Sample records for electrochemically controlled pitting

  1. Pitting corrosion as a mixed system: coupled deterministic-probabilistic simulation of pit growth

    NASA Astrophysics Data System (ADS)

    Ibrahim, Israr B. M.; Fonna, S.; Pidaparti, R.

    2018-05-01

    Stochastic behavior of pitting corrosion poses a unique challenge in its computational analysis. However, it also stems from electrochemical activity causing general corrosion. In this paper, a framework for corrosion pit growth simulation based on the coupling of the Cellular Automaton (CA) and Boundary Element Methods (BEM) is presented. The framework assumes that pitting corrosion is controlled by electrochemical activity inside the pit cavity. The BEM provides the prediction of electrochemical activity given the geometrical data and polarization curves, while the CA is used to simulate the evolution of pit shapes based on electrochemical activity provided by BEM. To demonstrate the methodology, a sample case of local corrosion cells formed in pitting corrosion with varied dimensions and polarization functions is considered. Results show certain shapes tend to grow in certain types of environments. Some pit shapes appear to pose a higher risk by being potentially significant stress raisers or potentially increasing the rate of corrosion under the surface. Furthermore, these pits are comparable to commonly observed pit shapes in general corrosion environments.

  2. [Study on electrochemical mechanism of coronary stent used austenitic stainless steel in flowing artificial body fluid].

    PubMed

    Liang, Chenghao; Guo, Liang; Chen, Wan; Wang, Hua

    2005-08-01

    The electrochemical mechanism of austenitic stainless steel (SUS316L and SUS317L) coronary stents in flowing artificial body fluid has been investigated with electrochemical technologies. The results indicated that the flowing medium coursed the samples' pitting potential Eb shift negatively, increased the pitting corrosion sensitivity, accelerated its anodic dissolution, but had little effects on repassivated potential. The flowing environment had great effects on cathodic process. The oxygen reaction on the samples' surface became faster as the cathodic process was not controlled by oxygen diffusion but by mixed diffusion and electrochemical process. With the increase of velocity of solution, the pitting corrosion becomes liable to occur under this circumstance.

  3. A Comprehensive Pitting Study of High Velocity Oxygen Fuel Inconel 625 Coating by Using Electrochemical Testing Techniques

    NASA Astrophysics Data System (ADS)

    Niaz, Akbar; Khan, Sajid Ullah

    2016-01-01

    In the present work, Inconel 625 was coated on a mild steel substrate using a high velocity oxygen fuel coating process. The pitting propensity of the coating was tested by using open circuit potential versus time, potentiodynamic polarization, electrochemical potentiokinetic reactivation, and scanning electrochemical microscopy. The pitting propensity of the coating was compared with bulk Inconel 625 alloy. The results confirmed that there were regions of different electrochemical activities on the coating which have caused pitting corrosion.

  4. Selectable-Tip Corrosion-Testing Electrochemical Cell

    NASA Technical Reports Server (NTRS)

    Lomness, Janice; Hintze, Paul

    2008-01-01

    The figure depicts aspects of an electrochemical cell for pitting- corrosion tests of material specimens. The cell is designed to generate a region of corrosion having a pit diameter determined by the diameter of a selectable tip. The average depth of corrosion is controlled by controlling the total electric charge passing through the cell in a test. The cell is also designed to produce minimal artifacts associated with crevice corrosion. There are three selectable tips, having diameters of 0.1 in. (0.254 cm), 0.3 in. (0.762 cm), and 0.6 in. (1.524 cm), respectively.

  5. A Statistical Study on the Effect of Hydrostatic Pressure on Metastable Pitting Corrosion of X70 Pipeline Steel.

    PubMed

    Yang, Zixuan; Kan, Bo; Li, Jinxu; Qiao, Lijie; Volinsky, Alex A; Su, Yanjing

    2017-11-14

    Hydrostatic pressure effects on pitting initiation and propagation in X70 steel are investigated by evaluating metastable pitting probability using electrochemical methods and immersion corrosion tests in containing chlorine ion solution. Potentiodynamic tests indicated that hydrostatic pressure can decrease the breakdown potential and lead to a reduced transpassivity region. Metastable test results revealed that hydrostatic pressure can increase metastable pitting formation frequency and promote stabilization of metastable pitting growth. Electrochemical impedance spectroscopy (EIS) results indicate that Hydrostatic pressure decreases the charge transfer resistance and increases the dissolution rate within the cavities. Corrosion test results also indicated that pitting initiation and propagation are accelerated by hydrostatic pressure. Result validity was verified by evaluating metastable pitting to predict pitting corrosion resistance.

  6. A Statistical Study on the Effect of Hydrostatic Pressure on Metastable Pitting Corrosion of X70 Pipeline Steel

    PubMed Central

    Yang, Zixuan; Kan, Bo; Li, Jinxu; Su, Yanjing; Qiao, Lijie; Volinsky, Alex A.

    2017-01-01

    Hydrostatic pressure effects on pitting initiation and propagation in X70 steel are investigated by evaluating metastable pitting probability using electrochemical methods and immersion corrosion tests in containing chlorine ion solution. Potentiodynamic tests indicated that hydrostatic pressure can decrease the breakdown potential and lead to a reduced transpassivity region. Metastable test results revealed that hydrostatic pressure can increase metastable pitting formation frequency and promote stabilization of metastable pitting growth. Electrochemical impedance spectroscopy (EIS) results indicate that Hydrostatic pressure decreases the charge transfer resistance and increases the dissolution rate within the cavities. Corrosion test results also indicated that pitting initiation and propagation are accelerated by hydrostatic pressure. Result validity was verified by evaluating metastable pitting to predict pitting corrosion resistance. PMID:29135912

  7. Electrochemical and pitting corrosion resistance of AISI 4145 steel subjected to massive laser shock peening treatment with different coverage layers

    NASA Astrophysics Data System (ADS)

    Lu, J. Z.; Han, B.; Cui, C. Y.; Li, C. J.; Luo, K. Y.

    2017-02-01

    The effects of massive laser shock peening (LSP) treatment with different coverage layers on residual stress, pitting morphologies in a standard corrosive solution and electrochemical corrosion resistance of AISI 4145 steel were investigated by pitting corrosion test, potentiodynamic polarisation test, and SEM observations. Results showed massive LSP treatment can effectively cause an obvious improvement of pitting corrosion resistance of AISI 4145 steel, and increased coverage layer can also gradually improve its corrosion resistance. Massive LSP treatment with multiple layers was shown to influence pitting corrosion behaviour in a standard corrosive solution.

  8. Pitting Corrosion Behaviour of New Corrosion-Resistant Reinforcement Bars in Chloride-Containing Concrete Pore Solution

    PubMed Central

    Liu, Yao; Chu, Hong-yan; Wang, Danqian; Ma, Han; Sun, Wei

    2017-01-01

    In this study, the pitting behaviour of a new corrosion-resistant alloy steel (CR) is compared to that of low-carbon steel (LC) in a simulated concrete pore solution with a chloride concentration of 5 mol/L. The electrochemical behaviour of the bars was characterised using linear polarisation resistance (LPR) and electrochemical impedance spectroscopy (EIS). The pitting profiles were detected by reflective digital holographic microscopy (DHM), scanning electron microscopy (SEM), and the chemical components produced in the pitting process were analysed by X-ray energy dispersive spectroscopy (EDS). The results show that the CR bars have a higher resistance to pitting corrosion than the LC bars. This is primarily because of the periodic occurrence of metastable pitting during pitting development. Compared to the pitting process in the LC bars, the pitting depth grows slowly in the CR bars, which greatly reduces the risk of pitting. The possible reason for this result is that the capability of the CR bars to heal the passivation film helps to restore the metastable pits to the passivation state. PMID:28777327

  9. Chemical etching of stainless steel 301 for improving performance of electrochemical capacitors in aqueous electrolyte

    NASA Astrophysics Data System (ADS)

    Jeżowski, P.; Nowicki, M.; Grzeszkowiak, M.; Czajka, R.; Béguin, F.

    2015-04-01

    The main purpose of the study was to increase the surface roughness of stainless steel 301 current collectors by etching, in order to improve the electrochemical performance of electrical double-layer capacitors (EDLC) in 1 mol L-1 lithium sulphate electrolyte. Etching was realized in 1:3:30 (HNO3:HCl:H2O) solution with times varying up to 10 min. For the considered 15 μm thick foil and a mass loss around 0.4 wt.%, pitting was uniform, with diameter of pits ranging from 100 to 300 nm. Atomic force microscopy (AFM) showed an increase of average surface roughness (Ra) from 5 nm for the as-received stainless steel foil to 24 nm for the pitted material. Electrochemical impedance spectroscopy realized on EDLCs with coated electrodes either on as-received or pitted foil in 1 mol L-1 Li2SO4 gave equivalent distributed resistance (EDR) of 8 Ω and 2 Ω, respectively, demonstrating a substantial improvement of collector/electrode interface after pitting. Correlatively, the EDLCs with pitted collector displayed a better charge propagation and low ohmic losses even at relatively high current of 20 A g-1. Hence, chemical pitting of stainless steel current collectors is an appropriate method for optimising the performance of EDLCs in neutral aqueous electrolyte.

  10. Cyclic Polarization Behavior of ASTM A537-Cl.1 Steel in the Vapor Space Above Simulated Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiersma, B

    2004-11-01

    An assessment of the potential degradation mechanisms of Types I and II High-Level Waste (HLW) Tanks determined that pitting corrosion and stress corrosion cracking were the two most significant degradation mechanisms. Specifically, nitrate induced stress corrosion cracking was determined to be the principal degradation mechanism for the primary tank steel of non-stress relieved tanks. Controls on the solution chemistry have been in place to preclude the initiation and propagation of degradation in the tanks. However, recent experience has shown that steel not in contact with the bulk waste solution or slurry, but exposed to the ''vapor space'' above the bulkmore » waste, may be vulnerable to the initiation and propagation of degradation, including pitting and stress corrosion cracking. A program to resolve the issues associated with potential vapor space corrosion is in place. The objective of the program is to develop understanding of vapor space (VSC) and liquid/air interface (LAIC) corrosion to ensure a defensible technical basis to provide accurate corrosion evaluations with regard to vapor space and liquid/air interface corrosion (similar to current evaluations). There are several needs for a technically defensible basis with sufficient understanding to perform these evaluations. These include understanding of the (1) surface chemistry evolution, (2) corrosion response through coupon testing, and (3) mechanistic understanding through electrochemical studies. Experimentation performed in FY02 determined the potential for vapor space and liquid/air interface corrosion of ASTM A285-70 and ASTM A537-Cl.1 steels. The material surface characteristics, i.e. mill-scale, polished, were found to play a key role in the pitting response. The experimentation indicated that the potential for limited vapor space and liquid/air interface pitting exists at 1.5M nitrate solution when using chemistry controls designed to prevent stress corrosion cracking. Experimentation performed in FY03 quantified pitting rates as a function of material surface characteristics, including mill-scale and defects within the mill-scale. Testing was performed on ASTM A537-Cl.1 (normalized) steel, the material of construction of the Type III HLW tanks. The pitting rates were approximately 3 mpy for exposure above inhibited solutions, as calculated from the limited exposure times. This translates to a penetration time of 166 years for a 0.5-in tank wall provided that the pitting rate remains constant and the bulk solution chemistry is maintained within the L3 limit. The FY04 testing consisted of electrochemical testing to potentially lend insight into the surface chemistry and further understand the corrosion mechanism in the vapor space. Electrochemical testing lends insight into the corrosion processes through the determination of current potential relationships. The results of the electrochemical testing performed during FY04 are presented here.« less

  11. Electrochemical and passive behaviour of tin alloyed ferritic stainless steel in concrete environment

    NASA Astrophysics Data System (ADS)

    Luo, Hong; Su, Huaizhi; Li, Baosong; Ying, Guobing

    2018-05-01

    In the present work, the electrochemical behavior and semiconducting properties of a tin alloyed ferritic stainless steel in simulated concrete solution in presence of NaCl were estimated by conventional electrochemical methods such as potentiodynamic polarization, electrochemical impedance spectroscopy, and capacitance measurement (Mott-Schottky approach). The surface passive film was analyzed by X-ray photoelectron spectroscopy. The results revealed a good agreement between pitting corrosion, electrochemical behaviour, and electronic properties. The p and n-type bilayer structure passive film were observed. The increase of Sn4+ oxide species in the passive film shows no beneficial effects on the pitting corrosion. In addition, the dehydration of the passive film was further discussed.

  12. X-ray off-specular reflectivity studies of electrochemical pitting of Cu surfaces in sodium bicarbonate solution

    NASA Astrophysics Data System (ADS)

    Feng, Y. P.; Sinha, S. K.; Melendres, C. A.; Lee, D. D.

    1996-02-01

    We have studied the electrochemically-induced pitting process on a Cu electrode in NaHCO 3 solution using in-situ X-ray off-specular reflectivity measurements. The morphology and growth dynamics of the localized corrosion sites or pits were studied as the applied potential was varied from the cathodic region where the Cu surface is relatively free of oxide films to the anodic region where surface roughening occurs by general corrosion with concomitant formation of an oxide film. Quantitative analysis of the experimental results indicates that early pitting proceeds in favor of nucleation of pit clusters over individual pit growth. It was found that the lateral distribution of the pits is not random but exhibits a short-range order as evidenced by the appearance of a side peak in the transverse off-specular reflectivity. The position, height, and width of the peak was modeled to yield the average size, nearest-neighbor distance (within any one of the clusters), and over-all density of the pits averaged over the entire illuminated surface. In addition, measurements of the longitudinal off-specular reflectivity indicate a bimodal depth distribution for the pits, suggesting a “film breaking” type of pitting mechanism.

  13. Pitting corrosion inhibition of aluminum 2024 by Bacillus biofilms secreting polyaspartate or gamma-polyglutamate.

    PubMed

    Ornek, D; Jayaraman, A; Syrett, B C; Hsu, C-H; Mansfeld, F B; Wood, T K

    2002-04-01

    Pitting corrosion of aluminum 2024 in Luria Bertani medium was reduced by the secretion of anionic peptides by engineered and natural Bacillus biofilms and was studied in continuous reactors using electrochemical impedance spectroscopy. Compared to sterile controls, pitting was reduced dramatically by the presence of the biofilms. The secretion of a 20 amino acid polyaspartate peptide by an engineered Bacillus subtilis WB600/pBE92-Asp biofilm slightly reduced the corrosion rate of the passive aluminum alloy at pH 6.5; however, the secretion of gamma-polyglutamate by a Bacillus licheniformis biofilm reduced the corrosion rate by 90% (compared to the B. subtilis WB600/pBE92 biofilm which did not secrete polyaspartate or gamma-polyglutamate). The corrosion potential ( E(corr)) of aluminum 2024 was increased by about 0.15-0.44 V due to the formation of B. subtilis and B. licheniformis biofilms as compared to sterile controls. The increase of E(corr) and the observed prevention of pitting indicate that the pitting potential ( E(pit)) had increased. This result and the further decrease of corrosion rates for the passive aluminum alloy suggest that the rate of the anodic metal dissolution reaction was reduced by an inhibitor produced by the biofilms. Purified gamma-polyglutamate also decreased the corrosion rates of aluminum 2024.

  14. Passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solution

    NASA Astrophysics Data System (ADS)

    Luo, Hong; Su, Huaizhi; Dong, Chaofang; Li, Xiaogang

    2017-04-01

    In this paper, the passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solutions at different pH was evaluated by potentiodynamic measurements, electrochemical impedance spectroscopy. The composition of the passive film and surface morphology were investigated by X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), and scanning electron microscopy, respectively. The results reveal that metastable pitting susceptibility, stable pitting corrosion, and composition of the passive film are influenced by pH value. After long time immersion, a bilayer structure passive film can be formed in this environment. The appearance of molybdates on the outermost surface layer, further enhancing the stability of the passive film. Moreover, the good pitting corrosion resistance of 316L stainless steel in simulated concrete pore solution without carbonated is mainly due to the presence of high Cr/Fe ratio and molybdates ions within the passive film.

  15. The effect of oxide film properties on the corrosion behavior of SiC/Al metal-matrix composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golledge, S.L.

    1991-01-01

    Oxide growth on pure aluminum, aluminum alloy 6061, and the aluminum-based metal matrix composite SiC/AA6061 was studied, and the properties of the oxides related to the pit-initiation behavior of the materials. The objectives of the work were to identify the effect of alloying elements and SiC reinforcement on the oxide film, and to better understand how the oxide properties control pit initiation behavior. To this end, electrochemical and optical studies of the materials were carried out in a buffered sodium/boric acid solution at pH values of 8.4 and 7.2. The alloy and metal-matrix composite showed a slightly lesser tendency tomore » pit than pure aluminum, as measured by the pitting potential. The oxide on the composite was less resistant to pit initiation, and was found to exhibit slower repassivation rates than the other materials. The repassivation behavior and resistance to pit initiation were quite similar in the case of the alloy and the pure aluminum. Induction times for pit initiation were consistent with the predictions of Heusler's model for the breakdown of passivity.« less

  16. PH and Electrochemical Responsive Materials for Corrosion Smart Coating Applications

    NASA Technical Reports Server (NTRS)

    Li, Wenyan; Calle, Luz M.

    2008-01-01

    Corrosion is a costly issue for military operations and civil industries. While most corrosion initiates from localized corrosion form, such as pitting, failure directly caused by localized corrosion is the most dangerous kind, because it is difficult to anticipate and prevent, occurs very suddenly and can be catastrophic. One way of preventing these failures is with a coating that can detect and heal localized corrosion. pH and other electrochemical changes are often associated with localized corrosion, so it is expected that materials that are pH or otherwise electrochemical responsive can be used to detect and control corrosion. This paper will review various pH and electrochemical responsive materials and their potential applications in corrosion smart coatings. Current research results in this field will also be reported.

  17. Scanning electrochemical microscopy of precursor sites for pitting corrosion on titanium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casillas, N.; Charlebois, S.J.; Smyrl, W.H.

    1993-09-01

    Scanning electrochemical microscopy, SECM, of oxide-covered titanium foils ([approximately]50 [angstrom] oxide thickness) immersed in potassium bromide solutions is reported. Electrogeneration of bromine (2 Br[sup [minus

  18. Pitting Behavior of L415 Pipeline Steel in Simulated Leaching Liquid Environment

    NASA Astrophysics Data System (ADS)

    Wan, H. X.; Yang, X. J.; Liu, Z. Y.; Song, D. D.; Du, C. W.; Li, X. G.

    2017-02-01

    The corrosion behavior and laws of the west-east gas pressure pipeline of L415 steel were studied in simulated leaching liquid. The failure of the L415 steel during the pressure testing process was investigated using electrochemical polarization, electrochemical impedance spectroscopy, and immersion test. The corrosion rate of the L415 steel increased with ion concentration in the leaching liquid. This rate reached about 0.8 mm a-1 and belonged to the severe corrosion grade. Pitting corrosion was observed in various simulated solutions with different aggressive species concentrations. The original ion concentration in the leaching liquid (1×) is the key factor influencing pitting initiation and development. Pitting showed easy nucleation, and its growth rate was relatively slow, in the basic simulating solution of the leach liquid (i.e., the ion content is compactable to the real condition in the rust on the inner steel pipe surface). Pitting was also highly sensitive and easily grew in the solution with doubled ion concentration in the basic simulating solution (2×). A uniform corrosion, instead of pitting, mainly occurred when the ion concentration was up to 10× of the basic solution.

  19. Electrochemical Behavior of Al-B4C Metal Matrix Composites in NaCl Solution

    PubMed Central

    Han, Yu-Mei; Chen, X.-Grant

    2015-01-01

    Aluminum based metal matrix composites (MMCs) have received considerable attention in the automotive, aerospace and nuclear industries. One of the main challenges using Al-based MMCs is the influence of the reinforcement particles on the corrosion resistance. In the present study, the corrosion behavior of Al-B4C MMCs in a 3.5 wt.% NaCl solution were investigated using potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) techniques. Results indicated that the corrosion resistance of the composites decreased when increasing the B4C volume fraction. Al-B4C composite was susceptible to pitting corrosion and two types of pits were observed on the composite surface. The corrosion mechanism of the composite in the NaCl solution was primarily controlled by oxygen diffusion in the solution. In addition, the galvanic couples that formed between Al matrix and B4C particles could also be responsible for the lower corrosion resistance of the composites. PMID:28793574

  20. Use of Electrochemical Noise (EN) Technique to Study the Effect of sulfate and Chloride Ions on Passivation and Pitting Corrosion Behavior of 316 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Pujar, M. G.; Anita, T.; Shaikh, H.; Dayal, R. K.; Khatak, H. S.

    2007-08-01

    In the present paper, studies were conducted on AISI Type 316 stainless steel (SS) in deaerated solutions of sodium sulfate as well as sodium chloride to establish the effect of sulfate and chloride ions on the electrochemical corrosion behavior of the material. The experiments were conducted in deaerated solutions of 0.5 M sodium sulfate as well as 0.5 M sodium chloride using electrochemical noise (EN) technique at open circuit potential (OCP) to collect the correlated current and potential signals. Visual records of the current and potential, analysis of data to arrive at the statistical parameters, spectral density estimation using the maximum entropy method (MEM) showed that sulfate ions were incorporated in the passive film to strengthen the same. However, the adsorption of chloride ions resulted in pitting corrosion thereby adversely affecting noise resistance ( R N). Distinct current and potential signals were observed for metastable pitting, stable pitting and passive film build-up. Distinct changes in the values of the statistical parameters like R N and the spectral noise resistance at zero frequency ( R°SN) revealed adsorption and incorporation of sulfate and chloride ions on the passive film/solution interface.

  1. Evaluation of Delamination of X80 Pipeline Steel Coating Under Alternating Stray Current Via Scanning Electrochemical Microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Xinhua; Liu, Qiang; Chun, Yingchun; Li, Yingchao; Wang, Zuquan

    2018-04-01

    The delamination of epoxy coating on X80 pipeline steel was evaluated under various stray alternating current (AC) interferences (0-300 A/m2). Qualitative and quantitative analyses were carried out using scanning electrochemical microscopy (SECM), electrochemical impedance spectroscopy (EIS), and three-dimensional digital microscopy. The results show that the SECM current is directly proportional to the soaking time and applied current density. The variation in SECM current curve shape indicates the delamination distance of epoxy coatings at the defect area. The depths of corrosion pits at 50, 100, and 300 A/m2 stray currents were 140, 160, and 240 μm, respectively. The corrosion pits also became wider with increasing current densities. With increasing stray AC densities, both the coating delamination and pit depth became more severe at the same soaking time. The EIS results show that the change in impedance was not significant without stray current, whereas the impedance first decreased and then increased when stray current was applied. These results are consistent with the SECM measurements.

  2. Passivation Dynamics in the Anisotropic Deposition and Stripping of Bulk Magnesium Electrodes During Electrochemical Cycling.

    PubMed

    Wetzel, David J; Malone, Marvin A; Haasch, Richard T; Meng, Yifei; Vieker, Henning; Hahn, Nathan T; Gölzhäuser, Armin; Zuo, Jian-Min; Zavadil, Kevin R; Gewirth, Andrew A; Nuzzo, Ralph G

    2015-08-26

    Although rechargeable magnesium (Mg) batteries show promise for use as a next generation technology for high-density energy storage, little is known about the Mg anode solid electrolyte interphase and its implications for the performance and durability of a Mg-based battery. We explore in this report passivation effects engendered during the electrochemical cycling of a bulk Mg anode, characterizing their influences during metal deposition and dissolution in a simple, nonaqueous, Grignard electrolyte solution (ethylmagnesium bromide, EtMgBr, in tetrahydrofuran). Scanning electron microscopy images of Mg foil working electrodes after electrochemical polarization to dissolution potentials show the formation of corrosion pits. The pit densities so evidenced are markedly potential-dependent. When the Mg working electrode is cycled both potentiostatically and galvanostatically in EtMgBr these pits, formed due to passive layer breakdown, act as the foci for subsequent electrochemical activity. Detailed microscopy, diffraction, and spectroscopic data show that further passivation and corrosion results in the anisotropic stripping of the Mg {0001} plane, leaving thin oxide-comprising passivated side wall structures that demark the {0001} fiber texture of the etched Mg grains. Upon long-term cycling, oxide side walls formed due to the pronounced crystallographic anisotropy of the anodic stripping processes, leading to complex overlay anisotropic, columnar structures, exceeding 50 μm in height. The passive responses mediating the growth of these structures appear to be an intrinsic feature of the electrochemical growth and dissolution of Mg using this electrolyte.

  3. Corrosion behavior of high-nickel and chromium alloys in natural Baltic seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birn, J.; Janik-Czachor, M.; Wolowik, A.

    Effect of Cl{sup {minus}} ion concentration (O M sodium chloride [NaCl] to 2 M NaCl) and temperature (25 C to 75 C) on stability of the passive state of high-Ni and Cr alloys: NI-1 ({approximately} 16% Mo), CR-2 ({approximately} 6.2% Mo), and NI-3 (3.5% Mo) were investigated in acidic and neutral electrolytes in strictly controlled electrochemical conditions. The anodic behavior of the alloys appeared to depend mostly upon Mo content in the alloy. Thus, the NI-1 was the most stable alloy under the applied experimental conditions. The other alloys were also quite resistant, undergoing pitting only at elevated temperatures, atmore » high anodic potentials, and at a chloride concentration not lower than 1 M. In natural Baltic seawater, these alloys did not exhibit any tendency to pitting, in qualitative agreement with the accelerated electrochemical tests. Complementary microscopic and surface analytical (AES) investigations were carried out to correlate the anodic and corrosion behavior of these materials with their composition and structure, and the composition of the passivating films formed at their surfaces.« less

  4. Determination of precursor sites for pitting corrosion of polycrystalline titanium by using different techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garfias-Mesias, L.F.; Alodan, M.; James, P.I.

    1998-06-01

    Scanning electrochemical microscopy (SECM) in ferrocyanide and bromide solutions was used to locate active sites (pitting precursors) on polycrystalline Ti where oxidation of Br{sup {minus}} and Fe(CN){sub 6}{sup 4{minus}} was possible. Analysis of the electrochemically active sites was done by using electron microscopy (SEM), energy dispersive X-ray analysis (EDX), atomic force microscopy (AFM), and in situ confocal laser scanning microscopy (CLSM). In most cases, the active sites were found to be associated with particles (inclusions) which contained mainly Al and Si; however, some other areas not associated with particles were also found to be active. Although the size of themore » inclusions was normally smaller than 20 {micro}m, as revealed by SEM and AFM imaging, in some cases larger particles were also found. Pitting corrosion tests in bromide solution at potentials above 1.5 V{sub SCE} followed by EDX analysis inside the pits and in situ CLSM observation, confirmed that most of the localized attack started in the areas where particles had been located.« less

  5. Corrosion effect of Bacillus cereus on X80 pipeline steel in a Beijing soil environment.

    PubMed

    Wan, Hongxia; Song, Dongdong; Zhang, Dawei; Du, Cuiwei; Xu, Dake; Liu, Zhiyong; Ding, De; Li, Xiaogang

    2018-06-01

    The corrosion of X80 pipeline steel in the presence of Bacillus cereus (B. cereus) was studied through electrochemical and surface analyses and live/dead staining. Scanning electron microscopy and live/dead straining results showed that a number of B. cereus adhered to the X80 steel. Electrochemical impedance spectroscopy showed that B. cereus could accelerate the corrosion of X80 steel. In addition, surface morphology observations indicated that B. cereus could accelerate pitting corrosion in X80 steel. The depth of the largest pits due to B. cereus was approximately 11.23μm. Many pits were found on the U-shaped bents and cracks formed under stress after 60days of immersion in the presence of B. cereus. These indicate that pitting corrosion can be accelerated by B. cereus. X-ray photoelectron spectroscopy results revealed that NH 4 + existed on the surface of X80 steel. B. cereus is a type of nitrate-reducing bacteria and hence the corrosion mechanism of B. cereus may involve nitrate reduction on the X80 steel. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Electrochemical analysis of the corrosion inhibition effect of trypsin complex on the pitting corrosion of 420 martensitic stainless steel in 2M H2SO4 solution.

    PubMed

    Loto, Roland Tolulope

    2018-01-01

    Inhibition effect of trypsin complex (TC) on the pitting corrosion of martensitic stainless steel (type 420) in 1M H2SO4 solution was studied with potentiodynamic polarization, open circuit potential measurement and optical microscopy. TC reduced the corrosion rate of the steel with maximum inhibition efficiency of 80.75%. Corrosion potential shifted anodically due to the electrochemical action of TC. The pitting potential increased from 1.088VAg/AgCl (3M) at 0% TC to 1.365VAg/AgCl(3M) at 4% TC. TC shifts the open circuit corrosion potential from -0.270s at 0% TC concentration to -0.255V at 5% TC. The compound completely adsorbed onto the steel according to Langmuir, Frumkin and Temkin isotherms. ATF-FTIR spectroscopy confirmed the inhibition mode to be through surface coverage. Thermodynamic calculations showed physisorption molecular interaction. Corrosion pits are present on the uninhibited 420 morphology in comparison to TC inhibited surface which slightly deteriorated.

  7. Electrochemical analysis of the corrosion inhibition effect of trypsin complex on the pitting corrosion of 420 martensitic stainless steel in 2M H2SO4 solution

    PubMed Central

    Loto, Roland Tolulope

    2018-01-01

    Inhibition effect of trypsin complex (TC) on the pitting corrosion of martensitic stainless steel (type 420) in 1M H2SO4 solution was studied with potentiodynamic polarization, open circuit potential measurement and optical microscopy. TC reduced the corrosion rate of the steel with maximum inhibition efficiency of 80.75%. Corrosion potential shifted anodically due to the electrochemical action of TC. The pitting potential increased from 1.088VAg/AgCl (3M) at 0% TC to 1.365VAg/AgCl(3M) at 4% TC. TC shifts the open circuit corrosion potential from -0.270s at 0% TC concentration to -0.255V at 5% TC. The compound completely adsorbed onto the steel according to Langmuir, Frumkin and Temkin isotherms. ATF-FTIR spectroscopy confirmed the inhibition mode to be through surface coverage. Thermodynamic calculations showed physisorption molecular interaction. Corrosion pits are present on the uninhibited 420 morphology in comparison to TC inhibited surface which slightly deteriorated. PMID:29672541

  8. Pitting corrosion resistance of nickel-titanium rotary instruments with different surface treatments in seventeen percent ethylenediaminetetraacetic Acid and sodium chloride solutions.

    PubMed

    Bonaccorso, Antonio; Tripi, Teresa Roberta; Rondelli, Gianni; Condorelli, Guglielmo Guido; Cantatore, Giuseppe; Schäfer, Edgar

    2008-02-01

    This study evaluated the pitting corrosion resistance of nickel-titanium (NiTi) rotary instruments with different surface treatments in 17% ethylenediaminetetraacetic acid (EDTA) and NaCl solutions. Electropolished RaCe instruments were allocated to group A, non-electropolished RaCe instruments to group B, and physical vapor deposition (PVD)-coated Alpha files to group C (10 instruments per group). Electrochemical measurements were carried out by using a potentiostat for galvanic current measurements. On the basis of electrochemical tests, no localized corrosion problems are to be expected in EDTA. In NaCl, pitting potential occurred at higher values for the electropolished and PVD instruments, indicating an increased corrosion resistance. There appears to be a risk of corrosion for NiTi instruments without surface treatments in contact with NaCl. NiTi files with PVD and electropolishing surface treatments showed an increase corrosion resistance.

  9. Chronoamperometric study of mild steel pitting in sodium sulfide aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otero, T.F.; Achucarro, C.

    1994-08-01

    Mild steel samples were studied by chronoamperometry in sodium sulfide (Na[sub 2]S) aqueous solution. Pit nucleation and growth also were monitored by optical microscopy. The influence of variables such as temperature, polarization potential, surface roughness, the presence of electrochemically generated oxide layers, and the simultaneous presence of potassium hydroxide (KOH) was studied. The influence of each parameter on pit shape and growth was reviewed. Different reactions and competitive processes were proposed based on the experimental results.

  10. In situ nano- to microscopic imaging and growth mechanism of electrochemical dissolution (e.g., corrosion) of a confined metal surface

    PubMed Central

    Merola, C.; Cheng, H.-W.; Schwenzfeier, K.; Kristiansen, K.; Chen, Y.-J.; Dobbs, H. A.; Valtiner, M.

    2017-01-01

    Reactivity in confinement is central to a wide range of applications and systems, yet it is notoriously difficult to probe reactions in confined spaces in real time. Using a modified electrochemical surface forces apparatus (EC-SFA) on confined metallic surfaces, we observe in situ nano- to microscale dissolution and pit formation (qualitatively similar to previous observation on nonmetallic surfaces, e.g., silica) in well-defined geometries in environments relevant to corrosion processes. We follow “crevice corrosion” processes in real time in different pH-neutral NaCl solutions and applied surface potentials of nickel (vs. Ag|AgCl electrode in solution) for the mica–nickel confined interface of total area ∼0.03 mm2. The initial corrosion proceeds as self-catalyzed pitting, visualized by the sudden appearance of circular pits with uniform diameters of 6–7 μm and depth ∼2–3 nm. At concentrations above 10 mM NaCl, pitting is initiated at the outer rim of the confined zone, while below 10 mM NaCl, pitting is initiated inside the confined zone. We compare statistical analysis of growth kinetics and shape evolution of individual nanoscale deep pits with estimates from macroscopic experiments to study initial pit growth and propagation. Our data and experimental techniques reveal a mechanism that suggests initial corrosion results in formation of an aggressive interfacial electrolyte that rapidly accelerates pitting, similar to crack initiation and propagation within the confined area. These results support a general mechanism for nanoscale material degradation and dissolution (e.g., crevice corrosion) of polycrystalline nonnoble metals, alloys, and inorganic materials within confined interfaces. PMID:28827338

  11. Scanning Probe Investigation of Pitting Corrosion on Aluminum 5083 H131

    DTIC Science & Technology

    2014-05-01

    245–254. 10. Dolic, N.; Malina, J.; Begic Hadzipasic, A. Pit Nucleation on As-Cast Aluminum Alloy AW-5083 in 0.01M NaCl. Journal of Mining and...R. A.; Stratmann, M. Application of a Kelvin Microprobe to the Corrosion in Humid Atmospheres. J. Electrochem Soc. 1991, 138 (1), 55–61. 15

  12. Electrochemical Corrosion of Stainless Steel in Thiosulfate Solutions Relevant to Gold Leaching

    NASA Astrophysics Data System (ADS)

    Choudhary, Lokesh; Wang, Wei; Alfantazi, Akram

    2016-01-01

    This study aims to characterize the electrochemical corrosion behavior of stainless steel in the ammoniacal thiosulfate gold leaching solutions. Electrochemical corrosion response was investigated using potentiodynamic polarization and electrochemical impedance spectroscopy, while the semi-conductive properties and the chemical composition of the surface film were characterized using Mott-Schottky analysis and X-ray photoelectron spectroscopy, respectively. The morphology of the corroded specimens was analyzed using scanning electron microscopy. The stainless steel 316L showed no signs of pitting in the ammoniacal thiosulfate solutions.

  13. Effect of molybdenum ion implantation of the pitting corrosion of depleted uranium - 0.75 titanium alloy. (Reannouncement with new availability information). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei, K.S.; Chang, F.; Levy, M.

    1993-07-01

    Pitting corrosion of molybdenum-ion-implanted, depleted uranium -0 75 Ti (DU -0 75 Ti) has been studied electrochemically in acidic, neutral, and alkaline solutions containing sodium chloride, and the results have been compared to those of the unimplanted DU -0 75 Ti. The data show that Mo implantation shifts the pitting potential of DU -0 75 Ti in the noble direction in acidic and alkaline solutions. In neutral 50 ppm Cl- solution, however, there is no beneficial effect of Mo implantation. Auger analysis studies show that before exposure to the solutions, all the molybdenum is in the oxide, which is approximatelymore » l000 A thick. After electrochemical scans in the acidic and alkaline chloride solutions, most of the Mo disappears from the oxide. However, no decrease in Mo concentration is found after exposure in neutral chloride solution. It is proposed that the implanted molybdenum dissolves in the acidic and alkaline solutions and forms simple or complex molybdates that inhibit pitting corrosion. The implanted molybdenum does not dissolve in the neutral chloride solution and inhibition does not occur.« less

  14. Correlation between evolution of inclusions and pitting corrosion in 304 stainless steel with yttrium addition.

    PubMed

    Shi, Weining; Yang, Shufeng; Li, Jingshe

    2018-03-19

    Effects of the evolution of inclusions on the pitting corrosion resistance of 304 stainless steel with different contents of the rare-earth element yttrium (Y) were studied using thermodynamic calculations, accelerated immersion tests, and electrochemical measurements. The experimental results showed that regular Y 2 O 3 inclusions demonstrated the best pitting resistance, followed in sequence by (Al,Mn)O inclusions, the composite inclusions, and irregular Y 2 O 3 inclusions. The pitting resistance first decreased, then increased, and then decreased again with increasing Y content, because sulfide inclusions were easily generated when the Y content was low and YN inclusions were easily generated at higher Y contents. The best pitting corrosion resistance was obtained for 304 stainless steel with addition of 0.019% Y.

  15. Geological and technological evaluation of gold-bearing mineral material after photo-electrochemical activation leaching

    NASA Astrophysics Data System (ADS)

    Manzyrev, DV

    2017-02-01

    The paper reports the lab test results on simulation of heap leaching of unoxidized rebellious ore extracted from deep levels of Pogromnoe open pit mine, with different flowsheets and photo-electrochemically activated solutions. It has been found that pre-treatment of rebellious ore particles -10 mm in size by photo-electrochemically activated solutions at the stage preceding agglomeration with the use of rich cyanide solutions enhances gold recovery by 6%.

  16. Accelerated corrosion of 2205 duplex stainless steel caused by marine aerobic Pseudomonas aeruginosa biofilm.

    PubMed

    Xu, Dake; Xia, Jin; Zhou, Enze; Zhang, Dawei; Li, Huabing; Yang, Chunguang; Li, Qi; Lin, Hai; Li, Xiaogang; Yang, Ke

    2017-02-01

    Microbiologically influenced corrosion (MIC) of 2205 duplex stainless steel (DSS) in the presence of Pseudomonas aeruginosa was investigated through electrochemical and surface analyses. The electrochemical results showed that P. aeruginosa significantly reduced the corrosion resistance of 2205 DSS. Confocal laser scanning microscopy (CLSM) images showed that the depths of the largest pits on 2205 DSS with and without P. aeruginosa were 14.0 and 4.9μm, respectively, indicating that the pitting corrosion was accelerated by P. aeruginosa. X-ray photoelectron spectroscopy (XPS) results revealed that CrO 3 and CrN formed on the 2205 DSS surface in the presence of P. aeruginosa. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. A potentiodynamic study of aluminum-lithium alloys in an aqueous sodium chloride environment

    NASA Technical Reports Server (NTRS)

    Tsao, C.-H. T.; Pizzo, P. P.

    1985-01-01

    The characteristics of the potentiodynamic curves for Al-Li alloys in 3.5 percent NaCl aqueous solution are explained and the electrochemical parameters of the potentiodynamic technique are correlated to observed pitting and intergranular cracking behavior. It is shown that the oxygen content of the sodium chloride electrolyte plays an important role in the electrochemical behavior of Al-Li alloys. The potentiodynamic behavior of the alloys is found to be insensitive to variation in compositional content and heat treatment, both of which affect the stress-corrosion behavior. Stringer oxide particle attack and random pitting are observed. It is shown that alternate-immersion exposure prior to potentiodynamic polarization may offer a means of assessing susceptibility to stress-corrosion cracking.

  18. Effects of chloride ion concentration and pH values on the corrosion behavior of Cr12Ni3Co12Mo4W ultra-high-strength martensitic stainless steel

    NASA Astrophysics Data System (ADS)

    Li, Hui-yan; Dong, Chao-fang; Xiao, Kui; Li, Xiao-gang; Zhong, Ping

    2016-11-01

    The effects of Cl- ion concentration and pH values on the corrosion behavior of Cr12Ni3Co12Mo4W ultra-high-strength martensitic stainless steel (UHSMSS) were investigated by a series of electrochemical tests combined with observations by stereology microscopy and scanning electron microscopy. A critical Cl- ion concentration was found to exist (approximately 0.1wt%), above which pitting occurred. The pitting potential decreased with increasing Cl- ion concentration. A UHSMSS specimen tempered at 600°C exhibited a better pitting corrosion resistance than the one tempered at 400°C. The corrosion current density and passive current density of the UHSMSS tempered at 600°C decreased with increasing pH values of the corrosion solution. The pits developed a shallower dish geometry with increasing polarization potential. A lacy cover on the pits of the UHSMSS tempered at 400°C accelerated pitting, whereas corrosion products deposited in the pits of the UHSMSS tempered at 600°C hindered pitting.

  19. Corrosion behavior in high heat input welded heat-affected zone of Ni-free high-nitrogen Fe–18Cr–10Mn–N austenitic stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Joonoh, E-mail: mjo99@kims.re.kr; Ha, Heon-Young; Lee, Tae-Ho

    2013-08-15

    The pitting corrosion and interphase corrosion behaviors in high heat input welded heat-affected zone (HAZ) of a metastable high-nitrogen Fe–18Cr–10Mn–N austenitic stainless steel were explored through electrochemical tests. The HAZs were simulated using Gleeble simulator with high heat input welding condition of 300 kJ/cm and the peak temperature of the HAZs was changed from 1200 °C to 1350 °C, aiming to examine the effect of δ-ferrite formation on corrosion behavior. The electrochemical test results show that both pitting corrosion resistance and interphase corrosion resistance were seriously deteriorated by δ-ferrite formation in the HAZ and their aspects were different with increasingmore » δ-ferrite fraction. The pitting corrosion resistance was decreased by the formation of Cr-depleted zone along δ-ferrite/austenite (γ) interphase resulting from δ-ferrite formation; however it didn't depend on δ-ferrite fraction. The interphase corrosion resistance depends on the total amount of Cr-depleted zone as well as ferrite area and thus continuously decreased with increasing δ-ferrite fraction. The different effects of δ-ferrite fraction on pitting corrosion and interphase corrosion were carefully discussed in terms of alloying elements partitioning in the HAZ based on thermodynamic consideration. - Highlights: • Corrosion behavior in the weld HAZ of high-nitrogen austenitic alloy was studied. • Cr{sub 2}N particle was not precipitated in high heat input welded HAZ of tested alloy. • Pitting corrosion and interphase corrosion show a different behavior. • Pitting corrosion resistance was affected by whether or not δ-ferrite forms. • Interphase corrosion resistance was affected by the total amount of δ-ferrite.« less

  20. Electrochemical studies on zirconium and its biocompatible alloys Ti-50Zr at.% and Zr-2.5Nb wt.% in simulated physiologic media.

    PubMed

    Oliveira, Nilson T C; Biaggio, Sonia R; Rocha-Filho, Romeu C; Bocchi, Nerilso

    2005-09-01

    Different electrochemical studies were carried out for Zr and its biocompatible alloys Ti-50Zr at.% and Zr-2.5Nb wt.% in solutions simulating physiologic media, Ringer and PBS (phosphate buffered saline) solutions. The results from rest-potential measurements showed that the three materials are spontaneously passivated in both solutions and that the Ti-50Zr alloy has the greatest tendency for spontaneous oxide formation. Some corrosion parameters (such as the pitting and repassivation potentials) were obtained via cyclic voltammetry in both solutions, revealing that the Ti-50Zr has the best corrosion protection while Zr has the worst. On the other hand, the pre-anodization (up to 8 V vs. SCE) of the alloys in a 0.15 mol/L Na2SO4 solution led to a significant improvement in their protection against pitting corrosion when exposed to the Ringer solution. Elemental analyses by EDX showed that during pitting corrosion, there is no preferential corrosion of any of the alloying elements (Zr, Ti, Nb). Copyright (c) 2005 Wiley Periodicals, Inc.

  1. Evaluating the improvement of corrosion residual strength by adding 1.0 wt.% yttrium into an AZ91D magnesium alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Qiang; Liu Yaohui, E-mail: liuyaohui2005@yahoo.com; Fang Shijie

    2010-06-15

    The influence of yttrium on the corrosion residual strength of an AZ91D magnesium alloy was investigated detailedly. Scanning electron microscope was employed to analyze the microstructure and the fractography of the studied alloys. The microstructure of AZ91D magnesium alloy is remarkably refined due to the addition of yttrium. The electrochemical potentiodynamic polarization curve of the studied alloy was performed with a CHI 660b electrochemical station in the three-electrode system. The result reveals that yttrium significantly promotes the overall corrosion resistance of AZ91D magnesium alloy by suppressing the cathodic reaction in corrosion process. However, the nucleation and propagation of corrosion pitsmore » on the surface of the 1.0 wt.% Y modified AZ91D magnesium alloy indicate that pitting corrosion still emerges after the addition of yttrium. Furthermore, stress concentration caused by corrosion pits should be responsible for the drop of corrosion residual strength although the addition of yttrium remarkably weakens the effect of stress concentration at the tip of corrosion pits in loading process.« less

  2. Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment.

    PubMed

    Xin, Yunchang; Huo, Kaifu; Tao, Hu; Tang, Guoyi; Chu, Paul K

    2008-11-01

    Various electrochemical approaches, including potentiodynamic polarization, open circuit potential evolution and electrochemical impedance spectroscopy (EIS), are employed to investigate the degradation behavior of biomedical magnesium alloy under the influence of aggressive ions, such as chloride, phosphate, carbonate and sulfate, in a physiological environment. The synergetic effects and mutual influence of these ions on the degradation behavior of Mg are revealed. Our results demonstrate that chloride ions can induce porous pitting corrosion. In the presence of phosphates, the corrosion rate decreases and the formation of pitting corrosion is significantly delayed due to precipitation of magnesium phosphate. Hydrogen carbonate ions are observed to stimulate the corrosion of magnesium alloy during the early immersion stage but they can also induce rapid passivation on the surface. This surface passivation behavior mainly results from the fast precipitation of magnesium carbonate in the corrosion product layer that can subsequently inhibit pitting corrosion completely. Sulfate ions are also found to stimulate magnesium dissolution. These results improve our understanding on the degradation mechanism of surgical magnesium in the physiological environment.

  3. The effect of tempering temperature on pitting corrosion resistance of 420 stainless steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anwar, Moch Syaiful, E-mail: moch026@lipi.go.id; Prifiharni, Siska, E-mail: sisk002@lipi.go.id; Mabruri, Efendi, E-mail: effe004@lipi.go.id

    2016-04-19

    The AISI Type 420 stainless steels are commonly used to steam generators, mixer blades, etc. These stainless steels are most prone to pitting in dissolved Cl{sup −} containing environments. In this paper, the effect of tempering temperature on pitting corrosion resistance of AISI Type 420 stainless steels was studied. The AISI Type 420 stainless steels specimens were heat treated at the temperature of 1050°C for 1 hour to reach austenite stabilization and then quench in the oil. After that, the specimens were tempered at the temperature of 150, 250, 350 and 450°C for 30 minutes and then air cooled tomore » the room temperature. The electrochemical potentiodynamic polarization test was conducted at 3.5% sodium chloride solution to evaluate corrosion rate and pitting corrosion behaviour. The Scanning Electron Microscope (SEM), Energy Dispersive X-Ray Spectroscopy (EDS) were used to evaluate the pitting corrosion product. The result have shown that highest pitting potential was found in the sample tempered at 250°C and corrosion pits were found to initiate preferentially around chromium carbides.« less

  4. Corrosion pitting and environmentally assisted small crack growth

    PubMed Central

    Turnbull, Alan

    2014-01-01

    In many applications, corrosion pits act as precursors to cracking, but qualitative and quantitative prediction of damage evolution has been hampered by lack of insights into the process by which a crack develops from a pit. An overview is given of recent breakthroughs in characterization and understanding of the pit-to-crack transition using advanced three-dimensional imaging techniques such as X-ray computed tomography and focused ion beam machining with scanning electron microscopy. These techniques provided novel insights with respect to the location of crack development from a pit, supported by finite-element analysis. This inspired a new concept for the role of pitting in stress corrosion cracking based on the growing pit inducing local dynamic plastic strain, a critical factor in the development of stress corrosion cracks. Challenges in quantifying the subsequent growth rate of the emerging small cracks are then outlined with the potential drop technique being the most viable. A comparison is made with the growth rate for short cracks (through-thickness crack in fracture mechanics specimen) and long cracks and an electrochemical crack size effect invoked to rationalize the data. PMID:25197249

  5. Surface monitoring for pitting evolution into uniform corrosion on Cu-Ni-Zn ternary alloy in alkaline chloride solution: ex-situ LCM and in-situ SECM

    NASA Astrophysics Data System (ADS)

    Kong, Decheng; Dong, Chaofang; Zheng, Zhaoran; Mao, Feixiong; Xu, Aoni; Ni, Xiaoqing; Man, Cheng; Yao, Jizheng; Xiao, Kui; Li, Xiaogang

    2018-05-01

    The evolution of the corrosion process on Cu-Ni-Zn alloy in alkaline chloride solution was investigated by in-situ scanning electrochemical microscopy, X-ray photoelectron spectroscopy, and ex-situ laser confocal microscopy, and the effects of ambient temperature and polarization time were also discussed. The results demonstrated a higher pitting nucleation rate and lower pit growth rate at low temperature. The ratio of pit depth to mouth diameter decreased with increasing pit volume and temperature, indicating that pits preferentially propagate in the horizontal direction rather than the vertical direction owing to the presence of corrosion products and deposited copper. The surface current was uniform and stabilized at approximately 2.2 nA during the passive stage, whereas the current increased after the pits were formed with the maximum approaching 3 nA. Increasing the temperature led to an increase in porous corrosion products (CuO, Zn(OH)2, and Ni(OH)2) and significantly increased the rate of transition from pitting to uniform corrosion. Dezincification corrosion was detected by energy dispersive spectrometry, and a mechanism for pitting transition into uniform corrosion induced by dezincification at the grain boundaries is proposed.

  6. An Electrochemical Processing Strategy for Improving Tribological Performance of Aisi 316 Stainless Steel Under Grease Lubrication

    NASA Astrophysics Data System (ADS)

    Zou, Jiaojuan; Li, Maolin; Lin, Naiming; Zhang, Xiangyu; Qin, Lin; Tang, Bin

    2014-12-01

    In order to improve the tribological performance of AISI 316 stainless steel (316 SS) under grease lubrication, electrochemical processing was conducted on it to obtain a rough (surface texturing-like) surface by making use of the high sensitivity of austenitic stainless steel to pitting corrosion in Cl--rich environment. Numerous corrosion pits or micro-ditches acted as micro-reservoirs on the obtained surface. While the grease could offer consistent lubrication, and then improve the tribological performance of 316 SS. Tribological behaviors of raw 316 SS and the treated sample were measured using a reciprocating type tribometer sliding against GCr15 steel counterpart under dry and grease lubrication conditions. The results showed that the mass losses of the two samples were in the same order of magnitude, and the raw sample exhibited lower friction coefficient in dry sliding. When the tests were conducted under grease lubrication condition, the friction coefficients and mass losses of the treated sample were far lower than those of the raw 316 SS. The tribological performance of 316 SS under grease lubrication was drastically improved after electrochemical processing.

  7. FINAL ANALYTICAL RESULTS FROM THE EXAMINATION OF CORROSION ON SECTIONS OF CORROSION PROBE REMOVED FROM TANK 241-AN-107 ON 08/10/2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DUNCAN JB; COOKE GA

    2007-03-22

    Tank Farms Operations removed an electrochemical noise probe from Tank 241-AN-107. In the field, the probe was cut into four sections, wrapped, and placed in a 55-gallon drum, This drum was delivered to the 222-S Laboratory. The 222 S Laboratory unpackaged the sections of the AN-107 electrochemical noise probe and examined the material for evidence of corrosion. Each of the four sections contained three C-ring and three bullet specimens. The specimens were examined for pitting corrosion, crevice corrosion, and stress corrosion cracking. No evidence of stress corrosion cracking was found in the stressed C-ring specimens. Minor pitting was evident onmore » some surfaces. Crevice corrosion was the dominant type of corrosion observed.« less

  8. Report on Electrochemcial Corrosion Testing of 241-SY-102 Grab Samples from the 2012 Grab Sampling Campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wyrwas, Richard B.; Lamothe, Margaret E.

    2013-05-30

    This report describes the results of the electrochemical testing performed on tank 241-SY-102 (SY-102) grab samples that were collected in support of corrosion mitigation. The objective of the work presented here was to determine corrosion resistance of tank SY-102 to the grab samples collected using electrochemical methods up to 50°C as well as to satisfy data quality objectives. Grab samples were collected at multiple elevations from Riser 003. The electrochemical corrosion testing was planned to consist of linear polarization resistance testing (LPR) and cyclic potentiodynamic polarization (CPP) testing at 50°C. The temperature would be lowered to 40 °C and themore » test repeated if the CPP curve indicated pitting corrosion at 50°C. Ifno pitting was indicated by the CPP curve, then a duplicate scan would be repeated at 50°C to confirm the first result. The testing would be complete if the duplicate CPP scan was consistent with the first. This report contains the CPP results of the testing of grab sample 2SY-12-03 and 2SY-12-03DUP composite sample tested under these conditions. There was no indication of pitting at 50°C, and the duplicate scan was in agreement with the first scan. Since no further testing was required, a third scan with a shorter rest time was performed and is present in this report.« less

  9. Effect of Molybdenum on the Corrosion Behavior of High-Entropy Alloys CoCrFeNi 2 and CoCrFeNi 2 Mo 0.25 under Sodium Chloride Aqueous Conditions

    DOE PAGES

    Rodriguez, Alvaro A.; Tylczak, Joseph H.; Gao, Michael C.; ...

    2018-01-01

    The corrosion behavior of high-entropy alloys (HEAs) CoCrFeNi 2 and CoCrFeNi 2 Mo 0.25 was investigated in 3.5 wt. percent sodium chloride (NaCl) at 25°C by electrochemical methods. Their corrosion parameters were compared to those of HASTELLOY® C-276 (UNS N10276) and stainless steel 316L (UNS 31600) to assess the suitability of HEAs for potential industrial applications in NaCl simulating seawater type environments. The corrosion rates were calculated using corrosion current determined from electrochemical experiments for each of the alloys. In addition, potentiodynamic polarization measurements can indicate active, passive, and transpassive behavior of the metal as well as potential susceptibility to pittingmore » corrosion. Cyclic voltammetry (CV) can confirm the alloy susceptibility to pitting corrosion. Electrochemical impedance spectroscopy (EIS) elucidates the corrosion mechanism under studied conditions. The results of the electrochemical experiments and scanning electron microscopy (SEM) analyses of the corroded surfaces revealed general corrosion on alloy CoCrFeNi 2 Mo 0.25 and HASTELLOY C-276 and pitting corrosion on alloy CoCrFeNi 2 and stainless steel 316L.« less

  10. Effect of Molybdenum on the Corrosion Behavior of High-Entropy Alloys CoCrFeNi 2 and CoCrFeNi 2 Mo 0.25 under Sodium Chloride Aqueous Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Alvaro A.; Tylczak, Joseph H.; Gao, Michael C.

    The corrosion behavior of high-entropy alloys (HEAs) CoCrFeNi 2 and CoCrFeNi 2 Mo 0.25 was investigated in 3.5 wt. percent sodium chloride (NaCl) at 25°C by electrochemical methods. Their corrosion parameters were compared to those of HASTELLOY® C-276 (UNS N10276) and stainless steel 316L (UNS 31600) to assess the suitability of HEAs for potential industrial applications in NaCl simulating seawater type environments. The corrosion rates were calculated using corrosion current determined from electrochemical experiments for each of the alloys. In addition, potentiodynamic polarization measurements can indicate active, passive, and transpassive behavior of the metal as well as potential susceptibility to pittingmore » corrosion. Cyclic voltammetry (CV) can confirm the alloy susceptibility to pitting corrosion. Electrochemical impedance spectroscopy (EIS) elucidates the corrosion mechanism under studied conditions. The results of the electrochemical experiments and scanning electron microscopy (SEM) analyses of the corroded surfaces revealed general corrosion on alloy CoCrFeNi 2 Mo 0.25 and HASTELLOY C-276 and pitting corrosion on alloy CoCrFeNi 2 and stainless steel 316L.« less

  11. Pitting corrosion of titanium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casillas, N.; Charlebois, S.; Smyrl, W.H.

    1994-03-01

    The breakdown of native and anodically grown oxide films on Ti electrodes is investigated by scanning electrochemical microscopy (SECM), video microscopy, transmission electron microscopy, and voltammetry. SECM is used to demonstrated that the oxidation of Br[sup [minus

  12. Passivation dynamics in the anisotropic deposition and stripping of bulk magnesium electrodes during electrochemical cycling

    DOE PAGES

    Wetzel, David J.; Malone, Marvin A.; Haasch, Richard T.; ...

    2015-08-10

    Rechargeable magnesium (Mg) batteries show promise for use as a next generation technology for high-density energy storage, though little is known about the Mg anode solid electrolyte interphase and its implications for the performance and durability of a Mg-based battery. We explore in this report passivation effects engendered during the electrochemical cycling of a bulk Mg anode, characterizing their influences during metal deposition and dissolution in a simple, nonaqueous, Grignard electrolyte solution (ethylmagnesium bromide, EtMgBr, in tetrahydrofuran). Scanning electron microscopy images of Mg foil working electrodes after electrochemical polarization to dissolution potentials show the formation of corrosion pits. The pitmore » densities so evidenced are markedly potential-dependent. When the Mg working electrode is cycled both potentiostatically and galvanostatically in EtMgBr these pits, formed due to passive layer breakdown, act as the foci for subsequent electrochemical activity. Detailed microscopy, diffraction, and spectroscopic data show that further passivation and corrosion results in the anisotropic stripping of the Mg {0001} plane, leaving thin oxide-comprising passivated side wall structures that demark the {0001} fiber texture of the etched Mg grains. Upon long-term cycling, oxide side walls formed due to the pronounced crystallographic anisotropy of the anodic stripping processes, leading to complex overlay anisotropic, columnar structures, exceeding 50 μm in height. Finally, the passive responses mediating the growth of these structures appear to be an intrinsic feature of the electrochemical growth and dissolution of Mg using this electrolyte.« less

  13. Passivation dynamics in the anisotropic deposition and stripping of bulk magnesium electrodes during electrochemical cycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetzel, David J.; Malone, Marvin A.; Haasch, Richard T.

    Rechargeable magnesium (Mg) batteries show promise for use as a next generation technology for high-density energy storage, though little is known about the Mg anode solid electrolyte interphase and its implications for the performance and durability of a Mg-based battery. We explore in this report passivation effects engendered during the electrochemical cycling of a bulk Mg anode, characterizing their influences during metal deposition and dissolution in a simple, nonaqueous, Grignard electrolyte solution (ethylmagnesium bromide, EtMgBr, in tetrahydrofuran). Scanning electron microscopy images of Mg foil working electrodes after electrochemical polarization to dissolution potentials show the formation of corrosion pits. The pitmore » densities so evidenced are markedly potential-dependent. When the Mg working electrode is cycled both potentiostatically and galvanostatically in EtMgBr these pits, formed due to passive layer breakdown, act as the foci for subsequent electrochemical activity. Detailed microscopy, diffraction, and spectroscopic data show that further passivation and corrosion results in the anisotropic stripping of the Mg {0001} plane, leaving thin oxide-comprising passivated side wall structures that demark the {0001} fiber texture of the etched Mg grains. Upon long-term cycling, oxide side walls formed due to the pronounced crystallographic anisotropy of the anodic stripping processes, leading to complex overlay anisotropic, columnar structures, exceeding 50 μm in height. Finally, the passive responses mediating the growth of these structures appear to be an intrinsic feature of the electrochemical growth and dissolution of Mg using this electrolyte.« less

  14. Direct observation of pitting corrosion evolutions on carbon steel surfaces at the nano-to-micro- scales.

    PubMed

    Guo, Peng; La Plante, Erika Callagon; Wang, Bu; Chen, Xin; Balonis, Magdalena; Bauchy, Mathieu; Sant, Gaurav

    2018-05-22

    The Cl - -induced corrosion of metals and alloys is of relevance to a wide range of engineered materials, structures, and systems. Because of the challenges in studying pitting corrosion in a quantitative and statistically significant manner, its kinetics remain poorly understood. Herein, by direct, nano- to micro-scale observations using vertical scanning interferometry (VSI), we examine the temporal evolution of pitting corrosion on AISI 1045 carbon steel over large surface areas in Cl - -free, and Cl - -enriched solutions. Special focus is paid to examine the nucleation and growth of pits, and the associated formation of roughened regions on steel surfaces. By statistical analysis of hundreds of individual pits, three stages of pitting corrosion, namely, induction, propagation, and saturation, are quantitatively distinguished. By quantifying the kinetics of these processes, we contextualize our current understanding of electrochemical corrosion within a framework that considers spatial dynamics and morphology evolutions. In the presence of Cl - ions, corrosion is highly accelerated due to multiple autocatalytic factors including destabilization of protective surface oxide films and preservation of aggressive microenvironments within the pits, both of which promote continued pit nucleation and growth. These findings offer new insights into predicting and modeling steel corrosion processes in mid-pH aqueous environments.

  15. Pitting Initiation and Propagation of X70 Pipeline Steel Exposed to Chloride-Containing Environments

    PubMed Central

    Yang, Zixuan; Kan, Bo; Li, Jinxu; Su, Yanjing; Qiao, Lijie; Volinsky, Alex A.

    2017-01-01

    Inclusion-induced pitting initiation mechanisms in X70 steel were investigated by scanning electron microscopy, scanning Kelvin probe force microscopy (SKPFM), immersion and electrochemical polarization tests in chloride-containing ion solutions. There are three inclusion types in the X70 steel. Corrosion test results indicated that pitting corrosion resistance of type A inclusion < type C inclusion < type B inclusion, i.e., (Mn, Ca)S < matrix < (Al, Ca)O. SKPFM test results show that the type A inclusion exhibited both lower and higher potentials than the matrix, while the type B inclusion exhibited higher potential than the matrix. The corrosion test and the SKPFM potential test results are consistent. Potentiodynamic polarization results indicate that the type A and C are active inclusions, while the type B is an inactive inclusion. Three kinds of possible mechanisms of inclusion-induced pitting corrosion are established for the X70 steel. PMID:28902156

  16. Electrochemical probing of high-level radioactive waste tanks containing washed sludge and precipitates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bickford, D.F.; Congdon, J.W.; Oblath, S.B.

    1987-01-01

    At the U.S. Department of Energy's Savannah River Plant, corrosion of carbon steel storage tanks containing alkaline, high-level radioactive waste is controlled by specification of limits on waste composition and temperature. Processes for the preparation of waste for final disposal will result in waste with low corrosion inhibitor concentrations and, in some cases, high aromatic organic concentrations, neither of which are characteristic of previous operations. Laboratory tests, conducted to determine minimum corrosion inhibitor levels indicated pitting of carbon steel near the waterline for proposed storage conditions. In situ electrochemical measurements of full-scale radioactive process demonstrations have been conducted to assessmore » the validity of laboratory tests. Probes included pH, Eh (potential relative to a standard hydrogen electrode), tank potential, and alloy coupons. In situ results are compared to those of the laboratory tests, with particular regard given to simulated solution composition.« less

  17. Activation characteristics of multiphase Zr-based hydrogen storage alloys for Ni/MH rechargeable batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, H.; Lee, S.M.; Lee, J.Y.

    1999-10-01

    AB{sub 2} type Zr-based Laves phase alloys have been studied for possible use as negative electrodes of Ni/MH batteries with high hydrogen storage capacity. However, these alloys have the serious problem of slow activation owing to the formation of surface oxide films. To overcome this problem, alloys with multiphase microstructures have been developed. These alloys become electrochemically active via the creation of micropores by the dissolution of soluble oxide components such as vanadium oxide. However, this phenomenon has been described based only on changes in the chemical composition of the oxide layer. In the present study, this phenomenon is approachedmore » with respect to interactions between the constituent phases. An electrochemical analysis of constituent phases showed that the second phase, resulting in localized Ni-rich pits on the alloy surface. The presence of microcracks at the periphery of the Ni-rich pits after 30 h exposure to KOH electrolyte implies that hydrogen is absorbed preferentially at Ni-rich pits, thereby forming a large active surface area. However, such multiphase alloys have poor cycle durability due to the persistent dissolution of components in the second phase. Through Cr substitution, the authors have developed a family of durable alloys to prevent this unwanted dissolution from the second phase.« less

  18. The stress-corrosion behavior of Al-Li-Cu alloys: A comparison of test methods

    NASA Technical Reports Server (NTRS)

    Rizzo, P. P.; Galvin, R. P.; Nelson, H. G.

    1982-01-01

    Two powder metallurgy processed (Al-Li-Cu) alloys with and without Mg addition were studied in aqueous 3.5% NaCl solution during the alternate immersion testing of tuning fork specimens, slow crack growth tests using fracture mechanics specimens, and the slow strain rate testing of straining electrode specimens. Scanning electron microscopy and optical metallography were used to demonstrate the character of the interaction between the Al-Li-Cu alloys and the selected environment. Both alloys are susceptible to SC in an aqueous 3.5% NaCl solution under the right electrochemical and microstructural conditions. Each test method yields important information on the character of the SC behavior. Under all conditions investigated, second phase particles strung out in rows along the extrusion direction in the alloys were rapidly attacked, and played principal role in the SC process. With time, larger pits developed from these rows of smaller pits and under certain electrochemical conditions surface cracks initiated from the larger pits and contributed directly to the fracture process. Evidence to support slow crack growth was observed in both the slow strain rate tests and the sustained immersion tests of precracked fracture mechanics specimens. The possible role of H2 in the stress corrosion cracking process is suggested.

  19. The effect of inhibitor sodium nitrate on pitting corrosion of dissimilar material weldment joint of stainless steel AISI 304 and mild steel SS 400

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilca, B. R., E-mail: bangkithilca@yahoo.com; Triyono, E-mail: triyonomesin@uns.ac.id

    This study experimentally evaluated the effect of Sodium Nitrate inhibitor (NaNO{sub 3}) of 0.1%, 0.3%, and 0.5% on NaCl 3.5% toward pitting corrosion of dissimilar metal welding joint between stainless steel AISI 304 and mild steel SS 400. Electrochemical corrosion was tested using potentiodynamic polarization. Further the Scanning Electron Microscope (SEM) conducted to analyze the specimen. Chemical composition analysis used Energy Dispersive X-ray Spectrometry (EDS). The highest efficiency of sodium nitrate for ER 308 attained 63.8% and 64.89%for ER 309L. The specimen surface which observed through SEM showed decrease of pitting corrosion respectively with the addition of sodium nitrate contentmore » as inhibitor.« less

  20. Effect of Aging on Precipitation Behavior and Pitting Corrosion Resistance of SAF2906 Super Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Li, Jianchun; Li, Guoping; Liang, Wei; Han, Peide; Wang, Hongxia

    2017-09-01

    The effect of aging temperature and holding time on the precipitation of secondary phases and pitting corrosion resistance of SAF2906 super duplex stainless steel was examined. Chromium nitride and σ phase were observed to preferentially precipitate at the ferrite/austenite interface. An amount of nitrides was also observed within the ferrite grain. The precipitation of chromium nitride occurred before the σ phase. The increase in aging temperature and holding time did not affect the concentration of the nitrides but increased the area fraction of the σ phase at a faster rate. The Cr2N precipitation in SAF2906 is more evident than that of the other duplex stainless steels. The variation tendency of the precipitation concentrations is primarily consistent with the prediction results of Thermo-Calc software. The electrochemical results showed that Cr2N and σ phase significantly reduced the pitting potential. Scanning electron microscope observations revealed that pits appear mainly in regions adjacent to sigma phase and Cr2N.

  1. The effect of functionalized polycarboxylate structures as corrosion inhibitors in a simulated concrete pore solution

    NASA Astrophysics Data System (ADS)

    Fazayel, A. S.; Khorasani, M.; Sarabi, A. A.

    2018-05-01

    In this study, the effects of polycarboxylate derivatives with different comonomers and functional groups on the control or reduction of corrosion in steel specimens were evaluated through electrochemical impedance spectroscopy (EIS) and potentiodynamic analysis. A highly alkaline contaminated concrete pore solution (CPS) containing chlorides was used to simulate the pitting corrosion, and according to the results, the mechanism of inhibitive action was determined. Both the inhibition efficiency and pitting corrosion inhibition of methacrylate-copolymers were in the order of poly methacrylate-co acrylamide > poly methacrylate-co-2-acrylamido-2 methylpropane sulfonic acid > poly methacrylate-co-hydroxyethyl methacrylate. In addition, the corrosion potential of steel specimens in all studied concentrations of NaCl with different concentrations of polymethacrylate-co acrylamide (as the best inhibitor in this study) in saturated Ca(OH)2 solution showed almost an identical trend. Polymethacrylic acid-co-acrylamide showed a 92.35% inhibitor efficiency in the saturated Ca(OH)2 solution containing 1.8 wt.% chlorides and could effectively reduce the corrosion rate. Even at 3.5 wt.% of NaCl, this inhibitor could remarkably reduce the destructive effect of chloride ion attacks on the steel surface and passive film. The inhibition effect of these polymeric inhibitors seemed to be due to the formation of a barrier layer on the metal surface, approved by the well-known adsorption mechanism of organic molecules at the metal/solution interface. The results of SEM, EDS and AFM investigations were also in agreement with the outcomes of electrochemical studies.

  2. [The effect of epigallocatechin gallate (EGCG) on the surface properties of nickel-chromium dental casting alloys after electrochemical corrosion].

    PubMed

    Qiao, Guang-yan; Zhang, Li-xia; Wang, Jue; Shen, Qing-ping; Su, Jian-sheng

    2014-08-01

    To investigate the effect of epigallocatechin gallate (EGCG) on the surface properties of nickel-chromium dental alloys after electrochemical corrosion. The surface morphology and surface structure of nickel-chromium dental alloys were examined by stereomicroscope and scanning electron microscopy before and after electrochemical tests in 0 g/L and 1.0 g/L EGCG artificial saliva. The surface element component and chemical states of nickel-chromium dental alloys were analyzed by X-ray photoelectron spectrograph after electrochemical tests in 0 g/L and 1.0 g/L EGCG artificial saliva. More serious corrosion happened on the surface of nickel-chromium alloy in 1.0 g/L EGCG artificial saliva than in 0 g/L EGCG. The diameters of corrosion pits were smaller, and the dendrite structure of the alloy surface was not affected in 0 g/L EGCG. While the diameters of corrosion pits were larger, the dendritic interval of the alloy surface began to merge, and the dendrite structure was fuzzy in 1.0 g/L EGCG. In addition, the O, Ni, Cr, Be, C and Mo elements were detected on the surface of nickel-chromium alloys after sputtered for 120 s in 0 g/L EGCG and 1.0 g/L EGCG artificial saliva after electrochemical corrosion, and the surface oxides were mainly NiO and Cr(2)O(3). Compared with 0 g/L EGCG artificial saliva, the content of O, NiO and Cr(2)O(3) were lower in 1.0 g/L EGCG. The results of surface morphology and the corrosion products both show that the corrosion resistance of nickel-chromium alloys become worse and the oxide content of corrosion products on the surface reduce in 1.0 g/L EGCG artificial saliva.

  3. Investigation of corrosion protection performance of sol-gel surface treatments on AA2024-T3

    NASA Astrophysics Data System (ADS)

    Voevodin, Natalia Nikolajevna

    The dissertation research project addresses the technologically important problem of replacement of chromate based coatings for corrosion protection of aircraft. A review of corrosion processes in high-strength aluminum alloys indicated that the strengthening intermetallic precipitates provide local cathodic areas, which may initiate surface pitting. The mechanisms of chromate inhibition in these localized corrosion processes were identified. The environmental hazard of chromates was also highlighted, serves as the impetus for chromate coating replacement. Sol-gel coatings are shown as an excellent alternative, based on environment compliance, flexibility in the composition control, and reasonable costs. Several sol-gel coatings were formulated and applied to the surface of an AA2024-T3 alloy. The coating composition and bonding were analyzed with XPS and FTIR, surface morphology was studied with SEM and AFM, and corrosion protection properties were tested with EIS, PDS, salt water immersion, and salt-fog exposure. The results demonstrated that epoxy-zirconate sol-gel coatings can provide excellent barrier properties. A novel SVET technique was applied for studies of local electrochemical processes in the pitting formation. This technique was further refined in model studies of aluminum surfaces with artificially created local cathodic regions, experimental studies of chromate inhibition with pit formation, and pitting development studies in sol-gel coatings with artificially introduced defects. Mechanisms of pitting development and inhibition with the pit initiation and growth kinetics were established. The Zr-epoxy coatings are subjected to the pit development and undercutting in the absence of the corrosion inhibitors. Several organic and non-organic inhibitors were evaluated in the sol-gel coating composition. Organic inhibitors had a better compliance with sol-gel chemistry and were identified for future studies. Experiments were performed to verify that sol-gel coatings can be used as barrier layers in complex coating systems. The results clearly demonstrated that Zr-epoxy sol-gel coatings are a viable replacement for the currently used chromate-based surface treatments. This work expands the fundamental knowledge of chromate coating replacement with chromate-free sol-gel coatings and identifies possible ways to implement this goal.

  4. Dendrites and Pits: Untangling the Complex Behavior of Lithium Metal Anodes through Operando Video Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Kevin N.; Kazyak, Eric; Chadwick, Alexander F.

    Enabling ultra-high energy density rechargeable Li batteries would have widespread impact on society. But, the critical challenges of Li metal anodes (most notably cycle life and safety) remain unsolved. This is attributed to the evolution of Li metal morphology during cycling, which leads to dendrite growth and surface pitting. Herein, we present a comprehensive understanding of the voltage variations observed during Li metal cycling, which is directly correlated to morphology evolution through the use of operando video microscopy. A custom-designed visualization cell was developed to enable operando synchronized observation of Li metal electrode morphology and electrochemical behavior during cycling. Amore » mechanistic understanding of the complex behavior of these electrodes is gained through correlation with continuum-scale modeling, which provides insight into the dominant surface kinetics. Our work provides a detailed explanation of (1) when dendrite nucleation occurs, (2) how those dendrites evolve as a function of time, (3) when surface pitting occurs during Li electrodissolution, (4) kinetic parameters that dictate overpotential as the electrode morphology evolves, and (5) how this understanding can be applied to evaluate electrode performance in a variety of electrolytes. Our results provide detailed insight into the interplay between morphology and the dominant electrochemical processes occurring on the Li electrode surface through an improved understanding of changes in cell voltage, which represents a powerful new platform for analysis.« less

  5. Dendrites and Pits: Untangling the Complex Behavior of Lithium Metal Anodes through Operando Video Microscopy

    DOE PAGES

    Wood, Kevin N.; Kazyak, Eric; Chadwick, Alexander F.; ...

    2015-10-14

    Enabling ultra-high energy density rechargeable Li batteries would have widespread impact on society. But, the critical challenges of Li metal anodes (most notably cycle life and safety) remain unsolved. This is attributed to the evolution of Li metal morphology during cycling, which leads to dendrite growth and surface pitting. Herein, we present a comprehensive understanding of the voltage variations observed during Li metal cycling, which is directly correlated to morphology evolution through the use of operando video microscopy. A custom-designed visualization cell was developed to enable operando synchronized observation of Li metal electrode morphology and electrochemical behavior during cycling. Amore » mechanistic understanding of the complex behavior of these electrodes is gained through correlation with continuum-scale modeling, which provides insight into the dominant surface kinetics. Our work provides a detailed explanation of (1) when dendrite nucleation occurs, (2) how those dendrites evolve as a function of time, (3) when surface pitting occurs during Li electrodissolution, (4) kinetic parameters that dictate overpotential as the electrode morphology evolves, and (5) how this understanding can be applied to evaluate electrode performance in a variety of electrolytes. Our results provide detailed insight into the interplay between morphology and the dominant electrochemical processes occurring on the Li electrode surface through an improved understanding of changes in cell voltage, which represents a powerful new platform for analysis.« less

  6. New insights into the electrochemical desorption of alkanethiol SAMs on gold

    PubMed Central

    Pensa, Evangelina; Vericat, Carolina; Grumelli, Doris; Salvarezza, Roberto C.; Park, Sung Hyun; Longo, Gabriel S.; Szleifer, Igal

    2012-01-01

    A combination of Polarization Modulation Infrared Reflection Absorption Spectroscopy (PMIRRAS) under electrochemical control, Electrochemical Scanning Tunneling Microscopy (ECSTM) and Molecular Dynamics (MD) simulations has been used to shed light on the reductive desorption process of dodecanethiol (C12) and octadecanethiol (C18) SAMs on gold in aqueous electrolytes. Experimental PMIRRAS, ECSTM and MD simulations data for C12 desorption are consistent with formation of randomly distributed micellar aggregates stabilized by Na+ ions, coexisting with a lying-down phase of molecules. The analysis of pit and Au island coverage before and after desorption is consistent with the thiolate-Au adatoms models. On the other hand, PMIRRAS and MD data for C18 indicate that the desorbed alkanethiolates adopt a Na+ ion-stabilized bilayer of interdigitated alkanethiolates, with no evidence of lying down molecules. MD simulations also show that both the degree of order and tilt angle of the desorbed alkanethiolates change with the surface charge on the metal, going from bilayers to micelles. These results demonstrate the complexity of the alkanethiol desorption in the presence of water and the fact that chain length and counterions play a key role in a complex structure. PMID:22870508

  7. The Effect of Surface Patterning on Corrosion Resistance of Biomedical Devices

    NASA Astrophysics Data System (ADS)

    Guo, Mengnan; Toloei, Alisina; Rotermund, Harm H.

    2016-10-01

    In this study, two styles of surface topographies have been created on stainless steel wires to test their corrosion resistance as simulated implanted biomedical devices. Grade 316 LVM stainless steel wire was initially polished to G1500 surface finish before treatment to produce the two different topographies: 1. Unidirectional roughness was created using SiC papers and 2. Various patterns were created with specific hole diameter and inter-hole spacing using focused ion beam (FIB). In order to simulate the environment of implanted biomedical devices, a three-electrode electrochemical cell with 0.9% (by mass) NaCl solution has been used to test the corrosion resistance of the samples by potentiodynamic polarization test method. SEM and EDS analyzed the appearance and chemical composition of different elements including oxygen on the surface. The potential of stable pitting, time related to the initiation of the stable pitting, and the highest corrosion current associated with stable pitting have been compared for samples with the two styles of topography. It was found that surfaces with patterns have a relatively higher pitting potential and it takes longer time to initiate stable pitting than the surface without any patterns.

  8. Electrochemical noise measurements of sustained microbially influenced pitting corrosion in a laboratory flow loop system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Y.; Frank, J.R.; St. Martin, E.J.

    Because of the chaotic nature of the corrosion process and the complexity of the electrochemical noise signals that are generated, there is no generally accepted method of measuring and interpreting these signals that allows the consistent detection and identification of sustained localized pitting (SLP) as compared to general corrosion. The authors have reexamined electrochemical noise analysis (ENA) of localized corrosion using different hardware, signal collection, and signal processing designs than those used in conventional ENA techniques. The new data acquisition system was designed to identify and monitor the progress of SLP by analyzing the power spectral density (PSD) of themore » trend of the corrosion current noise level (CNL) and potential noise level (PNL). Each CNL and PNL data point was calculated from the root-mean-square value of the ac components of current and potential fluctuation signals, which were measured simultaneously during a short time period. The PSD analysis results consistently demonstrated that the trends of PNL and CNL contain information that can be used to differentiate between SLP and general corrosion mechanisms. The degree of linear slope in the low-frequency portion of the PSD analysis was correlated with the SLP process. Laboratory metal coupons as well as commercial corrosion probes were tested to ensure the reproducibility and consistency of the results. The on-line monitoring capability of this new ENA method was evaluated in a bench-scale flow-loop system, which simulated microbially influenced corrosion (MIC) activity. The conditions in the test flow-loop system were controlled by the addition of microbes and different substrates to favor accelerated corrosion. The ENA results demonstrated that this in-situ corrosion monitoring system could effectively identify SLP corrosion associated with MIC, compared to a more uniform general corrosion mechanism. A reduction in SLP activity could be clearly detected by the ENA monitoring system when a corrosion inhibitor was added into one of the test loops during the corrosion testing.« less

  9. Electrochemical noise measurements of sustained microbially influenced pitting corrosion in a laboratory flow loop system.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Y. J.

    Because of the chaotic nature of the corrosion process and the complexity of the electrochemical noise signals that are generated, there is no generally accepted method of measuring and interpreting these signals that allows the consistent detection and identification of sustained localized pitting (SLP) as compared to general corrosion. We have reexamined electrochemical noise analysis (ENA) of localized corrosion using different hardware, signal collection, and signal processing designs than those used in conventional ENA techniques. The new data acquisition system was designed to identify and monitor the progress of SLP by analyzing the power spectral density (PSD) of the trendmore » of the corrosion current noise level (CNL) and potential noise level (PNL). Each CNL and PNL data point was calculated from the root-mean- square value of the ac components of current and potential fluctuation signals, which were measured simultaneously during a short time period. The PSD analysis results consistently demonstrated that the trends of PNL and CNL contain information that can be used to differentiate between SLP and general corrosion mechanisms. The degree of linear slope in the low-frequency portion of the PSD analysis was correlated with the SLP process. Laboratory metal coupons as well as commercial corrosion probes were tested to ensure the reproducibility and consistency of the results. The on-line monitoring capability of this new ENA method was evaluated in a bench-scale flow-loop system, which simulated microbially influenced corrosion (MIC) activity. The conditions in the test flow-loop system were controlled by the addition of microbes and different substrates to favor accelerated corrosion. The ENA results demonstrated that this in-situ corrosion monitoring system could effectively identify SLP corrosion associated with MIC, compared to a more uniform general corrosion mechanism. A reduction in SLP activity could be clearly detected by the ENA monitoring system when a corrosion inhibitor was added into one of the test loops during the corrosion testing.« less

  10. Relationship between Microstructure and Corrosion Behavior of Martensitic High Nitrogen Stainless Steel 30Cr15Mo1N at Different Austenitizing Temperatures.

    PubMed

    Jiang, Zhouhua; Feng, Hao; Li, Huabing; Zhu, Hongchun; Zhang, Shucai; Zhang, Binbin; Han, Yu; Zhang, Tao; Xu, Dake

    2017-07-27

    The relationship between microstructure and corrosion behavior of martensitic high nitrogen stainless steel 30Cr15Mo1N at different austenitizing temperatures was investigated by microscopy observation, electrochemical measurement, X-ray photoelectron spectroscopy analysis and immersion testing. The results indicated that finer Cr-rich M₂N dispersed more homogeneously than coarse M 23 C₆, and the fractions of M 23 C₆ and M₂N both decreased with increasing austenitizing temperature. The Cr-depleted zone around M 23 C₆ was wider and its minimum Cr concentration was lower than M₂N. The metastable pits initiated preferentially around coarse M 23 C₆ which induced severer Cr-depletion, and the pit growth followed the power law. The increasing of austenitizing temperature induced fewer metastable pit initiation sites, more uniform element distribution and higher contents of Cr, Mo and N in the matrix. In addition, the passive film thickened and Cr₂O₃, Cr 3+ and CrN enriched with increasing austenitizing temperature, which enhanced the stability of the passive film and repassivation ability of pits. Therefore, as austenitizing temperature increased, the metastable and stable pitting potentials increased and pit growth rate decreased, revealing less susceptible metastable pit initiation, larger repassivation tendency and higher corrosion resistance. The determining factor of pitting potentials could be divided into three stages: dissolution of M 23 C₆ (below 1000 °C), dissolution of M₂N (from 1000 to 1050 °C) and existence of a few undissolved precipitates and non-metallic inclusions (above 1050 °C).

  11. Localized corrosion of 316L stainless steel with SiO2-CaO films obtained by means of sol-gel treatment.

    PubMed

    Vallet-Regí, M; Izquierdo-Barba, I; Gil, F J

    2003-11-01

    Sol-gel films on austenitic stainless steel (AISI 316L) polished wafer were prepared from sono-sols obtained from tetraethylorthosilane and hydrated calcium nitrate. However, pitting was observed in different places on the stainless steel surfaces. The corrosion resistance was evaluated by the polarization resistance in simulated body fluid environment at 37 degrees C. The critical current density, the passive current density, the corrosion potential, and the critical pitting potential were studied. The austenitic stainless steel 316L treated presents important electrochemical corrosion and consequently its application as endosseous implants is not possible. Copyright 2003 Wiley Periodicals, Inc.

  12. Electrochemical behavior and corrosion resistance of Ti-15Mo alloy in naturally-aerated solutions, containing chloride and fluoride ions.

    PubMed

    Rodrigues, A V; Oliveira, N T C; dos Santos, M L; Guastaldi, A C

    2015-01-01

    The electrochemical behavior and corrosion resistance of Ti-15Mo alloy to applications as biomaterials in solutions 0.15 mol L(-1) Ringer, 0.15 mol L(-1) Ringer plus 0.036 mol L(-1) NaF and 0.036 mol L(-1) NaF (containing 1,500 ppm of fluoride ions, F(-)) were investigated using open-circuit potential, cyclic voltammetry, and electrochemical impedance spectroscopy techniques, X-ray photoelectron spectroscopy and scanning electron microscope. Corrosion resistance and electrochemical stability of the Ti-15Mo alloy decreased in solutions containing F(-) ions. In all cases, there were formation and growth of TiO2 and MoO3 (a protector film), not being observed pitting corrosion, which might enable Ti-15Mo alloys to be used as biomedical implant, at least in the studied conditions, since the electrochemical stability and corrosion resistance of the passive films formed are necessary conditions for osseointegration.

  13. Influence of Postbuild Microstructure on the Electrochemical Behavior of Additively Manufactured 17-4 PH Stainless Steel

    NASA Astrophysics Data System (ADS)

    Stoudt, M. R.; Ricker, R. E.; Lass, E. A.; Levine, L. E.

    2017-03-01

    The additive manufacturing build process produces a segregated microstructure with significant variations in composition and phases that are uncommon in traditional wrought materials. As such, the relationship between the postbuild microstructure and the corrosion resistance is not well understood. Stainless steel alloy 17-4 precipitation hardened (SS17-4PH) is an industrially relevant alloy for applications requiring high strength and good corrosion resistance. A series of potentiodynamic scans conducted in a deaerated 0.5-mol/L NaCl solution evaluated the influence of these microstructural differences on the pitting behavior of SS17-4. The pitting potentials were found to be higher in the samples of additively processed material than in the samples of the alloy in wrought form. This indicates that the additively processed material is more resistant to localized corrosion and pitting in this environment than is the wrought alloy. The results also suggest that after homogenization, the additively produced SS17-4 could be more resistant to pitting than the wrought SS17-4 is in an actual service environment.

  14. The Influence of Post-Build Microstructure on the Electrochemical Behavior of Additively Manufactured 17-4 PH Stainless Steel.

    PubMed

    Stoudt, M R; Ricker, R E; Lass, E A; Levine, L E

    2017-03-01

    The additive manufacturing (AM) build process produces a segregated microstructure with significant variations in composition and phases that are uncommon in traditional wrought materials. As such, the relationship between the post-build microstructure and the corrosion resistance is not well understood. Stainless steel alloy 17-4PH is an industrially-relevant alloy for applications requiring high-strength and good corrosion resistance. A series of potentiodynamic scans conducted in a deaerated 0.5 mol/L NaCl solution evaluated the influence of these microstructural differences on the pitting behavior of SS17-4. The pitting potentials were found to be higher in the samples of additively-processed material than in samples of the alloy in wrought form. This indicates that the additively-processed material is more resistant to localized corrosion and pitting in this environment than the wrought alloy. The results also suggest that after homogenization, the additively-produced SS17-4 could be more resistant to pitting than wrought SS17-4 in an actual service environment.

  15. The Influence of Post-Build Microstructure on the Electrochemical Behavior of Additively Manufactured 17-4 PH Stainless Steel

    PubMed Central

    Stoudt, M. R.; Ricker, R. E.; Lass, E. A.; Levine, L. E.

    2017-01-01

    The additive manufacturing (AM) build process produces a segregated microstructure with significant variations in composition and phases that are uncommon in traditional wrought materials. As such, the relationship between the post-build microstructure and the corrosion resistance is not well understood. Stainless steel alloy 17-4PH is an industrially-relevant alloy for applications requiring high-strength and good corrosion resistance. A series of potentiodynamic scans conducted in a deaerated 0.5 mol/L NaCl solution evaluated the influence of these microstructural differences on the pitting behavior of SS17-4. The pitting potentials were found to be higher in the samples of additively-processed material than in samples of the alloy in wrought form. This indicates that the additively-processed material is more resistant to localized corrosion and pitting in this environment than the wrought alloy. The results also suggest that after homogenization, the additively-produced SS17-4 could be more resistant to pitting than wrought SS17-4 in an actual service environment. PMID:28757787

  16. Corrosion of orthodontic brackets in different spices: in vitro study.

    PubMed

    Chaturvedi, T P

    2014-01-01

    Moist environment in the mouth varies and causes variable amounts of corrosion of dental materials. This is of concern particularly when metallic implants, metallic fillings, orthodontic appliances are placed in the hostile electrolytic environment in the human mouth. Components of diet rich in salt and spices are important factors influencing the corrosion of metallic appliances placed in the oral cavity. To study in vitro corrosion of orthodontic metallic brackets immersed in solutions of salt and spices in artificial saliva. Orthodontic brackets were used for corrosion studies in artificial saliva, salt, and spices using electrochemical technique and surface analysis. Electrochemical studies using different parameters were done in solutions of artificial saliva containing salt and spices. Photomicrographs from the optical microscope were also obtained. RESULTS of corrosion studies have clearly demonstrated that certain spices such as turmeric and coriander are effective in reducing corrosion, whereas salt and red chili have been found to enhance it. Surface analysis of small pits present on the surface of the as-received bracket will initiate corrosion which leads to more pitting.

  17. Streptococcus Sanguis Biofilm Architecture and Its Influence on Titanium Corrosion in Enriched Artificial Saliva

    PubMed Central

    Li, Lei; Li, Shunling; Qu, Qing; Zuo, Limei; He, Yue; Zhu, Baolin; Li, Cong

    2017-01-01

    Bacteria biofilm formation on metals is well-known, while biofilm architecture varies under different conditions. To date, few studies have determined the possible contribution to corrosion of titanium made by biofilm architecture. We investigated the interaction between the oral Streptococcus sanguis biofilm architecture and its influence on titanium corrosion in enriched artificial saliva using electrochemical methods and microscopic study. Patchy biofilms were observed on titanium surface after being immersed in solution containing S. sanguis. The thickness and size of the patchy biofilms increased with an increase of immersion time. The extensive pits were clearly observed by scanning electron microscopy, showing that adsorption of S. sanguis on titanium promoted the localized corrosion. The electrochemical results indicated that the corrosion rates were clearly accelerated in the presence of S. sanguis. The low icorr and high Rt in the first 48 h indicated that a typical passive behavior still remained. Our study showed that the pitting corrosion of titanium was mainly attributed to the formation of a self-catalytic corrosion cell by the co-effect of patchy biofilm and organic acid secreted by S. sanguis. PMID:28772615

  18. In-vitro biodegradation and corrosion-assisted cracking of a coated magnesium alloy in modified-simulated body fluid.

    PubMed

    Jafari, Sajjad; Singh Raman, R K

    2017-09-01

    A calcium phosphate coating was directly synthesized on AZ91D magnesium (Mg) alloy. Resistance of this coating to corrosion in a modified-simulated body fluid (m-SBF) was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Mechanical properties of the bare and coated alloy were investigated using slow strain rate tensile (SSRT) and fatigue testing in air and m-SBF. Very little is reported in the literature on human-body-fluid-assisted cracking of Mg alloys, viz., resistance to corrosion fatigue (CF) and stress corrosion cracking (SCC). This study has a particular emphasis on the effect of bio-compatible coatings on mechanical and electrochemical degradations of Mg alloys for their applications as implants. The results suggest the coating to improve the general as well as pitting corrosion resistance of the alloy. The coating also provides visible improvement in resistance to SCC, but little improvement in CF resistance. This is explained on the basis of pitting behaviour in the presence and absence of the coating. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Streptococcus Sanguis Biofilm Architecture and Its Influence on Titanium Corrosion in Enriched Artificial Saliva.

    PubMed

    Li, Lei; Li, Shunling; Qu, Qing; Zuo, Limei; He, Yue; Zhu, Baolin; Li, Cong

    2017-03-03

    Bacteria biofilm formation on metals is well-known, while biofilm architecture varies under different conditions. To date, few studies have determined the possible contribution to corrosion of titanium made by biofilm architecture. We investigated the interaction between the oral Streptococcus sanguis biofilm architecture and its influence on titanium corrosion in enriched artificial saliva using electrochemical methods and microscopic study. Patchy biofilms were observed on titanium surface after being immersed in solution containing S. sanguis . The thickness and size of the patchy biofilms increased with an increase of immersion time. The extensive pits were clearly observed by scanning electron microscopy, showing that adsorption of S. sanguis on titanium promoted the localized corrosion. The electrochemical results indicated that the corrosion rates were clearly accelerated in the presence of S. sanguis . The low i corr and high R t in the first 48 h indicated that a typical passive behavior still remained. Our study showed that the pitting corrosion of titanium was mainly attributed to the formation of a self-catalytic corrosion cell by the co-effect of patchy biofilm and organic acid secreted by S. sanguis .

  20. The effect of strain hardening on resistance to electrochemical corrosion of wires for orthopaedics

    NASA Astrophysics Data System (ADS)

    Przondziono, J.; Walke, W.; Hadasik, E.; Szymszal, J.

    2012-05-01

    The purpose of this research is to evaluate electrochemical corrosion resistance of wire with modified surface, made of stainless steel of Cr-Ni-Mo type, widely used in implants for orthopaedics, depending on hardening created in the process of drawing. Tests have been carried out in the environment imitating human osseous tissue. Pitting corrosion was determined on the ground of registered anodic polarisation curves by means of potentiodynamic method with application of electrochemical testing system VoltaLab® PGP 201. Wire corrosion tests were carried out in Tyrode solution on samples that were electrochemically polished as well as electrochemically polished and finally chemically passivated. Initial material for tests was wire rod made of X2CrNiMo17-12-2 steel with diameter of 5.5 mm in supersaturated condition. Wire rod was drawn up to diameter of 1.35 mm. This work shows the course of flow curve of wire made of this grade of steel and mathematical form of yield stress function. The study also presents exemplary curves showing the dependence of polarisation resistance in strain function in the drawing process of electrochemically passivated and electrochemically polished and then chemically passivated wire.

  1. Relationship between Microstructure and Corrosion Behavior of Martensitic High Nitrogen Stainless Steel 30Cr15Mo1N at Different Austenitizing Temperatures

    PubMed Central

    Jiang, Zhouhua; Feng, Hao; Zhu, Hongchun; Zhang, Shucai; Zhang, Binbin; Han, Yu; Zhang, Tao; Xu, Dake

    2017-01-01

    The relationship between microstructure and corrosion behavior of martensitic high nitrogen stainless steel 30Cr15Mo1N at different austenitizing temperatures was investigated by microscopy observation, electrochemical measurement, X-ray photoelectron spectroscopy analysis and immersion testing. The results indicated that finer Cr-rich M2N dispersed more homogeneously than coarse M23C6, and the fractions of M23C6 and M2N both decreased with increasing austenitizing temperature. The Cr-depleted zone around M23C6 was wider and its minimum Cr concentration was lower than M2N. The metastable pits initiated preferentially around coarse M23C6 which induced severer Cr-depletion, and the pit growth followed the power law. The increasing of austenitizing temperature induced fewer metastable pit initiation sites, more uniform element distribution and higher contents of Cr, Mo and N in the matrix. In addition, the passive film thickened and Cr2O3, Cr3+ and CrN enriched with increasing austenitizing temperature, which enhanced the stability of the passive film and repassivation ability of pits. Therefore, as austenitizing temperature increased, the metastable and stable pitting potentials increased and pit growth rate decreased, revealing less susceptible metastable pit initiation, larger repassivation tendency and higher corrosion resistance. The determining factor of pitting potentials could be divided into three stages: dissolution of M23C6 (below 1000 °C), dissolution of M2N (from 1000 to 1050 °C) and existence of a few undissolved precipitates and non-metallic inclusions (above 1050 °C). PMID:28773221

  2. Patterned titania nanostructures produced by electrochemical anodization of titanium sheet

    NASA Astrophysics Data System (ADS)

    Dong, Junzhe; Ariyanti, Dessy; Gao, Wei; Niu, Zhenjiang; Weil, Emeline

    2017-07-01

    A two-step anodization method has been used to produce patterned arrays of TiO2 on the surface of Ti sheet. Hexagonal ripples were created on Ti substrate after removing the TiO2 layer produced by first-step anodization. The shallow concaves were served as an ideal position for the subsequent step anodization due to their low electrical resistance, resulting in novel hierarchical nanostructures with small pits inside the original ripples. The mechanism of morphology evolution during patterned anodization was studied through changing the anodizing voltages and duration time. This work provides a new idea for controlling nanostructures and thus tailoring the photocatalytic property and wettability of anodic TiO2.

  3. Uniform Corrosion and General Dissolution of Aluminum Alloys 2024-T3, 6061-T6, and 7075-T6

    NASA Astrophysics Data System (ADS)

    Huang, I.-Wen

    Uniform corrosion and general dissolution of aluminum alloys was not as well-studied in the past, although it was known for causing significant amount of weight loss. This work comprises four chapters to understand uniform corrosion of aluminum alloys 2024-T3, 6061-T6, and 7075-T6. A preliminary weight loss experiment was performed for distinguishing corrosion induced weight loss attributed to uniform corrosion and pitting corrosion. The result suggested that uniform corrosion generated a greater mass loss than pitting corrosion. First, to understand uniform corrosion mechanism and kinetics in different environments, a series of static immersion tests in NaCl solutions were performed to provide quantitative measurement of uniform corrosion. Thereafter, uniform corrosion development as a function of temperature, pH, Cl-, and time was investigated to understand the influence of environmental factors. Faster uniform corrosion rate has been found at lower temperature (20 and 40°C) than at higher temperature (60 and 80°C) due to accelerated corrosion product formation at high temperatures inhibiting corrosion reactions. Electrochemical tests including along with scanning electron microscopy (SEM) were utilized to study the temperature effect. Second, in order to further understand the uniform corrosion influence on pit growth kinetics, a long term exposures for 180 days in both immersion and ASTM-B117 test were performed. Uniform corrosion induced surface recession was found to have limited impact on pit geometry regardless of exposure methods. It was also found that the competition for limited cathodic current from uniform corrosion the primary rate limiting factor for pit growth. Very large pits were found after uniform corrosion growth reached a plateau due to corrosion product coverage. Also, optical microscopy and focused ion beam (FIB) imaging has provided more insights of distinctive pitting geometry and subsurface damages found from immersion samples and B117 samples. Although uniform corrosion was studied in various electrolytes, the pH impact was still difficult to discern due to ongoing cathodic reactions that changed electrolyte pH with time. Therefore, buffered pH electrolytes with pH values of 3, 5, 8, and 10 were prepared static immersion tests. Electrochemical experiments were performed in each buffered pH conditions for understanding corrosion mechanisms. Uniform corrosion was found exhibiting higher corrosion rate in buffered acidic and alkaline electrolytes due to pH- and temperature-dependent corrosion product precipitation. Observations were supported by electrochemical, SEM, and EDS observations. Due to the complexity of corrosion data, a reliable corrosion prediction based on empirical observations could be challenging. Artificial neural network (ANN) modeling was used for corrosion data pattern recognition by mimicking human neural network systems. Predictive models were developed based on corrosion data acquired in this study. The model was adaptable through iteratively update its prediction by error minimization during the training phase. Trained ANN model can predict uniform corrosion successfully. In addition to ANN, fuzzy curve analysis was utilized to rank the influence of each input (temperature, pH, Cl-, and time). For example, temperature and pH were found to be the most influential parameters to uniform corrosion. This information can provide feedback for ANN improvement, also known as "data pruning".

  4. Site-controlled crystalline InN growth from the V-pits of a GaN substrate

    NASA Astrophysics Data System (ADS)

    Kuo, Chien-Ting; Hsu, Lung-Hsing; Lai, Yung-Yu; Cheng, Shan-Yun; Kuo, Hao-Chung; Lin, Chien-Chung; Cheng, Yuh-Jen

    2017-05-01

    A site-controlled crystalline InN growth from the V-pits of a GaN substrate was investigated. The V- pits were fabricated by epitaxial lateral growth of GaN over SiO2 disks patterned on a sapphire substrate. InN crystals were found to preferably grow on the inclined {10-11} crystal planes of the V-pits. A V-pit size of 1 μm or less can provide precise site-controlled InN nucleation at the V-pit bottom, while no InN was grown on the rest of the exposed GaN surfaces. The site-controlled nucleation is attributed to the low surface energy point created by the converging six {10-11} crystal facets at the V-pit bottom. When In source supply is below a certain value, this V-pit bottom is the only location able to aggregate enough active sources to start nucleation, thereby providing site-controlled crystal growth.

  5. Inhibitory effect of konjac glucomanan on pitting corrosion of AA5052 aluminium alloy in NaCl solution.

    PubMed

    Zhang, Kegui; Yang, Wenzhong; Xu, Bin; Chen, Yun; Yin, Xiaoshuang; Liu, Ying; Zuo, Huanzhen

    2018-05-01

    A natural carbohydrate polymer, konjac glucomanan, has been extracted from commercial product and studied as a green corrosion inhibitor for AA5052 aluminium alloy in 3.5 wt% NaCl solution by high-performance gel permeation chromatography (GPC), thermo gravimetric analysis (TGA), Fourier-transform infrared (FT-IR) spectra, electrochemical measurement and surface characterization techniques. The results of GPC measurements suggest the weight-average molecular weight and the number-average molecular weight of KGM with 98.2% purity are 1.61 × 10 5  g/mol and 1.54 × 10 5  g/mol, respectively. Potentiodynamic polarization curves show konjac glucomanan behaves as a mixed-type inhibitor with dominant anodic effect and that its maximum efficiency at 200 ppm is 94%. Electrochemical impedance spectroscopy (EIS) studies reveal the resistance of oxide film is approximately two orders of magnitude greater than the resistance of adsorbed inhibitor layer and that they both increase with KGM concentration. Moreover, in-situ electrochemical noise (EN) detection demonstrates that the growth and propagation stages of the pitting corrosion germinating on metal surface are blocked by polysaccharide additive, which is confirmed by the surface analysis of aluminium alloy using scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and Raman spectroscopy. At last, it is found that the addition of KGM makes it harder for water droplet containing NaCl to wet the metallic substrate. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Effect of black clay soil moisture on the electrochemical behavior of API X70 pipeline steel

    NASA Astrophysics Data System (ADS)

    Hendi, R.; Saifi, H.; Belmokre, K.; Ouadah, M.; Smili, B.; Talhi, B.

    2018-03-01

    The effect of moisture content variation (20–100 wt.%) on the electrochemical behavior of API X70 pipeline steel buried in the soil of Skikda (East of Algeria) was studied using electrochemical techniques, scanning electron microscopy (SEM), X ray diffraction analysis (XRD) and weight loss measurement. The electrochemical measurements showed that the corrosion current Icorr is directly proportional to the moisture content up to 50 wt.%, beyond this content, this value becomes almost constant. The result were confirmed by electrochemical impedance spectroscopy; the capacitance of the double layer formed on the surface is the highest at 50 wt.%. A single time constant was detected by plotting the Bode diagrams. The steel surface degradation has been appreciated using the scanning electron microscopy observations. A few pitting corrosion at 20 wt.% moisture, followed by more degradation at 50 wt.% have been revealed. However, when the moisture amount exceeded 50 wt.%, the surface became entirely covered by a corrosion product. XRD analysis revealed the dominance of FeOOH and Fe3O4 phases on steel surface for a moisture content of 50 wt.%.

  7. Pitting failure of copper pipings for emergency fire sprinkler in ground water

    NASA Astrophysics Data System (ADS)

    Baek, Seung-won; Lee, Jong-kwon; Kim, Jong-jip; Kim, Kyung-ja

    2015-05-01

    The possibility of microbiologically influenced corrosion was investigated in the early pitted copper pipes. The pipes were installed for less than 6 months as an immergency fire sprinkler. The bacteria were cultured by sampling of corrosion by-product near pits on failed copper pipes for the aerobic as well as anaerobic bacteria. However, only aerobic bacteria was found, which were Micrococcus Luteus and Bacillus sp.. The corrosion rate of copper pipes were studied by weight loss in the groundwater and polarization method. In immersion test as well as the electrochemical polarization test in ground water, only Micrococcus Luteus could activate corrosion of copper by 20% and 15%, respectively. On the other hand, Bacillus sp. showed little effect on corrosion in the above two tests. The shape and characteristics of failed copper pipes as well as simulated copper were investigated using stereoscope, optical microscopy, scanning electron microscope and EDS. The cause of pits were discussed, related with the dissolved copper concentrations, pH, and optical density. It could be concluded that the early failure of copper pipings could be ascribed to the acceration of copper in the presence of bacteria, i.e., Micrococcus Luteus.

  8. Detection of stress corrosion cracking and general corrosion of mild steel in simulated defense nuclear waste solutions using electrochemical noise analysis

    NASA Astrophysics Data System (ADS)

    Edgemon, G. L.; Danielson, M. J.; Bell, G. E. C.

    1997-06-01

    Underground waste tanks fabricated from mild steel store more than 253 million liters of high level radioactive waste from 50 years of weapons production at the Hanford Site. The probable modes of corrosion failures are reported as nitrate stress corrosion cracking and pitting. In an effort to develop a waste tank corrosion monitoring system, laboratory tests were conducted to characterize electrochemical noise data for both uniform and localized corrosion of mild steel and other materials in simulated waste environments. The simulated waste solutions were primarily composed of ammonium nitrate or sodium nitrate and were held at approximately 97°C. The electrochemical noise of freely corroding specimens was monitored, recorded and analyzed for periods ranging between 10 and 500 h. At the end of each test period, the specimens were examined to correlate electrochemical noise data with corrosion damage. Data characteristic of uniform corrosion and stress corrosion cracking are presented.

  9. Microbiological and abiotic processes in modelling longer-term marine corrosion of steel.

    PubMed

    Melchers, Robert E

    2014-06-01

    Longer term exposure of mild steel in natural (biotic) waters progresses as a bimodal function of time, both for corrosion mass loss and for pit depth. Recent test results, however, found this also for immersion in clean fresh, almost pure and triply distilled waters. This shows chlorides or microbiological activity is not essential for the electrochemical processes producing bimodal behaviour. It is proposed that the first mode is aerobic corrosion that eventually produces a non-homogeneous corroded surface and rust coverage sufficient to allow formation of anoxic niches. Within these, aggressive autocatalytic reduction then occurs under anoxic abiotic conditions, caused by sulfide species originating from the MnS inclusions typical in steels. This is consistent with Wranglen's model for abiotic anoxic crevice and pitting corrosion without external aggressive ions. In biotic conditions, metabolites from anaerobic bacterial activity within and near the anoxic niches provides additional (sulfide) species to contribute to the severity of corrosion. Limited observational evidence that supports this hypothesis is given but further investigation is required to determine all contributor(s) to the cathodic current for the electrochemical reaction. The results are important for estimating the contribution of microbiological corrosion in infrastructure applications. © 2013.

  10. Electrochemical study of Type 304 and 316L stainless steels in simulated body fluids and cell cultures.

    PubMed

    Tang, Yee-Chin; Katsuma, Shoji; Fujimoto, Shinji; Hiromoto, Sachiko

    2006-11-01

    The electrochemical corrosion behaviour of Type 304 and 316L stainless steels was studied in Hanks' solution, Eagle's minimum essential medium (MEM), serum containing medium (MEM with 10% of fetal bovine serum) without cells, and serum containing medium with cells over a 1-week period. Polarization resistance measurements indicated that the stainless steels were resistant to Hanks' and MEM solutions. Type 304 was more susceptible to pitting corrosion than Type 316L in Hanks' and MEM solutions. The uniform corrosion resistance of stainless steels, determined by R(p), was lower in culturing medium than in Hanks' and MEM. The low corrosion resistance was due to surface passive film with less protective to reveal high anodic dissolution rate. When cells were present, the initial corrosion resistance was low, but gradually increased after 3 days, consistent with the trend of cell coverage. The presence of cells was found to suppress the cathodic reaction, that is, oxygen reduction, and increase the uniform corrosion resistance as a consequence. On the other hand, both Type 304 and 316L stainless steels became more susceptible to pitting corrosion when they were covered with cells.

  11. Electrochemical properties of 316L stainless steel with culturing L929 fibroblasts

    PubMed Central

    Hiromoto, Sachiko; Hanawa, Takao

    2005-01-01

    Potentiodynamic polarization and impedance tests were carried out on 316L stainless steel with culturing murine fibroblast L929 cells to elucidate the corrosion behaviour of 316L steel with L929 cells and to understand the electrochemical interface between 316L steel and cells, respectively. Potential step test was carried out on 316L steel with type I collagen coating and culturing L929 cells to compare the effects of collagen and L929 cells. The open-circuit potential of 316L steel slightly shifted in a negative manner and passive current density increased with cells, indicating a decrease in the protective ability of passive oxide film. The pitting potential decreased with cells, indicating a decrease in the pitting corrosion resistance. In addition, a decrease in diffusivity at the interface was indicated from the decrease in the cathodic current density and the increase in the diffusion resistance parameter in the impedance test. The anodic peak current in the potential step test decreased with cells and collagen. Consequently, the corrosion resistance of 316L steel decreases with L929 cells. In addition, collagen coating would provide an environment for anodic reaction similar to that with culturing cells. PMID:16849246

  12. Electrochemical, Polarization, and Crevice Corrosion Testing of Nitinol 60, A Supplement to the ECLSS Sustaining Materials Compatibility Study

    NASA Technical Reports Server (NTRS)

    Lee, R. E.

    2016-01-01

    In earlier trials, electrochemical test results were presented for six noble metals evaluated in test solutions representative of waste liquids processed in the Environmental Control and Life Support System (ECLSS) aboard the International Space Station (ISS). Subsequently, a seventh metal, Nitinol 60, was added for evaluation and subjected to the same test routines, data analysis, and theoretical methodologies. The previous six test metals included three titanium grades, (commercially pure, 6Al-4V alloy and 6Al-4V low interstitial alloy), two nickel-chromium alloys (Inconel(RegisteredTrademark) 625 and Hastelloy(RegisteredTrademark) C276), and one high-tier stainless steel (Cronidur(RegisteredTrademark) 30). The three titanium alloys gave the best results of all the metals, indicating superior corrosive nobility and galvanic protection properties. For this current effort, the results have clearly shown that Nitinol 60 is almost as noble as titanium, being very corrosion-resistant and galvanically compatible with the other six metals electrochemically and during long-term exposure. is also quite noble as it is very corrosion resistant and galvanically compatible with the other six metals from both an electrochemical perspective and long-term crevice corrosion scenario. This was clearly demonstrated utilizing the same techniques for linear, Tafel and cyclic polarization, and galvanic coupling of the metal candidate as was done for the previous study. The high nobility and low corrosion susceptibility for Nitinol 60 appear to be intermediate to the nickel/chromium alloys and the titanium metals with indications that are more reflective of the titanium metals in terms of general corrosion and pitting behavior.

  13. Understanding effect of 3.5 wt.% NaCl on the corrosion of Al0.1CoCrFeNi high-entropy alloy

    NASA Astrophysics Data System (ADS)

    Kumar, N.; Fusco, M.; Komarasamy, M.; Mishra, R. S.; Bourham, M.; Murty, K. L.

    2017-11-01

    High entropy alloys are a new class of metallic materials with potential for use in a wide variety of applications including their use in corrosive environment. The present study focused on the corrosion behavior of a single-phase, face-centered cubic high entropy alloy (HEA) Al0.1CoCrFeNi in as-cast condition, and the results are compared with the corrosion behavior of the SS304. The microstructural characterization of the alloys in as-received condition was carried out using optical microscopy, electron backscattered diffraction, energy dispersive spectroscopy, and X-ray diffraction. Corrosion behavior was studied using potentiodynamic polarization test in a 3.5 wt% NaCl solution and electrochemical impedance spectroscopy at room temperature. It was observed that the general corrosion resistance of the HEA was better than that of SS304. Pitting potential of the HEA was found to be superior to that of the SS304. Corrosion pits size was slightly smaller in SS304 than that in the HEA. 3D imaging determined that the pit depths were of the same order in both cases. Overall, the HEA Al0.1CoCrFeNi demonstrated a better resistance to general and pitting corrosion.

  14. Comparative Studies on Microstructure, Mechanical and Pitting Corrosion of Post Weld Heat Treated IN718 Superalloy GTA and EB Welds

    NASA Astrophysics Data System (ADS)

    Dilkush; Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    In the present study, an attempt has been made to weld Inconel 718 nickel-base superalloy (IN718 alloy) using gas tungsten arc welding (GTAW) and electron beam welding (EBW) processes. Both the weldments were subjected to post-weld heat treatment condition as follows -980°C / 20 min followed by direct aging condition (DA) as 720°C/8 h/FC followed by 620°C/8 h/AC. The GTA and EB welds of IN718 alloy were compared in two conditions as-received and 980STA conditions. Welds were characterized to observe mechanical properties, pitting corrosion resistance by correlating with observed microstructures. The rate of higher cooling ranges, the fusion zone of EBW exhibited discrete and relative finer lave phases whereas the higher niobium existed laves with coarser structure were observed in GTAW. The significant dissolution of laves were observed at 980STA of EBW. Due to these effects, the EBW of IN718 alloy showed the higher mechanical properties than GTAW. The electrochemical potentiostatic etch test was carried out in 3.5wt% sodium chloride (NaCl) solution to study the pitting corrosion behaviour of the welds. Results of the present investigation established that mechanical properties and pitting corrosion behaviour are significantly better in post weld heat treated condition. The comparative studies showed that the better combination of mechanical properties and pitting corrosion resistance were obtained in 980STA condition of EBW than GTAW.

  15. Properties of hydrocarbon- and salt-contaminated flare pit soils in northeastern British Columbia (Canada).

    PubMed

    Arocena, J M; Rutherford, P M

    2005-07-01

    Many contaminated sites in Canada are associated with flare pits generated during past petroleum extraction operations. Flare pits are located adjacent to well sites, compressor stations and batteries and are often subjected to the disposal of wastes from the flaring of gas, liquid hydrocarbons and brine water. This study was conducted to evaluate the physical, chemical, electrical and mineral properties of three flare pit soils as compared to adjacent control soils. Results showed that particle size distribution, pH, total N, cation exchange capacity, exchangeable Mg(2+), and sodium adsorption ratio were similar in soils from flare pits and control sites. Total C, exchangeable Ca(2+), K(+) and Na(+), soluble Ca(2+), Mg(2+), K(+) and Na(+) and electrical conductivity were higher in flare pit soils compared to control soils. X-ray diffraction and scanning electron microscopic analyses showed the presence of gypsum [CaSO(4).2H(2)O], dolomite [CaMg(CO(3))(2)], pyrite [FeS(2)], jarosite [KFe(3)(OH)(6)(SO(4))(2)], magnesium sulphate, oxides of copper and iron+copper in salt efflorescence observed in flare pit soils. Soils from both flare pits and control sites contained mica, kaolonite and 2:1 expanding clays. The salt-rich materials altered the ionic equilibria in the flare pit soils; K(Mg-Ca) selectivity coefficients in control soils were higher compared to contaminated soils. The properties of soils (e.g., high electrical conductivity) affected by inputs associated with oil and gas operations might render flare pit soils less conducive to the establishment and growth of common agricultural crops and forest trees.

  16. Preparation of anti-adhesion surfaces on aluminium substrates of rubber plastic moulds using a coupling method of liquid plasma and electrochemical machining

    NASA Astrophysics Data System (ADS)

    Meng, Jianbing; Dong, Xiaojuan; Wei, Xiuting; Yin, Zhanmin

    2014-03-01

    Hard anti-adhesion surfaces, with low roughness and wear resistance, on aluminium substrates of rubber plastic moulds were fabricated via a new coupling method of liquid plasma and electrochemical machining. With the aid of liquid plasma thermal polishing and electrochemical anodic dissolution, micro/nano-scale binary structures were prepared as the base of the anti-adhesion surfaces. The anti-adhesion behaviours of the resulting aluminium surfaces were analysed by a surface roughness measuring instrument, a scanning electron microscope (SEM), a Fourier-transform infrared spectrophotometer (FTIR), an X-ray diffractometer (XRD), an optical contact angle meter, a digital Vickers micro-hardness (Hv) tester, and electronic universal testing. The results show that, after the liquid plasma and electrochemical machining, micro/nano-scale binary structures composed of micro-scale pits and nano-scale elongated boss structures were present on the sample surfaces. As a result, the anti-adhesion surfaces fabricated by the above coupling method have good anti-adhesion properties, better wear resistance and lower roughness.

  17. Preparation of anti-adhesion surfaces on aluminium substrates of rubber plastic moulds using a coupling method of liquid plasma and electrochemical machining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Jianbing, E-mail: jianbingmeng@126.com; Dong, Xiaojuan; Wei, Xiuting

    Hard anti-adhesion surfaces, with low roughness and wear resistance, on aluminium substrates of rubber plastic moulds were fabricated via a new coupling method of liquid plasma and electrochemical machining. With the aid of liquid plasma thermal polishing and electrochemical anodic dissolution, micro/nano-scale binary structures were prepared as the base of the anti-adhesion surfaces. The anti-adhesion behaviours of the resulting aluminium surfaces were analysed by a surface roughness measuring instrument, a scanning electron microscope (SEM), a Fourier-transform infrared spectrophotometer (FTIR), an X-ray diffractometer (XRD), an optical contact angle meter, a digital Vickers micro-hardness (Hv) tester, and electronic universal testing. The resultsmore » show that, after the liquid plasma and electrochemical machining, micro/nano-scale binary structures composed of micro-scale pits and nano-scale elongated boss structures were present on the sample surfaces. As a result, the anti-adhesion surfaces fabricated by the above coupling method have good anti-adhesion properties, better wear resistance and lower roughness.« less

  18. In vitro corrosion resistance of plasma source ion nitrided austenitic stainless steels.

    PubMed

    Le, M K; Zhu, X M

    2001-04-01

    Plasma source ion nitriding has emerged as a low-temperature, low-pressure nitriding approach for low-energy implanting nitrogen ions and then diffusing them into steel and alloy. In this work, a single high nitrogen face-centered-cubic (f.c.c.) phase (gammaN) formed on the 1Cr18Ni9Ti and AISI 316L austenitic stainless steels with a high nitrogen concentration of about 32 at % was characterized using Auger electron spectroscopy, electron probe microanalysis, glancing angle X-ray diffraction, and transmission electron microscopy. The corrosion resistance of the gammaN-phase layer was studied by the electrochemical cyclic polarization measurement in Ringer's solutions buffered to pH from 3.5 to 7.2 at a temperature of 37 degrees C. No pitting corrosion in the Ringer's solutions with pH = 7.2 and 5.5 was detected for the gammaN-phase layers on the two stainless steels. The high pitting potential for the gammaN-phase layers is higher, about 500 and 600 mV, above that of the two original stainless steels, respectively, in the Ringer's solution with pH = 3.5. The corroded surface morphologies of the gammaN-phase layers observed by scanning electron microscopy are consistent with the results of the electrochemical polarization measurement.

  19. Pavlovian-to-instrumental transfer in alcohol dependence: a pilot study.

    PubMed

    Garbusow, Maria; Schad, Daniel J; Sommer, Christian; Jünger, Elisabeth; Sebold, Miriam; Friedel, Eva; Wendt, Jean; Kathmann, Norbert; Schlagenhauf, Florian; Zimmermann, Ulrich S; Heinz, Andreas; Huys, Quentin J M; Rapp, Michael A

    2014-01-01

    Pavlovian processes are thought to play an important role in the development, maintenance and relapse of alcohol dependence, possibly by influencing and usurping ongoing thought and behavior. The influence of pavlovian stimuli on ongoing behavior is paradigmatically measured by pavlovian-to-instrumental transfer (PIT) tasks. These involve multiple stages and are complex. Whether increased PIT is involved in human alcohol dependence is uncertain. We therefore aimed to establish and validate a modified PIT paradigm that would be robust, consistent and tolerated by healthy controls as well as by patients suffering from alcohol dependence, and to explore whether alcohol dependence is associated with enhanced PIT. Thirty-two recently detoxified alcohol-dependent patients and 32 age- and gender-matched healthy controls performed a PIT task with instrumental go/no-go approach behaviors. The task involved both pavlovian stimuli associated with monetary rewards and losses, and images of drinks. Both patients and healthy controls showed a robust and temporally stable PIT effect. Strengths of PIT effects to drug-related and monetary conditioned stimuli were highly correlated. Patients more frequently showed a PIT effect, and the effect was stronger in response to aversively conditioned CSs (conditioned suppression), but there was no group difference in response to appetitive CSs. The implementation of PIT has favorably robust properties in chronic alcohol-dependent patients and in healthy controls. It shows internal consistency between monetary and drug-related cues. The findings support an association of alcohol dependence with an increased propensity towards PIT. © 2014 S. Karger AG, Basel.

  20. Electrochemical anodizing treatment to enhance localized corrosion resistance of pure titanium.

    PubMed

    Prando, Davide; Brenna, Andrea; Bolzoni, Fabio M; Diamanti, Maria V; Pedeferri, Mariapia; Ormellese, Marco

    2017-01-26

    Titanium has outstanding corrosion resistance due to the thin protective oxide layer that is formed on its surface. Nevertheless, in harsh and severe environments, pure titanium may suffer localized corrosion. In those conditions, costly titanium alloys containing palladium, nickel and molybdenum are used. This purpose investigated how it is possible to control corrosion, at lower cost, by electrochemical surface treatment on pure titanium, increasing the thickness of the natural oxide layer. Anodic oxidation was performed on titanium by immersion in H2SO4 solution and applying voltages ranging from 10 to 80 V. Different anodic current densities were considered. Potentiodynamic tests in chloride- and fluoride-containing solutions were carried out on anodized titanium to determine the pitting potential. All tested anodizing treatments increased corrosion resistance of pure titanium, but never reached the performance of titanium alloys. The best corrosion behavior was obtained on titanium anodized at voltages lower than 40 V at 20 mA/cm2. Titanium samples anodized at low cell voltage were seen to give high corrosion resistance in chloride- and fluoride-containing solutions. Electrolyte bath and anodic current density have little effect on the corrosion behavior.

  1. Effect of surface passivation on corrosion resistance and antibacterial properties of Cu-bearing 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Zhao, Jinlong; Xu, Dake; Shahzad, M. Babar; Kang, Qiang; Sun, Ying; Sun, Ziqing; Zhang, Shuyuan; Ren, Ling; Yang, Chunguang; Yang, Ke

    2016-11-01

    The resistance for pitting corrosion, passive film stability and antibacterial performance of 316L-Cu SS passivated by nitric acid solution containing certain concentration of copper sulfate, were studied by electrochemical cyclic polarization, electrochemical impedance spectroscopy (EIS) and co-culture with bacteria. Inductively coupled plasma mass spectrometry (ICP-MS) was used to analyze the Cu2+ ions release from 316L-Cu SS surface. XPS analysis proved that the enrichment of CuO, Cr2O3 and Cr(OH)3 on the surface of specimen could simultaneously guarantee a better corrosion resistance and stable antibacterial properties. The biocompatibility evaluation determined by RTCA assay also indicated that the 316L-Cu SS after antibacterial passivation was completely biocompatible.

  2. Perspective—Localized Corrosion: Passive Film Breakdown vs Pit Growth Stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frankel, G. S.; Li, Tianshu; Scully, J. R.

    2017-02-24

    A debate about the critical step in localized corrosion has raged for decades. Some researchers focus on the composition and structure of the passive film associated with the initial breakdown of the film, whereas others consider that the susceptibility to pitting is controlled by the pit growth kinetics and the stabilization of pit growth. The basis for a unified theory of pitting is presented here in which pit stability considerations are controlling under aggressive conditions (harsh electrolytes and extreme environments and/or susceptible microstructures) and the passive film properties and protectiveness are the critical factors in less extreme environments and/or formore » less susceptible alloys.« less

  3. Chemical passivation as a method of improving the electrochemical corrosion resistance of Co-Cr-based dental alloy.

    PubMed

    Rylska, Dorota; Sokołowski, Grzegorz; Sokołowski, Jerzy; Łukomska-Szymańska, Monika

    2017-01-01

    The purpose of the study was to evaluate corrosion resistance of Wirobond C® alloy after chemical passivation treatment. The alloy surface undergone chemical passivation treatment in four different media. Corrosion studies were carried out by means of electrochemical methods in saline solution. Corrosion effects were determined using SEM. The greatest increase in the alloy polarization resistance was observed for passive layer produced in Na2SO4 solution with graphite. The same layer caused the highest increase in corrosion current. Generally speaking, the alloy passivation in Na2SO4 solution with graphite caused a substantial improvement of the corrosion resistance. The sample after passivation in Na2SO4 solution without graphite, contrary to others, lost its protective properties along with successive anodic polarization cycles. The alloy passivation in Na3PO4 solution with graphite was the only one that caused a decrease in the alloy corrosion properties. The SEM studies of all samples after chemical passivation revealed no pit corrosion - in contrast to the sample without any modification. Every successive polarization cycle in anodic direction of pure Wirobond C® alloy enhances corrosion resistance shifting corrosion potential in the positive direction and decreasing corrosion current value. The chemical passivation in solutions with low pH values decreases susceptibility to electrochemical corrosion of Co-Cr dental alloy. The best protection against corrosion was obtained after chemical passivation of Wirobond C® in Na2SO4 solution with graphite. Passivation with Na2SO4 in solution of high pH does not cause an increase in corrosion resistance of WIROBOND C. Passivation process increases alloy resistance to pit corrosion.

  4. Pitting corrosion of titanium. Interim report, June-December 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casillas, N.; Charlebois, S.J.; Smyrl, W.H.

    1994-01-20

    The breakdown of native and anodically-grown oxide films on Ti electrodes is investigated by scanning electrochemical microscopy (SECM), video microscopy, transmission electron microscopy and voltammetry. SECM is used to demonstrate that the oxidation of Br- on Ti occurs at microscopic surface sites (10 - 50 micrometer diameter, 30 sites/sq cm) that are randomly positioned across the oxide surface. After determining the position of the active sites for Br- oxidation, breakdown of the oxide is initiated by increasing the electrode potential to more positive values. Direct correspondence is observed between the location of the electroactive sites and corrosion pits, indicating thatmore » oxide breakdown is associated with a localized site of high electrical conductivity. The potential at which pitting is observed in voltammetric experiments is found to be proportional to the average oxide thickness, for values ranging between 20 and 100 A, indicating that breakdown is determined either by the magnitude of the electric field within the oxide or by the interfacial potential at the oxide/Br- solution interface. Pitting occurs at significantly lower potentials in Br- solutions than in C 1- solutions, suggesting a strong chemical interaction between the TiO2 surface and Br-. A mechanism of oxide breakdown is proposed that is based on the potential-dependent chemical dissolution of the oxide at microscopic surface sites.« less

  5. Electrochemical stability and corrosion resistance of Ti-Mo alloys for biomedical applications.

    PubMed

    Oliveira, N T C; Guastaldi, A C

    2009-01-01

    Electrochemical behavior of pure Ti and Ti-Mo alloys (6-20wt.% Mo) was investigated as a function of immersion time in electrolyte simulating physiological media. Open-circuit potential values indicated that all Ti-Mo alloys studied and pure Ti undergo spontaneous passivation due to spontaneously formed oxide film passivating the metallic surface, in the chloride-containing solution. It also indicated that the addition of Mo to pure Ti up to 15wt.% seems to improve the protection characteristics of its spontaneous oxides. Electrochemical impedance spectroscopy (EIS) studies showed high impedance values for all samples, increasing with immersion time, indicating an improvement in corrosion resistance of the spontaneous oxide film. The fit obtained suggests a single passive film present on the metals' surface, improving their resistance with immersion time, presenting the highest values to Ti-15Mo alloy. Potentiodynamic polarization showed a typical valve-metal behavior, with anodic formation of barrier-type oxide films, without pitting corrosion, even in chloride-containing solution. In all cases, the passive current values were quite small, and decrease after 360h of immersion. All these electrochemical results suggest that the Ti-15Mo alloy is a promising material for orthopedic devices, since electrochemical stability is directly associated with biocompatibility and is a necessary condition for applying a material as biomaterial.

  6. Effect of cold deformation on the electrochemical behaviour of 304L stainless steel in contaminated sulfuric acid environment

    NASA Astrophysics Data System (ADS)

    Luo, Hong; Su, Huaizhi; Ying, Guobing; Dong, Chaofang; Li, Xiaogang

    2017-12-01

    The effect of cold deformation on the microstructure and electrochemical corrosion behaviour of 304L stainless steel in contaminated sulfuric acid solutions (simulated proton exchange membrane fuel cells environments) were evaluated using electron backscatter diffraction analyses, electrochemical measurements, and surface analyses. The internal microstructure,including the grain sizes, angles of the grain boundaries, low coincidence site lattice boundaries, and phase transformations, was changed due to the cold deformation. No noticeable modifications of the pitting corrosion potential were observed during the various deformations, except for a slight enhancement in the passive current density with an increase in the deformation. The CrO3 and metal Ni species in the passive film were investigated after deformation. After heavy deformation (greater than 60%), nickel oxides were detected. Moreover, the Cr/Fe and O2-/OH- ratios in the passive film were higher before deformation, and they decreased with an increase in the deformation level.

  7. Corrosion resistance of premodeled wires made of stainless steel used for heart electrotherapy leaders

    NASA Astrophysics Data System (ADS)

    Przondziono, J.; Walke, W.; Młynarski, R.; Szatka, W.

    2012-05-01

    The purpose of the study is to evaluate resistance to electrochemical corrosion of wire made of X10CrNi18-8 stainless steel designed for use in cardiology treatment. The influence of strain formed in the premodeling process and methods of wire surface preparation to corrosive resistance in artificial plasma solution were analysed. Wire corrosion tests were carried out in the solution of artificial plasma. Resistance to electrochemical corrosion was evaluated on the ground of recorded curves of anodic polarization by means of potentiodynamic method. Potentiodynamic tests carried out enabled to determine how the resistance to pitting corrosion of wire changes, depending on strain formed in the premodeling process as well as on the method of wire surface preparation. For evaluation of phenomena occurring on the surface of tested steel, electrochemical impedance spectroscopy (EIS) was applied. Deterioration of corrosive properties of wire along with the increase in the formed strain hardening was observed.

  8. Localized corrosion of high performance metal alloys in an acid/salt environment

    NASA Technical Reports Server (NTRS)

    Macdowell, L. G.; Ontiveros, C.

    1991-01-01

    Various vacuum jacketed cryogenic supply lines at the Space Shuttle launch site at Kennedy Space Center use convoluted flexible expansion joints. The atmosphere at the launch site has a very high salt content, and during a launch, fuel combustion products include hydrochloric acid. This extremely corrosive environment has caused pitting corrosion failure in the thin walled 304L stainless steel flex hoses. A search was done to find a more corrosion resistant replacement material. The study focussed on 19 metal alloys. Tests which were performed include electrochemical corrosion testing, accelerated corrosion testing in a salt fog chamber, and long term exposure at a beach corrosion testing site. Based on the results of these tests, several nickel based alloys were found to have very high resistance to this corrosive environment. Also, there was excellent agreement between the electrochemical tests and the actual beach exposure tests. This suggests that electrochemical testing may be useful for narrowing the field of potential candidate alloys before subjecting samples to long term beach exposure.

  9. Global and local investigations of the electrochemical behavior the T6 heat treated Mg-Zn-RE magnesium alloy thixo-cast

    NASA Astrophysics Data System (ADS)

    Szklarz, Zbigniew; Bisztyga, Magdalena; Krawiec, Halina; Lityńska-Dobrzyńska, Lidia; Rogal, Łukasz

    2017-05-01

    The influence of semi-solid metal processing (SSM called also as thixoforming) of ZE41A magnesium alloy on the electrochemical behavior in 0.1 M NaCl solution was investigated. To describe the corrosion behavior of ZE41A alloy, the electrochemical measurements were conducted in global and local scale for two types of specimens: (1) ingot-feedstock, (2) specimen after thixoforming and T6 treatment. The heat treatment and thixoforming significantly improved mechanical properties of ZE41A alloy. The global corrosion potential is slightly higher for treated sample what is related to the presence of Zr-Zn nanoparticles distributed in solid solution. The corrosion behavior differences between feedstock and thixo-cast after T6 samples are also visible in local scale, what has been revealed by using microcapillary technique. However there is no improvement in corrosion behavior after treatment. Corrosion morphology of the treated sample indicate higher susceptibility to pitting and filiform corrosion. Corrosion rate is also slightly higher.

  10. Floodplain restoration with flood control: fish habitat value of levee borrow pits

    USDA-ARS?s Scientific Manuscript database

    Earthen flood control levees are often built using soil excavated from borrow pits lying parallel to and riverward of the finished levee. After construction, these pits can provide valuable floodplain habitats, and their value is well established along corridors of larger rivers. However, levee bo...

  11. Corrosion of radioactive waste tanks containing washed sludge and precipitates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bickford, D.F.; Congdon, J.W.; Oblath, S.B.

    1988-05-01

    At the US Department of Energy (DOE) Savannah River Plant, the corrosion of carbon steel storage tanks containing alkaline, high-level radioactive waste is controlled by specification of limits on waste composition and temperature. Laboratory tests, conducted to determine minimum corrosion inhibitor levels, indicated pitting of carbon steel near the waterline for proposed storage conditions. In situ electrochemical measurements of full-scale radioactive process demonstrations were conducted to assess the validity of laboratory tests. The in situ results are compared to those of laboratory tests, with particular regard given to simulated solution composition. Transition metal hydroxide sludge contains strong passivating species formore » carbon steel. Washed precipitate contains organic species that lower solution pH and tend to reduce passivating films, requiring higher inhibitor concentrations than the 0.01 M nitrite required for reactor fuel reprocessing wastes.« less

  12. Nanopore arrays in a silicon membrane for parallel single-molecule detection: fabrication

    NASA Astrophysics Data System (ADS)

    Schmidt, Torsten; Zhang, Miao; Sychugov, Ilya; Roxhed, Niclas; Linnros, Jan

    2015-08-01

    Solid state nanopores enable translocation and detection of single bio-molecules such as DNA in buffer solutions. Here, sub-10 nm nanopore arrays in silicon membranes were fabricated by using electron-beam lithography to define etch pits and by using a subsequent electrochemical etching step. This approach effectively decouples positioning of the pores and the control of their size, where the pore size essentially results from the anodizing current and time in the etching cell. Nanopores with diameters as small as 7 nm, fully penetrating 300 nm thick membranes, were obtained. The presented fabrication scheme to form large arrays of nanopores is attractive for parallel bio-molecule sensing and DNA sequencing using optical techniques. In particular the signal-to-noise ratio is improved compared to other alternatives such as nitride membranes suffering from a high-luminescence background.

  13. Nanopore arrays in a silicon membrane for parallel single-molecule detection: fabrication.

    PubMed

    Schmidt, Torsten; Zhang, Miao; Sychugov, Ilya; Roxhed, Niclas; Linnros, Jan

    2015-08-07

    Solid state nanopores enable translocation and detection of single bio-molecules such as DNA in buffer solutions. Here, sub-10 nm nanopore arrays in silicon membranes were fabricated by using electron-beam lithography to define etch pits and by using a subsequent electrochemical etching step. This approach effectively decouples positioning of the pores and the control of their size, where the pore size essentially results from the anodizing current and time in the etching cell. Nanopores with diameters as small as 7 nm, fully penetrating 300 nm thick membranes, were obtained. The presented fabrication scheme to form large arrays of nanopores is attractive for parallel bio-molecule sensing and DNA sequencing using optical techniques. In particular the signal-to-noise ratio is improved compared to other alternatives such as nitride membranes suffering from a high-luminescence background.

  14. Photoimmunotherapy of Gastric Cancer Peritoneal Carcinomatosis in a Mouse Model

    PubMed Central

    Sato, Kazuhide; Choyke, Peter L.; Kobayashi, Hisataka

    2014-01-01

    Photoimmunotherapy (PIT) is a new cancer treatment that combines the specificity of antibodies for targeting tumors with the toxicity induced by photosensitizers after exposure to near infrared (NIR) light. We performed PIT in a model of disseminated gastric cancer peritoneal carcinomatosis and monitored efficacy with in vivo GFP fluorescence imaging. In vitro and in vivo experiments were conducted with a HER2-expressing, GFP-expressing, gastric cancer cell line (N87-GFP). A conjugate comprised of a photosensitizer, IR-700, conjugated to trastuzumab (tra-IR700), followed by NIR light was used for PIT. In vitro PIT was evaluated by measuring cytotoxicity with dead staining and a decrease in GFP fluorescence. In vivo PIT was evaluated in a disseminated peritoneal carcinomatosis model and a flank xenograft using tumor volume measurements and GFP fluorescence intensity. In vivo anti-tumor effects of PIT were confirmed by significant reductions in tumor volume (at day 15, p<0.0001 vs. control) and GFP fluorescence intensity (flank model: at day 3, PIT treated vs. control p<0.01 and peritoneal disseminated model: at day 3 PIT treated vs. control, p<0.05). Cytotoxic effects in vitro were shown to be dependent on the light dose and caused necrotic cell rupture leading to GFP release and a decrease in fluorescence intensity in vitro. Thus, loss of GFP fluorescence served as a useful biomarker of cell necrosis after PIT. PMID:25401794

  15. Electrochemical Corrosion Characteristics of Arc-Ion-Plated AlTiN Coating for Marine Application.

    PubMed

    Lee, Jung-Hyung; Kim, MyoungJun; Kim, Seong-Jong

    2016-02-01

    In this study, aluminum titanium nitride (AlTiN) coating was deposited by arc ion plating onto mirror finish STS 304 plate. The surface and cross-section of the coating was characterized by SEM and EDX analysis. Several electrochemical corrosion experiments were performed including rest potential measurement, potentiodynamic polarization experiment and Tafel analysis. The result of the experiments indicated that the AlTiN coating presented lower corrosion current density than the substrate material (STS 304) under uniform corrosion environment. It was also observed that AlTiN coating may have a risk of being attacked by localized corrosion attack such as pitting when pores or micro/nano particles in the coating are exposed to chloride ion containing corrosion environment, especially marine environment.

  16. Microbiologically Influenced Corrosion in Copper and Nickel Seawater Piping Systems

    DTIC Science & Technology

    1990-09-01

    Influenced Tipton, D. G. and Kain, R. M. 1980. Effect of temperature onCorosiope in Nuclear Power Plants atudy a Mical Gnuide the resistance to pitting of...Monel alloy 400 in seawater. In:Corrosion in Nuclear Power Plants anda Practical ie fr Proceedings of Corrosion 󈨔. Chicago, Illinois: National...Sons Ltd. 441 pp. Quimica . Verink, E.D. and Pourbaix, M. 1971. Use of electrochemical Pope, D. H., Duquette, D. J., Johannes, A. H., and Wayner

  17. A study on chloride induced depassivation of Fe-P-C-Si and Fe-P-C-Si-N steels in simulated concrete pore solution

    NASA Astrophysics Data System (ADS)

    Mehta, Yashwant; Chaudhari, Gajanan P.; Dabhade, Vikram V.

    2018-03-01

    The corrosion behaviour of high phosphorous steels containing varying amounts of silicon and nitrogen was studied by potentiodynamic polarization, linear polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS) measurements. The morphology of a steel specimen tested in chloride containing concrete pore solution was studied using scanning electron microscope (SEM) and the elemental distribution at the pitting corrosion area was investigated using electron dispersive spectroscopy (EDS). The results showed that the capacitance increased and resistance declined with immersion time in Ca(OH)2 solution containing 0.1% chloride for plain carbon steel. The opposite was observed in the case of the high phosphorous steels. The potentiodynamic polarization and LPR results complement the EIS findings. Corrosion behaviour could be described with an equivalent circuit having two time constants. The creation, expansion and degradation of the passive layer were discussed with the help of the equivalent circuit elements. The SEM-EDS studies revealed that MnS inclusions at the surface could have a role in the initiation and growth of pits and that phosphorous was present at the pit free surface of the steel.

  18. Investigating pitting in X65 carbon steel using potentiostatic polarisation

    NASA Astrophysics Data System (ADS)

    Mohammed, Sikiru; Hua, Yong; Barker, R.; Neville, A.

    2017-11-01

    Although pitting corrosion in passive materials is generally well understood, the growth of surface pits in actively-corroding materials has received much less attention to date and remains poorly understood. One of the key challenges which exists is repeatedly and reliably generating surface pits in a practical time-frame in the absence of deformation and/or residual stress so that studies on pit propagation and healing can be performed. Another pertinent issue is how to evaluate pitting while addressing general corrosion in low carbon steel. In this work, potentiostatic polarisation was employed to induce corrosion pits (free from deformation or residual stress) on actively corroding X65 carbon steel. The influence of applied potential (50 mV, 100 mV and 150 mV vs open circuit potential) was investigated over 24 h in a CO2-saturated, 3.5 wt.% NaCl solution at 30 °C and pH 3.8. Scanning electron microscopy (SEM) was utilised to examine pits, while surface profilometry was conducted to measure pit depth as a function of applied potential over the range considered. Analyses of light pitting (up to 120 μm) revealed that pit depth increased linearly with increase in applied potential. This paper relates total pit volume (measured using white light interferometry) to dissipated charge or total mass loss (using the current response for potentiostatic polarisation in conjunction with Faraday's law). By controlling the potential of the surface (anodic) the extent of pitting and general corrosion could be controlled. This allowed pits to be evaluated for their ability to continue to propagate after the potentiostatic technique was employed. Linear growth from a depth of 70 μm at pH 3.8, 80 °C was demonstrated. The technique offers promise for the study of inhibition of pitting.

  19. Near infrared photoimmunotherapy in the treatment of disseminated peritoneal ovarian cancer

    PubMed Central

    Sato, Kazuhide; Hanaoka, Hirofumi; Watanabe, Rira; Nakajima, Takahito; Choyke, Peter L.; Kobayashi, Hisataka

    2014-01-01

    Near infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that combines the specificity of intravenously injected antibodies for targeting tumors with the toxicity induced by photosensitizers after exposure to near infrared (NIR) light. Herein, we evaluate the efficacy of NIR-PIT in a mouse model of disseminated peritoneal ovarian cancer. In vitro and in vivo experiments were conducted with a HER2-expressing, luciferase expressing, ovarian cancer cell line (SKOV-luc). An antibody-photosensitizer conjugate (APC) consisting of trastuzumab and a phthalocyanine dye, IRDye-700DX, was synthesized (tra-IR700) and cells or tumors were exposed to near infrared (NIR) light. In vitro PIT cytotoxicity was assessed with dead staining and luciferase activity in freely growing cells and in a 3D spheroid model. In vivo NIR-PIT was performed in mice with tumors implanted in the peritoneum and in the flank and these assessed by tumor volume and/or bioluminescence. In vitro NIR-PIT-induced cytotoxicity was light dose dependent. Repeated light exposures induced complete tumor cell killing in the 3D spheroid model. In vivo the anti-tumor effects of NIR-PIT were confirmed by significant reductions in both tumor volume and luciferase activity in the flank model (NIR-PIT vs control in tumor volume changes at day 10; p=0.0001, NIR-PIT vs control in luciferase activity at day 4; p=0.0237), and the peritoneal model (NIR-PIT vs control in luciferase activity at day 7; p=0.0037). NIR-PIT provided effective cell killing in this HER2 positive model of disseminated peritoneal ovarian cancer. Thus, NIR-PIT is a promising new therapy for the treatment of disseminated peritoneal tumors. PMID:25416790

  20. Initation of pitting corrosion in martensitic stainless steels. [17-4PH; 13-8Mo; Custom 450

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cieslak, W.R.; Semarge, R.E.; Bovard, F.S.

    1986-01-01

    The form of localized corrosion known as pitting often initiates preferentially at microstructural inhomogeneities. The pit initiation resistance, therefore, is controlled by the characteristics of the initiation sites, rather than by the bulk material composition. This investigation correlates the pit initiation resistance, as measured by critical pitting potentials, with preferred pit initiation sites for 3 martensitic stainless steels. Pit initiation sites are determined by secondary electron (SE) and backscattered electron (BSE) imaging and energy dispersive and wavelength dispersive spectrometries (EDS and WDS) with a scalling electron microscope (SEM) and an electron probe microanalyzer (EPMA).

  1. Tag loss and short-term mortality associated with passive integrated transponder tagging of juvenile Lost River suckers

    USGS Publications Warehouse

    Burdick, Summer M.

    2011-01-01

    Passive integrated transponder (PIT) tags are commonly used to mark small catostomids, but tag loss and the effect of tagging on mortality have not been assessed for juveniles of the endangered Lost River sucker Deltistes luxatus. I evaluated tag loss and short-term (34-d) mortality associated with the PIT tagging of juvenile Lost River suckers in the laboratory by using a completely randomized design and three treatment groups (PIT tagged, positive control, and control). An empty needle was inserted into each positive control fish, whereas control fish were handled but not tagged. Only one fish expelled its PIT tag. Mortality rate averaged 9.8 ± 3.4% (mean ± SD) for tagged fish; mortality was 0% for control and positive control fish. All tagging mortalities occurred in fish with standard lengths of 71 mm or less, and most of the mortalities occurred within 48 h of tagging. My results indicate that 12.45- × 2.02-mm PIT tags provide a viable method of marking juvenile Lost River suckers that are 72 mm or larger.

  2. Stainless steel corrosion scale formed in reclaimed water: Characteristics, model for scale growth and metal element release.

    PubMed

    Cui, Yong; Liu, Shuming; Smith, Kate; Hu, Hongying; Tang, Fusheng; Li, Yuhong; Yu, Kanghua

    2016-10-01

    Stainless steels generally have extremely good corrosion resistance, but are still susceptible to pitting corrosion. As a result, corrosion scales can form on the surface of stainless steel after extended exposure to aggressive aqueous environments. Corrosion scales play an important role in affecting water quality. These research results showed that interior regions of stainless steel corrosion scales have a high percentage of chromium phases. We reveal the morphology, micro-structure and physicochemical characteristics of stainless steel corrosion scales. Stainless steel corrosion scale is identified as a podiform chromite deposit according to these characteristics, which is unlike deposit formed during iron corrosion. A conceptual model to explain the formation and growth of stainless steel corrosion scale is proposed based on its composition and structure. The scale growth process involves pitting corrosion on the stainless steel surface and the consecutive generation and homogeneous deposition of corrosion products, which is governed by a series of chemical and electrochemical reactions. This model shows the role of corrosion scales in the mechanism of iron and chromium release from pitting corroded stainless steel materials. The formation of corrosion scale is strongly related to water quality parameters. The presence of HClO results in higher ferric content inside the scales. Cl - and SO 4 2- ions in reclaimed water play an important role in corrosion pitting of stainless steel and promote the formation of scales. Copyright © 2016. Published by Elsevier B.V.

  3. Nucleation sites of Ge nanoislands grown on pit-patterned Si substrate prepared by electron-beam lithography

    NASA Astrophysics Data System (ADS)

    Smagina, Zh. V.; Zinovyev, V. A.; Rudin, S. A.; Novikov, P. L.; Rodyakina, E. E.; Dvurechenskii, A. V.

    2018-04-01

    Regular pit-patterned Si(001) substrates were prepared by electron-beam lithography followed by plasma chemical etching. The geometry of the pits was controlled by varying the etching conditions and the electron-beam exposure duration. It was shown that the location of three-dimensional (3D) Ge nanoislands subsequently grown on the pit-patterned Si substrates depends on the shape of the pit bottom. In the case of pits having a sharp bottom, 3D Ge islands nucleate inside the pits. For pits with a wide flat bottom, the 3D Ge island nucleation takes place at the pit periphery. This effect is attributed to the strain relaxation depending not only on the initial pit shape, but also on its evolution during the Ge wetting layer deposition. It was shown by Monte Carlo simulations that in the case of a pit with a pointed bottom, the relaxation is most effective inside the pit, while for a pit with a wide bottom, the most relaxed area migrates during Ge deposition from the pit bottom to its edges, where 3D Ge islands nucleate.

  4. Control of corrosive bacterial community by bronopol in industrial water system.

    PubMed

    Narenkumar, Jayaraman; Ramesh, Nachimuthu; Rajasekar, Aruliah

    2018-01-01

    Ten aerobic corrosive bacterial strains were isolated from a cooling tower water system (CWS) which were identified based on the biochemical characterization and 16S rRNA gene sequencing. Out of them, dominant corrosion-causing bacteria, namely, Bacillus thuringiensis EN2, Terribacillus aidingensis EN3, and Bacillus oleronius EN9, were selected for biocorrosion studies on mild steel 1010 (MS) in a CWS. The biocorrosion behaviour of EN2, EN3, and EN9 strains was studied using immersion test (weight loss method), electrochemical analysis, and surface analysis. To address the corrosion problems, an anti-corrosive study using a biocide, bronopol was also demonstrated. Scanning electron microscopy and Fourier-transform infrared spectroscopy analyses of the MS coupons with biofilm developed after exposure to CWS confirmed the accumulation of extracellular polymeric substances and revealed that biofilms was formed as microcolonies, which subsequently cause pitting corrosion. In contrast, the biocide system, no pitting type of corrosion, was observed and weight loss was reduced about 32 ± 2 mg over biotic system (286 ± 2 mg). FTIR results confirmed the adsorption of bronopol on the MS metal surface as protective layer (co-ordination of NH 2 -Fe 3+ ) to prevent the biofilm formation and inhibit the corrosive chemical compounds and thus led to reduction of corrosion rate (10 ± 1 mm/year). Overall, the results from WL, EIS, SEM, XRD, and FTIR concluded that bronopol was identified as effective biocide and corrosion inhibitor which controls the both chemical and biocorrosion of MS in CWS.

  5. Electrochemical probing of high-level radioactive waste tanks containing washed sludge and precipitates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bickford, D.F.; Congdon, J.W.; Oblath, S.B.

    1986-12-01

    At the US Department of Energy's Savannah River Plant, corrosion of carbon steel storage tanks containing alkaline, high-level radioactive waste is controlled by specification of limits on waste composition and temperature. Processes for the preparation of waste for final disposal will result in waste with low corrosion inhibitor concentrations and, in some cases, high aromatic organic concentrations, neither of which are characteristic of previous operations. Laboratory tests, conducted to determine minimum corrosion inhibitor levels indicated pitting of carbon steel near the waterline for proposed storage conditions. In situ electrochemical measurements of full-scale radioactive process demonstrations have been conducted to assessmore » the validity of laboratory tests. Probes included pH, Eh (potential relative to a standard hydrogen electrode), tank potential, and alloy coupons. In situ results are compared to those of the laboratory tests, with particular regard given to simulated solution composition. Transition metal hydroxide sludge contains strong passivating species for carbon steel. Washed precipitate contains organic species that lower solution pH and tend to reduce passivating films, requiring higher inhibitor concentrations than the 0.01 molar nitrite required for reactor fuel reprocessing wastes. Periodic agitation, to keep the organic phase suspended, or cathodic protection are possible alternatives to higher nitrite inhibitor concentrations.« less

  6. Case history of controlling a landslide at Panluo open-pit mine in China

    NASA Astrophysics Data System (ADS)

    Wei, Zuoan; Yin, Guangzhi; Wan, Ling; Shen, Louyan

    2008-04-01

    Controlling of landsides safely and economically is a great challenge to mine operators because landslides are major geological problems especially in open-pit mines. In this paper, a case history at Panluo open-pit mine is presented in detail to share the experiences and lessons with mine operators. Panluo open-pit mine is located in the southwestern Fujian province of China. It is the largest open-pit iron mine in the Fujian province and was planned in 1965 and is in full operation from 1978. In July 1990, an earthquake of magnitude 5.3 in Taiwan Strait and big rainstorms impacted the mine slope, causing tension cracks and rather large-scale failures, and forming a U-shaped landslide. Total potential volume was estimated to be up to 1.0 × 106 m3. This directly threatened the mine production. In order to protect the mine production and the dwellers’ safety around, a dynamic comprehensive method was implemented including geotechnical investigations, in-situ testing and monitoring, stability analysis, and many mitigation and preventive measures. These measures slowed down the development and further occurrence of the landslide. The results showed that the landslides were still active, it was slowed with the control measures and moved rapidly with rainfall and mining down. However, no catastrophic accidents occurred and the pit mining was continued till it was closed at the elevation of 887 m in 2000. As a successful case of landslide control at an open-pit mine for 10 years, this paper reports the controlling measures in details. These experiences of landslide control may be beneficial to other similar mines for landslide control.

  7. 40 CFR 49.144 - Control equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... remote notification system if the pilot flame fails. (B) An electronically controlled auto-ignition... emissions; (iv) The pit flare is equipped with an electronically controlled auto-ignition system with a... electronically controlled auto-ignition system must be repaired or replaced before the pit flare is utilized...

  8. 40 CFR 49.144 - Control equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... remote notification system if the pilot flame fails. (B) An electronically controlled auto-ignition... emissions; (iv) The pit flare is equipped with an electronically controlled auto-ignition system with a... electronically controlled auto-ignition system must be repaired or replaced before the pit flare is utilized...

  9. Dynamic interactions between Pit-1 and C/EBPalpha in the pituitary cell nucleus.

    PubMed

    Demarco, Ignacio A; Voss, Ty C; Booker, Cynthia F; Day, Richard N

    2006-11-01

    The homeodomain (HD) transcription factors are a structurally conserved family of proteins that, through networks of interactions with other nuclear proteins, control patterns of gene expression during development. For example, the network interactions of the pituitary-specific HD protein Pit-1 control the development of anterior pituitary cells and regulate the expression of the hormone products in the adult cells. Inactivating mutations in Pit-1 disrupt these processes, giving rise to the syndrome of combined pituitary hormone deficiency. Pit-1 interacts with CCAAT/enhancer-binding protein alpha (C/EBPalpha) to regulate prolactin transcription. Here, we used the combination of biochemical analysis and live-cell microscopy to show that two different point mutations in Pit-1, which disrupted distinct activities, affected the dynamic interactions between Pit-1 and C/EBPalpha in different ways. The results showed that the first alpha-helix of the POU-S domain is critical for the assembly of Pit-1 with C/EBPalpha, and they showed that DNA-binding activity conferred by the HD is critical for the final intranuclear positioning of the metastable complex. This likely reflects more general mechanisms that govern cell-type-specific transcriptional control, and the results from the analysis of the point mutations could indicate an important link between the mislocalization of transcriptional complexes and disease processes.

  10. Psychoanalytic-Interactional Therapy versus Psychodynamic Therapy by Experts for Personality Disorders: A Randomized Controlled Efficacy-Effectiveness Study in Cluster B Personality Disorders.

    PubMed

    Leichsenring, Falk; Masuhr, Oliver; Jaeger, Ulrich; Rabung, Sven; Dally, Andreas; Dümpelmann, Michael; Fricke-Neef, Christian; Steinert, Christiane; Streeck, Ulrich

    2016-01-01

    With regard to cluster B personality disorders, most psychotherapeutic treatments focus on borderline personality disorder. Evidence-based treatments for patients with other cluster B personality disorders are not yet available. Psychoanalytic-interactional therapy (PIT) represents a transdiagnostic treatment for severe personality disorders. PIT has been applied in clinical practice for many years and has proven effective in open studies. In a randomized controlled trial, we compared manual-guided PIT to nonmanualized pychodynamic therapy by experts in personality disorders (E-PDT) in patients with cluster B personality disorders. In an inpatient setting, patients with cluster B personality disorders were randomly assigned to manual-guided PIT (n = 64) or nonmanualized E-PDT (n = 58). In addition, a quasi-experimental control condition was used (n = 46) including both patients receiving treatment as usual and patients waiting for treatment. Primary outcomes were level of personality organization and overall psychological distress. As secondary outcomes, depression, anxiety and interpersonal problems were examined. No significant improvements were found in the control patients. Both PIT and E-PDT achieved significant improvements in all outcome measures and were superior to the control condition. No differences were found between PIT and E-PDT in any outcome measure at the end of treatment. The type of cluster B personality disorder had no impact on the results. In an inpatient setting, both PIT and E-PDT proved to be superior to a control condition in cluster B personality disorders. In a head-to-head comparison, both treatments appeared to be equally effective. Further research on the treatment of cluster B personality disorders is required. © 2016 S. Karger AG, Basel.

  11. TREATMENT TANK CORROSION STUDIES FOR THE ENHANCED CHEMICAL CLEANING PROCESS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiersma, B.

    2011-08-24

    Radioactive waste is stored in high level waste tanks on the Savannah River Site (SRS). Savannah River Remediation (SRR) is aggressively seeking to close the non-compliant Type I and II waste tanks. The removal of sludge (i.e., metal oxide) heels from the tank is the final stage in the waste removal process. The Enhanced Chemical Cleaning (ECC) process is being developed and investigated by SRR to aid in Savannah River Site (SRS) High-Level Waste (HLW) as an option for sludge heel removal. Corrosion rate data for carbon steel exposed to the ECC treatment tank environment was obtained to evaluate themore » degree of corrosion that occurs. These tests were also designed to determine the effect of various environmental variables such as temperature, agitation and sludge slurry type on the corrosion behavior of carbon steel. Coupon tests were performed to estimate the corrosion rate during the ECC process, as well as determine any susceptibility to localized corrosion. Electrochemical studies were performed to develop a better understanding of the corrosion mechanism. The tests were performed in 1 wt.% and 2.5 wt.% oxalic acid with HM and PUREX sludge simulants. The following results and conclusions were made based on this testing: (1) In 1 wt.% oxalic acid with a sludge simulant, carbon steel corroded at a rate of less than 25 mpy within the temperature and agitation levels of the test. No susceptibility to localized corrosion was observed. (2) In 2.5 wt.% oxalic acid with a sludge simulant, the carbon steel corrosion rates ranged between 15 and 88 mpy. The most severe corrosion was observed at 75 C in the HM/2.5 wt.% oxalic acid simulant. Pitting and general corrosion increased with the agitation level at this condition. No pitting and lower general corrosion rates were observed with the PUREX/2.5 wt.% oxalic acid simulant. The electrochemical and coupon tests both indicated that carbon steel is more susceptible to localized corrosion in the HM/oxalic acid environment than in the PUREX/oxalic acid environment. (3) The corrosion rates for PUREX/8 wt.% oxalic acid were greater than or equal to those observed for the PUREX/2.5 wt.% oxalic acid. No localized corrosion was observed in the tests with the 8 wt.% oxalic acid. Testing with HM/8 wt.% oxalic acid simulant was not performed. Thus, a comparison with the results with 2.5 wt.% oxalic acid, where the corrosion rate was 88 mpy and localized corrosion was observed at 75 C, cannot be made. (4) The corrosion rates in 1 and 2.5 wt.% oxalic acid solutions were temperature dependent: (a) At 50 C, the corrosion rates ranged between 90 to 140 mpy over the 30 day test period. The corrosion rates were higher under stagnant conditions. (b) At 75 C, the initial corrosion rates were as high as 300 mpy during the first day of exposure. The corrosion rates increased with agitation. However, once the passive ferrous oxalate film formed, the corrosion rate decreased dramatically to less than 20 mpy over the 30 day test period. This rate was independent of agitation. (5) Electrochemical testing indicated that for oxalic acid/sludge simulant mixtures the cathodic reaction has transport controlled reaction kinetics. The literature suggests that the dissolution of the sludge produces a di-oxalatoferrate ion that is reduced at the cathodic sites. The cathodic reaction does not appear to involve hydrogen evolution. On the other hand, electrochemical tests demonstrated that the cathodic reaction for corrosion of carbon steel in pure oxalic acid involves hydrogen evolution. (6) Agitation of the oxalic acid/sludge simulant mixtures typically resulted in a higher corrosion rates for both acid concentrations. The transport of the ferrous ion away from the metal surface results in a less protective ferrous oxalate film. (7) A mercury containing species along with aluminum, silicon and iron oxides was observed on the interior of the pits formed in the HM/2.5 wt.% oxalic acid simulant at 75 C. The pitting rates in the agitated and non-agitated solution were 2 mils/day and 1 mil/day, respectively. A mechanism by which the mercury interacts with the aluminum and silicon oxides in this simulant to accelerate corrosion was proposed.« less

  12. Electrochemical impedance spectroscopy study of carbon electrodes prepared from date pits and fibers of oil palm empty fruit bunches

    NASA Astrophysics Data System (ADS)

    Hamdan, E.; Deraman, M.; Suleman, M.; Nor, N. S. M.; Basri, N. H.; Hanappi, M. F. Y. M.; Sazali, N. E. S.; Tajuddin, N. S. M.; Omar, R.; Othman, M. A. R.; Shamsudin, S. A.

    2016-11-01

    In this study, we produced pre-carbonized date pits (PDP) and self-adhesive carbon grains (SACGs) from oil palm empty fruit bunches (EFB) by a low temperature (200°C for DP and 280°C for SACGs, respectively) carbonization method followed by KOH treatment to obtain KOH treated PDP (T-PDP) and KOH treated SACGs (T-SACGs). Four sets of green monolith (GMs) denoted as GM-A, GM-B, GM-C and GM-D were prepared respectively from SACGs (100 wt. %), mixture of PDP and SACGs (50:50 wt. %), T-SACGs (100 wt. %), and mixture of T-SACGs and T-PDP (50:50 wt. %), respectively. From these GMs the respective activated carbon monolith (ACMs) electrodes namely ACM-A, ACM-B, ACM-C and ACM-D were prepared via carbonization (N2 carbonization) and activation (CO2 environment). These ACMs electrodes were used to fabricate the corresponding EDLC cells: Cell-A, Cell-B, Cell-C and Cell-D, respectively. The electrochemical impedance spectroscopy tests conducted on the cells found that the Cell-D showed the maximum value of specific capacitance, Csp (˜ 135 F g-1) whereas the Cell-A showed the minimum values of ESR and characteristic response time, respectively, ˜ 2.14 Ω and ˜ 46 s. Therefore, it can be concluded that the KOH treatment can improve the capacitance but caused the increase in the ESR and response time.

  13. In-vitro long term and electrochemical corrosion resistance of cold deformed nitrogen containing austenitic stainless steels in simulated body fluid.

    PubMed

    Talha, Mohd; Behera, C K; Sinha, O P

    2014-07-01

    This work was focused on the evaluation of the corrosion behavior of deformed (10% and 20% cold work) and annealed (at 1050 °C for 15 min followed by water quenching) Ni-free high nitrogen austenitic stainless steels (HNSs) in simulated body fluid at 37°C using weight loss method (long term), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. Scanning electron microscopy (SEM) was used to understand the surface morphology of the alloys after polarization test. It has been observed that cold working had a significant influence on the corrosion resistant properties of these alloys. The weight loss and corrosion rates were observed to decrease with increasing degree of cold working and nitrogen content in the alloy. The corrosion resistance of the material is directly related to the resistance of the passive oxide film formed on its surface which was enhanced with cold working and nitrogen content. It was also observed that corrosion current densities were decreased and corrosion potentials were shifted to more positive values. By seeing pit morphology under SEM, shallower and smaller pits were associated with HNSs and cold worked samples, indicating that corrosion resistance increases with increasing nitrogen content and degree of cold deformation. X-ray diffraction profiles of annealed as well as deformed alloys were revealed and there is no evidence for formation of martensite or any other secondary phases. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Effect of cold rolling on the microstructural, magnetic, mechanical, and corrosion properties of AISI 316L austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Tanhaei, S.; Gheisari, Kh.; Alavi Zaree, S. R.

    2018-06-01

    This study has evaluated the effect of different levels of cold rolling (from 0 to 50%) on the microstructural, magnetic, and mechanical properties and the corrosion behavior of 316L austenitic stainless steel in NaCl (1 mol/L) + H2SO4 (0.5 mol/L) solution. Microstructural examinations using optical microscopy revealed the development of a morphological texture from coaxial to elongated grains during the cold-rolling process. Phase analysis carried out on the basis of X-ray diffraction confirmed the formation of the ferromagnetic α'-martensite phase under the stresses applied during cold rolling. This finding is in agreement with magnetic measurements using a vibrating sample magnetometer. Mechanical properties determined by tensile and Vickers microhardness tests demonstrated an upward trend in the hardness-to-yield strength ratio with increasing cold-rolling percentage, representing a reduction in the material's work-hardening ability. Uniform and localized corrosion parameters were estimated via potentiodynamic polarization corrosion tests and electrochemical impedance spectroscopy. In contrast to the uniform corrosion, wherein the corrosion current density increased with increasing cold-working degree because of the high density of microstructural defects, the passive potential range and breakdown potential increased by cold working, showing greater resistance to pit nucleation. Although pits were formed, the cold-rolled material repassivation tendency decreased because of the broader hysteresis anodic loop, as confirmed experimentally by observation of the microscopic features after electrochemical cyclic polarization evaluations.

  15. A Single Base Difference between Pit-1 Binding Sites at the hGH Promoter and Locus Control Region Specifies Distinct Pit-1 Conformations and Functions

    PubMed Central

    Shewchuk, Brian M.; Ho, Yugong; Liebhaber, Stephen A.; Cooke, Nancy E.

    2006-01-01

    Activation of the human growth hormone (hGH-N) gene in pituitary somatotropes is mediated by a locus control region (LCR). This LCR is composed of DNase I-hypersensitive sites (HS) located −14.5 kb to −32 kb relative to the hGH-N promoter. HSI, at −14.5 kb, is the dominant determinant of hGH-N expression and is essential for establishment of a 32-kb domain of histone acetylation that encompasses the active hGH locus. This activity is conferred by three binding sites for the POU domain transcription factor Pit-1. These Pit-1 elements are sufficient to activate hGH-N expression in the mouse pituitary. In contrast, Pit-1 sites at the hGH-N promoter are consistently unable to mediate similar activity. In the present study, we demonstrate that the functional difference between the promoter-proximal and the HSI Pit-1 binding sites can be attributed in part to a single base difference. This base affects the conformation of the Pit-1/DNA complex, and reciprocal exchange of the divergent bases between the two sets of Pit-1 elements results in a partial reversal of their transgenic activities. These data support a model in which the Pit-1 binding sites in the hGH LCR allosterically program the bound Pit-1 complex for chromatin activating functions. PMID:16914737

  16. Investigation of corrosion of welded joints of austenitic and duplex stainless steels

    NASA Astrophysics Data System (ADS)

    Topolska, S.

    2016-08-01

    Investigation of corrosion resistance of materials is one of the most important tests that allow determining their functional properties. Among these tests the special group consist electrochemical investigations, which let to accelerate the course of the process. These investigations allow rapidly estimating corrosion processes occurring in metal elements under the influence of the analysed environment. In the paper are presented results of investigations of the resistance to pitting corrosion of the steel of next grades: austenitic 316L and duplex 2205. It was also analysed the corrosion resistance of welded joints of these grades of steel. The investigations were conducted in two different corrosion environments: in the neutral one (3.5 % sodium chloride) and in the aggressive one (0.1 M sulphuric acid VI). The obtained results indicate different resistance of analysed grades of steel and their welded joints in relation to the corrosion environment. The austenitic 316L steel characterizes by the higher resistance to the pitting corrosion in the aggressive environment then the duplex 2205 steel. In the paper are presented results of potentiodynamic tests. They showed that all the specimens are less resistant to pitting corrosion in the environment of sulphuric acid (VI) than in the sodium chloride one. The 2205 steel has higher corrosion resistance than the 316L stainless steel in 3.5% NaCl. On the other hand, in 0.1 M H2SO4, the 316L steel has a higher corrosion resistance than the 2205 one. The weld has a similar, very good resistance to pitting corrosion like both steels.

  17. Effect of Cu content on exfoliation corrosion and electrochemical corrosion of A7N01 aluminum alloy in EXCO solution

    NASA Astrophysics Data System (ADS)

    He, Yaling; Wang, Xiaomin; Hu, Jie; Zhou, Qiang; Chen, Hui

    2017-07-01

    The exfoliation corrosion (EXCO) sensitivities and electrochemical corrosions of A7N01 aluminum (Al) alloys with 0.074% and 0.136% Cu contents were investigated in EXCO solution. The exfoliation corrosion developed more rapidly for the alloy with 0.136% Cu by expressing higher exfoliation rate and deeper corrosion pits as observed by SEM and laser confocal scanning microscopy (LCSM). In EXCO solution, the alloy with 0.136% Cu content showed lower open-circuit potential (OCP) than the alloy with 0.074% Cu content. The alloy with 0.136% Cu content had bigger “hysteresis loop” in cyclic polarization curve which meant lower self-passivation ability. In electrochemical impedance spectroscopy plot, its curvature radius and capacitance index were lower. The electrochemical test results revealed that the alloy with 0.136% Cu content showed more severe electrochemical corrosion than the alloy with 0.074% Cu content, consistent with the exfoliation corrosion results. The microstructures of two alloys were observed through optical microscopy (OM) and transmission electron microscopy (TEM). The continuous distribution of the equilibrium precipitate η-MgZn2 on grain boundaries, the decreasing of the width of precipitate-free zone (PFZ) and the coarse Cu-Fe-Si-rich phase were responsible for the higher corrosion sensitivity of the Al alloy with 0.136% Cu than that of Al alloy with 0.074% Cu content in EXCO solution.

  18. [The effect of fluoride on electrochemical corrosion of the dental pure titanium before and after adhesion of Streptococcus mutans].

    PubMed

    Geng, Li; Qiao, Guang-yan; Gu, Kai-ka

    2016-04-01

    To investigate the effect of fluoride on electrochemical corrosion of the dental pure titanium before and after adhesion of Streptococcus mutans. The dental pure titanium specimens were tested by electrochemical measurement system including electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curve (PD) methods in artificial saliva with 0 g/L and 1.0 g/L sodium fluoride before and after dipped into culture medium with Streptococcus mutans for 24 h. The corrosion parameters, including the polarization resistance (R(ct)), corrosion potential (E(corr)), pitting breakdown potential (E(b)), and the difference between E(corr) and E(b) representing the "pseudo-passivation" (ΔE) obtained from the electrochemical tests were used to evaluate the corrosion resistance of dental pure titanium. The data were statistically analyzed by 2×2 factorial statistical analysis to examine the effect of sodium fluoride and adhesion of Streptococcus mutans using SPSS 12.0 software package. The results showed that the corrosion parameters including R(ct), Ecorr, E(b), and ΔE of pure titanium had significant difference between before and after adhesion of Streptococcus mutans in the same solution(P<0.05), and in artificial saliva with 0 g/L and 1.0 g/L sodium fluoride(P<0.05). The dental pure titanium was prone to corrosion in artificial saliva with sodium fluoride. The corrosion resistance of pure titanium decreased distinctly after immersed in culture medium with Streptococcus mutans.

  19. Portable Fiber Laser System and Method to Remove Pits and Cracks on Sensitized Surfaces of Aluminum Alloys

    DTIC Science & Technology

    2015-08-01

    resistant 5083- H116 aluminum, sheet, 1/4" thick, 2" x 24", 2 pieces 71.60 5 Reagent VWR & Fisher Nitric acid and sodium hydroxide for mass loss...Temperature stability ±0.1oC @37oC Temperature uniformity ±0.2oC @37oC 693.55 4 5083-H116 Al-Mg alloy materials McMaster Carr Strengthened corrosion ...test, other acids for etching, electrochemical polishing, and anodizing 700.28 6 Containers VWR Beakers, petri dishes, bottles, graduated cylinders

  20. Effect of Host Media on Microbial Influenced Corrosion due to Desulfotomaculum nigrificans

    NASA Astrophysics Data System (ADS)

    Lata, Suman; Sharma, Chhaya; Singh, Ajay K.

    2013-04-01

    This article reports about the tests carried to investigate microbial-induced corrosion on stainless steels due to sulfate-reducing bacteria sp. Desulfotomaculum nigrificans in different host media. Stainless steel 304L, 316L, and 2205 were selected for the test. Modified Baar's media (BM), sodium chloride solution, and artificial sea water (SW) were used as test solutions in anaerobic conditions. Electrochemical polarization and immersion test were performed to estimate the extent of corrosion rate and pitting on stainless steels. SEM/EDS were used to study the details inside/outside pits formed on the corroded samples. Biofilm formed on corroded coupons was analyzed for its components by UV/Visible spectroscopy. Corrosion attack on the test samples was observed maximum in case of exposure to SW followed by NaCl solution, both having sulfide and chloride whereas stainless steel exposed to BM, having sulfide, showed minimum attack. Tendency of extracellular polymeric substances to bind metal ions is observed to be responsible for governing the extent of corrosion attack.

  1. Microelectrode Array Microscopy: Investigation of Dynamic Behavior of Localized Corrosion at Type 304 Stainless Steel Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tedd E. Lister; Patrick J. Pinhero

    2005-03-01

    Scanning electrochemical microscopy (SECM) and a recently developed microelectrode array microscope have been used to study localized corrosion and electron-transfer characteristics of native oxide layers of type 304 stainless steels. The I-/I3- redox couple was employed as a mediator and allowed sensitive detection of oxide breakdown events. In solutions containing I-, a signal at the microelectrode was observed on type 304 stainless steel surfaces at active pitting corrosion sites. Under conditions where pitting corrosion occurs, SECM was used to track the temporal characteristics of the reaction in a spatial manner. However, because of the time required to create an image,more » much of the temporal information was not obtained. To improve the temporal resolution of the measurement, microelectrode array microscopy (MEAM) was developed as a parallel method of performing SECM. The demonstration shown reveals the potential of MEAM for analysis of surface chemistry on temporal and spatial domains.« less

  2. Evaluation of candidate alloys for the construction of metal flex hoses in the STS launch environment

    NASA Technical Reports Server (NTRS)

    Ontiveros, Cordelia

    1988-01-01

    Various vacuum jacketed cryogenic supply lines at the Shuttle launch site use convoluted flexible expansion joints. The atmosphere at the launch site has a very high salt content, and during a launch, fuel combustion products include hydrochloric acid. This extremely corrosive environment has caused pitting corrosion failure in the flex hoses, which were made of 304L stainless steel. A search was done to find a more corrosion resistant replacement material. This study focused on 19 metal alloys. Tests which were performed include electrochemical corrosion testing, accelerated corrosion testing in a salt fog chamber, long term exposure at the beach corrosion testing site, and pitting corrosion tests in ferric chloride solution. Based on the results of these tests, the most corrosion resistant alloys were found to be (in order) Hastelloy C-22, Inconel 625, Hastelloy C-276, Hastelloy C-4, and Inco Alloy G-3. Of these top five alloys, the Hastelloy C-22 stands out as being the best of those tested for this application.

  3. Evaluation of candidate alloys for the construction of metal flex hoses in the STS launch environment

    NASA Technical Reports Server (NTRS)

    Macdowell, Louis G., III; Ontiveros, Cordelia

    1988-01-01

    Various vacuum jacketed cryogenic supply lines at the Shuttle launch site use convoluted flexible expansion joints. The atmosphere at the launch site has a very high salt content, and during a launch fuel combustion products include hydrochloric acid. This extremely corrosive environment has caused pitting corrosion failure in the flex hoses, which were made out of 304L stainless steel. A search was done to find a more corrosion resistant replacement material. Nineteen metal alloys were tested. Tests which were performed include electrochemical corrosion testing, accelerated corrosion testing in a salt fog chamber, long term exposure at the beach corrosion testing site, and pitting corrosion tests in ferric chloride solution. Based on the results, the most corrosion resistant alloys were found to be, in order, Hastelloy C-22, Inconel 625, Hastelloy C-276, Hastelloy C-4, and Inco Alloy G-3. Of these top five alloys, the Hastelloy C-22 stands out as being the best of the alloys tested.

  4. Microbiologically Influenced Corrosion of 2707 Hyper-Duplex Stainless Steel by Marine Pseudomonas aeruginosa Biofilm

    PubMed Central

    Li, Huabing; Zhou, Enze; Zhang, Dawei; Xu, Dake; Xia, Jin; Yang, Chunguang; Feng, Hao; Jiang, Zhouhua; Li, Xiaogang; Gu, Tingyue; Yang, Ke

    2016-01-01

    Microbiologically Influenced Corrosion (MIC) is a serious problem in many industries because it causes huge economic losses. Due to its excellent resistance to chemical corrosion, 2707 hyper duplex stainless steel (2707 HDSS) has been used in the marine environment. However, its resistance to MIC was not experimentally proven. In this study, the MIC behavior of 2707 HDSS caused by the marine aerobe Pseudomonas aeruginosa was investigated. Electrochemical analyses demonstrated a positive shift in the corrosion potential and an increase in the corrosion current density in the presence of the P. aeruginosa biofilm in the 2216E medium. X-ray photoelectron spectroscopy (XPS) analysis results showed a decrease in Cr content on the coupon surface beneath the biofilm. The pit imaging analysis showed that the P. aeruginosa biofilm caused a largest pit depth of 0.69 μm in 14 days of incubation. Although this was quite small, it indicated that 2707 HDSS was not completely immune to MIC by the P. aeruginosa biofilm. PMID:26846970

  5. Impairments in proverb interpretation following focal frontal lobe lesions☆

    PubMed Central

    Murphy, Patrick; Shallice, Tim; Robinson, Gail; MacPherson, Sarah E.; Turner, Martha; Woollett, Katherine; Bozzali, Marco; Cipolotti, Lisa

    2013-01-01

    The proverb interpretation task (PIT) is often used in clinical settings to evaluate frontal “executive” dysfunction. However, only a relatively small number of studies have investigated the relationship between frontal lobe lesions and performance on the PIT. We compared 52 patients with unselected focal frontal lobe lesions with 52 closely matched healthy controls on a proverb interpretation task. Participants also completed a battery of neuropsychological tests, including a fluid intelligence task (Raven’s Advanced Progressive Matrices). Lesions were firstly analysed according to a standard left/right sub-division. Secondly, a finer-grained analysis compared the performance of patients with medial, left lateral and right lateral lesions with healthy controls. Thirdly, a contrast of specific frontal subgroups compared the performance of patients with medial lesions with patients with lateral frontal lesions. The results showed that patients with left frontal lesions were significantly impaired on the PIT, while in patients with right frontal lesions the impairments approached significance. Medial frontal patients were the only frontal subgroup impaired on the PIT, relative to healthy controls and lateral frontal patients. Interestingly, an error analysis indicated that a significantly higher number of concrete responses were found in the left lateral subgroup compared to healthy controls. We found no correlation between scores on the PIT and on the fluid intelligence task. Overall our results suggest that specific regions of the frontal lobes contribute to the performance on the PIT. PMID:23850600

  6. 78 FR 44625 - Proposed Information Collection (Open Burn Pit Registry Airborne Hazard Self-Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-24

    ... DEPARTMENT OF VETERANS AFFAIRS Proposed Information Collection (Open Burn Pit Registry Airborne... to ``OMB Control No. 2900--NEW, Open Burn Pit Registry Airborne Hazard Self-Assessment Questionnaire... health effects of service members' exposure to toxic airborne chemicals and fumes caused by open burn...

  7. 78 FR 33894 - Proposed Information Collection (Open Burn Pit Registry Airborne Hazard Self-Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-05

    ... Burn Pit Registry Airborne Hazard Self-Assessment Questionnaire) Activity: Comment Request AGENCY... ascertain and monitor the health effects of the exposure of members of the Armed Forces to toxic airborne... to ``OMB Control No. 2900-NEW, Open Burn Pit Registry Airborne Hazard Self-Assessment Questionnaire...

  8. Sodium-dependent phosphate cotransporters and phosphate-induced calcification of vascular smooth muscle cells: Redundant roles for PiT-1 and PiT-2

    PubMed Central

    Crouthamel, Matthew H.; Lau, Wei Ling; Leaf, Elizabeth M.; Chavkin, Nick; Wallingford, Mary C.; Peterson, Danielle F.; Li, Xianwu; Liu, Yonggang; Chin, Michael T.; Levi, Moshe; Giachelli, Cecilia M.

    2014-01-01

    Objective Elevated serum phosphate has emerged as a major risk factor for vascular calcification. The sodium-dependent phosphate cotransporter, PiT-1, was previously shown to be required for phosphate-induced osteogenic differentiation and calcification of cultured human VSMCs, but its importance in vascular calcification in vivo, as well as the potential role of its homologue, PiT-2, have not been determined. We investigated the in vivo requirement for PiT-1 in vascular calcification using a mouse model of chronic kidney disease, and the potential compensatory role of PiT-2 using in vitro knockdown and over-expression strategies. Approach and Results Mice with targeted deletion of PiT-1 in VSMCs were generated (PiT-1Δsm). PiT-1 mRNA levels were undetectable whereas PiT-2 mRNA levels were increased 2 fold in the vascular aortic media of PiT-1Δsm compared to PiT-1flox/flox control. When arterial medial calcification was induced in PiT-1Δsm and PiT-1flox/flox by chronic kidney disease followed by dietary phosphate loading, the degree of aortic calcification was not different between genotypes, suggesting compensation by PiT-2. Consistent with this possibility, VSMCs isolated from PiT-1Δsm mice had no PiT-1 mRNA expression, increased PiT-2 mRNA levels, and no difference in sodium-dependent phosphate uptake or phosphate-induced matrix calcification compared to PiT-1flox/flox VSMCs. Knockdown of PiT-2 decreased phosphate uptake and phosphate-induced calcification of PiT-1Δsm VSMCs. Furthermore, over-expression of PiT-2 restored these parameters in human PiT-1-deficient VSMCs. Conclusions PiT-2 can mediate phosphate uptake and calcification of VSMCs in the absence of PiT-1. Mechanistically, PiT-1 and PiT-2 appear to serve redundant roles in phosphate-induced calcification of vascular smooth muscle cells. PMID:23968976

  9. The mechanical and electrochemical properties of bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Morrison, Mark Lee

    The objectives of this study were to define and model the electrochemical and mechanical behaviors of BMGs, in addition to the interactions between these. The electrochemical behaviors of Zr-, Ti-, and Ca-based BMGs have been studied in various environments. Moreover, the electrochemical behaviors of several common, crystalline materials have also been characterized in the same environments to facilitate comparisons. Mechanical characterization of the Vitreloy 105 alloy was conducted through four-point bend fatigue testing, as well as tensile testing with in situ thermography. After the electrochemical and mechanical behaviors of the Vit 105 BMG alloy were defined separately, the corrosion-fatigue behavior of this alloy was studied. Corrosion-fatigue tests were conducted in a 0.6 M NaCl electrolyte, identical to one of the environments in which the electrochemical behavior was previously defined. The environmental effect was found to be significant at most stress levels, with decreasing effects at higher stress levels due to decreasing time in the detrimental environment, and severely depressed the corrosion-fatigue endurance limit. Cyclic-anodic-polarization tests were conducted during cyclic loading to elucidate the effect of cyclic stresses on the electrochemical behavior. It was found that a stress range of 900 MPa resulted in active pitting at the open-circuit potentials. The degradation mechanism was determined to be stress-assisted dissolution, not hydrogen embrittlement. Finally, tensile tests were conducted with the Vit 105 BMG alloy with in situ infrared (IR) thermography to observe the evolution of shear bands during deformation. More importantly, the length, location, sequence, temperature evolution, and velocity of individual shear bands have been quantified through the use of IR thermography. Based upon all of these studies on a variety of BMG alloy systems, the most important factor in the mechanical and electrochemical behavior was found to be material quality and homogeneity. Therefore, future research on the improvement of BMG alloys should be focused on this area.

  10. Electrochemical studies of Copper, Tantalum and Tantalum Nitride surfaces in aqueous solutions for applications in chemical-mechanical and electrochemical-mechanical planarization

    NASA Astrophysics Data System (ADS)

    Sulyma, Christopher Michael

    This report will investigate fundamental properties of materials involved in integrated circuit (IC) manufacturing. Individual materials (one at a time) are studied in different electrochemical environmental solutions to better understand the kinetics associated with the polishing process. Each system tries to simulate a real CMP environment in order to compare our findings with what is currently used in industry. To accomplish this, a variety of techniques are used. The voltage pulse modulation technique is useful for electrochemical processing of metal and alloy surfaces by utilizing faradaic reactions like electrodeposition and electrodissolution. A theoretical framework is presented in chapter 4 to facilitate quantitative analysis of experimental data (current transients) obtained in this approach. A typical application of this analysis is demonstrated for an experimental system involving electrochemical removal of copper surface layers, a relatively new process for abrasive-free electrochemical mechanical planarization of copper lines used in the fabrication of integrated circuits. Voltage pulse modulated electrodissolution of Cu in the absence of mechanical polishing is activated in an acidic solution of oxalic acid and hydrogen peroxide. The current generated by each applied voltage step shows a sharp spike, followed by a double-exponential decay, and eventually attains the rectangular shape of the potential pulses. For the second system in chapter 5, open-circuit potential measurements, cyclic voltammetry and Fourier transform impedance spectroscopy have been used to study pH dependent surface reactions of Cu and Ta rotating disc electrodes (RDEs) in aqueous solutions of succinic acid (SA, a complexing agent), hydrogen peroxide (an oxidizer), and ammonium dodecyl sulfate (ADS, a corrosion inhibitor for Cu). The surface chemistries of these systems are relevant for the development of a single-slurry approach to chemical mechanical planarization (CMP) of Cu lines and Ta barriers in the fabrication of semiconductor devices. It is shown that in non-alkaline solutions of H2O2, the SA-promoted surface complexes of Cu and Ta can potentially support chemically enhanced material removal in low-pressure CMP of surface topographies overlying fragile low-k dielectrics. ADS can suppress Cu dissolution without significantly affecting the surface chemistry of Ta. Chapter 6 discusses anodic corrosion of Ta, which is examined as a possible route to voltage induced removal of Ta for potential applications in electrochemical mechanical planarization (ECMP) of diffusion barriers. This strategy involves electro-oxidation of Ta in the presence of NO3- anions to form mechanically weak surface oxide films, followed by removal of the oxide layers by moderate mechanical abrasion. This NO3 - system is compared with a reference solution of Br -. In both electrolytes, the voltammetric currents of anodic oxidation exhibit oscillatory behaviors in the initial cycles of slow (5 mV s-1) voltage scans. The frequencies of these current oscillations are show signature attributes of localized pitting or general surface corrosion caused by Br- or NO3 -, respectively. Scanning electron microscopy, cyclic voltammetry, polarization resistance measurements, and time resolved Fourier transform impedance spectroscopy provide additional details about these corrosion mechanism. Apart from their relevance in the context of ECMP, the results also address certain fundamental aspects of pitting and general corrosions. The general protocols necessary to combine and analyze the results of D.C. and A.C. electrochemical measurements involving such valve metal corrosion systems are discussed in detail. In chapter 7 potassium salts of certain oxyanions (nitrate, sulfate and phosphate in particular) are shown to serve as effective surface-modifying agents in chemically enhanced, low-pressure chemical mechanical planarization (CMP) of Ta and TaN barrier layers for interconnect structures. The surface reactions that form the basis of this CMP strategy are investigated here in detail using the electrochemical techniques of cyclic voltammetry, open circuit potential analysis, polarization resistance measurements, and Fourier transform impedance spectroscopy. The results suggest that forming structurally weak oxide layers on the CMP samples is a key to achieving the goal of chemically controlled CMP of Ta/TaN at low down-pressures. (Abstract shortened by UMI.)

  11. Primitive environment control for preservation of pit relics in archeology museums of China.

    PubMed

    Gu, Zhaolin; Luo, Xilian; Meng, Xiangzhao; Wang, Zanshe; Ma, Tao; Yu, Chuck; Rong, Bo; Li, Ku; Li, Wenwu; Tan, Ying

    2013-02-05

    Immovable historical relics in some archeology museums of China suffer deterioration due to their improper preservation environment. The existing environmental control systems used in archeology museums are often designed for the amenities of visitors, and these manipulated environments are often inappropriate for the conservation of abiotic relics. This paper points out that the large open space of the existing archeology museum could be a cause of deterioration of the relics from the point of view of indoor air convective flow. The paper illustrates the need to introduce a local pit environmental control, which could reintegrate a pit primitive environment for the preservation of the historical relics by using an air curtain system, orientated to isolate the unearthed relics, semiexposed in pits to the large gallery open space of the exhibition hall.

  12. Structure and mechanical and corrosion properties of new high-nitrogen Cr-Mn steels containing molybdenum

    NASA Astrophysics Data System (ADS)

    Berezovskaya, V. V.; Savrai, R. A.; Merkushkin, E. A.; Makarov, A. V.

    2012-05-01

    The structure, mechanical properties, and pitting corrosion of nickel-free high-nitrogen (0.8% N) austenitic 06Kh18AG19M2 and 07Kh16AG13M3 steels have been studied in various structural states obtained after hot deformation, quenching, and tempering at 300 and 500°C. Both steels are shown to be resistant to the γ → α and γ → ɛ martensite transformations irrespective of the decomposition of a γ solid solution (06Kh18AG19M2 steel). Austenite of the steel with 19 wt % Mn shows lower resistance to recrystallization, which provides its higher plasticity (δ5) and fracture toughness at a lower strength as compared to the steel with 13 wt % Mn. Electrochemical studies of the steels tempered at 300 and 500°C show that they are in a stable passive state during tests in a 3.5% NaCl solution and have high pitting resistance up to a potential E pf = 1.3-1.4 V, which is higher than that in 12Kh18N10T steel. In the quenched state, the passive state is instable but pitting formation potentials E pf retain their values. In all steels under study, pitting is shown to form predominantly along the grain boundaries of nonrecrystallized austenite. The lowest pitting resistance is demonstrated by the structure with a double grain boundary network that results from incomplete recrystallization at 1100°C and from the existence of initial and recrystallized austenite in the 07Kh16AG13M3 steel. To obtain a set of high mechanical and corrosion properties under given rolling conditions (1200-1150°C), annealing of the steels at temperatures no less than 1150°C (for 1 h) with water quenching and tempering at 500°C for 2 h are recommended.

  13. Tin Oxynitride Anodes by Atomic Layer Deposition for Solid-State Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, David M.; Pearse, Alexander J.; Kim, Nam S.

    Major advances in thin-film solid-state batteries (TFSSBs) may capitalize on 3D structuring using high-aspect-ratio substrates such as nanoscale pits, pores, trenches, flexible polymers, and textiles. This will require conformal processes such as atomic layer deposition (ALD) for every active functional component of the battery. In this paper, we explore the deposition and electrochemical properties of SnO 2, SnN y, and SnO xN y thin films as TFSSB anode materials, grown by ALD using tetrakisdimethylamido(tin), H 2O, and N 2 plasma as precursors. By controlling the dose ratio between H 2O and N 2, the N–O fraction can be tuned betweenmore » 0% N and 95% N. The electrochemical properties of these materials were tested across a composition range varying from pure SnO 2, to SnON intermediates, and pure SnNy. In TFSSBs, the SnNy anodes are found to be more stable during cycling than the SnO 2 or SnO xN y films, with an initial reversible capacity beyond that of Li–Sn alloying, retaining 75% of their capacity over 200 cycles compared to only 50% for SnO 2. Lastly, the performance of the SnO xN y anodes indicates that SnN y anodes should not be negatively impacted by small levels of O contamination.« less

  14. Tin Oxynitride Anodes by Atomic Layer Deposition for Solid-State Batteries

    DOE PAGES

    Stewart, David M.; Pearse, Alexander J.; Kim, Nam S.; ...

    2018-03-30

    Major advances in thin-film solid-state batteries (TFSSBs) may capitalize on 3D structuring using high-aspect-ratio substrates such as nanoscale pits, pores, trenches, flexible polymers, and textiles. This will require conformal processes such as atomic layer deposition (ALD) for every active functional component of the battery. In this paper, we explore the deposition and electrochemical properties of SnO 2, SnN y, and SnO xN y thin films as TFSSB anode materials, grown by ALD using tetrakisdimethylamido(tin), H 2O, and N 2 plasma as precursors. By controlling the dose ratio between H 2O and N 2, the N–O fraction can be tuned betweenmore » 0% N and 95% N. The electrochemical properties of these materials were tested across a composition range varying from pure SnO 2, to SnON intermediates, and pure SnNy. In TFSSBs, the SnNy anodes are found to be more stable during cycling than the SnO 2 or SnO xN y films, with an initial reversible capacity beyond that of Li–Sn alloying, retaining 75% of their capacity over 200 cycles compared to only 50% for SnO 2. Lastly, the performance of the SnO xN y anodes indicates that SnN y anodes should not be negatively impacted by small levels of O contamination.« less

  15. 30 CFR 250.514 - Well-control fluids, equipment, and operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... uppermost BOP; (2) A well-control, fluid-volume measuring device for determining fluid volumes when filling the hole on trips; and (3) A recording mud-pit-level indicator to determine mud-pit-volume gains and... the hole with drill pipe, the annulus shall be filled with well-control fluid before the change in...

  16. Heart rate and core temperature responses of elite pit crews during automobile races.

    PubMed

    Ferguson, David P; Bowen, Robert S; Lightfoot, J Timothy

    2011-08-01

    There is limited information regarding the physiological and psychological demands of the racing environment, and the subsequent effect on the performance of pit crew athletes. The purpose of this study was to evaluate heart rates (HRs) and core body temperatures (CTs) of pit crew athletes in the race environment. The HR and CT of pit crew athletes (n = 7) and control subjects were measured during 6 National Association for Stock Car Automobile Racing Sprint Cup races using ingestible sensors (HQ Inc, Palmetto, FL, USA). The HR and CT were measured before each race, at 15-minute intervals during the race, and upon completion of each pit stop. Compared to the control subject at each race, the pit crew athletes had significantly (p = 0.014) lower core temperatures (CTs). The pit crew athletes displayed higher HRs on the asphalt tracks than on concrete tracks (p = 0.011), and HR responses of the crew members were significantly (p = 0.012) different between pit crew positions, with the tire changers and jackman exhibiting higher HRs than the tire carriers. Unexpectedly, the CTs of the pit crew athletes were not elevated in the race environment, despite high ambient temperatures and the extensive fire-protection equipment (e.g., helmet, suit, gloves) each pit crew athlete wore. The lack of CT change is possibly the result of the increased HR more efficiently shunting blood to the skin and dissipating heat as a consequence of the athletes' extensive training regimen and ensuing heat acclimation. Additionally, it is possible that psychological stress unique to several of the tracks provided an additive effect resulting in increased heart rates.

  17. A comparative study of the in vitro corrosion behavior and cytotoxicity of a superferritic stainless steel, a Ti-13Nb-13Zr alloy, and an austenitic stainless steel in Hank's solution.

    PubMed

    Assis, S L; Rogero, S O; Antunes, R A; Padilha, A F; Costa, I

    2005-04-01

    In this study, the in vitro corrosion resistance of a superferritic stainless steel in naturally aerated Hank's solution at 37 degrees C has been determined to evaluate the steel for use as a biomaterial. The potentiodynamic polarization method and electrochemical impedance spectroscopy (EIS) were used to determine the corrosion resistance. The polarization results showed very low current densities at the corrosion potential and electrochemical behavior typical of passive metals. At potentials above 0.75 V (SCE), and up to that of the oxygen evolution reaction, the superferritic steel exhibited transpassive behavior followed by secondary passivation. The superferritic stainless steel exhibited high pitting resistance in Hank's solution. This steel did not reveal pits even after polarization to 3000 mV (SCE). The EIS results indicated high impedance values at low frequencies, supporting the results obtained from the polarization measurements. The results obtained for the superferritic steel have been compared with those of the Ti-13Nb-13Zr alloy and an austenitic stainless steel, as Ti alloys are well known for their high corrosion resistance and biocompatibility, and the austenitic stainless steel is widely used as an implant material. The cytotoxicity tests indicated that the superferritic steel, the austenitic steel, and the Ti-13Nb-13Zr alloy were not toxic. Based on corrosion resistance and cytotoxicity results, the superferritic stainless steel can be considered as a potential biomaterial. (c) 2005 Wiley Periodicals, Inc.

  18. Impairments in proverb interpretation following focal frontal lobe lesions.

    PubMed

    Murphy, Patrick; Shallice, Tim; Robinson, Gail; MacPherson, Sarah E; Turner, Martha; Woollett, Katherine; Bozzali, Marco; Cipolotti, Lisa

    2013-09-01

    The proverb interpretation task (PIT) is often used in clinical settings to evaluate frontal "executive" dysfunction. However, only a relatively small number of studies have investigated the relationship between frontal lobe lesions and performance on the PIT. We compared 52 patients with unselected focal frontal lobe lesions with 52 closely matched healthy controls on a proverb interpretation task. Participants also completed a battery of neuropsychological tests, including a fluid intelligence task (Raven's Advanced Progressive Matrices). Lesions were firstly analysed according to a standard left/right sub-division. Secondly, a finer-grained analysis compared the performance of patients with medial, left lateral and right lateral lesions with healthy controls. Thirdly, a contrast of specific frontal subgroups compared the performance of patients with medial lesions with patients with lateral frontal lesions. The results showed that patients with left frontal lesions were significantly impaired on the PIT, while in patients with right frontal lesions the impairments approached significance. Medial frontal patients were the only frontal subgroup impaired on the PIT, relative to healthy controls and lateral frontal patients. Interestingly, an error analysis indicated that a significantly higher number of concrete responses were found in the left lateral subgroup compared to healthy controls. We found no correlation between scores on the PIT and on the fluid intelligence task. Overall our results suggest that specific regions of the frontal lobes contribute to the performance on the PIT. © 2013 The Authors. Published by Elsevier Ltd. All rights reserved.

  19. Nitrile functionalized disiloxanes with dissolved LiTFSI as lithium ion electrolytes with high thermal and electrochemical stability

    NASA Astrophysics Data System (ADS)

    Pohl, Benjamin; Hiller, Martin M.; Seidel, Sarah M.; Grünebaum, Mariano; Wiemhöfer, Hans-Dieter

    2015-01-01

    Liquid disiloxanes functionalized with terminal nitrile groups are introduced as alternative non-volatile solvents for lithium-ion battery electrolytes in combination with LiTFSI as lithium salt. Two series of disiloxanes were investigated differing with respect to the attachment of the nitrile containing side group to silicon, i.e. via a Si-C or a Si-O bond. Total conductivities up to 1 mS cm-1 at 30 °C were measured by impedance spectroscopy. Electrochemical characterization was done on half cells using LiFePO4 cathodes by cyclic voltammetry and constant current cycling. Attractive issues and advantages of the investigated LiTFSI containing disiloxanes in comparison to current electrolyte solvents are: a) In spite of the presence of LiTFSI, the aluminum pitting corrosion is suppressed, b) the electrochemical stability window is extended on the cathode side up to 5.6 V vs. Li/Li+, for a LiTFSI concentration of 0.7 mol kg-1, c) the reported nitrile functionalized disiloxanes show excellent thermal stability with a boiling point up to 106 °C (0.1 mbar), a rather low glass transition temperature of -107 °C, while no melting/crystallization was observed.

  20. The effect of normal pulsed Nd-YAG laser irradiation on pits and fissures in human teeth.

    PubMed

    Bahar, A; Tagomori, S

    1994-01-01

    The effects of normal pulsed Nd-YAG laser irradiation on the acid resistance of human dental enamel of pits and fissures, the cleaning of the pit and fissure contents and fluoride uptake into deep pits and fissures were examined. The acid resistance of the pit and fissure enamel was evaluated by the amount of dissolved calcium per square millimeter of the surface area. The pit and fissure enamel treated with laser irradiation obtained an acid resistance 30% higher than that of the unlased controls. The cleaning effect of laser irradiation on the pit and fissure contents was compared with chemicomechanical and mechanical methods. The laser irradiation was found to clean the pits and fissures to a greater depth without alterating the shape of pits and fissures, compared with the other two methods. The distribution of calcium, phosphorus and fluoride in the enamel of the pits and fissures was then measured by electron probe microanalyzer. At the entrance and in the deep part of the pits and fissures, the fluoride content of the enamel treated with acidulated phosphate fluoride after laser irradiation was higher than that of the enamel treated with acidulated phosphate fluoride alone. These results thus suggest that Nd-YAG laser irradiation might be effective in increasing the acid resistance of the pit and fissure enamel, while removing the pit and fissure debris contents and increasing the fluoride uptake into the pit and fissure enamel.

  1. Dependence of Crystallographic Orientation on Pitting Corrosion Behavior of Ni-Fe-Cr Alloy 028

    NASA Astrophysics Data System (ADS)

    Zhang, LiNa; Szpunar, Jerzy A.; Dong, JianXin; Ojo, Olanrewaju A.; Wang, Xu

    2018-06-01

    The influence of crystallographic orientation on the pitting corrosion behavior of Ni-Fe-Cr alloy 028 was studied using a combination of X-ray diffraction (XRD), electron backscatter diffraction (EBSD), potentiodynamic polarization technique, and atomic force microscopy (AFM). The results show that there is anisotropy of pitting corrosion that strongly depends on crystallographic orientation of the surface plane. The distribution of pit density in a standard stereographic triangle indicates that the crystallographic planes close to {100} are more prone to pitting corrosion compared to planes {110} and {111}. The surface energy calculation of (001) and (111) shows that the plane with a high atomic packing density has a low surface energy with concomitant strong resistance to pitting corrosion. A correlation function between crystallographic orientation and pitting corrosion susceptibility suggests a method that not only predicts the pitting resistance of known textured materials, but also could help to improve corrosion resistance by controlling material texture.

  2. Heterogeneous nucleation of pits via step pinning during Si(100) homoepitaxy

    DOE PAGES

    Yitamben, Esmeralda; Butera, Robert E.; Swartzentruber, Brian S.; ...

    2017-10-16

    Using scanning tunneling microscopy (STM), we investigate oxide-induced growth pits in Si thin films deposited by molecular beam epitaxy. In the transition temperature range from 2D adatom islanding to step-flow growth, systematic controlled air leaks into the growth chamber induce pits in the growth surface. We show that pits are also correlated with oxygen-contaminated flux from Si sublimation sources. From a thermodynamic standpoint, multilayer growth pits are unexpected in relaxed homoepitaxial growth, whereas oxidation is a known cause for step-pinning, roughening, and faceting on elemental surfaces, both with and without growth flux. Not surprisingly, pits are thermodynamically metastable and healmore » by annealing to recover a smooth periodic step arrangement. STM reveals new details about the pits' atomistic origins and growth dynamics. Here, we give a model for heterogeneous nucleation of pits by preferential adsorption of Å-sized oxide nuclei at intrinsic growth antiphase boundaries, and subsequent step pinning and bunching around the nuclei.« less

  3. Effect of Welding Process on Microstructure, Mechanical and Pitting Corrosion Behaviour of 2205 Duplex Stainless Steel Welds

    NASA Astrophysics Data System (ADS)

    Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    An attempt has been made to weld 2205 Duplex stainless steel of 6mm thick plate using conventional gas tungsten arc welding (GTAW) and activated gas tungsten arc welding (A- GTAW) process using silica powder as activated flux. Present work is aimed at studying the effect of welding process on depth of penetration, width of weld zone of 2205 duplex stainless steel. It also aims to observe the microstructural changes and its effect on mechanical properties and pitting corrosion resistance of 2205 duplex stainless steel welds. Metallography is done to observe the microstructural changes of the welds using image analyzer attached to the optical microscopy. Hardness studies, tensile and ductility bend tests were evaluated for mechanical properties. Potentio-dynamic polarization studies were carried out using a basic GillAC electro-chemical system in 3.5% NaCl solution to observe the pitting corrosion behaviour. Results of the present investigation established that increased depth of penetration and reduction of weld width in a single pass by activated GTAW with the application of SiO2 flux was observed when compared with conventional GTAW process. It may be attributed to the arc constriction effect. Microstructure of the weld zones for both the welds is observed to be having combination of austenite and delta ferrite. Grain boundary austenite (GBA) with Widmanstatten-type austenite (WA) of plate-like feature was nucleated from the grain boundaries in the weld zone of A-GTAW process. Mechanical properties are relatively low in activated GTAW process and are attributed to changes in microstructural morphology of austenite. Improved pitting corrosion resistance was observed for the welds made with A-GTAW process.

  4. General and crevice corrosion study of the in-wall shielding materials for ITER vacuum vessel

    NASA Astrophysics Data System (ADS)

    Joshi, K. S.; Pathak, H. A.; Dayal, R. K.; Bafna, V. K.; Kimihiro, Ioki; Barabash, V.

    2012-11-01

    Vacuum vessel In-Wall Shield (IWS) will be inserted between the inner and outer shells of the ITER vacuum vessel. The behaviour of IWS in the vacuum vessel especially concerning the susceptibility to crevice of shielding block assemblies could cause rapid and extensive corrosion attacks. Even galvanic corrosion may be due to different metals in same electrolyte. IWS blocks are not accessible until life of the machine after closing of vacuum vessel. Hence, it is necessary to study the susceptibility of IWS materials to general corrosion and crevice corrosion under operations of ITER vacuum vessel. Corrosion properties of IWS materials were studied by using (i) Immersion technique and (ii) Electro-chemical Polarization techniques. All the sample materials were subjected to a series of examinations before and after immersion test, like Loss/Gain weight measurement, SEM analysis, and Optical stereo microscopy, measurement of surface profile and hardness of materials. After immersion test, SS 304B4 and SS 304B7 showed slight weight gain which indicate oxide layer formation on the surface of coupons. The SS 430 material showed negligible weight loss which indicates mild general corrosion effect. On visual observation with SEM and Metallography, all material showed pitting corrosion attack. All sample materials were subjected to series of measurements like Open Circuit potential, Cyclic polarization, Pitting potential, protection potential, Critical anodic current and SEM examination. All materials show pitting loop in OC2 operating condition. However, its absence in OC1 operating condition clearly indicates the activity of chloride ion to penetrate oxide layer on the sample surface, at higher temperature. The critical pitting temperature of all samples remains between 100° and 200°C.

  5. Corrosion probe. Innovative technology summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Over 253 million liters of high-level waste (HLW) generated from plutonium production is stored in mild steel tanks at the Department of Energy (DOE) Hanford Site. Corrosion monitoring of double-shell storage tanks (DSTs) is currently performed at Hanford using a combination of process knowledge and tank waste sampling and analysis. Available technologies for corrosion monitoring have progressed to a point where it is feasible to monitor and control corrosion by on-line monitoring of the corrosion process and direct addition of corrosion inhibitors. The electrochemical noise (EN) technique deploys EN-based corrosion monitoring probes into storage tanks. This system is specifically designedmore » to measure corrosion rates and detect changes in waste chemistry that trigger the onset of pitting and cracking. These on-line probes can determine whether additional corrosion inhibitor is required and, if so, provide information on an effective end point to the corrosion inhibitor addition procedure. This report describes the technology, its performance, its application, costs, regulatory and policy issues, and lessons learned.« less

  6. Image analysis of corrosion pit initiation on ASTM type A240 stainless steel and ASTM type A 1008 carbon steel

    NASA Astrophysics Data System (ADS)

    Nine, H. M. Zulker

    The adversity of metallic corrosion is of growing concern to industrial engineers and scientists. Corrosion attacks metal surface and causes structural as well as direct and indirect economic losses. Multiple corrosion monitoring tools are available although those are time-consuming and costly. Due to the availability of image capturing devices in today's world, image based corrosion control technique is a unique innovation. By setting up stainless steel SS 304 and low carbon steel QD 1008 panels in distilled water, half-saturated sodium chloride and saturated sodium chloride solutions and subsequent RGB image analysis in Matlab, in this research, a simple and cost-effective corrosion measurement tool has identified and investigated. Additionally, the open circuit potential and electrochemical impedance spectroscopy results have been compared with RGB analysis to gratify the corrosion. Additionally, to understand the importance of ambiguity in crisis communication, the communication process between Union Carbide and Indian Government regarding the Bhopal incident in 1984 was analyzed.

  7. Pits, rifts and slumps: the summit structure of Piton de la Fournaise

    NASA Astrophysics Data System (ADS)

    Carter, Adam; van Wyk de Vries, Benjamin; Kelfoun, Karim; Bachèlery, Patrick; Briole, Pierre

    2007-06-01

    A clear model of structures and associated stress fields of a volcano can provide a framework in which to study and monitor activity. We propose a volcano-tectonic model for the dynamics of the summit of Piton de la Fournaise (La Reunion Island, Indian Ocean). The summit contains two main pit crater structures (Dolomieu and Bory), two active rift zones, and a slumping eastern sector, all of which contribute to the actual fracture system. Dolomieu has developed over 100 years by sudden large collapse events and subsequent smaller drops that include terrace formation. Small intra-pit collapse scars and eruptive fissures are located along the southern floor of Dolomieu. The western pit wall of Dolomieu has a superficial inward dipping normal fault boundary connected to a deeper ring fault system. Outside Dolomieu, an oval extension zone containing sub-parallel pit-related fractures extends to a maximum distance of 225 m from the pit. At the summit the main trend for eruptive fissures is N80°, normal to the north south rift zone. The terraced structure of Dolomieu has been reproduced by analogue models with a roof to width ratio of approximately 1, suggesting an original magma chamber depth of about 1 km. Such a chamber may continue to act as a storage location today. The east flank has a convex concave profile and is bounded by strike-slip fractures that define a gravity slump. This zone is bound to the north by strike-slip fractures that may delineate a shear zone. The southern reciprocal shear zone is probably marked by an alignment of large scoria cones and is hidden by recent aa lavas. The slump head intersects Dolomieu pit and may slide on a hydrothermally altered layer known to be located at a depth of around 300 m. Our model has the summit activity controlled by the pit crater collapse structure, not the rifts. The rifts become important on the mid-flanks of the cone, away from pit-related fractures. On the east flank the superficial structures are controlled by the slump. We suggest that during pit subsidence intra-pit eruptions may occur. During tumescence, however, the pit system may become blocked and a flank eruption is more likely. Intrusions along the rift may cause deformation that subsequently increases the slump’s potential to deform. Conversely, slumping may influence the east flank stress distribution and locally control intrusion direction. These predictions can be tested with monitoring data to validate the model and, eventually, improve monitoring.

  8. Specification of unique Pit-1 activity in the hGH locus control region

    PubMed Central

    Shewchuk, Brian M.; Liebhaber, Stephen A.; Cooke, Nancy E.

    2002-01-01

    The human GH (hGH) gene cluster is regulated by a remote 5′ locus control region (LCR). HSI, an LCR component located 14.5 kb 5′ to the hGH-N promoter, constitutes the primary determinant of high-level hGH-N activation in pituitary somatotropes. HSI encompasses an array of three binding sites for the pituitary-specific POU homeodomain factor Pit-1. In the present report we demonstrate that all three Pit-1 sites in the HSI array contribute to LCR activity in vivo. Furthermore, these three sites as a unit are fully sufficient for position-independent and somatotrope-restricted hGH-N transgene activation. In contrast, the hGH-N transgene is not activated by Pit-1 sites native to either the hGH-N or rat (r)GH gene promoters. These findings suggest that the structures of the Pit-1 binding sites at HSI specify distinct chromatin-dependent activities essential for LCR-mediated activation of hGH in the developing pituitary. PMID:12189206

  9. Evaluating Corrosion in SAVY Containers using Non-Destructive Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davenport, Matthew Nicholas; Vaidya, Rajendra U.; Abeyta, Adrian Anthony

    Powerpoint presentation on Ultrasonic and Eddy Current NDT; UT Theory; Eddy current (ECA): How it works; Controlled Corrosion at NM Tech; Results – HCl Corrosion; Waveform Data for 10M HCl; Accuracy Statistics; Results – FeCl 3 Pitting; Waveforms for Anhydrous FeCl 3; Analyzing Corroded Stainless Steel 316L Plates; 316L Plate to Imitate Pitting; ECA Pit Depth Calibration Curve; C Scan Imaging; UT Pit Detection; SST Containers: Ultrasonic (UT) vs. CMM; UT Data Analysis; UT Conclusions and Observations; ECA Conclusions; Automated System Vision.

  10. The dependence receptor Ret induces apoptosis in somatotrophs through a Pit-1/p53 pathway, preventing tumor growth

    PubMed Central

    Cañibano, Carmen; Rodriguez, Noela L; Saez, Carmen; Tovar, Sulay; Garcia-Lavandeira, Montse; Borrello, Maria Grazia; Vidal, Anxo; Costantini, Frank; Japon, Miguel; Dieguez, Carlos; Alvarez, Clara V

    2007-01-01

    Somatotrophs are the only pituitary cells that express Ret, GFRα1 and GDNF. This study investigated the effects of Ret in a somatotroph cell line, in primary pituitary cultures and in Ret KO mice. Ret regulates somatotroph numbers by inducing Pit-1 overexpression, leading to increased p53 expression and apoptosis, both of which can be prevented with Ret or Pit-1 siRNA. The Pit-1 overexpression is mediated by sustained activation of PKCδ, JNK, c/EBPα and CREB induced by a complex of Ret, caspase 3 and PKCδ. In the presence of GDNF, Akt is activated, and the Pit-1 overexpression and resulting apoptosis are blocked. The adenopituitary of Ret KO mice is larger than normal, showing Pit-1 and somatotroph hyperplasia. In normal animals, activation of the Ret/Pit-1/p53 pathway by retroviral introduction of Ret blocked tumor growth in vivo. Thus, somatotrophs have an intrinsic mechanism for controlling Pit-1/GH production through an apoptotic/survival pathway. Ret might be of value for treatment of pituitary adenomas. PMID:17380130

  11. The dependence receptor Ret induces apoptosis in somatotrophs through a Pit-1/p53 pathway, preventing tumor growth.

    PubMed

    Cañibano, Carmen; Rodriguez, Noela L; Saez, Carmen; Tovar, Sulay; Garcia-Lavandeira, Montse; Borrello, Maria Grazia; Vidal, Anxo; Costantini, Frank; Japon, Miguel; Dieguez, Carlos; Alvarez, Clara V

    2007-04-18

    Somatotrophs are the only pituitary cells that express Ret, GFRalpha1 and GDNF. This study investigated the effects of Ret in a somatotroph cell line, in primary pituitary cultures and in Ret KO mice. Ret regulates somatotroph numbers by inducing Pit-1 overexpression, leading to increased p53 expression and apoptosis, both of which can be prevented with Ret or Pit-1 siRNA. The Pit-1 overexpression is mediated by sustained activation of PKCdelta, JNK, c/EBPalpha and CREB induced by a complex of Ret, caspase 3 and PKCdelta. In the presence of GDNF, Akt is activated, and the Pit-1 overexpression and resulting apoptosis are blocked. The adenopituitary of Ret KO mice is larger than normal, showing Pit-1 and somatotroph hyperplasia. In normal animals, activation of the Ret/Pit-1/p53 pathway by retroviral introduction of Ret blocked tumor growth in vivo. Thus, somatotrophs have an intrinsic mechanism for controlling Pit-1/GH production through an apoptotic/survival pathway. Ret might be of value for treatment of pituitary adenomas.

  12. 30 CFR 250.1623 - Well-control fluids, equipment, and operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., (2) A well-control fluid-volume measuring device for determining fluid volumes when filling the hole on trips, and (3) A recording mud-pit-level indicator to determine mud-pit-volume gains and losses... the change in fluid level decreases the hydrostatic pressure 75 psi or every five stands of drill pipe...

  13. An Analysis of Alternatives to Verbal FM Radio Tactical Command and Control Communications

    DTIC Science & Technology

    1975-06-06

    specialist’s ,, , nwarted by these means even more reliablv than by conventional weapons.16 renaoiy an enemy attack can be th1 Marshal Vasili ...Mort Pit Squad(4) FDC F0(3) LDR FAC Bn LN0(2) Conmel Cff Survl Sec Sgt Commo Pit Gnd Survl Sec(6) Spt Pit Co Maint Sec AVLB Sec Med Sec Bn

  14. Mortality, Transmitter Retention, Growth, and Wound Healing in Juvenile Salmon Injected with Micro Acoustic Transmitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liss, Stephanie A.; Brown, Richard S.; Deters, Katherine A.

    A cylindrical acoustic transmitter (AT; 0.2 g) has been developed for injection into the peritoneum of fish. Laboratory studies can provide tagging guidelines to minimize the effect of implantation techniques and transmitter burden (relative weight of the transmitter to the weight of the fish) in fish before a transmitter is used in field studies. The goal of this study was to examine response variables (mortality, transmitter expulsion, growth, wound area) of juvenile Chinook Salmon (Oncorhynchus tschawytscha; 65–104 mm fork length [FL]) injected with an AT along a wide range of sizes that could lead to a guideline for minimizing taggingmore » effects. The overarching goal was to determine a minimum size threshold for fish that can be injected, while minimizing adverse transmitter effects. Juveniles (n = 700) were separated into four treatments: (1) acoustic transmitter injection (AT), (2) AT and a passive integrated transponder tag injection (AT+PIT), (3) visual implant elastomer injection (Marked control), and (4) unmarked (Unmarked control). Fish were evaluated weekly for four weeks, and again at the end of the study (60 d post-tagging). Fish injected with an AT or an AT+PIT experienced greater mortality than Marked controls. By 60 d post-tagging, transmitter expulsion was 44% for AT fish and 20% for AT+PIT fish. Fish injected with an AT or an AT+PIT grew (FL and weight gain) significantly less than Marked controls, and no minimum size thresholds were detected. Finally, initial size (FL) significantly affected wound area in AT and AT+PIT fish. A size threshold was only identified on Day 7 (85.1 mm) for AT+PIT fish, indicating that wound areas in fish < 85.1 mm were larger than wound areas of fish > 85.1 mm. This research suggests that injecting juveniles with an AT or an AT+PIT had a greater effect on smaller fish than larger fish.« less

  15. Autonomous execution of the Precision Immobilization Technique

    NASA Astrophysics Data System (ADS)

    Mascareñas, David D. L.; Stull, Christopher J.; Farrar, Charles R.

    2017-03-01

    Over the course of the last decade great advances have been made in autonomously driving cars. The technology has advanced to the point that driverless car technology is currently being tested on publicly accessed roadways. The introduction of these technologies onto publicly accessed roadways not only raises questions of safety, but also security. Autonomously driving cars are inherently cyber-physical systems and as such will have novel security vulnerabilities that couple both the cyber aspects of the vehicle including the on-board computing and any network data it makes use of, with the physical nature of the vehicle including its sensors, actuators, and the vehicle chassis. Widespread implementation of driverless car technology will require that both the cyber, as well as physical security concerns surrounding these vehicles are addressed. In this work, we specifically developed a control policy to autonomously execute the Precision Immobilization Technique, a.k.a. the PIT maneuver. The PIT maneuver was originally developed by law enforcement to end high-speed vehicular pursuits in a quasi-safe manner. However, there is still a risk of damage/roll-over to both the vehicle executing the PIT maneuver as well as to the vehicle subject to the PIT maneuver. In law enforcement applications, it would be preferable to execute the PIT maneuver using an autonomous vehicle, thus removing the danger to law-enforcement officers. Furthermore, it is entirely possible that unscrupulous individuals could inject code into an autonomously-driving car to use the PIT maneuver to immobilize other vehicles while maintaining anonymity. For these reasons it is useful to know how the PIT maneuver can be implemented on an autonomous car. In this work a simple control policy based on velocity pursuit was developed to autonomously execute the PIT maneuver using only a vision and range measurements that are both commonly collected by contemporary driverless cars. The ability of this control policy to execute the PIT maneuver was demonstrated both in simulation and experimentally. The results of this work can help inform the design of autonomous car with regards to ensuring their cyber-physical security.

  16. Heterogeneous nucleation of pits via step pinning during Si(100) homoepitaxy

    NASA Astrophysics Data System (ADS)

    Yitamben, E. N.; Butera, R. E.; Swartzentruber, B. S.; Simonson, R. J.; Misra, S.; Carroll, M. S.; Bussmann, E.

    2017-11-01

    Using scanning tunneling microscopy (STM), we investigate oxide-induced growth pits in Si thin films deposited by molecular beam epitaxy. In the transition temperature range from 2D adatom islanding to step-flow growth, systematic controlled air leaks into the growth chamber induce pits in the growth surface. We show that pits are also correlated with oxygen-contaminated flux from Si sublimation sources. From a thermodynamic standpoint, multilayer growth pits are unexpected in relaxed homoepitaxial growth, whereas oxidation is a known cause for step pinning, roughening, and faceting on elemental surfaces, both with and without growth flux. Not surprisingly, pits are thermodynamically metastable and heal by annealing to recover a smooth periodic step arrangement. STM reveals new details about the pits’ atomistic origins and growth dynamics. We give a model for heterogeneous nucleation of pits by preferential adsorption of Å-sized oxide nuclei at intrinsic growth antiphase boundaries, and subsequent step pinning and bunching around the nuclei.

  17. Structural Design and Monitoring Analysis of Foundation Pit Support in Yiwu Huishang Tiandi

    NASA Astrophysics Data System (ADS)

    Zhang, Chunsu

    2017-08-01

    Huishang Tiandi deep foundation pit in Yiwu is a two-story basement,which is located in the downtown area and adjacent to the city center main traffic trunk. The surrounding environment is too com-plex to slope. The excavation depth is large, the formation is weak and complex, and the groundwater level is high.In order to ensure the safety of the foundation wall and the surrounding environment, the deformation of the foundation pit support is strictly controlled, and the deformation and internal force of the foundation supporting structure and the surrounding building are monitored.The deformation law of the foundation pit is obtained through the analysis of the horizontal displacement, the deformation rate of the supporting struc-ture, the surrounding environment of the foundation pit and the internal force of the anchor cable. The relia-bility and rationality of the design of foundation pit support are verified. It is of reference value for the de-sign and construction of other deep foundation pit engineering in Yiwu area.

  18. Role of Chloride in the Corrosion and Fracture Behavior of Micro-Alloyed Steel in E80 Simulated Fuel Grade Ethanol Environment

    PubMed Central

    Joseph, Olufunmilayo O.; Loto, Cleophas A.; Sivaprasad, Seetharaman; Ajayi, John A.; Tarafder, Soumitra

    2016-01-01

    In this study, micro-alloyed steel (MAS) material normally used in the production of auto parts has been immersed in an E80 simulated fuel grade ethanol (SFGE) environment and its degradation mechanism in the presence of sodium chloride (NaCl) was evaluated. Corrosion behavior was determined through mass loss tests and electrochemical measurements with respect to a reference test in the absence of NaCl. Fracture behavior was determined via J-integral tests with three-point bend specimens at an ambient temperature of 27 °C. The mass loss of MAS increased in E80 with NaCl up to a concentration of 32 mg/L; beyond that threshold, the effect of increasing chloride was insignificant. MAS did not demonstrate distinct passivation behavior, as well as pitting potential with anodic polarization, in the range of the ethanol-chloride ratio. Chloride caused pitting in MAS. The fracture resistance of MAS reduced in E80 with increasing chloride. Crack tip blunting decreased with increasing chloride, thus accounting for the reduction in fracture toughness. PMID:28773601

  19. Laboratory investigation of the microbiologically influenced corrosion (MIC) resistance of a novel Cu-bearing 2205 duplex stainless steel in the presence of an aerobic marine Pseudomonas aeruginosa biofilm.

    PubMed

    Xia, Jin; Yang, Chunguang; Xu, Dake; Sun, Da; Nan, Li; Sun, Ziqing; Li, Qi; Gu, Tingyue; Yang, Ke

    2015-01-01

    The microbiologically influenced corrosion (MIC) resistance of a novel Cu-bearing 2205 duplex stainless steel (2205 Cu-DSS) against an aerobic marine Pseudomonas aeruginosa biofilm was investigated. The electrochemical test results showed that Rp increased and icorr decreased sharply after long-term immersion in the inoculation medium, suggesting that 2205 Cu-DSS possessed excellent MIC resistance to the P. aeruginosa biofilm. Fluorescence microscope images showed that 2205 Cu-DSS possessed a strong antibacterial ability, and its antibacterial efficiency after one and seven days was 7.75% and 96.92%, respectively. The pit morphology comparison after 14 days between 2205 DSS and 2205 Cu-DSS demonstrated that the latter showed a considerably reduced maximum MIC pit depth compared with the former (1.44 μm vs 9.50 μm). The experimental results suggest that inhibition of the biofilm was caused by the copper ions released from the 2205 Cu-DSS, leading to its effective mitigation of MIC by P. aeruginosa.

  20. In vitro corrosion resistance of Lotus-type porous Ni-free stainless steels.

    PubMed

    Alvarez, Kelly; Hyun, Soong-Keun; Fujimoto, Shinji; Nakajima, Hideo

    2008-11-01

    The corrosion behavior of three kinds of austenitic high nitrogen Lotus-type porous Ni-free stainless steels was examined in acellular simulated body fluid solutions and compared with type AISI 316L stainless steel. The corrosion resistance was evaluated by electrochemical techniques, the analysis of released metal ions was performed by inductively coupled plasma mass spectrometry (ICP-MS) and the cytotoxicity was investigated in a culture of murine osteoblasts cells. Total immunity to localized corrosion in simulated body fluid (SBF) solutions was exhibited by Lotus-type porous Ni-free stainless steels, while Lotus-type porous AISI 316L showed very low pitting corrosion resistance evidenced by pitting corrosion at a very low breakdown potential. Additionally, Lotus-type porous Ni-free stainless steels showed a quite low metal ion release in SBF solutions. Furthermore, cell culture studies showed that the fabricated materials were non-cytotoxic to mouse osteoblasts cell line. On the basis of these results, it can be concluded that the investigated alloys are biocompatible and corrosion resistant and a promising material for biomedical applications.

  1. In-situ electrochemical-AFM study of localized corrosion of AlxCoCrFeNi high-entropy alloys in chloride solution

    NASA Astrophysics Data System (ADS)

    Shi, Yunzhu; Collins, Liam; Balke, Nina; Liaw, Peter K.; Yang, Bin

    2018-05-01

    In-situ electrochemical (EC)-AFM is employed to investigate the localized corrosion of the AlxCoCrFeNi high-entropy alloys (HEAs). Surface topography changes on the micro/sub-micro scale are monitored at different applied anodizing potentials in a 3.5 wt% NaCl solution. The microstructural evolutions with the increased Al content in the alloys are characterized by SEM, TEM, EDS and EBSD. The results show that by increasing the Al content, the microstructure changes from single solid-solution to multi-phases, leading to the segregations of elements. Due to the microstructural variations in the AlxCoCrFeNi HEAs, localized corrosion processes in different ways after the breakdown of the passive film, which changes from pitting to phase boundary corrosion. The XPS results indicate that an increased Al content in the alloys/phases corresponds to a decreased corrosion resistance of the surface passive film.

  2. Study on the corrosion properties of nanocrystalline nickel electrodepositied by reverse pulse current

    NASA Astrophysics Data System (ADS)

    Cheng, Wen; Ge, Wen; Yang, Qian; Qu, Xinxin

    2013-07-01

    Nanocrystalline nickel coatings were produced by the method of reverse pulse electrodepositing on the surface of steel sheets. The crystallite size of nanocrystalline nickel coatings was determined by X-ray diffraction (XRD). The effect of saccharin concentration on the crystallite size of the coatings was studied. The average crystallite sizes were diminished as a result of increasing saccharin concentration. CHI660C electrochemical workstation was used to determine the Tafel polarization curves and electrochemical impedance spectroscopy (EIS) of the coatings. The value of corrosion potential, natural corrosion current density, polarizaiton resistance and impedance was calculated, the results suggested that smaller grain size led to higher polarization resistance. EIS gave the charge transfer resistance Rct and pore resistance Rpo variation trend from beginning to 30 min. Scanning electron microscopy (SEM) examination showed the surface morphology of the nickel coatings after the neutral salt spray (NSS) test or bathing in 10% HCl. The images indicated that the corrosion behavior of nanocrystalline nickel coatings was pitting corrosion, the mechanism was also discussed.

  3. Localized CO2 corrosion of carbon steel with different microstructures in brine solutions with an imidazoline-based inhibitor

    NASA Astrophysics Data System (ADS)

    Zhang, Huan-huan; Pang, Xiaolu; Gao, Kewei

    2018-06-01

    CO2 corrosion behavior of carbon steel with different microstructures (H steel: coarse laminar pearlite; T steel: globular and shot rod shaped pearlite) was analyzed in 3 wt.% NaCl solution at 60 °C with imidazoline-based inhibitor by electrochemical and weight loss methods. Electrochemical measurements showed that, compared to H steel, the inhibitor film adsorbed on T steel had a higher pitting corrosion resistance and the inhibition efficiency for T steel was larger at each concentration of inhibitor. Weight loss results exhibited that both steels suffered general corrosion in absence of inhibitor; however, localized corrosion was observed on the samples with insufficient concentration of inhibitor. H steel suffered more severe localized corrosion than T steel, it was related to that H steel had a higher density of dislocations in the pearlite area and the larger driving force for galvanic corrosion. The localized corrosion on H steel mainly distributed on the laminar pearlite area.

  4. Effect of slightly acid pH with or without chloride in radioactive water on the corrosion of maraging steel

    NASA Astrophysics Data System (ADS)

    Bellanger, G.; Rameau, J. J.

    1996-02-01

    This study was carried out to ascertain the behavior of maraging steel used in the tanks of French plants for reprocessing radioactive water which may contain chloride ions at pH 3. The rest or corrosion potentials can be either in the transpassive or active regions due to the presence of radiolytic species. The corrosion current and potential depend on the pH and intermediates formed on the surface in the active region; therefore, maraging steel behavior was studied by cyclic voltammetry without and with electrode rotation and different acid pH which provide an indication of mechanisms, modification of local pH and transient formation. In the passive -transpassive region, breakdown and porosity in the oxide appear with or without chloride, according to electrochemical impedance spectroscopy. In presence of chloride, the corrosion kinetics were obtained by cyclic voltammetry and electrochemical impedance spectroscopy. The anodic and cathodic areas of maraging steel corroded by pitting were shown using the Scanning Reference Electrode Technique.

  5. Laser shock peening without coating induced residual stress distribution, wettability characteristics and enhanced pitting corrosion resistance of austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Prabhakaran, S.; Kulkarni, Aniket; Vasanth, G.; Kalainathan, S.; Shukla, Pratik; Vasudevan, Vijay K.

    2018-01-01

    Low energy laser shock peening without coating (LSPwC) was conducted on AISI 304 austenitic stainless steel specimens with varying pulse densities or overlapping. Highest magnitude of compressive residual stress (CRS) was achieved for an optimized pulse density of 2500 pulses/cm2 (75% overlapping). The 2-D and 3-D topographical analysis were indicative of the fact that controlled roughening of the surface was achieved after the LSPwC process. After the LSPwC process, the hydrophilic unpeened surface was converted into the hydrophobic surface, thus decreasing the wettability characteristics of the surface. The X-ray diffraction (XRD) results reveal that there is a beginning of the martensite transformation and the rise in the intensity value of the peaks after LSPwC indicates the presence of compressive residual stresses induced in the specimen. The optical microscope and high-resolution transmission electron microscope results provided evidence of grain refinement and deformation induced refinement features such as multidirectional mechanical twinning, dislocations lines, micro shear cells and stacking faults in the near and sub-surface areas. The average hardness value of the LSPwC specimens was found to be increased by 28% more than the untreated specimen. The potentiodynamic polarization revealed that there was a considerable amount of increase in the pitting corrosion resistance after the LSPwC process, thus, supporting to extend the fatigue life of the specimen. The electrochemical impedance spectroscopic (EIS) analysis depicts that the LSPwC process supports the formation of the strong passivation layer in 3.5% NaCl solution.

  6. Fabrication and Characteristics of High Capacitance Al Thin Films Capacitor Using a Polymer Inhibitor Bath in Electroless Plating Process.

    PubMed

    Cho, Young-Lae; Lee, Jung-Woo; Lee, Chang-Hyoung; Choi, Hyung-Seon; Kim, Sung-Su; Song, Young Il; Park, Chan; Suh, Su-Jeong

    2015-10-01

    An aluminum (Al) thin film capacitor was fabricated for a high capacitance capacitor using electrochemical etching, barrier-type anodizing, and electroless Ni-P plating. In this study, we focused on the bottom-up filling of Ni-P electrodes on Al2O3/Al with etched tunnels. The Al tunnel pits were irregularly distributed on the Al foil, diameters were in the range of about 0.5~1 μm, the depth of the tunnel pits was approximately 35~40 μm, and the complex structure was made full filled hard metal. To control the plating rate, the experiment was performed by adding polyethyleneimine (PEI, C2H5N), a high molecular substance. PEI forms a cross-link at the etching tunnel inlet, playing the role of delaying the inlet plating. When the PEI solution bath was used after activation, the Ni-P layer was deposited selectively on the bottoms of the tunnels. The characteristics were analyzed by adding the PEI addition quantity rate of 100~600 mg/L into the DI water. The capacitance of the Ni-P/Al2O3 (650~700 nm)/Al film was measured at 1 kHz using an impedance/gain phase analyzer. For the plane film without etch tunnels the capacitance was 12.5 nF/cm2 and for the etch film with Ni-P bottom-up filling the capacitance was 92 nF/cm2. These results illustrate a remarkable maximization of capacitance for thin film metal capacitors.

  7. Interactions of tectonic, igneous, and hydraulic processes in the North Tharsis Region of Mars

    NASA Technical Reports Server (NTRS)

    Davis, P. A.; Tanaka, Kenneth L.; Golombek, M. P.; Plescia, J. B.

    1991-01-01

    Recent work on the north Tharsis of Mars has revealed a complex geologic history involving volcanism, tectonism, flooding, and mass wasting. Our detailed photogeologic analysis of this region found many previously unreported volcanic vents, volcaniclastic flows, irregular cracks, and minor pit chains; additional evidence that volcanic tectonic processes dominated this region throughout Martian geologic time; and the local involvement of these processes with surface and near surface water. Also, photoclinometric profiles were obtained within the region of troughs, simple grabens, and pit chains, as well as average spacings of pits along pit chains. These data were used together with techniques to estimate depths of crustal mechanical discontinuities that may have controlled the development of these features. In turn, such discontinuities may be controlled by stratigraphy, presence of water or ice, or chemical cementation.

  8. Electrochemical Impedance Spectroscopy of Alloys in a Simulated Space Shuttle Launch Environment

    NASA Technical Reports Server (NTRS)

    Calle, L. M.; Kolody, M. R.; Vinje, R. D.

    2004-01-01

    Type 304L stainless steel (304L SS) tubing is currently used in various supply lines that service the Orbiter at NASA's John F. Kennedy Space Center Launch Pads in Florida (USA). The atmosphere at the Space Shuffle launch site is very corrosive due to a combination of factors, such as the proximity of the Atlantic Ocean and the concentrated hydrochloric acid produced by the fuel combustion reaction in the solid rocket boosters. The acidic chloride environment is aggressive to most metals and causes severe pitting in many of the common stainless steel alloys such as 304L SS. Stainless steel tubing is susceptible to pitting corrosion that can cause cracking and rupture of both high-pressure gas and fluid systems. Outages in the systems where failures occur can impact the normal operation of the shuttle and launch schedules. The use of a more corrosion resistant tubing alloy for launch pad applications would greatly reduce the probability of failure, improve safety, lessen maintenance costs, and reduce downtime. A study which included ten alloys was undertaken to find a more corrosion resistant material to replace the existing 304L SS tubing. The study included atmospheric exposure at NASA's John F. Kennedy Space Center outdoor corrosion test site near the launch pads and electrochemical measurements in the laboratory which included DC techniques and electrochemical impedance spectroscopy (EIS). This paper presents the results from EIS measurements on three of the alloys: AL6XN (UN N08367), 254SMO (UNS S32l54), and 304L SS (UNS S30403). Type 304L SS was included in the study as a control. The alloys were tested in three electrolyte solutions which consisted of neutral 3.55% NaC1, 3.55% NaCl in O.1N HC1, and 3.55% NaCl in 1.ON HC1. The solutions were chosen to simulate environments that were expected to be less, similar, and more aggressive, respectively, than those present at the Space Shuttle launch pads. The results from the EIS measurements were analyzed to evaluate the corrosion susceptibility of the alloys and to predict the long-term corrosion performance of the subject materials. The results from the EIS measurements for the three alloys indicated that the higher-alloyed 254SMO and AL6XN exhibited a significantly improved resistance to corrosion than the 304L SS as the concentration of hydrochloric acid in the 3.55% NaC1 solution was increased. The polarization resistance values obtained from the EIS measurements were consistent with those from linear polarization measurements, and were indicative of the actual long-term corrosion performance of the alloys during a two-year atmospheric exposure study.

  9. Electrochemical corrosion and modeling studies of types 7075 and 2219 aluminum alloys in a nitric acid + ferric sulfate deoxidizer solution

    NASA Astrophysics Data System (ADS)

    Savas, Terence P.

    The corrosion behavior of types 7075-T73 and 2219-T852 high strength aluminum alloys have been investigated in a HNO3 + Fe2(SO 4)3 solution. The materials are characterized in the time domain using the electrochemical noise resistance parameter (Rn) and in the frequency-domain using the spectral noise impedance parameter ( Rsn). The Rsn parameter is derived from an equivalent electrical circuit model that represents the corrosion test cell schematic used in the present study. These calculated parameters are correlated to each other, and to corresponding scanning electron microscopy (SEM) examinations of the corroded surfaces. In addition, energy dispersive spectroscopy (EDS) spectra are used in conjunction with SEM exams for particle mapping and identification. These constituent particles are characterized with respect to their size and composition and their effect on the localized corrosion mechanisms taking place. Pitting mechanisms are identified as 'circumferential' where the particles appeared noble with respect to the aluminum matrix and by 'selective dissolution' where they are anodic to the aluminum matrix. The electrochemical data are found to be in good agreement with the surface examinations. Specifically, the electrochemical parameters Rn and Rsn were consistent in predicting the corrosion resistance of 7075-T73 to be lower than for the 2219-T852 alloy. Other characteristic features used in understanding the corrosion mechanisms include the open circuit potential (OCP) and coupling-current time records.

  10. Anodic Behavior of the Aluminum Current Collector in Imide-Based Electrolytes: Influence of Solvent, Operating Temperature, and Native Oxide-Layer Thickness.

    PubMed

    Meister, Paul; Qi, Xin; Kloepsch, Richard; Krämer, Elisabeth; Streipert, Benjamin; Winter, Martin; Placke, Tobias

    2017-02-22

    The inability of imide salts to form a sufficiently effective passivation layer on aluminum current collectors is one of the main obstacles that limit their broad application in electrochemical energy-storage systems. However, under certain circumstances, the use of electrolytes with imide electrolyte salts in combination with the aluminum current collector is possible. In this contribution, the stability of the aluminum current collector in electrolytes containing either lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) or lithium fluorosulfonyl-(trifluoromethanesulfonyl) imide (LiFTFSI) as conductive salt was investigated by electrochemical techniques, that is, cyclic voltammetry (CV) and chronocoulometry (CC) in either room-temperature ionic liquids or in ethyl methyl sulfone. In particular, the influence of the solvent, operating temperature, and thickness of the native oxide layer of aluminum on the pit formation at the aluminum current collector surface was studied by means of scanning electron microscopy. In general, a more pronounced aluminum dissolution and pit formation was found at elevated temperatures as well as in solvents with a high dielectric constant. An enhanced thickness of the native aluminum oxide layer increases the oxidative stability versus dissolution. Furthermore, we found a different reaction rate depending on dwell time at the upper cut-off potential for aluminum dissolution in TFSI- and FTFSI-based electrolytes during the CC measurements; the use of LiFTFSI facilitated the dissolution of aluminum compared to LiTFSI. Overall, the mechanism of anodic aluminum dissolution is based on: i) the attack of the Al 2 O 3 surface by acidic species and ii) the dissolution of bare aluminum into the electrolyte, which, in turn, is influenced by the electrolyte's dielectric constant. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Corrosion behavior of aluminum-alumina composites in aerated 3.5 percent chloride solution

    NASA Astrophysics Data System (ADS)

    Acevedo Hurtado, Paul Omar

    Aluminum based metal matrix composites are finding many applications in engineering. Of these Al-Al2O3 composites appear to have promise in a number of defense applications because of their mechanical properties. However, their corrosion behavior remains suspect, especially in marine environments. While efforts are being made to improve the corrosion resistance of Al-Al2O3 composites, the mechanism of corrosion is not well known. In this study, the corrosion behavior of powder metallurgy processed Al-Cu alloy reinforced with 10, 15, 20 and 25 vol. % Al2O3 particles (XT 1129, XT 2009, XT 2048, XT 2031) was evaluated in aerated 3.5% NaCl solution using microstructural and electrochemical measurements. AA1100-O and AA2024T4 monolithic alloys were also studied for comparison purposes. The composites and unreinforced alloys were subjected to potentiodynamic polarization and Electrochemical Impedance Spectroscopy (EIS) testing. Addition of 25 vol. % Al2O 3 to the base alloys was found to increase its corrosion resistance considerably. Microstructural studies revealed the presence of intermetallic Al2Cu particles in these composites that appeared to play an important role in the observations. Pitting potential for these composites was near corrosion potential values, and repassivation potential was below the corresponding corrosion potential, indicating that these materials begin to corrode spontaneously as soon as they come in contact with the 3.5 % NaCl solution. EIS measurements indicate the occurrence of adsorption/diffusion phenomena at the interface of the composites which ultimately initiate localized or pitting corrosion. Polarization resistance values were extracted from the EIS data for all the materials tested. Electrically equivalent circuits are proposed to describe and substantiate the corrosive processes occurring in these Al-Al2O 3 composite materials.

  12. Illuminating Anaerobic Microbial Community and Cooccurrence Patterns across a Quality Gradient in Chinese Liquor Fermentation Pit Muds

    PubMed Central

    Hu, Xiaolong; Du, Hai; Ren, Cong

    2016-01-01

    Fermentation pit mud, an important reservoir of diverse anaerobic microorganisms, is essential for Chinese strong-aroma liquor production. Pit mud quality, according to its sensory characteristics, can be divided into three grades: degraded, normal, and high quality. However, the relationship between pit mud microbial community and pit mud quality is poorly understood, as are microbial associations within the pit mud ecosystem. Here, microbial communities at these grades were compared using Illumina MiSeq sequencing of the variable region V4 of the 16S rRNA gene. Our results revealed that the pit mud microbial community was correlated with its quality and environmental factors. Species richness, biodiversity, and relative and/or absolute abundances of Clostridia, Clostridium kluyveri, Bacteroidia, and Methanobacteria significantly increased, with corresponding increases in levels of pH, NH4+, and available phosphorus, from degraded to high-quality pit muds, while levels of Lactobacillus, dissolved organic carbon, and lactate significantly decreased, with normal samples in between. Furthermore, 271 pairs of significant and robust correlations (cooccurrence and negative) were identified from 76 genera using network analysis. Thirteen hubs of cooccurrence patterns, mainly under the Clostridia, Bacteroidia, Methanobacteria, and Methanomicrobia, may play important roles in pit mud ecosystem stability, which may be destroyed with rapidly increased levels of lactic acid bacteria (Lactobacillus, Pediococcus, and Streptococcus). This study may help clarify the relationships among microbial community, environmental conditions, and pit mud quality, allow the improvement of pit mud quality by using bioaugmentation and controlling environmental factors, and shed more light on the ecological rules guiding community assembly in pit mud. PMID:26896127

  13. Giant weathering pits in the Entrada Sandstone, southeastern Utah: Preliminary findings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Netoff, D.I.; Shroba, R.R.

    Giant weathering pits formed in outcrops of the lower Entrada Sandstone slickrock of Jurassic age are present in two areas in the Glen Canyon region of arid southeastern Utah. The pits are far larger than any previously described in the geologic literature. The pits near Cookie Jar Butte are commonly cylindrical, typically have low width-to-depth ratios (1.5--3.6), and have a depth of closure of as much as 18 m. There are no obvious lithologic or structural controls that determine their shape or location. Many of the pits at Rock Creek Bay are elongate; several of them have long axes inmore » excess of 53 m, and the longest one is 74 m. Many of the pit walls are breached at the top, and the depth of closure is generally less than 6 m. The shapes of these pits are influenced by point orientation and pit coalescence. Thin-section analyses of near-surface sandstone cores taken near Cookie Jar Butte from pit walls, floors, and rims reveal no significant diagenetic alteration of the fine-grained to very fine frained quartzose sandstone (quartz arenite). Quartz grains appear fresh, and feldspar grains are only slightly weathered. The cement between the grains is mostly CaCO[sub 3]. In several of the pits in both areas sandy sediment veneers the bedrock floor. This sediment is similar in character to the adjacent sandstone and is probably locally derived. Possible origins of the giant pits include various physical, chemical, and biological weathering processes that initiate pit development, followed by excavation by plunge-pool action, wind deflation, dissolution, and piping. Preliminary field and laboratory data do not clearly identify and single process of group of processes that account for pit development.« less

  14. Influence of Sulfur Content on the Corrosion Resistance of 17-4PH Stainless Steel

    NASA Astrophysics Data System (ADS)

    Tavares, S. S. M.; Pardal, J. M.; Martins, T. R. B.; da Silva, M. R.

    2017-04-01

    According to specification standards, the basic chemical composition of steel 17-4PH for special and critical applications is 15-17% Cr, 3.0-5.0% Ni, 3.0-5.0% Cu, 0.07% C (max) and 0.15-0.45% (Nb + Ta) (wt.%). The maximum sulfur content is 0.030%. However, as it will be shown in this work, this maximum limit for sulfur is too high for services where high corrosion resistance is necessary. Two samples of 17-4PH steel with similar base compositions, but quite different sulfur contents (0.027% and 0.001%S), were compared with respect to pitting corrosion and sensitization. Both materials were heat treated according to commercial treatments A, H900, H1100, H1150 and H1150D (ASTM A-1082). Two corrosion tests were applied to compare the steels. The first one was the double-loop electrochemical potentiodynamic reactivation (DL-EPR) test in 0.25 M H2SO4 + 0.01 KSCN solution, which is used to measure the degree of sensitization. The second test was the anodic polarization in 3.5%NaCl solution, commonly used to evaluate the pitting corrosion resistance. Detailed microstructural characterization by magnetic measurements, light optical and scanning electron microscopy was performed. As main conclusion, despite that both steels have chemical compositions in accordance with the standards, the steel with higher sulfur was much more susceptible to pitting and sensitization.

  15. Etch pit investigation of free electron concentration controlled 4H-SiC

    NASA Astrophysics Data System (ADS)

    Kim, Hong-Yeol; Shin, Yun Ji; Kim, Jung Gon; Harima, Hiroshi; Kim, Jihyun; Bahng, Wook

    2013-04-01

    Etch pits were investigated using the molten KOH selective etching method to examine dependence of etch pit shape and size on free electron concentration. The free electron concentrations of highly doped 4H-silicon carbide (SiC) were controlled by proton irradiation and thermal annealing, which was confirmed by a frequency shift in the LO-phonon-plasmon-coupled (LOPC) mode on micro-Raman spectroscopy. The proton irradiated sample with 5×1015 cm-2 fluence and an intrinsic semi-insulating sample showed clearly classified etch pits but different ratios of threading screw dislocation (TSD) and threading edge dislocation (TED) sizes. Easily classified TEDs and TSDs on proton irradiated 4H-SiC were restored as highly doped 4H-SiC after thermal annealing due to the recovered carrier concentrations. The etched surface of proton irradiated 4H-SiC and boron implanted SiC showed different surface conditions after activation.

  16. Robust superhydrophobic surface on Al substrate with durability, corrosion resistance and ice-phobicity

    PubMed Central

    Wang, Guoyong; Liu, Shuai; Wei, Sufeng; Liu, Yan; Lian, Jianshe; Jiang, Qing

    2016-01-01

    Practical application of superhydrophobic surfaces is limited by the fragility of nanoscale asperities. Combining chemical etching and anodization, microscale pits and nanoscale pores, instead of the micro and nano protrusions on traditional superhydrophobic surfaces mimicking Lutos leaves, were fabricated on commercially pure aluminum surfaces. After modified by FDTS, the surfaces were superhydrophobic and self-cleaning. The ultrahigh hardness and electrochemical stability of Al2O3 coating endowed the surface excellent mechanical durability and good corrosion resistance. Because the method is scalable, it may find practical application on body panels of automobiles and aircrafts and so on. PMID:26853810

  17. Corrosion detection and evolution monitoring in reinforced concrete structures by the use of fiber Bragg grating sensor

    NASA Astrophysics Data System (ADS)

    Ali-Alvarez, S.; Ferdinand, P.; Magne, S.; Nogueira, R. P.

    2013-04-01

    Corrosion of reinforced bar (rebar) in concrete structures represents a major issue in civil engineering works, being its detection and evolution a challenge for the applied research. In this work, we present a new methodology to corrosion detection in reinforced concrete structures, by combining Fiber Bragg Grating (FBG) sensors with the electrochemical and physical properties of rebar in a simplified assembly. Tests in electrolytic solutions and concrete were performed for pitting and general corrosion. The proposed Structural Health Monitoring (SHM) methodology constitutes a direct corrosion measurement potentially useful to implement or improve Condition-Based Maintenance (CBM) program for civil engineering concrete structures.

  18. Tridimensional morphology and kinetics of etch pit on the {l_brace}0 0 0 1{r_brace} plane of sapphire crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Lunyong; Sun Jianfei, E-mail: jfsun_hit@263.net; Zuo Hongbo

    2012-08-15

    The tridimensional morphology and etching kinetics of the etch pit on the C-{l_brace}0 0 0 1{r_brace} plane of sapphire crystal ({alpha}-Al{sub 2}O{sub 3}) in molten KOH were studied experimentally. It was shown that the etch pit takes on tridimensional morphologies with triangular symmetry same as the symmetric property of the sapphire crystal. Pits like centric and eccentric triangular pyramid as well as hexagonal pyramid were observed, but the latter is less in density. In-depth analyses show the side walls of the etch pits belong to the {l_brace}1 1{sup Macron} 0 2{sup Macron }{r_brace} family, and the triangular pit contains edgesmore » full composed by Al{sup 3+} ions on the etching surface so it is more stable than the hexagonal pit since its edges on the etching surface contains Al{sup 2+} ions. The etch pits developed in a manner of kinematic wave by the step moving with constant speed, which is controlled by the chemical reaction with activation energy of 96.6 kJ/mol between Al{sub 2}O{sub 3} and KOH. - Graphical abstract: Schematic showing the atomic configuration of the predicted side walls of regular triangular pyramid shaped etch pit on the C-{l_brace}0 0 0 1{r_brace} plane of sapphire crystal. Highlights: Black-Right-Pointing-Pointer Observed the tridimensional morphology of etch pits. Black-Right-Pointing-Pointer Figured out the atomic configuration origin of the etch pits. Black-Right-Pointing-Pointer Quantitatively determined the etch rates of the etch pits.« less

  19. Illuminating Anaerobic Microbial Community and Cooccurrence Patterns across a Quality Gradient in Chinese Liquor Fermentation Pit Muds.

    PubMed

    Hu, Xiaolong; Du, Hai; Ren, Cong; Xu, Yan

    2016-04-01

    Fermentation pit mud, an important reservoir of diverse anaerobic microorganisms, is essential for Chinese strong-aroma liquor production. Pit mud quality, according to its sensory characteristics, can be divided into three grades: degraded, normal, and high quality. However, the relationship between pit mud microbial community and pit mud quality is poorly understood, as are microbial associations within the pit mud ecosystem. Here, microbial communities at these grades were compared using Illumina MiSeq sequencing of the variable region V4 of the 16S rRNA gene. Our results revealed that the pit mud microbial community was correlated with its quality and environmental factors. Species richness, biodiversity, and relative and/or absolute abundances of Clostridia,Clostridium kluyveri, Bacteroidia, and Methanobacteria significantly increased, with corresponding increases in levels of pH, NH4 (+), and available phosphorus, from degraded to high-quality pit muds, while levels of Lactobacillus, dissolved organic carbon, and lactate significantly decreased, with normal samples in between. Furthermore, 271 pairs of significant and robust correlations (cooccurrence and negative) were identified from 76 genera using network analysis. Thirteen hubs of cooccurrence patterns, mainly under the Clostridia,Bacteroidia,Methanobacteria, and Methanomicrobia, may play important roles in pit mud ecosystem stability, which may be destroyed with rapidly increased levels of lactic acid bacteria (Lactobacillus,Pediococcus, and Streptococcus). This study may help clarify the relationships among microbial community, environmental conditions, and pit mud quality, allow the improvement of pit mud quality by using bioaugmentation and controlling environmental factors, and shed more light on the ecological rules guiding community assembly in pit mud. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Controlling potential barrier height by changing V-shaped pit size and the effect on optical and electrical properties for InGaN/GaN based light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okada, Narihito, E-mail: nokada@yamaguchi-u.ac.jp; Kashihara, Hiroyuki; Sugimoto, Kohei

    2015-01-14

    The internal quantum efficiency (IQE) of InGaN/GaN multiple quantum wells (MQWs) with blue light emission was improved by inserting an InGaN/GaN superlattice (SL) beneath the MQWs. While the SL technique is useful for improving the light-emitting diode (LED) performance, its effectiveness from a multilateral point of view requires investigation. V-shaped pits (V-pits), which generate a potential barrier and screen the effect of the threading dislocation, are one of the candidates for increasing the light emission efficiency of LEDs exceptionally. In this research, we investigated the relationship between the V-pit and SL and revealed that the V-pit diameter is strongly correlatedmore » with the IQE by changing the number of SL periods. Using scanning near-field optical microscopy and photoluminescence measurements, we demonstrated the distinct presence of the potential barrier formed by the V-pits around the dislocations. The relationship between the V-pit and the number of SL periods resulted in changing the potential barrier height, which is related to the V-pit diameter determined by the number of SL periods. In addition, we made an attempt to insert pit expansion layers (PELs) composed of combination of SL and middle temperature grown GaN layer instead of only SL structure. As a result of the evaluation of LEDs using SL or PEL, the EL intensity was strongly related to pit diameter regardless of the structures to form the V-pits. In addition, it was clear that larger V-pits reduce the efficiency droop, which is considered to be suppression of the carrier loss at high injection current.« less

  1. Tunable Multiple Plasmon-Induced Transparencies Based on Asymmetrical Graphene Nanoribbon Structures

    PubMed Central

    Lu, Chunyu; Wang, Jicheng; Yan, Shubin; Hu, Zheng-Da; Zheng, Gaige; Yang, Liu

    2017-01-01

    We present plasmonic devices, consisting of periodic arrays of graphene nanoribbons (GNRs) and a graphene sheet waveguide, to achieve controllable plasmon-induced transparency (PIT) by numerical simulation. We analyze the bright and dark elements of the GNRs and graphene-sheet waveguide structure. Results show that applying the gate voltage can electrically tune the PIT spectrum. Adjusting the coupling distance and widths of GNRs directly results in a shift of transmission dips. In addition, increased angle of incidence causes the transmission to split into multiple PIT peaks. We also demonstrate that PIT devices based on graphene plasmonics may have promising applications as plasmonic sensors in nanophotonics. PMID:28773062

  2. Geochemistry and migration of contaminants at the Weldon Spring chemical plant site, St. Charles County, Missouri, 1989-91

    USGS Publications Warehouse

    Schumacher, John G.

    1993-01-01

    The geochemistry of the shallow aquifer and geochemical controls on the migration of uranium and other constituents from raffinate pits were determined at the Weldon Spring chemical plant site. Surface-water samples from the raffinate pits con- tained large concentrations of calcium, magnesium, sodium, potassium, sulfate, nitrite, lithium, moly- bdenum, strontium, vanadium, and uranium. Analyses of interstitial-water samples from raffinate pit 3 indicated that concentrations of most constituents increased with increasing depth below the water- sediment interface. Nitrate and uranium were not chemically reduced and attenuated within the raffinate pits and can be expected to migrate into the overburden. Laboratory sorption experiments were performed to evaluate the effect of pH value on the sorption of several raffinate constituents by the overburden. No sorption of calcium, sodium, sulfate, nitrate, or lithium was observed. Sorption of molybdenum was dependent on solution pH and sorption of uranium was dependent on solution pH and carbonate concentration. The sorption of uranium and molybdenum was consistent with sorption controlled by oxyhydroxides. The quality of water collected in overburden lysimeters near raffinate pit 4 can be modeled as a mixture of water from raffinate pits 3 and 4, and an uncontaminated com- ponent in a system at equilibrium with ferrihydrite and calcite. Increased constituent concentrations in a perennial spring north of the site were the result of a subsurface connection between the spring and several losing stream segments receiving runoff from the site, in addition to seepage from the raffinate pits.

  3. Morphological Evolution of Pit-Patterned Si(001) Substrates Driven by Surface-Energy Reduction

    NASA Astrophysics Data System (ADS)

    Salvalaglio, Marco; Backofen, Rainer; Voigt, Axel; Montalenti, Francesco

    2017-09-01

    Lateral ordering of heteroepitaxial islands can be conveniently achieved by suitable pit-patterning of the substrate prior to deposition. Controlling shape, orientation, and size of the pits is not trivial as, being metastable, they can significantly evolve during deposition/annealing. In this paper, we exploit a continuum model to explore the typical metastable pit morphologies that can be expected on Si(001), depending on the initial depth/shape. Evolution is predicted using a surface-diffusion model, formulated in a phase-field framework, and tackling surface-energy anisotropy. Results are shown to nicely reproduce typical metastable shapes reported in the literature. Moreover, long time scale evolutions of pit profiles with different depths are found to follow a similar kinetic pathway. The model is also exploited to treat the case of heteroepitaxial growth involving two materials characterized by different facets in their equilibrium Wulff's shape. This can lead to significant changes in morphologies, such as a rotation of the pit during deposition as evidenced in Ge/Si experiments.

  4. Morphological Evolution of Pit-Patterned Si(001) Substrates Driven by Surface-Energy Reduction.

    PubMed

    Salvalaglio, Marco; Backofen, Rainer; Voigt, Axel; Montalenti, Francesco

    2017-09-29

    Lateral ordering of heteroepitaxial islands can be conveniently achieved by suitable pit-patterning of the substrate prior to deposition. Controlling shape, orientation, and size of the pits is not trivial as, being metastable, they can significantly evolve during deposition/annealing. In this paper, we exploit a continuum model to explore the typical metastable pit morphologies that can be expected on Si(001), depending on the initial depth/shape. Evolution is predicted using a surface-diffusion model, formulated in a phase-field framework, and tackling surface-energy anisotropy. Results are shown to nicely reproduce typical metastable shapes reported in the literature. Moreover, long time scale evolutions of pit profiles with different depths are found to follow a similar kinetic pathway. The model is also exploited to treat the case of heteroepitaxial growth involving two materials characterized by different facets in their equilibrium Wulff's shape. This can lead to significant changes in morphologies, such as a rotation of the pit during deposition as evidenced in Ge/Si experiments.

  5. Physiologic ischaemic training induces endothelial progenitor cell mobilization and myocardial angiogenesis via endothelial nitric oxide synthase related pathway in rabbits.

    PubMed

    Xiao, Mingyue; Lu, Xiao; Li, Jianan; Li, Ling; Li, Yongxue

    2014-04-01

    Ischaemia-induced angiogenesis promises to improve neovascularization by delivery of angiogenic factors or endothelial progenitor cells (EPCs) to cardiac ischaemic areas. In order to avoid the risk of excessive myocardial ischaemia, therefore, we hypothesized that physiological ischaemic training (PIT) of normal skeletal muscle might contribute to myocardial angiogenesis via nitric oxide mediated mobilization of EPCs from the bone marrow in the established rabbit model of controllable myocardial ischaemia. The rabbits were grouped by sham-operation, myocardial ischaemia without PIT, PIT and PIT with pretreatment with the endothelial nitric oxide synthase (eNOS) inhibitor L-nitroarginine methyl ester (L-NAME). Controlled myocardial ischaemia was modelled by a water balloon constrictor implanted on the left ventricular branch in a rabbit. The PIT procedure included three cycles of 3 min of cuff inflation followed by 5 min of deflation on hind limbs of the rabbits for 4 weeks. At the endpoints, circulating EPCs (CD34/Flk-1) were measured by fluorescence-activated cell sorter; capillary density, by immunohistochemistry; blood flow, by a microsphere technique; endothelial nitric oxide synthase (eNOS) mRNA and protein, by real-time reverse transcriptase (RT)-PCR and Western blotting. The mRNA levels of eNOS were significantly higher in the PIT and L-NAME groups than in the sham-operation group (P < 0.05). Phospho-eNOS protein expression was higher in the PIT group than in the sham-operation and myocardial ischaemia without PIT groups (P < 0.05), and the effect was inhibited by L-NAME pretreatment (P < 0.05). Compared with sham-operation and myocardial ischaemia without PIT groups, the PIT group had the highest EPC count (P < 0.001), and the increase of capillary density (P < 0.01) and collateral blood flow (P < 0.05) in the ischaemic myocardium was consistent with the finding of EPC count. These effects were also inhibited by pretreatment with the eNOS inhibitor L-NAME. Capillary density and collateral blood flow were highly correlated with the increase of EPC count (r = 0.913 and r = 0.929, respectively, P = 0.000). PIT improved EPC mobilization and contributed to compensatory neovascularization via eNOS-related pathway. These results might support the future development of strategies for therapeutic neovascularization.

  6. Stability of cp-Ti and Ti-6Al-4V alloy for dental implants as a function of saliva pH - an electrochemical study.

    PubMed

    Barão, Valentim A R; Mathew, Mathew T; Assunção, Wirley Gonçalves; Yuan, Judy Chia-Chun; Wimmer, Markus A; Sukotjo, Cortino

    2012-09-01

    To investigate the role of different levels of pH of artificial saliva under simulated oral environment on the corrosion behavior of commercially pure titanium (cp-Ti) and Ti-6Al-4V alloy. Special attention is given to understand the changes in corrosion kinetics and surface characterization of Ti by using electrochemical impedance spectroscopy (EIS). Fifty-four Ti disks (15-mm diameter, 2-mm thickness) were divided into six groups (n = 9) as a function of saliva pH (3, 6.5, and 9) and Ti type. Samples were mechanically polished using standard metallographic procedures. Standard electrochemical tests, such as open circuit potential, EIS, and potentiodynamic tests were conducted in a controlled environment. Data were evaluated by two-way ANOVA, Tukey multiple comparison test, and independent t-test (α = 0.05). Ti surfaces were examined using white-light-interferometry microscopy and scanning electron microscopy (SEM). Saliva pH level significantly affected the corrosion behavior of both Ti types. At low pH, acceleration of ions exchange between Ti and saliva, and reduction of resistance of Ti surface against corrosion were observed (P < 0.05). Corrosion rate was also significantly increased in acidic medium (P < 0.05). Similar corrosion behavior was observed for both Ti types. The white-light-interferometry images of Ti surfaces show higher surface changes at low pH level. SEM images do not show detectable changes. No pitting corrosion was observed for any group. The pH level of artificial saliva influences the corrosion behavior of cp-Ti and Ti-6Al-4V alloy in that lower pH accelerates the corrosion rate and kinetics. The corrosion products may mitigate the survival rate of dental implants. © 2011 John Wiley & Sons A/S.

  7. 30. VIEW DOWN INTO TURBINE PIT SHOWING WICKET GATE CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. VIEW DOWN INTO TURBINE PIT SHOWING WICKET GATE CONTROL MECHANISM AND MAIN SHAFT OF I. P. MORRIS TURBINE. TURBINE BUILT BY I. P. MORRIS & DE LA VERGNE, INC. OF PHILADELPHIA, PA, AND INSTALLED IN 1925. TURBINE RATED AT 18,000 HP AT 113.3 RPM UNDER 18.5 FEET OF HEAD. - Lake Lynn Hydroelectric Power House & Dam, Cheat River, Morgantown, Monongalia County, WV

  8. Loss of PiT-1 Results in Abnormal Endocytosis in the Yolk Sac Visceral Endoderm

    PubMed Central

    Wallingford, Mary C.; Giachelli, Cecilia M.

    2014-01-01

    PiT-1 protein is a transmembrane sodium-dependent phosphate (Pi) transporter. PiT-1 knock out (KO) embryos die from largely unknown causes by embryonic day (E) 12.5. We tested the hypothesis that PiT-1 is required for endocytosis in the embryonic yolk sac (YS) visceral endoderm (VE). Here we present data supporting that PiT-1 KO results in a YS remodeling defect and decreased endocytosis in the YS VE. The remodeling defect is not due to an upstream cardiomyocyte requirement for PiT-1, as SM22αCre-specific KO of PiT-1 in the developing heart and the YS mesodermal layer (ME) does not recapitulate the PiT-1 global KO phenotype. Furthermore, we find that high levels of PiT-1 protein localize to the YS VE apical membrane. Together these data support that PiT-1 is likely required in YS VE. During normal development maternal immunoglobulin (IgG) is endocytosed into YS VE and accumulates in the apical side of the VE in a specialized lysosome termed the apical vacuole (AV). We have identified a reduction in PiT-1 KO VE cell height and a striking loss of IgG accumulation in the PiT-1 KO VE. The endocytosis genes Tfeb, Lamtor2 and Snx2 are increased at the RNA level. Lysotracker Red staining reveals a loss of distinct AVs, and yolk sacs incubated ex vivo with phRODO Green Dextran for Endocytosis demonstrate a functional loss of endocytosis. As yolk sac endocytosis is controlled in part by microautophagy, but expression of LC3 had not been examined, we investigated LC3 expression during yolk sac development and found stage-specific LC3 RNA expression that is predominantly from the YS VE layer at E9.5. Normalized LC3-II protein levels are decreased in the PiT-1 KO YS, supporting a requirement for PiT-1 in autophagy in the YS. Therefore, we propose the novel idea that PiT-1 is central to the regulation of endocytosis and autophagy in the YS VE. PMID:25138534

  9. Reduced Performance of Prey Targeting in Pit Vipers with Contralaterally Occluded Infrared and Visual Senses

    PubMed Central

    Chen, Qin; Deng, Huanhuan; Brauth, Steven E.; Ding, Li; Tang, Yezhong

    2012-01-01

    Both visual and infrared (IR) senses are utilized in prey targeting by pit vipers. Visual and IR inputs project to the contralateral optic tectum where they activate both multimodal and bimodal neurons. A series of ocular and pit organ occlusion experiments using the short-tailed pit viper (Gloydius brevicaudus) were conducted to investigate the role of visual and IR information during prey targeting. Compared with unoccluded controls, snakes with either both eyes or pit organs occluded performed more poorly in hunting prey although such subjects still captured prey on 75% of trials. Subjects with one eye and one pit occluded on the same side of the face performed as well as those with bilateral occlusion although these subjects showed a significant targeting angle bias toward the unoccluded side. Performance was significantly poorer when only a single eye or pit was available. Interestingly, when one eye and one pit organ were occluded on opposite sides of the face, performance was poorest, the snakes striking prey on no more than half the trials. These results indicate that, visual and infrared information are both effective in prey targeting in this species, although interference between the two modalities occurs if visual and IR information is restricted to opposite sides of the brain. PMID:22606229

  10. Near infrared photoimmunotherapy for lung metastases

    PubMed Central

    Sato, Kazuhide; Nagaya, Tadanobu; Mitsunaga, Makoto; Choyke, Peter L.; Kobayashi, Hisataka

    2015-01-01

    Lung metastases are a leading cause of cancer related deaths; nonetheless current treatments are limited. Near infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that combines the specificity of intravenously injected antibodies that target tumors with the toxicity induced by photosensitizers activated by NIR-light. Herein, we demonstrate the efficacy of NIR-PIT in a mouse model of lung metastases. Experiments were conducted with a HER2, luciferase and GFP expressing cell line (3T3/HER2-luc-GFP). An antibody-photosensitizer conjugate (APC) consisting of trastuzumab and a phthalocyanine dye, IRDye-700DX, was synthesized. In vitro NIR-PIT-induced cytotoxicity was light dose dependent. With 3D culture, repeated NIR-PIT could eradicate entire spheroids. In vivo anti-tumor effects of NIR-PIT included significant reductions in both tumor volume (p = 0.0141 vs. APC) and bioluminescence image (BLI) (p = 0.0086 vs. APC) in the flank model, and prolonged survival (p < 0.0001). BLI demonstrated a significant reduction in lung metastases volume (p = 0.0117 vs. APC). Multiple NIR-PIT doses significantly prolonged survival in the lung metastases model (p < 0.0001). These results suggested that NIR-PIT is a potential new therapy for the local control of lung metastases. PMID:26021765

  11. Microstructural and Electrochemical Evaluation of Fusion Welded Low-Nickel and 304 SS at Different Heat Input

    NASA Astrophysics Data System (ADS)

    Bansod, Ankur V.; Patil, Awanikumar P.; Moon, Abhijeet P.; Shukla, Sourabh

    2017-12-01

    The present research study investigates the effect of heat input using E 308 electrode (controlled by welding current, i.e., 70, 85 and 100 A) on microstructure, mechanical properties and corrosion behavior of low-nickel and 304 stainless steel (SS) weldments produced by shielded metal arc welding technique. SEM investigation shows that with the higher heat input, δ-ferrite content was reduced. Dendrite and inter-dendritic length is also reduced by lowering the heat input. For all the heat inputs, it is observed that δ-ferrite content was higher in 304 stainless steel (SS) as compared to that of low-nickel austenitic stainless steel (Cr-Mn SS). Considering the heat input for Cr-Mn SS, coarse grains were observed in the heat-affected zone region. For low heat input (LHI), tensile fracture surface has exhibited river-like pattern with dimple appearance. Corrosion studies show better pitting resistance for low heat input (LHI) samples due to higher δ-ferrite present in the weld region. Similarly, higher interphase corrosion resistance is observed in both the SS grades causing more dissolution in the LHI samples.

  12. 17. INTERIOR VIEW, BASEMENT, LOOKING SOUTHWEST AT THE GEAR PIT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. INTERIOR VIEW, BASEMENT, LOOKING SOUTHWEST AT THE GEAR PIT BELOW THE GRINDING STONES, SHOWING WOODEN COGS ATTACHED TO UNDERGROUND TURBINES. FRICTION DRIVE VISIBLE BEHIND CONTROL BAR (LEFT) WHICH OPERATES SMUT MILL - Schech's Mill, Beaver Creek State Park, La Crescent, Houston County, MN

  13. Dealing With Russian Tactical Nuclear Weapons

    DTIC Science & Technology

    2004-01-01

    the plants, facilities, and equipment necessary to safely secure and store weapons pits (the plutonium “triggers” at the center of a thermonuclear ... bomb , and hence the most critical piece) proffered by either party. Furthermore, the statute requires the IAEA to establish control over the pits until

  14. Studying localized corrosion using liquid cell transmission electron microscopy

    DOE PAGES

    Chee, See Wee; Pratt, Sarah H.; Hattar, Khalid; ...

    2014-11-07

    Using liquid cell transmission electron microscopy (LCTEM), localized corrosion of Cu and Al thin films immersed in aqueous NaCl solutions was studied. We demonstrate that potentiostatic control can be used to initiate pitting and that local compositional changes, due to focused ion beam implantation of Au + ions, can modify the corrosion susceptibility of Al films. Likewise, a discussion on strategies to control the onset of pitting is also presented.

  15. Effect of Post Weld Heat Treatment on Corrosion Behavior of AA2014 Aluminum – Copper Alloy Electron Beam Welds

    NASA Astrophysics Data System (ADS)

    Venkata Ramana, V. S. N.; Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    The present work pertains to the study of corrosion behavior of aluminum alloy electron beam welds. The aluminium alloy used in the present study is copper containing AA2014 alloy. Electron Beam Welding (EBW) was used to weld the alloys in annealed (O) condition. Microstructural changes across the welds were recorded and the effect of post weld heat treatment (PWHT) in T4 (Solutionized and naturally aged) condition on pitting corrosion resistance was studied. A software based PAR basic electrochemical system was used for potentio-dynamic polarization tests. From the study it is observed that weld in O condition is prone to more liquation than that of PWHT condition. This may be attributed to re-melting and solidification of excess eutectic present in the O condition of the base metal. It was also observed that slightly higher hardness values are recorded in O condition than that of PWHT condition. The pitting corrosion resistance of the PMZ/HAZ in PWHT condition is better than that of O condition. This is attributed to copper segregation at the grain boundaries of PMZ in O condition.

  16. The effect of laser surface melting on microstructure and corrosion behavior of friction stir welded aluminum alloy 2219

    NASA Astrophysics Data System (ADS)

    Ma, Shengchong; Zhao, Yong; Zou, Jiasheng; Yan, Keng; Liu, Chuan

    2017-11-01

    This study aimed to explore the electrochemical properties and microstructure of friction stir welds to understand the correlation between their properties and processing. Friction stir welding is a promising solid-state joining process for high-strength aluminum alloys (AA). Although friction stir welding (FSW) eliminates the problems of fusion welding due to the fact that it is performed below Tm, it causes severe plastic deformation in the material. Some AA welded by FSW exhibit relatively poor corrosion resistance. In this research, the corrosion resistance of such welds was enhanced through laser surface melting. A friction stir weld of AA 2219 was laser melted. The melt depth and microstructure were observed using optical and scanning electron microscopy. The melt zone exhibited epitaxially grown columnar grains. The redistribution of elemental composition was analyzed using energy-dispersive spectroscopy. The anticorrosion properties of both laser-melted and original welds were studied in aqueous 3.5% NaCl solution using cyclic potentiodynamic polarization. The results indicated a noticeable increase in the pitting corrosion resistance after the laser treatment on the surface. The repassivation potential was nobler than the corrosion potential after the laser treatment, confirming that the resistance to pitting growth improved.

  17. Ultimate open pit stochastic optimization

    NASA Astrophysics Data System (ADS)

    Marcotte, Denis; Caron, Josiane

    2013-02-01

    Classical open pit optimization (maximum closure problem) is made on block estimates, without directly considering the block grades uncertainty. We propose an alternative approach of stochastic optimization. The stochastic optimization is taken as the optimal pit computed on the block expected profits, rather than expected grades, computed from a series of conditional simulations. The stochastic optimization generates, by construction, larger ore and waste tonnages than the classical optimization. Contrary to the classical approach, the stochastic optimization is conditionally unbiased for the realized profit given the predicted profit. A series of simulated deposits with different variograms are used to compare the stochastic approach, the classical approach and the simulated approach that maximizes expected profit among simulated designs. Profits obtained with the stochastic optimization are generally larger than the classical or simulated pit. The main factor controlling the relative gain of stochastic optimization compared to classical approach and simulated pit is shown to be the information level as measured by the boreholes spacing/range ratio. The relative gains of the stochastic approach over the classical approach increase with the treatment costs but decrease with mining costs. The relative gains of the stochastic approach over the simulated pit approach increase both with the treatment and mining costs. At early stages of an open pit project, when uncertainty is large, the stochastic optimization approach appears preferable to the classical approach or the simulated pit approach for fair comparison of the values of alternative projects and for the initial design and planning of the open pit.

  18. LabVIEW 2010 Computer Vision Platform Based Virtual Instrument and Its Application for Pitting Corrosion Study.

    PubMed

    Ramos, Rogelio; Zlatev, Roumen; Valdez, Benjamin; Stoytcheva, Margarita; Carrillo, Mónica; García, Juan-Francisco

    2013-01-01

    A virtual instrumentation (VI) system called VI localized corrosion image analyzer (LCIA) based on LabVIEW 2010 was developed allowing rapid automatic and subjective error-free determination of the pits number on large sized corroded specimens. The VI LCIA controls synchronously the digital microscope image taking and its analysis, finally resulting in a map file containing the coordinates of the detected probable pits containing zones on the investigated specimen. The pits area, traverse length, and density are also determined by the VI using binary large objects (blobs) analysis. The resulting map file can be used further by a scanning vibrating electrode technique (SVET) system for rapid (one pass) "true/false" SVET check of the probable zones only passing through the pit's centers avoiding thus the entire specimen scan. A complete SVET scan over the already proved "true" zones could determine the corrosion rate in any of the zones.

  19. Escape and evade control policies for ensuring the physical security of nonholonomic, ground-based, unattended mobile sensor nodes

    NASA Astrophysics Data System (ADS)

    Mascarenas, David; Stull, Christopher; Farrar, Charles

    2011-06-01

    In order to realize the wide-scale deployment of high-endurance, unattended mobile sensing technologies, it is vital to ensure the self-preservation of the sensing assets. Deployed mobile sensor nodes face a variety of physical security threats including theft, vandalism and physical damage. Unattended mobile sensor nodes must be able to respond to these threats with control policies that facilitate escape and evasion to a low-risk state. In this work the Precision Immobilization Technique (PIT) problem has been considered. The PIT maneuver is a technique that a pursuing, car-like vehicle can use to force a fleeing vehicle to abruptly turn ninety degrees to the direction of travel. The abrupt change in direction generally causes the fleeing driver to lose control and stop. The PIT maneuver was originally developed by law enforcement to end vehicular pursuits in a manner that minimizes damage to the persons and property involved. It is easy to imagine that unattended autonomous convoys could be targets of this type of action by adversarial agents. This effort focused on developing control policies unattended mobile sensor nodes could employ to escape, evade and recover from PIT-maneuver-like attacks. The development of these control policies involved both simulation as well as small-scale experimental testing. The goal of this work is to be a step toward ensuring the physical security of unattended sensor node assets.

  20. Effect of hydrodynamics and surface roughness on the electrochemical behaviour of carbon steel in CSG produced water

    NASA Astrophysics Data System (ADS)

    Eyu, Gaius Debi; Will, Geoffrey; Dekkers, Willem; MacLeod, Jennifer

    2015-12-01

    The influence of fluid flow, surface roughness and immersion time on the electrochemical behaviour of carbon steel in coal seam gas produced water under static and hydrodynamic conditions has been studied. The disc electrode surface morphology before and after the corrosion test was characterized using scanning electron microscopy (SEM). The corrosion product was examined using X-ray photoelectron spectroscopy (XPS) and X-ray diffractometry (XRD).The results show that the anodic current density increased with increasing surface roughness and consequently a decrease in corrosion surface resistance. Under dynamic flow conditions, the corrosion rate increased with increasing rotating speed due to the high mass transfer coefficient and formation of non-protective akaganeite β-FeO(OH) and goethite α-FeO(OH) corrosion scale at the electrode surface. The corrosion rate was lowest at 0 rpm. The corrosion rate decreased in both static and dynamic conditions with increasing immersion time. The decrease in corrosion rate is attributed to the deposition of corrosion products on the electrode surface. SEM results revealed that the rougher surface exhibited a great tendency toward pitting corrosion.

  1. Inhibitive Effect of Molybdate Ions on the Electrochemical Behavior of Steel Rebar in Simulated Concrete Pore Solution

    NASA Astrophysics Data System (ADS)

    Bensabra, Hakim; Franczak, Agnieszka; Aaboubi, Omar; Azzouz, Noureddine; Chopart, Jean-Paul

    2017-01-01

    Several compounds tested as corrosion inhibitors have proven to possess good effectiveness in protection of steel rebar in concrete. However, most of them are considered as pollutant compounds, which limits their use. The aim of this work is to investigate the inhibitive effect of sodium molybdate, which is considered as a nonpollutant compound, against pitting corrosion of steel rebar in simulated concrete pore solution. Corrosion behaviors of steel in different solutions were studied by means of corrosion potential, potentiodynamic polarization, and electrochemical impedance spectroscopy. The results indicate that the addition of sodium molybdate to the chlorinated solution decreases significantly the corrosion rate of steel. Due to its passivating character, the sodium molybdate inhibitor promotes the formation of a stable passive layer on the surface of steel, acting as a physical barrier against chloride ions, on one hand, and consolidating the passivation mechanism of steel, on the other. The optimal inhibition rate is given by the concentration of molybdate ions, corresponding to a [MoO4 2-]/[Cl-] that is equal to 0.5.

  2. Distinctive colonization of Bacillus sp. bacteria and the influence of the bacterial biofilm on electrochemical behaviors of aluminum coatings.

    PubMed

    Abdoli, Leila; Suo, Xinkun; Li, Hua

    2016-09-01

    Formation of biofilm is usually essential for the development of biofouling and crucially impacts the corrosion of marine structures. Here we report the attachment behaviors of Bacillus sp. bacteria and subsequent formation of bacterial biofilm on stainless steel and thermal sprayed aluminum coatings in artificial seawater. The colonized bacteria accelerate the corrosion of the steel plates, and markedly enhance the anti-corrosion performances of the Al coatings in early growth stage of the bacterial biofilm. After 7days incubation, the biofilm formed on the steel is heterogeneous while exhibits homogeneous feature on the Al coating. Atomic force microscopy examination discloses inception of formation of local pitting on steel plates associated with significantly roughened surface. Electrochemical testing suggests that the impact of the bacterial biofilm on the corrosion behaviors of marine structures is not decided by the biofilm alone, it is instead attributed to synergistic influence by both the biofilm and physicochemical characteristics of the substratum materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Investigation on wear and corrosion behavior of equal channel angular pressed aluminium 2014 alloy

    NASA Astrophysics Data System (ADS)

    Divya, S. P.; Yoganandan, G.; Balaraju, J. N.; Srinivasan, S. A.; Nagaraj, M.; Ravisankar, B.

    2018-02-01

    Aluminium 2014 alloy solutionized at 495°C, aged at 195°C was subjected to Equal Channel Angular Pressing (ECAP). Dry sliding wear tests were conducted using pin on disc tribometer system under nominal loads of 10N and 30N with constant speed 2m/s for 2000m in order to investigate their wear behavior after ECAP. The Co-efficient of friction and loss in volume were decreased after ECAP. The dominant wear mechanism observed was adhesion, delamination in addition to these wear mechanisms, oxidation and transfer of Fe from the counter surface to the Al 2014 pin were observed at higher loading condition. The corrosion behavior was evaluated by potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. The results obtained from PDP showed higher corrosion potential and lower corrosion density after ECAP than base. Electrochemical impedance spectroscopy (EIS) showed higher charge transfer resistance after ECAP. Surface morphology showed decreased pit size and increased oxygen content in ECAP sample than base after PDP.

  4. Bioerosion by pit-forming, temperate-reef sea urchins: History, rates and broader implications.

    PubMed

    Russell, Michael P; Gibbs, Victoria K; Duwan, Emily

    2018-01-01

    Sea urchins are dominant members of rocky temperate reefs around the world. They often occur in cavities within the rock, and fit so tightly, it is natural to assume they sculpted these "pits." However, there are no experimental data demonstrating they bore pits. If they do, what are the rates and consequences of bioerosion to nearshore systems? We sampled purple sea urchins, Strongylocentrotus purpuratus, from sites with four rock types, three sedimentary (two sandstones and one mudstone) and one metamorphic (granite). A year-long experiment showed urchins excavated depressions on sedimentary rocks in just months. The rate of pit formation varied with rock type and ranged from <5 yr for medium-grain sandstone to >100 yr for granite. In the field, there were differences in pit size and shapes of the urchins (height:diameter ratio). The pits were shallow and urchins flatter at the granite site, and the pits were deeper and urchins taller at the sedimentary sites. Although overall pit sizes were larger on mudstone than on sandstone, urchin size accounted for this difference. A second, short-term experiment, showed the primary mechanism for bioerosion was ingestion of the substratum. This experiment eliminated potential confounding factors of the year-long experiment and yielded higher bioerosion rates. Given the high densities of urchins, large amounts of rock can be converted to sediment over short time periods. Urchins on sandstone can excavate as much as 11.4 kg m-2 yr-1. On a broader geographic scale, sediment production can exceed 100 t ha-1 yr-1, and across their range, their combined bioerosion is comparable to the sediment load of many rivers. The phase shift between urchin barrens and kelp bed habitats in the North Pacific is controlled by the trophic cascade of sea otters. By limiting urchin populations, these apex predators also may indirectly control a substantial component of coastal rates of bioerosion.

  5. Bioerosion by pit-forming, temperate-reef sea urchins: History, rates and broader implications

    PubMed Central

    Gibbs, Victoria K.; Duwan, Emily

    2018-01-01

    Sea urchins are dominant members of rocky temperate reefs around the world. They often occur in cavities within the rock, and fit so tightly, it is natural to assume they sculpted these “pits.” However, there are no experimental data demonstrating they bore pits. If they do, what are the rates and consequences of bioerosion to nearshore systems? We sampled purple sea urchins, Strongylocentrotus purpuratus, from sites with four rock types, three sedimentary (two sandstones and one mudstone) and one metamorphic (granite). A year-long experiment showed urchins excavated depressions on sedimentary rocks in just months. The rate of pit formation varied with rock type and ranged from <5 yr for medium-grain sandstone to >100 yr for granite. In the field, there were differences in pit size and shapes of the urchins (height:diameter ratio). The pits were shallow and urchins flatter at the granite site, and the pits were deeper and urchins taller at the sedimentary sites. Although overall pit sizes were larger on mudstone than on sandstone, urchin size accounted for this difference. A second, short-term experiment, showed the primary mechanism for bioerosion was ingestion of the substratum. This experiment eliminated potential confounding factors of the year-long experiment and yielded higher bioerosion rates. Given the high densities of urchins, large amounts of rock can be converted to sediment over short time periods. Urchins on sandstone can excavate as much as 11.4 kg m-2 yr-1. On a broader geographic scale, sediment production can exceed 100 t ha-1 yr-1, and across their range, their combined bioerosion is comparable to the sediment load of many rivers. The phase shift between urchin barrens and kelp bed habitats in the North Pacific is controlled by the trophic cascade of sea otters. By limiting urchin populations, these apex predators also may indirectly control a substantial component of coastal rates of bioerosion. PMID:29466357

  6. Corrosion behavior of HVOF coated sheets

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Abdul-Aleem, B. J.; Khalid, M.

    2003-12-01

    High velocity oxygen-fuel (HVOF) thermal spray coating finds application in industry due to its superior resistance to corrosion and thermal loading. In the HVOF process, the metallic powders at elevated temperature are sprayed at supersonic speed onto a substrate material. The powder granules sprayed impact onto each other, forming a mechanical bonding across the coating layer. In most of the cases, the distances among the particles (powder granules sprayed) are not the same, which in turn results in inhomogeneous structure across the coating layer. Moreover, the rate of oxidation of the powder granules during the spraying process varies. Consequently, the electrochemical response of the coating layer surfaces next to the base material and free to atmosphere differs. In the current study, the electrochemical response of a coating sheet formed during HVOF thermal spraying was investigated. NiCrMoNb alloy (similar to Inconel 625) wass used for the powder granules. Thermal spraying was carried out onto a smooth surface of stainless steel workpiece (without grid blasting), and later the coating layer was removed from the surface to obtain the coating sheet for the electrochemical tests. It was found that the corrosion rate of the smooth surface (surface next to the stainless steel surface before its removal) is considerably larger than that corresponding to the rough surface (free surface) of the coating sheet, and no specific patterns were observed for the pit sites.

  7. Pitting and stress corrosion cracking of stainless steel

    NASA Astrophysics Data System (ADS)

    Saithala, Janardhan R.

    An investigation has been performed to determine the pitting resistance of stainless steels and stress corrosion cracking of super duplex stainless steels in water containing chloride ions from 25 - 170°C. The steels studied are 12% Cr, FV520B, FV566, 304L, Uranus65, 2205, Ferallium Alloy 255, and Zeron 100. All these commercial materials used in very significant industrial applications and suffer from pitting and stress corrosion failures. The design of a new experimental setup using an autoclave enabled potentiodynamic polarisation experiments and slow strain rate tests in dilute environments to be conducted at elevated temperatures. The corrosion potentials were controlled using a three electrode cell with computer controlled potentiostat.The experimental programme to determine pitting potentials was designed to simulate the service conditions experienced in most industrial plants and develop mathematical model equations to help a design engineer in material selection decision. Stress corrosion resistance of recently developed Zeron100 was evaluated in dilute environments to propose a mechanism in chloride solutions at high' temperatures useful for the nuclear and power generation industry. Results have shown the significance of the composition of alloying elements across a wide range of stainless steels and its influence on pitting. Nitrogen and molybdenum added to modern duplex stainless steels was found to be unstable at higher temperatures. The fractographic results obtained using the scanning electron microscope (SEM) has given insight in the initiation of pitting in modem duplex and super duplex stainless steels. A mathematical model has been proposed to predict pitting in stainless steels based on the effect of environmental factors (temperature, chloride concentration, and chemical composition). An attempt has been made to identify the mechanism of SCC in Zeron100 super duplex stainless steel.The proposed empirical models have shown good correlation between predicted pitting potential values with experimental results. It has been shown that the SCC mechanism in Zeron100 supports the slip assisted anodic dissolution model of SCC. The relationship between pitting and stress corrosion in dilute environments is established and empirical equations have been proposed to determine the damage region for wide range of stainless steels.

  8. Macro-mechanics controls quantum mechanics: mechanically controllable quantum conductance switching of an electrochemically fabricated atomic-scale point contact.

    PubMed

    Staiger, Torben; Wertz, Florian; Xie, Fangqing; Heinze, Marcel; Schmieder, Philipp; Lutzweiler, Christian; Schimmel, Thomas

    2018-01-12

    Here, we present a silver atomic-scale device fabricated and operated by a combined technique of electrochemical control (EC) and mechanically controllable break junction (MCBJ). With this EC-MCBJ technique, we can perform mechanically controllable bistable quantum conductance switching of a silver quantum point contact (QPC) in an electrochemical environment at room temperature. Furthermore, the silver QPC of the device can be controlled both mechanically and electrochemically, and the operating mode can be changed from 'electrochemical' to 'mechanical', which expands the operating mode for controlling QPCs. These experimental results offer the perspective that a silver QPC may be used as a contact for a nanoelectromechanical relay.

  9. Addendum to the Closure Report for Corrective Action Unit 355: Area 2 Cellars/Mud Pits Nevada Test Site, Nevada, Revision 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynn Kidman

    This document constitutes an addendum to the November 2003, Closure Report for Corrective Action Unit 355: Area 2 Cellars/Mud Pits as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications. In conformance with the UR Modification document, this addendum consists of: • Thismore » cover page that refers the reader to the UR Modification document for additional information • The cover and signature pages of the UR Modification document • The NDEP approval letter • The corresponding section of the UR Modification document This addendum provides the documentation justifying the cancellation of the URs for: • CAS 02-37-01, Cellar & Mud Pit • CAS 02-37-03, Cellar & Mud Pit • CAS 02-37-04, Cellar & Mud Pit • CAS 02-37-05, Cellar & Mud Pit • CAS 02-37-06, Cellar & Mud Pit • CAS 02-37-07, Cellar & Mud Pit • CAS 02-37-10, Cellar & Mud Pit • CAS 02-37-11, Cellar & Mud Pit • CAS 02-37-12, Cellar & Mud Pit • CAS 02-37-13, Cellar & Mud Pit • CAS 02-37-14, Cellar & Mud Pit • CAS 02-37-15, Cellar & Mud Pit • CAS 02-37-16, Cellar & Mud Pit • CAS 02-37-17, Cellar • CAS 02-37-18, Cellar & Tanks These URs were established as part of Federal Facility Agreement and Consent Order (FFACO) corrective actions and were based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996; as amended August 2006). Since these URs were established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, these URs were re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006c). This re-evaluation consisted of comparing the original data (used to define the need for the URs) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove these URs because contamination is not present at these sites above the risk-based FALs. Requirements for inspecting and maintaining these URs will be canceled, and the postings and signage at each site will be removed. Fencing and posting may be present at these sites that are unrelated to the FFACO URs such as for radiological control purposes as required by the NV/YMP Radiological Control Manual (NNSA/NSO, 2004f). This modification will not affect or modify any non-FFACO requirements for fencing, posting, or monitoring at these sites.« less

  10. Electrochemical Impedance Spectroscopy of Alloys in a Simulated Space Shuttle Launch Environment

    NASA Technical Reports Server (NTRS)

    Calle, L. M.; Kolody, M. R.; Vinje, R. D.; Whitten, M. C.; Li, D.

    2005-01-01

    Corrosion studies began at NASA/Kennedy Space Center in 1966 during the Gemini/Apollo Programs with the evaluation of long-term protective coatings for the atmospheric protection of carbon steel. An outdoor exposure facility on the beach near the launch pad was established for this purpose at that time. The site has provided over 35 years of technical information on the evaluation of the long-term corrosion performance of many materials and coatings as well as on maintenance procedures. Results from these evaluations have helped NASA find new materials and processes that increase the safety and reliability of our flight hardware, launch structures, and ground support equipment. The launch environment at the Kennedy Space Center (KSC) is extremely corrosive due to the combination of ocean salt spray, heat, humidity, and sunlight. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pad were rendered even more severe by the acidic exhaust from the solid rocket boosters. Over the years, many materials have been evaluated for their corrosion performance under conditions similar to those found at the launch pads. These studies have typically included atmospheric exposure and evaluation with conventional electrochemical methods such as open circuit potential (OCP) measurements, polarization techniques, and electrochemical impedance spectroscopy (EIS). The atmosphere at the Space Shuttle launch site is aggressive to most metals and causes severe pitting in many of the common stainless steel alloys such as type 304L stainless steel (304L SS). A study was undertaken to find a more corrosion resistant material to replace the existing 304L SS tubing. This paper presents the results from atmospheric exposure as well as electrochemical measurements on the corrosion resistance of AL-6XN (UNS N08367) and 254-SMO (UNS S32154). Type 304L SS (UNS S30403) was used as a control. Conditions at the Space Shuttle launch pad were simulated by using a hydrochloric acid (HC1) and alumina (Al203) slurry rinse for the atmospheric exposure and an electrolyte consisting of 3.55% sodium chloride (NaC1) with increased concentrations of hydrochloric acid (HC1) for the electrochemical measurements. The results from both types of measurements revealed the superior corrosion performance of the higher-alloyed materials. Unlike 304L SS, 254-SMO and AL-6XN exhibited a significantly improved resistance to corrosion as the concentration of hydrochloric acid in he 3.55% NaCl electrolyte solution was increased.

  11. Influence of Stepped Osteotomy on Primary Stability of Implants Inserted in Low-Density Bone Sites: An In Vitro Study.

    PubMed

    Degidi, Marco; Daprile, Giuseppe; Piattelli, Adriano

    The aims of this study were to evaluate the ability of a stepped osteotomy to improve dental implant primary stability in low-density bone sites and to investigate possible correlations between primary stability parameters. The study was performed on fresh humid bovine bone classified as type III. The test group consisted of 30 Astra Tech EV implants inserted following the protocol provided by the manufacturer. The first control group consisted of 30 Astra Tech EV implants inserted in sites without the underpreparation of the apical portion. The second control group consisted of 30 Astra Tech TX implants inserted following the protocol provided by the manufacturer. Implant insertion was performed at the predetermined 30 rpm. The insertion torque data were recorded and exported as a curve; using a trapezoidal integration technique, the area underlying the curve was calculated: this area represents the variable torque work (VTW). Peak insertion torque (pIT) and resonance frequency analysis (RFA) were also recorded. A Mann-Whitney test showed that the mean VTW was significantly higher in the test group compared with the first control and second control groups; furthermore, statistical analysis showed that pIT also was significantly higher in the test group compared with the first and second control groups. Analyzing RFA values, only the difference between the test group and second control group showed statistical significance. Pearson correlation analysis showed a very strong positive correlation between pIT and VTW values in all groups; furthermore, it showed a positive correlation between pIT and RFA values and between VTW and RFA values only in the test group. Within the limitations of an in vitro study, the results show that stepped osteotomy can be a viable method to improve implant primary stability in low-density bone sites, and that, when a traditional osteotomy method is performed, RFA presents no correlation with pIT and VTW.

  12. Preliminary studies developing methods for the control of Chrysomya putoria, the African latrine fly, in pit latrines in The Gambia

    PubMed Central

    Lindsay, T C; Jawara, M; D'Alessandro, U; Pinder, M; Lindsay, S W

    2013-01-01

    Objective To explore ways of controlling Chrysomya putoria, the African latrine fly, in pit latrines. As pit latrines are a major source of these flies, eliminating these important breeding sites is likely to reduce village fly populations, and may reduce the spread of diarrhoeal pathogens. Methods We treated 24 latrines in a Gambian village: six each with (i) pyriproxyfen, an insect juvenile hormone mimic formulated as Sumilarv® 0.5G, a 0.5% pyriproxyfen granule, (ii) expanded polystyrene beads (EPB), (iii) local soap or (iv) no treatment as controls. Flies were collected using exit traps placed over the drop holes, weekly for five weeks. In a separate study, we tested whether latrines also function as efficient flytraps using the faecal odours as attractants. We constructed six pit latrines each with a built-in flytrap and tested their catching efficiency compared to six fish-baited box traps positioned 10 m from the latrine. Focus group discussions conducted afterwards assessed the acceptability of the flytrap latrines. Results Numbers of emerging C. putoria were reduced by 96.0% (95% CIs: 94.5–97.2%) 4–5 weeks after treatment with pyriproxyfen; by 64.2% (95% CIs: 51.8–73.5%) after treatment with local soap; by 41.3% (95% CIs = 24.0–54.7%) after treatment with EPB 3–5 weeks after treatment. Flytraps placed on latrines collected C. putoria and were deemed acceptable to local communities. Conclusions Sumilarv 0.5G shows promise as a chemical control agent, whilst odour-baited latrine traps may prove a useful method of non-chemical fly control. Both methods warrant further development to reduce fly production from pit latrines. A combination of interventions may prove effective for the control of latrine flies and the diseases they transmit. PMID:23198767

  13. Learning From Falling

    ERIC Educational Resources Information Center

    Joh, Amy, S.; Adolph, Karen, E.

    2006-01-01

    Walkers fall frequently, especially during infancy. Children (15, 21, 27, 33, and 39 month-olds) and adults were tested in a novel foam pit paradigm to examine age-related changes in the relationship between falling and prospective control of locomotion. In trial 1, participants walked and fell into a deformable foam pit marked with distinct…

  14. Passive integrated transponder tags: Review of studies on warmwater fishes with notes on additional species

    USGS Publications Warehouse

    Musselman, W. Chris; Worthington, Thomas A.; Mouser, Joshua; Williams, Desiree M.; Brewer, Shannon K.

    2017-01-01

    Although numerous studies have assessed retention and survival of passive integrated transponder (PIT) tags, data are scattered and information gaps remain for many diminutive fishes. Our study objectives were to 1) systematically review PIT tag studies and summarize retention, growth, and survival data for warmwater fishes; and 2) conduct a laboratory study to evaluate the retention, survival, and growth effects of intracoelomic-placed, half duplex PIT tags on six small-bodied species common to warmwater streams. Our systematic review suggested small sample sizes were common within PIT tag retention and survival studies (39% with n ≤ 20) and that many experiments (15%, 14 of 97) failed to use control fish as part of their evaluations. Studies focused primarily on short-term changes (15 d to 2 y) in tag retention and survival. Tag retention was equal to or greater than 90% in 85% of the experiments reviewed and median survival was 92%. Growth was reported by fishes in the majority of reviewed studies. We found similar results after PIT tagging (peritoneum tagging using 12- or 23-mm half duplex tags) adult Cardinal Shiner Luxilus cardinalis, Central Stoneroller Campostoma annomalum, Greenside Darter Etheostoma blennioides, Orangethroat Darter Etheostoma spectabile, Slender Madtom Noturus exilis, and juvenile Smallmouth Bass Micropterus dolomieu. Tag retention for all species was high, with only one tag loss recorded after 60 d. Survival was also high (≥88%) for all of our species with the exception of Orangethroat Darter (56% survival). No significant difference in mean growth between treatment and control groups was found. Both our results and the findings of the literature review suggested generally high tag retention and low mortality in tagged fishes (across 31 species reviewed). However, within our study (e.g., Orangethroat Darter) and from the literature, examples of negative effects of PIT tagging on fishes were apparent, suggesting methodological testing is prudent before using PIT tags in field studies. We suggest future studies would benefit from addressing the behavioral implications that may be associated with tagging and examination of longer-term tag retention. Furthermore, standard reporting (i.e., sample sizes) in PIT tag studies would be beneficial, and use of control subjects or groups for statistical comparisons is needed.

  15. Tectonic fault monitoring at open pit mine at Zarnitsa Kimberlite Pipe

    NASA Astrophysics Data System (ADS)

    Vostrikov, VI; Polotnyanko, NS; Trofimov, AS; Potaka, AA

    2018-03-01

    The article describes application of Karier instrumentation designed at the Institute of Mining to study fracture formation in rocks. The instrumentation composed of three sensors was used to control widening of a tectonic fault intersecting an open pit mine at Zarnitsa Kimberlite Pipe in Yakutia. The monitoring between 28 November and 28 December in 2016 recorded convergence of the fault walls from one side of the open pit mine and widening from the other side. After production blasts, the fault first grows in width and then recovers.

  16. Gas flow in plant microfluidic networks controlled by capillary valves

    NASA Astrophysics Data System (ADS)

    Capron, M.; Tordjeman, Ph.; Charru, F.; Badel, E.; Cochard, H.

    2014-03-01

    The xylem vessels of trees constitute a model natural microfluidic system. In this work, we have studied the mechanism of air flow in the Populus xylem. The vessel microstructure was characterized by optical microscopy, transmission electronic microscopy (TEM), and atomic force microscopy (AFM) at different length scales. The xylem vessels have length ≈15 cm and diameter ≈20μm. Flow from one vessel to the next occurs through ˜102 pits, which are grouped together at the ends of the vessels. The pits contain a thin, porous pit membrane with a thickness of 310 nm. We have measured the Young's moduli of the vessel wall and of the pits (both water-saturated and after drying) by specific nanoindentation and nanoflexion experiments with AFM. We found that both the dried and water-saturated pit membranes have Young's modulus around 0.4 MPa, in agreement with values obtained by micromolding of pits deformed by an applied pressure difference. Air injection experiments reveal that air flows through the xylem vessels when the differential pressure across a sample is larger than a critical value ΔPc=1.8 MPa. In order to model the air flow rate for ΔP ⩾ΔPc, we assumed the pit membrane to be a porous medium that is strained by the applied pressure difference. Water menisci in the pit pores play the role of capillary valves, which open at ΔP =ΔPc. From the point of view of the plant physiology, this work presents a basic understanding of the physics of bordered pits.

  17. Appearance of the pituitary factor Pit-1 increases chromatin remodeling at hypersensitive site III in the human GH locus.

    PubMed

    Yang, Xiaoyang; Jin, Yan; Cattini, Peter A

    2010-07-01

    Expression of pituitary and placental members of the human GH and chorionic somatomammotropin (CS) gene family is directed by an upstream remote locus control region (LCR). Pituitary-specific expression of GH requires direct binding of Pit-1 (listed as POU1F1 in the HUGO database) to sequences marked by a hypersensitive site (HS) region (HS I/II) 14.6 kb upstream of the GH-N gene (listed as GH1 in the HUGO database). We used human embryonic kidney 293 (HEK293) cells overexpressing wild-type and mutant Pit-1 proteins as a model system to gain insight into the mechanism by which Pit-1 gains access to the GH LCR. Addition of Pit-1 to these cells increased DNA accessibility at HS III, located 28 kb upstream of the human GH-N gene, in a POU homeodomain-dependent manner, as reflected by effects on histone hyperacetylation and RNA polymerase II activity. Direct binding of Pit-1 to HS III sequences is not supported. However, the potential for binding of ETS family members to this region has been demonstrated, and Pit-1 association with this ETS element in HS III sequences requires the POU homeodomain. Also, both ETS1 and ELK1 co-precipitate from human pituitary extracts using two independent sources of Pit-1 antibodies. Finally, overexpression of ELK1 or Pit-1 expression in HEK293 cells increased GH-N RNA levels. However, while ELK1 overexpression also stimulated placental CS RNA levels, the effect of Pit-1 appeared to correlate with ETS factor levels and target GH-N preferentially. These data are consistent with recruitment and an early role for Pit-1 in remodeling of the GH LCR at the constitutively open HS III through protein-protein interaction.

  18. The effects of amphetamine sensitization on conditioned inhibition during a Pavlovian-instrumental transfer task in rats.

    PubMed

    Shiflett, Michael W; Riccie, Meaghan; DiMatteo, RoseMarie

    2013-11-01

    Psychostimulant sensitization heightens behavioral and motivational responses to reward-associated stimuli; however, its effects on stimuli associated with reward absence are less understood. We examined whether amphetamine sensitization alters performance during Pavlovian-instrumental transfer (PIT) to conditioned excitors and inhibitors. We further sought to characterize the effects of amphetamine sensitization on learning versus performance by exposing rats to amphetamine prior to Pavlovian training or between training and test. Adult male Long-Evans rats were given conditioned inhibition (A+/AX-) and Pavlovian (B+) training, followed by variable-interval instrumental conditioning. Rats were sensitized to D-amphetamine (2 mg/kg daily injections for 7 days) or served as non-exposed controls. Rats were given a PIT test, in which they were presented with stimulus B alone or in compound with the conditioned inhibitor (BX). During the PIT test, control rats significantly reduced instrumental responding on BX trials (to approximately 50 % of responding to B). Amphetamine sensitization prior to Pavlovian conditioning increased lever pressing on BX trials and reduced lever pressing on B trials compared to controls. Amphetamine sensitization between training and test increased lever pressing on B and BX trials compared to controls. No effects of sensitization were observed on conditioned food cup approach. Amphetamine sensitization increases instrumental responding during PIT to a conditioned inhibitor by enhancing the excitation of conditioned stimuli and reducing the inhibition of conditioned inhibitors.

  19. Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study.

    PubMed

    Hammer, Daniel X; Iftimia, Nicusor V; Ferguson, R Daniel; Bigelow, Chad E; Ustun, Teoman E; Barnaby, Amber M; Fulton, Anne B

    2008-05-01

    To describe the fine structure of the fovea in subjects with a history of mild retinopathy of prematurity (ROP) using adaptive optics-Fourier domain optical coherence tomography (AO-FDOCT). High-speed, high-resolution AO-FDOCT videos were recorded in subjects with a history of ROP (n = 5; age range, 14-26 years) and in control subjects (n = 5; age range, 18-25 years). Custom software was used to extract foveal pit depth and volume from three-dimensional (3-D) retinal maps. The thickness of retinal layers as a function of retinal eccentricity was measured manually. The retinal vasculature in the parafoveal region was assessed. The foveal pit was wider and shallower in ROP than in control subjects. Mean pit depth, defined from the base to the level at which the pit reaches a lateral radius of 728 microm, was 121 microm compared with 53 microm. Intact, contiguous inner retinal layers overlay the fovea in ROP subjects but were absent in the control subjects. Mean full retinal thickness at the fovea was greater in the subjects with ROP (279.0 microm vs. 190.2 microm). The photoreceptor layer thickness did not differ between ROP and control subjects. An avascular zone was not identified in the subjects with ROP but was present in all the control subjects. The foveas of subjects with a history of mild ROP have significant structural abnormalities that are probably a consequence of perturbations of neurovascular development.

  20. Sediment Transport and Slope Stability of Ship Shoal Borrow Areas for Coastal Restoration of Louisiana

    NASA Astrophysics Data System (ADS)

    Liu, H.; Xu, K.; Bentley, S. J.; Li, C.; Miner, M. D.; Wilson, C.; Xue, Z.

    2017-12-01

    Sandy barrier islands along Louisiana coast are degrading rapidly due to both natural and anthropogenic factors. Ship Shoal is one of the largest offshore sand resources, and has been used as a borrow area for Caminada Headland Restoration Project. Our knowledge of sediment transport and infilling processes in this new sandy and dynamic borrow area is rather limited. High resolution sub-bottom seismic data, side scan sonar images, multi-beam bathymetry and laser sediment grain size data were used to study seafloor morphological evolution and pit wall stability in response to both physical and geological processes. The multi-beam bathymetry and seismic profiling inside the pit showed that disequilibrium conditions led to rapid infilling in the pits at the beginning, but this process slowed down after the pit slope became stable and topography became smooth. We hypothesize that the erosion of the adjacent seabed sediment by energetic waves and longshore currents, the supply of suspended sediment from the rivers, and the erodible materials produced by local mass wasting on pit walls are three main types of infilling sediments. Compared with mud-capped dredge pits, this sandy dredge pit seems to have more gentle slopes on pit walls, which might be controlled by the angle of repose. Infilling sediment seems to be dominantly sandy, with some mud patches on bathymetric depressions. This study helps us better understand the impacts of mining sediment for coastal restoration and improves sand resource management efforts.

  1. An investigation on the biotribocorrosion behaviour of CoCrMo alloy grafted with polyelectrolyte brush.

    PubMed

    Zhang, Hong-Yu; Zhu, Yu-Jiao; Hu, Xiang-Yu; Sun, Yan-Fang; Sun, Yu-Long; Han, Jian-Min; Yan, Yu; Zhou, Ming

    2014-01-01

    Surface grafting of polyelectrolyte brush, such as 3-sulfopropyl methacrylate potassium salt (SPMK), on hip implant materials has been reported to reduce the wear of the orthopaedic bearing surface. However, the biotribocorrosion behaviour of the SPMK brush has not been taken into consideration in previous research. In the present study, SPMK was grafted on Co28Cr6Mo alloy through photo-induced polymerization, and the biotribocorrosion behaviour was investigated by a series of frictional-electrochemical tests using a universal materials tester combined with an electrochemical measurement (three-electrode) system. Co28Cr6Mo disk and polyethylene (PE) pin were used as the contact pair, and the lubricants were 0.9% saline solution (NaCl) and 0.9% saline solution coupled with 25% bovine serum albumin (BSA). The results showed that SPMK was successfully grafted on Co28Cr6Mo alloy, which was confirmed by the comparison of Raman spectroscopy and static contact angle of the samples before and after surface modification. The greatly reduced electrochemical parameters such as corrosion current and pitting potential indicated that the corrosion rate of Co28Cr6Mo alloy was significantly reduced following SPMK grafting. Additionally, the frictional-electrochemical coupled measurement performed under reciprocating sliding demonstrated that the lowest corrosion current was obtained for the SPMK-grafted Co28Cr6Mo disk, with 0.9% NaCl coupled with 25% BSA as the electrolyte. It is indicated from the present study that SPMK polyelectrolyte brush can greatly improve the anti-biotribocorrosion properties of Co28Cr6Mo alloy, and thus has potential application on surface modification of hip implant materials.

  2. Near Infrared Photoimmunotherapy Targeting EGFR Positive Triple Negative Breast Cancer: Optimizing the Conjugate-Light Regimen

    PubMed Central

    Nagaya, Tadanobu; Sato, Kazuhide; Harada, Toshiko; Nakamura, Yuko; Choyke, Peter L.; Kobayashi, Hisataka

    2015-01-01

    Aim Triple-negative breast cancer (TNBC) is considered one of the most aggressive subtypes of breast cancer. Near infrared photoimmunotherapy (NIR-PIT) is a cancer treatment that employs an antibody-photosensitizer conjugate (APC) followed by exposure of NIR light for activating selective cytotoxicity on targeted cancer cells and may have application to TNBC. In order to minimize the dose of APC while maximizing the therapeutic effects, dosing of the APC and NIR light need to be optimized. In this study, we investigate in vitro and in vivo efficacy of cetuximab (cet)-IR700 NIR-PIT on two breast cancer models MDAMB231 (TNBC, EGFR moderate) and MDAMB468 (TNBC, EGFR high) cell lines, and demonstrate a method to optimize the dosing APC and NIR light. Method After validating in vitro cell-specific cytotoxicity, NIR-PIT therapeutic effects were investigated in mouse models using cell lines derived from TNBC tumors. Tumor-bearing mice were separated into 4 groups for the following treatments: (1) no treatment (control); (2) 300 μg of cet-IR700 i.v., (APC i.v. only); (3) NIR light exposure only, NIR light was administered at 50 J/cm2 on day 1 and 100 J/cm2 on day 2 (NIR light only); (4) 300 μg of cet-IR700 i.v., NIR light was administered at 50 J/cm2 on day 1 after injection and 100 J/cm2 of light on day 2 after injection (one shot NIR-PIT). To compare different treatment regimens with a fixed dose of APC, we added the following treatments (5) 100 μg of cet-IR700 i.v., NIR light administered at 50 J/cm2 on day 1 and 50 μg of cet-IR700 i.v. immediately after NIR-PIT, then NIR light was administered at 100 J/cm2 on day 2, which were performed two times every week (“two split” NIR-PIT) and (6) 100 μg of cet-IR700 i.v., NIR light was administered at 50 J/cm2 on day 1 and 100 J/cm2 on day 2, which were performed three times per week (“three split” NIR-PIT). Result Both specific binding and NIR-PIT effects were greater with MDAMB468 than MDAMB231 cells in vitro. Tumor accumulation of cet-IR700 in MDAMB468 tumors was significantly higher (p < 0.05) than in MDAMB231 tumors in vivo. Tumor growth and survival of MDAMB231 tumor bearing mice was significantly lower in the NIR-PIT treatment group (p < 0.05). In MDAMB468 bearing mice, tumor growth and survival was significantly improved in the NIR-PIT treatment groups in all treatment regimens (one shot NIR-PIT; p < 0.05, “two split” NIR-PIT; p < 0.01, “three split” NIR-PIT; p < 0.001) compared with control groups. Conclusion NIR-PIT for TNBC was effective regardless of expression of EGFR, however, greater cell killing was shown with higher EGFR expression tumor in vitro. In all treatment regimens, NIR-PIT suppressed tumor growth, resulting in significantly prolonged survival that further improved by splitting the APC dose and using repeated light exposures. PMID:26313651

  3. Near Infrared Photoimmunotherapy Targeting EGFR Positive Triple Negative Breast Cancer: Optimizing the Conjugate-Light Regimen.

    PubMed

    Nagaya, Tadanobu; Sato, Kazuhide; Harada, Toshiko; Nakamura, Yuko; Choyke, Peter L; Kobayashi, Hisataka

    2015-01-01

    Triple-negative breast cancer (TNBC) is considered one of the most aggressive subtypes of breast cancer. Near infrared photoimmunotherapy (NIR-PIT) is a cancer treatment that employs an antibody-photosensitizer conjugate (APC) followed by exposure of NIR light for activating selective cytotoxicity on targeted cancer cells and may have application to TNBC. In order to minimize the dose of APC while maximizing the therapeutic effects, dosing of the APC and NIR light need to be optimized. In this study, we investigate in vitro and in vivo efficacy of cetuximab (cet)-IR700 NIR-PIT on two breast cancer models MDAMB231 (TNBC, EGFR moderate) and MDAMB468 (TNBC, EGFR high) cell lines, and demonstrate a method to optimize the dosing APC and NIR light. After validating in vitro cell-specific cytotoxicity, NIR-PIT therapeutic effects were investigated in mouse models using cell lines derived from TNBC tumors. Tumor-bearing mice were separated into 4 groups for the following treatments: (1) no treatment (control); (2) 300 μg of cet-IR700 i.v., (APC i.v. only); (3) NIR light exposure only, NIR light was administered at 50 J/cm2 on day 1 and 100 J/cm2 on day 2 (NIR light only); (4) 300 μg of cet-IR700 i.v., NIR light was administered at 50 J/cm2 on day 1 after injection and 100 J/cm2 of light on day 2 after injection (one shot NIR-PIT). To compare different treatment regimens with a fixed dose of APC, we added the following treatments (5) 100 μg of cet-IR700 i.v., NIR light administered at 50 J/cm2 on day 1 and 50 μg of cet-IR700 i.v. immediately after NIR-PIT, then NIR light was administered at 100 J/cm2 on day 2, which were performed two times every week ("two split" NIR-PIT) and (6) 100 μg of cet-IR700 i.v., NIR light was administered at 50 J/cm2 on day 1 and 100 J/cm2 on day 2, which were performed three times per week ("three split" NIR-PIT). Both specific binding and NIR-PIT effects were greater with MDAMB468 than MDAMB231 cells in vitro. Tumor accumulation of cet-IR700 in MDAMB468 tumors was significantly higher (p < 0.05) than in MDAMB231 tumors in vivo. Tumor growth and survival of MDAMB231 tumor bearing mice was significantly lower in the NIR-PIT treatment group (p < 0.05). In MDAMB468 bearing mice, tumor growth and survival was significantly improved in the NIR-PIT treatment groups in all treatment regimens (one shot NIR-PIT; p < 0.05, "two split" NIR-PIT; p < 0.01, "three split" NIR-PIT; p < 0.001) compared with control groups. NIR-PIT for TNBC was effective regardless of expression of EGFR, however, greater cell killing was shown with higher EGFR expression tumor in vitro. In all treatment regimens, NIR-PIT suppressed tumor growth, resulting in significantly prolonged survival that further improved by splitting the APC dose and using repeated light exposures.

  4. Infralimbic prefrontal cortex interacts with nucleus accumbens shell to unmask expression of outcome-selective Pavlovian-to-instrumental transfer

    PubMed Central

    Keistler, Colby; Barker, Jacqueline M.

    2015-01-01

    Although several studies have examined the subcortical circuitry underlying Pavlovian-to-instrumental transfer (PIT), the role of medial prefrontal cortex in this behavior is largely unknown. Elucidating the cortical contributions to PIT will be key for understanding how reward-paired cues control behavior in both adaptive and maladaptive context (i.e., addiction). Here we use bilateral lesions in a rat model to show that infralimbic prefrontal cortex (ilPFC) is necessary for appropriate expression of PIT. Further, we show that ilPFC mediates this effect via functional connectivity with nucleus accumbens shell (NAcS). Together, these data provide the first demonstration that a specific cortico-striatal circuit is necessary for cue-invigorated reward seeking during specific PIT. PMID:26373829

  5. Corrosion of Type 7075-T73 Aluminum in a 10% HNO3 + Fe2(SO4)3 Deoxidizer Solution

    NASA Astrophysics Data System (ADS)

    Savas, Terence P.; Earthman, James C.

    2009-03-01

    Localized corrosion damage in Type 7075-T73 aluminum was investigated for a HNO3 + Fe2(SO4)3 deoxidizer solution which is frequently used for surface pretreatment prior to anodizing. The corrosion damage was quantified in the time domain using the electrochemical noise resistance ( Rn) and in the frequency domain using the spectral noise impedance ( Rsn). The Rsn was derived from an equivalent electrical circuit model that represented the corrosion cell implemented in the present study. These data are correlated to scanning electron microscopy (SEM) examinations and corresponding statistical analysis based on digital image analysis of the corroded surfaces. Other data used to better understand the corrosion mechanisms include the open circuit potential (OCP) and coupling-current time records. Based on statistical analysis of the pit structures for 600 and 1200 s exposures, the best fit was achieved with a 3-paramater lognormal distribution. It was observed for the 1200 s exposure that a small population of pits continued to grow beyond a threshold critical size of 10 μm. In addition, significant grain boundary attack was observed after 1200 s exposure. These data are in good agreement with the electrochemical data. Specifically, the Rn was computed to be 295 and 96 Ω-cm2 for 600 and 1200 s exposures, respectively. The calculated value of Rsn, theoretically shown to be equal to Rn in the low frequency limit, was higher than Rn for a 1200 s exposure period. However, better agreement between the Rn and Rsn was found for frequencies above 0.01 Hz. Experimental results on the measurement performance for potassium chloride (KCl) saturated double-junction Ag/AgCl and single-junction Hg/Hg2Cl2 reference electrodes in the low-pH deoxidizer solution are also compared.

  6. Construction risk assessment of deep foundation pit in metro station based on G-COWA method

    NASA Astrophysics Data System (ADS)

    You, Weibao; Wang, Jianbo; Zhang, Wei; Liu, Fangmeng; Yang, Diying

    2018-05-01

    In order to get an accurate understanding of the construction safety of deep foundation pit in metro station and reduce the probability and loss of risk occurrence, a risk assessment method based on G-COWA is proposed. Firstly, relying on the specific engineering examples and the construction characteristics of deep foundation pit, an evaluation index system based on the five factors of “human, management, technology, material and environment” is established. Secondly, the C-OWA operator is introduced to realize the evaluation index empowerment and weaken the negative influence of expert subjective preference. The gray cluster analysis and fuzzy comprehensive evaluation method are combined to construct the construction risk assessment model of deep foundation pit, which can effectively solve the uncertainties. Finally, the model is applied to the actual project of deep foundation pit of Qingdao Metro North Station, determine its construction risk rating is “medium”, evaluate the model is feasible and reasonable. And then corresponding control measures are put forward and useful reference are provided.

  7. LabVIEW 2010 Computer Vision Platform Based Virtual Instrument and Its Application for Pitting Corrosion Study

    PubMed Central

    Ramos, Rogelio; Zlatev, Roumen; Valdez, Benjamin; Stoytcheva, Margarita; Carrillo, Mónica; García, Juan-Francisco

    2013-01-01

    A virtual instrumentation (VI) system called VI localized corrosion image analyzer (LCIA) based on LabVIEW 2010 was developed allowing rapid automatic and subjective error-free determination of the pits number on large sized corroded specimens. The VI LCIA controls synchronously the digital microscope image taking and its analysis, finally resulting in a map file containing the coordinates of the detected probable pits containing zones on the investigated specimen. The pits area, traverse length, and density are also determined by the VI using binary large objects (blobs) analysis. The resulting map file can be used further by a scanning vibrating electrode technique (SVET) system for rapid (one pass) “true/false” SVET check of the probable zones only passing through the pit's centers avoiding thus the entire specimen scan. A complete SVET scan over the already proved “true” zones could determine the corrosion rate in any of the zones. PMID:23691434

  8. Fishery resource utilization of a restored estuarine borrow pit: a beneficial use of dredged material case study.

    PubMed

    Reine, Kevin; Clarke, Douglas; Ray, Gary; Dickerson, Charles

    2013-08-15

    Numerous pits in coastal waters are subject to degraded water quality and benthic habitat conditions, resulting in degraded fish habitat. A pit in Barnegat Bay, New Jersey (USA) was partially filled with dredged sediment to increase flushing, alleviate hypoxia, and enhance benthic assemblages. Restoration objectives were assessed in terms of benthic community parameters and fishery resource occupation. Restoration resulted in increased benthic diversity (bottom samples) and the absence of water column stratification. Fisheries resources occupied the entire water column, unlike pre-restoration conditions where finfish tended to avoid the lower water column. The partial restoration option effectively reproduced an existing borrow pit configuration (Hole #5, control), by decreasing total depth from -11 m to -5.5 m, thereby creating a habitat less susceptible to hypoxic/anoxic conditions, while retaining sufficient vertical relief to maintain associations with juvenile weakfish and other forage fishes. Partially filling pits using dredged material represents a viable restoration alternative. Published by Elsevier Ltd.

  9. A crossover study of rosuvastatin and pitavastatin in patients with type 2 diabetes.

    PubMed

    Yanagi, Kazunori; Monden, Tsuyoshi; Ikeda, Shiori; Matsumura, Mihoko; Kasai, Kikuo

    2011-02-01

    The effects of a low dose of rosuvastatin (ROS) and pitavastatin (PIT) on lipid profiles and inflammation markers were assessed in subjects with type 2 diabetes mellitus. A total of 90 Japanese type 2 diabetes patients with hyperlipidemia (low-density lipoprotein cholesterol [LDL-C] ≥140 mg/dL) were enrolled in this study. They were randomly assigned to four groups with open-label treatment with ROS (2.5 mg daily) or PIT (2 mg daily); two groups were sequentially treated with both drugs, with crossover of medication after 12 weeks, and the other two groups underwent treatment with either ROS or PIT for 24 weeks. The primary endpoints were the percentage changes in LDL-C, high-density lipoprotein cholesterol (HDL-C) and triglyceride, and the LDL-C/HDL-C ratio. Both ROS and PIT lowered LDL-C and triglyceride, and increased HDL-C. In particular, significantly greater reduction in LDL-C was seen with ROS (-44.1%) than with PIT (-36.9%, P<0.01) in the crossover group from ROS to PIT, and the same result was detected in the crossover group from PIT (-34.8%) to ROS (-44.7%). The ratio of LDL-C/HDL-C was significantly reduced with ROS treatment (from 3.45 to 1.85) compared with that with PIT (from 3.45 to 2.22, P<0.01). Both ROS and PIT lowered plasma levels of high-sensitivity C-reactive protein (hsCRP), tumor necrosis factor (TNF)-alpha, and plasminogen activator inhibitor-1 (PAI-1). In addition, the hsCRP level with the administration of ROS was significantly improved compared with the administration of PIT. There was no significant correlation between changes in LDL-C and hsCRP, TNF-alpha, and PAI-1 levels. ROS and PIT did not have an adverse effect on glycemic control in type 2 diabetes patients. Therapy with both statins improved lipid profiles and reduced proinflammatory responses; however, 2.5 mg of ROS have a potent LDL-C-lowering and hsCRP-lowering effect compared with 2 mg of PIT in patients with diabetes.

  10. Quadrupole-Quadrupole Interactions to Control Plasmon-Induced Transparency

    NASA Astrophysics Data System (ADS)

    Rana, Goutam; Deshmukh, Prathmesh; Palkhivala, Shalom; Gupta, Abhishek; Duttagupta, S. P.; Prabhu, S. S.; Achanta, VenuGopal; Agarwal, G. S.

    2018-06-01

    Radiative dipolar resonance with Lorentzian line-shape induces the otherwise dark quadrupolar resonances resulting in electromagnetically induced transparency (EIT). The two interfering excitation pathways of the dipole are earlier shown to result in a Fano line shape with a high figure of merit suitable for sensing. In metamaterials made of metal nanorods or antennas, the plasmonic EIT (PIT) efficiency depends on the overlap of the dark and bright mode spectra as well as the asymmetry resulting from the separation between the monomer (dipole) and dimer (quadrupole) that governs the coupling strength. Increasing asymmetry in these structures leads to the reduction of the figure of merit due to a broadening of the Fano resonance. We demonstrate a PIT system in which the simultaneous excitation of two dipoles result in double PIT. The corresponding two quadrupoles interact and control the quality factor (Q ) of the PIT resonance. We show an antiresonancelike symmetric line shape with nonzero asymmetry factors. The PIT resonance vanishes due to quadrupole-quadrupole coupling. A Q factor of more than 100 at 0.977 THz is observed, which is limited by the experimental resolution of 6 GHz. From polarization-dependent studies we show that the broadening of the Lorentzian resonance is due to scattering-induced excitation of orthogonally oriented dipoles in the monomer and dimer bars in the terahertz regime. The high Q factors in the terahertz frequency region demonstrated here are interesting for sensing application.

  11. Candidate genes for panhypopituitarism identified by gene expression profiling

    PubMed Central

    Mortensen, Amanda H.; MacDonald, James W.; Ghosh, Debashis

    2011-01-01

    Mutations in the transcription factors PROP1 and PIT1 (POU1F1) lead to pituitary hormone deficiency and hypopituitarism in mice and humans. The dysmorphology of developing Prop1 mutant pituitaries readily distinguishes them from those of Pit1 mutants and normal mice. This and other features suggest that Prop1 controls the expression of genes besides Pit1 that are important for pituitary cell migration, survival, and differentiation. To identify genes involved in these processes we used microarray analysis of gene expression to compare pituitary RNA from newborn Prop1 and Pit1 mutants and wild-type littermates. Significant differences in gene expression were noted between each mutant and their normal littermates, as well as between Prop1 and Pit1 mutants. Otx2, a gene critical for normal eye and pituitary development in humans and mice, exhibited elevated expression specifically in Prop1 mutant pituitaries. We report the spatial and temporal regulation of Otx2 in normal mice and Prop1 mutants, and the results suggest Otx2 could influence pituitary development by affecting signaling from the ventral diencephalon and regulation of gene expression in Rathke's pouch. The discovery that Otx2 expression is affected by Prop1 deficiency provides support for our hypothesis that identifying molecular differences in mutants will contribute to understanding the molecular mechanisms that control pituitary organogenesis and lead to human pituitary disease. PMID:21828248

  12. The effect of pH on the corrosion behavior of intermetallic compounds Ni{sub 3}(Si,Ti) and Ni{sub 3}(Si,Ti) + 2Mo in sodium chloride solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Priyotomo, Gadang, E-mail: gada001@lipi.go.id; Nuraini, Lutviasari, E-mail: Lutviasari@gmail.com; Kaneno, Yasuyuki, E-mail: kaneno@mtr.osakafu-u.ac.id

    The corrosion behavior of the intermetallic compounds, Ni{sub 3}(Si,Ti) (L1{sub 2}: single phase) and Ni{sub 3}(Si,Ti) + 2Mo (L1{sub 2} and (L12 + Ni{sub ss}) mixture region), has been investigated using an immersion test, electrochemical method and surface analytical method (SEM; scanning electron microscope and EDAX: Energy Dispersive X-ray) in 0.5 kmol/m{sup 3} NaCl solutions at various pH. The corrosion behavior of nickel alloy C-276 was studied under the same experimental conditions as a reference. It was found that the uniform attack was observed on Ni{sub 3}(Si,Ti) for the immersion test at lower pH, while the pitting attack was observedmore » on this compound for this test at neutral solution. Furthermore, Ni{sub 3}(Si,Ti)+2Mo had the preferential dissolution of L1{sub 2} compared to (L1{sub 2} + Ni{sub ss}) mixture region at lower pH, while pitting attack occurred in (L1{sub 2} + Ni{sub ss}) mixture region at neutral solution. For both intermetallic compounds, the magnitude of pitting and uniform attack decrease with increasing pH of solutions. From the immersion test and polarization curves, the corrosion resistance of Ni{sub 3}(Si,Ti)+2Mo is lower than that of Ni{sub 3}(Si,Ti), while the nickel alloy C-276 is the highest one at various pH of solutions. On the other hand, in the lower pH of solutions, the corrosion resistance of tested materials decreased significantly compared to those in neutral and higher pH of solutions.« less

  13. The chemical identity of intervessel pit membranes in Acer challenges hydrogel control of xylem hydraulic conductivity

    PubMed Central

    Klepsch, Matthias M.; Schmitt, Marco; Paul Knox, J.; Jansen, Steven

    2016-01-01

    Ion-mediated enhancement of the hydraulic conductivity of xylem tissue (i.e. the ionic effect) has been reported for various angiosperm species. One explanation of the ionic effect is that it is caused by the swelling and shrinking of intervessel pit membranes due to the presence of pectins and/or other cell-wall matrix polymers such as heteroxylans or arabinogalactan–proteins (AGPs) that may contain acidic sugars. Here, we examined the ionic effect for six Acer species and their pit membrane chemistry using immunocytochemistry, including antibodies against glycoproteins. Moreover, anatomical features related to the bordered pit morphology and vessel dimensions were investigated using light and electron microscopy. The ionic effect varied from 18 % (± 9) to 32 % (± 13). Epitopes of homogalacturonan (LM18) and xylan (LM11) were not detected in intervessel pit membranes. Negative results were also obtained for glycoproteins (extensin: LM1, JIM20; AGP glycan: LM2), although AGP (JIM13)-related epitopes were detected in parenchyma cells. The mean vessel length was significantly correlated with the magnitude of the ionic effect, unlike other pit or vessel-related characteristics. Our results suggest that intervessel pit membranes of Acer are unlikely to contain pectic or other acidic polysaccharides. Therefore, alternative explanations should be tested to clarify the ionic effect. PMID:27354661

  14. Distributed fiber optic strain sensing to detect artificial pitting corrosion in stirrups

    NASA Astrophysics Data System (ADS)

    Zhang, Jiachen; Kancharla, Vinutha; Hoult, Neil A.

    2017-04-01

    Pitting corrosion is difficult to identify through visual inspection and can lead to sudden structural failures. As such, an experimental study was undertaken to investigate whether distributed fiber optic strain sensors are capable of detecting the locations and strain changes associated with stirrup corrosion in reinforced concrete beams. In comparison to conventional strain gauges, this type of sensor can measure the strain response along the entire length of the fiber optic cable. Two specimens were tested: a control and a deteriorated beam. The deteriorated beam was artificially corroded by reducing the cross sectional area of the closed stirrups by 50% on both sides of the stirrup at the mid-height. This level of area reduction represents severe pitting corrosion. The beams were instrumented with nylon coated fiber optic sensors to measure the distributed strains, and then tested to failure under three point bending. The load deflection behavior of the two specimens was compared to assess the impact of the artificial pitting corrosion on the capacity. Digital Image Correlation was used to locate the extent and trajectory of the crack paths. It was found that the pitting corrosion had no impact on capacity or stiffness. Also, in this investigation the fiber optic sensing system failed to detect the location and strain changes due to pitting corrosion since the shear cracks did not intersect with the pitting location.

  15. Infralimbic Prefrontal Cortex Interacts with Nucleus Accumbens Shell to Unmask Expression of Outcome-Selective Pavlovianto- Instrumental Transfer

    ERIC Educational Resources Information Center

    Keistler, Colby; Barker, Jacqueline M.; Taylor, Jane R.

    2015-01-01

    Although several studies have examined the subcortical circuitry underlying Pavlovian-to-instrumental transfer (PIT), the role of medial prefrontal cortex in this behavior is largely unknown. Elucidating the cortical contributions to PIT will be key for understanding how reward-paired cues control behavior in both adaptive and maladaptive context…

  16. Physiological Ischemic Training Promotes Brain Collateral Formation and Improves Functions in Patients with Acute Cerebral Infarction.

    PubMed

    Zhen, Xiaoyue; Zheng, Yu; Hong, Xunning; Chen, Yan; Gu, Ping; Tang, Jinrong; Cheng, Hong; Yuan, Ti-Fei; Lu, Xiao

    2016-01-01

    To observe the effectiveness and mechanisms of physiological ischemic training (PIT) on brain cerebral collateral formation and functional recovery in patients with acute cerebral infarction. 20 eligible patients with acute cerebral infarction were randomly assigned to either PIT group ( n  = 10) or Control group ( n  = 10). Both groups received 4 weeks of routine rehabilitation therapy, while an additional session of PIT, which consisted of 10 times of maximal voluntary isometric handgrip for 1 min followed by 1 min rest, was prescribed for patients in the PIT groups. Each patient was trained with four sections a day and 5 days a week for 4 weeks. The Fugl-Meyer Assessment (FMA), the Modified Barthel Index (MBI), and the short-form 36-item health survey questionnaire (SF-36) were applied for the evaluation of motor impairment, activity of daily living, and quality of life at the baseline and endpoint. MRI was applied to detect the collateral formation in the brain. The concentration of vascular endothelial growth factor (VEGF) and endothelial progenitor cells (EPCs) number in plasma were also tested at the endpoint. Demographic data were consistent between experimental groups. At the endpoint, the scores of the FMA, MBI, and SF-36 were significantly higher than that at baseline. As compared to the Control group, the score of FMA and SF-36 in PIT group was significantly higher, while no significant difference was detected between groups in terms of MBI. Both groups had significantly higher cerebral blood flow (CBF) level at endpoint as compared to that at baseline. Moreover, the CBF level was even higher in the PIT group as compared to that in the Control group after 4 weeks of training. The same situations were also found in the plasma VEGF and EPCs assessment. In addition, positive correlations were found between FMA score and CBF level ( r  = 0.686, p  < 0.01), CBF level and VEGF concentration ( r  = 0.675, p  < 0.01), and VEGF concentration and EPC number ( r  = 0.722, p  < 0.01). PIT may be effective in increasing the expression of VEGF and recruitment of EPCs and in turn promote the formation of brain collateral circulation. The positive correlations may demonstrate a potential association between biological and functional parameters, and PIT may be able to improve the motor function, activity of daily living, and quality of life in patients with stroke.

  17. Natural aversive learning in Tetramorium ants reveals ability to form a generalizable memory of predators' pit traps.

    PubMed

    Hollis, Karen L; McNew, Kelsey; Sosa, Talisa; Harrsch, Felicia A; Nowbahari, Elise

    2017-06-01

    Many species of ants fall prey to pit-digging larval antlions (Myrmeleon spp.), extremely sedentary predators that wait, nearly motionless at the bottom of their pit traps, for prey to stumble inside. Previous research, both in the field and laboratory, has demonstrated a remarkable ability of these ants to rescue trapped nestmates, thus sabotaging antlions' attempts to capture them. Here we show that pavement ants, Tetramorium sp. E, an invasive species and a major threat to biodiversity, possess yet another, more effective, antipredator strategy, namely the ability to learn to avoid antlion traps following a single successful escape from a pit. More importantly, we show that this learned antipredator behavior, an example of natural aversive learning in insects, is more complicated than a single cue-to-consequence form of associative learning. That is, pavement ants were able to generalize, after one experience, from the learned characteristics of the pit and its specific location, to other pits and other contexts that differed in many features. Such generalization, often described as a lack of precise stimulus control, nonetheless would be especially adaptive in nature, enabling ants to negotiate antlions' pit fields, which contain a hundred or more pits within a few centimetres of one another. Indeed, the ability to generalize in exactly this way almost certainly is responsible for the sudden, and heretofore inexplicable, behavioural modifications of ants in response to an invasion of antlions in the vicinity of an ant colony. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Phosphonic acid functionalization of nanostructured Ni-W coatings on steel

    NASA Astrophysics Data System (ADS)

    Orrillo, P. A.; Ribotta, S. B.; Gassa, L. M.; Benítez, G.; Salvarezza, R. C.; Vela, M. E.

    2018-03-01

    The functionalization of nanocrystalline Ni-W coatings, formed by galvanostatic pulsed electrodeposition on steel, by thermal treatment of octadecylphosphonic acid self-assembled on the oxidized alloy surface is studied by Raman spectroscopy, contact angle measurements, X-ray photoelectron spectroscopy, AFM and electrochemical techniques. Results show that this procedure preserves the surface topography and the optimum mechanical properties of the alloy. More importantly, it turns the alloy surface highly hydrophobic and markedly improves its corrosion resistance, in particular to pitting corrosion in aggressive solutions containing chloride anions. The ability of the phosphonate layer to improve surface properties arises from the barrier properties introduced by the hydrocarbon chains and the strong bonds between the phosphonate head and the underlying surface oxides.

  19. Effects of Nitrogen and Tensile Direction on Stress Corrosion Cracking Susceptibility of Ni-Free FeCrMnC-Based Duplex Stainless Steels

    PubMed Central

    Ha, Heon-Young; Lee, Chang-Hoon; Lee, Tae-Ho; Kim, Sangshik

    2017-01-01

    Stress corrosion cracking (SCC) behavior of Ni-free duplex stainless steels containing N and C (Febalance-19Cr-8Mn-0.25C-(0.03, 0.21)N, in wt %) was investigated by using a slow strain rate test (SSRT) in air and aqueous NaCl solution with different tensile directions, including parallel (longitudinal) and perpendicular (transverse) to the rolling direction. It was found that alloying N was effective in increasing the resistance to SCC, while it was higher along the longitudinal direction than the transverse direction. The SCC susceptibility of the two alloys was assessed based on the electrochemical resistance to pitting corrosion, the corrosion morphology, and the fractographic analysis. PMID:28772651

  20. Anaerobic Corrosion of 304 Stainless Steel Caused by the Pseudomonas aeruginosa Biofilm

    PubMed Central

    Jia, Ru; Yang, Dongqing; Xu, Dake; Gu, Tingyue

    2017-01-01

    Pseudomonas aeruginosa is a ubiquitous bacterium capable of forming problematic biofilms in many environments. They cause biocorrosion of medical implants and industrial equipment and infrastructure. Aerobic corrosion of P. aeruginosa against stainless steels has been reported by some researchers while there is a lack of reports on anaerobic P. aeruginosa corrosion in the literature. In this work, the corrosion by a wild-type P. aeruginosa (strain PAO1) biofilm against 304 stainless steel (304 SS) was investigated under strictly anaerobic condition for up to 14 days. The anaerobic corrosion of 304 SS by P. aeruginosa was reported for the first time. Results showed that the average sessile cell counts on 304 SS coupons after 7- and 14-day incubations were 4.8 × 107 and 6.2 × 107 cells/cm2, respectively. Scanning electron microscopy and confocal laser scanning microscopy corroborated the sessile cell counts. The X-ray diffraction analysis identified the corrosion product as iron nitride, confirming that the corrosion was caused by the nitrate reducing biofilm. The largest pit depths on 304 SS surfaces after the 7- and 14-day incubations with P. aeruginosa were 3.9 and 7.4 μm, respectively. Electrochemical tests corroborated the pitting data. PMID:29230206

  1. Electrochemically Controlled Reconstitution of Immobilized Ferritins for Bioelectronic Applications

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Woo; Choi, Sang H.; Lillehei, Peter T.; Chu, Sang-Hong; King, Glen C.; Watt, Gerald D.

    2007-01-01

    Site-specific reconstituted nanoparticles were fabricated via electrochemically-controlled biomineralization through the immobilization of biomolecules. The work reported herein includes the immobilization of ferritin with various surface modifications, the electrochemical biomineralization of ferritins with different inorganic cores, and the electrocatalytic reduction of oxygen on the reconstituted Pt-cored ferritins. Protein immobilization on the substrate is achieved by anchoring ferritins with dithiobis-N-succinimidyl propionate (DTSP). A reconstitution process of site-specific electrochemical biomineralization with a protein cage loads ferritins with different core materials. The ferritin acts as a nano-scale template, a biocompatible cage, and a separator between the nanoparticles. This first demonstration of electrochemically controlled site-specific reconstitution of biomolecules provides a new tool for biomineralization and opens the way to produce the bio-templated nanoparticles by electrochemical control. The nanosized platinum-cored ferritins on gold displayed good catalytic activity for the electrochemical reduction of oxygen, which is applicable to biofuel cell applications. This results in a smaller catalyst loading on the electrodes for fuel cells or other bioelectronic devices.

  2. Standardized emissions inventory methodology for open-pit mining areas.

    PubMed

    Huertas, Jose I; Camacho, Dumar A; Huertas, Maria E

    2011-08-01

    There is still interest in a unified methodology to quantify the mass of particulate material emitted into the atmosphere by activities inherent to open-pit mining. For the case of total suspended particles (TSP), the current practice is to estimate such emissions by developing inventories based on the emission factors recommended by the USEPA for this purpose. However, there are disputes over the specific emission factors that must be used for each activity and the applicability of such factors to cases quite different to the ones under which they were obtained. There is also a need for particulate matter with an aerodynamic diameter less than 10 μm (PM(10)) emission inventories and for metrics to evaluate the emission control programs implemented by open-pit mines. To address these needs, work was carried out to establish a standardized TSP and PM(10) emission inventory methodology for open-pit mining areas. The proposed methodology was applied to seven of the eight mining companies operating in the northern part of Colombia, home to the one of the world's largest open-pit coal mining operations (∼70 Mt/year). The results obtained show that transport on unpaved roads is the mining activity that generates most of the emissions and that the total emissions may be reduced up to 72% by spraying water on the unpaved roads. Performance metrics were defined for the emission control programs implemented by mining companies. It was found that coal open-pit mines are emitting 0.726 and 0.180 kg of TSP and PM(10), respectively, per ton of coal produced. It was also found that these mines are using on average 1.148 m(2) of land per ton of coal produced per year.

  3. The effects of amphetamine sensitization on conditioned inhibition during a Pavlovian-instrumental transfer task in rats

    PubMed Central

    Shiflett, Michael W.; Riccie, Meaghan; DiMatteo, RoseMarie

    2013-01-01

    Rationale Psychostimulant sensitization heightens behavioral and motivational responses to reward-associated stimuli; however, its effects on stimuli associated with reward absence are less understood. Objectives We examined whether amphetamine sensitization alters performance during Pavlovian-instrumental transfer (PIT) to conditioned excitors and inhibitors. We further sought to characterize the effects of amphetamine sensitization on learning versus performance by exposing rats to amphetamine prior to Pavlovian training or between training and test. Methods Adult male Long Evans rats were given conditioned inhibition (A+/AX−) and Pavlovian (B+) training, followed by variable-interval instrumental conditioning. Rats were sensitized to d-amphetamine (2 mg/kg daily injections for seven days), or served as non-exposed controls. Rats were given a PIT test, in which they were presented with stimulus B alone or in compound with the conditioned inhibitor (BX). Results During the PIT test, control rats significantly reduced instrumental responding on BX trials (to approximately 50% of responding to B). Amphetamine sensitization prior to Pavlovian conditioning increased lever-pressing on BX trials and reduced lever-pressing on B trials compared to controls. Amphetamine sensitization between training and test increased lever-pressing on B and BX trials compared to controls. No effects of sensitization were observed on conditioned food-cup approach. Conclusions Amphetamine sensitization increases instrumental responding during PIT to a conditioned inhibitor, by enhancing excitation of conditioned stimuli and reducing inhibition of conditioned inhibitors. PMID:23715640

  4. Electrochemical biofilm control: a review.

    PubMed

    Sultana, Sujala T; Babauta, Jerome T; Beyenal, Haluk

    2015-01-01

    One of the methods of controlling biofilms that has widely been discussed in the literature is to apply a potential or electrical current to a metal surface on which the biofilm is growing. Although electrochemical biofilm control has been studied for decades, the literature is often conflicting, as is detailed in this review. The goals of this review are: (1) to present the current status of knowledge regarding electrochemical biofilm control; (2) to establish a basis for a fundamental definition of electrochemical biofilm control and requirements for studying it; (3) to discuss current proposed mechanisms; and (4) to introduce future directions in the field. It is expected that the review will provide researchers with guidelines on comparing datasets across the literature and generating comparable datasets. The authors believe that, with the correct design, electrochemical biofilm control has great potential for industrial use.

  5. Novel use of a Dektak 150 surface profiler unmasks differences in resorption pit profiles between control and Charcot patient osteoclasts.

    PubMed

    Petrova, Nina L; Petrov, Peter K; Edmonds, Michael E; Shanahan, Catherine M

    2014-04-01

    We hypothesized that newly formed osteoclasts from patients with acute Charcot osteoarthropathy can resorb surfaces of bone more extensively compared with controls. Peripheral blood monocytes, isolated from eight Charcot patients and nine controls, were cultured in vitro on 24-well plates and bovine bone discs in duplicate with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor κβ ligand (RANKL). Osteoclast formation was assessed by tartrate-resistant acid phosphatase staining (TRAcP) at day 17. Resorption was measured at day 21 after toluidine blue staining by two methods: (1) area of resorption at the surface by image analysis (%) and (2) area of resorption under the surface (μm(2)) measured by a Dektak 150 Surface Profiler. Ten 1,000 μm-long scans were performed per disc. Pits were classified as unidented, bidented, and multidented according to their shape. Although the number of newly formed TRAcP positive multinucleated cells (>3 nuclei) was similar in M-CSF + RANKL-treated cultures between controls and Charcot patients, the latter exhibited increased resorbing activity. The area of resorption on the surface by image analysis was significantly greater in Charcot patients compared with controls (21.1 % [14.5-26.2] vs. 40.8 % [35.4-46.0], median [25-75th percentile], p < 0.01), as was the area of resorption under the surface (2.7 x 10(3) μm(2) [1.6 x 10(3)- 3.9 x 10(3)] vs. 8.3 x 10(3) μm (2) [5.6 x 10(3)- 10.6 x 10(3), [corrected] p < 0.01) after profilometry. In Charcot patients pits were deeper and wider and more frequently presented as multidented pits. This application of the Dektak 150 Surface Profiler revealed novel differences in resorption pit profile from osteoclasts derived from Charcot patients compared with controls. Resorption in Charcot patients was mediated by highly aggressive newly formed osteoclasts from monocytes eroding large and deep areas of bone.

  6. In Vitro Investigation of the Effect of Oral Bacteria in the Surface Oxidation of Dental Implants.

    PubMed

    Sridhar, Sathyanarayanan; Wilson, Thomas G; Palmer, Kelli L; Valderrama, Pilar; Mathew, Mathew T; Prasad, Shalini; Jacobs, Michael; Gindri, Izabelle M; Rodrigues, Danieli C

    2015-10-01

    Bacteria are major contributors to the rising number of dental implant failures. Inflammation secondary to bacterial colonization and bacterial biofilm is a major etiological factor associated with early and late implant failure (peri-implantitis). Even though there is a strong association between bacteria and bacterial biofilm and failure of dental implants, their effect on the surface of implants is yet not clear. To develop and establish an in vitro testing methodology to investigate the effect of early planktonic bacterial colonization on the surface of dental implants for a period of 60 days. Commercial dental implants were immersed in bacterial (Streptococcus mutans in brain-heart infusion broth) and control (broth only) media. Immersion testing was performed for a period of 60 days. During testing, optical density and pH of immersion media were monitored. The implant surface was surveyed with different microscopy techniques post-immersion. Metal ion release in solution was detected with an electrochemical impedance spectroscopy sensor platform called metal ion electrochemical biosensor (MIEB). Bacteria grew in the implant-containing medium and provided a sustained acidic environment. Implants immersed in bacterial culture displayed various corrosion features, including surface discoloration, deformation of rough and smooth interfaces, pitting attack, and severe surface rusting. The surface features were confirmed by microscopic techniques, and metal particle generation was detected by the MIEB. Implant surface oxidation occurred in bacteria-containing medium even at early stages of immersion (2 days). The incremental corrosion resulted in dissolution of metal ions and debris into the testing solution. Dissolution of metal ions and particles in the oral environment can trigger or contribute to the development of peri-implantitis at later stages. © 2015 Wiley Periodicals, Inc.

  7. Limited mobility of dioxins near San Jacinto super fund site (waste pit) in the Houston Ship Channel, Texas due to strong sediment sorption.

    PubMed

    Louchouarn, Patrick; Seward, Shaya M; Cornelissen, Gerard; Arp, Hans Peter H; Yeager, Kevin M; Brinkmeyer, Robin; Santschi, Peter H

    2018-07-01

    Sediments from a waste pit in Houston Ship Channel (HSC) were characterized using a number of molecular markers of natural organic matter fractions (e.g., pyrogenic carbon residues, PAHs, lignins), in addition to dioxins, in order to test the hypothesis that the dispersal and mobility of dioxins from the waste pit in the San Jacinto River is minimal. Station SG-6, sampled at the site of the submerged waste pit, had the highest dioxin/furan concentrations reported for the Houston Ship Channel/Galveston Bay (HSC/GB) system (10,000-46,000 pg/g), which translated into some of the highest reported World Health Organization Toxic Equivalents (TEQs: 2000-11,000 pg/g) in HSC sediments. Using a multi-tracer approach, this study confirmed our hypothesis that sludges from chlorinated pulps are a very likely source of dioxins/furans to this pit. However, this material also contained large quantities of additional hydrophobic organic contaminants (PAHs) and pyrogenic markers (soot-BC, levoglucosan), pointing to the co-occurrence of petroleum hydrocarbons and combustion byproducts. Comparison of dioxin/furan signatures in the waste pit with those from sediments of the HSC and a control site suggests that the remobilization of contaminated particles did not occur beyond the close vicinity of the pit itself. The dioxins/furans in sediments outside the waste pit within the HSC are rather from other diffuse inputs, entering the sedimentary environment through the air and water, and which are comprised of a mixture of industrial and municipal sources. Fingerprinting of waste pit dioxins indicates that their composition is typical of pulp and paper sources. Measured pore water concentrations were 1 order of magnitude lower than estimated values, calculated from a multiphase sorption model, indicating low mobility of dioxins within the waste pit. This is likely accomplished by co-occurring and strong sorbing pyrogenic and petrogenic residues in the waste pit, which tend to keep dioxins strongly sorbed to particles. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Macro-mechanics controls quantum mechanics: mechanically controllable quantum conductance switching of an electrochemically fabricated atomic-scale point contact

    NASA Astrophysics Data System (ADS)

    Staiger, Torben; Wertz, Florian; Xie, Fangqing; Heinze, Marcel; Schmieder, Philipp; Lutzweiler, Christian; Schimmel, Thomas

    2018-01-01

    Here, we present a silver atomic-scale device fabricated and operated by a combined technique of electrochemical control (EC) and mechanically controllable break junction (MCBJ). With this EC-MCBJ technique, we can perform mechanically controllable bistable quantum conductance switching of a silver quantum point contact (QPC) in an electrochemical environment at room temperature. Furthermore, the silver QPC of the device can be controlled both mechanically and electrochemically, and the operating mode can be changed from ‘electrochemical’ to ‘mechanical’, which expands the operating mode for controlling QPCs. These experimental results offer the perspective that a silver QPC may be used as a contact for a nanoelectromechanical relay.

  9. Electrochemical modification of nickel surfaces for efficient glycerol electrooxidation

    NASA Astrophysics Data System (ADS)

    Houache, Mohamed S. E.; Cossar, Emily; Ntais, Spyridon; Baranova, Elena A.

    2018-01-01

    The Glycerol electrooxidation reaction (GEOR) was investigated on nickel electrode in alkaline media following a sinusoidal-wave treatment in a solution of 0.1 M Na2SO4 + 30 mM ascorbic acid. This treatment significantly increased the catalytic activity of Ni towards the GEOR. The electrochemical active surface area showed a six-fold increase, while the current density of glycerol oxidation was enhanced over nine times with a concurrent onset potential decrease by 45 mV. SEM analysis before and after the treatment revealed some morphology changes through the formation of additional grooves and pits on the Ni surface. XPS confirmed that before the treatment, the surface consists of Ni metal in addition to NiO, Ni(OH)2 and NiOOH, whereas after the treatment, 97% of the surface is Ni hydroxide composed of Ni2+ and Ni3+. Chronoamperommetry coupled with in-situ polarization modulation infrared-reflection absorption spectroscopy (PM-IRRAS) for simultaneous analysis of products on the Ni surface and in the bulk solution showed that the main reaction products on both untreated and treated Ni surfaces are glyceraldehyde, carbonyl, carboxylate ions and some carbon dioxide.

  10. A Study on Corrosion Inhibitor for Mild Steel in Ethanol Fuel Blend

    PubMed Central

    Vu, Nguyen Si Hoai; Hien, Pham Van; Man, Tran Van; Hanh Thu, Vu Thi; Tri, Mai Dinh

    2017-01-01

    The main aim of this study is to investigate Aganonerion polymorphum leaf-ethyl acetate extract (APL-EAE) and its inhibiting effect for steel in ethanol fuel blend. The immersion test, electrochemical and surface analysis techniques were successfully carried out in this research. Scanning electron microscope images indicated that the ethanol fuel blend induced pitting corrosion of steel. Remarkably, the surface of the sample containing 1000 ppm APL-EAE is smoother than the others submerged in different conditions. The electrochemical impedance spectroscopy result shows that APL-EAE has formed a good protective layer, preventing corrosive factors from hitting the steel surface. The potentiodynamic polarization data argue that the corrosion inhibition efficiency was strengthened with the increase of APL-EAE concentration. The Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy demonstrated less intensity of Fe peaks, higher intensity of C1s peak and the appearance of organic peaks (N1s, P2p, O1s) from specimens with and without APL-EAE addition. Therefore, the results suggest the formation of the protective film on steel surface and affirm that APL-EAE has served as an effective corrosion inhibitor for steel in ethanol fuel blend. PMID:29301224

  11. A Study on Corrosion Inhibitor for Mild Steel in Ethanol Fuel Blend.

    PubMed

    Vu, Nguyen Si Hoai; Hien, Pham Van; Man, Tran Van; Hanh Thu, Vu Thi; Tri, Mai Dinh; Nam, Nguyen Dang

    2017-12-31

    The main aim of this study is to investigate Aganonerion polymorphum leaf-ethyl acetate extract (APL-EAE) and its inhibiting effect for steel in ethanol fuel blend. The immersion test, electrochemical and surface analysis techniques were successfully carried out in this research. Scanning electron microscope images indicated that the ethanol fuel blend induced pitting corrosion of steel. Remarkably, the surface of the sample containing 1000 ppm APL-EAE is smoother than the others submerged in different conditions. The electrochemical impedance spectroscopy result shows that APL-EAE has formed a good protective layer, preventing corrosive factors from hitting the steel surface. The potentiodynamic polarization data argue that the corrosion inhibition efficiency was strengthened with the increase of APL-EAE concentration. The Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy demonstrated less intensity of Fe peaks, higher intensity of C 1s peak and the appearance of organic peaks (N 1s , P 2p , O 1s ) from specimens with and without APL-EAE addition. Therefore, the results suggest the formation of the protective film on steel surface and affirm that APL-EAE has served as an effective corrosion inhibitor for steel in ethanol fuel blend.

  12. Influence of Heat Treatment on the Microstructure and Corrosion Resistance of 13 Wt Pct Cr-Type Martensitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Lu, Si-Yuan; Yao, Ke-Fu; Chen, Yun-Bo; Wang, Miao-Hui; Ge, Xue-Yuan

    2015-12-01

    The effect of heat treatment on the microstructure and the electrochemical properties of a typical corrosion-resistant plastic mold steel in Cl--containing solution were studied in this research. Through X-ray diffraction patterns, SEM and TEM analysis, it was found that the sequence of the precipitates in the steels tempered at 573 K, 773 K, and 923 K (300 °C, 500 °C, and 650 °C) was θ-M3C carbides, nano-sized Cr-rich M23C6 carbides, and micro/submicron-sized Cr-rich M23C6 carbides, respectively. The results of the electrochemical experiments showed that the pitting potential of the as-quenched martensitic stainless steels increased with the austenitizing temperature. However, the corrosion resistance of the steels would decreased after tempering, especially when tempered at 773 K (500 °C), no passivation regime could be found in the polarization curve of the MSSs and no effective passive film could be formed on the steels in Cl--containing environments. The present results suggested that the temperature around 773 K (500 °C) should be avoided for tempering process of MSS used as plastic molds.

  13. Sodium alginate: A promising biopolymer for corrosion protection of API X60 high strength carbon steel in saline medium.

    PubMed

    Obot, I B; Onyeachu, Ikenna B; Kumar, A Madhan

    2017-12-15

    Sodium alginate (SA), a polysaccharide biopolymer, has been studied as an effective inhibitor against the corrosion of API X60 steel in neutral 3.5% NaCl using gravimetric and electrochemical techniques (OCP, EIS and EFM). The inhibition efficiency of the SA increased with concentration but was lower at higher temperature (70°C). Electrochemical measurements showed that the SA shifted the steel corrosion potential to more positive value and reduced the kinetics of corrosion by forming an adsorbed layer which mitigated the steel surface wetting, based on contact angle measurement. SEM-EDAX was used to confirm the inhibition of SA on API X60 steel surfaces. The SA adsorbs on the steel surface through a physisorption mechanism using its carboxylate oxygen according to UV-vis and ATR-IR measurements, respectively. This phenomena result in decreased localized pitting corrosion of the API X60 steel in 3.5% NaCl solution. Theoretical results using quantum chemical calculations and Monte Carlo simulations provide further atomic level insights into the interaction of SA with steel surface. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Controlled-Release Personal Use Arthropod Repellent Formulation. Phase 2

    DTIC Science & Technology

    1986-09-15

    damage, pitting M - Hypopyon N - Corneal neovascularization P - Pannus R - Unable to visualize due to severe opacity S - Granulation scar tissue POS...M - Hypopyon N - Corneal neovascularization P - Pannus R - Unable to visualize due to severe opacity S - Granulation scar tissue POS -Positive...Corneal epithelial damage, piling L - Corneal epithelial damage, pitting M - Hypopyon N - Corneal neovascularization P - Pannus R - Unable to

  15. Impacts of 1-Methylcyclopropene and controlled atmosphere established during conditioning on development of bitter pit in ‘Honeycrisp’ apples

    USDA-ARS?s Scientific Manuscript database

    ‘Honeycrisp’ apples are susceptible to develop the physiological disorder bitter pit. This disorder typically develops during storage, but pre-harvest lesion development can also occur. ‘Honeycrisp’ is also chilling sensitive and fruit is typically held at 10-20 oC after harvest for up to 7d to re...

  16. Control of groundwater in surface mining

    NASA Astrophysics Data System (ADS)

    Brawner, C. O.

    1982-03-01

    The presence of groundwater in surface mining operations often creates serious problems. The most important is generally a reduction in stability of the pit slopes. This is caused by pore water pressures and hydrodynamic shock due to blasting which reduce the shear strength and seepage pressures, water in tension cracks and increased unit weight which increase the shear stress. Groundwater and seepage also increase the cost of pit drainage, shipping, drilling and blasting, tyre wear and equipment maintenance. Surface erosion may also be increased and, in northern climates, ice flows on the slopes may occur. Procedures have been developed in the field of soil mechanics and engineering of dams to obtain quantitative data on pore water pressures and rock permeability, to evaluate the influence of pore water and seepage pressures on stability and to estimate the magnitude of ground-water flow. Based on field investigations, a design can be prepared for the control of groundwater in the slope and in the pit. Methods of control include the use of horizontal drains, blasted toe drains, construction of adits or drainage tunnels and pumping from wells in or outside of the pit. Recent research indicates that subsurface drainage can be augmented by applying a vacuum or by selective blasting. Instrumentation should be installed to monitor the groundwater changes created by drainage. Typical case histories are described that indicate the approach used to evaluate groundwater conditions.

  17. Enhancement of Device Performances in GaN-Based Light-Emitting Diodes Using Nano-Sized Surface Pit.

    PubMed

    Yeon, Seunghwan; Son, Taejoon; Shin, Dong Su; Jung, Kyung-Young; Park, Jinsub

    2015-07-01

    We report the improvement in optical and electrical properties of GaN-based green light-emitting diodes (LEDs) with nano-sized etch pits formed by the surface chemical etching. In order to control the density and sizes of etch pits formed on top surface of green LEDs, H3PO4 solution is used as a etchant with different etching time. When the etching time was increased from 0 min to 20 min, both the etch pit size and density were gradually increased. The improvement of extraction efficiency of LEDs using surface etching method can be attributed to the enlarged escape angle of generated photon by roughened p-GaN surface. The finite-difference time-domain (FDTD) simulation results well agreed with experimentally observed results. Moreover, the LED with etched p-GaN surface for 5 min shows the lowest leakage current value and the further increase of etching time resulting in increase of densities of the large-sized etch pit makes the degradation of electrical properties of LEDs.

  18. Mechanism of strength degradation for hot corrosion of alpha-SiC

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.; Jacobson, N. S.

    1984-01-01

    Sintered alpha SiC was corroded by thin films of Na2SO4 and Na2CO3 molten salts at 1000%. This hot corrosion attack reduced room temperature strengths by as much as 50%. Strength degradation was porportional to the degree and uniformity of corrosion pitting attack as controlled by the chemistry of the molten salt. Extensive fractography identified corrosion pits as the most prevalent source of failure. A fracture mechanics treatment of the strength/pit depth relationship produced an average K sub IC equal to 2.6 MPa sub m 1/2, which is consistent with published values.

  19. Mechanism of strength degradation for hot corrosion of alpha-SiC

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Jacobson, Nathan S.

    1986-01-01

    Sintered alpha SiC was corroded by thin films of Na2SO4 and Na2CO3 molten salts at 1000 percent. This hot corrosion attack reduced room temperature strengths by as much as 50 percent. Strength degradation was proportional to the degree and uniformity of corrosion pitting attack as controlled by the chemistry of the molten salt. Extensive fractography identified corrosion pits as the most prevalent source of failure. A fracture mechanics treatment of the strength/pit depth relationship produced an average K sub IC equal to 2.6 MPa sub m 1/2, which is cnsistent ith published values.

  20. COUPLED MULTI-ELECTRODE INVESTIGATION OF CREVICE CORROSION OF 316 STAINLESS STEEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    F. Bocher, J. R. Scully

    2006-01-30

    Crevice corrosion is currently studied using either one of two techniques depending on the data needed. The first method is a multi-crevice former over a metallic sample; this provides information on the severity of crevice corrosion (depth, position, frequency) but delivers little to no electrochemical information [1]. The second method involves the potentiodynamic or potentiostatic study of an uncreviced sample in model crevice solution or under a crevice former in aggressive solution [2]. Crevice corrosion is highly dependent on the position in the crevice. The distance from the crevice mouth will affect the depth of attack, the solution composition andmore » pH, and the ohmic drop and the true potential in the crevice [3-6]. These in turn affect the current density as a function of potential and position. An Multi-Channel Micro-Electrode Analyzer' (MMA) has been recently used to demonstrate the interaction between localized corrosion sites (pitting corrosion and intergranular corrosion) [7]. MMA can provide spatial resolution of electrochemical properties in the crevice. By coupling such a tool with scaling laws derived from experimental data (a simple equation linking the depth of crevice corrosion initiation to the crevice gap), it is possible to produce highly instrumented crevices, rescaled to enable spatial resolution of local corrosion processes. In this study, the use of multi-wires arrays (up to 100 closed packed wires simulating a planar electrode, divided in 10 distinctively controllable groups) electrically coupled through zero resistance ammeters enables the observation of the current evolution as a function of position inside and outside the crevice. For instance, the location of crevice initiation sites and propagation behavior can be studied under various conditions. Experiments can be conducted with various realistic variables. These can either be electrochemical (such as proximate cathode) or physical (crevice former material or position). Using new impedance-capable MMA, it is also possible to monitor the film breakdown and the early stages of crevice corrosion as a function of the wires position. In this talk, the use of multi-electrode array to study crevice corrosion of 316 stainless steel and a Ni-Cr-Mo alloy is reviewed.« less

  1. COUPLED MULTI-ELECTRODE INVESTIGATION OF CREVICE CORROSION OF 316 STAINLESS STEEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    F. Bocher and J. R. Scully

    2006-01-30

    Crevice corrosion is currently studied using either one of two techniques depending on the data needed. The first method is a multi-crevice former over a metallic sample; this provides information on the severity of crevice corrosion (depth, position, frequency) but delivers little to no electrochemical information [1]. The second method involves the potentiodynamic or potentiostatic study of an uncreviced sample in model crevice solution or under a crevice former in aggressive solution [2]. Crevice corrosion is highly dependent on the position in the crevice. The distance from the crevice mouth will affect the depth of attack, the solution composition andmore » pH, and the ohmic drop and the true potential in the crevice [3-6]. These in turn affect the current density as a function of potential and position. A Multi-Channel Micro-Electrode Analyzer (MMA) has been recently used to demonstrate the interaction between localized corrosion sites (pitting corrosion and intergranular corrosion) [7]. MMA can provide spatial resolution of electrochemical properties in the crevice. By coupling such a tool with scaling laws derived from experimental data (a simple equation linking the depth of crevice corrosion initiation to the crevice gap), it is possible to produce highly instrumented crevices, rescaled to enable spatial resolution of local corrosion processes. In this study, the use of multi-wires arrays (up to 100 closed packed wires simulating a planar electrode, divided in 10 distinctively controllable groups) electrically coupled through zero resistance ammeters enables the observation of the current evolution as a function of position inside and outside the crevice. For instance, the location of crevice initiation sites and propagation behavior can be studied under various conditions. Experiments can be conducted with various realistic variables. These can either be electrochemical (such as proximate cathode) or physical (crevice former material or position). Using new impedance-capable MMA, it is also possible to monitor the film breakdown and the early stages of crevice corrosion as a function of the wires position. In this talk, the use of multi-electrode array to study crevice corrosion of 316 stainless steel and a Ni-Cr-Mo alloy is reviewed.« less

  2. Electrochemical control of pH in a hydroponic nutrient solution

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, S. H.

    1986-01-01

    The electrochemical pH control system described was found to provide a feasible alternative method of controlling nutrient solution pH for CELSS applications. The plants grown in nutrient solution in which the pH was controlled electrochemically showed no adverse effects. Further research into the design of a larger capacity electrode bridge for better control is indicated by the results of this experiment, and is currently under way.

  3. Expression of Fushi tarazu factor 1 homolog and Pit-1 genes in the pituitaries of pre-spawning chum and sockeye salmon.

    PubMed

    Higa, M; Ando, H; Urano, A

    2001-06-01

    Fushi tarazu factor-1 (FTZ-F1) and Pit-1 are major pituitary transcription factors, controlling expression of genes coding for gonadotropin (GTH) subunits and growth hormone/prolactin/somatolactin family hormone, respectively. As a first step to investigate physiological factors regulating gene expression of these transcription factors, we determined their mRNA levels in the pituitaries of chum salmon (Oncorhynchus keta) at different stages of sexual maturation. FTZ-F1 gene expression was increased in males at the stage before spermiation, where the levels of GTH alpha and IIbeta subunit mRNAs were elevated. Pit-1 mRNA showed maximum levels at the final stage of sexual maturation in both sexes, when expression of somatolactin gene peaked. To clarify whether gonadotropin-releasing hormone (GnRH) is involved in these increases in FTZ-F1 and Pit-1 gene expression, we examined effects of GnRH analog (GnRHa) administration on their gene expression in maturing sockeye salmon (Oncorhynchus nerka). GnRHa stimulated Pit-1 gene expression in females only, but failed to stimulate FTZ-F1 gene expression in both sexes. The up-regulated expression of FTZ-F1 and Pit-1 genes at the pre-spawning stages suggest that the two transcription factors have roles in sexual maturation of salmonids. Physiological factors regulating gene expression of FTZ-F1 and Pit-1 are discussed in this review.

  4. Serotonin and dopamine differentially affect appetitive and aversive general Pavlovian-to-instrumental transfer.

    PubMed

    Hebart, Martin N; Gläscher, Jan

    2015-01-01

    Human motivation and decision-making is influenced by the interaction of Pavlovian and instrumental systems. The neurotransmitters dopamine and serotonin have been suggested to play a major role in motivation and decision-making, but how they affect this interaction in humans is largely unknown. We investigated the effect of these neurotransmitters in a general Pavlovian-to-instrumental transfer (PIT) task which measured the nonspecific effect of appetitive and aversive Pavlovian cues on instrumental responses. For that purpose, we used selective dietary depletion of the amino acid precursors of serotonin and dopamine: tryptophan (n = 34) and tyrosine/phenylalanine (n = 35), respectively, and compared the performance of these groups to a control group (n = 34) receiving a nondepleted (balanced) amino acid drink. We found that PIT differed between groups: Relative to the control group that exhibited only appetitive PIT, we found reduced appetitive PIT in the tyrosine/phenylalanine-depleted group and enhanced aversive PIT in the tryptophan-depleted group. These results demonstrate a differential involvement of serotonin and dopamine in motivated behavior. They suggest that reductions in serotonin enhance the motivational influence of aversive stimuli on instrumental behavior and do not affect the influence of appetitive stimuli, while reductions in dopamine diminish the influence of appetitive stimuli. No conclusions could be drawn about how dopamine affects the influence of aversive stimuli. The interplay of both neurotransmitter systems allows for flexible and adaptive responses depending on the behavioral context.

  5. Comparison of Shear-wave Profiles for a Compacted Fill in a Geotechnical Test Pit

    NASA Astrophysics Data System (ADS)

    Sylvain, M. B.; Pando, M. A.; Whelan, M.; Bents, D.; Park, C.; Ogunro, V.

    2014-12-01

    This paper investigates the use of common methods for geological seismic site characterization including: i) multichannel analysis of surface waves (MASW),ii) crosshole seismic surveys, and iii) seismic cone penetrometer tests. The in-situ tests were performed in a geotechnical test pit located at the University of North Carolina at Charlotte High Bay Laboratory. The test pit has dimensions of 12 feet wide by 12 feet long by 10 feet deep. The pit was filled with a silty sand (SW-SM) soil, which was compacted in lifts using a vibratory plate compactor. The shear wave velocity values from the 3 techniques are compared in terms of magnitude versus depth as well as spatially. The comparison was carried out before and after inducing soil disturbance at controlled locations to evaluate which methods were better suited to captured the induced soil disturbance.

  6. Source tracking of prokaryotic communities in fermented grain of Chinese strong-flavor liquor.

    PubMed

    Wang, Xueshan; Du, Hai; Xu, Yan

    2017-03-06

    The fermentation process of Chinese strong-flavor liquor involves numerous microbes originating from Daqu and pit mud. Daqu is the starter of fermentation, and pit mud acts as another source of inoculum of microbes in the liquor-making process. However, the contribution of microbes in pit mud and Daqu to fermented grain, and the sources of microbes in fermented grain are still waiting to be defined clearly. In this study, prokaryotic communities in fermented grain, pit mud and Daqu were identified via next generation sequencing of the V4 region of 16S rRNA gene. Principal-coordinate analysis indicated that Daqu had stronger influence on the prokaryotic communities in fermented grain at the prophase of fermentation, but pit mud influenced the fermented grain continuously during the whole fermentation process. Totally, 299 genera were detected in all fermented grain, pit mud and Daqu samples. Among them, 204 genera were detected in 3days' fermented grain. Ten genera (Lactobacillus, Leuconostoc, Staphylococcus, Gluconobacter, Acetobacter, Petrimonas, Clostridium, Ruminococcus, Methanobacterium and Methanobrevibacter) were dominant, and accounted for 84.31%-87.13% relative abundance of the total prokaryotic community in fermented grain. Venn analysis indicated Daqu was the main source of strict aerobes and facultative aerobes, which took up over 74% of prokaryotic communities in fermented grain. Conversely, pit mud was the sustained-release source of anaerobes, which accounted for over 14% of prokaryotic communities in fermented grain. In addition, part of anaerobes originated from both Daqu and pit mud. This study could help track the source of prokaryotic communities in fermented grain, and improve the quality and controllability in liquor production. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Ventral pallidal projections to mediodorsal thalamus and ventral tegmental area play distinct roles in outcome-specific Pavlovian-instrumental transfer.

    PubMed

    Leung, Beatrice K; Balleine, Bernard W

    2015-03-25

    Outcome-specific Pavlovian-instrumental transfer (PIT) demonstrates the way that reward-related cues influence choice between instrumental actions. The nucleus accumbens shell (NAc-S) contributes critically to this effect, particularly through its output to the rostral medial ventral pallidum (VP-m). Using rats, we investigated in two experiments the role in the PIT effect of the two major outputs of this VP-m region innervated by the NAc-S, the mediodorsal thalamus (MD) and the ventral tegmental area (VTA). First, two retrograde tracers were injected into the MD and VTA to compare the neuronal activity of the two populations of projection neurons in the VP-m during PIT relative to controls. Second, the functional role of the connection between the VP-m and the MD or VTA was assessed using asymmetrical pharmacological manipulations before a PIT test. It was found that, whereas neurons in the VP-m projecting to the MD showed significantly more neuronal activation during PIT than those projecting to the VTA, neuronal activation of these latter neurons correlated with the size of the PIT effect. Disconnection of the two pathways during PIT also revealed different deficits in performance: disrupting the VP-m to MD pathway removed the response biasing effects of reward-related cues, whereas disrupting the VP-m to VTA pathway preserved the response bias but altered the overall rate of responding. The current results therefore suggest that the VP-m exerts distinct effects on the VTA and MD and that these latter structures mediate the motivational and cognitive components of specific PIT, respectively. Copyright © 2015 the authors 0270-6474/15/354953-12$15.00/0.

  8. δ-Opioid and Dopaminergic Processes in Accumbens Shell Modulate the Cholinergic Control of Predictive Learning and Choice

    PubMed Central

    Laurent, Vincent; Bertran-Gonzalez, Jesus; Chieng, Billy C.

    2014-01-01

    Decision-making depends on the ability to extract predictive information from the environment to guide future actions. Outcome-specific Pavlovian-instrumental transfer (PIT) provides an animal model of this process in which a stimulus predicting a particular outcome biases choice toward actions earning that outcome. Recent evidence suggests that cellular adaptations of δ-opioid receptors (DORs) on cholinergic interneurons (CINs) in the nucleus accumbens shell (NAc-S) are necessary for PIT. Here we found that modulation of DORs in CINs critically influences D1-receptor (D1R)-expressing projection neurons in the NAc-S to promote PIT. First, we assessed PIT-induced changes in signaling processes in dopamine D1- and D2-receptor-expressing neurons using drd2-eGFP mice, and found that PIT-related signaling was restricted to non-D2R-eGFP-expressing neurons, suggesting major involvement of D1R-neurons. Next we confirmed the role of D1Rs pharmacologically: the D1R antagonist SCH-23390, but not the D2R antagonist raclopride, infused into the NAc-S abolished PIT in rats, an effect that depended on DOR activity. Moreover, asymmetrical infusion of SCH-23390 and the DOR antagonist naltrindole into the NAc-S also abolished PIT. DOR agonists were found to sensitize the firing responses of CINs in brain slices prepared immediately after the PIT test. We confirmed the opioid-acetylcholinergic influence over D1R-neurons by selectively blocking muscarinic M4 receptors in the NAc-S, which tightly regulate the activity of D1Rs, a treatment that rescued the deficit in PIT induced by naltrindole. We describe a model of NAc-S function in which DORs modulate CINs to influence both D1R-neurons and stimulus-guided choice between goal-directed actions. PMID:24453326

  9. Biocorrosion of mild steel and copper used in cooling tower water and its control.

    PubMed

    Li, Xiao Lei; Narenkumar, Jayaraman; Rajasekar, Aruliah; Ting, Yen-Peng

    2018-03-01

    The present study describes the biocorrosion of mild steel (MS1010) and pure copper (Cu) in cooling water environments (both field and lab study). Electrochemical and surface analyses of both metals were carried out to confirm the corrosion susceptibility in the presence of bacteria and inhibitor. Surface analysis of the MS and Cu coupons revealed that biofilm was developed with increasing exposure time in the field study. In the lab study, accumulation of extracellular polymeric substance over the metal surface was noticed and led to the severe pitting type of corrosion on both metal surfaces. Besides, the anti-corrosive study was carried out using the combinations of commercial corrosion inhibitor (S7653-10 ppm) with biocide (F5100-5 ppm), and the results reveal that the corrosion rate of MS and Cu was highly reduced to 0.0281 and 0.0021 mm/year (inhibitor system) than 0.1589 and 0.0177 mm/year (control system). Inhibition efficiency for both metals in the presence of inhibitor with biocide was found as 82 and 88% for MS and Cu, respectively. The present study concluded that MS was very susceptible to biocorrosion, compared to copper metal in cooling water environment. Further, the combination of the both inhibitor and biocide was effectively inhibiting the biocorrosion which was due to its antibacterial and anti-corrosive properties.

  10. 25 CFR 542.21 - What are the minimum internal control standards for drop and count for Tier A gaming operations?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... locked table game drop boxes shall be removed from the tables by a person independent of the pit shift... boxes shall be performed by a minimum of two persons, at least one of whom is independent of the pit... count team shall be independent of transactions being reviewed and counted. The count team shall be...

  11. 25 CFR 542.41 - What are the minimum internal control standards for drop and count for Tier C gaming operations?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... locked table game drop boxes shall be removed from the tables by a person independent of the pit shift... boxes shall be performed by a minimum of two persons, at least one of whom is independent of the pit.... (4) The count team shall be independent of transactions being reviewed and counted. The count team...

  12. The Pit and the Pendulum: The Impact on Teen Smokers of Including a Designated Smoking Area in School Tobacco Control Policy

    ERIC Educational Resources Information Center

    Baillie, L. E.; Lovato, C. Y.; Taylor, E.; Rutherford, M. B.; Smith, M.

    2008-01-01

    Thirty per cent of school districts in British Columbia do not ban smoking outright on school grounds, and in several instances, smoking is permitted in smoking pits, regardless of school district policy. While there is evidence to suggest that enforcing a tobacco-free environment for students does reduce adolescent smoking rates, the concomitant…

  13. Spatial distribution and longitudinal development of deep cortical sulcal landmarks in infants.

    PubMed

    Meng, Yu; Li, Gang; Lin, Weili; Gilmore, John H; Shen, Dinggang

    2014-10-15

    Sulcal pits, the locally deepest points in sulci of the highly convoluted and variable cerebral cortex, are found to be spatially consistent across human adult individuals. It is suggested that sulcal pits are genetically controlled and have close relationships with functional areas. To date, the existing imaging studies of sulcal pits are mainly focused on adult brains, yet little is known about the spatial distribution and temporal development of sulcal pits in the first 2 years of life, which is the most dynamic and critical period of postnatal brain development. Studying sulcal pits during this period would greatly enrich our limited understandings of the origins and developmental trajectories of sulcal pits, and would also provide important insights into many neurodevelopmental disorders associated with abnormal cortical foldings. In this paper, by using surface-based morphometry, for the first time, we systemically investigated the spatial distribution and temporal development of sulcal pits in major cortical sulci from 73 healthy infants, each with three longitudinal 3T MR scans at term birth, 1 year, and 2 years of age. Our results suggest that the spatially consistent distributions of sulcal pits in major sulci across individuals have already existed at term birth and this spatial distribution pattern keeps relatively stable in the first 2 years of life, despite that the cerebral cortex expands dramatically and the sulcal depth increases considerably during this period. Specially, the depth of sulcal pits increases regionally heterogeneously, with more rapid growth in the high-order association cortex, including the prefrontal and temporal cortices, than the sensorimotor cortex in the first 2 years of life. Meanwhile, our results also suggest that there exist hemispheric asymmetries of the spatial distributions of sulcal pits in several cortical regions, such as the central, superior temporal and postcentral sulci, consistently from birth to 2 years of age, which likely has close relationships with the lateralization of brain functions of these regions. This study provides detailed insights into the spatial distribution and temporal development of deep sulcal landmarks in infants. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. In Situ Investigation of Electrochemically Mediated Surface-Initiated Atom Transfer Radical Polymerization by Electrochemical Surface Plasmon Resonance.

    PubMed

    Chen, Daqun; Hu, Weihua

    2017-04-18

    Electrochemically mediated atom transfer radical polymerization (eATRP) initiates/controls the controlled/living ATRP chain propagation process by electrochemically generating (regenerating) the activator (lower-oxidation-state metal complex) from deactivator (higher-oxidation-state metal complex). Despite successful demonstrations in both of the homogeneous polymerization and heterogeneous systems (namely, surface-initiated ATRP, SI-ATRP), the eATRP process itself has never been in situ investigated, and important information regarding this process remains unrevealed. In this work, we report the first investigation of the electrochemically mediated SI-ATRP (eSI-ATRP) by rationally combining the electrochemical technique with real-time surface plasmon resonance (SPR). In the experiment, the potential of a SPR gold chip modified by the self-assembled monolayer of the ATRP initiator was controlled to electrochemically reduce the deactivator to activator to initiate the SI-ATRP, and the whole process was simultaneously monitored by SPR with a high time resolution of 0.1 s. It is found that it is feasible to electrochemically trigger/control the SI-ATRP and the polymerization rate is correlated to the potential applied to the gold chip. This work reveals important kinetic information for eSI-ATRP and offers a powerful platform for in situ investigation of such complicated processes.

  15. Dynamic Electrochemical Control of Cell Capture-and-Release Based on Redox-Controlled Host-Guest Interactions.

    PubMed

    Gao, Tao; Li, Liudi; Wang, Bei; Zhi, Jun; Xiang, Yang; Li, Genxi

    2016-10-18

    Artificial control of cell adhesion on smart surface is an on-demand technique in areas ranging from tissue engineering, stem cell differentiation, to the design of cell-based diagnostic system. In this paper, we report an electrochemical system for dynamic control of cell catch-and-release, which is based on the redox-controlled host-guest interaction. Experimental results reveal that the interaction between guest molecule (ferrocene, Fc) and host molecule (β-cyclodextrin, β-CD) is highly sensitive to electrochemical stimulus. By applying a reduction voltage, the uncharged Fc can bind to β-CD that is immobilized at the electrode surface. Otherwise, it is disassociated from the surface as a result of electrochemical oxidation, thus releasing the captured cells. The catch-and-release process on this voltage-responsive surface is noninvasive with the cell viability over 86%. Moreover, because Fc can act as an electrochemical probe for signal readout, the integration of this property has further extended the ability of this system to cell detection. Electrochemical signal has been greatly enhanced for cell detection by introducing branched polymer scaffold that are carrying large quantities of Fc moieties. Therefore, a minimum of 10 cells can be analyzed. It is anticipated that such redox-controlled system can be an important tool in biological and biomedical research, especially for electrochemical stimulated tissue engineering and cell-based clinical diagnosis.

  16. Electrolysis Performance Improvement Concept Study (EPICS) flight experiment phase C/D

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Lee, M. G.

    1995-01-01

    The overall purpose of the Electrolysis Performance Improvement Concept Study flight experiment is to demonstrate and validate in a microgravity environment the Static Feed Electrolyzer concept as well as investigate the effect of microgravity on water electrolysis performance. The scope of the experiment includes variations in microstructural characteristics of electrodes and current densities in a static feed electrolysis cell configuration. The results of the flight experiment will be used to improve efficiency of the static feed electrolysis process and other electrochemical regenerative life support processes by reducing power and expanding the operational range. Specific technologies that will benefit include water electrolysis for propulsion, energy storage, life support, extravehicular activity, in-space manufacturing and in-space science in addition to other electrochemical regenerative life support technologies such as electrochemical carbon dioxide and oxygen separation, electrochemical oxygen compression and water vapor electrolysis. The Electrolysis Performance Improvement Concept Study flight experiment design incorporates two primary hardware assemblies: the Mechanical/Electrochemical Assembly and the Control/Monitor Instrumentation. The Mechanical/Electrochemical Assembly contains three separate integrated electrolysis cells along with supporting pressure and temperature control components. The Control/Monitor Instrumentation controls the operation of the experiment via the Mechanical/Electrochemical Assembly components and provides for monitoring and control of critical parameters and storage of experimental data.

  17. Biocorrosion investigation of two shape memory nickel based alloys: Ni-Mn-Ga and thin film NiTi.

    PubMed

    Stepan, L L; Levi, D S; Gans, E; Mohanchandra, K P; Ujihara, M; Carman, G P

    2007-09-01

    Thin film nitinol and single crystal Ni-Mn-Ga represent two new shape memory materials with potential to be used as percutaneously placed implant devices. However, the biocompatibility of these materials has not been adequately assessed. Immersion tests were conducted on both thin film nitinol and single crystal Ni-Mn-Ga in Hank's balanced salt solution at 37 degrees C and pH 7.4. After 12 h, large pits were found on the Ni-Mn-Ga samples while thin film nitinol displayed no signs of corrosion. Further electrochemical tests on thin film nitinol samples revealed breakdown potentials superior to a mechanically polished nitinol disc. These results suggest that passivation or electropolishing of thin film nitinol maybe unnecessary to promote corrosion resistance.

  18. Corrosion of titanium: Part 1: aggressive environments and main forms of degradation.

    PubMed

    Prando, Davide; Brenna, Andrea; Diamanti, Maria Vittoria; Beretta, Silvia; Bolzoni, Fabio; Ormellese, Marco; Pedeferri, MariaPia

    2017-11-11

    Titanium has outstanding corrosion resistance due to the external natural oxide protective layer formed when it is exposed to an aerated environment. Despite this, titanium may suffer different forms of corrosion in severe environments: uniform corrosion, pitting and crevice corrosion, hydrogen embrittlement, stress-corrosion cracking, fretting corrosion and erosion. In this first review, forms of corrosion affecting titanium are analyzed based on a wide literature review. For each form of corrosion, the mechanism and most severe environment are reported according to the current understanding.In the second part, this review will address the possible surface treatments that can increase corrosion resistance on commercially pure titanium: Electrochemical anodizing, thermal oxidation, chemical oxidation and bulk treatments such as alloying will be considered, highlighting the advantages of each technique.

  19. Relationship Between Foveal Cone Specialization and Pit Morphology in Albinism

    PubMed Central

    Wilk, Melissa A.; McAllister, John T.; Cooper, Robert F.; Dubis, Adam M.; Patitucci, Teresa N.; Summerfelt, Phyllis; Anderson, Jennifer L.; Stepien, Kimberly E.; Costakos, Deborah M.; Connor, Thomas B.; Wirostko, William J.; Chiang, Pei-Wen; Dubra, Alfredo; Curcio, Christine A.; Brilliant, Murray H.; Summers, C. Gail; Carroll, Joseph

    2014-01-01

    Purpose. Albinism is associated with disrupted foveal development, though intersubject variability is becoming appreciated. We sought to quantify this variability, and examine the relationship between foveal cone specialization and pit morphology in patients with a clinical diagnosis of albinism. Methods. We recruited 32 subjects with a clinical diagnosis of albinism. DNA was obtained from 25 subjects, and known albinism genes were analyzed for mutations. Relative inner and outer segment (IS and OS) lengthening (fovea-to-perifovea ratio) was determined from manually segmented spectral domain-optical coherence tomography (SD-OCT) B-scans. Foveal pit morphology was quantified for eight subjects from macular SD-OCT volumes. Ten subjects underwent imaging with adaptive optics scanning light ophthalmoscopy (AOSLO), and cone density was measured. Results. We found mutations in 22 of 25 subjects, including five novel mutations. All subjects lacked complete excavation of inner retinal layers at the fovea, though four subjects had foveal pits with normal diameter and/or volume. Peak cone density and OS lengthening were variable and overlapped with that observed in normal controls. A fifth hyper-reflective band was observed in the outer retina on SD-OCT in the majority of the subjects with albinism. Conclusions. Foveal cone specialization and pit morphology vary greatly in albinism. Normal cone packing was observed in the absence of a foveal pit, suggesting a pit is not required for packing to occur. The degree to which retinal anatomy correlates with genotype or visual function remains unclear, and future examination of larger patient groups will provide important insight on this issue. PMID:24845642

  20. Measurements of evaporation from a mine void lake and testing of modelling approaches

    NASA Astrophysics Data System (ADS)

    McJannet, David; Hawdon, Aaron; Van Niel, Tom; Boadle, Dave; Baker, Brett; Trefry, Mike; Rea, Iain

    2017-12-01

    Pit lakes often form in the void that remains after open cut mining operations cease. As pit lakes fill, hydrological and geochemical processes interact and these need to be understood for appropriate management actions to be implemented. Evaporation is important in the evolution of pit lakes as it acts to concentrate various constituents, controls water level and changes the thermal characteristics of the water body. Despite its importance, evaporation from pit lakes is poorly understood. To address this, we used an automated floating evaporation pan and undertook measurements at a pit lake over a 12 month period. We also developed a new procedure for correcting floating pan evaporation estimates to lake evaporation estimates based on surface temperature differences. Total annual evaporation was 2690 mm and reflected the strong radiation inputs, high temperatures and low humidity experienced in this region. Measurements were used to test the performance of evaporation estimates derived using both pan coefficient and aerodynamic modelling techniques. Daily and monthly evaporation estimates were poorly reproduced using pan coefficient techniques and their use is not recommended for such environments. Aerodynamic modelling was undertaken using a range of input datasets that may be available to those who manage pit lake systems. Excellent model performance was achieved using over-water or local over-land meteorological observations, particularly when the sheltering effects of the pit were considered. Model performance was reduced when off-site data were utilised and differences between local and off-site vapor pressure and wind speed were found to be the major cause.

  1. Differential response of pitted morning glory and ivy leaf morning glory to acifluorfen, fomesafen, and lactofen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higgins, J.M.

    1987-01-01

    Field and laboratory investigations were conducted to examine the response of soybeans (Glycine max (L.) Merr.), pitted morning glory (Ipomoea lacunosa L.number/sup 1/ IPOLA), and ivy leaf morning glory (Ipomoea hederacea (L.) Jacq. number IPOHE) to acifluorfen, fomesafen, and lactofen. In field studies, greatest soybean injury was observed with acifluorfen and lactofen. All treatments provided 80% or greater control of pitted morning glory 15 days after treatment. Only acifluorfen and fomesafen at 0.6 kg ai ha/sup -1/ provided 80% or greater ivy leaf morning glory. The differential response of pitted morning glory and ivy leaf morning glory to these diphenylmore » ether herbicides was reflected in soybean seed yields. In laboratory studies, 71 to 84% of applied /sup 14/C-acifluorfen was not absorbed into the leaf surface of ivy leaf morning glory. Thirty-two to 46% of applied acifluorfen was recovered from the leaf surface of pitted morning glory. Sixty-four percent of applied /sup 14/C-lactofen was recovered from leaf surfaces of both morning glory species 96 h after treatment. Treated leaves of pitted morning glory contained 35 to 37% more /sup 14/C-acifluorfen than ivy leaf morning glory. Less than 28% of applied /sup 14/C-lactofen was absorbed into treated leaves of both morning glory species at 24, 48, and 96 h harvests.« less

  2. Understanding of surface pit formation mechanism of GaN grown in MOCVD based on local thermodynamic equilibrium assumption

    NASA Astrophysics Data System (ADS)

    Zhi-Yuan, Gao; Xiao-Wei, Xue; Jiang-Jiang, Li; Xun, Wang; Yan-Hui, Xing; Bi-Feng, Cui; De-Shu, Zou

    2016-06-01

    Frank’s theory describes that a screw dislocation will produce a pit on the surface, and has been evidenced in many material systems including GaN. However, the size of the pit calculated from the theory deviates significantly from experimental result. Through a careful observation of the variations of surface pits and local surface morphology with growing temperature and V/III ratio for c-plane GaN, we believe that Frank’s model is valid only in a small local surface area where thermodynamic equilibrium state can be assumed to stay the same. If the kinetic process is too vigorous or too slow to reach a balance, the local equilibrium range will be too small for the center and edge of the screw dislocation spiral to be kept in the same equilibrium state. When the curvature at the center of the dislocation core reaches the critical value 1/r 0, at the edge of the spiral, the accelerating rate of the curvature may not fall to zero, so the pit cannot reach a stationary shape and will keep enlarging under the control of minimization of surface energy to result in a large-sized surface pit. Project supported by the National Natural Science Foundation of China (Grant Nos. 11204009 and 61204011) and the Beijing Municipal Natural Science Foundation, China (Grant No. 4142005).

  3. 25 CFR 542.31 - What are the minimum internal control standards for drop and count for Tier B gaming operations?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... locked table game drop boxes shall be removed from the tables by a person independent of the pit shift... boxes shall be performed by a minimum of two persons, at least one of whom is independent of the pit... digital record, within seven (7) days by an employee independent of the count. (ii) [Reserved] (2) Count...

  4. Installation Restoration Program. Preliminary Assessment: 185th Tactical Fighter Group, Iowa Air National Guard, Sioux Gateway Airport, Sergeant Bluff, Iowa and 133rd Tactical Control Flight, Iowa Air National Guard, Fort Dodge Municipal Airport, Fort Dodge, Iowa

    DTIC Science & Technology

    1988-12-01

    nuclear disintegration of certain elements and isotopes, with the emission of radiation, radiant energy capable of affecting living tissue. RADIUM - A...Corrosion Control. Waste oils, recovered fuels , spent cleaners, strippers, and solvents are * generated by these shops. ES-i mIs- Interviews with past...HAS-73) A defueling pit is located north of the old alert hangar (Building No. 241). Excess JP-4 fuel in the F-100 aircraft was dumped into the pit

  5. Determination of the Electrochemical Area of Screen-Printed Electrochemical Sensing Platforms.

    PubMed

    García-Miranda Ferrari, Alejandro; Foster, Christopher W; Kelly, Peter J; Brownson, Dale A C; Banks, Craig E

    2018-06-08

    Screen-printed electrochemical sensing platforms, due to their scales of economy and high reproducibility, can provide a useful approach to translate laboratory-based electrochemistry into the field. An important factor when utilising screen-printed electrodes (SPEs) is the determination of their real electrochemical surface area, which allows for the benchmarking of these SPEs and is an important parameter in quality control. In this paper, we consider the use of cyclic voltammetry and chronocoulometry to allow for the determination of the real electrochemical area of screen-printed electrochemical sensing platforms, highlighting to experimentalists the various parameters that need to be diligently considered and controlled in order to obtain useful measurements of the real electroactive area.

  6. Survival and tag loss in Moapa White River springfish implanted with passive integrated transponder tags

    USGS Publications Warehouse

    Dixon, Christopher J.; Mesa, Matthew G.

    2011-01-01

    We monitored survival and tag loss among Moapa White River springfish Crenichthys baileyi moapae that were surgically implanted with passive integrated transponder (PIT; 9 × 2 mm) tags. The fish used in the study ranged from 40 to 67 mm in total length and from 1.0 to 6.5 g in mass; the PIT tag: body weight ratios were 1.0–6.1%. Fish were held for 41 d in live cages within a small, warm desert stream. Survival did not differ between untagged control fish (94.5%) and tagged fish (95.6%). Survival did not appear to be influenced by fish size or PIT tag: body weight ratio, but the small number of fish that died precluded a detailed analysis. Tag retention was 100% among the 86 fish that survived over the 41 d. Our results suggest that surgically implanting 9-mm PIT tags into Moapa White River springfish as small as 40 mm is an effective method for marking them because it has minimal impacts on survival and tag retention is high. More work is needed on the effects of PIT tagging on growth and other performance metrics of springfish and other small desert fishes.

  7. A comparative ultrastructural study of pit membranes with plasmodesmata associated thickenings in four angiosperm species.

    PubMed

    Rabaey, David; Lens, Frederic; Huysmans, Suzy; Smets, Erik; Jansen, Steven

    2008-11-01

    Recent micromorphological observations of angiosperm pit membranes have extended the number and range of taxa with pseudo-tori in tracheary elements. This study investigates at ultrastructural level (TEM) the development of pseudo-tori in the unrelated Malus yunnanensis, Ligustrum vulgare, Pittosporum tenuifolium, and Vaccinium myrtillus in order to determine whether these plasmodesmata associated thickenings have a similar developmental pattern across flowering plants. At early ontogenetic stages, the formation of a primary thickening was observed, resulting from swelling of the pit membrane in fibre-tracheids and vessel elements. Since plasmodesmata appear to be frequently, but not always, associated with these primary pit membrane thickenings, it remains unclear which ultrastructural characteristics control the formation of pseudo-tori. At a very late stage during xylem differentiation, a secondary thickening is deposited on the primary pit membrane thickening. Plasmodesmata are always associated with pseudo-tori at these final developmental stages. After autolysis, the secondary thickening becomes electron-dense and persistent, while the primary thickening turns transparent and partially or entirely dissolves. The developmental patterns observed in the species studied are similar and agree with former ontogenetic studies in Rosaceae, suggesting that pseudo-tori might be homologous features across angiosperms.

  8. Assessment of PIT tag retention and post-tagging survival in metamorphosing juvenile Sea Lamprey

    USGS Publications Warehouse

    Simard, Lee G.; Sotola, V. Alex; Marsden, J. Ellen; Miehls, Scott M.

    2017-01-01

    Background: Passive integrated transponder (PIT) tags have been used to document and monitor the movement or behavior of numerous species of fishes. Data on short-term and long-term survival and tag retention are needed before initiating studies using PIT tags on a new species or life stage. We evaluated the survival and tag retention of 153 metamorphosing juvenile Sea Lamprey Petromyzon marinus tagged with 12 mm PIT tags on three occasions using a simple surgical procedure. Results: Tag retention was 100% and 98.6% at 24 h and 28-105 d post-tagging. Of the lamprey that retained their tags, 87.3% had incisions sufficiently healed to prevent further loss. Survival was 100% and 92.7% at 24 h and 41-118 d post-tagging with no significant difference in survival between tagged and untagged control lamprey. Of the 11 lamprey that died, four had symptoms that indicated their death was directly related to tagging. Survival was positively correlated with Sea Lamprey length. Conclusions: Given the overall high level of survival and tag retention in this study, future studies can utilize 12 mm PIT tags to monitor metamorphosing juvenile Sea Lamprey movement and migration patterns.

  9. System and method for networking electrochemical devices

    DOEpatents

    Williams, Mark C.; Wimer, John G.; Archer, David H.

    1995-01-01

    An improved electrochemically active system and method including a plurality of electrochemical devices, such as fuel cells and fluid separation devices, in which the anode and cathode process-fluid flow chambers are connected in fluid-flow arrangements so that the operating parameters of each of said plurality of electrochemical devices which are dependent upon process-fluid parameters may be individually controlled to provide improved operating efficiency. The improvements in operation include improved power efficiency and improved fuel utilization in fuel cell power generating systems and reduced power consumption in fluid separation devices and the like through interstage process fluid parameter control for series networked electrochemical devices. The improved networking method includes recycling of various process flows to enhance the overall control scheme.

  10. The effect of notches and pits on corrosion fatigue strength

    NASA Astrophysics Data System (ADS)

    Tatner, Ian

    An investigation has been undertaken to examine the fatigue behaviour of two martensitic steels in air and aggressive environments. The steels studied are, 18% Ni marageing steel and FV520B, the later being a stainless steel turbine blade material and the former being a marageing steel that suffers general corrosion in mild environments. Both steels were heat treated to give similar tensile strength.The design and manufacture of an autoclave allowed push-pull fatigue tests to be conducted in aggressive environments at elevated temperatures.Corrosion potential was monitored using a three electrode cell and was controlled during testing. Base-line fatigue tests were conducted with a range of constant corrosion potentials, using both notched and plain FV520B specimens. In addition fatigue tests with pulsed corrosion potential were performed to asses the effect of transient corrosion conditions on the corrosion fatigue strength. The pulsed tests were designed to simulate service transients in the oxygen content and general chemical hostility in the condensing steam environment during start-up and shut down of the steam turbine.Post test examination of fractured samples was performed using Scanning Electron Microscopy (SEM) and optical microscope techniques. The fractography results were used to quantify microstructural and fracture features of the steels.A model based on the size and geometry of the initial corrosion pitting has been proposed to asses the fatigue life of FV520B in an aggressive environment.The effect of pitting on the corrosion fatigue strength of FV520B has been modelled using linear elastic fracture mechanics (LEFM) type approach. The model has shown a good correlation between predicted fatigue lives with experimental results.The results suggest that the fatigue life is governed by the mechanical stress concentrating effect of the pits rather than the electrochemical damage caused by the environment.Finite Element Analysis (FEA) of the notch allowed calculation of the elastic stress intensity factor (K[t]) for the specimen geometry used. The experimental results together with numerical results of FEA were used to calculate of the notch strength reduction factor (K[f]) for the material. This has been used to derive the notch sensitivity factors (q) for both materials.The results of fatigue tests in air showed that although both materials have similar tensile strength their plain fatigue strengths are different. The sensitivity of the fatigue strength to notches was also found to be significantly different. The marageing steel showed a higher sensitivity to a notch than the FV520B.An empirical model has been proposed to quantify the notch sensitivity and the effects of various microstructural features on the fatigue strength. A model has been developed to predict the serviceable life of a peak hardened FV520B turbine blade subjected to aggressive low load conditions during start-up and non-aggressive high load conditions during continual running. The model is based on the conclusions suggested in the work of a threshold stress intensity factor being reached where a fatigue crack will grow from a corrosion pit at the root of a notch. The model is then used to highlight the life reduction caused to steam turbine blades due to increased numbers of start-up cycles.

  11. Improving NIR snow pit stratigraphy observations by introducing a controlled NIR light source

    NASA Astrophysics Data System (ADS)

    Dean, J.; Marshall, H.; Rutter, N.; Karlson, A.

    2013-12-01

    Near-infrared (NIR) photography in a prepared snow pit measures mm-/grain-scale variations in snow structure, as reflectivity is strongly dependent on microstructure and grain size at the NIR wavelengths. We explore using a controlled NIR light source to maximize signal to noise ratio and provide uniform incident, diffuse light on the snow pit wall. NIR light fired from the flash is diffused across and reflected by an umbrella onto the snow pit; the lens filter transmits NIR light onto the spectrum-modified sensor of the DSLR camera. Lenses are designed to refract visible light properly, not NIR light, so there must be a correction applied for the subsequent NIR bright spot. To avoid interpolation and debayering algorithms automatically performed by programs like Adobe's Photoshop on the images, the raw data are analyzed directly in MATLAB. NIR image data show a doubling of the amount of light collected in the same time for flash over ambient lighting. Transitions across layer boundaries in the flash-lit image are detailed by higher camera intensity values than ambient-lit images. Curves plotted using median intensity at each depth, normalized to the average profile intensity, show a separation between flash- and ambient-lit images in the upper 10-15 cm; the ambient-lit image curve asymptotically approaches the level of the flash-lit image curve below 15cm. We hypothesize that the difference is caused by additional ambient light penetrating the upper 10-15 cm of the snowpack from above and transmitting through the wall of the snow pit. This indicates that combining NIR ambient and flash photography could be a powerful technique for studying penetration depth of radiation as a function of microstructure and grain size. The NIR flash images do not increase the relative contrast at layer boundaries; however, the flash more than doubles the amount of recorded light and controls layer noise as well as layer boundary transition noise.

  12. The Microstructure and Pitting Resistance of Weld Joints of 2205 Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Wu, Mingfang; Liu, Fei; Pu, Juan; Anderson, Neil E.; Li, Leijun; Liu, Dashuang

    2017-11-01

    2205 duplex stainless steel (DSS) was welded by submerged arc welding. The effects of both heat input and groove type on the ferrite/austenite ratio and elemental diffusion of weld joints were investigated. The relationships among welding joint preparation, ferrite/austenite ratio, elemental diffusion, and pitting corrosion resistance of weld joints were analyzed. When the Ni content of the weld wire deposit was at minimum 2-4% higher than that of 2205 DSS base metal, the desired ratio of ferrite/austenite and elemental partitioning between the austenite and ferrite phases were obtained. While the pitting sensitivity of weld metal was higher than that of base metal, the self-healing capability of the passive film of weld metal was better than that of the base metal when a single V-type groove was used. Furthermore, the heat input should be carefully controlled since pitting corrosion occurred readily in the coarse-grained heat-affected zone near the fusion line of welded joints.

  13. Atomic-scale and pit-free flattening of GaN by combination of plasma pretreatment and time-controlled chemical mechanical polishing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Hui; Endo, Katsuyoshi; Yamamura, Kazuya, E-mail: yamamura@upst.eng.osaka-u.ac.jp

    2015-08-03

    Chemical mechanical polishing (CMP) combined with atmospheric-pressure plasma pretreatment was applied to a GaN (0001) substrate. The irradiation of a CF{sub 4}-containing plasma was proven to be very useful for modifying the surface of GaN. When CMP was conducted on a plasma-irradiated surface, a modified layer of GaF{sub 3} acted as a protective layer on GaN by preventing the formation of etch pits. Within a short duration (8 min) of CMP using a commercially available CeO{sub 2} slurry, an atomically flat surface with a root mean square (rms) roughness of 0.11 nm was obtained. Moreover, etch pits, which are inevitably introduced inmore » conventional CMP, could not be observed at the dislocation sites on the polished GaN surface. It was revealed that CMP combined with the plasma pretreatment was very effective for obtaining a pit-free and atomically flat GaN surface.« less

  14. Control of electrochemical signals from quantum dots conjugated to organic materials by using DNA structure in an analog logic gate.

    PubMed

    Chen, Qi; Yoo, Si-Youl; Chung, Yong-Ho; Lee, Ji-Young; Min, Junhong; Choi, Jeong-Woo

    2016-10-01

    Various bio-logic gates have been studied intensively to overcome the rigidity of single-function silicon-based logic devices arising from combinations of various gates. Here, a simple control tool using electrochemical signals from quantum dots (QDs) was constructed using DNA and organic materials for multiple logic functions. The electrochemical redox current generated from QDs was controlled by the DNA structure. DNA structure, in turn, was dependent on the components (organic materials) and the input signal (pH). Independent electrochemical signals from two different logic units containing QDs were merged into a single analog-type logic gate, which was controlled by two inputs. We applied this electrochemical biodevice to a simple logic system and achieved various logic functions from the controlled pH input sets. This could be further improved by choosing QDs, ionic conditions, or DNA sequences. This research provides a feasible method for fabricating an artificial intelligence system. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Nobody’s perfect: can irregularities in pit structure influence vulnerability to cavitation?

    PubMed Central

    Plavcová, Lenka; Jansen, Steven; Klepsch, Matthias; Hacke, Uwe G.

    2013-01-01

    Recent studies have suggested that species-specific pit properties such as pit membrane thickness, pit membrane porosity, torus-to-aperture diameter ratio and pit chamber depth influence xylem vulnerability to cavitation. Despite the indisputable importance of using mean pit characteristics, considerable variability in pit structure within a single species or even within a single pit field should be acknowledged. According to the rare pit hypothesis, a single pit that is more air-permeable than many neighboring pits is sufficient to allow air-seeding. Therefore, any irregularities or morphological abnormalities in pit structure allowing air-seeding should be associated with increased vulnerability to cavitation. Considering the currently proposed models of air-seeding, pit features such as rare, large pores in the pit membrane, torus extensions, and plasmodesmatal pores in a torus can represent potential glitches. These aberrations in pit structure could either result from inherent developmental flaws, or from damage caused to the pit membrane by chemical and physical agents. This suggests the existence of interesting feedbacks between abiotic and biotic stresses in xylem physiology. PMID:24273549

  16. Long-Range Reduced Predictive Information Transfers of Autistic Youths in EEG Sensor-Space During Face Processing.

    PubMed

    Khadem, Ali; Hossein-Zadeh, Gholam-Ali; Khorrami, Anahita

    2016-03-01

    The majority of previous functional/effective connectivity studies conducted on the autistic patients converged to the underconnectivity theory of ASD: "long-range underconnectivity and sometimes short-rang overconnectivity". However, to the best of our knowledge the total (linear and nonlinear) predictive information transfers (PITs) of autistic patients have not been investigated yet. Also, EEG data have rarely been used for exploring the information processing deficits in autistic subjects. This study is aimed at comparing the total (linear and nonlinear) PITs of autistic and typically developing healthy youths during human face processing by using EEG data. The ERPs of 12 autistic youths and 19 age-matched healthy control (HC) subjects were recorded while they were watching upright and inverted human face images. The PITs among EEG channels were quantified using two measures separately: transfer entropy with self-prediction optimality (TESPO), and modified transfer entropy with self-prediction optimality (MTESPO). Afterwards, the directed differential connectivity graphs (dDCGs) were constructed to characterize the significant changes in the estimated PITs of autistic subjects compared with HC ones. By using both TESPO and MTESPO, long-range reduction of PITs of ASD group during face processing was revealed (particularly from frontal channels to right temporal channels). Also, it seemed the orientation of face images (upright or upside down) did not modulate the binary pattern of PIT-based dDCGs, significantly. Moreover, compared with TESPO, the results of MTESPO were more compatible with the underconnectivity theory of ASD in the sense that MTESPO showed no long-range increase in PIT. It is also noteworthy that to the best of our knowledge it is the first time that a version of MTE is applied for patients (here ASD) and it is also its first use for EEG data analysis.

  17. Wind tunnel study of ammonia transfer from a manure pit fitted with a dairy cattle slatted floor.

    PubMed

    De Paepe, Merlijn; Pieters, Jan G; Mendes, Luciano B; Van Weyenberg, Stephanie; Merci, Bart; Demeyer, Peter

    2016-01-01

    In dairy cattle systems, most of the feces and urine go to the pit. At the manure pit level, mass transfer of NH3 ([Formula: see text]) has many factors, but practical difficulties hamper a controlled field evaluation. In this study, we propose a methodology for the determination of an alternative, more practical, pit transfer coefficient of NH3 (PTC), and compare it with [Formula: see text] determined from other scientific studies. The aims of this research study were: (1) to develop a wind tunnel set-up which mimics air flow patterns between the slats and above a clean section of a slatted floor section, featuring an aqueous NH3-emitting solution; and (2) to assess how air velocity, turbulence intensity, NH3 concentration ([NH3]) and PTC are influenced by inlet airflow ventilation rate (VR) forced deflection of the air above the slats into the manure pit through varying the deflection angle (DA) of a deflection panel and varying pit headspace height (HH). Main conclusions were: (1) the calculated PTC values presented a good fit to the power function of the air speed near the slats (u) (p < .001) while the average PTC (0.0039 m s(-1)) was comparable to [Formula: see text] values obtained from other studies, by remaining within the range of average values of 0.0015-0.0043 m s(-1); (2) VR and DA significantly impacted [NH3] profiles and PTC (p < .001) and (3) changing slurry pit from 0.10 to 0.90 m HH did not significantly impact [NH3] or PTC (p = .756 and p = .854, respectively).

  18. Impact of acute antibiotic therapy on the pulmonary exacerbation endpoint in cystic fibrosis clinical trials.

    PubMed

    Mayer-Hamblett, Nicole; Saiman, Lisa; Lands, Larry C; Anstead, Michael; Rosenfeld, Margaret; Kloster, Margaret; Fisher, Leigh; Ratjen, Felix

    2013-09-01

    In a chronic disease setting such as cystic fibrosis (CF), antibiotics are often prescribed for emergent symptoms and it is unclear whether this affects endpoints in a clinical trial. Pulmonary exacerbations (PEs) are defined episodes of acute worsening and a key clinical efficacy measure in CF. Our hypothesis was that acute antibiotics given for illnesses not meeting the PE definition may alter estimates of treatment effect that do not account for this antibiotic use. A randomized, placebo-controlled trial of azithromycin (AZ) including 260 participants with CF was utilized for this study. PEs were defined using a priori criteria. Physician initiated antibiotic therapy (PIT) not meeting the PE endpoint was characterized and its impact on treatment effect assessed. 40% (104/260) of participants were prescribed 188 courses of PIT in the absence of a PE; 19% (25/129) of placebo and 10% (13/131) of AZ participants received ≥2 courses of PIT and never fulfilled the PE definition (9% difference, 95% confidence interval: 1%, 18%, p = 0.04). Accounting for PIT through use of a composite endpoint including time to PE or need for repeated PIT altered treatment effect estimates (a 56% reduction in the event rate comparing AZ to placebo [p < 0.0001] as compared to a 50% reduction not accounting for PIT [p = 0.003]). PIT is common in CF and may impact treatment effect estimates. Optimization of the PE endpoint to include meaningful events necessitating treatment may improve our ability to conduct efficient trials by reducing the sample size 30-50%, ultimately enabling rapid evaluation of new therapies. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Electrochemical current noise on aluminum microelectrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaac, J.W.; Hebert, K.R.

    1999-02-01

    Aluminum disk microelectrodes were used to investigate electrochemical current noise in pH 8.8 borate buffer. The current noise spectra, expressed in terms of the current spectral density, had a characteristic two-plateau structure in the experimental bandwidth of 0.05--50 Hz, were potential-independent, and increased proportionally to electrode area. Injection of NaCl solution near the electrode surface, at potentials below that of the onset of pitting corrosion, caused 0.1--1 Hz current fluctuations to appear. From the frequency and area dependence of the current spectral density in the chloride-free solution, it was concluded that the noise arose from a number of discrete, approximatelymore » evenly distributed voltage noise sources positioned electrically in series with the inner barrier layer of the oxide film. A mathematical model for the current noise was developed which described a physical mechanism for noise production based on fluctuations in the widths of cracks or pores in the outer part of the surface film. The model was consistent with the observed area and frequency dependence of the current spectral density, suggesting that the physical process it described is a possible mechanism of noise generation. It could not be determined whether the noise sources were isolated defects or flaws, or pores in an outer precipitated portion of the oxide film.« less

  20. Fatigue resistance, electrochemical corrosion and biological response of Ti-15Mo with surface modified by amorphous TiO2 nanotubes layer.

    PubMed

    Campanelli, Leonardo C; Oliveira, Nilson T C; da Silva, Paulo Sergio C P; Bolfarini, Claudemiro; Palmieri, Annalisa; Cura, Francesca; Carinci, Francesco; Motheo, Artur J

    2018-03-04

    The objective of this work was a systemic evaluation of the anodizing treatment in a β-type Ti-15Mo alloy to grow a TiO 2 nanostructured layer for osseointegration improvement. The technical viability of the surface modification was assessed based on the resistance to mechanical fatigue, electrochemical corrosion, and biological response. By using an organic solution of NH 4 F in ethylene glycol, a well-organized array of 90 nm diameter nanotubes was obtained with a potential of 40 V for 6 h, while undefined nanotubes of 25 nm diameter were formed with a potential of 20 V for 1 h. Nevertheless, the production of the 90 nm diameter nanotubes was followed by micrometer pits that significantly reduced the fatigue performance. The undefined nanotubes of 25 nm diameter, besides the greater cell viability and improved osteoblastic cell differentiation in comparison to the as-polished surface, were not deleterious to the fatigue and corrosion properties. This result strengthens the necessity of an overall evaluation of the anodizing treatment, particularly the fatigue resistance, before suggesting it for the design of implants. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc.

  1. In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid.

    PubMed

    Kannan, M Bobby; Raman, R K Singh

    2008-05-01

    The successful applications of magnesium-based alloys as degradable orthopaedic implants are mainly inhibited due to their high degradation rates in physiological environment and consequent loss in the mechanical integrity. This study examines the degradation behaviour and the mechanical integrity of calcium-containing magnesium alloys using electrochemical techniques and slow strain rate test (SSRT) method, respectively, in modified-simulated body fluid (m-SBF). Potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) results showed that calcium addition enhances the general and pitting corrosion resistances of magnesium alloys significantly. The corrosion current was significantly lower in AZ91Ca alloy than that in AZ91 alloy. Furthermore, AZ91Ca alloy exhibited a five-fold increase in the surface film resistance than AZ91 alloy. The SSRT results showed that the ultimate tensile strength and elongation to fracture of AZ91Ca alloy in m-SBF decreased only marginally (approximately 15% and 20%, respectively) in comparison with these properties in air. The fracture morphologies of the failed samples are discussed in the paper. The in vitro study suggests that calcium-containing magnesium alloys to be a promising candidate for their applications in degradable orthopaedic implants, and it is worthwhile to further investigate the in vivo corrosion behaviour of these alloys.

  2. How do titanium and Ti6Al4V corrode in fluoridated medium as found in the oral cavity? An in vitro study.

    PubMed

    Souza, Júlio C M; Barbosa, Sandra L; Ariza, Edith A; Henriques, Mariana; Teughels, Wim; Ponthiaux, Pierre; Celis, Jean-Pierre; Rocha, Luis A

    2015-02-01

    The purpose of this work was to evaluate the corrosion of commercially pure (CP) titanium and Ti6Al4V in vitro at different F(-) concentrations regularly found in the oral cavity by using different electrochemical tests and surface analysis techniques. electrochemical impedance spectroscopy (EIS), open circuit potential (OCP) and potentiodynamic polarization tests were associated to advanced characterization techniques such as SEM, EDS, AFM, ICP-MS and XPS. OCP tests revealed a higher reactivity of both CP titanium and Ti6Al4V at 12,300 ppm F(-) concentration than that recorded at 227 ppm F(-). Also, a significant decrease of the corrosion resistance of both materials was noticed by EIS in fluoride solutions. Material loss caused by corrosion was noticed on titanium surfaces by SEM and AFM in the presence of high F(-) concentration. CP titanium degraded by pitting corrosion while Ti6Al4V suffered from general corrosion showing micro-cracks on surface. Furthermore, a high release of metallic ions from the test samples after immersion at high F(-) concentrations was detected by ICP-MS, that can be potentially toxic to oral tissues. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Inferior turbinate reduction: Diode laser or conventional partial turbinectomy?

    PubMed

    Doreyawar, Venkatesh; Gadag, Raveendra P; Manjunath, Dandi Narasaiah; Javali, Shivalingappa B; Maradi, Nagaraj; Shetty, Deekshit

    2018-01-01

    Hypertrophy of the inferior nasal turbinate is one of the most common causes of nasal obstruction. The diode laser has proven to be as effective as other lasers for this indication. Our objective was to study various outcomes associated with the use of the diode laser, such as improvements in nasal obstruction and postoperative pain, reduction in intraoperative bleeding, and rapidity of healing. A nonrandomized, controlled trial was conducted in which outcomes were compared between diode laser turbinate reduction (LTR) and conventional partial inferior turbinectomy (PIT) in 60 patients, 30 who underwent LTR and 30 who underwent PIT. The improvement in nasal obstruction was measured postoperatively up to 6 months. Intraoperative bleeding was measured and postoperative pain scores were assessed each day up to the fifth postoperative day. Rapidity of healing was evaluated until 6 months postoperatively. Subjective relief of nasal obstruction occurred in 90.8% of the LTR group and 65% of the PIT group at 6 months (p < 0.05). Pain scores were significantly higher until 5 days postoperatively in the PIT group compared with the LTR group (p = 0.0001). Intraoperative bleeding mean scores (ml) were 8.03 in the LTR group and 23.29 in the PIT group (p = 0.00001). Healing was faster in the LTR group at a mean of 3.03 weeks compared with 6.33 weeks in the PIT group (p = 0.00001). Outcomes with the diode laser were better and diode LTR caused less morbidity compared with the conventional technique.

  4. Measurement of the efficacy of calcium silicate for the protection and repair of dental enamel.

    PubMed

    Parker, Alexander S; Patel, Anisha N; Al Botros, Rehab; Snowden, Michael E; McKelvey, Kim; Unwin, Patrick R; Ashcroft, Alexander T; Carvell, Mel; Joiner, Andrew; Peruffo, Massimo

    2014-06-01

    To investigate the formation of hydroxyapatite (HAP) from calcium silicate and the deposition of calcium silicate onto sound and acid eroded enamel surfaces in order to investigate its repair and protective properties. Calcium silicate was mixed with phosphate buffer for seven days and the resulting solids analysed for crystalline phases by Raman spectroscopy. Deposition studies were conducted on bovine enamel surfaces. Acid etched regions were produced on the enamel surfaces using scanning electrochemical cell microscopy (SECCM) with acid filled pipettes and varying contact times. Following treatment with calcium silicate, the deposition was visualised with FE-SEM and etch pit volumes were measured by AFM. A second set of bovine enamel specimens were pre-treated with calcium silicate and fluoride, before acid exposure with the SECCM. The volumes of the resultant acid etched pits were measured using AFM and the intrinsic rate constant for calcium loss was calculated. Raman spectroscopy confirmed that HAP was formed from calcium silicate. Deposition studies demonstrated greater delivery of calcium silicate to acid eroded than sound enamel and that the volume of acid etched enamel pits was significantly reduced following one treatment (p<0.05). In the protection study, the intrinsic rate constant for calcium loss from enamel was 0.092 ± 0.008 cm/s. This was significantly reduced, 0.056 ± 0.005 cm/s, for the calcium silicate treatments (p<0.0001). Calcium silicate can transform into HAP and can be deposited on acid eroded and sound enamel surfaces. Calcium silicate can provide significant protection of sound enamel from acid challenges. Calcium silicate is a material that has potential for a new approach to the repair of demineralised enamel and the protection of enamel from acid attacks, leading to significant dental hard tissue benefits. © 2014 Elsevier Ltd. All rights reserved.

  5. Directed self-assembly of metal oxide quantum dots: Copper oxide on strontium titanium trioxide

    NASA Astrophysics Data System (ADS)

    Du, Yingge

    2007-12-01

    This dissertation explores the use of focused ion-beams (FIB) to direct the self-assembly of Cu2O quantum dots (QDs) on SrTiO3 (100) substrates via point implants of Ga+ at 30 keV After Ga+ implant and subsequent chemical and thermal surface preparation, oxygen plasma-assisted molecular beam-epitaxy (OPA-MBE) is used to grow Cu 2O QDs. The research of this dissertation finds that, for high FIB implant dose (5.6x1018 ions/cm2) and large interdot spacing (1000 nm), multiple QDs can be formed preferentially on the edges of FIB modified pits. For lower doses and/or smaller interdot spacings (8.8x1014 ions/cm2 and lower, 130 or 167 nm), individual QDs nucleate first within the pits. Under carefully controlled conditions, the separation and arrangement of the Cu2O QDs follows the FIB patterned template. This study finds that the FIB directed self-assembly technique works for different FIB doses, FIB interdot spacings and OPA-MBE deposition thicknesses, suggesting that this method is robust and flexible. Examination of QD growth on low-dose implant surfaces revealed a multi-step growth process. Initial deposition filled the pits just to the level of the original unmodified crystal growth surface. Following a pause in QD growth and the deposition of additional material, QD growth resumed on top of these perfectly filled pits. As growth continued, the dots reached a self-limiting size such that additional material deposition generated more QDs of similar size rather than continued growth of the large dots. This dissertation also seeks to increase understanding of the relative rolls played in the directed self-assembly process by local substrate chemistry, surface morphology, crystal-linity, and stress/strain. Experimental results revealed that although Ga concentration was noticeably higher on modified regions after FIB implant, no measurable Ga was found on the surface after high temperature annealing performed prior to QD growth. Thus Ga related chemistry/reactivity changes appear unlikely to be primary motivators of directed self-assembly. Low dose implant patterning created local depressions on the surface. This pit shape topography appears to be a strong contributor to the preferred nucleation within the pits, as the sidewalls of those surface pits could contain a high density of surface steps, which are known to decrease the adatom diffusion length and act as sinks to absorb the diffusing species. To further interpret the low dose implant results, calculations of total free-energy changes have been performed to study the differences between nucleation on a flat substrate surface and nucleation within a surface pit. This analysis shows that nucleation within a pit is almost always energetically favorable. In some special cases, assuming the pits have an inverted pyramidal shape, calculations show that island formation within the pits lowers the system total free-energy from the beginning of growth, i.e. there is no critical radius or energy barrier before a stable nucleus can be formed. The major geometric difference between high and low dose implantation area was revealed by AFM studies, which showed that pits generated by high implantation dose were still rounded after annealing and before growth, while pits from lower doses patterning had developed square edges oriented along the <100> directions of the substrate. These geometric differences suggest differences in crystalline or strain/stress states, either/both of which could have caused the subsequent different island growth characteristics. Continued study of directed self-assembly of metal oxide quantum dots should lead to better understanding of the creation of well ordered, precisely controlled, high density QD arrays, ultimately contributing to the development of next generation nanoelectronic, magnetic, and optical devices.

  6. Can vector control play a useful supplementary role against bancroftian filariasis?

    PubMed Central

    Maxwell, C. A.; Mohammed, K.; Kisumku, U.; Curtis, C. F.

    1999-01-01

    A single campaign of mass treatment for bancroftian filariasis with diethylcarbamazine (DEC) in Makunduchi, a town in Zanzibar, United Republic of Tanzania, combined with elimination of mosquito breeding in pit latrines with polystyrene beads was followed by a progressive decline over a 5-year period in the microfilarial rate from 49% to 3%. Evidence that vector control had contributed to this long-term decline was obtained by comparison with another town, Moga, where a DEC campaign was used without vector control and where resurgence of microfilariae could be observed 3-6 years after the campaign. In Zanzibar town, treatment of 3844 wet pit latrines and cesspits with polystyrene beads reduced the adult mosquito population in houses by about 65%. Supplementary treatment of open drains and marshes with Bacillus sphaericus produced little or no additional reduction compared to a sector of the town where only pit treatment with polystyrene was carried out. The cost and effort of achieving the 65% reduction in mosquito population could hardly be justified for its impact on filariasis alone, but its noticeable impact on biting nuisance might help to gain community support for an integrated programme. PMID:10083712

  7. The possibility of multi-layer nanofabrication via atomic force microscope-based pulse electrochemical nanopatterning

    NASA Astrophysics Data System (ADS)

    Kim, Uk Su; Morita, Noboru; Lee, Deug Woo; Jun, Martin; Park, Jeong Woo

    2017-05-01

    Pulse electrochemical nanopatterning, a non-contact scanning probe lithography process using ultrashort voltage pulses, is based primarily on an electrochemical machining process using localized electrochemical oxidation between a sharp tool tip and the sample surface. In this study, nanoscale oxide patterns were formed on silicon Si (100) wafer surfaces via electrochemical surface nanopatterning, by supplying external pulsed currents through non-contact atomic force microscopy. Nanoscale oxide width and height were controlled by modulating the applied pulse duration. Additionally, protruding nanoscale oxides were removed completely by simple chemical etching, showing a depressed pattern on the sample substrate surface. Nanoscale two-dimensional oxides, prepared by a localized electrochemical reaction, can be defined easily by controlling physical and electrical variables, before proceeding further to a layer-by-layer nanofabrication process.

  8. Imaging and Selective Elimination of Glioblastoma Stem Cells with Theranostic Near-Infrared-Labeled CD133-Specific Antibodies.

    PubMed

    Jing, Hua; Weidensteiner, Claudia; Reichardt, Wilfried; Gaedicke, Simone; Zhu, Xuekai; Grosu, Anca-Ligia; Kobayashi, Hisataka; Niedermann, Gabriele

    2016-01-01

    Near-infrared photoimmunotherapy (NIR-PIT), which employs monoclonal antibody (mAb)-phototoxic phthalocyanine dye IR700 conjugates, permits the specific, image-guided and spatiotemporally controlled elimination of tumor cells. Here, we report the highly efficient NIR-PIT of human tumor xenografts initiated from patient-derived cancer stem cells (CSCs). Using glioblastoma stem cells (GBM-SCs) expressing the prototypic CSC marker AC133/CD133, we also demonstrate here for the first time that NIR-PIT is highly effective against brain tumors. The intravenously injected theranostic AC133 mAb conjugate enabled the non-invasive detection of orthotopic gliomas by NIR fluorescence imaging, and reached AC133+ GBM-SCs at the invasive tumor front. AC133-targeted NIR-PIT induced the rapid cell death of AC133+ GBM-SCs and thereby strong shrinkage of both subcutaneous and invasively growing brain tumors. A single round of NIR-PIT extended the overall survival of mice with established orthotopic gliomas by more than a factor of two, even though the harmless NIR light was applied through the intact skull. Humanised versions of this theranostic agent may facilitate intraoperative imaging and histopathological evaluation of tumor borders and enable the highly specific and efficient eradication of CSCs.

  9. Control of retinoic acid synthesis and FGF expression in the nasal pit is required to pattern the craniofacial skeleton.

    PubMed

    Song, Y; Hui, J N; Fu, K K; Richman, J M

    2004-12-15

    Endogenous retinoids are important for patterning many aspects of the embryo including the branchial arches and frontonasal region of the embryonic face. The nasal placodes express retinaldehyde dehydrogenase-3 (RALDH3) and thus retinoids from the placode are a potential patterning influence on the developing face. We have carried out experiments that have used Citral, a RALDH antagonist, to address the function of retinoid signaling from the nasal pit in a whole embryo model. When Citral-soaked beads were implanted into the nasal pit of stage 20 chicken embryos, the result was a specific loss of derivatives from the lateral nasal prominences. Providing exogenous retinoic acid residue development of the beak demonstrating that most Citral-induced defects were produced by the specific blocking of RA synthesis. The mechanism of Citral effects was a specific increase in programmed cell death on the lateral (lateral nasal prominence) but not the medial side (frontonasal mass) of the nasal pit. Gene expression studies were focused on the Bone Morphogenetic Protein (BMP) pathway, which has a well-established role in programmed cell death. Unexpectedly, blocking RA synthesis decreased rather than increased Msx1, Msx2, and Bmp4 expression. We also examined cell survival genes, the most relevant of which was Fgf8, which is expressed around the nasal pit and in the frontonasal mass. We found that Fgf8 was not initially expressed along the lateral side of the nasal pit at the start of our experiments, whereas it was expressed on the medial side. Citral prevented upregulation of Fgf8 along the lateral edge and this may have contributed to the specific increase in programmed cell death in the lateral nasal prominence. Consistent with this idea, exogenous FGF8 was able to prevent cell death, rescue most of the morphological defects and was able to prevent a decrease in retinoic acid receptorbeta (Rarbeta) expression caused by Citral. Together, our results demonstrate that endogenous retinoids act upstream of FGF8 and the balance of these two factors is critical for regulating programmed cell death and morphogenesis in the face. In addition, our data suggest a novel role for endogenous retinoids from the nasal pit in controlling the precise downregulation of FGF in the center of the frontonasal mass observed during normal vertebrate development.

  10. Hydrogen effects in duplex stainless steel welded joints - electrochemical studies

    NASA Astrophysics Data System (ADS)

    Michalska, J.; Łabanowski, J.; Ćwiek, J.

    2012-05-01

    In this work results on the influence of hydrogen on passivity and corrosion resistance of 2205 duplex stainless steel (DSS) welded joints are described. The results were discussed by taking into account three different areas on the welded joint: weld metal (WM), heat-affected zone (HAZ) and parent metal. The corrosion resistance was qualified with the polarization curves registered in a synthetic sea water. The conclusion is that, hydrogen may seriously deteriorate the passive film stability and corrosion resistance to pitting of 2205 DSS welded joints. The presence of hydrogen in passive films increases corrosion current density and decreases the potential of the film breakdown. It was also found that degree of susceptibility to hydrogen degradation was dependent on the hydrogen charging conditions. WM region has been revealed as the most sensitive to hydrogen action.

  11. Passivation Behavior of Fe-Based Amorphous Coatings Prepared by High-Velocity Air/Oxygen Fuel Processes

    NASA Astrophysics Data System (ADS)

    Ma, H. R.; Li, J. W.; Chang, C. T.; Wang, X. M.; Li, R. W.

    2017-12-01

    Corrosion resistance and passivation behavior of Fe63Cr8Mo3.5Ni5P10B4C4Si2.5 amorphous coatings prepared by the activated combustion high-velocity air fuel (AC-HVAF) and high-velocity oxygen fuel (HVOF) processes have been studied in detail by cyclic potentiodynamic polarization, electrochemical impedance spectroscopy, cathodic polarization and Mott-Schottky approach. The AC-HVAF coating shows higher corrosion resistance than the HVOF coating in 3.5 wt.% NaCl solution, as evidenced by its lower corrosion current density and passive current density. It is found that the superior corrosion resistance of the AC-HVAF coating is attributed to the enhanced formation of a dense passive film with less defective structure, higher pitting resistance and passivity stability, as well as stronger repassivity.

  12. Corrosion performance of zinc coated steel in seawater environment

    NASA Astrophysics Data System (ADS)

    Liu, Shuan; Zhao, Xia; Zhao, Haichao; Sun, Huyuan; Chen, Jianmin

    2017-03-01

    Considering the continuous exploitation of marine resources, it is very important to study the anticorrosion performance and durability of zinc coated streel (ZCS) because its increasing use as reinforcements in seawater. Tafel polarization curves and linear polarization curves combined with electrochemical impedance spectroscopy (EIS) were employed to evaluate the corrosion performance of ZCS at Qingdao test station during long-term immersion in seawater. The results indicated that the corrosion rate of the ZCS increased obviously with immersion time in seawater. The corrosion products that formed on the zinc coated steel were loose and porous, and were mainly composed of Zn5(OH)8Cl2, Zn5(OH)6(CO3)2, and ZnO. Pitting corrosion occurred on the steel surface in neutral seawater, and the rate of ZCS corrosion decreased with increasing pH.

  13. Study on biodegradation of the second phase Mg17Al12 in Mg-Al-Zn alloys: in vitro experiment and thermodynamic calculation.

    PubMed

    Liu, Chen; Yang, Huazhe; Wan, Peng; Wang, Kehong; Tan, Lili; Yang, Ke

    2014-02-01

    The in vitro biodegradation behavior of Mg17Al12 as a second phase in Mg-Al-Zn alloys was investigated via electrochemical measurement and immersion test. The Hank's solutions with neutral and acidic pH values were adopted as electrolytes to simulate the in vivo environment during normal and inflammatory response process. Furthermore, the local orbital density functional theory approach was employed to study the thermodynamical stability of Mg17Al12 phase. All the results proved the occurrence of pitting corrosion process with crackings for Mg17Al12 phase in Hank's solution, but with a much lower degradation rate compared with both AZ31 alloy and pure magnesium. Furthermore, a preliminary explanation on the biodegradation behaviors of Mg17Al12 phase was proposed. © 2013.

  14. CORROSION STUDY FOR THE EFFLUENT TREATMENT FACILITY (ETF) CHROME (VI) REDUCTANT SOLUTION USING 304 & 316L STAINLESS STEEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DUNCAN, J.B.

    2007-06-27

    The Effluent Treatment Facility has developed a method to regenerate spent resin from the groundwater pump and treat intercepting chrome(VI) plumes (RPP-RPT-32207, Laboratory Study on Regeneration of Spent DOWEX 21K 16-20 Mesh Ion Exchange Resin). Subsequent laboratory studies have shown that the chrome(VI) may be reduced to chrome(III) by titrating with sodium metabisulfite to an oxidation reduction potential (ORP) of +280 mV at a pH of 2. This test plan describes the use of cyclic potentiodynamic polarization and linear polarization techniques to ascertain the electrochemical corrosion and pitting propensity of the 304 and 316L stainless steel in the acidified reducingmore » the solution that will be contained in either the secondary waste receiver tank or concentrate tank.« less

  15. Effectiveness of oil-soluble corrosion inhibitors during corrosion-mechanical breakdown in acid and neutral media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kardash, N.V.; Egorov, V.V.; Forman, A.Y.

    1986-11-01

    The purpose of the present study is to ascertain the effectiveness of familiar additives and oil-soluble inhibitors under conditions of acid corrosion in comparison with their rapid action and waterreplacement efficiency, and the capacity to inhibit an electrolyte that forms in the oils, to protect against electrochemical corrosion, especially from pitting, and to reduce the mechanical-corrosion forms of wear. Characteristics of several oil-soluble corrosion inhibitors and the effectiveness of the oil-soluble inhibitors are shown. The additives M, ALOP, and MONIKA are most effective under fretting-corrosion conditions. It is shown that only the combined additives and compositions that provide for metalmore » protection in both acid and neutral media are sufficiently effective in preventing corrosion cracking, fatigue, corrosion fatigue and corrosion fretting.« less

  16. Fabrication of free standing anodic titanium oxide membranes with clean surface using recycling process.

    PubMed

    Meng, Xianhui; Lee, Tae-Young; Chen, Huiyu; Shin, Dong-Wook; Kwon, Kee-Won; Kwon, Sang Jik; Yoo, Ji-Beom

    2010-07-01

    Large area of self-organized, free standing anodic titanium oxide (ATO) nanotube membranes with clean surfaces were facilely prepared to desired lengths via electrochemical anodization of highly pure Ti sheets in an ethylene glycol electrolyte, with a small amount of NH4F and H2O at 50 V, followed by self-detachment of the ATO membrane from the Ti substrate using recycling processes. In the first anodization step, the nanowire oxide layer existed over the well-arranged ATO nanotube. After sufficiently rinsing with water, the whole ATO layer was removed from the Ti sheet by high pressure N2 gas, and a well-patterned dimple layer with a thickness of about 30 nm existed on the Ti substrate. By using these naturally formed nano-scale pits as templates, in the second and third anodization process, highly ordered, vertically aligned, and free standing ATO membranes with the anodic aluminum oxide (AAO)-like clean surface were obtained. The inter-pore distance and diameter was 154 +/- 2 nm and 91+/- 2 nm, the tube arrays lengths for 25 and 46 hours were 44 and 70 microm, respectively. The present study demonstrates a simple approach to producing high quality, length controllable, large area TiO2 membrane.

  17. Martian Central Pit Craters

    NASA Technical Reports Server (NTRS)

    Hillman, E.; Barlow, N. G.

    2005-01-01

    Impact craters containing central pits are rare on the terrestrial planets but common on icy bodies. Mars is the exception among the terrestrial planets, where central pits are seen on crater floors ( floor pits ) as well as on top of central peaks ( summit pits ). Wood et al. [1] proposed that degassing of subsurface volatiles during crater formation produced central pits. Croft [2] argued instead that central pits might form during the impact of volatile-rich comets. Although central pits are seen in impact craters on icy moons such as Ganymede, they do show some significant differences from their martian counterparts: (a) only floor pits are seen on Ganymede, and (b) central pits begin to occur at crater diameters where the peak ring interior morphology begins to appear in terrestrial planet craters [3]. A study of craters containing central pits was conducted by Barlow and Bradley [4] using Viking imagery. They found that 28% of craters displaying an interior morphology on Mars contain central pits. Diameters of craters containing central pits ranged from 16 to 64 km. Barlow and Bradley noted that summit pit craters tended to be smaller than craters containing floor pits. They also noted a correlation of central pit craters with the proposed rings of large impact basins. They argued that basin ring formation fractured the martian crust and allowed subsurface volatiles to concentrate in these locations. They favored the model that degassing of the substrate during crater formation was responsible for central pit formation due to the preferential location of central pit craters along these basin rings.

  18. Combinatorial electrochemical synthesis and screening of Pt-WO3 catalysts for electro-oxidation of methanol

    NASA Astrophysics Data System (ADS)

    Jayaraman, Shrisudersan; Baeck, Sung-Hyeon; Jaramillo, Thomas F.; Kleiman-Shwarsctein, Alan; McFarland, Eric W.

    2005-06-01

    An automated system for high-throughput electrochemical synthesis and screening of fuel cell electro-oxidation catalysts is described. This system consists of an electrode probe that contains counter and reference electrodes that can be positioned inside an array of electrochemical cells created within a polypropylene block. The electrode probe is attached to an automated of X-Y-Z motion system. An externally controlled potentiostat is used to apply the electrochemical potential to the catalyst substrate. The motion and electrochemical control are integrated using a user-friendly software interface. During automated synthesis the deposition potential and/or current may be controlled by a pulse program triggered by the software using a data acquisition board. The screening includes automated experiments to obtain cyclic voltammograms. As an example, a platinum-tungsten oxide (Pt-WO3) library was synthesized and characterized for reactivity towards methanol electro-oxidation.

  19. Electrochemical studies on the performance of SS316L electrode in electrokinetics

    NASA Astrophysics Data System (ADS)

    Choi, Jeong-Hee; Maruthamuthu, Sundaram; Lee, Hyun-Goo; Ha, Tae-Hyun; Bae, Jeong-Hyo

    2009-10-01

    Organic and trace metal pollutants are removed by employing various electrodes in an electrokinetic (EK) process. Stainless steel was used either as an anode or a cathode by various investigators in electroremediation systems. In the present study, the role of SS316L as an anode and cathode in EK system was studied by the measurements of pH, conductivity of electrolyte, and potential of the anode and cathode at different current densities. The weight loss of the anode and cathode and the leaching of chromium, iron, and nickel at different current densities were measured and discussed with an electroosmosis process. The electrochemical behavior of SS316L electrode in neutral, acidic and alkaline pH in soil environment was studied by an electrochemical technique viz. polarization study. Surface analysis of SS316L after EK was done by XPS and SEM. The higher conductivity was noticed at anolyte when compared to catholyte. The weight loss of the anode was in the following order 0.615 > 0.307 > 0.123 mA/cm2 and the cathode corrosion rate was vice versa. Peroxide production was also noticed at the anolyte, which may encourage the degradation of the total organic content (TOC) in the soil. The OCP (open circuit potential) of SS316L was about +75 mV vs SCE in the soil extract; while adding acetic acid, the potential shifted to the positive side, to about +380 mV vs SCE. The breakdown potential and the range of passivation potential were higher in acetic acid added system when compared to other systems. Pitting was observed on both the anode and cathode within 48 h during the EK process. The present study concludes that SS is not a proper electrode material for the EK process.

  20. Mapping of the minimal inorganic phosphate transporting unit of human PiT2 suggests a structure universal to PiT-related proteins from all kingdoms of life

    PubMed Central

    2011-01-01

    Background The inorganic (Pi) phosphate transporter (PiT) family comprises known and putative Na+- or H+-dependent Pi-transporting proteins with representatives from all kingdoms. The mammalian members are placed in the outer cell membranes and suggested to supply cells with Pi to maintain house-keeping functions. Alignment of protein sequences representing PiT family members from all kingdoms reveals the presence of conserved amino acids and that bacterial phosphate permeases and putative phosphate permeases from archaea lack substantial parts of the protein sequence when compared to the mammalian PiT family members. Besides being Na+-dependent Pi (NaPi) transporters, the mammalian PiT paralogs, PiT1 and PiT2, also are receptors for gamma-retroviruses. We have here exploited the dual-function of PiT1 and PiT2 to study the structure-function relationship of PiT proteins. Results We show that the human PiT2 histidine, H502, and the human PiT1 glutamate, E70, - both conserved in eukaryotic PiT family members - are critical for Pi transport function. Noticeably, human PiT2 H502 is located in the C-terminal PiT family signature sequence, and human PiT1 E70 is located in ProDom domains characteristic for all PiT family members. A human PiT2 truncation mutant, which consists of the predicted 10 transmembrane (TM) domain backbone without a large intracellular domain (human PiT2ΔR254-V483), was found to be a fully functional Pi transporter. Further truncation of the human PiT2 protein by additional removal of two predicted TM domains together with the large intracellular domain created a mutant that resembles a bacterial phosphate permease and an archaeal putative phosphate permease. This human PiT2 truncation mutant (human PiT2ΔL183-V483) did also support Pi transport albeit at very low levels. Conclusions The results suggest that the overall structure of the Pi-transporting unit of the PiT family proteins has remained unchanged during evolution. Moreover, in combination, our studies of the gene structure of the human PiT1 and PiT2 genes (SLC20A1 and SLC20A2, respectively) and alignment of protein sequences of PiT family members from all kingdoms, along with the studies of the dual functions of the human PiT paralogs show that these proteins are excellent as models for studying the evolution of a protein's structure-function relationship. PMID:21586110

  1. Mapping of the minimal inorganic phosphate transporting unit of human PiT2 suggests a structure universal to PiT-related proteins from all kingdoms of life.

    PubMed

    Bøttger, Pernille; Pedersen, Lene

    2011-05-17

    The inorganic (Pi) phosphate transporter (PiT) family comprises known and putative Na(+)- or H(+)-dependent Pi-transporting proteins with representatives from all kingdoms. The mammalian members are placed in the outer cell membranes and suggested to supply cells with Pi to maintain house-keeping functions. Alignment of protein sequences representing PiT family members from all kingdoms reveals the presence of conserved amino acids and that bacterial phosphate permeases and putative phosphate permeases from archaea lack substantial parts of the protein sequence when compared to the mammalian PiT family members. Besides being Na(+)-dependent P(i) (NaP(i)) transporters, the mammalian PiT paralogs, PiT1 and PiT2, also are receptors for gamma-retroviruses. We have here exploited the dual-function of PiT1 and PiT2 to study the structure-function relationship of PiT proteins. We show that the human PiT2 histidine, H(502), and the human PiT1 glutamate, E(70),--both conserved in eukaryotic PiT family members--are critical for P(i) transport function. Noticeably, human PiT2 H(502) is located in the C-terminal PiT family signature sequence, and human PiT1 E(70) is located in ProDom domains characteristic for all PiT family members.A human PiT2 truncation mutant, which consists of the predicted 10 transmembrane (TM) domain backbone without a large intracellular domain (human PiT2ΔR(254)-V(483)), was found to be a fully functional P(i) transporter. Further truncation of the human PiT2 protein by additional removal of two predicted TM domains together with the large intracellular domain created a mutant that resembles a bacterial phosphate permease and an archaeal putative phosphate permease. This human PiT2 truncation mutant (human PiT2ΔL(183)-V(483)) did also support P(i) transport albeit at very low levels. The results suggest that the overall structure of the P(i)-transporting unit of the PiT family proteins has remained unchanged during evolution. Moreover, in combination, our studies of the gene structure of the human PiT1 and PiT2 genes (SLC20A1 and SLC20A2, respectively) and alignment of protein sequences of PiT family members from all kingdoms, along with the studies of the dual functions of the human PiT paralogs show that these proteins are excellent as models for studying the evolution of a protein's structure-function relationship. © 2011 Bøttger and Pedersen; licensee BioMed Central Ltd.

  2. Credit PSR. This view looks northeast (54°) at the open ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit PSR. This view looks northeast (54°) at the open burn unit as it is seen on approach from Circle Drive. The metal shed in front of the earth mound personnel shield contained controls for a stove that was formerly used to burn scrap propellants in the adjacent pit (see HAER photo CA163-V-1). Regulations changed to permit open pit burning of such materials - Jet Propulsion Laboratory Edwards Facility, Incinerator, Edwards Air Force Base, Boron, Kern County, CA

  3. SPERTI Reactor Pit Building (PER605). Earth shielding protect adjacent Instrument ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SPERT-I Reactor Pit Building (PER-605). Earth shielding protect adjacent Instrument Cell (PER-606). Security fencing surrounds complex, to which gate entry is provided next to Guard House (PER-607). Note gravel road leading to control area. Earth-covered conduit leads from instrument cell to terminal building out of view. Photographer: R.G. Larsen. Date: June 22, 1955. INEEL negative no. 55-1701 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  4. Optimization of Skill Retention in the U. S. Army through Initial Training Analysis and Design: Skill Sustainment Exercises. Volume 3.

    DTIC Science & Technology

    1983-05-01

    Firing data cards. PROCEDURES I. Prior to live fire exercises all firers must be oriented on range procedures. 2. Preparatory marksmanship training...Ordnance detail. 2. Range safety officer. 7. Medical personnel. 3. Firing line safety NCOs. 8. Control tower operators. i 4. Scorer (I per firer ). 9. Pit...phones and wire (for PIT commo). PROCEDURES I. Prior to live fire exercises, all firers must be oriented on range procedures. 2. Scorers are responsible

  5. Pavlovian-to-instrumental transfer effects in the nucleus accumbens relate to relapse in alcohol dependence.

    PubMed

    Garbusow, Maria; Schad, Daniel J; Sebold, Miriam; Friedel, Eva; Bernhardt, Nadine; Koch, Stefan P; Steinacher, Bruno; Kathmann, Norbert; Geurts, Dirk E M; Sommer, Christian; Müller, Dirk K; Nebe, Stephan; Paul, Sören; Wittchen, Hans-Ulrich; Zimmermann, Ulrich S; Walter, Henrik; Smolka, Michael N; Sterzer, Philipp; Rapp, Michael A; Huys, Quentin J M; Schlagenhauf, Florian; Heinz, Andreas

    2016-05-01

    In detoxified alcohol-dependent patients, alcohol-related stimuli can promote relapse. However, to date, the mechanisms by which contextual stimuli promote relapse have not been elucidated in detail. One hypothesis is that such contextual stimuli directly stimulate the motivation to drink via associated brain regions like the ventral striatum and thus promote alcohol seeking, intake and relapse. Pavlovian-to-Instrumental-Transfer (PIT) may be one of those behavioral phenomena contributing to relapse, capturing how Pavlovian conditioned (contextual) cues determine instrumental behavior (e.g. alcohol seeking and intake). We used a PIT paradigm during functional magnetic resonance imaging to examine the effects of classically conditioned Pavlovian stimuli on instrumental choices in n = 31 detoxified patients diagnosed with alcohol dependence and n = 24 healthy controls matched for age and gender. Patients were followed up over a period of 3 months. We observed that (1) there was a significant behavioral PIT effect for all participants, which was significantly more pronounced in alcohol-dependent patients; (2) PIT was significantly associated with blood oxygen level-dependent (BOLD) signals in the nucleus accumbens (NAcc) in subsequent relapsers only; and (3) PIT-related NAcc activation was associated with, and predictive of, critical outcomes (amount of alcohol intake and relapse during a 3 months follow-up period) in alcohol-dependent patients. These observations show for the first time that PIT-related BOLD signals, as a measure of the influence of Pavlovian cues on instrumental behavior, predict alcohol intake and relapse in alcohol dependence. © 2015 Society for the Study of Addiction.

  6. Field experiment and numerical simulation of coupling non-Darcy flow caused by curtain and pumping well in foundation pit dewatering

    NASA Astrophysics Data System (ADS)

    Wang, Jianxiu; Liu, Xiaotian; Wu, Yuanbin; Liu, Shaoli; Wu, Lingao; Lou, Rongxiang; Lu, Jiansheng; Yin, Yao

    2017-06-01

    High-velocity non-Darcy flow produced larger drawdown than Darcy flow under the same pumping rate. When the non-Darcy flow caused by curtain met non-Darcy flow caused by pumping wells, superposition and amplification effect occurred in the coupling area, the non-Darcy flow was defined as coupling non-Darcy flow. The coupling non-Darcy flow can be produced and controlled using different combination of curtain and pumping wells in foundation pit dewatering to obtain the maximum drawdown using the minimum pumping rate. The Qianjiang Century City Station foundation pit of Hangzhou subway, China, was selected as background. Field experiments were performed to observe the coupling non-Darcy flow in round gravel. A generalized conceptual model was established to study the coupling effect under different combination of curtain and pumping wells. Numerical simulations of the coupling non-Darcy flow in foundation pit dewatering were carried out based on the Forchheimer equation. The non-Darcy flow area and flow velocity were influenced by the coupling effect. Short filter tube, large pumping rate, small horizontal distance between filter tube and diaphragm wall, and small vertical distance between the filter tube and confined aquifer roof effectively strengthened the coupling effect and obtained a large drawdown. The pumping wells installed close to a curtain was an intentional choice designed to create coupling non-Darcy flow and obtain the maximize drawdown. It can be used in the dewatering of a long and narrow foundation pit, such as a subway foundation pit.

  7. The three principles of action: a Pavlovian-instrumental transfer hypothesis

    PubMed Central

    Cartoni, Emilio; Puglisi-Allegra, Stefano; Baldassarre, Gianluca

    2013-01-01

    Pavlovian conditioned stimuli can influence instrumental responding, an effect called Pavlovian-instrumental transfer (PIT). During the last decade, PIT has been subdivided into two types: specific PIT and general PIT, each having its own neural substrates. Specific PIT happens when a conditioned stimulus (CS) associated with a reward enhances an instrumental response directed to the same reward. Under general PIT, instead, the CS enhances a response directed to a different reward. While important progress has been made into identifying the neural substrates, the function of specific and general PIT and how they interact with instrumental responses are still not clear. In the experimental paradigm that distinguishes specific and general PIT an effect of PIT inhibition has also been observed and is waiting for an explanation. Here we propose an hypothesis that links these three PIT effects (specific PIT, general PIT and PIT inhibition) to three aspects of action evaluation. These three aspects, which we call “principles of action”, are: context, efficacy, and utility. In goal-directed behavior, an agent has to evaluate if the context is suitable to accomplish the goal, the efficacy of his action in getting the goal, and the utility of the goal itself: we suggest that each of the three PIT effects is related to one of these aspects of action evaluation. In particular, we link specific PIT with the estimation of efficacy, general PIT with the evaluation of utility, and PIT inhibition with the adequacy of context. We also provide a latent cause Bayesian computational model that exemplifies this hypothesis. This hypothesis and the model provide a new framework and new predictions to advance knowledge about PIT functioning and its role in animal adaptation. PMID:24312025

  8. Evaluation of the physical process controlling beach changes adjacent to nearshore dredge pits

    USGS Publications Warehouse

    Benedet, L.; List, J.H.

    2008-01-01

    Numerical modeling of a beach nourishment project is conducted to enable a detailed evaluation of the processes associated with the effects of nearshore dredge pits on nourishment evolution and formation of erosion hot spots. A process-based numerical model, Delft3D, is used for this purpose. The analysis is based on the modification of existing bathymetry to simulate "what if" scenarios with/without the bathymetric features of interest. Borrow pits dredged about 30??years ago to provide sand for the nourishment project have a significant influence on project performance and formation of erosional hot spots. It was found that the main processes controlling beach response to these offshore bathymetric features were feedbacks between wave forces (roller force or alongshore component of the radiation stress), pressure gradients due to differentials in wave set-up/set-down and bed shear stress. Modeling results also indicated that backfilling of selected borrow sites showed a net positive effect within the beach fill limits and caused a reduction in the magnitude of hot spot erosion. ?? 2008 Elsevier B.V. All rights reserved.

  9. Geochemical behavior and dissolved species control in acid sand pit lakes, Sepetiba sedimentary basin, Rio de Janeiro, SE - Brazil

    NASA Astrophysics Data System (ADS)

    Marques, Eduardo D.; Sella, Sílvia M.; Bidone, Edison D.; Silva-Filho, Emmanoel V.

    2010-12-01

    This work shows the influence of pluvial waters on dissolved components and mineral equilibrium of four sand pit lakes, located in the Sepetiba sedimentary basin, SE Brazil. The sand mining activities promote sediment oxidation, lowering pH and increasing SO 4 contents. The relatively high acidity of these waters, similar to ore pit lakes environment and associated acid mine drainage, increases weathering rate, especially of silicate minerals, which produces high Al concentrations, the limiting factor for fish aquaculture. During the dry season, basic cations (Ca, Mg, K and Na), SiO 2 and Al show their higher values due to evapoconcentration and pH are buffered. In the beginning of the wet season, the dilution factor by rainwater increases SO 4 and decreases pH values. The aluminum monomeric forms (Al(OH) 2+ and Al(OH) 2+), the most toxic species for aquatic organisms, occur during the dry season, while AlSO 4+ species predominate during the wet season. Gibbsite, allophane, alunite and jurbanite are the reactive mineral phases indicated by PHREEQC modeling. During the dry season, hydroxialuminosilicate allophane is the main phase in equilibrium with the solution, while the sulphate salts alunite and jurbanite predominate in the rainy season due to the increasing of SO 4 values. Gibbsite is also in equilibrium with sand pit lakes waters, pointing out that hydrolysis reaction is a constant process in the system. Comparing to SiO 2, sulphate is the main Al retriever in the pit waters because the most samples (alunite and jurbanite) are in equilibrium with the solution in both seasons. This Al hydrochemical control allied to some precaution, like pH correction and fertilization of these waters, allows the conditions for fishpond culture. Equilibrium of the majority samples with kaolinite (Ca, Mg, Na diagrams) and primary minerals (K diagram) points to moderate weathering rate in sand pit sediments, which cannot be considered for the whole basin due to the anomalous acidification of the studied waters.

  10. A probability distribution model of tooth pits for evaluating time-varying mesh stiffness of pitting gears

    NASA Astrophysics Data System (ADS)

    Lei, Yaguo; Liu, Zongyao; Wang, Delong; Yang, Xiao; Liu, Huan; Lin, Jing

    2018-06-01

    Tooth damage often causes a reduction in gear mesh stiffness. Thus time-varying mesh stiffness (TVMS) can be treated as an indication of gear health conditions. This study is devoted to investigating the mesh stiffness variations of a pair of external spur gears with tooth pitting, and proposes a new model for describing tooth pitting based on probability distribution. In the model, considering the appearance and development process of tooth pitting, we model the pitting on the surface of spur gear teeth as a series of pits with a uniform distribution in the direction of tooth width and a normal distribution in the direction of tooth height, respectively. In addition, four pitting degrees, from no pitting to severe pitting, are modeled. Finally, influences of tooth pitting on TVMS are analyzed in details and the proposed model is validated by comparing with a finite element model. The comparison results show that the proposed model is effective for the TVMS evaluations of pitting gears.

  11. Lithium1.3Aluminum0.3Titanium1.7Phosphate as a solid state Li-ion conductor: Issues with microcracking and stability in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Jackman, Spencer D.

    Lithium aluminum titanium phosphate (LATP) with formula Li1.3Al0.3Ti1.7(PO4)3 was analyzed and tested to better understand its applicability as a solid state ion conducting ceramic material for electrochemical applications. Sintered samples were obtained from Ceramatec, Inc. in Salt Lake City and characterized in terms of density, phase-purity, fracture toughness, Young's modulus, thermal expansion behavior, mechanical strength, a.c. and d.c. ionic conductivity, and susceptibility to static and electrochemical corrosion in aqueous Li salt solutions. It was shown that LATP is prone to microcrack generation because of high thermal expansion anisotropy. A.c. impedance spectra of high-purity LATP of varying grain sizes showed that microcracking had a negative impact on the ionic conduction of Li along grain boundaries, with fine-grained (1.7±0.7 µm) LATP having twice the ionic conductivity of the same purity of coarse-grained (4.8±1.9 µm) LATP at 50°C. LATP with detectible secondary phases had lower ionic conductivity for similar grain sizes, as would be expected. The Young's modulus of fine-grained LATP was measured to be 115 GPa, and the highest biaxial strength was 191±11 MPa when tested in mineral oil, 144±13 MPa as measured in air, and 26±7 MPa after exposure to deionized water, suggesting that LATP undergoes stress-corrosion cracking. After exposure to LiOH, the strength was 76±19 MPa. This decrease in strength was observed despite there being no measureable change in a.c. impedance spectra, X-ray diffraction, or sample mass, suggesting phosphate glasses at grain boundaries. The chemical and electrochemical stability of high-purity LATP in aqueous electrochemical cells was evaluated using LiOH, LiCl, LiNO3, and LiCOOCH3 salts as the Li source. LATP was found to be most stable between pH 8-9, with the longest cell operating continuously at 25 mA cm-2 for 625 hours at 40°C in LiCOOCH3. At pH values outside of the 7-10 range, eventual membrane degradation was observed in all aqueous systems under electrochemical conditions. While LATP was surprisingly resistant to static corrosion in a hot, aqueous LiOH solution, electrochemical degradation was observed at the cathode due to subsurface pitting. Strength measurements were more instructive than impedance measurements in detecting this degradation.

  12. Changes in the Influence of Alcohol-Paired Stimuli on Alcohol Seeking across Extended Training

    PubMed Central

    Corbit, Laura H.; Janak, Patricia H.

    2016-01-01

    Previous work has demonstrated that goal-directed control of alcohol-seeking and other drug-related behaviors is reduced following extended self-administration and drug exposure. Here, we examined how the magnitude of stimulus influences on responding changes across similar training and drug exposure. Rats self-administered alcohol or sucrose for 2 or 8 weeks. Previous work has shown that 8 weeks, but not 2 weeks of self-administration produces habitual alcohol seeking. Next, all animals received equivalent Pavlovian conditioning sessions where a discrete stimulus predicted the delivery of alcohol or sucrose. Finally, the impact of the stimuli on ongoing instrumental responding was examined in a Pavlovian–instrumental transfer (PIT) test. While a significant PIT effect was observed following 2 weeks of either alcohol or sucrose self-administration, the magnitude of this effect was greater following 8 weeks of training. The specificity of the PIT effect appeared unchanged by extended training. While it is well established that evaluation of the outcome of responding contributes less to behavioral control following extended training and/or drug exposure, our data indicate that reward–predictive stimuli have a stronger contribution to responding after extended training. Together, these findings provide insight into the factors that control behavior after extended drug use, which will be important for developing effective methods for controlling and ideally reducing these behaviors. PMID:27777560

  13. NIR detection of pits and pit fragments in fresh cherries (abstract)

    USDA-ARS?s Scientific Manuscript database

    The feasibility of using near infrared (NIR) diffuse reflectance spectroscopy for the detection of pits and pit fragments in cherries was demonstrated. For detection of whole pits, 300 cherries were obtained locally and pits were removed from half. NIR reflectance spectra were obtained in triplicate...

  14. 7 CFR 52.779 - Freedom from pits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Freedom from pits. 52.779 Section 52.779 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Freedom from pits. (a) General. The factor of freedom from pits refers to the incidence of pits and pit...

  15. The effects of pitting on fatigue crack nucleation in 7075-T6 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Ma, LI; Hoeppner, David W.

    1994-01-01

    A high-strength aluminum alloy, 7075-T6, was studied to quantitatively evaluate chemical pitting effects of its corrosion fatigue life. The study focused on pit nucleation, pit growth, and fatigue crack nucleation. Pitting corrosion fatigue experiments were conducted in 3.5 percent NaCl aqueous solution under constant amplitude sinusoidal loading at two frequencies, 5 and 20 Hz. Smooth and unnotched specimens were used in this investigation. A video recording system was developed to allow in situ observation of the surface changes of the specimens during testing. The results indicated that pitting corrosion considerably reduces the fatigue strength by accelerating fatigue crack nucleation. A metallographic examination was conducted on the specimens to evaluate the nature of corrosion pits. First, the actual shapes of the corrosion pits were evaluated by cross-sectioning the pits. Secondly, the relation between corrosion pits and microstructure was also investigated. Finally, the possibility of another corrosion mechanism that might be involved in pitting was explored in this investigation. The fractography of the tested specimens showed that corner corrosion pits were responsible for fatigue crack nucleation in the material due to the associated stress concentration. The pits exhibited variance of morphology. Fatigue life for the experimental conditions appeared to be strongly dependent on pitting kinetics and the crack nucleation stage.

  16. Effects of an ethanol-paired CS on responding for ethanol and food: Comparisons with a stimulus in a Truly-Random-Control group and to a food-paired CS on responding for food.

    PubMed

    Lamb, R J; Ginsburg, Brett C; Schindler, Charles W

    2016-12-01

    Motivational increases due to exposure to alcohol-paired Conditioned Stimuli (CS) are central to some accounts of alcoholism. However, few studies isolate a stimulus's function as a CS from its other potential functions. Pavlovian-Instrumental-Transfer (PIT) procedures isolate a stimulus's function as a CS from its other functions. Though there are several relevant studies using PIT, knowledge gaps exist. Particularly, it is not clear that an alcohol-paired CS will increase alcohol seeking compared to the same stimulus in a Truly-Random-Control group, nor whether such increases are specific to alcohol seeking. To address these knowledge gaps in Experiment 1, rats responded for ethanol (0.1 ml 8% w/v) under an RI 30-sec schedule, then the lever was removed and half the rats had ethanol delivered during occasional 120-sec light presentations, while the remainder had ethanol and the light presented under independent RT schedules. Later the lever was returned and the light was presented during responding in extinction (PIT test). Following this test, levers were again removed and the light was presented without ethanol (light extinction), following again by a PIT test. Responding in the two groups during light presentations did not differ in either PIT test. Experiment 2 repeated Experiment 1 using food instead of ethanol. In Experiment 2, responding during light presentations increased in the paired group. In Experiment 3, rats were trained on a concurrent FR schedule of food and ethanol delivery. Ethanol was delivered following 5 responses and the response requirement for food adjusted so that similar numbers of food and ethanol deliveries were obtained. Subsequently, rats underwent conditioning, control and testing procedures identical to those in Experiment 1. In Experiment 3, the ethanol-paired CS increased ethanol-responding, but not food-responding. These results are most easily interpreted as changes in responding resulting from CS-elicited behavior rather than motivational changes. This interpretation is more compatible with some descriptions of the role of an alcohol-paired CS in alcoholism than others. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Effects of nitrogen in shielding gas on microstructure evolution and localized corrosion behavior of duplex stainless steel welding joint

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiqiang; Jing, Hongyang; Xu, Lianyong; Han, Yongdian; Zhao, Lei; Zhou, Chao

    2017-05-01

    The effects of nitrogen addition in shielding gas on microstructure evolution and localized corrosion behavior of duplex stainless steel (DSS) welds were studied. N2-supplemented shielding gas facilitated the primary austenite formation, suppressed the Cr2N precipitation in weld root, and increased the microhardnesses of weld metal. Furthermore, N2-supplemented shielding gas increased pitting resistance equivalent number (PREN) of austenite, but which decreased slightly PREN of ferrite. The modified double loop electrochemical potentiokinetic reactivation in 2 M H2SO4 + 1 M HCl was an effective method to study the localized corrosion of the different zones in the DSS welds. The adding 2% N2 to pure Ar shielding gas improved the localized corrosion resistance in the DSS welds, which was due to compensation for nitrogen loss and promoting nitrogen further solution in the austenite phases, suppression of the Cr2N precipitation in the weld root, and increase of primary austenite content with higher PREN than the ferrite and secondary austenite. Secondary austenite are prone to selective corrosion because of lower PREN compared with ferrite and primary austenite. Cr2N precipitation in the pure Ar shielding weld root and heat affected zone caused the pitting corrosion within the ferrite and the intergranular corrosion at the ferrite boundary. In addition, sigma and M23C6 precipitation resulted in the intergranular corrosion at the ferrite boundary.

  18. The influence of buffer system and biological fluids on the degradation of magnesium.

    PubMed

    Törne, Karin; Örnberg, Andreas; Weissenrieder, Jonas

    2017-08-01

    The influence of frequently used buffer system 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) compared to CO 2 /HCO3- on the corrosion of magnesium is investigated. Samples were immersed in simulated body fluid (m-SBF) while monitored by electrochemical impedance spectroscopy (EIS) for up to 30 days. In CO 2 /HCO3- the initial corrosion rate was 0.11 mm yr -1 . An inner protective layer of magnesium oxide was formed within the first 30 min exposure and subsequently covered by an outer layer of apatite within 24 h . The corrosion mechanism thereafter is best described as passive pitting with a porosity of ∼10%. Using HEPES as buffer agent increased the corrosion rate to 3.37 mm yr -1 . Cross sectional microscopy show a porous outer corrosion layer allowing rapid diffusion of aggressive ions through the film. Here the EIS results are best described by an active pitting model with an inner layer 5 to 10 times less protective compared to the inner layer formed without HEPES. Further the suitability of human whole blood and plasma as in vitro models for Mg degradation was evaluated. Mg corrosion caused coagulation after 24 h in both biological fluids. The corrosion during the first 24 h is similar to the corrosion in m-SBF with HEPES. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1490-1502, 2017. © 2016 Wiley Periodicals, Inc.

  19. Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm.

    PubMed

    Jia, Ru; Yang, Dongqing; Xu, Dake; Gu, Tingyue

    2017-12-01

    Electron transfer is a rate-limiting step in microbiologically influenced corrosion (MIC) caused by microbes that utilize extracellular electrons. Cross-cell wall electron transfer is necessary to transport the electrons released from extracellular iron oxidation into the cytoplasm of cells. Electron transfer mediators were found to accelerate the MIC caused by sulfate reducing bacteria. However, there is no publication in the literature showing the effect of electron transfer mediators on MIC caused by nitrate reducing bacteria (NRB). This work demonstrated that the corrosion of anaerobic Pseudomonas aeruginosa (PAO1) grown as a nitrate reducing bacterium biofilm on C1018 carbon steel was enhanced by two electron transfer mediators, riboflavin and flavin adenine dinucleotide (FAD) separately during a 7-day incubation period. The addition of either 10ppm (w/w) (26.6μM) riboflavin or 10ppm (12.7μM) FAD did not increase planktonic cell counts, but they increased the maximum pit depth on carbon steel coupons considerably from 17.5μm to 24.4μm and 25.0μm, respectively. Riboflavin and FAD also increased the specific weight loss of carbon steel from 2.06mg/cm 2 to 2.34mg/cm 2 and 2.61mg/cm 2 , respectively. Linear polarization resistance, electrochemical impedance spectroscopy and potentiodynamic polarization curves all corroborated the pitting and weight loss data. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Influence of halothane and methoxyflurane on regional brain and spinal cord concentrations of methionine-enkephalin in the rat.

    PubMed

    Agarwal, R K; Court, M; Chandna, V K; Mohan, A; Engelking, L R; Kumar, A M

    1994-01-01

    Rats were exposed to either oxygen (controls), 1.5% halothane in oxygen, or methoxyflurane (0.5%) in oxygen over a period of 2 h, then sacrificed at the end of exposure (2-h group), 4 h after removal from environmental chamber (4-h group), or at 24 h following anesthetic exposure (24-h group). Pituitary (excluding the neural lobe, Pit), brain, and spinal cord areas were isolated and processed with Met-enkephalin tissue concentrations determined. In halothane-exposed animals, Met-enkephalin concentrations in pit and across CNS areas studied were significantly lower at 2 h following anesthetic exposure than in control animals. Concentrations of Met-enkephalin in many areas of CNS and Pit of 4-h group approached control levels. Concentrations of Met-enkephalin in all areas studied except spinal cord returned to basal levels by 24 h following halothane exposure. Exposure to methoxyflurane resulted in less dramatic changes in Met-enkephalin concentrations across CNS regions examined. Exposure to methoxyflurane resulted in significant decreases in Met-enkephalin levels in olfactory bulb, thalamus, and hippocampus only. Met-Enkephalin levels did not change significantly in other areas of the central nervous system following methoxyflurane exposure. These results indicate that halothane and methoxyflurane may have differential effects on the endogenous opioid system.

  1. Characterization of physical mass transport through oil sands fluid fine tailings in an end pit lake: a multi-tracer study.

    PubMed

    Dompierre, Kathryn A; Barbour, S Lee

    2016-06-01

    Soft tailings pose substantial challenges for mine reclamation due to their high void ratios and low shear strengths, particularly for conventional terrestrial reclamation practices. Oil sands mine operators have proposed the development of end pit lakes to contain the soft tailings, called fluid fine tailings (FFT), generated when bitumen is removed from oil sands ore. End pit lakes would be constructed within mined-out pits with FFT placed below the lake water. However, the feasibility of isolating the underlying FFT has yet to be fully evaluated. Chemical constituents of interest may move from the FFT into the lake water via two key processes: (1) advective-diffusive mass transport with upward pore water flow caused by settling of the FFT; and (2) mixing created by wind events or unstable density profiles through the lake water and upper portion of the FFT. In 2013 and 2014, temperature and stable isotopes of water profiles were measured through the FFT and lake water in the first end pit lake developed by Syncrude Canada Ltd. Numerical modelling was undertaken to simulate these profiles to identify the key mechanisms controlling conservative mass transport in the FFT. Shallow mixing of the upper 1.1 m of FFT with lake water was required to explain the observed temperature and isotopic profiles. Following mixing, the re-establishment of both the temperature and isotope profiles required an upward advective flux of approximately 1.5 m/year, consistent with average FFT settling rates measured at the study site. These findings provide important insight on the ability to sequester soft tailings in an end pit lake, and offer a foundation for future research on the development of end pit lakes as an oil sands reclamation strategy. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Bioremediation of Acidic and Metalliferous Drainage (AMD) through organic carbon amendment by municipal sewage and green waste.

    PubMed

    McCullough, Clint D; Lund, Mark A

    2011-10-01

    Pit lakes (abandoned flooded mine pits) represent a potentially valuable water resource in hot arid regions. However, pit lake water is often characterised by low pH with high dissolved metal concentrations resulting from Acidic and Metalliferous Drainage (AMD). Addition of organic matter to pit lakes to enhance microbial sulphate reduction is a potential cost effective remediation strategy. However, cost and availability of suitable organic substrates are often limiting. Nevertheless, large quantities of sewage and green waste (organic garden waste) are often available at mine sites from nearby service towns. We treated AMD pit lake water (pH 2.4) from tropical, North Queensland, Australia, with primary-treated sewage sludge, green waste, and a mixture of sewage and green waste (1:1) in a controlled microcosm experiment (4.5 L). Treatments were assessed at two different rates of organic loading of 16:1 and 32:1 pit water:organic matter by mass. Combined green waste and sewage treatment was the optimal treatment with water pH increased to 5.5 in only 145 days with decreases of dissolved metal concentrations. Results indicated that green waste was a key component in the pH increase and concomitant heavy metal removal. Water quality remediation was primarily due to microbially-mediated sulphate reduction. The net result of this process was removal of sulphate and metal solutes to sediment mainly as monosulfides. During the treatment process NH(3) and H(2)S gases were produced, albeit at below concentrations of concern. Total coliforms were abundant in all green waste-treatments, however, faecal coliforms were absent from all treatments. This study demonstrates addition of low-grade organic materials has promise for bioremediation of acidic waters and warrants further experimental investigation into feasibility at higher scales of application such as pit lakes. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  3. Feedback Limiting the Coastal Response to Irregularities in Shelf Bathymetry

    NASA Astrophysics Data System (ADS)

    List, J. H.; Benedet, L.

    2007-12-01

    Observations and engineering studies have shown that non-uniform inner shelf bathymetry can influence longshore sediment transport gradients and create patterns of shoreline change. One classic example is from Grand Isle, Louisiana, where two offshore borrow pits caused two zones of shoreline accretion landward of the pits. In addition to anthropogenic cases, many natural situations exist in which irregularities in coastal planform are thought to result from offshore shoals or depressions. Recent studies using the hydrodynamic model Delft3D have successfully simulated the observed nearshore erosion and accretion patterns landward of an inner shelf borrow pit. An analysis of the momentum balance in a steady-state simulation has demonstrated that both alongshore pressure gradients (due to alongshore variations in wave setup) and radiation stress gradients (terms relevant to alongshore forcing) are important for forcing the initial pattern of nearshore sedimentation in response to the borrow pit. The response of the coast to non-uniform inner shelf bathymetry appears to be limited, however, because observed shoreline undulations are often rather subtle. (An exception may exist in the case of a very high angle wave climate.) Therefore, feedbacks in processes must exist such that growth of the shoreline salient itself modifies the transport processes in a way that limits further growth (assuming the perturbation in inner shelf bathymetry itself remains unchanged). Examination of the Delft3D momentum balance for an inner shelf pit test case demonstrates that after a certain degree of morphologic development the forcing associated with the well-known shoreline smoothing process (a.k.a., diffusion) counteracts the forcing associated with the inner shelf pit, producing a negative feedback which arrests further growth of the shoreline salient. These results provide insights into the physical processes that control shoreline changes behind inner shelf bathymetric anomalies (i.e. man-made dredge pits and natural bathymetric features) and are therefore relevant to the understanding and prediction of shoreline change on many coasts.

  4. Electrochemical carbon dioxide concentrator subsystem development

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Dahlausen, M. J.; Schubert, F. H.

    1983-01-01

    The fabrication of a one-person Electrochemical Depolarized Carbon Dioxide Concentrator subsystem incorporating advanced electrochemical, mechanical, and control and monitor instrumentation concepts is discussed. This subsystem included an advanced liquid cooled unitized core composite cell module and integrated electromechanical components. Over 1800 hours with the subsystem with removal efficiencies between 90%. and 100%; endurance tests with a Fluid Control Assembly which integrates 11 gas handling components of the subsystem; and endurance testing of a coolant control assembly which integrates a coolant pump, diverter valve and a liquid accumulator were completed.

  5. Dose-Dependent Dual Role of PIT-1 (POU1F1) in Somatolactotroph Cell Proliferation and Apoptosis

    PubMed Central

    Jullien, Nicolas; Roche, Catherine; Brue, Thierry; Figarella-Branger, Dominique; Graillon, Thomas; Barlier, Anne; Herman, Jean-Paul

    2015-01-01

    To test the role of wtPIT-1 (PITWT) or PIT-1 (R271W) (PIT271) in somatolactotroph cells, we established, using inducible lentiviral vectors, sublines of GH4C1 somatotroph cells that allow the blockade of the expression of endogenous PIT-1 and/or the expression of PITWT or PIT271, a dominant negative mutant of PIT-1 responsible for Combined Pituitary Hormone Deficiency in patients. Blocking expression of endogenous PIT-1 induced a marked decrease of cell proliferation. Overexpressing PITWT twofold led also to a dose-dependent decrease of cell proliferation that was accompanied by cell death. Expression of PIT271 induced a strong dose-dependent decrease of cell proliferation accompanied by a very pronounced cell death. These actions of PIT271 are independent of its interaction/competition with endogenous PIT-1, as they were unchanged when expression of endogenous PIT-1 was blocked. All these actions are specific for somatolactotroph cells, and could not be observed in heterologous cells. Cell death induced by PITWT or by PIT271 was accompanied by DNA fragmentation, but was not inhibited by inhibitors of caspases, autophagy or necrosis, suggesting that this cell death is a caspase-independent apoptosis. Altogether, our results indicate that under normal conditions PIT-1 is important for the maintenance of cell proliferation, while when expressed at supra-normal levels it induces cell death. Through this dual action, PIT-1 may play a role in the expansion/regression cycles of pituitary lactotroph population during and after lactation. Our results also demonstrate that the so-called “dominant-negative” action of PIT271 is independent of its competition with PIT-1 or a blockade of the actions of the latter, and are actions specific to this mutant variant of PIT-1. PMID:25822178

  6. Tagging effects of passive integrated transponder and visual implant elastomer on the small-bodied white sands pupfish (Cyprinodon tularosa)

    USGS Publications Warehouse

    Peterson, Damon; Trantham, Randi B.; Trantham, Tulley G.; Caldwell, Colleen A.

    2018-01-01

    One of the greatest limiting factors of studies designed to obtain growth, movement, and survival in small-bodied fishes is the selection of a viable tag. The tag must be relatively small with respect to body size as to impart minimal sub-lethal effects on growth and mobility, as well as be retained throughout the life of the fish or duration of the study. Thus, body size of the model species becomes a major limiting factor; yet few studies have obtained empirical evidence of the minimum fish size and related tagging effects. The probability of surviving a tagging event was quantified in White Sands pupfish (Cyprinodon tularosa) across a range of sizes (19–60 mm) to address the hypothesis that body size predicts tagging survival. We compared tagging related mortality, individual taggers, growth, and tag retention in White Sands pupfish implanted with 8-mm passive integrated transponder (PIT), visual implant elastomer (VIE), and control (handled similarly, but no tag implantation) over a 75 d period. Initial body weight was a good predictor of the probability of survival in PIT- and VIE-tagged fish. As weight increased by 1 g, the fish were 4.73 times more likely to survive PIT-tag implantation compared to the control fish with an estimated suitable tagging size at 1.1 g (TL: 39.29 ± 0.41 mm). Likewise, VIE-tagged animals were 2.27 times more likely to survive a tagging event compared to the control group for every additional 1 g with an estimated size suitable for tagging of 0.9 g (TL: 36.9 ± 0.36 mm) fish. Growth rates of PIT- and VIE-tagged White Sands pupfish were similar to the control groups. This research validated two popular tagging methodologies in the White Sands pupfish, thus providing a valuable tool for characterizing vital rates in other small-bodied fishes.

  7. Rain Erosion Studies of Sapphire, Aluminum Oxynitride, Spinel, Lanthana- Doped Yttria, and TAF Glass

    DTIC Science & Technology

    1990-07-01

    small , there is little change in average scatter for any material in any test. CONCLUSIONS AND DISCUSSION The principal conclusions are 1. ALON...20 Sample broke erosion damage 10 Slight pitting, 20 No change erosion damage 15 Pitting, cratering, 20 Small surface pits erosion damage 15 Pitting...Sample broke 10 No damage 15 Sample pitted, small edge fracture 15 Slight pitting, 1 crater, 20 Sample pitted, erosion damage small edge fracture 15 SUght

  8. Phosphate (Pi)-regulated heterodimerization of the high-affinity sodium-dependent Pi transporters PiT1/Slc20a1 and PiT2/Slc20a2 underlies extracellular Pi sensing independently of Pi uptake.

    PubMed

    Bon, Nina; Couasnay, Greig; Bourgine, Annabelle; Sourice, Sophie; Beck-Cormier, Sarah; Guicheux, Jérôme; Beck, Laurent

    2018-02-09

    Extracellular phosphate (P i ) can act as a signaling molecule that directly alters gene expression and cellular physiology. The ability of cells or organisms to detect changes in extracellular P i levels implies the existence of a P i -sensing mechanism that signals to the body or individual cell. However, unlike in prokaryotes, yeasts, and plants, the molecular players involved in P i sensing in mammals remain unknown. In this study, we investigated the involvement of the high-affinity, sodium-dependent P i transporters PiT1 and PiT2 in mediating P i signaling in skeletal cells. We found that deletion of PiT1 or PiT2 blunted the P i -dependent ERK1/2-mediated phosphorylation and subsequent gene up-regulation of the mineralization inhibitors matrix Gla protein and osteopontin. This result suggested that both PiTs are necessary for P i signaling. Moreover, the ERK1/2 phosphorylation could be rescued by overexpressing P i transport-deficient PiT mutants. Using cross-linking and bioluminescence resonance energy transfer approaches, we found that PiT1 and PiT2 form high-abundance homodimers and P i -regulated low-abundance heterodimers. Interestingly, in the absence of sodium-dependent P i transport activity, the PiT1-PiT2 heterodimerization was still regulated by extracellular P i levels. Of note, when two putative P i -binding residues, Ser-128 (in PiT1) and Ser-113 (in PiT2), were substituted with alanine, the PiT1-PiT2 heterodimerization was no longer regulated by extracellular P i These observations suggested that P i binding rather than P i uptake may be the key factor in mediating P i signaling through the PiT proteins. Taken together, these results demonstrate that P i -regulated PiT1-PiT2 heterodimerization mediates P i sensing independently of P i uptake. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Analysis of the bacterial community in aged and aging pit mud of Chinese Luzhou-flavour liquor by combined PCR-DGGE and quantitative PCR assay.

    PubMed

    Liang, Huipeng; Li, Wenfang; Luo, Qingchun; Liu, Chaolan; Wu, Zhengyun; Zhang, Wenxue

    2015-10-01

    The community structure of bacteria in aged and aging pit mud, which was judged according to their sensory and physicochemical characteristics, was analysed using polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) and quantitative real-time PCR (qPCR). The phyla Firmicutes, Actinobacteria, Proteobacteria, Synergistetes and Unclassified Bacteria were detected and the fermentative Firmicutes was predominant in both types of pit mud in the PCR-DGGE analysis. Among Firmicutes, Clostridiales was dominant in aged pit mud while Bacillales and Lactobacillales were dominant in aging pit mud. The diversity of bacterial communities in aged pit mud was higher than that in aging pit mud. In the qPCR analysis the abundance of Clostridium IV in aged pit mud was higher than that in aging pit mud and there were significant differences in the quantity of Clostridium IV between aged and aging pit mud of the same cellar (P < 0.05). There were some significant differences in the microbial community structure between aged and aging pit mud. The differences in the quantity of Clostridium IV might be involved in the distinction that the aged pit mud has a strong aroma while the aging pit mud does not. © 2014 Society of Chemical Industry.

  10. Structure and function of bordered pits: new discoveries and impacts on whole-plant hydraulic function.

    PubMed

    Choat, Brendan; Cobb, Alexander R; Jansen, Steven

    2008-01-01

    Bordered pits are cavities in the lignified cell walls of xylem conduits (vessels and tracheids) that are essential components in the water-transport system of higher plants. The pit membrane, which lies in the center of each pit, allows water to pass between xylem conduits but limits the spread of embolism and vascular pathogens in the xylem. Averaged across a wide range of species, pits account for > 50% of total xylem hydraulic resistance, indicating that they are an important factor in the overall hydraulic efficiency of plants. The structure of pits varies dramatically across species, with large differences evident in the porosity and thickness of pit membranes. Because greater porosity reduces hydraulic resistance but increases vulnerability to embolism, differences in pit structure are expected to correlate with trade-offs between efficiency and safety of water transport. However, trade-offs in hydraulic function are influenced both by pit-level differences in structure (e.g. average porosity of pit membranes) and by tissue-level changes in conduit allometry (average length, diameter) and the total surface area of pit membranes that connects vessels. In this review we address the impact of variation in pit structure on water transport in plants from the level of individual pits to the whole plant.

  11. NiTi shape memory alloys treated by plasma-polymerized tetrafluoroethylene. A physicochemical and electrochemical characterization.

    PubMed

    Yahia, L H; Lombardi, S; Piron, D; Klemberg-Sapieha, J E; Wertheimer, M R

    NiTi alloy specimens were plasma cleaned and then coated with a thin film of plasma-polymerized tetrafluoroethylene (TFE) in a Radio-Frequency reactor. The corrosion protection provided by these films was studied by potentiodynamic tests performed in Hank's physiological solution. Surface properties which determine biocompatibility were characterized by X-ray photoelectron spectroscopy (XPS). The results showed that the surface of untreated NiTi was mostly composed by oxygen, carbon, titanium oxide (TiO2) with traces of nickel oxides (NiO and Ni2O3) and metallic Ni. The passivity of untreated NiTi was found to be unstable in the simulated human body media. After plasma treatment, the NiTi surface contained only carbon and fluor. The plasma-polymerized thin film was found to stabilize the NiTi passivity and to increase its pitting potential. This treatment provides a good protection against dissolution of nickel from NiTi alloys.

  12. The corrosion protection of aluminum by various anodizing treatments

    NASA Technical Reports Server (NTRS)

    Danford, Merlin D.

    1989-01-01

    Corrosion protection to 6061-T6 aluminum, afforded by both teflon-impregnated anodized coats (Polylube and Tufram) and hard-anodized coats (water sealed and dichromate sealed), was studied at both pH 5.5 and pH 9.5, with an exposure period of 28 days in 3.5 percent NaCl solution (25 C) for each specimen. In general, corrosion protection for all specimens was better at pH 9.5 than at pH 5.5. Protection by a Tufram coat proved superior to that afforded by Polylube at each pH, with corrosion protection by the hard-anodized, water-sealed coat at pH 9.5 providing the best protection. Electrochemical work in each case was corroborated by microscopic examination of the coats after exposure. Corrosion protection by Tufram at pH 9.5 was most comparable to that of the hard-anodized samples, although pitting and some cracking of the coat did occur.

  13. Corrosion Behavior and Durability of Low-Alloy Steel Rebars in Marine Environment

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Cheng, Xuequn; Li, Xiaogang; Yue, Pan; Li, Jun

    2016-11-01

    The corrosion resistance of Cr-modified low-alloy steels and HRB400 carbon steel was estimated using the open-circuit potential, potentiodynamic polarization, electrochemical impedance spectroscopic, and weight loss methods in simulated concrete pore solution. Results show that Cr-modified steels exhibit a higher corrosion resistance with a higher critical chloride level (CTL), lower corrosion current density, and higher impedance than carbon steel. The CTL of the steels significantly reduces with increasing temperature. Weight loss measurement shows that the Cr-modified steels exhibit low corrosion rates and small corrosion pitting. The primary constituents of the corrosion scales are Fe2O3, Fe3O4, β-FeOOH, γ-FeOOH, and α-FeOOH. A large amount of α-FeOOH could be detected in the Cr-modified steel corrosion products. Moreover, the Cr-modified steels demonstrate a higher durability than HRB400 carbon steel.

  14. Corrosion Behavior of Titanium in Artificial Saliva by Lactic Acid

    PubMed Central

    Qu, Qing; Wang, Lei; Chen, Yajun; Li, Lei; He, Yue; Ding, Zhongtao

    2014-01-01

    As one of the main products produced by oral microorganisms, the role of lactic acid in the corrosion of titanium is very important. In this study, the corrosion behavior of titanium in artificial saliva with and without lactic acid were investigated by open-circuit potentials (OCPs), polarization curves and electrochemical impedance spectroscopy (EIS). OCP firstly increased with the amount of lactic acid from 0 to 3.2 g/L and then tended to decrease from 3.2 to 5.0 g/L. The corrosion of titanium was distinctly affected by lactic acid, and the corrosion rate increased with increasing the amount of lactic acid. At each concentration of lactic acid, the corrosion rate clearly increased with increasing the immersing time. Results of scanning electron microscopy (SEM) also indicated that lactic acid accelerated the pitting corrosion in artificial saliva. A probable mechanism was also proposed to explain the experimental results. PMID:28788143

  15. Localized corrosion of 316L stainless steel in tritiated water containing aggressive radiolytic and decomposition products at different temperatures

    NASA Astrophysics Data System (ADS)

    Bellanger, G.

    2008-02-01

    Tritium is one of the more important radionuclides used in nuclear industry as plutonium and uranium. The tritium in tritiated water always causes difficulties in nuclear installations, including equipment corrosion. Moreover, with tritiated water there are, in addition, the radiolytic and decomposition products such as hydrogen peroxide formed during decay, chloride ions produced by degradation of organic seals and oils used for tightness and pumping, and acid pH produced by excitation of nitrogen in air by the β - particle. Highly concentrated tritiated water releases energy and its temperature is about 80 °C, moreover heating is necessary in the tritium processes. These conditions highly facilitate the corrosion of stainless steels by pitting and crevice attack. Corrosion tests were performed by electrochemical analysis methods and by visual inspection of the surface of stainless steel.

  16. Corrosion Behavior of X80 Steel with Coupled Coating Defects under Alternating Current Interference in Alkaline Environment

    PubMed Central

    Li, Zhong; Li, Caiyu; Qian, Hongchang; Li, Jun; Huang, Liang; Du, Cuiwei

    2017-01-01

    The corrosion behavior of X80 steel in the presence of coupled coating defects was simulated and studied under the interference of alternating current (AC) in an alkaline environment. The results from electrochemical measurements showed that the electrode potential of the coating defect with the smaller exposed area was lower than that with the larger area, which indicated that the steel with the smaller coating defect was more prone to corrosion. The result of weight loss tests also showed that the smaller coating defect had induced a higher corrosion rate. However, the corrosion rate of X80 steel at the larger coating defect decreased gradually with the increase of the larger defect area at a constant smaller defect area. The corrosion morphology images showed that the coating defects with smaller areas suffered from more severe pitting corrosion. PMID:28773078

  17. Alloying effect of copper concentration on the localized corrosion of aluminum alloy for heat exchanger tube

    NASA Astrophysics Data System (ADS)

    Hong, Min-Sung; Park, In-Jun; Kim, Jung-Gu

    2017-07-01

    This study examined the alloying effect of Cu content on the localized corrosion properties of Al alloy in synthetic acid rain containing 200 ppm of Cl- ion. In aluminum alloy tubes, a small amount of Cu is contained as the additive to improve the mechanical strength or as the impurity. The Cu-containing intermetallic compound, Al2Cu can cause galvanic corrosion because it has more noble potential than Al matrix. Therefore aluminum tube could be penetrated by localized corrosion attack. The results were obtained from electrochemical test, scanning electron microscopy, and time of flight secondary ion mass spectrometry (ToF-SIMS) mapping. Severe localized corrosion was occurred on the Al-0.03 wt% Cu alloy. The negative effect of Cu on the pitting corrosion was attributed to the presence of the Al2Cu precipitates.

  18. Anti-Corrosion Performance of 1,3-BENZOTHIAZOLE on 410 Martensitic Stainless Steel in H2SO4

    NASA Astrophysics Data System (ADS)

    Loto, Roland Tolulope

    The corrosion inhibition effect of synthesized 1,3-benzothiazole at very low concentrations on 410 martensitic stainless steel in 3MH2SO4 solution was studied through potentiodynamic polarization and weight loss measurements. The observation showed that the organic compound performed effectively with average inhibition efficiencies of 94% and 98% at the concentrations studied from both electrochemical methods due to the inhibition action of protonated inhibitor molecules in the acid solution. The amine and aromatics functional groups of the molecules active in the corrosion inhibition reaction were exposed from Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) spectroscopic analysis. Thermodynamic calculations showed cationic adsorption to be chemisorption adsorption, obeying the Langmuir adsorption isotherm. Images from optical microscopy showed an improved morphology in comparison to images from corroded stainless steel. Severe surface deterioration and macro-pits were observed in the uninhibited samples.

  19. Quality Assurance Project Plan for the treatability study of in situ vitrification of Seepage Pit 1 in Waste Area Grouping 7 at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This Quality Assurance Project Plan (QAPjP) establishes the quality assurance procedures and requirements to be implemented for the control of quality-related activities for Phase 3 of the Treatability Study (TS) of In Situ Vitrification (ISV) of Seepage Pit 1, ORNL Waste Area Grouping 7. This QAPjP supplements the Quality Assurance Plan for Oak Ridge National Laboratory Environmental Restoration Program by providing information specific to the ISV-TS. Phase 3 of the TS involves the actual ISV melt operations and posttest monitoring of Pit 1 and vicinity. Previously, Phase 1 activities were completed, which involved determining the boundaries of Pit 1, usingmore » driven rods and pipes and mapping the distribution of radioactivity using logging tools within the pipes. Phase 2 involved sampling the contents, both liquid and solids, in and around seepage Pit 1 to determine their chemical and radionuclide composition and the spatial distribution of these attributes. A separate QAPjP was developed for each phase of the project. A readiness review of the Phase 3 activities presented QAPjP will be conducted prior to initiating field activities, and an Operational Acceptance, Test (OAT) will also be conducted with no contamination involved. After, the OAT is complete, the ISV process will be restarted, and the melt will be allowed to increase with depth and incorporate the radionuclide contamination at the bottom of Pit 1. Upon completion of melt 1, the equipment will be shut down and mobilized to an adjacent location at which melt 2 will commence.« less

  20. Neural correlates of Pavlovian-to-instrumental transfer in the nucleus accumbens shell are selectively potentiated following cocaine self-administration

    PubMed Central

    Saddoris, Michael P.; Stamatakis, Alice; Carelli, Regina M.

    2013-01-01

    During Pavlovian-to-instrumental transfer (PIT), learned Pavlovian cues significantly modulate ongoing instrumental actions. This phenomenon is suggested as a mechanism under which conditioned stimuli may lead to relapse in addicted populations. Following discriminative Pavlovian learning and instrumental conditioning with sucrose, one group of rats (naive) underwent electrophysiological recordings in the nucleus accumbens core and shell during a single PIT session. Other groups, following Pavlovian and instrumental conditioning, were subsequently trained to self-administer cocaine with nosepoke responses, or received yoked saline infusions and nosepoked for water rewards, and then performed PIT while electrophysiological recordings were taken in the nucleus accumbens. Behaviorally, although both naive and saline-treated groups showed increases in lever pressing during the conditioned stimulus cue, this effect was significantly enhanced in the cocaine-treated group. Neurons in the core and shell tracked these behavioral changes. In control animals, core neurons were significantly more likely to encode general information about cues, rewards and responses than those in the shell, and positively correlated with behavioral PIT performance, whereas PIT-specific encoding in the shell, but not core, tracked PIT performance. In contrast, following cocaine exposure, there was a significant increase in neural encoding of all task-relevant events that was selective to the shell. Given that cocaine exposure enhanced both behavior and shell-specific task encoding, these findings suggest that, whereas the core is important for acquiring the information about cues and response contingencies, the shell is important for using this information to guide and modulate behavior and is specifically affected following a history of cocaine self-administration. PMID:21507084

  1. Corrosion analysis of NiCu and PdCo thermal seed alloys used as interstitial hyperthermia implants.

    PubMed

    Paulus, J A; Parida, G R; Tucker, R D; Park, J B

    1997-12-01

    Ferromagnetic materials with low Curie temperatures are being investigated for use as interstitial implants for fractionated hyperthermia treatment of prostatic disease. Previous investigations of the system have utilized alloys, such as NiCu, with inadequate corrosion resistance, requiring the use of catheters for removal of the implants following treatment or inert surface coatings which may interfere with thermal characteristics of the implants. We are evaluating a palladium-cobalt (PdCo) binary alloy which is very similar to high palladium alloys used in dentistry. Electrochemical corrosion tests and immersion tests at 37 degrees C for both NiCu and PdCo alloy samples in mammalian Ringer's solution were performed. Long-term corrosion rates are 5.8 x 10(-5) microm per year (NiCu) and 7.7 x 10(-8) microm per year (PdCo) from average immersion test results, indicating higher corrosion resistance of PdCo (P < 0.02); immersion corrosion rates were much lower than initial corrosion rates found electrochemically. Both alloys had significantly lower corrosion rates than standard surgical implant rates of 0.04 microm per year (P < 0.001 for both alloys). Scanning electron microscopy illustrates changes in the NiCu alloy surface due to pitting corrosion; no difference is observed for PdCo. The data indicate that the PdCo alloy may be suitable as a long-term implant for use in fractionated hyperthermia.

  2. Corrosion of carbon steel by bacteria from North Sea offshore seawater injection systems: laboratory investigation.

    PubMed

    Stipanicev, Marko; Turcu, Florin; Esnault, Loïc; Rosas, Omar; Basseguy, Régine; Sztyler, Magdalena; Beech, Iwona B

    2014-06-01

    Influence of sulfidogenic bacteria, from a North Sea seawater injection system, on the corrosion of S235JR carbon steel was studied in a flow bioreactor; operating anaerobically for 100days with either inoculated or filtrated seawater. Deposits formed on steel placed in reactors contained magnesium and calcium minerals plus iron sulfide. The dominant biofilm-forming organism was an anaerobic bacterium, genus Caminicella, known to produce hydrogen sulfide and carbon dioxide. Open Circuit Potentials (OCP) of steel in the reactors was, for nearly the entire test duration, in the range -80045), suggested pitting on steel samples within the inoculated environment. However, the actual degree of corrosion could neither be directly correlated with the electrochemical data and nor with the steel corrosion in the filtrated seawater environment. Further laboratory tests are thought to clarify the noticed apparent discrepancies. © 2013.

  3. PitScan: Computer-Assisted Feature Detection

    NASA Astrophysics Data System (ADS)

    Wagner, R. V.; Robinson, M. S.

    2018-04-01

    We developed PitScan to assist in searching the very large LROC image dataset for pits — unusual <200m wide vertical-walled holes in the Moon's surface. PitScan reduces analysts' workload by pre-filtering images to identify possible pits.

  4. Quantitative Correlation of 7B04 Aluminum Alloys Pitting Corrosion Morphology Characteristics with Stress Concentration Factor

    NASA Astrophysics Data System (ADS)

    Liu, Zhiguo; Yan, Guangyao; Mu, Zhitao; Li, Xudong

    2018-01-01

    The accelerated pitting corrosion test of 7B04 aluminum alloy specimen was carried out according to the spectrum which simulated airport environment, and the corresponding pitting corrosion damage was obtained and was defined through three parameters A and B and C which respectively denoted the corrosion pit surface length and width and corrosion pit depth. The ratio between three parameters could determine the morphology characteristics of corrosion pits. On this basis the stress concentration factor of typical corrosion pit morphology under certain load conditions was quantitatively analyzed. The research shows that the corrosion pits gradually incline to be ellipse in surface and moderate in depth, and most value of B/A and C/A lies in 1 between 4 and few maximum exceeds 4; The stress concentration factor Kf of corrosion pits is obviously affected by the its morphology, the value of Kf increases with corrosion pits depth increasement under certain corrosion pits surface geometry. Also, the value of Kf decreases with surface width increasement under certain corrosion pits depth. The research conclusion can set theory basis for corrosion fatigue life analysis of aircraft aluminum alloy structure.

  5. Structures of Bordered Pits Potentially Contributing to Isolation of a Refilled Vessel from Negative Xylem Pressure in Stems of Morus australis Poir.: Testing of the Pit Membrane Osmosis and Pit Valve Hypotheses.

    PubMed

    Ooeda, Hiroki; Terashima, Ichiro; Taneda, Haruhiko

    2017-02-01

    Two hypotheses have been proposed to explain the mechanism preventing the refilling vessel water from being drained to the neighboring functional vessels under negative pressure. The pit membrane osmosis hypothesis proposes that the xylem parenchyma cells release polysaccharides that are impermeable to the intervessel pit membranes into the refilling vessel; this osmotically counteracts the negative pressure, thereby allowing the vessel to refill. The pit valve hypothesis proposes that gas trapped within intervessel bordered pits isolates the refilling vessel water from the surrounding functional vessels. Here, using the single-vessel method, we assessed these hypotheses in shoots of mulberry (Morus australis Poir.). First, we confirmed the occurrence of xylem refilling under negative pressure in the potted mulberry saplings. To examine the pit membrane osmosis hypothesis, we estimated the semi-permeability of pit membranes for molecules of various sizes and found that the pit membranes were not semi-permeable to polyethylene glycol of molecular mass <20,000. For the pit valve hypothesis, we formed pit valves in the intervessel pits in the short stem segments and measured the maximum liquid pressure up to which gases in bordered pits were retained. The threshold pressure ranged from 0.025 to 0.10 MPa. These values matched the theoretical value calculated from the geometry of the pit chamber (0.0692-0.101 MPa). Our results suggest that gas in the pits is retained by surface tension, even under substantial positive pressure to resolve gases in the refilling vessel, whereas the molecule size required for the pit membrane osmosis mechanism in mulberry would be unrealistically large. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Acquired pit of the optic nerve: a risk factor for progression of glaucoma.

    PubMed

    Ugurlu, S; Weitzman, M; Nduaguba, C; Caprioli, J

    1998-04-01

    To examine acquired pit of the optic nerve as a risk factor for progression of glaucoma. In a retrospective longitudinal study, 25 open-angle glaucoma patients with acquired pit of the optic nerve were compared with a group of 24 open-angle glaucoma patients without acquired pit of the optic nerve. The patients were matched for age, mean intraocular pressure, baseline ratio of neuroretinal rim area to disk area, visual field damage, and duration of follow-up. Serial optic disk photographs and visual fields of both groups were evaluated by three independent observers for glaucomatous progression. Of 46 acquired pits of the optic nerve in 37 eyes of 25 patients, 36 pits were located inferiorly (76%) and 11 superiorly (24%; P < .001). Progression of optic disk damage occurred in 16 patients (64%) in the group with acquired pit and in three patients (12.5%) in the group without acquired pit (P < .001). Progression of visual field loss occurred in 14 patients (56%) in the group with acquired pit and in six (25%) in the group without pit (P=.04). Bilateral acquired pit of the optic nerve was present in 12 patients (48%). Disk hemorrhages were observed more frequently in the group with acquired pit (10 eyes, 40%) compared with the group without pit (two eyes, 8%; P=.02). Among patients with glaucoma, patients with acquired pit of the optic nerve represent a subgroup who are at increased risk for progressive optic disk damage and visual field loss.

  7. Parturition pit: the bony imprint of vaginal birth.

    PubMed

    McArthur, Tatum A; Meyer, Isuzu; Jackson, Bradford; Pitt, Michael J; Larrison, Matthew C

    2016-09-01

    To retrospectively evaluate for pits along the dorsum of the pubic body in females and compare the presence/absence of these pits to vaginal birth data. We retrospectively reviewed females with vaginal birth data who underwent pelvic CT. The presence of pits along the dorsum of the pubic body, pit grade (0 = not present; 1 = faintly imperceptible; 2 = present; 3 = prominent), and the presence of osteitis condensans ilii, preauricular sulcus, and sacroiliac joint vacuum phenomenon were assessed on imaging. Musculoskeletal radiologists who were blinded to the birth data evaluated the CTs. 48 males were also evaluated for the presence of pits. 482 female patients underwent CT pelvis and 171 were excluded due to lack of vaginal birth data. Of the 311 study patients, 262 had prior vaginal birth(s) and 194 had pits on CT. Only 7 of the 49 patients without prior vaginal birth had pits. There was a statistically significant association between vaginal birth and presence of pits (p < 0.0001). Patients with more prominent pits (grades 2/3) had a greater number of vaginal births. As vaginal deliveries increased, the odds of having parturition pits greatly increased, adjusting for age and race at CT (p < 0.0001). No males had pits. Our study indicates that parturition pits are associated with prior vaginal birth and should be considered a characteristic of the female pelvis. The lytic appearance of prominent pits on imaging can simulate disease and create a diagnostic dilemma for interpreting radiologists.

  8. Parturition Pit: The Bony Imprint of Vaginal Birth

    PubMed Central

    Meyer, Isuzu; Jackson, Bradford; Pitt, Michael J.; Larrison, Matthew C.

    2017-01-01

    Purpose To retrospectively evaluate for pits along the dorsum of the pubic body in females and compare the presence/absence of these pits to vaginal birth data. Materials and Methods We retrospectively reviewed females with vaginal birth data who underwent pelvic CT. The presence of pits along the dorsum of the pubic body, pit grade (0 = not present; 1 = faintly imperceptible; 2 = present; 3 = prominent), and the presence of osteitis condensans ilii, preauricular sulcus, and sacroiliac joint vacuum phenomenon were assessed on imaging. Musculoskeletal radiologists who were blinded to the birth data evaluated the CTs. 48 males were also evaluated for the presence of pits. Results 482 female patients underwent CT pelvis and 171 were excluded due to lack of vaginal birth data. Of the 311 study patients, 262 had prior vaginal birth(s) and 194 had pits on CT. Only 7 of the 49 patients without prior vaginal birth had pits. There was a statistically significant association between vaginal birth and presence of pits (p<0.0001). Patients with more prominent pits (grades 2/3) had a greater number of vaginal births. As vaginal deliveries increased, the odds of having parturition pits greatly increased, adjusting for age and race at CT (p<0.0001). No males had pits. Conclusion Our study indicates that parturition pits are associated prior vaginal birth and should be considered a characteristic of the female pelvis. The lytic appearance of prominent pits on imaging can simulate disease and create a diagnostic dilemma for interpreting radiologists. PMID:27270921

  9. Electro-chemical grinding

    NASA Technical Reports Server (NTRS)

    Feagans, P. L.

    1972-01-01

    Electro-chemical grinding technique has rotation speed control, constant feed rates, and contour control. Hypersonic engine parts of nickel alloys can be almost 100% machined, keeping tool pressure at virtual zero. Technique eliminates galling and permits constant surface finish and burr-free interrupted cutting.

  10. Air-Operated Sump Pump

    NASA Technical Reports Server (NTRS)

    Nolt, Gary D.

    1988-01-01

    Pump removes liquid seepage from small, restricted area and against large pressure head. Developed for moving small amounts of water and oil from sump pit 85 ft (25.91 m) deep. Fits in space only 6 1/2 in. (16.5 cm) in diameter and 18 in. (45.7 cm) long. In discharge part of pumping cycle, air forces liquid out of pump chamber through pipe. During filling part of pumping cycle, water enters pump chamber from sump pit. Float in chamber next to pump chamber controls pressurization through timer and solenoid valve.

  11. Hydrazine Blending and Storage Facility Wastewater Treatment and Decommissioning Assessment. Version 3.1

    DTIC Science & Technology

    1988-06-01

    Valve Pit Number 2 Location One near hydrazine/aerozine tank area .nd one near wastewater tank area *There is a variety of underground piping at the...loading station (wipe of drum filling nozzles/connectors) 3,475 19.u I W-1U Tank HAS-?, drain value (Tank pit valve ) <S ɘ.2 W-110 Tank HAS-I, control... valve (on top) sample bottle broken W-111 Tank Truck Station, Truck loading filler nozzle and boom sample bottle broken I/ UUMH - 1,1

  12. Evaluation of the 2008 Predictions of Run-Timing and Survival of Wild Migrant Yearling Chinook and Steelhead on the Columbia and Snake Rivers.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beer, W. Nicholas; Iltis, Susannah; Anderson, James J.

    2009-01-01

    Columbia Basin Research uses the COMPASS model on a daily basis during the outmigration of Snake River Chinook and steelhead smolts to predict downstream passage and survival. Fish arrival predictions and observations from program RealTime along with predicted and observed environmental conditions are used to make in-season predictions of arrival and survival to various dams in the Columbia and Snake Rivers. For 2008, calibrations of travel and survival parameters for two stocks of fish-Snake River yearling PIT-tagged wild chinook salmon (chin1pit) and Snake River PIT-tagged steelhead (lgrStlhd)-were used to model travel and survival of steelhead and chinook stocks from Lowermore » Granite Dam (LWG) or McNary Dam (MCN) to Bonneville Dam (BON). This report summarizes the success of the COMPASS/RealTime process to model these migrations as they occur. We compared model results on timing and survival to data from two sources: stock specific counts at dams and end-of-season control survival estimates (Jim Faulkner, NOAA, pers. comm. Dec. 16, 2008). The difference between the predicted and observed day of median passage and the Mean Absolute Deviation (MAD) between predicted and observed arrival cumulative distributions are measures of timing accuracy. MAD is essentially the average percentage error over the season. The difference between the predicted and observed survivals is a measure of survival accuracy. Model results and timing data were in good agreement from LWG to John Day Dam (JDA). Predictions of median passage days for the chin1pit and lgrStlhd stocks were 0 and 2 days (respectively) later than observed. MAD for chin1pit and lgrStlhd stocks at JDA were 2.3% and 5.9% (respectively). Between JDA and BON modeling and timing data were not as well matched. At BON, median passage predictions were 6 and 10 days later than observed and MAD values were 7.8% and 16.0% respectively. Model results and survival data were in good agreement from LWG to MCN. COMPASS predicted survivals of 0.77 and 0.69 for chin1pit and lgrStlhd, while the data control's survivals were 0.79 and 0.68. The differences are 0.02 and 0.01 (respectively), nearly identical. However, from MCN to BON, COMPASS predicted survivals of 0.74 and 0.69 while the data controls survivals were 0.47 and 0.53 respectively. Differences of 0.27 and 0.16. In summary: Travel and survival of chin1pit and lgrStlhd stocks were well modeled in the upper reaches. Fish in the lower reaches down through BON suffered unmodeled mortality, and/or passed BON undetected. A drop in bypass fraction and unmodeled mortality during the run could produce such patterns by shifting the observed median passage day to appear artificially early.« less

  13. Experimental research on micro-pit defects of SUS 430 stainless steel strip in cold rolling process

    NASA Astrophysics Data System (ADS)

    Li, Changsheng; Li, Miao; Zhu, Tao; Huo, Gang

    2013-05-01

    In order to improve surface glossiness of stainless steel strip in tandem cold rolling, experimental research on micro-pit defects of SUS 430 ferrite stainless steel was investigated in laboratory. The surface morphology of micro-pit defects was observed by SEM. The effects of micro-pit defects on rolling reduction, roll surface roughness and emulsion parameters were analyzed. With the pass number increasing, the quantity and surface of micro-pit defects were reduced, uneven peak was decreased and gently along rolling direction, micro-pit defects had equally distributed tendency along tranverse direction. The micro-pit defects were increased with the roll surface roughness increase. The defects ratio was declined with larger gradient at pass number 1 to 3, but gentle slope at pass number 4 to 5. The effects of temperature 55° and 63°, concentration 3% and 6% of emulsion on micro-pit effects had not obvious difference. Maintain of micro-pit was effected by rolling oil or air in the micro-pit, the quality of oil was much more than the air in the micro-pit in lubrication rolling.

  14. Distribution, morphology, and origins of Martian pit crater chains

    NASA Astrophysics Data System (ADS)

    Wyrick, Danielle; Ferrill, David A.; Morris, Alan P.; Colton, Shannon L.; Sims, Darrell W.

    2004-06-01

    Pit craters are circular to elliptical depressions found in alignments (chains), which in many cases coalesce into linear troughs. They are common on the surface of Mars and similar to features observed on Earth and other terrestrial bodies. Pit craters lack an elevated rim, ejecta deposits, or lava flows that are associated with impact craters or calderas. It is generally agreed that the pits are formed by collapse into a subsurface cavity or explosive eruption. Hypotheses regarding the formation of pit crater chains require development of a substantial subsurface void to accommodate collapse of the overlying material. Suggested mechanisms of formation include: collapsed lava tubes, dike swarms, collapsed magma chamber, substrate dissolution (analogous to terrestrial karst), fissuring beneath loose material, and dilational faulting. The research described here is intended to constrain current interpretations of pit crater chain formation by analyzing their distribution and morphology. The western hemisphere of Mars was systematically mapped using Mars Orbiter Camera (MOC) images to generate ArcView™ Geographic Information System (GIS) coverages. All visible pit crater chains were mapped, including their orientations and associations with other structures. We found that pit chains commonly occur in areas that show regional extension or local fissuring. There is a strong correlation between pit chains and fault-bounded grabens. Frequently, there are transitions along strike from (1) visible faulting to (2) faults and pits to (3) pits alone. We performed a detailed quantitative analysis of pit crater morphology using MOC narrow angle images, Thermal Emission Imaging System (THEMIS) visual images, and Mars Orbiter Laser Altimeter (MOLA) data. This allowed us to determine a pattern of pit chain evolution and calculate pit depth, slope, and volume. Volumes of approximately 150 pits from five areas were calculated to determine volume size distribution and regional trends. The information collected in the study was then compared with non-Martian examples of pit chains and physical analog models. We evaluated the various mechanisms for pit chain development based on the data collected and conclude that dilational normal faulting and sub-vertical fissuring provide the simplest and most comprehensive mechanisms to explain the regional associations, detailed geometry, and progression of pit chain development.

  15. Closure Report for Corrective Action Unit 544: Cellars, Mud Pits, and Oil Spills, Nevada National Security Site, Nevada, Revision 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark Krauss and Catherine Birney

    2011-05-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 544: Cellars, Mud Pits, and Oil Spills, Nevada National Security Site, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The corrective action sites (CASs) within CAU 544 are located within Areas 2, 7, 9, 10, 12, 19, and 20 of the Nevada National Security Site. Corrective Action Unit 544 comprises the following CASs: • 02-37-08,more » Cellar & Mud Pit • 02-37-09, Cellar & Mud Pit • 07-09-01, Mud Pit • 09-09-46, U-9itsx20 PS #1A Mud Pit • 10-09-01, Mud Pit • 12-09-03, Mud Pit • 19-09-01, Mud Pits (2) • 19-09-03, Mud Pit • 19-09-04, Mud Pit • 19-25-01, Oil Spill • 19-99-06, Waste Spill • 20-09-01, Mud Pits (2) • 20-09-02, Mud Pit • 20-09-03, Mud Pit • 20-09-04, Mud Pits (2) • 20-09-06, Mud Pit • 20-09-07, Mud Pit • 20-09-10, Mud Pit • 20-25-04, Oil Spills • 20-25-05, Oil Spills The purpose of this CR is to provide documentation supporting the completed corrective actions and data confirming that the closure objectives for CASs within CAU 544 were met. To achieve this, the following actions were performed: • Review the current site conditions, including the concentration and extent of contamination. • Implement any corrective actions necessary to protect human health and the environment. • Properly dispose of corrective action and investigation wastes. • Document Notice of Completion and closure of CAU 544 issued by the Nevada Division of Environmental Protection.« less

  16. Corrosion behavior of binary titanium aluminide intermetallics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saffarian, H.M.; Gan, Q.; Hadkar, R.

    1996-08-01

    The corrosion behavior of arc-melted binary titanium aluminide intermetallics TiAl, Ti{sub 2}Al, and TiAl{sub 3} in aqueous sodium sulfate and sodium chloride solutions was measured and compared to that of pure Ti and Al. Effects of electrolyte composition (e.g., sulfate [0.25 M SO{sub 4}{sup 2}{sup {minus}}], chloride [0.1 to 1.0 M Cl{sup {minus}}], and pH [3 to 10]) were examined. Anodic polarization of titanium aluminides in aqueous SO{sub 4}{sup 2}{sup {minus}} solutions was similar (showing passive behavior), but no pitting or pitting potential (E{sub pit}) was observed. In aqueous NaCl, however, titanium aluminides were susceptible to pitting, and E{sub pit}more » decreased with increasing Al content (i.e., Ti{sub 3}Al had the highest E{sub pit} and, therefore, a greater resistance to pitting, followed by TiAl and TiAl{sub 3}). For TiAl, E{sub pit} was slightly dependent upon pH or Cl{sup {minus}} concentration. Pit morphology and E{sub pit} values were quite different for TiAl compared to Ti{sub 3}Al. TiAl showed numerous small pits, whereas Ti{sub 3}Al exhibited fewer but larger and deeper pits. The larger pit density for TiAl was associated with Al-rich interdendrite regions. One interesting feature of the anodic polarization curves for Ti{sub 3}Al was a small anodic peak frequently observed at {approximately}1.4 V{sub SCE} to 1.8 V{sub SCE}. Results suggested this peak was associated with pit initiation, since pitting initiated concurrently with the peak or immediately afterward.« less

  17. Real-time monitoring of hemodynamic changes in tumor vessels during photoimmunotherapy using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Liang, Chia-Pin; Nakajima, Takahito; Watanabe, Rira; Sato, Kazuhide; Choyke, Peter L.; Chen, Yu; Kobayashi, Hisataka

    2014-09-01

    Photoimmunotherapy (PIT) is a cell-specific cancer therapy based on an armed antibody conjugate that induces rapid and highly selective cancer cell necrosis after exposure to near-infrared (NIR) light. The PIT treatment also induces the superenhanced permeability and retention effect, which allows high concentrations of nanoparticles to accumulate in the tumor bed. In our pilot studies, optical coherence tomography (OCT) reveals dramatic hemodynamic changes during PIT. We developed and applied speckle variance analysis, Doppler flow measurement, bulk motion removal, and automatic region of interest selection to quantify vessel diameter and blood velocity within tumors in vivo. OCT imaging reveals that blood velocity in peripheral tumor vessels quickly drops below the detection limit while the vessel lumen remains open (4 vessels from 3 animals). On the other hand, control tumor vessels (receive NIR illumination but no PIT drug) do not show the sustained blood velocity drop (5 vessels from 3 animals). Ultraslow blood velocity could result in a long drug circulation time in tumor. Increase of the blood pool volume within the central tumor (shown in histology) may be the leading cause of the periphery blood velocity drop and could also increase the drug pool volume in tumor vessels.

  18. Storage and retrieval of electromagnetic waves with orbital angular momentum via plasmon-induced transparency.

    PubMed

    Bai, Zhengyang; Xu, Datang; Huang, Guoxiang

    2017-01-23

    We propose a scheme to realize the storage and retrieval of high-dimensional electromagnetic waves with orbital angular momentum (OAM) via plasmon-induced transparency (PIT) in a metamaterial, which consists of an array of meta-atoms constructed by a metallic structure loaded with two varactors. We show that due to PIT effect the system allows the existence of shape-preserving dark-mode plasmonic polaritons, which are mixture of electromagnetic-wave modes and dark oscillatory modes of the meta-atoms and may carry various OAMs. We demonstrate that the slowdown, storage and retrieval of multi-mode electromagnetic waves with OAMs can be achieved through the active manipulation of a control field. Our work raises the possibility for realizing PIT-based spatial multi-mode memory of electromagnetic waves and is promising for practical application of information processing with large capacity by using room-temperature metamaterials.

  19. Preparation, Modification, Characterization, and Biosensing Application of Nanoporous Gold Using Electrochemical Techniques

    PubMed Central

    Neupane, Dharmendra; Nepal, Bishal; Mikhaylov, Vasilii; Stine, Keith J.

    2018-01-01

    Nanoporous gold (np-Au), because of its high surface area-to-volume ratio, excellent conductivity, chemical inertness, physical stability, biocompatibility, easily tunable pores, and plasmonic properties, has attracted much interested in the field of nanotechnology. It has promising applications in the fields of catalysis, bio/chemical sensing, drug delivery, biomolecules separation and purification, fuel cell development, surface-chemistry-driven actuation, and supercapacitor design. Many chemical and electrochemical procedures are known for the preparation of np-Au. Recently, researchers are focusing on easier and controlled ways to tune the pores and ligaments size of np-Au for its use in different applications. Electrochemical methods have good control over fine-tuning pore and ligament sizes. The np-Au electrodes that are prepared using electrochemical techniques are robust and are easier to handle for their use in electrochemical biosensing. Here, we review different electrochemical strategies for the preparation, post-modification, and characterization of np-Au along with the synergistic use of both electrochemistry and np-Au for applications in biosensing. PMID:29547580

  20. Preparation, Modification, Characterization, and Biosensing Application of Nanoporous Gold Using Electrochemical Techniques.

    PubMed

    Bhattarai, Jay K; Neupane, Dharmendra; Nepal, Bishal; Mikhaylov, Vasilii; Demchenko, Alexei V; Stine, Keith J

    2018-03-16

    Nanoporous gold (np-Au), because of its high surface area-to-volume ratio, excellent conductivity, chemical inertness, physical stability, biocompatibility, easily tunable pores, and plasmonic properties, has attracted much interested in the field of nanotechnology. It has promising applications in the fields of catalysis, bio/chemical sensing, drug delivery, biomolecules separation and purification, fuel cell development, surface-chemistry-driven actuation, and supercapacitor design. Many chemical and electrochemical procedures are known for the preparation of np-Au. Recently, researchers are focusing on easier and controlled ways to tune the pores and ligaments size of np-Au for its use in different applications. Electrochemical methods have good control over fine-tuning pore and ligament sizes. The np-Au electrodes that are prepared using electrochemical techniques are robust and are easier to handle for their use in electrochemical biosensing. Here, we review different electrochemical strategies for the preparation, post-modification, and characterization of np-Au along with the synergistic use of both electrochemistry and np-Au for applications in biosensing.

  1. Electrochemical air revitalization system optimization investigation

    NASA Technical Reports Server (NTRS)

    Woods, R. R.; Schubert, F. H.; Hallick, T. M.

    1975-01-01

    A program to characterize a Breadboard of an Electrochemical Air Revitalization System (BEARS) was successfully completed. The BEARS is composed of three components: (1) a water vapor electrolysis module (WVEM) for O2 production and partial humidity control, (2) an electrochemical depolarized carbon dioxide concentrator module (EDCM) for CO2 control, and (3) a power-sharing controller, designed to utilize the power produced by the EDCM to partially offset the WVEM power requirements. It is concluded from the results of this work that the concept of electrochemical air revitalization with power-sharing is a viable solution to the problem of providing a localized topping force for O2 generation, CO2 removal and partial humidity control aboard manned spacecraft. Continued development of the EARS concept is recommended, applying the operational experience and limits identified during the BEARS program to testing of a one-man capacity system and toward the development of advanced system controls to optimize EARS operation for given interfaces and requirements. Successful completion of this development will produce timely technology necessary to plan future advanced environmental control and life support system programs and experiments.

  2. A Novel of Multi-wall Carbon Nanotubes/Chitosan Electrochemical Sensor for Determination of Cupric ion

    NASA Astrophysics Data System (ADS)

    Tan, Funeng; Li, Lei

    2018-03-01

    A multi-wall carbon nanotubes/Chitosan electrochemical sensor had been fabricated by dropping CHS/MWNT solution directly onto the GC surface. The sensor was charactered by cyclic voltammetry and AC impedance with K3Fe(CN)6 as a electrochemical probe; Cyclic voltammograms(CV) and electrochemical impedance spectroscopy(EIS) indicated that the active area and electrochemical behavior of the sensor increased and improved significantly after the electrode was modified by carbon nanotubes dispersed by the chitosan. The sensor showed good electrocatalytic activity of K3Fe(CN)6. Also, from the cyclic voltammograms, we can see the process was diffusion controlled on the bare electrode and kinetics and diffusion controlled on the modified electrode. Finally Cu2+ responsed sensitively at the sensor which supplied a new method for the detection of Cu2+.

  3. Use of Nanostructures in Fabrication of Large Scale Electrochemical Film

    NASA Astrophysics Data System (ADS)

    Chen, Chien Chon; Chen, Shih Hsun; Shyu, Sheang Wen; Hsieh, Sheng Jen

    Control of electrochemical parameters when preparing small-scale samples for academic research is not difficult. In mass production environments, however, maintenance of constant current density and temperature become a critical issue. This article describes the design of several molds for large work pieces. These molds were designed to maintain constant current density and to facilitate the occurrence of electrochemical reactions in designated areas. Large-area thin films with fine nanostructure were successfully prepared using the designed electrochemical molds and containers. In addition, current density and temperature could be controlled well. This electrochemical system has been verified in many experimental operations, including etching of Al surfaces; electro-polishing of Al, Ti and stainless steel; and fabrication of anodic alumina oxide (AAO), Ti-TiO2 interference membrane, TiO2 nanotubes, AAO-TiO2 nanotubes, Ni nanowires and porous tungsten

  4. Morphology and Evolution of Sublimation Pits on Pluto

    NASA Astrophysics Data System (ADS)

    Abu-Hashmeh, N.; Conrad, J. W.; Nimmo, F.; Moore, J. M.; Stern, A.; Olkin, C.; Weaver, H. A., Jr.; Ennico Smith, K.; Young, L. A.

    2017-12-01

    Pluto's Sputnik Planitia region hosts a geologically young surface of nitrogen ice that exhibits striking pitted terrain (Moore et al., Science 351, 2016). These pits are most likely formed by sublimation due to incident sunlight, similar to the southern polar cap of Mars (Byrne and Ingersoll, Science 299, 2003); however, their evolution over time has resulted in unique morphological characteristics. Motivated by this, we used the high-resolution mosaic strips captured by New Horizons' Long Range Reconnaissance Imager (LORRI) to map sublimation pits in the southernmost region of Sputnik Planitia. Statistical data shows pit orientations appearing North-South dominant; their morphology also indicates extensional evolution along the major axis caused by further sublimation and contact-coalescence processes. Qualitative analysis of the region yielded indications of an evolutionary path for individual pits that coalesce into each other and exhibit an elongated end-stage. Additionally, densely-pitted regions generally appear to correlate with regions containing longer pits, implying that coalescence may be an important process for elongation. We also model the evolution geometry through competing effects of diffusion (viscous relaxation) and retreat (sublimation) (Buhler and Ingersoll, LPSC Abstract #1746, 2017). The model demonstrates single-pit and coalescing-pit evolutions that influence overall length, as well as a potential ability for the pit center to move in space while the pit morphology evolves.

  5. A laboratory evaluation of tagging-related mortality and tag loss in juvenile humpback chub

    USGS Publications Warehouse

    Ward, David L.; Persons, William R.; Young, Kirk; Stone, Dennis M.; Van Haverbeke, Randy; Knight, William R.

    2015-01-01

    We quantified tag retention, survival, and growth in juvenile, captive-reared Humpback Chub Gila cypha marked with three different tag types: (1) Biomark 12.5-mm, 134.2-kHz, full duplex PIT tags injected into the body cavity with a 12-gauge needle; (2) Biomark 8.4-mm, 134.2-kHz, full duplex PIT tags injected with a 16-gauge needle; and (3) Northwest Marine Technology visible implant elastomer (VIE) tags injected under the skin with a 29-gauge needle. Estimates of tag loss, tagging-induced mortality, and growth were evaluated for 60 d with each tag type for four different size-groups of fish: 40–49 mm, 50–59 mm, 60–69 mm, and 70–79 mm TL. Total length was a significant predictor of the probability of PIT tag retention and mortality for both 8-mm and 12-mm PIT tags, and the smallest fish had the highest rates of tag loss (12.5–30.0%) and mortality (7.5–20.0%). Humpback Chub of sizes 40–49 mm TL and tagged with VIE tags had no mortality but did have a 17.5% tag loss. Growth rates of all tagged fish were similar to controls. Our data indicate Humpback Chub can be effectively tagged using either 8-mm or 12-mm PIT tags with little tag loss or mortality at sizes as low as 65 mm TL.

  6. Synthesis of a fluorine-free polymeric water-repellent agent for creation of superhydrophobic fabrics

    NASA Astrophysics Data System (ADS)

    Shen, Keke; Yu, Miao; Li, Qianqian; Sun, Wei; Zhang, Xiting; Quan, Miao; Liu, Zhengtang; Shi, Suqing; Gong, Yongkuan

    2017-12-01

    A non-fluorinated polymeric alkylsilane, poly(isobutyl methacrylate-co-3-methacryloxypropyltrimethoxysilane) (PIT), is designed and synthesized to replace the commercial long-chain perfluoroalkylsilane (FAS) water-repellent agent. The superhydrophobic polyester fabrics are prepared by anchoring sol-gel derived silica nanoparticles onto alkali-treated polyester fabric surfaces and subsequently hydrophobilizing with PIT, using FAS as control. The surface chemical composition, surface morphology, wetting behavior and durability of the modified polyester fabrics are characterized by scanning electron microscopy (SEM), X-ray photoelectron spectrophotometer (XPS) and video-based contact angle goniometer, respectively. The results show that a porous silica layer could be successfully fabricated onto the surface of polyester fabric through base-catalyzed sol-gel process with tetraethoxysilane (TEOS) as precursor, incorporating additional nanostructured roughness essential for superhydrophobicity. At the same time, such a silica primer layer could provide both secondary reactive moieties (-Si - OH) for the subsequent surface hydrophobization and acceptable adhesion at the silica-polyester fabric interface. When silica modified polyester fabric (SiO2@ fabric) is hydrophobized by PIT solution (10 mg/mL), excellent water-repellency could be obtained. The water contact angle is up to 154° and the sliding angle is about 5°. Compared with small molecule water-repellent agent FAS, PIT modified SiO2@ fabric exhibits greatly improved solvent resistance under ultra-sonication, abrasion and simulated laundering durability. The anti-stain property of PIT-modified SiO2@ fabric is also evaluated by using different aqueous colored solutions.

  7. Burn Pit Emissions Exposure and Respiratory and Cardiovascular Conditions Among Airborne Hazards and Open Burn Pit Registry Participants.

    PubMed

    Liu, Jason; Lezama, Nicholas; Gasper, Joseph; Kawata, Jennifer; Morley, Sybil; Helmer, Drew; Ciminera, Paul

    2016-07-01

    The aim of this study was to determine how burn pit emissions exposure is associated with the incidence of respiratory and cardiovascular conditions. We examined the associations between assumed geographic and self-reported burn pit emissions exposure and respiratory and cardiovascular outcomes in participants of the Airborne Hazards and Open Burn Pit Registry. We found significant dose-response associations for higher risk of self-reported emphysema, chronic bronchitis, or chronic obstructive pulmonary disease with increased days of deployment within 2 miles of selected burn pits (P-trend = 0.01) and self-reported burn pit smoke exposure (P-trend = 0.0005). We found associations between burn pit emissions exposure and higher incidence of post-deployment self-reported respiratory and cardiovascular conditions, but these findings should be interpreted with caution because the surrogate measurements of burn pit emissions exposure in this analysis may not reflect individual exposure levels.

  8. Pitted terrains on (1) Ceres and implications for shallow subsurface volatile distribution

    PubMed Central

    Platz, T.; Schorghofer, N.; Prettyman, T. H.; De Sanctis, M. C.; Crown, D. A.; Schmedemann, N.; Neesemann, A.; Kneissl, T.; Marchi, S.; Schenk, P. M.; Bland, M. T.; Schmidt, B. E.; Hughson, K. H. G.; Tosi, F.; Zambon, F.; Mest, S. C.; Yingst, R. A.; Williams, D. A.; Russell, C. T.; Raymond, C. A.

    2017-01-01

    Abstract Prior to the arrival of the Dawn spacecraft at Ceres, the dwarf planet was anticipated to be ice‐rich. Searches for morphological features related to ice have been ongoing during Dawn's mission at Ceres. Here we report the identification of pitted terrains associated with fresh Cerean impact craters. The Cerean pitted terrains exhibit strong morphological similarities to pitted materials previously identified on Mars (where ice is implicated in pit development) and Vesta (where the presence of ice is debated). We employ numerical models to investigate the formation of pitted materials on Ceres and discuss the relative importance of water ice and other volatiles in pit development there. We conclude that water ice likely plays an important role in pit development on Ceres. Similar pitted terrains may be common in the asteroid belt and may be of interest to future missions motivated by both astrobiology and in situ resource utilization. PMID:28989206

  9. Pitted terrains on (1) Ceres and implications for shallow subsurface volatile distribution.

    PubMed

    Sizemore, H G; Platz, T; Schorghofer, N; Prettyman, T H; De Sanctis, M C; Crown, D A; Schmedemann, N; Neesemann, A; Kneissl, T; Marchi, S; Schenk, P M; Bland, M T; Schmidt, B E; Hughson, K H G; Tosi, F; Zambon, F; Mest, S C; Yingst, R A; Williams, D A; Russell, C T; Raymond, C A

    2017-07-16

    Prior to the arrival of the Dawn spacecraft at Ceres, the dwarf planet was anticipated to be ice-rich. Searches for morphological features related to ice have been ongoing during Dawn's mission at Ceres. Here we report the identification of pitted terrains associated with fresh Cerean impact craters. The Cerean pitted terrains exhibit strong morphological similarities to pitted materials previously identified on Mars (where ice is implicated in pit development) and Vesta (where the presence of ice is debated). We employ numerical models to investigate the formation of pitted materials on Ceres and discuss the relative importance of water ice and other volatiles in pit development there. We conclude that water ice likely plays an important role in pit development on Ceres. Similar pitted terrains may be common in the asteroid belt and may be of interest to future missions motivated by both astrobiology and in situ resource utilization.

  10. Pitted terrains on (1) Ceres and implications for shallow subsurface volatile distribution

    USGS Publications Warehouse

    Sizemore, H.G.; Platz, Thomas; Schorghofer, Norbert; Prettyman, Thomas; De Sanctis, Maria Christina; Crown, David A.; Schmedemann, Nico; Nessemann, Andeas; Kneissl, Thomas; Simone Marchi,; Schenk, Paul M.; Bland, Michael T.; Schmidt, B.E.; Hughson, Kynan H.G.; Tosi, F.; Zambon, F; Mest, S.C.; Yingst, R.A.; Williams, D.A.; Russell, C.T.; Raymond, C.A.

    2017-01-01

    Prior to the arrival of the Dawn spacecraft at Ceres, the dwarf planet was anticipated to be ice-rich. Searches for morphological features related to ice have been ongoing during Dawn's mission at Ceres. Here we report the identification of pitted terrains associated with fresh Cerean impact craters. The Cerean pitted terrains exhibit strong morphological similarities to pitted materials previously identified on Mars (where ice is implicated in pit development) and Vesta (where the presence of ice is debated). We employ numerical models to investigate the formation of pitted materials on Ceres and discuss the relative importance of water ice and other volatiles in pit development there. We conclude that water ice likely plays an important role in pit development on Ceres. Similar pitted terrains may be common in the asteroid belt and may be of interest to future missions motivated by both astrobiology and in situ resource utilization.

  11. Force-displacement measurements of earlywood bordered pits using a mesomechanical tester.

    PubMed

    Zelinka, Samuel L; Bourne, Keith J; Hermanson, John C; Glass, Samuel V; Costa, Adriana; Wiedenhoeft, Alex C

    2015-10-01

    The elastic properties of pit membranes are reported to have important implications in understanding air-seeding phenomena in gymnosperms, and pit aspiration plays a large role in wood technological applications such as wood drying and preservative treatment. Here we present force-displacement measurements for pit membranes of circular bordered pits, collected on a mesomechanical testing system. The system consists of a quartz microprobe attached to a microforce sensor that is positioned and advanced with a micromanipulator mounted on an inverted microscope. Membrane displacement is measured from digital image analysis. Unaspirated pits from earlywood of never-dried wood of Larix and Pinus and aspirated pits from earlywood of dried wood of Larix were tested to generate force-displacement curves up to the point of membrane failure. Two failure modes were observed: rupture or tearing of the pit membrane by the microprobe tip, and the stretching of the pit membrane until the torus was forced out of the pit chamber through the pit aperture without rupture, a condition we refer to as torus prolapse. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  12. Effects of a Novel Acoustic Transmitter on Swimming Performance and Predator Avoidance of Juvenile Chinook Salmon: Determination of a Size Threshold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Ricardo W.; Ashton, Neil K.; Brown, Richard S.

    Abstract Telemetry studies are used worldwide to investigate the behavior and migration of fishes. The miniaturization of acoustic transmitters enables researchers to tag smaller fish, such as the juvenile life stages of salmon, thus representing a greater proportion of the population of interest. The development of an injectable acoustic transmitter has led to research determining the least invasive and quickest method of tag implantation. Swimming performance and predator avoidance were examined. To quantify critical swimming speed (Ucrit; an index of prolonged swimming performance) and predator avoidance for juvenile Chinook salmon (Oncorhynchus tshawytscha), fish were split into three groups: (1) fishmore » implanted with a dummy injectable acoustic transmitter (IAT treatment), (2) fish implanted with a dummy injectable acoustic transmitter and passive integrated transponder (PIT) tag (IAT+PIT treatment), and (3) an untagged control group. The Ucrits and predator avoidance capability of tagged fish were compared with untagged fish to determine if carrying an IAT adversely affected swimming performance or predator avoidance. Fish implanted with only an IAT had lower Ucrit values than untagged fish and a size threshold at 79 mm fork length was found. Conversely, Ucrit values for fish implanted with an IAT+PIT were not significantly different from untagged controls and no size threshold was found. Predator avoidance testing showed no significant difference for fish implanted with an IAT compared to untagged individuals, nor was there a significant difference for IAT+PIT fish compared to untagged fish.« less

  13. Apparatus and method for constant flow oxidizing of organic materials

    DOEpatents

    Surma, Jeffrey E.; Nelson, Norvell; Steward, G. Anthony; Bryan, Garry H.

    1999-01-01

    The invention is a method and apparatus using high cerium concentration in the anolyte of an electrochemical cell to oxidize organic materials. The method and apparatus further use an ultrasonic mixer to enhance the oxidation rate of the organic material in the electrochemical cell. A reaction vessel provides an advantage of independent reaction temperature control and electrochemical cell temperature control. A separate or independent reaction vessel may be used without an ultrasonic mixer to oxidize gaseous phase organic materials.

  14. Controlled Atmosphere High Temperature SPM for electrochemical measurements

    NASA Astrophysics Data System (ADS)

    Vels Hansen, K.; Sander, C.; Koch, S.; Mogensen, M.

    2007-03-01

    A new controlled atmosphere high temperature SPM has been designed and build for the purpose of performing electrochemical measurements on solid oxide fuel cell materials. The first tests show that images can be obtained at a surface temperature of 465°C in air with a standard AFM AC probe. The aim is to produce images at a surface temperature of 800°C with electrically conducting ceramic probes as working electrodes that can be positioned at desired locations at the surface for electrochemical measurements.

  15. Least tern and piping plover nesting at sand pits in Nebraska

    USGS Publications Warehouse

    Sidle, John G.; Kirsch, E.M.

    1993-01-01

    Endangered Least Terns (Sterna antillarum) and threatened Piping Plovers (Charadrius melodus) nest at commercial sand and gravel mining operations (sand pits) along the Platte River system in Nebraska. Sandbar habitat has been disappearing since the early 1900's along the Platte River system, but numbers of sand pits have increased. We hypothesized that birds would more fully utilize sand pits where suitable sandbar habitat was limited. We inventoried sand pits and censused terns and plovers on both habitats along the Loup River, part of the North Loup River, and most of the Platte River during 1988-1991. Using aircraft, we also quantified features of suitable sand pits present on the central Platte in 1988 and lower Platte in 1990, and related features to abundance and presence of birds. We found 225 sand pits of which 78 were suitable and 187 were unsuitable for nesting. Along the central Platte, where sandbar habitat is severely degraded, birds nested at 81% of the suitable sand pits (N = 32) at least once during 1988-1991, and most birds (61-94%) nested on sand pits. Along the lower Platte, where both sandbar and sand pit habitat are plentiful, birds nested at 60% of the suitable sand pits (N = 35) at least once during 1988-1991, and most birds (60-86%) nested on sandbars. Numbers of terns and plovers were more weakly correlated with features of sand pits on the central Platte than on the lower Platte. Least Terns and Piping Plovers seem to use more of the suitable sand pit habitat on the central Platte than on the lower Platte. Sand pits probably have influenced the birds' distribution by providing alternative nesting habitat along rivers where suitable sandbars are rare or absent.

  16. Efficacy of UV-Pit-light traps for discerning micro-habitat-specific beetle and ant species related with different oil palm age stands and tropical annual seasons for accurate ecology and diversity interpretations

    NASA Astrophysics Data System (ADS)

    Ahmad Bukhary, A. K.; Ruslan, M. Y.; Mohd. Fauzi, M. M.; Nicholas, S.; Muhamad Fahmi, M. H.; Izfa Riza, H.; Idris, A. B.

    2015-09-01

    A newly innovated and efficient UV-Pit-light Trap is described and the results of the experiments on its efficacy that were carried out within different oil palm age stands of the year 2013 were evaluated and compared with previous study year of 2010, with out the implementation of the UV-Pit-light Trap. In 2013 the UV-Pit-light Traps, the Malaise Traps, and the Pit-fall Traps were employed, while in 2010, the conventional canopy-height UV-Light Traps, Malaise Traps, and the Pit-fall Traps were employed. The UV-Pit-light traps caught more beetle and ant families, morpho-species, and individuals per species compared with the passive Pit-fall traps. The UV-Pit-light Trap targets different subsets of the oil palm beetles and ants' communities, specifying on epigaeic-related micro-habitats, with different oil palm age stands have different compositions of micro-habitats. The UV-Pit-light Traps have the dual quality for satisfying both the biological and statistical data requirements and evaluations. There were no significant difference between the UV-Pit-light Traps and the passive Pit-fall Traps, while the trapping difference with the Malaise traps for different seasons of the year 2013. The UV-Pit-light Traps and the Malaise Traps were complementary to each other, detecting the activities of beetles and ants around the epigaeic-related micro-habitats or having active flight activities respectively according to annual seasons. The UV-Pit-light Trap is an oil-palm specific type of passive trapping system, focusing on the insect species dwelling the upper-ground/epigaeic micro-habitats.

  17. The pit and the pendulum: the impact on teen smokers of including a designated smoking area in school tobacco control policy.

    PubMed

    Baillie, L E; Lovato, C Y; Taylor, E; Rutherford, M B; Smith, M

    2008-12-01

    Thirty per cent of school districts in British Columbia do not ban smoking outright on school grounds, and in several instances, smoking is permitted in smoking pits, regardless of school district policy. While there is evidence to suggest that enforcing a tobacco-free environment for students does reduce adolescent smoking rates, the concomitant safety and discipline problems it creates for school staff and administration are demanding and complex, and may override concerns regarding student smoking. This study uses a qualitative approach to explore the meanings that students place on tobacco control policy and the impact that these meanings have on their own smoking behaviours. We found that students were surprised and concerned that smoking was permitted on school property and that it negatively impacted their own tobacco prevention/control/cessation attempts.

  18. Development and investigation of a pollution control pit for treatment of stormwater from metal roofs and traffic areas.

    PubMed

    Dierkes, C; Göbel, P; Lohmann, M; Coldewey, W G

    2006-01-01

    Source control by on-site retention and infiltration of stormwater is a sustainable and proven alternative to classical drainage methods. Unfortunately, sedimentary particles and pollutants from drained surfaces cause clogging and endanger soil and groundwater during long-term operation of infiltration devices. German water authorities recommend the use of infiltration devices, such as swales or swale-trench-systems. Direct infiltration by underground facilities, such as pipes, trenches or sinks, without pretreatment of runoff is generally not permitted. Problems occur with runoff from metal roofs, traffic areas and industrial sites. However, due to site limitations, underground systems are often the only feasible option. To overcome this situation, a pollution control pit was developed with a hydrodynamic separator and a multistage filter made of coated porous concrete. The system treats runoff at source and protects soil, groundwater and receiving waterways. Typically, more than 90% of the pollutants such as sedimentary particles, hydrocarbons and heavy metals can be removed. Filters have been developed to treat even higher polluted stormwater loads from metal roofs and industrial sites. The treatment process is based on sedimentation, filtration, adsorption and chemical precipitation. Sediments are trapped in a special chamber within the pit and can be removed easily. Other pollutants are captured in the concrete filter upstream of the sediment separator chamber. Filters can be easily replaced.

  19. One dimensional Linescan x-ray detection of pits in fresh cherries

    USDA-ARS?s Scientific Manuscript database

    The presence of pits in processed cherries is a concern for both processors and consumers, in many cases causing injury and potential lawsuits. While machines used for pitting cherries are extremely efficient, if one or more plungers in a pitting head become misaligned, a large number of pits may p...

  20. Large heterogeneities in comet 67P as revealed by active pits from sinkhole collapse.

    PubMed

    Vincent, Jean-Baptiste; Bodewits, Dennis; Besse, Sébastien; Sierks, Holger; Barbieri, Cesare; Lamy, Philippe; Rodrigo, Rafael; Koschny, Detlef; Rickman, Hans; Keller, Horst Uwe; Agarwal, Jessica; A'Hearn, Michael F; Auger, Anne-Thérèse; Barucci, M Antonella; Bertaux, Jean-Loup; Bertini, Ivano; Capanna, Claire; Cremonese, Gabriele; Da Deppo, Vania; Davidsson, Björn; Debei, Stefano; De Cecco, Mariolino; El-Maarry, Mohamed Ramy; Ferri, Francesca; Fornasier, Sonia; Fulle, Marco; Gaskell, Robert; Giacomini, Lorenza; Groussin, Olivier; Guilbert-Lepoutre, Aurélie; Gutierrez-Marques, P; Gutiérrez, Pedro J; Güttler, Carsten; Hoekzema, Nick; Höfner, Sebastian; Hviid, Stubbe F; Ip, Wing-Huen; Jorda, Laurent; Knollenberg, Jörg; Kovacs, Gabor; Kramm, Rainer; Kührt, Ekkehard; Küppers, Michael; La Forgia, Fiorangela; Lara, Luisa M; Lazzarin, Monica; Lee, Vicky; Leyrat, Cédric; Lin, Zhong-Yi; Lopez Moreno, Josè J; Lowry, Stephen; Magrin, Sara; Maquet, Lucie; Marchi, Simone; Marzari, Francesco; Massironi, Matteo; Michalik, Harald; Moissl, Richard; Mottola, Stefano; Naletto, Giampiero; Oklay, Nilda; Pajola, Maurizio; Preusker, Frank; Scholten, Frank; Thomas, Nicolas; Toth, Imre; Tubiana, Cecilia

    2015-07-02

    Pits have been observed on many cometary nuclei mapped by spacecraft. It has been argued that cometary pits are a signature of endogenic activity, rather than impact craters such as those on planetary and asteroid surfaces. Impact experiments and models cannot reproduce the shapes of most of the observed cometary pits, and the predicted collision rates imply that few of the pits are related to impacts. Alternative mechanisms like explosive activity have been suggested, but the driving process remains unknown. Here we report that pits on comet 67P/Churyumov-Gerasimenko are active, and probably created by a sinkhole process, possibly accompanied by outbursts. We argue that after formation, pits expand slowly in diameter, owing to sublimation-driven retreat of the walls. Therefore, pits characterize how eroded the surface is: a fresh cometary surface will have a ragged structure with many pits, while an evolved surface will look smoother. The size and spatial distribution of pits imply that large heterogeneities exist in the physical, structural or compositional properties of the first few hundred metres below the current nucleus surface.

  1. Corrosion resistance improvement for 316L stainless steel coronary artery stents by trimethylsilane plasma nanocoatings.

    PubMed

    Eric Jones, John; Chen, Meng; Yu, Qingsong

    2014-10-01

    To improve their corrosion resistance and thus long-term biocompatibility, 316L stainless steel coronary artery stents were coated with trimethylsilane (TMS) plasma coatings of 20-25 nm in thickness. Both direct current (DC) and radio-frequency (RF) glow discharges were utilized for TMS plasma coatings and additional NH₃/O₂ plasma treatment to tailor the surface properties. X-ray photoelectron spectroscopy (XPS) was used to characterize the coating surface chemistry. It was found that both DC and RF TMS plasma coatings had Si- and C-rich composition, and the O- and N-contents on the surfaces were substantially increased after NH₃/O₂ plasma treatment. Surface contact angle measurements showed that DC TMS plasma nanocoating with NH₃/O₂ plasma treatment generated very hydrophilic surface. The corrosion resistance of TMS plasma coated stents was evaluated through potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The potentiodynamic polarization demonstrated that the TMS plasma coated stents imparted higher corrosion potential and pitting potential, as well as lower corrosion current densities as compared with uncoated controls. The surface morphology of stents before and after potentiodynamic polarization testing was analyzed with scanning electron microscopy, which indicated less corrosion on coated stents than uncoated controls. It was also noted that, from EIS data, the hydrophobic TMS plasma nanocoatings showed stable impedance modulus at 0.1 Hz after 21 day immersion in an electrolyte solution. These results suggest improved corrosion resistance of the 316L stainless steel stents by TMS plasma nanocoatings and great promise in reducing and blocking metallic ions releasing into the bloodstream. © 2014 Wiley Periodicals, Inc.

  2. Potentiostatic control of ionic liquid surface film formation on ZE41 magnesium alloy.

    PubMed

    Efthimiadis, Jim; Neil, Wayne C; Bunter, Andrew; Howlett, Patrick C; Hinton, Bruce R W; MacFarlane, Douglas R; Forsyth, Maria

    2010-05-01

    The generation of potentially corrosion-resistant films on light metal alloys of magnesium have been investigated. Magnesium alloy, ZE41 [Mg-Zn-Rare Earth (RE)-Zr, nominal composition approximately 4 wt % Zn, approximately 1.7 wt % RE (Ce), approximately 0.6 wt % Zr, remaining balance, Mg], was exposed under potentiostatic control to the ionic liquid trihexyl(tetradecyl)phosphonium diphenylphosphate, denoted [P(6,6,6,14)][DPP]. During exposure to this IL, a bias potential, shifted from open circuit, was applied to the ZE41 surface. Electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA) were used to monitor the evolution of film formation on the metal surface during exposure. The EIS data indicate that, of the four bias potentials examined, applying a potential of -200 mV versus OCP during the exposure period resulted in surface films of greatest resistance. Both EIS measurements and scanning electron microscopy (SEM) imaging indicate that these surfaces are substantially different to those formed without potential bias. Time of flight-secondary ion mass spectrometry (ToF-SIMS) elemental mapping of the films was utilized to ascertain the distribution of the ionic liquid cationic and anionic species relative to the microstructural surface features of ZE41 and indicated a more uniform distribution compared with the surface following exposure in the absence of a bias potential. Immersion of the treated ZE41 specimens in a chloride contaminated salt solution clearly indicated that the ionic liquid generated surface films offered significant protection against pitting corrosion, although the intermetallics were still insufficiently protected by the IL and hence favored intergranular corrosion processes.

  3. Light scattering from laser induced pit ensembles on high power laser optics

    DOE PAGES

    Feigenbaum, Eyal; Elhadj, Selim; Matthews, Manyalibo J.

    2015-01-01

    Far-field light scattering characteristics from randomly arranged shallow Gaussian-like shaped laser induced pits, found on optics exposed to high energy laser pulses, is studied. Closed-form expressions for the far-field intensity distribution and scattered power are derived for individual pits and validated using numerical calculations of both Fourier optics and FDTD solutions to Maxwell’s equations. It is found that the scattered power is proportional to the square of the pit width and approximately also to the square of the pit depth, with the proportionality factor scaling with pit depth. As a result, the power scattered from shallow pitted optics is expectedmore » to be substantially lower than assuming complete scattering from the total visible footprint of the pits.« less

  4. The Effects of Hot Corrosion Pits on the Fatigue Resistance of a Disk Superalloy

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Telesman, Jack; Hazel, Brian; Mourer, David P.

    2009-01-01

    The effects of hot corrosion pits on low cycle fatigue life and failure modes of the disk superalloy ME3 were investigated. Low cycle fatigue specimens were subjected to hot corrosion exposures producing pits, then tested at low and high temperatures. Fatigue lives and failure initiation points were compared to those of specimens without corrosion pits. Several tests were interrupted to estimate the fraction of fatigue life that fatigue cracks initiated at pits. Corrosion pits significantly reduced fatigue life by 60 to 98 percent. Fatigue cracks initiated at a very small fraction of life for high temperature tests, but initiated at higher fractions in tests at low temperature. Critical pit sizes required to promote fatigue cracking were estimated, based on measurements of pits initiating cracks on fracture surfaces.

  5. Pit-1/growth hormone factor 1 splice variant expression in the rhesus monkey pituitary gland and the rhesus and human placenta.

    PubMed

    Schanke, J T; Conwell, C M; Durning, M; Fisher, J M; Golos, T G

    1997-03-01

    We have examined the expression of Pit-1 messenger RNA (mRNA) splice variants in the nonhuman primate pituitary and in rhesus and human placenta. Full-length complementary DNAs (cDNAs) representing Pit-1 and the Pit-1 beta splice variants were cloned from a rhesus monkey pituitary cDNA library and were readily detectable by RT-PCR with rhesus pituitary gland RNA. The Pit-1T variant previously reported in mouse pituitary tumor cell lines was not detectable in normal rhesus pituitary tissue, although two novel splice variants were detected. A cDNA approximating the rat Pit-1 delta 4 variant was cloned but coded for a truncated and presumably nonfunctional protein. Only by using a nested RT-PCR approach were Pit-1 and Pit-1 beta variants consistently detectable in both human and rhesus placental tissue. The Pit-1 beta variant mRNA was not detectable in JEG-3 choriocarcinoma cells unless the cells were stimulated with 8-Br-cAMP. Immunoblot studies with nuclear extracts from primary rhesus syncytiotrophoblast cultures or JEG-3 choriocarcinoma cells indicated that although mRNA levels were very low, Pit-1 protein was detectable in differentiated cytotrophoblasts, and levels increased after treatment with 8-Br-cAMP. Two major species of Pit-1 protein were detected that corresponded to the two major bands in rat pituitary GH3 cell nuclear extracts. Low levels of slightly larger bands also were seen, which may represent Pit-1 beta protein or phosphorylated species. We conclude that Pit-1 splice variants expressed in the primate pituitary gland differ from those in the rodent gland and that the Pit-1 and Pit-1 beta mRNAs expressed in the placenta give rise to a pattern of protein expression similar to that seen in pituitary cells, which is inducible by treatment with 8-Br-cAMP.

  6. Advantages and limitations for users of double pit pour-flush latrines: a qualitative study in rural Bangladesh.

    PubMed

    Hussain, Faruqe; Clasen, Thomas; Akter, Shahinoor; Bawel, Victoria; Luby, Stephen P; Leontsini, Elli; Unicomb, Leanne; Barua, Milan Kanti; Thomas, Brittany; Winch, Peter J

    2017-05-25

    In rural Bangladesh, India and elsewhere, pour-flush pit latrines are the most common sanitation system. When a single pit latrine becomes full, users must empty it themselves and risk exposure to fresh feces, pay an emptying service to remove pit contents or build a new latrine. Double pit pour-flush latrines may serve as a long-term sanitation option including high water table areas because the pits do not need to be emptied immediately and the excreta decomposes into reusable soil. Double pit pour-flush latrines were implemented in rural Bangladesh for 'hardcore poor' households by a national NGO, BRAC. We conducted interviews, focus groups, and spot checks in two low-income, rural areas of Bangladesh to explore the advantages and limitations of using double pit latrines compared to single pit latrines. The rural households accepted the double pit pour-flush latrine model and considered it feasible to use and maintain. This latrine design increased accessibility of a sanitation facility for these low-income residents and provided privacy, convenience and comfort, compared to open defecation. Although a double pit latrine is more costly and requires more space than a single pit latrine the households perceived this sanitation system to save resources, because households did not need to hire service workers to empty pits or remove decomposed contents themselves. In addition, the excreta decomposition process produced a reusable soil product that some households used in homestead gardening. The durability of the latrine superstructures was a problem, as most of the bamboo-pole superstructure broke after 6-18 months of use. Double pit pour-flush latrines are a long-term improved sanitation option that offers users several important advantages over single pit pour-flush latrines like in rural Bangladesh which can also be used in areas with high water table. Further research can provide an understanding of the comparative health impacts and effectiveness of the model in preventing human excreta from entering the environment.

  7. Electrochemical surface-enhanced Raman scattering measurement on ligand capped PbS quantum dots at gap of Au nanodimer

    NASA Astrophysics Data System (ADS)

    Li, Xiaowei; Minamimoto, Hiro; Murakoshi, Kei

    2018-05-01

    The vibrational characteristics of ligand-capped lead sulfide (PbS) quantum dots (QDs) were clarified via electrochemical surface-enhanced Raman spectroscopy (EC-SERS) using a hybridized system of gold (Au) nanodimers and PbS QDs under electrochemical potential control. Enhanced electromagnetic field caused by the coupling of QDs with plasmonic Au nanodimers allowed the characteristic behavior of the ligand oleic acid (OA) on the PbS QD surface to be detected under electrochemical potential control. Binding modes between the QDs and OA molecules were characterized using synchronous two-dimensional correlation spectra at distinct electrochemical potentials, confirming that the bidentate bridging mode was probably the most stable mode even under relatively negative potential polarization. Changes in binding modes and molecular orientations resulted in fluctuations in EC-SERS spectra. The present observations strongly recommend the validity of the QD-plasmonic nanostructure coupled system for sensitive molecular detection via EC-SERS.

  8. Involvement of the pituitary-specific transcription factor pit-1 in somatolactotrope cell growth and death: an approach using dominant-negative pit-1 mutants.

    PubMed

    Pellegrini, Isabelle; Roche, Cathy; Quentien, Marie-Helene; Ferrand, Mireille; Gunz, Ginette; Thirion, Sylvie; Bagnis, Claude; Enjalbert, Alain; Franc, Jean-Louis

    2006-12-01

    The anterior pituitary-specific transcription factor Pit-1 was initially identified and cloned as a transactivator of the prolactin (PRL) and GH genes and later as a regulator of the TSHb gene. It was found to be a major developmental regulator, because natural Pit-1 gene mutations cause a dwarf phenotype in mice and cause combined pituitary hormone deficiency associated with pituitary hypoplasia in humans. To further investigate the growth-promoting effects of Pit-1, we used a strategy based on the use of dominant-negative Pit-1 mutants as an alternative means of inactivating endogenous Pit-1 functions. R271W, a Pit-1 mutant identified in one allele in patients with severe combined pituitary hormone deficiency, and Pit-1Delta1-123, a deletion mutant in which only the DNA binding domain of Pit-1 is conserved, were generated, and their ability to abolish the effects of the endogenous native Pit-1 in the differentiated proliferating somatolactotrope GH4C1 cell line was investigated. Enforced expression of the dominant-negative mutants in GH4C1 cells using recombinant lentiviral vectors decreased the levels of expression of known Pit-1 target genes such as PRL and GH, abolished the hormone release, and reduced cell viability by decreasing the growth rate and inducing apoptosis via a caspase-independent pathway. These results show for the first time that the growth-promoting effects of Pit-1 are at least partly due to the fact that this transcription factor prevents apoptotic cell death.

  9. An assessment of ultra fine grained 316L stainless steel for implant applications.

    PubMed

    Muley, Sachin Vijay; Vidvans, Amey N; Chaudhari, Gajanan P; Udainiya, Sumit

    2016-01-01

    Ultra fine-grained metals obtained by severe plastic deformation exhibit higher specific strength that is useful for many applications and show promise for use as body implants. This work studied the microstructural evolution, mechanical and sliding wear behavior and corrosion behavior of 316L stainless steel warm multi axially forged at 600°C. Microstructural evolution studied using electron backscatter diffraction technique and transmission electron microscopy confirmed the formation of ultra fine-grained structure. Average grain size reduced from 30μm to 0.86μm after nine strain steps. A combination of Hall-Petch strengthening and strain hardening increased the hardness. Improved sliding wear resistance is attributed to a transition from micro cutting to wedge-forming mode of abrasive wear. Load-bearing orthopedic implants often fail from pitting initiated corrosion fatigue. Potentiodynamic tests, cyclic polarization, and FeCl3 immersion tests revealed enhanced pitting resistance of forged steel that is confirmed by Mott-Schottky analysis. This is ascribed to an increase in the grain boundary volume, and homogenization of pit inducing impurities and non-metallic phases due to severe deformation, which influenced the passive film properties. These model studies on 316L steel demonstrate that severely deformed ultra fine-grained metals have potential to deliver improved implant performance. This model study on 316L steel demonstrates that severely deformed ultra fine-grained (UFG) metals have potential to deliver improved load-bearing implant performance. It is as interesting as is unclear as to how such severely deformed UFG material behaves electrochemically in the corrosive body fluids. This work is on studying the inter-relationship between structure, and mechanical, wear, and corrosion behavior of warm multiaxially forged (MAFed) UFG 316L stainless steel. Warm MAF is a bulk processing method capable of yielding large volume of UFG material and is an easily readily adaptable technique in industry. It can be a promising alternative to the expensive metallic alloys available for implant applications. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Simulation of lubricating behavior of a thioether liquid lubricant by an electrochemical method

    NASA Technical Reports Server (NTRS)

    Morales, W.

    1984-01-01

    An electrochemical cell was constructed to explore the possible radical anion forming behavior of a thioether liquid lubricant. The electrochemical behavior of the thioether was compared with the electrochemical behavior of biphenyl, which is known to form radical anions. Under controlled conditions biphenyl undergoes a reversible reaction to a radical anion, whereas the thioether undergoes an irreversible reduction yielding several products. These results are discussed in relation to boundary lubrication.

  11. Polymer-directed synthesis of metal oxide-containing nanomaterials for electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Mai, Yiyong; Zhang, Fan; Feng, Xinliang

    2013-12-01

    Metal oxide-containing nanomaterials (MOCNMs) of controllable structures at the nano-scale have attracted considerable interest because of their great potential applications in electrochemical energy storage devices, such as lithium-ion batteries (LIBs) and supercapacitors. Among many structure-directing agents, polymers and macromolecules, including block copolymers (BCPs) and graphene, exhibit distinct advantages in the template-assisted synthesis of MOCNMs. In this feature article, we introduce the controlled preparation of MOCNMs employing BCPs and graphene as structure-directing agents. Typical synthetic strategies are presented for the control of structures and sizes as well as the improvement of physical properties and electrochemical performance of MOCNMs in LIBs and supercapacitors.

  12. Polymer-directed synthesis of metal oxide-containing nanomaterials for electrochemical energy storage.

    PubMed

    Mai, Yiyong; Zhang, Fan; Feng, Xinliang

    2014-01-07

    Metal oxide-containing nanomaterials (MOCNMs) of controllable structures at the nano-scale have attracted considerable interest because of their great potential applications in electrochemical energy storage devices, such as lithium-ion batteries (LIBs) and supercapacitors. Among many structure-directing agents, polymers and macromolecules, including block copolymers (BCPs) and graphene, exhibit distinct advantages in the template-assisted synthesis of MOCNMs. In this feature article, we introduce the controlled preparation of MOCNMs employing BCPs and graphene as structure-directing agents. Typical synthetic strategies are presented for the control of structures and sizes as well as the improvement of physical properties and electrochemical performance of MOCNMs in LIBs and supercapacitors.

  13. Nanometer-scale mapping of irreversible electrochemical nucleation processes on solid Li-ion electrolytes

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Arruda, Thomas M.; Tselev, Alexander; Ivanov, Ilia N.; Lawton, Jamie S.; Zawodzinski, Thomas A.; Butyaev, Oleg; Zayats, Sergey; Jesse, Stephen; Kalinin, Sergei V.

    2013-04-01

    Electrochemical processes associated with changes in structure, connectivity or composition typically proceed via new phase nucleation with subsequent growth of nuclei. Understanding and controlling reactions requires the elucidation and control of nucleation mechanisms. However, factors controlling nucleation kinetics, including the interplay between local mechanical conditions, microstructure and local ionic profile remain inaccessible. Furthermore, the tendency of current probing techniques to interfere with the original microstructure prevents a systematic evaluation of the correlation between the microstructure and local electrochemical reactivity. In this work, the spatial variability of irreversible nucleation processes of Li on a Li-ion conductive glass-ceramics surface is studied with ~30 nm resolution. An increased nucleation rate at the boundaries between the crystalline AlPO4 phase and amorphous matrix is observed and attributed to Li segregation. This study opens a pathway for probing mechanisms at the level of single structural defects and elucidation of electrochemical activities in nanoscale volumes.

  14. Nanometer-scale mapping of irreversible electrochemical nucleation processes on solid Li-ion electrolytes.

    PubMed

    Kumar, Amit; Arruda, Thomas M; Tselev, Alexander; Ivanov, Ilia N; Lawton, Jamie S; Zawodzinski, Thomas A; Butyaev, Oleg; Zayats, Sergey; Jesse, Stephen; Kalinin, Sergei V

    2013-01-01

    Electrochemical processes associated with changes in structure, connectivity or composition typically proceed via new phase nucleation with subsequent growth of nuclei. Understanding and controlling reactions requires the elucidation and control of nucleation mechanisms. However, factors controlling nucleation kinetics, including the interplay between local mechanical conditions, microstructure and local ionic profile remain inaccessible. Furthermore, the tendency of current probing techniques to interfere with the original microstructure prevents a systematic evaluation of the correlation between the microstructure and local electrochemical reactivity. In this work, the spatial variability of irreversible nucleation processes of Li on a Li-ion conductive glass-ceramics surface is studied with ~30 nm resolution. An increased nucleation rate at the boundaries between the crystalline AlPO4 phase and amorphous matrix is observed and attributed to Li segregation. This study opens a pathway for probing mechanisms at the level of single structural defects and elucidation of electrochemical activities in nanoscale volumes.

  15. Nanometer-scale mapping of irreversible electrochemical nucleation processes on solid Li-ion electrolytes

    PubMed Central

    Kumar, Amit; Arruda, Thomas M.; Tselev, Alexander; Ivanov, Ilia N.; Lawton, Jamie S.; Zawodzinski, Thomas A.; Butyaev, Oleg; Zayats, Sergey; Jesse, Stephen; Kalinin, Sergei V.

    2013-01-01

    Electrochemical processes associated with changes in structure, connectivity or composition typically proceed via new phase nucleation with subsequent growth of nuclei. Understanding and controlling reactions requires the elucidation and control of nucleation mechanisms. However, factors controlling nucleation kinetics, including the interplay between local mechanical conditions, microstructure and local ionic profile remain inaccessible. Furthermore, the tendency of current probing techniques to interfere with the original microstructure prevents a systematic evaluation of the correlation between the microstructure and local electrochemical reactivity. In this work, the spatial variability of irreversible nucleation processes of Li on a Li-ion conductive glass-ceramics surface is studied with ~30 nm resolution. An increased nucleation rate at the boundaries between the crystalline AlPO4 phase and amorphous matrix is observed and attributed to Li segregation. This study opens a pathway for probing mechanisms at the level of single structural defects and elucidation of electrochemical activities in nanoscale volumes. PMID:23563856

  16. Force-displacement measurements of earlywood bordered pits using a mesomechanical tester

    Treesearch

    Samuel L. Zelinka; Keith J. Bourne; John C. Hermanson; Samuel V. Glass; Adriana Costa; Alex C. Wiedenhoeft

    2015-01-01

    The elastic properties of pit membranes are reported to have important implications in understanding air-seeding phenomena in gymnosperms, and pit aspiration plays a large role in wood technological applications such as wood drying and preservative treatment. Here we present force–displacement measurements for pit membranes of circular bordered pits, collected on a...

  17. Testing and modeling the influence of reclamation and control methods for reducing nonpoint mercury emissions associated with industrial open pit gold mines.

    PubMed

    Miller, Matthieu B; Gustin, Mae S

    2013-06-01

    Industrial gold mining is a significant source of mercury (Hg) emission to the atmosphere. To investigate ways to reduce these emissions, reclamation and dust and mercury control methods used at open pit gold mining operations in Nevada were studied in a laboratory setting. Using this information along with field data, and building off previous work, total annual Hg emissions were estimated for two active gold mines in northern Nevada. Results showed that capping mining waste materials with a low-Hg substrate can reduce Hg emissions from 50 to nearly 100%. The spraying of typical dust control solutions often results in higher Hg emissions, especially as materials dry after application. The concentrated application of a dithiocarbamate Hg control reagent appears to reduce Hg emissions, but further testing mimicking the actual distribution of this chemical within an active leach solution is needed to make a more definitive assessment.

  18. Manipulation of nanoscale V-pits to optimize internal quantum efficiency of InGaN multiple quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chiao-Yun; Li, Heng; Shih, Yang-Ta

    2015-03-02

    We systematically investigated the influence of nanoscale V-pits on the internal quantum efficiency (IQE) of InGaN multiple quantum wells (MQWs) by adjusting the underlying superlattices (SLS). The analysis indicated that high barrier energy of sidewall MQWs on V-pits and long diffusion distance between the threading dislocation (TD) center and V-pit boundary were crucial to effectively passivate the non-radiative centers of TDs. For a larger V-pit, the thicker sidewall MQW on V-pit would decrease the barrier energy. On the contrary, a shorter distance between the TD center and V-pit boundary would be observed in a smaller V-pit, which could increase themore » carrier capturing capability of TDs. An optimized V-pit size of approximately 200–250 nm in our experiment could be concluded for MQWs with 15 pairs SLS, which exhibited an IQE value of 70%.« less

  19. Protocol for PIT: a phase III trial of prophylactic irradiation of tracts in patients with malignant pleural mesothelioma following invasive chest wall intervention.

    PubMed

    Bayman, N; Ardron, D; Ashcroft, L; Baldwin, D R; Booton, R; Darlison, L; Edwards, J G; Lang-Lazdunski, L; Lester, J F; Peake, M; Rintoul, R C; Snee, M; Taylor, P; Lunt, C; Faivre-Finn, C

    2016-01-27

    Histological diagnosis of malignant mesothelioma requires an invasive procedure such as CT-guided needle biopsy, thoracoscopy, video-assisted thorascopic surgery (VATs) or thoracotomy. These invasive procedures encourage tumour cell seeding at the intervention site and patients can develop tumour nodules within the chest wall. In an effort to prevent nodules developing, it has been widespread practice across Europe to irradiate intervention sites postprocedure--a practice known as prophylactic irradiation of tracts (PIT). To date there has not been a suitably powered randomised trial to determine whether PIT is effective at reducing the risk of chest wall nodule development. In this multicentre phase III randomised controlled superiority trial, 374 patients who can receive radiotherapy within 42 days of a chest wall intervention will be randomised to receive PIT or no PIT. Patients will be randomised on a 1:1 basis. Radiotherapy in the PIT arm will be 21 Gy in three fractions. Subsequent chemotherapy is given at the clinicians' discretion. A reduction in the incidence of chest wall nodules from 15% to 5% in favour of radiotherapy 6 months after randomisation would be clinically significant. All patients will be followed up for up to 2 years with monthly telephone contact and at least four outpatient visits in the first year. PIT was approved by NRES Committee North West-Greater Manchester West (REC reference 12/NW/0249) and recruitment is currently on-going, the last patient is expected to be randomised by the end of 2015. The analysis of the primary end point, incidence of chest wall nodules 6 months after randomisation, is expected to be published in 2016 in a peer reviewed journal and results will also be presented at scientific meetings and summary results published online. A follow-up analysis is expected to be published in 2018. ISRCTN04240319; NCT01604005; Pre-results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  20. Breaking Ground on the Moon and Mars: Reconstructing Lunar Tectonic Evolution and Martian Central Pit Crater Formation

    NASA Astrophysics Data System (ADS)

    Williams, Nathan Robert

    Understanding the structural evolution of planetary surfaces provides key insights to their physical properties and processes. On the Moon, large-scale tectonism was thought to have ended over a billion years ago. However, new Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) high resolution images show the Moon's surface in unprecedented detail and show many previously unidentified tectonic landforms, forcing a re-assessment of our views of lunar tectonism. I mapped lobate scarps, wrinkle ridges, and graben across Mare Frigoris -- selected as a type area due to its excellent imaging conditions, abundance of tectonic landforms, and range of inferred structural controls. The distribution, morphology, and crosscutting relationships of these newly identified populations of tectonic landforms imply a more complex and longer-lasting history of deformation that continues to today. I also performed additional numerical modeling of lobate scarp structures that indicates the upper kilometer of the lunar surface has experienced 3.5-18.6 MPa of differential stress in the recent past, likely due to global compression from radial thermal contraction. Central pit craters on Mars are another instance of intriguing structures that probe subsurface physical properties. These kilometer-scale pits are nested in the centers of many impact craters on Mars as well as on icy satellites. They are inferred to form in the presence of a water-ice rich substrate; however, the process(es) responsible for their formation is still debated. Previous models invoke origins by either explosive excavation of potentially water-bearing crustal material, or by subsurface drainage of meltwater and/or collapse. I assessed radial trends in grain size around central pits using thermal inertias calculated from Thermal Emission Imaging System (THEMIS) thermal infrared images. Average grain size decreases with radial distance from pit rims -- consistent with pit-derived ejecta but not expected for collapse models. I present a melt-contact model that might enable a delayed explosion, in which a central uplift brings ice-bearing substrate into contact with impact melt to generate steam explosions and excavate central pits during the impact modification stage.

  1. Distribution, formation mechanisms, and significance of lunar pits

    NASA Astrophysics Data System (ADS)

    Wagner, Robert V.; Robinson, Mark S.

    2014-07-01

    Lunar Reconnaissance Orbiter Camera images reveal the presence of steep-walled pits in mare basalt (n = 8), impact melt deposits (n = 221), and highland terrain (n = 2). Pits represent evidence of subsurface voids of unknown extents. By analogy with terrestrial counterparts, the voids associated with mare pits may extend for hundreds of meters to kilometers in length, thereby providing extensive potential habitats and access to subsurface geology. Because of their small sizes relative to the local equilibrium crater diameters, the mare pits are likely to be post-flow features rather than volcanic skylights. The impact melt pits are indirect evidence both of extensive subsurface movement of impact melt and of exploitable sublunarean voids. Due to the small sizes of pits (mare, highland, and impact melt) and the absolute ages of their host materials, it is likely that most pits formed as secondary features.

  2. Pit Latrine Fecal Sludge Resistance Using a Dynamic Cone Penetrometer in Low Income Areas in Mzuzu City, Malawi

    PubMed Central

    Chirwa, Charles F. C.; Hall, Ralph P.; Krometis, Leigh-Anne H.; Vance, Eric A.; Edwards, Adam; Guan, Ting; Holm, Rochelle H.

    2017-01-01

    Pit latrines can provide improved household sanitation, but without effective and inexpensive emptying options, they are often abandoned once full and may pose a public health threat. Emptying techniques can be difficult, as the sludge contents of each pit latrine are different. The design of effective emptying techniques (e.g., pumps) is limited by a lack of data characterizing typical in situ latrine sludge resistance. This investigation aimed to better understand the community education and technical engineering needs necessary to improve pit latrine management. In low income areas within Mzuzu city, Malawi, 300 pit latrines from three distinct areas were assessed using a dynamic cone penetrometer to quantify fecal sludge strength, and household members were surveyed to determine their knowledge of desludging procedures and practices likely to impact fecal sludge characteristics. The results demonstrate that there is a significant difference in sludge strength between lined and unlined pits within a defined area, though sludge hardened with depth, regardless of the pit type or region. There was only limited association between cone penetration depth and household survey data. To promote the adoption of pit emptying, it is recommended that households be provided with information that supports pit emptying, such as latrine construction designs, local pit emptying options, and cost. This study indicates that the use of a penetrometer test in the field prior to pit latrine emptying may facilitate the selection of appropriate pit emptying technology. PMID:28165378

  3. The efficiencies of cast blasting in wide pits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, R.L.; King, M.G.

    Blasting activities in all four pits at Thunder Basin Coal`s Black Thunder Mine are focused on cast blasting. With widths varying from 190 feet to 265 feet and bench heights varying from 90 feet to 175 feet, casting efficiencies vary with different geometry`s. For example, the percent cast to final in the 200 foot pit is on the average higher than the 270 foot pit. The powder factors are somewhat higher in the narrower pits, thus increasing the cost of blasting. This leads to a very detailed look at the actual benefit of cast blasting and the associated cost ofmore » these benefits. The simple solution would be to reduce the width of the pits, thereby increasing the percent cast to final. However, the lower rehandle and low coal loss associated with wide pits would be fortified. Upon further review it becomes obvious that the wider pits could not be compared to the narrow pits with the cast to final percent indices. The focus should be shifted to cubic yards cast to final per lineal foot of pit. This will allow for more accurate measures of the casting efficiency of the shot. When comparing the pits with these indices their performances were much closer than the percent cast to final indices. The powder factors being higher in the narrow pits drove up the cost per cubic yard cast to final. Therefore, even though the percent cast to final was higher, the cost per cubic yard was also higher.« less

  4. Corrosion Behavior of Alloy 625 in PbSO4-Pb3O4-PbCl2-ZnO-10 Wt Pct CdO Molten Salt Medium

    NASA Astrophysics Data System (ADS)

    Mohammadi Zahrani, E.; Alfantazi, A. M.

    2012-08-01

    Corrosion behavior and degradation mechanisms of alloy 625 under a 47.288 PbSO4-12.776 Pb3O4-6.844PbCl2-23.108ZnO-10CdO (wt pct) molten salt mixture under air atmosphere were studied at 873 K, 973 K, and 1073 K (600 °C, 700 °C, and 800 °C). Electrochemical impedance spectroscopy (EIS), open circuit potential (OCP) measurements, and potentiodynamic polarization techniques were used to evaluate the degradation mechanisms and characterize the corrosion behavior of the alloy. Morphology, chemical composition, and phase structure of the corrosion products and surface layers of the corroded specimens were studied by scanning electron microscopy/energy-dispersive X-ray (SEM/EDX) and X-ray map analyses. Results confirmed that during the exposure of alloy 625 to the molten salt, chromium was mainly dissolved through an active oxidation process as CrO3, Cr2O3, and CrNbO4, while nickel dissolved only as NiO in the system. Formation of a porous and nonprotective oxide layer with low resistance is responsible for the weak protective properties of the barrier layer at high temperatures of 973 K and 1073 K (700 °C and 800 °C). There were two kinds of attack for INCONEL 625, including general surface corrosion and pitting. Pitting corrosion occurred due to the breakdown of the initial oxide layer by molten salt dissolution of the oxide or oxide cracking.

  5. Design, development, and demonstration of a fully LabVIEW controlled in situ electrochemical Fourier transform infrared setup combined with a wall-jet electrode to investigate the electrochemical interface of nanoparticulate electrocatalysts under reaction conditions.

    PubMed

    Nesselberger, Markus; Ashton, Sean J; Wiberg, Gustav K H; Arenz, Matthias

    2013-07-01

    We present a detailed description of the construction of an in situ electrochemical ATR-FTIR setup combined with a wall-jet electrode to investigate the electrocatalytic properties of nanoparticulate catalysts in situ under controlled mass transport conditions. The presented setup allows the electrochemical interface to be probed in combination with the simultaneous determination of reaction rates. At the same time, the high level of automation allows it to be used as a standard tool in electrocatalysis research. The performance of the setup was demonstrated by probing the oxygen reduction reaction on a platinum black catalyst in sulfuric electrolyte.

  6. Tank Riser Pit Decontamination System (Pit Viper) Return on Investment and Break-Even Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Joan K.; Weimar, Mark R.; Balducci, Patrick J.

    2003-06-30

    This study assessed the cost benefit of Pit Viper deployment for 80 tank farm pits between October 1, 2003 and September 30, 2012 under the technical baseline for applicable double-shell tank (DST) and single-shell tank (SST) projects. After this assessment had been completed, the U.S. Department of Energy (DOE) Richland Operations Office (RL) and Office of River Protection (ORP) published the Hanford Performance Management Plan (August 2003), which accelerated the schedule for SST retrieval. Then, DOE/CH2M HILL contract modification M064 (October 2002) and The Integrated Mission Acceleration Plan (March 2003) further accelerated SST retrieval and closure schedules. Twenty-six to 40more » tanks must be retrieved by 2006. Thus the schedule for SST pit entries is accelerated and the number of SST pit entries is increased. This study estimates the return on investment (ROI) and the number of pits where Pit Viper deployment would break even or save money over current manual practices. The results of the analysis indicate a positive return on the federal investment for deployment of the Pit Viper provided it is used on a sufficient number of pits.« less

  7. Printability and inspectability of programmed pit defects on teh masks in EUV lithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, I.-Y.; Seo, H.-S.; Ahn, B.-S.

    2010-03-12

    Printability and inspectability of phase defects in ELlVL mask originated from substrate pit were investigated. For this purpose, PDMs with programmed pits on substrate were fabricated using different ML sources from several suppliers. Simulations with 32-nm HP L/S show that substrate pits with below {approx}20 nm in depth would not be printed on the wafer if they could be smoothed by ML process down to {approx}1 nm in depth on ML surface. Through the investigation of inspectability for programmed pits, minimum pit sizes detected by KLA6xx, AIT, and M7360 depend on ML smoothing performance. Furthermore, printability results for pit defectsmore » also correlate with smoothed pit sizes. AIT results for pattemed mask with 32-nm HP L/S represents that minimum printable size of pits could be {approx}28.3 nm of SEVD. In addition, printability of pits became more printable as defocus moves to (-) directions. Consequently, printability of phase defects strongly depends on their locations with respect to those of absorber patterns. This indicates that defect compensation by pattern shift could be a key technique to realize zero printable phase defects in EUVL masks.« less

  8. An Autoregulatory Pathway Establishes the Definitive Chromatin Conformation at the Pit-1 Locus

    PubMed Central

    Cooke, Nancy E.; Liebhaber, Stephen A.

    2015-01-01

    The transcription factor Pit-1 (POU1-F1) plays a dominant role in cell lineage expansion and differentiation in the anterior pituitary. Prior studies of the mouse Pit-1 (mPit-1) gene revealed that this master regulatory locus is activated at embryonic day 13.5 (E13.5) by an early enhancer (EE), whereas its subsequent expression throughout adult life is maintained by a more distal definitive enhancer (DE). Here, we demonstrate that the sequential actions of these two enhancers are linked to corresponding shifts in their proximities to the Pit-1 promoter. We further demonstrate that the looping of the definitive enhancer to the mPit-1 promoter is critically dependent on a self-sustaining autoregulatory mechanism mediated by the Pit-1 protein. These Pit-1-dependent actions are accompanied by localized recruitment of CBP and enrichment for H3K27 acetylation within the Pit-1 locus. These data support a model in which the sequential actions of two developmentally activated enhancers are linked to a corresponding shift in higher-order chromatin structures. This shift establishes an autoregulatory circuit that maintains durable expression of Pit-1 throughout adult life. PMID:25691665

  9. Is Playing in the Pit Really the Pits?: Pain, Strength, Music Performance Anxiety, and Workplace Satisfaction in Professional Musicians in Stage, Pit, and Combined Stage/Pit Orchestras.

    PubMed

    Kenny, Dianna T; Driscoll, Tim; Ackermann, Bronwen J

    2016-03-01

    Typically, Australian orchestral musicians perform on stage, in an orchestra pit, or in a combination of both workplaces. This study explored a range of physical and mental health indicators in musicians who played in these different orchestra types to ascertain whether orchestra environment was a risk factor affecting musician wellbeing. Participants comprised 380 full-time orchestral musicians from the eight major state orchestras in Australia comprised of two dedicated pit orchestras, three stage-only symphonic orchestras, and three mixed stage/pit orchestras. Participants completed a physical assessment and a range of self-report measures assessing performance-related musculoskeletal disorders (PRMD), physical characteristics including strength and perceived exertion, and psychological health, including music performance anxiety (MPA), workplace satisfaction, and bullying. Physical characteristics and performance-related musculoskeletal profiles were similar for most factors on the detailed survey completed by orchestra members. The exceptions were that pit musicians demonstrated greater shoulder and elbow strength, while mixed-workload orchestra musicians had greater flexibility Significantly more exertion was reported by pit musicians when rehearsing and performing. Stage/pit musicians reported less physical exertion when performing in the pit compared with performing on stage. Severity of MPA was significantly greater in pit musicians than mixed orchestra musicians. Pit musicians also reported more frequent bullying and lower job satisfaction compared with stage musicians. There were few differences in the objective physical measures between musicians in the different orchestra types. However, pit musicians appear more psychologically vulnerable and less satisfied with their work than musicians from the other two orchestra types. The physical and psychological characteristics of musicians who perform in different orchestra types have not been adequately theorized or studied. We offer some preliminary thoughts that may account for the observed differences.

  10. Mitis group streptococci express variable pilus islet 2 pili.

    PubMed

    Zähner, Dorothea; Gandhi, Ashish R; Yi, Hong; Stephens, David S

    2011-01-01

    Streptococcus oralis, Streptococcus mitis, and Streptococcus sanguinis are members of the Mitis group of streptococci and agents of oral biofilm, dental plaque and infective endocarditis, disease processes that involve bacteria-bacteria and bacteria-host interactions. Their close relative, the human pathogen S. pneumoniae uses pilus-islet 2 (PI-2)-encoded pili to facilitate adhesion to eukaryotic cells. PI-2 pilus-encoding genetic islets were identified in S. oralis, S. mitis, and S. sanguinis, but were absent from other isolates of these species. The PI-2 islets resembled the genetic organization of the PI-2 islet of S. pneumoniae, but differed in the genes encoding the structural pilus proteins PitA and PitB. Two and three variants of pitA (a pseudogene in S. pneumoniae) and pitB, respectively, were identified that showed ≈20% difference in nucleotide as well as corresponding protein sequence. Species-independent combinations of pitA and pitB variants indicated prior intra- and interspecies horizontal gene transfer events. Polyclonal antisera developed against PitA and PitB of S. oralis type strain ATCC35037 revealed that PI-2 pili in oral streptococci were composed of PitA and PitB. Electronmicrographs showed pilus structures radiating >700 nm from the bacterial surface in the wild type strain, but not in an isogenic PI-2 deletion mutant. Anti-PitB-antiserum only reacted with pili containing the same PitB variant, whereas anti-PitA antiserum was cross-reactive with the other PitA variant. Electronic multilocus sequence analysis revealed that all PI-2-encoding oral streptococci were closely-related and cluster with non-PI-2-encoding S. oralis strains. This is the first identification of PI-2 pili in Mitis group oral streptococci. The findings provide a striking example of intra- and interspecies horizontal gene transfer. The PI-2 pilus diversity provides a possible key to link strain-specific bacterial interactions and/or tissue tropisms with pathogenic traits in the Mitis group streptococci.

  11. Development of an aversive Pavlovian-to-instrumental transfer task in rat

    PubMed Central

    Campese, Vincent; McCue, Margaret; Lázaro-Muñoz, Gabriel; LeDoux, Joseph E.; Cain, Christopher K.

    2013-01-01

    Pavlovian-to-instrumental transfer (PIT) is an effect whereby a classically conditioned stimulus (CS) enhances ongoing instrumental responding. PIT has been extensively studied with appetitive conditioning but barely at all with aversive conditioning. Although it's been argued that conditioned suppression is a form of aversive PIT, this effect is fundamentally different from appetitive PIT because the CS suppresses, instead of facilitates, responding. Five experiments investigated the importance of a variety of factors on aversive PIT in a rodent Sidman avoidance paradigm in which ongoing shuttling behavior (unsignaled active avoidance or USAA) was facilitated by an aversive CS. Experiment 1 demonstrated a basic PIT effect. Experiment 2 found that a moderate amount of USAA extinction produces the strongest PIT with shuttling rates best at around 2 responses per minute prior to the CS. Experiment 3 tested a protocol in which the USAA behavior was required to reach the 2-response per minute mark in order to trigger the CS presentation and found that this produced robust and reliable PIT. Experiment 4 found that the Pavlovian conditioning US intensity was not a major determinant of PIT strength. Experiment 5 demonstrated that if the CS and US were not explicitly paired during Pavlovian conditioning, PIT did not occur, showing that CS-US learning is required. Together, these studies demonstrate a robust, reliable and stable aversive PIT effect that is amenable to analysis of neural circuitry. PMID:24324417

  12. SOURCE CONTROL BY HYDROLOGICAL ISOLATION: APPLICATON OF THE ANKENY MOAT

    EPA Science Inventory

    Prior to 1990, gasoline marketers stored their product in underground storage tanks made of mild steel. These tanks often suffered corrosion pits that allowed gasoline to escape and contaminate ground water. To control pollution from spills of gasoline, the U.S. EPA created the ...

  13. Copper Tube Pitting in Santa Fe Municipal Water Caused by Microbial Induced Corrosion.

    PubMed

    Burleigh, Thomas D; Gierke, Casey G; Fredj, Narjes; Boston, Penelope J

    2014-06-05

    Many copper water lines for municipal drinking water in Santa Fe, New Mexico USA, have developed pinhole leaks. The pitting matches the description of Type I pitting of copper, which has historically been attributed to water chemistry and to contaminants on the copper tubing surface. However, more recent studies attribute copper pitting to microbial induced corrosion (MIC). In order to test for microbes, the copper tubing was fixed in hexamethyldisilazane (HMDS), then the tops of the corrosion mounds were broken open, and the interior of the corrosion pits were examined with scanning electron microscopy (SEM). The analysis found that microbes resembling actinobacteria were deep inside the pits and wedged between the crystallographic planes of the corroded copper grains. The presence of actinobacteria confirms the possibility that the cause of this pitting corrosion was MIC. This observation provides better understanding and new methods for preventing the pitting of copper tubing in municipal water.

  14. Observation of Eye Pattern on Super-Resolution Near-Field Structure Disk with Write-Strategy Technique

    NASA Astrophysics Data System (ADS)

    Fuji, Hiroshi; Kikukawa, Takashi; Tominaga, Junji

    2004-07-01

    Pit-edge recording at a density of 150 nm pits and spaces is carried out on a super-resolution near-field structure (super-RENS) disk with a platinum oxide layer. Pits are recorded and read using a 635-nm-wavelength laser and an objective lens with a 0.6 numerical aperture. We arrange laser pulses to correctly record the pits on the disk by a write-strategy technique. The laser-pulse figure includes a unit time of 0.25 T and intensities of Pw1, Pw2 and Pw3. After recording pits of various lengths, the observation of an eye pattern is achieved despite a pit smaller than the resolution limit. Furthermore, the eye pattern maintains its shape even though other pits fill the adjacent tracks at a track density of 600 nm. The disk can be used as a pit-edge recording system through a write-strategy technique.

  15. Copper Tube Pitting in Santa Fe Municipal Water Caused by Microbial Induced Corrosion

    PubMed Central

    Burleigh, Thomas D.; Gierke, Casey G.; Fredj, Narjes; Boston, Penelope J.

    2014-01-01

    Many copper water lines for municipal drinking water in Santa Fe, New Mexico USA, have developed pinhole leaks. The pitting matches the description of Type I pitting of copper, which has historically been attributed to water chemistry and to contaminants on the copper tubing surface. However, more recent studies attribute copper pitting to microbial induced corrosion (MIC). In order to test for microbes, the copper tubing was fixed in hexamethyldisilazane (HMDS), then the tops of the corrosion mounds were broken open, and the interior of the corrosion pits were examined with scanning electron microscopy (SEM). The analysis found that microbes resembling actinobacteria were deep inside the pits and wedged between the crystallographic planes of the corroded copper grains. The presence of actinobacteria confirms the possibility that the cause of this pitting corrosion was MIC. This observation provides better understanding and new methods for preventing the pitting of copper tubing in municipal water. PMID:28788679

  16. Analysis on the stress corrosion crack inception based on pit shape and size of the FV520B tensile specimen

    NASA Astrophysics Data System (ADS)

    Xiang, Longhao; Pan, Juyi; Chen, Songying

    2018-06-01

    The influence of pit shape and size on local stress concentration in the tensile specimen and the stress corrosion cracks inception was studied by employing the element remove technique. The maximum stress located in the bottom of pit on FV520B tensile specimen. The location of maximum strain was near the mouth of the pit or the shoulder and plastic strain existed in this region. Stress concentration factor and plastic deformation on four different geometrical shape pits of hemisphere, semi-ellipsoid, bullet and butterfly were numerically investigated, respectively. The simulation results showed that butterfly pit got the biggest stress concentration factor. The plastic strain rate during pit growth was in the sensitivity range of stress corrosion cracks inception, indicating that stress corrosion cracks were more likely to nucleate near the pit tip or the shoulder.

  17. The role of surface nonuniformity in controlling the initiation of a galvanic replacement reaction.

    PubMed

    Cobley, Claire M; Zhang, Qiang; Song, Wilbur; Xia, Younan

    2011-06-06

    The use of silver nanocrystals--asymmetrically truncated octahedrons and nanobars--characterized by a nonuniform surface as substrates for a galvanic replacement reaction was investigated. As the surfaces of these nanocrystals contain facets with a variety of different areas, shapes, and atomic arrangements, we were able to examine the roles of these parameters in different stages of the galvanic replacement reaction with HAuCl(4) (e.g., pitting, hollowing, pit closing, and pore formation), and thus obtain a deeper understanding of the reaction mechanism than is possible with silver nanocubes. We found that the most important of these parameters was the atomic arrangement, that is, whether the surface was capped by a {100} or {111} facet, and that the area and shape of the facet had essentially no effect on the initiation of the reaction. Interestingly, through the reaction with asymmetrically truncated octahedrons, we were also able to demonstrate that even when pitting occurred over a large area, this region would be sealed through a combination of atomic diffusion and deposition during the intermediate stages of the reaction. Consequently, even if pitting occurred across a large percentage of the nanocrystal surface, it was still possible to maintain the morphology of the template throughout the reaction. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Tunable plasmon-induced transparency in plasmonic metamaterial composed of three identical rings

    NASA Astrophysics Data System (ADS)

    Tian, Yuchen; Ding, Pei; Fan, Chunzhen

    2017-10-01

    We numerically investigated the plasmon-induced transparency (PIT) effect in a three-dimensional plasmonic metamaterial composed of three identical rings. It is illustrated that the PIT effect appears as a result of the destructive interference between the electric dipole and the quadrupole resonance mode. By tuning gap distance, radius or rotation angle of the metamaterial, the required transmission spectra with a narrow sharp transparency peak can be realized. In particular, it is found that an on-to-off amplitude modulation of the PIT transparency window can be achieved by moving or rotating the horizontal ring. Two dips move to high frequency and low frequency regions, respectively, in the transmission spectra by moving the horizontal ring, namely, the width of transmission peak becomes larger. With the rotation of horizontal ring, both width and position of transmission peak are kept invariant. Our designed structure achieved a maximum group index of 352 in the visible frequency range, which has a significant slow light effect. Moreover, the PIT effect is explained based on the classical two-oscillator theory, which is in well agreement with the numerical results. It indicates our proposed structure and theoretical analysis may open up avenues for the tunable control of light in highly integrated optical circuits.

  19. Lawrence Livermore National Laboratory Pre-project Rare Plant and Wildlife Surveys For the Pit 7 Drainage Diversion and Groundwater Extraction and Treatment Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paterson, L; Woollett, J

    In January 2007, the Department of Energy (DOE) released the final Environmental Assessment for the Proposed Environmental Remediation at the Lawrence Livermore National Laboratory (LLNL) Site 300 Pit 7 Complex. At the same time, the Department of Toxic Substances Control (DTSC) released the final Negative Declaration and Initial Study covering the Pit 7 remediation. No substantial adverse effect on wildlife species of concern was anticipated from the project. However, it was proposed that wildlife surveys should be conducted prior to construction because species locations and breeding areas could potentially change by the time construction activities began. Although no known populationsmore » of rare or endangered/threatened plant species were known to occur within the project impact area at the time these documents were released, rare plants listed by the California Native Plant Society had been observed in the vicinity. As such, both DOE and DTSC proposed that plant surveys would be undertaken at the appropriate time of year to determine if rare plants would be impacted by project construction. This document provides the results of wildlife and rare plant surveys taken prior to the start of construction at the Pit 7 Complex.« less

  20. Effects of sulfate and nitrate anions on aluminum corrosion in slightly alkaline solution

    NASA Astrophysics Data System (ADS)

    Li, Shengyi; Church, Benjamin C.

    2018-05-01

    The corrosion mechanisms and kinetics of AA1085 in Li2SO4 and LiNO3 aqueous rechargeable lithium-ion battery electrolytes were investigated at pH 11 using chronoamperometry. The corrosion kinetics of AA1085 is controlled by the electrolyte concentration level and the anodic potentials. AA1085 is susceptible to crystallographic pitting corrosion in Li2SO4 electrolytes. The rates of pit nucleation and pit growth both decreased at higher Li2SO4 concentrations or at lower anodic potentials. AA1085 passivates against pitting corrosion in LiNO3 electrolytes due to the formation of a thick, uniform corrosion product layer. The growth rate of the passive film was slightly enhanced by increasing the electrolyte concentration and anodic potentials. X-ray photoelectron spectroscopy spectra showed the formation of a thin sulfate-incorporated passive film on the electrode, which comprises Al2(SO)418H2O, Al(OH)SO4 and Al(OH)3, before the occurrence of pitting growth in 2 M Li2SO4 electrolyte. The thick corrosion product layer formed in 5 M LiNO3 electrolyte was composed of Al(OH)3 and AlOOH. Raman spectroscopy on deionized water, LiOH solution, Li2SO4 and LiNO3 electrolytes depicted changes of solution structure with increasing electrolyte concentration. The influence of extrinsic and intrinsic factors on the corrosion kinetics of AA1085 in Li2SO4 and LiNO3 electrolytes at pH 11 are discussed in detail.

  1. The effects of amphetamine exposure on outcome-selective Pavlovian-instrumental transfer in rats

    PubMed Central

    Shiflett, Michael W.

    2012-01-01

    Rationale Repeated exposure to psychostimulants alters behavioral responses to reward-related cues; however, the motivational underpinnings of this effect have not been fully characterized. Objectives The following study was designed to examine how amphetamine sensitization affects performance in rats on a series of Pavlovian and operant tasks that distinguish between general-incentive and outcome-selective forms of conditioned responses. Methods Adult male rats underwent Pavlovian and instrumental training for food pellet rewards. Following training, rats were sensitized to d-amphetamine (2 mg/kg for 7 days). Rats were subsequently tested on an outcome-selective Pavlovian-instrumental transfer (PIT) task, an outcome-reinstatement task, and an outcome devaluation task. Additionally, in a separate experiment PIT was assessed in amphetamine-sensitized and control rats using a Pavlovian backward-conditioned stimulus. Results Repeated amphetamine exposure sensitized locomotor activity to acute amphetamine challenge. Amphetamine altered responses to CS presentations by increasing conditioned approach. During tests of PIT amphetamine-treated rats showed no outcome-selectivity in their responding, responding to a CS whether or not it shared a common outcome with the instrumental response. No effect of amphetamine sensitization was observed on tests of outcome-selective reinstatement by outcome delivery, or action selection based on outcome value. Amphetamine-sensitized rats showed impaired outcome-selective PIT to a backward CS but were unaltered in conditioned approach. Conclusions Amphetamine sensitization prevents outcome-selective responding during PIT, which is dissociable from amphetamine’s effects on conditioned approach. These data suggest fundamental alterations in how stimuli motivate action in addiction. PMID:22562522

  2. Refunctionalization of the ancient rice blast disease resistance gene Pit by the recruitment of a retrotransposon as a promoter.

    PubMed

    Hayashi, Keiko; Yoshida, Hitoshi

    2009-02-01

    The plant genome contains a large number of disease resistance (R) genes that have evolved through diverse mechanisms. Here, we report that a long terminal repeat (LTR) retrotransposon contributed to the evolution of the rice blast resistance gene Pit. Pit confers race-specific resistance against the fungal pathogen Magnaporthe grisea, and is a member of the nucleotide-binding site leucine-rich repeat (NBS-LRR) family of R genes. Compared with the non-functional allele Pit(Npb), the functional allele Pit(K59) contains four amino acid substitutions, and has the LTR retrotransposon Renovator inserted upstream. Pathogenesis assays using chimeric constructs carrying the various regions of Pit(K59) and Pit(Npb) suggest that amino acid substitutions might have a potential effect in Pit resistance; more importantly, the upregulated promoter activity conferred by the Renovator sequence is essential for Pit function. Our data suggest that transposon-mediated transcriptional activation may play an important role in the refunctionalization of additional 'sleeping' R genes in the plant genome.

  3. Associations of polymorphisms in the Pit-1 gene with growth and carcass traits in Angus beef cattle.

    PubMed

    Zhao, Q; Davis, M E; Hines, H C

    2004-08-01

    The Pit-1 gene was studied as a candidate for genetic markers of growth and carcass traits. Angus beef cattle that were divergently selected for high- or low-blood serum IGF-I concentration were used in this study. The single-strand conformation polymorphism method was used to identify polymorphism in the Pit-1 gene including regions from intron 2 to exon 6. Two polymorphisms, Pit1I3H (HinfI) and Pit1I3NL (NlaIII), were detected in intron 3 of the Pit-1 gene. One polymorphism, Pit1I4N (BstNI), was found in intron 4, and a single nucleotide polymorphism, Pit1I5, was found in intron 5. The previously reported polymorphism in exon 6, Pit1E6H (HinfI), was also studied in 416 Angus beef cattle. Associations of the polymorphisms with growth traits, carcass traits, and IGF-I concentration were analyzed using a general linear model procedure. No significant associations were observed between these polymorphisms and growth and carcass traits.

  4. Use of portable antennas to estimate abundance of PIT-tagged fish in small streams: Factors affecting detection probability

    USGS Publications Warehouse

    O'Donnell, Matthew J.; Horton, Gregg E.; Letcher, Benjamin H.

    2010-01-01

    Portable passive integrated transponder (PIT) tag antenna systems can be valuable in providing reliable estimates of the abundance of tagged Atlantic salmon Salmo salar in small streams under a wide range of conditions. We developed and employed PIT tag antenna wand techniques in two controlled experiments and an additional case study to examine the factors that influenced our ability to estimate population size. We used Pollock's robust-design capture–mark–recapture model to obtain estimates of the probability of first detection (p), the probability of redetection (c), and abundance (N) in the two controlled experiments. First, we conducted an experiment in which tags were hidden in fixed locations. Although p and c varied among the three observers and among the three passes that each observer conducted, the estimates of N were identical to the true values and did not vary among observers. In the second experiment using free-swimming tagged fish, p and c varied among passes and time of day. Additionally, estimates of N varied between day and night and among age-classes but were within 10% of the true population size. In the case study, we used the Cormack–Jolly–Seber model to examine the variation in p, and we compared counts of tagged fish found with the antenna wand with counts collected via electrofishing. In that study, we found that although p varied for age-classes, sample dates, and time of day, antenna and electrofishing estimates of N were similar, indicating that population size can be reliably estimated via PIT tag antenna wands. However, factors such as the observer, time of day, age of fish, and stream discharge can influence the initial and subsequent detection probabilities.

  5. Survival and growth of juvenile Pacific lampreys tagged with passive integrated transponders (PIT) in freshwater and seawater

    USGS Publications Warehouse

    Mesa, Matthew G.; Copeland, Elizabeth S.; Christiansen, Helena E.; Gregg, Jacob L.; Roon, Sean R.; Hershberger, Paul K.

    2012-01-01

    Tagging methods are needed for both adult and juvenile life stages of Pacific lampreys Lampetra tridentata to better understand their biology and factors contributing to their decline. We developed a safe and efficient technique for tagging juvenile Pacific lampreys with passive integrated transponder (PIT) tags. We tested the short-term survival of PIT-tagged juvenile lampreys in freshwater at four temperatures (9, 12, 15, and 18°C) and their long-term growth and survival in seawater. For both experiments there was little to no tag loss, and juvenile lampreys in freshwater showed high survival at all temperatures at 7 d (95–100%) and 14 d (88–100%) posttagging. Prolonged holding (40 d) resulted in significantly lower survival (28–79%) at warmer temperatures (12–18°C). For juvenile lampreys tagged in freshwater and then transitioned to seawater, survival was 97% for tagged fish until day 94, and at the end of 6 months, survival was about 58% for both tagged and control fish. About half of the tagged and control fish that survived in seawater grew, but there was no difference in growth between the two groups. In freshwater, but not in seawater, most fish that died had an aquatic fungal infection. In both experiments, survival increased with increasing fish length at tagging. Our results indicate that tags similar in size to a 9-mm PIT tag are a feasible option for tagging metamorphosed juvenile lampreys migrating downstream and that when fungal infections are mitigated—as in seawater—long-term (at least 6 months) survival of tagged juvenile lampreys is high.

  6. Field measurements and modeling of wave propagation and subsequent weak layer failure in snow due to explosive loading

    NASA Astrophysics Data System (ADS)

    Simioni, Stephan; Sidler, Rolf; Dual, Jürg; Schweizer, Jürg

    2015-04-01

    Avalanche control by explosives is among the key temporary preventive measures. Yet, little is known about the mechanism involved in releasing avalanches by the effect of an explosion. Here, we test the hypothesis that the stress induced by acoustic waves exceeds the strength of weak snow layers. Consequently the snow fails and the onset of rapid crack propagation might finally lead to the release of a snow slab avalanche. We performed experiments with explosive charges over a snowpack. We installed microphones above the snowpack to measure near-surface air pressure and accelerometers within three snow pits. We also recorded pit walls of each pit with high speed cameras to detect weak layer failure. Empirical relationships and a priori information from ice and air were used to characterize a porous layered model from density measurements of snow profiles in the snow pits. This model was used to perform two-dimensional numerical simulations of wave propagation in Biot-type porous material. Locations of snow failure were identified in the simulation by comparing the axial and deviatoric stress field of the simulation to the corresponding snow strength. The identified snow failure locations corresponded well with the observed failure locations in the experiment. The acceleration measured in the snowpack best correlated with the modeled acceleration of the fluid relative to the ice frame. Even though the near field of the explosion is expected to be governed by non-linear effects as for example the observed supersonic wave propagation in the air above the snow surface, the results of the linear poroelastic simulation fit well with the measured air pressure and snowpack accelerations. The results of this comparison are an important step towards quantifying the effectiveness of avalanche control by explosives.

  7. Electrochemically controlled drug-mimicking protein release from iron-alginate thin-films associated with an electrode.

    PubMed

    Jin, Zhiyuan; Güven, Güray; Bocharova, Vera; Halámek, Jan; Tokarev, Ihor; Minko, Sergiy; Melman, Artem; Mandler, Daniel; Katz, Evgeny

    2012-01-01

    Novel biocompatible hybrid-material composed of iron-ion-cross-linked alginate with embedded protein molecules has been designed for the signal-triggered drug release. Electrochemically controlled oxidation of Fe(2+) ions in the presence of soluble natural alginate polymer and drug-mimicking protein (bovine serum albumin, BSA) results in the formation of an alginate-based thin-film cross-linked by Fe(3+) ions at the electrode interface with the entrapped protein. The electrochemically generated composite thin-film was characterized by electrochemistry and atomic force microscopy (AFM). Preliminary experiments demonstrated that the electrochemically controlled deposition of the protein-containing thin-film can be performed at microscale using scanning electrochemical microscopy (SECM) as the deposition tool producing polymer-patterned spots potentially containing various entrapped drugs. Application of reductive potentials on the modified electrode produced Fe(2+) cations which do not keep complexation with alginate, thus resulting in the electrochemically triggered thin-film dissolution and the protein release. Different experimental parameters, such as the film-deposition time, concentrations of compounds and applied potentials, were varied in order to demonstrate that the electrodepositon and electrodissolution of the alginate composite film can be tuned to the optimum performance. A statistical modeling technique was applied to find optimal conditions for the formation of the composite thin-film for the maximal encapsulation and release of the drug-mimicking protein at the lowest possible potential. © 2011 American Chemical Society

  8. Detecting Cavitation Pitting Without Disassembly

    NASA Technical Reports Server (NTRS)

    Barkhoudarian, S.

    1986-01-01

    Technique for detecting cavitation pitting in pumps, turbines, and other machinery uses low-level nuclear irradiation. Isotopes concentrated below surface emit gamma radiation, a portion of which is attenuated by overlying material. Where there are cavitation pits, output of gamma-ray detector fluctuates as detector is scanned near pits. Important to detect cavitation pits because nozzle, turbine blade, or other pump component weakened by cavitation could fail catastrophically and cause machine to explode.

  9. Preliminary results of the comparison of the electrochemical behavior of a thioether and biphenyl

    NASA Technical Reports Server (NTRS)

    Morales, W.; Jones, W. R.

    1983-01-01

    An electrochemical cell was constructed to explore the feasibility of using electrochemical techniques to simulate the tribochemistry of various substances. The electrochemical cell was used to study and compare the behavior of a thioether 1,3-bis(phenylthio) benzene and biphenyl. It is found that under controlled conditions biphenyl undergoes a reversible reduction to a radical anion whereas the thioether undergoes an irreversible reduction yielding several products. The results are discussed in relationship to boundary lubrication.

  10. Corrosion pitting of SiC by molten salts

    NASA Technical Reports Server (NTRS)

    Jacobson, N. S.; Smialek, J. L.

    1986-01-01

    The corrosion of SiC by thin films of Na2CO3 and Na2SO4 at 1000 C is characterized by a severe pitting attack of the SiC substrate. A range of different Si and SiC substrates were examined to isolate the factors critical to pitting. Two types of pitting attack are identified: attack at structural discontinuities and a crater-like attack. The crater-like pits are correlated with bubble formation during oxidation of the SiC. It appears that bubbles create unprotected regions, which are susceptible to enhanced attack and, hence, pit formation.

  11. Targeted overexpression of calcitonin in gonadotrophs of transgenic mice leads to chronic hypoprolactinemia.

    PubMed

    Yuan, Ren; Kulkarni, Trupti; Wei, Fu; Shah, Girish V

    2005-01-14

    It was previously shown that calcitonin-like pituitary peptide (pit-CT) is synthesized and secreted by gonadotrophs, and pit-CT inhibits PRL gene transcription and lactotroph cell proliferation. Present studies examined long-term consequences of pit-CT overexpression on the functioning of mouse anterior pituitary (AP) gland. Targeted overexpression of pit-CT in gonadotrophs of mouse pituitaries was achieved by generating mice overexpressing bovine luteinizing hormone (LH)-alpha subunit promoter-pit-CT cDNA transgene. Transgenic (pit-CT+) mice displayed chronic but selective overexpression of pit-CT in gonadotrophs. The mice also displayed a dramatic decline in PRL gene expression as assessed by PRL mRNA abundance, PRL immunohistochemistry (IHC) and serum PRL levels. LH secretion in pit-CT+ mice was also reduced, without any change in FSH secretion. Reproductive abnormalities such as prolonged estrous cycles, reduced pregnancy rate, delivery of smaller litters, increased neonatal mortality and deficient lactation were also observed. Administration of PRL during early pregnancy significantly increased the pregnancy rate and neonatal survival of newborns. These results demonstrate that overexpression of pit-CT leads to chronic hypoprolactinemia and reproductive dysfunction in female mice, and reinforces the possibility that gonadotroph-derived pit-CT is an important paracrine regulator of lactotroph function.

  12. Research on horizontal displacement monitoring method of deep foundation pit based on laser projecting sensing technology

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Xie, Shulin; Zhang, Lixiao; Zhou, Guangyi; Zhao, Xuefeng

    2018-03-01

    A certain level of horizontal displacement will occur during excavation or subsequent construction of deep foundation pit. If the support is improper and the horizontal displacement of the foundation pit is too large, it will cause collapse and even affect the buildings around the foundation pit, which will endanger people's life and property. Therefore, the horizontal displacement monitoring of deep foundation pit becomes more and more important. At present, the electronic total station is often used to monitor the horizontal displacement of the foundation pit, but this monitoring method is expensive, prone to accidental errors, and can not be used for real-time monitoring. Therefore, a method of monitoring the horizontal displacement of deep foundation pit by using laser projection sensing technique is proposed in this paper. The horizontal displacement of the foundation pit is replaced by the displacement of the laser spot emitted by the laser, and the horizontal displacement of the foundation pit can be obtained by identifying the displacement of the laser spot projected on the screen. A series of experiments show that the accuracy of this monitoring method meets the engineering requirements and greatly reduces the cost, which provides a new technology for the displacement monitoring of deep foundation pit.

  13. Responses of dairy heifers to the visual cliff formed by a herringbone milking pit: evidence of fear of heights in cows (Bos taurus).

    PubMed

    Arnold, Naomi Adele; Ng, Kim Tee; Jongman, Ellen Caroline; Hemsworth, Paul Hamilton

    2007-11-01

    The ability of cows (Bos taurus) to perceive depth has never been experimentally investigated. If cows can perceive depth, the milking pit in commercial milking facilities may be fear provoking for dairy cows, as past research has shown that most land-dwelling species possess an instinctive fear of heights. In the current study, 12 dairy heifers (1-year-old cows) were exposed to a milking pit (depth-exposed group) and 13 heifers (control group) were exposed to a standard change in the environment while they moved through a milking facility over a 5-day treatment period. Heifers in the depth-exposed group showed a higher heart rate (p < .05) and stopped more often (p < .05) than did those in the control group; persistence of heart rate but not of behavioral responses on repeated exposures indicated that some habituation to the depth stimulus had occurred. Depth exposure had no effect on cortisol concentrations or on ease of handling. These results indicate that heifers responded differently to a change in depth than they did to a standard change in the environment and provide evidence of both depth perception and acute fear of heights in cows. Copyright 2007 APA.

  14. Controllable Synthesis of Formaldehyde Modified Manganese Oxide Based on Gas-Liquid Interfacial Reaction and Its Application of Electrochemical Sensing.

    PubMed

    Bai, Wushuang; Sheng, Qinglin; Nie, Fei; Zheng, Jianbin

    2015-12-30

    Controllable synthesis of manganese oxides was performed via a simple one-step synthetic method. Then obtained manganese oxides which exhibit flower-like, cloud-like, hexagon-like, and rod-like morphologies were modified by formaldehyde based on a simple self-made gas-liquid reaction device respectively and the modified manganese oxides with coral-like, scallop-like and rod-like morphology were synthesized accordingly. The obtained materials were characterized and the formation mechanism was also researched. Then the modified manganese oxides were used to fabricate electrochemical sensors to detect H2O2. Comparison of electrochemical properties between three kinds of modified manganese oxides was investigated and the best one has been successfully employed as H2O2 sensor which shows a low detection limit of 0.01 μM, high sensitivity of 162.69 μA mM(-1) cm(-2), and wide linear range of 0.05 μM-12.78 mM. The study provides a new method for controllable synthesis of metal oxides, and electrochemical application of formaldehyde modified manganese oxides will provides a new strategy for electrochemical sensing with high performance, low cost, and simple fabrication.

  15. Effect of Thermomechanical Processing and Crystallographic Orientation on the Corrosion Behavior of API 5L X70 Pipeline Steel

    NASA Astrophysics Data System (ADS)

    Ohaeri, Enyinnaya; Omale, Joseph; Eduok, Ubong; Szpunar, Jerzy

    2018-04-01

    This work presents the electrochemical response of X70 pipeline steel substrates thermomechanically processed at different conditions. The WE sample was hot rolled at a temperature range of 850 °C to 805 °C and cooled at a rate of 42.75 °C/s. Another sample WD was hot rolled from 880 °C to 815 °C and cooled at a faster rate of 51.5 °C/s. Corrosion tests were conducted electrochemically by potentiodynamic polarization in hydrogen-charged and non-hydrogen-charged environments. A lower corrosion rate was measured with hydrogen charging due to the rapid formation of corrosion product film on pipeline substrate, but WE specimen emerged as the most susceptible to corrosion with and without hydrogen charging. Variations in thermomechanical rolling conditions influenced grain orientation, protective film properties, corrosion, and cracking behavior on both specimens. Cracks were seen in both specimens after hydrogen charging, but specimen WE experienced a more intense deterioration of protective corrosion product film and subsequent cracking. A large part of specimen WD retained its protective corrosion product film after the polarization test, and sites where spalling occurred resulted in pitting with less cracking. Despite weak crystallographic texture noticed in both specimens, WD showed a higher intensity of corrosion-resistant 111||ND-oriented grains, while WE showed a more random distribution of 111||ND-, 011||ND-, and 001||ND-oriented grains with a lower intensity.

  16. Effect of Homogenization on Microstructure Characteristics, Corrosion and Biocompatibility of Mg-Zn-Mn-xCa Alloys

    PubMed Central

    Li, Jingyuan; Lai, Huiying; Xu, Yuzhao

    2018-01-01

    The corrosion behaviors of Mg-2Zn-0.2Mn-xCa (denoted as MZM-xCa alloys) in homogenization state have been investigated by immersion test and electrochemical techniques in a simulated physiological condition. The microstructure features were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron probe microanalysis (EPMA), and the corrosion mechanism was illustrated using atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS) and confocal laser scanning microscopy (CLSM). The electrochemical and immersion test verify the MZM-0.38% Ca owns the best corrosion performance with the corrosion rate of 6.27 mm/year. Furthermore, the film layer of MZM-0.38% Ca is more compact and denser than that of others. This improvement could be associated with the combined effects of the suitable content of Zn/Ca dissolving into the α-Mg matrix and the modification of Ca-containing compounds by heat-treatment. However, the morphologies were transformed from uniform corrosion to localized pitting corrosion with Ca further addition. It could be explained that the excessive Ca addition can strengthen the nucleation driving force for the second phase formation, and the large volumes fraction of micro-galvanic present interface sites accelerate the nucleation driving force for corrosion propagation. In addition, in vitro biocompatibility tests also show the MZM-0.38% Ca was safe to bone mesenchymal stem cells (BMSCs) and was promising to be utilized as implant materials. PMID:29389894

  17. Mitigation of corrosion attack on carbon steel coated cermet alloy in different anion contents

    NASA Astrophysics Data System (ADS)

    Khalid, Muhamad Azrin Mohd; Ismail, Azzura

    2017-12-01

    This research study evaluated the corrosion mechanism attack on carbon steel coated with cermet alloys (WC-9% Ni) in seawater at different sulphate-to-chloride ratios. The four different sulphate-to-chloride ratios were synthesised with the same seawater salinity of 3.5 % and same pH of real seawater. The corrosion tests involved immersion and electrochemical tests. The immersion test is used to determine the cermet coating ability to withstand the corrosion attack based on different ratios of anions present in the seawater at different periods of immersion. The corrosion attack was characterized by optical and Scanning Electron Microscopy (SEM). The aggressive anions present in the seawater influenced the corrosion attack on the cermet coating. For immersion test, results revealed that increasing sulphate more than chloride, increased the weight loss of cermets. The electrochemistry analysis showed that the passive layer forms on cermet coating prevented the material from further corrosion attack. However, due to its porosity, the passive layer collapsed and exposed the material for other corrosion reaction. For electrochemical test, the result shows that the solution with sulphate-to-chloride ratio of 0.14 (real seawater) has the highest corrosion current and Open Circuit Potential (OCP) compared to other solutions (different sulphate-to-chloride ratio). In conclusion, sulfate and chloride show their competition to attack the cermet coating on carbon steel and the higher the amount of chloride present in seawater, the higher the corrosion rate and pits formed on the cermet coating.

  18. Effect of Thermomechanical Processing and Crystallographic Orientation on the Corrosion Behavior of API 5L X70 Pipeline Steel

    NASA Astrophysics Data System (ADS)

    Ohaeri, Enyinnaya; Omale, Joseph; Eduok, Ubong; Szpunar, Jerzy

    2018-06-01

    This work presents the electrochemical response of X70 pipeline steel substrates thermomechanically processed at different conditions. The WE sample was hot rolled at a temperature range of 850 °C to 805 °C and cooled at a rate of 42.75 °C/s. Another sample WD was hot rolled from 880 °C to 815 °C and cooled at a faster rate of 51.5 °C/s. Corrosion tests were conducted electrochemically by potentiodynamic polarization in hydrogen-charged and non-hydrogen-charged environments. A lower corrosion rate was measured with hydrogen charging due to the rapid formation of corrosion product film on pipeline substrate, but WE specimen emerged as the most susceptible to corrosion with and without hydrogen charging. Variations in thermomechanical rolling conditions influenced grain orientation, protective film properties, corrosion, and cracking behavior on both specimens. Cracks were seen in both specimens after hydrogen charging, but specimen WE experienced a more intense deterioration of protective corrosion product film and subsequent cracking. A large part of specimen WD retained its protective corrosion product film after the polarization test, and sites where spalling occurred resulted in pitting with less cracking. Despite weak crystallographic texture noticed in both specimens, WD showed a higher intensity of corrosion-resistant 111|| ND-oriented grains, while WE showed a more random distribution of 111|| ND-, 011|| ND-, and 001|| ND-oriented grains with a lower intensity.

  19. Are pit latrines in urban areas of Sub-Saharan Africa performing? A review of usage, filling, insects and odour nuisances.

    PubMed

    Nakagiri, Anne; Niwagaba, Charles B; Nyenje, Philip M; Kulabako, Robinah N; Tumuhairwe, John B; Kansiime, Frank

    2016-02-04

    A pit latrine is the most basic form of improved sanitation which is currently used by a number of people around the globe. In spite of the wide spread use, known successes and advantages associated with pit latrines, they have received little attention in form of research and development. This review focuses on the usage and performance (filling, smell and insect nuisance) of pit latrines in urban areas of sub-Saharan Africa (SSA) and proposes approaches for their improvements and sustainability. Current pit latrine usage within urban SSA was calculated from Joint Monitoring Programme (JMP) water and sanitation country-files. We conducted a literature search and review of documents on pit latrine usage, filling, smell and insect nuisances in urban areas of SSA. Findings of the review are presented and discussed in this paper. Pit latrines are in use by more than half the urban population in SSA and especially among low income earners. An additional 36 million people in urban areas of SSA have adopted the pit latrine since 2007. However, their performance is unsatisfactory. Available literature shows that contributions have been made to address shortfalls related to pit latrine use in terms of science and technological innovations. However, further research is still needed. Any technology and process management innovations to pit latrines should involve scientifically guided approaches. In addition, development, dissemination and enforcement of minimum pit latrine design standards are important while the importance of hygienic latrines should also be emphasized.

  20. Measurements and mechanisms of localized aqueous corrosion in aluminum-lithium-copper alloys

    NASA Technical Reports Server (NTRS)

    Wall, Douglas; Stoner, Glenn E.

    1991-01-01

    Summary information is included for electrochemical aspects of stress corrosion cracking in alloy 2090 and an introduction to the work to be initiated on the new X2095 (Weldalite) alloy system. Stress corrosion cracking (SCC) was studied in both S-T and L-T orientations in alloy 2090. A constant load TTF test was performed in several environments with a potentiostatically applied potential. In the same environments the electrochemical behavior of phases found along subgrain boundaries was assessed. It was found that rapid failure due to SCC occurred when the following criteria was met: E(sub BR,T1) is less than E(sub applied) is less than E(sub Br, matrix phase). Although the L-T orientation is usually considered more resistant to SCC, failures in this orientation occurred when the stated criteria was met. This may be due to the relatively isotropic geometry of the subgrains which measure approximately 12 to 25 microns in diameters. Initial studies of alloy X2095 includes electrochemical characterization of three compositional variations each at three temperatures. The role of T(sub 1) dissolution in SCC behavior is addressed using techniques similar to those used in the research of 2090 described. SCC susceptibility is also studied using alternate immersion facilities at Reynolds Metals Corporation. Pitting is investigated in terms of stability, role of precipitate phases and constituent particles, and as initiation sites for SCC. In all research endeavors, attempts are made to link electrochemistry to microstructure. Previous work on 2090 provides a convenient basis for comparison since both alloys contain T(sub 1) precipitates but with different distributions. In 2090 T(sub 1) forms preferentially on subgrain boundaries whereas in X2095 the microstructure appears to be more homogeneous with finer T(sub 1) particles. Another point for comparison is the delta prime strengthening phase found in 2090 but absent in X2095.

  1. The effect of heat treatment on the corrosion resistance of 440C stainless steel in 20% HNO3 + 2.5% Na2Cr2O7 solution

    NASA Astrophysics Data System (ADS)

    Savas, Terence P.; Wang, Allen Yi-Lan; Earthman, James C.

    2003-04-01

    The effect of heat treatment on the corrosion resistance of 440C stainless steel was investigated in a 20% HNO3 + 2.5% Na2Cr2O7 solution using electrochemical noise (ECN) measurements, electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM) examinations. The noise resistance ( Rn), which has been found to be inversely related to the localized corrosion rate, was measured to be 5.7E + 08 Ω-cm2, 4.2E + 08 Ω-cm2, and 3.7E + 04 Ω-cm2 for the oil-quenched, air-quenched, and vacuum furnace cooled (VFC) samples, respectively, after 1200 s exposures. The Rn for all heat treat conditions stabilized within a range of 1.0E + 07 Ω-cm2 to 3.2E + 08 Ω-cm2 after 2 h exposures. The EIS response showed a polarization resistance ( R p) on the order of 6.6E + 04 Ω-cm2, 5.3E + 04 Ω-cm2, and 1.1E + 04 Ω-cm2 for the oil-quenched, air-quenched, and VFC samples, respectively, after 2 h exposures. The EIS data are in good agreement with ECN data and indicate that after longer exposures, general corrosion mechanisms dominate and the corrosion rates are comparable. SEM examinations of specimens subjected to 1200 s exposures revealed that severity of pitting and intergranular corrosion damage was consistent with trends in the Rn data. Specifically, the electrochemical noise data as well as SEM examinations of specimens revealed a higher localized corrosion resistance of the hardened specimens during the early stages of passivation. This greater resistance to localized corrosion can be attributed to an increased stability of the natural passive film resulting from a higher concentration of chromium atoms in solution for the martensite phase.

  2. Magnetic effect for electrochemically driven cellular convection.

    PubMed

    Nakabayashi, S; Inokuma, K; Karantonis, A

    1999-06-01

    Hydrodynamic instability analogous to Rayleigh-Bénard convection is observed in an electrolytic solution between two parallel copper wire electrodes. The laser interferometric technique can reveal the dissipation structure created by the motion of the fluid, which is controlled electrochemically. It is shown that under the presence of horizontal magnetic field the roll cells move horizontally along the electrodes. The electrochemically driven convection is simply controlled and monitored by setting and measuring the electrochemical parameters and forms many kinds of spatiotemporal patterns, especially under the magnetic field. The phenomenon is modeled by considering a Boussinesq fluid under a concentration gradient. The stability of the resulting equations is studied by linear stability analysis. The time dependent nonlinear system is investigated numerically and the main features of the experimental response are reproduced.

  3. NELL-1 increases pre-osteoblast mineralization using both phosphate transporter Pit1 and Pit2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowan, Catherine M.; Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, 40833 Le Conte Ave, Los Angeles, CA 90095; Zhang, Xinli

    2012-06-08

    Highlights: Black-Right-Pointing-Pointer NELL-1 accelerates extracellular matrix mineralization in MC3T3-E1 pre-osteoblasts. Black-Right-Pointing-Pointer NELL-1 significantly increases intracellular inorganic phosphate levels. Black-Right-Pointing-Pointer NELL-1 positively regulates osteogenesis but not proliferation in MC3T3-E1 cells. Black-Right-Pointing-Pointer NELL-1 regulates inorganic phosphate transporter activity. -- Abstract: NELL-1 is a potent osteoinductive molecule that enhances bone formation in multiple animal models through currently unidentified pathways. In the present manuscript, we hypothesized that NELL-1 may regulate osteogenic differentiation accompanied by alteration of inorganic phosphate (Pi) entry into the osteoblast via sodium dependent phosphate (NaPi) transporters. To determine this, MC3T3-E1 pre-osteoblasts were cultured in the presence of recombinant human (rh)NELL-1 ormore » rhBMP-2. Analysis was performed for intracellular Pi levels through malachite green staining, Pit-1 and Pit-2 expression, and forced upregulation of Pit-1 and Pit-2. Results showed rhNELL-1 to increase MC3T3-E1 matrix mineralization and Pi influx associated with activation of both Pit-1 and Pit-2 channels, with significantly increased Pit-2 production. In contrast, Pi transport elicited by rhBMP-2 showed to be associated with increased Pit-1 production only. Next, neutralizing antibodies against Pit-1 and Pit-2 completely abrogated the Pi influx effect of rhNELL-1, suggesting rhNELL-1 is dependent on both transporters. These results identify one potential mechanism of action for rhNELL-1 induced osteogenesis and highlight a fundamental difference between NELL-1 and BMP-2 signaling.« less

  4. Effector and central memory T helper 2 cells respond differently to peptide immunotherapy

    PubMed Central

    Mackenzie, Karen J.; Nowakowska, Dominika J.; Leech, Melanie D.; McFarlane, Amanda J.; Wilson, Claire; Fitch, Paul M.; O’Connor, Richard A.; Howie, Sarah E. M.; Schwarze, Jürgen; Anderton, Stephen M.

    2014-01-01

    Peptide immunotherapy (PIT) offers realistic prospects for the treatment of allergic diseases, including allergic asthma. Much is understood of the behavior of naive T cells in response to PIT. However, treatment of patients with ongoing allergic disease requires detailed understanding of the responses of allergen-experienced T cells. CD62L expression by allergen-experienced T cells corresponds to effector/effector memory (CD62Llo) and central memory (CD62Lhi) subsets, which vary with allergen exposure (e.g., during, or out with, pollen season). The efficacy of PIT on different T helper 2 (Th2) cell memory populations is unknown. We developed a murine model of PIT in allergic airway inflammation (AAI) driven by adoptively transferred, traceable ovalbumin-experienced Th2 cells. PIT effectively suppressed AAI driven by unfractionated Th2 cells. Selective transfer of CD62Lhi and CD62Llo Th2 cells revealed that these two populations behaved differently from one another and from previously characterized (early deletional) responses of naive CD4+ T cells to PIT. Most notably, allergen-reactive CD62Llo Th2 cells were long-lived within the lung after PIT, before allergen challenge, in contrast to CD62Lhi Th2 cells. Despite this, PIT was most potent against CD62Llo Th2 cells in protecting from AAI, impairing their ability to produce Th2 cytokines, whereas this capacity was heightened in PIT-treated CD62Lhi Th2 cells. We conclude that Th2 cells do not undergo an early deletional form of tolerance after PIT. Moreover, memory Th2 subsets respond differently to PIT. These findings have implications for the clinical translation of PIT in different allergic scenarios. PMID:24516158

  5. Inconsistent identification of pit bull-type dogs by shelter staff.

    PubMed

    Olson, K R; Levy, J K; Norby, B; Crandall, M M; Broadhurst, J E; Jacks, S; Barton, R C; Zimmerman, M S

    2015-11-01

    Shelter staff and veterinarians routinely make subjective dog breed identification based on appearance, but their accuracy regarding pit bull-type breeds is unknown. The purpose of this study was to measure agreement among shelter staff in assigning pit bull-type breed designations to shelter dogs and to compare breed assignments with DNA breed signatures. In this prospective cross-sectional study, four staff members at each of four different shelters recorded their suspected breed(s) for 30 dogs; there was a total of 16 breed assessors and 120 dogs. The terms American pit bull terrier, American Staffordshire terrier, Staffordshire bull terrier, pit bull, and their mixes were included in the study definition of 'pit bull-type breeds.' Using visual identification only, the median inter-observer agreements and kappa values in pair-wise comparisons of each of the staff breed assignments for pit bull-type breed vs. not pit bull-type breed ranged from 76% to 83% and from 0.44 to 0.52 (moderate agreement), respectively. Whole blood was submitted to a commercial DNA testing laboratory for breed identification. Whereas DNA breed signatures identified only 25 dogs (21%) as pit bull-type, shelter staff collectively identified 62 (52%) dogs as pit bull-type. Agreement between visual and DNA-based breed assignments varied among individuals, with sensitivity for pit bull-type identification ranging from 33% to 75% and specificity ranging from 52% to 100%. The median kappa value for inter-observer agreement with DNA results at each shelter ranged from 0.1 to 0.48 (poor to moderate). Lack of consistency among shelter staff indicated that visual identification of pit bull-type dogs was unreliable. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. One-man electrochemical air revitalization system evaluation

    NASA Technical Reports Server (NTRS)

    Schbert, F. H.; Marshall, R. D.; Hallick, T. M.; Woods, R. R.

    1976-01-01

    A program to evaluate the performance of a one man capacity, self contained electrochemical air revitalization system was successfully completed. The technology readiness of this concept was demonstrated by characterizing the performance of this one man system over wide ranges in cabin atmospheric conditions. The electrochemical air revitalization system consists of a water vapor electrolysis module to generate oxygen from water vapor in the cabin air, and an electrochemical depolarized carbon dioxide concentrator module to remove carbon dioxide from the cabin air. A control/monitor instrumentation package that uses the electrochemical depolarized concentrator module power generated to partially offset the water vapor electrolysis module power requirements and various structural fluid routing components are also part of the system. The system was designed to meet the one man metabolic oxygen generation and carbon dioxide removal requirements, thereby controlling cabin partial pressure of oxygen at 22 kN/sq m and cabin pressure of carbon dioxide at 400 N/sq m over a wide range in cabin air relative humidity conditions.

  7. Multifunctional Graphene-based Hybrid Nanomaterials for Electrochemical Energy Storage.

    NASA Astrophysics Data System (ADS)

    Gupta, Sanju

    Intense research in renewable energy is stimulated by global demand of electric energy. Electrochemical energy storage and conversion systems namely, supercapacitors and batteries, represent the most efficient and environmentally benign technologies. Moreover, controlled nanoscaled architectures and surface chemistry of electrochemical electrodes is enabling emergent next-generation efficient devices approaching theoretical limit of energy and power densities. This talk will present our recent activities to advance design, development and deployment of composition, morphology and microstructure controlled two- and three-dimensional graphene-based hybrids architectures. They are chemically and molecularly bridged with carbon nanotubes, conducting polymers, transition metal oxides and mesoproprous silicon wrapped with graphene nanosheets as engineered electrodes for supercapacitor cathodes and battery anodes. They showed significant enhancement in terms of gravimetric specific capacitance, interfacial capacitance, charging-discharging rate and cyclability. We will also present fundamental physical-chemical interfacial processes (ion transfer kinetics and diffusion), imaging electroactive sites, and topography at electrode/electrolyte interface governing underlying electrochemical mechanisms via scanning electrochemical microscopy. KY NSF EPSCoR.

  8. Reversible superconductor-insulator transition in LiTi2O4 induced by Li-ion electrochemical reaction

    PubMed Central

    Yoshimatsu, K.; Niwa, M.; Mashiko, H.; Oshima, T.; Ohtomo, A.

    2015-01-01

    Transition metal oxides display various electronic and magnetic phases such as high-temperature superconductivity. Controlling such exotic properties by applying an external field is one of the biggest continuous challenges in condensed matter physics. Here, we demonstrate clear superconductor-insulator transition of LiTi2O4 films induced by Li-ion electrochemical reaction. A compact electrochemical cell of pseudo-Li-ion battery structure is formed with a superconducting LiTi2O4 film as an anode. Li content in the film is controlled by applying a constant redox voltage. An insulating state is achieved by Li-ion intercalation to the superconducting film by applying reduction potential. In contrast, the superconducting state is reproduced by applying oxidation potential to the Li-ion intercalated film. Moreover, superconducting transition temperature is also recovered after a number of cycles of Li-ion electrochemical reactions. This complete reversible transition originates in difference in potentials required for deintercalation of initially contained and electrochemically intercalated Li+ ions. PMID:26541508

  9. Reversible superconductor-insulator transition in LiTi2O4 induced by Li-ion electrochemical reaction.

    PubMed

    Yoshimatsu, K; Niwa, M; Mashiko, H; Oshima, T; Ohtomo, A

    2015-11-06

    Transition metal oxides display various electronic and magnetic phases such as high-temperature superconductivity. Controlling such exotic properties by applying an external field is one of the biggest continuous challenges in condensed matter physics. Here, we demonstrate clear superconductor-insulator transition of LiTi2O4 films induced by Li-ion electrochemical reaction. A compact electrochemical cell of pseudo-Li-ion battery structure is formed with a superconducting LiTi2O4 film as an anode. Li content in the film is controlled by applying a constant redox voltage. An insulating state is achieved by Li-ion intercalation to the superconducting film by applying reduction potential. In contrast, the superconducting state is reproduced by applying oxidation potential to the Li-ion intercalated film. Moreover, superconducting transition temperature is also recovered after a number of cycles of Li-ion electrochemical reactions. This complete reversible transition originates in difference in potentials required for deintercalation of initially contained and electrochemically intercalated Li(+) ions.

  10. [Microsite characteristics of pit and mound and their effects on the vegetation regeneration in Pinus koraiensis-dominated broadleaved mixed forest].

    PubMed

    Du, Shan; Duan, Wen-Biao; Wang, Li-Xia; Chen, Li-Xin; Wei, Quan-Shuai; Li, Meng; Wang, Li-dong

    2013-03-01

    Abstract: An investigation was conducted in a 2.55 hm2 plot of Pinus koraiensis-dominated broad-leaved mixed forest to study the microsite characteristics of pit and mound formed by 42 treefalls and the status of vegetation regeneration on the microsites. The soil water content, soil temperature, relative air humidity, and photosynthetically active radiation (PAR) on five microsites (mound top, mound face, pit wall, pit bottom, and intact forest floor) were measured. Among the five mirosites, mound top had the highest PAR (527.9 micromol.m-2.s-1 ) while intact forest floor had the lowest one (58.7 micromol.m-2.s-), mound top had the highest soil temperature (16.0 degrees C) but pit bottom had the lowest one (13.3 degrees C), pit bottom had the highest soil water content (34.6%) but mound face had the lowest one (0.5%), and intact forest floor had the highest relative air humidity (75.9%) but mound top had the lowest one (68.0%). The frequency of forming pit/ mound complex by the tree species was decreased in the order of Pinus koraiensis (42. 9%) >Picea asperata (31.0%) > Betula platyphylla (16.7%) > Abies fabri (7. 1%) > Prunus padus (2.4%). Among the 42 treefalls, two-thirds of them were in northwest direction. The treefalls volume had significant positive correlations with pit depth, pit length, mound height, and mound width, but negative correlation with mound thickness. The treefall mean diameter at breast height had significant positive correlations with pit width (r=0.328, P=0.017) and pit length (r=0.527, P= 0). The tree species richness at the microsites decreased in the order of intact forest floor > pit > mound, and the tree species coverage was in the sequence of intact forest floor > pit > mound.

  11. High-sensitivity chemiluminescence immunoassays for detection of growth hormone doping in sports.

    PubMed

    Bidlingmaier, Martin; Suhr, Jennifer; Ernst, Andrea; Wu, Zida; Keller, Alexandra; Strasburger, Christian J; Bergmann, Andreas

    2009-03-01

    Recombinant human growth hormone (rhGH) is abused in sports, but adequate routine doping tests are lacking. Analysis of serum hGH isoform composition has been shown to be effective in detecting rhGH doping. We developed and validated selective immunoassays for isoform analysis with potential utility for screening and confirmation in doping tests. Monoclonal antibodies with preference for pituitary hGH (phGH) or rhGH were used to establish 2 pairs of sandwich-type chemiluminescence assays with differential recognition of rhGH (recA and recB) and phGH (pitA and pitB). We analyzed specimens from volunteers before and after administration of rhGH and calculated ratios between the respective rec- and pit-assay results. Functional sensitivities were <0.05 microg/L, with intra- and interassay imprecision < or =8.4% and < or =13.7%, respectively. In 2 independent cohorts of healthy subjects, rec/pit ratios (median range) were 0.84 (0.09-1.32)/0.81 (0.27-1.21) (recA/pitA) and 0.68 (0.08-1.20)/0.80 (0.25-1.36) (recB/pitB), with no sex difference. In 20 recreational athletes, ratios (median SD) increased after a single injection of rhGH, reaching 350% (73%) (recA/pitA) and 400% (93%) (recB/pitB) of baseline ratios. At a moderate dose (0.033 mg/kg), mean recA/pitA and recB/pitB ratios remained significantly increased for 18 h (men) and 26 h (women). After high-dose rhGH (0.083 mg/kg), mean rec/pit ratios remained increased for 32 h (recA/pitA) and 34 h (recB/pitB) in men and were still increased after 36 h in women. Using sensitive chemiluminescence assays with preferential recognition of phGH or rhGH, detection of a single injection of rhGH was possible for up to 36 h.

  12. Baseline Risk Assessment for the F-Area Burning/Rubble Pits and Rubble Pit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, E.

    This document provides an overview of the Savannah River Site (SRS) and a description of the F-Area Burning/Rubble Pits (BRPs) and Rubble Pit (RP) unit. It also describes the objectives and scope of the baseline risk assessment (BRA).

  13. Tale of two pit lakes: initial results of a three-year study of the Main Zone and Waterline pit lakes near Houston, British Columbia, Canada

    USGS Publications Warehouse

    Crusius, John; Pieters, R.; Leung, A.; Whittle, P.; Pedersen, T.; Lawrence, G.; McNee, J.J.

    2003-01-01

    Pit lakes are becoming increasingly common in North America as well as in the rest of the world. They are created as openpit mines fill passively with ground water and surface inflows on cessation of mining activity. In many instances, the water quality in these pit lakes does not meet regulatory requirements due to a number of influences. The most important are the oxidation of sulfide minerals and the associated release of acid and metals and the flushing of soluble metals during pit filling. Examples of pit lakes with severe water-quality problems include the Berkeley Pit lake (Butte, MT) and the Liberty Pit lake (Nevada), whose waters are characterized by a pH near 3 and Cu concentrations as high as ~150 mg/L (Miller et al., 1996; Davis and Eary, 1997). The importance of the problem can be seen in the fact that some of these sites in the United States are Superfund sites.

  14. A Functional Magnetic Resonance Imaging Study to Investigate the Utility of a Picture Imagination Task in Investigating Neural Responses in Patients with Chronic Musculoskeletal Pain to Daily Physical Activity Photographs

    PubMed Central

    2015-01-01

    Pain-related anxiety and fear are associated with increased difficulties in attention, increased awareness of pain, impaired disengagement from pain, and can moderate the effects of attentional coping attempts. Accurately assessing the direct impact of pain-related anxiety and fear on pain behavior has proved difficult. Studies have demonstrated no or limited influence of pain-related fear and anxiety on behavior but this may be due to inherent problems with the scales used. Neuroimaging has improved the understanding of neural processes underlying the factors that influence pain perception. This study aimed to establish if a Picture and Imagination Task (PIT), largely developed from the Photographs of Daily Activity (PHODA) assessment tool, could help explore how people living with chronic pain process information about daily activities. Blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) was used to compare brain responses in patients with chronic musculoskeletal pain (CMSKP) (n = 15) and healthy controls (n = 15). Subjects were asked to imagine how they would feel mentally and physically if asked to perform daily activities illustrated in PIT. The results found that a number of regions involved in pain processing saw increased BOLD activation in patients compared with controls when undertaking the task and included the insula, anterior cingulate cortex, thalamus and inferior and superior parietal cortices. Similarly, increased BOLD responses in patients compared to controls in the frontal pole, paracingulate and the supplementary motor cortex may be suggestive of a memory component to the responses The amygdala, orbitofrontal cortex, substantia nigra/ventral tegmentum, putamen, thalamus, pallidum, inferior parietal (supramarginal and angular gyrus) and cingulate cortex were also seen to have greater differences in BOLD signal changes in patients compared with controls and many of these regions are also associated with general phobic responses. Therefore, we suggest that PIT is a useful task to explore pain- and movement-related anxiety and fear in fMRI studies. Regions in the Default Mode Network remained active or were less deactivated during the PIT task in patients with CMSKP compared to healthy controls supporting the contention that the DMN is abnormal in patients with CMSKP. PMID:26496709

  15. Single Etch-Pit Shape on Off-Angled 4H-SiC(0001) Si-Face Formed by Chlorine Trifluoride

    NASA Astrophysics Data System (ADS)

    Hatayama, Tomoaki; Tamura, Tetsuya; Yano, Hiroshi; Fuyuki, Takashi

    2012-07-01

    The etch pit shape of an off-angled 4H-SiC Si-face formed by chlorine trifluoride (ClF3) in nitrogen (N2) ambient has been studied. One type of etch pit with a crooked hexagonal shape was formed at an etching temperature below 500 °C. The angle of the etch pit measured from a cross-sectional atomic force microscopy image was about 10° from the [11bar 20] view. The dislocation type of the etch pit was discussed in relation to the etch pit shape and an electron-beam-induced current image.

  16. Study on the Accident-causing of Foundation Pit Engineering

    NASA Astrophysics Data System (ADS)

    Shuicheng, Tian; Xinyue, Zhang; Pengfei, Yang; Longgang, Chen

    2018-05-01

    With the development of high-rise buildings and underground space, a large number of foundation pit projects have occurred. Frequent accidents of it cause great losses to the society, how to reduce the frequency of pit accidents has become one of the most urgent problems to be solved. Therefore, analysing the influencing factors of foundation pit engineering accidents and studying the causes of foundation pit accidents, which of great significance for improving the safety management level of foundation pit engineering and reducing the incidence of foundation pit accidents. Firstly, based on literature review and questionnaires, this paper selected construction management, survey, design, construction, supervision and monitoring as research factors, we used the AHP method and the Dematel method to analyze the weights of various influencing factors to screen indicators to determine the ultimate system of accidents caused by foundation pit accidents; Secondly, SPSS 21.0 software was used to test the reliability and validity of the recovered questionnaire data. AMOS 7.0 software was used to fit, evaluate, and explain the set model; Finally, this paper analysed the influencing factors of foundation pit engineering accidents, corresponding management countermeasures and suggestions were put forward.

  17. Pit initiation on nitinol in simulated physiological solutions.

    PubMed

    Pound, Bruce G

    2018-05-01

    Inclusions appear to play a crucial role in the initiation of pitting on nitinol, but the reason remains unclear. Furthermore, it has not been established whether the type of inclusion is a central factor. In this study, potentiodynamic polarization together with scanning electron microscopy and energy dispersive X-ray spectroscopy were used to provide more insight into the initiation of pits on electropolished nitinol wire. Corrosion was limited to a single primary pit on each of the few wire samples that exhibited breakdown. The pit contained numerous Ti 2 NiO x inclusions, but secondary pits that developed within the primary pit provided evidence that these inclusions were the sites of pit initiation. Although several theories have been proposed to account for pit initiation at inclusions in mechanically polished and electropolished nitinol, titanium depletion in the adjacent alloy matrix appears to provide the most viable explanation. The key factor appears to be the size of the inclusion and therefore the extent of titanium depletion in the alloy matrix. The type of inclusion evidently plays a secondary role at most. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1605-1610, 2018. © 2017 Wiley Periodicals, Inc.

  18. The effect of pits of different sizes on ultrasonic shear wave signals

    NASA Astrophysics Data System (ADS)

    Howard, Richard; Cegla, Frederic

    2018-04-01

    The use of 0-degree shear waves in NDE and SHM has become more commonplace as the disadvantage of coupling has been eliminated by permanent sensor installations or the use of non-contact transducers, such as EMATs. While the effect of rough surfaces and flat bottom holes on shear waves has been studied in depth, the effect of more complex geometries, such as pitting, has not. In this work, 3D finite element simulations are used to explore the reflection and scattering characteristics of shear bulk waves from pits. Specifically, three scenarios have been investigated, the effect on shear waves of: a sloped backwall; pitting directly under the transducer; and the effect of pits with variable pit position. High speed GPU finite element models enabled a wide range of pit radii and positions to be modeled. Hemispherical pits were used throughout. Key findings of the study are that the anisotropic effects that are clearly visible on sloped reflecting surfaces can also be measured on pits that are located not directly below the center of a shear wave transducer. These anisotropic effects are due to the nature of shear wave polarization. This can potentially be used for better defect characterization purposes.

  19. Dynamic and Tunable Threshold Voltage in Organic Electrochemical Transistors.

    PubMed

    Doris, Sean E; Pierre, Adrien; Street, Robert A

    2018-04-01

    In recent years, organic electrochemical transistors (OECTs) have found applications in chemical and biological sensing and interfacing, neuromorphic computing, digital logic, and printed electronics. However, the incorporation of OECTs in practical electronic circuits is limited by the relative lack of control over their threshold voltage, which is important for controlling the power consumption and noise margin in complementary and unipolar circuits. Here, the threshold voltage of OECTs is precisely tuned over a range of more than 1 V by chemically controlling the electrochemical potential at the gate electrode. This threshold voltage tunability is exploited to prepare inverters and amplifiers with improved noise margin and gain, respectively. By coupling the gate electrode with an electrochemical oscillator, single-transistor oscillators based on OECTs with dynamic time-varying threshold voltages are prepared. This work highlights the importance of electrochemistry at the gate electrode in determining the electrical properties of OECTs, and opens a path toward the system-level design of low-power OECT-based electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. CALL FOR ABSTRACTS - PIT LAKES 2004

    EPA Science Inventory

    This call for abstracts is for the 11/16-18/2004 Pit Lakes 2004 meeting held in Reno, NV. This conference will provide a forum for the exchange of scientific information on current domestic and international pit lake approaches, including pit lakes from arid and wet regions throu...

Top