became more smooth, compact and uniform with the increase in the concentrations of CeO2 particles in the bath, but the corrosion resistance decreased due to the precipitation of crystal phases (Ni3P, Ni4W, etc.) after heat treatment.

  17. Electrochemical investigations of Co3Fe-RGO as a bifunctional catalyst for oxygen reduction and evolution reactions in alkaline media

    NASA Astrophysics Data System (ADS)

    Kumar, Surender; Kumar, Divyaratan; Kishore, Brij; Ranganatha, Sudhakar; Munichandraiah, Nookala; Venkataramanan, Natarajan S.

    2017-10-01

    Nanoparticles of Co3Fe alloy is prepared on reduced graphene oxide (RGO) sheets by modified polyol method. Synthesized alloy particles are characterized by various physicochemical techniques. TEM and SEM pictures showed homogeneously dispersed alloy nanoparticles on the RGO sheets. Electrochemistry of alloy nanoparticles is investigated in alkaline medium. The result shows that oxygen evaluation reaction (OER) activity of Co3Fe-RGO is higher than Pt-black particles. RDE studies in alkaline medium shows that oxygen reduction reaction (ORR) follow four electron pathway. It is suggest that Co3Fe-RGO is an efficient non-precious catalyst for oxygen (ORR/OER) reactions in alkaline electrolyte for PEMFC applications.

  18. Electrochemical corrosion and modeling studies of types 7075 and 2219 aluminum alloys in a nitric acid + ferric sulfate deoxidizer solution

    NASA Astrophysics Data System (ADS)

    Savas, Terence P.

    The corrosion behavior of types 7075-T73 and 2219-T852 high strength aluminum alloys have been investigated in a HNO3 + Fe2(SO 4)3 solution. The materials are characterized in the time domain using the electrochemical noise resistance parameter (Rn) and in the frequency-domain using the spectral noise impedance parameter ( Rsn). The Rsn parameter is derived from an equivalent electrical circuit model that represents the corrosion test cell schematic used in the present study. These calculated parameters are correlated to each other, and to corresponding scanning electron microscopy (SEM) examinations of the corroded surfaces. In addition, energy dispersive spectroscopy (EDS) spectra are used in conjunction with SEM exams for particle mapping and identification. These constituent particles are characterized with respect to their size and composition and their effect on the localized corrosion mechanisms taking place. Pitting mechanisms are identified as 'circumferential' where the particles appeared noble with respect to the aluminum matrix and by 'selective dissolution' where they are anodic to the aluminum matrix. The electrochemical data are found to be in good agreement with the surface examinations. Specifically, the electrochemical parameters Rn and Rsn were consistent in predicting the corrosion resistance of 7075-T73 to be lower than for the 2219-T852 alloy. Other characteristic features used in understanding the corrosion mechanisms include the open circuit potential (OCP) and coupling-current time records.

  19. Influence of surfactants on the microstructure and electrochemical performance of the tin oxide anode in lithium ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yan-Hui, E-mail: sunyanhui0102@163.com; Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, South China Normal University, Guangzhou 510006; Dong, Pei-Pei

    2016-02-15

    Highlights: • CTAB and SDS alter the formation of SnO{sub 2} from nanosheets to nanocubes during oxalate precipitation. • The CTAB concentration affects the SnO{sub 2} crystal growth direction, morphology and size. • The SnO{sub 2} anode synthesized using CTAB exhibited superior electrochemical performance. • Proposed a mechanism of influence of surfactant on SnO{sub 2} in the precipitation and annealing process. - Abstract: Different SnO{sub 2} micro–nano structures are prepared by precipitation using a surfactant-assisted process. The surfactants, such as cetyltriethylammonium bromide (CTAB) or sodium dodecyl benzene sulfonate (SDBS), can change the crystal growth direction and microstructure of SnO{sub 2}more » primary and secondary particles. Larger SnO{sub 2} nanosheets were synthesized without surfactant, and micro-fragments composed of small nanospheres or nanocubes were synthesized using CTAB and SDBS. The CTAB-assisted process resulted in smaller primary particles and larger specific surface area and larger pore volume, as a lithium-ion-battery anode that exhibits superior electrochemical performance compared to the other two anodes. Further investigation showed that the concentration of CTAB had a substantial influence on the growth of the crystal face, morphology and size of the SnO{sub 2} secondary particles, which influenced the electrochemical performance of the anode. A simple mechanism for the influence of surfactants on SnO{sub 2} morphology and size in the precipitation and annealing process is proposed.« less

  20. Electrochemical Behavior Assessment of As-Cast Mg-Y-RE-Zr Alloy in Phosphate Buffer Solutions (X Na3PO4 + Y Na2HPO4) Using Electrochemical Impedance Spectroscopy and Mott-Schottky Techniques

    NASA Astrophysics Data System (ADS)

    Fattah-alhosseini, Arash; Asgari, Hamed

    2018-05-01

    In the present study, electrochemical behavior of as-cast Mg-Y-RE-Zr alloy (RE: rare-earth alloying elements) was investigated using electrochemical tests in phosphate buffer solutions (X Na3PO4 + Y Na2HPO4). X-ray diffraction techniques and Scanning electron microscopy equipped with energy dispersive x-ray spectroscopy were used to investigate the microstructure and phases of the experimental alloy. Different electrochemical tests such as potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS) and Mott-Schottky (M-S) analysis were carried out in order to study the electrochemical behavior of the experimental alloy in phosphate buffer solutions. The PDP curves and EIS measurements indicated that the passive behavior of the as-cast Mg-Y-RE-Zr alloy in phosphate buffer solutions was weakened by an increase in the pH, which is related to formation of an imperfect and less protective passive layer on the alloy surface. The presence of the insoluble zirconium particles along with high number of intermetallic phases of RE elements mainly Mg24Y5 in the magnesium matrix can deteriorate the corrosion performance of the alloy by disrupting the protective passive layer that is formed at pH values over 11. These insoluble zirconium particles embedded in the matrix can detrimentally influence the passivation. The M-S analysis revealed that the formed passive layers on Mg-Y-RE-Zr alloy behaved as an n-type semiconductor. An increase in donor concentration accompanying solutions of higher alkalinity is thought to result in the formation of a less resistive passive layer.

  1. Electrochemical and Dry Sand Impact Erosion Studies on Carbon Steel

    PubMed Central

    Naz, M. Y.; Ismail, N. I.; Sulaiman, S. A.; Shukrullah, S.

    2015-01-01

    This study investigated the dry and aqueous erosion of mild steel using electrochemical and dry sand impact techniques. In dry sand impact experiments, mild steel was eroded with 45 μm and 150 μm sand particles. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and micro-hardness techniques were used to elaborate the surface morphology of the eroded samples. The results revealed significant change in morphology of the eroded samples. In-depth analysis showed that although the metal erosion due to larger particles was significantly higher, the fines also notably damaged the metal surface. The surface damages were appreciably reduced with decrease in impact angle of the accelerated particles. The maximum damages were observed at an impact angle of 90°. The hardness of the samples treated with 45 μm and 150 μm sand remained in the range of 88.34 to 102.31 VHN and 87.7 to 97.55 VHN, respectively. In electrochemical experiments, a triple electrode probe was added into the metal treatment process. The linear polarization resistance (LPR) measurements were performed in slurries having 5% (by weight) of sand particles. LPR of the samples treated with 45 μm and 150 μm sand slurries was calculated about 949 Ω.cm2 and 809 Ω.cm2, respectively. PMID:26561231

  2. Electrochemical and Dry Sand Impact Erosion Studies on Carbon Steel.

    PubMed

    Naz, M Y; Ismail, N I; Sulaiman, S A; Shukrullah, S

    2015-11-12

    This study investigated the dry and aqueous erosion of mild steel using electrochemical and dry sand impact techniques. In dry sand impact experiments, mild steel was eroded with 45 μm and 150 μm sand particles. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and micro-hardness techniques were used to elaborate the surface morphology of the eroded samples. The results revealed significant change in morphology of the eroded samples. In-depth analysis showed that although the metal erosion due to larger particles was significantly higher, the fines also notably damaged the metal surface. The surface damages were appreciably reduced with decrease in impact angle of the accelerated particles. The maximum damages were observed at an impact angle of 90°. The hardness of the samples treated with 45 μm and 150 μm sand remained in the range of 88.34 to 102.31 VHN and 87.7 to 97.55 VHN, respectively. In electrochemical experiments, a triple electrode probe was added into the metal treatment process. The linear polarization resistance (LPR) measurements were performed in slurries having 5% (by weight) of sand particles. LPR of the samples treated with 45 μm and 150 μm sand slurries was calculated about 949 Ω.cm(2) and 809 Ω.cm(2), respectively.

  3. An innovative architectural design to enhance the electrochemical performance of La2NiO4+δ cathodes for solid oxide fuel cell applications

    NASA Astrophysics Data System (ADS)

    Sharma, Rakesh K.; Burriel, Mónica; Dessemond, Laurent; Martin, Vincent; Bassat, Jean-Marc; Djurado, Elisabeth

    2016-06-01

    An architectural design of the cathode microstructure based on combining electrostatic spray deposition (ESD) and screen-printing (SP) techniques has demonstrated to be an innovative strategy to enhance the electrochemical properties of La2NiO4+δ (LNO) as oxygen electrode on Ce0.9Gd0.1O2-δ (CGO) electrolyte for solid oxide fuel cells. For this purpose, the influence of the ESD process parameters on the microstructure has been systematically investigated. Electrochemical performances of four selected cathode microstructures are investigated: (i) 3-D coral nanocrystalline (average particle size ∼ 100 nm) LNO film grown by ESD; (ii) 3-D coral nanocrystalline film (average particle size ∼ 150 nm) grown by ESD with a continuous nanometric dense interface; (iii) porous screen-printed LNO film (average particle size ∼ 400 nm); and (iv) 3-D coral nanocrystalline film (average particle size ∼ 150 nm) with a continuous nanometric dense interface prepared by ESD topped by a LNO current collector prepared by SP. A significant reduction in the polarization resistance (Rpol) is obtained (0.08 Ω cm2 at 700 °C) for 3-D coral topped by the SP layer. Moreover LNO is found to be stable and compatible with CGO up to 800 °C for only 10 days duration in air, making it potentially suitable for SOFCs cathode application.

  4. Salt-Assisted Ultrasonicated De-Aggregation and Advanced Redox Electrochemistry of Detonation Nanodiamond

    PubMed Central

    Gupta, Sanju; Evans, Brendan; Henson, Alex; Carrizosa, Sara B.

    2017-01-01

    Nanodiamond particles form agglomerates in the dry powder state and this poses limitation to the accessibility of their diamond-like core thus dramatically impacting their technological advancement. In this work, we report de-agglomeration of nanodiamond (ND) by using a facile technique namely, salt-assisted ultrasonic de-agglomeration (SAUD). Utilizing ultrasound energy and ionic salts (sodium chloride and sodium acetate), SAUD is expected to break apart thermally treated nanodiamond aggregates (~50–100 nm) and produce an aqueous slurry of de-aggregated stable colloidal nanodiamond dispersions by virtue of ionic interactions and electrostatic stabilization. Moreover, the SAUD technique neither has toxic chemicals nor is it difficult to remove impurities and therefore the isolated nanodiamonds produced are exceptionally suited for engineered nanocarbon for mechanical (composites, lubricants) and biomedical (bio-labeling, biosensing, bioimaging, theranostic) applications. We characterized the microscopic structure using complementary techniques including transmission electron microscopy combined with selected-area electron diffraction, optical and vibrational spectroscopy. We immobilized SAUD produced NDs on boron-doped diamond electrodes to investigate fundamental electrochemical properties. They included surface potential (or Fermi energy level), carrier density and mapping electrochemical (re)activity using advanced scanning electrochemical microscopy in the presence of a redox-active probe, with the aim of understanding the surface redox chemistry and the interfacial process of isolated nanodiamond particles as opposed to aggregated and untreated nanoparticles. The experimental findings are discussed in terms of stable colloids, quantum confinement and predominantly surface effects, defect sites (sp2–bonded C and unsaturated bonds), inner core (sp3–bonded C)/outer shell (sp2–bonded C) structure, and surface functionality. Moreover, the surface electronic states give rise to midgap states which serve as electron donors (or acceptors) depending upon the bonding (or antibonding). These are important as electroanalytical platforms for various electrocatalytic processes. PMID:29125547

  5. Electrochemical vs X-ray Spectroscopic Measurements of NiFe(CN)6 Crystals

    NASA Astrophysics Data System (ADS)

    Peecher, Benjamin; Hampton, Jennifer

    Pseudocapacitive materials like hexacyanoferrate have greater energy storage capabilities than standard capacitors while maintaining an ability to charge and discharge quickly. We modify the surface of an electrodeposited Ni thin film with a layer of hexacyanoferrate. Charging and discharging these modified films using cyclic voltammetry (CV) allows us to measure the electrochemically active Fe in the film. To determine how closely this resembles the full amount of Fe in the film, we measure the films' composition using particle-induced x-ray emission (PIXE). We also vary the amount of Ni deposited, both to compare the electrolysis value of charge deposited to the PIXE measurement of Ni in the film, and also to measure how varying the thickness of the Ni surface affects the presence of Fe in the film. Comparisons of the CV and PIXE measurements show agreement in Ni levels but disagreement in Fe levels. PIXE measurements of Fe in the film have positive correlation with Ni in the film. This correlation between PIXE measurements of Ni and Fe suggests that PIXE provides a reliable measure of Fe in the film. This implies that a variable proportion of total Fe in a given film is electrochemically active. This research was made possible by the Hope College Department of Physics Frissel Research Fund and the National Science Foundation under Grants RUI-DMR-1104725, MRI-CHE-0959282, and MRI/RUI-PHY-0319523.

  6. Hydrogen peroxide biosensor based on microperoxidase-11 immobilized in a silica cavity array electrode.

    PubMed

    Tian, Shu; Zhou, Qun; Gu, Zhuomin; Gu, Xuefang; Zhao, Lili; Li, Yan; Zheng, Junwei

    2013-03-30

    Hydrogen peroxide biosensor based on the silica cavity array modified indium-doped tin oxide (ITO) electrode was constructed. An array of silica microcavities was fabricated by electrodeposition using the assembled polystyrene particles as template. Due to the resistance gradient of the silica cavity structure, the silica cavity exhibits a confinement effect on the electrochemical reactions, making the electrode function as an array of "soft" microelectrodes. The covalently immobilized microperoxidase-11(MP-11) inside these SiO2 cavities can keep its physiological activities, the electron transfer between the MP-11 and electrode was investigated through electrochemical method. The cyclic voltammetric curve shows a quasi-reversible electrochemical redox behavior with a pair of well-defined redox peaks, the cathodic and anodic peaks are located at -0.26 and -0.15V. Furthermore, the modified electrode exhibits high electrocatalytic activity toward the reduction of hydrogen peroxide and also shows good analytical performance for the amperometric detection of H2O2 with a linear range from 2×10(-6) to 6×10(-4)M. The good reproducibility and long-term stability of this novel electrode not only offer an opportunity for the detection of H2O2 in low concentration, but also provide a platform to construct various biosensors based on many other enzymes. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Vertically aligned nanowires from boron-doped diamond.

    PubMed

    Yang, Nianjun; Uetsuka, Hiroshi; Osawa, Eiji; Nebel, Christoph E

    2008-11-01

    Vertically aligned diamond nanowires with controlled geometrical properties like length and distance between wires were fabricated by use of nanodiamond particles as a hard mask and by use of reactive ion etching. The surface structure, electronic properties, and electrochemical functionalization of diamond nanowires were characterized by atomic force microscopy (AFM) and scanning tunneling microscopy (STM) as well as electrochemical techniques. AFM and STM experiments show that diamond nanowire etched for 10 s have wire-typed structures with 3-10 nm in length and with typically 11 nm spacing in between. The electrode active area of diamond nanowires is enhanced by a factor of 2. The functionalization of nanowire tips with nitrophenyl molecules is characterized by STM on clean and on nitrophenyl molecule-modified diamond nanowires. Tip-modified diamond nanowires are promising with respect to biosensor applications where controlled biomolecule bonding is required to improve chemical stability and sensing significantly.

  8. Optimization of Layered Cathode Materials for Lithium-Ion Batteries

    PubMed Central

    Julien, Christian; Mauger, Alain; Zaghib, Karim; Groult, Henri

    2016-01-01

    This review presents a survey of the literature on recent progress in lithium-ion batteries, with the active sub-micron-sized particles of the positive electrode chosen in the family of lamellar compounds LiMO2, where M stands for a mixture of Ni, Mn, Co elements, and in the family of yLi2MnO3•(1 − y)LiNi½Mn½O2 layered-layered integrated materials. The structural, physical, and chemical properties of these cathode elements are reported and discussed as a function of all the synthesis parameters, which include the choice of the precursors and of the chelating agent, and as a function of the relative concentrations of the M cations and composition y. Their electrochemical properties are also reported and discussed to determine the optimum compositions in order to obtain the best electrochemical performance while maintaining the structural integrity of the electrode lattice during cycling. PMID:28773717

  9. Synthesis of TiO{sub 2} by electrochemical method from TiCl{sub 4} solution as anode material for lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nur, Adrian, E-mail: adriannur@staff.uns.ac.id; Purwanto, Agus; Jumari, Arif

    Metal oxide combined with graphite becomes interesting composition. TiO{sub 2} is a good candidate for Li ion battery anode because of cost, availability of sufficient materials, and environmentally friendly. TiO{sub 2} gravimetric capacity varied within a fairly wide range. TiO{sub 2} crystals form highly depends on the synthesis method used. The electrochemical method is beginning to emerge as a valuable option for preparing TiO{sub 2} powders. Using the electrochemical method, the particle can easily be controlled by simply adjusting the imposed current or potential to the system. In this work, the effects of some key parameters of the electrosynthesis onmore » the formation of TiO{sub 2} have been investigated. The combination of graphite and TiO{sub 2} particle has also been studied for lithium-ion batteries. The homogeneous solution for the electrosynthesis of TiO{sub 2} powders was TiCl{sub 4} in ethanol solution. The electrolysis was carried out in an electrochemical cell consisting of two carbon electrodes with dimensions of (5 × 2) cm. The electrodes were set parallel with a distance of 2.6 cm between the electrodes and immersed in the electrolytic solution at a depth of 2 cm. The electrodes were connected to the positive and negative terminals of a DC power supply. The electrosynthesis was performed galvanostatically at 0.5 to 2.5 hours and voltages were varied from 8 to 12 V under constant stirring at room temperature. The resulted suspension was aged at 48 hrs, filtered, dried directly in an oven at 150°C for 2 hrs, washed 2 times, and dried again 60 °C for 6 hrs. The particle product has been used to lithium-ion battery as anode. Synthesis of TiO{sub 2} particle by electrochemical method at 10 V for 1 to 2.5 hrs resulted anatase and rutile phase.« less

  10. Effect of organic additives on characteristics of carbon-coated LiCoPO4 synthesized by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Maeyoshi, Yuta; Miyamoto, Shohei; Noda, Yusaku; Munakata, Hirokazu; Kanamura, Kiyoshi

    2017-01-01

    Carbon-coated LiCoPO4 particles are synthesized by one-pot hydrothermal process using three different organic additives (carboxymethylcellulose sodium salt (CMC), glucose, and ascorbic acid). The effect of the organic additives on particle size, morphology, nature of carbon coating, and electrochemical property of the resulting LiCoPO4 is investigated. CMC plays important roles to decrease the particle size and form well-covered carbon coating on the surface. Carbon-coated LiCoPO4 prepared using CMC delivers higher initial discharge capacity of 135 mA h g-1 at 0.1 C, and shows superior rate capability and cyclic performance than the other samples. The improved electrochemical characteristics are attributed to not only the fine particle which allows facile electronic and ionic transport, but also the high coverage of carbon coating which improves the electrical conductivity and prevents the irreversible reactions of the charged LiCoPO4 with electrolyte.

  11. Electrochemical and anticorrosion behaviors of hybrid functionalized graphite nano-platelets/tripolyphosphate in epoxy-coated carbon steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammadi, Somayeh, E-mail: somaye.mohammadi32@aut.ac.ir; Shariatpanahi, Homeira; Taromi, Faramarz Afshar

    Highlights: • FGNP was combined with TPP to obtain a hybrid nano-particle. • TEM image showed uniform distribution of the hybrid nanoparticles in epoxy coating. • FGNP is a substrate for linking of TPP anions by hydrogen bonding. • FGNP as an accelerator, provides rapid iron phosphate passive film formation. • The hybrid nano-particle can provide long-term corrosion protection. - Abstract: Functionalized graphite nano-platelets (FGNP) were combined with tripolyphosphate (TPP) to gain a hybrid nano-particle (FGNP-TPP) with homogenous dispersion in epoxy, resulting in an excellent anti-corrosion coating for carbon steel substrate. Characterization analyses of the hybrid nano-particle were performed bymore » FT-IR, SEM, XRD and TEM. TPP was linked to FGNP nano-particles by hydrogen bondings. Different epoxy coatings formulated with 1 wt.% of FGNP, FGNP-TPP and TPP were evaluated. Electrochemical investigations, salt spray and pull-off tests showed that the hybrid nano-particle can provide long-term corrosion protection compared to FGNP and TPP due to synergistic effect between FGNP as an accelerator and TPP as a corrosion inhibitor to produce a uniform and stable iron-phosphate passive film with high surface coverage.« less

  12. Electrochemical and Morphological Investigations of Ga Addition to Pt Electrocatalyst Supported on Carbon

    PubMed Central

    Paganoto, Giordano T.; Santos, Deise M.; Guimarães, Marco C. C.; Carneiro, Maria Tereza W. D.

    2017-01-01

    This paper is consisted in the synthesis of platinum-based electrocatalysts supported on carbon (Vulcan XC-72) and investigation of the addition of gallium in their physicochemical and electrochemical properties toward ethanol oxidation reaction (EOR). PtGa/C electrocatalysts were prepared through thermal decomposition of polymeric precursor method at a temperature of 350°C. Six different compositions were homemade: Pt50Ga50/C, Pt60Ga40/C, Pt70Ga30/C, Pt80Ga20/C, Pt90Ga10/C, and Pt100/C. These electrocatalysts were electrochemically characterized by cyclic voltammetry (CV), chronoamperometry (CA), chronopotentiometry (CP), and electrochemical impedance spectroscopy (EIS) in the presence and absence of ethanol 1.0 mol L−1. Thermogravimetric analysis (TGA), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and transmission electron microscopy (TEM) were also carried out for a physicochemical characterization of those materials. XRD results showed the main peaks of face-centered cubic Pt. The particle sizes obtained from XRD and TEM analysis range from 7.2 nm to 12.9 nm. The CV results indicate behavior typical of Pt-based electrocatalysts in acid medium. The CV, EIS, and CA data reveal that the addition of up to 31% of gallium to the Pt highly improves catalytic activity on EOR response when compared to Pt100/C. PMID:28466065

  13. Fabrication of polypyrrole-coated carbon nanotubes using oxidant-surfactant nanocrystals for supercapacitor electrodes with high mass loading and enhanced performance.

    PubMed

    Shi, Kaiyuan; Zhitomirsky, Igor

    2013-12-26

    A conceptually new approach to the fabrication of polypyrrole (PPy)-coated multiwalled carbon nanotubes (MWCNT) for application in electrodes of electrochemical supercapacitors (ES) is proposed. Cetrimonium persulfate (CTA)2S2O8 in the form of nanocrystals is used as an oxidant for the chemical polymerization of PPy. Ponceau S (PS) dye is investigated as a new anionic dopant. Testing results show that PS allows reduced PPy particle size and improved electrochemical performance, whereas (CTA)2S2O8 nanocrystals promote the formation of PPy nanofibers. We demonstrate for the first time that MWCNT can be efficiently dispersed using (CTA)2S2O8 nanocrystals. The analysis of the dispersion mechanism indicates that (CTA)2S2O8 dissociation is catalyzed by MWCNT. This new finding opens a new and promising strategy in MWCNT dispersion for colloidal processing of nanomaterials and electrophoretic nanotechnology. Uniformly coated MWCNT are obtained using (CTA)2S2O8 as a dispersant for MWCNT and oxidant for PPy polymerization and utilizing advantages of PS as an efficient dopant and nanostructure controlling agent. The analysis of the testing results provides an insight into the influence of PS molecular structure on PPy nanostructure and electrochemical properties. The PPy-coated MWCNT show superior electrochemical performance compared to PPy nanoparticles. The proof-of-principle is demonstrated by the fabrication of ES electrodes with excellent electrochemical performance at high active material loadings, good capacitance retention at high charge-discharge rates, and excellent cycling stability.

  14. Chemical Immobilization Effect on Lithium Polysulfides for Lithium-Sulfur Batteries.

    PubMed

    Li, Caixia; Xi, Zhucong; Guo, Dexiang; Chen, Xiangju; Yin, Longwei

    2018-01-01

    Despite great progress in lithium-sulfur batteries (LSBs), great obstacles still exist to achieve high loading content of sulfur and avoid the loss of active materials due to the dissolution of the intermediate polysulfide products in the electrolyte. Relationships between the intrinsic properties of nanostructured hosts and electrochemical performance of LSBs, especially, the chemical interaction effects on immobilizing polysulfides for LSB cathodes, are discussed in this Review. Moreover, the principle of rational microstructure design for LSB cathode materials with strong chemical interaction adsorbent effects on polysulfides, such as metallic compounds, metal particles, organic polymers, and heteroatom-doped carbon, is mainly described. According to the chemical immobilizing mechanism of polysulfide on LSB cathodes, three kinds of chemical immobilizing effects, including the strong chemical affinity between polar host and polar polysulfides, the chemical bonding effect between sulfur and the special function groups/atoms, and the catalytic effect on electrochemical reaction kinetics, are thoroughly reviewed. To improve the electrochemical performance and long cycling life-cycle stability of LSBs, possible solutions and strategies with respect to the rational design of the microstructure of LSB cathodes are comprehensively analyzed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Fabrication and electrochemical performance of nickel- and gadolinium-doped ceria-infiltrated La0·2Sr0·8TiO3 anodes for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Lee, Min-Jin; Shin, Jae-Hwa; Ji, Mi-Jung; Hwang, Hae-Jin

    2018-01-01

    In this work, nickel and gadolinium-doped ceria (GDC)-infiltrated lanthanum strontium titanate (LST) anodes are fabricated, and their electrode performances under a hydrogen atmosphere is investigated in terms of the Ni:GDC ratios and cell operating temperature. The Ni/GDC-infiltrated LST anode exhibits excellent electrode performance in comparison with the Ni- or GDC-infiltrated anodes, which is attributed to the synergistic effect of an extended triple-phase boundary length by GDC and good catalytic activity for hydrogen oxidation because of the Ni particles. The polarization resistances (Rp) of Ni/GDC-infiltrated LST are 0.07, 0.08, and 0.12 Ω cm2 at 800, 750, and 700 °C, respectively, which are approximately three orders of magnitude lower than that of the LST anode (68.5 Ω cm2 at 700 °C). The effect of Ni and GDC on the electrochemical performance of LST was also investigated by using electrochemical impedance spectroscopy (EIS). The anode polarization resistance (Rp) is confirmed to be dependent on the content and dispersion state (microstructure) of the Ni and GDC nanoparticles.

  16. Evaluation on carbon nanocapsules for supercapacitors using a titanium cavity electrode

    NASA Astrophysics Data System (ADS)

    Wu, Cheng-Yeou; Wu, Pu-Wei; Lin, Pang

    We synthesize carbon nanocapsules (CNCs) by a flame combustion method and evaluate their potential as the electrode material for electrochemical double layer capacitor using a titanium cavity electrode (TCE). Identical process is conducted on commercially available carbonaceous materials such as Vulcan XC72R, Black Pearl 2000 (BP2000), multi-walled carbon nanotubes (MWCNTs), and active carbon (AC1100) for comparison purposes. Images from Scanning electron microscope and Transmission electron microscope on the CNCs demonstrate irregular-shaped particles in average size of 10-20 nm with graphene layers on perimeter compassing a hollow core. Electrochemical characterizations including cyclic voltammetry (CV), current reversal chronopotentiometry (CRC), and impedance spectroscopy are carried out in 1N H 2SO 4 to determine the specific capacitance and cycle life time. Among these samples, the BP2000 still delivers the highest specific capacitance in F g -1 but the CNCs demonstrate the largest value in μF cm 2. In addition, the CNCs exhibit impressive life time for 5000 cycles without notable degradation. Consistent results are obtained by CV, CRC, and impedance measurements, validating the TCE as a facile tool to perform reliable electrochemical evaluations.

  17. Influence of various carbon nano-forms as supports for Pt catalyst on proton exchange membrane fuel cell performance

    NASA Astrophysics Data System (ADS)

    Bharti, Abha; Cheruvally, Gouri

    2017-08-01

    In this study, we discuss the influence of various carbon supports for Pt on proton exchange membrane (PEM) fuel cell performance. Here, Pt supported on various carbon nano-forms [Pt/carbon black (Pt/CB), Pt/single-walled carbon nanotubes (Pt/SWCNT), Pt/multi-walled carbon nanotubes (Pt/MWCNT) and Pt/graphene (Pt/G)] are synthesized by a facile, single step, microwave-assisted, modified chemical reduction route. Their physical, chemical and electrochemical characteristics pertaining to oxygen reduction reaction (ORR) catalytic activity and stability in PEM fuel cell are studied in detail by various techniques and compared. The study shows that the different carbon supports does not significantly affect the Pt particle size during synthesis, but leads to different amount of defective sites in the carbon framework which influence both the availability of active metal nano-catalysts and metal-support interaction. In-situ electrochemical investigations reveal that the different carbon supports influence both ORR catalytic activity and stability of the catalyst. This is further corroborated by the demonstration of varying polarization characteristics on PEM fuel cell performance by different carbon supported Pt catalysts. This study reveals MWCNT as the most suitable carbon support for Pt catalyst, exhibiting high activity and stability for ORR in PEM fuel cell.

  18. Tunable Bifunctional Activity of Mnx Co3-x O4 Nanocrystals Decorated on Carbon Nanotubes for Oxygen Electrocatalysis.

    PubMed

    Zhao, Tingting; Gadipelli, Srinivas; He, Guanjie; Ward, Matthew J; Do, David; Zhang, Peng; Guo, Zhengxiao

    2018-04-25

    Noble-metal-free electrocatalysts are attractive for cathodic oxygen catalysis in alkaline membrane fuel cells, metal-air batteries, and electrolyzers. However, much of the structure-activity relationship is poorly understood. Herein, the comprehensive development of manganese cobalt oxide/nitrogen-doped multiwalled carbon nanotube hybrids (Mn x Co 3-x O 4 @NCNTs) is reported for highly reversible oxygen reduction and evolution reactions (ORR and OER, respectively). The hybrid structures are rationally designed by fine control of surface chemistry and synthesis conditions, including tuning of functional groups at surfaces, congruent growth of nanocrystals with controllable phases and particle sizes, and ensuring strong coupling across catalyst-support interfaces. Electrochemical tests reveal distinctly different oxygen catalytic activities among the hybrids, Mn x Co 3-x O 4 @NCNTs. Nanocrystalline MnCo 2 O 4 @NCNTs (MCO@NCNTs) hybrids show superior ORR activity, with a favorable potential to reach 3 mA cm -2 and a high current density response, equivalent to that of the commercial Pt/C standard. Moreover, the hybrid structure exhibits tunable and durable catalytic activities for both ORR and OER, with a lowest overall potential of 0.93 V. It is clear that the long-term electrochemical activities can be ensured by rational design of hybrid structures from the nanoscale. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  19. Oxide modified air electrode surface for high temperature electrochemical cells

    DOEpatents

    Singh, Prabhakar; Ruka, Roswell J.

    1992-01-01

    An electrochemical cell is made having a porous cermet electrode (16) and a porous lanthanum manganite electrode (14), with solid oxide electrolyte (15) between them, where the lanthanum manganite surface next to the electrolyte contains a thin discontinuous layer of high surface area cerium oxide and/or praseodymium oxide, preferably as discrete particles (30) in contact with the air electrode and electrolyte.

  20. Electrochemical and Structural Study of a Chemically Dealloyed PtCu Oxygen Reduction Catalyst

    PubMed Central

    Dutta, Indrajit; Carpenter, Michael K; Balogh, Michael P; Ziegelbauer, Joseph M; Moylan, Thomas E; Atwan, Mohammed H; Irish, Nicholas P

    2013-01-01

    A carbon-supported, dealloyed platinum-copper (Pt-Cu) oxygen reduction catalyst was prepared using a multi-step synthetic procedure. Material produced at each step was characterized using high angle annular dark field scanning transmission electron microscopy (HAADF-STEM), electron energy loss spectroscopy (EELS) mapping, x-ray absorption spectroscopy (XAS), x-ray diffraction (XRD), and cyclic voltammetry (CV), and its oxygen reduction reaction (ORR) activity was measured by a thin-film rotating disk electrode (TF-RDE) technique. The initial synthetic step, a co-reduction of metal salts, produced a range of poorly crystalline Pt, Cu, and Pt-Cu alloy nanoparticles that nevertheless exhibited good ORR activity. Annealing this material alloyed the metals and increased particle size and crystallinity. TEM shows the annealed catalyst to include particles of various sizes, large (>25 nm), medium (12–25 nm), and small (<12 nm). Most of the small and medium-sized particles exhibited a partial or complete coreshell (Cu-rich core and Pt shell) structure with the smaller particles typically having more complete shells. The appearance of Pt shells after annealing indicates that they are formed by a thermal diffusion mechanism. Although the specific activity of the catalyst material was more than doubled by annealing, the concomitant decrease in Pt surface area resulted in a drop in its mass activity. Subsequent dealloying of the catalyst by acid treatment to partially remove the copper increased the Pt surface area by changing the morphology of the large and some medium particles to a “Swiss cheese” type structure having many voids. The smaller particles retained their core-shell structure. The specific activity of the catalyst material was little reduced by dealloying, but its mass activity was more than doubled due to the increase in surface area. The possible origins of these results are discussed in this report. PMID:23807900

  1. Coupled Mechanical-Electrochemical-Thermal Modeling for Accelerated Design of EV Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santhanagopalan, Shriram; Zhang, Chao; Kim, Gi-Heon

    2015-05-03

    This presentation provides an overview of the mechanical electrochemical-thermal (M-ECT) modeling efforts. The physical phenomena occurring in a battery are many and complex and operate at different scales (particle, electrodes, cell, and pack). A better understanding of the interplay between different physics occurring at different scales through modeling could provide insight to design improved batteries for electric vehicles. Work funded by the U.S. DOE has resulted in development of computer-aided engineering (CAE) tools to accelerate electrochemical and thermal design of batteries; mechanical modeling is under way. Three competitive CAE tools are now commercially available.

  2. One-Step Hydrothermal-Electrochemical Route to Carbon-Stabilized Anatase Powders

    NASA Astrophysics Data System (ADS)

    Tao, Ying; Yi, Danqing; Zhu, Baojun

    2013-04-01

    Black carbon-stabilized anatase particles were prepared by a simple one-step hydrothermal-electrochemical method using glucose and titanium citrate as the carbon and titanium source, respectively. Morphological, chemical, structural, and electrochemical characterizations of these powders were carried out by Raman spectroscopy, Fourier-transform infrared spectroscopy, x-ray diffraction, scanning electron microscopy, and cyclic voltammetry. It was revealed that 200-nm carbon/anatase TiO2 was homogeneously dispersed, and the powders exhibited excellent cyclic performance at high current rates of 0.05 V/s. The powders are interesting potential materials that could be used as anodes for lithium-ion batteries.

  3. Enhanced methanol electro-oxidation reaction on Pt-CoOx/MWCNTs hybrid electro-catalyst

    NASA Astrophysics Data System (ADS)

    Nouralishahi, Amideddin; Rashidi, Ali Morad; Mortazavi, Yadollah; Khodadadi, Abbas Ali; Choolaei, Mohammadmehdi

    2015-04-01

    The electro-catalytic behavior of Pt-CoOx/MWCNTs in methanol electro-oxidation reaction (MOR) is investigated and compared to that of Pt/MWCNTs. The electro-catalysts were synthesized by an impregnation method using NaBH4 as the reducing agent. The morphological and physical characteristics of samples are examined by XRD, TEM, ICP and EDS techniques. In the presence of CoOx, Pt nanoparticles were highly distributed on the support with an average particle size of 2 nm, an obvious decrease from 5.1 nm for Pt/MWCNTs. Cyclic voltammetry, CO-stripping, Chronoamperometry, and electrochemical impedance spectroscopy (EIS) measurements are used to study the electrochemical behavior of the electro-catalysts. The results revealed a considerable enhancement in the oxidation kinetics of COads on Pt active sites by the participation of CoOx. Compared to Pt/MWCNTs, Pt-CoOx/MWCNTs sample has a larger electrochemical active surface area (ECSA) and higher electro-catalytic activity and stability toward methanol electro-oxidation. According to the results of cyclic voltammetry, the forward anodic peak current density enhances more than 89% at the optimum atomic ratio of Pt:Co = 2:1. Furthermore, inclusion of cobalt oxide species causes the onset potential of methanol electro-oxidation reaction to shift 84 mV to negative values compared to that on Pt/MWCNTs. Based on EIS data, dehydrogenation of methanol is the rate-determining step of MOR on both Pt/MWCNTs and Pt-CoOx/MWCNTs, at small overpotentials. However, at higher overpotentials, the oxidation of adsorbed oxygen-containing groups controls the total rate of MOR process.

  4. Polarization and mass transfer during the electrolysis of molten salts with liquid metallic electrodes

    NASA Astrophysics Data System (ADS)

    Mikhalev, Yu. G.

    2014-08-01

    Calculations are used to show that the fraction of the overvoltage of the stage of discharge-ionization can be significant in the total overvoltage during the polarization of liquid metallic electrodes in molten chlorides depleted of electrochemically active particles (depending on the type of the dissipative structures that appear near the electrode/electrolyte interface). This finding is taken into account to obtain criterion equations to describe the mass-transfer rate as a function of the physicochemical properties of the electrolyte and the metal electrode.

  5. Molten salt synthesis and characterization of Li4Ti5-xMnxO12 (x = 0.0, 0.05 and 0.1) as anodes for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Nithya, V. D.; Kalai Selvan, R.; Vediappan, Kumaran; Sharmila, S.; Lee, Chang Woo

    2012-11-01

    Sub-micrometer sized Li4Ti5-xMnxO12 (x = 0.0, 0.05 and 0.1) particles were synthesized by a single step molten salt method using LiCl-KCl as a flux. The synthesized material was structurally characterized by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectra. The XRD analysis revealed the particles to be highly crystalline and have a face-centered cubic spinel structure. The presence of possible functional group was confirmed through FTIR analysis. The FE-SEM images showed the particles to be polyhedral in shape with uniform size distribution. It was also revealed that there was a particle size reduction with the effect of Mn4+ dopant ions. The electrochemical studies performed using cyclic voltammogram (CV), charge-discharge, and electrochemical impedance analysis (EIS) indicate that Li4Ti4.9Mn0.1O4 possesses a better discharge capacity (305 mAh/g), cycling stability, and charge carrier conductivity than both Li4Ti4.95Mn0.05O12 (265 mAh/g) and Li4Ti5O12 (240 mAh/g). The cycling stability reveals that the acceptable capacity fading was observed even after 20th cycle. The results of electrochemical studies infer that Li4Ti4.9Mn0.1O4 could be utilized as a suitable anode material for Li-ion batteries.

  6. Differences observed in the surface morphology and microstructure of Ni-Fe-Cu ternary thin films electrochemically deposited at low and high applied current densities

    NASA Astrophysics Data System (ADS)

    Sarac, U.; Kaya, M.; Baykul, M. C.

    2016-10-01

    In this research, nanocrystalline Ni-Fe-Cu ternary thin films using electrochemical deposition technique were produced at low and high applied current densities onto Indium Tin Oxide (ITO) coated conducting glass substrates. Change of surface morphology and microstructural properties of the films were investigated. Energy dispersive X-ray spectroscopy (EDX) measurements showed that the Ni-Fe-Cu ternary thin films exhibit anomalous codeposition behaviour during the electrochemical deposition process. From the X-ray diffraction (XRD) analyses, it was revealed that there are two segregated phases such as Cu- rich and Ni-rich within the films. The crystallographic structure of the films was face-centered cubic (FCC). It was also observed that the film has lower lattice micro-strain and higher texture degree at high applied current density. Scanning electron microscopy (SEM) studies revealed that the films have rounded shape particles on the base part and cauliflower-like structures on the upper part. The film electrodeposited at high current density had considerably smaller rounded shape particles and cauliflower-like structures. From the atomic force microscopy (AFM) analyses, it was shown that the film deposited at high current density has smaller particle size and surface roughness than the film grown at low current density.

  7. Electrochemical genosensing of Salmonella, Listeria and Escherichia coli on silica magnetic particles.

    PubMed

    Liébana, Susana; Brandão, Delfina; Cortés, Pilar; Campoy, Susana; Alegret, Salvador; Pividori, María Isabel

    2016-01-21

    A magneto-genosensing approach for the detection of the three most common pathogenic bacteria in food safety, such as Salmonella, Listeria and Escherichia coli is presented. The methodology is based on the detection of the tagged amplified DNA obtained by single-tagging PCR with a set of specific primers for each pathogen, followed by electrochemical magneto-genosensing on silica magnetic particles. A set of primers were selected for the amplification of the invA (278 bp), prfA (217 bp) and eaeA (151 bp) being one of the primers for each set tagged with fluorescein, biotin and digoxigenin coding for Salmonella enterica, Listeria monocytogenes and E. coli, respectively. The single-tagged amplicons were then immobilized on silica MPs based on the nucleic acid-binding properties of silica particles in the presence of the chaotropic agent as guanidinium thiocyanate. The assessment of the silica MPs as a platform for electrochemical magneto-genosensing is described, including the main parameters to selectively attach longer dsDNA fragments instead of shorter ssDNA primers based on their negative charge density of the sugar-phosphate backbone. This approach resulted to be a promising detection tool with sensing features of rapidity and sensitivity very suitable to be implemented on DNA biosensors and microfluidic platforms. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Long term determination of dopamine and uric acid in the presence of ascorbic acid using ytterbia/reduced graphene oxide nanocomposite prepared through a sonochemical route

    NASA Astrophysics Data System (ADS)

    Jafari, Hossein; Ganjali, Mohammad Reza; Dezfuli, Amin Shiralizadeh; Faridbod, Farnoush

    2018-01-01

    Decoration of reduced graphene oxide (RGO) with nano-size inorganic particles creates a class of composites with considerably improved characteristics. Improvements in the function of electrochemical energy-storage devices, catalysts and sensors using such particles, have hence attracted a great deal of interest to the area. This manuscript tends to report the results of the research on the application of a sonochemical route for anchoring nano-sized Yb2O3 (Ytterbia) particles, on sheets of RGO. The anchoring phenomenon is based on the self-assembly of the Yb2O3 nano-particles under sonochemical treatments in an ultrasonic bath. To evaluate the method, the produced Yb2O3-RGO nanocomposites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and field-emission scanning electron microscopy (FE-SEM), which proved the uniform distribution of the nano-particles on the RGO sheets. Additionally, the Yb2O3-RGO nano-composites were evaluated through cyclic voltammetry (CV), to assess the potentials of their application in electrochemical devices. The high activity of the produced Yb2O3-RGO nanocomposites can be attributed to the synergistic effect between Yb2O3 and RGO as well as the porous structure of the nanocomposite. Due to their stability, electrocatalytic properties and large accessible surface area, the low detection limit sensor is usable for long term usages in blood serum and wide linear dynamic range. There are linear relationships between current intensities and concentrations in the region 0.3-800 μM dopamine (DA), and 0.2-210 μM uric acid (UA), and the limits of detection (LOD) (S/N = 3) are down to 0.02 μM and 0.01 μM for DA and UA, respectively in 0.5 mM solution of ascorbic acid.

  9. Effect of ordering of PtCu₃ nanoparticle structure on the activity and stability for the oxygen reduction reaction.

    PubMed

    Hodnik, Nejc; Jeyabharathi, Chinnaiah; Meier, Josef C; Kostka, Alexander; Phani, Kanala L; Rečnik, Aleksander; Bele, Marjan; Hočevar, Stanko; Gaberšček, Miran; Mayrhofer, Karl J J

    2014-07-21

    In this study the performance enhancement effect of structural ordering for the oxygen reduction reaction (ORR) is systematically studied. Two samples of PtCu3 nanoparticles embedded on a graphitic carbon support are carefully prepared with identical initial composition, particle dispersion and size distribution, yet with different degrees of structural ordering. Thus we can eliminate all coinciding effects and unambiguously relate the improved activity of the ORR and more importantly the enhanced stability to the ordered nanostructure. Interestingly, the electrochemically induced morphological changes are common to both ordered and disordered samples. The observed effect could have a groundbreaking impact on the future directions in the rational design of active and stable platinum alloyed ORR catalysts.

  10. LiV3O8/Polytriphenylamine Composites with Enhanced Electrochemical Performances as Cathode Materials for Rechargeable Lithium Batteries

    PubMed Central

    Li, Wenjuan; Zhu, Limin; Yu, Ziheng; Xie, Lingling; Cao, Xiaoyu

    2017-01-01

    LiV3O8/polytriphenylamine composites are synthesized by a chemical oxidative polymerization process and applied as cathode materials for rechargeable lithium batteries (RLB). The structure, morphology, and electrochemical performances of the composites are characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, galvanostatic discharge/charge tests, and electrochemical impedance spectroscopy. It was found that the polytriphenylamine particles were composited with LiV3O8 nanorods which acted as a protective barrier against the side reaction of LiV3O8, as well as a conductive network to reduce the reaction resistance among the LiV3O8 particles. Among the LiV3O8/polytriphenylamine composites, the 17 wt % LVO/PTPAn composite showed the largest d100 spacing. The electrochemical results showed that the 17 wt % LVO/PTPAn composite maintained a discharge capacity of 271 mAh·g−1 at a current density of 60 mA·g−1, as well as maintaining 236 mAh·g−1 at 240 mA·g−1 after 50 cycles, while the bare LiV3O8 sample retained only 169 and 148 mAh·g−1, respectively. Electrochemical impedance spectra (EIS) results implied that the 17 wt % LVO/PTPAn composite demonstrated a decreased charge transfer resistance and increased Li+ ion diffusion ability, therefore manifesting better rate capability and cycling performance compared to the bare LiV3O8 sample. PMID:28772705

  11. Electrochemical immunoassay for the detection of IgM antibodies using polydopamine particles loaded with PbS quantum dots as labels.

    PubMed

    Ortega, Greter A; Zuaznabar-Gardona, Julio C; Reguera, Edilso

    2018-09-30

    Here, we report for the first time, an electrochemical immunoassay to detect IgM antibodies using lead sulfide quantum dots (PbS QDs) as electrochemical labels. In this sense, dendritic-like polydopamine particles loaded with PbS QDs were synthesized by the self-polymerization of dopamine in basic media in the presence of QDs (PbS@PDA) and further tagged with anti-IgM antibodies, dengue specific antigens, and streptavidin moieties. The analytical features of the sandwich immunoassay on ELISA microplate were carried out with the PbS@PDA-labeled anti-IgM as secondary antibody. The system was interrogated by acid dissolution of PbS@PDA, followed by differential pulse anodic stripping voltammetry in the presence of Bi(III) ions using carbon screen-printed electrodes. The results indicate that the voltammetric current increased with the increasing of the concentration of target IgM within a range of 0-0.5 mg mL -1 . The limit of detection of this electrochemical immunoassay was evaluated to 130 ng. The measures of satisfactory recoveries from 88.5% to 114% of spiked samples indicate that such a method has good specificity and is applicable to the quantification of IgM antibodies in complex biological samples. No significant differences at the 0.05 significance level were encountered in the analysis of IgM samples between the electrochemical immunoassay and a Bradford assay. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Shock-activated electrochemical power supplies

    DOEpatents

    Benedick, William B.; Graham, Robert A.; Morosin, Bruno

    1988-01-01

    A shock-activated electrochemical power supply is provided which is initiated extremely rapidly and which has a long shelf life. Electrochemical power supplies of this invention are initiated much faster than conventional thermal batteries. Power supplies of this invention comprise an inactive electrolyte and means for generating a high-pressure shock wave such that the shock wave is propagated through the electrolytes rendering the electrolyte electrochemically active.

  13. Shock-activated electrochemical power supplies

    DOEpatents

    Benedick, W.B.; Graham, R.A.; Morosin, B.

    1988-11-08

    A shock-activated electrochemical power supply is provided which is initiated extremely rapidly and which has a long shelf life. Electrochemical power supplies of this invention are initiated much faster than conventional thermal batteries. Power supplies of this invention comprise an inactive electrolyte and means for generating a high-pressure shock wave such that the shock wave is propagated through the electrolytes rendering the electrolyte electrochemically active. 2 figs.

  14. High performance cermet electrodes

    DOEpatents

    Isenberg, Arnold O.; Zymboly, Gregory E.

    1986-01-01

    Disclosed is a method of increasing the operating cell voltage of a solid oxide electrochemical cell having metal electrode particles in contact with an oxygen-transporting ceramic electrolyte. The metal electrode is heated with the cell, and oxygen is passed through the oxygen-transporting ceramic electrolyte to the surface of the metal electrode particles so that the metal electrode particles are oxidized to form a metal oxide layer between the metal electrode particles and the electrolyte. The metal oxide layer is then reduced to form porous metal between the metal electrode particles and the ceramic electrolyte.

  15. Electrochemical Studies of Benzophenone and Fluorenone Imines, Amines and Diphenyldiazomethane.

    DTIC Science & Technology

    1982-01-01

    exhaustive, controlled-potential electrolyses has also been described. 2 Cells. electrodes. and electrolysis procedures. All electrochemical experiments...scale electrolyses was monitored periodically by cyclic voltammetry. At the conclusion of the experiment, the electrolysis mixture was protonated in a...stainless steel * column packed with LiChrosorb RP8 or LiChrosorb RP18, 10-pm mean particle size. The eluting solvent was a mixture of methanol and water

  16. Formation of Onion-Like NiCo2 S4 Particles via Sequential Ion-Exchange for Hybrid Supercapacitors.

    PubMed

    Guan, Bu Yuan; Yu, Le; Wang, Xiao; Song, Shuyan; Lou, Xiong Wen David

    2017-02-01

    Onion-like NiCo 2 S 4 particles with unique hollow structured shells are synthesized by a sequential ion-exchange strategy. With the structural and compositional advantages, these unique onion-like NiCo 2 S 4 particles exhibit enhanced electrochemical performance as an electrode material for hybrid supercapacitors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Solution-processed photodetectors from colloidal silicon nano/micro particle composite.

    PubMed

    Tu, Chang-Ching; Tang, Liang; Huang, Jiangdong; Voutsas, Apostolos; Lin, Lih Y

    2010-10-11

    We demonstrate solution-processed photodetectors composed of heavy-metal-free Si nano/micro particle composite. The colloidal Si particles are synthesized by electrochemical etching of Si wafers, followed by ultra-sonication to pulverize the porous surface. With alkyl ligand surface passivation through hydrosilylation reaction, the particles can form a stable colloidal suspension which exhibits bright photoluminescence under ultraviolet excitation and a broadband extinction spectrum due to enhanced scattering from the micro-size particles. The efficiency of the thin film photodetectors has been substantially improved by preventing oxidation of the particles during the etching process.

  18. Electrochemical and kinetic studies of ultrafast laser structured LiFePO4 electrodes

    NASA Astrophysics Data System (ADS)

    Mangang, M.; Gotcu-Freis, P.; Seifert, H. J.; Pfleging, W.

    2015-03-01

    Due to a growing demand of cost-efficient lithium-ion batteries with an increased energy and power density as well as an increased life-time, the focus is set on intercalation cathode materials like LiFePO4. It has a high practical capacity, is environmentally friendly and has low material costs. However, its low electrical conductivity and low ionic diffusivity are major drawbacks for its use in electrochemical storage devices or electric vehicles. By adding conductive agents, the electrical conductivity can be enhanced. By increasing the surface of the cathode material which is in direct contact with the liquid electrolyte the lithium-ion diffusion kinetics can be improved. A new approach to increase the surface of the active material without changing the active particle packing density or the weight proportion of carbon black is the laser-assisted generation of 3D surface structures in electrode materials. In this work, ultrafast laser radiation was used to create a defined surface structure in LiFePO4 electrodes. It was shown that by using ultrashort laser pulses instead of nanosecond laser pulses, the ablation efficiency could be significantly increased. Furthermore, melting and debris formation were reduced. To investigate the diffusion kinetics, electrochemical methods such as cyclic voltammetry and galvanostatic intermittent titration technique were applied. It could be shown that due to a laser generated 3D structure, the lithium-ion diffusion kinetic, the capacity retention and cell life-time can be significantly improved.

  19. Battery and fuel cell electrodes containing stainless steel charging additive

    DOEpatents

    Zuckerbrod, David; Gibney, Ann

    1984-01-01

    An electrode for use in electrochemical energy cells is made, comprising a hydrophilic layer and a hydrophobic layer, where the hydrophilic layer comprises a hydrophilic composite which includes: (i) carbon particles; (ii) stainless steel particles; (iii) a nonwetting agent; and (iv) a catalyst, where at least one current collector contacts said composite.

  20. Method of preparing porous, rigid ceramic separators for an electrochemical cell

    DOEpatents

    Bandyopadhyay, Gautam; Dusek, Joseph T.

    1981-01-01

    Porous, rigid separators for electrochemical cells are prepared by first calcining particles of ceramic material at temperatures above about 1200.degree. C. for a sufficient period of time to reduce the sinterability of the particles. A ceramic powder that has not been calcined is blended with the original powder to control the porosity of the completed separator. The ceramic blend is then pressed into a sheet of the desired shape and sintered at a temperature somewhat lower than the calcination temperature. Separator sheets of about 1 to 2.5 mm thickness and 30 to 70% porosity can be prepared by this technique. Ceramics such as yttria, magnesium oxide and magnesium-aluminum oxide have advantageously been used to form separators by this method.

  1. Electrospun Carbon Nanofibers with in Situ Encapsulated Co₃O₄ Nanoparticles as Electrodes for High-Performance Supercapacitors.

    PubMed

    Abouali, Sara; Garakani, Mohammad Akbari; Zhang, Biao; Xu, Zheng-Long; Heidari, Elham Kamali; Huang, Jian-qiu; Huang, Jiaqiang; Kim, Jang-Kyo

    2015-06-24

    A facile electrospinning method with subsequent heat treatments is employed to prepare carbon nanofibers (CNFs) containing uniformly dispersed Co3O4 nanoparticles as electrodes for supercapacitors. The Co3O4/CNF electrodes with ∼68 wt % active particles deliver a remarkable capacitance of 586 F g(-1) at a current density of 1 A g(-1). When the current density is increased to 50 A g(-1), ∼66% of the original capacitance is retained. The electrodes also present excellent cyclic stability of 74% capacity retention after 2000 cycles at 2 A g(-1). These superior electrochemical properties are attributed to the uniform dispersion of active particles in the CNF matrix, which functions as a conductive support. The onionlike graphitic layers formed around the Co3O4 nanoparticles not only improve the electrical conductivity of the electrode but also prevent the separation of the nanoparticles from the carbon matrix.

  2. A novel method for synthesis of phosphomolybdic acid-modified Pd/C catalysts for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Zhu, Mingyuan; Gao, Xiaoling; Luo, Guangqin; Dai, Bin

    2013-03-01

    This manuscript reports a convenient method for immobilizing phosphomolybdic acid (HPMo) on polyaniline (PAN-) functionalized carbon supports. The obtained HPMo-PAN-C sample is used as the support to prepare a Pd/HPMo-PAN-C catalyst. The samples are characterized by Fourier transform infrared spectroscopy, transmission electron microscopy and X-ray diffraction analysis. The results suggest that HPMo retains its Keggin structure and that the presence of HPMo reduces the average particle size of the Pd nano-particles in the obtained Pd/HPMo-PAN-C catalyst. Electro-chemical measurements in 0.5 M HClO4 solution reveal that the Pd/HPMo-PAN-C catalyst has higher catalytic activity for oxygen reduction reactions than does a Pd/C catalyst prepared using a similar procedure. The stability of the Pd/HPMo-PAN-C catalyst is evaluated by multiple-cycle voltammetry techniques; the mass catalytic activity decreases by only 10% after 100 scanning cycles.

  3. Solvent-Free Manufacturing of Electrodes for Lithium-ion Batteries

    NASA Astrophysics Data System (ADS)

    Ludwig, Brandon; Zheng, Zhangfeng; Shou, Wan; Wang, Yan; Pan, Heng

    2016-03-01

    Lithium ion battery electrodes were manufactured using a new, completely dry powder painting process. The solvents used for conventional slurry-cast electrodes have been completely removed. Thermal activation time has been greatly reduced due to the time and resource demanding solvent evaporation process needed with slurry-cast electrode manufacturing being replaced by a hot rolling process. It has been found that thermal activation time to induce mechanical bonding of the thermoplastic polymer to the remaining active electrode particles is only a few seconds. Removing the solvent and drying process allows large-scale Li-ion battery production to be more economically viable in markets such as automotive energy storage systems. By understanding the surface energies of various powders which govern the powder mixing and binder distribution, bonding tests of the dry-deposited particles onto the current collector show that the bonding strength is greater than slurry-cast electrodes, 148.8 kPa as compared to 84.3 kPa. Electrochemical tests show that the new electrodes outperform conventional slurry processed electrodes, which is due to different binder distribution.

  4. Fundamental Studies Connected with Electrochemical Energy Storage

    NASA Technical Reports Server (NTRS)

    Buck, E.; Sen, R.

    1974-01-01

    Papers are presented which deal with electrochemical research activities. Emphasis is placed on electrochemical energy storage devices. Topics discussed include: adsorption of dendrite inhibitors on zinc; proton discharge process; electron and protron transfer; quantum mechanical formulation of electron transfer rates; and theory of electrochemical kinetics in terms of two models of activation; thermal and electrostatic.

  5. Activated Porous Carbon Spheres with Customized Mesopores through Assembly of Diblock Copolymers for Electrochemical Capacitor.

    PubMed

    Tang, Jing; Wang, Jie; Shrestha, Lok Kumar; Hossain, Md Shahriar A; Alothman, Zeid Abdullah; Yamauchi, Yusuke; Ariga, Katsuhiko

    2017-06-07

    A series of porous carbon spheres with precisely adjustable mesopores (4-16 nm), high specific surface area (SSA, ∼2000 m 2 g -1 ), and submicrometer particle size (∼300 nm) was synthesized through a facile coassembly of diblock polymer micelles with a nontoxic dopamine source and a common postactivation process. The mesopore size can be controlled by the diblock polymer, polystyrene-block-poly(ethylene oxide) (PS-b-PEO) templates, and has an almost linear dependence on the square root of the degree of polymerization of the PS blocks. These advantageous structural properties make the product a promising electrode material for electrochemical capacitors. The electrochemical capacitive performance was studied carefully by using symmetrical cells in a typical organic electrolyte of 1 M tetraethylammonium tetrafluoroborate/acetonitrile (TEA BF 4 /AN) or in an ionic liquid electrolyte of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF 4 ), displaying a high specific capacitance of 111 and 170 F g -1 at 1 A g -1 , respectively. The impacts of pore size distribution on the capacitance performance were thoroughly investigated. It was revealed that large mesopores and a relatively low ratio of micropores are ideal for realizing high SSA-normalized capacitance. These results provide us with a simple and reliable way to screen future porous carbon materials for electrochemical capacitors and encourage researchers to design porous carbon with high specific surface area, large mesopores, and a moderate proportion of micropores.

  6. Graphene oxide-modified ZnO particles: synthesis, characterization, and antibacterial properties

    PubMed Central

    Zhong, Linlin; Yun, Kyusik

    2015-01-01

    Nanosized ZnO particles with diameters of 15 nm were prepared with a solution precipitation method at low cost and high yield. The synthesis of the particles was functionalized by the organic solvent dimethylformamide, and the particles were covalently bonded to the surface of graphene oxide. The morphology of the graphene oxide sheets and ZnO particles was confirmed with field emission scanning electron microscopy and biological atomic force microscopy. Fourier transform infrared spectroscopy and X-ray diffraction were used to analyze the physical and chemical properties of the ZnO/graphene oxide composites that differed from those of the individual components. Enhanced electrochemical properties were detected with cyclic voltammetry, with a redox peak of the composites at 0.025 mV. Excellent antibacterial activity of ZnO/graphene oxide composites was observed with a microdilution method in which minimum inhibitory concentrations of 6.25 µg/mL for Escherichia coli and Salmonella typhimurium, 12.5 µg/mL for Bacillus subtilis, and 25 µg/mL for Enterococcus faecalis. After further study of the antibacterial mechanism, we concluded that a vast number of reactive oxygen species formed on the surface of composites, improving antibacterial properties. PMID:26347126

  7. Synthesis of Magnetite Nanoparticles and Its Application As Electrode Material for the Electrochemical Oxidation of Methanol

    NASA Astrophysics Data System (ADS)

    Shah, Muhammad Tariq; Balouch, Aamna; Panah, Pirah; Rajar, Kausar; Mahar, Ali Muhammad; Khan, Abdullah; Jagirani, Muhammad Saqaf; Khan, Humaira

    2018-06-01

    In this study, magnetite (Fe3O4) nanoparticles were synthesized by a simple and facile chemical co-precipitation method at ambient laboratory conditions. The synthesized Fe3O4 nanostructures were characterized for their morphology, size, crystalline structure and component analysis using field emission scanning electron microscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, x-ray diffraction and electron dispersive x-ray spectroscopy. The Fe3O4 nanoparticles showed semi-spherical geometry with an average particle diameter up to 14 nm. The catalytic properties of Fe3O4 nanoparticles were evaluated for electrochemical oxidation of methanol. For this purpose, the magnetite NPs were coated on the surface of an indium tin oxide (ITO) electrode and used as a working electrode in the electrochemical oxidation of methanol. The effect of potential scan rate, the concentration of methanol, the volume of electrolyte and catalyst (Fe3O4 NPs) deposition volume was studied to get high peak current densities for methanol oxidation. The stability and selectivity of the fabricated electrode (Fe3O4/ITO) were also assessed during the electrochemical process. This study revealed that the Fe3O4/ITO electrode was highly stable and selective towards methanol electrochemical oxidation in basic (KOH) media. Bare ITO and Fe3O4 NPs modified glassy (Fe3O4/GCE) electrodes were also tested in the electro-oxidation study of methanol, but their peak current density responses were very low as compared to the Fe3O4/ITO electrode, which showed high electrocatalytic activity towards methanol oxidation under similar conditions. We hope that Fe3O4 nanoparticles (NPs) will be an alternative for methanol oxidation as compared to the expensive noble metals (Pt, Au, and Pd) for energy generation processes.

  8. Interesting electrochemical properties of novel three-dimensional Ag3PO4 tetrapods as a new super capacitor electrode material

    NASA Astrophysics Data System (ADS)

    Li, Shouguang; Teng, Fei; Chen, Mindong; Li, Na; Hua, Xia; Wang, Kai; Li, Min

    2014-05-01

    The novel three-dimensional (3D) silver phosphate tetrapods (TA) are synthesized and employed as a super capacitor electrode material. The electrochemical properties are investigated by cyclic voltammetry (CV), chronopotentiometry (CP) and electrochemical impedance spectroscopy (EIS). It is interesting that compared with irregular silver phosphate particles (IA), TA shows a higher capacitance (250 vs. 160 F g-1), and a higher coulombic efficiency (80% vs. 74%), which is mainly ascribed to the 3D microstructure and its high conductivity. To the best of our knowledge, this is the first report on silver phosphate as a super capacitor material.

  9. Magnetic separation of antibiotics by electrochemical magnetic seeding

    NASA Astrophysics Data System (ADS)

    Ihara, I.; Toyoda, K.; Beneragama, N.; Umetsu, K.

    2009-03-01

    Magnetic separation of several classes of antibiotics was investigated using electrochemical magnetic seeding. Electrocoagulation with a sacrificial anode followed by addition of magnetite particles was applied for the magnetic seeding of antibiotics. With electrochemical magnetic seeding using an iron anode, tetracycline antibiotics (oxytetracycline, chlortetracycline, doxycycline and tetracycline) and cephalosporin antibiotic (cefdinir) were rapidly removed from synthetic wastewater by magnetic separation using a neodymium magnet. Iron and aluminium anodes were suitable for magnetic seeding of the antibiotics. The results indicated that the ability of antibiotics to form strong complex with iron and aluminium allowed the higher removal by magnetic separation. This method would be appropriate for rapid treatment of antibiotics in wastewater.

  10. Sol-Gel Electrolytes Incorporated by Lanthanide Luminescent Materials and Their Photophysical Properties

    NASA Astrophysics Data System (ADS)

    Yu, Chufang; Zhang, Zhengyang; Fu, Meizhen; Gao, Jinwei; Zheng, Yuhui

    2017-10-01

    A group of silica gel electrolytes with lanthanide luminescent hybrid materials were assembled and investigated. Photophysical studies showed that terbium and europium hybrids displayed characteristic green and red emissions within the electrolytes. The influence of different concentration of the lanthanide hybrids on the electrochemical behavior of a gelled electrolyte valve-regulated lead-acid battery were studied through cyclic voltammograms, electrochemical impedance spectroscopy, water holding experiments and mobility tests. The morphology and particle size were analyzed by scanning electron microscopy. The results proved that lanthanide (Tb3+/Eu3+) luminescent materials are effective additives which will significantly improve the electrochemical properties of lead-acid batteries.

  11. Particle size-controllable microwave-assisted solvothermal synthesis of the high-voltage cathode material LiCoPO4 using water/ethylene glycol solvent blends

    NASA Astrophysics Data System (ADS)

    Ludwig, Jennifer; Haering, Dominik; Doeff, Marca M.; Nilges, Tom

    2017-03-01

    Particle size-tuned platelets of the high-voltage cathode material LiCoPO4 for Li-ion batteries have been synthesized by a simple one-step microwave-assisted solvothermal process using an array of water/ethylene glycol (EG) solvent mixtures. Particle size control was achieved by altering the concentration of the EG co-solvent in the mixture between 0 and 100 vol%, with amounts of 0-80 vol% EG producing single phase, olivine-type LiCoPO4. The particle sizes of the olivine materials were significantly reduced from about 1.2 μm × 1.2 μm × 500 nm (0 vol% EG) to 200 nm × 100 nm × 50 nm (80 vol% EG) with increasing EG content, while specific surface areas increased from 2 to 13 m2 g-1. The particle size reduction could mainly be attributed to the modified viscosities of the solvent blends. Owing to the soft template effect of EG, the crystals exhibited the smallest dimensions along the [010] direction of the Li diffusion pathways in the olivine crystal structure, resulting in enhanced lithium diffusion properties. The relationship between the synthesis, crystal properties and electrochemical performance was further elucidated, indicating that the electrochemical performances of the as-prepared materials mainly depend on the solvent composition and the respective particle size range. LiCoPO4 products obtained from reaction media with low and high EG contents exhibited good electrochemical performances (initial discharge capacities of 87-124 mAh g-1 at 0.1 C), whereas materials made from medium EG concentrations (40-60 vol% EG) showed the highest capacities and gravimetric energy densities (up to 137 mAh g-1 and 658 Wh kg-1 at 0.1 C), excellent rate capabilities, and cycle life.

  12. A facile self-assembly approach to prepare palladium/carbon nanotubes catalyst for the electro-oxidation of ethanol

    NASA Astrophysics Data System (ADS)

    Wen, Cuilian; Zhang, Xinyuan; Wei, Ying; Zhang, Teng; Chen, Changxin

    2018-02-01

    A facile self-assembly approach is reported to prepare palladium/carbon nanotubes (Pd/CNTs) catalyst for the electro-oxidation of ethanol. In this method, the Pd-oleate/CNTs was decomposed into the Pd/CNTs at an optimal temperature of 195 °C in air, in which no inert gas is needed for the thermal decomposition process due to the low temperature used and the decomposed products are also environmental friendly. The prepared Pd/CNTs catalyst has a high metallic Pd0 content and the Pd particles in the catalyst are disperse, uniform-sized with an average size of ˜2.1 nm, and evenly distributed on the CNTs. By employing our strategy, the problems including the exfoliation of the metal particles from the CNTs and the aggregation of the metal particles can be solved. Comparing with the commercial Pd/C one, the prepared Pd/CNTs catalyst exhibits a much higher electrochemical activity and stability for the electro-oxidation of ethanol in the direct ethanol fuel cells.

  13. Embedded Carbide-derived Carbon (CDC) particles in polypyrrole (PPy) for linear actuator

    NASA Astrophysics Data System (ADS)

    Zondaka, Zane; Valner, Robert; Aabloo, Alvo; Tamm, Tarmo; Kiefer, Rudolf

    2016-04-01

    Conducting polymer linear actuators, for example sodium dodecylbenzenesulfonate (NaDBS) doped polypyrrole (PPy/DBS), have shown moderate strain and stress. The goal of this work was to increase the obtainable strain and stress by adding additional active material to PPy/DBS. In recent year's carbide-derived carbon (CDC)-based materials have been applied in actuators; however, the obtained displacement and actuation speed has been low comparing to conducting polymer based actuators. In the present work, a CDC-PPy hybrid was synthesized electrochemically and polyoxometalate (POM) - phosphotungstic acid - was used to attach charge to CDC particles. The CDC-POM served in the presence of NaDBS as an additional electrolyte. Cyclic voltammetry and chronopotentiometric electrochemomechanical deformation (ECMD) measurements were performed in Lithium bis(trifluoromethanesulfonyl)- imide (LiTFSI) aqueous electrolyte. The ECMD measurements revealed that the hybrid CDC-PPy material exhibited higher force and strain in comparison to PPy/DBS films. The new material was investigated by scanning electron microscopy (SEM) to evaluate CDC particle embedding in the polymer network.

  14. BF 3-promoted electrochemical properties of quinoxaline in propylene carbonate

    DOE PAGES

    Carino, Emily V.; Diesendruck, Charles E.; Moore, Jeffrey S.; ...

    2015-02-04

    Electrochemical and density functional studies demonstrate that coordination of electrolyte constituents to quinoxalines modulates their electrochemical properties. Quinoxalines are shown to be electrochemically inactive in most electrolytes in propylene carbonate, yet the predicted reduction potential is shown to match computational estimates in acetonitrile. We find that in the presence of LiBF 4 and trace water, an adduct is formed between quinoxaline and the Lewis acid BF3, which then displays electrochemical activity at 1–1.5 V higher than prior observations of quinoxaline electrochemistry in non-aqueous media. Direct synthesis and testing of a bis-BF 3 quinoxaline complex further validates the assignment of themore » electrochemically active species, presenting up to a ~26-fold improvement in charging capacity, demonstrating the advantages of this adduct over unmodified quinoxaline in LiBF 4-based electrolyte. The use of Lewis acids to effectively “turn on” the electrochemical activity of organic molecules may lead to the development of new active material classes for energy storage applications.« less

  15. Comparison on exfoliated graphene nano-sheets and triturated graphite nano-particles for mode-locking the Erbium-doped fibre lasers

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Yu; Lin, Yung-Hsiang; Wu, Chung-Lun; Cheng, Chih-Hsien; Tsai, Din-Ping; Lin, Gong-Ru

    2018-06-01

    Comparisons on exfoliated graphene nano-sheets and triturated graphite nano-particles for mode-locking the Erbium-doped fiber lasers (EDFLs) are performed. As opposed to the graphite nano-particles obtained by physically triturating the graphite foil, the tri-layer graphene nano-sheets is obtained by electrochemically exfoliating the graphite foil. To precisely control the size dispersion and the layer number of the exfoliated graphene nano-sheet, both the bias of electrochemical exfoliation and the speed of centrifugation are optimized. Under a threshold exfoliation bias of 3 volts and a centrifugation at 1000 rpm, graphene nano-sheets with an average diameter of 100  ±  40 nm can be obtained. The graphene nano-sheets with an area density of 15 #/µm2 are directly imprinted onto the end-face of a single-mode fiber made patchcord connector inside the EDFL cavity. Such electrochemically exfoliated graphene nano-sheets show comparable saturable absorption with standard single-graphene and perform the self-amplitude modulation better than physically triturated graphite nano-particles. The linear transmittance and modulation depth of the inserted graphene nano-sheets are 92.5% and 53%, respectively. Under the operation with a power gain of 21.5 dB, the EDFL can be passively mode-locked to deliver a pulsewidth of 454.5 fs with a spectral linewidth of 5.6 nm. The time-bandwidth product of 0.31 is close to the transform limit. The Kelly sideband frequency spacing of 1.34 THz is used to calculate the chirp coefficient as  ‑0.0015.

  16. Robust Strategy for Crafting Li5Cr7Ti6O25@CeO2 Composites as High-Performance Anode Material for Lithium-Ion Battery.

    PubMed

    Mei, Jie; Yi, Ting-Feng; Li, Xin-Yuan; Zhu, Yan-Rong; Xie, Ying; Zhang, Chao-Feng

    2017-07-19

    A facile strategy was developed to prepare Li 5 Cr 7 Ti 6 O 25 @CeO 2 composites as a high-performance anode material. X-ray diffraction (XRD) and Rietveld refinement results show that the CeO 2 coating does not alter the structure of Li 5 Cr 7 Ti 6 O 25 but increases the lattice parameter. Scanning electron microscopy (SEM) indicates that all samples have similar morphologies with a homogeneous particle distribution in the range of 100-500 nm. Energy-dispersive spectroscopy (EDS) mapping and high-resolution transmission electron microscopy (HRTEM) prove that CeO 2 layer successfully formed a coating layer on a surface of Li 5 Cr 7 Ti 6 O 25 particles and supplied a good conductive connection between the Li 5 Cr 7 Ti 6 O 25 particles. The electrochemical characterization reveals that Li 5 Cr 7 Ti 6 O 25 @CeO 2 (3 wt %) electrode shows the highest reversibility of the insertion and deinsertion behavior of Li ion, the smallest electrochemical polarization, the best lithium-ion mobility among all electrodes, and a better electrochemical activity than the pristine one. Therefore, Li 5 Cr 7 Ti 6 O 25 @CeO 2 (3 wt %) electrode indicates the highest delithiation and lithiation capacities at each rate. At 5 C charge-discharge rate, the pristine Li 5 Cr 7 Ti 6 O 25 only delivers an initial delithiation capacity of ∼94.7 mAh g -1 , and the delithiation capacity merely achieves 87.4 mAh g -1 even after 100 cycles. However, Li 5 Cr 7 Ti 6 O 25 @CeO 2 (3 wt %) delivers an initial delithiation capacity of 107.5 mAh·g -1 , and the delithiation capacity also reaches 100.5 mAh g -1 even after 100 cycles. The cerium dioxide modification is a direct and efficient approach to improve the delithiation and lithiation capacities and cycle property of Li 5 Cr 7 Ti 6 O 25 at large current densities.

  17. Strongly coupled inorganic-nano-carbon hybrid materials for energy storage.

    PubMed

    Wang, Hailiang; Dai, Hongjie

    2013-04-07

    The global shift of energy production from fossil fuels to renewable energy sources requires more efficient and reliable electrochemical energy storage devices. In particular, the development of electric or hydrogen powered vehicles calls for much-higher-performance batteries, supercapacitors and fuel cells than are currently available. In this review, we present an approach to synthesize electrochemical energy storage materials to form strongly coupled hybrids (SC-hybrids) of inorganic nanomaterials and novel graphitic nano-carbon materials such as carbon nanotubes and graphene, through nucleation and growth of nanoparticles at the functional groups of oxidized graphitic nano-carbon. We show that the inorganic-nano-carbon hybrid materials represent a new approach to synthesize electrode materials with higher electrochemical performance than traditional counterparts made by simple physical mixtures of electrochemically active inorganic particles and conducting carbon materials. The inorganic-nano-carbon hybrid materials are novel due to possible chemical bonding between inorganic nanoparticles and oxidized carbon, affording enhanced charge transport and increased rate capability of electrochemical materials without sacrificing specific capacity. Nano-carbon with various degrees of oxidation provides a novel substrate for nanoparticle nucleation and growth. The interactions between inorganic precursors and oxidized-carbon substrates provide a degree of control over the morphology, size and structure of the resulting inorganic nanoparticles. This paper reviews the recent development of inorganic-nano-carbon hybrid materials for electrochemical energy storage and conversion, including the preparation and functionalization of graphene sheets and carbon nanotubes to impart oxygen containing groups and defects, and methods of synthesis of nanoparticles of various morphologies on oxidized graphene and carbon nanotubes. We then review the applications of the SC-hybrid materials for high performance lithium ion batteries, rechargeable Li-S and Li-O2 batteries, supercapacitors and ultrafast Ni-Fe batteries, and new electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions.

  18. High performance binder-free SiO x/C composite LIB electrode made of SiO x and lignin

    DOE PAGES

    Chen, Tao; Hu, Jiazhi; Zhang, Long; ...

    2017-07-19

    A high performance binder-free SiO x/C composite electrode was synthesized by mixing SiO x particles and Kraft lignin in a cryo-mill followed by heat treatment at 600 °C. After the heat treatment, lignin formed a conductive matrix hosting SiO x particles, ensuring electronic conductivity, connectivity, and accommodation of volume changes during lithiation/delithiation. As the result, no conventional binder or conductive agent was necessary. When electrochemically cycled, the composite electrode delivered excellent performance, maintaining ~900 mAh g -1 after 250 cycles at a rate of 200 mA g -1, and good rate capability. The robustness of the electrode was also examinedmore » by post-cycling SEM images, where few cracks were observed. The excellent electrochemical performance can be attributed to the comparatively small volume change of SiO x-based electrodes (160%) and the flexibility of the lignin derived carbon matrix to accommodate the volume change. In conclusion, this work should stimulate further interests in using bio-renewable resources in making advanced electrochemical energy storage systems.« less

  19. High performance binder-free SiO x/C composite LIB electrode made of SiO x and lignin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Tao; Hu, Jiazhi; Zhang, Long

    A high performance binder-free SiO x/C composite electrode was synthesized by mixing SiO x particles and Kraft lignin in a cryo-mill followed by heat treatment at 600 °C. After the heat treatment, lignin formed a conductive matrix hosting SiO x particles, ensuring electronic conductivity, connectivity, and accommodation of volume changes during lithiation/delithiation. As the result, no conventional binder or conductive agent was necessary. When electrochemically cycled, the composite electrode delivered excellent performance, maintaining ~900 mAh g -1 after 250 cycles at a rate of 200 mA g -1, and good rate capability. The robustness of the electrode was also examinedmore » by post-cycling SEM images, where few cracks were observed. The excellent electrochemical performance can be attributed to the comparatively small volume change of SiO x-based electrodes (160%) and the flexibility of the lignin derived carbon matrix to accommodate the volume change. In conclusion, this work should stimulate further interests in using bio-renewable resources in making advanced electrochemical energy storage systems.« less

  20. Morphology-dependent Electrochemical Enhancements of Porous Carbon as Sensitive Determination Platform for Ascorbic Acid, Dopamine and Uric Acid

    NASA Astrophysics Data System (ADS)

    Cheng, Qin; Ji, Liudi; Wu, Kangbing; Zhang, Weikang

    2016-02-01

    Using starch as the carbon precursor and different-sized ZnO naoparticles as the hard template, a series of porous carbon materials for electrochemical sensing were prepared. Experiments of scanning electron microscopy, transmission electron microscopy and Nitrogen adsorption-desorption isotherms reveal that the particle size of ZnO has big impacts on the porous morphology and surface area of the resulting carbon materials. Through ultrasonic dispersion of porous carbon and subsequent solvent evaporation, different sensing interfaces were constructed on the surface of glassy carbon electrode (GCE). The electrochemical behaviors of ascorbic acid (AA), dopamine (DA) and uric acid (UA) were studied. On the surface of porous carbon materials, the accumulation efficiency and electron transfer ability of AA, DA and UA are improved, and consequently their oxidation signals enhance greatly. Moreover, the interface enhancement effects of porous carbon are also controlled by the particle size of hard template. The constructed porous carbon interface displays strong signal amplification ability and holds great promise in constructing a sensitive platform for the simultaneous determination of AA, DA and UA.

  1. Unexpected Voltage Fade in LMR-NMC Oxides Cycled below the “Activation” Plateau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yan; Bareno, Javier; Bettge, Martin

    2015-01-01

    A common feature of lithium-excess layered oxides, nominally of composition xLi 2MnO 3•(1-x)LiMO 2 (M = transition metal) is a high-voltage plateau (~4.5 V vs. Li/Li +) in their capacity-voltage profile during the first delithiation cycle. This plateau is believed to result from activation of the Li 2MnO 3 component, which makes additional lithium available for electrochemical cycling. However, oxides cycled beyond this activation plateau are known to display voltage fade which is a continuous reduction in their equilibrium potential. In this article we show that these oxides display gradual voltage fade even on electrochemical cycling in voltage ranges wellmore » below the activation plateau. The average fade is ~0.08 mV-cycle-1 for Li 1.2Ni 0.15Mn 0.55Co 0.1O 2 vs. Li cells after 20 cycles in the 2–4.1 V range at 55°C; a ~54 mV voltage hysteresis, expressed as the difference in average cell voltage between charge and discharge cycles, is also observed. The voltage fade results from a gradual accumulation of local spinel environments in the crystal structure. Some of these spinel sites result from lithium deficiencies during oxide synthesis and are likely to be at the particle surfaces; other sites result from the migration of transition metal atoms in the partially-delithiated LiMO 2 component into the lithium planes during electrochemical cycling. The observed rate of voltage fade depends on a combination of factors that includes the phase equilibrium between the layered and spinel components and the kinetics of transition metal migration.« less

  2. Synthesis and characterization of zinc-molybdenum oxide photocatalysts using an electrochemical-thermal process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goveas, J. J., E-mail: jenicegoveas@gmail.com; Gonsalves, R. A.; Rao, P.

    2016-05-23

    Dyes act as major pollutants in water and can be degraded by photocatalysis. This paper establishes the role of electrochemically generated nanostructures of Zinc-Molybdenum oxides (ZMO) as photocatalysts by degrading EBT (Eriochrome Black- T) taken as a model pollutant under UV light. A facile, rapid and low cost process to synthesize these nanostructures (ZMO) is presented. Various factors that affect the synthesis and photocatalytic activity of these nanostructures are discussed. The role of calcination temperature and pulverization on the photocatalytic action has also been established. Particles have been synthesized in pure form as well as using surfactants such as cetrimidemore » (cetyl trimethyl ammonium bromide), polyethylene glycol (PEG) and SDS (sodium dodecyl sulphate) to enhance their photocatalytic action. This paper also discusses the characterization of these nanoparticles by powder XRD, SEM, FT-IR and UV-Visible spectroscopy. Decolourisation was achieved to completion under optimum experimental conditions at room temperature ascertaining the application of these nanostructures as effective photocatalysts.« less

  3. Mesoporous Amorphous Silicon: A Simple Synthesis of a High-Rate and Long-Life Anode Material for Lithium-Ion Batteries.

    PubMed

    Lin, Liangdong; Xu, Xuena; Chu, Chenxiao; Majeed, Muhammad K; Yang, Jian

    2016-11-02

    Amorphous Si (a-Si) shows potential advantages over crystalline Si (c-Si) in lithium-ion batteries, owing to its high lithiation potential and good tolerance to intrinsic strain/stress. Herein, porous a-Si has been synthesized by a simple process, without the uses of dangerous or expensive reagents, sophisticated equipment, and strong acids that potential cause environment risks. These porous a-Si particles exhibit excellent electrochemical performances, owing to their porous structure, amorphous nature, and surface modification. They deliver a capacity of 1025 mAh g -1 at 3 A g -1 after 700 cycles. Moreover, the reversible capacity after electrochemical activation, is quite stable throughout the cycling, resulting in a capacity retention about around 88 %. The direct comparison between a-Si and c-Si anodes clearly supports the advantages of a-Si in lithium-ion batteries. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Electrochemical Biosensor for Rapid and Sensitive Detection of Magnetically Extracted Bacterial Pathogens

    PubMed Central

    Setterington, Emma B.; Alocilja, Evangelyn C.

    2012-01-01

    Biological defense and security applications demand rapid, sensitive detection of bacterial pathogens. This work presents a novel qualitative electrochemical detection technique which is applied to two representative bacterial pathogens, Bacillus cereus (as a surrogate for B. anthracis) and Escherichia coli O157:H7, resulting in detection limits of 40 CFU/mL and 6 CFU/mL, respectively, from pure culture. Cyclic voltammetry is combined with immunomagnetic separation in a rapid method requiring approximately 1 h for presumptive positive/negative results. An immunofunctionalized magnetic/polyaniline core/shell nano-particle (c/sNP) is employed to extract target cells from the sample solution and magnetically position them on a screen-printed carbon electrode (SPCE) sensor. The presence of target cells significantly inhibits current flow between the electrically active c/sNPs and SPCE. This method has the potential to be adapted for a wide variety of target organisms and sample matrices, and to become a fully portable system for routine monitoring or emergency detection of bacterial pathogens. PMID:25585629

  5. Synthesis and characterization of Cu3Se2 nanofilms by an underpotential deposition based electrochemical codeposition technique

    NASA Astrophysics Data System (ADS)

    Aydın, Zehra Yazar; Abacı, Serdar

    2017-12-01

    The Cu3Se2 nanofilms were synthesized with underpotential deposition based electrochemical codeposition technique for the first time in the literature. The electrochemical behaviors of copper and selenium were investigated in 0.1 M H2SO4 on Au electrode. The effects of concentration and scan rate on the electrochemical behavior of selenium were studied. The electrochemical behaviors in underpotential deposition and bulk regions of the Cu-Se system were investigated in acidic solution by cyclic voltammetry and electrolysis techniques. X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, X-ray diffraction, Raman spectroscopy, and ultraviolet and visible absorption spectroscopy techniques were used for characterization of synthesized films. According to the X-ray photoelectron spectroscopy spectrum, Cu/Se ratio was determined to be approximately 3/2. Copper selenide nanofilms are two phases and polycrystalline according to X-ray diffraction. The films mainly formed tetragonal Cu3Se2 (umangite mineral structure) structure and the particle size was approximately 45.95 nm. Scanning electron microscopy images showed that Cu3Se2 nanofilms consisted of uniform, nano-sizes and two-dimensional. It was found through AFM that the surface roughness of the film was 6.173 nm, with a mean particle size of around 50 nm. Depending on the deposition time, the band gaps of the Cu3Se2 films were in the range of 2.86-3.20 eV. Three characteristic vibrational modes belonging to Cu3Se2 nanofilms were recorded in the Raman spectrum.

  6. High-Capacity, High-Voltage Composite Oxide Cathode Materials

    NASA Technical Reports Server (NTRS)

    Hagh, Nader M.

    2015-01-01

    This SBIR project integrates theoretical and experimental work to enable a new generation of high-capacity, high-voltage cathode materials that will lead to high-performance, robust energy storage systems. At low operating temperatures, commercially available electrode materials for lithium-ion (Li-ion) batteries do not meet energy and power requirements for NASA's planned exploration activities. NEI Corporation, in partnership with the University of California, San Diego, has developed layered composite cathode materials that increase power and energy densities at temperatures as low as 0 degC and considerably reduce the overall volume and weight of battery packs. In Phase I of the project, through innovations in the structure and morphology of composite electrode particles, the partners successfully demonstrated an energy density exceeding 1,000 Wh/kg at 4 V at room temperature. In Phase II, the team enhanced the kinetics of Li-ion transport and electronic conductivity at 0 degC. An important feature of the composite cathode is that it has at least two components that are structurally integrated. The layered material is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated and deliver a large amount of energy with stable cycling.

  7. A TiO₂ nanoparticle system for sacrificial solar H₂ production prepared by rational combination of a hydrogenase with a ruthenium photosensitizer.

    PubMed

    Reisner, Erwin; Armstrong, Fraser A

    2011-01-01

    A hybrid system comprising a hydrogenase and a photosensitizer co-attached to a nanoparticle serves as a rational model for fast dihydrogen (H(2)) production using visible light. This chapter describes a stepwise procedure for preparing TiO(2) nanoparticles functionalized with a hydrogenase from Desulfomicrobium baculatum (Db [NiFeSe]-H) and a tris(bipyridyl)ruthenium photosensitizer (RuP). Upon irradiation with visible light, these particles produce H(2) from neutral water at room temperature in the presence of a sacrificial electron donor - a test-system for the cathodic half reaction of water splitting. In particular, we describe how a hydrogenase and a photosensitizer with desired properties, including strong adsorption on TiO(2), can be selected by electrochemical methods. The catalyst Db [NiFeSe]-H is selected for its high H(2) production activity even when H(2) and traces of O(2) are present. Adsorption of Db [NiFeSe]-H and RuP on TiO(2) electrodes results in high electrochemical and photocatalytic activities that translate into nanoparticles exhibiting efficient light harvesting, charge separation, and sacrificial H(2) generation.

  8. Electrochemically deposited Cu2O cubic particles on boron doped diamond substrate as efficient photocathode for solar hydrogen generation

    NASA Astrophysics Data System (ADS)

    Mavrokefalos, Christos K.; Hasan, Maksudul; Rohan, James F.; Compton, Richard G.; Foord, John S.

    2017-06-01

    Herein, we report a novel photocathode for the water splitting reaction. The electrochemical deposition of Cu2O particles on boron doped diamond (BDD) electrodes and the subsequent decoration with NiO nanoparticles by a dip coating method to act as co-catalyst for hydrogen evolution reaction is described. The morphology analysis by scanning electron microscope (SEM) revealed that Cu2O particles are cubic and decorated sporadically with NiO nanoparticles. X-ray photoelectron spectroscopy (XPS) confirmed the electronic interaction at the interface between Cu2O and NiO through a binding energy shift of the main Cu 2p peak. The photoelectrochemical (PEC) performance of NiO-Cu2O/BDD showed a much higher current density (-0.33 mA/cm2) and photoconversion efficiency (0.28%) compared to the unmodified Cu2O/BDD electrode, which are only -0.12 mA/cm2 and 0.06%, respectively. The enhancement in PEC performance is attributable to the synergy of NiO as an electron conduction mediator leading to the enhanced charge separation and transfer to the reaction interface for hydrogen evolution as evidenced by electrochemical impedance spectroscopy (EIS) and charge carrier density calculation. Stability tests showed that the NiO nanoparticles loading content on Cu2O surface is a crucial parameter in this regard.

  9. Nano-porous electrode systems by colloidal lithography for sensitive electrochemical detection: fabrication technology and properties

    NASA Astrophysics Data System (ADS)

    Lohmüller, Theobald; Müller, Ulrich; Breisch, Stefanie; Nisch, Wilfried; Rudorf, Ralf; Schuhmann, Wolfgang; Neugebauer, Sebastian; Kaczor, Markus; Linke, Stephan; Lechner, Sebastian; Spatz, Joachim; Stelzle, Martin

    2008-11-01

    A porous metal-insulator-metal sensor system was developed with the ultimate goal of enhancing the sensitivity of electrochemical sensors by taking advantage of redox cycling of electro active molecules between closely spaced electrodes. The novel fabrication technology is based on thin film deposition in combination with colloidal self-assembly and reactive ion etching to create micro- or nanopores. This cost effective approach is advantageous compared to common interdigitated electrode arrays (IDA) since it does not require high definition lithography technology. Spin-coating and random particle deposition, combined with a new sublimation process are discussed as competing strategies to generate monolayers of colloidal spheres. Metal-insulator-metal layer systems with low leakage currents < 10 pA and an insulator thickness as low as 100 nm were obtained at high yield (typically > 90%). We also discuss possible causes of sensor failure with respect to critical fabrication processes. Short circuits which could occur during or as a result of the pore etching process were investigated in detail. Infrared microscopy in combination with focused ion beam etching/SEM were used to reveal a defect mechanism creating interconnects and increased leakage current between the top and bottom electrodes. Redox cycling provides for amplification factors of >100. A general applicability for electrochemical diagnostic assays is therefore anticipated.

  10. Electrochemically reduced graphene-oxide supported bimetallic nanoparticles highly efficient for oxygen reduction reaction with excellent methanol tolerance

    NASA Astrophysics Data System (ADS)

    Yasmin, Sabina; Cho, Sung; Jeon, Seungwon

    2018-03-01

    We report a simple and facile method for the fabrication of bimetallic nanoparticles on electrochemically reduced graphene oxide (ErGO) for electrocatalytic oxygen reduction reaction (ORR) in alkaline media. First, reduced graphene oxide supported palladium and manganese oxide nanoparticle (rGO/Pd-Mn2O3) catalyst was synthesized via a simple chemical method at room temperature; then, it was electrochemically reduced for oxidation reduction reaction (ORR) in alkaline media. The chemical composition and morphological properties of ErGO/Pd-Mn2O3 was characterized by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). The TEM images reveals that, nano-sized Pd and Mn2O3 particles were disperse on the ErGO sheet without aggregation. The as-prepared ErGO/Pd-Mn2O3 was employed for ORR in alkaline media which shows higher ORR activity with more positive onset and half-wave potential, respectively. Remarkably, ErGO/Pd-Mn2O3 reduced oxygen via four-electron transfer pathway with negligible amount of intermediate peroxide species (HO2-). Furthermore, the higher stability and excellent methanol tolerance of the ErGO/Pd-Mn2O3 compared to commercial Pt/C (20 wt%) catalyst, indicating its suitability for fuel cells.

  11. Verifying the Rechargeability of Li-CO2 Batteries on Working Cathodes of Ni Nanoparticles Highly Dispersed on N-Doped Graphene.

    PubMed

    Zhang, Zhang; Wang, Xin-Gai; Zhang, Xu; Xie, Zhaojun; Chen, Ya-Nan; Ma, Lipo; Peng, Zhangquan; Zhou, Zhen

    2018-02-01

    Li-CO 2 batteries could skillfully combine the reduction of "greenhouse effect" with energy storage systems. However, Li-CO 2 batteries still suffer from unsatisfactory electrochemical performances and their rechargeability is challenged. Here, it is reported that a composite of Ni nanoparticles highly dispersed on N-doped graphene (Ni-NG) with 3D porous structure, exhibits a superior discharge capacity of 17 625 mA h g -1 , as the air cathode for Li-CO 2 batteries. The batteries with these highly efficient cathodes could sustain 100 cycles at a cutoff capacity of 1000 mA h g -1 with low overpotentials at the current density of 100 mA g -1 . Particularly, the Ni-NG cathodes allow to observe the appearance/disappearance of agglomerated Li 2 CO 3 particles and carbon thin films directly upon discharge/charge processes. In addition, the recycle of CO 2 is detected through in situ differential electrochemical mass spectrometry. This is a critical step to verify the electrochemical rechargeability of Li-CO 2 batteries. Also, first-principles computations further prove that Ni nanoparticles are active sites for the reaction of Li and CO 2 , which could guide to design more advantageous catalysts for rechargeable Li-CO 2 batteries.

  12. Method of forming a dense, high temperature electronically conductive composite layer on a porous ceramic substrate

    DOEpatents

    Isenberg, A.O.

    1992-04-21

    An electrochemical device, containing a solid oxide electrolyte material and an electrically conductive composite layer, has the composite layer attached by: (A) applying a layer of LaCrO[sub 3], YCrO[sub 3] or LaMnO[sub 3] particles, on a portion of a porous ceramic substrate, (B) heating to sinter bond the particles to the substrate, (C) depositing a dense filler structure between the doped particles, (D) shaving off the top of the particles, and (E) applying an electronically conductive layer over the particles as a contact. 7 figs.

  13. Electrochemical behaviour of naked sub-nanometre sized copper clusters and effect of CO 2

    DOE PAGES

    Passalacqua, Rosalba; Parathoner, Siglinda; Centi, Gabriele; ...

    2016-08-04

    The study of the electrochemical behavior (in the presence of N 2 or CO 2) of size-controlled naked Cu 5 and Cu 20 nanoclusters, prepared using a combination of gas-phase cluster ion sources, mass spectrometry, and soft-landing techniques, evidences some relevant results regarding the redox behavior of these sub-nanometre sized copper particles and the effect of CO 2 on them. Cu 20 nanoclusters show anodic redox processes occurring at much lower potential with respect to Cu 5 nanoclusters, which behave relatively similar to much larger Cu particles. However, Cu 5 nanoclusters coordinate effectively CO 2 (hydrogen carbonate) in solution, differentmore » from Cu 20 nanoclusters and larger Cu particles. This effect, rather than the redox behavior, is apparently connected to the ability of Cu 5 nanoclusters to reduce CO 2 under cathodic conditions at low overpotential. In conclusion, although preliminary, these results provide rather exciting indications on the possibility of realizing low overpotential electrocatalytic conversion of CO 2.« less

  14. Electrochemical behaviour of naked sub-nanometre sized copper clusters and effect of CO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Passalacqua, Rosalba; Parathoner, Siglinda; Centi, Gabriele

    The study of the electrochemical behavior (in the presence of N 2 or CO 2) of size-controlled naked Cu 5 and Cu 20 nanoclusters, prepared using a combination of gas-phase cluster ion sources, mass spectrometry, and soft-landing techniques, evidences some relevant results regarding the redox behavior of these sub-nanometre sized copper particles and the effect of CO 2 on them. Cu 20 nanoclusters show anodic redox processes occurring at much lower potential with respect to Cu 5 nanoclusters, which behave relatively similar to much larger Cu particles. However, Cu 5 nanoclusters coordinate effectively CO 2 (hydrogen carbonate) in solution, differentmore » from Cu 20 nanoclusters and larger Cu particles. This effect, rather than the redox behavior, is apparently connected to the ability of Cu 5 nanoclusters to reduce CO 2 under cathodic conditions at low overpotential. In conclusion, although preliminary, these results provide rather exciting indications on the possibility of realizing low overpotential electrocatalytic conversion of CO 2.« less

  15. Method and electrochemical cell for synthesis and treatment of metal monolayer electrocatalysts metal, carbon, and oxide nanoparticles ion batch, or in continuous fashion

    DOEpatents

    Adzic, Radoslav; Zhang, Junliang; Sasaki, Kotaro

    2015-04-28

    An apparatus and method for synthesis and treatment of electrocatalyst particles in batch or continuous fashion is provided. In one embodiment, the apparatus comprises a sonication bath and a two-compartment chamber submerged in the sonication bath. The upper and lower compartments are separated by a microporous material surface. The upper compartment comprises a cover and a working electrode (WE) connected to a Pt foil contact, with the foil contact connected to the microporous material. The upper chamber further comprises reference counter electrodes. The lower compartment comprises an electrochemical cell containing a solution of metal ions. In one embodiment, the method for synthesis of electrocatalysts comprises introducing a plurality of particles into the apparatus and applying sonication and an electrical potential to the microporous material connected to the WE. After the non-noble metal ions are deposited onto the particles, the non-noble metal ions are displaced by noble-metal ions by galvanic displacement.

  16. Electrochemical synthesis of poly(pyrrole-co-o-anisidine)/chitosan composite films

    NASA Astrophysics Data System (ADS)

    Yalçınkaya, Süleyman; Çakmak, Didem

    2017-05-01

    In this study, poly(pyrrole-co-o-anisidine)/chitosan composite films were electrochemically synthesized in various monomers feed ratio (pyrrole: o-anisidine; 9:1, 7:3, 1:1, 3:7 and 1:9) of pyrrole and o-anisidine on the platinum electrode. Electrochemical synthesis of the composite films was carried out via cyclic voltammetry technique. They were characterized by FT-IR, cyclic voltammetry, SEM micrographs, digital images, TGA and DSC techniques. The SEM results indicated that the particle size of the composite decreased with increasing o-anisidine ratio and the films became more likely to be smooth morphology. The TGA results proved that the film of the composite with 1:1 ratio showed highest final degradation temperature and lowest weight loss (83%) compared to copolymer and 9:1 1:9 composite films. The 1:1 composite film had higher thermal stability than copolymer and the other composite films (9:1 1:9). Meanwhile, electrochemical studies exhibited that the 1/9 composite film had good electrochemical stability as well.

  17. A combined electrochemical-irradiation treatment of highly colored and polluted industrial wastewater

    NASA Astrophysics Data System (ADS)

    Barrera-Díaz, C.; Ureña-Nuñez, F.; Campos, E.; Palomar-Pardavé, M.; Romero-Romo, M.

    2003-07-01

    This study reports on the attainment of optimal conditions for two electrolytic methods to treat wastewater: namely, electrocoagulation and particle destabilization of a highly polluted industrial wastewater, and electrochemically induced oxidation induced by in situ generation of Fenton's reactive. Additionally, a combined method that consisted of electrochemical treatment plus γ-irradiation was carried out. A typical composition of the industrial effluent treated was COD 3400 mg/l, color 3750 Pt/Co units, and fecal coliforms 21000 MPN/ml. The best removal efficiency was obtained with electrochemical oxidation induced in situ , that resulted in the reduction of 78% for the COD, 86% color and 99.9% fecal coliforms removal. A treatment sequence was designed and carried out, such that after both electrochemical processes, a γ-irradiation technique was used to complete the procedure. The samples were irradiated with various doses in an ALC γ-cell unit provided with a Co-60 source. The removal efficiency obtained was 95% for the COD values, 90% color and 99.9% for fecal coliforms.

  18. Thermally Reduced Graphene Oxide Electrochemically Activated by Bis-Spiro Quaternary Alkyl Ammonium for Capacitors.

    PubMed

    He, Tieshi; Meng, Xiangling; Nie, Junping; Tong, Yujin; Cai, Kedi

    2016-06-08

    Thermally reduced graphene oxide (RGO) electrochemically activated by a quaternary alkyl ammonium-based organic electrolytes/activated carbon (AC) electrode asymmetric capacitor is proposed. The electrochemical activation process includes adsorption of anions into the pores of AC in the positive electrode and the interlayer intercalation of cations into RGO in the negative electrode under high potential (4.0 V). The EA process of RGO by quaternary alkyl ammonium was investigated by X-ray diffraction and electrochemical measurements, and the effects of cation size and structure were extensively evaluated. Intercalation by quaternary alkyl ammonium demonstrates a small degree of expansion of the whole crystal lattice (d002) and a large degree of expansion of the partial crystal lattice (d002) of RGO. RGO electrochemically activated by bis-spiro quaternary alkyl ammonium in propylene carbonate/AC asymmetric capacitor exhibits good activated efficiency, high specific capacity, and stable cyclability.

  19. Fabrication and characterization of novel iodine doped hollow and mesoporous hematite (Fe2O3) particles derived from sol-gel method and their photocatalytic performances.

    PubMed

    Demirci, Selim; Yurddaskal, Metin; Dikici, Tuncay; Sarıoğlu, Cevat

    2018-03-05

    In this work, iodine (I) doped hollow and mesoporous Fe 2 O 3 photocatalyst particles were fabricated for the first time through sol-gel method. Phase structure, surface morphology, particle size, specific surface area and optical band gap of the synthesized Fe 2 O 3 photocatalysts were analyzed by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), X-ray photoelectron spectroscopy (XPS), BET surface analysis, particle size analyzer and UV-vis diffuse reflectance spectrum (UV-vis DRS), respectively. Also, electrochemical properties and photoluminescence spectra of Fe 2 O 3 particles were measured. The results illustrated that high crystalline, hollow and mesoporous Fe 2 O 3 particles were formed. The optical band gap values of the Fe 2 O 3 photocatalysts changed between 2.104 and 1.93eV. Photocatalytic efficiency of Fe 2 O 3 photocatalysts were assessed via MB solution. The photocatalytic activity results exhibited that I doping enhanced the photocatalytic efficiency. 1% mole iodine doped (I-2) Fe 2 O 3 photocatalyst had 97.723% photodegradation rate and 8.638×10 -2 min -1 kinetic constant which showed the highest photocatalytic activity within 45min. Moreover, stability and reusability experiments of Fe 2 O 3 photocatalysts were carried out. The Fe 2 O 3 photocatalysts showed outstanding stability after four sequence tests. As a result, I doped Fe 2 O 3 is a good candidate for photocatalysts. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Method of preparing porous, rigid ceramic separators for an electrochemical cell. [Patent application

    DOEpatents

    Bandyopadhyay, G.; Dusek, J.T.

    Porous, rigid separators for electrochemical cells are prepared by first calcining particles of ceramic material at temperatures above about 1200/sup 0/C for a sufficient period of time to reduce the sinterability of the particles. A ceramic powder that has not been calcined is blended with the original powder to control the porosity of the completed separator. The ceramic blend is then pressed into a sheet of the desired shape and sintered at a temperature somewhat lower than the calcination temperature. Separator sheets of about 1 to 2.5 mm thickness and 30 to 70% porosity can be prepared by this technique. Ceramics such as yttria, magnesium oxide, and magnesium-aluminium oxide have advantageously been used to form separators by this method.

  1. Development of an Electrochemical Paper-Based Analytical Device for Trace Detection of Virus Particles.

    PubMed

    Channon, Robert B; Yang, Yuanyuan; Feibelman, Kristen M; Geiss, Brian J; Dandy, David S; Henry, Charles S

    2018-06-19

    Viral pathogens are a serious health threat around the world, particularly in resource limited settings, where current sensing approaches are often insufficient and slow, compounding the spread and burden of these pathogens. Here, we describe a label-free, point-of-care approach toward detection of virus particles, based on a microfluidic paper-based analytical device with integrated microwire Au electrodes. The device is initially characterized through capturing of streptavidin modified nanoparticles by biotin-modified microwires. An order of magnitude improvement in detection limits is achieved through use of a microfluidic device over a classical static paper-based device, due to enhanced mass transport and capturing of particles on the modified electrodes. Electrochemical impedance spectroscopy detection of West Nile virus particles was carried out using antibody functionalized Au microwires, achieving a detection limit of 10.2 particles in 50 μL of cell culture media. No increase in signal is found on addition of an excess of a nonspecific target (Sindbis). This detection motif is significantly cheaper (∼$1 per test) and faster (∼30 min) than current methods, while achieving the desired selectivity and sensitivity. This sensing motif represents a general platform for trace detection of a wide range of biological pathogens.

  2. Effect of ultrasonic treatment and temperature on nanocrystalline TiO 2

    NASA Astrophysics Data System (ADS)

    Kim, D. H.; Ryu, H. W.; Moon, J. H.; Kim, J.

    Nanocrystalline TiO 2 particles were precipitated from the ethanol solution of titanium isopropoxide (Ti(O- iPr) 4) and H 2O 2 by refluxing at 80 °C for 48 h. The obtained particles were filtered and dried at 100 °C for 12 h. The dried powder itself, the sample with heating at 400 °C, and the sample with ultrasonically treating were prepared to investigate the effects of post treatments on materials characteristics and electrochemical properties of nanocrystalline TiO 2. The X-ray diffraction patterns of all of the samples were fitted well to the anatase phase. The field emission-TEM image of as-prepared sample shows a uniform spherical morphology with 5 nm particle size and the sample heated at 400 °C shows slightly increased particle size of about 10 nm while maintaining spherical shape. The sample treated with ultrasonic for 5 h or more at room temperature shows high aspect ratio particle shape with an average diameter of 5 nm and a length of 20 nm. According to the results of the electrochemical testing, as-prepared sample, the sample heated at 400 °C for 3 h, and the sample treated with ultrasonic show initial capacities of 270, 310 and 340 mAh g -1, respectively.

  3. Electrodeposition of Zn-doped α-nickel hydroxide with flower-like nanostructure for supercapacitors

    NASA Astrophysics Data System (ADS)

    You, Zheng; Shen, Kui; Wu, Zhicheng; Wang, Xiaofeng; Kong, Xianghua

    2012-08-01

    Zn-doped α-nickel hydroxide materials with flower-like nanostructures are synthesized by electrochemical deposition method. The samples are characterized by X-ray diffraction (XRD), field emission scanning electron microscope (SEM) and electrochemical measurements. XRD spectra indicate nickel hydroxide doped with Zn is α-Ni(OH)2 with excellent crystallization. The SEM observation shows that the formation of Zn-doped Ni(OH)2 includes two steps: a honeycomb-like film forms on the substrate first, then flower-like particles forms on the films. The nickel hydroxide doped with 5% Zn can maintain a maximum specific capacitance of 860 F g-1, suggesting its potential application in electrochemical capacitors.

  4. Controlled assembly and single electron charging of monolayer protected Au144 clusters: an electrochemistry and scanning tunneling spectroscopy study

    NASA Astrophysics Data System (ADS)

    Bodappa, Nataraju; Fluch, Ulrike; Fu, Yongchun; Mayor, Marcel; Moreno-García, Pavel; Siegenthaler, Hans; Wandlowski, Thomas

    2014-11-01

    Single gold particles may serve as room temperature single electron memory units because of their size dependent electronic level spacing. Here, we present a proof-of-concept study by electrochemically controlled scanning probe experiments performed on tailor-made Au particles of narrow dispersity. In particular, the charge transport characteristics through chemically synthesized hexane-1-thiol and 4-pyridylbenzene-1-thiol mixed monolayer protected Au144 clusters (MPCs) by differential pulse voltammetry (DPV) and electrochemical scanning tunneling spectroscopy (EC-STS) are reported. The pyridyl groups exposed by the Au-MPCs enable their immobilization on Pt(111) substrates. By varying the humidity during their deposition, samples coated by stacks of compact monolayers of Au-MPCs or decorated with individual, laterally separated Au-MPCs are obtained. DPV experiments with stacked monolayers of Au144-MPCs and EC-STS experiments with laterally separated individual Au144-MPCs are performed both in aqueous and ionic liquid electrolytes. Lower capacitance values were observed for individual clusters compared to ensemble clusters. This trend remains the same irrespective of the composition of the electrolyte surrounding the Au144-MPC. However, the resolution of the energy level spacing of the single clusters is strongly affected by the proximity of neighboring particles.Single gold particles may serve as room temperature single electron memory units because of their size dependent electronic level spacing. Here, we present a proof-of-concept study by electrochemically controlled scanning probe experiments performed on tailor-made Au particles of narrow dispersity. In particular, the charge transport characteristics through chemically synthesized hexane-1-thiol and 4-pyridylbenzene-1-thiol mixed monolayer protected Au144 clusters (MPCs) by differential pulse voltammetry (DPV) and electrochemical scanning tunneling spectroscopy (EC-STS) are reported. The pyridyl groups exposed by the Au-MPCs enable their immobilization on Pt(111) substrates. By varying the humidity during their deposition, samples coated by stacks of compact monolayers of Au-MPCs or decorated with individual, laterally separated Au-MPCs are obtained. DPV experiments with stacked monolayers of Au144-MPCs and EC-STS experiments with laterally separated individual Au144-MPCs are performed both in aqueous and ionic liquid electrolytes. Lower capacitance values were observed for individual clusters compared to ensemble clusters. This trend remains the same irrespective of the composition of the electrolyte surrounding the Au144-MPC. However, the resolution of the energy level spacing of the single clusters is strongly affected by the proximity of neighboring particles. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03793f

  5. Effect of Particle Size and Operating Conditions on Pt 3Co PEMFC Cathode Catalyst Durability

    DOE PAGES

    Gummalla, Mallika; Ball, Sarah; Condit, David; ...

    2015-05-29

    The initial performance and decay trends of polymer electrolyte membrane fuel cells (PEMFC) cathodes with Pt 3Co catalysts of three mean particle sizes (4.9 nm, 8.1 nm, and 14.8 nm) with identical Pt loadings are compared. Even though the cathode based on 4.9 nm catalyst exhibited the highest initial electrochemical surface area (ECA) and mass activity, the cathode based on 8.1 nm catalyst showed better initial performance at high currents. Owing to the low mass activity of the large particles, the initial performance of the 14.8 nm Pt3Co-based electrode was the lowest. The performance decay rate of the electrodes withmore » the smallest Pt 3Co particle size was the highest and that of the largest Pt 3Co particle size was lowest. Interestingly, with increasing number of decay cycles (0.6 to 1.0 V, 50 mV/s), the relative improvement in performance of the cathode based on 8.1 nm Pt 3Co over the 4.9 nm Pt 3Co increased, owing to better stability of the 8.1 nm catalyst. The electron microprobe analysis (EMPA) of the decayed membrane-electrode assembly (MEA) showed that the amount of Co in the membrane was lower for the larger particles, and the platinum loss into the membrane also decreased with increasing particle size. This suggests that the higher initial performance at high currents with 8.1 nm Pt 3Co could be due to lower contamination of the ionomer in the electrode. Furthermore, lower loss of Co from the catalyst with increased particle size could be one of the factors contributing to the stability of ECA and mass activity of electrodes with larger cathode catalyst particles. To delineate the impact of particle size and alloy effects, these results are compared with prior work from our research group on size effects of pure platinum catalysts. The impact of PEMFC operating conditions, including upper potential, relative humidity, and temperature on the alloy catalyst decay trends, along with the EMPA analysis of the decayed MEAs, are reported.« less

  6. Role of Cobalt Content in Improving the Low-Temperature Performance of Layered Lithium-Rich Cathode Materials for Lithium-Ion Batteries.

    PubMed

    Kou, Jianwen; Chen, Lai; Su, Yuefeng; Bao, Liying; Wang, Jing; Li, Ning; Li, Weikang; Wang, Meng; Chen, Shi; Wu, Feng

    2015-08-19

    Layered lithium-rich cathode material, Li1.2Ni0.2-xCo2xMn0.6-xO2 (x = 0-0.05) was successfully synthesized using a sol-gel method, followed by heat treatment. The effects of trace amount of cobalt doping on the structure, morphology, and low-temperature (-20 °C) electrochemical properties of these materials are investigated systematically. X-ray diffraction (XRD) results confirm that the Co has been doped into the Ni/Mn sites in the transition-metal layers without destroying the pristine layered structure. The morphological observations reveal that there are no changes of morphology or particle size after Co doping. The electrochemical performance results indicate that the discharge capacities and operation voltages are drastically lowered along with the decreasing temperature, but their fading rate becomes slower when increasing the Co contents. At -20 °C, the initial discharge capacity of sample with x = 0 could retain only 22.1% (57.3/259.2 mAh g(-1)) of that at 30 °C, while sample with x = 0.05 could maintain 39.4% (111.3/282.2 mAh g(-1)). Activation energy analysis and electrochemical impedance spectroscopy (EIS) results reveal that such an enhancement of low-temperature discharge capacity is originated from the easier interface reduction reaction of Ni(4+) or Co(4+) after doping trace amounts of Co, which decreases the activation energy of the charge transfer process above 3.5 V during discharging.

  7. New Method to Synthesize Highly Active and Durable Chemically Ordered fct-PtCo Cathode Catalyst for PEMFCs.

    PubMed

    Jung, Won Suk; Popov, Branko N

    2017-07-19

    In the bottom-up synthesis strategy performed in this study, the Co-catalyzed pyrolysis of chelate-complex and activated carbon black at high temperatures triggers the graphitization reaction which introduces Co particles in the N-doped graphitic carbon matrix and immobilizes N-modified active sites for the oxygen reduction reaction (ORR) on the carbon surface. In this study, the Co particles encapsulated within the N-doped graphitic carbon shell diffuse up to the Pt surface under the polymer protective layer and forms a chemically ordered face-centered tetragonal (fct) Pt-Co catalyst PtCo/CCCS catalyst as evidenced by structural and compositional studies. The fct-structured PtCo/CCCS at low-Pt loading (0.1 mg Pt cm -2 ) shows 6% higher power density than that of the state-of-the-art commercial Pt/C catalyst. After the MEA durability test of 30 000 potential cycles, the performance loss of the catalyst is negligible. The electrochemical surface area loss is less than 40%, while that of commercial Pt/C is nearly 80%. After the accelerated stress test, the uniform catalyst distribution is retained and the mean particle size increases approximate 1 nm. The results obtained in this study indicated that highly stable compositional and structural properties of chemically ordered PtCo/CCCS catalyst contribute to its exceptional catalyst durability.

  8. Electrochemical Study and Characterization of an Amperometric Biosensor Based on the Immobilization of Laccase in a Nanostructure of TiO₂ Synthesized by the Sol-Gel Method.

    PubMed

    Romero-Arcos, Mariana; Garnica-Romo, Ma Guadalupe; Martínez-Flores, Héctor Eduardo

    2016-07-07

    Laccase amperometric biosensors were developed to detect the catechol compound. The laccase enzyme (LAC) immobilization was performed on nanostructures of (a) titania (TiO₂); (b) titania/Nafion (TiO₂/NAF) (both immobilized by the sol-gel method) and a third nanostructure, which consisted of a single biosensor composite of Nafion and laccase enzyme denoted as NAF/LAC. The Nafion was deposited on a graphite electrode and used to avoid "cracking" on the matrix. The TiO₂ particle size was an average of 66 nm. FTIR spectroscopy vibration modes of different composites were determined. The electrochemical behavior of the biosensor was studied using electrochemical spectroscopy (EIS) and cyclic voltammetry (CV). The biosensor based on TiO₂/NAF/LAC presented the best electro-chemical properties with regard to sensitivity, stability and detection limit after a period of 22 days.

  9. Electrochemical Polishing Applications and EIS of a Novel Choline Chloride-Based Ionic Liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wixtrom, Alex I.; Buhler, Jessica E.; Reece, Charles E.

    2013-06-01

    Minimal surface roughness is a critical feature for high-field superconducting radio frequency (SRF) cavities used to engineer particle accelerators. Current methods for polishing Niobium cavities typically utilize solutions containing a mixture of concentrated sulfuric and hydrofluoric acid. Polishing processes such as these are effective, yet there are many hazards and costs associated with the use (and safe disposal) of the concentrated acid solutions. An alternative method for electrochemical polishing of the cavities was explored using a novel ionic liquid solution containing choline chloride. Potentiostatic electrochemical impedance spectroscopy (EIS) was used to analyze the ionic polishing solution. Final surface roughness ofmore » the Nb was found to be comparable to that of the acid-polishing method, as assessed by atomic force microscopy (AFM). This indicates that ionic liquid-based electrochemical polishing of Nb is a viable replacement for acid-based methods for preparation of SRF cavities.« less

  10. Improvement of the electrochemical properties via poly(3,4-ethylenedioxythiophene) oriented micro/nanorods

    NASA Astrophysics Data System (ADS)

    Li, Yu; Wang, Bichen; Chen, Huimin; Feng, Wei

    Arrays of oriented poly(3,4-ethylenedioxythiophene) (PEDOT) micro/nanorods are synthesized by electrochemical galvanostatic method at the current density of 1 mA cm -2 in the cetyltrimethylammonium bromide (CTAB) aqueous solution whose pH value is 1. The CTAB is used both as the surfactant and the supporting salt in the electrolyte solution. The electrochemical properties of PEDOT films are characterized by cyclic voltammetry and galvanostatic charge/discharge techniques, which indicate that the arrays of oriented PEDOT micro/nanorods can be applied as the electrode materials of supercapacitors. In addition, the cycling performance of PEDOT micro/nanorods is much better than that of traditional PEDOT particles. The effects of the concentration of CTAB, the current density, and pH value of electrolyte solutions on the morphologies and electrochemical properties of PEDOT films are investigated. The mechanism of different morphologies formation is discussed in this study as well.

  11. Physicochemical properties of precursors of Al2O3-ZrO2 oxide ceramics prepared by electrochemical method

    NASA Astrophysics Data System (ADS)

    Petrova, E. V.; Dresvyannikov, A. F.; Ahmadi Daryakenari, M.; Khairullina, A. I.

    2016-05-01

    Scanning electron microscopy, X-ray, and thermal analysis are used to examine the structure and properties of dispersive systems based on aluminum and zirconium oxides prepared electrochemically. The effect the conditions of synthesis have on the structure and morphology of Al2O3-ZrO2 particles is studied. It is shown that the effect of an electric field on the reaction medium allows us to adjust the physicochemical properties and morphology.

  12. Method of making gas diffusion layers for electrochemical cells

    DOEpatents

    Frisk, Joseph William; Boand, Wayne Meredith; Larson, James Michael

    2002-01-01

    A method is provided for making a gas diffusion layer for an electrochemical cell comprising the steps of: a) combining carbon particles and one or more surfactants in a typically aqueous vehicle to make a preliminary composition, typically by high shear mixing; b) adding one or more highly fluorinated polymers to said preliminary composition by low shear mixing to make a coating composition; and c) applying the coating composition to an electrically conductive porous substrate, typically by a low shear coating method.

  13. Effect of extrusion processing on the microstructure, mechanical properties, biocorrosion properties and antibacterial properties of Ti-Cu sintered alloys.

    PubMed

    Zhang, Erlin; Li, Shengyi; Ren, Jing; Zhang, Lan; Han, Yong

    2016-12-01

    Ti-Cu sintered alloys, Ti-Cu(S) alloy, have exhibited good anticorrosion resistance and strong antibacterial properties, but low ductility in previous study. In this paper, Ti-Cu(S) alloys were subjected to extrusion processing in order to improve the comprehensive property. The phase constitute, microstructure, mechanical property, biocorrosion property and antibacterial activity of the extruded alloys, Ti-Cu(E), were investigated in comparison with Ti-Cu(S) by X-ray diffraction (XRD), optical microscopy (OM), scanning electronic microscopy (SEM) with energy disperse spectroscopy (EDS), mechanical testing, electrochemical testing and plate-count method in order to reveal the effect of the extrusion process. XRD, OM and SEM results showed that the extrusion process did not change the phase constitute but refined the grain size and Ti2Cu particle significantly. Ti-Cu(E) alloys exhibited higher hardness and compressive yield strength than Ti-Cu(S) alloys due to the fine grain and Ti2Cu particles. With the consideration of the total compressive strain, it was suggested that the extrusion process could improve the ductility of Ti-Cu alloy(S) alloys. Electrochemical results have indicated that the extrusion process improved the corrosion resistance of Ti-Cu(S) alloys. Plate-count method displayed that both Ti-Cu(S) and Ti-Cu(E) exhibited strong antibacterial activity (>99%) against S. aureus. All these results demonstrated that hot forming processing, such as the extrusion in this study, refined the microstructure and densified the alloy, in turn improved the ductility and strength as well as anticorrosion properties without reduction in antibacterial properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Nanoscale Au-In alloy-oxide core-shell particles as electrocatalysts for efficient hydroquinone detection

    DOE PAGES

    Sutter, E.; Tong, X.; Medina-Plaza, C.; ...

    2015-10-09

    The presence of hydroquinone (HQ), a phenol ubiquitous in nature and widely used in industry, needs to be monitored because of its toxicity to the environment. Here we demonstrate efficient detection of HQ using simple, fast, and noninvasive electrochemical measurements on indium tin oxide (ITO) electrodes modified with nanoparticles comprising bimetallic Au–In cores and mixed Au–In oxide shells. Whereas bare ITO electrodes show very low activity for the detection of HQ, their modification with Au–In core–shell nanoparticles induces a pronounced shift of the oxidation peak to lower potentials, i.e., facilitated oxidation. The response of the different electrodes was correlated withmore » the initial composition of the bimetallic nanoparticle cores, which in turn determined the amount of Au and In stabilized on the surface of the amorphous Au–In oxide shells available for the electrochemical reaction. While adding core–shell nanostructures with different compositions of the alloy core facilitates the electrocatalytic (reduction-) oxidation of HQ, the activity is highest for particles with AuIn cores (i.e., a Au:In ratio of 1). This optimal system is found to follow a single pathway, the two-electron oxidation of the quinone–hydroquinone couple, which gives rise to high oxidation peaks and is most effective in facilitating the electrode-to-analyte charge transfer and thus detection. The limits of detection (LOD) decreased when increasing the amount of Au exposed on the surface of the amorphous Au–In oxide shells. As a result the LODs were in the range of 10 –5 – 10 –6 M and were lower than those obtained using bulk Au.« less

  15. Method of forming a dense, high temperature electronically conductive composite layer on a porous ceramic substrate

    DOEpatents

    Isenberg, Arnold O.

    1992-01-01

    An electrochemical device, containing a solid oxide electrolyte material and an electrically conductive composite layer, has the composite layer attached by: (A) applying a layer of LaCrO.sub.3, YCrO.sub.3 or LaMnO.sub.3 particles (32), on a portion of a porous ceramic substrate (30), (B) heating to sinter bond the particles to the substrate, (C) depositing a dense filler structure (34) between the doped particles (32), (D) shaving off the top of the particles, and (E) applying an electronically conductive layer over the particles (32) as a contact.

  16. Compliant glass–polymer hybrid single ion-conducting electrolytes for lithium batteries

    PubMed Central

    Villaluenga, Irune; Wujcik, Kevin H.; Tong, Wei; Devaux, Didier; Wong, Dominica H. C.; DeSimone, Joseph M.; Balsara, Nitash P.

    2016-01-01

    Despite high ionic conductivities, current inorganic solid electrolytes cannot be used in lithium batteries because of a lack of compliance and adhesion to active particles in battery electrodes as they are discharged and charged. We have successfully developed a compliant, nonflammable, hybrid single ion-conducting electrolyte comprising inorganic sulfide glass particles covalently bonded to a perfluoropolyether polymer. The hybrid with 23 wt% perfluoropolyether exhibits low shear modulus relative to neat glass electrolytes, ionic conductivity of 10−4 S/cm at room temperature, a cation transference number close to unity, and an electrochemical stability window up to 5 V relative to Li+/Li. X-ray absorption spectroscopy indicates that the hybrid electrolyte limits lithium polysulfide dissolution and is, thus, ideally suited for Li-S cells. Our work opens a previously unidentified route for developing compliant solid electrolytes that will address the challenges of lithium batteries. PMID:26699512

  17. Compliant glass–polymer hybrid single ion-conducting electrolytes for lithium batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villaluenga, Irune; Wujcik, Kevin H.; Tong, Wei

    2015-12-22

    Despite high ionic conductivities, current inorganic solid electrolytes cannot be used in lithium batteries because of a lack of compliance and adhesion to active particles in battery electrodes as they are discharged and charged. Here, we have successfully developed a compliant, nonflammable, hybrid single ion-conducting electrolyte comprising inorganic sulfide glass particles covalently bonded to a perfluoropolyether polymer. The hybrid with 23 wt% perfluoropolyether exhibits low shear modulus relative to neat glass electrolytes, ionic conductivity of 10 -4 S/cm at room temperature, a cation transference number close to unity, and an electrochemical stability window up to 5 V relative to Limore » +/Li. X-ray absorption spectroscopy indicates that the hybrid electrolyte limits lithium polysulfide dissolution and is, thus, ideally suited for Li-S cells. Our work opens a previously unidentified route for developing compliant solid electrolytes that will address the challenges of lithium batteries.« less

  18. Effect of SnO2/SiO2 nano particle dispersant on the performance characteristic of complex multi-doped composite coating produced through electrodeposition on oil and gas storage tap

    NASA Astrophysics Data System (ADS)

    Anawe, P. A. L.; Fayomi, O. S. I.; Ayoola, A. A.; Popoola, A. P. I.

    2018-06-01

    The effect of SnO2/SiO2 nano particle dispersant on the performance characteristic of complex zinc multi-doped composite coating produced through electrodeposition is studied. The degradation behaviour in term of wear and chemical corrosion activities were considered as a major factor in service. The wear mass loss was carried out with the help of reciprocating tester. The electrochemical corrosion characteristics were investigated using linear polarization technique in 3.5% simulated sodium chloride media. The outcome of the analysis shows that the developed coating was seen to provide a sound anti wear characteristics in its multidoped state. The corrosion resistance properties were observed to be massive compared to the binary based sample. It is expected that this characteristic will impact on the performance life span of storage tap in oil and gas.

  19. Atomic Layer Deposition of Al–W–Fluoride on LiCoO 2 Cathodes: Comparison of Particle- and Electrode-Level Coatings

    DOE PAGES

    Park, Joong Sun; Mane, Anil U.; Elam, Jeffrey W.; ...

    2017-07-19

    Atomic layer deposition (ALD) of the well-known Al 2O 3 on a LiCoO 2 system is compared with that of a newly developed AlW xF y material. ALD coatings (~1 nm thick) of both materials are shown to be effective in improving cycle life through mitigation of surface-induced capacity losses. However, the behaviors of Al 2O 3 and AlW xF y are shown to be significantly different when coated directly on cathode particles versus deposition on a composite electrode composed of active materials, carbons, and binders. Electrochemical impedance spectroscopy, galvanostatic intermittent titration techniques, and four-point measurements suggest that electron transportmore » is more limited in LiCoO 2 particles coated with Al 2O 3 compared with that in particles coated with AlW xF y. Here, the results show that proper design/choice of coating materials (e.g., AlW xF y) can improve capacity retention without sacrificing electron transport and suggest new avenues for engineering electrode–electrolyte interfaces to enable high-voltage operation of lithium-ion batteries.« less

  20. Photocatalytic, antimicrobial activities of biogenic silver nanoparticles and electrochemical degradation of water soluble dyes at glassy carbon/silver modified past electrode using buffer solution.

    PubMed

    Khan, Zia Ul Haq; Khan, Amjad; Shah, Afzal; Chen, Yongmei; Wan, Pingyu; Khan, Arif Ullah; Tahir, Kamran; Muhamma, Nawshad; Khan, Faheem Ullah; Shah, Hidayat Ullah

    2016-03-01

    In the present research work a novel, nontoxic and ecofriendly procedure was developed for the green synthesis of silver nano particle (AgNPs) using Caruluma edulis (C. edulis) extract act as reductant as well as stabilizer agents. The formation of AgNPs was confirmed by UV/Vis spectroscopy. The small and spherical sizes of AgNPs were conformed from high resolution transmission electron microscopy (HRTEM) analysis and were found in the range of 2-10nm, which were highly dispersion without any aggregation. The crystalline structure of AgNPs was conformed from X-ray diffraction (XRD) analysis. For the elemental composition EDX was used and FTIR helped to determine the type of organic compounds in the extract. The potential electrochemical property of modified silver electrode was also studied. The AgNPs showed prominent antibacterial motion with MIC values of 125 μg/mL against Bacillus subtilis and Staphylococcus aureus while 250 μg/mL against Escherichia coli. High cell constituents' release was exhibited by B. subtilis with 2 × MIC value of silver nanoparticles. Silver nanoparticles also showed significant DPPH free radical scavenging activity. This research would have an important implication for the synthesis of more efficient antimicrobial and antioxidant agent. The AgNP modified electrode (GC/AgNPs) exhibited an excellent electro-catalytic activity toward the redox reaction of phenolic compounds. The AgNPs were evaluated for electrochemical degradation of bromothymol blue (BTB) dyes which showed a significant activity. From the strong reductive properties it is obvious that AgNPs can be used in water sanitization and converting some organic perilous in to non-hazardous materials. The AgNPs showed potential applications in the field of electro chemistry, sensor, catalyst, nano-devices and medical. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Modeling the evolution of lithium-ion particle contact distributions using a fabric tensor approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stershic, A. J.; Simunovic, S.; Nanda, J.

    2015-08-25

    Electrode microstructure and processing can strongly influence lithium-ion battery performance such as capacity retention, power, and rate. Battery electrodes are multi-phase composite structures wherein conductive diluents and binder bond active material to a current collector. The structure and response of this composite network during repeated electrochemical cycling directly affects battery performance characteristics. We propose the fabric tensor formalism for describing the structure and evolution of the electrode microstructure. Fabric tensors are directional measures of particulate assemblies based on inter-particle connectivity, relating to the structural and transport properties of the electrode. Fabric tensor analysis is applied to experimental data-sets for positivemore » electrode made of lithium nickel manganese cobalt oxide, captured by X-ray tomography for several compositions and consolidation pressures. We show that fabric tensors capture the evolution of inter-particle contact distribution and are therefore good measures for the internal state of and electronic transport within the electrode. The fabric tensor analysis is also applied to Discrete Element Method (DEM) simulations of electrode microstructures using spherical particles with size distributions from the tomography. Furthermore, these results do not follow the experimental trends, which indicates that the particle size distribution alone is not a sufficient measure for the electrode microstructures in DEM simulations.« less

  2. Nanoscale electrochemical patterning reveals the active sites for catechol oxidation at graphite surfaces.

    PubMed

    Patel, Anisha N; McKelvey, Kim; Unwin, Patrick R

    2012-12-19

    Graphite-based electrodes (graphite, graphene, and nanotubes) are used widely in electrochemistry, and there is a long-standing view that graphite step edges are needed to catalyze many reactions, with the basal surface considered to be inert. In the present work, this model was tested directly for the first time using scanning electrochemical cell microscopy reactive patterning and shown to be incorrect. For the electro-oxidation of dopamine as a model process, the reaction rate was measured at high spatial resolution across a surface of highly oriented pyrolytic graphite. Oxidation products left behind in a pattern defined by the scanned electrochemical cell served as surface-site markers, allowing the electrochemical activity to be correlated directly with the graphite structure on the nanoscale. This process produced tens of thousands of electrochemical measurements at different locations across the basal surface, unambiguously revealing it to be highly electrochemically active, with step edges providing no enhanced activity. This new model of graphite electrodes has significant implications for the design of carbon-based biosensors, and the results are additionally important for understanding electrochemical processes on related sp(2)-hybridized materials such as pristine graphene and nanotubes.

  3. In situ electrochemical high-energy X-ray diffraction using a capillary working electrode cell geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Matthias J.; Bedford, Nicholas M.; Jiang, Naisheng

    The ability to generate new electrochemically active materials for energy generation and storage with improved properties will likely be derived from an understanding of atomic-scale structure/function relationships during electrochemical events. Here, the design and implementation of a new capillary electrochemical cell designed specifically forin situhigh-energy X-ray diffraction measurements is described. By increasing the amount of electrochemically active material in the X-ray path while implementing low-Zcell materials with anisotropic scattering profiles, an order of magnitude enhancement in diffracted X-ray signal over traditional cell geometries for multiple electrochemically active materials is demonstrated. This signal improvement is crucial for high-energy X-ray diffraction measurementsmore » and subsequent Fourier transformation into atomic pair distribution functions for atomic-scale structural analysis. As an example, clear structural changes in LiCoO 2under reductive and oxidative conditions using the capillary cell are demonstrated, which agree with prior studies. Accurate modeling of the LiCoO 2diffraction data using reverse Monte Carlo simulations further verifies accurate background subtraction and strong signal from the electrochemically active material, enabled by the capillary working electrode geometry.« less

  4. Composite carbon foam electrode

    DOEpatents

    Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.

    1997-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

  5. Effect of Discharge Rate on Positive Active Material of Lead Carbon Battery for Energy Storage

    NASA Astrophysics Data System (ADS)

    Chen, Kailun; Liu, Hao; Hu, Chen; Gao, Fei; Yang, Kai; Wang, Hao

    2017-10-01

    Lead carbon battery has been widespread concern with its excellent performance of charge and discharge under High Rate Part State of Charge (HRPSoC) as well as its cycle performance. In this paper, the cycling performance of lead carbon battery for energy storage was tested by different discharge rate. The effects of different discharge rate on the composition and morphology of positive active materials in the cycle was studied by XRD and SEM. The effect of different discharge rate on the ohmic impedance of lead carbon battery was studied by testing Electrochemical Impedance Spectroscopy with different capacity retention rates. The results show that with the increase of the discharge rate, the content of PbO2 in the positive active material increases, the active substance utilization and the particle size of PbO2 crystal declines, and the ohmic impedance of the battery decreases.

  6. Synthesis and characterization of Co3O4 prepared from atmospheric pressure acid leach liquors of nickel laterite ores

    NASA Astrophysics Data System (ADS)

    Meng, Long; Guo, Zhan-cheng; Qu, Jing-kui; Qi, Tao; Guo, Qiang; Hou, Gui-hua; Dong, Peng-yu; Xi, Xin-guo

    2018-01-01

    A chemical precipitation-thermal decomposition method was developed to synthesize Co3O4 nanoparticles using cobalt liquor obtained from the atmospheric pressure acid leaching process of nickel laterite ores. The effects of the precursor reaction temperature, the concentration of Co2+, and the calcination temperature on the specific surface area, morphology, and the electrochemical behavior of the obtained Co3O4 particles were investigated. The precursor basic cobaltous carbonate and cobaltosic oxide products were characterized and analyzed by Fourier transform infrared spectroscopy, thermogravimetric differential thermal analysis, X-ray diffraction, field-emission scanning electron microscopy, specific surface area analysis, and electrochemical analysis. The results indicate that the specific surface area of the Co3O4 particles with a diameter of 30 nm, which were obtained under the optimum conditions of a precursor reaction temperature of 30°C, 0.25 mol/L Co2+, and a calcination temperature of 350°C, was 48.89 m2/g. Electrodes fabricated using Co3O4 nanoparticles exhibited good electrochemical properties, with a specific capacitance of 216.3 F/g at a scan rate of 100 mV/s.

  7. Enhanced electrochemical performance and storage property of LiNi0.815Co0.15Al0.035O2 via Al gradient doping

    NASA Astrophysics Data System (ADS)

    Duan, Jianguo; Hu, Guorong; Cao, Yanbing; Tan, Chaopu; Wu, Ceng; Du, Ke; Peng, Zhongdong

    2016-09-01

    LiNi1-x-yCoxAlyO2 is a commonly used Ni-rich cathode material because of its relatively low cost, excellent rate capability and high gravimetric energy density. Surface modification is an efficient way to overcome the shortcomings of Ni-rich cathodes such as poor cycling stability and poor thermal stability. A high-powered concentration-gradient cathode material with an average composition of LiNi0.815Co0.15Al0.035O2 (LGNCAO) has been successfully synthesized by using spherical concentration-gradient Ni0.815Co0.15Al0.035(OH)2 (GNCA)as the starting material. An efficient design of the Al3+ precipitation method is developed, which enables obtaining spherical GNCA with ∼10 μm particle size and high tap density. In LGNCAO, the nickel and cobalt concentration decreases gradually whereas the aluminum concentration increases from the centre to the outer layer of each particle. Electrochemical performance and storage properties of LGNCAO have been investigated comparatively. The LGNCAO displays better electrochemical performance and improved storage stability than LNCAO.

  8. Electrochemical exfoliation of graphite to stage-III graphite bisulfate flakes in low concentration sulfuric acid solution: A novel synthesis route to completely trilayer graphene suspension

    NASA Astrophysics Data System (ADS)

    Mir, Afkham; Shukla, Anupam

    2018-06-01

    Graphene produced from electrochemical exfoliation of graphite show a scatter in the number of layers. This scatter is a serious drawback for sensor and opto-electronic applications since the electronic properties of graphene change with number of layers. The scatter in the layer number of graphene is caused by formation of the intermediate graphite intercalation compounds (GIC) of different stage numbers as well as simultaneous cleaving of the GICs in the dispersion-unsuitable aqueous environment. In this work, we show the synthesis of stage-III graphite bisulfate (GB) enriched flakes by electrochemical exfoliation of graphite in low concentration (0.1 M) sulfuric acid from two different routes. We further show that the intercalated bisulfate planes provide sites for selective cleaving of the GB particles to trilayer graphene in DMF, a solvent favorable for graphene dispersion. Morphological characterizations show that while GB particles from one of the routes give graphene with a small scatter in the layer numbers, the other route provides a completely trilayer graphene dispersion. TEM and optical micrographs show graphene flakes have linear dimensions of several micrometers and a low aspect ratio suitable for use in sensor applications.

  9. Spinel lithium manganese oxide nanoparticles: unique molten salt synthesis strategy and excellent electrochemical performances.

    PubMed

    Wang, Xiong; Zhu, Juanjuan; Liu, Yingjie

    2009-11-01

    As a promising candidate cathode material, spinel lithium manganese oxide nanoparticles were successfully synthesized through a novel molten salt synthesis route at relatively low temperature, using manganese dioxide nanowires as precursor. A variety of techniques were applied to characterize the spinel nanomaterial, including X-ray diffraction, transmission electron microscopy, field-emission scanning electron microscopy, and X-ray photoelectron spectroscopy. The average particle size of the resulting spinel nanoparticles was about 80 nm with narrow distribution. As cathode material for rechargeable lithium ion battery, the electrochemical properties were investigated. All the results show that the electrochemical performances of the homogeneous spinel nanoparticles were improved, which might be ascribed to large specific surface area, fairly narrow size distribution, and the unique synthesis strategy.

  10. Fabrication and application of advanced functional materials from lignincellulosic biomass

    NASA Astrophysics Data System (ADS)

    Hu, Sixiao

    This dissertation explored the conversion of lignocellulosic biomass into advanced functional materials and their potential applications. Lignocellulosic biomass represents an as-of-yet underutilized renewable source for not only biofuel production but also functional materials fabrication. This renewable source is a great alternative for fossil fuel based chemicals, which could be one of the solutions to energy crisis. In this work, it was demonstrated a variety of advanced materials including functional carbons, metal and silica nanoparticles could be derived from lignocellulosic biomass. Chapter 1 provided overall reviewed of the lignin structures, productions and its utilizations as plastics, absorbents and carbons, as well as the preparation of nano-structured silver, silica and silicon carbide/nitride from biomass. Chapter 2, 3 and 4 discussed the fabrication of highly porous carbons from isolated lignin, and their applications as electric supercapacitors for energy storage. In chapter 2, ultrafine porous carbon fibers were prepared via electrospinning followed by simultaneous carbonization and activation. Chapter 3 covered the fabrication of supercapacitor based on the porous carbon fibers and the investigation of their electrochemical performances. In chapter 4, porous carbon particulates with layered carbon nano plates structures were produced by simple oven-drying followed by simultaneous carbonization and activation. The effects of heat processing parameters on the resulting carbon structures and their electrochemical properties were discussed in details. Chapter 5 and 6 addressed the preparation of silver nanoparticles using lignin. Chapter 5 reported the synthesis, underlying kinetics and mechanism of monodispersed silver nanospheres with diameter less than 25 nm in aqueous solutions using lignin as dual reducing and capping agents. Chapter 6 covered the preparation of silver nanoparticles on electrospun celluloses ultrafine fibers using lignin as both binding and reducing agents. The efficiency of this synthetic protocol and the properties of resulting particles were examined. Chapter 7 reported the streamlined extraction of lignin/hemicelluloses and silica from rice straw and their subsequent conversion to activated carbon and monodispersed silica particles.

  11. In situ growth of copper nanocrystals from carbonaceous microspheres with electrochemical glucose sensing properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xiaoliang; Yan, Zhengguang, E-mail: yanzg2004@gmail.com; Han, Xiaodong, E-mail: xdhan@bjut.edu.cn

    2014-02-01

    Graphical abstract: In situ growth of copper nanoparticles from hydrothermal copper-containing carbonaceous microspheres was induced by annealing or electron beam irradiation. Obtained micro-nano carbon/copper composite microspheres show electrochemical glucose sensing properties. - Highlights: • We synthesized carbonaceous microspheres containing non-nanoparicle copper species through a hydrothermal route. • By annealing or electron beam irradiation, copper nanoparticles would form from the carbonaceous microspheres in situ. • By controlling the annealing temperature, particle size of copper could be controlled in the range of 50–500 nm. • The annealed carbon/copper hierarchical composite microspheres were used to fabricate an electrochemical glucose sensor. - Abstract: Inmore » situ growth of copper nanocrystals from carbon/copper microspheres was observed in a well-controlled annealing or an electron beam irradiation process. Carbonaceous microspheres containing copper species with a smooth appearance were yielded by a hydrothermal synthesis using copper nitrate and ascorbic acid as reactants. When annealing the carbonaceous microspheres under inert atmosphere, copper nanoparticles were formed on carbon microspheres and the copper particle sizes can be increased to a range of 50–500 nm by altering the heating temperature. Similarly, in situ formation of copper nanocrystals from these carbonaceous microspheres was observed on the hydrothermal product carbonaceous microspheres with electron beam irradiation in a vacuum transmission electron microscopy chamber. The carbon/copper composite microspheres obtained through annealing were used to modify a glassy carbon electrode and tested as an electrochemical glucose sensor.« less

  12. Orientation-Dependent Oxygen Evolution on RuO 2 without Lattice Exchange

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoerzinger, Kelsey A.; Diaz-Morales, Oscar; Kolb, Manuel

    RuO2 catalysts exhibit record activities towards the oxygen evolution reaction (OER), which is crucial to enable efficient and sustainable energy storage. Here we examine the RuO2 OER kinetics on rutile (110), (100), (101), and (111) orientations, finding (100) the most active. We assess the potential involvement of lattice oxygen in the OER mechanism with online 3 electrochemical mass spectrometry, which showed no evidence of oxygen exchange on these oriented facets in acidic or basic electrolytes. Similar results were obtained for polyoriented RuO2 films and particles, in contrast to previous work, suggesting lattice oxygen is not exchanged in catalyzing OER onmore » crystalline RuO2 surfaces. This hypothesis is supported by the correlation of activity with the number of active Ru-sites calculated by DFT, where more active facets bind oxygen more weakly. This new understanding of the active sites provides a design strategy to enhance the OER activity of RuO2 nanoparticles by facet engineering.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Joong Sun; Mane, Anil U.; Elam, Jeffrey W.

    Atomic layer deposition (ALD) of the well-known Al 2O 3 on a LiCoO 2 system is compared with that of a newly developed AlW xF y material. ALD coatings (~1 nm thick) of both materials are shown to be effective in improving cycle life through mitigation of surface-induced capacity losses. However, the behaviors of Al 2O 3 and AlW xF y are shown to be significantly different when coated directly on cathode particles versus deposition on a composite electrode composed of active materials, carbons, and binders. Electrochemical impedance spectroscopy, galvanostatic intermittent titration techniques, and four-point measurements suggest that electron transportmore » is more limited in LiCoO 2 particles coated with Al 2O 3 compared with that in particles coated with AlW xF y. Here, the results show that proper design/choice of coating materials (e.g., AlW xF y) can improve capacity retention without sacrificing electron transport and suggest new avenues for engineering electrode–electrolyte interfaces to enable high-voltage operation of lithium-ion batteries.« less

  14. Electrochemically Active Polyaniline (PANi) Coated Carbon Nanopipes and PANi Nanofibers Containing Composite.

    PubMed

    Ramana, G Venkata; Kumar, P Sampath; Srikanth, Vadali V S S; Padya, Balaji; Jain, P K

    2015-02-01

    A composite constituted by carbon nanopipes (CNPs) and polyaniline nanofibers (PANi NFs) is synthesized using in-situ chemical oxidative polymerization. Owing to its electrochemical activity the composite is found to be suitable as a working electrode material in hybrid type supercapacitors. Microstructural and phase analyses of the composite showed that (i) CNP surfaces are coated with PANi and (ii) PANi coated CNPs are distributed among PANi NFs. The composite shows an excellent electrochemical activity and a high specific capacitance of ~224.39 F/g. The electro-chemical activity of the composite is explicated in correlation with crystallinity, intrinsic oxidation state, and doping degree of PANi in the composite. The electro-chemical activity of the composite is also explicated in correlation with BET surface area and ordered meso-porosity pertaining to the composite. Charge/discharge curves indicate that the specific capacitance of the composite is a result of electric double-layer capacitance offered by CNPs and Faradaic pseudo capacitance offered by PANi NFs.

  15. Method of bonding a conductive layer on an electrode of an electrochemical cell

    DOEpatents

    Bowker, J.C.; Singh, P.

    1989-08-29

    A dense, electronically conductive interconnection layer is bonded onto a porous, tubular, electronically conductive air electrode structure, optionally supported by a ceramic support, by (A) providing an air electrode surface, (B) forming on a selected portion of the electrode surface, without the use of pressure, particles of LaCrO[sub 3] doped with an element selected from the group consisting of Sr, Mg, Ca, Ba, Co, and mixtures thereof, where the particles have a deposit on their surface comprising calcium oxide and chromium oxide; (C) heating the particles with the oxide surface deposit in an oxidizing atmosphere at from 1,300 C to 1,550 C, without the application of pressure, to provide a dense, sintered, interconnection material bonded to the air electrode, where calcium and chromium from the surface deposit are incorporated into the structure of the LaCrO[sub 3]. A solid electrolyte layer can be applied to the uncovered portion of the air electrode, and a fuel electrode can be applied to the solid electrolyte, to provide an electrochemical cell. 4 figs.

  16. Method of bonding a conductive layer on an electrode of an electrochemical cell

    DOEpatents

    Bowker, Jeffrey C.; Singh, Prabhakar

    1989-01-01

    A dense, electronically conductive interconnection layer 26 is bonded onto a porous, tubular, electronically conductive air electrode structure 16, optionally supported by a ceramic support 22, by (A) providing an air electrode surface, (B) forming on a selected portion of the electrode surface 24, without the use of pressure, particles of LaCrO.sub.3 doped with an element selected from the group consisting of Sr, Mg, Ca, Ba, Co, and mixtures thereof, where the particles have a deposit on their surface comprising calcium oxide and chromium oxide; (C) heating the particles with the oxide surface deposit in an oxidizing atmosphere at from 1,300.degree. C. to 1,550.degree. C., without the application of pressure, to provide a dense, sintered, interconnection material 26 bonded to the air electrode 16, where calcium and chromium from the surface deposit are incorporated into the structure of the LaCrO.sub.3. A solid electrolyte layer 18 can be applied to the uncovered portion of the air electrode, and a fuel electrode 20 can be applied to the solid electrolyte, to provide an electrochemical cell 10.

  17. Length-Scale-Dependent Phase Transformation of LiFePO4 : An In situ and Operando Study Using Micro-Raman Spectroscopy and XRD.

    PubMed

    Siddique, N A; Salehi, Amir; Wei, Zi; Liu, Dong; Sajjad, Syed D; Liu, Fuqiang

    2015-08-03

    The charge and discharge of lithium ion batteries are often accompanied by electrochemically driven phase-transformation processes. In this work, two in situ and operando methods, that is, micro-Raman spectroscopy and X-ray diffraction (XRD), have been combined to study the phase-transformation process in LiFePO4 at two distinct length scales, namely, particle-level scale (∼1 μm) and macroscopic scale (∼several cm). In situ Raman studies revealed a discrete mode of phase transformation at the particle level. Besides, the preferred electrochemical transport network, particularly the carbon content, was found to govern the sequence of phase transformation among particles. In contrast, at the macroscopic level, studies conducted at four different discharge rates showed a continuous but delayed phase transformation. These findings uncovered the intricate phase transformation in LiFePO4 and potentially offer valuable insights into optimizing the length-scale-dependent properties of battery materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Nano-scaled top-down of bismuth chalcogenides based on electrochemical lithium intercalation

    NASA Astrophysics Data System (ADS)

    Chen, Jikun; Zhu, Yingjie; Chen, Nuofu; Liu, Xinling; Sun, Zhengliang; Huang, Zhenghong; Kang, Feiyu; Gao, Qiuming; Jiang, Jun; Chen, Lidong

    2011-12-01

    A two-step method has been used to fabricate nano-particles of layer-structured bismuth chalcogenide compounds, including Bi2Te3, Bi2Se3, and Bi2Se0.3Te2.7, through a nano-scaled top-down route. In the first step, lithium (Li) atoms are intercalated between the van der Waals bonded quintuple layers of bismuth chalcogenide compounds by controllable electrochemical process inside self-designed lithium ion batteries. And in the second step, the Li intercalated bismuth chalcogenides are subsequently exposed to ethanol, in which process the intercalated Li atoms would explode like atom-scaled bombs to exfoliate original microscaled powder into nano-scaled particles with size around 10 nm. The influence of lithium intercalation speed and amount to three types of bismuth chalcogenide compounds are compared and the optimized intercalation conditions are explored. As to maintain the phase purity of the final nano-particle product, the intercalation lithium amount should be well controlled in Se contained bismuth chalcogenide compounds. Besides, compared with binary bismuth chalcogenide compound, lower lithium intercalation speed should be applied in ternary bismuth chalcogenide compound.

  19. Electrochemistry at One Nanoparticle.

    PubMed

    Mirkin, Michael V; Sun, Tong; Yu, Yun; Zhou, Min

    2016-10-18

    Electrochemistry at metal nanoparticles (NPs) is of significant current interest because of its applications in catalysis, energy conversion and storage, and sensors. The electrocatalytic activity of NPs depends strongly on their size, shape, and surface attachment. The use of a large number of particles in most reported kinetic experiments obscured the effects of these factors because of polydispersity and different NP orientations. Recent efforts to probe electrochemistry at single NPs included recording of the catalytically amplified current produced by random collisions of particles with the electrode surface, immobilizing an NP on the surface of a small electrode, and delivering individual NPs to electrode surfaces. Although the signals recorded in such experiments were produced by single NPs, the characterization issues and problems with separating an individual particle from other NPs present in the system made it difficult to obtain spatially and/or temporally resolved information about heterogeneous processes occurring at a specific NP. To carry out electrochemical experiments involving only one NP and characterize such an NP in situ, one needs nanoelectrochemical tools with the characteristic dimension smaller than or comparable to those of the particle of interest. This Account presents fundamentals of two complementary approaches to studying NP electrochemistry, i.e., probing single immobilized NPs with the tip of a scanning electrochemical microscope (SECM) and monitoring the collisions between one catalytic NP and a carbon nanopipette. The former technique can provide spatially resolved information about NP geometry and measure its electron transfer properties and catalytic activity under steady-state conditions. The emphasis here is on the extraction of quantitative physicochemical information from nanoelectrochemical data. By employing a polished disk-type nanoelectrode as an SECM tip, one can characterize a specific nanoparticle in situ and then use the same NP for kinetic experiments. A new mode of SECM operation based on tunneling between the tip and nanoparticle can be used to image the NP topography with a lateral resolution of ∼1 nm. An alternative approach employs carbon nanoprobes produced by chemical vapor deposition of carbon into quartz nanopipettes. One metal NP is captured inside the carbon nanocavity to probe the dynamics of its interactions with the electrode surface on the microsecond time scale. The use of high-resolution transmission electron microscopy is essential for interpreting the results of single-NP collision experiments. A brief discussion of the nanoelectrochemical methodology, recent advances, and future directions is included.

  20. Novel Spectroscopic and Electrochemical Sensors and Nanoprobes for the Characterization of Food and Biological Antioxidants.

    PubMed

    Apak, Reşat; Demirci Çekiç, Sema; Üzer, Ayşem; Çelik, Saliha Esin; Bener, Mustafa; Bekdeşer, Burcu; Can, Ziya; Sağlam, Şener; Önem, Ayşe Nur; Erçağ, Erol

    2018-01-11

    Since an unbalanced excess of reactive oxygen/nitrogen species (ROS/RNS) causes various diseases, determination of antioxidants that can counter oxidative stress is important in food and biological analyses. Optical/electrochemical nanosensors have attracted attention in antioxidant activity (AOA) assessment because of their increased sensitivity and selectivity. Optical sensors offer advantages such as low cost, flexibility, remote control, speed, miniaturization and on-site/in situ analysis. Electrochemical sensors using noble metal nanoparticles on modified electrodes better catalyze bioelectrochemical reactions. We summarize the design principles of colorimetric sensors and nanoprobes for food antioxidants (including electron-transfer based and ROS/RNS scavenging assays) and important milestones contributed by our laboratory. We present novel sensors and nanoprobes together with their mechanisms and analytical performances. Our colorimetric sensors for AOA measurement made use of cupric-neocuproine and ferric-phenanthroline complexes immobilized on a Nafion membrane. We recently designed an optical oxidant/antioxidant sensor using N , N -dimethyl- p -phenylene diamine (DMPD) as probe, from which ROS produced colored DMPD-quinone cationic radicals electrostatically retained on a Nafion membrane. The attenuation of initial color by antioxidants enabled indirect AOA estimation. The surface plasmon resonance absorption of silver nanoparticles as a result of enlargement of citrate-reduced seed particles by antioxidant addition enabled a linear response of AOA. We determined biothiols with Ellman reagent-derivatized gold nanoparticles.

  1. Two-Dimensional Holey Nanoarchitectures Created by Confined Self-Assembly of Nanoparticles via Block Copolymers: From Synthesis to Energy Storage Property

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Lele; Fang, Zhiwei; Li, Jing

    Advances in liquid-phase exfoliation and surfactant-directed anisotropic growth of two-dimensional (2D) nanosheets have enabled their rapid development. However, it remains challenging to develop assembly strategies that lead to the construction of 2D nanomaterials with well-defined geometry and functional nanoarchitectures that are tailored to specific applications. Here we report a facile self-assembly method leading to the controlled synthesis of 2D transition metal oxide (TMO) nanosheets containing a high density of holes. We utilize graphene oxide sheets as a sacrificial template and Pluronic copolymers as surfactant. By using ZnFe 2O 4 (ZFO) nanoparticles as a model material, we demonstrate that by tuningmore » the molecular weight of the Pluronic copolymers that we can incorporate the ZFO particles and tune the size of the holes in the sheets. The resulting 2D ZFO nanosheets offer synergistic characteristics including increased electrochemically active surface areas, shortened ion diffusion paths, and strong inherent mechanical properties, leading to enhanced lithium-ion storage properties. Post-cycling characterization confirms that the samples maintain structural integrity after electrochemical cycling. In conclusion, our findings demonstrate that this template-assisted self-assembly method is a useful bottom-up route for controlled synthesis of 2D nanoarchitectures, and these holey 2D nanoarchitectures are promising for improving the electrochemical performance of nextgeneration lithium-ion batteries.« less

  2. The Surface Coating of Commercial LiFePO4 by Utilizing ZIF-8 for High Electrochemical Performance Lithium Ion Battery

    NASA Astrophysics Data System (ADS)

    Xu, XiaoLong; Qi, CongYu; Hao, ZhenDong; Wang, Hao; Jiu, JinTing; Liu, JingBing; Yan, Hui; Suganuma, Katsuaki

    2018-03-01

    The requirement of energy-storage equipment needs to develop the lithium ion battery (LIB) with high electrochemical performance. The surface modification of commercial LiFePO4 (LFP) by utilizing zeolitic imidazolate frameworks-8 (ZIF-8) offers new possibilities for commercial LFP with high electrochemical performances. In this work, the carbonized ZIF-8 (CZIF-8) was coated on the surface of LFP particles by the in situ growth and carbonization of ZIF-8. Transmission electron microscopy indicates that there is an approximate 10 nm coating layer with metal zinc and graphite-like carbon on the surface of LFP/CZIF-8 sample. The N2 adsorption and desorption isotherm suggests that the coating layer has uniform and simple connecting mesopores. As cathode material, LFP/CZIF-8 cathode-active material delivers a discharge specific capacity of 159.3 mAh g-1 at 0.1C and a discharge specific energy of 141.7 mWh g-1 after 200 cycles at 5.0C (the retention rate is approximate 99%). These results are attributed to the synergy improvement of the conductivity, the lithium ion diffusion coefficient, and the degree of freedom for volume change of LFP/CZIF-8 cathode. This work will contribute to the improvement of the cathode materials of commercial LIB.[Figure not available: see fulltext.

  3. Novel Spectroscopic and Electrochemical Sensors and Nanoprobes for the Characterization of Food and Biological Antioxidants

    PubMed Central

    Apak, Reşat; Demirci Çekiç, Sema; Üzer, Ayşem; Çelik, Saliha Esin; Bener, Mustafa; Bekdeşer, Burcu; Can, Ziya; Sağlam, Şener; Önem, Ayşe Nur; Erçağ, Erol

    2018-01-01

    Since an unbalanced excess of reactive oxygen/nitrogen species (ROS/RNS) causes various diseases, determination of antioxidants that can counter oxidative stress is important in food and biological analyses. Optical/electrochemical nanosensors have attracted attention in antioxidant activity (AOA) assessment because of their increased sensitivity and selectivity. Optical sensors offer advantages such as low cost, flexibility, remote control, speed, miniaturization and on-site/in situ analysis. Electrochemical sensors using noble metal nanoparticles on modified electrodes better catalyze bioelectrochemical reactions. We summarize the design principles of colorimetric sensors and nanoprobes for food antioxidants (including electron-transfer based and ROS/RNS scavenging assays) and important milestones contributed by our laboratory. We present novel sensors and nanoprobes together with their mechanisms and analytical performances. Our colorimetric sensors for AOA measurement made use of cupric-neocuproine and ferric-phenanthroline complexes immobilized on a Nafion membrane. We recently designed an optical oxidant/antioxidant sensor using N,N-dimethyl-p-phenylene diamine (DMPD) as probe, from which ROS produced colored DMPD-quinone cationic radicals electrostatically retained on a Nafion membrane. The attenuation of initial color by antioxidants enabled indirect AOA estimation. The surface plasmon resonance absorption of silver nanoparticles as a result of enlargement of citrate-reduced seed particles by antioxidant addition enabled a linear response of AOA. We determined biothiols with Ellman reagent−derivatized gold nanoparticles. PMID:29324685

  4. Two-Dimensional Holey Nanoarchitectures Created by Confined Self-Assembly of Nanoparticles via Block Copolymers: From Synthesis to Energy Storage Property

    DOE PAGES

    Peng, Lele; Fang, Zhiwei; Li, Jing; ...

    2017-12-20

    Advances in liquid-phase exfoliation and surfactant-directed anisotropic growth of two-dimensional (2D) nanosheets have enabled their rapid development. However, it remains challenging to develop assembly strategies that lead to the construction of 2D nanomaterials with well-defined geometry and functional nanoarchitectures that are tailored to specific applications. Here we report a facile self-assembly method leading to the controlled synthesis of 2D transition metal oxide (TMO) nanosheets containing a high density of holes. We utilize graphene oxide sheets as a sacrificial template and Pluronic copolymers as surfactant. By using ZnFe 2O 4 (ZFO) nanoparticles as a model material, we demonstrate that by tuningmore » the molecular weight of the Pluronic copolymers that we can incorporate the ZFO particles and tune the size of the holes in the sheets. The resulting 2D ZFO nanosheets offer synergistic characteristics including increased electrochemically active surface areas, shortened ion diffusion paths, and strong inherent mechanical properties, leading to enhanced lithium-ion storage properties. Post-cycling characterization confirms that the samples maintain structural integrity after electrochemical cycling. In conclusion, our findings demonstrate that this template-assisted self-assembly method is a useful bottom-up route for controlled synthesis of 2D nanoarchitectures, and these holey 2D nanoarchitectures are promising for improving the electrochemical performance of nextgeneration lithium-ion batteries.« less

  5. Inherently-Forced Tensile Strain in Nanodiamond-Derived Onion-like Carbon: Consequences in Defect-Induced Electrochemical Activation

    PubMed Central

    Ko, Young-Jin; Cho, Jung-Min; Kim, Inho; Jeong, Doo Seok; Lee, Kyeong-Seok; Park, Jong-Keuk; Baik, Young-Joon; Choi, Heon-Jin; Lee, Seung-Cheol; Lee, Wook-Seong

    2016-01-01

    We analyzed the nanodiamond-derived onion-like carbon (OLC) as function of synthesis temperature (1000~1400 °C), by high-resolution electron microscopy, electron energy loss spectroscopy, visible-Raman spectroscopy, ultraviolet photoemission spectroscopy, impedance spectroscopy, cyclic voltammetry and differential pulse voltammetry. The temperature dependences of the obtained properties (averaged particle size, tensile strain, defect density, density of states, electron transfer kinetics, and electrochemical oxidation current) unanimously coincided: they initially increased and saturated at 1200 °C. It was attributed to the inherent tensile strains arising from (1) the volume expansion associated with the layer-wise diamond-to-graphite transformation of the core, which caused forced dilation of the outer shells during their thermal synthesis; (2) the extreme curvature of the shells. The former origin was dominant over the latter at the outermost shell, of which the relevant evolution in defect density, DOS and electron transfer kinetics determined the electrochemical performances. In detection of dopamine (DA), uric acid (UA) and ascorbic acid (AA) using the OLC as electrode, their oxidation peak currents were enhanced by factors of 15~60 with annealing temperature. Their limit of detection and the linear range of detection, in the post-treatment-free condition, were as excellent as those of the nano-carbon electrodes post-treated by Pt-decoration, N-doping, plasma, or polymer. PMID:27032957

  6. A Model Approach to the Electrochemical Cell: An Inquiry Activity

    ERIC Educational Resources Information Center

    Cullen, Deanna M.; Pentecost, Thomas C.

    2011-01-01

    In an attempt to address some student misconceptions in electrochemistry, this guided-inquiry laboratory was devised to give students an opportunity to use a manipulative that simulates the particulate-level activity within an electrochemical cell, in addition to using an actual electrochemical cell. Students are led through a review of expected…

  7. Electrochemically active biofilms: facts and fiction. A review

    PubMed Central

    Babauta, Jerome; Renslow, Ryan; Lewandowski, Zbigniew; Beyenal, Haluk

    2014-01-01

    This review examines the electrochemical techniques used to study extracellular electron transfer in the electrochemically active biofilms that are used in microbial fuel cells and other bioelectrochemical systems. Electrochemically active biofilms are defined as biofilms that exchange electrons with conductive surfaces: electrodes. Following the electrochemical conventions, and recognizing that electrodes can be considered reactants in these bioelectrochemical processes, biofilms that deliver electrons to the biofilm electrode are called anodic, ie electrode-reducing, biofilms, while biofilms that accept electrons from the biofilm electrode are called cathodic, ie electrode-oxidizing, biofilms. How to grow these electrochemically active biofilms in bioelec-trochemical systems is discussed and also the critical choices made in the experimental setup that affect the experimental results. The reactor configurations used in bioelectrochemical systems research are also described and the authors demonstrate how to use selected voltammetric techniques to study extracellular electron transfer in bioelectrochemical systems. Finally, some critical concerns with the proposed electron transfer mechanisms in bioelectrochemical systems are addressed together with the prospects of bioelectrochemical systems as energy-converting and energy-harvesting devices. PMID:22856464

  8. Novel electrochemical redox-active species: one-step synthesis of polyaniline derivative-Au/Pd and its application for multiplexed immunoassay

    NASA Astrophysics Data System (ADS)

    Wang, Liyuan; Feng, Feng; Ma, Zhanfang

    2015-11-01

    Electrochemical redox-active species play crucial role in electrochemically multiplexed immunoassays. A one-pot method for synthesizing four kinds of new electrochemical redox-active species was reported using HAuCl4 and Na2PdCl4 as dual oxidating agents and aniline derivatives as monomers. The synthesized polyaniline derivative-Au/Pd composites, namely poly(N-methyl-o-benzenediamine)-Au/Pd, poly(N-phenyl-o-phenylenediamine)-Au/Pd, poly(N-phenyl-p-phenylenediamine)-Au/Pd and poly(3,3’,5,5’-tetramethylbenzidine)-Au/Pd, exhibited electrochemical redox activity at -0.65 V, -0.3 V, 0.12 V, and 0.5 V, respectively. Meanwhile, these composites showed high H2O2 electrocatalytic activity because of the presence of Au/Pd. The as-prepared composites were used as electrochemical immunoprobes in simultaneous detection of four tumor biomarkers (carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA199), carbohydrate antigen 72-4 (CA724), and alpha fetoprotein (AFP)). This immunoassay shed light on potential applications in simultaneous gastric cancer (related biomarkers: CEA, CA199, CA724) and liver cancer diagnosis (related biomarkers: CEA, CA199, AFP). The present strategy to the synthesize redox species could be easily extended to other polymers such as polypyrrole derivatives and polythiophene derivatives. This would be of great significance in the electrochemical detection of more analytes.

  9. Electrocatalytic performance of Pt nanoparticles sputter-deposited on indium tin oxide toward methanol oxidation reaction: The particle size effect

    NASA Astrophysics Data System (ADS)

    Ting, Chao-Cheng; Chao, Chih-Hsuan; Tsai, Cheng Yu; Cheng, I.-Kai; Pan, Fu-Ming

    2017-09-01

    We sputter-deposited Pt nanoparticles with an average size ranging from 2.0 nm to 8.5 nm on the indium-tin oxide (ITO) glass substrate, and studied the effect of the size of Pt nanoparticles on electrocatalytic activity of the Pt/ITO electrode toward methanol oxidation reaction (MOR) in acidic solution. X-ray photoelectron spectroscopy (XPS) reveals an interfacial oxidized Pt layer present between Pt nanoparticles and the ITO substrate, which may modify the surface electronic structure of Pt nanoparticles and thus influences the electrocatalytic properties of the Pt catalyst toward MOR. According to electrochemical analyses, smaller Pt nanoparticles exhibit slower kinetics for CO electrooxidation and MOR. However, a smaller particle size enables better CO tolerance because the bifunctional mechanism is more effective on smaller Pt nanoparticles. The electrocatalytic activity decays rapidly for Pt nanoparticles with a size smaller than 3 nm and larger than 8 nm. The rapid activity decay is attributed to Pt dissolution for smaller nanoparticles and to CO poisoning for larger ones. Pt nanoparticles of 5-6 nm in size loaded on ITO demonstrate a greatly improved electrocatalytic activity and stability compared with those deposited on different substrates in our previous studies.

  10. Screen-printed calcium-birnessite electrodes for water oxidation at neutral pH and an "electrochemical harriman series".

    PubMed

    Lee, Seung Y; González-Flores, Diego; Ohms, Jonas; Trost, Tim; Dau, Holger; Zaharieva, Ivelina; Kurz, Philipp

    2014-12-01

    A mild screen-printing method was developed to coat conductive oxide surfaces (here: fluorine-doped tin oxide) with micrometer-thick layers of presynthesized calcium manganese oxide (Ca-birnessite) particles. After optimization steps concerning the printing process and layer thickness, electrodes were obtained that could be used as corrosion-stable water-oxidizing anodes at pH 7 to yield current densities of 1 mA cm(-2) at an overpotential of less than 500 mV. Analyses of the electrode coatings of optimal thickness (≈10 μm) indicated that composition, oxide phase, and morphology of the synthetic Ca-birnessite particles were hardly affected by the screen-printing procedure. However, a more detailed analysis by X-ray absorption spectroscopy revealed small modifications of both the Mn redox state and the structure at the atomic level, which could affect functional properties such as proton conductivity. Furthermore, the versatile new screen-printing method was used for a comparative study of various transition-metal oxides concerning electrochemical water oxidation under "artificial leaf conditions" (neutral pH, fairly low overpotential and current density), for which a general activity ranking of RuO2 >Co3 O4 ≈(Ca)MnOx ≈NiO was observed. Within the group of screened manganese oxides, Ca-birnessite performed better than "Mn-only materials" such as Mn2 O3 and MnO2 . © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Elucidating the Performance Limitations of Lithium-ion Batteries due to Species and Charge Transport through Five Characteristic Parameters

    PubMed Central

    Jiang, Fangming; Peng, Peng

    2016-01-01

    Underutilization due to performance limitations imposed by species and charge transports is one of the key issues that persist with various lithium-ion batteries. To elucidate the relevant mechanisms, two groups of characteristic parameters were proposed. The first group contains three characteristic time parameters, namely: (1) te, which characterizes the Li-ion transport rate in the electrolyte phase, (2) ts, characterizing the lithium diffusion rate in the solid active materials, and (3) tc, describing the local Li-ion depletion rate in electrolyte phase at the electrolyte/electrode interface due to electrochemical reactions. The second group contains two electric resistance parameters: Re and Rs, which represent respectively, the equivalent ionic transport resistance and the effective electronic transport resistance in the electrode. Electrochemical modeling and simulations to the discharge process of LiCoO2 cells reveal that: (1) if te, ts and tc are on the same order of magnitude, the species transports may not cause any performance limitations to the battery; (2) the underlying mechanisms of performance limitations due to thick electrode, high-rate operation, and large-sized active material particles as well as effects of charge transports are revealed. The findings may be used as quantitative guidelines in the development and design of more advanced Li-ion batteries. PMID:27599870

  12. A new electrocatalyst and its application method for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Wei, Guanjie; Jing, Minghua; Fan, Xinzhuang; Liu, Jianguo; Yan, Chuanwei

    2015-08-01

    The edge plane in carbon structure has good electrocatalytic activity toward vanadium redox reaction. To apply it in vanadium redox flow battery (VRFB) practically, the graphite nanopowders (GNPs) containing amounts of edge planes are used as electrocatalyst and embedded in the electrospun carbon nanofibers (ECNFs) by different mass ratios to make composite electrodes. The morphology and electrochemical activity of the GNPs and the composite electrodes containing them are characterized. Compared with the pristine ECNFs, the composite electrodes show much higher electrochemical activity. With the increase of GNPs content in composite electrodes, the electrochemical reversibility of the vanadium redox couples also increases. It proves the addition of GNPs can surely improve the electrochemical activity of ECNFs. Among the composite electrodes, the ECNFs containing 30 nm GNP by mass ratio of 1:50 show the best electrochemical activity, largest active surface area and excellent stability. Due to the high performance of GNP/ECNFs composite electrode and its relatively low cost preparation process, the GNPs are expected to be used as electrocatalyst in VRFB on a large scale to improve the cell performance.

  13. Platinum-gold nanoclusters as catalyst for direct methanol fuel cells.

    PubMed

    Giorgi, L; Giorgi, R; Gagliardi, S; Serra, E; Alvisi, M; Signore, M A; Piscopiello, E

    2011-10-01

    Nanosized platinum-gold alloys clusters have been deposited on gas diffusion electrode by sputter deposition. The deposits were characterized by FE-SEM, TEM and XPS in order to verify the formation of alloy nanoparticles and to study the influence of deposition technique on the nanomorphology. The deposition by sputtering process allowed a uniform distribution of metal particles on porous surface of carbon supports. Typical island growth mode was observed with the formation of a dispersed metal nanoclusters (mean size about 5 nm). Cyclic voltammetry was used to determine the electrochemical active surface and the electrocatalytic performance of the PtAu electrocatalysts for methanol oxidation reaction. The data were re-calculated in the form of mass specific activity (MSA). The sputter-catalyzed electrodes showed higher performance and stability compared to commercial catalysts.

  14. A Corona Discharge Initiated Electrochemical Electrospray Ionization Technique

    PubMed Central

    Lloyd, John R.; Hess, Sonja

    2009-01-01

    We report here the development of a corona discharge (CD) initiated electrochemical (EC) electrospray ionization (ESI) technique using a standard electrospray ion source. This is a new ionization technique distinct from ESI, electrochemistry inherent to ESI, APCI, and techniques using hydroxyl radicals produced under atmospheric pressure conditions. By maximizing the observable CD at the tip of a stainless steel ESI capillary, efficient electrochemical oxidation of electrochemically active compounds is observed. For electrochemical oxidation to be observed, the ionization potential of the analyte must be lower than Fe. Ferrocene labeled compounds were chosen as the electrochemically active moiety. The electrochemical cell in the ESI source was robust and generated ions with selectivity according to the ionization potential of the analytes and up to zeptomolar sensitivity. Our results indicate that CD initiated electrochemical ionization has the potential to become a powerful technique to increase the dynamic range, sensitivity and selectivity of ESI experiments. Synopsis Using a standard ESI source a corona discharge initiated electrochemical ionization technique was established resulting from the electrochemistry occurring at the CD electrode surface. PMID:19747843

  15. Molybdenum disulfide for ultra-low detection of free radicals: electrochemical response and molecular modeling

    NASA Astrophysics Data System (ADS)

    Gupta, Ankur; Rawal, Takat B.; Neal, Craig J.; Das, Soumen; Rahman, Talat S.; Seal, Sudipta

    2017-06-01

    Two-dimensional (2D) molybdenum disulfide (MoS2) offers attractive properties due to its band gap modulation and has led to significant research-oriented applications (i.e. DNA and protein detection, cell imaging (fluorescent label) etc.). In biology, detection of free radicals (i.e. reactive oxygen species and reactive nitrogen (NO*) species are very important for early discovery and treatment of diseases. Herein, for the first time, we demonstrate the ultra-low (pico-molar) detection of pharmaceutically relevant free radicals using MoS2 for electrochemical sensing. We present pico- to nano- molar level sensitivity in smaller MoS2 with S-deficiency as revealed by x-ray photoelectron spectroscopy. Furthermore, the detection mechanism and size-dependent sensitivity have been investigated by density functional theory (DFT) showing the change in electronic density of states of Mo atoms at edges which lead to the preferred adsorption of H2O2 on Mo edges. The DFT analysis signifies the role of size and S-deficiency in the higher catalytic activity of smaller MoS2 particles and, thus, ultra-low detection.

  16. Synthesis and electrochemical characterization of Ti{sub x}Ta{sub y}Al{sub z}N{sub 1-δ}O{sub γ} for fuel cell catalyst supports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wakabayashi, Ryo H.; Abruña, Héctor D., E-mail: hda1@cornell.edu; DiSalvo, Francis J., E-mail: fjd3@cornell.edu

    2017-02-15

    Quinary Ti{sub x}Ta{sub y}Al{sub z}N{sub 1-δ}O{sub γ} of various compositions have been prepared by a co-precipitation method followed by ammonolysis. The nitride samples were examined as potential catalyst supports in polymer electrolyte membrane fuel cells. The nitride products crystallized in the rock salt (NaCl) structure over a wide range of compositions. The addition of Ta and Al was highly beneficial towards improving the chemical and electrochemical stability of TiN, without a significant loss of electrical conductivity. Platinum particles were successfully deposited on the (oxy)nitride samples, and the composite samples at some compositions were found to be comparable to Pt/carbon inmore » their stability and catalytic activity even without optimizing the Pt deposition and dispersion processes. - Graphical abstract: The effect of additions of Ta and Al into TiN structure. Shifts the lattice constant, and increases its chemical stability in acidic environment.« less

  17. The Electrochemical Behavior of Dispersions of Spherical Ultramicroelectrodes.

    DTIC Science & Technology

    1986-07-30

    means of bipolar electrolyses with dispersions. Polarization equations are predicted for highly simplified models based on the concept of the mixture...three-dimensional electrodes. Bipolar electrolyses on dispersions of spherical particles have been proposed and the behavior of such electrodes in the...photodecomposition of water (e.g. see (32-41)). It should be noted that the size range of the particles which will be most frequently used in dispersion

  18. Method of doping interconnections for electrochemical cells

    DOEpatents

    Pal, Uday B.; Singhal, Subhash C.; Moon, David M.; Folser, George R.

    1990-01-01

    A dense, electronically conductive interconnection layer 26 is bonded on a porous, tubular, electronically conductive air electrode structure 16, optionally supported by a ceramic support 22, by (A) forming a layer of oxide particles of at least one of the metals Ca, Sr, Co, Ba or Mg on a part 24 of a first surface of the air electrode 16, (B) heating the electrode structure, (C) applying a halide vapor containing at least lanthanum halide and chromium halide to the first surface and applying a source of oxygen to a second opposite surface of the air electrode so that they contact at said first surface, to cause a reaction of the oxygen and halide and cause a dense lanthanum-chromium oxide structure to grow, from the first electrode surface, between and around the oxide particles, where the metal oxide particles get incoporated into the lanthanum-chromium oxide structure as it grows thicker with time, and the metal ions in the oxide particles diffuse into the bulk of the lanthamum-chromium oxide structure, to provide a dense, top, interconnection layer 26 on top of the air electrode 16. A solid electrolyte layer 18 can be applied to the uncovered portion of the air electrode, and a fuel electrode 20 can be applied to the solid electrolyte, to provide an electrochemical cell 10.

  19. Modified cermet fuel electrodes for solid oxide electrochemical cells

    DOEpatents

    Ruka, Roswell J.; Spengler, Charles J.

    1991-01-01

    An exterior porous electrode (10), bonded to a solid oxygen ion conducting electrolyte (13) which is in contact with an interior electrode (14), contains coarse metal particles (12) of nickel and/or cobalt, having diameters from 3 micrometers to 35 micrometers, where the coarse particles are coated with a separate, porous, multiphase layer (17) containing fine metal particles of nickel and/or cobalt (18), having diameters from 0.05 micrometers to 1.75 micrometers and conductive oxide (19) selected from cerium oxide, doped cerium oxide, strontium titanate, doped strontium titanate and mixtures thereof.

  20. Hollow nanostructures of metal oxides as next generation electrode materials for supercapacitors.

    PubMed

    Sharma, Vikas; Singh, Inderjeet; Chandra, Amreesh

    2018-01-22

    Hollow nanostructures of copper oxides help to stabilize appreciably higher electrochemical characteristics than their solid counter parts of various morphologies. The specific capacitance values, calculated using cyclic voltammetry (CV) and charge-discharge (CD) studies, are found to be much higher than the values reported in literature for copper oxide particles showing  intriguing morphologies or even composites with trendy systems like CNTs, rGO, graphene, etc. The proposed cost-effective synthesis route makes these materials industrially viable for application in alternative energy storage devices. The improved electrochemical response can be attributed to effective access to the higher number of redox sites that become available on the surface, as well as in the cavity of the hollow particles. The ion transport channels also facilitate efficient de-intercalation, which results in the enhancement of cyclability and Coulombic efficiency. The charge storage mechanism in copper oxide structures is also proposed in the paper.

  1. Method for fabricating composite carbon foam

    DOEpatents

    Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.

    2001-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.

  2. Capacitor with a composite carbon foam electrode

    DOEpatents

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1999-04-27

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  3. Composite carbon foam electrode

    DOEpatents

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1997-05-06

    Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  4. Three dimensional electrode for the electrolytic removal of contaminants from aqueous waste streams

    DOEpatents

    Spiegel, Ella F.; Sammells, Anthony F.

    2001-01-01

    Efficient and cost-effective electrochemical devices and processes for the remediation of aqueous waste streams. The invention provides electrolytic cells having a high surface area spouted electrode for removal of heavy metals and oxidation of organics from aqueous environments. Heavy metal ions are reduced, deposited on cathode particles of a spouted bed cathode and removed from solution. Organics are efficiently oxidized at anode particles of a spouted bed anode and removed from solution. The method of this inventions employs an electrochemical cell having an anolyte compartment and a catholyte compartment, separated by a microporous membrane, in and through which compartments anolyte and catholyte, respectively, are circulated. A spouted-bed electrode is employed as the cathode for metal deposition from contaminated aqueous media introduced as catholyte and as the anode for oxidation of organics from contaminated aqueous media introduced as anolyte.

  5. Porous silicon platform for optical detection of functionalized magnetic particles biosensing.

    PubMed

    Ko, Pil Ju; Ishikawa, Ryousuke; Sohn, Honglae; Sandhu, Adarsh

    2013-04-01

    The physical properties of porous materials are being exploited for a wide range of applications including optical biosensors, waveguides, gas sensors, micro capacitors, and solar cells. Here, we review the fast, easy and inexpensive electrochemical anodization based fabrication porous silicon (PSi) for optical biosensing using functionalized magnetic particles. Combining magnetically labeled biomolecules with PSi offers a rapid and one-step immunoassay and real-time detection by magnetic manipulation of superparamagnetic beads (SPBs) functionalized with target molecules onto corresponding probe molecules immobilized inside nano-pores of PSi. We first give an introduction to electrochemical and chemical etching procedures used to fabricate a wide range of PSi structures. Next, we describe the basic properties of PSi and underlying optical scattering mechanisms that govern their unique optical properties. Finally, we give examples of our experiments that demonstrate the potential of combining PSi and magnetic beads for real-time point of care diagnostics.

  6. Template-Free Synthesis of Hollow-Structured Co 3 O 4 Nanoparticles as High-Performance Anodes for Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Deli; Yu, Yingchao; He, Huan

    2015-02-24

    We have developed a template-free procedure to synthesize Co3O4 hollow-structured nanoparticles on a Vulcan XC-72 carbon support. The material was synthesized via an impregnation–reduction method followed by air oxidation. In contrast to spherical particles, the hollow-structured Co3O4 nanoparticles exhibited excellent lithium storage capacity, rate capability, and cycling stability when used as the anode material in lithium-ion batteries. Electrochemical testing showed that the hollow-structured Co3O4 particles delivered a stable reversible capacity of about 880 mAh/g (near the theoretical capacity of 890 mAh/g) at a current density of 50 mA/g after 50 cycles. The superior electrochemical performance is attributed to its uniquemore » hollow structure, which combines nano- and microscale properties that facilitate electron transfer and enhance structural robustness.« less

  7. Iron-doped nickel oxide nanocrystals as highly efficient electrocatalysts for alkaline water splitting.

    PubMed

    Fominykh, Ksenia; Chernev, Petko; Zaharieva, Ivelina; Sicklinger, Johannes; Stefanic, Goran; Döblinger, Markus; Müller, Alexander; Pokharel, Aneil; Böcklein, Sebastian; Scheu, Christina; Bein, Thomas; Fattakhova-Rohlfing, Dina

    2015-05-26

    Efficient electrochemical water splitting to hydrogen and oxygen is considered a promising technology to overcome our dependency on fossil fuels. Searching for novel catalytic materials for electrochemical oxygen generation is essential for improving the total efficiency of water splitting processes. We report the synthesis, structural characterization, and electrochemical performance in the oxygen evolution reaction of Fe-doped NiO nanocrystals. The facile solvothermal synthesis in tert-butanol leads to the formation of ultrasmall crystalline and highly dispersible FexNi1-xO nanoparticles with dopant concentrations of up to 20%. The increase in Fe content is accompanied by a decrease in particle size, resulting in nonagglomerated nanocrystals of 1.5-3.8 nm in size. The Fe content and composition of the nanoparticles are determined by X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy measurements, while Mössbauer and extended X-ray absorption fine structure analyses reveal a substitutional incorporation of Fe(III) into the NiO rock salt structure. The excellent dispersibility of the nanoparticles in ethanol allows for the preparation of homogeneous ca. 8 nm thin films with a smooth surface on various substrates. The turnover frequencies (TOF) of these films could be precisely calculated using a quartz crystal microbalance. Fe0.1Ni0.9O was found to have the highest electrocatalytic water oxidation activity in basic media with a TOF of 1.9 s(-1) at the overpotential of 300 mV. The current density of 10 mA cm(-2) is reached at an overpotential of 297 mV with a Tafel slope of 37 mV dec(-1). The extremely high catalytic activity, facile preparation, and low cost of the single crystalline FexNi1-xO nanoparticles make them very promising catalysts for the oxygen evolution reaction.

  8. Encapsulating micro-nano Si/SiO x into conjugated nitrogen-doped carbon as binder-free monolithic anodes for advanced lithium ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jing; Zhou, Meijuan; Tan, Guoqiang

    2015-01-01

    Silicon monoxide, a promising silicon-based anode candidate for lithium-ion batteries, has recently attracted much attention for its high theoretical capacity, good cycle stability, low cost, and environmental benignity. Currently, the most critical challenge is to improve its low initial coulombic efficiency and significant volume changes during the charge–discharge processes. Herein, we report a binder-free monolithic electrode structure based on directly encapsulating micro-nano Si/SiOx particles into conjugated nitrogen-doped carbon frameworks to form monolithic, multi-core, cross-linking composite matrices. We utilize micro-nano Si/SiOx reduced by high-energy ball-milling SiO as active materials, and conjugated nitrogen-doped carbon formed by the pyrolysis of polyacrylonitrile both asmore » binders and conductive agents. Owing to the high electrochemical activity of Si/SiOx and the good mechanical resiliency of conjugated nitrogen-doped carbon backbones, this specific composite structure enhances the utilization efficiency of SiO and accommodates its large volume expansion, as well as its good ionic and electronic conductivity. The annealed Si/SiOx/polyacrylonitrile composite electrode exhibits excellent electrochemical properties, including a high initial reversible capacity (2734 mA h g-1 with 75% coulombic efficiency), stable cycle performance (988 mA h g-1 after 100 cycles), and good rate capability (800 mA h g-1 at 1 A g-1 rate). Because the composite is naturally abundant and shows such excellent electrochemical performance, it is a promising anode candidate material for lithium-ion batteries. The binder-free monolithic architectural design also provides an effective way to prepare other monolithic electrode materials for advanced lithium-ion batteries.« less

  9. Study on preparation of SnO2-TiO2/Nano-graphite composite anode and electro-catalytic degradation of ceftriaxone sodium.

    PubMed

    Guo, Xiaolei; Wan, Jiafeng; Yu, Xiujuan; Lin, Yuhui

    2016-12-01

    In order to improve the electro-catalytic activity and catalytic reaction rate of graphite-like material, Tin dioxide-Titanium dioxide/Nano-graphite (SnO 2 -TiO 2 /Nano-G) composite was synthesized by a sol-gel method and SnO 2 -TiO 2 /Nano-G electrode was prepared in hot-press approach. The composite was characterized by X-ray photoelectron spectroscopy, fourier transform infrared, Raman, N 2 adsorption-desorption, scanning electrons microscopy, transmission electron microscopy and X-ray diffraction. The electrochemical performance of the SnO 2 -TiO 2 /Nano-G anode electrode was investigated via cyclic voltammetry and electrochemical impedance spectroscopy. The electro-catalytic performance was evaluated by the degradation of ceftriaxone sodium and the yield of ·OH radicals in the reaction system. The results demonstrated that TiO 2 , SnO 2 and Nano-G were composited successfully, and TiO 2 and SnO 2 particles dispersed on the surface and interlamination of the Nano-G uniformly. The specific surface area of SnO 2 modified anode was higher than that of TiO 2 /Nano-G anode and the degradation rate of ceftriaxone sodium within 120 min on SnO 2 -TiO 2 /Nano-G electrode was 98.7% at applied bias of 2.0 V. The highly efficient electro-chemical property of SnO 2 -TiO 2 /Nano-G electrode was attributed to the admirable conductive property of the Nano-G and SnO 2 -TiO 2 /Nano-G electrode. Moreover, the contribution of reactive species ·OH was detected, indicating the considerable electro-catalytic activity of SnO 2 -TiO 2 /Nano-G electrode. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Improved electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material synthesized by citric acid assisted sol-gel method for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Shiyou; Liang, Youwei; Lei, Dan; Xie, Yingchun; Ai, Ling; Xie, Jing

    2018-03-01

    A citric acid assisted sol-gel method is employed for synthesizing Li1.2Mn0.54Ni0.13Co0.13O2 used as a cathode material in lithium-ion batteries. Powder X-ray diffraction (XRD) and scanning electron microscopy (SEM) characterizations prove that materials have a typical a-NaFeO2 structure with primary nano-sized particles. Electrochemical performances have been investigated by charge-discharge test and results show that the synthesized product exhibits excellent electrochemical performance with a high initial discharge capacity of 253.5 mAh g-1 at 0.1 C and a preferable capacity retention of 84.8% after 50 cycles.

  11. Systematic investigation on Cadmium-incorporation in Li₂FeSiO₄/C cathode material for lithium-ion batteries.

    PubMed

    Zhang, Lu-Lu; Duan, Song; Yang, Xue-Lin; Liang, Gan; Huang, Yun-Hui; Cao, Xing-Zhong; Yang, Jing; Ni, Shi-Bing; Li, Ming

    2014-05-27

    Cadmium-incorporated Li2FeSiO4/C composites have been successfully synthesized by a solid-state reaction assisted with refluxing. The effect and mechanism of Cd-modification on the electrochemical performance of Li2FeSiO4/C were investigated in detail by X-ray powder diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, Raman spectra, transmission electron microscopy, positron annihilation lifetime spectroscopy and Doppler broadening spectrum, and electrochemical measurements. The results show that Cd not only exists in an amorphous state of CdO on the surface of LFS particles, but also enters into the crystal lattice of LFS. Positron annihilation lifetime spectroscopy and Doppler broadening spectrum analyses verify that Cd-incorporation increases the defect concentration and the electronic conductivity of LFS, thus improve the Li(+)-ion diffusion process. Furthermore, our electrochemical measurements verify that an appropriate amount of Cd-incorporation can achieve a satisfied electrochemical performance for LFS/C cathode material.

  12. Systematic investigation on Cadmium-incorporation in Li2FeSiO4/C cathode material for lithium-ion batteries

    PubMed Central

    Zhang, Lu-Lu; Duan, Song; Yang, Xue-Lin; Liang, Gan; Huang, Yun-Hui; Cao, Xing-Zhong; Yang, Jing; Ni, Shi-Bing; Li, Ming

    2014-01-01

    Cadmium-incorporated Li2FeSiO4/C composites have been successfully synthesized by a solid-state reaction assisted with refluxing. The effect and mechanism of Cd-modification on the electrochemical performance of Li2FeSiO4/C were investigated in detail by X-ray powder diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, Raman spectra, transmission electron microscopy, positron annihilation lifetime spectroscopy and Doppler broadening spectrum, and electrochemical measurements. The results show that Cd not only exists in an amorphous state of CdO on the surface of LFS particles, but also enters into the crystal lattice of LFS. Positron annihilation lifetime spectroscopy and Doppler broadening spectrum analyses verify that Cd-incorporation increases the defect concentration and the electronic conductivity of LFS, thus improve the Li+-ion diffusion process. Furthermore, our electrochemical measurements verify that an appropriate amount of Cd-incorporation can achieve a satisfied electrochemical performance for LFS/C cathode material. PMID:24860942

  13. Metal and Metal Oxide Interactions and Their Catalytic Consequences for Oxygen Reduction Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Qingying; Ghoshal, Shraboni; Li, Jingkun

    2017-06-01

    Many industrial catalysts are composed of metal particles supported on metal oxides (MMO). It is known that the catalytic activity of MMO materials is governed by metal and metal oxide interactions (MMOI), but how to optimize MMO systems via manipulation of MMOI remains unclear, due primarily to the ambiguous nature of MMOI. Herein, we develop a Pt/NbOx/C system with tunable structural and electronic properties via a modified arc plasma deposition method. We unravel the nature of MMOI by characterizing this system under reactive conditions utilizing combined electrochemical, microscopy, and in situ spectroscopy. We show that Pt interacts with the Nbmore » in unsaturated NbOx owing to the oxygen deficiency in the MMO interface, whereas Pt interacts with the O in nearly saturated NbOx, and further interacts with Nb when the oxygen atoms penetrate into the Pt cluster at elevated potentials. While the Pt–Nb interactions do not benefit the inherent activity of Pt toward oxygen reduction reaction (ORR), the Pt–O interactions improve the ORR activity by shortening the Pt–Pt bond distance. Pt donates electrons to NbOx in both Pt–Nb and Pt–O cases. The resultant electron efficiency stabilizes low-coordinated Pt sites, hereby stabilizing small Pt particles. This determines the two characteristic features of MMO systems: dispersion of small metal particles and high catalytic durability. These findings contribute to our understandings of MMO catalytic systems.« less

  14. Pyrosequencing Reveals a Core Community of Anodic Bacterial Biofilms in Bioelectrochemical Systems from China

    PubMed Central

    Xiao, Yong; Zheng, Yue; Wu, Song; Zhang, En-Hua; Chen, Zheng; Liang, Peng; Huang, Xia; Yang, Zhao-Hui; Ng, I-Son; Chen, Bor-Yann; Zhao, Feng

    2015-01-01

    Bioelectrochemical systems (BESs) are promising technologies for energy and product recovery coupled with wastewater treatment, and the core microbial community in electrochemically active biofilm in BESs remains controversy. In the present study, 7 anodic communities from 6 bioelectrochemical systems in 4 labs in southeast, north and south-central of China are explored by 454 pyrosequencing. A total of 251,225 effective sequences are obtained for 7 electrochemically active biofilm samples at 3% cutoff level. While Alpha-, Beta-, and Gamma-proteobacteria are the most abundant classes (averaging 16.0–17.7%), Bacteroidia and Clostridia are the two sub-dominant and commonly shared classes. Six commonly shared genera i.e., Azospira, Azospirillum, Acinetobacter, Bacteroides, Geobacter, Pseudomonas, and Rhodopseudomonas dominate the electrochemically active communities and are defined as core genera. A total of 25 OTUs with average relative abundance >0.5% were selected and designated as core OTUs, and some species relating to these OTUs have been reported electrochemically active. Furthermore, cyclic voltammetry and chronoamperometry tests show that two strains from Acinetobacter guillouiae and Stappia indica, bacteria relate to two core OTUs, are electrochemically active. Using randomly selected bioelectrochemical systems, the study has presented extremely diverse bacterial communities in anodic biofilms, though, we still can suggest some potentially microbes for investigating the electrochemical mechanisms in bioelectrochemical systems. PMID:26733958

  15. Structural and electrochemical characterization of carbon supported Pt-Pr catalysts for direct ethanol fuel cells prepared using a modified formic acid method in a CO atmosphere.

    PubMed

    Corradini, Patricia Gon; Antolini, Ermete; Perez, Joelma

    2013-07-28

    Pt-Pr/C electrocatalysts were prepared using a modified formic acid method, and their activity for carbon monoxide and ethanol oxidation was compared to Pt/C. No appreciable alloy formation was detected by XRD analysis. By TEM measurements it was found that Pt particle size increases with an increasing Pr content in the catalysts and with decreasing metal precursor addition time. XPS measurements indicated Pt segregation on the catalyst surface and the presence of Pr2O3 and PrO2 oxides. The addition of Pr increased the electro-catalytic activity of Pt for both CO and CH3CH2OH oxidation. The enhanced activity of Pt-Pr/C catalysts was ascribed to both an electronic effect, caused by the presence of Pr2O3, and the bi-functional mechanism, caused by the presence of PrO2.

  16. Electrochemical regeneration of phenol-saturated activated carbon - proposal of a reactor.

    PubMed

    Zanella, Odivan; Bilibio, Denise; Priamo, Wagner Luiz; Tessaro, Isabel Cristina; Féris, Liliana Amaral

    2017-03-01

    An electrochemical process was used to investigate the activated carbon regeneration efficiency (RE) saturated with aromatics. For this purpose, an electrochemical reactor was developed and the operational conditions of this equipment were investigated, which is applied in activated carbon regeneration process. The influence of regeneration parameters such as processing time, the current used, the polarity and the processing fluid (electrolyte) were studied. The performance of electrochemical regeneration was evaluated by adsorption tests, using phenol as adsorbate. The increase in current applied and the process time was found to enhance the RE. Another aspect that indicated a better reactor performance was the type of electrolyte used, showing best results for NaCl. The polarity showed the highest influence on the process, when the cathodic regeneration was more efficient. The electrochemical regeneration process developed in this study presented regeneration capacities greater than 100% when the best process conditions were used, showing that this form of regeneration for activated carbon saturated with aromatics is very promising.

  17. Chemical and phase evolution of amorphous molybdenum sulfide catalysts for electrochemical hydrogen production [Chemical and phase evolution of amorphous molybdenum sulfide catalysts for electrochemical hydrogen production directly observed using environmental transmission electron microscopy

    DOE PAGES

    Lee, Sang Chul; Benck, Jesse D.; Tsai, Charlie; ...

    2015-12-01

    Amorphous MoS x is a highly active, earth-abundant catalyst for the electrochemical hydrogen evolution reaction. Previous studies have revealed that this material initially has a composition of MoS 3, but after electrochemical activation, the surface is reduced to form an active phase resembling MoS 2 in composition and chemical state. However, structural changes in the Mo Sx catalyst and the mechanism of the activation process remain poorly understood. In this study, we employ transmission electron microscopy (TEM) to image amorphous MoS x catalysts activated under two hydrogen-rich conditions: ex situ in an electrochemical cell and in situ in an environmentalmore » TEM. For the first time, we directly observe the formation of crystalline domains in the MoS x catalyst after both activation procedures as well as spatially localized changes in the chemical state detected via electron energy loss spectroscopy. Using density functional theory calculations, we investigate the mechanisms for this phase transformation and find that the presence of hydrogen is critical for enabling the restructuring process. Our results suggest that the surface of the amorphous MoS x catalyst is dynamic: while the initial catalyst activation forms the primary active surface of amorphous MoS 2, continued transformation to the crystalline phase during electrochemical operation could contribute to catalyst deactivation. Finally, these results have important implications for the application of this highly active electrocatalyst for sustainable H 2 generation.« less

  18. Aerobic and Electrochemical Oxidations with N-Oxyl Reagents

    NASA Astrophysics Data System (ADS)

    Miles, Kelsey C.

    Selective oxidation of organic compounds represents a significant challenge for chemical transformations. Oxidation methods that utilize nitroxyl catalysts have become increasingly attractive and include Cu/nitroxyl and nitroxyl/NO x co-catalyst systems. Electrochemical activation of nitroxyls is also well known and offers an appealing alternative to the use of chemical co-oxidants. However, academic and industrial organic synthetic communities have not widely adopted electrochemical methods. Nitroxyl catalysts facilitate effective and selective oxidation of alcohols and aldehydes to ketones and carboxylic acids. Selective benzylic, allylic, and alpha-heteroatom C-H abstraction can also be achieved with nitroxyls and provides access to oxygenated products when used in combination with molecular oxygen as a radical trap. This thesis reports various chemical and electrochemical oxidation methods that were developed using nitroxyl mediators. Chapter 1 provides a short review on practical aerobic alcohol oxidation with Cu/nitroxyl and nitroxyl/NO x systems and emphasizes the utility of bicyclic nitroxyls as co-catalysts. In Chapter 2, the combination of these bicyclic nitroxyls with NOx is explored for development of a mild oxidation of alpha-chiral aryl aldehydes and showcases a sequential asymmetric hydroformylation/oxidation method. Chapter 3 reports the synthesis and characterization of two novel Cu/bicyclic nitroxyl complexes and the electronic structure analysis of these complexes. Chapter 4 highlights the electrochemical activation of various nitroxyls and reports an in-depth study on electrochemical alcohol oxidation and compares the reactivity of nitroxyls under electrochemical or chemical activation. N-oxyls can also participate in selective C-H abstraction, and Chapter 5 reports the chemical and electrochemical activation of N-oxyls for radical-mediated C-H oxygenation of (hetero)arylmethanes. For these electrochemical transformations, the development of user-friendly methods and analysis techniques is emphasized.

  19. Surface and Electrochemical Properties of Polymer Brush-Based Redox Poly(Ionic Liquid).

    PubMed

    Bui-Thi-Tuyet, Van; Trippé-Allard, Gaëlle; Ghilane, Jalal; Randriamahazaka, Hyacinthe

    2016-10-26

    Redox-active poly(ionic liquid) poly(3-(2-methacryloyloxy ethyl)-1-(N-(ferrocenylmethyl) imidazolium bis(trifluoromethylsulfonyl)imide deposited onto electrode surfaces has been prepared using surface-initiated atom transfer radical polymerization SI-ATRP. The process starts by electrochemical immobilization of initiator layer, and then methacrylate monomer carrying ferrocene and imidazolium units is polymerized in ionic liquid media via SI-ATRP process. The surfaces analyses of the polymer exhibit a well-defined polymer brushlike structure and confirm the presence of ferrocene and ionic moieties within the film. Furthermore, the electrochemical investigations of poly(redox-active ionic liquid) in different media demonstrate that the electron transfer is not restricted by the rate of counterion migration into/out of the polymer. The attractive electrochemical performance of these materials is further demonstrated by performing electrochemical measurement, of poly(ferrocene ionic liquid), in solvent-free electrolyte. The facile synthesis of such highly ordered electroactive materials based ionic liquid could be useful for the fabrication of nanostructured electrode suitable for performing electrochemistry in solvent free electrolyte. We also demonstrate possible applications of the poly(FcIL) as electrochemically reversible surface wettability system and as electrochemical sensor for the catalytic activity toward the oxidation of tyrosine.

  20. Polarization Resistance Measurement in Tap Water: The Influence of Rust Electrochemical Activity

    NASA Astrophysics Data System (ADS)

    Vasyliev, Georgii

    2017-08-01

    Corrosion rate of mild steel in tap water during 4300 h was estimated by LPR and weight-loss methods coupled with OCP measurements. The LPR results were found to be overestimated compared to the weight-loss data within initial 2000 h of exposure. The electrochemical activity of the rust separated from the metal surface was studied by cycling voltammetry using a home-built powder graphite electrode. High redox currents corresponding to the initial 2000 h of exposure were detected. Rust composition was characterized with IR and XRD, and the highest amounts of electrochemically active β- and γ-FeOOH were again detected for the initial 2000 h. Current consumption in rust transformation processes during LPR measurement in the galvanostatic mode accounts for overestimation of the corrosion rate. The time dependence of rust electrochemical activity correlates with OCP variation with time. During initial 2000 h, OCP values are shifted by 50 mV to cathodic side. For the period of a higher rust electrochemical activity, the use of a reduced B is suggested to increase accuracy of LPR technique in tap water.

  1. Quantitative Analysis of Three-dimensional Microstructure of Li-ion Battery Electrodes

    NASA Astrophysics Data System (ADS)

    Liu, Zhao

    Li-ion batteries (LIBs) have attracted considerable attention in the past two decades due to their widespread applications in portable electronics, and their growing use in electric vehicles and large-scale grid storage. Increasing battery energy density and powder density while maintaining long life, along with battery safety, are the biggest challenges that limit their further development. Various approaches with materials and chemistry have been employed to improve performance. However, one less-studied aspect that also impacts performance is the electrode microstructure. In particular, three-dimensional (3D) electrode microstructural data for LIB electrodes, which were not widely available prior to this thesis, can provide important input for understanding and improving LIB performance. The focus of this thesis is to apply 3D tomographic techniques, together with electrochemical performance data, to obtain LIB microstructure-performance correlations. Two advanced 3D structural analysis techniques, focused ion beam-scanning electron microscopy (FIB-SEM) and transmission X-ray microscopy (TXM) nanotomography, are used to quantify LIB electrode microstructure. 3D characterization of LIB electrode microstructure is used to obtain a deeper understanding of mechanisms that limit LIB performance. Microstructural characterization before and after cycling is used to explore capacity loss mechanisms. It is hoped that the results can guide electrode microstructures design to improve performance and stability. Two types of commercial electrodes, LiCoO2 and LiCoO 2/Li(Ni1/3Mn1/3Co1/3)O2, are studied using FIB-SEM and TXM. Both methods were found to be applicable to quantifying the oxide particle microstructure, including volume fraction, surface area, and particle size distribution, and results agreed well. However, structural inhomogeneity found in these commercial samples, limited the capability to resolve microstructural changes during cycling. In order to also quantify carbonaceous phases in the electrodes, which strongly correlate with LIB transport properties, a three-phase FIB-SEM method was developed where silicone resin was infiltrated into electrode pores, providing good image contrast with the carbon particles. Structural parameters including phase connectivity and tortuosity are quantified for commercial LiCoO 2 and laboratory-made LiFePO4 electrodes to help understand the transport process in these electrodes. For LiCoO2 electrodes, a heterogeneous tortuosity distribution observed in the electrolyte phase may result in inhomogeneous charge/discharge states, and consequently cause battery degradation. For LiFePO4 electrodes, highly percolated and less tortuous carbon found in a templated electrode explain its better high-C-rate performance. Finally, laboratory-made LiMn2O4 electrodes were electrochemically cycled with different operation parameters, including cycle number, temperature, and operating voltage. Quantitative analyses on 3D TXM data sets indicate particle fracture, mainly due to tetragonal to cubic phase transformations induced by the Jahn-Teller effect, resulting in electrode degradation. Moreover, high temperature operation is found to enhance active material dissolution and can also accelerate cell degradation. This ex-situ method, which combines electrochemical cycling and statistical analysis, proved to be an effective approach to provide insight for the interpretation of complex mechanical and electrochemical interactions within the electrodes.

  2. Fuel cell apparatus and method thereof

    DOEpatents

    Cooper, John F.; Krueger, Roger; Cherepy, Nerine

    2004-11-09

    Highly efficient carbon fuels, exemplary embodiments of a high temperature, molten electrolyte electrochemical cell are capable of directly converting ash-free carbon fuel to electrical energy. Ash-free, turbostratic carbon particles perform at high efficiencies in certain direct carbon conversion cells.

  3. Microstructure of agglomerated suspended sediments in northern chesapeake bay estuary.

    PubMed

    Zabawa, C F

    1978-10-06

    Suspended sediments in the turbidity maximum of Chesapeake Bay include composite particles which contain platy mineral grains, arranged both in pellets (attributable to fecal pelletization) and in networks of angular configuration (attributable to electrochemical flocculation and coagulation).

  4. Impedance spectroscopy study of a catechol-modified activated carbon electrode as active material in electrochemical capacitor

    NASA Astrophysics Data System (ADS)

    Cougnon, C.; Lebègue, E.; Pognon, G.

    2015-01-01

    Modified activated carbon (Norit S-50) electrodes with electrochemical double layer (EDL) capacitance and redox capacitance contributions to the electric charge storage were tested in 1 M H2SO4 to quantify the benefit and the limitation of the surface redox reactions on the electrochemical performances of the resulting pseudo-capacitive materials. The electrochemical performances of an electrochemically anodized carbon electrode and a catechol-modified carbon electrode, which make use both EDL capacitance of the porous structure of the carbon and redox capacitance, were compared to the performances obtained for the pristine carbon. Nitrogen gas adsorption measurements have been used for studying the impact of the grafting on the BET surface area, pore size distribution, pore volume and average pore diameter. The electrochemical behavior of carbon materials was studied by cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The EIS data were discussed by using a complex capacitance model that allows defining the characteristic time constant, the global capacitance and the frequency at which the maximum charge stored is reached. The EIS measurements were achieved at different dc potential values where a redox activity occurs and the evolution of the capacitance and the capacitive relaxation time with the electrode potential are presented. Realistic galvanostatic charge/discharge measurements performed at different current rates corroborate the results obtained by impedance.

  5. Electrochemical hydrogenation of thiophene on SPE electrodes

    NASA Astrophysics Data System (ADS)

    Huang, Haiyan; Yuan, Penghui; Yu, Ying; Chung, Keng H.

    2017-01-01

    Electrochemical reduction desulfurization is a promising technology for petroleum refining which is environmental friendly, low cost and able to achieve a high degree of automation. Electrochemical hydrogenation of thiophene was performed in a three-electrode system which SPE electrode was the working electrode. The electrochemical desulfurization was studied by cyclic voltammetry and bulk electrolysis with coulometry (BEC) techniques. The results of cyclic voltammetry showed that the electrochemical hydrogenation reduction reaction occurred at -0.4V. The BEC results showed that the currents generated from thiophene hydrogenation reactions increased with temperature. According to Arrhenius equation, activation energy of thiophene electrolysis was calculated and lower activation energy value indicated it was diffusion controlled reaction. From the products of electrolytic reactions, the mechanisms of electrochemical hydrogenation of thiophene were proposed, consisting of two pathways: openingring followed by hydrogenation, and hydrogenation followed by ring opening.

  6. A facile hydrothermal recovery of nano sealed MnO2 particle from waste batteries: An advanced material for electrochemical and environmental applications

    NASA Astrophysics Data System (ADS)

    Mylarappa, M.; Venkata Lakshmi, V.; Vishnu Mahesh, K. R.; Nagaswarupa, H. P.; Raghavendra, N.

    2016-09-01

    This work deliberates a method for manganese (Mn) recovery as manganese oxide obtained by leaching of waste batteries with 3M sulphuric acid. The Experimental test for the recovery of Mn present within the waste dry cell batteries were carried out by a reductive leachant. Elemental composition of leached sample was confirmed by Energy Dispersive X-ray analysis (EDAX), and Surface morphology of the recovered MnO2 was examined by using Scanning Electron microscopy (SEM). Phase composition was confirmed from X-ray Diffractro meter (XRD). The obtained leached solution was treated with 4M NaOH, yielded to Manganese Dioxide with high extraction degree, while it do not touches the Zn content within the solutions. The recovered samples were characterized using XRD, EDAX, SEM and Fourier transform infrared spectrometry (FTIR). The electrochemical properties of the as-recovered sample from leached solution was examined used cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Remarkably, the 80 wt.% MnO2 displays reversibility, diffusion constant, smaller equivalent series resistance and charge transfer resistance in 0.5M NaOH showed superior results as compared to alternative electrolytes. The ideal capacitive behaviour of MnO2 electrode and nano particle was applied to photocatalytic degradation of dyes.

  7. Compartmented electrode structure

    DOEpatents

    Vissers, Donald R.; Shimotake, Hiroshi; Gay, Eddie C.; Martino, Fredric J.

    1977-06-14

    Electrodes for secondary electrochemical cells are provided with compartments for containing particles of the electrode reactant. The compartments are defined by partitions that are generally impenetrable to the particles of reactant and, in some instances, to the liquid electrolyte used in the cell. During cycling of the cell, reactant material initially loaded into a particular compartment is prevented from migrating and concentrating within the lower portion of the electrode or those portions of the electrode that exhibit reduced electrical resistance.

  8. Nano-glass ceramic cathodes for Li+/Na+ mixed-ion batteries

    NASA Astrophysics Data System (ADS)

    He, Wen; Zhang, Xudong; Jin, Chao; Wang, Yaoyao; Mossin, Susanne; Yue, Yuanzheng

    2017-02-01

    Electrode materials can display superior electrochemical performances and behavior via the nanoscale design. Here, the low-temperature synthesis of nano-glass ceramics (NGCs) is based on inheriting the network structure of yeast polyphosphate metabolism. The NGCs-3 sample synthesized with a molar ratio of Fe/V = 7:6 is composed of nano-domains of semiconducting oxide glass (Li2O-Na2O-Fe2O3-V2O5-P2O5, LNFVP), nanocrystalline particles (Li9Fe3P8O29, Li0.6V1.67O3.67 and VOPO4), and nanopores connected by interfaces. We have clarified the mixing ion transport mechanism and the electrochemical reactions, and the influences of molar ratio of Fe/V on the structure and electrochemical properties of NGCs. This nanoscale design offers a new possibility improved the electrochemical performances of Li+/Na+ mixed-ion batteries (LNMIBs). The NGCs-3 electrode exhibits a higher discharge capacity (145 mAh g-1) and energy storage density (525 Whkg-1) at 5C, and the capacity retention reaches 70% after 1000 cycles. More importantly, we have established a direct relationship between the electrochemical kinetics and nanostructure of NGC electrode materials.

  9. Fine tuning of magnetite nanoparticle size distribution using dissymmetric potential pulses in the presence of biocompatible surfactants and the electrochemical characterization of the nanoparticles.

    PubMed

    Rodríguez-López, A; Cruz-Rivera, J J; Elías-Alfaro, C G; Betancourt, I; Ruiz-Silva, H; Antaño-López, R

    2015-01-01

    The effects of varying the surfactant concentration and the anodic pulse potential on the properties and electrochemical behaviors of magnetite nanoparticles were investigated. The nanoparticles were synthesized with an electrochemical method based on applying dissymmetric potential pulses, which offers the advantage that can be used to tune the particle size distribution very precisely in the range of 10 to 50 nm. Under the conditions studied, the surfactant concentration directly affects the size distribution, with higher concentrations producing narrower distributions. Linear voltammetry was used to characterize the electrochemical behavior of the synthesized nanoparticles in both the anodic and cathodic regions, which are attributed to the oxidation of Fe(2+) and the reduction of Fe(3+); these species are part of the spinel structure of magnetite. Electrochemical impedance spectroscopy data indicated that the reduction and oxidation reactions of the nanoparticles are not controlled by the mass transport step, but by the charge transfer step. The sample with the highest saturation magnetization was that synthesized in the presence of polyethylene glycol. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Spatially-resolved mapping of history-dependent coupled electrochemical and electronical behaviors of electroresistive NiO

    DOE PAGES

    Sugiyama, Issei; Kim, Yunseok; Jesse, Stephen; ...

    2014-10-22

    Bias-induced oxygen ion dynamics underpins a broad spectrum of electroresistive and memristive phenomena in oxide materials. Although widely studied by device-level and local voltage-current spectroscopies, the relationship between electroresistive phenomena, local electrochemical behaviors, and microstructures remains elusive. Here, the interplay between history-dependent electronic transport and electrochemical phenomena in a NiO single crystalline thin film with a number of well-defined defect types is explored on the nanometer scale using an atomic force microscopy-based technique. A variety of electrochemically-active regions were observed and spatially resolved relationship between the electronic and electrochemical phenomena was revealed. The regions with pronounced electroresistive activity were furthermore » correlated with defects identified by scanning transmission electron microscopy. Using fully coupled mechanical-electrochemical modeling, we illustrate that the spatial distribution of strain plays an important role in electrochemical and electroresistive phenomena. In conclusion, these studies illustrate an approach for simultaneous mapping of the electronic and ionic transport on a single defective structure level such as dislocations or interfaces, and pave the way for creating libraries of defect-specific electrochemical responses.« less

  11. The effect of cell density, proximity, and time on the cytotoxicity of magnesium and galvanically coupled magnesium-titanium particles in vitro.

    PubMed

    Kim, Jua; Gilbert, Jeremy L

    2018-05-01

    Magnesium (Mg) and galvanically coupled magnesium-titanium (Mg-Ti) particles in vitro have been reported previously to kill cells in a dosage-dependent manner. Mg-Ti particles kill cells more effectively than Mg alone, due to the galvanic effect of Mg and Ti. This study further investigated the in vitro cytotoxicity of Mg and Mg-Ti in terms of particle concentration, cell density, time, and proximity. Cell density has an effect on cell viability only at low particle concentrations (below 250 µg/mL), where cell viability dropped only for lower cell densities (5000-10,000 cells/cm 2 ) and not for higher cell densities (20,000-30,000 cells/cm 2 ), showing that the particles cannot kill if there are more cells present. Cytotoxicity of Mg and Mg-Ti particles is quick and temporary, where the particles kill cells only during particle corrosion (first 24 h). Depending on the percentage of surviving cells, particle concentrations, and ongoing corrosion activity, the remaining live cells either proliferated and recovered, or just remained viable and quiescent. The particle killing is also proximity-dependent, where cell viability was significantly higher for cells far away from the particles (greater than ∼1 mm) compared to those close to the particles (less than ∼1 mm). Although the increase of pH does affect cell viability negatively, it is not the sole killing factor since cell viability is significantly dependent on particle type and proximity but not pH. Mg and Mg-Ti particles used in this study are large enough to prevent direct cell phagocytosis so that the cell killing effect may be attributed to solely electrochemical reactions. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1428-1439, 2018. © 2018 Wiley Periodicals, Inc.

  12. Highly selective dopamine electrochemical sensor based on electrochemically pretreated graphite and nafion composite modified screen printed carbon electrode.

    PubMed

    Ku, Shuhao; Palanisamy, Selvakumar; Chen, Shen-Ming

    2013-12-01

    Herein, we report a highly selective dopamine electrochemical sensor based on electrochemically pretreated graphite/nafion composite modified screen printed carbon (SPC) electrode. Electrochemically activated graphite/nafion composite was prepared by using a simple electrochemical method. Scanning electron microscope (SEM) used to characterize the surface morphology of the fabricated composite electrode. The SEM result clearly indicates that the graphitic basal planes were totally disturbed and leads to the formation of graphite nanosheets. The composite modified electrode showed an enhanced electrocatalytic activity toward the oxidation of DA when compared with either electrochemical pretreated graphite or nafion SPC electrodes. The fabricated composite electrode exhibits a good electrocatalytic oxidation toward DA in the linear response range from 0.5 to 70 μM with the detection limit of 0.023 μM. The proposed sensor also exhibits very good selectivity and stability, with the appreciable sensitivity. In addition, the proposed sensor showed satisfactory recovery results toward the commercial pharmaceutical DA samples. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Rapid preparation of high electrochemical performance LiFePO4/C composite cathode material with an ultrasonic-intensified micro-impinging jetting reactor.

    PubMed

    Dong, Bin; Huang, Xiani; Yang, Xiaogang; Li, Guang; Xia, Lan; Chen, George

    2017-11-01

    A joint chemical reactor system referred to as an ultrasonic-intensified micro-impinging jetting reactor (UIJR), which possesses the feature of fast micro-mixing, was proposed and has been employed for rapid preparation of FePO 4 particles that are amalgamated by nanoscale primary crystals. As one of the important precursors for the fabrication of lithium iron phosphate cathode, the properties of FePO 4 nano particles significantly affect the performance of the lithium iron phosphate cathode. Thus, the effects of joint use of impinging stream and ultrasonic irradiation on the formation of mesoporous structure of FePO 4 nano precursor particles and the electrochemical properties of amalgamated LiFePO 4 /C have been investigated. Additionally, the effects of the reactant concentration (C=0.5, 1.0 and 1.5molL -1 ), and volumetric flow rate (V=17.15, 51.44, and 85.74mLmin -1 ) on synthesis of FePO 4 ·2H 2 O nucleus have been studied when the impinging jetting reactor (IJR) and UIJR are to operate in nonsubmerged mode. It was affirmed from the experiments that the FePO 4 nano precursor particles prepared using UIJR have well-formed mesoporous structures with the primary crystal size of 44.6nm, an average pore size of 15.2nm, and a specific surface area of 134.54m 2 g -1 when the reactant concentration and volumetric flow rate are 1.0molL -1 and 85.74mLmin -1 respectively. The amalgamated LiFePO 4 /C composites can deliver good electrochemical performance with discharge capacities of 156.7mAhg -1 at 0.1C, and exhibit 138.0mAhg -1 after 100 cycles at 0.5C, which is 95.3% of the initial discharge capacity. Copyright © 2017. Published by Elsevier B.V.

  14. Preparation of hollow mesoporous carbon spheres and their performances for electrochemical applications

    NASA Astrophysics Data System (ADS)

    Ariyanto, T.; Zhang, G. R.; Kern, A.; Etzold, B. J. M.

    2018-03-01

    Hollow carbon materials have received intensive attention for energy storage/conversion applications due to their attractive properties of high conductivity, high surface area, large void and short diffusion pathway. In this work, a novel hollow mesoporous material based on carbide-derived carbon (CDC) is presented. CDC is a new class of carbon material synthesized by the selective extraction of metals from metal carbides. With a two-stage extraction procedure of carbides with chlorine, firstly hybrid core-shell carbon particles were synthesized, i.e. mesoporous/graphitic carbon shells covering microporous/amorphous carbon cores. The amorphous cores were then selectively removed from particles by a careful oxidative treatment utilizing its low thermal characters while the more stable carbon shells remained, thus resulting hollow particles. The characterization methods (e.g. N2 sorption, Raman spectroscopy, temperature-programmed oxidation and SEM) proved the successful synthesis of the aspired material. In electric double-layer capacitor (EDLC) testing, this novel hollow core material showed a remarkable enhancement of EDLC’s rate handling ability (75% at a high scan rate) with respect to an entirely solid-mesoporous material. Furthermore, as a fuel cell catalyst support the material showed higher Pt mass activity (a factor of 1.8) compared to a conventional carbon support for methanol oxidation without noticeably decreasing activity in a long-term testing. Therefore, this carbon nanostructure shows great promises as efficient electrode materials for energy storage and conversion systems.

  15. Redox-Active Carbohydrate-Coated Nanoparticles: Self-Assembly of a Cyclodextrin-Polystyrene Glycopolymer with Tetrazine-Naphthalimide.

    PubMed

    Gross, Andrew J; Haddad, Raoudha; Travelet, Christophe; Reynaud, Eric; Audebert, Pierre; Borsali, Redouane; Cosnier, Serge

    2016-11-15

    The controlled self-assembly of precise and well-defined photochemically and electrochemically active carbohydrate-coated nanoparticles offers the exciting prospect of biocompatible catalysts for energy storage/conversion and biolabeling applications. Here an aqueous nanoparticle system has been developed with a versatile outer layer for host-guest molecule encapsulation via β-cyclodextrin inclusion complexes. A β-cyclodextrin-modified polystyrene polymer was first obtained by copper nanopowder click chemistry. The glycopolymer enables self-assembly and controlled encapsulation of tetrazine-naphthalimide, as a model redox-active agent, into nanoparticles via nanoprecipitation. Cyclodextrin host-guest interactions permit encapsulation and internanoparticle cross-linking for the formation of fluorescent compound and clustered self-assemblies with chemically reversible electroactivity in aqueous solution. Light scattering experiments revealed stable particles with hydrodynamic diameters of 138 and 654 nm for nanoparticles prepared with tetrazine, of which 95% of the nanoparticles represent the smaller objects by number. Dynamic light scattering revealed differences as a function of preparation method in terms of size, 3-month stability, polydispersity, radius of gyration, and shape factor. Individual self-assemblies were visualized by atomic force microscopy and fluorescence microscopy and monitored in real-time by nanoparticle tracking analysis. UV-vis and fluorescence spectra provided insight into the optical properties and critical evidence for host-guest encapsulation as evidenced by solvachromatism and enhanced tetrazine uptake. Cyclic voltammetry was used to investigate the electrochemical properties and provided further support for encapsulation and an estimate of the tetrazine loading capacity in tandem with light scattering data.

  16. Activity and Durability of Iridium Nanoparticles in the Oxygen Evolution Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alia, Shaun M.; Rasimick, Brian; Ngo, Chilan

    Unsupported iridium (Ir) nanoparticles, that serve as standard oxygen evolution reaction (OER) catalysts in acidic electrolyzers, were investigated for electrochemical performance and durability in rotating disk electrode (RDE) half-cells. Fixed potential holds and potential cycling were applied to probe the durability of Ir nanoparticles, and performance losses were found to be driven by particle growth (coarsening) at moderate potential (1.4 to 1.6 V) and Ir dissolution at higher potential (>/=1.8 V). Several different commercially available samples were evaluated and standardized conditions for performance comparison are reported. In conclusion, the electrocatalyst RDE results have also been compared to results obtained formore » performance and durability in electrolysis cells.« less

  17. Activity and Durability of Iridium Nanoparticles in the Oxygen Evolution Reaction

    DOE PAGES

    Alia, Shaun M.; Rasimick, Brian; Ngo, Chilan; ...

    2016-07-15

    Unsupported iridium (Ir) nanoparticles, that serve as standard oxygen evolution reaction (OER) catalysts in acidic electrolyzers, were investigated for electrochemical performance and durability in rotating disk electrode (RDE) half-cells. Fixed potential holds and potential cycling were applied to probe the durability of Ir nanoparticles, and performance losses were found to be driven by particle growth (coarsening) at moderate potential (1.4 to 1.6 V) and Ir dissolution at higher potential (>/=1.8 V). Several different commercially available samples were evaluated and standardized conditions for performance comparison are reported. In conclusion, the electrocatalyst RDE results have also been compared to results obtained formore » performance and durability in electrolysis cells.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashkooli, Ali Ghorbani; Foreman, Evan; Farhad, Siamak

    In this study, synchrotron X-ray computed tomography has been utilized using two different imaging modes, absorption and Zernike phase contrast, to reconstruct the real three-dimensional (3D) morphology of nanostructured Li 4Ti 5O 12 (LTO) electrodes. The morphology of the high atomic number active material has been obtained using the absorption contrast mode, whereas the percolated solid network composed of active material and carbon-doped polymer binder domain (CBD) has been obtained using the Zernike phase contrast mode. The 3D absorption contrast image revealed that some LTO nano-particles tend to agglomerate and form secondary micro-sized particles with varying degrees of sphericity. Themore » tortuosity of electrode’s pore and solid phases were found to have directional dependence, different from Bruggeman’s tortuosity commonly used in macro-homogeneous models. The electrode’s heterogeneous structure was investigated by developing a numerical model to simulate galvanostatic discharge process using the Zernike phase contrast mode. The inclusion of CBD in the Zernike phase contrast results in an integrated percolated network of active material and CBD that is highly suited for continuum modeling. As a result, the simulation results highlight the importance of using the real 3D geometry since the spatial distribution of physical and electrochemical properties have a strong non-uniformity due to microstructural heterogeneities.« less

  19. Synthesis and Performance Evaluation of Pulse Electrodeposited Ni-AlN Nanocomposite Coatings

    PubMed Central

    Ali, Kamran; Narayana, Sivaprasad; Okonkwo, Paul C.; Yusuf, Moinuddin M.; Alashraf, Abdullah

    2018-01-01

    This research work presents the microscopic analysis of pulse electrodeposited Ni-AlN nanocomposite coatings using SEM and AFM techniques and their performance evaluation (mechanical and electrochemical) by employing nanoindentation and electrochemical methods. The Ni-AlN nanocomposite coatings were developed by pulse electrodeposition. The nickel matrix was reinforced with various amounts of AlN nanoparticles (3, 6, and 9 g/L) to develop Ni-AlN nanocomposite coatings. The effect of reinforcement concentration on structure, surface morphology, and mechanical and anticorrosion properties was studied. SEM and AFM analyses indicate that Ni-AlN nanocomposite coatings have dense, homogenous, and well-defined pyramid structure containing uniformly distributed AlN particles. A decent improvement in the corrosion protection performance is also observed by the addition of AlN particles to the nickel matrix. Corrosion current was reduced from 2.15 to 1.29 μA cm−2 by increasing the AlN particles concentration from 3 to 9 g/L. It has been observed that the properties of Ni-AlN nanocomposite coating are sensitive to the concentration of AlN nanoparticles used as reinforcement. PMID:29619143

  20. THE STRUCTURE OF THE COLLODION MEMBRANE AND ITS ELECTRICAL BEHAVIOR

    PubMed Central

    Sollner, Karl; Carr, Charles W.; Abrams, Irving

    1942-01-01

    1. Theoretical considerations lead to the conclusion that dissociable acidic groups present to a varying extent in different collodion preparations determine the electrochemical behavior of membranes cast from these preparations. It is further reasoned that the base exchange capacity of the collodion surfaces is the true quantitative measure of the abundance of the dissociable groups. 2. The concept of base exchange capacity and the base exchange method are discussed. The conditions which allow a purposeful application of the latter are stated. 3. The base exchange properties of a number of fibrous collodion preparations of different origins and after various types of treatment, having widely varying electrochemical activities, are determined. 4. With the chemical (titration) and physical (electrometric) methods employed, no regular correlation can be found between electrochemical activity and base exchange. The base exchange capacity which is necessary to cause even great electrochemical activity of collodion is extremely small. 5. Measurable to high base exchange capacity always seems to be associated with good or high electrochemical activity; but base exchange capacity too low to be definitely measurable with the available methods may be found with collodion preparations of high as well as with preparations of low electrochemical activity. 6. The bearing of these results upon the problem of the spatial and electrical structure of the collodion membrane is indicated briefly. PMID:19873284

  1. Composition-Graded MoWSx Hybrids with Tailored Catalytic Activity by Bipolar Electrochemistry.

    PubMed

    Tan, Shu Min; Pumera, Martin

    2017-12-06

    Among transition metal dichalcogenide (TMD)-based composites, TMD/graphene-related material and bichalcogen TMD composites have been widely studied for application toward energy production via the hydrogen evolution reaction (HER). However, scarcely any literature explored the possibility of bimetallic TMD hybrids as HER electrocatalysts. The use of harmful chemicals and harsh preparation conditions in conventional syntheses also detracts from the objective of sustainable energy production. Herein, we present the conservational alternative synthesis of MoWS x via one-step bipolar electrochemical deposition. Through bipolar electrochemistry, the simultaneous fabrication of composition-graded MoWS x hybrids, i.e., sulfur-deficient Mo x W (1-x) S 2 and Mo x W (1-x) S 3 (MoWS x /BPE cathodic and MoWS x /BPE anodic , respectively) under cathodic and anodic overpotentials, was achieved. The best-performing MoWS x /BPE cathodic and MoWS x /BPE anodic materials exhibited Tafel slopes of 45.7 and 50.5 mV dec -1 , together with corresponding HER overpotentials of 315 and 278 mV at -10 mA cm -2 . The remarkable HER activities of the composite materials were attributed to their small particle sizes, as well as the near-unity value of their surface Mo/W ratios, which resulted in increased exposed HER-active sites and differing active sites for the concurrent adsorption of protons and desorption of hydrogen gas. The excellent electrocatalytic performances achieved via the novel methodology adopted here encourage the empowerment of electrochemical deposition as the foremost fabrication approach toward functional electrocatalysts for sustainable energy generation.

  2. Gold-carbon composite thin films for electrochemical gas sensor prepared by reactive plasma sputtering

    NASA Astrophysics Data System (ADS)

    Okamoto, A.; Suzuki, Y.; Yoshitake, M.; Ogawa, S.; Nakano, N.

    1997-01-01

    We have investigated the properties of gold-carbon composite thin films prepared by a plasma sputtering deposition using argon and methane mixture gas. These composite films have an uneven surface in submicron scale or consist of nano-scale particles of gold polycrystalline. Such morphological properties can be controlled by the sputtering voltage and the partial pressure of methane gas. The working electrode of electrochemical gas sensor has needed a stable gas sensitivity and a good gas selectivity. Our composite film is one of the excellent candidates for a thin film working electrode of electrochemical gas sensor. It is described that the output current of sensor is related to the preparation conditions of the thin films and increase linearly as the concentration of PH 3 gas ranging from 0.1 to 1.0 ppm is increasing.

  3. Integrated Magneto-Electrochemical Sensor for Exosome Analysis.

    PubMed

    Jeong, Sangmoo; Park, Jongmin; Pathania, Divya; Castro, Cesar M; Weissleder, Ralph; Lee, Hakho

    2016-02-23

    Extracellular vesicles, including exosomes, are nanoscale membrane particles that carry molecular information on parental cells. They are being pursued as biomarkers of cancers that are difficult to detect or serially follow. Here we present a compact sensor technology for rapid, on-site exosome screening. The sensor is based on an integrated magneto-electrochemical assay: exosomes are immunomagnetically captured from patient samples and profiled through electrochemical reaction. By combining magnetic enrichment and enzymatic amplification, the approach enables (i) highly sensitive, cell-specific exosome detection and (ii) sensor miniaturization and scale-up for high-throughput measurements. As a proof-of-concept, we implemented a portable, eight-channel device and applied it to screen extracellular vesicles in plasma samples from ovarian cancer patients. The sensor allowed for the simultaneous profiling of multiple protein markers within an hour, outperforming conventional methods in assay sensitivity and speed.

  4. Understanding trends in electrochemical carbon dioxide reduction rates

    DOE PAGES

    Liu, Xinyan; Xiao, Jianping; Peng, Hongjie; ...

    2017-05-22

    Electrochemical carbon dioxide reduction to fuels presents one of the great challenges in chemistry. Herein we present an understanding of trends in electrocatalytic activity for carbon dioxide reduction over different metal catalysts that rationalize a number of experimental observations including the selectivity with respect to the competing hydrogen evolution reaction. We also identify two design criteria for more active catalysts. The understanding is based on density functional theory calculations of activation energies for electrochemical carbon monoxide reduction as a basis for an electrochemical kinetic model of the process. Furthermore, we develop scaling relations relating transition state energies to the carbonmore » monoxide adsorption energy and determine the optimal value of this descriptor to be very close to that of copper.« less

  5. Understanding trends in electrochemical carbon dioxide reduction rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xinyan; Xiao, Jianping; Peng, Hongjie

    Electrochemical carbon dioxide reduction to fuels presents one of the great challenges in chemistry. Herein we present an understanding of trends in electrocatalytic activity for carbon dioxide reduction over different metal catalysts that rationalize a number of experimental observations including the selectivity with respect to the competing hydrogen evolution reaction. We also identify two design criteria for more active catalysts. The understanding is based on density functional theory calculations of activation energies for electrochemical carbon monoxide reduction as a basis for an electrochemical kinetic model of the process. Furthermore, we develop scaling relations relating transition state energies to the carbonmore » monoxide adsorption energy and determine the optimal value of this descriptor to be very close to that of copper.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, Yet-Ming; Carter, Craig W.; Ho, Bryan Y.

    Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). Highmore » energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.« less

  7. Engineering Platinum Alloy Electrocatalysts in Nanoscale for PEMFC Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Ting

    2016-03-01

    Fuel cells are expected to be a key next-generation energy source used for vehicles and homes, offering high energy conversion efficiency and minimal pollutant emissions. However, due to large overpotentials on anode and cathode, the efficiency is still much lower than theoretically predicted. During the past decades, considerable efforts have been made to investigate synergy effect of platinum alloyed with base metals. But, engineering the alloy particles in nanoscale has been a challenge. Most important challenges in developing nanostructured materials are the abilities to control size, monodispersity, microcomposition, and even morphology or self-assembly capability, so called Nanomaterials-by-Design, which requires interdisciplinarymore » collaborations among computational modeling, chemical synthesis, nanoscale characterization as well as manufacturing processing. Electrocatalysts, particularly fuel cell catalysts, are dramatically different from heterogeneous catalysts because the surface area in micropores cannot be electrochemically controlled on the same time scale as more transport accessible surfaces. Therefore, electrocatalytic architectures need minimal microporous surface area while maximizing surfaces accessible through mesopores or macropores, and to "pin" the most active, highest performance physicochemical state of the materials even when exposed to thermodynamic forces, which would otherwise drive restructuring, crystallization, or densification of the nanoscale materials. In this presentation, results of engineering nanoscale platinum alloy particles down to 2 ~ 4 nm will be discussed. Based on nature of alloyed base metals, various synthesis technologies have been studied and developed to achieve capabilities of controlling particle size and particle microcomposition, namely, core-shell synthesis, microemulsion technique, thermal decomposition process, surface organometallic chemical method, etc. The results show that by careful engineering the particle size and microcomposition in nanoscale, it is able to achieve superior electrocatalytic activities comparing with traditional preparative methods. Examples to be discussed are high surface area carbon supported Pt, PtM binary, and PtMN ternary alloys, their synthesis processes, characterizations and electrocatalytic activities towards molecular oxygen reduction.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Hui; Wei, Yang; Wang, Cheng

    The excessive volume changes during cell cycling of Si-based anode in lithium ion batteries impeded its application. One major reason for the cell failure is particle isolation during volume shrinkage in delithiation process, which makes strong adhesion between polymer binder and anode active material particles a highly desirable property. Here, a biomimetic side-chain conductive polymer incorporating catechol, a key adhesive component of the mussel holdfast protein, was synthesized. Atomic force microscopy-based single-molecule force measurements of mussel-inspired conductive polymer binder contacting a silica surface revealed a similar adhesion toward substrate when compared with an effective Si anode binder, homo-poly(acrylic acid), withmore » the added benefit of being electronically conductive. Electrochemical experiments showed a very stable cycling of Si-alloy anodes realized via this biomimetic conducting polymer binder, leading to a high loading Si anode with a good rate performance. We attribute the ability of the Si-based anode to tolerate the volume changes during cycling to the excellent mechanical integrity afforded by the strong interfacial adhesion of the biomimetic conducting polymer.« less

  9. Nano-sized structured layered positive electrode materials to enable high energy density and high rate capability lithium batteries

    DOEpatents

    Deng, Haixia; Belharouak, Ilias; Amine, Khalil

    2012-10-02

    Nano-sized structured dense and spherical layered positive active materials provide high energy density and high rate capability electrodes in lithium-ion batteries. Such materials are spherical second particles made from agglomerated primary particles that are Li.sub.1+.alpha.(Ni.sub.xCo.sub.yMn.sub.z).sub.1-tM.sub.tO.sub.2-dR.sub.d- , where M is selected from can be Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti, Zr, or a mixture of any two or more thereof, R is selected from F, Cl, Br, I, H, S, N, or a mixture of any two or more thereof, and 0.ltoreq..alpha..ltoreq.0.50; 0

  10. Atomic Layer Deposition of Pd Nanoparticles on TiO₂ Nanotubes for Ethanol Electrooxidation: Synthesis and Electrochemical Properties.

    PubMed

    Assaud, Loïc; Brazeau, Nicolas; Barr, Maïssa K S; Hanbücken, Margrit; Ntais, Spyridon; Baranova, Elena A; Santinacci, Lionel

    2015-11-11

    Palladium nanoparticles are grown on TiO2 nanotubes by atomic layer deposition (ALD), and the resulting three-dimensional nanostructured catalysts are studied for ethanol electrooxidation in alkaline media. The morphology, the crystal structure, and the chemical composition of the Pd particles are fully characterized using scanning and transmission electron microscopies, X-ray diffraction, and X-ray photoelectron spectroscopy. The characterization revealed that the deposition proceeds onto the entire surface of the TiO2 nanotubes leading to the formation of well-defined and highly dispersed Pd nanoparticles. The electrooxidation of ethanol on Pd clusters deposited on TiO2 nanotubes shows not only a direct correlation between the catalytic activity and the particle size but also a steep increase of the response due to the enhancement of the metal-support interaction when the crystal structure of the TiO2 nanotubes is modified by annealing at 450 °C in air.

  11. Supercritical fluid attachment of palladium nanoparticles on aligned carbon nanotubes.

    PubMed

    Ye, Xiang-Rong; Lin, Yuehe; Wai, Chien M; Talbot, Jan B; Jin, Sungho

    2005-06-01

    Nanocomposite materials consisting of Pd nanoparticles deposited on aligned multi-walled carbon nanotubes have been fabricated through hydrogen reduction of palladium-beta-diketone precursor in supercritical carbon dioxide. The supercritical fluid processing allowed deposition of high-density Pd nanoparticles (approximately 5-10 nm) on both as-grown (unfunctionalized) and functionalized (using HNO3 oxidation) nanotubes. However, the wet processing for functionalization results in pre-agglomerated, bundle-shaped nanotubes, thus significantly reducing the effective surface area for Pd particle deposition, although the bundling provides more secure, lock-in-place positioning of nanotubes and Pd catalyst particles. The nanotube bundling is substantially mitigated by Pd nanoparticle deposition on the unfunctionalized and geometrically separated nanotubes, which provides much higher catalyst surface area. Such nanocomposite materials utilizing geometrically secured and aligned nanotubes can be useful for providing much enhanced catalytic activities to chemical and electrochemical reactions (e.g., fuel cell reactions), and eliminate the need for tedious catalyst recovery process after the reaction is completed.

  12. Bifunctional air electrodes containing elemental iron powder charging additive

    DOEpatents

    Liu, Chia-tsun; Demczyk, Brian G.; Gongaware, Paul R.

    1982-01-01

    A bifunctional air electrode for use in electrochemical energy cells is made, comprising a hydrophilic layer and a hydrophobic layer, where the hydrophilic layer essentially comprises a hydrophilic composite which includes: (i) carbon; (ii) elemental iron particles having a particle size of between about 25 microns and about 700 microns diameter; (iii) an oxygen evolution material; (iv) a nonwetting agent; and (v) a catalyst, where at least one current collector is formed into said composite.

  13. Active control of methanol carbonylation selectivity over Au/carbon anode by electrochemical potential.

    PubMed

    Funakawa, Akiyasu; Yamanaka, Ichiro; Otsuka, Kiyoshi

    2005-05-12

    Electrochemical oxidative carbonylation of methanol was studied over Au supported carbon anode in CO. The major carbonylation products were dimethyl oxalate (DMO) and dimethyl carbonate (DMC). The minor oxidation products were dimethoxy methane (DMM) and methyl formate (MF) from methanol and CO(2). Influences of various reaction conditions were studied on carbonylation activities and selectivities. The selectivities to DMO and DMC can be controlled by the electrochemical potential. Electrocatalysis of Au/carbon anode was studied by cyclic voltammetry (CV), stoichiometric reactions among Au(3+), methanol, and CO, and UV-vis spectra. The Au/carbon anode was characterized by XRD, SEM, and BE images before and after the carbonylation. These experimental facts strongly suggest that transition of oxidation states of Au affects changing of the carbonylation selectivities to DMO and DMC. Au(0) is the active species for the selective DMO formation by direct electrochemical carbonylation at low potentials (<+1.2 V (Ag/AgCl)). On the other hand, Au(3+) is the active spices for the selective DMC formation by indirect electrochemical carbonylation through Au(3+)/Au(+) redox at high potentials (>+1.3 V).

  14. Nanoscale morphological and chemical changes of high voltage lithium-manganese rich NMC composite cathodes with cycling.

    PubMed

    Yang, Feifei; Liu, Yijin; Martha, Surendra K; Wu, Ziyu; Andrews, Joy C; Ice, Gene E; Pianetta, Piero; Nanda, Jagjit

    2014-08-13

    Understanding the evolution of chemical composition and morphology of battery materials during electrochemical cycling is fundamental to extending battery cycle life and ensuring safety. This is particularly true for the much debated high energy density (high voltage) lithium-manganese rich cathode material of composition Li(1 + x)M(1 - x)O2 (M = Mn, Co, Ni). In this study we combine full-field transmission X-ray microscopy (TXM) with X-ray absorption near edge structure (XANES) to spatially resolve changes in chemical phase, oxidation state, and morphology within a high voltage cathode having nominal composition Li1.2Mn0.525Ni0.175Co0.1O2. Nanoscale microscopy with chemical/elemental sensitivity provides direct quantitative visualization of the cathode, and insights into failure. Single-pixel (∼ 30 nm) TXM XANES revealed changes in Mn chemistry with cycling, possibly to a spinel conformation and likely including some Mn(II), starting at the particle surface and proceeding inward. Morphological analysis of the particles revealed, with high resolution and statistical sampling, that the majority of particles adopted nonspherical shapes after 200 cycles. Multiple-energy tomography showed a more homogeneous association of transition metals in the pristine particle, which segregate significantly with cycling. Depletion of transition metals at the cathode surface occurs after just one cycle, likely driven by electrochemical reactions at the surface.

  15. Nanoscale Morphological and Chemical Changes of High Voltage Lithium–Manganese Rich NMC Composite Cathodes with Cycling

    PubMed Central

    2015-01-01

    Understanding the evolution of chemical composition and morphology of battery materials during electrochemical cycling is fundamental to extending battery cycle life and ensuring safety. This is particularly true for the much debated high energy density (high voltage) lithium–manganese rich cathode material of composition Li1 + xM1 – xO2 (M = Mn, Co, Ni). In this study we combine full-field transmission X-ray microscopy (TXM) with X-ray absorption near edge structure (XANES) to spatially resolve changes in chemical phase, oxidation state, and morphology within a high voltage cathode having nominal composition Li1.2Mn0.525Ni0.175Co0.1O2. Nanoscale microscopy with chemical/elemental sensitivity provides direct quantitative visualization of the cathode, and insights into failure. Single-pixel (∼30 nm) TXM XANES revealed changes in Mn chemistry with cycling, possibly to a spinel conformation and likely including some Mn(II), starting at the particle surface and proceeding inward. Morphological analysis of the particles revealed, with high resolution and statistical sampling, that the majority of particles adopted nonspherical shapes after 200 cycles. Multiple-energy tomography showed a more homogeneous association of transition metals in the pristine particle, which segregate significantly with cycling. Depletion of transition metals at the cathode surface occurs after just one cycle, likely driven by electrochemical reactions at the surface. PMID:25054780

  16. Microstructure control of SOFC cathode material: The role of dispersing agent

    NASA Astrophysics Data System (ADS)

    Ismail, Ismariza; Jani, Abdul Mutalib Md; Osman, Nafisah

    2017-09-01

    In the present works, La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode powders were synthesized by a sol-gel method with the aid of ethylene glycol which served as the dispersing agent. The phase formation and morphology of the powders were examined by X-Ray diffractometer (XRD) and field emission scanning electron microscopy (FESEM), respectively. The electrochemical properties of the synthesized cathode were obtained using an electrochemical impedance spectroscopy (EIS). The characteristic peaks for LSCF phase appears in the X-ray diffractogram after calcined at 500 °C and complete formation of LSCF single phase was attained at 700 °C. FESEM micrographs showed the presence of spherical particles of the powders with approximate particle size between 10 to 60 nm along with agglomerate morphologies. Well dispersed particles and fewer aggregates were observed for samples prepared with addition of ethylene glycol as the synthesizing aid. The surface area obtained for powder sample prepared with the aid of dispersing agent is 12.0 m2g-1. The EIS measurement results depicts a lower area specific resistance (ASR) obtained for sample prepared with addition of the ethylene glycol as compared to the pristine sample. The present results encourage the optimization of the cathode particle design in order to further improve the cathode performance.

  17. Electrochemical determination of paraquat in citric fruit based on electrodeposition of silver particles onto carbon paste electrode.

    PubMed

    Farahi, Abdelfettah; Achak, Mounia; El Gaini, Laila; El Mhammedi, Moulay Abderrahim; Bakasse, Mina

    2015-09-01

    Carbon paste electrodes (CPEs) modified with silver particles present an interesting tool in the determination of paraquat (PQ) using square wave voltammetry. Metallic silver particle deposits have been obtained via electrochemical deposition in acidic media using cyclic voltammetry. Scanning electron microscopy and X-ray diffraction measurements show that the silver particles are deposited onto carbon surfaces in aggregate form. The response of PQ with modified electrode (Ag-CPE) related to Ag/CP loading, preconcentration time, and measuring solution pH was investigated. The result shows that the increase in the two cathodic peak currents (Peak 1 and Peak 2), under optimized conditions, was linear with the increase in PQ concentration in the range 1.0 × 10 -7  mol/L to 1.0 × 10 -3  mol/L. The detection limit and quantification limit were 2.01 × 10 -8  mol/L and 6.073 × 10 -8  mol/L, respectively for Peak 1. The precision expressed as relative standard deviation for the concentration level 1.0 × 10 -5  mol/L (n = 8) was found to be 1.45%. The methodology was satisfactorily applied for the determination of PQ in citric fruit cultures. Copyright © 2015. Published by Elsevier B.V.

  18. Samaria-doped Ceria Modified Ni/YSZ Anode for Direct Methane Fuel in Tubular Solid Oxide Fuel Cells by Impregnation Method

    NASA Astrophysics Data System (ADS)

    Zhang, Long-shan; Gao, Jian-feng; Tian, Rui-fen; Xia, Chang-rong

    2009-08-01

    A porous NiO/yttria-stabilized zirconia anode substrate for tubular solid oxide fuel cells was prepared by gel casting technique. Nano-scale samaria-doped ceria (SDC) particles were formed onto the anode substrate to modify the anode microstructure by the impregnation of solution of Sm(NO3)3 and Ce(NO3)3. Electrochemical impedance spectroscopy, current-voltage and current-powder curves of the cells were measured using an electrochemical workstation. Scanning electron microcopy was used to observe the microstructure. The results indicate that the stability of the performance of the cell operated on humidified methane can be significantly improved by incorporating the nano-structured SDC particles, compared with the unmodified cell. This verifies that the coated SDC electrodes are very effective in suppressing catalytic carbon formation by blocking methane from approaching the Ni, which is catalytically active towards methane pyrolysis. In addition, it was found that a small amount of deposited carbon is beneficial to the performance of the anode. The cell showed a peak power density of 225 mW/cm2 when it was fed with H2 fuel at 700 °C, but the power density increased to 400 mW/cm2 when the fuel was switched from hydrogen to methane at the same flow rate. Methane conversion achieved about 90%, measured by gas chromatogram with a 10.0 mL/min flow rate of fuel at 700 °C. Although the carbon deposition was not suppressed absolutely, some deposited carbon was beneficial for performance improvement.

  19. Treated carbon fibers with improved performance for electrochemical and chemical applications

    DOEpatents

    Chu, X.; Kinoshita, Kimio

    1999-02-23

    A treated mesophase carbon fiber is disclosed having a high density of exposed edges on the fiber surface, and a method is described for making such a treated fiber. A carbon electrode is also described which is constructed from such treated mesophase carbon fibers. The resulting electrode, formed from such treated flexible carbon fibers, is characterized by a high density of active sites formed from such exposed edges, low corrosion, and good mechanical strength, and may be fabricated into various shapes. The treated mesophase carbon fibers of the invention are formed by first loading the surface of the mesophase carbon fiber with catalytic metal particles to form catalytic etch sites on a hard carbon shell of the fiber. The carbon fiber is then subject to an etch step wherein portions of the hard carbon shell or skin are selectively removed adjacent the catalytic metal particles adhering to the carbon shell. This exposes the underlying radial edges of the graphite-like layers within the carbon shell of the mesophase carbon fiber, which exposed radial edges then act as active sites of a carbon electrode subsequently formed from the treated mesophase carbon fibers. 14 figs.

  20. Treated carbon fibers with improved performance for electrochemical and chemical applications

    DOEpatents

    Chu, Xi; Kinoshita, Kimio

    1999-01-01

    A treated mesophase carbon fiber is disclosed having a high density of exposed edges on the fiber surface, and a method of making such a treated fiber. A carbon electrode is also described which is constructed from such treated mesophase carbon fibers. The resulting electrode, formed from such treated flexible carbon fibers, is characterized by a high density of active sites formed from such exposed edges, low corrosion, and good mechanical strength, and may be fabricated into various shapes. The treated mesophase carbon fibers of the invention are formed by first loading the surface of the mesophase carbon fiber with catalytic metal particles to form catalytic etch sites on a hard carbon shell of the fiber. The carbon fiber is then subject to an etch step wherein portions of the hard carbon shell or skin are selectively removed adjacent the catalytic metal particles adhering to the carbon shell. This exposes the underlying radial edges of the graphite-like layers within the carbon shell of the mesophase carbon fiber, which exposed radial edges then act as active sites of a carbon electrode subsequently formed from the treated mesophase carbon fibers.

  1. Combination of lightweight elements and nanostructured materials for batteries.

    PubMed

    Chen, Jun; Cheng, Fangyi

    2009-06-16

    In a society that increasingly relies on mobile electronics, demand is rapidly growing for both primary and rechargeable batteries that power devices from cell phones to vehicles. Existing batteries utilize lightweight active materials that use electrochemical reactions of ions such as H(+), OH(-) and Li(+)/Mg(2+) to facilitate energy storage and conversion. Ideal batteries should be inexpensive, have high energy density, and be made from environmentally friendly materials; batteries based on bulk active materials do not meet these requirements. Because of slow electrode process kinetics and low-rate ionic diffusion/migration, most conventional batteries demonstrate huge gaps between their theoretical and practical performance. Therefore, efforts are underway to improve existing battery technologies and develop new electrode reactions for the next generation of electrochemical devices. Advances in electrochemistry, surface science, and materials chemistry are leading to the use of nanomaterials for efficient energy storage and conversion. Nanostructures offer advantages over comparable bulk materials in improving battery performance. This Account summarizes our progress in battery development using a combination of lightweight elements and nanostructured materials. We highlight the benefits of nanostructured active materials for primary zinc-manganese dioxide (Zn-Mn), lithium-manganese dioxide (Li-Mn), and metal (Mg, Al, Zn)-air batteries, as well as rechargeable lithium ion (Li-ion) and nickel-metal hydride (Ni-MH) batteries. Through selected examples, we illustrate the effect of structure, shape, and size on the electrochemical properties of electrode materials. Because of their numerous active sites and facile electronic/ionic transfer and diffusion, nanostructures can improve battery efficiency. In particular, we demonstrate the properties of nanostructured active materials including Mg, Al, Si, Zn, MnO(2), CuV(2)O(6), LiNi(0.8)Co(0.2)O(2), LiFePO(4), Fe(2)O(3), Co(3)O(4), TiS(2), and Ni(OH)(2) in battery applications. Electrochemical investigations reveal that we generally attain larger capacities and improved kinetics for electrode materials as their average particle size decreases. Novel nanostructures such as nanowires, nanotubes, nanourchins, and porous nanospheres show lower activation energy, enhanced reactivity, improved high-rate charge/discharge capability, and more controlled structural flexibility than their bulk counterparts. In particular, anode materials such as Si nanospheres and Fe(2)O(3) nanotubes can deliver reversible capacity exceeding 500 mA.h/g. (Graphite used commercially has a theoretical capacity of 372 mA x h/g.) Nanocomposite cathode materials such as NiP-doped LiFePO(4) and metal hydroxide-coated Ni(OH)(2) nanotubes allow us to integrate functional components, which enhance electrical conductivity and suppress volume expansion. Therefore, shifting from bulk to nanostructured electrode materials could offer a revolutionary opportunity to develop advanced green batteries with large capacity, high energy and power density, and long cycle life.

  2. Method of forming a leak proof plasma sprayed interconnection layer on an electrode of an electrochemical cell

    DOEpatents

    Kuo, Lewis J. H.; Vora, Shailesh D.

    1995-01-01

    A dense, substantially gas-tight, electrically conductive interconnection layer is formed on an electrode structure of an electrochemical cell by: (A) providing an electrode structure; (B) forming on a selected portion of the electrode surface, an interconnection layer having the general formula La.sub.1-x M.sub.x Cr.sub.1-y N.sub.y O.sub.3, where M is a dopant selected from the group of Ca, Sr, Ba, and mixtures thereof, and where N is a dopant selected from the group of Mg, Co, Ni, Al, and mixtures thereof, and where x and y are each independently about 0.075-0.25, by thermally spraying, preferably plasma arc spraying, a flux added interconnection spray powder, preferably agglomerated, the flux added powder comprising flux particles, preferably including dopant, preferably (CaO).sub.12. (Al.sub.2 O.sub.3).sub.7 flux particles including Ca and Al dopant, and LaCrO.sub.3 interconnection particles, preferably undoped LaCrO.sub.3, to form a dense and substantially gas-tight interconnection material bonded to the electrode structure by a single plasma spraying step; and, (C) heat treating the interconnection layer at from about 1200.degree. to 1350.degree. C. to further densify and heal the micro-cracks and macro-cracks of the thermally sprayed interconnection layer. The result is a substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode structure. The electrode structure can be an air electrode, and a solid electrolyte layer can be applied to the unselected portion of the air electrode, and further a fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell for generation of electrical power.

  3. Method of forming a leak proof plasma sprayed interconnection layer on an electrode of an electrochemical cell

    DOEpatents

    Kuo, L.J.H.; Vora, S.D.

    1995-02-21

    A dense, substantially gas-tight, electrically conductive interconnection layer is formed on an electrode structure of an electrochemical cell by: (A) providing an electrode structure; (B) forming on a selected portion of the electrode surface, an interconnection layer having the general formula La{sub 1{minus}x}M{sub x}Cr{sub 1{minus}y}N{sub y}O{sub 3}, where M is a dopant selected from the group of Ca, Sr, Ba, and mixtures thereof, and where N is a dopant selected from the group of Mg, Co, Ni, Al, and mixtures thereof, and where x and y are each independently about 0.075--0.25, by thermally spraying, preferably plasma arc spraying, a flux added interconnection spray powder, preferably agglomerated, the flux added powder comprising flux particles, preferably including dopant, preferably (CaO){sub 12}(Al{sub 2}O{sub 3}){sub 7} flux particles including Ca and Al dopant, and LaCrO{sub 3} interconnection particles, preferably undoped LaCrO{sub 3}, to form a dense and substantially gas-tight interconnection material bonded to the electrode structure by a single plasma spraying step; and (C) heat treating the interconnection layer at from about 1,200 to 1,350 C to further densify and heal the micro-cracks and macro-cracks of the thermally sprayed interconnection layer. The result is a substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode structure. The electrode structure can be an air electrode, and a solid electrolyte layer can be applied to the unselected portion of the air electrode, and further a fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell for generation of electrical power. 4 figs.

  4. Engineering the bioelectrochemical interface using functional nanomaterials and microchip technique toward sensitive and portable electrochemical biosensors.

    PubMed

    Jia, Xiaofang; Dong, Shaojun; Wang, Erkang

    2016-02-15

    Electrochemical biosensors have played active roles at the forefront of bioanalysis because they have the potential to achieve sensitive, specific and low-cost detection of biomolecules and many others. Engineering the electrochemical sensing interface with functional nanomaterials leads to novel electrochemical biosensors with improved performances in terms of sensitivity, selectivity, stability and simplicity. Functional nanomaterials possess good conductivity, catalytic activity, biocompatibility and high surface area. Coupled with bio-recognition elements, these features can amplify signal transduction and biorecognition events, resulting in highly sensitive biosensing. Additionally, microfluidic electrochemical biosensors have attracted considerable attention on account of their miniature, portable and low-cost systems as well as high fabrication throughput and ease of scaleup. For example, electrochemical enzymetic biosensors and aptamer biosensors (aptasensors) based on the integrated microchip can be used for portable point-of-care diagnostics and environmental monitoring. This review is a summary of our recent progress in the field of electrochemical biosensors, including aptasensors, cytosensors, enzymatic biosensors and self-powered biosensors based on biofuel cells. We presented the advantages that functional nanomaterials and microfluidic chip technology bring to the electrochemical biosensors, together with future prospects and possible challenges. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. High energy supercapattery with an ionic liquid solution of LiClO4.

    PubMed

    Yu, Linpo; Chen, George Z

    2016-08-15

    A supercapattery combining an ideally polarized capacitor-like electrode and a battery-like electrode is demonstrated theoretically and practically using an ionic liquid electrolyte containing 1-butyl-1-methylpyrrolidinium tri(pentafluoroethyl)trifluorophosphate (BMPyrrFAP), gamma-butyrolactone (γ-GBL) and LiClO4. The electrochemical deposition and dissolution of lithium metal on a platinum and glass carbon electrode were investigated in this ionic liquid solution. The CVs showed that the fresh electrochemically deposited lithium metal was stable in the electrolyte, which encouraged the investigation of this ionic liquid solution in a supercapattery with a lithium battery negative electrode. The active material counted specific energy of the supercapattery based on a lithium negative electrode and an activated carbon (Act-C) positive electrode could reach 230 W h kg(-1) under a galvanostatic charge-discharge current density of 1 mA cm(-2). The positive electrode material (Act-C) was also investigated by CV, AC impedance, SEM and BET. The non-uniform particle size and micropores dominated porous structure of the Act-C enabled its electric double layer capacitor (EDLC) behavior in the ionic liquid solution. The measured specific capacitance of the Act-C in this ionic liquid solution is higher than the same Act-C in aqueous solution, which indicates the Act-C can also perform well in the ionic liquid electrolyte.

  6. Multiple response optimization for high efficiency energy saving treatment of rhodamine B wastewater in a three-dimensional electrochemical reactor.

    PubMed

    Ji, Jing; Liu, Yang; Yang, Xue-Yuan; Xu, Juan; Li, Xiu-Yan

    2018-07-15

    The removal of high-concentration rhodamine B (RhB) wastewater was investigated in a three-dimensional electrochemical reactor (3DER) packed with granular activated carbon (GAC) particle electrodes. Response surface methodology (RSM) coupled with grey relational analysis (GRA) was used to evaluate the effects of voltage, initial pH, aeration rate and NaCl dosage on RhB removal and energy consumption of the 3DER. The optimal conditions were determined as voltage 7.25 V, pH 5.99, aeration rate 151.13 mL/min, and NaCl concentration 0.11 mol/L. After 30 min electrolysis, COD removal rate could arrive at 60.13% with an extremely low energy consumption of 6.22 kWh/kg COD. The voltage and NaCl were demonstrated to be the most significant factors affecting the COD removal and energy consumption of 3DER. The intermediates generated during the treatment process were identified and the possible degradation pathway of RhB was proposed. It is worth noting that 3DER also showed an excellent performance in total nitrogen (TN) removal under the optimal condition. The activated chlorine generated from chloride had great contributions to eliminate carbon and nitrogen of RhB wastewater. The treatment effluent had a good biodegradability, which was suitable for subsequent biological treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Pd-Cu/poly(o-Anisidine) nanocomposite as an efficient catalyst for formaldehyde oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosseini, Sayed Reza, E-mail: r.hosseini@umz.ac.ir; Raoof, Jahan-Bakhsh; Ghasemi, Shahram

    Highlights: • o-Anisidine monomer was electro-polymerized at the pCPE surface in acid medium. • Palladium/copper NPs were prepared by galvanic replacement method at the POA/pCPE. • Pd-Cu NPs showed excellent electrocatalytic activity towards formaldehyde oxidation. • The bimetallic Pd-Cu NPs/POA nanocomposite showed satisfactory long-term stability. - Abstract: In this work, for the first time, the electrocatalytic oxidation of formaldehyde in 0.5 M sulfuric acid solution at spherical bimetallic palladium-copper nanoparticles (Pd-Cu NPs) deposited on the poly (o-Anisidine) film modified electrochemically pretreated carbon paste electrode (POA/pCPE) has been investigated. Highly porous POA film prepared by electropolymerization onto the pCPE was usedmore » as a potent support for deposition of the Pd-Cu NPs. The Pd-Cu NPs were prepared through spontaneous and irreversible reaction via galvanic replacement between Pd{sup II} ions and the Cu{sup 0} particles. The prepared Pd-Cu NPs were characterized by scanning electron microscopy, energy dispersive spectroscopy and electrochemical methods. The obtained results showed that the utilization of Cu nanoparticles and pretreatment technique enhances the electrocatalytic activity of the modified electrode towards formaldehyde oxidation. The influence of several parameters on formaldehyde oxidation as well as stability of the Pd-Cu/POA/pCPE has been investigated.« less

  8. Hybrid luminescent/magnetic nanostructured porous silicon particles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Muñoz-Noval, Álvaro; Sánchez-Vaquero, Vanessa; Torres-Costa, Vicente; Gallach, Darío; Ferro-Llanos, Vicente; Javier Serrano, José; Manso-Silván, Miguel; García-Ruiz, Josefa Predestinación; Del Pozo, Francisco; Martín-Palma, Raúl J.

    2011-02-01

    This work describes a novel process for the fabrication of hybrid nanostructured particles showing intense tunable photoluminescence and a simultaneous ferromagnetic behavior. The fabrication process involves the synthesis of nanostructured porous silicon (NPSi) by chemical anodization of crystalline silicon and subsequent in pore growth of Co nanoparticles by electrochemically-assisted infiltration. Final particles are obtained by subsequent sonication of the Co-infiltrated NPSi layers and conjugation with poly(ethylene glycol) aiming at enhancing their hydrophilic character. These particles respond to magnetic fields, emit light in the visible when excited in the UV range, and internalize into human mesenchymal stem cells with no apoptosis induction. Furthermore, cytotoxicity in in-vitro systems confirms their biocompatibility and the viability of the cells after incorporation of the particles. The hybrid nanostructured particles might represent powerful research tools as cellular trackers or in cellular therapy since they allow combining two or more properties into a single particle.

  9. Hybrid luminescent/magnetic nanostructured porous silicon particles for biomedical applications.

    PubMed

    Muñoz-Noval, Alvaro; Sánchez-Vaquero, Vanessa; Torres-Costa, Vicente; Gallach, Darío; Ferro-Llanos, Vicente; Serrano, José Javier; Manso-Silván, Miguel; García-Ruiz, Josefa Predestinación; del Pozo, Francisco; Martín-Palma, Raúl J

    2011-02-01

    This work describes a novel process for the fabrication of hybrid nanostructured particles showing intense tunable photoluminescence and a simultaneous ferromagnetic behavior. The fabrication process involves the synthesis of nanostructured porous silicon (NPSi) by chemical anodization of crystalline silicon and subsequent in pore growth of Co nanoparticles by electrochemically-assisted infiltration. Final particles are obtained by subsequent sonication of the Co-infiltrated NPSi layers and conjugation with poly(ethylene glycol) aiming at enhancing their hydrophilic character. These particles respond to magnetic fields, emit light in the visible when excited in the UV range, and internalize into human mesenchymal stem cells with no apoptosis induction. Furthermore, cytotoxicity in in-vitro systems confirms their biocompatibility and the viability of the cells after incorporation of the particles. The hybrid nanostructured particles might represent powerful research tools as cellular trackers or in cellular therapy since they allow combining two or more properties into a single particle.

  10. Highly efficient electrocatalytic vapor generation of methylmercury based on the gold particles deposited glassy carbon electrode: A typical application for sensitive mercury speciation analysis in fish samples.

    PubMed

    Shi, Meng-Ting; Yang, Xin-An; Qin, Li-Ming; Zhang, Wang-Bing

    2018-09-26

    A gold particle deposited glassy carbon electrode (Au/GCE) was first used in electrochemical vapor generation (ECVG) technology and demonstrated to have excellent catalytic property for the electrochemical conversion process of aqueous mercury, especially for methylmercury (CH 3 Hg + ), to gaseous mercury. Systematical research has shown that the highly consistent or distinct difference between the atomic fluorescence spectroscopy signals of CH 3 Hg + and Hg 2+ can be achieved by controlling the electrolytic parameters of ECVG. Hereby, a new green and accurate method for mercury speciation analysis based on the distinguishing electrochemical reaction behavior of Hg 2+ and CH 3 Hg +  on the modified electrode was firstly established. Furthermore, electrochemical impedance spectra and the square wave voltammetry displayed that the ECVG reaction of CH 3 Hg +  may belong to the electrocatalytic mechanism. Under the selected conditions, the limits of detection of Hg 2+ and CH 3 Hg +  are 5.3 ng L -1 and 4.4 ng L -1 for liquid samples and 0.53 pg mg -1 and 0.44 pg mg -1 for solid samples, respectively. The precision of the 5 measurements is less than 6% within the concentration of Hg 2+ and CH 3 Hg +  ranging from 0.2 to 15.0 μg L -1 . The accuracy and practicability of the proposed method was verified by analyzing the mercury content in the certified reference material and several fish as well as water samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Electrochemical Polishing Applications and EIS of a Vitamin B{sub 4}-Based Ionic Liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wixtrom, Alex I.; Buhler, Jessica E.; Reece, Charles E.

    2013-01-01

    Modern particle accelerators require minimal interior surface roughness for Niobium superconducting radio frequency (SRF) cavities. Polishing of the Nb is currently achieved via electrochemical polishing with concentrated mixtures of sulfuric and hydrofluoric acids. This acid-based approach is effective at reducing the surface roughness to acceptable levels for SRF use, but due to acid-related hazards and extra costs (including safe disposal of used polishing solutions), an acid-free method would be preferable. This study focuses on an alternative electrochemical polishing method for Nb, using a novel ionic liquid solution containing choline chloride, also known as Vitamin B{sub 4} (VB{sub 4}). Potentiostatic electrochemicalmore » impedance spectroscopy (EIS) was also performed on the VB4-based system. Nb polished using the VB4-based method was found to have a final surface roughness comparable to that achieved via the acid-based method, as assessed by atomic force microscopy (AFM). These findings indicate that acid-free VB{sub 4}-based electrochemical polishing of Nb represents a promising replacement for acid-based methods of SRF cavity preparation.« less

  12. Analysis of microdialysate monoamines, including noradrenaline, dopamine and serotonin, using capillary ultra-high performance liquid chromatography and electrochemical detection.

    PubMed

    Ferry, Barbara; Gifu, Elena-Patricia; Sandu, Ioana; Denoroy, Luc; Parrot, Sandrine

    2014-03-01

    Electrochemical methods are very often used to detect catecholamine and indolamine neurotransmitters separated by conventional reverse-phase high performance liquid chromatography (HPLC). The present paper presents the development of a chromatographic method to detect monoamines present in low-volume brain dialysis samples using a capillary column filled with sub-2μm particles. Several parameters (repeatability, linearity, accuracy, limit of detection) for this new ultrahigh performance liquid chromatography (UHPLC) method with electrochemical detection were examined after optimization of the analytical conditions. Noradrenaline, adrenaline, serotonin, dopamine and its metabolite 3-methoxytyramine were separated in 1μL of injected sample volume; they were detected above concentrations of 0.5-1nmol/L, with 2.1-9.5% accuracy and intra-assay repeatability equal to or less than 6%. The final method was applied to very low volume dialysates from rat brain containing monoamine traces. The study demonstrates that capillary UHPLC with electrochemical detection is suitable for monitoring dialysate monoamines collected at high sampling rate. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Electrode for electrochemical cell

    DOEpatents

    Kaun, T.D.; Nelson, P.A.; Miller, W.E.

    1980-05-09

    An electrode structure for a secondary electrochemical cell includes an outer enclosure defining a compartment containing electrochemical active material. The enclosure includes a rigid electrically conductive metal sheet with perforated openings over major side surfaces. The enclosure can be assembled as first and second trays each with a rigid sheet of perforated electrically conductive metal at major side surfaces and normally extending flanges at parametric margins. The trays can be pressed together with moldable active material between the two to form an expandable electrode. A plurality of positive and negative electrodes thus formed are arranged in an alternating array with porous frangible interelectrode separators within the housing of the secondary electrochemical cell.

  14. Electrode for electrochemical cell

    DOEpatents

    Kaun, Thomas D.; Nelson, Paul A.; Miller, William E.

    1981-01-01

    An electrode structure for a secondary electrochemical cell includes an outer enclosure defining a compartment containing electrochemical active material. The enclosure includes a rigid electrically conductive metal sheet with perforated openings over major side surfaces. The enclosure can be assembled as first and second trays each with a rigid sheet of perforated electrically conductive metal at major side surfaces and normally extending flanges at parametric margins. The trays can be pressed together with moldable active material between the two to form an expandable electrode. A plurality of positive and negative electrodes thus formed are arranged in an alternating array with porous frangible interelectrode separators within the housing of the secondary electrochemical cell.

  15. The nanostructure of microbially-reduced graphene oxide fosters thick and highly-performing electrochemically-active biofilms

    NASA Astrophysics Data System (ADS)

    Virdis, Bernardino; Dennis, Paul G.

    2017-07-01

    Biofilms of electrochemically-active organisms are used in microbial electrochemical technologies (METs) to catalyze bioreactions otherwise not possible at bare electrodes. At present, however, achievable current outputs are still below levels considered sufficient for economic viability of large-scale METs implementations. Here, we report three-dimensional, self-aggregating biofilm composites comprising of microbial cells embedded with microbially-reduced graphene oxide (rGO) nanoparticles to form a thick macro-porous network with superior electrochemical properties. In the presence of metabolic substrate, these hybrid biofilms are capable of producing up to five times more catalytic current than the control biofilms. Cyclic voltammetry, linear sweep voltammetry, and electrochemical impedance spectroscopy, show that in spite of the increased thickness, the biofilms amended with GO display lower polarization/charge transfer resistance compared to the controls, which we ascribe to the incorporation of rGO into the biofilms, which (1) promotes fast electron transfer, yet conserving a macroporous structure that allows free diffusion of reactants and products, and (2) enhances the interfacial dynamics by allowing a higher load of microbial cells per electrode surface area. These results suggest an easy-to-apply and cost-effective method to produce high-performing electrochemically-active biofilms in situ.

  16. Real-Time Plasmonic Monitoring of Single Gold Amalgam Nanoalloy Electrochemical Formation and Stripping.

    PubMed

    Wang, Jun-Gang; Fossey, John S; Li, Meng; Xie, Tao; Long, Yi-Tao

    2016-03-01

    Direct electrodeposition of mercury onto gold nanorods on an ITO substrate, without reducing agents, is reported. The growth of single gold amalgam nanoalloy particles and subsequent stripping was monitored in real-time monitoring by plasmonic effects and single-nanoparticle dark-field spectroelectrochemistry techniques. Time-dependent scattering spectral information conferred insight into the growth and stripping mechanism of a single nanoalloy particle. Four critical stages were observed: First, rapid deposition of Hg atoms onto Au nanorods; second, slow diffusion of Hg atoms into Au nanorods; third, prompt stripping of Hg atoms from Au nanorods; fourth, moderate diffusion from the inner core of Au nanorods. Under high Hg(2+) concentrations, homogeneous spherical gold amalgam nanoalloys were obtained. These results demonstrate that the morphology and composition of individual gold amalgam nanoalloys can be precisely regulated electrochemically. Moreover, gold amalgam nanoalloys with intriguing optical properties, such as modulated plasmonic lifetimes and quality factor Q, could be obtained. This may offer opportunities to extend applications in photovoltaic energy conversion and chemical sensing.

  17. Electrochemical Behavior of Al-B4C Metal Matrix Composites in NaCl Solution

    PubMed Central

    Han, Yu-Mei; Chen, X.-Grant

    2015-01-01

    Aluminum based metal matrix composites (MMCs) have received considerable attention in the automotive, aerospace and nuclear industries. One of the main challenges using Al-based MMCs is the influence of the reinforcement particles on the corrosion resistance. In the present study, the corrosion behavior of Al-B4C MMCs in a 3.5 wt.% NaCl solution were investigated using potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) techniques. Results indicated that the corrosion resistance of the composites decreased when increasing the B4C volume fraction. Al-B4C composite was susceptible to pitting corrosion and two types of pits were observed on the composite surface. The corrosion mechanism of the composite in the NaCl solution was primarily controlled by oxygen diffusion in the solution. In addition, the galvanic couples that formed between Al matrix and B4C particles could also be responsible for the lower corrosion resistance of the composites. PMID:28793574

  18. X-ray Spectroscopy and Imaging as Multiscale Probes of Intercalation Phenomena in Cathode Materials

    NASA Astrophysics Data System (ADS)

    Horrocks, Gregory A.; De Jesus, Luis R.; Andrews, Justin L.; Banerjee, Sarbajit

    2017-09-01

    Intercalation phenomena are at the heart of modern electrochemical energy storage. Nevertheless, as out-of-equilibrium processes involving concomitant mass and charge transport, such phenomena can be difficult to engineer in a predictive manner. The rational design of electrode architectures requires mechanistic understanding of physical phenomena spanning multiple length scales, from atomistic distortions and electron localization at individual transition metal centers to phase inhomogeneities and intercalation gradients in individual particles and concentration variances across ensembles of particles. In this review article, we discuss the importance of the electronic structure in mediating electrochemical storage and mesoscale heterogeneity. In particular, we discuss x-ray spectroscopy and imaging probes of electronic and atomistic structure as well as statistical regression methods that allow for monitoring of the evolution of the electronic structure as a function of intercalation. The layered α-phase of V2O5 is used as a model system to develop fundamental ideas on the origins of mesoscale heterogeneity.

  19. Theoretical Considerations for Improving the Pulse Power of a Battery through the Addition of a Second Electrochemically Active Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knehr, K. W.; West, Alan C.

    Here, porous electrode theory is used to conduct case studies for when the addition of a second electrochemically active material can improve the pulse-power performance of an electrode. Case studies are conducted for the positive electrode of a sodium metal-halide battery and the graphite negative electrode of a lithium “rocking chair” battery. The replacement of a fraction of the nickel chloride capacity with iron chloride in a sodium metal-halide electrode and the replacement of a fraction of the graphite capacity with carbon black in a lithium-ion negative electrode were both predicted to increase the maximum pulse power by up tomore » 40%. In general, whether or not a second electrochemically active material increases the pulse power depends on the relative importance of ohmic-to-charge transfer resistances within the porous structure, the capacity fraction of the second electrochemically active material, and the kinetic and thermodynamic parameters of the two active materials.« less

  20. Theoretical Considerations for Improving the Pulse Power of a Battery through the Addition of a Second Electrochemically Active Material

    DOE PAGES

    Knehr, K. W.; West, Alan C.

    2016-05-26

    Here, porous electrode theory is used to conduct case studies for when the addition of a second electrochemically active material can improve the pulse-power performance of an electrode. Case studies are conducted for the positive electrode of a sodium metal-halide battery and the graphite negative electrode of a lithium “rocking chair” battery. The replacement of a fraction of the nickel chloride capacity with iron chloride in a sodium metal-halide electrode and the replacement of a fraction of the graphite capacity with carbon black in a lithium-ion negative electrode were both predicted to increase the maximum pulse power by up tomore » 40%. In general, whether or not a second electrochemically active material increases the pulse power depends on the relative importance of ohmic-to-charge transfer resistances within the porous structure, the capacity fraction of the second electrochemically active material, and the kinetic and thermodynamic parameters of the two active materials.« less

  1. The Effect of CO2 Activation on the Electrochemical Performance of Coke-Based Activated Carbons for Supercapacitors.

    PubMed

    Lee, Hye-Min; Kim, Hong-Gun; An, Kay-Hyeok; Kim, Byung-Joo

    2015-11-01

    The present study developed electrode materials for supercapacitors by activating coke-based activated carbons with CO2. For the activation reaction, after setting the temperature at 1,000 degrees C, four types of activated carbons were produced, over an activation time of 0-90 minutes and with an interval of 30 minutes as the unit. The electrochemical performance of the activated carbons produced was evaluated to examine the effect of CO2 activation. The surface structure of the porous carbons activated through CO2 activation was observed using a scanning electron microscope (SEM). To determine the N2/77 K isothermal adsorption characteristics, the Brunauer-Emmett-Teller (BET) equation and the Barrett-Joyner-Halenda (BJH) equation were used to analyze the pore characteristics. In addition, charge and discharge tests and cyclic voltammetry (CV) were used to analyze the electrochemical characteristics of the changed pore structure. According to the results of the experiments, the N2 adsorption isotherm curves of the porous carbons produced belonged to Type IV in the International Union of Pore and Applied Chemistry (IUPAC) classification and consisted of micropores and mesopores, and, as the activation of CO2 progressed, micropores decreased and mesopores developed. The specific surface area of the porous carbons activated by CO2 was 1,090-1,180 m2/g and thus showed little change, but those of mesopores were 0.43-0.85 cm3/g, thus increasing considerably. In addition, when the electrochemical characteristics were analyzed, the specific capacity was confirmed to have increased from 13.9 F/g to 18.3 F/g. From these results, the pore characteristics of coke-based activated carbons changed considerably because of CO2 activation, and it was therefore possible to increase the electrochemical characteristics.

  2. Development of highly active and stable hybrid cathode catalyst for PEMFCs

    NASA Astrophysics Data System (ADS)

    Jung, Won Suk

    Polymer electrolyte membrane fuel cells (PEMFCs) are attractive power sources of the future for a variety of applications including portable electronics, stationary power, and automobile application. However, sluggish cathode kinetics, high Pt cost, and durability issues inhibit the commercialization of PEMFCs. To overcome these drawbacks, research has been focused on alloying Pt with transition metals since alloy catalysts show significantly improved catalytic properties like high activity, selectivity, and durability. However, Pt-alloy catalysts synthesized using the conventional impregnation method exhibit uneven particle size and poor particle distribution resulting in poor performance and/or durability in PEMFCs. In this dissertation, a novel catalyst synthesis methodology is developed and compared with catalysts prepared using impregnation method and commercial catalysts. Two approaches are investigated for the catalyst development. The catalyst durability was studied under U. S. DRIVE Fuel Cell Tech Team suggested protocols. In the first approach, the carbon composite catalyst (CCC) having active sites for oxygen reduction reaction (ORR) is employed as a support for the synthesis of Pt/CCC catalyst. The structural and electrochemical properties of Pt/CCC catalyst are investigated using high-resolution transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy, while RDE and fuel cell testing are carried out to study the electrochemical properties. The synergistic effect of CCC and Pt is confirmed by the observed high activity towards ORR for the Pt/CCC catalyst. The second approach is the synthesis of Co-doped hybrid cathode catalysts (Co-doped Pt/CCC) by diffusing the Co metal present within the CCC support into the Pt nanoparticles during heat-treatment. The optimized Co-doped Pt/CCC catalyst performed better than the commercial catalysts and the catalyst prepared using the impregnation method in PEMFCs and showed high stability under 30,000 potential cycles between 0.6 and 1.0 V. To further increase the stability of the catalyst at high potential cycles (1.0-1.5 V), high temperature treatment is used to obtain graphitized carbon having optimum BET surface area. The novel catalyst synthesis procedure developed in this study was successfully applied for the synthesis of Co-doped Pt catalysts supported on the graphitized carbon which showed high activity and enhanced stability at high potentials.

  3. Nonradical oxidation from electrochemical activation of peroxydisulfate at Ti/Pt anode: Efficiency, mechanism and influencing factors.

    PubMed

    Song, Haoran; Yan, Linxia; Ma, Jun; Jiang, Jin; Cai, Guangqiang; Zhang, Wenjuan; Zhang, Zhongxiang; Zhang, Jiaming; Yang, Tao

    2017-06-01

    Electrochemical activation of peroxydisulfate (PDS) at Ti/Pt anode was systematically investigated for the first time in this work. The synergistic effect produced from the combination of electrolysis and the addition of PDS demonstrates that PDS can be activated at Ti/Pt anode. The selective oxidation towards carbamazepine (CBZ), sulfamethoxazole (SMX), propranolol (PPL), benzoic acid (BA) rather than atrazine (ATZ) and nitrobenzene (NB) was observed in electrochemical activation of PDS process. Moreover, addition of excess methanol or tert-butanol had negligible impact on CBZ (model compound) degradation, demonstrating that neither sulfate radical (SO 4 - ) nor hydroxyl radical (HO) was produced in electrochemical activation of PDS process. Direct oxidation (PDS oxidation alone and electrolysis) and nonradical oxidation were responsible for the degradation of contaminants. The results of linear sweep voltammetry (LSV) and chronoamperometry suggest that electric discharge may integrate PDS molecule with anode surface into a unique transition state structure, which is responsible for the nonradical oxidation in electrochemical activation of PDS process. Adjustment of the solution pH from 1.0 to 7.0 had negligible effect on CBZ degradation. Increase of either PDS concentration or current density facilitated the degradation of CBZ. The presence of chloride ion (Cl - ) significantly enhanced CBZ degradation, while addition of bicarbonate (HCO 3 - ), phosphate (PO 4 3- ) and humic acid (HA) all inhibited CBZ degradation with the order of HA > HCO 3 -  > PO 4 3- . The degradation products of CBZ and chlorinated products were also identified. Electrochemical activation of PDS at Ti/Pt anode may serve as a novel technology for selective oxidation of organic contaminants in water and soil. Copyright © 2017. Published by Elsevier Ltd.

  4. Electrochemical sensors and biosensors based on less aggregated graphene.

    PubMed

    Bo, Xiangjie; Zhou, Ming; Guo, Liping

    2017-03-15

    As a novel single-atom-thick sheet of sp 2 hybridized carbon atoms, graphene (GR) has attracted extensive attention in recent years because of its unique and remarkable properties, such as excellent electrical conductivity, large theoretical specific surface area, and strong mechanical strength. However, due to the π-π interaction, GR sheets are inclined to stack together, which may seriously degrade the performance of GR with the unique single-atom layer. In recent years, an increasing number of GR-based electrochemical sensors and biosensors are reported, which may reflect that GR has been considered as a kind of hot and promising electrode material for electrochemical sensor and biosensor construction. However, the active sites on GR surface induced by the irreversible GR aggregations would be deeply secluded inside the stacked GR sheets and therefore are not available for the electrocatalysis. So the alleviation or the minimization of the aggregation level for GR sheets would facilitate the exposure of active sites on GR and effectively upgrade the performance of GR-based electrochemical sensors and biosensors. Less aggregated GR with low aggregation and high dispersed structure can be used in improving the electrochemical activity of GR-based electrochemical sensors or biosensors. In this review, we summarize recent advances and new progress for the development of electrochemical sensors based on less aggregated GR. To achieve such goal, many strategies (such as the intercalation of carbon materials, surface modification, and structural engineering) have been applied to alleviate the aggregation level of GR in order to enhance the performance of GR-based electrochemical sensors and biosensors. Finally, the challenges associated with less aggregated GR-based electrochemical sensors and biosensors as well as related future research directions are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Electrochemical and diffusional insights of combustion synthesized SrLi2Ti6O14 negative insertion material for Li-ion Batteries

    NASA Astrophysics Data System (ADS)

    Dayamani, Allumolu; Shinde, Ganesh S.; Chaupatnaik, Anshuman; Rao, R. Prasada; Adams, Stefan; Barpanda, Prabeer

    2018-05-01

    Solvothermal synthetic routes can provide energy-savvy platforms to fabricate battery anode materials involving relatively milder annealing steps vis-à-vis the conventional solid-state synthesis. These energy efficient routes in turn restrict aggressive grain growth to form nanoscale particles favouring efficient Li+ diffusion. Here, we report an economic solution combustion synthesis of SrLi2Ti6O14 anode involving nitrate-urea complexation with a short annealing duration of only 2 h (900 °C). Rietveld refinement confirms the phase purity of target product assuming an orthorhombic framework (Cmca symmetry). It delivers reversible capacity of ∼125 mAh.g-1 at a rate of C/20 involving a 1.38 V Ti4+/Ti3+ redox activity with excellent rate kinetics and cycling stability. Bond valence site energy (BVSE) calculations gauge SrLi2Ti6O14 to be an anisotropic 3D Li+ ion conductor with the highest ionic conductivity along the c direction. The electrochemical and diffusional pathways have been elucidated for combustion prepared SrLi2Ti6O14 as an efficient and safe negative electrode candidate for Li-ion batteries.

  6. Pseudocapacitive and hierarchically ordered porous electrode materials supercapacitors

    NASA Astrophysics Data System (ADS)

    Saruhan, B.; Gönüllü, Y.; Arndt, B.

    2013-05-01

    Commercially available double layer capacitors store energy in an electrostatic field. This forms in the form of a double layer by charged particles arranged on two electrodes consisting mostly of active carbon. Such double layer capacitors exhibit a low energy density, so that components with large capacity according to large electrode areas are required. Our research focuses on the development of new electrode materials to realize the production of electrical energy storage systems with high energy density and high power density. Metal oxide based electrodes increase the energy density and the capacitance by addition of pseudo capacitance to the static capacitance present by the double layer super-capacitor electrodes. The so-called hybrid asymmetric cell capacitors combine both types of energy storage in a single component. In this work, the production routes followed in our laboratories for synthesis of nano-porous and aligned metal oxide electrodes using the electrochemical and sputter deposition as well as anodization methods will be described. Our characterisation studies concentrate on electrodes having redox metal-oxides (e.g. MnOx and WOx) and hierarchically aligned nano-porous Li-doped TiO2-NTs. The material specific and electrochemical properties achieved with these electrodes will be presented.

  7. Three dimensional Graphene aerogels as binder-less, freestanding, elastic and high-performance electrodes for lithium-ion batteries.

    PubMed

    Chen, Zhihang; Li, Hua; Tian, Ran; Duan, Huanan; Guo, Yiping; Chen, Yujie; Zhou, Jie; Zhang, Chunmei; Dugnani, Roberto; Liu, Hezhou

    2016-06-06

    In this work it is shown how porous graphene aerogels fabricated by an eco-friendly and simple technological process, could be used as electrodes in lithium- ion batteries. The proposed graphene framework exhibited excellent performance including high reversible capacities, superior cycling stability and rate capability. A significantly lower temperature (75 °C) than the one currently utilized in battery manufacturing was utilized for self-assembly hence providing potential significant savings to the industrial production. After annealing at 600 °C, the formation of Sn-C-O bonds between the SnO2 nanoparticles and the reduced graphene sheets will initiate synergistic effect and improve the electrochemical performance. The XPS patterns revealed the formation of Sn-C-O bonds. Both SEM and TEM imaging of the electrode material showed that the three dimensional network of graphene aerogels and the SnO2 particles were distributed homogeneously on graphene sheets. Finally, the electrochemical properties of the samples as active anode materials for lithium-ion batteries were tested and examined by constant current charge-discharge cycling and the finding fully described in this manuscript.

  8. The Application of Poly(3-hexylthiophene-2,5-diyl) as a Protective Coating for High Rate Cathode Materials

    DOE PAGES

    Lai, Chun-Han; Ashby, David S.; Lin, Terri C.; ...

    2018-03-01

    Poly (3-hexylthiophene-2,5-diyl) (P3HT), a conducting polymer studied extensively for its optoelectronic devices, offers a number of advantageous properties when used as a conductive binder for lithium-ion battery cathode materials. By mixing with carbon nanotubes (CNT), P3HTCNT serves as a surface coating for the cathode material LiNi 0.8Co 0.15Al 0.05O 2 (NCA). Oxidation of the P3HT enables high electronic and ionic conductivity to be achieved over the potential range where the NCA is electrochemically active. In addition to the conductivity benefits from electrochemical doping, the P3HT-CNT coating suppresses electrolyte breakdown, thus inhibiting growth of the solid electrolyte interphase (SEI) layer andmore » preventing intergranular cracking in the NCA particles. In conclusion, The use of the P3HT-CNT binder system leads to improved cycling for NCA at high power density with capacities of 80 mAh g -1 obtained after 1000 cycles at 16C, a value that is 4 times greater than what is achieved in the control electrode.« less

  9. Enhanced Charge Collection in MOF‐525–PEDOT Nanotube Composites Enable Highly Sensitive Biosensing

    PubMed Central

    Huang, Tzu‐Yen; Kung, Chung‐Wei; Liao, Yu‐Te; Kao, Sheng‐Yuan; Cheng, Mingshan; Chang, Ting‐Hsiang; Henzie, Joel; Alamri, Hatem R.; Alothman, Zeid A.

    2017-01-01

    Abstract With the aim of a reliable biosensing exhibiting enhanced sensitivity and selectivity, this study demonstrates a dopamine (DA) sensor composed of conductive poly(3,4‐ethylenedioxythiophene) nanotubes (PEDOT NTs) conformally coated with porphyrin‐based metal–organic framework nanocrystals (MOF‐525). The MOF‐525 serves as an electrocatalytic surface, while the PEDOT NTs act as a charge collector to rapidly transport the electron from MOF nanocrystals. Bundles of these particles form a conductive interpenetrating network film that together: (i) improves charge transport pathways between the MOF‐525 regions and (ii) increases the electrochemical active sites of the film. The electrocatalytic response is measured by cyclic voltammetry and differential pulse voltammetry techniques, where the linear concentration range of DA detection is estimated to be 2 × 10−6–270 × 10−6 m and the detection limit is estimated to be 0.04 × 10−6 m with high selectivity toward DA. Additionally, a real‐time determination of DA released from living rat pheochromocytoma cells is realized. The combination of MOF5‐25 and PEDOT NTs creates a new generation of porous electrodes for highly efficient electrochemical biosensing. PMID:29201623

  10. The Application of Poly(3-hexylthiophene-2,5-diyl) as a Protective Coating for High Rate Cathode Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Chun-Han; Ashby, David S.; Lin, Terri C.

    Poly (3-hexylthiophene-2,5-diyl) (P3HT), a conducting polymer studied extensively for its optoelectronic devices, offers a number of advantageous properties when used as a conductive binder for lithium-ion battery cathode materials. By mixing with carbon nanotubes (CNT), P3HTCNT serves as a surface coating for the cathode material LiNi 0.8Co 0.15Al 0.05O 2 (NCA). Oxidation of the P3HT enables high electronic and ionic conductivity to be achieved over the potential range where the NCA is electrochemically active. In addition to the conductivity benefits from electrochemical doping, the P3HT-CNT coating suppresses electrolyte breakdown, thus inhibiting growth of the solid electrolyte interphase (SEI) layer andmore » preventing intergranular cracking in the NCA particles. In conclusion, The use of the P3HT-CNT binder system leads to improved cycling for NCA at high power density with capacities of 80 mAh g -1 obtained after 1000 cycles at 16C, a value that is 4 times greater than what is achieved in the control electrode.« less

  11. Au nanorice assemble electrolytically into mesostars.

    PubMed

    Bardhan, Rizia; Neumann, Oara; Mirin, Nikolay; Wang, Hui; Halas, Naomi J

    2009-02-24

    Star-shaped mesotructures are formed when an aqueous suspension of Au nanorice particles, which consist of prolate hematite cores and a thin Au shell, is subjected to an electric current. The nanorice particles assemble to form hyperbranched micrometer-scale mesostars. To our knowledge, this is the first reported observation of nanoparticle assembly into larger ordered structures under the influence of an electrochemical process (H(2)O electrolysis). The assembly is accompanied by significant modifications in the morphology, dimensions, chemical composition, crystallographic structure, and optical properties of the constituent nanoparticles.

  12. Reversible Quantum Brownian Heat Engines for Electrons

    NASA Astrophysics Data System (ADS)

    Humphrey, T. E.; Newbury, R.; Taylor, R. P.; Linke, H.

    2002-08-01

    Brownian heat engines use local temperature gradients in asymmetric potentials to move particles against an external force. The energy efficiency of such machines is generally limited by irreversible heat flow carried by particles that make contact with different heat baths. Here we show that, by using a suitably chosen energy filter, electrons can be transferred reversibly between reservoirs that have different temperatures and electrochemical potentials. We apply this result to propose heat engines based on mesoscopic semiconductor ratchets, which can quasistatically operate arbitrarily close to Carnot efficiency.

  13. Reversible quantum heat engines for electrons

    NASA Astrophysics Data System (ADS)

    Linke, Heiner; Humphrey, Tammy E.; Newbury, Richard; Taylor, Richard P.

    2002-03-01

    Brownian heat engines use local temperature gradients in asymmetric potentials to move particles against an external force. The energy efficiency of such machines is generally limited by irreversible heat flow carried by particles that make contact with different heat baths. Here we show that, by using a suitably chosen energy filter, electrons can be transferred reversibly between reservoirs that have different temperatures and electrochemical potentials. We apply this result to propose heat engines based on quantum ratchets, which can quasistatically operate at Carnot efficiency.

  14. Graphene-Selenium Hybrid Microballs as Cathode Materials for High-performance Lithium-Selenium Secondary Battery Applications.

    PubMed

    Youn, Hee-Chang; Jeong, Jun Hui; Roh, Kwang Chul; Kim, Kwang-Bum

    2016-08-02

    In this study, graphene-selenium hybrid microballs (G-SeHMs) are prepared in one step by aerosol microdroplet drying using a commercial spray dryer, which represents a simple, scalable continuous process, and the potential of the G-SeHMs thus prepared is investigated for use as cathode material in applications of lithium-selenium secondary batteries. These morphologically unique graphene microballs filled with Se particles exhibited good electrochemical properties, such as high initial specific capacity (642 mA h g(-1) at 0.1 C, corresponding to Se electrochemical utilisation as high as 95.1%), good cycling stability (544 mA h g(-1) after 100 cycles at 0.1 C; 84.5% retention) and high rate capability (specific capacity of 301 mA h g(-1) at 5 C). These electrochemical properties are attributed to the fact that the G-SeHM structure acts as a confinement matrix for suppressing the dissolution of polyselenides in the organic electrolyte, as well as an electron conduction path for increasing the transport rate of electrons for electrochemical reactions. Notably, based on the weight of hybrid materials, electrochemical performance is considerably better than that of previously reported Se-based cathode materials, attributed to the high Se loading content (80 wt%) in hybrid materials.

  15. Effect of chemical treatment on the electrochemical properties of Li1.2NixMn0.8-xO2 (x = 0.2 and 0.25) in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Konishi, Hiroaki; Hirano, Tatsumi; Takamatsu, Daiko; Gunji, Akira; Feng, Xiaoliang; Furutsuki, Sho; Okumura, Takefumi; Terada, Shohei

    2018-02-01

    The effect of chemical treatment using (NH4)2SO4 on the electrochemical properties of Li1.2Ni0.2Mn0.6O2 and Li1.2Ni0.25Mn0.55O2 was investigated. The treatment was effective in improving the Coulombic efficiency and discharge capacity of a Li1.2Ni0.2Mn0.6O2 cathode, but treatment with too much (NH4)2SO4 degraded the cathode's electrochemical performance. The effect of (NH4)2SO4 treatment on the charge-discharge reaction mechanism of Li1.2Ni0.2Mn0.6O2 was investigated by evaluating reaction potential, particle configuration, and oxidation state of transition metal. The experimental results indicated that the changes in the electrochemical performance of the treated cathodes were attributed to the changes in the surface state and of the element contributing to the redox reaction. Treatment with an appropriate amount of (NH4)2SO4 also improved the electrochemical performance of the high-nickel-content lithium-rich layer-structured cathode material Li1.2Ni0.25Mn0.55O2.

  16. Electrochemical and thermal studies of lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Lu, Wenquan

    The structural, electrochemical, and thermal characteristics of carbonaceous anodes and LiNi0.8Co0.2O2 cathode in Li-ion cells were investigated using various electrochemical and calorimetric techniques. The electrode-electrolyte interface was investigated for various carbonaceous materials such as graphite with different shapes, surface modified graphite with copper, and novel carbon material derived from sepiolite template. The structural and morphological properties were determined using XRD, TGA, SEM, BET techniques. The electrochemical characteristics were studied using conventional electrochemical techniques such as galvanostatic charge/discharge cycling, cyclic voltammetry, and impedance (AC and DC) methods. It was observed that the electrochemical active surface area instead of the BET area plays a critical role in the irreversible capacity loss associated with the carbonaceous anodes. It was also found that the exfoliation of carbon anodes especially in PC based electrolyte could be significantly reduced by protective copper coating of the natural graphite. LiNi0.8Co0.2O2 cathode material was found to possess high energy density and excellent cycling characteristics. The structural and electrochemical properties of LiNi0.8Co 0.2O2 synthesized by sol-gel and solid-state methods were studied. Results of the AC impedance spectroscopy carried out on LiNi 0.8Co0.2O2 cathodes revealed that the charge transfer resistance is a function of the state of charge. The solid state Li + diffusion was calculated to be around 10-13 cm2/s in the oxide particle by Warburg impedance method. In addition, the cell fabricated with LiNi0.8Co0.2O 2 cathode showed excellent energy and power performance under static and dynamic load conditions that prevail in Electric and Hybrid Vehicles. Thermal properties of the LiNi0.8Co0.2O2 cathode, carbonaceous anodes, and Li-ion cells fabricated with these electrodes were also investigated using isothermal microcalorimetry (IMC), differential scanning calorimetry (DSC) and accelerated rate calorimetry (ARC). Isothermal micro-calorimeter was used to investigate the thermal behavior of the Li-ion cell and its electrodes. The overall heat changes during charge-discharge processes were explained in terms of the irreversible (resistive) and reversible (entropic) heats. It was observed that the reversible heat strongly depends on the structural or phase change occurring in the electrodes during Li-ion insertion and extraction reactions. It was also found that the contribution of the reversible heat to the overall cell heat generation rate was significant only at low cycling rates.

  17. Electrolytic Generation of Nano-Scale Carbon Phases with Framework Structures in Molten Salts on Metal Cathodes

    NASA Astrophysics Data System (ADS)

    Novoselova, Inessa A.; Oliinyk, Nikolai F.; Voronina, Anastasiya B.; Volkov, Sergei V.

    2008-08-01

    An electrochemical study of mechanisms of electrodeposition of carbon solid phases from halide melts (Na,K|Cl; Na,K,Cs|Cl), saturated with carbon dioxide under an excessive pressure of up to 1.5 MPa, has been carried out in the temperature range 550 - 850 °C by cyclic voltammetry. It has been found that the cathode process occurs in three steps at sweep rates of less than 0.1 Vs-1, and its electrochemical-chemical-electrochemical (ECE) mechanism is suggested. It has furthermore been found that cathodic deposits contain nano-sized carbon particles of different forms and structure: blocks of amorphous carbon, crystalline graphite, carbon nanotubes (CNT), and nanofibres. The outer diameter of the tubes is 5 - 250 nm, and the internal diameter is 2 - 140 nm. A correlation between the product structure and yield against electrolysis conditions and regimes has been established.

  18. Recent advances in polymer supporting layered double hydroxides nanocomposite for electrochemical biosensors

    NASA Astrophysics Data System (ADS)

    Dhanasekaran, T.; Padmanaban, A.; Gnanamoorthy, G.; Manigandan, R.; Praveen Kumar, S.; Stephen, A.; Narayanan, V.

    2018-01-01

    In recent years, layered double hydroxides (LDHs) materials having emerging due to their ability of intercalate a variety of anions, either organic or inorganic molecules. The most significance of the LDHs has been found potential applications in catalysis, wastewater treatment, and electrochemical sensors. The Mg-Al LDHs (MAL) and Poly-o-phenylenediamine @ Mg-Al LDHs (P-MAL) was prepared via simple one step hydrothermal method. As prepared material was characterized using many techniques such as, the structural and crystal phase was determined from XRD and Raman analyses. The functional groups were depicted using FT-IR spectroscopy. The optical propertied studied using diffuse reflectance spectroscopy UV-vis spectroscopy and the emission property were analyzed from Photoluminescence spectroscopy. The surface morphology and average particle size was analyzed using FESEM microscopy. The prepared polymer composite material P-MAL was further used for highly sensitive electrochemical detection towards dopamine (DA).

  19. High-capacity electrode materials for electrochemical energy storage: Role of nanoscale effects

    DOE PAGES

    Nanda, Jagjit; Martha, Surendra K.; Kalyanaraman, Ramki

    2015-06-02

    In this review, we summarize the current state-of-the art electrode materials used for high-capacity lithium-ion-based batteries and their significant role towards revolutionizing the electrochemical energy storage landscape in the area of consumer electronics, transportation and grid storage application. We discuss the role of nanoscale effects on the electrochemical performance of high-capacity battery electrode materials. Decrease in the particle size of the primary electrode materials from micron to nanometre size improves the ionic and electronic diffusion rates significantly. Nanometre-thick solid electrolyte (such as lithium phosphorous oxynitride) and oxides (such as Al 2O 3, ZnO, TiO 2 etc.) material coatings also improvemore » the interfacial stability and rate capability of a number of battery chemistries. Finally, we elucidate these effects in terms of different high-capacity battery chemistries based on intercalation and conversion mechanism.« less

  20. In situ multi-length scale approach to understand the mechanics of soft and rigid binder in composite lithium ion battery electrodes

    NASA Astrophysics Data System (ADS)

    Jäckel, Nicolas; Dargel, Vadim; Shpigel, Netanel; Sigalov, Sergey; Levi, Mikhael D.; Daikhin, Leonid; Aurbach, Doron; Presser, Volker

    2017-12-01

    Intercalation-induced dimensional changes of composite battery electrodes containing either a stiff or a soft polymeric binder is one of the many factors determining the cycling performance and ageing. Herein, we report dimensional changes in bulk composite electrodes by in situ electrochemical dilatometry (eD) combined with electrochemical quartz-crystal microbalance with dissipation monitoring (EQCM-D). The latter tracks the mechanical properties on the level of the electrode particle size. Lithium iron phosphate (LiFePO4, LFP) electrodes with a stiff binder (PVdF) and a soft binder (NaCMC) were investigated by cycling in lithium sulfate (Li2SO4) aqueous solution. The electrochemical and mechanical electrode performances depend on the electrode cycling history. Based on combined eD and EQCM-D measurements we provide evidence which properties are preferred for a binder used for a composite Li-ion battery electrode.

  1. Effect of electrode manufacturing defects on electrochemical performance of lithium-ion batteries: Cognizance of the battery failure sources

    DOE PAGES

    Mohanty, D.; Hockaday, E.; Li, J.; ...

    2016-02-21

    During LIB electrode manufacturing, it is difficult to avoid the certain defects that diminish LIB performance and shorten the life span of the batteries. This study provides a systematic investigation correlating the different plausible defects (agglomeration/blisters, pinholes/divots, metal particle contamination, and non-uniform coating) in a LiNi 0.5Mn 0.3Co 0.2O 2 positive electrode with its electrochemical performance. Additionally, an infrared thermography technique was demonstrated as a nondestructive tool to detect these defects. The findings show that cathode agglomerates aggravated cycle efficiency, and resulted in faster capacity fading at high current density. Electrode pinholes showed substantially lower discharge capacities at higher currentmore » densities than baseline NMC 532 electrodes. Metal particle contaminants have an extremely negative effect on performance, at higher C-rates. The electrodes with more coated and uncoated interfaces (non-uniform coatings) showed poor cycle life compared with electrodes with fewer coated and uncoated interfaces. Further, microstructural investigation provided evidence of presence of carbon-rich region in the agglomerated region and uneven electrode coating thickness in the coated and uncoated interfacial regions that may lead to the inferior electrochemical performance. In conclusion, this study provides the importance of monitoring and early detection of the electrode defects during LIB manufacturing processes to minimize the cell rejection rate after fabrication and testing.« less

  2. Electrical and electrochemical properties of molten salt-synthesized Li4Ti5-xSnxO12 (x=0.0, 0.05 and 0.1) as anodes for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Sharmila, S.; Senthilkumar, B.; Nithya, V. D.; Vediappan, Kumaran; Lee, Chang Woo; Selvan, R. Kalai

    2013-11-01

    Submicron-sized polyhedral Li4Ti5-xSnxO12 (x=0.0, 0.05, and 0.1) materials were successfully prepared by a single-step molten salt method. The structural, morphological, transport and electrochemical properties of the Li4Ti5-xSnxO12 were studied. X-ray diffraction patterns showed the formation of a cubic structure with a lattice constant of 8.31 Å, and the addition of dopants follows Vegard's law. Furthermore, FT-IR spectra revealed symmetric stretching vibrations of octahedral groups of MO6 lattice in Li4Ti5O12. The formation of polyhedral submicron Li4Ti5-xSnxO12 particles was inferred from FE-SEM images, and a particle size reduction was observed for Sn-doped Li4Ti5O12. The chemical composition of Ti, O and Sn was verified by EDAX. The DC electrical conductivity was found to increase with increasing temperature, and a maximum conductivity of 8.96×10-6 S cm-1 was observed at 200 °C for Li4Ti5O12. The galvanostatic charge-discharge behavior indicates that the Sn-doped Li4Ti5O12 could be used as an anode for Li-ion batteries due to its enhanced electrochemical properties.

  3. Tunable morphology synthesis of LiFePO4 nanoparticles as cathode materials for lithium ion batteries.

    PubMed

    Ma, Zhipeng; Shao, Guangjie; Fan, Yuqian; Wang, Guiling; Song, Jianjun; Liu, Tingting

    2014-06-25

    Olivine LiFePO4 with nanoplate, rectangular prism nanorod and hexagonal prism nanorod morphologies with a short b-axis were successfully synthesized by a solvothermal in glycerol and water system. The influences of solvent composition on the morphological transformation and electrochemical performances of olivine LiFePO4 are systematically investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and galvanostatic charge-discharge tests. It is found that with increasing water content in solvent, the LiFePO4 nanoplates gradually transform into hexagonal prism nanorods that are similar to the thermodynamic equilibrium shape of the LiFePO4 crystal. This indicates that water plays an important role in the morphology transformation of the olivine LiFePO4. The electrochemical performances vary significantly with the particle morphology. The LiFePO4 rectangular prism nanorods (formed in a glycerol-to-water ratio of 1:1) exhibit superior electrochemical properties compared with the other morphological particles because of their moderate size and shorter Li(+) ion diffusion length along the [010] direction. The initial discharge capacity of the LiFePO4@C with a rectangular prism nanorod morphology reaches to 163.8 mAh g(-1) at 0.2 C and over 75 mAh g(-1) at the high discharging rate of 20 C, maintaining good stability at each discharging rate.

  4. Enhanced electrochemical performance and carbon anti-coking ability of solid oxide fuel cells with silver modified nickel-yttrium stabilized zirconia anode by electroless plating

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoyan; Tian, Yu; Zhang, Jun; Zuo, Wei; Kong, Xiaowei; Wang, Jinghui; Sun, Kening; Zhou, Xiaoliang

    2016-01-01

    In this paper, silver (Ag) particles are introduced into the conventional Ni/YSZ anode by utilizing electroless plating method to improve its carbon anti-coking ability in hydrocarbons. The experimental results show that electrochemical performances of the decorated cells in H2, CH4 and C2H6 are all increased as compared to the cell with unmodified Ni/YSZ anode, which are verified by impedance spectrums as well. The durability experiment is carried out for as long as 24 h at the current density of 0.33 A/cm2 where the modified anode is subjected to dry C2H6 indicating the anti-coking ability of the anode is greatly improved. Scanning electron microscope shows that the slight decreasing in the cell terminal voltage can be attributed to the minimized carbon deposition which maybe resulted from the aggregation of silver particles at high temperature. Energy-dispersive X-ray spectroscopy line scanning results after long-term stability operation of the anode suggest that the carbon deposition can be depressed effectively both inside the anode and on the surface of the anode. Therefore, the results show that silver is a promising candidate material for modifying the Ni/YSZ anode with regard to improving electrochemical performance and suppressing the carbon deposition when taking the hydrocarbons as fuels.

  5. Synthesis and characterization of prospective polyanionic electrode materials for high performance energy storage applications

    NASA Astrophysics Data System (ADS)

    Jayachandran, M.; Durai, G.; Vijayakumar, T.

    2018-04-01

    In the present study, Polyanionic compound (SO4)-group based on Li2Ni(SO4)2 (Lithium Nickel Sulphate) composite electrodes materials were prepared by a ball-milling method and solid-state reaction route. X-ray diffraction analysis confirmed the formation of a polycrystalline orthorhombic phase of composite Li2Ni(SO4)2 with an average crystallite size of about 50.16 nm. Field Emission Scanning electron microscopy investigation reveals the spherical shape particles with the particle size of around 200–500 nm. Raman and FTIR analysis confirms the structural and functional groups of the synthesized materials and also the formation of Li2Ni(SO4)2. The electrochemical measurements using cyclic voltammetry (CV) and galvanostatic charging-discharging (GCD) techniques were carried out to study the electrochemical supercapacitive performance of the composite Li2Ni (SO4)2 electrodes. From the CV investigations, an areal capacitance of 508 mF cm‑2 was obtained at 10 mV s‑1. The galvanostatic charge-discharge (GCD) measurements exhibited the areal capacitance of 101 mF cm‑2 at a constant current density of 2 mA cm‑2 in 2 M KOH. These GCD profiles were linear and also symmetric in nature with the maximum columbic efficiency of about 85%. The electrochemical performance of the composite Li2Ni(SO4)2 electrode material shows excellent performance for supercapacitor applications.

  6. Microbial Attachment Inhibition through Low-Voltage Electrochemical Reactions on Electrically Conducting Membranes.

    PubMed

    Ronen, Avner; Duan, Wenyan; Wheeldon, Ian; Walker, Sharon; Jassby, David

    2015-11-03

    Bacterial biofilm formation on membrane surfaces remains a serious challenge in water treatment systems. The impact of low voltages on microbial attachment to electrically conducting ultrafiltration membranes was investigated using a direct observation cross-flow membrane system mounted on a fluorescence microscope. Escherichia coli and microparticle deposition and detachment rates were measured as a function of the applied electrical potential to the membrane surface. Selecting bacteria and particles with low surface charge minimized electrostatic interactions between the bacteria and charged membrane surface. Application of an electrical potential had a significant impact on the detachment of live bacteria in comparison to dead bacteria and particles. Image analysis indicated that when a potential of 1.5 V was applied to the membrane/counter electrode pair, the percent of dead bacteria was 32±2.1 and 67±3.6% when the membrane was used as a cathode or anode, respectively, while at a potential of 1 V, 92±2.4% were alive. The application of low electrical potentials resulted in the production of low (μM) concentrations of hydrogen peroxide (HP) through the electroreduction of oxygen. The electrochemically produced HP reduced microbial cell viability and increased cellular permeability. Exposure to low concentrations of electrochemically produced HP on the membrane surface prevents bacterial attachment, thus ensuring biofilm-free conditions during membrane filtration operations.

  7. Large-scale aerosol-assisted synthesis of biofriendly Fe2O3 yolk-shell particles: a promising support for enzyme immobilization

    NASA Astrophysics Data System (ADS)

    Patel, Sanjay K. S.; Choi, Seung Ho; Kang, Yun Chan; Lee, Jung-Kul

    2016-03-01

    Multiple-shelled Fe2O3 yolk-shell particles were synthesized using the spray drying method and intended as a suitable support for the immobilization of commercial enzymes such as glucose oxidase (GOx), horseradish peroxidase (HRP), and laccase as model enzymes. Yolk-shell particles have an average diameter of 1-3 μm with pore diameters in the range of 16 to 28 nm. The maximum immobilization of GOx, HRP, and laccase resulted in the enzyme loading of 292, 307 and 398 mg per g of support, respectively. After cross-linking of immobilized laccase by glutaraldehyde, immobilization efficiency was improved from 83.5% to 90.2%. Km and Vmax values were 41.5 μM and 1722 μmol min-1 per mg protein for cross-linked laccase and those for free laccase were 29.3 μM and 1890 μmol min-1 per mg protein, respectively. The thermal stability of the enzyme was enhanced up to 18-fold upon cross-linking, and the enzyme retained 93.1% of residual activity after ten cycles of reuse. The immobilized enzyme has shown up to 32-fold higher stability than the free enzyme towards different solvents and it showed higher efficiency than free laccase in the decolorization of dyes and degradation of bisphenol A. The synthesized yolk-shell particles have 3-fold higher enzyme loading efficiency and lower acute toxicity than the commercial Fe2O3 spherical particles. Therefore, the use of unique yolk-shell structure Fe2O3 particles with multiple-shells will be promising for the immobilization of various enzymes in biotechnological applications with improved electrochemical properties. To the best of our knowledge, this is the first report on the use of one pot synthesized Fe2O3 yolk-shell structure particles for the immobilization of enzymes.Multiple-shelled Fe2O3 yolk-shell particles were synthesized using the spray drying method and intended as a suitable support for the immobilization of commercial enzymes such as glucose oxidase (GOx), horseradish peroxidase (HRP), and laccase as model enzymes. Yolk-shell particles have an average diameter of 1-3 μm with pore diameters in the range of 16 to 28 nm. The maximum immobilization of GOx, HRP, and laccase resulted in the enzyme loading of 292, 307 and 398 mg per g of support, respectively. After cross-linking of immobilized laccase by glutaraldehyde, immobilization efficiency was improved from 83.5% to 90.2%. Km and Vmax values were 41.5 μM and 1722 μmol min-1 per mg protein for cross-linked laccase and those for free laccase were 29.3 μM and 1890 μmol min-1 per mg protein, respectively. The thermal stability of the enzyme was enhanced up to 18-fold upon cross-linking, and the enzyme retained 93.1% of residual activity after ten cycles of reuse. The immobilized enzyme has shown up to 32-fold higher stability than the free enzyme towards different solvents and it showed higher efficiency than free laccase in the decolorization of dyes and degradation of bisphenol A. The synthesized yolk-shell particles have 3-fold higher enzyme loading efficiency and lower acute toxicity than the commercial Fe2O3 spherical particles. Therefore, the use of unique yolk-shell structure Fe2O3 particles with multiple-shells will be promising for the immobilization of various enzymes in biotechnological applications with improved electrochemical properties. To the best of our knowledge, this is the first report on the use of one pot synthesized Fe2O3 yolk-shell structure particles for the immobilization of enzymes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00346j

  8. Theoretical Investigations of the Electrochemical Reduction of CO on Single Metal Atoms Embedded in Graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirk, Charlotte; Chen, Leanne D.; Siahrostami, Samira

    Single transition metal atoms embedded at single vacancies of graphene provide a unique paradigm for catalytic reactions. We present a density functional theory study of such systems for the electrochemical reduction of CO. Theoretical investigations of CO electrochemical reduction are particularly challenging in that electrochemical activation energies are a necessary descriptor of activity. We determined the electrochemical barriers for key proton–electron transfer steps using a state-of-the-art, fully explicit solvent model of the electrochemical interface. The accuracy of GGA-level functionals in describing these systems was also benchmarked against hybrid methods. We find the first proton transfer to form CHO from COmore » to be a critical step in C 1 product formation. On these single atom sites, the corresponding barrier scales more favorably with the CO binding energy than for 211 and 111 transition metal surfaces, in the direction of improved activity. Intermediates and transition states for the hydrogen evolution reaction were found to be less stable than those on transition metals, suggesting a higher selectivity for CO reduction. We present a rate volcano for the production of methane from CO. We identify promising candidates with high activity, stability, and selectivity for the reduction of CO. As a result, this work highlights the potential of these systems as improved electrocatalysts over pure transition metals for CO reduction.« less

  9. Theoretical Investigations of the Electrochemical Reduction of CO on Single Metal Atoms Embedded in Graphene

    DOE PAGES

    Kirk, Charlotte; Chen, Leanne D.; Siahrostami, Samira; ...

    2017-12-18

    Single transition metal atoms embedded at single vacancies of graphene provide a unique paradigm for catalytic reactions. We present a density functional theory study of such systems for the electrochemical reduction of CO. Theoretical investigations of CO electrochemical reduction are particularly challenging in that electrochemical activation energies are a necessary descriptor of activity. We determined the electrochemical barriers for key proton–electron transfer steps using a state-of-the-art, fully explicit solvent model of the electrochemical interface. The accuracy of GGA-level functionals in describing these systems was also benchmarked against hybrid methods. We find the first proton transfer to form CHO from COmore » to be a critical step in C 1 product formation. On these single atom sites, the corresponding barrier scales more favorably with the CO binding energy than for 211 and 111 transition metal surfaces, in the direction of improved activity. Intermediates and transition states for the hydrogen evolution reaction were found to be less stable than those on transition metals, suggesting a higher selectivity for CO reduction. We present a rate volcano for the production of methane from CO. We identify promising candidates with high activity, stability, and selectivity for the reduction of CO. As a result, this work highlights the potential of these systems as improved electrocatalysts over pure transition metals for CO reduction.« less

  10. Re-activation of degraded nickel cermet anodes - Nano-particle formation via reverse current pulses

    NASA Astrophysics Data System (ADS)

    Hauch, A.; Marchese, M.; Lanzini, A.; Graves, C.

    2018-02-01

    The Ni/yttria-stabilized-zirconia (YSZ) cermet is the most commonly applied fuel electrode for solid oxide cells (SOCs). Loss of Ni/YSZ electrode activity is a key life-time limiting factor of the SOC. Developing means to mitigate this loss of performance or re-activate a fuel electrode is therefore important. In this work, we report a series of five tests on state-of-the-art Ni/YSZ-YSZ-CGObarrier-LSC/CGO cells. All cells were deliberately degraded via gas stream impurities in CO2/CO or harsh steam electrolysis operation. The cells were re-activated via a variety of reverse current treatments (RCTs). Via electrochemical impedance spectroscopy, we found that the Ni/YSZ electrode performance could be recovered via RCT, but not via constant fuel cell operation. For optimized RCT, we obtained a lower Ni/YSZ electrode resistance than the initial resistance. E.g. at 700 °C we measured fuel electrode resistance of 180 mΩ cm2, 390 mΩ cm2, and 159 mΩ cm2 before degradation, after degradation and after re-activation via RCT, respectively. Post-test SEM revealed that the RCT led to formation of nano-particles in the fuel electrode. Besides the remarkable improvement, the results also showed that RCTs can weaken Ni/YSZ interfaces and the electrode/electrolyte interface. This indicates that finding an optimum RCT profile is crucial for achieving maximum benefit.

  11. Electrochemical synthesis of Sm2O3 nanoparticles: Application in conductive polymer composite films for supercapacitors.

    PubMed

    Mohammad Shiri, Hamid; Ehsani, Ali; Jalali Khales, Mina

    2017-11-01

    A novel electrosynthetic method was introduced to synthesize of Sm 2 O 3 nanoparticles and furthermore, for improving the electrochemical performance of conductive polymer, hybrid POAP/Sm 2 O 3 films have then been fabricated by POAP electropolymerization in the presence of Sm 2 O 3 nanoparticles as active electrodes for electrochemical supercapacitors. The structure, morphology, chemical composition of Sm 2 O 3 nanoparticles was examined. Surface and electrochemical analyses have been used for characterization of Sm 2 O 3 and POAP/Sm 2 O 3 composite films. Different electrochemical methods including galvanostatic charge discharge experiments, cyclic voltammetry and electrochemical impedance spectroscopy have been applied to study the system performance. The supercapacity behavior of the composite film was attributed to the (i) high active surface area of the composite, (ii) charge transfer along the polymer chain due to the conjugation form of the polymer and finally (iii) synergism effect between conductive polymer and Sm 2 O 3 nanoparticles. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. A Novel of Multi-wall Carbon Nanotubes/Chitosan Electrochemical Sensor for Determination of Cupric ion

    NASA Astrophysics Data System (ADS)

    Tan, Funeng; Li, Lei

    2018-03-01

    A multi-wall carbon nanotubes/Chitosan electrochemical sensor had been fabricated by dropping CHS/MWNT solution directly onto the GC surface. The sensor was charactered by cyclic voltammetry and AC impedance with K3Fe(CN)6 as a electrochemical probe; Cyclic voltammograms(CV) and electrochemical impedance spectroscopy(EIS) indicated that the active area and electrochemical behavior of the sensor increased and improved significantly after the electrode was modified by carbon nanotubes dispersed by the chitosan. The sensor showed good electrocatalytic activity of K3Fe(CN)6. Also, from the cyclic voltammograms, we can see the process was diffusion controlled on the bare electrode and kinetics and diffusion controlled on the modified electrode. Finally Cu2+ responsed sensitively at the sensor which supplied a new method for the detection of Cu2+.

  13. Surface-Electrochemical Sensor for the Measurement of Anti-Cholinesterase Activity

    NASA Astrophysics Data System (ADS)

    Matsuura, Hiroaki; Sato, Yukari; Yabuki, Soichi; Sawaguchi, Takahiro; Mizutani, Fumio

    An organophosphorus pesticide, ethylthiometon (0.01-0.2 ppm) was determined by using a surface-electrochemical sensor system: the monolayer formation (chemisorption)-reductive desorption of thiocholine was applied to monitor the activity change of cholinesterase caused by the pesticide.

  14. Elucidation of the factors affecting the oxidative activity of Acremonium sp. HI-25 ascorbate oxidase by an electrochemical approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murata, Kenichi; Nakamura, Nobuhumi; Ohno, Hiroyuki

    Steady-state kinetics of Acremonium sp. HI-25 ascorbate oxidase toward p-hydroquinone derivatives have been examined by using an electrochemical analysis based on the theory of steady-state bioelectrocatalysis. The electrochemical technique has enabled one to examine the influence of electronic and chemical properties of substrates on the activity. It was proven that the oxidative activity of ascorbate oxidase was dominated by the highly selective substrate-binding affinity based on electrostatic interaction beyond the one-electron redox potential difference between ascorbate oxidase's type 1 copper site and substrate.

  15. Nitrogen-doped graphene catalysts: High energy wet ball milling synthesis and characterizations of functional groups and particle size variation with time and speed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuang, Shiqiang; Nunna, Bharath Babu; Boscoboinik, Jorge Anibal

    Nitrogen-doped graphene (N-G) catalyst emerges as one of the promising non-platinum group metal (non-PGM) catalysts with the advantages of low cost, high oxygen reduction reaction (ORR) activity, stability, and selectivity to replace expensive PGM catalysts in electrochemical systems. This research investigated nanoscale high energy wet (NHEW) ball milling for the synthesis of N-G catalysts to make conventional problems such as sintering or localized overheating issues negligible. The successful synthesis of N-G catalysts with comparable catalytic performance to 10 wt% Pt/C by using this method has been published. This paper focuses on understanding the effect of grinding speed and grinding timemore » on the particle size and chemical state of N-G catalysts through the physical and chemical characterization. The research result shows that (1) the final particle size, nitrogen doping percentage, and nitrogen bonding composition of synthesized N-G catalysts are predictable and controllable by adjusting the grinding time, the grinding speed, and other relative experimental parameters; (2) the final particle size of N-G catalysts could be estimated from the derived relation between the cracking energy density and the particle size of ground material in the NHEW ball milling process with specified experimental parameters; and (3) the chemical composition of N-G catalysts synthesized by NHEW ball milling is controllable by adjusting the grinding time and grinding speed.« less

  16. Nitrogen-doped graphene catalysts: High energy wet ball milling synthesis and characterizations of functional groups and particle size variation with time and speed

    DOE PAGES

    Zhuang, Shiqiang; Nunna, Bharath Babu; Boscoboinik, Jorge Anibal; ...

    2017-07-26

    Nitrogen-doped graphene (N-G) catalyst emerges as one of the promising non-platinum group metal (non-PGM) catalysts with the advantages of low cost, high oxygen reduction reaction (ORR) activity, stability, and selectivity to replace expensive PGM catalysts in electrochemical systems. This research investigated nanoscale high energy wet (NHEW) ball milling for the synthesis of N-G catalysts to make conventional problems such as sintering or localized overheating issues negligible. The successful synthesis of N-G catalysts with comparable catalytic performance to 10 wt% Pt/C by using this method has been published. This paper focuses on understanding the effect of grinding speed and grinding timemore » on the particle size and chemical state of N-G catalysts through the physical and chemical characterization. The research result shows that (1) the final particle size, nitrogen doping percentage, and nitrogen bonding composition of synthesized N-G catalysts are predictable and controllable by adjusting the grinding time, the grinding speed, and other relative experimental parameters; (2) the final particle size of N-G catalysts could be estimated from the derived relation between the cracking energy density and the particle size of ground material in the NHEW ball milling process with specified experimental parameters; and (3) the chemical composition of N-G catalysts synthesized by NHEW ball milling is controllable by adjusting the grinding time and grinding speed.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marin, E.; Lekka, M., E-mail: maria.lekka@uniud.it; Andreatta, F.

    In this paper, two different ASTM C 618 Class C fly ashes (FA) were used for the production of aluminum metal matrix composites (MMCs) using powder metallurgy (PM) technology. Calcareous FAs were sampled from the electrostatic precipitators of two different lignite-fired power stations: from Megalopolis, Southern Greece (MFA) and from Kardia, Northen Greece (KFA), under maximum electricity load. FAs were milled in order to reduce the mean particle diameter and Aluminum-FA composites containing 10% and 20% of FA were then prepared and compacted. The green products were sintered for 2 h at 600 Degree-Sign C. Sintered Al-FA MMCs showed increasedmore » hardness and wear resistance suggesting their possible use in industrial applications for example in covers, casings, brake rotors or engine blocks. As most possible industrial applications of MMCs not only require wear resistance, but also corrosion resistance in different mild aggressive medias, this paper aims to study the electrochemical behavior of FA MMCs in order to evaluate their corrosion resistance. The morphology and chemical composition of the phases in the Aluminum-FA composite samples were investigated using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDXS). Moreover, topographic and Volta potential maps were acquired by Scanning Kelvin Probe Force Microscopy (SKP-FM). Volta potential maps provide information about the electrochemical behavior of the different phases in absence of electrolyte. The electrochemical behavior was investigated by Open Circuit Potential measurements and potentiodynamic polarization, while the corrosion mechanisms were studied by SEM observations after different times of immersion in a mild corrosive medium. In all cases it could be stated that the addition of the FA particles into the Al matrix might cause an increase of the hardness and mechanical properties of the pure aluminum but deteriorates the corrosion resistance. The degradation phenomena occurring on the FA containing samples might be related to the following mechanisms: 1) Partial detachment or dissolution of the FA soluble phases, in particular based on Si, Fe and Ca; 2) dissolution of the Al matrix surrounding the FA particles due to crevice corrosion; 3) Al localized dissolution due to galvanic coupling between the Fe-rich intermetallics and the matrix. - Highlights: Black-Right-Pointing-Pointer Aluminum metal matrix composites containing two types of fly ashes have been characterized. Black-Right-Pointing-Pointer The microstructure and the electrochemical behavior have been studied using different techniques. Black-Right-Pointing-Pointer The addition of FA deteriorates the corrosion resistance of the aluminum. Black-Right-Pointing-Pointer Degradation mechanisms: galvanic coupling, crevice corrosion, detachment of FA particles.« less

  18. A sensitive electrochemical biosensor for detection of protein kinase A activity and inhibitors based on Phos-tag and enzymatic signal amplification.

    PubMed

    Yin, Huanshun; Wang, Mo; Li, Bingchen; Yang, Zhiqing; Zhou, Yunlei; Ai, Shiyun

    2015-01-15

    A simple, highly sensitive and selective electrochemical assay is developed for the detection of protein kinase A (PKA) activity based on the specific recognition utility of Phos-tag for kinase-induced phosphopeptides and enzymatic signal amplification. When the substrate peptide was phosphorylated by PKA reaction, they could specifically bind with Phos-tag-biotin in the presence of Zn(2+) through the formation of a specific noncovalent complex with the phosphomonoester dianion in phosphorylated peptides. Through the further specific interaction between biotin and avidin, avidin functionalized horseradish peroxidase (HRP) can be captured on the electrode surface. Under the catalytic effect of HRP, a sensitive electrochemical signal for benzoquinone was obtained, which was related to PKA activity. Under the optimal experiment conditions, the proposed electrochemical method presented dynamic range from 0.5 to 25 unit/mL with low detection limit of 0.15 unit/mL. This new detection strategy was also successfully applied to analyze the inhibition effect of inhibitors (ellagic acid and H-89) on PKA activity and monitored the PKA activity in cell lysates. Therefore, this Phos-tag-based electrochemical assay offers an alternative platform for PKA activity assay and inhibitor screening, and thus it might be a valuable tool for development of targeted therapy and clinical diagnosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Assessment of trends in the electrochemical CO 2 reduction and H 2 evolution reactions on metal nanoparticles

    DOE PAGES

    Alfonso, Dominic R.; Kauffman, Douglas R.

    2017-08-14

    Here, we used density functional theory to investigate the electrochemical CO 2 reduction and competing hydrogen evolution reaction on model Au, Ag, Cu, Ir, Ni, Pd, Pt, and Rh nanoparticles. On the coinage metal, the free energy of adsorbed COOH, CO, and H intermediates generally becomes more favorable with decreasing particle size. This pattern was also observed on all transition metals with the binding of the intermediates observed to be stronger on almost all of these metals. Comparative studies of the reaction profile reveal that H 2 evolution is the first reaction to be energetically allowed at zero applied bias

  20. Graphite oxide/β-Ni(OH)2 composites for application in supercapacitors

    NASA Astrophysics Data System (ADS)

    Singh, Arvinder; Chandra, Amreesh

    2013-06-01

    Graphite oxide/β-Ni(OH)2 composites have been investigated as electrode material in supercapacitors. Phase formation of electrode material is investigated using diffraction measurements. Particle shape-size studies show deposition of β-Ni(OH)2 nanoparticles on graphite oxide (GO) sheets. Electrochemical performance of GO/β-Ni(OH)2 composite in supercapacitors is discussed based on the analysis of electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and galvanostatic charge-discharge studies. Excellent energy density of ˜53 Wh/kg in 1M Na2SO4 aqueous electrolyte is reported at power density of ˜1364W/kg. The significance of results is discussed in the paper.

  1. Assessment of trends in the electrochemical CO 2 reduction and H 2 evolution reactions on metal nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alfonso, Dominic R.; Kauffman, Douglas R.

    Here, we used density functional theory to investigate the electrochemical CO 2 reduction and competing hydrogen evolution reaction on model Au, Ag, Cu, Ir, Ni, Pd, Pt, and Rh nanoparticles. On the coinage metal, the free energy of adsorbed COOH, CO, and H intermediates generally becomes more favorable with decreasing particle size. This pattern was also observed on all transition metals with the binding of the intermediates observed to be stronger on almost all of these metals. Comparative studies of the reaction profile reveal that H 2 evolution is the first reaction to be energetically allowed at zero applied bias

  2. Safety shutdown separators

    DOEpatents

    Carlson, Steven Allen; Anakor, Ifenna Kingsley; Farrell, Greg Robert

    2015-06-30

    The present invention pertains to electrochemical cells which comprise (a) an anode; (b) a cathode; (c) a solid porous separator, such as a polyolefin, xerogel, or inorganic oxide separator; and (d) a nonaqueous electrolyte, wherein the separator comprises a porous membrane having a microporous coating comprising polymer particles which have not coalesced to form a continuous film. This microporous coating on the separator acts as a safety shutdown layer that rapidly increases the internal resistivity and shuts the cell down upon heating to an elevated temperature, such as 110.degree. C. Also provided are methods for increasing the safety of an electrochemical cell by utilizing such separators with a safety shutdown layer.

  3. II. Electrodeposition/removal of nickel in a spouted electrochemical reactor.

    PubMed

    Grimshaw, Pengpeng; Calo, Joseph M; Shirvanian, Pezhman A; Hradil, George

    2011-08-17

    An investigation is presented of nickel electrodeposition from acidic solutions in a cylindrical spouted electrochemical reactor. The effects of solution pH, temperature, and applied current on nickel removal/recovery rate, current efficiency, and corrosion rate of deposited nickel on the cathodic particles were explored under galvanostatic operation. Nitrogen sparging was used to decrease the dissolved oxygen concentration in the electrolyte in order to reduce the nickel corrosion rate, thereby increasing the nickel electrowinning rate and current efficiency. A numerical model of electrodeposition, including corrosion and mass transfer in the particulate cathode moving bed, is presented that describes the behavior of the experimental net nickel electrodeposition data quite well.

  4. In Situ Investigation of Electrochemically Mediated Surface-Initiated Atom Transfer Radical Polymerization by Electrochemical Surface Plasmon Resonance.

    PubMed

    Chen, Daqun; Hu, Weihua

    2017-04-18

    Electrochemically mediated atom transfer radical polymerization (eATRP) initiates/controls the controlled/living ATRP chain propagation process by electrochemically generating (regenerating) the activator (lower-oxidation-state metal complex) from deactivator (higher-oxidation-state metal complex). Despite successful demonstrations in both of the homogeneous polymerization and heterogeneous systems (namely, surface-initiated ATRP, SI-ATRP), the eATRP process itself has never been in situ investigated, and important information regarding this process remains unrevealed. In this work, we report the first investigation of the electrochemically mediated SI-ATRP (eSI-ATRP) by rationally combining the electrochemical technique with real-time surface plasmon resonance (SPR). In the experiment, the potential of a SPR gold chip modified by the self-assembled monolayer of the ATRP initiator was controlled to electrochemically reduce the deactivator to activator to initiate the SI-ATRP, and the whole process was simultaneously monitored by SPR with a high time resolution of 0.1 s. It is found that it is feasible to electrochemically trigger/control the SI-ATRP and the polymerization rate is correlated to the potential applied to the gold chip. This work reveals important kinetic information for eSI-ATRP and offers a powerful platform for in situ investigation of such complicated processes.

  5. Tape method of forming a thin layer of doped lanthanum chromite particles and of bonding such on an electrode

    DOEpatents

    Richards, Von L.; Singhal, Subhash C.; Pal, Uday B.

    1992-01-01

    A combustible polymer film, useful for application of an interconnection on an electrode is made by: (1) providing doped LaCro.sub.3 particles; (2) dispersing doped LaCrO.sub.3 particles in a solvent, to provide a dispersion; (3) screening the dispersion to provide particles in the range of from 30 micrometers to 80 micrometers; (4) admixing a fugitive polymer with the particles; (5) casting the dispersion to provide a film; (6) drying the film; and (7) stripping the film. The film can then be applied to a porous, preheated electrode top surface, and then electrochemical vapor depositing a dense skeletal LaCrO.sub.3 structure, between and around the doped LaCrO.sub.3 particles. Additional solid oxide electrolyte and fuel electrode layers can then be added to provide a fuel cell.

  6. Tape method of forming a thin layer of doped lanthanum chromite particles and of bonding such on an electrode

    DOEpatents

    Richards, V.L.; Singhal, S.C.; Pal, U.B.

    1992-07-21

    A combustible polymer film, useful for application of an interconnection on an electrode is made by: (1) providing doped LaCro[sub 3] particles; (2) dispersing doped LaCrO[sub 3] particles in a solvent, to provide a dispersion; (3) screening the dispersion to provide particles in the range of from 30 micrometers to 80 micrometers; (4) admixing a fugitive polymer with the particles; (5) casting the dispersion to provide a film; (6) drying the film; and (7) stripping the film. The film can then be applied to a porous, preheated electrode top surface, and then a dense skeletal LaCrO[sub 3] structure is electrochemically vapor deposited between and around the doped LaCrO[sub 3] particles. Additional solid oxide electrolyte and fuel electrode layers can then be added to provide a fuel cell. 4 figs.

  7. Design, prototyping and autonomous control of gasoline-engine variable-pitch quadcopter

    NASA Astrophysics Data System (ADS)

    Tao, Pang

    Supercapacitors, benefited from superb energy and power characteristics, have now drawn intensive interest for their capability of meeting the above requirements. However, traditional materials for supercapacitor electrodes such as activated carbon and metal oxide/hydroxides suffer either a low energy density or poor power input/output rate. The work presented here offer a new strategy to develop novel composites based on carbon nanotubes (CNT) to utilize the synergistic effects of both carbon host and pseudocapacitive guest materials. The main focus is located on how CNT structures with different dimensions affect the device performance. The 0 D particle-like, 2D film-structured and 3D gel-assembled CNT composites have been thoroughly investigated. It is found that CNT structures with higher dimensions are significant in preventing the agglomeration of active materials and improving the electrical conductivity, leading to satisfactory electrochemical performance.

  8. Carbon nanocages: a new support material for Pt catalyst with remarkably high durability.

    PubMed

    Wang, Xiao Xia; Tan, Zhe Hua; Zeng, Min; Wang, Jian Nong

    2014-03-24

    Low durability is the major challenge hindering the large-scale implementation of proton exchange membrane fuel cell (PEMFC) technology, and corrosion of carbon support materials of current catalysts is the main cause. Here, we describe the finding of remarkably high durability with the use of a novel support material. This material is based on hollow carbon nanocages developed with a high degree of graphitization and concurrent nitrogen doping for oxidation resistance enhancement, uniform deposition of fine Pt particles, and strong Pt-support interaction. Accelerated degradation testing shows that such designed catalyst possesses a superior electrochemical activity and long-term stability for both hydrogen oxidation and oxygen reduction relative to industry benchmarks of current catalysts. Further testing under conditions of practical fuel cell operation reveals almost no degradation over long-term cycling. Such a catalyst of high activity, particularly, high durability, opens the door for the next-generation PEMFC for "real world" application.

  9. High energy density redox flow device

    DOEpatents

    Chiang, Yet-Ming; Carter, W. Craig; Ho, Bryan Y; Duduta, Mihai; Limthongkul, Pimpa

    2014-05-13

    Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). High energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.

  10. Improvement of the conductive network of positive electrodes and the performance of Ni-MH battery

    NASA Astrophysics Data System (ADS)

    Morimoto, Katsuya; Nakayama, Kousuke; Maki, Hideshi; Inoue, Hiroshi; Mizuhata, Minoru

    2017-06-01

    The pretreatment to modify the valence of cobalt by discharging at 0.2 C rate for 7.5 h before the first initial activation charge process is effective in improving the surface electronic conductivity among fine particles of positive electrode active materials. The discharge curves indicate the same locus within 1800 cycles, and the capacity of the pretreated battery is stable for over 4000 cycles. However, in-situ cell pretreatment with constant current has negative influence on other components. During the constant current pretreatment, the cell voltage rapidly falls to -0.5 V in the first 10 s of in-situ pretreatment. Therefore, we investigate the pretreatment by supplying a constant voltage to the battery instead of a constant current, and find the effective condition to improve the electrochemical performance and not to have any influence on other components of the battery.

  11. Electrocatalytic process for carbon dioxide conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masel, Richard I.; Salehi-Khojin, Amin

    2017-01-31

    An electrocatalytic process for carbon dioxide conversion includes combining a Catalytically Active Element and Helper Catalyst in the presence of carbon dioxide, allowing a reaction to proceed to produce a reaction product, and applying electrical energy to said reaction to achieve electrochemical conversion of said reactant to said reaction product. The Catalytically Active Element can be a metal in the form of supported or unsupported particles or flakes with an average size between 0.6 nm and 100 nm. the reaction products comprise at least one of CO, HCO.sup.-, H.sub.2CO, (HCO.sub.2).sup.-, H.sub.2CO.sub.2, CH.sub.3OH, CH.sub.4, C.sub.2H.sub.4, CH.sub.3CH.sub.2OH, CH.sub.3COO.sup.-, CH.sub.3COOH, C.sub.2H.sub.6, (COOH).sub.2, (COO.sup.-).sub.2,more » and CF.sub.3COOH.« less

  12. Electrocatalytic process for carbon dioxide conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masel, Richard I.; Salehi-Khojin, Amin; Kutz, Robert

    An electrocatalytic process for carbon dioxide conversion includes combining a Catalytically Active Element and a Helper Polymer in the presence of carbon dioxide, allowing a reaction to proceed to produce a reaction product, and applying electrical energy to said reaction to achieve electrochemical conversion of said carbon dioxide reactant to said reaction product. The Catalytically Active Element can be a metal in the form of supported or unsupported particles or flakes with an average size between 0.6 nm and 100 nm. The reaction products comprise at least one of CO, HCO.sup.-, H.sub.2CO, (HCO.sub.2).sup.-, H.sub.2CO.sub.2, CH.sub.3OH, CH.sub.4, C.sub.2H.sub.4, CH.sub.3CH.sub.2OH, CH.sub.3COO.sup.-, CH.sub.3COOH,more » C.sub.2H.sub.6, (COOH).sub.2, (COO.sup.-).sub.2, and CF.sub.3COOH.« less

  13. Self-healing composites and applications thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tee, Chee Keong; Wang, Chao; Cui, Yi

    A battery electrode includes an electrochemically active material and a binder covering the electrochemically active material. The binder includes a self-healing polymer and conductive additives dispersed in the self-healing polymer to provide an electrical pathway across at least a portion of the binder.

  14. Investigation of the electrochemically active surface area and lithium diffusion in graphite anodes by a novel OsO4 staining method

    NASA Astrophysics Data System (ADS)

    Pfaffmann, Lukas; Birkenmaier, Claudia; Müller, Marcus; Bauer, Werner; Mitsch, Tim; Feinauer, Julian; Krämer, Yvonne; Scheiba, Frieder; Hintennach, Andreas; Schleid, Thomas; Schmidt, Volker; Ehrenberg, Helmut

    2016-03-01

    Negative electrodes of lithium-ion batteries generally consist of graphite-based active materials. In order to realize batteries with a high current density and therefore accelerated charging processes, the intercalation of lithium and the diffusion processes of these carbonaceous materials must be understood. In this paper, we visualized the electrochemical active surface area for three different anode materials using a novel OsO4 staining method in combination with scanning electron microscopy techniques. The diffusion behavior of these three anode materials is investigated by potentiostatic intermittent titration technique measurements. From those we determine the diffusion coefficient with and without consideration of the electrochemical active surface area.

  15. Nickel hydroxide positive electrode for alkaline rechargeable battery

    DOEpatents

    Young, Kwo; Wang, Lixin; Mays, William; Reichman, Benjamin; Chao-Ian, Hu; Wong, Diana; Nei, Jean

    2018-04-03

    Certain nickel hydroxide active cathode materials for use in alkaline rechargeable batteries are capable of transferring >1.3 electrons per Ni atom under reversible electrochemical conditions. The specific capacity of the nickel hydroxide active materials is for example .gtoreq.325 mAh/g. The cathode active materials exhibit an additional discharge plateau near 0.8 V vs. a metal hydride (MH) anode. Ni in an oxidation state of less than 2, such as Ni.sup.1+, is able to participate in electrochemical reactions when using the present cathode active materials. It is possible that up to 2.3 electrons, up to 2.5 electrons or more may be transferred per Ni atom under electrochemical conditions.

  16. Nickel hydroxide positive electrode for alkaline rechargeable battery

    DOEpatents

    Young, Kwo; Wang, Lixin; Mays, William; Reichman, Benjamin; Chao-Ian, Hu; Wong, Diana; Nei, Jean

    2018-02-20

    Certain nickel hydroxide active cathode materials for use in alkaline rechargeable batteries are capable of transferring >1.3 electrons per Ni atom under reversible electrochemical conditions. The specific capacity of the nickel hydroxide active materials is for example .gtoreq.325 mAh/g. The cathode active materials exhibit an additional discharge plateau near 0.8 V vs. a metal hydride (MH) anode. Ni in an oxidation state of less than 2, such as Ni.sup.1+, is able to participate in electrochemical reactions when using the present cathode active materials. It is possible that up to 2.3 electrons, up to 2.5 electrons or more may be transferred per Ni atom under electrochemical conditions.

  17. Membrane-electrode assemblies for electrochemical cells

    DOEpatents

    Swathirajan, Sundararajan; Mikhail, Youssef M.

    1993-01-01

    A combination, unitary, membrane and electrode assembly with a solid polymer electrolyte membrane, and first and second electrodes at least partially embedded in opposed surfaces of the membrane. The electrodes each comprise a respective group of finely divided carbon particles, very finely divided catalytic particles supported on internal and external surfaces of the carbon particles and a proton conductive material intermingled with the catalytic and carbon particles. A first group of finely divided carbon particles forming the first electrode has greater water attraction and retention properties, and is more hydrophilic than a second group of carbon particles forming the second electrode. In a preferred method, the membrane electrode assembly of the invention is prepared by forming a slurry of proton conductive material and at least one group of the carbon and catalyst particles. The slurry is applied to the opposed surfaces of the membrane and heated while being pressed to the membrane for a time and at a temperature and compressive load sufficient to embed at least a portion of the particles into the membrane.

  18. Synthesis and structural, magnetic and electrochemical characterization of PtCo nanoparticles prepared by water-in-oil microemulsion

    NASA Astrophysics Data System (ADS)

    Solla-Gullón, J.; Gómez, Elvira; Vallés, Elisa; Aldaz, Antonio; Feliu, Juan M.

    2010-05-01

    PtCo nanoparticles with homogeneous size (around 3-4 nm) have been synthesized in a water-in-oil microemulsion of water/polyethylenglycol-dodecylether (BRIJ®30)/n-heptane. X-ray diffraction study revealed the formation of a cubic phase with a gradual decrease of the cell parameter with increasing cobalt incorporation in the crystalline lattice of platinum. In relation to their magnetic properties, the PtCo nanoparticles present a superparamagnetic behaviour even after annealing, although higher permeability was induced by the thermal treatment. Finally, the electrocatalytic activity of the particles towards oxalic acid oxidation in H2SO4 was evaluated. The Pt74Co26 nanoparticles showed the highest reactivity for this reaction.

  19. Stress Corrosion Cracking Issues in Light Metals for Automotive Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Russell H.; Danielson, Michael J.; Baer, Donald R.

    The Partnership for New Generation Vehicle has the goal of producing lightweight automobiles that achieve 80 mpg. To accomplish this will require liberal use of Al and Mg alloys such as AA5083 and AZ91D. The corrosion and stress corrosion of alloy AA5083 is controlled by the precipitation of the b-phase (Al3Mg2) at grain boundaries and by the precipitation of the g-phase (Mg17Al12) in AZ91D. The b-phase is anodic to the Al matrix while the g-phase is cathodic to the Mg matrix. The effects of crack propagation along grain boundaries with electrochemically active particles is a key factor in the SCCmore » performance of these materials.« less

  20. Bio-active synthesis of tin oxide nanoparticles using eggshell membrane for energy storage application

    NASA Astrophysics Data System (ADS)

    Celina Selvakumari, J.; Nishanthi, S. T.; Dhanalakshmi, J.; Ahila, M.; Pathinettam Padiyan, D.

    2018-05-01

    Nano-sized tin oxide (SnO2) particles were synthesized using eggshell membrane (ESM), a natural bio-waste from the chicken eggshell. The crystallization of SnO2 into the tetragonal structure was confirmed from powder X-ray diffraction and the crystallite size ranged from 13 to 40 nm. Various shapes including rod, hexagonal and spherical SnO2 nanoparticles were observed from the morphological studies. The electrochemical impedance study revealed a lower charge transfer resistance (Rct) of 8.565 Ω and the presence of a constant phase element which arised due to surface roughness and porosity. Capacitive behavior seen in the cyclic voltammetry curve of the prepared SnO2 nanoparticles, find future applications in supercapacitors.

  1. Morphology controlled synthesis of nanoporous Co3O4 nanostructures and their charge storage characteristics in supercapacitors.

    PubMed

    Deori, Kalyanjyoti; Ujjain, Sanjeev Kumar; Sharma, Raj Kishore; Deka, Sasanka

    2013-11-13

    Cubic spinel Co3O4 nanoparticles with spherical (0D) and hexagonal platelet (2D) morphologies were synthesized using a simple solvothermal method by tuning the reaction time. XRD and HRTEM analyses revealed pure phase with growth of Co3O4 particles along [111] and [110] directions. UV-vis studies showed two clear optical absorption peaks corresponding to two optical band gaps in the range of 400-500 nm and 700-800 nm, respectively, related to the ligand to metal charge transfer events (O(2-) → Co(2+,3+)). Under the electrochemical study in two electrode assembly system (Co3O4/KOH/Co3O4) without adding any large area support or a conductive filler, the hexagonal platelet Co3O4 particles exhibited comparatively better characteristics with high specific capacitance (476 F g(-1)), energy density 42.3 Wh kg(-1) and power density 1.56 kW kg(-1) at current density of 0.5 Ag(-1), that suited for potential applications in supercapacitors. The observed better electrochemical properties of the nanoporous Co3O4 particles is attributed to the layered platelet structural arrangement of the hexagonal platelet and the presence of exceptionally high numbers of regularly ordered pores.

  2. Synthesis and Electrochemical Properties of LiFePO4/C for Lithium Ion Batteries.

    PubMed

    Gao, Hong; Wang, Jiazhao; Yin, Shengyu; Zheng, Hao; Wang, Shengfu; Feng, Chuanqi; Wang, Shiquan

    2015-03-01

    LiFePO4/C was prepared through a facile rheological phase reaction method by using Fe3(PO4)2, Li3PO4 · 8H2O, and glucose as reactants. The LiFePO4/C samples were characterized by X-ray diffraction, scanning electron microscopy, and thermogravimetric analysis. The electrochemical properties of the samples were investigated. The results show that the LiFePO4/C samples have single-phase olivine-type structure, and their particles feature a spherical shape. The carbon coating on the particles of LiFePO4 is about 1.8% of the LiFePO4/C by weight. The particle size was distributed from 0.2 to 1 µm. The initial discharge capacity of LiFePO4/C reached 154 mA h/g at 0.1 C. The retained discharge capacity of LiFePO4/C was 152.9 mA h g(-1) after 50 cycles. The LiFePO4/C also showed better cycling performance than that of the bare LiPeO4 at a higher charge/discharge rate (1 C). The LIFePO4/C prepared in this way could be a promising cathode material for lithium ion battery application.

  3. Electrochemical and Electronic Charge Transport Properties of Ni-Doped LiMn₂O₄ Spinel Obtained from Polyol-Mediated Synthesis.

    PubMed

    Yang, Shuo; Schmidt, Dirk Oliver; Khetan, Abhishek; Schrader, Felix; Jakobi, Simon; Homberger, Melanie; Noyong, Michael; Paulus, Anja; Kungl, Hans; Eichel, Rüdiger-Albert; Pitsch, Heinz; Simon, Ulrich

    2018-05-16

    LiNi 0.5 Mn 1.5 O₄ (LNMO) spinel has been extensively investigated as one of the most promising high-voltage cathode candidates for lithium-ion batteries. The electrochemical performance of LNMO, especially its rate performance, seems to be governed by its crystallographic structure, which is strongly influenced by the preparation methods. Conventionally, LNMO materials are prepared via solid-state reactions, which typically lead to microscaled particles with only limited control over the particle size and morphology. In this work, we prepared Ni-doped LiMn₂O₄ (LMO) spinel via the polyol method. The cycling stability and rate capability of the synthesized material are found to be comparable to the ones reported in literature. Furthermore, its electronic charge transport properties were investigated by local electrical transport measurements on individual particles by means of a nanorobotics setup in a scanning electron microscope, as well as by performing DFT calculations. We found that the scarcity of Mn 3+ in the LNMO leads to a significant decrease in electronic conductivity as compared to undoped LMO, which had no obvious effect on the rate capability of the two materials. Our results suggest that the rate capability of LNMO and LMO materials is not limited by the electronic conductivity of the fully lithiated materials.

  4. Gold nano particle decorated graphene core first generation PAMAM dendrimer for label free electrochemical DNA hybridization sensing.

    PubMed

    Jayakumar, K; Rajesh, R; Dharuman, V; Venkatasan, R; Hahn, J H; Pandian, S Karutha

    2012-01-15

    A novel first generation (G1) poly(amidoamine) dendrimer (PAMAM) with graphene core (GG1PAMAM) was synthesized for the first time. Single layer of GG1PAMAM was immobilized covalently on mercaptopropionic acid (MPA) monolayer on Au transducer. This allows cost effective and easy deposition of single layer graphene on the Au transducer surface than the advanced vacuum techniques used in the literature. Au nano particles (17.5 nm) then decorated the GG1PAMAM and used for electrochemical DNA hybridization sensing. The sensor discriminates selectively and sensitively the complementary double stranded DNA (dsDNA, hybridized), non-complementary DNA (ssDNA, un-hybridized) and single nucleotide polymorphism (SNP) surfaces. Interactions of the MPA, GG1PAMAM and the Au nano particles were characterized by Ultra Violet (UV), Fourier Transform Infrared (FTIR), Raman spectroscopy (RS), Thermo gravimetric analysis (TGA), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Cyclic Voltmetric (CV), Impedance spectroscopy (IS) and Differntial Pulse Voltammetry (DPV) techniques. The sensor showed linear range 1×10(-6) to 1×10(-12) M with lowest detection limit 1 pM which is 1000 times lower than G1PAMAM without graphene core. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Synthesis of Millimeter-Scale Carbon Nanotube Arrays and Their Applications on Electrochemical Supercapacitors

    NASA Astrophysics Data System (ADS)

    Cui, Xinwei

    This research is aimed at synthesizing millimeter-scale carbon nanotube arrays (CNTA) by conventional chemical vapor deposition (CCVD) and water-assisted chemical vapor deposition (WACVD) methods, and exploring their application as catalyst supports for electrochemical supercapacitors. The growth mechanism and growth kinetics of CNTA under different conditions were systematically investigated to understand the relationship among physical characteristics of catalyst particles, growth parameters, and carbon nanotube (CNT) structures within CNTAs. Multiwalled CNT (MWCNT) array growth demonstrates lengthening and thickening stages in CCVD and WACVD. In CCVD, the lengthening and thickening were found to be competitive. By investigating catalyst particles after different pretreatment conditions, it has been found that inter-particle spacing plays a significant role in influencing CNTA height, CNT diameter and wall number. In WACVD, a long linear lengthening stage has been found. CNT wall number remains constant and catalysts preserve the activity in this stage, while MWCNTs thicken substantially and catalysts deactivate following the previously proposed radioactive decay model in the thickening stage of WACVD. Water was also shown to preserve the catalyst activity by significantly inhibiting catalyst-induced and gas phase-induced thickening processes in WACVD. Mn3O4 nanoparticles were successfully deposited and uniformly distributed within millimeter-long CNTAs by dip-casting method from non-aqueous solutions. After modification with Mn3O4 nanoparticles, CNTAs have been changed from hydrophobic to hydrophilic without their alignment and integrity being destroyed. The hydrophilic Mn 3O4/CNTA composite electrodes present ideal capacitive behavior with high reversibility. This opens up a new route of utilizing ultra-long CNTAs, based on which a scalable and cost-effective method was developed to fabricate composite electrodes using millimeter-long CNTAs. To improve the performance of the composites, epsilon-MnO2 nanorods were anodically pulse-electrodeposited within hydrophilic 0.5 mm-thick Mn 3O4 decorated CNTAs. The maximum gravimetric capacitance for the MnO2 nanorods/CNTA composite electrode was found to be 185 F/g, and that for epsilon-MnO2 nanorods was determined to be 221 F/g. After electrodeposition, the area-normalized capacitance and volumetric capacitance values were increased by a factor of 3, and an extremely high area-normalized capacitance of 1.80 F/cm2 was also achieved for the MnO2 nanorods/CNTA composite.

  6. Vanadium based materials as electrode materials for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Yan, Yan; Li, Bing; Guo, Wei; Pang, Huan; Xue, Huaiguo

    2016-10-01

    As a kind of supercapacitors, pseudocapacitors have attracted wide attention in recent years. The capacitance of the electrochemical capacitors based on pseudocapacitance arises mainly from redox reactions between electrolytes and active materials. These materials usually have several oxidation states for oxidation and reduction. Many research teams have focused on the development of an alternative material for electrochemical capacitors. Many transition metal oxides have been shown to be suitable as electrode materials of electrochemical capacitors. Among them, vanadium based materials are being developed for this purpose. Vanadium based materials are known as one of the best active materials for high power/energy density electrochemical capacitors due to its outstanding specific capacitance and long cycle life, high conductivity and good electrochemical reversibility. There are different kinds of synthetic methods such as sol-gel hydrothermal/solvothermal method, template method, electrospinning method, atomic layer deposition, and electrodeposition method that have been successfully applied to prepare vanadium based electrode materials. In our review, we give an overall summary and evaluation of the recent progress in the research of vanadium based materials for electrochemical capacitors that include synthesis methods, the electrochemical performances of the electrode materials and the devices.

  7. Experimental identification of the active sites in pyrolyzed carbon-supported cobalt-polypyrrole-4-toluenesulfinic acid as electrocatalysts for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Sha, Hao-Dong; Yuan, Xianxia; Li, Lin; Ma, Zhong; Ma, Zi-Feng; Zhang, Lei; Zhang, Jiujun

    2014-06-01

    A series of carbon supported cobalt-polypyrrole-4-toluenesulfinic acid have been pyrolyzed in an argon atmosphere at 800 °C, then structurally characterized and electrochemically evaluated as oxygen reduction reaction (ORR) catalysts in aqueous 0.5 M sulfuric acid. The structures are cobalt bonded to nitrogen species (Co-Nx) along with metallic cobalt and cobalt oxide. When the cobalt loading in the compound is less than 1.0 wt%, the predominate form is Co-Nx, when the loading is higher than 1.0 wt%, metallic Co and Co oxide particles co-exist with the Co-Nx compound. At a Co loading of ∼1.0 wt%, the catalyst gives the best ORR activity. Both metallic Co and Co oxide are not active for catalyzing ORR, and block the catalytically active Co-Nx species from the surface and reduce the catalytic activity since the diffusion limiting current density on a rotating disk electrode (RDE) increases when the electrode blocking agents are washed away with acid.

  8. Reversible mechano-electrochemical writing of metallic nanostructures with the tip of an atomic force microscope.

    PubMed

    Obermair, Christian; Kress, Marina; Wagner, Andreas; Schimmel, Thomas

    2012-01-01

    We recently introduced a method that allows the controlled deposition of nanoscale metallic patterns at defined locations using the tip of an atomic force microscope (AFM) as a "mechano-electrochemical pen", locally activating a passivated substrate surface for site-selective electrochemical deposition. Here, we demonstrate the reversibility of this process and study the long-term stability of the resulting metallic structures. The remarkable stability for more than 1.5 years under ambient air without any observable changes can be attributed to self-passivation. After AFM-activated electrochemical deposition of copper nanostructures on a polycrystalline gold film and subsequent AFM imaging, the copper nanostructures could be dissolved by reversing the electrochemical potential. Subsequent AFM-tip-activated deposition of different copper nanostructures at the same location where the previous structures were deleted, shows that there is no observable memory effect, i.e., no effect of the previous writing process on the subsequent writing process. Thus, the four processes required for reversible information storage, "write", "read", "delete" and "re-write", were successfully demonstrated on the nanometer scale.

  9. Reversible mechano-electrochemical writing of metallic nanostructures with the tip of an atomic force microscope

    PubMed Central

    Kress, Marina; Wagner, Andreas; Schimmel, Thomas

    2012-01-01

    Summary We recently introduced a method that allows the controlled deposition of nanoscale metallic patterns at defined locations using the tip of an atomic force microscope (AFM) as a “mechano-electrochemical pen”, locally activating a passivated substrate surface for site-selective electrochemical deposition. Here, we demonstrate the reversibility of this process and study the long-term stability of the resulting metallic structures. The remarkable stability for more than 1.5 years under ambient air without any observable changes can be attributed to self-passivation. After AFM-activated electrochemical deposition of copper nanostructures on a polycrystalline gold film and subsequent AFM imaging, the copper nanostructures could be dissolved by reversing the electrochemical potential. Subsequent AFM-tip-activated deposition of different copper nanostructures at the same location where the previous structures were deleted, shows that there is no observable memory effect, i.e., no effect of the previous writing process on the subsequent writing process. Thus, the four processes required for reversible information storage, “write”, “read”, “delete” and “re-write”, were successfully demonstrated on the nanometer scale. PMID:23365795

  10. Enhanced catalytic and dopamine sensing properties of electrochemically reduced conducting polymer nanocomposite doped with pure graphene oxide.

    PubMed

    Wang, Wenting; Xu, Guiyun; Cui, Xinyan Tracy; Sheng, Ge; Luo, Xiliang

    2014-08-15

    Significantly enhanced catalytic activity of a nanocomposite composed of conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT) doped with graphene oxide (GO) was achieved through a simple electrochemical reduction process. The nanocomposite (PEDOT/GO) was electrodeposited on an electrode and followed by electrochemical reduction, and the obtained reduced nanocomposite (PEDOT/RGO) modified electrode exhibited lowered electrochemical impedance and excellent electrocatalytic activity towards the oxidation of dopamine. Based on the excellent catalytic property of PEDOT/RGO, an electrochemical sensor capable of sensitive and selective detection of DA was developed. The fabricated sensor can detect DA in a wide linear range from 0.1 to 175μM, with a detection limit of 39nM, and it is free from common interferences such as uric acid and ascorbic acid. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Electrochemical in situ regeneration of granular activated carbon using a three-dimensional reactor.

    PubMed

    Sun, Hong; Liu, Zhigang; Wang, Ying; Li, Yansheng

    2013-12-01

    Electrochemical in situ regeneration of granular activated carbon (GAC) saturated with phenol was experimentally investigated using a three-dimensional electrode reactor with titanium filter electrode arrays. The feasibility of the electrochemical regeneration has been assessed by monitoring the regeneration efficiency and chemical oxygen demand (COD). The influence of the applied current, the effluent flow rate, and the effluent path of the electrochemical cell have been systematically studied. Under the optimum conditions, the regeneration efficiency of GAC could reach 94% in 2 hr, and no significant declination was observed after five-time continuous adsorption-regeneration cycles. The adsorption of organic pollutants was almost completely mineralized due to electrochemical oxidation, indicating that this regeneration process is much more potentially cost-effective for application. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  12. Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution

    PubMed Central

    Tsai, Charlie; Li, Hong; Park, Sangwook; Park, Joonsuk; Han, Hyun Soo; Nørskov, Jens K.; Zheng, Xiaolin; Abild-Pedersen, Frank

    2017-01-01

    Recently, sulfur (S)-vacancies created on the basal plane of 2H-molybdenum disulfide (MoS2) using argon plasma exposure exhibited higher intrinsic activity for the electrochemical hydrogen evolution reaction than the edge sites and metallic 1T-phase of MoS2 catalysts. However, a more industrially viable alternative to the argon plasma desulfurization process is needed. In this work, we introduce a scalable route towards generating S-vacancies on the MoS2 basal plane using electrochemical desulfurization. Even though sulfur atoms on the basal plane are known to be stable and inert, we find that they can be electrochemically reduced under accessible applied potentials. This can be done on various 2H-MoS2 nanostructures. By changing the applied desulfurization potential, the extent of desulfurization and the resulting activity can be varied. The resulting active sites are stable under extended desulfurization durations and show consistent HER activity. PMID:28429782

  13. Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution

    DOE PAGES

    Tsai, Charlie; Li, Hong; Park, Sangwook; ...

    2017-04-21

    Recently, sulfur (S)-vacancies created on the basal plane of 2H-molybdenum disulfide (MoS 2) using argon plasma exposure exhibited higher intrinsic activity for the electrochemical hydrogen evolution reaction than the edge sites and metallic 1T-phase of MoS 2 catalysts. But, a more industrially viable alternative to the argon plasma desulfurization process is needed. In this work, we introduce a scalable route towards generating S-vacancies on the MoS 2 basal plane using electrochemical desulfurization. We found that they can be electrochemically reduced under accessible applied potentials, even though sulfur atoms on the basal plane are known to be stable and inert. Thismore » can be done on various 2H-MoS 2 nanostructures. Furthermore, by changing the applied desulfurization potential, the extent of desulfurization and the resulting activity can be varied. The resulting active sites are stable under extended desulfurization durations and show consistent HER activity.« less

  14. Electrochemistry of redox-active self-assembled monolayers

    PubMed Central

    Eckermann, Amanda L.; Feld, Daniel J.; Shaw, Justine A.; Meade, Thomas J.

    2010-01-01

    Redox-active self-assembled monolayers (SAMs) provide an excellent platform for investigating electron transfer kinetics. Using a well-defined bridge, a redox center can be positioned at a fixed distance from the electrode and electron transfer kinetics probed using a variety of electrochemical techniques. Cyclic voltammetry, AC voltammetry, electrochemical impedance spectroscopy, and chronoamperometry are most commonly used to determine the rate of electron transfer of redox-activated SAMs. A variety of redox species have been attached to SAMs, and include transition metal complexes (e.g., ferrocene, ruthenium pentaammine, osmium bisbipyridine, metal clusters) and organic molecules (e.g., galvinol, C60). SAMs offer an ideal environment to study the outer-sphere interactions of redox species. The composition and integrity of the monolayer and the electrode material influence the electron transfer kinetics and can be investigated using electrochemical methods. Theoretical models have been developed for investigating SAM structure. This review discusses methods and monolayer compositions for electrochemical measurements of redox-active SAMs. PMID:20563297

  15. The synthesis of carbon electrode supercapacitor from durian shell based on variations in the activation time

    NASA Astrophysics Data System (ADS)

    Taer, E.; Dewi, P.; Sugianto, Syech, R.; Taslim, R.; Salomo, Susanti, Y.; Purnama, A.; Apriwandi, Agustino, Setiadi, R. N.

    2018-02-01

    The synthesis of carbon electrode from durian shell based on variations in the activation time has been carried out. Synthesis of carbon electrode was started by a carbonization process at a temperature of 600°C in nitrogen gas and then followed by physical activation process using water vapor at a temperature of 900°C by varying time of 1, 2 and 3 h. All of the variations of the samples were chemically activated using an activator of ZnCl2 with a concentration of 0.4 M. The physical properties such as density, surface morphology, degree of crystallinity and elemental content were analyzed. Moreover, the electrochemical properties such as specific capacitance of supercapacitor cells were studied using Cyclic Voltammetry methods. The density, stack height and carbon content were increased as activation time increases, while the specific capacitance of the supercapacitor cell decreases against the increase of activation time. Specific capacitances for 1, 2 and 3 h activation time are 88.39 F/g, 80.08 F/g and 74.61 F/g, respectively. Based on the surface morphology study it was shown that the increased in activation time causes narrowing of the pores between particles.

  16. Caco-2 cell-based electrochemical biosensor for evaluating the antioxidant capacity of Asp-Leu-Glu-Glu isolated from dry-cured Xuanwei ham.

    PubMed

    Xing, Lujuan; Ge, Qingfeng; Jiang, Donglei; Gao, Xiaoge; Liu, Rui; Cao, Songmin; Zhuang, Xinbo; Zhou, Guanghong; Zhang, Wangang

    2018-05-15

    A cell-based electrochemical biosensor was developed to determine the antioxidant activity of Asp-Leu-Glu-Glu (DLEE) isolated from dry-cured Chinese Xuanwei ham. A platinized gold electrode (Pt NPs/GE) covered with silver nanowires (Ag NWs) was fabricated to detect H 2 O 2 using redox signaling via cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). Under optimal condition, the detection limit of the modified electrode was 0.12μM with a linear relationship from 0.2 to 2μM, which showed relatively outstanding catalytic effects towards the reduction of H 2 O 2 . Furthermore, the generation of reactive oxygen species (ROS) in the cell can be used to indirectly assess changes in intercellular oxidative stress by detecting variations in electrochemical signals. A 3D cell culture of alginate/graphene oxide (NaAlg/GO) was used to encapsulate and immobilize Caco-2 cells. Based on ROS generation and electrochemical results, we found that DLEE could effectively reduce oxidative stress level in Caco-2 cells under external stimulation. DLEE showed high antioxidant activity with a relative antioxidant capacity (RAC) rate of 88.17% at 1.5mg/mL. Finally, an efficient electrochemical biosensor was established using the active 3D Caco-2 cell platform. This system is sensitive and simple to operate with the property to evaluate the antioxidant activity of peptides by the detection of H 2 O 2 in cell membrane. In summary, this work describes a new method for assessing antioxidant capacity of peptide DLEE using cell-based electrochemical signaling with a rapid screening pattern. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Facile hydrothermal growth graphene/ZnO nanocomposite for development of enhanced biosensor.

    PubMed

    Low, Sze Shin; Tan, Michelle T T; Loh, Hwei-San; Khiew, Poi Sim; Chiu, Wee Siong

    2016-01-15

    Graphene/zinc oxide nanocomposite was synthesised via a facile, green and efficient approach consisted of novel liquid phase exfoliation and solvothermal growth for sensing application. Highly pristine graphene was synthesised through mild sonication treatment of graphite in a mixture of ethanol and water at an optimum ratio. The X-ray diffractometry (XRD) affirmed the hydrothermal growth of pure zinc oxide nanoparticles from zinc nitrate hexahydrate precursor. The as-prepared graphene/zinc oxide (G/ZnO) nanocomposite was characterised comprehensively to evaluate its morphology, crystallinity, composition and purity. All results clearly indicate that zinc oxide particles were homogenously distributed on graphene sheets, without any severe aggregation. The electrochemical performance of graphene/zinc oxide nanocomposite-modified screen-printed carbon electrode (SPCE) was evaluated using cyclic voltammetry (CV) and amperometry analysis. The resulting electrode exhibited excellent electrocatalytic activity towards the reduction of hydrogen peroxide (H2O2) in a linear range of 1-15 mM with a correlation coefficient of 0.9977. The sensitivity of the graphene/zinc oxide nanocomposite-modified hydrogen peroxide sensor was 3.2580 μAmM(-1) with a limit of detection of 7.4357 μM. An electrochemical DNA sensor platform was then fabricated for the detection of Avian Influenza H5 gene based on graphene/zinc oxide nanocomposite. The results obtained from amperometry study indicate that the graphene/zinc oxide nanocomposite-enhanced electrochemical DNA biosensor is significantly more sensitive (P < 0.05) and efficient than the conventional agarose gel electrophoresis. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Synthesis and characterization of Mn-ZnFe2O4 and Mn-ZnFe2O4/rGO nanocomposites from waste batteries for photocatalytic, electrochemical and thermal studies

    NASA Astrophysics Data System (ADS)

    Mylarappa, M.; Venkata Lakshmi, V.; Vishnu Mahesh, K. R.; Nagaswarupa, H. P.; Raghavendra, N.

    2017-11-01

    In the present paper, Mn-ZnFe2O4 and Mn-ZnFe2O4/rGO composites recovered from waste batteries using acid dissolution and ferrite processing were studied. The recovered Mn-ZnFe2O4 nanocomposites were decorated onto rGO using the facile hydrothermal method. The recovered material was characterized using x-ray powder diffraction to study the particle size and crystallinity. The morphology of the composites was analyzed using scanning electron microscopy, and elements present in the materials were studied using energy dispersive x-ray analysis. The functional groups attached were observed using a Fourier transform infrared spectrometer. Furthermore, the recovered composites were evaluated in thermal studies using thermal gravimetric analysis, differential scanning calorimetry and dynamic thermal analysis. The material was used as a photocatalyst for the removal of acid orange 88 dye, and as an electrocatalyst. The decreased band gap energy for the Mn-ZnFe2O4/rGO composite was displayed in better photocatalytic activity for a given reaction. The electrochemical properties of Mn-ZnFe2O4 and Mn-ZnFe2O4/rGO have been investigated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) with a paste-type electrode. The CV indicated the reversibility of the electrode reaction, and the EIS revealed that a decrease in the charge transfer resistance increases the double layer capacitance of the rGO/Mn-ZnFe2O4 electrode.

  19. Cathodic electrochemical activation of Co3O4 nanoarrays: a smart strategy to significantly boost the hydrogen evolution activity.

    PubMed

    Yang, Li; Zhou, Huang; Qin, Xin; Guo, Xiaodong; Cui, Guanwei; Asiri, Abdullah M; Sun, Xuping

    2018-02-22

    Co(hydro)oxides show unsatisfactory catalytic activity for the hydrogen evolution reaction (HER) in alkaline media, and it is thus highly desirable but still remains a challenge to design and develop Co(hydro)oxide derived materials as superb hydrogen-evolving catalysts using a facile, rapid and less energy-intensive method. Here, we propose a cathodic electrochemical activation strategy toward greatly boosted HER activity of a Co 3 O 4 nanoarray via room-temperature cathodic polarization in sodium hypophosphite solution. After activation, the overpotential significantly decreases from 260 to 73 mV to drive a geometrical catalytic current density of 10 mA cm -2 in 1.0 M KOH. Notably, this activated electrode also shows strong long-term electrochemical durability with the retention of its catalytic activity at 100 mA cm -2 for at least 40 h.

  20. Optical, electrochemical and hydrophilic properties of Y2O3 doped TiO2 nanocomposite films.

    PubMed

    Zhang, Xiangchao; Yang, Huaming; Tang, Aidong

    2008-12-25

    The 5% Y2O3 doped TiO2 nanocomposite film (YTF) deposited on ITO glass substrate has been synthesized by the sol-gel dip-coating method. The as-synthesized samples were characterized using X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), voltage-current (V-I), electrochemical impedance spectroscopy (EIS) and ultraviolet-visible (UV-vis) analysis technologies. The crystalline structure, surface morphology and surface chemical composition of YTF sample have been primarily investigated. The results demonstrate that YTF is anatase crystalline phase with thickness of 480 nm and consists of spherical shape particles with a grain size of about 15.8 nm. The binding energy appears as a chemical shift, and relatively more Y and Ti species are present on the surface, indicating that active surfaces of the nanocomposite film have been enhanced with more oxygen vacancies Vö due to doping Y2O3 to TiO2. The absorption edge of YTF has a red shift, and the optical properties of YTF in visible light region have been obviously improved. The water contact angle is about 8 degrees after daylight lamp irradiation 60 min. An equivalent circuit model provided a reliable description for the electrochemical systems. Based on the Mott-Schottky equation, the donor concentration (ND) for YTF is 1.05 x 10(20) cm(-3), which enhances 1 order of magnitude than that for pure TiO2 film (TF), the flat-band potential (V(fb)) and the space charge layer (d(sc)) obviously decreased. With the incorporation of Y2O3 into TiO2, the optical, electrochemical and photoinduced hydrophilic properties of YTF in visible light region have obviously improved, indicating that YTF shows promising applications in solar energy conversion, self-cleaning and other potential fields.

  1. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy

    NASA Astrophysics Data System (ADS)

    Lee, Hyunjae; Choi, Tae Kyu; Lee, Young Bum; Cho, Hye Rim; Ghaffari, Roozbeh; Wang, Liu; Choi, Hyung Jin; Chung, Taek Dong; Lu, Nanshu; Hyeon, Taeghwan; Choi, Seung Hong; Kim, Dae-Hyeong

    2016-06-01

    Owing to its high carrier mobility, conductivity, flexibility and optical transparency, graphene is a versatile material in micro- and macroelectronics. However, the low density of electrochemically active defects in graphene synthesized by chemical vapour deposition limits its application in biosensing. Here, we show that graphene doped with gold and combined with a gold mesh has improved electrochemical activity over bare graphene, sufficient to form a wearable patch for sweat-based diabetes monitoring and feedback therapy. The stretchable device features a serpentine bilayer of gold mesh and gold-doped graphene that forms an efficient electrochemical interface for the stable transfer of electrical signals. The patch consists of a heater, temperature, humidity, glucose and pH sensors and polymeric microneedles that can be thermally activated to deliver drugs transcutaneously. We show that the patch can be thermally actuated to deliver Metformin and reduce blood glucose levels in diabetic mice.

  2. N, P-codoped Mesoporous Carbon Supported PtCox Nanoparticles and Their Superior Electrochemical toward Methanol Oxidation

    NASA Astrophysics Data System (ADS)

    Cui, Hangjun; Li, Yueming; Liu, Shimin

    2018-03-01

    In this report, a novel strategy by using the N, P co-doped mesoporous carbon structure as catalyst support to enhance the electrochemical catalytic activity of Pt-based catalysts is proposed. The as-synthesized PtCox@N, P-doped mesoporous carbon nanocomposties have been studied as an anode catalyst toward methanol oxidation, exhibiting greatly improved electrochemical activity and stability compared with Pt@mesoporous carbon. The synergistic effects of N, P dual-doping and porous carbon structure help to achieve better electron transport at the electrode surface, which eventually leads to greatly enhanced catalytic activity compared to the pristine Pt/mesoporous carbon.…

  3. Distribution of electrolytes in a flow battery

    DOEpatents

    Darling, Robert Mason; Smeltz, Andrew; Junker, Sven Tobias; Perry, Michael L.

    2017-12-26

    A method of determining a distribution of electrolytes in a flow battery includes providing a flow battery with a fixed amount of fluid electrolyte having a common electrochemically active specie, a portion of the fluid electrolyte serving as an anolyte and a remainder of the fluid electrolyte serving as a catholyte. An average oxidation state of the common electrochemically active specie is determined in the anolyte and the catholyte and, responsive to the determined average oxidation state, a molar ratio of the common electrochemically active specie between the anolyte and the catholyte is adjusted to increase an energy discharge capacity of the flow battery for the determined average oxidation state.

  4. Lithium Storage Performance of Zinc Ferrite Nanoparticle Synthesized with the Assistance of Triblock Copolymer P123.

    PubMed

    Yao, J H; Li, Y W; Song, X B; Zhang, Y F; Yan, J

    2018-05-01

    The ZnFe2O4 samples with the triblock copolymer P123 (P123) additive quantity of 0 wt.%, 2 wt.%, 5 wt.%, 8 wt.% and 10 wt.% were prepared by a very facile homogeneous precipitation method followed by high temperature sintering. The microstructures of the prepared samples were analyzed by X-ray diffraction (XRD) and Field emission scanning electron microscopy (FESEM). The results revealed that the five prepared samples are all normal spinel zinc ferrite (ZnFe2O4); the sample with the P123 additive quantity of 8 wt.% has the smallest particle size among the five samples. The lithium storage performances of the prepared samples are characterized by cyclic voltammograms (CV), electrochemical impedance spectroscopy (EIS), and charge-discharge tests. The results demonstrated that adding proper amount of P123 can obviously improve the lithium storage performances of zinc ferrite spinel powder. But excessive P123 can induce the particle agglomerates so that the lithium storage performance of sample decays significantly. The ZnFe2O4 sample with the P123 additive quantity of 8 wt.% exhibited the highest electrochemical activity, the best rate performance, and superior cycling stability. For example, after 50 charge/discharge cycles under a current density of 120 mA g-1, the ZnFe2O4 sample with the P123 additive quantity of 8 wt.% can retain a specific discharge capacity of 468 mAh g-1, much higher than that of for the ZnFe2O4 sample with the P123 additive quantity of 0 wt.% (224 mAh g-1).

  5. Electrochemical struvite precipitation from digestate with a fluidized bed cathode microbial electrolysis cell.

    PubMed

    Cusick, Roland D; Ullery, Mark L; Dempsey, Brian A; Logan, Bruce E

    2014-05-01

    Microbial electrolysis cells (MECs) can be used to simultaneously convert wastewater organics to hydrogen and precipitate struvite, but scale formation at the cathode surface can block catalytic active sites and limit extended operation. To promote bulk phase struvite precipitation and minimize cathode scaling, a two-chamber MEC was designed with a fluidized bed to produce suspended particles and inhibit scale formation on the cathode surface. MEC operation elevated the cathode pH to between 8.3 and 8.7 under continuous flow conditions. Soluble phosphorus removal using digester effluent ranged from 70 to 85% with current generation, compared to 10-20% for the control (open circuit conditions). At low current densities (≤2 mA/m(2)), scouring of the cathode by fluidized particles prevented scale accumulation over a period of 8 days. There was nearly identical removal of soluble phosphorus and magnesium from solution, and an equimolar composition in the collected solids, supporting phosphorus removal by struvite formation. At an applied voltage of 1.0 V, energy consumption from the power supply and pumping (0.2 Wh/L, 7.5 Wh/g-P) was significantly less than that needed by other struvite formation methods based on pH adjustment such as aeration and NaOH addition. In the anode chamber, current generation led to COD oxidation (1.1-2.1 g-COD/L-d) and ammonium removal (7-12 mM) from digestate amended with 1 g/L of sodium acetate. These results indicate that a fluidized bed cathode MEC is a promising method of sustainable electrochemical nutrient and energy recovery method for nutrient rich wastewaters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Capacity improvement of the carbon-based electrochemical capacitor by zigzag-edge introduced graphene

    NASA Astrophysics Data System (ADS)

    Tamura, Naoki; Tomai, Takaaki; Oka, Nobuto; Honma, Itaru

    2018-01-01

    The electrochemical properties of graphene edge has been attracted much attention. Especially, zigzag edge has high electrochemical activity because neutral radical exits on edge. However, due to a lack of efficient production method for zigzag graphene, the electrochemical properties of zigzag edge have not been experimentally demonstrated and the capacitance enhancement of carbonaceous materials in energy storage devices by the control in their edge states is still challenge. In this study, we fabricated zigzag-edge-rich graphene by a one-step method combining graphene exfoliation in supercritical fluid and anisotropic etching by catalytic nanoparticles. This efficient production of zigzag-edge-rich graphene allows us to investigate the electrochemical activity of zigzag edge. By cyclic voltammetry, we revealed the zigzag edge-introduced graphene exhibited unique redox reaction in aqueous acid solution. Moreover, by the calculation on the density function theory (DFT), this unique redox potential for zigzag edge-introduced graphene can be attributed to the proton-insertion/-extraction reactions at the zigzag edge. This finding indicates that the graphene edge modification can contribute to the further increase in the capacitance of the carbon-based electrochemical capacitor.

  7. Electrochemical analysis in a liposome suspension using lapachol as a hydrophobic electro active species.

    PubMed

    Okumura, Noriko; Wakamatsu, Shiori; Uno, Bunji

    2014-01-01

    This study demonstrated that the electro-chemical analysis of hydrophobic quinones can be performed in liposome suspension systems. We prepared and analyzed liposome suspensions containing lapachol, which is a quinone-based anti-tumor activity compound. In this suspension system, a simple one redox couple of lapachol is observed. These results are quite different from those obtained in organic solvents. In addition, the pH dependence of redox behaviors of lapachol could be observed in multilamellar vesicle (MLV) suspension system. This MLV suspension system method may approximate the electrochemical behavior of hydrophobic compounds in aqueous conditions. A benefit of this liposome suspension system for electrochemical analysis is that it enables to observe water-insoluble compounds without using organic solvents.

  8. Renewable-reagent electrochemical sensor

    DOEpatents

    Wang, Joseph; Olsen, Khris B.

    1999-01-01

    A new electrochemical probe(s) design allowing for continuous (renewable) reagent delivery. The probe comprises an integrated membrane-sampling/electrochemical sensor that prevents interferences from surface-active materials and greatly extends the linear range. The probe(s) is useful for remote or laboratory-based monitoring in connection with microdialysis sampling and electrochemical measurements of metals and organic compounds that are not readily detected in the absence of reacting with the compound. Also disclosed is a method of using the probe(s).

  9. Unexpected Voltage Fade in LMR-NMC Oxides Cycled below the "Activation" Plateau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y.; Bareno, J.; Bettge, M.

    A common feature of lithium-excess layered oxides, nominally of composition xLi(2)MnO(3)center dot(1-x)LiMO2 (M = transition metal) is a high-voltage plateau (similar to 4.5 V vs. Li/Li+) in their capacity-voltage profile during the first delithiation cycle. This plateau is believed to result from activation of the Li2MnO3 component, which makes additional lithium available for electrochemical cycling. However, oxides cycled beyond this activation plateau are known to display voltage fade which is a continuous reduction in their equilibrium potential. In this article we show that these oxides display gradual voltage fade even on electrochemical cycling in voltage ranges well below the activationmore » plateau. The average fade is similar to 0.08 mV-cycle(-1) for Li(1.2)Ni(0.1)5Mn(0.5)5Co(0.1)O(2) vs. Li cells after 20 cycles in the 2-4.1 V range at 55 degrees C; a similar to 54 mV voltage hysteresis, expressed as the difference in average cell voltage between charge and discharge cycles, is also observed. The voltage fade results from a gradual accumulation of local spinel environments in the crystal structure. Some of these spinel sites result from lithium deficiencies during oxide synthesis and are likely to be at the particle surfaces; other sites result from the migration of transition metal atoms in the partially-delithiated LiMO2 component into the lithium planes during electrochemical cycling. The observed rate of voltage fade depends on a combination of factors that includes the phase equilibrium between the layered and spinel components and the kinetics of transition metal migration. (C) The Author(s) 2014. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. All rights reserved.« less

  10. An Integrated, Layered-Spinel Composite Cathode for Energy Storage Applications

    NASA Technical Reports Server (NTRS)

    Hagh, Nader; Skandan, Ganesh

    2012-01-01

    At low operating temperatures, commercially available electrode materials for lithium-ion batteries do not fully meet the energy and power requirements for NASA fs exploration activities. The composite cathode under development is projected to provide the required energy and power densities at low temperatures and its usage will considerably reduce the overall volume and weight of the battery pack. The newly developed composite electrode material can provide superior electrochemical performance relative to a commercially available lithium cobalt system. One advantage of using a composite cathode is its higher energy density, which can lead to smaller and lighter battery packs. In the current program, different series of layered-spinel composite materials with at least two different systems in an integrated structure were synthesized, and the volumetric and gravimetric energy densities were evaluated. In an integrated network of a composite electrode, the effect of the combined structures is to enhance the capacity and power capabilities of the material to levels greater than what is possible in current state-of-the-art cathode systems. The main objective of the current program is to implement a novel cathode material that meets NASA fs low temperature energy density requirements. An important feature of the composite cathode is that it has at least two components (e.g., layered and spinel) that are structurally integrated. The layered material by itself is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated, thereby delivering a large amount of energy with stable cycling. A key aspect of the innovation has been the development of a scalable process to produce submicronand micron-scale particles of these composite materials. An additional advantage of using such a composite electrode material is its low irreversible loss (.5%), which is primarily due to the unique activation of the composite. High columbic efficiency (greater than 99%) upon cycling may indicate the formation of a stable SEI (solid-electrolyte interface) layer, which can contribute to long cycle life. The innovation in the current program, when further developed, will enable the system to maintain high energy and power densities at low temperatures, improve efficiency, and further stabilize and enhance the safety of the cell.

  11. Performance and Structural Evolution of Nano-Scale Infiltrated Solid Oxide Fuel Cell Cathodes

    NASA Astrophysics Data System (ADS)

    Call, Ann Virginia

    Nano-structured mixed ionic and electronic conducting (MIEC) materials have garnered intense interest in electrode development for solid oxide fuel cells due to their high surface areas which allow for effective catalytic activity and low polarization resistances. In particular, composite solid oxide fuel cell (SOFC) cathodes consisting of ionic conducting scaffolds infiltrated with MIEC nanoparticles have exhibited some of the lowest reported polarization resistances. In order for cells utilizing nanostructured moRPhologies to be viable for commercial implementation, more information on their initial performance and long term stability is necessary. In this study, symmetric cell cathodes were prepared via wet infiltration of Sr0.5Sm 0.5CoO3 (SSC) nano-particles via a nitrate process into porous Ce0.9Gd0.1O1.95 (GDC) scaffolds to be used as a model system to investigate performance and structural evolution. Detailed analysis of the cells and cathodes was carried out using electrochemical impedance spectroscopy (EIS). Initial polarization resistances (RP) as low as 0.11 O cm2 at 600ºC were obtained for these SSC-GDC cathodes, making them an ideal candidate for studying high performance nano-structured electrodes. The present results show that the infiltrated cathode microstructure has a direct impact on the initial performance of the cell. Small initial particle sizes and high infiltration loadings (up to 30 vol% SSC) improved initial RP. A simple microstructure-based electrochemical model successfully explained these trends in RP. Further understanding of electrode performance was gleaned from fitting EIS data gathered under varying temperatures and oxygen partial pressures to equivalent circuit models. Both RQ and Gerischer impedance elements provided good fits to the main response in the EIS data, which was associated with the combination of oxygen surface exchange and oxygen diffusion in the electrode. A gas diffusion response was also observed at relatively low pO2. The cells were subjected to life testing at temperatures between 650°C and 800°C for as long as 1500 h. EIS measurements, carried out periodically during the life tests, were done in air at 600°C, a typical expected intermediate-temperature SOFC operating temperature. These were accelerated tests because the aging temperatures > 600ºC should accelerate most degradation processes such as nano-particle coarsening. Long-term RP versus time data was fitted to a combined surface resistance and coarsening kinetics model, and a t0.25 power law coarsening model was found to provide the best fits to the data, suggesting that surface diffusion is the dominant mass transport pathway in SSC-GDC infiltrated cathodes. That is, cathode degradation was due primarily to the coarsening-induced decrease in active SSC surface area. Scanning electron microscopy (SEM) performed after electrochemical life testing confirmed the extent of coarsening of the SSC nanoparticles. The model is used to make predictions regarding long-term stability of infiltrated SSC electrodes, and is also compared with prior results on a similar perovskite MIEC electrode, LSCF. An important new finding is that increasing infiltration loadings yields a marked decrease in the long term degradation rate. Predictions based on accelerated life tests found the lowest possible operating temperature while achieving a degradation rate of 0.5% per kh is 595°C, corresponding to an initial particle size of 40 nm.

  12. Electrochemical properties and electrocatalytic activity of conducting polymer/copper nanoparticles supported on reduced graphene oxide composite

    NASA Astrophysics Data System (ADS)

    Ehsani, Ali; Jaleh, Babak; Nasrollahzadeh, Mahmoud

    2014-07-01

    Reduced graphene oxide (rGO) was used to support Cu nanoparticles. As electro-active electrodes for supercapacitors composites of reduced graphene oxide/Cu nanoparticles (rGO/CuNPs) and polytyramine (PT) with good uniformity are prepared by electropolymerization. Composite of rGO/CuNPs-PT was synthesized by cyclic voltammetry (CV) methods and electrochemical properties of film were investigated by using electrochemical techniques. The results show that, the rGO/CuNPs-PT/G has better capacitance performance. This is mainly because of the really large surface area and the better electronic and ionic conductivity of rGO/CuNPs-PT/G, which lead to greater double-layer capacitance and faradic pseudo capacitance. Modified graphite electrodes (rGO/CuNPs-PT/G) were examined for their redox process and electrocatalytic activities towards the oxidation of methanol in alkaline solutions. The methods of cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) were employed. In comparison with a Cu-PT/G (Graphite), rGO/CuNPs-PT/G modified electrode shows a significantly higher response for methanol oxidation. A mechanism based on the electro-chemical generation of Cu(III) active sites and their subsequent consumptions by methanol have been discussed.

  13. Nanoporous carbon derived from agro-waste pineapple leaves for supercapacitor electrode

    NASA Astrophysics Data System (ADS)

    Sodtipinta, Jedsada; Amornsakchai, Taweechai; Pakawatpanurut, Pasit

    2017-09-01

    By using KOH as the chemical activating agent in the synthesis, the activated carbon derived from pineapple leaf fiber (PALF) was prepared. The structure, morphology, and the surface functional groups of the as-prepared activated carbon were investigated using x-ray diffraction, field emission scanning electron microscope equipped with energy dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy. The electrochemical behavior and performance of the as-synthesized activated carbon electrode were measured using the cyclic voltammetry and the electrochemical impedance spectroscopy in 1 M Na2SO4 electrolyte solution in three-electrode setup. The activated carbon electrode exhibited the specific capacitance of 131.3 F g-1 at a scan rate of 5 mV s-1 with excellent cycling stability. The capacitance retention after 1000 cycles was about 97% of the initial capacitance at a scan rate of 30 mV s-1. Given these good electrochemical properties along with the high abundance of PALF, this activated carbon electrode has the potential to be one of the materials for future large-scale production of the electrochemical capacitors. Invited talk at 5th Thailand International Nanotechnology Conference (Nano Thailand-2016), 27-29 November 2016, Nakhon Ratchasima, Thailand.

  14. Different copolymer films on ZnFeCo particles: Synthesis and anticorrosion properties

    NASA Astrophysics Data System (ADS)

    Ozyilmaz, A. Tuncay; Avsar, Busra; Ozyilmaz, Gul; Karahan, İ. Hakkı; Camurcu, Taskin; Colak, Fatma

    2014-11-01

    Zinc-iron-cobalt (ZnFeCo) particles were electrochemically deposited on carbon steel (CS) electrode applying current of 3 mA with chronopotentiometry technique. ZnFeCo particles had homogenous, smooth with prismatic structure. It was shown that the ZnFeCo particles exhibited important barrier effect on CS substrate. Poly(aniline-co-o-anisidine), poly(aniline-co-pyrrole), poly(aniline-co-N-methylpyrrole) and poly(o-anisidine-co-pyrrole) copolymer films were obtained on CS/ZnFeCo electrode. Evaluation of anticorrosion performance of copolymer coatings in 3.5% NaCl solution was investigated by using AC impedance spectroscopy (EIS) technique, anodic polarization and the Eocp-time curves. Copolymer films exhibited significant physical barrier behavior on ZnFeCo plated carbon steel, in longer exposure time.

  15. Highly Sensitive and Selective Immuno-capture/Electrochemical Assay of Acetylcholinesterase Activity in Red Blood Cells: A Biomarker of Exposure to Organophosphorus Pesticides and Nerve Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Aiqiong; Du, Dan; Lin, Yuehe

    Acetylcholinesterase (AChE) enzyme activity in red blood cells (RBCs) is a useful biomarker for biomonitoring of exposures to organophosphorus (OP) pesticides and chemical nerve agents. In this paper, we reported a new method for AChE activity assay based on selective immuno-capture of AChE from biological samples followed by enzyme activity assay of captured AChE using a disposable electrochemical sensor. The electrochemical sensor is based on multiwalled carbon nanotubes-gold nanocomposites (MWCNTs-Au) modified screen printed carbon electrode (SPCE). Upon the completion of immunoreaction, the target AChE (including active and inhibited) is captured onto the electrode surface and followed by an electrochemical detectionmore » of enzymatic activity in the presence of acetylthiocholine. A linear response is obtained over standard AChE concentration range from 0.1 to 10 nM. To demonstrate the capability of this new biomonitoring method, AChE solutions dosed with different concentration of paraoxon were used to validate the new AChE assay method. AChE inhibition in OP dosed solutions was proportional to its concentration from 0.2 to 50 nM. The new AChE activity assay method for biomonitoring of OP exposure was further validated with in-vitro paraoxon-dosed RBC samples. The established electrochemical sensing platform for AChE activity assay not only avoids the problem of overlapping substrate specificity with esterases by using selective antibody, but also eliminates potential interference from other electroactive species in biological samples. It offers a new approach for sensitive, selective, and rapid AChE activity assay for biomonitoring of exposures to OPs.« less

  16. Morphology controlled synthesis of platinum nanoparticles performed on the surface of graphene oxide using a gas-liquid interfacial reaction and its application for high-performance electrochemical sensing.

    PubMed

    Bai, Wushuang; Sheng, Qinglin; Zheng, Jianbin

    2016-07-21

    In this paper, we report a novel morphology-controlled synthetic method. Platinum (Pt) nanoparticles with three kinds of morphology (aggregation-like, cube-like and globular) were grown on the surface of graphene oxide (GO) using a simple gas-liquid interfacial reaction and Pt/GO nanocomposites were obtained successfully. According to the experimental results, the morphology of the Pt nanoparticles can be controlled by adjusting the reaction temperature with the protection of chitosan. The obtained Pt/GO nanocomposites were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD) and fourier transform infrared spectroscopy (FTIR). Then the Pt/GO nanocomposites with the three kinds of morphology were all used to fabricate electrochemical sensors. The electrochemical experimental results indicated that compared with various reported electrochemical sensors, the Pt/GO modified sensors in this work exhibit a low detection limit, high sensitivity and an extra wide linear range for the detection of nitrite. In addition, the synthesis of Pt particles based on a gas-liquid interfacial reaction provides a new platform for the controllable synthesis of nanomaterials.

  17. Toward quantitative electrochemical measurements on the nanoscale by scanning probe microscopy: environmental and current spreading effects.

    PubMed

    Arruda, Thomas M; Kumar, Amit; Jesse, Stephen; Veith, Gabriel M; Tselev, Alexander; Baddorf, Arthur P; Balke, Nina; Kalinin, Sergei V

    2013-09-24

    The application of electric bias across tip-surface junctions in scanning probe microscopy can readily induce surface and bulk electrochemical processes that can be further detected though changes in surface topography, Faradaic or conductive currents, or electromechanical strain responses. However, the basic factors controlling tip-induced electrochemical processes, including the relationship between applied tip bias and the thermodynamics of local processes, remains largely unexplored. Using the model Li-ion reduction reaction on the surface in Li-ion conducting glass ceramic, we explore the factors controlling Li-metal formation and find surprisingly strong effects of atmosphere and back electrode composition on the process. We find that reaction processes are highly dependent on the nature of the counter electrode and environmental conditions. Using a nondepleting Li counter electrode, Li particles could grow significantly larger and faster than a depleting counter electrode. Significant Li ion depletion leads to the inability for further Li reduction. Time studies suggest that Li diffusion replenishes the vacant sites after ∼12 h. These studies suggest the feasibility of SPM-based quantitative electrochemical studies under proper environmental controls, extending the concepts of ultramicroelectrodes to the single-digit nanometer scale.

  18. Review-Physicochemical hydrodynamics of gas bubbles in two phase electrochemical systems.

    PubMed

    Taqieddin, Amir; Nazari, Roya; Rajic, Ljiljana; Alshawabkeh, Akram

    2017-01-01

    Electrochemical systems suffer from poor management of evolving gas bubbles. Improved understanding of bubbles behavior helps to reduce overpotential, save energy and enhance the mass transfer during chemical reactions. This work investigates and reviews the gas bubbles hydrodynamics, behavior, and management in electrochemical cells. Although the rate of bubble growth over the electrode surface is well understood, there is no reliable prediction of bubbles break-off diameter from the electrode surface because of the complexity of bubbles motion near the electrode surface. Particle Image Velocimetry (PIV) and Laser Doppler Anemometry (LDA) are the most common experimental techniques to measure bubble dynamics. Although the PIV is faster than LDA, both techniques are considered expensive and time-consuming. This encourages adapting Computational Fluid Dynamics (CFD) methods as an alternative to study bubbles behavior. However, further development of CFD methods is required to include coalescence and break-up of bubbles for better understanding and accuracy. The disadvantages of CFD methods can be overcome by using hybrid methods. The behavior of bubbles in electrochemical systems is still a complex challenging topic which requires a better understanding of the gas bubbles hydrodynamics and their interactions with the electrode surface and bulk liquid, as well as between the bubbles itself.

  19. A regenerating ultrasensitive electrochemical impedance immunosensor for the detection of adenovirus.

    PubMed

    Lin, Donghai; Tang, Thompson; Jed Harrison, D; Lee, William E; Jemere, Abebaw B

    2015-06-15

    We report on the development of a regenerable sensitive immunosensor based on electrochemical impedance spectroscopy for the detection of type 5 adenovirus. The multi-layered immunosensor fabrication involved successive modification steps on gold electrodes: (i) modification with self-assembled layer of 1,6-hexanedithiol to which gold nanoparticles were attached via the distal thiol groups, (ii) formation of self-assembled monolayer of 11-mercaptoundecanoic acid onto the gold nanoparticles, (iii) covalent immobilization of monoclonal anti-adenovirus 5 antibody, with EDC/NHS coupling reaction on the nanoparticles, completing the immunosensor. The immunosensor displayed a very good detection limit of 30 virus particles/ml and a wide linear dynamic range of 10(5). An electrochemical reductive desorption technique was employed to completely desorb the components of the immunosensor surface, then re-assemble the sensing layer and reuse the sensor. On a single electrode, the multi-layered immunosensor could be assembled and disassembled at least 30 times with 87% of the original signal intact. The changes of electrode behavior after each assembly and desorption processes were investigated by cyclic voltammetry, electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy techniques. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Toward High-Performance and Low-Cost Hydrogen Evolution Reaction Electrocatalysts: Nanostructuring Cobalt Phosphide (CoP) Particles on Carbon Fiber Paper.

    PubMed

    Yu, Shu Hearn; Chua, Daniel H C

    2018-05-02

    In this communication, we facily fabricated nanostructured CoP particles (150 to 200 nm) on carbon fiber paper (CFP) for hydrogen evolution reaction (HER) by a simple two-step process via a green route. In the first step, crystalline Co 3 O 4 nanocubes (150-200 nm) were loaded on CFP through a hydrothermal process at low temperature (120 °C). Interestingly, crystalline Co 3 O 4 nanocubes with a size 150-200 nm exhibited different growth mechanisms in contrast to the crystalline Co 3 O 4 nanocubes with a size <100 nm reported earlier. In the second step, these crystalline Co 3 O 4 nanocubes were converted to catalytically active CoP particles through chemical vapor deposition (CVD) phosphorization (denoted as CoP/CFP-H). Remarkably, CoP/CFP-H exhibited a low Tafel slope of 49.7 mV/dec and only required overpotentials of 128.1, 144.4, and 190.8 mV to drive geometric current densities of -10, -20, and -100 mA cm -2 , respectively. Besides, the CoP/CFP-H also demonstrated an excellent durability in an acidic environment under 2000 sweeps at a high scan rate (100 mV s -1 ) and a 24 h chronopotentiometry testing. For comparison, CoP was also fabricated through the electrodeposition method, followed by CVD phosphorization (denoted as CoP/CFP-E). It was found that the latter had exhibited inferior activity compared to CoP/CFP-H. The good performances of CoP/CFP-H are essentially due to the rational designs of electrode: (i) the applications of highly HER active CoP electrocatalyst, (ii) the intimate contact of nanostructured CoP on carbon fibers, and (iii) the large electrochemical surface area at electrocatalyst/electrolyte interface due to the large retaining of particles features after phosphorization. Notably, the intermediate Co 3 O 4 /CFP can serve as a platform to develop other cobalt-based functional materials.

Top