Solid electrolyte-electrode system for an electrochemical cell
Tuller, Harry L.; Kramer, Steve A.; Spears, Marlene A.
1995-01-01
An electrochemical device including a solid electrolyte and solid electrode composed of materials having different chemical compositions and characterized by different electrical properties but having the same crystalline phase is provided. A method for fabricating an electrochemical device having a solid electrode and solid electrolyte characterized by the same crystalline phase is also provided.
Method for making an electrochemical cell
Tuller, Harry L.; Kramer, Steve A.; Spears, Marlene A.; Pal, Uday B.
1996-01-01
An electrochemical device including a solid electrolyte and solid electrode composed of materials having different chemical compositions and characterized by different electrical properties but having the same crystalline phase is provided. A method for fabricating an electrochemical device having a solid electrode and solid electrolyte characterized by the same crystalline phase is provided.
Solid electrolyte-electrode system for an electrochemical cell
Tuller, H.L.; Kramer, S.A.; Spears, M.A.
1995-04-04
An electrochemical device including a solid electrolyte and solid electrode composed of materials having different chemical compositions and characterized by different electrical properties but having the same crystalline phase is provided. A method for fabricating an electrochemical device having a solid electrode and solid electrolyte characterized by the same crystalline phase is also provided. 17 figures.
NASA Astrophysics Data System (ADS)
Kumar, Amit; Arruda, Thomas M.; Tselev, Alexander; Ivanov, Ilia N.; Lawton, Jamie S.; Zawodzinski, Thomas A.; Butyaev, Oleg; Zayats, Sergey; Jesse, Stephen; Kalinin, Sergei V.
2013-04-01
Electrochemical processes associated with changes in structure, connectivity or composition typically proceed via new phase nucleation with subsequent growth of nuclei. Understanding and controlling reactions requires the elucidation and control of nucleation mechanisms. However, factors controlling nucleation kinetics, including the interplay between local mechanical conditions, microstructure and local ionic profile remain inaccessible. Furthermore, the tendency of current probing techniques to interfere with the original microstructure prevents a systematic evaluation of the correlation between the microstructure and local electrochemical reactivity. In this work, the spatial variability of irreversible nucleation processes of Li on a Li-ion conductive glass-ceramics surface is studied with ~30 nm resolution. An increased nucleation rate at the boundaries between the crystalline AlPO4 phase and amorphous matrix is observed and attributed to Li segregation. This study opens a pathway for probing mechanisms at the level of single structural defects and elucidation of electrochemical activities in nanoscale volumes.
Kumar, Amit; Arruda, Thomas M; Tselev, Alexander; Ivanov, Ilia N; Lawton, Jamie S; Zawodzinski, Thomas A; Butyaev, Oleg; Zayats, Sergey; Jesse, Stephen; Kalinin, Sergei V
2013-01-01
Electrochemical processes associated with changes in structure, connectivity or composition typically proceed via new phase nucleation with subsequent growth of nuclei. Understanding and controlling reactions requires the elucidation and control of nucleation mechanisms. However, factors controlling nucleation kinetics, including the interplay between local mechanical conditions, microstructure and local ionic profile remain inaccessible. Furthermore, the tendency of current probing techniques to interfere with the original microstructure prevents a systematic evaluation of the correlation between the microstructure and local electrochemical reactivity. In this work, the spatial variability of irreversible nucleation processes of Li on a Li-ion conductive glass-ceramics surface is studied with ~30 nm resolution. An increased nucleation rate at the boundaries between the crystalline AlPO4 phase and amorphous matrix is observed and attributed to Li segregation. This study opens a pathway for probing mechanisms at the level of single structural defects and elucidation of electrochemical activities in nanoscale volumes.
Kumar, Amit; Arruda, Thomas M.; Tselev, Alexander; Ivanov, Ilia N.; Lawton, Jamie S.; Zawodzinski, Thomas A.; Butyaev, Oleg; Zayats, Sergey; Jesse, Stephen; Kalinin, Sergei V.
2013-01-01
Electrochemical processes associated with changes in structure, connectivity or composition typically proceed via new phase nucleation with subsequent growth of nuclei. Understanding and controlling reactions requires the elucidation and control of nucleation mechanisms. However, factors controlling nucleation kinetics, including the interplay between local mechanical conditions, microstructure and local ionic profile remain inaccessible. Furthermore, the tendency of current probing techniques to interfere with the original microstructure prevents a systematic evaluation of the correlation between the microstructure and local electrochemical reactivity. In this work, the spatial variability of irreversible nucleation processes of Li on a Li-ion conductive glass-ceramics surface is studied with ~30 nm resolution. An increased nucleation rate at the boundaries between the crystalline AlPO4 phase and amorphous matrix is observed and attributed to Li segregation. This study opens a pathway for probing mechanisms at the level of single structural defects and elucidation of electrochemical activities in nanoscale volumes. PMID:23563856
Electron-rich driven electrochemical solid-state amorphization in Li-Si alloys.
Wang, Zhiguo; Gu, Meng; Zhou, Yungang; Zu, Xiaotao; Connell, Justin G; Xiao, Jie; Perea, Daniel; Lauhon, Lincoln J; Bang, Junhyeok; Zhang, Shengbai; Wang, Chongmin; Gao, Fei
2013-09-11
The physical and chemical behaviors of materials used in energy storage devices, such as lithium-ion batteries (LIBs), are mainly controlled by an electrochemical process, which normally involves insertion/extraction of ions into/from a host lattice with a concurrent flow of electrons to compensate charge balance. The fundamental physics and chemistry governing the behavior of materials in response to the ions insertion/extraction is not known. Herein, a combination of in situ lithiation experiments and large-scale ab initio molecular dynamics simulations are performed to explore the mechanisms of the electrochemically driven solid-state amorphization in Li-Si systems. We find that local electron-rich condition governs the electrochemically driven solid-state amorphization of Li-Si alloys. This discovery provides the fundamental explanation of why lithium insertion in semiconductor and insulators leads to amorphization, whereas in metals, it leads to a crystalline alloy. The present work correlates electrochemically driven reactions with ion insertion, electron transfer, lattice stability, and phase equilibrium.
Electron-Rich Driven Electrochemical Solid-State Amorphization in Li-Si Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhiguo; Gu, Meng; Zhou, Yungang
2013-08-14
The physical and chemical behaviors of materials used in energy storage devices, such as lithium-ion batteries (LIBs), are mainly controlled by an electrochemical process, which normally involves insertion/extraction of ions into/from a host lattice with a concurrent flow of electrons to compensate charge balance. The fundamental physics and chemistry governing the behavior of materials in response to the ions insertion/extraction is not known. Herein, a combination of in situ lithiation experiments and large-scale ab initio molecular dynamics simulations are performed to explore the mechanisms of the electrochemically driven solid-state amorphization in Li-Si systems. We find that local electron-rich condition governsmore » the electrochemically driven solid-state amorphization of Li-Si alloys. This discovery provides the fundamental explanation of why lithium insertion in semiconductor and insulators leads to amorphization, whereas in metals, it leads to a crystalline alloy. The present work correlates electrochemically driven reactions with ion insertion, electron transfer, lattice stability and phase equilibrium.« less
Xu, Jing; Renfrew, Sara; Marcus, Matthew A.; ...
2017-05-11
Li 2Ni 1–xCu xO 2 solid solutions were prepared by a solid-state method to study the correlation between composition and electrochemical performance. Cu incorporation improved the phase purity of Li 2Ni 1–xCu xO 2 with orthorhombic Immm structure, resulting in enhanced capacity. However, the electrochemical profiles suggested Cu incorporation did not prevent irreversible phase transformation during the electrochemical process, instead, it likely influenced the phase transformation upon lithium removal. By combining ex situ X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), and differential electrochemical mass spectrometry (DEMS) measurements, this study elucidates the relevant phase transformation (e.g., crystal structure, local environment, andmore » charge compensation) and participation of electrons from lattice oxygen during the first cycle in these complex oxides.« less
Del Río, Jonathan Sabaté; Svobodova, Marketa; Bustos, Paulina; Conejeros, Pablo; O'Sullivan, Ciara K
2016-12-01
Electrochemical detection of solid-phase isothermal recombinase polymerase amplification (RPA) of Piscirickettsia salmonis in salmon genomic DNA is reported. The electrochemical biosensor was constructed by surface functionalization of gold electrodes with a thiolated forward primer specific to the genomic region of interest. Solid-phase RPA and primer elongation were achieved in the presence of the specific target sequence and biotinylated reverse primers. The formation of the subsequent surface-tethered duplex amplicons was electrochemically monitored via addition of streptavidin-linked HRP upon completion of solid-phase RPA. Successful quantitative amplification and detection were achieved in less than 1 h at 37 °C, calibrating with PCR-amplified genomic DNA standards and achieving a limit of detection of 5 · 10 -8 μg ml -1 (3 · 10 3 copies in 10 μl). The presented system was applied to the analysis of eight real salmon samples, and the method was also compared to qPCR analysis, observing an excellent degree of correlation. Graphical abstract Schematic of use of electrochemical RPA for detection of Psiricketessia salmonis in salmon liver.
Sacci, Robert L; Black, Jennifer M; Balke, Nina; Dudney, Nancy J; More, Karren L; Unocic, Raymond R
2015-03-11
The performance characteristics of Li-ion batteries are intrinsically linked to evolving nanoscale interfacial electrochemical reactions. To probe the mechanisms of solid electrolyte interphase (SEI) formation and to track Li nucleation and growth mechanisms from a standard organic battery electrolyte (LiPF6 in EC:DMC), we used in situ electrochemical scanning transmission electron microscopy (ec-S/TEM) to perform controlled electrochemical potential sweep measurements while simultaneously imaging site-specific structures resulting from electrochemical reactions. A combined quantitative electrochemical measurement and STEM imaging approach is used to demonstrate that chemically sensitive annular dark field STEM imaging can be used to estimate the density of the evolving SEI and to identify Li-containing phases formed in the liquid cell. We report that the SEI is approximately twice as dense as the electrolyte as determined from imaging and electron scattering theory. We also observe site-specific locations where Li nucleates and grows on the surface and edge of the glassy carbon electrode. Lastly, this report demonstrates the investigative power of quantitative nanoscale imaging combined with electrochemical measurements for studying fluid-solid interfaces and their evolving chemistries.
From Two-Phase to Three-Phase: The New Electrochemical Interface by Oxide Electrocatalysts
NASA Astrophysics Data System (ADS)
Xu, Zhichuan J.
2018-03-01
Electrochemical reactions typically occur at the interface between a solid electrode and a liquid electrolyte. The charge exchange behaviour between these two phases determines the kinetics of electrochemical reactions. In the past few years, significant advances have been made in the development of metal oxide electrocatalysts for fuel cell and electrolyser reactions. However, considerable gaps remain in the fundamental understanding of the charge transfer pathways and the interaction between the metal oxides and the conducting substrate on which they are located. In particular, the electrochemical interfaces of metal oxides are significantly different from the traditional (metal) ones, where only a conductive solid electrode and a liquid electrolyte are considered. Oxides are insulating and have to be combined with carbon as a conductive mediator. This electrode configuration results in a three-phase electrochemical interface, consisting of the insulating oxide, the conductive carbon, and the liquid electrolyte. To date, the mechanistic insights into this kind of non-traditional electrochemical interface remain unclear. Consequently conventional electrochemistry concepts, established on classical electrode materials and their two-phase interfaces, are facing challenges when employed for explaining these new electrode materials. [Figure not available: see fulltext.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabhakaran, Venkateshkumar; Johnson, Grant E.; Wang, Bingbing
2016-11-07
Molecular-level understanding of electrochemical processes occurring at electrode-electrolyte interfaces (EEI) is key to the rational development of high-performance and sustainable electrochemical technologies. This article reports the development and first application of solid-state in situ electrochemical probes to study redox and catalytic processes occurring at well-defined EEI generated using soft-landing of mass- and charge-selected cluster ions (SL). In situ electrochemical probes with excellent mass transfer properties are fabricated using carefully-designed nanoporous ionic liquid membranes. SL enables deposition of pure active species that are not obtainable with other techniques onto electrode surfaces with precise control over charge state, composition, and kinetic energy.more » SL is, therefore, a unique tool for studying fundamental processes occurring at EEI. For the first time using an aprotic electrochemical probe, the effect of charge state (PMo12O403-/2-) and the contribution of building blocks of Keggin polyoxometalate (POM) clusters to redox processes are characterized by populating EEI with novel POM anions generated by electrospray ionization and gas phase dissociation. Additionally, a proton conducting electrochemical probe has been developed to characterize the reactive electrochemistry (oxygen reduction activity) of bare Pt clusters (Pt40 ~1 nm diameter), thus demonstrating the capability of the probe for studying reactions in controlled gaseous environments. The newly developed in situ electrochemical probes combined with ion SL provide a versatile method to characterize the EEI in solid-state redox systems and reactive electrochemistry at precisely-defined conditions. This capability will advance molecular-level understanding of processes occurring at EEI that are critical to many energy-related technologies.« less
Lubricant-impregnated surfaces for electrochemical applications, and devices and systems using same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solomon, Brian Richmond; Chen, Xinwei; Chiang, Yet-Ming
In certain embodiments, the invention relates to an electrochemical device having a liquid lubricant impregnated surface. At least a portion of the interior surface of the electrochemical device includes a portion that includes a plurality of solid features disposed therein. The plurality of solid features define a plurality of regions therebetween. A lubricant is disposed in the plurality of regions which retain the liquid lubricant in the plurality of regions during operation of the device. An electroactive phase comes in contact with at least the portion of the interior surface. The liquid lubricant impregnated surface introduces a slip at themore » surface when the electroactive phase flows along the surface. The electroactive phase may be a yield stress fluid.« less
In operando spectroscopic studies of high temperature electrocatalysts used for energy conversion
NASA Astrophysics Data System (ADS)
McIntyre, Melissa Dawn
Solid-state electrochemical cells are efficient energy conversion devices that can be used for clean energy production or for removing air pollutants from exhaust gas emitted by combustion processes. For example, solid oxide fuel cells generate electricity with low emissions from a variety of fuel sources; solid oxide electrolysis cells produce zero-emission H2 fuel; and solid-state DeNOx cells remove NOx gases from diesel exhaust. In order to maintain high conversion efficiencies, these systems typically operate at temperatures ≥ 500°C. The high operating temperatures, however, accelerate chemical and mechanical cell degradation. To improve device durability, a mechanistic understanding of the surface chemistry occurring at the cell electrodes (anode and cathode) is critical in terms of refining cell design, material selection and operation protocols. The studies presented herein utilized in operando Raman spectroscopy coupled with electrochemical measurements to directly correlate molecular/material changes with device performance in solid oxide cells under various operating conditions. Because excessive carbon accumulation with carbon-based fuels destroys anodes, the first three studies investigated strategies for mitigating carbon accumulation on Ni cermet anodes. Results from the first two studies showed that low amounts of solid carbon stabilized the electrical output and improved performance of solid oxide fuel cells operating with syn-gas (H 2/CO fuel mixture). The third study revealed that infiltrating anodes with Sn or BaO suppressed carbon accumulation with CH4 fuel and that H2O was the most effective reforming agent facilitating carbon removal. The last two studies explored how secondary phases formed in traditional solid oxide cell materials doped with metal oxides improve electrochemical performance. Results from the fourth study suggest that the mixed ion-electron conducting Zr5Ti7O24 secondary phase can expand the electrochemically active region and increase electrochemical activity in cermet electrodes. The final study of lanthanum strontium manganite cathodes infiltrated with BaO revealed the reversible decomposition/formation of a Ba3Mn2O8 secondary phase under applied potentials and proposed mechanisms for the enhanced electrocatalytic oxygen reduction associated with this compound under polarizing conditions. Collectively, these studies demonstrate that mechanistic information obtained from molecular/material specific techniques coupled with electrochemical measurements can be used to help optimize materials and operating conditions in solid-state electrochemical cells.
Ovshinsky, Stanford R.; Corrigan, Dennis; Venkatesan, Srini; Young, Rosa; Fierro, Christian; Fetcenko, Michael A.
1994-01-01
A high capacity, long cycle life positive electrode for use in an alkaline rechargeable electrochemical cell comprising: a solid solution nickel hydroxide material having a multiphase structure that comprises at least one polycrystalline .gamma.-phase including a polycrystalline .gamma.-phase unit cell comprising spacedly disposed plates with at least one chemical modifier incorporated around the plates, the plates having a range of stable intersheet distances corresponding to a 2.sup.+ oxidation state and a 3.5.sup.+, or greater, oxidation state; and at least one compositional modifier incorporated into the solid solution nickel hydroxide material to promote the multiphase structure.
Demuth, Joshua; Fahrenkrug, Eli; Ma, Luyao; Shodiya, Titilayo; Deitz, Julia I; Grassman, Tyler J; Maldonado, Stephen
2017-05-24
Deposition of epitaxial germanium (Ge) thin films on silicon (Si) wafers has been achieved over large areas with aqueous feedstock solutions using electrochemical liquid phase epitaxy (ec-LPE) at low temperatures (T ≤ 90 °C). The ec-LPE method uniquely blends the simplicity and control of traditional electrodeposition with the material quality of melt growth. A new electrochemical cell design based on the compression of a liquid metal electrode into a thin cavity that enables ec-LPE is described. The epitaxial nature, low strain character, and crystallographic defect content of the resultant solid Ge films were analyzed by electron backscatter diffraction, scanning transmission electron microscopy, high resolution X-ray diffraction, and electron channeling contrast imaging. The results here show the first step toward a manufacturing infrastructure for traditional crystalline inorganic semiconductor epifilms that does not require high temperature, gaseous precursors, or complex apparatus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabhakaran, Venkateshkumar; Johnson, Grant E.; Wang, Bingbing
Molecular-level understanding of electrochemical processes occurring at electrode-electrolyte interfaces (EEI) is key to the rational development of high-performance and sustainable electrochemical technologies. This article reports the development and first application of solid-state in situ electrochemical probes to study redox and catalytic processes occurring at well-defined EEI generated using soft-landing of mass- and charge-selected cluster ions (SL). In situ electrochemical probes with excellent mass transfer properties are fabricated using carefully-designed nanoporous ionic liquid membranes. SL enables deposition of pure active species that are not obtainable with other techniques onto electrode surfaces with precise control over charge state, composition, and kinetic energy.more » SL is, therefore, a unique tool for studying fundamental processes occurring at EEI. For the first time using an aprotic electrochemical probe, the effect of charge state (PMo12O403-/2-) and the contribution of building blocks of Keggin polyoxometalate (POM) clusters to redox processes are characterized by populating EEI with novel POM anions generated by electrospray ionization and gas phase dissociation. Additionally, a proton conducting electrochemical probe has been developed to characterize the reactive electrochemistry (oxygen reduction activity) of bare Pt clusters (Pt40 ~1 nm diameter), thus demonstrating the capability of the probe for studying reactions in controlled gaseous environments. The newly developed in situ electrochemical probes combined with ion SL provide a versatile method to characterize the EEI in solid-state redox systems and reactive electrochemistry at precisely-defined conditions. This capability will advance molecular-level understanding of processes occurring at EEI that are critical to many energy-related technologies.« less
NASA Astrophysics Data System (ADS)
Li, Xiaoyu; Fan, Guodong; Pan, Ke; Wei, Guo; Zhu, Chunbo; Rizzoni, Giorgio; Canova, Marcello
2017-11-01
The design of a lumped parameter battery model preserving physical meaning is especially desired by the automotive researchers and engineers due to the strong demand for battery system control, estimation, diagnosis and prognostics. In light of this, a novel simplified fractional order electrochemical model is developed for electric vehicle (EV) applications in this paper. In the model, a general fractional order transfer function is designed for the solid phase lithium ion diffusion approximation. The dynamic characteristics of the electrolyte concentration overpotential are approximated by a first-order resistance-capacitor transfer function in the electrolyte phase. The Ohmic resistances and electrochemical reaction kinetics resistance are simplified to a lumped Ohmic resistance parameter. Overall, the number of model parameters is reduced from 30 to 9, yet the accuracy of the model is still guaranteed. In order to address the dynamics of phase-change phenomenon in the active particle during charging and discharging, variable solid-state diffusivity is taken into consideration in the model. Also, the observability of the model is analyzed on two types of lithium ion batteries subsequently. Results show the fractional order model with variable solid-state diffusivity agrees very well with experimental data at various current input conditions and is suitable for electric vehicle applications.
NASA Astrophysics Data System (ADS)
Chen, Suming; Zhang, Zhujun
2008-06-01
The method of synthesis and evaluation of molecularly imprinted polymers was reported. As a selective solid-phase extraction sorbent, the polymers were coupled with electrochemical fluorimetry detection for the efficient determination of methotrexate in serum and urine. Methotrexate was preconcentrated in the molecularly imprinted solid-phase extraction microcolumn packed with molecularly imprinted polymers, and then eluted. The eluate was detected by fluorescence spectrophotometer after electrochemical oxidation. The conditions of preconcentration, elution, electrochemical oxidation and determination were carefully studied. Under the selected experimental conditions, the calibration graph of the fluorescence intensity versus methotrexate concentration was linear from 4 × 10 -9 g mL -1 to 5 × 10 -7 g mL -1, and the detection limit was 8.2 × 10 -10 g mL -1 (3 σ). The relative standard deviation was 3.92% ( n = 7) for 1 × 10 -7 g mL -1 methotrexate. The experiments showed that the selectivity and sensitivity of fluorimetry could be greatly improved by the proposed method. This method has been successfully applied to the determination of methotrexate. At the same time, the binding characteristics of the polymers to the methotrexate were evaluated by batch and dynamic methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Linsen; Chen-Wiegart, Yu-chen Karen; Wang, Jiajun
In situ techniques with high temporal, spatial and chemical resolution are key to understand ubiquitous solid-state phase transformations, which are crucial to many technological applications. Hard X-ray spectro-imaging can visualize electrochemically driven phase transformations but demands considerably large samples with strong absorption signal so far. Here we show a conceptually new data analysis method to enable operando visualization of mechanistically relevant weakly absorbing samples at the nanoscale and study electrochemical reaction dynamics of iron fluoride, a promising high-capacity conversion cathode material. In two specially designed samples with distinctive microstructure and porosity, we observe homogeneous phase transformations during both discharge andmore » charge, faster and more complete Li-storage occurring in porous polycrystalline iron fluoride, and further, incomplete charge reaction following a pathway different from conventional belief. In conclusion, these mechanistic insights provide guidelines for designing better conversion cathode materials to realize the promise of high-capacity lithium-ion batteries.« less
Li, Linsen; Chen-Wiegart, Yu-chen Karen; Wang, Jiajun; ...
2015-04-20
In situ techniques with high temporal, spatial and chemical resolution are key to understand ubiquitous solid-state phase transformations, which are crucial to many technological applications. Hard X-ray spectro-imaging can visualize electrochemically driven phase transformations but demands considerably large samples with strong absorption signal so far. Here we show a conceptually new data analysis method to enable operando visualization of mechanistically relevant weakly absorbing samples at the nanoscale and study electrochemical reaction dynamics of iron fluoride, a promising high-capacity conversion cathode material. In two specially designed samples with distinctive microstructure and porosity, we observe homogeneous phase transformations during both discharge andmore » charge, faster and more complete Li-storage occurring in porous polycrystalline iron fluoride, and further, incomplete charge reaction following a pathway different from conventional belief. In conclusion, these mechanistic insights provide guidelines for designing better conversion cathode materials to realize the promise of high-capacity lithium-ion batteries.« less
Jaramillo, Thomas F; Baeck, Sung-Hyeon; Kleiman-Shwarsctein, Alan; Choi, Kyoung-Shin; Stucky, Galen D; McFarland, Eric W
2005-01-01
High-throughput electrochemical methods have been developed for the investigation of Zn1-xCo(x)O films for photoelectrochemical hydrogen production from water. A library of 120 samples containing 27 different compositions (0
Pomfret, Michael B; Steinhurst, Daniel A; Owrutsky, Jeffrey C
2013-04-18
Fuel interactions on solid oxide fuel cell (SOFC) anodes are studied with in situ Fourier transform infrared emission spectroscopy (FTIRES). SOFCs are operated at 800 °C with CH4 as a representative hydrocarbon fuel. IR signatures of gas-phase oxidation products, CO2(g) and CO(g), are observed while cells are under load. A broad feature at 2295 cm(-1) is assigned to CO2 adsorbed on Ni as a CH4 oxidation intermediate during cell operation and while carbon deposits are electrochemically oxidized after CH4 operation. Electrochemical control provides confirmation of the assignment of adsorbed CO2. FTIRES has been demonstrated as a viable technique for the identification of fuel oxidation intermediates and products in working SOFCs, allowing for the elucidation of the mechanisms of fuel chemistry.
Feng, Xingli; Ma, Houyi; Huang, Shaoxin; Pan, Wei; Zhang, Xiaokai; Tian, Fang; Gao, Caixia; Cheng, Yingwen; Luo, Jingli
2006-06-29
A simple but effective aqueous-organic phase-transfer method for gold, silver, and platinum nanoparticles was developed on the basis of the decrease of the PVP's solubility in water with the temperature increase. The present method is superior in the transfer efficiency of highly stable nanoparticles to the common phase-transfer methods. The gold, silver, and platinum nanoparticles transferred to the 1-butanol phase dispersed well, especially silver and platinum particles almost kept the previous particle size. Electrochemical synthesis of gold nanoparticles in an oil-water system was achieved by controlling the reaction temperature at 80 degrees C, which provides great conveniences for collecting metal particles at the oil/water interface and especially for fabricating dense metal nanoparticle films. A technique to fabricate gold nanofilms on solid supports was also established. The shapes and sizes of gold nanoparticles as the building blocks may be controllable through changing reaction conditions.
Nonstoichiometric fluorides—Solid electrolytes for electrochemical devices: A review
NASA Astrophysics Data System (ADS)
Sorokin, N. I.; Sobolev, B. P.
2007-09-01
The solid electrolytes with fluorine-ion conductivity that were revealed during the analysis of the phase diagrams of the MF m - RF n systems within the program of search for new multicomponent fluoride crystalline materials carried out at the Shubnikov Institute of Crystallography, Russian Academy of Sciences, are described. The most widespread and promising materials are the nonstoichiometric phases with fluorite (CaF2) and tysonite (LaF3) structures, which are formed in the MF2- RF3 systems ( M = Ca, Sr, Ba, Cd, or Pb; R = Sc, Y, or La-Lu). These phases have superionic fluorine conductivity due to the anion sublattice disorder. The ionic conductivity of crystals of both structure types has been studied and the limits of its change with composition and temperature are determined. Nonstoichiometric fluorides are used as solid electrolytes in chemical sensors, fluorine sources, and batteries. The prospects of the use of fluorine-ion conductors in solid-state electrochemical devices, principles of their operation, and the problems of optimization of their composition are discussed.
Shamaeli, Ehsan; Alizadeh, Naader
2012-01-01
A nanostructure fiber based on conducting polypyrrole synthesized by an electrochemical method has been developed, and used for electrochemically switching solid-phase microextraction (ES-SPME). The ES-SPME was prepared by the doping of eriochrome blue in polypyrrole (PPy-ECB) and used for selectively extracting the Ni(II) cation in the presence of some transition and heavy metal ions. The cation-exchange behavior of electrochemically prepared polypyrrole on stainless-steel with and without eriochrome blue (ECB) dye was characterized using ICP-OES analysis. The effects of the scan rate for electrochemical synthesis, uptake and the release potential on the extraction behavior of the PPy-ECB conductive fiber were studied. Uptake and release time profiles show that the process of electrically switched cation exchange could be completed within 250 s. The results of the present study point concerning the possibility of developing a selective extraction process for Ni(II) from waste water was explored using such a nanostructured PPy-ECB film through an electrically switched cation exchange. 2012 © The Japan Society for Analytical Chemistry
Zhang, Yuxuan; Chandran, K.S. Ravi; Jagannathan, M.; ...
2016-12-05
Li-Mg alloys are promising as positive electrodes (anodes) for Li-ion batteries due to the high Li storage capacity and the relatively lower volume change during the lithiation/delithiation process. They also present a unique opportunity to image the Li distribution through the electrode thickness at various delithiation states. In this work, spatial distributions of Li in electrochemically delithiated Li-Mg alloy electrodes have been quantitatively determined using neutron tomography. Specifically, the Li concentration profiles along thickness direction are determined. A rigorous analytical model to quantify the diffusion-controlled delithiation, accompanied by phase transition and boundary movement, has also been developed to explain themore » delithiation mechanism. The analytical modeling scheme successfully predicted the Li concentration profiles which agreed well with the experimental data. It is demonstrated that during discharge Li is removed by diffusion through the solid solution Li-Mg phases and this proceeds with β→α phase transition and the associated phase boundary movement through the thickness of the electrode. This is also accompanied by electrode thinning due to the change in molar volume during delithiation. In conclusion, following the approaches developed here, one can develop a rigorous and quantitative understanding of electrochemical delithiation in electrodes of electrochemical cells, similar to that in the present Li-Mg electrodes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuxuan; Chandran, K.S. Ravi; Jagannathan, M.
Li-Mg alloys are promising as positive electrodes (anodes) for Li-ion batteries due to the high Li storage capacity and the relatively lower volume change during the lithiation/delithiation process. They also present a unique opportunity to image the Li distribution through the electrode thickness at various delithiation states. In this work, spatial distributions of Li in electrochemically delithiated Li-Mg alloy electrodes have been quantitatively determined using neutron tomography. Specifically, the Li concentration profiles along thickness direction are determined. A rigorous analytical model to quantify the diffusion-controlled delithiation, accompanied by phase transition and boundary movement, has also been developed to explain themore » delithiation mechanism. The analytical modeling scheme successfully predicted the Li concentration profiles which agreed well with the experimental data. It is demonstrated that during discharge Li is removed by diffusion through the solid solution Li-Mg phases and this proceeds with β→α phase transition and the associated phase boundary movement through the thickness of the electrode. This is also accompanied by electrode thinning due to the change in molar volume during delithiation. In conclusion, following the approaches developed here, one can develop a rigorous and quantitative understanding of electrochemical delithiation in electrodes of electrochemical cells, similar to that in the present Li-Mg electrodes.« less
ESM of ionic and electrochemical phenomena on the nanoscale
Kalinin, Sergei V.; Kumar, Amit; Balke, Nina; ...
2011-01-01
Operation of energy storage and conversion devices is ultimately controlled by series of intertwined ionic and electronic transport processes and electrochemical reactions at surfaces and interfaces, strongly mediated by strain and mechanical processes. In a typical fuel cell, these include chemical species transport in porous cathode and anode materials, gas-solid electrochemical reactions at grains and triple-phase boundaries (TPBs), ionic and electronic flows in multicomponent electrodes, and chemical and electronic potential drops at internal interfaces in electrodes and electrolytes. Furthermore, all these phenomena are sensitively affected by the microstructure of materials from device level to the atomic scales. Similar spectrum ofmore » length scales and phenomena underpin operation of other energy systems including primary and secondary batteries, as well as hybrid systems such flow and metal-air/water batteries.« less
Zhang, Jun-Jun; Lv, Li-Bing; Zhao, Tian-Jian; Lin, Yun-Xiao; Yu, Qiu-Ying; Su, Juan; Hirano, Shin-Ichi; Li, Xin-Hao; Chen, Jie-Sheng
2018-05-30
Electrochemical gas evolution and activation reactions are complicated processes, involving not only active electrocatalysts but also the interaction among solid electrodes, electrolyte, and gas-phase products and reactants. In this study, multiphase interfaces of superadsorbing graphene-based electrodes were controlled without changing the active centers to significantly facilitate mass diffusion kinetics for superior performance. The achieved in-depth understanding of how to regulate the interfacial properties to promote the electrochemical performance could provide valuable clues for electrode manufacture and for the design of more active electrocatalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Carlsten, R.W.; Nissen, D.A.
1973-03-06
The patent describes an improved thermal battery whose novel design eliminates various disadvantages of previous such devices. Its major features include a halide cathode, a solid metal halide electrolyte which has a substantially greater electrical conductance after a phase transition at some temperature, and a means for heating its electrochemical cells to activation temperature.
Iglesias, Daniel; Senokos, Evgeny; Alemán, Belén; Cabana, Laura; Navío, Cristina; Marcilla, Rebeca; Prato, Maurizio; Vilatela, Juan J; Marchesan, Silvia
2018-02-14
The assembly of aligned carbon nanotubes (CNTs) into fibers (CNTFs) is a convenient approach to exploit and apply the unique physico-chemical properties of CNTs in many fields. CNT functionalization has been extensively used for its implementation into composites and devices. However, CNTF functionalization is still in its infancy because of the challenges associated with preservation of CNTF morphology. Here, we report a thorough study of the gas-phase functionalization of CNTF assemblies using ozone which was generated in situ from a UV source. In contrast with liquid-based oxidation methods, this gas-phase approach preserves CNTF morphology, while notably increasing its hydrophilicity. The functionalized material is thoroughly characterized by Raman spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, and scanning electron microscopy. Its newly acquired hydrophilicity enables CNTF electrochemical characterization in aqueous media, which was not possible for the pristine material. Through comparison of electrochemical measurements in aqueous electrolytes and ionic liquids, we decouple the effects of functionalization on pseudocapacitive reactions and quantum capacitance. The functionalized CNTF assembly is successfully used as an active material and a current collector in all-solid supercapacitor flexible devices with an ionic liquid-based polymer electrolyte.
Secondary-Phase Stochastics in Lithium-Ion Battery Electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mistry, Aashutosh N.; Smith, Kandler; Mukherjee, Partha P.
Lithium-ion battery electrodes exhibit complex interplay among multiple electrochemically coupled transport processes, which rely on the underlying functionality and relative arrangement of different constituent phases. The electrochemically inactive solid phases (e.g., conductive additive and binder, referred to as the secondary phase), while beneficial for improved electronic conductivity and mechanical integrity, may partially block the electrochemically active sites and introduce additional transport resistances in the pore (electrolyte) phase. In this work, the role of mesoscale interactions and inherent stochasticity in porous electrodes is elucidated in the context of short-range (interface) and long-range (transport) characteristics. The electrode microstructure significantly affects kinetically andmore » transport-limiting scenarios and thereby the cell performance. The secondary-phase morphology is also found to strongly influence the microstructure-transport-kinetics interactions. Apropos, strategies have been proposed for performance improvement via electrode microstructural modifications.« less
Secondary-Phase Stochastics in Lithium-Ion Battery Electrodes
Mistry, Aashutosh N.; Smith, Kandler; Mukherjee, Partha P.
2018-01-12
Lithium-ion battery electrodes exhibit complex interplay among multiple electrochemically coupled transport processes, which rely on the underlying functionality and relative arrangement of different constituent phases. The electrochemically inactive solid phases (e.g., conductive additive and binder, referred to as the secondary phase), while beneficial for improved electronic conductivity and mechanical integrity, may partially block the electrochemically active sites and introduce additional transport resistances in the pore (electrolyte) phase. In this work, the role of mesoscale interactions and inherent stochasticity in porous electrodes is elucidated in the context of short-range (interface) and long-range (transport) characteristics. The electrode microstructure significantly affects kinetically andmore » transport-limiting scenarios and thereby the cell performance. The secondary-phase morphology is also found to strongly influence the microstructure-transport-kinetics interactions. Apropos, strategies have been proposed for performance improvement via electrode microstructural modifications.« less
Development of electrochemical super capacitors for EMA applications
NASA Technical Reports Server (NTRS)
Kosek, J. A.; Dunning, T.; Laconti, A. B.
1995-01-01
In a NASA SBIR Phase I program (Contract No. NAS8-40119), Giner, Inc. evaluated the feasibility of fabricating an all-solid-ionomer multicell electrochemical capacitor having a unit cell capacitance greater than 2 F/sq cm and a repeating element thickness of 6 mils. This capacitor can possibly be used by NASA as a high-rate energy source for electromechanical actuator (EMA) activation for advanced space missions. The high unit cell capacitance and low repeating element thickness will allow for the fabrication of a low-volume, low-weight device, favorable characteristics for space applications. These same characteristics also make the capacitor attractive for terrestrial applications, such as load-leveling batteries or fuel cells in electric vehicle applications. Although the projected energy densities for electrochemical capacitors are about two orders of magnitude lower than that of batteries, the high-power-density characteristics of these devices render them as potentially viable candidates for meeting pulse or peak electrical power requirements for some anticipated aerospace mission scenarios, especially those with discharge times on the millisecond to second time scale. On a volumetric or gravimetric basis, the advantages of utilizing electrochemical capacitors rather than batteries for meeting the peak power demands associated with a specific mission scenario will largely depend upon the total and pulse durations of the power peaks. The effect of preparation conditions on RuO(x), the active component in an all-solid-ionomer electrochemical capacitor, was evaluated during this program. Methods were identified to prepare RuO(x) having a surface areagreater than 180 sq m/g, and a capacitance of greater than 2 F/sq cm. Further efforts to reproducibly obtain these high-surface-area materials in scaled-up batches will be evaluated in Phase 2. During this Phase 1 program we identified a superior Nafion 105 membrane, having a film thickness of 5 mils, that showed excellent performance in our all-solid-ionomer capacitors and resulted in electrochemical capacitors with a repeating element thickness of 8 mils. We are currently working with membrane manufacturers to obtain a high performance membrane in less than 3 mil thickness to obtain a repeating element thickness of 6 mils or less. A 10-cell all-solid ionomer capacitor stack, with each cell having a 222 sq cm active area, was fabricated and evaluated as part of the Phase 1 program. Further Scale-up of a high-energy-density stack is plannedin Phase 2.
Solid-phase electrochemical reduction of graphene oxide films in alkaline solution
NASA Astrophysics Data System (ADS)
Basirun, Wan J.; Sookhakian, Mehran; Baradaran, Saeid; Mahmoudian, Mohammad R.; Ebadi, Mehdi
2013-09-01
Graphene oxide (GO) film was evaporated onto graphite and used as an electrode to produce electrochemically reduced graphene oxide (ERGO) films by electrochemical reduction in 6 M KOH solution through voltammetric cycling. Fourier transformed infrared and Raman spectroscopy confirmed the presence of ERGO. Electrochemical impedance spectroscopy characterization of ERGO and GO films in ferrocyanide/ferricyanide redox couple with 0.1 M KCl supporting electrolyte gave results that are in accordance with previous reports. Based on the EIS results, ERGO shows higher capacitance and lower charge transfer resistance compared to GO.
Electrochemical vapor deposition of semiconductors from gas phase with a solid membrane cell.
Cho, Sung Ki; Fan, Fu-Ren F; Bard, Allen J
2015-05-27
We demonstrate the feasibility of semiconductor deposition via the electrochemical reduction of gaseous precursors by the use of an anhydrous proton-conducting membrane, the solid acid CsHSO4, at 165 °C. This membrane electrode assembly was operated within the oxidation of hydrogen on a porous Pt anode and the deposition of Si or Ge under bias at the cathode from chloride-based gaseous precursors; SiCl4 and GeCl4 in an Ar flow with a reduction potential over -1.0 V (vs RHE).
Razaq, Aamir; Nyström, Gustav; Strømme, Maria; Mihranyan, Albert; Nyholm, Leif
2011-01-01
Highly porous polypyrrole (PPy)-nanocellulose paper sheets have been evaluated as inexpensive and disposable electrochemically controlled three-dimensional solid phase extraction materials. The composites, which had a total anion exchange capacity of about 1.1 mol kg−1, were used for extraction and subsequent release of negatively charged fluorophore tagged DNA oligomers via galvanostatic oxidation and reduction of a 30–50 nm conformal PPy layer on the cellulose substrate. The ion exchange capacity, which was, at least, two orders of magnitude higher than those previously reached in electrochemically controlled extraction, originated from the high surface area (i.e. 80 m2 g−1) of the porous composites and the thin PPy layer which ensured excellent access to the ion exchange material. This enabled the extractions to be carried out faster and with better control of the PPy charge than with previously employed approaches. Experiments in equimolar mixtures of (dT)6, (dT)20, and (dT)40 DNA oligomers showed that all oligomers could be extracted, and that the smallest oligomer was preferentially released with an efficiency of up to 40% during the reduction of the PPy layer. These results indicate that the present material is very promising for the development of inexpensive and efficient electrochemically controlled ion-exchange membranes for batch-wise extraction of biomolecules. PMID:22195031
In situ study of LaY2Ni9 compound as Ni MH negative-electrode material
NASA Astrophysics Data System (ADS)
Latroche, M.; Isnard, O.
2008-03-01
The behavior of a Ni-MH (metal hydride) negative composite electrode made of LaY2Ni9 active material has been studied dynamically using in situ neutron diffraction during a complete charge-discharge electrochemical cycle. From the analysis of the collected diffraction patterns, the phase identity, phase amount variations and cell volume evolutions have been determined as a function of the electrochemical state of (dis)charge. The active material shows a typical two-phase behavior with equilibrium between a hydrogen-poor α phase and a hydrogen-rich β one. The lower electrochemical reversible capacity as compared to solid-gas properties has been interpreted in terms of hydrogen gas evolving during charge and kinetic limitation due to slow β to α transformation during discharge, which hinders high discharge rates.
Direct electrochemical reduction of solid uranium oxide in molten fluoride salts
NASA Astrophysics Data System (ADS)
Gibilaro, Mathieu; Cassayre, Laurent; Lemoine, Olivier; Massot, Laurent; Dugne, Olivier; Malmbeck, Rikard; Chamelot, Pierre
2011-07-01
The direct electrochemical reduction of UO 2 solid pellets was carried out in LiF-CaF 2 (+2 mass.% Li 2O) at 850 °C. An inert gold anode was used instead of the usual reactive sacrificial carbon anode. In this case, oxidation of oxide ions present in the melt yields O 2 gas evolution on the anode. Electrochemical characterisations of UO 2 pellets were performed by linear sweep voltammetry at 10 mV/s and reduction waves associated to oxide direct reduction were observed at a potential 150 mV more positive in comparison to the solvent reduction. Subsequent, galvanostatic electrolyses runs were carried out and products were characterised by SEM-EDX, EPMA/WDS, XRD and microhardness measurements. In one of the runs, uranium oxide was partially reduced and three phases were observed: nonreduced UO 2 in the centre, pure metallic uranium on the external layer and an intermediate phase representing the initial stage of reduction taking place at the grain boundaries. In another run, the UO 2 sample was fully reduced. Due to oxygen removal, the U matrix had a typical coral-like structure which is characteristic of the pattern observed after the electroreduction of solid oxides.
Thermally responsive polymer electrolytes for inherently safe electrochemical energy storage
NASA Astrophysics Data System (ADS)
Kelly, Jesse C.
Electrochemical double layer capacitors (EDLCs), supercapacitors and Li-ion batteries have emerged as premier candidates to meet the rising demands in energy storage; however, such systems are limited by thermal hazards, thermal runaway, fires and explosions, all of which become increasingly more dangerous in large-format devices. To prevent such scenarios, thermally-responsive polymer electrolytes (RPEs) that alter properties in electrochemical energy storage devices were designed and tested. These RPEs will be used to limit or halt device operation when temperatures increase beyond a predetermined threshold, therefore limiting further heating. The development of these responsive systems will offer an inherent safety mechanism in electrochemical energy storage devices, while preserving the performance, lifetimes, and versatility that large-format systems require. Initial work focused on the development of a model system that demonstrated the concept of RPEs in an electrochemical device. Aqueous electrolyte solutions of polymers exhibiting properties that change in response to temperature were developed for applications in EDLCs and supercapacitors. These "smart materials" provide a means to control electrochemical systems where polymer phase separation at high temperatures affects electrolyte properties and inhibits device performance. Aqueous RPEs were synthesized using N-isopropylacrylamide, which governs the thermal properties, and fractions of acrylic acid or vinyl sulfonic acids, which provide ions to the solution. The molecular properties of these aqueous RPEs, specifically the ionic composition, were shown to influence the temperature-dependent electrolyte properties and the extent to which these electrolytes control the energy storage characteristics of a supercapacitor device. Materials with high ionic content provided the highest room temperature conductivity and electrochemical activity; however, RPEs with low ionic content provided the highest "on-off" ratio in electrochemical activity at elevated temperatures. Overall, solution pH and conductivity were altered by an order of magnitude and device performance (ability to store charge) decreased by over 70%. After demonstration of a model responsive electrolyte in an aqueous system, ionic liquid (IL) based electrolytes were developed as a means of controlling the electrochemical performance in the non-aqueous environments that batteries, specifically Li-ion, require. Here, two systems were developed: (1) an electrolyte comprising poly(ethylene oxide) (PEO), the IL, [EMIM][BF4], and a lithium salt and (2) an electrolyte comprising poly(benzyl methacrylate) (PBzMA), the IL, [EMIM][TFSI], and a lithium salt. In each system, the polymer-IL phase separation inhibited device operation at elevated temperatures. For the PEO/IL electrolyte, the thermally induced liquid-liquid phase separation was shown to decrease the ionic conductivity, thereby affecting the concentration of ions at the electrode. Additionally, an increasing charge transfer resistance associated with the phase separated polymer coating the porous electrode was shown to limit electrochemical activity significantly. For the PBzMA/IL electrolyte, the solid-liquid phase separation did not show a change in conductivity, but did cause a drastic increase in charge transfer resistance, effectively shutting off Li-ion battery operation at high temperatures. Such responsive mixtures provide a transformative approach to regulating electrochemical processes, which is necessary to achieve inherently safe operation in large format energy storage with EDLCs, supercapacitors and Li-ion batteries.
The Local Atomic Structure and Chemical Bonding in Sodium Tin Phases
Baggetto, Loic; Bridges, Craig A.; Jumas, Dr. Jean-Claude; ...
2014-09-25
To understand these electrochemically-derived materials we have reinvestigated the formation of Na-Sn alloys to identify all the phases which form when x ≥ 1 (NaxSn) and characterized the local bonding around the Sn atoms with X-ray diffraction, 119Sn M ssbauer spectroscopy, and X-ray absorption spectroscopies. The results from the well-defined crystallographic materials were compared to the spectroscopic measurements of the local Sn structures in the electrochemically prepared materials. The reinvestigation of the Na-Sn compounds yields a number of new results: (i) Na 7Sn 3 is a new thermodynamically-stable phase with a rhombohedral structure and R-3m space group; (ii) orthorhombic Namore » 9Sn 4 (Cmcm) has relatively slow formation kinetics suggesting why it does not form at room temperature during the electrochemical reaction; (iii) orthorhombic Na 14.78Sn 4 (Pnma), better described as Na 16-xSn 4, is Na-richer than cubic Na 15Sn 4 (I-43d). Characterization of electrochemically prepared Na-Sn alloys indicate that, at the exception of Na 7Sn 3 and Na 15Sn 4, different crystal structures than similar Na-Sn compositions prepared via classic solid state reactions are formed. These phases are composed of disordered structures characteristic of kinetic-driven solid-state amorphization reactions. In these structures, Sn coordinates in asymmetric environments, which differ significantly from the environments present in Na-Sn model compounds.« less
'All-solid-state' electrochemistry of a protein-confined polymer electrolyte film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parthasarathy, Meera; Pillai, Vijayamohanan K.; Mulla, Imtiaz S.
2007-12-07
Interfacial redox behavior of a heme protein (hemoglobin) confined in a solid polymer electrolyte membrane, Nafion (a perfluoro sulfonic acid ionomer) is investigated using a unique 'all-solid-state' electrochemical methodology. The supple phase-separated structure of the polymer electrolyte membrane, with hydrophilic pools containing solvated protons and water molecules, is found to preserve the incorporated protein in its active form even in the solid-state, using UV-visible, Fluorescence (of Tryptophan and Tyrosine residues) and DRIFT (diffuse reflectance infrared Fourier transform) spectroscopy. More specifically, solid-state cyclic voltammetry and electrochemical impedance of the protein-incorporated polymer films reveal that the Fe{sup 2+}-form of the entrapped proteinmore » is found to bind molecular oxygen more strongly than the native protein. In the 'all-solid-state' methodology, as there is no need to dip the protein-modified electrode in a liquid electrolyte (like the conventional electrochemical methods), it offers an easier means to study a number of proteins in a variety of polymer matrices (even biomimetic assemblies). In addition, the results of the present investigation could find interesting application in a variety of research disciplines, in addition to its fundamental scientific interest, including protein biotechnology, pharmaceutical and biomimetic chemistry.« less
Drechsel, Lisa; Schulz, Martin; von Stetten, Felix; Moldovan, Carmen; Zengerle, Roland; Paust, Nils
2015-02-07
Lab-on-a-chip devices hold promise for automation of complex workflows from sample to answer with minimal consumption of reagents in portable devices. However, complex, inhomogeneous samples as they occur in environmental or food analysis may block microchannels and thus often cause malfunction of the system. Here we present the novel AutoDip platform which is based on the movement of a solid phase through the reagents and sample instead of transporting a sequence of reagents through a fixed solid phase. A ball-pen mechanism operated by an external actuator automates unit operations such as incubation and washing by consecutively dipping the solid phase into the corresponding liquids. The platform is applied to electrochemical detection of organophosphorus pesticides in real food samples using an acetylcholinesterase (AChE) biosensor. Minimal sample preparation and an integrated reagent pre-storage module hold promise for easy handling of the assay. Detection of the pesticide chlorpyrifos-oxon (CPO) spiked into apple samples at concentrations of 10(-7) M has been demonstrated. This concentration is below the maximum residue level for chlorpyrifos in apples defined by the European Commission.
Seki, Takakazu; So, Christopher R; Page, Tamon R; Starkebaum, David; Hayamizu, Yuhei; Sarikaya, Mehmet
2018-02-06
The nanoscale self-organization of biomolecules, such as proteins and peptides, on solid surfaces under controlled conditions is an important issue in establishing functional bio/solid soft interfaces for bioassays, biosensors, and biofuel cells. Electrostatic interaction between proteins and surfaces is one of the most essential parameters in the adsorption and self-assembly of proteins on solid surfaces. Although the adsorption of proteins has been studied with respect to the electrochemical surface potential, the self-assembly of proteins or peptides forming well-organized nanostructures templated by lattice structure of the solid surfaces has not been studied in the relation to the surface potential. In this work, we utilize graphite-binding peptides (GrBPs) selected by the phage display method to investigate the relationship between the electrochemical potential of the highly ordered pyrolytic graphite (HOPG) and peptide self-organization forming long-range-ordered structures. Under modulated electrical bias, graphite-binding peptides form various ordered structures, such as well-ordered nanowires, dendritic structures, wavy wires, amorphous (disordered) structures, and islands. A systematic investigation of the correlation between peptide sequence and self-organizational characteristics reveals that the presence of the bias-sensitive amino acid modules in the peptide sequence has a significant effect on not only surface coverage but also on the morphological features of self-assembled structures. Our results show a new method to control peptide self-assembly by means of applied electrochemical bias as well as peptide design-rules for the construction of functional soft bio/solid interfaces that could be integrated in a wide range of practical implementations.
Leenheer, Andrew J.; Jungjohann, Katherine L.; Zavadil, Kevin R.; ...
2016-05-31
Battery cycle life is directly influenced by the microstructural changes occurring in the electrodes during charge and discharge cycles. In this study, we image in situ the nanoscale phase evolution in negative electrode materials for Li-ion batteries using a fully enclosed liquid cell in a transmission electron microscope (TEM) to reveal early degradation that is not evident in the charge–discharge curves. To compare the electrochemical phase transformation behavior between three model materials, thin films of amorphous Si, crystalline Al, and crystalline Au were lithiated and delithiated at controlled rates while immersed in a commercial liquid electrolyte. This method allowed formore » the direct observation of lithiation mechanisms in nanoscale negative electrodes, revealing that a simplistic model of a surface-to-interior lithiation front is insufficient. For the crystalline films, a lithiation front spread laterally from a few initial nucleation points, with continued grain nucleation along the growing interface. The intermediate lithiated phases were identified using electron diffraction, and high-resolution postmortem imaging revealed the details of the final microstructure. Lastly, our results show that electrochemically induced solid–solid phase transformations can lead to highly concentrated stresses at the laterally propagating phase boundary which should be considered for future designs of nanostructured electrodes for Li-ion batteries.« less
Direct on-chip DNA synthesis using electrochemically modified gold electrodes as solid support
NASA Astrophysics Data System (ADS)
Levrie, Karen; Jans, Karolien; Schepers, Guy; Vos, Rita; Van Dorpe, Pol; Lagae, Liesbet; Van Hoof, Chris; Van Aerschot, Arthur; Stakenborg, Tim
2018-04-01
DNA microarrays have propelled important advancements in the field of genomic research by enabling the monitoring of thousands of genes in parallel. The throughput can be increased even further by scaling down the microarray feature size. In this respect, microelectronics-based DNA arrays are promising as they can leverage semiconductor processing techniques with lithographic resolutions. We propose a method that enables the use of metal electrodes for de novo DNA synthesis without the need for an insulating support. By electrochemically functionalizing gold electrodes, these electrodes can act as solid support for phosphoramidite-based synthesis. The proposed method relies on the electrochemical reduction of diazonium salts, enabling site-specific incorporation of hydroxyl groups onto the metal electrodes. An automated DNA synthesizer was used to couple phosphoramidite moieties directly onto the OH-modified electrodes to obtain the desired oligonucleotide sequence. Characterization was done via cyclic voltammetry and fluorescence microscopy. Our results present a valuable proof-of-concept for the integration of solid-phase DNA synthesis with microelectronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prosini, Pier Paolo, E-mail: pierpaolo.prosini@enea.it; Gislon, Paola; Cento, Cinzia
Graphical abstract: - Highlights: • Four different samples of FAP were synthesized by precipitation techniques. • The samples were used as precursors to synthesize electrochemical active LiFePO{sub 4}. • Their morphology, composition, structure and electrochemical performance were studied. • The LiFePO{sub 4} electrochemical performance resulted affected by the preparation method - Abstract: In this paper the morphological, structural and electrochemical properties of crystalline lithium iron phosphate (LiFePO{sub 4}) obtained from ferrous ammonium phosphate (FAP) have been studied. The FAP was obtained following four different processes, namely: (1) homogeneous phase precipitation, (2) heterogeneous phase precipitation from stoichiometric sodium phosphate, (3) heterogeneousmore » phase precipitation from stoichiometric ammonium phosphate, and (4) heterogeneous phase precipitation from over stoichiometric ammonium phosphate. Lithium iron phosphate was prepared by solid state reaction of FAP with lithium hydroxide. In order to evaluate the effect of reaction time and synthesis temperature the LiFePO{sub 4} was prepared varying the heating temperatures (550, 600 and 700 °C) and the reaction times (1 or 2 h). The morphology of the materials was evaluated by scanning electron microscopy while the chemical composition was determined by electron energy loss spectroscopy. X-ray diffraction was used to evaluate phase composition, crystal structure and crystallite size. The so obtained LiFePO{sub 4}'s were fully electrochemical characterized and a correlation was found between the crystal size and the electrochemical performance.« less
Moncrieff, J
1994-03-18
A simple, extractionless method for the determination of dapsone in serum and saliva is described. Reversed-phase high-performance liquid chromatography is used with UV detection at 295 nm or electrochemical detection at 0.7 V. Diazoxide in buffer is the internal standard for UV detection and practolol for electrochemical detection. Sample preparation is minimal with protein precipitation of serum samples whilst saliva samples are simply diluted with addition of an internal standard. Low-level serum and saliva samples are front-cut on-line with a 3 cm laboratory-made precolumn in the loop position on a standard Valco injection valve. Isocratic separation is achieved on a 250 mm x 4.6 mm I.D. stainless-steel Spherisorb S5 ODS-1 column. The mobile phase for high levels of dapsone is acetonitrile-elution buffer (12:88, v/v) at 2 ml/min and a column temperature of 40 degrees C for both serum and saliva separations. For the low-level assays using electrochemical detection and solid-phase clean-up, the mobile phase is acetonitrile-methanol-elution buffer (9:4:87, v/v/v). The UV and electrochemical detection limits are 25 ng/ml and 200 pg/ml, respectively, in both serum and saliva. This simple method is applicable to the routine monitoring of dapsone levels in serum from leprotic patients and electrochemical detection gives a simple, reliable method for the monitoring of trough values in subjects on anti-malarial prophylaxis.
Sacci, Robert L; Black, Jennifer M.; Wisinger, Nina; ...
2015-02-23
The performance characteristics of Li-ion batteries are intrinsically linked to evolving nanoscale interfacial electrochemical reactions. To probe the mechanisms of solid electrolyte interphase formation and Li electrodeposition from a standard battery electrolyte, we use in situ electrochemical scanning transmission electron microscopy for controlled potential sweep-hold electrochemical measurements with simultaneous BF and ADF STEM image acquisition. Through a combined quantitative electrochemical measurement and quantitative STEM imaging approach, based upon electron scattering theory, we show that chemically sensitive ADF STEM imaging can be used to estimate the density of evolving SEI constituents and distinguish contrast mechanisms of Li-bearing components in the liquidmore » cell.« less
A simplified approach to predict performance degradation of a solid oxide fuel cell anode
NASA Astrophysics Data System (ADS)
Khan, Muhammad Zubair; Mehran, Muhammad Taqi; Song, Rak-Hyun; Lee, Jong-Won; Lee, Seung-Bok; Lim, Tak-Hyoung
2018-07-01
The agglomeration of nickel (Ni) particles in a Ni-cermet anode is a significant degradation phenomenon for solid oxide fuel cells (SOFCs). This work aims to predict the performance degradation of SOFCs due to Ni grain growth by using a simplified approach. Accelerated aging of Ni-scandia stabilized zirconia (SSZ) as an SOFC anode is carried out at 900 °C and subsequent microstructural evolution is investigated every 100 h up to 1000 h using scanning electron microscopy (SEM). The resulting morphological changes are quantified using a two-dimensional image analysis technique that yields the particle size, phase proportion, and triple phase boundary (TPB) point distribution. The electrochemical properties of an anode-supported SOFC are characterized using electrochemical impedance spectroscopy (EIS). The changes of particle size and TPB length in the anode as a function of time are in excellent agreement with the power-law coarsening model. This model is further combined with an electrochemical model to predict the changes in the anode polarization resistance. The predicted polarization resistances are in good agreement with the experimentally obtained values. This model for prediction of anode lifetime provides deep insight into the time-dependent Ni agglomeration behavior and its impact on the electrochemical performance degradation of the SOFC anode.
NASA Astrophysics Data System (ADS)
Samad, Leith L. J.
The body of work reviewed here encompasses a variety of metal dichalcogenides all synthesized using chemical vapor deposition (CVD) for solar and electronics applications. The first reported phase-pure CVD synthesis of iron pyrite thin films is presented with detailed structural and electrochemical analysis. The phase-pure thin film and improved crystal growth on a metallic backing material represents one of the best options for potential solar applications using iron pyrite. Large tin-sulfur-selenide solid solution plates with tunable bandgaps were also synthesized via CVD as single-crystals with a thin film geometry. Solid solution tin-sulfur-selenide plates were demonstrated to be a new material for solar cells with the first observed solar conversion efficiencies up to 3.1%. Finally, a low temperature molybdenum disulfide vertical heterostructure CVD synthesis with layered controlled growth was achieved with preferential growth enabled by Van der Waals epitaxy. Through recognition of additional reaction parameters, a fully regulated CVD synthesis enabled the controlled growth of 1-6 molybdenum disulfide monolayers for nanoelectronic applications. The improvements in synthesis and materials presented here were all enabled by the control afforded by CVD such that advances in phase purity, growth, and composition control of several metal dichalcogenides were achieved. Further work will be able to take full advantage of these advances for future solar and electronics technologies.
NASA Astrophysics Data System (ADS)
Janardhanan, Vinod M.; Deutschmann, Olaf
Direct internal reforming in solid oxide fuel cell (SOFC) results in increased overall efficiency of the system. Present study focus on the chemical and electrochemical process in an internally reforming anode supported SOFC button cell running on humidified CH 4 (3% H 2 O). The computational approach employs a detailed multi-step model for heterogeneous chemistry in the anode, modified Butler-Volmer formalism for the electrochemistry and Dusty Gas Model (DGM) for the porous media transport. Two-dimensional elliptic model equations are solved for a button cell configuration. The electrochemical model assumes hydrogen as the only electrochemically active species. The predicted cell performances are compared with experimental reports. The results show that model predictions are in good agreement with experimental observation except the open circuit potentials. Furthermore, the steam content in the anode feed stream is found to have remarkable effect on the resulting overpotential losses and surface coverages of various species at the three-phase boundary.
Solid oxide fuel cells fueled with reducible oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuang, Steven S.; Fan, Liang Shih
A direct-electrochemical-oxidation fuel cell for generating electrical energy includes a cathode provided with an electrochemical-reduction catalyst that promotes formation of oxygen ions from an oxygen-containing source at the cathode, a solid-state reduced metal, a solid-state anode provided with an electrochemical-oxidation catalyst that promotes direct electrochemical oxidation of the solid-state reduced metal in the presence of the oxygen ions to produce electrical energy, and an electrolyte disposed to transmit the oxygen ions from the cathode to the solid-state anode. A method of operating a solid oxide fuel cell includes providing a direct-electrochemical-oxidation fuel cell comprising a solid-state reduced metal, oxidizing themore » solid-state reduced metal in the presence of oxygen ions through direct-electrochemical-oxidation to obtain a solid-state reducible metal oxide, and reducing the solid-state reducible metal oxide to obtain the solid-state reduced metal.« less
All-solid electrodes with mixed conductor matrix
Huggins, Robert A.; Boukamp, Bernard A.
1984-01-01
Alkali metal based electrochemical cells offer a great deal of promise for applications in many areas such as electric vehicles and load leveling purposes in stationary power plants. Lithium is an attractive candidate as the electroactive species in such cells since lithium is very electropositive, abundant and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and normally is operated at elevated temperatures. The subject invention provides an electrochemical cell in one embodiment of which lithium is the electroactive species. The cell comprises an electrolyte, a positive electrode, and a negative electrode, either or both of which is an all-solid, composite microstructural electrode containing both a reactant phase and a mixed ionic-electronic conducting phase. The cells of the subject invention exhibit improved kinetic features, current and power densities. Repeated charging and discharging of these cells can be accomplished without appreciable loss of capacity.
Hess, Michael; Sasaki, Tsuyoshi; Villevieille, Claire; Novák, Petr
2015-01-01
Lithium-ion batteries are widely used for portable applications today; however, often suffer from limited recharge rates. One reason for such limitation can be a reduced active surface area during phase separation. Here we report a technique combining high-resolution operando synchrotron X-ray diffraction coupled with electrochemical impedance spectroscopy to directly track non-equilibrium intermediate phases in lithium-ion battery materials. LiFePO4, for example, is known to undergo phase separation when cycled under low-current-density conditions. However, operando X-ray diffraction under ultra-high-rate alternating current and direct current excitation reveal a continuous but current-dependent, solid solution reaction between LiFePO4 and FePO4 which is consistent with previous experiments and calculations. In addition, the formation of a preferred phase with a composition similar to the eutectoid composition, Li0.625FePO4, is evident. Even at a low rate of 0.1C, ∼20% of the X-ray diffractogram can be attributed to non-equilibrium phases, which changes our understanding of the intercalation dynamics in LiFePO4. PMID:26345306
Hess, Michael; Sasaki, Tsuyoshi; Villevieille, Claire; Novák, Petr
2015-09-08
Lithium-ion batteries are widely used for portable applications today; however, often suffer from limited recharge rates. One reason for such limitation can be a reduced active surface area during phase separation. Here we report a technique combining high-resolution operando synchrotron X-ray diffraction coupled with electrochemical impedance spectroscopy to directly track non-equilibrium intermediate phases in lithium-ion battery materials. LiFePO4, for example, is known to undergo phase separation when cycled under low-current-density conditions. However, operando X-ray diffraction under ultra-high-rate alternating current and direct current excitation reveal a continuous but current-dependent, solid solution reaction between LiFePO4 and FePO4 which is consistent with previous experiments and calculations. In addition, the formation of a preferred phase with a composition similar to the eutectoid composition, Li0.625FePO4, is evident. Even at a low rate of 0.1C, ∼20% of the X-ray diffractogram can be attributed to non-equilibrium phases, which changes our understanding of the intercalation dynamics in LiFePO4.
Sigalov, Sergey; Shpigel, Netanel; Levi, Mikhael D; Feldberg, Moshe; Daikhin, Leonid; Aurbach, Doron
2016-10-18
Using multiharmonic electrochemical quartz crystal microbalance with dissipation (EQCM-D) monitoring, a new method of characterization of porous solids in contact with liquids has been developed. The dynamic gravimetric information on the growing, dissolving, or stationary stored solid deposits is supplemented by their precise in-operando porous structure characterization on a mesoscopic scale. We present a very powerful method of quartz-crystal admittance modeling of hydrodynamic solid-liquid interactions in order to extract the porous structure parameters of solids during their formation in real time, using different deposition modes. The unique hydrodynamic spectroscopic characterization of electrolytic and rf-sputtered solid Cu coatings that we use for our "proof of concept" provides a new strategy for probing various electrochemically active thin and thick solid deposits, thereby offering inexpensive, noninvasive, and highly efficient quantitative control over their properties. A broad spectrum of applications of our method is proposed, from various metal electroplating and finishing technologies to deeper insight into dynamic build-up and subsequent development of solid-electrolyte interfaces in the operation of Li-battery electrodes, as well as monitoring hydrodynamic consequences of metal corrosion, and growth of biomass coatings (biofouling) on different solid surfaces in seawater.
The Electrochemical Properties of Sr(Ti,Fe)O 3-δ for Anodes in Solid Oxide Fuel Cells
Nenning, Andreas; Volgger, Lukas; Miller, Elizabeth; ...
2017-02-18
Reduction-stable mixed ionic and electronic conductors such as Sr(Ti,Fe)O 3-δ (STF) are promising materials for application in anodes of solid oxide fuel cells. The defect chemistry of STF and its properties as solid oxide fuel cell (SOFC) cathode have been studied thoroughly, while mechanistic investigations of its electrochemical properties as SOFC anode material are still scarce. In this study, thin film model electrodes of STF with 30% and 70% Fe content were investigated in H 2+H 2O atmosphere by electrochemical impedance spectroscopy. Lithographically patterned thin film Pt current collectors were applied on top or beneath the STF thin films tomore » compensate for the low electronic conductivity under reducing conditions. Oxygen exchange resistances, electronic and ionic conductivities and chemical capacitances were quantified and discussed in a defect chemical model. Increasing Fe content increases the electro-catalytic activity of the STF surface as well as the electronic and ionic conductivity. Current collectors on top also increase the electrochemical activity due to a highly active Pt-atmosphere-STF triple phase boundary. Furthermore, the electrochemical activity depends decisively on the H 2:H 2O mixing ratio and the polarization. Lastly, Fe 0 nanoparticles may evolve on the surface in hydrogen rich atmospheres and increase the hydrogen adsorption rate.« less
NASA Astrophysics Data System (ADS)
Sharma, Neeraj; Peterson, Vanessa K.; Elcombe, Margaret M.; Avdeev, Maxim; Studer, Andrew J.; Blagojevic, Ned; Yusoff, Rozila; Kamarulzaman, Norlida
The structural response to electrochemical cycling of the components within a commercial Li-ion battery (LiCoO 2 cathode, graphite anode) is shown through in situ neutron diffraction. Lithuim insertion and extraction is observed in both the cathode and anode. In particular, reversible Li incorporation into both layered and spinel-type LiCoO 2 phases that comprise the cathode is shown and each of these components features several phase transitions attributed to Li content and correlated with the state-of-charge of the battery. At the anode, a constant cell voltage correlates with a stable lithiated graphite phase. Transformation to de-lithiated graphite at the discharged state is characterised by a sharp decrease in both structural cell parameters and cell voltage. In the charged state, a two-phase region exists and is composed of the lithiated graphite phase and about 64% LiC 6. It is postulated that trapping Li in the solid|electrolyte interface layer results in minimal structural changes to the lithiated graphite anode across the constant cell voltage regions of the electrochemical cycle.
Controlled Atmosphere High Temperature SPM for electrochemical measurements
NASA Astrophysics Data System (ADS)
Vels Hansen, K.; Sander, C.; Koch, S.; Mogensen, M.
2007-03-01
A new controlled atmosphere high temperature SPM has been designed and build for the purpose of performing electrochemical measurements on solid oxide fuel cell materials. The first tests show that images can be obtained at a surface temperature of 465°C in air with a standard AFM AC probe. The aim is to produce images at a surface temperature of 800°C with electrically conducting ceramic probes as working electrodes that can be positioned at desired locations at the surface for electrochemical measurements.
Direct-write liquid phase transformations with a scanning transmission electron microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unocic, Raymond R.; Lupini, Andrew R.; Borisevich, Albina Y.
The highly energetic electron beam from a scanning transmission electron microscope (STEM) can induce local changes in the state of matter, ranging from local knock-out and atomic movement, to amorphization/crystallization, and chemical/electrochemical reactions occuring at localized liquid-solid and gas-solid interfaces. To date, fundamental studies of e-beam induced phenomena and practical applications have been limited by conventional e-beam rastering modes that allow only for uniform e-beam exposures. Here we develop an automated liquid phase nanolithography method that is capable of directly writing nanometer scaled features within silicon nitride encapsulated liquid cells. An external beam control system, connected to the scan coilsmore » of an aberration-corrected STEM, is used to precisely control the position, dwell time, and scan velocity of a sub-nanometer STEM probe. Site-specific locations in a sealed liquid cell containing an aqueous solution of H 2PdCl 4 are irradiated to controllably deposit palladium onto silicon nitride membranes. We determine the threshold electron dose required for the radiolytic deposition of metallic palladium, explore the influence of electron dose on the feature size and morphology of nanolithographically patterned nanostructures, and propose a feedback-controlled monitoring method for active control of the nanofabricated structures through STEM detector signal monitoring. As a result, this approach enables both fundamental studies of electron beam induced interactions with matter, as well as opens a pathway to fabricate nanostructures with tailored architectures and chemistries via shape-controlled nanolithographic patterning from liquid phase precursors.« less
Direct-write liquid phase transformations with a scanning transmission electron microscope
Unocic, Raymond R.; Lupini, Andrew R.; Borisevich, Albina Y.; ...
2016-08-03
The highly energetic electron beam from a scanning transmission electron microscope (STEM) can induce local changes in the state of matter, ranging from local knock-out and atomic movement, to amorphization/crystallization, and chemical/electrochemical reactions occuring at localized liquid-solid and gas-solid interfaces. To date, fundamental studies of e-beam induced phenomena and practical applications have been limited by conventional e-beam rastering modes that allow only for uniform e-beam exposures. Here we develop an automated liquid phase nanolithography method that is capable of directly writing nanometer scaled features within silicon nitride encapsulated liquid cells. An external beam control system, connected to the scan coilsmore » of an aberration-corrected STEM, is used to precisely control the position, dwell time, and scan velocity of a sub-nanometer STEM probe. Site-specific locations in a sealed liquid cell containing an aqueous solution of H 2PdCl 4 are irradiated to controllably deposit palladium onto silicon nitride membranes. We determine the threshold electron dose required for the radiolytic deposition of metallic palladium, explore the influence of electron dose on the feature size and morphology of nanolithographically patterned nanostructures, and propose a feedback-controlled monitoring method for active control of the nanofabricated structures through STEM detector signal monitoring. As a result, this approach enables both fundamental studies of electron beam induced interactions with matter, as well as opens a pathway to fabricate nanostructures with tailored architectures and chemistries via shape-controlled nanolithographic patterning from liquid phase precursors.« less
High temperature lithium cells with solid polymer electrolytes
Yang, Jin; Eitouni, Hany Basam; Singh, Mohit
2017-03-07
Electrochemical cells that use electrolytes made from new polymer compositions based on poly(2,6-dimethyl-1,4-phenylene oxide) and other high-softening-temperature polymers are disclosed. These materials have a microphase domain structure that has an ionically-conductive phase and a phase with good mechanical strength and a high softening temperature. In one arrangement, the structural block has a softening temperature of about 210.degree. C. These materials can be made with either homopolymers or with block copolymers. Such electrochemical cells can operate safely at higher temperatures than have been possible before, especially in lithium cells. The ionic conductivity of the electrolytes increases with increasing temperature.
In operando neutron diffraction study of LaNdMgNi9H13 as a metal hydride battery anode
NASA Astrophysics Data System (ADS)
Nazer, N. S.; Denys, R. V.; Yartys, V. A.; Hu, Wei-Kang; Latroche, M.; Cuevas, F.; Hauback, B. C.; Henry, P. F.; Arnberg, L.
2017-03-01
La2MgNi9-related alloys are superior metal hydride battery anodes as compared to the commercial AB5 alloys. Nd-substituted La2-yNdyMgNi9 intermetallics are of particular interest because of increased diffusion rate of hydrogen and thus improved performance at high discharge currents. The present work presents in operando characterization of the LaNdMgNi9 intermetallic as anode for the nickel metal hydride (Ni-MH) battery. We have studied the structural evolution of LaNdMgNi9 during its charge and discharge using in situ neutron powder diffraction. The work included experiments using deuterium gas and electrochemical charge-discharge measurements. The alloy exhibited a high electrochemical discharge capacity (373 mAh/g) which is 20% higher than the AB5 type alloys. A saturated β-deuteride synthesized by solid-gas reaction at PD2 = 1.6 MPa contained 12.9 deuterium atoms per formula unit (D/f.u.) which resulted in a volume expansion of 26.1%. During the electrochemical charging, the volume expansion (23.4%) and D-contents were found to be slightly reduced. The reversible electrochemical cycling is performed through the formation of a two-phase mixture of the α-solid solution and β-hydride phases. Nd substitution contributes to the high-rate dischargeability, while maintaining a good cyclic stability. Electrochemical Impedance Spectroscopy (EIS) was used to characterize the anode electrode on cycling. A mathematical model for the impedance response of a porous electrode was utilized. The EIS showed a decreased hydrogen transport rate during the long-term cycling, which indicated a corresponding slowing down of the electrochemical processes at the surface of the metal hydride anode.
The electrochemical reduction processes of solid compounds in high temperature molten salts.
Xiao, Wei; Wang, Dihua
2014-05-21
Solid electrode processes fall in the central focus of electrochemistry due to their broad-based applications in electrochemical energy storage/conversion devices, sensors and electrochemical preparation. The electrolytic production of metals, alloys, semiconductors and oxides via the electrochemical reduction of solid compounds (especially solid oxides) in high temperature molten salts has been well demonstrated to be an effective and environmentally friendly process for refractory metal extraction, functional materials preparation as well as spent fuel reprocessing. The (electro)chemical reduction of solid compounds under cathodic polarizations generally accompanies a variety of changes at the cathode/melt electrochemical interface which result in diverse electrolytic products with different compositions, morphologies and microstructures. This report summarizes various (electro)chemical reactions taking place at the compound cathode/melt interface during the electrochemical reduction of solid compounds in molten salts, which mainly include: (1) the direct electro-deoxidation of solid oxides; (2) the deposition of the active metal together with the electrochemical reduction of solid oxides; (3) the electro-inclusion of cations from molten salts; (4) the dissolution-electrodeposition process, and (5) the electron hopping process and carbon deposition with the utilization of carbon-based anodes. The implications of the forenamed cathodic reactions on the energy efficiency, chemical compositions and microstructures of the electrolytic products are also discussed. We hope that a comprehensive understanding of the cathodic processes during the electrochemical reduction of solid compounds in molten salts could form a basis for developing a clean, energy efficient and affordable production process for advanced/engineering materials.
Printable organic and inorganic materials for flexible electrochemical devices
NASA Astrophysics Data System (ADS)
Wojcik, Pawel Jerzy
The growing demand of consumer printed electronics such as smart cards, smart packaging, automotive displays, electronic paper and others led to the increased interest in fully printed electrochemical devices. These components are expected to be developed based on printed thin films derived from cheap and widely accessible compounds. This dissertation presents the long stretch of technical research that was performed to realize printed energy efficient concepts such as electrochromic displays and smart-windows. Within this broad theme, the presented study had a number of specific objectives, however, the overall aim was to develop low-cost material systems (i.e. printable mixtures) at a lab-scale, which would be compatible with large-scale roll-to-roll processing. Presented results concern three main topics: (i) dual-phase inorganic electrochromic material processed at low temperature, (ii) enhancement in electrochromic performance via metaloxide nanoparticles engineering, and (iii) highly conductive and mechanically stable solid-state electrolyte. First two topics are related to crystallographic structure of metal-oxide films derived from sol-gel precursor, which is shown to be critical for electrochemical performance. The proposed method of microstructure control enables development of electrochromic films which outperform their amorphous or nanocrystalline analogues presented in the state-of-the-art due to their superior chemical and physical properties. Developed materials and processes resulted in electrochemical devices exhibiting optical density on the level of 0.82 and switching time shorter than 3 seconds, reaching performance at practical level. Third topic concerns a new concept of solid state electrolyte based on plastic crystal doped with lithium salt, dispersed in a thermosetting polymer resin network. This soft matter printable electrolyte meets requirements for electrochromic applications, exhibiting ionic conductivities of 10. -6 - 10. -4 S cm-1 at ambient temperature, Young'sModulus in the range of 0.1 - 1.4 MPa and operational temperature up to 115°C. In order to extract information from massive computational data, model developed material systems and optimize composition, an efficient mathematical methodology based on statistical techniques was applied. This approach significantly reduces the number of experiments to be realized, while maintaining a high accuracy of the analysis. Using this approach the number of experiments has been reduced from 162 down to 30 in case of dual-phase electrochromic films, and from 729 down to 28 in study on solid-state electrolyte (when comparing to classical three-level full factorial approach). Coupling of statistical methods with formulation of electrochemically active materials shows the potential to maximize the capabilities of these systems.
Simulation of electrochemical behavior in Lithium ion battery during discharge process.
Chen, Yong; Huo, Weiwei; Lin, Muyi; Zhao, Li
2018-01-01
An electrochemical Lithium ion battery model was built taking into account the electrochemical reactions. The polarization was divided into parts which were related to the solid phase and the electrolyte mass transport of species, and the electrochemical reactions. The influence factors on battery polarization were studied, including the active material particle radius and the electrolyte salt concentration. The results showed that diffusion polarization exist in the positive and negative electrodes, and diffusion polarization increase with the conducting of the discharge process. The physicochemical parameters of the Lithium ion battery had the huge effect on cell voltage via polarization. The simulation data show that the polarization voltage has close relationship with active material particle size, discharging rate and ambient temperature.
Simulation of electrochemical behavior in Lithium ion battery during discharge process
Chen, Yong; Lin, Muyi; Zhao, Li
2018-01-01
An electrochemical Lithium ion battery model was built taking into account the electrochemical reactions. The polarization was divided into parts which were related to the solid phase and the electrolyte mass transport of species, and the electrochemical reactions. The influence factors on battery polarization were studied, including the active material particle radius and the electrolyte salt concentration. The results showed that diffusion polarization exist in the positive and negative electrodes, and diffusion polarization increase with the conducting of the discharge process. The physicochemical parameters of the Lithium ion battery had the huge effect on cell voltage via polarization. The simulation data show that the polarization voltage has close relationship with active material particle size, discharging rate and ambient temperature. PMID:29293535
Jiang, Shanshan; Zhou, Wei; Niu, Yingjie; Zhu, Zhonghua; Shao, Zongping
2012-10-01
It is generally recognized that the phase transition of a perovskite may be detrimental to the connection between cathode and electrolyte. Moreover, certain phase transitions may induce the formation of poor electronic and ionic conducting phase(s), thereby lowering the electrochemical performance of the cathode. Here, we present a study on the phase transition of a cobalt-free perovskite (SrNb(0.1)Fe(0.9)O(3-δ), SNF) and evaluate its effect on the electrochemical performance of the fuel cell. SNF exists as a primitive perovskite structure with space group P4mm (99) at room temperature. As evidenced by in situ high-temperature X-ray diffraction measurements over the temperature range of 600 to 1000 °C, SNF undergoes a transformation to a tetragonal structure with a space group I4/m (87). This phase transition is accompanied by a moderate change in the volume, allowing a good cathode/electrolyte interface on thermal cycling. According to the electrochemical impedance spectroscopy evaluation, the I4/m phase exhibits positive effects on the cathode's performance, showing the highest oxygen reduction reaction activity of cobalt-free cathodes reported so far. This activity improvement is attributed to enhanced oxygen surface processes. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Performance evaluation of SPE electrolyzer for Space Station life support
NASA Technical Reports Server (NTRS)
Erickson, A. C.; Puskar, M. C.; Zagaja, J. A.; Miller, P. S.
1987-01-01
An static water-vapor feed electrolyzer has been developed as a candidate for Space Station life-support oxygen generation. The five-cell electrolysis module has eliminated the need for phase separation devices, pumps, and deionizers by transporting only water vapor to the solid polymer electrolyte cells. The introduction of an innovative electrochemical hydrogen pump allows the use of low-pressure reclaimed water to generate gas pressures of up to 230 psia. The electrolyzer has been tested in a computer-controlled test stand featuring continuous, cyclic, and standby operation (including automatic shutdown with fault detection).
Electrochemical methods for monitoring of environmental carcinogens.
Barek, J; Cvacka, J; Muck, A; Quaiserová, V; Zima, J
2001-04-01
The use of modern electroanalytical techniques, namely differential pulse polarography, differential pulse voltammetry on hanging mercury drop electrode or carbon paste electrode, adsorptive stripping voltammetry and high performance liquid chromatography with electrochemical detection for the determination of trace amounts of carcinogenic N-nitroso compounds, azo compounds, heterocyclic compounds, nitrated polycyclic aromatic hydrocarbons and aromatic and heterocyclic amines is discussed. Scope and limitations of these methods are described and some practical applications based on their combination with liquid-liquid or solid phase extraction are given.
Mohammadiazar, Sirwan; Hasanli, Fateme; Maham, Mehdi; Payami Samarin, Somayeh
2017-08-01
Electrochemically co-deposited sol-gel/Cu nanocomposites have been introduced as a novel, simple and single-step technique for preparation of solid-phase microextraction (SPME) coating to extract methadone (MDN) (a synthetic opioid) in urine samples. The porous surface structure of the sol-gel/Cu nanocomposite coating was revealed by scanning electron microscopy. Direct immersion SPME followed by HPLC-UV determination was employed. The factors influencing the SPME procedure, such as the salt content, desorption solvent type, pH and equilibration time, were optimized. The best conditions were obtained with no salt content, acetonitrile as desorption solvent type, pH 9 and 10 min equilibration time. The calibration graphs for urine samples showed good linearity. The detection limit was about 0.2 ng mL -1 . Also, the novel method for preparation of nanocomposite fiber was compared with previously reported techniques for MDN determination. The results show that the novel nanocomposite fiber has relatively high extraction efficiency. Copyright © 2016 John Wiley & Sons, Ltd.
Xiao, Wei; Jin, Xianbo; Deng, Yuan; Wang, Dihua; Hu, Xiaohong; Chen, George Z
2006-08-11
The electrochemical reduction of solid SiO2 (quartz) to Si is studied in molten CaCl2 at 1173 K. Experimental observations are compared and agree well with a novel penetration model in relation with electrochemistry at the dynamic conductor|insulator|electrolyte three-phase interlines. The findings show that the reduction of a cylindrical quartz pellet at certain potentials is mainly determined by the diffusion of the O(2-) ions and also the ohmic polarisation in the reduction-generated porous silicon layer. The reduction rate increases with the overpotential to a maximum after which the process is retarded, most likely due to precipitation of CaO in the reaction region (cathodic passivation). Data are reported on the reduction rate, current efficiency and energy consumption during the electroreduction of quartz under potentiostatic conditions. These theoretical and experimental findings form the basis for an in-depth discussion on the optimisation of the electroreduction method for the production of silicon.
Brunori, M; Santucci, R; Campanella, L; Tranchida, G
1989-01-01
Immobilization of biological systems in solid matrices is presently of great interest, in view of the many potential advantages associated with both the higher stability of the immobilized macromolecules and the potential utilization for biotechnology. In the present paper the electrochemical behaviour of the undecapeptide from cytochrome c (called microperoxidase) tightly entrapped in cellulose triacetate membrane is reported; its utilization as 'solid-state' promoter in the electrochemistry of soluble metalloproteins is presented. The results obtained indicate that: (i) membrane-entrapped microperoxidase undergoes rapid reversible electron transfer at a glassy carbon electrode; (ii) the electrochemical process is diffusion-controlled; (iii) entrapped microperoxidase acts as 'solid-state' promoter in the electrochemistry of soluble cytochrome c and of azurin. PMID:2557833
NASA Astrophysics Data System (ADS)
Mohammadi, Alidad
Strontium- and magnesium-doped lanthanum gallate (LSGM) has been considered as a promising electrolyte for solid oxide fuel cell (SOFC) systems in recent years due to its high ionic conductivity and chemical stability over a wide range of oxygen partial pressures and temperatures. This research describes synthesis, physical and mechanical behavior, electrochemical properties, phase evolution, and microstructure of components of an all-perovskite anode-supported intermediate temperature solid oxide fuel cell (ITSOFC), based on porous La 0.75Sr0.25Cr0.5Mn0.5O3 (LSCM) anode, La0.8Sr0.2Ga0.8Mg0.2O 2.8 (LSGM) electrolyte, and porous La0.6Sr0.4Fe 0.8Co0.2O3 (LSCF) cathode. The phase evolution of synthesized LSGM and LSCM powders has been investigated, and it has been confirmed that there is no reaction between LSGM and LSCM at sintering temperature. Using different amounts of poreformers and binders as well as controlling firing temperature, porosity of the anode was optimized while still retaining good mechanical integrity. The effect of cell operation conditions under dry hydrogen fuel on the SOFC open circuit voltage (OCV) and cell performance were also investigated. Characterization study of the synthesized LSGM indicates that sintering at 1500°C obtains higher electrical conductivity compared to the currently published results, while conductivity of pellets sintered at 1400°C and 1450°C would be slightly lower. The effect of sintering temperature on bulk and grain boundary resistivities was also discussed. The mechanical properties, such as hardness, Young's modulus, fracture toughness and modulus of rupture of the electrolyte were determined and correlated with scanning electron microscopy (SEM) morphological characterization. Linear thermal expansion and thermal expansion coefficient of LSGM were also measured.
NASA Astrophysics Data System (ADS)
Novoselova, Inessa A.; Oliinyk, Nikolai F.; Voronina, Anastasiya B.; Volkov, Sergei V.
2008-08-01
An electrochemical study of mechanisms of electrodeposition of carbon solid phases from halide melts (Na,K|Cl; Na,K,Cs|Cl), saturated with carbon dioxide under an excessive pressure of up to 1.5 MPa, has been carried out in the temperature range 550 - 850 °C by cyclic voltammetry. It has been found that the cathode process occurs in three steps at sweep rates of less than 0.1 Vs-1, and its electrochemical-chemical-electrochemical (ECE) mechanism is suggested. It has furthermore been found that cathodic deposits contain nano-sized carbon particles of different forms and structure: blocks of amorphous carbon, crystalline graphite, carbon nanotubes (CNT), and nanofibres. The outer diameter of the tubes is 5 - 250 nm, and the internal diameter is 2 - 140 nm. A correlation between the product structure and yield against electrolysis conditions and regimes has been established.
Elucidation of the surface characteristics and electrochemistry of high-performance LiNiO 2
Xu, Jing; Lin, Feng; Nordlund, Dennis; ...
2016-02-25
Phase pure LiNiO 2 was prepared using a solid-state method and the optimal synthesis conditions led to a remarkably high capacity of 200 mA h g $-$1 with excellent retention. The combination of bulk and surface characterization elucidated an essential role of the excess Li in phase formation during synthesis and the subsequent electrochemical performance.
A study of room-temperature LixMn1.5Ni0.5O4 solid solutions
NASA Astrophysics Data System (ADS)
Saravanan, Kuppan; Jarry, Angelique; Kostecki, Robert; Chen, Guoying
2015-01-01
Understanding the kinetic implication of solid-solution vs. biphasic reaction pathways is critical for the development of advanced intercalation electrode materials. Yet this has been a long-standing challenge in materials science due to the elusive metastable nature of solid solution phases. The present study reports the synthesis, isolation, and characterization of room-temperature LixMn1.5Ni0.5O4 solid solutions. In situ XRD studies performed on pristine and chemically-delithiated, micron-sized single crystals reveal the thermal behavior of LixMn1.5Ni0.5O4 (0 <= x <= 1) cathode material consisting of three cubic phases: LiMn1.5Ni0.5O4 (Phase I), Li0.5Mn1.5Ni0.5O4 (Phase II) and Mn1.5Ni0.5O4 (Phase III). A phase diagram capturing the structural changes as functions of both temperature and Li content was established. The work not only demonstrates the possibility of synthesizing alternative electrode materials that are metastable in nature, but also enables in-depth evaluation on the physical, electrochemical and kinetic properties of transient intermediate phases and their role in battery electrode performance.
2016-01-01
Several “Beyond Li-Ion Battery” concepts such as all solid-state batteries and hybrid liquid/solid systems envision the use of a solid electrolyte to protect Li-metal anodes. These configurations are very attractive due to the possibility of exceptionally high energy densities and high (dis)charge rates, but they are far from being realized practically due to a number of issues including high interfacial resistance and difficulties associated with fabrication. One of the most promising solid electrolyte systems for these applications is Al or Ga stabilized Li7La3Zr2O12 (LLZO) based on high ionic conductivities and apparent stability against reduction by Li metal. Nevertheless, the fabrication of dense LLZO membranes with high ionic conductivity and low interfacial resistances remains challenging; it definitely requires a better understanding of the structural and electrochemical properties. In this study, the phase transition from garnet (Ia3̅d, No. 230) to “non-garnet” (I4̅3d, No. 220) space group as a function of composition and the different sintering behavior of Ga and Al stabilized LLZO are identified as important factors in determining the electrochemical properties. The phase transition was located at an Al:Ga substitution ratio of 0.05:0.15 and is accompanied by a significant lowering of the activation energy for Li-ion transport to 0.26 eV. The phase transition combined with microstructural changes concomitant with an increase of the Ga/Al ratio continuously improves the Li-ion conductivity from 2.6 × 10–4 S cm–1 to 1.2 × 10–3 S cm–1, which is close to the calculated maximum for garnet-type materials. The increase in Ga content is also associated with better densification and smaller grains and is accompanied by a change in the area specific resistance (ASR) from 78 to 24 Ω cm2, the lowest reported value for LLZO so far. These results illustrate that understanding the structure–properties relationships in this class of materials allows practical obstacles to its utilization to be readily overcome. PMID:27110064
Rettenwander, Daniel; Redhammer, Günther; Preishuber-Pflügl, Florian; Cheng, Lei; Miara, Lincoln; Wagner, Reinhard; Welzl, Andreas; Suard, Emmanuelle; Doeff, Marca M; Wilkening, Martin; Fleig, Jürgen; Amthauer, Georg
2016-04-12
Several "Beyond Li-Ion Battery" concepts such as all solid-state batteries and hybrid liquid/solid systems envision the use of a solid electrolyte to protect Li-metal anodes. These configurations are very attractive due to the possibility of exceptionally high energy densities and high (dis)charge rates, but they are far from being realized practically due to a number of issues including high interfacial resistance and difficulties associated with fabrication. One of the most promising solid electrolyte systems for these applications is Al or Ga stabilized Li 7 La 3 Zr 2 O 12 (LLZO) based on high ionic conductivities and apparent stability against reduction by Li metal. Nevertheless, the fabrication of dense LLZO membranes with high ionic conductivity and low interfacial resistances remains challenging; it definitely requires a better understanding of the structural and electrochemical properties. In this study, the phase transition from garnet ( Ia 3̅ d , No. 230) to "non-garnet" ( I 4̅3 d , No. 220) space group as a function of composition and the different sintering behavior of Ga and Al stabilized LLZO are identified as important factors in determining the electrochemical properties. The phase transition was located at an Al:Ga substitution ratio of 0.05:0.15 and is accompanied by a significant lowering of the activation energy for Li-ion transport to 0.26 eV. The phase transition combined with microstructural changes concomitant with an increase of the Ga/Al ratio continuously improves the Li-ion conductivity from 2.6 × 10 -4 S cm -1 to 1.2 × 10 -3 S cm -1 , which is close to the calculated maximum for garnet-type materials. The increase in Ga content is also associated with better densification and smaller grains and is accompanied by a change in the area specific resistance (ASR) from 78 to 24 Ω cm 2 , the lowest reported value for LLZO so far. These results illustrate that understanding the structure-properties relationships in this class of materials allows practical obstacles to its utilization to be readily overcome.
Xie, Li; Chen, Liqin; Gu, Pan; Wei, Lanlan; Kang, Xuejun
2018-03-01
The extraction and analysis of catecholamine neurotransmitters in biological fluids is of great importance in assessing nervous system function and related diseases, but their precise measurement is still a challenge. Many protocols have been described for neurotransmitter measurement by a variety of instruments, including high-pressure liquid chromatography (HPLC). However, there are shortcomings, such as complicated operation or hard-to-detect multiple targets, which cannot be avoided, and presently, the dominant analysis technique is still HPLC coupled with sensitive electrochemical or fluorimetric detection, due to its high sensitivity and good selectivity. Here, a detailed protocol is described for the pretreatment and detection of catecholamines with high pressure liquid chromatography with electrochemical detection (HPLC-ECD) in real urine samples of infants, using electrospun composite nanofibers composed of polymeric crown ether with polystyrene as adsorbent, also known as the packed-fiber solid phase extraction (PFSPE) method. We show how urine samples can be easily precleaned by a nanofiber-packed solid phase column, and how the analytes in the sample can be rapidly enriched, desorbed, and detected on an ECD system. PFSPE greatly simplifies the pretreatment procedures for biological samples, allowing for decreased time, expense, and reduction of the loss of targets. Overall, this work illustrates a simple and convenient protocol for solid-phase extraction coupled to an HPLC-ECD system for simultaneous determination of three monoamine neurotransmitters (norepinephrine (NE), epinephrine (E), dopamine (DA)) and two of their metabolites (3-methoxy-4-hydroxyphenylglycol (MHPG) and 3,4-dihydroxy-phenylacetic acid (DOPAC)) in infants' urine. The established protocol was applied to assess the differences of urinary catecholamines and their metabolites between high-risk infants with perinatal brain damage and healthy controls. Comparative analysis revealed a significant difference in urinary MHPG between the two groups, indicating that the catecholamine metabolites may be an important candidate marker for early diagnosis of cases at risk for brain damage in infants.
Effect of surface microstructure on electrochemical performance of garnet solid electrolytes.
Cheng, Lei; Chen, Wei; Kunz, Martin; Persson, Kristin; Tamura, Nobumichi; Chen, Guoying; Doeff, Marca
2015-01-28
Cubic garnet phases based on Al-substituted Li7La3Zr2O12 (LLZO) have high ionic conductivities and exhibit good stability versus metallic lithium, making them of particular interest for use in next-generation rechargeable battery systems. However, high interfacial impedances have precluded their successful utilization in such devices until the present. Careful engineering of the surface microstructure, especially the grain boundaries, is critical to achieving low interfacial resistances and enabling long-term stable cycling with lithium metal. This study presents the fabrication of LLZO heterostructured solid electrolytes, which allowed direct correlation of surface microstructure with the electrochemical characteristics of the interface. Grain orientations and grain boundary distributions of samples with differing microstructures were mapped using high-resolution synchrotron polychromatic X-ray Laue microdiffraction. The electrochemical characteristics are strongly dependent upon surface microstructure, with small grained samples exhibiting much lower interfacial resistances and better cycling behavior than those with larger grain sizes. Low area specific resistances of 37 Ω cm(2) were achieved; low enough to ensure stable cycling with minimal polarization losses, thus removing a significant obstacle toward practical implementation of solid electrolytes in high energy density batteries.
del Río, Jonathan Sabaté; Yehia Adly, Nouran; Acero-Sánchez, Josep Lluis; Henry, Olivier Y F; O'Sullivan, Ciara K
2014-04-15
Solid-phase isothermal DNA amplification was performed exploiting the homology protein recombinase A (recA). The system was primarily tested on maleimide activated microtitre plates as a proof-of-concept and later translated to an electrochemical platform. In both cases, forward primer for Francisella tularensis holarctica genomic DNA was surface immobilised via a thiol or an amino moiety and then elongated during the recA mediated amplification, carried out in the presence of specific target sequence and reverse primers. The formation of the subsequent surface tethered amplicons was either colorimetrically or electrochemically monitored using a horseradish peroxidase (HRP)-labelled DNA secondary probe complementary to the elongated strand. The amplification time was optimised to amplify even low amounts of DNA copies in less than an hour at a constant temperature of 37°C, achieving a limit of detection of 1.3×10(-13) M (4×10(6) copies in 50 μL) for the colorimetric assay and 3.3×10(-14) M (2×10(5) copies in 10 μL) for the chronoamperometric assay. The system was demonstrated to be highly specific with negligible cross-reactivity with non-complementary targets or primers. © 2013 Elsevier B.V. All rights reserved.
ENVIRONMENTALLY CONSCIOUS ELECTROCHEMICAL MACHINING FOR ZERO DISCHARGE AND METAL RECYCLING - PHASE I
Zou, Xingli; Zheng, Kai; Lu, Xionggang; Xu, Qian; Zhou, Zhongfu
2016-08-15
Silicon carbide (SiC), titanium carbide (TiC), zirconium carbide (ZrC), and tantalum carbide (TaC) have been electrochemically produced directly from their corresponding stoichiometric metal oxides/carbon (MOx/C) precursors by electrodeoxidation in molten calcium chloride (CaCl2). An assembled yttria stabilized zirconia solid oxide membrane (SOM)-based anode was employed to control the electrodeoxidation process. The SOM-assisted controllable electrochemical process was carried out in molten CaCl2 at 1000 °C with a potential of 3.5 to 4.0 V. The reaction mechanism of the electrochemical production process and the characteristics of these produced metal carbides (MCs) were systematically investigated. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy analyses clearly identify that SiC, TiC, ZrC, and TaC carbides can be facilely fabricated. SiC carbide can be controlled to form a homogeneous nanowire structure, while the morphologies of TiC, ZrC, and TaC carbides exhibit porous nodular structures with micro/nanoscale particles. The complex chemical/electrochemical reaction processes including the compounding, electrodeoxidation, dissolution-electrodeposition, and in situ carbonization processes in molten CaCl2 are also discussed. The present results preliminarily demonstrate that the molten salt-based SOM-assisted electrodeoxidation process has the potential to be used for the facile and controllable electrodeoxidation of MOx/C precursors to micro/nanostructured MCs, which can potentially be used for various applications.
Fuel Cells Using the Protic Ionic Liquid and Rotator Phase Solid Electrolyte Principles
2008-02-13
Talk “High temperature Polymer Electrolyte Membrane Fuel Cells (HT- PEMFCs ) for Portable Power in Large-Scale Energy Storage Devices”, Paper Number 195...Membrane Fuel Cells (HT- PEMFCs ) for Portable Power in Large-Scale Energy Storage Devices”, Paper Number 195, 212th Meeting of the Electrochemical
The existence of a temperature-driven solid solution in LixFePO4 for 0 <= x <= 1
NASA Astrophysics Data System (ADS)
Delacourt, Charles; Poizot, Philippe; Tarascon, Jean-Marie; Masquelier, Christian
2005-03-01
Lithium-ion batteries have revolutionized the powering of portable electronics. Electrode reactions in these electrochemical systems are based on reversible insertion/deinsertion of Li+ ions into the host electrode material with a concomitant addition/removal of electrons into the host. If such batteries are to find a wider market such as the automotive industry, less expensive positive electrode materials will be required, among which LiFePO4 is a leading contender. An intriguing fundamental problem is to understand the fast electrochemical response from the poorly electronic conducting two-phase LiFePO4/FePO4 system. In contrast to the well-documented two-phase nature of this system at room temperature, we give the first experimental evidence of a solid solution LixFePO4 (0 <= x <= 1) at 450 °C, and two new metastable phases at room temperature with Li0.75FePO4 and Li0.5FePO4 composition. These experimental findings challenge theorists to improve predictive models commonly used in the field. Our results may also lead to improved performances of these electrodes at elevated temperatures.
Andersen, Shuang Ma; Skou, Eivind
2014-10-08
Significant differences in catalyst performance and durability are often observed between the use of a liquid electrolyte (e.g., sulfuric acid), and a solid polymer electrolyte (e.g., Nafion). To understand this phenomenon, we studied the electrochemical behavior of a commercially available carbon supported platinum catalyst in four different electrode structures: catalyst powder (CP), catalyst ionomer electrode (CIE), half membrane electrode assembly (HMEA), and full membrane electrode assembly (FMEA) in both ex situ and in situ experiments under a simulated start/stop cycle. We found that the catalyst performance and stability are very much influenced by the presence of the Nafion ionomers. The proton conducting phase provided by the ionomer and the self-assembled electrode structure render the catalysts a higher utilization and better stability. This is probably due to an enhanced dispersion, an improved proton-catalyst interface, the restriction of catalyst particle aggregation, and the improved stability of the ionomer phase especially after the lamination. Therefore, an innovative electrode HMEA design for ex-situ catalyst characterization is proposed. The electrode structure is identical to the one used in a real fuel cell, where the protons transport takes place solely through solid state proton conducting phase.
Yang, Fangxu; Zhao, Qiang; Xu, Chunhui; Zou, Ye; Dong, Huanli; Zheng, Yonggang; Hu, Wenping
2016-09-01
The switching riddle of AgTCNQ is shown to be caused by the solid electrolyte mechanism. Both factors of bulk phase change and contact issue play key roles in the efficient work of the devices. An effective strategy is developed to locate the formation/disruption of Ag conductive filaments using the planar asymmetric configuration of Au/AgTCNQ/AlOx /Al. These novel electrochemical metallization memories demonstrate many promising properties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fluorine-doped antiperovskite electrolyte for all-solid-state Lithium-ion batteries
Li, Yutao; Zhou, Weidong; Xin, Sen; ...
2016-06-30
A fluorine-doped antiperovskite Li-ion conducto Li 2(OH)X (X=Cl, Br) is shown to be a promising candidat for a solid electrolyte in an all-solid-state Li-ion rechargeabl battery. Substitution of F¯ for OH¯ transforms orthorhombi Li 2OHCl to a room-temperature cubic phase, which show electrochemical stability to 9 V versus Li +/Li and two orders o magnitude higher Li-ion conductivity than that of orthorhombi Li 2OHCl. As a result, an all-solid-state Li/LiFePO 4 with F-dope Li 2OHCl as the solid electrolyte showed good cyclability an a high coulombic efficiency over 40 charge/discharge cycles
Kashkooli, Ali Ghorbani; Foreman, Evan; Farhad, Siamak; ...
2017-09-21
In this study, synchrotron X-ray computed tomography has been utilized using two different imaging modes, absorption and Zernike phase contrast, to reconstruct the real three-dimensional (3D) morphology of nanostructured Li 4Ti 5O 12 (LTO) electrodes. The morphology of the high atomic number active material has been obtained using the absorption contrast mode, whereas the percolated solid network composed of active material and carbon-doped polymer binder domain (CBD) has been obtained using the Zernike phase contrast mode. The 3D absorption contrast image revealed that some LTO nano-particles tend to agglomerate and form secondary micro-sized particles with varying degrees of sphericity. Themore » tortuosity of electrode’s pore and solid phases were found to have directional dependence, different from Bruggeman’s tortuosity commonly used in macro-homogeneous models. The electrode’s heterogeneous structure was investigated by developing a numerical model to simulate galvanostatic discharge process using the Zernike phase contrast mode. The inclusion of CBD in the Zernike phase contrast results in an integrated percolated network of active material and CBD that is highly suited for continuum modeling. As a result, the simulation results highlight the importance of using the real 3D geometry since the spatial distribution of physical and electrochemical properties have a strong non-uniformity due to microstructural heterogeneities.« less
A study of room-temperature LixMn1.5Ni0.5O4 solid solutions
Saravanan, Kuppan; Jarry, Angelique; Kostecki, Robert; Chen, Guoying
2015-01-01
Understanding the kinetic implication of solid-solution vs. biphasic reaction pathways is critical for the development of advanced intercalation electrode materials. Yet this has been a long-standing challenge in materials science due to the elusive metastable nature of solid solution phases. The present study reports the synthesis, isolation, and characterization of room-temperature LixMn1.5Ni0.5O4 solid solutions. In situ XRD studies performed on pristine and chemically-delithiated, micron-sized single crystals reveal the thermal behavior of LixMn1.5Ni0.5O4 (0 ≤ x ≤ 1) cathode material consisting of three cubic phases: LiMn1.5Ni0.5O4 (Phase I), Li0.5Mn1.5Ni0.5O4 (Phase II) and Mn1.5Ni0.5O4 (Phase III). A phase diagram capturing the structural changes as functions of both temperature and Li content was established. The work not only demonstrates the possibility of synthesizing alternative electrode materials that are metastable in nature, but also enables in-depth evaluation on the physical, electrochemical and kinetic properties of transient intermediate phases and their role in battery electrode performance. PMID:25619504
A study of room-temperature Li xMn 1.5Ni 0.5O 4 solid solutions
Saravanan, Kuppan; Jarry, Angelique; Kostecki, Robert; ...
2015-01-26
Understanding the kinetic implication of solid-solution vs. biphasic reaction pathways is critical for the development of advanced intercalation electrode materials. Yet this has been a long-standing challenge in materials science due to the elusive metastable nature of solid solution phases. The present study reports the synthesis, isolation, and characterization of room-temperature Li xMn 1.5Ni 0.5O 4 solid solutions. In situ XRD studies performed on pristine and chemically-delithiated, micron-sized single crystals reveal the thermal behavior of Li xMn 1.5Ni 0.5O 4 (0 ≤ x ≤ 1) cathode material consisting of three cubic phases: LiMn 1.5Ni 0.5O 4 (Phase I), Li 0.5Mnmore » 1.5Ni 0.5O 4 (Phase II) and Mn 1.5Ni 0.5O 4 (Phase III). A phase diagram capturing the structural changes as functions of both temperature and Li content was established. In conclusion, the work not only demonstrates the possibility of synthesizing alternative electrode materials that are metastable in nature, but also enables in-depth evaluation on the physical, electrochemical and kinetic properties of transient intermediate phases and their role in battery electrode performance.« less
Challenge for lowering concentration polarization in solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Shimada, Hiroyuki; Suzuki, Toshio; Yamaguchi, Toshiaki; Sumi, Hirofumi; Hamamoto, Koichi; Fujishiro, Yoshinobu
2016-01-01
In the scope of electrochemical phenomena, concentration polarization at electrodes is theoretically inevitable, and lowering the concentration overpotential to improve the performance of electrochemical cells has been a continuing challenge. Electrodes with highly controlled microstructure, i.e., high porosity and uniform large pores are therefore essential to achieve high performance electrochemical cells. In this study, state-of-the-art technology for controlling the microstructure of electrodes has been developed for realizing high performance support electrodes of solid oxide fuel cells (SOFCs). The key is controlling the porosity and pore size distribution to improve gas diffusion, while maintaining the integrity of the electrolyte and the structural strength of actual sized electrode supports needed for the target application. Planar anode-supported SOFCs developed in this study realize 5 μm thick dense electrolyte (yttria-stabilized zirconia: YSZ) and the anode substrate (Ni-YSZ) of 53.6 vol.% porosity with a large median pore diameter of 0.911 μm. Electrochemical measurements reveal that the performance of the anode-supported SOFCs improves with increasing anode porosity. This Ni-YSZ anode minimizes the concentration polarization, resulting in a maximum power density of 3.09 W cm-2 at 800 °C using humidified hydrogen fuel without any electrode functional layers.
Gong, Yue; Zhang, Jienan; Jiang, Liwei; Shi, Jin-An; Zhang, Qinghua; Yang, Zhenzhong; Zou, Dongli; Wang, Jiangyong; Yu, Xiqian; Xiao, Ruijuan; Hu, Yong-Sheng; Gu, Lin; Li, Hong; Chen, Liquan
2017-03-29
We report a method for in situ atomic-scale observation of electrochemical delithiation in a working all-solid-state battery using a state-of-the-art chip based in situ transmission electron microscopy (TEM) holder and focused ion beam milling to prepare an all-solid-state lithium-ion battery sample. A battery consisting of LiCoO 2 cathode, LLZO solid state electrolyte and gold anode was constructed, delithiated and observed in an aberration corrected scanning transmission electron microscope at atomic scale. We found that the pristine single crystal LiCoO 2 became nanosized polycrystal connected by coherent twin boundaries and antiphase domain boundaries after high voltage delithiation. This is different from liquid electrolyte batteries, where a series of phase transitions take place at LiCoO 2 cathode during delithiation. Both grain boundaries become more energy favorable along with extraction of lithium ions through theoretical calculation. We also proposed a lithium migration pathway before and after polycrystallization. This new methodology could stimulate atomic scale in situ scanning/TEM studies of battery materials and provide important mechanistic insight for designing better all-solid-state battery.
Jin, Liyu; Nairn, Kate M; Forsyth, Craig M; Seeber, Aaron J; MacFarlane, Douglas R; Howlett, Patrick C; Forsyth, Maria; Pringle, Jennifer M
2012-06-13
Understanding the ion transport behavior of organic ionic plastic crystals (OIPCs) is crucial for their potential application as solid electrolytes in various electrochemical devices such as lithium batteries. In the present work, the ion transport mechanism is elucidated by analyzing experimental data (single-crystal XRD, multinuclear solid-state NMR, DSC, ionic conductivity, and SEM) as well as the theoretical simulations (second moment-based solid static NMR line width simulations) for the OIPC diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate ([P(1,2,2,4)][PF(6)]). This material displays rich phase behavior and advantageous ionic conductivities, with three solid-solid phase transitions and a highly "plastic" and conductive final solid phase in which the conductivity reaches 10(-3) S cm(-1). The crystal structure shows unique channel-like packing of the cations, which may allow the anions to diffuse more easily than the cations at lower temperatures. The strongly phase-dependent static NMR line widths of the (1)H, (19)F, and (31)P nuclei in this material have been well simulated by different levels of molecular motions in different phases. Thus, drawing together of the analytical and computational techniques has allowed the construction of a transport mechanism for [P(1,2,2,4)][PF(6)]. It is also anticipated that utilization of these techniques will allow a more detailed understanding of the transport mechanisms of other plastic crystal electrolyte materials.
Compositional control of continuously graded anode functional layer
NASA Astrophysics Data System (ADS)
McCoppin, J.; Barney, I.; Mukhopadhyay, S.; Miller, R.; Reitz, T.; Young, D.
2012-10-01
In this work, solid oxide fuel cells (SOFC's) are fabricated with linear-compositionally graded anode functional layers (CGAFL) using a computer-controlled compound aerosol deposition (CCAD) system. Cells with different CGAFL thicknesses (30 um and 50 um) are prepared with a continuous compositionally graded interface deposited between the electrolyte and anode support current collecting regions. The compositional profile was characterized using energy dispersive X-ray spectroscopic mapping. An analytical model of the compound aerosol deposition was developed. The model predicted compositional profiles for both samples that closely matched the measured profiles, suggesting that aerosol-based deposition methods are capable of creating functional gradation on length scales suitable for solid oxide fuel cell structures. The electrochemical performances of the two cells are analyzed using electrochemical impedance spectroscopy (EIS).
Methylxanthines: properties and determination in various objects
NASA Astrophysics Data System (ADS)
Andreeva, Elena Yu; Dmitrienko, Stanislava G.; Zolotov, Yurii A.
2012-05-01
Published data on the properties and determination of caffeine, theophylline, theobromine and some other methylxanthines in various objects are surveyed and described systematically. Different sample preparation procedures such as liquid extraction from solid matrices and liquid-liquid, supercritical fluid and solid-phase extraction are compared. The key methods of analysis including chromatography, electrophoresis, spectrometry and electrochemical methods are discussed. Examples of methylxanthine determination in plants, food products, energy beverages, pharmaceuticals, biological fluids and natural and waste waters are given. The bibliography includes 393 references.
Park, Joong Sun; An, Jihwan; Lee, Min Hwan; ...
2015-11-01
In this study, we report systematic investigation of the surface properties of yttria-stabilized zirconia (YSZ) electrolytes with the control of the grain boundary (GB) density at the surface, and its effects on electrochemical activities. The GB density of thin surface layers deposited on single crystal YSZ substrates is controlled by changing the annealing temperature (750-1450 °C). Higher oxygen reduction reactions (ORR) kinetics is observed in samples annealed at lower temperatures. The higher ORR activity is ascribed to the higher GB density at the YSZ surface where 'mobile' oxide ion vacancies are more populated. Meanwhile, oxide ion vacancies concurrently created withmore » yttrium segregation at the surface at the higher annealing temperature are considered inactive to oxygen incorporation reactions. Our results provide additional insight into the interplay between the surface chemistry, microstructures, and electrochemical activity. They potentially provide important guidelines for engineering the electrolyte electrode interfaces of solid oxide fuel cells for higher electrochemical performance.« less
NASA Astrophysics Data System (ADS)
Kolotygin, Vladislav
This work was focused on the analysis of transport, thermomechanical and electrochemical properties of a series of perovskite-like oxide materials and composites for potential applications as anodes of intermediate-temperature solid oxide fuel cells (SOFCs) with lanthanum gallate and silicate solid electrolytes. The primary attention was centered on A(Mn,Nb)O3-delta (A = Sr, Ca) and (La,Sr)(Mn,Ti)O3-based systems, lanthanum chromite substituted with acceptor-type and variable-valence cations, and various Ni-containing cermets. Emphasis was given to phase stability of the materials, their crystal structure, microstructure of porous electrode layers and dense ceramics, electronic conductivity, Seebeck coefficient, oxygen permeability, thermal and chemical induced expansion, and anodic overpotentials of the electrodes deposited onto (La,Sr)(Ga,Mg)O3- and La10(Si,Al)6O27-based electrolyte membranes. In selected cases, roles of oxygen diffusivity, states of the transition metal cations relevant for the electronic transport, catalytically active additives and doped ceria protective interlayers introduced in the model electrochemical cells were assessed. The correlations between transport properties of the electrode materials and electrochemical behavior of porous electrodes showed that the principal factors governing anode performance include, in particular, electronic conduction of the anode compositions and cation interdiffusion between the electrodes and solid electrolytes. The latter is critically important for the silicatebased electrolyte membranes, leading to substantially worse anode properties compared to the electrochemical cells with lanthanum gallate solid electrolyte. The results made it possible to select several anode compositions exhibiting lower area-specific electrode resistivity compared to known analogues, such as (La,Sr)(Cr,Mn)O3-delta.
NASA Astrophysics Data System (ADS)
Chowdari, B. V. R.; Liu, Qingguo; Chen, Liquan
The Table of Contents for the book is as follows: * Preface * Invited Papers * Recent Trends in Solid State Ionics * Theoretical Aspects of Fast Ion Conduction in Solids * Chemical Bonding and Intercalation Processes in Framework Structures * Extra-Large Near-Electrode Regions and Diffusion Length on the Solid Electrolyte-Electrode Interface as Studied by Photo-EMF Method * Frequency Response of Glasses * XPS Studies on Ion Conducting Glasses * Characterization of New Ambient Temperature Lithium Polymer-Electrolyte * Recent Development of Polymer Electrolytes: Solid State Voltammetry in Polymer Electrolytes * Secondary Solid State Batteries: From Material Properties to Commercial Development * Silver Vanadium Oxide Bronze and its Applications for Electrochemical Devices * Study on β''-Alumina Solid Electrolyte and β Battery in SIC * Materials for Solid Oxide Fuel Cells * Processing for Super Superionic Ceramics * Hydrogen Production Using Oxide Ionic or Protonic Conductor * Ionically Conductive Sulfide-Based Lithium Glasses * Relation of Conductivity to Structure and Structural Relaxation in Ion-Conducting Glasses * The Mechanism of Ionic Conductivity in Glass * The Role of Synthesis and Structure in Solid State Ionics - Electrodes to Superconductors * Electrochromism in Spin-Coated Thin Films from Peroxo-Poly tungstate Solutions * Electrochemical Studies on High Tc Superconductors * Multivalence Fast Ionic Conductors - Montmorillonites * Contributed Papers * Volt-Ampere Characteristics and Interface Charge Transport in Solid Electrolytes * Internal Friction of Silver Chalcogenides * Thermal Expansion of Ionic and Superionic Solids * Improvement of PEO-LiCF3SO3 Complex Electrolytes Using Additives * Ionic Conductivity of Modified Poly (Methoxy Polyethylene Glycol Methacrylate) s-Lithium Salt Complexes * Solid Polymer Electrolytes of Crosslinked Polyethylene Glycol and Lithium Salts * Single Ionic Conductors Prepared by in Situ Polymerization of Methacrylic Acid Alkali Metal Salts in Polyethylene Oxide * Redox Behavior of Alkyl Viologens in Ion Conductive Polymer Solid * Ionic Conductivity of Interpenetrating Polymer Networks Containing LiClO4 * Electrochemical Behaviors of Porphyrins Incorporated into Solid Polymer Electrolytes * Lithium Ion Conducting Polymer Electrolytes * Electrochemical Synthesis of Polyaniline Thin Film * Electrochemical Aspect of Polyaniline Electrode in Aqueous Electrolyte * Mixed Cation Effect in Epoxy Resin - PEO-IPN Containing Perchlorate Salts * Conductivity, Raman and IR Studies on the Doped PEO-PPG Polymer Blends * Proton Conducting Polymeric Electrolytes from Poly (Ethyleneoxide) System * Surface Structure of Polymer Solid Ionic Conductors Based on Segmented Polyether Polyurethaneureas * Study on Addition Products of LiI and Diethylene Glycol etc. * Solid State Rechargeable Battery Using Paper Form Copper Ion Conductive Solid Electrolyte * Characterization of Electrode/Electrolyte Interfaces in Battery Li/PVAC-Li-Mont./Li1+xV3O8 by AC Impedance Method * Investigation on Reversibility of Vanadium Oxide Cathode Materials in Solid-State Battery * Preparation and Characterization of Silver Boromolybdate Solid State Batteries * The Electric Properties of the Trinary Cathode Material and its Application in Magnisium Solid State Cell * Electrical Properties and Phase Relation of Na2Mo0.1S0.9O4 Doped with Rare Earth Sulfate * New Electrochemical Probe for Rapid Determination of Silicon Concentration in Hot Metals * A New Theoretical EMF Expression for SOx(x = 2, 3) Sensors Based on Na2SO4 Solid Electrolyte * Evaluation of the Electrochemical SOx(x = 2, 3) Sensor with a Tubular Nasicon Electrolyte * The Response Time of a Modified Oxygen Sensor Using Zirconia Electrolyte * Preparation, Characteristics and Sintering Behavior of MgO-PSZ Powder * Reaction between La0.9MnO3 and Yttria Doped Zirconia * Development of the Extended-Life Oxygen Sensor of Caβ''-Al2O3 * Caβ''-Al2O3 Ultra-Low Oxygen Sensor * Measurement of Sulfur Concentration with Zirconia-Based Electrolyte Cell in Molten Iron * Influence of SO2 on the Conductivity of Calcia Stabilized Zirconia * Reactions between YSZ and La1-xCaxMnO3 as a Cathode for SOFC * Preparation and Electrical Properties of Lithium β''-Alumina * Influence of Lithia Content on Properties of β''-Alumina Ceramics * Electrical Conductivity of Solid Solutions of Na2SO4 with Na2SeO4 * Effect of Antagonist XO42- = MoO42- and WO42- Ion Substitution on the Electrical Conductivity of Li2SO4 : Li2CO3 Eutectic System * Study on the Electrical Properties and Structure of Multicrystal Materials Li5+xGe1-xCrxV3O12 * Preliminary Study on Synthesis of Silver Zirconium Silicophosphates by Sol - Gel Process * Sodium Ion Conduction in Iron(III) Exchanged Y Zeolite * Electrical Properties of V5O9+x (x = 0, 1) and CuxV5O9.1 * Electrical Properties of the Tetragonal ZrO2 Stabilized with CeO2, CeO2 + Gd2O3 * Study of Preparation and Ionic Conduction of Doped Barium Cerate Perovskite * Preparing Fine Alumina Powder by Homogeneous Precipitation Method for Fabricating β''-Al2O3 * Amorphous Lithium Ion Conductors in Li2S-SiS2-LiBO2 System * Mixed Alkali Effect of Glass Super Ionic Conductors * Electrical Property and Phase Separation, Crystallization Behavior of A Cu+-Conducting Glass * Investigation of Phase Separation and Crystallization for 0.4CuI-0.3 Cu2O-0.3P2O5 Glass by SEM and XRD * Study on the Lithium Solid Electrolytes of Li3N-LiX(X = F, Cl, Br, I)-B2O3 Ternary Systems * Synthesis and Characterization of the Li2O : P2O5 : WO3 Glasses * The Electrochromic Properties of Electrodeposited Ni-O Films in Nonaqueous Electrolytes * All Solid-State WO3-MnO2 Based Electrochromic Window * Electrochromism in Nickel Oxide Films * E S R of X-Irradiated Melt Quenched Li2SO4 * Mixed-Alkali Effect in the Li2O-Na2O-TeO2 Glass System * Electrical and Thermal Studies on Silver Tellurite Glasses * Late Entries (Invited Papers) * Proton Conducting Polymers * Light Scattering Studies on Superionic Conductor YSZ * Development of Thin Film Surface Modified Solid State Electrochemical Gas Sensors * Author Index * List of Participants
Hu, Chengguo; Bai, Xiaoyun; Wang, Yingkai; Jin, Wei; Zhang, Xuan; Hu, Shengshui
2012-04-17
A simple approach to the mass production of nanoporous gold electrode arrays on cellulose membranes for electrochemical sensing of oxygen using ionic liquid (IL) electrolytes was established. The approach, combining the inkjet printing of gold nanoparticle (GNP) patterns with the self-catalytic growth of these patterns into conducting layers, can fabricate hundreds of self-designed gold arrays on cellulose membranes within several hours using an inexpensive inkjet printer. The resulting paper-based gold electrode arrays (PGEAs) had several unique properties as thin-film sensor platforms, including good conductivity, excellent flexibility, high integration, and low cost. The porous nature of PGEAs also allowed the addition of electrolytes from the back cellulose membrane side and controllably produced large three-phase electrolyte/electrode/gas interfaces at the front electrode side. A novel paper-based solid-state electrochemical oxygen (O(2)) sensor was therefore developed using an IL electrolyte, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF(6)). The sensor looked like a piece of paper but possessed high sensitivity for O(2) in a linear range from 0.054 to 0.177 v/v %, along with a low detection limit of 0.0075% and a short response time of less than 10 s, foreseeing its promising applications in developing cost-effective and environment-friendly paper-based electrochemical gas sensors.
Measurement of phenols dearomatization via electrolysis: the UV-Vis solid phase extraction method.
Vargas, Ronald; Borrás, Carlos; Mostany, Jorge; Scharifker, Benjamin R
2010-02-01
Dearomatization levels during electrochemical oxidation of p-methoxyphenol (PMP) and p-nitrophenol (PNP) have been determined through UV-Vis spectroscopy using solid phase extraction (UV-Vis/SPE). The results show that the method is satisfactory to determine the ratio between aromatic compounds and aliphatic acids and reaction kinetics parameters during treatment of wastewater, in agreement with results obtained from numerical deconvolution of UV-Vis spectra. Analysis of solutions obtained from electrolysis of substituted phenols on antimony-doped tin oxide (SnO(2)--Sb) showed that an electron acceptor substituting group favored the aromatic ring opening reaction, preventing formation of intermediate quinone during oxidation. (c) 2009 Elsevier Ltd. All rights reserved.
Inoue, K; Yoshimura, Y; Makino, T; Nakazawa, H
2000-11-01
Alkylphenols can affect human health because they disrupt the endocrine system. In this study, an analytical method for determining trace amounts of 4-nonylphenol (NP) and 4-octylphenol (OP) in human blood samples was developed. Reversed-phase HPLC with multi-electrode electrochemical coulometric-array detection was used for the determination of NP and OP in plasma and serum samples prepared with a solid-phase extraction method. The separation was achieved using an isocratic mobile phase of 0.7% phosphoric acid-acetonitrile with a C18 reversed phase column. The detection limits of NP and OP were 1.0 and 0.5 ng ml-1, respectively. The recoveries of NP and OP added to human plasma samples were above 70.0% with a relative standard deviation of less than 15.5%. The method was found to be applicable to the determination of NP and OP in various human blood samples such as serum and plasma.
Zhu, Yizhou; He, Xingfeng; Mo, Yifei
2015-12-11
All-solid-state Li-ion batteries based on ceramic solid electrolyte materials are a promising next-generation energy storage technology with high energy density and enhanced cycle life. The poor interfacial conductance is one of the key limitations in enabling all-solid-state Li-ion batteries. However, the origin of this poor conductance has not been understood, and there is limited knowledge about the solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. In this paper, we performed first principles calculations to evaluate the thermodynamics of the interfaces between solid electrolyte and electrode materials and to identify the chemical and electrochemical stabilities of these interfaces. Our computation results revealmore » that many solid electrolyte–electrode interfaces have limited chemical and electrochemical stability, and that the formation of interphase layers is thermodynamically favorable at these interfaces. These formed interphase layers with different properties significantly affect the electrochemical performance of all-solid-state Li-ion batteries. The mechanisms of applying interfacial coating layers to stabilize the interface and to reduce interfacial resistance are illustrated by our computation. This study demonstrates a computational scheme to evaluate the chemical and electrochemical stability of heterogeneous solid interfaces. Finally, the enhanced understanding of the interfacial phenomena provides the strategies of interface engineering to improve performances of all-solid-state Li-ion batteries.« less
NASA Astrophysics Data System (ADS)
Yang, Lufeng; Li, Xiang; Ma, Xuetian; Xiong, Shan; Liu, Pan; Tang, Yuanzhi; Cheng, Shuang; Hu, Yan-Yan; Liu, Meilin; Chen, Hailong
2018-03-01
Sodium-ion batteries (SIBs) are an emerging electrochemical energy storage technology that has high promise for electrical grid level energy storage. High capacity, long cycle life, and low cost cathode materials are very much desired for the development of high performance SIB systems. Sodium manganese oxides with different compositions and crystal structures have attracted much attention because of their high capacity and low cost. Here we report our investigations into a group of promising lithium doped sodium manganese oxide cathode materials with exceptionally high initial capacity of ∼223 mAh g-1 and excellent capacity retentions, attributed primarily to the absence of phase transformation in a wide potential range of electrochemical cycling, as confirmed by in-operando X-ray diffraction (XRD), Rietveld refinement, and high-resolution 7Li solid-state NMR characterizations. The systematic study of structural evolution and the correlation with the electrochemical behavior of the doped cathode materials provides new insights into rational design of high-performance intercalation compounds by tailoring the composition and the crystal structure evolution in electrochemical cycling.
Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA
2010-03-02
The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.
Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA
2010-11-23
The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.
Si-FeSi2/C nanocomposite anode materials produced by two-stage high-energy mechanical milling
NASA Astrophysics Data System (ADS)
Yang, Yun Mo; Loka, Chadrasekhar; Kim, Dong Phil; Joo, Sin Yong; Moon, Sung Whan; Choi, Yi Sik; Park, Jung Han; Lee, Kee-Sun
2017-05-01
High capacity retention Silicon-based nanocomposite anode materials have been extensively explored for use in lithium-ion rechargeable batteries. Here we report the preparation of Si-FeSi2/C nanocomposite through scalable a two-stage high-energy mechanical milling process, in which nano-scale Si-FeSi2 powders are besieged by the carbon (graphite/amorphous phase) layer; and investigation of their structure, morphology and electrochemical performance. Raman analysis revealed that the carbon layer structure comprised of graphitic and amorphous phase rather than a single amorphous phase. Anodes fabricated with the Si-FeSi2/C showed excellent electrochemical behavior such as a first discharge capacity of 1082 mAh g-1 and a high capacity retention until the 30th cycle. A remarkable coulombic efficiency of 99.5% was achieved within a few cycles. Differential capacity plots of the Si-FeSi2/C anodes revealed a stable lithium reaction with Si for lithiation/delithiation. The enhanced electrochemical properties of the Si-FeSi2/C nanocomposite are mainly attributed to the nano-size Si and stable solid electrolyte interface formation and highly conductive path driven by the carbon layer.
NASA Astrophysics Data System (ADS)
Siegel, David; El Gabaly, Farid; Bartelt, Norman; McCarty, Kevin
2014-03-01
Novel electrochemical solutions to problems in energy storage and transportation can drive renewable energy to become an economically viable alternative to fossil fuels. In many electrochemical systems, the behavior of a device can be fundamentally limited by the surface area of a triple phase boundary, the boundary region where a gas-phase species, electrode, and electrolyte coincide. When the electrode is an ionic insulator the triple phase boundary is typically a one-dimensional boundary with nanometer-scale thickness: ions cannot transport through the electrode, while electrons cannot be transported through the electrolyte. Here we present direct experimental measurements of a novel electrolyte-to-electrode transition with photoemission electron microscopy, and observe that the surface of an ionically conductive, electronically insulative solid oxide electrolyte undergoes a transition into a mixed electron-ion conductor in the vicinity of a metal electrode. Our direct experimental measurements allow us to characterize this system and address the mechanisms of ionic reactions and transport through comparisons with theoretical modeling to provide us with a physical picture of the processes involved. Our results provide insight into one of the mechanisms of ion transport in an electrochemical cell that may be generalizable to other systems.
Aqueous Electrochemical Mechanisms in Actinide Residue Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, David E.; Burns, Carol J.; Smith, Wayne H.
2000-12-31
Plutonium and uranium residues (e.g., incinerator ash, combustibles, and sand/slag/crucibles) resulting from the purification and processing of nuclear materials constitute an enormous volume of ''lean'' processing waste and represent a significant fraction of the U. S. Department of Energy's (DOE) legacy waste from fifty years of nuclear weapons production activities. Much of this material is presently in storage at sites throughout the DOE weapons production complex (most notably Rocky Flats, Savannah River and Hanford) awaiting further processing and/or final disposition. The chemical and physical stability of much of this material has been called into question recently by the Defense Nuclearmore » Facility Safety Board (DNFSB) and resulted in the issuance of a mandate by the DNFSB to undertake a program to stabilize these materials [1]. The ultimate disposition for much of these materials is anticipated to be geologic repositories such as the proposed Waste Isolation Pilot Plant in New Mexico. However, in light of the mandate to stabilize existing residues and the probable concomitant increase in the volume of material to be disposed as a result of stabilization (e.g., from repackaging at lower residue densities), the projected storage volume for these wastes within anticipated geologic repositories will likely be exceeded simply to handle existing wastes. Additional processing of some of these residue waste streams to reduce radionuclide activity levels, matrix volume, or both is a potentially important strategy to achieve both stabilization and volume reduction so that the anticipated geologic repositories will provide adequate storage volume. In general, the plutonium and uranium that remains in solid residue materials exists in a very stable chemical form (e.g., as binary oxides), and the options available to remove the actinides are limited. However, there have been some demonstrated successes in this vain using aqueous phase electrochemical methods such as the Catalyzed Electrochemical Plutonium Oxide Dissolution (CEPOD) process pioneered by workers at Pacific Northwest National Laboratory in the mid-1970s [2]. The basis for most of these mediated electrochemical oxidation/reduction (MEO/R) processes is the generation of a dissolved electrochemical catalyst, such as Ag2+, which is capable of oxidizing or reducing solid-phase actinide species or actinide sorbates via 7 heterogeneous electron transfer to oxidation states that have significantly greater solubilities (e.g., PuO2(s) to PuO2 2+ (dissolved)). The solubilized actinide can then be recovered by ion exchange or other mechanisms. These aqueous electrochemical methods for residue treatment have been considered in many of the ''trade studies'' to evaluate options for stabilization of the various categories of residue materials. While some concerns generally arise (e.g., large secondary waste volumes could results since the process stream normally goes th rough anion exchange or precipitation steps to remove the actinide), the real utility and versatility of these methods should not be overlooked. They are low temperature, ambient pressure processes that operate in a non-corrosive environment. In principle, they can be designed to be highly selective for the actinides (i.e., no substrate degradation occurs), they can be utilized for many categories of residue materials with little or no modification in hardware or operating conditions, and they can conceivably be engineered to minimize secondary waste stream volume. However, some fundamental questions remain concerning the mechanisms through which these processes act, and how the processes might be optimized to maximize efficiency while minimizing secondary waste. In addition, given the success achieved to date on the limited set of residues, further research is merited to extend the range of applicability of these electrochemical methods to other residue and waste streams. The principal goal of the work described here is to develop a fundamental understanding of the heterogeneous electron transfer thermodynamics and kinetics that lie at the heart of the MEO/R processes for actinide solids and actinide species entrained in or surface-bound to residue substrates. This has been accomplished as described in detail below through spectroscopic characterization of actinide-bearing substrates and electrochemical investigations of electron transfer reactions between uranium- and plutonium- (or surrogates) bearing solids (dispersed actinide solid phases and actinides sorbed to inorganic and organic colloids) and polarizable electrode materials. In general, the actinide solids or substrate-supported species were chosen to represent relevant residue materials (e.g., incinerator ash, sand/slag/crucible, and combustibles).« less
NASA Technical Reports Server (NTRS)
Nanjundaswamy, K. S.; Standlee, D.; Kelly, C. O.; Whiteley, R. V., Jr.
1997-01-01
A new method of synthesis for the solid solution cathode materials LiNi(x)Co(1-x)O2 (0 less than x less than 1) involving enhanced reactions at temperatures less than or equal to 700 deg. C, between metal oxy-hydroxide precursors MOOH (M = Ni, Co) and Li-salts (Li2CO3, LiOH, and LiNO3) has been investigated. The effects of synthesis conditions and sources of Li, on phase purity, microstructure, and theoretical electrochemical capacity (total M(3+) content) are characterized by powder X-ray diffraction analysis, scanning electron microscopy, chemical analysis and room temperature magnetic susceptibility. An attempt has been made to correlate the electrochemical properties with the synthesis conditions and microstructure.
Rieke, Peter C [Pasco, WA; Coffey, Gregory W [Richland, WA; Pederson, Larry R [Kennewick, WA; Marina, Olga A [Richland, WA; Hardy, John S [Richland, WA; Singh, Prabhaker [Richland, WA; Thomsen, Edwin C [Richland, WA
2010-07-20
The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells. Also provided are electrochemical devices that include active oxygen reduction electrodes, such as solid oxide fuel cells, sensors, pumps and the like. The compositions comprises a copper-substituted ferrite perovskite material. The invention also provides novel methods for making and using the electrode compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having cathodes comprising the compositions.
Chapter 28: Nanomaterials for Energy Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurst, Katherine E; Luther, Joseph M; Ban, Chunmei
2017-01-02
A wide variety of nanomaterials have been applied to energy related applications, including nanofibers, nanocrystalline materials, nanoparticles, and thin film nanocoatings. Solid-state lighting offers significant advantages in energy efficiency compared to traditional lighting technologies. The potential for nanostructured solid-state lighting devices is excellent as it enjoys significant economic drivers in energy efficiency. Fuel cells convert chemical energy to electrical energy through electrochemical reactions at an anode and cathode. The conversion of biomass to fuels and chemicals offers great potential to reduce energy dependence on petroleum and reduce green house gas emissions. Batteries involve the production and storage of electrical charge,more » the transfer of cations and electrical current, each based on electrochemical reactions and chemical reactants. Battery performance relies on the complex processes and factors that affect the transport of charge in the reactants, and across the interface between the chemical phases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clikeman, Tyler T.; Bukovsky, Eric V.; Wang, Xue-Bin
2015-09-22
We developed an efficient solvent- and catalyst-free direct polytrifluoromethylation of solid perylene-3,4,9,10-tetracarboxylic dianhydride that produced a new family of (poly)perfluoroalkyl bay- and ortho-substituted PDIs with two different imide substituents. Direct hydrogen substitution with CN group led to the synthesis of a cyanated perfluoroalkyl PDI derivative for the first time. Absorption, steady-state and time-resolved emission, X-ray diffraction, electrochemical, and gas-phase electron affinity data allowed for systematic studies of substitution effects at bay, ortho, and imide positions in the new PDIs. Solid-state packing showed remarkable variations in the intermolecular interactions that are important for charge transport and photophysical properties. Moreover, analysis ofmore » the electrochemical data for 143 electron poor PDIs, including newly reported compounds, revealed some general trends and peculiar effects from substituting electron-withdrawing groups at all three positions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clikeman, Tyler T.; Bukovsky, Eric V.; Wang, Xue B.
2015-09-22
We developed an efficient solvent- and catalyst-free direct polytrifluoromethylation of solid perylene-3,4,9,10-tetracarboxylic dianhydride that produced a new family of (poly)perfluoroalkyl bay and ortho substituted PDIs with two different imide substituents. Direct hydrogen substitution with CN group led to the synthesis of a cyanated perfluoroalkyl PDI derivative for the first time. Absorption, steady-state and time-resolved emission, X-ray diffraction, electrochemical, and gas-phase electron affinity data allowed for systematic studies of substitution effects at bay, ortho, and imide positions in the new PDIs. Solid-state packing showed remarkable variations in the intermolecular interactions that are important for charge transport and photophysical properties. Analysis ofmore » the electrochemical data for 143 electron poor PDIs, including newly reported compounds, revealed some general trends and peculiar effects of electron withdrawing group substitution at all three positions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Favaro, Marco; Liu, Zhi; Crumlin, Ethan J.
Ambient-pressure X-ray photoelectron spectroscopy (APXPS) has contributed greatly to a wide range of research fields, including environmental science, catalysis, and electrochemistry, to name a few. The use of this technique at synchrotron facilities primarily focused on probing the solid/gas interface; however, it quickly advanced to the probing of liquid/vapor interfaces and solid/liquid interfaces through an X-ray-transparent window. Most recently, combining APXPS with “Tender” X-rays (~2.5 keV to 8 keV) on beamline 9.3.1 at the Advanced Light Source in Lawrence Berkeley National Laboratory (which can generate photoelectrons with much longer inelastic mean free paths) has enabled us to probe the solid/liquidmore » interface without needing a window. This innovation allows us to probe interfacial chemistries of electrochemically controlled solid/liquid interfaces undergoing charge transfer reactions. Lastly, these advancements have transitioned APXPS from a traditional surface science tool to an essential interface science technique.« less
Favaro, Marco; Liu, Zhi; Crumlin, Ethan J.
2017-03-31
Ambient-pressure X-ray photoelectron spectroscopy (APXPS) has contributed greatly to a wide range of research fields, including environmental science, catalysis, and electrochemistry, to name a few. The use of this technique at synchrotron facilities primarily focused on probing the solid/gas interface; however, it quickly advanced to the probing of liquid/vapor interfaces and solid/liquid interfaces through an X-ray-transparent window. Most recently, combining APXPS with “Tender” X-rays (~2.5 keV to 8 keV) on beamline 9.3.1 at the Advanced Light Source in Lawrence Berkeley National Laboratory (which can generate photoelectrons with much longer inelastic mean free paths) has enabled us to probe the solid/liquidmore » interface without needing a window. This innovation allows us to probe interfacial chemistries of electrochemically controlled solid/liquid interfaces undergoing charge transfer reactions. Lastly, these advancements have transitioned APXPS from a traditional surface science tool to an essential interface science technique.« less
Matthies, R; Aplin, A C; Horrocks, B R; Mudashiru, L K
2012-04-01
Cyclic-, Differential Pulse- and Steady-state Microdisc Voltammetry (CV, DPV, SMV) techniques have been used to quantify the occurrence and fate of dissolved Fe(ii)/Fe(iii), nano-particulate and micro-particulate iron over a 12 month period in a series of net-acidic and net-alkaline coal mine drainages and passive treatment systems. Total iron in the mine waters is typically 10-100 mg L(-1), with values up to 2100 mg L(-1). Between 30 and 80% of the total iron occurs as solid phase, of which 20 to 80% is nano-particulate. Nano-particulate iron comprises 20 to 70% of the nominally "dissolved" (i.e. <0.45 μm) iron. Since coagulation and sedimentation are the only processes required to remove solid phase iron, these data have important implications for the generation or consumption of acidity during water treatment. In most waters, the majority of truly dissolved iron occurs as Fe(ii) (average 64 ± 22%). Activities of Fe(ii) do not correlate with pH and geochemical modelling shows that no Fe(ii) mineral is supersaturated. Removal of Fe(ii) must proceed via oxidation and hydrolysis. Except in waters with pH < 4.4, activities of Fe(iii) are strongly and negatively correlated with pH. Geochemical modelling suggests that the activity of Fe(iii) is controlled by the solubility of hydrous ferric oxides and oxyhydroxysulfates, supported by scanning and transmission electron microscopic analysis of solids. Nevertheless, the waters are generally supersaturated with respect to ferrihydrite and schwertmannite, and are not at redox equilibrium, indicating the key role of oxidation and hydrolysis kinetics on water treatment. Typically 70-100% of iron is retained in the treatment systems. Oxidation, hydrolysis, precipitation, coagulation and sedimentation occur in all treatment systems and - independent of water chemistry and the type of treatment system - hydroxides and oxyhydroxysulfates are the main iron sinks. The electrochemical data thus reveal the rationale for incomplete iron retention in individual systems and can thus inform future design criteria. The successful application of this low cost and rapid electrochemical method demonstrates its significant potential for real-time, on-site monitoring of iron-enriched waters and may in future substitute traditional analytical methods.
Oxygen sensor for monitoring gas mixtures containing hydrocarbons
Ruka, Roswell J.; Basel, Richard A.
1996-01-01
A gas sensor measures O.sub.2 content of a reformable monitored gas containing hydrocarbons H.sub.2 O and/or CO.sub.2, preferably in association with an electrochemical power generation system. The gas sensor has a housing communicating with the monitored gas environment and carries the monitored gas through an integral catalytic hydrocarbon reforming chamber containing a reforming catalyst, and over a solid electrolyte electrochemical cell used for sensing purposes. The electrochemical cell includes a solid electrolyte between a sensor electrode that is exposed to the monitored gas, and a reference electrode that is isolated in the housing from the monitored gas and is exposed to a reference gas environment. A heating element is also provided in heat transfer communication with the gas sensor. A circuit that can include controls operable to adjust operations via valves or the like is connected between the sensor electrode and the reference electrode to process the electrical signal developed by the electrochemical cell. The electrical signal varies as a measure of the equilibrium oxygen partial pressure of the monitored gas. Signal noise is effectively reduced by maintaining a constant temperature in the area of the electrochemical cell and providing a monitored gas at chemical equilibria when contacting the electrochemical cell. The output gas from the electrochemical cell of the sensor is fed back into the conduits of the power generating system.
Oxygen sensor for monitoring gas mixtures containing hydrocarbons
Ruka, R.J.; Basel, R.A.
1996-03-12
A gas sensor measures O{sub 2} content of a reformable monitored gas containing hydrocarbons, H{sub 2}O and/or CO{sub 2}, preferably in association with an electrochemical power generation system. The gas sensor has a housing communicating with the monitored gas environment and carries the monitored gas through an integral catalytic hydrocarbon reforming chamber containing a reforming catalyst, and over a solid electrolyte electrochemical cell used for sensing purposes. The electrochemical cell includes a solid electrolyte between a sensor electrode that is exposed to the monitored gas, and a reference electrode that is isolated in the housing from the monitored gas and is exposed to a reference gas environment. A heating element is also provided in heat transfer communication with the gas sensor. A circuit that can include controls operable to adjust operations via valves or the like is connected between the sensor electrode and the reference electrode to process the electrical signal developed by the electrochemical cell. The electrical signal varies as a measure of the equilibrium oxygen partial pressure of the monitored gas. Signal noise is effectively reduced by maintaining a constant temperature in the area of the electrochemical cell and providing a monitored gas at chemical equilibria when contacting the electrochemical cell. The output gas from the electrochemical cell of the sensor is fed back into the conduits of the power generating system. 4 figs.
Zhu, Yizhou; He, Xingfeng; Mo, Yifei
2015-10-06
First-principles calculations were performed to investigate the electrochemical stability of lithium solid electrolyte materials in all-solid-state Li-ion batteries. The common solid electrolytes were found to have a limited electrochemical window. Our results suggest that the outstanding stability of the solid electrolyte materials is not thermodynamically intrinsic but is originated from kinetic stabilizations. The sluggish kinetics of the decomposition reactions cause a high overpotential leading to a nominally wide electrochemical window observed in many experiments. The decomposition products, similar to the solid-electrolyte-interphases, mitigate the extreme chemical potential from the electrodes and protect the solid electrolyte from further decompositions. With the aidmore » of the first-principles calculations, we revealed the passivation mechanism of these decomposition interphases and quantified the extensions of the electrochemical window from the interphases. We also found that the artificial coating layers applied at the solid electrolyte and electrode interfaces have a similar effect of passivating the solid electrolyte. Our newly gained understanding provided general principles for developing solid electrolyte materials with enhanced stability and for engineering interfaces in all-solid-state Li-ion batteries.« less
In Situ Probing and Synthetic Control of Cationic Ordering in Ni-Rich Layered Oxide Cathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Jianqing; Zhang, Wei; Huq, Ashfia
Ni-rich layered oxides (LiNi 1-xM xO 2; M=Co, Mn, …) are appealing alternatives to conventional LiCoO 2 as cathodes in Li-ion batteries for automobile and other large-scale applications due to their high theoretical capacity and low cost. However, preparing stoichiometric LiNi 1-xM xO 2 with ordered layer structure and high reversible capacity, has proven difficult due to Ni 2+/Li + cation mixing in octahedral sites. Herein, we report on in-situ studies of synthesis reactions and the associated structural ordering in preparing LiNiO 2 and the Co-substituted variant, LiNi 0.8Co 0.2O 2, thereby gaining insights into synthetic control of the structuremore » and electrochemical properties of Ni-rich layered oxides. Results from this study indicate a direct transformation of the intermediate from the rock salt structure into hexagonal phase, and during the process, Co substitution facilities the nucleation of a Co-rich layered phase at low temperatures and subsequent growth and stabilization of solid solution Li(Ni, Co)O 2 upon heat treatment in a highly oxidation environment. Optimal conditions were identified from the in-situ studies and utilized in obtaining stoichiometric LiNi 0.8Co 0.2O 2 that exhibits high capacity of about 200 mAh/g with excellent retention. The findings shed light on designing Ni-rich layered oxide cathodes with enhanced electrochemical properties through synthetic control of the structural ordering in the materials.« less
NASA Astrophysics Data System (ADS)
Li, Tao; Wu, Zhentao; Li, K.
2015-01-01
In this study, the effects of an anode functional layer (AFL) with controlled thickness on physical and electrochemical properties of a micro-tubular SOFC have been systematically studied. A series of electrolyte/AFL/anode triple-layer hollow fibres with controllable AFL thicknesses (16.9-52.7 μm) have been fabricated via a single-step phase-inversion assisted co-extrusion technique. Both robustness of the cell and gas-tightness of the electrolyte layer are considerably improved by introducing the AFL of this type. The fracture force of the sample with the thickest AFL (9.67 N) almost doubles when compared to the electrolyte/anode dual-layer counterpart (5.24 N). Gas-tightness of the electrolyte layer is also considerably increased as AFL contributes to better-matched sintering behaviours between different components. Moreover, the formation of an AFL simultaneously with electrolyte and anode significantly improves the cell performances. The sample with the thinnest AFL (approximately 16.9 μm, 6% of the total anode thickness) leads to a 30% (from 0.89 to 1.21 W cm-2) increase in maximum power density, due to increased triple-phase boundaries (TPB). However, further increase in TPB from a thicker AFL is less effective for improving the cell performance, due to the substantially increased fuel diffusion resistance and subsequently higher concentration polarization. This indicates that the control over the AFL thickness is critically important in avoiding offsetting the benefits of extended TPB and consequently decreased cell performances.
In Situ Probing and Synthetic Control of Cationic Ordering in Ni-Rich Layered Oxide Cathodes
Zhao, Jianqing; Zhang, Wei; Huq, Ashfia; ...
2016-10-17
Ni-rich layered oxides (LiNi 1-xM xO 2; M=Co, Mn, …) are appealing alternatives to conventional LiCoO 2 as cathodes in Li-ion batteries for automobile and other large-scale applications due to their high theoretical capacity and low cost. However, preparing stoichiometric LiNi 1-xM xO 2 with ordered layer structure and high reversible capacity, has proven difficult due to Ni 2+/Li + cation mixing in octahedral sites. Herein, we report on in-situ studies of synthesis reactions and the associated structural ordering in preparing LiNiO 2 and the Co-substituted variant, LiNi 0.8Co 0.2O 2, thereby gaining insights into synthetic control of the structuremore » and electrochemical properties of Ni-rich layered oxides. Results from this study indicate a direct transformation of the intermediate from the rock salt structure into hexagonal phase, and during the process, Co substitution facilities the nucleation of a Co-rich layered phase at low temperatures and subsequent growth and stabilization of solid solution Li(Ni, Co)O 2 upon heat treatment in a highly oxidation environment. Optimal conditions were identified from the in-situ studies and utilized in obtaining stoichiometric LiNi 0.8Co 0.2O 2 that exhibits high capacity of about 200 mAh/g with excellent retention. The findings shed light on designing Ni-rich layered oxide cathodes with enhanced electrochemical properties through synthetic control of the structural ordering in the materials.« less
Axnanda, Stephanus; Crumlin, Ethan J.; Mao, Baohua; ...
2015-05-07
We report a new method to probe the solid-liquid interface through the use of a thin liquid layer on a solid surface. An ambient pressure XPS (AP-XPS) endstation that is capable of detecting high kinetic energy photoelectrons (7 keV) at a pressure up to 110 Torr has been constructed and commissioned. Additionally, we have deployed a “dip & pull” method to create a stable nanometers-thick aqueous electrolyte on platinum working electrode surface. Combining the newly constructed AP-XPS system, “dip & pull” approach, with a “tender” X-ray synchrotron source (2 keV–7 keV), we are able to access the interface between liquidmore » and solid dense phases with photoelectrons and directly probe important phenomena occurring at the narrow solid-liquid interface region in an electrochemical system. Using this approach, we have performed electrochemical oxidation of the Pt electrode at an oxygen evolution reaction (OER) potential. Under this potential, we observe the formation of both Pt²⁺ and Pt⁴⁺ interfacial species on the Pt working electrode in situ. We believe this thin-film approach and the use of “tender” AP-XPS highlighted in this study is an innovative new approach to probe this key solid-liquid interface region of electrochemistry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Axnanda, Stephanus; Crumlin, Ethan J.; Mao, Baohua
We report a new method to probe the solid-liquid interface through the use of a thin liquid layer on a solid surface. An ambient pressure XPS (AP-XPS) endstation that is capable of detecting high kinetic energy photoelectrons (7 keV) at a pressure up to 110 Torr has been constructed and commissioned. Additionally, we have deployed a “dip & pull” method to create a stable nanometers-thick aqueous electrolyte on platinum working electrode surface. Combining the newly constructed AP-XPS system, “dip & pull” approach, with a “tender” X-ray synchrotron source (2 keV–7 keV), we are able to access the interface between liquidmore » and solid dense phases with photoelectrons and directly probe important phenomena occurring at the narrow solid-liquid interface region in an electrochemical system. Using this approach, we have performed electrochemical oxidation of the Pt electrode at an oxygen evolution reaction (OER) potential. Under this potential, we observe the formation of both Pt²⁺ and Pt⁴⁺ interfacial species on the Pt working electrode in situ. We believe this thin-film approach and the use of “tender” AP-XPS highlighted in this study is an innovative new approach to probe this key solid-liquid interface region of electrochemistry.« less
Zhang, Chengjiang; Zhang, Zhuomin; Li, Gongke
2014-06-13
In this study, a novel sulfonated graphene/polypyrrole (SG/PPy) solid-phase microextraction (SPME) coating was prepared and fabricated on a stainless-steel wire by a one-step in situ electrochemical polymerization method. Crucial preparation conditions were optimized as polymerization time of 15min and SG doping amount of 1.5mg/mL. SG/PPy coating showed excellent thermal stability and mechanical durability with a long lifespan of more than 200 stable replicate extractions. SG/PPy coating demonstrated higher extraction selectivity and capacity to volatile terpenes than commonly-used commercial coatings. Finally, SG/PPy coating was practically applied for the analysis of volatile components from star anise and fennel samples. The majority of volatile components identified were terpenes, which suggested the ultra-high extraction selectivity of SG/PPy coating to terpenes during real analytical projects. Four typical volatile terpenes were further quantified to be 0.2-27.4μg/g from star anise samples with good recoveries of 76.4-97.8% and 0.1-1.6μg/g from fennel samples with good recoveries of 80.0-93.1%, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.
Apparatus and method for constant flow oxidizing of organic materials
Surma, Jeffrey E.; Nelson, Norvell; Steward, G. Anthony; Bryan, Garry H.
1999-01-01
The invention is a method and apparatus using high cerium concentration in the anolyte of an electrochemical cell to oxidize organic materials. The method and apparatus further use an ultrasonic mixer to enhance the oxidation rate of the organic material in the electrochemical cell. A reaction vessel provides an advantage of independent reaction temperature control and electrochemical cell temperature control. A separate or independent reaction vessel may be used without an ultrasonic mixer to oxidize gaseous phase organic materials.
NASA Astrophysics Data System (ADS)
Kupecki, Jakub; Motyliński, Konrad; Skrzypkiewicz, Marek; Wierzbicki, Michał; Naumovich, Yevgeniy
2017-12-01
The article discusses the operation of solid oxide electrochemical cells (SOC) developed in the Institute of Power Engineering as prospective key components of power-to-gas systems. The fundamentals of the solid oxide cells operated as fuel cells (SOFC - solid oxide fuel cells) and electrolysers (SOEC - solid oxide fuel cells) are given. The experimental technique used for electrochemical characterization of cells is presented. The results obtained for planar cell with anodic support are given and discussed. Based on the results, the applicability of the cells in power-to-gas systems (P2G) is evaluated.
Wei, Yan; Mo, Xiaoju; Zhang, Pengchao; Li, Yingying; Liao, Jingwen; Li, Yongjun; Zhang, Jinxing; Ning, Chengyun; Wang, Shutao; Deng, Xuliang; Jiang, Lei
2017-06-27
Control of stem cell behaviors at solid biointerfaces is critical for stem-cell-based regeneration and generally achieved by engineering chemical composition, topography, and stiffness. However, the influence of dynamic stimuli at the nanoscale from solid biointerfaces on stem cell fate remains unclear. Herein, we show that electrochemical switching of a polypyrrole (Ppy) array between nanotubes and nanotips can alter surface adhesion, which can strongly influence mechanotransduction activation and guide differentiation of mesenchymal stem cells (MSCs). The Ppy array, prepared via template-free electrochemical polymerization, can be reversibly switched between highly adhesive hydrophobic nanotubes and poorly adhesive hydrophilic nanotips through an electrochemical oxidation/reduction process, resulting in dynamic attachment and detachment to MSCs at the nanoscale. Multicyclic attachment/detachment of the Ppy array to MSCs can activate intracellular mechanotransduction and osteogenic differentiation independent of surface stiffness and chemical induction. This smart surface, permitting transduction of nanoscaled dynamic physical inputs into biological outputs, provides an alternative to classical cell culture substrates for regulating stem cell fate commitment. This study represents a general strategy to explore nanoscaled interactions between stem cells and stimuli-responsive surfaces.
NASA Astrophysics Data System (ADS)
Shi, Yunzhu; Collins, Liam; Balke, Nina; Liaw, Peter K.; Yang, Bin
2018-05-01
In-situ electrochemical (EC)-AFM is employed to investigate the localized corrosion of the AlxCoCrFeNi high-entropy alloys (HEAs). Surface topography changes on the micro/sub-micro scale are monitored at different applied anodizing potentials in a 3.5 wt% NaCl solution. The microstructural evolutions with the increased Al content in the alloys are characterized by SEM, TEM, EDS and EBSD. The results show that by increasing the Al content, the microstructure changes from single solid-solution to multi-phases, leading to the segregations of elements. Due to the microstructural variations in the AlxCoCrFeNi HEAs, localized corrosion processes in different ways after the breakdown of the passive film, which changes from pitting to phase boundary corrosion. The XPS results indicate that an increased Al content in the alloys/phases corresponds to a decreased corrosion resistance of the surface passive film.
Iron and Manganese Pyrophosphates as Cathodes for Lithium-Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Hui; Upreti, Shailesh; Chernova, Natasha A.
2015-10-15
The mixed-metal phases, (Li{sub 2}Mn{sub 1-y}Fe{sub y}P{sub 2}O{sub 7}, 0 {le} y {le} 1), were synthesized using a 'wet method', and found to form a solid solution in the P2{sub 1}/a space group. Both thermogravimetric analysis and magnetic susceptibility measurements confirm the 2+ oxidation state for both the Mn and Fe. The electrochemical capacity improves as the Fe concentration increases, as do the intensities of the redox peaks of the cyclic voltammogram, indicating higher lithium-ion diffusivity in the iron phase. The two Li{sup +} ions in the three-dimensional tunnel structure of the pyrophosphate phase allows for the cycling of moremore » than one lithium per redox center. Cyclic voltammograms show a second oxidation peak at 5 V and 5.3 V, indicative of the extraction of the second lithium ion, in agreement with ab initio computation predictions. Thus, electrochemical capacities exceeding 200 Ah/kg may be achieved if a stable electrolyte is found.« less
Convective flows in enclosures with vertical temperature or concentration gradients
NASA Technical Reports Server (NTRS)
Wang, L. W.; Chai, A. T.; Sun, D. J.
1988-01-01
The transport process in the fluid phase during the growth of a crystal has a profound influence on the structure and quality of the solid phase. In vertical growth techniques the fluid phase is often subjected to vertical temperature and concentration gradients. The main objective is to obtain more experimental data on convective flows in enclosures with vertical temperature or concentration gradients. Among actual crystal systems the parameters vary widely. The parametric ranges studied for mass transfer are mainly dictated by the electrochemical system employed to impose concentration gradients. Temperature or concentration difference are maintained between two horizontal end walls. The other walls are kept insulated. Experimental measurements and observations were made of the heat transfer or mass transfer, flow patterns, and the mean and fluctuating temperature distribution. The method used to visualize the flow pattern in the thermal cases is an electrochemical pH-indicator method. Laser shadowgraphs are employed to visualize flow patterns in the solutal cases.
Convective flows in enclosures with vertical temperature or concentration gradients
NASA Technical Reports Server (NTRS)
Wang, L. W.; Chai, A. T.; Sun, D. J.
1989-01-01
The transport process in the fluid phase during the growth of a crystal has a profound influence on the structure and quality of the solid phase. In vertical growth techniques the fluid phase is often subjected to vertical temperature and concentration gradients. The main objective is to obtain more experimental data on convective flows in enclosures with vertical temperature or concentration gradients. Among actual crystal systems the parameters vary widely. The parametric ranges studied for mass transfer are mainly dictated by the electrochemical system employed to impose concentration gradients. Temperature or concentration difference are maintained between two horizontal end walls. The other walls are kept insulated. Experimental measurements and observations were made of the heat transfer or mass transfer, flow patterns, and the mean and fluctuating temperature distribution. The method used to visualize the flow pattern in the thermal cases is an electrochemical pH-indicator method. Laser shadowgraphs are employed to visualize flow patterns in the solutal cases.
Mapping Ionic Currents and Reactivity on the Nanoscale: Electrochemical Strain Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalinin, S.V.
2010-10-19
Solid-state electrochemical processes in oxides underpin a broad spectrum of energy and information storage devices, ranging from Li-ion and Li-air batteries, to solid oxide fuel cells (SOFC) to electroresistive and memristive systems. These functionalities are controlled by the bias-driven diffusive and electromigration transport of mobile ionic species, as well as intricate a set of electrochemical and defect-controlled reactions at interfaces and in bulk. Despite the wealth of device-level and atomistic studies, little is known on the mesoscopic mechanisms of ion diffusion and electronic transport on the level of grain clusters, individual grains, and extended defects. The development of the capabilitymore » for probing ion transport on the nanometer scale is a key to deciphering complex interplay between structure, functionality, and performance in these systems. Here we introduce Electrochemical Strain Microscopy, a scanning probe microscopy technique based on strong strain-bias coupling in the systems in which local ion concentrations are changed by electrical fields. The imaging capability, as well as time- and voltage spectroscopies analogous to traditional current based electrochemical characterization methods are developed. The reversible intercalation of Li and mapping electrochemical activity in LiCoO2 is demonstrated, illustrating higher Li diffusivity at non-basal planes and grain boundaries. In Si-anode device structure, the direct mapping of Li diffusion at extended defects and evolution of Li-activity with charge state is explored. The electrical field-dependence of Li mobility is studied to determine the critical bias required for the onset of electrochemical transformation, allowing reaction and diffusion processes in the battery system to be separated at each location. Finally, the applicability of ESM for probing oxygen vacancy diffusion and oxygen reduction/evolution reactions is illustrated, and the high resolution ESM maps are correlated with aberration corrected scanning transmission electron microscopy imaging. The future potential for deciphering mechanisms of electrochemical transformations on an atomically-defined single-defect level is discussed.« less
NASA Astrophysics Data System (ADS)
Berger, T.; Ziegler, H.; Krausa, Michael
2000-08-01
A huge number of chemical sensors are based on electrochemical measurement methods. Particularly amperometric sensorsystems are employed for the fast detection of pollutants in industry and environment as well as for analytic systems in the medical diagnosis. The large number of different applications of electrochemical sensors is based on the high sensitivity of electrochemical methods and on the wide of possibilities to enhance the selectivity by variation of electrochemical and chemical parameters. Besides this, electrochemical sensorsystems are frequently simple to operate, transportable and cheap. Up to now the electrochemical method of cyclic voltammetry is used only seldom for sensors. Clearly the efficiency of cyclic voltammetry can be seen at the sensorsystem for the detection of nitro- and aminotoluenes in solids and waters as presented here. The potentiodynamic sensors system can be employed for the fast and easy risk estimation of contaminated areas. Because of the high sensitivity of electrochemical methods the detection of chemical substances with a low vapor pressure is possible also. The vapor pressure of TNT at room temperature is 7 ppb for instances. With a special electrochemical set-up we were able to measure TNT approximately 10 cm above a TNT-sample. In addition we were able to estimate TNT in the gaseous phase approximately 10 cm above a real plastic mine. Therefore it seems to be possible to develop an electrochemical mien detection. Moreover, we present that the electrochemical detection of RDX, HMX and chemical warfare agents is also possible.
Masoum, Saeed; Gholami, Ali; Ghaheri, Salehe; Bouveresse, Delphine Jouan-Rimbaud; Cordella, Christophe B Y; Rutledge, Douglas N
2016-07-01
A new composite coating of polypyrrole and sodium lauryl ether sulfate was electrochemically prepared on a stainless-steel wire using cyclic voltammetry. The application and performance of the fiber was evaluated for the headspace solid-phase microextraction of a fragrance in aqueous bleach samples followed by gas chromatography combined with mass spectrometry to assess the fragrance stability in this kind of household cleaning product. To obtain a stable and efficient composite coating, parameters related to the coating process such as scan rate and numbers of cycles were optimized using a central composite design. In addition, the effects of various parameters on the extraction efficiency of the headspace solid-phase microextraction process such as extraction temperature and time, ionic strength, sample volume, and stirring rate were investigated by experimental design methods using Plackett-Burman and Doehlert designs. The optimum values of 53°C and 28 min for sample temperature and time, respectively, were found through response surface methodology. Results show that the combination of polypyrrole and sodium lauryl ether sulfate in a composite form presents desirable opportunities to produce new materials to study fragrance stability by headspace solid-phase microextraction. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murgia, Fabrizio; Antitomaso, Philippe; Stievano, Lorenzo
The ternary Chevrel phase Cu{sub 2}Mo{sub 6}S{sub 8} was successfully synthetized using a simple and cost-effective solid-state microwave-assisted reaction. While solid-state routes require days of high-temperature treatment under inert atmosphere, highly pure and crystalline Cu{sub 2}Mo{sub 6}S{sub 8} could be obtained in only 400 s from this precursor, the Chevrel binary phase Mo{sub 6}S{sub 8} was then obtained by copper removal through acidic leaching, and was evaluated as a positive electrode material for Mg-battery. The electrochemical performance in half-cell configuration shows reversible capacity exceeding 80 mAh/g, which is comparable to previous works carried out with materials synthesized by conventional high-temperaturemore » solid-state routes. - Graphical abstract: Ultrafast micro-wave synthesis of Chevrel phase Cu{sub 2}Mo{sub 6}S{sub 8} towards Mo{sub 6}S{sub 8} as positive electrode of Mg-battery. - Highlights: • Chevrel phase Cu{sub 2}Mo{sub 6}S{sub 8} is synthesized by fast microwave-assisted solid-state reaction. • Highly-pure and well-crystalline Cu{sub 2}Mo{sub 6}S{sub 8} is obtained. • Mo{sub 6}S{sub 8} obtained from leaching is tested as a positive electrode for Mg batteries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Dan; Liu, Juan; Zhang, Xiao-Yan
2011-04-27
This paper described the preparation, characterization, and electrochemical properties of a graphene-ZrO 2 nanocomposite (GZN) and its application for both the enrichment and detection of methyl parathion (MP). GZN was fabricated using electrochemical deposition and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), which showed the successful formation of nanocomposites. Due to the strong affinity to the phosphoric group and the fast electron-transfer kinetics of GZN, both the extraction and electrochemical detection of organophosphorus (OP) agents at the same GZN modified electrochemical sensor was possible. The combination of solid-phase extractionmore » and stripping voltammetric analysis allowed fast, sensitive, and selective determination of MP in garlic samples. The stripping response was highly linear over the MP concentrations ranging from 0.5 ng mL -1 to 100 ng mL -1, with a detection limit of 0.1 ng mL -1. This new nanocomposite-based electrochemical sensor provides an opportunity to develop a field-deployable, sensitive, and quantitative method for monitoring exposure to OPs.« less
Free Energies of Formation Measurements on Solid-State Electrochemical Cells
ERIC Educational Resources Information Center
Rollino, J. A.; Aronson, S.
1972-01-01
A simple experiment is proposed that can provide the student with some insight into the chemical properties of solids. It also demonstrates the relationship between the Gibbs free energy of formation of an ionic solid and the emf of an electrochemical cell. (DF)
Control of Co content and SOFC cathode performance in Y1-ySr2+yCu3-xCoxO7+δ
NASA Astrophysics Data System (ADS)
Šimo, F.; Payne, J. L.; Demont, A.; Sayers, R.; Li, Ming; Collins, C. M.; Pitcher, M. J.; Claridge, J. B.; Rosseinsky, M. J.
2014-11-01
The electrochemical performance of the layered perovskite YSr2Cu3-xCoxO7+δ, a potential solid oxide fuel cell (SOFC) cathode, is improved by increasing the Co content from x = 1.00 to a maximum of x = 1.30. Single phase samples with x > 1.00 are obtained by tuning the Y/Sr ratio, yielding the composition Y1-ySr2+yCu3-xCoxO7+δ (where y ≤ 0.05). The high temperature structure of Y0.95Sr2.05Cu1.7Co1.3O7+δ at 740 °C is characterised by powder neutron diffraction and the potential of this Co-enriched material as a SOFC cathode is investigated by combining AC impedance spectroscopy, four-probe DC conductivity and powder XRD measurements to determine its electrochemical properties along with its thermal stability and compatibility with a range of commercially available electrolytes. The material is shown to be compatible with doped ceria electrolytes at 900 °C.
NASA Astrophysics Data System (ADS)
Sun, Chencheng; Ma, Mingze; Yang, Jun; Zhang, Yufei; Chen, Peng; Huang, Wei; Dong, Xiaochen
2014-11-01
A facile and phase-controlled synthesis of α-NiS nanoparticles (NPs) embedded in carbon nanorods (CRs) is reported by in-situ sulfurating the preformed Ni/CRs. The nanopore confinement by the carbon matrix is essential for the formation of α-NiS and preventing its transition to β-phase, which is in strong contrast to large aggregated β-NiS particles grown freely without the confinement of CRs. When used as electrochemical electrode, the hybrid electrochemical charge storage of the ultrasmall α-NiS nanoparticels dispersed in CRs is benefit for the high capacitor (1092, 946, 835, 740 F g-1 at current densities of 1, 2, 5, 10 A g-1, respectively.). While the high electrochemical stability (approximately 100% retention of specific capacitance after 2000 charge/discharge cycles) is attributed to the supercapacitor-battery electrode, which makes synergistic effect of capacitor (CRs) and battery (NiS NPs) components rather than a merely additive composite. This work not only suggests a general approach for phase-controlled synthesis of nickel sulfide but also opens the door to the rational design and fabrication of novel nickel-based/carbon hybrid supercapacitor-battery electrode materials.
Sun, Chencheng; Ma, Mingze; Yang, Jun; Zhang, Yufei; Chen, Peng; Huang, Wei; Dong, Xiaochen
2014-11-14
A facile and phase-controlled synthesis of α-NiS nanoparticles (NPs) embedded in carbon nanorods (CRs) is reported by in-situ sulfurating the preformed Ni/CRs. The nanopore confinement by the carbon matrix is essential for the formation of α-NiS and preventing its transition to β-phase, which is in strong contrast to large aggregated β-NiS particles grown freely without the confinement of CRs. When used as electrochemical electrode, the hybrid electrochemical charge storage of the ultrasmall α-NiS nanoparticels dispersed in CRs is benefit for the high capacitor (1092, 946, 835, 740 F g(-1) at current densities of 1, 2, 5, 10 A g(-1), respectively.). While the high electrochemical stability (approximately 100% retention of specific capacitance after 2000 charge/discharge cycles) is attributed to the supercapacitor-battery electrode, which makes synergistic effect of capacitor (CRs) and battery (NiS NPs) components rather than a merely additive composite. This work not only suggests a general approach for phase-controlled synthesis of nickel sulfide but also opens the door to the rational design and fabrication of novel nickel-based/carbon hybrid supercapacitor-battery electrode materials.
Sun, Chencheng; Ma, Mingze; Yang, Jun; Zhang, Yufei; Chen, Peng; Huang, Wei; Dong, Xiaochen
2014-01-01
A facile and phase-controlled synthesis of α-NiS nanoparticles (NPs) embedded in carbon nanorods (CRs) is reported by in-situ sulfurating the preformed Ni/CRs. The nanopore confinement by the carbon matrix is essential for the formation of α-NiS and preventing its transition to β-phase, which is in strong contrast to large aggregated β-NiS particles grown freely without the confinement of CRs. When used as electrochemical electrode, the hybrid electrochemical charge storage of the ultrasmall α-NiS nanoparticels dispersed in CRs is benefit for the high capacitor (1092, 946, 835, 740 F g−1 at current densities of 1, 2, 5, 10 A g−1, respectively.). While the high electrochemical stability (approximately 100% retention of specific capacitance after 2000 charge/discharge cycles) is attributed to the supercapacitor-battery electrode, which makes synergistic effect of capacitor (CRs) and battery (NiS NPs) components rather than a merely additive composite. This work not only suggests a general approach for phase-controlled synthesis of nickel sulfide but also opens the door to the rational design and fabrication of novel nickel-based/carbon hybrid supercapacitor-battery electrode materials. PMID:25394517
Brady, Nicholas W.; Zhang, Qing; Knehr, K. W.; ...
2016-10-26
The electrochemical behavior of lithium trivanadate (LiV 3O 8) during lithiation, delithiation, and voltage recovery experiments is simulated using a crystal-scale model that accounts for solid-state diffusion, charge-transfer kinetics, and phase transformations. The kinetic expression for phase change was modeled using an approach inspired by the Avrami formulation for nucleation and growth. Numerical results indicate that the solid-state diffusion coefficient of lithium in LiV 3O 8 is ~ 10 -13 cm 2 s -1 and the equilibrium compositions in the two phase region (~2.5 V) are Li 2.5V 3O 8:Li 4V 3O 8. Agreement between the simulated and experimental resultsmore » is excellent. Relative to the lithiation curves, the experimental delithiation curves show significantly less overpotential and at low levels of lithiation (end of charge). Simulations are only able to capture this result by assuming that the solid-state mass-transfer resistance is less during delithiation. The proposed rationale for this difference is that the (100) face is inactive during lithiation, but active during delithiation. Finally, by assuming non-instantaneous phase-change kinetics, estimates are made for the overpotential due to imperfect phase change (supersaturation).« less
High strength porous support tubes for high temperature solid electrolyte electrochemical cells
Rossing, Barry R.; Zymboly, Gregory E.
1986-01-01
A high temperature, solid electrolyte electrochemical cell is made, having an electrode and a solid electrolyte disposed on a porous, sintered support material containing thermally stabilized zirconia powder particles and from about 3 wt. % to about 45 wt. % of thermally stable oxide fibers.
Application of gas diffusion electrodes in bioelectrochemical syntheses and energy conversion.
Horst, Angelika E W; Mangold, Klaus-Michael; Holtmann, Dirk
2016-02-01
Combining the advantages of biological components (e.g., reaction specificity, self-replication) and electrochemical techniques in bioelectrochemical systems offers the opportunity to develop novel efficient and sustainable processes for the production of a number of valuable products. The choice of electrode material has a great impact on the performance of bioelectrochemical systems. In addition to the redox process at the electrodes, interactions of biocatalysts with electrodes (e.g., enzyme denaturation or biofouling) need to be considered. In recent years, gas diffusion electrodes (GDEs) have proved to be very attractive electrodes for bioelectrochemical purposes. GDEs are porous electrodes, that posses a large three-phase boundary surface. At this interface, a solid catalyst supports the electrochemical reaction between gaseous and liquid phase. This mini-review discusses the application of GDEs in microbial and enzymatic fuel cells, for microbial electrolysis, in biosensors and for electroenzymatic synthesis reactions. © 2015 Wiley Periodicals, Inc.
Three-dimensional localization of nanoscale battery reactions using soft X-ray tomography.
Yu, Young-Sang; Farmand, Maryam; Kim, Chunjoong; Liu, Yijin; Grey, Clare P; Strobridge, Fiona C; Tyliszczak, Tolek; Celestre, Rich; Denes, Peter; Joseph, John; Krishnan, Harinarayan; Maia, Filipe R N C; Kilcoyne, A L David; Marchesini, Stefano; Leite, Talita Perciano Costa; Warwick, Tony; Padmore, Howard; Cabana, Jordi; Shapiro, David A
2018-03-02
Battery function is determined by the efficiency and reversibility of the electrochemical phase transformations at solid electrodes. The microscopic tools available to study the chemical states of matter with the required spatial resolution and chemical specificity are intrinsically limited when studying complex architectures by their reliance on two-dimensional projections of thick material. Here, we report the development of soft X-ray ptychographic tomography, which resolves chemical states in three dimensions at 11 nm spatial resolution. We study an ensemble of nano-plates of lithium iron phosphate extracted from a battery electrode at 50% state of charge. Using a set of nanoscale tomograms, we quantify the electrochemical state and resolve phase boundaries throughout the volume of individual nanoparticles. These observations reveal multiple reaction points, intra-particle heterogeneity, and size effects that highlight the importance of multi-dimensional analytical tools in providing novel insight to the design of the next generation of high-performance devices.
Solid state electrochemical current source
Potanin, Alexander Arkadyevich; Vedeneev, Nikolai Ivanovich
2002-04-30
A cathode and a solid state electrochemical cell comprising said cathode, a solid anode and solid fluoride ion conducting electrolyte. The cathode comprises a metal oxide and a compound fluoride containing at least two metals with different valences. Representative compound fluorides include solid solutions of bismuth fluoride and potassium fluoride; and lead fluoride and potassium fluoride. Representative metal oxides include copper oxide, lead oxide, manganese oxide, vanadium oxide and silver oxide.
Ionic Salt Effect on the Phase Transition of PS-b-P2VP Copolymers
NASA Astrophysics Data System (ADS)
Kim, Bokyung; An, Hyungju; Ryu, Du Yeol; Kim, Jehan
2009-03-01
Solid-state electrolytes have long been considered as suitable candidates owing to the simple and easy processes for rechargeable battery manufactures, compared to conventional liquid electrolyte counterparts. Especially, polymer/salt systems involving PMMA and PVP complex forms have been studied since they provide stable electrochemical characteristics as well as mechanical properties. We studied the phase behavior of PS-b-P2VP upon the salt addition by small angle x-ray scattering (SAXS) and depolarized light scattering. Transition temperatures of block copolymer were significantly influenced by the salt addition in addition to the changes of d-spacings, which is caused by the effective coordinative interaction between P2VP block and salt. This study suggests a simple approach to solid-state block copolymer electrolytes.
Understanding Performance Limitations to Enable High Performance Magnesium-Ion Batteries
Kim, Sun Ung; Perdue, Brian; Apblett, Christopher A.; ...
2016-05-18
We developed a mathematical model in order to investigate the performance limiting factors of Mg-ion battery with a Chevrel phase (Mg xMo 6S 8) cathode and a Mg metal anode. Furthermore, the model was validated using experimental data from the literature [Cheng et al., Chem. Mater., 26, 4904 (2014)]. Two electrochemical reactions of the Chevrel phase with significantly different kinetics and solid diffusion were included in the porous electrode model, which captured the physics sufficiently well to generate charge curves of five rates (0.1C–2C) for two different particle sizes. Limitation analysis indicated that the solid diffusion and kinetics in themore » higher-voltage plateau limit the capacity and increase the overpotential in the Cheng et al.’s thin (20-μm) electrodes. The model reveals that the performance of the cells with reasonable thickness would also be subject to electrolyte-phase limitations. Finally, the simulation also suggested that the polarization losses on discharge will be lower than that on charge, because of the differences in the kinetics and solid diffusion between the two reactions of the Chevrel phase.« less
NASA Astrophysics Data System (ADS)
Sorokin, N. I.; Sobolev, B. P.; Krivandina, E. A.; Zhmurova, Z. I.
2015-01-01
Single crystals of fluorine-conducting solid electrolytes R 1 - y Sr y F3 - y and R 1 - y Ba y F3 - y ( R = La-Lu, Y) with a tysonite-type structure (LaF3) have been optimized for room-temperature conductivity σ293 K. The optimization is based on high-temperature measurements of σ( T) in two-component nonstoichiometric phases R 1 - y M y F3 - y ( M = Sr, Ba) as a function of the MF2 content. Optimization for thermal stability is based on studying the phase diagrams of MF2- RF3 systems ( M = Sr, Ba) and the behavior of nonstoichiometric crystals upon heating when measuring temperature dependences σ( T). Single crystals of many studied R 1 - y Sr y F3 - y and R 1 - y Ba y F3 - y phases have σ293 K values large enough to use these materials in solid-state electrochemical devices (chemical sensors, fluorine-ion batteries, accumulators, etc.) operating at room temperature.
NASA Astrophysics Data System (ADS)
Xu, Chunchuan; Zondlo, John W.; Gong, Mingyang; Liu, XingBo
The Ni-YSZ anode-supported solid oxide fuel cell (SOFC) can generate electrical power by using coal-derived syngas as the fuel. However, trace contamination of phosphine (PH 3) in the syngas can cause irreversible degradation in cell performance. A series of tests at 10 ppm PH 3 in the fuel gas was carried out under a variety of operating conditions, viz, with/without electrochemical reaction in syngas and with/without H 2O in H 2 fuel at 750 °C, 800 °C and 850 °C. The poisoning effects were evaluated by both electrochemical methods and chemical analyses. The post-mortem analyses of the SOFC anode were performed by means of XRD, SEM/EDS, and XPS. The results show that the degradation rate is larger at the higher cell working temperature using syngas with PH 3 in a 200 h test though PH 3 is more reactive with Ni in the anode at lower working temperature and produces a secondary nickel phosphide (Ni xP y) phase. The dominant compositions of Ni xP y on the cell anode are Ni 5P 2 with the presence of H 2O, and Ni 12P 5 without the presence of H 2O. The production of Ni xP y can be generated on the cell anode using syngas or dry H 2 fuel with 10 ppm PH 3 contaminant. Further, the appearance of Ni xP y phases is independent of the electrochemical reactions in the cell.
Xie, Yingying; Wang, Hong; Xu, Guiliang; ...
2016-09-02
In operando XRD and TXM-XANES approaches demonstrate that structure evolution in NaNi 1/3Fe 1/3Mn 1/3O 2 during cycling follows a continuous change, and the formation of a nonequilibrium solid solution phase in the existence of two phases. Here, an O3' and P3' monoclinic phase occur, and redox couples of Ni 3+/Ni 4+ and Fe 3+/Fe 4+ are mainly responsible in the charge voltage range from 4.0 to 4.3 V.
Porous electronic current collector bodies for electrochemical cell configurations
Pollack, William; Reichner, Philip
1989-01-01
A high-temperature, solid electrolyte electrochemical cell configuration is made comprising a plurality of elongated electrochemical cells 1, having inner electrodes 3, outer electrodes 6 and solid electrolyte 4 therebetween, the cells being electronically connected in series and parallel by flexible, porous, fibrous strips 7, where the strips contain flexible, electronically conductive fibers bonded together and coated with a refractory oxide, and where the oxide coating is effective to prevent additional bonding of fibers during electrochemical cell operation at high temperatures.
Exploring the Parameters Controlling the Crystallinity-Conductivity Correlation of PFSA Ionomers
NASA Astrophysics Data System (ADS)
Kusoglu, Ahmet; Shi, Shouwen; Weber, Adam
Perfluorosulfonic-acid (PFSA) ionomers are the most commonly used solid-electrolyte in electrochemical energy devices because of their remarkable conductivity and chemical/mechanical stability, with the latter imparted by their semi-crystalline fluorocarbon backbone. PFSAs owe this unique combination of transport/stability functionalities to their phase-separated morphology of conductive hydrophilic ionic domains and the non-conductive hydrophobic backbone, which are connected via pendant chains. Thus, phase-separation is governed by fractions of backbone and ionic groups, which is controlled by the equivalent weight (EW). Therefore, EW, along with the pendant chain chemistry, directly impact the conductive vs non-conductive regions, and consequently the interrelation between transport and stability. Driven by the need to achieve higher conductivities without disrupting the crystallinity, various pendant-chain chemistries have been developed. In this talk, we will report the results of a systematic investigation on hydration, conductivity, mechanical properties and crystallinity of various types and EWs of PFSA ionomers to (i) develop a structure/property map, and (ii) identify the key parameters controlling morphology and properties. It will be discussed how the pendant-chain and backbone lengths affect the conductivity and crystallinity, respectively. Lastly, the data set will be analyzed to explore universal structure/property relationships for PFSAs.
Amperometric detector for gas chromatography based on a silica sol-gel solid electrolyte.
Steinecker, William H; Miecznikowski, Krzysztof; Kulesza, Pawel J; Sandlin, Zechariah D; Cox, James A
2017-11-01
An electrochemical cell comprising a silica sol-gel solid electrolyte, a working electrode that protrudes into a gas phase, and reference and counter electrodes that contact the solid electrolyte comprises an amperometric detector for gas chromatography. Under potentiostatic conditions, a current related to the concentration of an analyte in the gas phase is produced by its oxidation at the three-phase boundary among the sol-gel, working electrode, and the gas phase. The sol-gel is processed to contain an electrolyte that also serves as a humidistat to maintain a constant water activity even in the presence the gas chromatographic mobile phase. Response was demonstrated toward a diverse set of analytes, namely hydrogen, 1,2-ethandithiol, phenol, p-cresol, and thioanisole. Using flow injection amperometry of hydrogen with He as the carrier gas, 90% of the steady-state current was achieved in < 1s at a flow rate of 20mLmin -1 . A separation of 1,2-ethandithiol, phenol, p-cresol, and thioanisole at a 2.2mLmin -1 flow rate was achieved with respective detection limits (k = 3 criterion) of 4, 1, 3, and 70 ppmv when the working electrode potential was 800mV. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Foong, Yee Wei
Solid polymer electrolytes (SPEs) are key enablers for thin and flexible electrochemical capacitors in wearable technologies. Polyacrylamide (PAM) is one such promising hygroscopic polymer host, but its performance had not been optimized. This thesis enhanced PAM with borotungstic acid (BWA) as the heteropolyacid conductors. The BWA-PAM electrolyte achieved a high initial conductivity of ca. 27 mS cm-1, but suffered from a short service life (< 40% conductivity retention after 28 days) due to dehydration. BWA-PAM modified with acidic (H3PO4) and neutral (glycerol) plasticizers showed improved conductivity of ca. 30 mS cm-1 and service life (≥ 70% conductivity retention after 28 days). The high BWA and H3PO4 content accelerated the hydrolysis of PAM to polyacrylic acid, resulting in the undesirable precipitation of NH4+-substituted BWA; whereas, glycerol was found to suppress this reaction. The solid CNT-graphite cells with the optimized electrolytes demonstrated a capacitance of ca. 19.5 mF cm -2; a high rate capability (≥ 75% capacitance retention) at 1Vs -1; excellent cycle life (≥ 90% retention of its initial capacitance); and maintained ca. -85° phase angle over 10,000 charging-discharging cycles.
Garnet Electrolyte with an Ultralow Interfacial Resistance for Li-Metal Batteries.
Li, Yutao; Chen, Xi; Dolocan, Andrei; Cui, Zhiming; Xin, Sen; Xue, Leigang; Xu, Henghui; Park, Kyusung; Goodenough, John B
2018-05-23
Garnet-structured Li 7 La 3 Zr 2 O 12 is a promising solid Li-ion electrolyte for all-solid-state Li-metal batteries and Li-redox-flow batteries owing to its high Li-ion conductivity at room temperature and good electrochemical stability with Li metal. However, there are still three major challenges unsolved: (1) the controversial electrochemical window of garnet, (2) the impractically large resistance at a garnet/electrode interface and the fast lithium-dendrite growth along the grain boundaries of the garnet pellet, and (3) the fast degradation during storage. We have found that these challenges are closely related to a thick Li 2 CO 3 layer and the Li-Al-O glass phase on the surface of garnet materials. Here we introduce a simple method to remove Li 2 CO 3 and the protons in the garnet framework by reacting garnet with carbon at 700 °C; moreover, the amount of the Li-Al-O glass phase with a low Li-ion conductivity in the grain boundary on the garnet surface was also reduced. The surface of the carbon-treated garnet pellets is free of Li 2 CO 3 and is wet by a metallic lithium anode, an organic electrolyte, and a solid composite cathode. The carbon post-treatment has reduced significantly the interfacial resistances to 28, 92 (at 65 °C), and 45 Ω cm 2 at Li/garnet, garnet/LiFePO 4 , and garnet/organic-liquid interfaces, respectively. A symmetric Li/garnet/Li, an all-solid-state Li/garnet/LiFePO 4 , and a hybrid Li-S cell show small overpotentials, high Coulombic efficiencies, and stable cycling performance.
Pelit, Füsun Okçu; Pelit, Levent; Dizdaş, Tuğberk Nail; Aftafa, Can; Ertaş, Hasan; Yalçınkaya, E E; Türkmen, Hayati; Ertaş, F N
2015-02-15
This report comprises the novel usage of polythiophene - ionic liquid modified clay surfaces for solid phase microextraction (SPME) fiber production to improve the analysis of pesticides in fruit juice samples. Montmorillonite (Mmt) clay intercalated with ionic liquids (IL) was co-deposited with polythiophene (PTh) polymer coated electrochemically on an SPME fiber. The surface of the fibers were characterized by using scanning electron microscopy (SEM). Operational parameters effecting the extraction efficiency namely; the sample volume and pH, adsorption temperature and time, desorption temperature and time, stirring rate and salt amount were optimized. In order to reveal the major effects, these eight factors were selected and Plackett-Burman Design was constructed. The significant parameters detected; adsorption and temperature along with the stirring rate, were further investigated by Box-Behnken design. Under optimized conditions, calibration graphs were plotted and detection limits were calculated in the range of 0.002-0.667ng mL(-1). Relative standard deviations were no higher than 18%. Overall results have indicated that this novel PTh-IL-Mmt SPME surface developed by the aid of electrochemical deposition could offer a selective and sensitive head space analysis for the selected pesticide residues. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Katasho, Yumi; Yasuda, Kouji; Nohira, Toshiyuki
2018-05-01
The electrochemical reduction of two types of simplified simulants of vitrified radioactive waste, simulant 1 (glass component only: SiO2, B2O3, Na2O, Al2O3, CaO, Li2O, and ZnO) and simulant 2 (also containing long-lived fission product oxides, ZrO2, Cs2O, PdO, and SeO2), was investigated in molten CaCl2 at 1103 K. The behavior of each element was predicted from the potential-pO2- diagram constructed from thermodynamic data. After the immersion of simulant 1 into molten CaCl2 without electrolysis, the dissolution of Na, Li, and Cs was confirmed by inductively coupled plasma atomic emission spectrometry and mass spectrometry analysis of the samples. The scanning electron microscopy/energy dispersive X-ray and X-ray diffraction analyses of simulants 1 and 2 electrolyzed at 0.9 V vs. Ca2+/Ca confirmed that most of SiO2 had been reduced to Si. After the electrolysis of simulants 1 and 2, Al, Zr, and Pd remained in the solid phase. In addition, SeO2 was found to remain partially in the solid phase and partially evaporate, although a small quantity dissolved into the molten salt.
Zeng, Jingbin; Chen, Jinmei; Song, Xinhong; Wang, Yiru; Ha, Jaeho; Chen, Xi; Wang, Xiaoru
2010-03-12
In this paper, we proposed an approach using a multi-walled carbon nanotubes (MWCNTs)/Nafion composite coating as a working electrode for the electrochemically enhanced solid-phase microextraction (EE-SPME) of charged compounds. Suitable negative and positive potentials were applied to enhance the extraction of cationic (protonated amines) and anionic compounds (deprotonated carboxylic acids) in aqueous solutions, respectively. Compared to the direct SPME mode (DI-SPME) (without applying potential), the EE-SPME presented more effective and selective extraction of charged analytes primarily via electrophoresis and complementary charge interaction. The experimental parameters relating to extraction efficiency of the EE-SPME such as applied potentials, extraction time, ionic strength, sample pH were studied and optimized. The linear dynamic range of developed EE-SPME-GC for the selected amines spanned three orders of magnitude (0.005-1mugmL(-1)) with R(2) larger than 0.9933, and the limits of detection were in the range of 0.048-0.070ngmL(-1). All of these characteristics demonstrate that the proposed MWCNTs/Nafion EE-SPME is an efficient, flexible and versatile sampling and extraction tool which is ideally suited for use with chromatographic methods. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Optical fingerprints of solid-liquid interfaces: a joint ATR-IR and first principles investigation
NASA Astrophysics Data System (ADS)
Yang, L.; Niu, F.; Tecklenburg, S.; Pander, M.; Nayak, S.; Erbe, A.; Wippermann, S.; Gygi, F.; Galli, G.
Despite the importance of understanding the structural and bonding properties of solid-liquid interfaces for a wide range of (photo-)electrochemical applications, there are presently no experimental techniques available to directly probe the microscopic structure of solid-liquid interfaces. To develop robust strategies to interpret experiments and validate theory, we carried out attenuated total internal reflection (ATR-IR) spectroscopy measurements and ab initio molecular dynamics (AIMD) simulations of the vibrational properties of interfaces between liquid water and well-controlled prototypical semiconductor substrates. We show the Ge(100)/H2O interface to feature a reversible potential-dependent surface phase transition between Ge-H and Ge-OH termination. The Si(100)/H2O interface is proposed as a model system for corrosion and oxidation processes. We performed AIMD calculations under finite electric fields, revealing different pathways for initial oxidation. These pathways are predicted to exhibit unique spectral signatures. A significant increase in surface specificity can be achieved utilizing an angle-dependent ATR-IR experiment, which allows to detect such signatures at the interfacial layer and consequently changes in the hydrogen bond network. Funding from DOE-BES Grant No. DE-SS0008939 and the Deutsche Forschungsgemeinschaft (RESOLV, EXC 1069) are gratefully acknowledged.
Electrolysis Performance Improvement Concept Study (EPICS) flight experiment phase C/D
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Lee, M. G.
1995-01-01
The overall purpose of the Electrolysis Performance Improvement Concept Study flight experiment is to demonstrate and validate in a microgravity environment the Static Feed Electrolyzer concept as well as investigate the effect of microgravity on water electrolysis performance. The scope of the experiment includes variations in microstructural characteristics of electrodes and current densities in a static feed electrolysis cell configuration. The results of the flight experiment will be used to improve efficiency of the static feed electrolysis process and other electrochemical regenerative life support processes by reducing power and expanding the operational range. Specific technologies that will benefit include water electrolysis for propulsion, energy storage, life support, extravehicular activity, in-space manufacturing and in-space science in addition to other electrochemical regenerative life support technologies such as electrochemical carbon dioxide and oxygen separation, electrochemical oxygen compression and water vapor electrolysis. The Electrolysis Performance Improvement Concept Study flight experiment design incorporates two primary hardware assemblies: the Mechanical/Electrochemical Assembly and the Control/Monitor Instrumentation. The Mechanical/Electrochemical Assembly contains three separate integrated electrolysis cells along with supporting pressure and temperature control components. The Control/Monitor Instrumentation controls the operation of the experiment via the Mechanical/Electrochemical Assembly components and provides for monitoring and control of critical parameters and storage of experimental data.
NASA Astrophysics Data System (ADS)
Yang, Feng; Li, Yong-gang; Wei, Ying-hui; Wei, Huan; Yan, Ze-ying; Hou, Li-feng
2018-03-01
A surface-porous Mg-Al eutectic alloy was fabricated at room temperature via electrochemical dealloying in a neutral, aqueous 0.6 M NaCl solution by controlling the applied potential and processing duration. Selective dissolution occurred on the alloy surface. The surface-porous formation mechanism is governed by the selective dissolution of the α-Mg phase, which leaves the Mg17Al12 phase as the porous layer framework. The pore characteristics (morphology, size, and distribution) of the dealloyed samples are inherited from the α-Mg phases of the precursor Mg70.5Al29.5 (at.%) alloy. Size control in the porous layer can be achieved by regulating the synthesis parameters.
High Mass Loading MnO2 with Hierarchical Nanostructures for Supercapacitors.
Huang, Zi-Hang; Song, Yu; Feng, Dong-Yang; Sun, Zhen; Sun, Xiaoqi; Liu, Xiao-Xia
2018-04-24
Metal oxides have attracted renewed interest as promising electrode materials for high energy density supercapacitors. However, the electrochemical performance of metal oxide materials deteriorates significantly with the increase of mass loading due to their moderate electronic and ionic conductivities. This limits their practical energy. Herein, we perform a morphology and phase-controlled electrodeposition of MnO 2 with ultrahigh mass loading of 10 mg cm -2 on a carbon cloth substrate to achieve high overall capacitance without sacrificing the electrochemical performance. Under optimum conditions, a hierarchical nanostructured architecture was constructed by interconnection of primary two-dimensional ε-MnO 2 nanosheets and secondary one-dimensional α-MnO 2 nanorod arrays. The specific hetero-nanostructures ensure facile ionic and electric transport in the entire electrode and maintain the structure stability during cycling. The hierarchically structured MnO 2 electrode with high mass loading yields an outstanding areal capacitance of 3.04 F cm -2 (or a specific capacitance of 304 F g -1 ) at 3 mA cm -2 and an excellent rate capability comparable to those of low mass loading MnO 2 electrodes. Finally, the aqueous and all-solid asymmetric supercapacitors (ASCs) assembled with our MnO 2 cathode exhibit extremely high volumetric energy densities (8.3 mWh cm -3 at the power density of 0.28 W cm -3 for aqueous ASC and 8.0 mWh cm -3 at 0.65 W cm -3 for all-solid ASC), superior to most state-of-the-art supercapacitors.
NASA Astrophysics Data System (ADS)
Nakajo, A.; Cocco, A. P.; DeGostin, M. B.; Peracchio, A. A.; Cassenti, B. N.; Cantoni, M.; Van herle, J.; Chiu, W. K. S.
2016-09-01
The performance of materials for electrochemical energy conversion and storage depends upon the number of electrocatalytic sites available for reaction and their accessibility by the transport of reactants and products. For solid oxide fuel/electrolysis cell materials, standard 3-D measurements such as connected triple-phase boundary (TPB) length and effective transport properties partially inform on how local geometry and network topology causes variability in TPB accessibility. A new measurement, the accessible TPB, is proposed to quantify these effects in detail and characterize material performance. The approach probes the reticulated pathways to each TPB using an analytical electrochemical fin model applied to a 3-D discrete representation of the heterogeneous structure provided by skeleton-based partitioning. The method is tested on artificial and real structures imaged by 3-D x-ray and electron microscopy. The accessible TPB is not uniform and the pattern varies depending upon the structure. Connected TPBs can be even passivated. The sensitivity to manipulations of the local 3-D geometry and topology that standard measurements cannot capture is demonstrated. The clear presence of preferential pathways showcases a non-uniform utilization of the 3-D structure that potentially affects the performance and the resilience to alterations due to degradation phenomena. The concepts presented also apply to electrochemical energy storage and conversion devices such as other types of fuel cells, electrolyzers, batteries and capacitors.
Solid-state energy storage module employing integrated interconnect board
Rouillard, Jean; Comte, Christophe; Daigle, Dominik; Hagen, Ronald A.; Knudson, Orlin B.; Morin, Andre; Ranger, Michel; Ross, Guy; Rouillard, Roger; St-Germain, Philippe; Sudano, Anthony; Turgeon, Thomas A.
2003-11-04
The present invention is directed to an improved electrochemical energy storage device. The electrochemical energy storage device includes a number of solid-state, thin-film electrochemical cells which are selectively interconnected in series or parallel through use of an integrated interconnect board. The interconnect board is typically disposed within a sealed housing which also houses the electrochemical cells, and includes a first contact and a second contact respectively coupled to first and second power terminals of the energy storage device. The interconnect board advantageously provides for selective series or parallel connectivity with the electrochemical cells, irrespective of electrochemical cell position within the housing. Fuses and various electrical and electromechanical devices, such as bypass, equalization, and communication devices for example, may also be mounted to the interconnect board and selectively connected to the electrochemical cells.
Semi-solid electrodes having high rate capability
Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard; Limthongkul, Pimpa; Tan, Taison
2016-07-05
Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode, a semi-solid cathode that includes a suspension of an active material and a conductive material in a liquid electrolyte, and an ion permeable membrane disposed between the anode and the cathode. The semi-solid cathode has a thickness in the range of about 250 .mu.m-2,500 .mu.m, and the electrochemical cell has an area specific capacity of at least 5 mAh/cm.sup.2 at a C-rate of C/2.
Semi-solid electrodes having high rate capability
Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard; Limthongkul, Pimpa; Tan, Taison
2015-11-10
Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode, a semi-solid cathode that includes a suspension of an active material and a conductive material in a liquid electrolyte, and an ion permeable membrane disposed between the anode and the cathode. The semi-solid cathode has a thickness in the range of about 250 .mu.m-2,500 .mu.m, and the electrochemical cell has an area specific capacity of at least 5 mAh/cm.sup.2 at a C-rate of C/2.
Li, Yingru; Sheng, Kaixuan; Yuan, Wenjing; Shi, Gaoquan
2013-01-11
A fibre-shaped solid electrochemical capacitor based on electrochemically reduced graphene oxide has been fabricated, exhibiting high specific capacitance and rate capability, long cycling life and attractive flexibility.
NASA Astrophysics Data System (ADS)
Zou, Xiaojun; Shang, Fang; Wang, Sui
2017-02-01
In this paper, a novel electrochemiluminescence (ECL) sensor of sol-gel@graphene luminescent composite film modified electrode for hyperin determination was prepared using graphene (G) as solid-phase microextraction (SPME) material, based on selective preconcentration of target onto an electrode and followed by luminol ECL detection. Hyperin was firstly extracted from aqueous solution through the modified GCE. Hydrogel, electrogenerated chemiluminescence reagents, pH of working solution, extraction time and temperature and scan rate were discussed. Under the optimum conditions, the change of ECL intensity was in proportion to the concentration of hyperin in the range of 0.02-0.24 μg/mL with a detection limit of 0.01 μg/mL. This method showed good performance in stability, reproducibility and precision for the determination of hyperin.
Solidification and solid-state transformation sciences in metals additive manufacturing
Kirka, Michael M.; Nandwana, Peeyush; Lee, Yousub; ...
2017-02-11
Additive manufacturing (AM) of metals is rapidly emerging as an established manufacturing process for metal components. Unlike traditional metals fabrication processes, metals fabricated via AM undergo localized thermal cycles during fabrication. As a result, AM presents the opportunity to control the liquid-solid phase transformation, i.e. material texture. But, thermal cycling presents challenges from the standpoint of solid-solid phase transformations. We will discuss the opportunities and challenges in metals AM in the context of texture control and associated solid-solid phase transformations in Ti-6Al-4V and Inconel 718.
Solid-state energy storage module employing integrated interconnect board
Rouillard, Jean; Comte, Christophe; Daigle, Dominik; Hagen, Ronald A.; Knudson, Orlin B.; Morin, Andre; Ranger, Michel; Ross, Guy; Rouillard, Roger; St-Germain, Philippe; Sudano, Anthony; Turgeon, Thomas A.
2004-09-28
An electrochemical energy storage device includes a number of solid-state thin-film electrochemical cells which are selectively interconnected in series or parallel through use of an integrated interconnect board. The interconnect board is typically disposed within a sealed housing which also houses the electrochemical cells, and includes a first contact and a second contact respectively coupled to first and second power terminals of the energy storage device. The interconnect board advantageously provides for selective series or parallel connectivity with the electrochemical cells, irrespective of electrochemical cell position within the housing. Fuses and various electrical and electro-mechanical devices, such as bypass, equalization, and communication devices for example, may also be mounted to the interconnect board and selectively connected to the electrochemical cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirka, Michael M.; Nandwana, Peeyush; Lee, Yousub
Additive manufacturing (AM) of metals is rapidly emerging as an established manufacturing process for metal components. Unlike traditional metals fabrication processes, metals fabricated via AM undergo localized thermal cycles during fabrication. As a result, AM presents the opportunity to control the liquid-solid phase transformation, i.e. material texture. But, thermal cycling presents challenges from the standpoint of solid-solid phase transformations. We will discuss the opportunities and challenges in metals AM in the context of texture control and associated solid-solid phase transformations in Ti-6Al-4V and Inconel 718.
Synthesis and characterization of nanostructured electrodes for solid state ionic devices
NASA Astrophysics Data System (ADS)
Zhang, Yuelan
Solid-state electrochemical energy conversion and storage technologies such as fuel cells and lithium ion batteries will influence the way we use energy and the environment we live in. The demands for advanced power sources with high energy efficiency, minimum environmental impact, and low cost have been the impetus for the development of a new generation of batteries and fuel cells. Currently, lithium ion battery technology's greatest disadvantages are long-term cycling stability and high charge/discharge rate capabilities. On the other hand, fuel cell technology's greatest disadvantage is cost. It is found that these problems could be attenuated by the incorporation of nano-structured materials. But, we are still far away from possessing a solid scientific understanding of what goes on at the nanoscale inside these solid state ionic devices, and what is the relationship between nano-structures and their electrochemical properties, especially between the microstructure and electrode polarization and degradation. Electrode polarization represents a voltage loss in an electrochemical energy conversion process. Such understanding is critical for further progress in solid state ionic devices. This thesis focused on the design, fabrication, and characterization of nanostructured porous electrodes with desired composition and microstructure to minimize electrode polarization losses in the application of fuel cells and lithium ion batteries. Various chemical methods such as sol-gel, hydrothermal, surfactant, colloidal and polymer template-assisted processes have been applied in this work. And various characterization techniques have been used to explore the understanding of the microscopic features with electrochemical interfacial properties of the electrodes. Solid-state diffusion often limits the utilization and rate capability of electrode materials in a lithium-ion battery, especially at high charge/discharge rates. When the fluxes of Li+ insertion or extraction exceeds the diffusion-limited rate of Li+ transport within the bulk phase of an electrode, concentration polarization occurs. Further, large volume changes associated with Li+ insertion or extraction could induce stresses in bulk electrodes, potentially leading to mechanical failure. Porous electrodes with high surface-to-volume ratio would increase the electrochemical reaction surface and suppress the mechanical stress. But porous electrodes also increase the tortuosity of mass transport within solid electrodes. Interconnected porous materials would decrease the percolation threshold for porous electrodes. In this work, electrodes with unique architecture for lithium ion batteries have been fabricated to improve the cycleability, rate capability and capacity retention. Spinel LiMn2O4 with interconnected macropores was created using a glycine-nitrate combustion process. Both microstructure and phase crystallinity were optimized by adjusting the fuel/oxidant ratio. This macroporous LiMn2O4 positive electrode exhibited better capacity retention and rate capability than those with larger particle size prepared by solid state reaction. Detailed electrode kinetic studies indicated that the macroporous microstructure promoted lithium diffusion and the overall reaction process was not controlled by lithium diffusion. Nanostructured tin oxide thin films with columnar grains less than 20 nm were deposited on Au/Si substrate using a combustion CVD method. The microstructure was highly porous and open, and thus was easily accessible to liquid electrolyte. In addition, the microstructure with vertical and radial connectivity of active materials led to decreased tortuosity for mass transport within solid electrodes. Nanoparticles accommodated the large volume change during cycling. These thin film electrodes exhibited highly reversible specific capacity and good capacity retention. It is about 93% after 80 cycles at a charge/discharge rate of 0.3 mA/cm2. When discharged at 0.9 mA/cm2, the obtained capacity retention was about 64% of the capacity at 0.3 mA/cm2. Cathodic interfacial polarization represents the predominant loss in a low-temperature SOFC. In this thesis, several porous nanocomposite electrodes of mixed ionic and electronic conductors (MIEC) with high surface areas were designed and fabricated to improve to minimize the polarization resistance. For the first time, regular, homogeneous and dual porous MIEC electrodes were successfully fabricated using breath figure templating, which is self-assembly of the water droplets in polymer solution. The homogeneous macropores promoted rapid mass transport by decreasing the tortuosity. Further, mesoporous microstructure provided more surface areas for gas adsorption and more TPBs for the electrochemical reactions. The interfacial polarization resistances were 0.94 and 0.39 Ocm 2 at 700 and 750°C, respectively. Furthermore, electrodes consisting of strontium doped lanthanum manganite (LSM) and gadolinium doped ceria (GDC) were developed with a modified sol-gel process for honeycomb SOFCs based on stabilized zirconia electrolytes. The sol gel derived cathodes with fine grain size and large specific surface area, showed much lower interfacial polarization resistances than those prepared by other processing methods. And this process developed strong bonding between the electrode and electrolyte even at low temperatures. The interfacial polarization resistances were 0.65 and 0.16 Ocm 2 at 650 and 750°C, respectively. The mesoscopic regime of overlapping space charge effects had a positive effect on the electrode kinetics. Ceria is a very important catalytic material for fuel reforming in SOFCs and CO poisoning in PEM fuel cells. Especially, the design of a new generation SOFC requires the in-situ reforming of hydrocarbon fuels. In this work, nanostructured ceria was developed via a controlled hydrothermal process in a mixed water-ethanol medium. The microstructure, formation mechanism, and their surface catalytic properties were investigated.
Moorhead-Rosenberg, Zach; Huq, Ashfia; Goodenough, John B.; ...
2015-10-05
The electronic and electrochemical properties of the high-voltage spinel LiMn 1.5Ni 0.5O 4 as a function of cation ordering and lithium content have been investigated. Conductivity and activation energy measurements confirm that charge transfer occurs by small polaron hopping and the charge carrier conduction is easier in the Ni:3d band than in the in Mn:3d band. Seebeck coefficient data reveal that the Ni 2+/ 3+. and Ni 3+/ 4+ redox couples are combined in a single,3d band, and that maximum charge carrier concentration occurs where the average Ni oxidation state is close to 3+, corresponding to x = 0.5 inmore » Li Li 1-xMn 1.5Ni 0.5O 4. Furthermore, maximum electronic conductivity is found at x = 0.5, regardless of cation ordering. The thermodynamically stable phases formed during cycling were investigated by recording the X-ray diffraction (XRD) of chemically delithiated powders. The more ordered spinels maintained two separate two-phase regions upon lithium extraction, while the more disordered samples exhibited a solid-solubility region from LiMn 1.5Ni 0.5O 4 to Li 0.5Mn 1.5Ni 0.5O 4. The conductivity and phase-transformation data of four samples with varying degrees of cation ordering were compared to the electrochemical data collected with lithium cells. Only the most ordered spinel showed inferior rate performance, while the sample annealed for a shorter time performed comparable to the unannealed or disordered samples. Our results challenge the most common beliefs about high-voltage spinel: (i) low Mn 3+ content is responsible for poor rate performance and (ii) thermodynamically stable solid-solubility is critical for fast kinetics.« less
Biotechnological Aspects of Microbial Extracellular Electron Transfer
Kato, Souichiro
2015-01-01
Extracellular electron transfer (EET) is a type of microbial respiration that enables electron transfer between microbial cells and extracellular solid materials, including naturally-occurring metal compounds and artificial electrodes. Microorganisms harboring EET abilities have received considerable attention for their various biotechnological applications, in addition to their contribution to global energy and material cycles. In this review, current knowledge on microbial EET and its application to diverse biotechnologies, including the bioremediation of toxic metals, recovery of useful metals, biocorrosion, and microbial electrochemical systems (microbial fuel cells and microbial electrosynthesis), were introduced. Two potential biotechnologies based on microbial EET, namely the electrochemical control of microbial metabolism and electrochemical stimulation of microbial symbiotic reactions (electric syntrophy), were also discussed. PMID:26004795
NASA Astrophysics Data System (ADS)
Zhang, Qianyu; Verde, Michael G.; Seo, Joon Kyo; Li, Xi; Meng, Y. Shirley
2015-04-01
Pristine and Gd-doped Li4Ti5O12 (LTO) in the form of Li4-x/3Ti5-2x/3GdxO12 (x = 0.05, 0.10 and 0.15) were prepared by a simple solid-state reaction in air. The structural and electrochemical properties of the as-prepared powders were characterized using X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). XRD revealed that only a small amount of the dopant can enter the lattice structure of LTO; excessive addition beyond x = 0.10 resulted in a discrete Gd2O3 impurity phase. The Gd doping did not change the spinel structure and electrochemical reaction process of LTO. The average particle size of as-prepared samples ranged between 0.5 and 1.5 μm. The Gd-doped materials showed much improved rate capability and specific capacity compared with undoped LTO. In particular, Li4-x/3Ti5-2x/3GdxO12 (x = 0.5) exhibited the best rate capability and cycling stability among all samples. Beyond this doping level, however, Gd2O3 impurity phase in the LTO led to adverse electrochemical performance. The rate capability of the anode material made from the modified powder is significantly improved when discharged at high current rates due to the reduced charge transfer resistance and fast lithium insertion/extraction kinetics.
Investigating the performance of catalyst layer micro-structures with different platinum loadings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khakaz-Baboli, Moben; Harvey, David; Pharoah, Jon
In this study a four-phase micro-structure of a PEFC catalyst layer was reconstructed by randomly placing overlapping spheres for each solid catalyst phase. The micro-structure was mirrored to make a micro-structure. A body-fit computational mesh was produced for the reconstructed micro-structure in OpenFOAM. Associated conservation equations were solved within all the phases with electrochemical reaction as the boundary condition at the interface between ionomer and platinum phases. The study is focused on the platinum loading of CL. The polarization curves of the micro-structure performance have been compared for different platinum loadings. This paper gives increased insight into the relatively greatermore » losses at decreased platinum loadings.« less
Method of preparing an electrochemical cell in uncharged state
Shimotake, Hiroshi; Bartholme, Louis G.; Arntzen, John D.
1977-02-01
A secondary electrochemical cell is assembled in an uncharged state for the preparation of a lithium alloy-transition metal sulfide cell. The negative electrode includes a material such as aluminum or silicon for alloying with lithium as the cell is charged. The positive electrode is prepared by blending particulate lithium sulfide, transition metal powder and electrolytic salt in solid phase. The mixture is simultaneously heated to a temperature in excess of the melting point of the electrolyte and pressed onto an electrically conductive substrate to form a plaque. The plaque is assembled as a positive electrode within the cell. During the first charge cycle lithium alloy is formed within the negative electrode and transition metal sulfide such as iron sulfide is produced within the positive electrode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacob, K.T., E-mail: katob@materials.iisc.ernet.in; Gupta, Preeti
2015-01-15
Oxygen potentials established by the equilibrium between three condensed phases, CaO{sub ss}+CoO{sub ss}+Ca{sub 3}Co{sub 2}O{sub 6} and CoO{sub ss}+Ca{sub 3}Co{sub 2}O{sub 6}+Ca{sub 3}Co{sub 3.93+α}O{sub 9.36−δ}, are measured as a function of temperature using solid-state electrochemical cells incorporating yttria-stabilized zirconia as the electrolyte and pure oxygen as the reference electrode. Cation non-stoichiometry and oxygen non-stoichiometry in Ca{sub 3}Co{sub 3.93+α}O{sub 9.36−δ} are determined using different techniques under defined conditions. Decomposition temperatures and thermodynamic properties of Ca{sub 3}Co{sub 2}O{sub 6} and Ca{sub 3}Co{sub 4}O{sub 9.163} are calculated from the results. The standard entropy and enthalpy of formation of Ca{sub 3}Co{sub 2}O{sub 6} atmore » 298.15 K are evaluated. Using thermodynamic data from this study and auxiliary information from the literature, phase diagram for the ternary system Ca–Co–O is computed. Isothermal sections at representative temperatures are displayed to demonstrate the evolution of phase relations with temperature. - Graphical abstract: Isothermal section of the phase diagram of the system Ca–Co–O at 1250 K. - Highlights: • Improved definition of cation and oxygen nonstoichiometry of Ca{sub 3}Co{sub 3.93+α}O{sub 9.36−δ}. • Measurement of Δμ{sub O{sub 2}} associated with two 3-phase fields as a function of temperature. • Use of solid-state electrochemical cells for accurate measurement of Δμ{sub O{sub 2}}. • Decomposition temperatures and thermodynamic properties for ternary oxides. • Characterization of ternary phase diagram of the system Ca–Co–O.« less
Charge transfer kinetics at the solid-solid interface in porous electrodes
NASA Astrophysics Data System (ADS)
Bai, Peng; Bazant, Martin Z.
2014-04-01
Interfacial charge transfer is widely assumed to obey the Butler-Volmer kinetics. For certain liquid-solid interfaces, the Marcus-Hush-Chidsey theory is more accurate and predictive, but it has not been applied to porous electrodes. Here we report a simple method to extract the charge transfer rates in carbon-coated LiFePO4 porous electrodes from chronoamperometry experiments, obtaining curved Tafel plots that contradict the Butler-Volmer equation but fit the Marcus-Hush-Chidsey prediction over a range of temperatures. The fitted reorganization energy matches the Born solvation energy for electron transfer from carbon to the iron redox site. The kinetics are thus limited by electron transfer at the solid-solid (carbon-LixFePO4) interface rather than by ion transfer at the liquid-solid interface, as previously assumed. The proposed experimental method generalizes Chidsey’s method for phase-transforming particles and porous electrodes, and the results show the need to incorporate Marcus kinetics in modelling batteries and other electrochemical systems.
Semi-solid electrodes having high rate capability
Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard; Limthongkul, Pimpa; Tan, Taison
2016-06-07
Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode and a semi-solid cathode. The semi-solid cathode includes a suspension of an active material of about 35% to about 75% by volume of an active material and about 0.5% to about 8% by volume of a conductive material in a non-aqueous liquid electrolyte. An ion-permeable membrane is disposed between the anode and the semi-solid cathode. The semi-solid cathode has a thickness of about 250 .mu.m to about 2,000 .mu.m, and the electrochemical cell has an area specific capacity of at least about 7 mAh/cm.sup.2 at a C-rate of C/4. In some embodiments, the semi-solid cathode slurry has a mixing index of at least about 0.9.
Protective interlayer for high temperature solid electrolyte electrochemical cells
Isenberg, Arnold O.; Ruka, Roswell J.
1986-01-01
A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.
Protective interlayer for high temperature solid electrolyte electrochemical cells
Isenberg, Arnold O.; Ruka, Roswell J.; Zymboly, Gregory E.
1985-01-01
A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.
Protective interlayer for high temperature solid electrolyte electrochemical cells
Isenberg, Arnold O.; Ruka, Roswell J.
1987-01-01
A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.
Elliott, Guy R. B.; Holley, Charles E.; Houseman, Barton L.; Sibbitt, Jr., Wilmer L.
1978-01-01
Electrochemical heat engines produce electrochemical work, and mechanical motion is limited to valve and switching actions as the heat-to-work cycles are performed. The electrochemical cells of said heat engines use molten or solid electrolytes at high temperatures. One or more reactions in the cycle will generate a gas at high temperature which can be condensed at a lower temperature with later return of the condensate to electrochemical cells. Sodium, potassium, and cesium are used as the working gases for high temperature cells (above 600 K) with halogen gases or volatile halides being used at lower temperature. Carbonates and halides are used as molten electrolytes and the solid electrolyte in these melts can also be used as a cell separator.
Three-dimensional localization of nanoscale battery reactions using soft X-ray tomography
Yu, Young-Sang; Farmand, Maryam; Kim, Chunjoong; ...
2018-03-02
Battery function is determined by the efficiency and reversibility of the electrochemical phase transformations at solid electrodes. The microscopic tools available to study the chemical states of matter with the required spatial resolution and chemical specificity are intrinsically limited when studying complex architectures by their reliance on two-dimensional projections of thick material. Here in this paper, we report the development of soft X-ray ptychographic tomography, which resolves chemical states in three dimensions at 11 nm spatial resolution. We study an ensemble of nano-plates of lithium iron phosphate extracted from a battery electrode at 50% state of charge. Using a setmore » of nanoscale tomograms, we quantify the electrochemical state and resolve phase boundaries throughout the volume of individual nanoparticles. These observations reveal multiple reaction points, intra-particle heterogeneity, and size effects that highlight the importance of multi-dimensional analytical tools in providing novel insight to the design of the next generation of high-performance devices.« less
Three-dimensional localization of nanoscale battery reactions using soft X-ray tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Young-Sang; Farmand, Maryam; Kim, Chunjoong
Battery function is determined by the efficiency and reversibility of the electrochemical phase transformations at solid electrodes. The microscopic tools available to study the chemical states of matter with the required spatial resolution and chemical specificity are intrinsically limited when studying complex architectures by their reliance on two-dimensional projections of thick material. Here in this paper, we report the development of soft X-ray ptychographic tomography, which resolves chemical states in three dimensions at 11 nm spatial resolution. We study an ensemble of nano-plates of lithium iron phosphate extracted from a battery electrode at 50% state of charge. Using a setmore » of nanoscale tomograms, we quantify the electrochemical state and resolve phase boundaries throughout the volume of individual nanoparticles. These observations reveal multiple reaction points, intra-particle heterogeneity, and size effects that highlight the importance of multi-dimensional analytical tools in providing novel insight to the design of the next generation of high-performance devices.« less
Visualization of anisotropic-isotropic phase transformation dynamics in battery electrode particles
Wang, Jiajun; Karen Chen-Wiegart, Yu-chen; Eng, Christopher; ...
2016-08-12
Anisotropy, or alternatively, isotropy of phase transformations extensively exist in a number of solid-state materials, with performance depending on the three-dimensional transformation features. Fundamental insights into internal chemical phase evolution allow manipulating materials with desired functionalities, and can be developed via real-time multi-dimensional imaging methods. In this paper, we report a five-dimensional imaging method to track phase transformation as a function of charging time in individual lithium iron phosphate battery cathode particles during delithiation. The electrochemically driven phase transformation is initially anisotropic with a preferred boundary migration direction, but becomes isotropic as delithiation proceeds further. We also observe the expectedmore » two-phase coexistence throughout the entire charging process. Finally, we expect this five-dimensional imaging method to be broadly applicable to problems in energy, materials, environmental and life sciences.« less
Composite solid oxide fuel cell anode based on ceria and strontium titanate
Marina, Olga A.; Pederson, Larry R.
2008-12-23
An anode and method of making the same wherein the anode consists of two separate phases, one consisting of a doped strontium titanate phase and one consisting of a doped cerium oxide phase. The strontium titanate phase consists of Sr.sub.1-xM.sub.xTiO.sub.3-.delta., where M is either yttrium (Y), scandium (Sc), or lanthanum (La), where "x" may vary typically from about 0.01 to about 0.5, and where .delta. is indicative of some degree of oxygen non-stoichiometry. A small quantity of cerium may also substitute for titanium in the strontium titanate lattice. The cerium oxide consists of N.sub.yCe.sub.1-yO.sub.2-.delta., where N is either niobium (Nb), vanadium (V), antimony (Sb) or tantalum (Ta) and where "y" may vary typically from about 0.001 to about 0.1 and wherein the ratio of Ti in said first phase to the sum of Ce and N in the second phase is between about 0.2 to about 0.75. Small quantities of strontium, yttrium, and/or lanthanum may additionally substitute into the cerium oxide lattice. The combination of these two phases results in better performance than either phase used separately as an anode for solid oxide fuel cell or other electrochemical device.
NASA Astrophysics Data System (ADS)
Voronin, Mikhail V.; Osadchii, Evgeniy G.; Brichkina, Ekaterina A.
2017-10-01
This study compiles original experimental and literature data on the thermodynamic properties (ΔfG°, S°, ΔfH°) of silver tellurides (α-Ag2Te, β-Ag2Te, Ag1.9Te, Ag5Te3, AgTe) obtained by the method of solid-state galvanic cell with the RbAg4I5 and AgI solid electrolytes. The thermodynamic data for empressite (AgTe, pure fraction from Empress Josephine Mine, Colorado USA) have been obtained for the first time by the electrochemical experiment with the virtual reaction Ag + Te = AgTe. The Ag-Te phase diagrams in the T - x and log fTe2 (gas) - 1/ T coordinates have been refined, and the ternary Ag-Te-O diagrams with Ag-Te-TeO2 (paratellurite) composition range have been calculated.
NASA Astrophysics Data System (ADS)
He, Ruixuan; Ward, Daniel; Echeverri, Mauricio; Kyu, Thein
2015-03-01
Guided by ternary phase diagrams of polyethylene glycol diacrylate (PEGDA), succinonitrile plasticizer, and LiTFSI salt, completely amorphous solid-state transparent polymer electrolyte membranes (ss-PEM) were fabricated by UV irradiation in the isotropic melt state. Effects of PEGDA molecular weight (700 vs 6000 g/mol) on ss-PEM performance were investigated. These amorphous PEMs have superionic room temperature ionic conductivity of ~10-3 S/cm, whereby PEGDA6000-PEM outperforms its PEGDA700 counterpart, which may be ascribed to lower crosslinking density and greater segmental mobility. The longer chain between crosslinked points of PEGDA6000-PEM is responsible for greater extensibility of ~80% versus ~7% of PEGDA700-PEM. Besides, both PEMs exhibited thermal stability up to 120 °C and electrochemical stability versus Li+/Li up to 4.7V. LiFePO4/PEM/Li and Li4Ti5O12 /PEM/Li half-cells exhibited stable cyclic behavior up to 50 cycles tested with a capacity of ~140mAh/g, suggesting that LiFePO4/PEM/Li4Ti5O12 may be a promising full-cell for all solid-state lithium battery. We thank NSF-DMR 1161070 for providing funding of this project.
NASA Technical Reports Server (NTRS)
Liu, C. C.
1983-01-01
A computerized system was established and the electrochemical fluorination of trichloroethylene, polyacrylic acid and polyvinyl alcohol in anhydrous hydrogen fluoride was attempted. Both solid substrates as well as membranes were used. Some difficulties were found in handling and analyzing the solid substrates and membranes. Further studies are needed in this area. A microprocessor aided electrochemical fluorination system capable of obtaining highly reproducible experimental results was established.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dogdibegovic, Emir; Yan, Jingbo; Cai, Qinsheng
Phase instability in praseodymium nickelates is a major concern for the long-term operations of solid oxide fuel cells since it may lead to the performance degradation. In this work, praseodymium nickelates (ex. Pr 2NiO 4+δ) have been stabilized via substitution on both Pr- and Ni-sites. Systematic studies over a wide range of compositions were conducted via long-term thermal annealing studies (T ≤ 870°C) and electrochemical tests in full cells. Proposed (Pr 0.50Nd 0.50) 2Ni 1-yCu yO 4+δ compositions (y = 0.05, 0.10, 0.20, and 0.30) showed the most promising results and serve as a comprehensive extension to our previous studiesmore » in this series of papers. A stable long-term performance was obtained for temperatures up to 790°C for 500 hours at 0.80 V with a minimal tradeoff between the activity (power density of 0.8–1.0 W cm -2 at 850°C) and performance stability. A preserved parent phase and suppressed performance degradation, when compared to Pr 2NiO 4+δ, make newly developed electrodes attractive candidates for the state-of-the-art solid oxide fuel cell applications.« less
Dogdibegovic, Emir; Yan, Jingbo; Cai, Qinsheng; ...
2017-08-12
Phase instability in praseodymium nickelates is a major concern for the long-term operations of solid oxide fuel cells since it may lead to the performance degradation. In this work, praseodymium nickelates (ex. Pr 2NiO 4+δ) have been stabilized via substitution on both Pr- and Ni-sites. Systematic studies over a wide range of compositions were conducted via long-term thermal annealing studies (T ≤ 870°C) and electrochemical tests in full cells. Proposed (Pr 0.50Nd 0.50) 2Ni 1-yCu yO 4+δ compositions (y = 0.05, 0.10, 0.20, and 0.30) showed the most promising results and serve as a comprehensive extension to our previous studiesmore » in this series of papers. A stable long-term performance was obtained for temperatures up to 790°C for 500 hours at 0.80 V with a minimal tradeoff between the activity (power density of 0.8–1.0 W cm -2 at 850°C) and performance stability. A preserved parent phase and suppressed performance degradation, when compared to Pr 2NiO 4+δ, make newly developed electrodes attractive candidates for the state-of-the-art solid oxide fuel cell applications.« less
Castro, Cristiana C; Gunning, Caitriona; Oliveira, Carla M; Couto, José A; Teixeira, José A; Martins, Rui C; Ferreira, António C Silva
2012-07-25
This study is focused on the evaluation of the impact of Saccharomyces cerevisiae metabolism in the profile of compounds with antioxidant capacity in a synthetic wine during fermentation. A bioanalytical pipeline, which allows for biological systems fingerprinting and sample classification by combining electrochemical features with biochemical background, is proposed. To achieve this objective, alcoholic fermentations of a minimal medium supplemented with phenolic acids were evaluated daily during 11 days, for electrochemical profile, phenolic acids, and the volatile fermentation fraction, using cyclic voltametry, high-performance liquid chromatography-diode array detection, and headspace/solid-phase microextraction/gas chromatography-mass spectrometry (target and nontarget approaches), respectively. It was found that acetic acid, 2-phenylethanol, and isoamyl acetate are compounds with a significative contribution for samples metabolic variability, and the electrochemical features demonstrated redox-potential changes throughout the alcoholic fermentations, showing at the end a similar pattern to normal wines. Moreover, S. cerevisiae had the capacity of producing chlorogenic acid in the supplemented medium fermentation from simple precursors present in the minimal medium.
Stability and ionic mobility in argyrodite-related lithium-ion solid electrolytes.
Chen, Hao Min; Maohua, Chen; Adams, Stefan
2015-07-07
In the search for fast lithium-ion conducting solids for the development of safe rechargeable all-solid-state batteries with high energy density, thiophosphates and related compounds have been demonstrated to be particularly promising both because of their record ionic conductivities and their typically low charge transfer resistances. In this work we explore a wide range of known and predicted thiophosphates with a particular focus on the cubic argyrodite phase with a robust three-dimensional network of ion migration pathways. Structural and hydrolysis stability are calculated employing density functional method in combination with a generally applicable method of predicting the relevant critical reaction. The activation energy for ion migration in these argyrodites is then calculated using the empirical bond valence pathway method developed in our group, while bandgaps of selected argyrodites are calculated as a basis for assessing the electrochemical window. Findings for the lithium compounds are also compared to those of previously known copper argyrodites and hypothetical sodium argyrodites. Therefrom, guidelines for experimental work are derived to yield phases with the optimum balance between chemical stability and ionic conductivity in the search for practical lithium and sodium solid electrolyte materials.
Wang, Fudong; Buhro, William E
2017-12-26
Crystal-phase control is one of the most challenging problems in nanowire growth. We demonstrate that, in the solution-phase catalyzed growth of colloidal cadmium telluride (CdTe) quantum wires (QWs), the crystal phase can be controlled by manipulating the reaction chemistry of the Cd precursors and tri-n-octylphosphine telluride (TOPTe) to favor the production of either a CdTe solute or Te, which consequently determines the composition and (liquid or solid) state of the Bi x Cd y Te z catalyst nanoparticles. Growth of single-phase (e.g., wurtzite) QWs is achieved only from solid catalysts (y ≪ z) that enable the solution-solid-solid growth of the QWs, whereas the liquid catalysts (y ≈ z) fulfill the solution-liquid-solid growth of the polytypic QWs. Factors that affect the precursor-conversion chemistry are systematically accounted for, which are correlated with a kinetic study of the composition and state of the catalyst nanoparticles to understand the mechanism. This work reveals the role of the precursor-reaction chemistry in the crystal-phase control of catalytically grown colloidal QWs, opening the possibility of growing phase-pure QWs of other compositions.
Assessment of all-solid-state lithium-ion batteries
NASA Astrophysics Data System (ADS)
Braun, P.; Uhlmann, C.; Weiss, M.; Weber, A.; Ivers-Tiffée, E.
2018-07-01
All-solid-state lithium-ion batteries (ASSBs) are considered as next generation energy storage systems. A model might be very useful, which describes all contributions to the internal cell resistance, enables an optimization of the cell design, and calculates the performance of an open choice of cell architectures. A newly developed one-dimensional model for ASSBs is presented, based on a design concept which employs the use of composite electrodes. The internal cell resistance is calculated by linking two-phase transmission line models representing the composite electrodes with an ohmic resistance representing the solid electrolyte (separator). Thereby, electrical parameters, i.e. ionic and electronic conductivity, electrochemical parameters, i.e. charge-transfer resistance at interfaces and lithium solid-state diffusion, and microstructure parameters, i.e. electrode thickness, particle size, interface area, phase composition and tortuosity, are considered as the most important material and design parameters. Subsequently, discharge curves are simulated, and energy- and power-density characteristics of all-solid-state cell architectures are calculated. These model calculations are discussed and compared with experimental data from literature for a high power LiCoO2-Li10GeP2S12/Li10GeP2S12/Li4Ti5O12-Li10GeP2S12 cell.
Method and apparatus for producing oxygenates from hydrocarbons
Kong, Peter C.; Lessing, Paul A.
1995-01-01
A chemical reactor for oxygenating hydrocarbons includes: a) a dielectric barrier discharge plasma cell, the plasma cell comprising a pair of electrodes having a dielectric material and void therebetween, the plasma cell comprising a hydrocarbon gas inlet feeding to the void; b) a solid oxide electrochemical cell, the electrochemical cell comprising a solid oxide electrolyte positioned between a porous cathode and a porous anode, an oxygen containing gas inlet stream feeding to the porous cathode side of the electrochemical cell; c) a first gas passageway feeding from the void to the anode side of the electrochemical cell; and d) a gas outlet feeding from the anode side of the electrochemical cell to expel reaction products from the chemical reactor. A method of oxygenating hydrocarbons is also disclosed.
Metal current collect protected by oxide film
Jacobson, Craig P.; Visco, Steven J.; DeJonghe, Lutgard C.
2004-05-25
Provided are low-cost, mechanically strong, highly electronically conductive current collects and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical devices having as current interconnects a ferritic steel felt or screen coated with a protective oxide film.
NASA Astrophysics Data System (ADS)
Ma, Ting; Muslim, Arzugul; Su, Zhi
2015-05-01
Nano structured LiMnBO3/C cathode materials are synthesized by a fast microwave solid-state reaction method using MnCO3, Li2CO3, H3BO3 and glucose as starting materials for the first time. The crystal structure, morphology and electrochemical properties of LiMnBO3/C composites are characterized by X-ray diffraction (XRD), raman spectroscopy (Ramon), scanning electron microscopy (SEM), transmission electron microscopy (TEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and charge-discharge tests. The result shows that not only monoclinic LiMnBO3/C but also hexagonal LiMnBO3/C cathode materials can be successfully synthesized by microwave solid-state method with power of 240 W in different time. Compared with h-LiMnBO3/C and mixed phase LiMnBO3/C, m-LiMnBO3/C displays lower charge-transfer resistance and the Warburg impedance, so it reveals a higher first discharge capacity of 156.3 mAh g-1 at 0.05 C within 1.8V-4.6 V, The value increases up to 173.2 mAh g-1 caused by the activation process. Even after 50 cycles, the discharge capacity of m-LiMnBO3/C still remains at 148.2 mAh g-1.
Electrochemical Stability of Li 10GeP 2S 12 and Li 7La 3Zr 2O 12 Solid Electrolytes
Han, Fudong; Zhu, Yizhou; He, Xingfeng; ...
2016-01-21
The electrochemical stability window of solid electrolyte is overestimated by the conventional experimental method using a Li/electrolyte/inert metal semiblocking electrode because of the limited contact area between solid electrolyte and inert metal. Since the battery is cycled in the overestimated stability window, the decomposition of the solid electrolyte at the interfaces occurs but has been ignored as a cause for high interfacial resistances in previous studies, limiting the performance improvement of the bulk-type solid-state battery despite the decades of research efforts. Thus, there is an urgent need to identify the intrinsic stability window of the solid electrolyte. The thermodynamic electrochemicalmore » stability window of solid electrolytes is calculated using first principles computation methods, and an experimental method is developed to measure the intrinsic electrochemical stability window of solid electrolytes using a Li/electrolyte/electrolyte-carbon cell. The most promising solid electrolytes, Li10GeP2S12 and cubic Li-garnet Li7La3Zr2O12, are chosen as the model materials for sulfide and oxide solid electrolytes, respectively. The results provide valuable insights to address the most challenging problems of the interfacial stability and resistance in high-performance solid-state batteries.« less
An, Seong Jin; Li, Jianlin; Daniel, Claus; ...
2016-04-09
An in-depth review is presented on the science of lithium-ion battery (LIB) solid electrolyte interphase (SEI) formation on the graphite anode, including structure, morphology, chemical composition, electrochemistry, formation mechanism, and LIB formation cycling. During initial operation of LIBs, the SEI layer forms on the graphite surfaces, the most commonly used anode material, due to side reactions with the electrolyte solvent/salt at low electro-reduction potentials. It is accepted that the SEI layer is essential to the long-term performance of LIBs, and it also has an impact on its initial capacity loss, self-discharge characteristics, cycle life, rate capability, and safety. While themore » presence of the anode SEI layer is vital, it is difficult to control its formation and growth, as the chemical composition, morphology, and stability depend on several factors. These factors include the type of graphite, electrolyte composition, electrochemical conditions, and cell temperature. Thus, SEI layer formation and electrochemical stability over long-term operation should be a primary topic of future investigation in the development of LIB technology. We review the progression of knowledge gained about the anode SEI, from its discovery in 1979 to the current state of understanding, and covers its formation process, differences in the chemical and structural makeup when cell materials and components are varied, methods of characterization, and associated reactions with the liquid electrolyte phase. It also discusses the relationship of the SEI layer to the LIB formation step, which involves both electrolyte wetting and subsequent slow charge-discharge cycles to grow the SEI.« less
Electrochemical and Phase Stability Studies of Cathode Materials for Solid Oxide Fuel Cells
NASA Astrophysics Data System (ADS)
Duffy, Patrick K.
Growing energy and climate concerns in the United States and across the world demand improvements in energy efficiency, conservation, and renewability. Solid oxide fuel cells (SOFCs) are highly efficient devices that electrochemically convert the chemical energy of a fuel to electricity. These devices can operate on natural gas as a fuel, enabling the use of existing infrastructure with significantly higher efficiency compared to conventional natural gas power plants. However, expensive system components and durability issues prevent SOFCs from being cost-competitive with current power plants. This work focused on the search for new SOFC materials that provide increased performance at reduced operating temperatures. Both electrochemical performance and thermodynamic stability between various layers are important factors for creating SOFCs with good long-term performance, and both were investigated in this work, making extensive use of AC impedance spectroscopy and X-ray diffraction. A novel method used to rapidly characterize the electrochemical performance of electrode materials was developed. A hemispherical electrolyte probe pressed into the flat surface of a dense electrode pellet created a circular interface. Impedance spectroscopy measured the polarization resistance associated with the electrode reaction at the interface, along with the resistance of the electrolyte probe, from which the size of the contact was determined. The polarization resistance was normalized by the triple phase boundary (TPB) length to calculate the TPB linear-specific resistance of electronic conductor electrodes. For mixed ionic-electronic conductor (MIEC) electrodes, the polarization resistance was normalized by the contact area to estimate the area-specific surface resistance. Both normalized resistances were found to underestimate literature values by a consistent factor of 3. The method is shown to have good potential for the rapid screening and ranking of potential SOFC electrode materials. Details of thermodynamic equilibrium were also refined in the LaO1.5-Ga1.5-NiO quasi-ternary phase diagram. Solubility limits of the Lan+1NinO3n+1 Ruddlesden-Popper series of phases and LaGaO3 were determined using conventional phase analysis and the disappearing phase method. For the first time, La 3Ni2O7 was found to be stabilized over a small compositional range by the substitution of gallium for nickel. The compositional details of phase relationships involving LaGaO3 were also determined using the disappearing phase method by locating the vertex location of triphasic regions. Equilibrium between LaGaO3 and La4Ni3 O10 was confirmed, albeit at substantial levels of nickel in LaGaO3 and gallium in La4Ni3O10, both of which are detrimental to device performance. No equilibrium was observed between LaGaO3 and the other Lan+1NinO 3n+1 phases. Equilibrium between LaGaO3 and NiO was also confirmed. Additionally, saturating NiO with gallium was found to minimize the amount of nickel in LaGaO3, with an equilibrium concentration of only 7% of the gallium replaced by nickel in the latter.
Aulenta, Federico; Catervi, Alessandro; Majone, Mauro; Panero, Stefania; Reale, Priscilla; Rossetti, Simona
2007-04-01
The ability to transfer electrons, via an extracellular path, to solid surfaces is typically exploited by microorganisms which use insoluble electron acceptors, such as iron-or manganese-oxides or inert electrodes in microbial fuel cells. The reverse process, i.e., the use of solid surfaces or electrodes as electron donors in microbial respirations, although largely unexplored, could potentially have important environmental applications, particularly for the removal of oxidized pollutants from contaminated groundwater or waste streams. Here we show, for the first time, that an electrochemical cell with a solid-state electrode polarized at -500 mV (vs standard hydrogen electrode), in combination with a low-potential redox mediator (methyl viologen), can efficiently transfer electrochemical reducing equivalents to microorganisms which respire using chlorinated solvents. By this approach, the reductive transformation of trichloroethene, a toxic yet common groundwater contaminant, to harmless end-products such as ethene and ethane could be performed. Furthermore, using a methyl-viologen-modified electrode we could even demonstrate that dechlorinating bacteria were able to accept reducing equivalents directly from the modified electrode surface. The innovative concept, based on the stimulation of dechlorination reactions through the use of solid-state electrodes (we propose for this process the acronym BEARD: Bio-Electrochemically Assisted Reductive Dechlorination), holds promise for in situ bioremediation of chlorinated-solvent-contaminated groundwater, and has several potential advantages over traditional approaches based on the subsurface injection of organic compounds. The results of this study raise the possibility that immobilization of selected redox mediators may be a general strategy for stimulating and controlling a range of microbial reactions using insoluble electrodes as electron donors.
Thermodynamic stability of copper gallates determined from the E.M.F. method
NASA Astrophysics Data System (ADS)
Jendrzejczyk-Handzlik, Dominika; Fitzner, Krzysztof
2015-12-01
Employing following electrochemical cells with the solid YSZ electrolyte: CuO, Cu2O /O2-/ air (pO2 = 0.21 atm) CuGa2O4, CuGaO2, Ga2O3 /O2-/ air (pO2 = 0.21 a t m) CuGa2O4, CuGaO2, Cu2O /O2-/ air (pO2 = 0.21 atm) Ni, NiO /O2-/ Ga2O3, CuGaO2, Cu The Gibbs free energy of formation of solid CuGa2O4 and CuGaO2 phases was determined in the temperature range from 1048 to 1223 K. Obtained results were used to derive Gibbs free energy change of the reaction of formation of solid phases from respective oxides: CuO+Ga2O3=CuGa2O4 ∆ GCuGa2O4 0(J/mol) = 21642 - 26.01 × T(± 630) ½Cu2O +½Ga2O3=CuGaO2 ∆ G CuGa O2 0 (J / mol) = - 12879 + 6.29 × T (± 640) Finally, present results were applied to the calculation of oxygen potential diagrams at different temperatures, and consequently, to the prediction of the stability ranges of these both solid phases.
NASA Astrophysics Data System (ADS)
He, Ruixuan
In pursuit of safer and more flexible solid-state lithium ion batteries, solid polymer electrolytes have emerged as a promising candidate. The present dissertation entails exploration of solid plasticized, photopolymerized (i.e. ultraviolent-cured) polymer electrolyte membranes (PEM) for fulfilling the critical requirements of electrolytes, such as high ionic conductivity and good thermal and electrochemical stability, among others. Electrochemical performance of PEMs containing lithium ion half-cells was also investigated at different two temperatures. Phase diagram approach was adopted to guide the fabrication of two types of plasticized PEMs. Prepolymer poly (ethylene glycol) diacrylate (PEGDA) was used as a matrix for building an ionic conductive and mechanically sturdy network. Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) was incorporated as a source of lithium ions, while a solid plasticizer succinonitrile (SCN) and a liquid plasticizer tetraethylene glycol dimethyl ether (TEGDME) were incorporated in the respective systems. The important role of plasticizer on the enhancement of ionic conductivity (sigma) to the superionic conductive level (10-3 S/cm) was revealed in both systems. It is worth noting that photopolymerization induced crystallization (PIC) occurred during UV-curing in the SCN-rich region of the ternary PEGDA/LiTFSI/SCN ternary mixtures. The PEM thus formed contained a plastic crystal phase, which showed lower σ relative to their amorphous PEGDA/LiTFSI/TEGDME counterpart. Comparisons on other thermal and electrochemical properties of the two types of PEMs are presented in Chapter IV. For the PEGDA/LiTFSI/SCN PEMs, fundamental study was carried out to clarify the relationship between σ and glass transition temperature (T g). In lithium salt/polymer binary PEMs, increase in Tg and reduction in σ were observed; these may be attributed to ion-dipole complexation between dissociated lithium cations and ether oxygen upon salt addition. Notably, above the threshold salt concentration of 7 mol %, dual loss tangent peaks were observed in dynamic mechanical studies. These might be ascribed to segmental relaxations of ion-dipole complexed networks and that of polymer chains surrounding the undissociated lithium salt acting like "fillers". Upon SCN incorporation, these two peaks merged into one that was further suppressed below the Tg of the pure network, whereas σ improved to the superionic conductor level. The role of SCN on the σ enhancement as both plasticizer for the polymer network and ionizer for the salt is discussed in Chapter V. In order to improve the mechanical toughness of the highly conductive PEGDA/LiTFSI/SCN PEM, effects of prepolymer molecular weight on mechanical and electrochemical properties of PEMs were further investigated. By increasing molecular weight of PEGDA from 700 to 6000 g/mol, toughness and elongation at break were enhanced as expected. Interestingly, improved ionic conductivity was achieved simultaneously. The dual improvement may be attributed to the less chemical crosslinked points and the more flexible chain motion in the looser network of PEGDA6000-PEM relative to its PEGDA700 counterpart. Subsequently, high thermal stability and electrochemical stability of both types of PEMs, as well as the satisfactory room temperature charge/discharge cycling performance of PEM containing lithium ion half-cells were observed. The pertinent information is documented in Chapter VI. Finally, the investigation of the charge/discharge cycling performance of solid-state LiFePO4 half-cells at an elevated temperature of 60°C is discussed in Chapter VII. In the half-cells, particularly, SCN plasticized PEMs with and without electrolyte modifier lithium bis(oxalato)borate (LiBOB) were respectively employed. Rapid decline of capacity and increase of cell resistance were found in the unmodified PEM containing cell; however, these deteriorations were greatly suppressed upon LiBOB modification. Electrochemical and thermal compatibility of PEMs towards different electrodes were examined in several symmetric cells and half-cells. Detailed characterization on LiFePO 4 electrodes and PEMs retrieved from these cells implied that the observed battery failure might be triggered by an amide-forming side reaction that took place at the interface of a SCN plasticized PEM and a lithium electrode at high temperature. Of particular importance is the fact that this detrimental side reaction was effectively suppressed upon LiBOB electrolyte modifier addition. Plausible mechanisms are discussed.
Structures and fabrication techniques for solid state electrochemical devices
Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.
2012-10-09
Porous substrates and associated structures for solid-state electrochemical devices, such as solid-oxide fuel cells (SOFCs), are low-cost, mechanically strong and highly electronically conductive. Some preferred structures have a thin layer of an electrocatalytically active material (e.g., Ni--YSZ) coating a porous high-strength alloy support (e.g., SS-430) to form a porous SOFC fuel electrode. Electrode/electrolyte structures can be formed by co-firing or constrained sintering processes.
Structures and fabrication techniques for solid state electrochemical devices
Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.
2008-04-01
Porous substrates and associated structures for solid-state electrochemical devices, such as solid-oxide fuel cells (SOFCs), are low-cost, mechanically strong and highly electronically conductive. Some preferred structures have a thin layer of an electrocatalytically active material (e.g., Ni--YSZ) coating a porous high-strength alloy support (e.g., SS-430) to form a porous SOFC fuel electrode. Electrode/electrolyte structures can be formed by co-firing or constrained sintering processes.
Titanium dioxide@polypyrrole core-shell nanowires for all solid-state flexible supercapacitors
NASA Astrophysics Data System (ADS)
Yu, Minghao; Zeng, Yinxiang; Zhang, Chong; Lu, Xihong; Zeng, Chenghui; Yao, Chenzhong; Yang, Yangyi; Tong, Yexiang
2013-10-01
Herein, we developed a facile two-step process to synthesize TiO2@PPy core-shell nanowires (NWs) on carbon cloth and reported their improved electrochemical performance for flexible supercapacitors (SCs). The fabricated solid-state SC device based on TiO2@PPy core-shell NWs not only has excellent flexibility, but also exhibits remarkable electrochemical performance.Herein, we developed a facile two-step process to synthesize TiO2@PPy core-shell nanowires (NWs) on carbon cloth and reported their improved electrochemical performance for flexible supercapacitors (SCs). The fabricated solid-state SC device based on TiO2@PPy core-shell NWs not only has excellent flexibility, but also exhibits remarkable electrochemical performance. Electronic supplementary information (ESI) available: Experimental details, XRD pattern, FT-IR absorption spectrum and CV curves of TiO2@PPy NWs, and SEM images of the PPy. See DOI: 10.1039/c3nr03578f
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard
Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode, a semi-solid cathode that includes a suspension of an active material and a conductive material in a liquid electrolyte, and an ion permeable membrane disposed between the anode and the cathode. The semi-solid cathode has a thickness in the range of about 250 .mu.m-2,500 .mu.m, and the electrochemical cell has an area specific capacity of at leastmore » 5 mAh/cm.sup.2 at a C-rate of C/2.« less
NASA Astrophysics Data System (ADS)
Jackman, Spencer D.
Lithium aluminum titanium phosphate (LATP) with formula Li1.3Al0.3Ti1.7(PO4)3 was analyzed and tested to better understand its applicability as a solid state ion conducting ceramic material for electrochemical applications. Sintered samples were obtained from Ceramatec, Inc. in Salt Lake City and characterized in terms of density, phase-purity, fracture toughness, Young's modulus, thermal expansion behavior, mechanical strength, a.c. and d.c. ionic conductivity, and susceptibility to static and electrochemical corrosion in aqueous Li salt solutions. It was shown that LATP is prone to microcrack generation because of high thermal expansion anisotropy. A.c. impedance spectra of high-purity LATP of varying grain sizes showed that microcracking had a negative impact on the ionic conduction of Li along grain boundaries, with fine-grained (1.7±0.7 µm) LATP having twice the ionic conductivity of the same purity of coarse-grained (4.8±1.9 µm) LATP at 50°C. LATP with detectible secondary phases had lower ionic conductivity for similar grain sizes, as would be expected. The Young's modulus of fine-grained LATP was measured to be 115 GPa, and the highest biaxial strength was 191±11 MPa when tested in mineral oil, 144±13 MPa as measured in air, and 26±7 MPa after exposure to deionized water, suggesting that LATP undergoes stress-corrosion cracking. After exposure to LiOH, the strength was 76±19 MPa. This decrease in strength was observed despite there being no measureable change in a.c. impedance spectra, X-ray diffraction, or sample mass, suggesting phosphate glasses at grain boundaries. The chemical and electrochemical stability of high-purity LATP in aqueous electrochemical cells was evaluated using LiOH, LiCl, LiNO3, and LiCOOCH3 salts as the Li source. LATP was found to be most stable between pH 8-9, with the longest cell operating continuously at 25 mA cm-2 for 625 hours at 40°C in LiCOOCH3. At pH values outside of the 7-10 range, eventual membrane degradation was observed in all aqueous systems under electrochemical conditions. While LATP was surprisingly resistant to static corrosion in a hot, aqueous LiOH solution, electrochemical degradation was observed at the cathode due to subsurface pitting. Strength measurements were more instructive than impedance measurements in detecting this degradation.
Liquid spreading on ceramic-coated carbon nanotube films and patterned microstructures
NASA Astrophysics Data System (ADS)
Zhao, Hangbo; Hart, A. John
2015-11-01
We study the capillary-driven liquid spreading behavior on films and microstructures of ceramic-coated vertically aligned carbon nanotubes (CNTs) fabricated on quartz substrates. The nanoscale porosity and micro-scale dimensions of the CNT structures, which can be precisely varied by the fabrication process, enable quantitative measurements that can be related to analytical models of the spreading behavior. Moreover, the conformal alumina coating by atomic layer deposition (ALD) prevents capillary-induced deformation of the CNTs upon meniscus recession, which has complicated previous studies of this topic. Washburn-like liquid spreading behavior is observed on non-patterned CNT surfaces, and is explained using a scaling model based on the balance of capillary driving force and the viscous drag force. Using these insights, we design patterned surfaces with controllable spreading rates and study the contact line pinning-depinning behavior. The nanoscale porosity, controllable surface chemistry, and mechanical stability of coated CNTs provide significantly enhanced liquid-solid interfacial area compared to solid microstructures. As a result, these surface designs may be useful for applications such as phase-change heat transfer and electrochemical energy storage. Funding for this project is provided by the National Institutes of Health and the MIT Center for Clean Water and Clean Energy supported by the King Fahd University of Petroleum and Minerals.
Romanenko, Konstantin; Pringle, Jennifer M; O'Dell, Luke A; Forsyth, Maria
2015-07-15
Organic ionic plastic crystals (OIPCs) show strong potential as solid-state electrolytes for lithium battery applications, demonstrating promising electrochemical performance and eliminating the need for a volatile and flammable liquid electrolyte. The ionic conductivity (σ) in these systems has recently been shown to depend strongly on polycrystalline morphology, which is largely determined by the sample's thermal history. [K. Romanenko et al., J. Am. Chem. Soc., 2014, 136, 15638]. Tailoring this morphology could lead to conductivities sufficiently high for battery applications, so a more complete understanding of how phenomena such as solid-solid phase transitions can affect the sample morphology is of significant interest. Anisotropic relaxation of nuclear spin magnetisation provides a new MRI based approach for studies of polycrystalline materials at both a macroscopic and molecular level. In this contribution, morphology alterations induced by solid-solid phase transitions in triisobutyl(methyl)phosphonium bis(fluorosulfonyl)imide (P1444FSI) and diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate (P1224PF6) are examined using magnetic resonance imaging (MRI), alongside nuclear magnetic resonance (NMR) spectroscopy, diffusion measurements and conductivity data. These observations are linked to molecular dynamics and structural behaviour crucial for the conductive properties of OIPCs. A distinct correlation is established between the conductivity at a given temperature, σ(T), and the intensity of the narrow NMR signal that is attributed to a mobile fraction, fm(T), of ions in the OIPC. To explain these findings we propose an analogy with the well-studied relationship between permeability (k) and void fraction (θ) in porous media, with k(θ) commonly quantified by a power-law dependence that can also be employed to describe σ(fm).
Strelcov, Evgheni; Yang, Sang Mo; Jesse, Stephen; ...
2016-04-21
Energy technologies of the 21st century require an understanding and precise control over ion transport and electrochemistry at all length scales – from single atoms to macroscopic devices. Our short review provides a summary of recent studies dedicated to methods of advanced scanning probe microscopy for probing electrochemical transformations in solids at the meso-, nano- and atomic scales. In this discussion we present the advantages and limitations of several techniques and a wealth of examples highlighting peculiarities of nanoscale electrochemistry.
Strelcov, Evgheni; Yang, Sang Mo; Jesse, Stephen; Balke, Nina; Vasudevan, Rama K.; Kalinin, Sergei V.
2016-01-01
Energy technologies of the 21st century require understanding and precise control over ion transport and electrochemistry at all length scales – from single atoms to macroscopic devices. This short review provides a summary of recent works dedicated to methods of advanced scanning probe microscopy for probing electrochemical transformations in solids at the meso-, nano- and atomic scales. Discussion presents advantages and limitations of several techniques and a wealth of examples highlighting peculiarities of nanoscale electrochemistry. PMID:27146961
A general soft-enveloping strategy in the templating synthesis of mesoporous metal nanostructures.
Fang, Jixiang; Zhang, Lingling; Li, Jiang; Lu, Lu; Ma, Chuansheng; Cheng, Shaodong; Li, Zhiyuan; Xiong, Qihua; You, Hongjun
2018-02-06
Metal species have a relatively high mobility inside mesoporous silica; thus, it is difficult to introduce the metal precursors into silica mesopores and suppress the migration of metal species during a reduction process. Therefore, until now, the controlled growth of metal nanocrystals in a confined space, i.e., mesoporous channels, has been very challenging. Here, by using a soft-enveloping reaction at the interfaces of the solid, liquid, and solution phases, we successfully control the growth of metallic nanocrystals inside a mesoporous silica template. Diverse monodispersed nanostructures with well-defined sizes and shapes, including Ag nanowires, 3D mesoporous Au, AuAg alloys, Pt networks, and Au nanoparticle superlattices are successfully obtained. The 3D mesoporous AuAg networks exhibit enhanced catalytic activities in an electrochemical methanol oxidation reaction. The current soft-enveloping synthetic strategy offers a robust approach to synthesize diverse mesoporous metal nanostructures that can be utilized in catalysis, optics, and biomedicine applications.
The self-assembly of redox active peptides: Synthesis and electrochemical capacitive behavior.
Piccoli, Julia P; Santos, Adriano; Santos-Filho, Norival A; Lorenzón, Esteban N; Cilli, Eduardo M; Bueno, Paulo R
2016-05-01
The present work reports on the synthesis of a redox-tagged peptide with self-assembling capability aiming applications in electrochemically active capacitive surfaces (associated with the presence of the redox centers) generally useful in electroanalytical applications. Peptide containing ferrocene (fc) molecular (redox) group (Ac-Cys-Ile-Ile-Lys(fc)-Ile-Ile-COOH) was thus synthesized by solid phase peptide synthesis (SPPS). To obtain the electrochemically active capacitive interface, the side chain of the cysteine was covalently bound to the gold electrode (sulfur group) and the side chain of Lys was used to attach the ferrocene in the peptide chain. After obtaining the purified redox-tagged peptide, the self-assembly and redox capability was characterized by cyclic voltammetry (CV) and electrochemical impedance-based capacitance spectroscopy techniques. The obtained results confirmed that the redox-tagged peptide was successfully attached by forming an electroactive self-assembled monolayer onto gold electrode. The design of redox active self-assembly ferrocene-tagged peptide is predictably useful in the development of biosensor devices precisely to detect, in a label-free platform, those biomarkers of clinical relevance. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 357-367, 2016. © 2016 Wiley Periodicals, Inc.
Electrochemical processing of solid waste
NASA Technical Reports Server (NTRS)
Bockris, John OM.
1987-01-01
An investigation of electrochemical waste treatment methods suitable for closed, or partially closed, life support systems for manned space exploration is discussed. The technique being investigated involves the electrolysis of solid waste where the aim is to upgrade waste material (mainly fecal waste) to generate gases that can be recycled in a space station or planetary space environment.
Chen, Chen; Zhang, Ning; He, Yulu; Liang, Bo; Ma, Renzhi; Liu, Xiaohe
2016-09-07
Incorporation of two transition metals offers an effective method to enhance the electrochemical performance in supercapacitors for transition metal compound based electrodes. However, such a configuration is seldom concerned in pyrophosphates. Here, amorphous phase Co-Ni pyrophosphates are fabricated as electrodes in supercapacitors. Through controllably adjusting the ratios of Co and Ni as well as the calcination temperature, the electrochemical performance can be tuned. An optimized amorphous Ni-Co pyrophosphate exhibits much higher specific capacitance than monometallic Ni and Co pyrophosphates and shows excellent cycling ability. When employing Ni-Co pyrophosphates as positive electrode and activated carbon as a negative electrode, the fabricated asymmetric supercapacitor cell exhibits favorable capacitance and cycling ability. This study provides facile methods to improve the transition metal pyrophosphate electrodes for efficient electrodes in electrochemical energy storage devices.
Method and apparatus for producing oxygenates from hydrocarbons
Kong, P.C.; Lessing, P.A.
1995-06-27
A chemical reactor for oxygenating hydrocarbons includes: (a) a dielectric barrier discharge plasma cell, the plasma cell comprising a pair of electrodes having a dielectric material and void therebetween, the plasma cell comprising a hydrocarbon gas inlet feeding to the void; (b) a solid oxide electrochemical cell, the electrochemical cell comprising a solid oxide electrolyte positioned between a porous cathode and a porous anode, an oxygen containing gas inlet stream feeding to the porous cathode side of the electrochemical cell; (c) a first gas passageway feeding from the void to the anode side of the electrochemical cell; and (d) a gas outlet feeding from the anode side of the electrochemical cell to expel reaction products from the chemical reactor. A method of oxygenating hydrocarbons is also disclosed. 4 figs.
NASA Astrophysics Data System (ADS)
Ru, Juanjian; Hua, Yixin; Xu, Cunying; Li, Jian; Li, Yan; Wang, Ding; Zhou, Zhongren; Gong, Kai
2015-12-01
Porous lead with different shapes was firstly prepared from controlled geometries of solid PbO bulk by in situ electrochemical reduction in choline chloride-ethylene glycol deep eutectic solvents at cell voltage 2.5 V and 353 K. The electrochemical behavior of PbO powders on cavity microelectrode was investigated by cyclic voltammetry. It is indicated that solid PbO can be directly reduced to metal in the solvent and a nucleation loop is apparent. Constant voltage electrolysis demonstrates that PbO pellet can be completely converted to metal for 13 h, and the current efficiency and specific energy consumption are about 87.79% and 736.82 kWh t-1, respectively. With the electro-deoxidation progress on the pellet surface, the reduction rate reaches the fastest and decreases along the distance from surface to inner center. The morphologies of metallic products are porous and mainly consisted of uniform particles which connect with each other by finer strip-shaped grains to remain the geometry and macro size constant perfectly. In addition, an empirical model of the electro-deoxidation process from spherical PbO bulk to porous lead is also proposed. These findings provide a novel and simple route for the preparation of porous metals from oxide precursors in deep eutectic solvents at room temperature.
Asiabi, Hamid; Yamini, Yadollah; Seidi, Shahram; Esrafili, Ali; Rezaei, Fatemeh
2015-06-05
In this work, a novel and efficient on-line in-tube solid phase microextraction method followed by high performance liquid chromatography was developed for preconcentration and determination of trace amounts of parabens. A nanostructured polyaniline-polypyrrole composite was electrochemically deposited on the inner surface of a stainless steel tube and used as the extraction phase. Several important factors that influence the extraction efficiency, including type of solid-phase coating, extraction and desorption times, flow rates of the sample solution and eluent, pH, and ionic strength of the sample solution were investigated and optimized. Under the optimal conditions, the limits of detection were in the range of 0.02-0.04 μg L(-1). This method showed good linearity for parabens in the range of 0.07-50 μg L(-1), with coefficients of determination better than 0.998. The intra- and inter-assay precisions (RSD%, n=3) were in the range of 5.9-7.0% and 4.4-5.7% at three concentration levels of 2, 10, and 20 μg L(-1), respectively. The extraction recovery values for the spiked samples were in the acceptable range of 80.3-90.2%. The validated method was successfully applied for analysis of methyl-, ethyl-, and propyl parabens in some water, milk, and juice samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Electrochemical properties of all solid state Li/S battery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Ji-Hyun; Park, Jin-Woo; Wang, Qing
All-solid-state lithium/sulfur (Li/S) battery is prepared using siloxane cross-linked network solid electrolyte at room temperature. The solid electrolytes show high ionic conductivity and good electrochemical stability with lithium and sulfur. In the first discharge curve, all-solid-state Li/S battery shows three plateau potential regions of 2.4 V, 2.12 V and 2.00 V, respectively. The battery shows the first discharge capacity of 1044 mAh g{sup −1}-sulfur at room temperature. This first discharge capacity rapidly decreases in 4th cycle and remains at 512 mAh g{sup −1}-sulfur after 10 cycles.
Solid-state energy storage module employing integrated interconnect board
Rouillard, Jean; Comte, Christophe; Daigle, Dominik; Hagen, Ronald A.; Knudson, Orlin B.; Morin, Andre; Ranger, Michel; Ross, Guy; Rouillard, Roger; St-Germain, Philippe; Sudano, Anthony; Turgeon, Thomas A.
2000-01-01
The present invention is directed to an improved electrochemical energy storage device. The electrochemical energy storage device includes a number of solid-state, thin-film electrochemical cells which are selectively interconnected in series or parallel through use of an integrated interconnect board. The interconnect board is typically disposed within a sealed housing which also houses the electrochemical cells, and includes a first contact and a second contact respectively coupled to first and second power terminals of the energy storage device. The interconnect board advantageously provides for selective series or parallel connectivity with the electrochemical cells, irrespective of electrochemical cell position within the housing. In one embodiment, a sheet of conductive material is processed by employing a known milling, stamping, or chemical etching technique to include a connection pattern which provides for flexible and selective interconnecting of individual electrochemical cells within the housing, which may be a hermetically sealed housing. Fuses and various electrical and electro-mechanical devices, such as bypass, equalization, and communication devices for example, may also be mounted to the interconnect board and selectively connected to the electrochemical cells.
Wang, Hailiang; Sapi, Andras; Thompson, Christopher M; Liu, Fudong; Zherebetskyy, Danylo; Krier, James M; Carl, Lindsay M; Cai, Xiaojun; Wang, Lin-Wang; Somorjai, Gabor A
2014-07-23
We synthesize platinum nanoparticles with controlled average sizes of 2, 4, 6, and 8 nm and use them as model catalysts to study isopropanol oxidation to acetone in both the liquid and gas phases at 60 °C. The reaction at the solid/liquid interface is 2 orders of magnitude slower than that at the solid/gas interface, while catalytic activity increases with the size of platinum nanoparticles for both the liquid-phase and gas-phase reactions. The activation energy of the gas-phase reaction decreases with the platinum nanoparticle size and is in general much higher than that of the liquid-phase reaction which is largely insensitive to the size of catalyst nanoparticles. Water substantially promotes isopropanol oxidation in the liquid phase. However, it inhibits the reaction in the gas phase. The kinetic results suggest different mechanisms between the liquid-phase and gas-phase reactions, correlating well with different orientations of IPA species at the solid/liquid interface vs the solid/gas interface as probed by sum frequency generation vibrational spectroscopy under reaction conditions and simulated by computational calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard
Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode and a semi-solid cathode. The semi-solid cathode includes a suspension of an active material of about 35% to about 75% by volume of an active material and about 0.5% to about 8% by volume of a conductive material in a non-aqueous liquid electrolyte. An ion-permeable membrane is disposed between the anode and the semi-solid cathode. The semi-solidmore » cathode has a thickness of about 250 .mu.m to about 2,000 .mu.m, and the electrochemical cell has an area specific capacity of at least about 7 mAh/cm.sup.2 at a C-rate of C/4. In some embodiments, the semi-solid cathode slurry has a mixing index of at least about 0.9.« less
Reversible superconductor-insulator transition in LiTi2O4 induced by Li-ion electrochemical reaction
Yoshimatsu, K.; Niwa, M.; Mashiko, H.; Oshima, T.; Ohtomo, A.
2015-01-01
Transition metal oxides display various electronic and magnetic phases such as high-temperature superconductivity. Controlling such exotic properties by applying an external field is one of the biggest continuous challenges in condensed matter physics. Here, we demonstrate clear superconductor-insulator transition of LiTi2O4 films induced by Li-ion electrochemical reaction. A compact electrochemical cell of pseudo-Li-ion battery structure is formed with a superconducting LiTi2O4 film as an anode. Li content in the film is controlled by applying a constant redox voltage. An insulating state is achieved by Li-ion intercalation to the superconducting film by applying reduction potential. In contrast, the superconducting state is reproduced by applying oxidation potential to the Li-ion intercalated film. Moreover, superconducting transition temperature is also recovered after a number of cycles of Li-ion electrochemical reactions. This complete reversible transition originates in difference in potentials required for deintercalation of initially contained and electrochemically intercalated Li+ ions. PMID:26541508
Yoshimatsu, K; Niwa, M; Mashiko, H; Oshima, T; Ohtomo, A
2015-11-06
Transition metal oxides display various electronic and magnetic phases such as high-temperature superconductivity. Controlling such exotic properties by applying an external field is one of the biggest continuous challenges in condensed matter physics. Here, we demonstrate clear superconductor-insulator transition of LiTi2O4 films induced by Li-ion electrochemical reaction. A compact electrochemical cell of pseudo-Li-ion battery structure is formed with a superconducting LiTi2O4 film as an anode. Li content in the film is controlled by applying a constant redox voltage. An insulating state is achieved by Li-ion intercalation to the superconducting film by applying reduction potential. In contrast, the superconducting state is reproduced by applying oxidation potential to the Li-ion intercalated film. Moreover, superconducting transition temperature is also recovered after a number of cycles of Li-ion electrochemical reactions. This complete reversible transition originates in difference in potentials required for deintercalation of initially contained and electrochemically intercalated Li(+) ions.
Solid State Ionic Materials - Proceedings of the 4th Asian Conference on Solid State Ionics
NASA Astrophysics Data System (ADS)
Chowdari, B. V. R.; Yahaya, M.; Talib, I. A.; Salleh, M. M.
1994-07-01
The Table of Contents for the full book PDF is as follows: * Preface * I. INVITED PAPERS * Diffusion of Cations and Anions in Solid Electrolytes * Silver Ion Conductors in the Crystalline State * NMR Studies of Superionic Conductors * Hall Effect and Thermoelectric Power in High Tc Hg-Ba-Ca-Cu-O Ceramics * Solid Electrolyte Materials Prepared by Sol-Gel Chemistry * Preparation of Proton-Conducting Gel Films and their Application to Electrochromic Devices * Thin Film Fuel Cells * Zirconia based Solid Oxide Ion Conductors in Solid Oxide Fuel Cells * The Influence of Anion Substitution on Some Phosphate-based Ion Conducting Glasses * Lithium Intercalation in Carbon Electrodes and its Relevance in Rocking Chair Batteries * Chemical Sensors using Proton Conducting Ceramics * NMR/NQR Studies of Y-Ba-Cu-O Superconductors * Silver Molybdate Glasses and Battery Systems * New Highly Conducting Polymer Ionics and their Application in Electrochemical Devices * Study of Li Electrokinetics on Oligomeric Electrolytes using Microelectrodes * Calculation of Conductivity for Mixed-Phase Electrolytes PEO-MX-Immiscible Additive by Means of Effective Medium Theory * II. CONTRIBUTED PAPERS * Phase Relationship and Electrical Conductivity of Sr-V-O System with Vanadium Suboxide * Amorphous Li+ Ionic Conductors in Li2SO4-Li2O-P2O5 System * Fast Ion Transport in KCl-Al2O3 Composites * The Effect of the Second Phase Precipitation on the Ionic Conductivity of Zr0.85Mg0.15O1.85 * Conductivity Measurements and Phase Relationships in CaCl2-CaHCl Solid Electrolyte * Relationships Between Crystal Structure and Sodium Ion Conductivity in Na7Fe4(AsO4)6 and Na3Al2(AsO4)3 * Electrical Conductivity and Solubility Limit of Ti4+ Ion in Na1+x TiyZr2-ySixP3-xO12 System * Study on Sodium Fast Ion Conductors of Na1+3xAlxTi2-xSi2xP3-2xO12 System * Influences of Zirconia on the Properties of β''-Alumina Ceramics * Decay of Luminescence from Cr3+ Ions in β-Alumina * Lithium Ion Conductivity in the Li4XO4-Li2SO4 (X=Si, Ge, Ti) Systems * A DSC and Conductivity Study of the Influence of Cesium Ion on the Beta-Alpha Transition in Silver Iodide * Phase Diagrams, Stoichiometries and Properties of Bi4V2O11:M2+ Solid Electrolytes * Physical Properties of Electrodeposited Silver Chromotungstate * Pseudopotential Study of Bonding in the Superionic Material AgI: The Effect of Statistical Distribution of Mobile Ions * Cubic Phase Dominant Region in Submicron BaTiO3 Particles * The Crystallization of CoZr Amorphous Alloys via Electrical Resistivity * Cation Ratio Related Properties of Synthetic Mg/Al Layered Double Hydroxide and it's Nanocomposite * DC Conductivity of Nano-Particles of Silver Iodide * Effect of Anomalous Diffusion on Quasielastic Scattering in Superionic Conductors * Computer Simulation Study of Conductivity Enhancement in Superionic-Insulator Composites * Dynamics of Superionic Silver and Copper Iodide Salt Melts * Influence of Dopant Salt AgI, Glass Modifier Ag2O and Glass Formers (SeO3 + MoO3) on Electrical Conductivity in Quaternary Glassy System * Fast Ion Conductivity in the Presence of Competitive Network Formers * Role of Alkali Ions in Borate Glasses * Inelastic Light Scattering in Cadmium Borate Glasses * Investigation on Transport Properties of Mixed Glass System 0.75 [0.75AgI:0.25AgCl]. 0.25[Ag2O:CrO3] * Conduction Mechanism in Lithium Tellurite Glasses * Optimized Silver Tungstoarsenate Glass Electrolyte * Stabilized Superfine Zirconia Powder Prepared by Sol-Gel Process * Study of New PAN-based Electrolytes * Electrical and Thermal Characterization of PVA based Polymer Electrolytes * Conductive Electroactive Polymers: Versatile Solid State Ionic Materials * The Role of Ag2O Addition on the Superconducting Properties of Y-124 Compound * Absorption Spectra Studies of the C60 Films on Transition Metal Film Substrates * Effect of Alumina Dispersal on the Conductivity and Crystallite Size of Polymer Electrolyte * New Mixed Galss-Polymer Solid Electrolytes * The Sputtered La0.5Sr0.5MnO3-Yttria Stabilized Zirconia Composite Electrode in Solid Oxide Fuel Cells * A Solid Electrochemical Ferro Sensor for Molten Matte * SnO2-based Sensor for H2S Monitoring-Electrical Conductivity Measurements and Device Testing * Humidity Sensor using Potassium Tungsten Bronze Synthesized from Peroxo-Polytungstic Acid * Study on Li/LiClO4/V6O13 Test Cells * Fabrication and Characterisation of Some Solid Electrolyte Cells Containing CuI and Silver Oxysalts * Solid State Battery of Proton Conducting Sodium Thiosulphate Pentahydrate * Low Temperature Synthesis of LiMn2O4 for Secondary Lithium Batteries * Effect of Different Cathode Active Materials on Battery Performance with Silver Molybdate Electrolyte Partially Substituted with Zinc Oxide * Fabrication and Characterization of Electrochemical Cells based on Silver Molybdoarsenate and Silver Tungstoarsenate Glass Electrolytes * Lorentz Force Dependence of Dissipation in a Granular Superconductor * Late Entry (Invited paper) * Simultaneous Voltammetry and Spectroscopy of Polyaniline in Propylene Carbonate * Author Index * Tentative List of Participants
High Power Electrochemical Capacitors
2012-03-23
electrochemical properties of vanadium oxide aerogels prepared by a freeze-drying process. Journal of the Electrochemical Society, 2004. 151(5): p...Electrochemical Society, 2002. 149(1): p. A26-A30. 12. Rolison, D.R. and B. Dunn, Electrically conductive oxide aerogels : new materials in...surface area vanadium oxide aerogels . Electrochemical and Solid-State Letters, 2000. 3(10): p. 457-459. 14. Shembel, E., et al., Synthesis, investigation
Development of a proton-exchange membrane electrochemical reclaimed water post-treatment system
NASA Technical Reports Server (NTRS)
Kaba, Lamine; Verostko, Charles E.; Hitchens, G. D.; Murphy, Oliver J.
1991-01-01
A single-cell electrochemical reactor that utilizes a proton exchange membrane (PEM) as a solid electrolyte is being investigated for posttreatment of reclaimed waste waters with low or negligible electrolyte content. Posttreatment is a final 'polishing' of reclaimed waste waters prior to reuse, and involves removing organic impurities at levels as high as 100 ppm to below 500 ppb total organic carbon (TOC) content to provide disinfection. The system does not utilize or produce either expendable hardware components or chemicals and has no moving parts. Test data and kinetic analysis are presented. The feasibility and application for water reclamation processes in controlled ecological environments (e.g., lunar/Mars habitats) are also presented. Test results show that the electrochemical single cell reactor provides effective posttreatment.
Fuel cell generator containing a gas sealing means
Makiel, J.M.
1987-02-03
A high temperature solid electrolyte electrochemical generator is made, operating with flowing fuel gas and oxidant gas, the generator having a thermal insulation layer, and a sealing means contacting or contained within the insulation, where the sealing means is effective to control the contact of the various gases utilized in the generator. 5 figs.
Enhanced solid-phase recombinase polymerase amplification and electrochemical detection.
Del Río, Jonathan Sabaté; Lobato, Ivan Magriñà; Mayboroda, Olena; Katakis, Ioanis; O'Sullivan, Ciara K
2017-05-01
Recombinase polymerase amplification (RPA) is an elegant method for the rapid, isothermal amplification of nucleic acids. Here, we elucidate the optimal surface chemistry for rapid and efficient solid-phase RPA, which was fine-tuned in order to obtain a maximum signal-to-noise ratio, defining the optimal DNA probe density, probe-to-lateral spacer ratio (1:0, 1:1, 1:10 and 1:100) and length of a vertical spacer of the probe as well as investigating the effect of different types of lateral spacers. The use of different labelling strategies was also examined in order to reduce the number of steps required for the analysis, using biotin or horseradish peroxidase-labelled reverse primers. Optimisation of the amplification temperature used and the use of surface blocking agents were also pursued. The combination of these changes facilitated a significantly more rapid amplification and detection protocol, with a lowered limit of detection (LOD) of 1 · 10 -15 M. The optimised protocol was applied to the detection of Francisella tularensis in real samples from hares and a clear correlation with PCR and qPCR results observed and the solid-phase RPA demonstrated to be capable of detecting 500 fM target DNA in real samples. Graphical abstract Relative size of thiolated lateral spacers tested versus the primer and the uvsx recombinase protein.
Mechanism of Formation of Li 7 P 3 S 11 Solid Electrolytes through Liquid Phase Synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuxing; Lu, Dongping; Bowden, Mark
Crystalline Li7P3S11 is a promising solid electrolyte for all solid state lithium/lithium ion batteries. A controllable liquid phase synthesis of Li7P3S11 is more desirable compared to conventional mechanochemical synthesis, but recent attempts suffer from reduced ionic conductivities. Here we elucidate the formation mechanism of crystalline Li7P3S11 synthesized in the liquid phase (acetonitrile, or ACN). We conclude that the crystalline Li7P3S11 forms through a two-step reaction: 1) formation of solid Li3PS4∙ACN and amorphous Li2S∙P2S5 phases in the liquid phase; 2) solid-state conversion of the two phases. The implication of this two-step reaction mechanism to the morphology control and the transport propertiesmore » of liquid phase synthesized Li7P3S11 is identified and discussed.« less
Xing, Li-Li; Li, Da-Peng; Hu, Shu-Xin; Jing, Huai-Yu; Fu, Honglan; Mai, Zhen-Hong; Li, Ming
2006-02-08
Controllable depositing of relatively thick inorganic sublayers into organic templates to fabricate organic-inorganic superlattices is of great importance. We report a novel approach to fabricating phospholipid/Ni(OH)(2) superlattices by electrochemical deposition of the inorganic component into solid-supported multilamellar templates. The well-ordered and highly oriented multilamellar templates are produced by spreading small drops of lipid solution on silicon surfaces and letting the solvent evaporate slowly. The templates which are used as working electrodes preserve the lamellar structure in the electrolyte solution. The resulting superlattices are highly oriented. The thickness of the nickel hydroxide is controlled by the concentration of nickel ions in the electrolyte bath. The electron density profiles derived from the X-ray diffraction data reveal that the thickness of the nickel hydroxide sublayers increases from 15 to 27 A as the concentration of nickel nitrate increases from 0.005 mol/L to 0.08 mol/L. We expect that the new method can be extended to depositing a variety of inorganic components including metals, oxides, and semiconductors.
Oh, Hyung-Suk; Nong, Hong Nhan; Reier, Tobias; Bergmann, Arno; Gliech, Manuel; Ferreira de Araújo, Jorge; Willinger, Elena; Schlögl, Robert; Teschner, Detre; Strasser, Peter
2016-09-28
Redox-active support materials can help reduce the noble-metal loading of a solid chemical catalyst while offering electronic catalyst-support interactions beneficial for catalyst durability. This is well known in heterogeneous gas-phase catalysis but much less discussed for electrocatalysis at electrified liquid-solid interfaces. Here, we demonstrate experimental evidence for electronic catalyst-support interactions in electrochemical environments and study their role and contribution to the corrosion stability of catalyst/support couples. Electrochemically oxidized Ir oxide nanoparticles, supported on high surface area carbons and oxides, were selected as model catalyst/support systems for the electrocatalytic oxygen evolution reaction (OER). First, the electronic, chemical, and structural state of the catalyst/support couple was compared using XANES, EXAFS, TEM, and depth-resolved XPS. While carbon-supported oxidized Ir particle showed exclusively the redox state (+4), the Ir/IrOx/ATO system exhibited evidence of metal/metal-oxide support interactions (MMOSI) that stabilized the metal particles on antimony-doped tin oxide (ATO) in sustained lower Ir oxidation states (Ir(3.2+)). At the same time, the growth of higher valent Ir oxide layers that compromise catalyst stability was suppressed. Then the electrochemical stability and the charge-transfer kinetics of the electrocatalysts were evaluated under constant current and constant potential conditions, where the analysis of the metal dissolution confirmed that the ATO support mitigates Ir(z+) dissolution thanks to a stronger MMOSI effect. Our findings raise the possibility that MMOSI effects in electrochemistry-largely neglected in the past-may be more important for a detailed understanding of the durability of oxide-supported nanoparticle OER catalysts than previously thought.
Gradient isolator for flow field of fuel cell assembly
Ernst, W.D.
1999-06-15
Isolator(s) include isolating material and optionally gasketing material strategically positioned within a fuel cell assembly. The isolating material is disposed between a solid electrolyte and a metal flow field plate. Reactant fluid carried by flow field plate channel(s) forms a generally transverse electrochemical gradient. The isolator(s) serve to isolate electrochemically a portion of the flow field plate, for example, transversely outward from the channel(s), from the electrochemical gradient. Further, the isolator(s) serve to protect a portion of the solid electrolyte from metallic ions. 4 figs.
Gradient isolator for flow field of fuel cell assembly
Ernst, William D.
1999-01-01
Isolator(s) include isolating material and optionally gasketing material strategically positioned within a fuel cell assembly. The isolating material is disposed between a solid electrolyte and a metal flow field plate. Reactant fluid carried by flow field plate channel(s) forms a generally transverse electrochemical gradient. The isolator(s) serve to isolate electrochemically a portion of the flow field plate, for example, transversely outward from the channel(s), from the electrochemical gradient. Further, the isolator(s) serve to protect a portion of the solid electrolyte from metallic ions.
Chemical and Electrochemical Processing of Aluminum Dross Using Molten Salts
NASA Astrophysics Data System (ADS)
Yan, Xiao Y.
2008-04-01
A novel molten salt process was investigated, where Al, as metal or contained in Al2O3 and AlN, was recovered from Al dross by chemical or direct electrochemical reduction in electrolytic cells. Electrolysis experiments were carried out under argon at temperatures from 1123 to 1243 K. In order to better understand the reduction behavior, the as-received Al dross was simulated using simplified systems, including pure Al2O3, pure AlN, an Al2O3/AlN binary mixture, and an Al2O3/AlN/Al ternary mixture. The reduction of the as-received dross was also studied experimentally. The studies showed that solid Al2O3 was chemically reduced by the Ca in a Ca-saturated Ca-CaCl2 melt to form Al2Ca or electrochemically reduced to Al-rich Al-Ca alloys and that the Al value in the Al2O3 was easily recovered from the Al drosses. It was found experimentally that solid AlN in the drosses could not be calciothermically reduced to any extent, consistent with thermodynamic evaluations. It was also found that the direct electrochemical reduction of the AlN in the drosses was confined to three phase boundaries (3PBs) between the AlN, the electrolyte, and the current collector and could not be enhanced by using the LiCl-containing chloride melt or the chloride-fluoride melts studied. The presence of Al powder in the Al2O3/AlN mixture facilitated the direct electrochemical reduction of both Al2O3 and AlN. The reduction mechanisms are discussed based upon the present experimental observations. Flow sheets for recovering the metallic Al and the Al in the Al2O3 and AlN from Al dross are finally proposed.
Trapped in the coordination sphere: Nitrate ion transfer driven by the cerium(III/IV) redox couple
Ellis, Ross J.; Bera, Mrinal K.; Reinhart, Benjamin; ...
2016-11-07
Redox-driven ion transfer between phases underpins many biological and technological processes, including industrial separation of ions. Here we investigate the electrochemical transfer of nitrate anions between oil and water phases, driven by the reduction and oxidation of cerium coordination complexes in oil phases. We find that the coordination environment around the cerium cation has a pronounced impact on the overall redox potential, particularly with regard to the number of coordinated nitrate anions. Our results suggest a new fundamental mechanism for tuning ion transfer between phases; by 'trapping' the migrating ion inside the coordination sphere of a redox-active complex. Here, thismore » presents a new route for controlling anion transfer in electrochemically-driven separation applications.« less
This study focuses on the application of electrochemical approaches to drinking water copper corrosion problems. Applying electrochemical approaches combined with copper solubility measurements, and solid surface analysis approaches were discussed. Tafel extrapolation and Electro...
This study focuses on the application of electrochemical approaches to drinking water copper corrosion problems. Applying electrochemical approaches combined with copper solubility measurements, and solid surface analysis approaches were discussed. Tafel extrapolation and Electro...
Model Based Optimal Control, Estimation, and Validation of Lithium-Ion Batteries
NASA Astrophysics Data System (ADS)
Perez, Hector Eduardo
This dissertation focuses on developing and experimentally validating model based control techniques to enhance the operation of lithium ion batteries, safely. An overview of the contributions to address the challenges that arise are provided below. Chapter 1: This chapter provides an introduction to battery fundamentals, models, and control and estimation techniques. Additionally, it provides motivation for the contributions of this dissertation. Chapter 2: This chapter examines reference governor (RG) methods for satisfying state constraints in Li-ion batteries. Mathematically, these constraints are formulated from a first principles electrochemical model. Consequently, the constraints explicitly model specific degradation mechanisms, such as lithium plating, lithium depletion, and overheating. This contrasts with the present paradigm of limiting measured voltage, current, and/or temperature. The critical challenges, however, are that (i) the electrochemical states evolve according to a system of nonlinear partial differential equations, and (ii) the states are not physically measurable. Assuming available state and parameter estimates, this chapter develops RGs for electrochemical battery models. The results demonstrate how electrochemical model state information can be utilized to ensure safe operation, while simultaneously enhancing energy capacity, power, and charge speeds in Li-ion batteries. Chapter 3: Complex multi-partial differential equation (PDE) electrochemical battery models are characterized by parameters that are often difficult to measure or identify. This parametric uncertainty influences the state estimates of electrochemical model-based observers for applications such as state-of-charge (SOC) estimation. This chapter develops two sensitivity-based interval observers that map bounded parameter uncertainty to state estimation intervals, within the context of electrochemical PDE models and SOC estimation. Theoretically, this chapter extends the notion of interval observers to PDE models using a sensitivity-based approach. Practically, this chapter quantifies the sensitivity of battery state estimates to parameter variations, enabling robust battery management schemes. The effectiveness of the proposed sensitivity-based interval observers is verified via a numerical study for the range of uncertain parameters. Chapter 4: This chapter seeks to derive insight on battery charging control using electrochemistry models. Directly using full order complex multi-partial differential equation (PDE) electrochemical battery models is difficult and sometimes impossible to implement. This chapter develops an approach for obtaining optimal charge control schemes, while ensuring safety through constraint satisfaction. An optimal charge control problem is mathematically formulated via a coupled reduced order electrochemical-thermal model which conserves key electrochemical and thermal state information. The Legendre-Gauss-Radau (LGR) pseudo-spectral method with adaptive multi-mesh-interval collocation is employed to solve the resulting nonlinear multi-state optimal control problem. Minimum time charge protocols are analyzed in detail subject to solid and electrolyte phase concentration constraints, as well as temperature constraints. The optimization scheme is examined using different input current bounds, and an insight on battery design for fast charging is provided. Experimental results are provided to compare the tradeoffs between an electrochemical-thermal model based optimal charge protocol and a traditional charge protocol. Chapter 5: Fast and safe charging protocols are crucial for enhancing the practicality of batteries, especially for mobile applications such as smartphones and electric vehicles. This chapter proposes an innovative approach to devising optimally health-conscious fast-safe charge protocols. A multi-objective optimal control problem is mathematically formulated via a coupled electro-thermal-aging battery model, where electrical and aging sub-models depend upon the core temperature captured by a two-state thermal sub-model. The Legendre-Gauss-Radau (LGR) pseudo-spectral method with adaptive multi-mesh-interval collocation is employed to solve the resulting highly nonlinear six-state optimal control problem. Charge time and health degradation are therefore optimally traded off, subject to both electrical and thermal constraints. Minimum-time, minimum-aging, and balanced charge scenarios are examined in detail. Sensitivities to the upper voltage bound, ambient temperature, and cooling convection resistance are investigated as well. Experimental results are provided to compare the tradeoffs between a balanced and traditional charge protocol. Chapter 6: This chapter provides concluding remarks on the findings of this dissertation and a discussion of future work.
Ti(Ni,Cu) pseudobinary compounds as efficient negative electrodes for Ni-MH batteries
NASA Astrophysics Data System (ADS)
Emami, Hoda; Cuevas, Fermin; Latroche, Michel
2014-11-01
The effect of Ni by Cu substitution on the structural, solid-gas and electrochemical hydrogenation properties of TiNi has been investigated. Pseudo-binary TiNi1-xCux (x ≤ 0.5) compounds have been synthesized by induction melting. They crystallize in B2 structure above 350 K and either in B19‧ (x < 0.1) or B19 (0.2 ≤ x ≤ 0.5) at room temperature (RT). For all compounds, Pressure-Composition Isotherms at 423 K exhibit a single slopping plateau pressure within the range 10-3-1 MPa of hydrogen pressure revealing a metal to hydride transformation. Both the hydrogenation capacity and the hydride stability decrease with Cu-content. The hydrided pseudobinary compounds crystallize in the tetragonal S.G. I4/mmm structure as for TiNi hydride. The electrochemical discharge capacity increases with Cu content from 150 mAh g-1 for TiNi up to 300 mAh g-1 for TiNi0.8Cu0.2 and then decreases again for larger Cu amounts. Electrochemical isotherms and in-situ neutron diffraction measurements at RT demonstrate that such a capacity increase results from a metal to hydride phase transformation in which the hydride phase is destabilized by Cu substitution. The TiNi0.8Cu0.2 compound exhibits interesting cycling stability for 30 cycles and good high-rate capability at D/2 rate. This compound has promising electrochemical properties as compared to commercial LaNi5-type alloys with the advantage of being rare-earth metal free.
Skopalová, Jana; Barták, Petr; Bednář, Petr; Tomková, Hana; Ingr, Tomáš; Lorencová, Iveta; Kučerová, Pavla; Papoušek, Roman; Borovcová, Lucie; Lemr, Karel
2018-01-25
A carbon fiber brush electrode (CFBE) was newly designed and used as a substrate for both controlled potential electrolysis and atmospheric solids analysis probe (ASAP) mass spectrometry. Electropolymerized and strongly adsorbed products of electrolysis were directly desorbed and ionized from the electrode surface. Electrochemical properties of the electrode investigated by cyclic voltammetry revealed large electroactive surface area (23 ± 3 cm 2 ) at 1.3 cm long array of carbon fibers with diameter 6-9 μm. Some products of electrochemical oxidation of pentabromophenol and 2,4,6-tribromophenol formed a compact layer on the carbon fibers and were analyzed using ASAP. Eleven new oligomeric products were identified including quinones and biphenoquinones. These compounds were not observed previously in electrolyzed solutions by liquid or gas chromatography/mass spectrometry. The thickness around 58 nm and 45 nm of the oxidation products layers deposited on carbon fibers during electrolysis of pentabromophenol and 2,4,6-tribromophenol, respectively, was estimated from atomic force microscopy analysis and confirmed by scanning electron microscopy with energy-dispersive X-ray spectroscopy measurements. Copyright © 2017 Elsevier B.V. All rights reserved.
Composite carbon foam electrode
Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.
1997-01-01
Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.
An experimental study on PEO polymer electrolyte based all-solid-state supercapacitor
NASA Astrophysics Data System (ADS)
Yijing, Yin
Supercapacitors are one of the most important electrochemical energy storage and conversion devices, however low ionic conductivity of solid state polymer electrolytes and the poor accessibility of the ions to the active sites in the porous electrode will cause low performance for all-solid-state supercapacitors and will limit their application. The objective of the dissertation is to improve the performance of all-solid-state supercapactor by improving electrolyte conductivity and solving accessibility problem of the ions to the active sites. The low ionic conductivity (10-8 S/cm) of poly(ethylene oxide) (PEO) limits its application as an electrolyte. Since PEO is a semicrystal polymer and the ion conduction take place mainly in the amorphous regions of the PEO/Lithium salt complex, improvements in the percentage of amorphous phase in PEO or increasing the charge carrier concentration and mobility could increase the ionic conductivity of PEO electrolyte. Hot pressing along with the additions of different lithium salts, inorganic fillers and plasticizers were applied to improve the ionic conductivity of PEO polymer electrolytes. Four electrode methods were used to evaluate the conductivity of PEO based polymer electrolytes. Results show that adding certain lithium salts, inorganic fillers, and plasticizers could improve the ionic conductivity of PEO electrolytes up 10-4 S/cm. Further hot pressing treatment could improve the ionic conductivity of PEO electrolytes up to 10-3 S/cm. The conductivity improvement after hot pressing treatment is elucidated as that the spherulite crystal phase is convert into the fringed micelle crystal phase or the amorphous phase of PEO electrolytes. PEO electrolytes were added into active carbon as a binder and an ion conductor, so as to provide electrodes with not only ion conduction, but also the accessibility of ion to the active sites of electrodes. The NaI/I 2 mediator was added to improve the conductivity of PEO electrolyte and provide pseudocapacitance for all-solid-state supercapacitors. Impedance, cyclic voltammetry, and gavalnostatic charge/discharge measurements were conducted to evaluate the electrochemical performance of PEO polymer electrolytes based all-solid-state supercapacitors. Results demonstrate that the conductivity of PEO electrolyte could be improved to 0.1 S/cm with a mediator concentration of 50wt%. A high conductivity in the PEO electrolyte with mediator is an indication of a high electron exchange rate between the mediator and mediator. The high electron exchange rates at mediator carbon interface and between mediator and mediator are essential in order to obtain a high response rate and high power. This automatically solves the accessibility problem. With the addition of NaI/I2 mediator, the specific capacitance increased more than 30 folds, specific power increased almost 20 folds, and specific energy increased around 10 folds. Further addition of filler to the electrodes along with the mediator could double the specific capacitor and specific power of the all-solid-state supercapacitor. The stability of the corresponded supercapacitor is good within 2000 cycles.
Fabrication, characterization and applications of iron selenide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hussain, Raja Azadar, E-mail: hussainazadar@yahoo.com; Badshah, Amin; Lal, Bhajan
This review article presents fabrication of FeSe by solid state reactions, solution chemistry routes, chemical vapor deposition, spray pyrolysis and chemical vapor transport. Different properties and applications such as crystal structure and phase transition, band structure, spectroscopy, superconductivity, photocatalytic activity, electrochemical sensing, and fuel cell activity of FeSe have been discussed. - Graphical abstract: Iron selenide can be synthesized by solid state reactions, chemical vapor deposition, solution chemistry routes, chemical vapor transport and spray pyrolysis. - Highlights: • Different fabrication methods of iron selenide (FeSe) have been reviewed. • Crystal structure, band structure and spectroscopy of FeSe have been discussed.more » • Superconducting, catalytic and fuel cell application of FeSe have been presented.« less
Rapid microwave-assisted preparation of binary and ternary transition metal sulfide compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butala, Megan M.; Perez, Minue A.; Arnon, Shiri
Transition metal chalcogenides are of interest for energy applications, including energy generation in photoelectrochemical cells and as electrodes for next-generation electrochemical energy storage. Synthetic routes for such chalcogenides typically involve extended heating at elevated temperatures for multiple weeks. We demonstrate here the feasibility of rapidly preparing select sulfide compounds in a matter of minutes, rather than weeks, using microwave-assisted heating in domestic microwaves. We report the preparations of phase pure FeS2, CoS2, and solid solutions thereof from the elements with only 40 min of heating. Conventional furnace and rapid microwave preparations of CuTi2S4 both result in a majority of themore » targeted phase, even with the significantly shorter heating time of 40 min for microwave methods relative to 12 days using a conventional furnace. The preparations we describe for these compounds can be extended to related structures and chemistries and thus enable rapid screening of the properties and performance of various compositions of interest for electronic, optical, and electrochemical applications.« less
NASA Astrophysics Data System (ADS)
Tian, Qianqian; Wang, Ying; Deng, Ruijie; Lin, Lei; Liu, Yang; Li, Jinghong
2014-12-01
The detection of microRNAs (miRNAs) is imperative for gaining a better understanding of the functions of these biomarkers and has great potential for the early diagnosis of human disease. High sensitivity and selectivity for miRNA detection brings new challenges. Herein, an ultrasensitive protocol for electrochemical detection of miRNA is designed through carbon nanotube (CNT) enhanced label-free detection based on hairpin probe triggered solid-phase rolling-circle amplification (RCA). Traditionally, RCA, widely applied for signal enhancement in the construction of a variety of biosensors, has an intrinsic limitation of ultrasensitive detection, as it is difficult to separate the enzymes, templates, and padlock DNAs from the RCA products in the homogeneous solution. We purposely designed a solid-phase RCA strategy, using CNTs as the solid substrate, integrated with a hairpin structured probe to recognize target miRNA. In the presence of miRNA the stem-loop structure will be unfolded, triggering the CNT based RCA process. Due to the efficient blocking effect originating from the polymeric RCA products, the label-free assay of miRNA exhibits an ultrasensitive detection limit of 1.2 fM. Furthermore, the protocol possesses excellent specificity for resolving lung cancer-related let-7 family members which have only one-nucleotide variations. The high sensitivity and selectivity give the method great potential for applications in online diagnostics and in situ detection in long-term development.The detection of microRNAs (miRNAs) is imperative for gaining a better understanding of the functions of these biomarkers and has great potential for the early diagnosis of human disease. High sensitivity and selectivity for miRNA detection brings new challenges. Herein, an ultrasensitive protocol for electrochemical detection of miRNA is designed through carbon nanotube (CNT) enhanced label-free detection based on hairpin probe triggered solid-phase rolling-circle amplification (RCA). Traditionally, RCA, widely applied for signal enhancement in the construction of a variety of biosensors, has an intrinsic limitation of ultrasensitive detection, as it is difficult to separate the enzymes, templates, and padlock DNAs from the RCA products in the homogeneous solution. We purposely designed a solid-phase RCA strategy, using CNTs as the solid substrate, integrated with a hairpin structured probe to recognize target miRNA. In the presence of miRNA the stem-loop structure will be unfolded, triggering the CNT based RCA process. Due to the efficient blocking effect originating from the polymeric RCA products, the label-free assay of miRNA exhibits an ultrasensitive detection limit of 1.2 fM. Furthermore, the protocol possesses excellent specificity for resolving lung cancer-related let-7 family members which have only one-nucleotide variations. The high sensitivity and selectivity give the method great potential for applications in online diagnostics and in situ detection in long-term development. Electronic supplementary information (ESI) available: Preparation of the chemically modified multi-walled carbon nanotubes (CNTs), characterization of the CNTs and modified CNTs, preparation of the circular probe, gel electrophoresis of the RCA products, and DNA probes as noted in the text. See DOI: 10.1039/c4nr05243a
NASA Astrophysics Data System (ADS)
Pandey, Gaind P.; Liu, Tao; Hancock, Cody; Li, Yonghui; Sun, Xiuzhi Susan; Li, Jun
2016-10-01
A flexible, free-standing, thermostable gel polymer electrolyte based on plastic crystalline succinonitrile (SN) and ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMImBF4) entrapped in copolymer poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) is prepared and optimized for application in solvent-free solid-state supercapacitors. The synthesized gel polymer electrolyte exhibits a high ionic conductivity over a wide temperature range (from ∼5 × 10-4 S cm-1 at -30 °C up to ∼1.5 × 10-2 S cm-1 at 80 °C) with good electrochemical stability window (-2.9 to 2.5 V). Thermal studies confirm that the SN containing gel polymer electrolyte remains stable in the same gel phase over a wide temperature range from -30 to 90 °C. The electric double layer capacitors (EDLCs) have been fabricated using activated carbon as active materials and new gel polymer electrolytes. Electrochemical performance of the EDLCs is assessed through cyclic voltammetry, galvanostatic charge-discharge cycling and impedance spectroscopy. The EDLC cells with the proper SN-containing gel polymer electrolyte has been found to give high specific capacitance 176 F g-1 at 0.18 A g-1 and 138 F g-1 at 8 A g-1. These solid-state EDLC cells show good cycling stability and the capability to retain ∼80% of the initial capacitance after 10,000 cycles.
NASA Astrophysics Data System (ADS)
Ding, Liming; Wang, Lixi; Ding, Dong; Zhang, Shihua; Ding, Xifeng; Yuan, Guoliang
2017-06-01
Solid oxide fuel cells (SOFCs) offer great promise for the most efficient and cost-effective conversion to electricity of a wide variety of fuels. The cathode materials with high electro-catalytic activity for oxygen reduction reaction is vital to the development of commercially-viable SOFCs to be operated at reduced temperatures. In present study, cobalt-based perovskite oxides SrxCo0.7Nb0.1Fe0.2O3-δ (SCNF, x = 0.95 and 1) were comparatively investigated as promising cathode materials for intermediate-temperature SOFCs. The SCNF compounds with a slight Sr deficiency (S0.95CNF) exhibited single phase of primitive cubic structure with Pm-3m symmetry. A small Sr deficiency is demonstrated to greatly enhance the electrochemical performance of stoichiometric SCNF cathode due to significantly increased oxygen vacancy. The polarization resistance of S0.95CNF at 700 °C was 0.11 Ω cm2, only about 61% of SCNF. The rate limiting step for oxygen reduction reaction (ORR) is demonstrated to be oxygen ion transfer within the bulk electrode and/or from electrode to electrolyte through the triple phase boundary. Full cells with the SCNF cathode present good performance and stable output at reduced temperatures, indicating the great potential for enhanced performance of Co-based cathodes with A-site deficiency.
Miniaturized Amperometric Solid Electrolyte Carbon Dioxide Sensors
NASA Technical Reports Server (NTRS)
Hunter, G. W.; Xu, J. C.; Liu, C. C.; Hammond, J. W.; Ward, B.; Lukco, D.; Lampard, P.; Artale, M.; Androjna, D.
2006-01-01
A miniaturized electrochemical carbon dioxide (CO2) sensor using Na3Z r2Si2PO12 (NASICON) as a solid electrolyte has been fabricated and de monstrated. Microfabrication techniques were used for sensor fabricat ion to yield a sensing area around 1.0 mm x 1.1 mm. The NASICON solid electrolyte and the Na2CO3/BaCO3 (1:1.7 molar ratio) auxiliary elect rolyte were deposited by sputtering in between and on top of the inte rdigitated finger-shaped platinum electrodes. This structure maximize s the length of the three-phase boundary (electrode, solid electrolyt e, and auxiliary electrolyte), which is critical for gas sensing. The robust CO2 sensor operated up to 600 C in an amperometric mode and a ttempts were made to optimize sensor operating parameters. Concentrat ions of CO2 between 0.02% and 4% were detected and the overall sensor performance was evaluated. Linear response of sensor current output to ln[CO2 concentration] ranging from 0.02% to 1% was achieved.
NASA Astrophysics Data System (ADS)
Ibragimova, M. A.; Kozlovskiy, A. L.; Kenzhina, I. E.; Zdorovets, M. V.
2018-04-01
A series of CoZnO nanotubes was obtained by electrochemical deposition, with different atomic metal coefficients, due to a change in the applied potential difference. A systematic study of the morphology, structural and conductive properties of nanotubes was also carried out. It is established that the samples synthesized at the applied potentials difference of 1.5 and 1.75 V are three-component systems consisting of two oxide phases of ZnO and CoO1.92 cubic system and a phase of a solid solution of substitution Co0.65Zn0.35 of hexagonal type. The samples synthesized at a potential difference of 2.0 V represent an alloy of two oxide phases, ZnO and CoO1.92.
Titanium dioxide@polypyrrole core-shell nanowires for all solid-state flexible supercapacitors.
Yu, Minghao; Zeng, Yinxiang; Zhang, Chong; Lu, Xihong; Zeng, Chenghui; Yao, Chenzhong; Yang, Yangyi; Tong, Yexiang
2013-11-21
Herein, we developed a facile two-step process to synthesize TiO2@PPy core-shell nanowires (NWs) on carbon cloth and reported their improved electrochemical performance for flexible supercapacitors (SCs). The fabricated solid-state SC device based on TiO2@PPy core-shell NWs not only has excellent flexibility, but also exhibits remarkable electrochemical performance.
Electric terminal performance and characterization of solid oxide fuel cells and systems
NASA Astrophysics Data System (ADS)
Lindahl, Peter Allan
Solid Oxide Fuel Cells (SOFCs) are electrochemical devices which can effect efficient, clean, and quiet conversion of chemical to electrical energy. In contrast to conventional electricity generation systems which feature multiple discrete energy conversion processes, SOFCs are direct energy conversion devices. That is, they feature a fully integrated chemical to electrical energy conversion process where the electric load demanded of the cell intrinsically drives the electrochemical reactions and associated processes internal to the cell. As a result, the cell's electric terminals provide a path for interaction between load side electric demand and the conversion side processes. The implication of this is twofold. First, the magnitude and dynamic characteristics of the electric load demanded of the cell can directly impact the long-term efficacy of the cell's chemical to electrical energy conversion. Second, the electric terminal response to dynamic loads can be exploited for monitoring the cell's conversion side processes and used in diagnostic analysis and degradation-mitigating control schemes. This dissertation presents a multi-tier investigation into this electric terminal based performance characterization of SOFCs through the development of novel test systems, analysis techniques and control schemes. First, a reference-based simulation system is introduced. This system scales up the electric terminal performance of a prototype SOFC system, e.g. a single fuel cell, to that of a full power-level stack. This allows realistic stack/load interaction studies while maintaining explicit ability for post-test analysis of the prototype system. Next, a time-domain least squares fitting method for electrochemical impedance spectroscopy (EIS) is developed for reduced-time monitoring of the electrochemical and physicochemical mechanics of the fuel cell through its electric terminals. The utility of the reference-based simulator and the EIS technique are demonstrated through their combined use in the performance testing of a hybrid-source power management (HSPM) system designed to allow in-situ EIS monitoring of a stack under dynamic loading conditions. The results from the latter study suggest that an HSPM controller allows an opportunity for in-situ electric terminal monitoring and control-based mitigation of SOFC degradation. As such, an exploration of control-based SOFC degradation mitigation is presented and ideas for further work are suggested.
Baggetto, Loïc; Hah, Hien-Yoong; Jumas, Jean-Claude; ...
2014-06-01
The electrochemical reaction of Sb and SnSb anode materials with Na results in the formation of amorphous materials. To understand the resulting phases and electrochemical capacities we studied the reaction products local order using 119Sn and 121Sb Mössbauer spectroscopies in conjunction with measurements performed on model powder compounds of Na-Sn and Na-Sb to further clarify the reactions steps. For pure Sb the discharge (sodiation) starts with the formation of an amorphous phase composed of atomic environments similar to those found in NaSb, and proceeds further by the formation of environments similar to that present in Na 3Sb. The reversible reactionmore » takes place during a large portion of the charge process. At full charge the anode material still contains a substantial fraction of Na, which explains the lack of recrystallization into crystalline Sb. The reaction of SnSb yields Na 3Sb crystalline phase at full discharge at higher temperatures (65 and 95°C) while the room temperature reaction yields amorphous compounds. The electrochemically-driven, solid-state amorphization reaction occurring at room temperature is governed by the simultaneous formation of Na-coordinated Sn and Sb environments, as monitored by the decrease (increase) of the 119Sn ( 121Sb) Mössbauer isomer shifts. Overall, the monitoring of the hyperfine parameters enables to correlate the changes in Na content to the individual Sn and Sb local chemical environments.« less
Synthesis cathode material LiNi0.80Co0.15Al0.05O2 with two step solid-state method under air stream
NASA Astrophysics Data System (ADS)
Xia, Shubiao; Zhang, Yingjie; Dong, Peng; Zhang, Yannan
2014-01-01
A facile generic strategy of solid-state reaction under air atmosphere is employed to prepare LiNi0.8Co0.15Al0.05O2 layer structure micro-sphere as cathodes for Li-ion batteries. The impurity phase has been eliminated wholly without changing the R-3m space group of LiNi0.8Co0.15Al0.05O2. The electrochemical performance of LiNi0.8Co0.15Al0.05O2 cathodes depend on the sintering step, temperature, particle size and uniformity. The sample pre-sintered at 540 °C for 12 h and then sintered at 720 °C for 28 h exhibits the best electrochemical performance, which delivers a reversible capacity of 180.4, 165.8, 154.7 and 135.6 mAhg-1 at 0.2 C, 1 C, 2 C and 5 C, respectively. The capacity retention keeps over 87% after 76 cycles at 1 C. This method is simple, cheap and mass-productive, and thus suitable to large scale production of NCA cathodes directly used for lithium ion batteries.
Niemöller, Arvid; Jakes, Peter; Eurich, Svitlana; Paulus, Anja; Kungl, Hans; Eichel, Rüdiger-A; Granwehr, Josef
2018-01-07
Despite the multitude of analytical methods available to characterize battery cathode materials, identifying the factors responsible for material aging is still challenging. We present the first investigation of transient redox processes in a spinel cathode during electrochemical cycling of a lithium ion battery by in operando electron paramagnetic resonance (EPR). The battery contains a LiNi 0.5 Mn 1.5 O 4 (LNMO) spinel cathode, which is a material whose magnetic interactions are well understood. The evolution of the EPR signal in combination with electrochemical measurements shows the impact of Mn 3+ on the Li + motion inside the spinel. Moreover, state of charge dependent linewidth variations confirm the formation of a solid solution for slow cycling, which is taken over by mixed models of solid solution and two-phase formation for fast cycling due to kinetic restrictions and overpotentials. Long-term measurements for 480 h showed the stability of the investigated LNMO, but also small amounts of cathode degradation products became visible. The results point out how local, exchange mediated magnetic interactions in cathode materials are linked with battery performance and can be used for material characterization.
NASA Astrophysics Data System (ADS)
Niemöller, Arvid; Jakes, Peter; Eurich, Svitlana; Paulus, Anja; Kungl, Hans; Eichel, Rüdiger-A.; Granwehr, Josef
2018-01-01
Despite the multitude of analytical methods available to characterize battery cathode materials, identifying the factors responsible for material aging is still challenging. We present the first investigation of transient redox processes in a spinel cathode during electrochemical cycling of a lithium ion battery by in operando electron paramagnetic resonance (EPR). The battery contains a LiNi0.5Mn1.5O4 (LNMO) spinel cathode, which is a material whose magnetic interactions are well understood. The evolution of the EPR signal in combination with electrochemical measurements shows the impact of Mn3+ on the Li+ motion inside the spinel. Moreover, state of charge dependent linewidth variations confirm the formation of a solid solution for slow cycling, which is taken over by mixed models of solid solution and two-phase formation for fast cycling due to kinetic restrictions and overpotentials. Long-term measurements for 480 h showed the stability of the investigated LNMO, but also small amounts of cathode degradation products became visible. The results point out how local, exchange mediated magnetic interactions in cathode materials are linked with battery performance and can be used for material characterization.
Studies of electrochemical interfaces by TOF neutron reflectometry at the IBR-2 reactor
NASA Astrophysics Data System (ADS)
Petrenko, V. I.; Gapon, I. V.; Rulev, A. A.; Ushakova, E. E.; Kataev, E. Yu; Yashina, L. V.; Itkis, D. M.; Avdeev, M. V.
2018-03-01
The operation performance of electrochemical energy conversion and storage systems such as supercapacitors and batteries depends on the processes occurring at the electrochemical interfaces, where charge separation and chemical reactions occur. Here, we report about the tests of the neutron reflectometry cells specially designed for operando studies of structural changes at the electrochemical interfaces between solid electrodes and liquid electrolytes. The cells are compatible with anhydrous electrolytes with organic solvents, which are employed today in all lithium ion batteries and most supercapacitors. The sensitivity of neutron reflectometry applied at the time-of-flight (TOF) reflectometer at the pulsed reactor IBR-2 is discussed regarding the effect of solid electrolyte interphase (SEI) formation on metal electrode surface.
Chen, Mian; Yang, Lei; Zhang, Lan; Han, Yong; Lu, Zheng; Qin, Gaowu; Zhang, Erlin
2017-06-01
In this research, Ti-Ag alloys were prepared by powder metallurgy, casting and heat treatment method in order to investigate the effect of Ag compound particles on the bio-corrosion, the antibacterial property and the cell biocompatibility. Ti-Ag alloys with different sizes of Ag or Ag-compounds particles were successfully prepared: small amount of submicro-scale (100nm) Ti 2 Ag precipitates with solid solution state of Ag, large amount of nano-scale (20-30nm) Ti 2 Ag precipitates with small amount of solid solution state of Ag and micro-scale lamellar Ti 2 Ag phases, and complete solid solution state of Ag. The mechanical tests indicated that both nano/micro-scale Ti 2 Ag phases had a strong dispersion strengthening ability and Ag had a high solid solution strengthening ability. Electrochemical results shown the Ag content and the size of Ag particles had a limited influence on the bio-corrosion resistance although nano-scale Ti 2 Ag precipitates slightly improved corrosion resistance. It was demonstrated that the nano Ag compounds precipitates have a significant influence on the antibacterial properties of Ti-Ag alloys but no effect on the cell biocompatibility. It was thought that both Ag ions release and Ti 2 Ag precipitates contributed to the antibacterial ability, in which nano-scale and homogeneously distributed Ti 2 Ag phases would play a key role in antibacterial process. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kashkooli, Ali Ghorbani; Foreman, Evan; Farhad, Siamak
In this study, synchrotron X-ray computed tomography has been utilized using two different imaging modes, absorption and Zernike phase contrast, to reconstruct the real three-dimensional (3D) morphology of nanostructured Li 4Ti 5O 12 (LTO) electrodes. The morphology of the high atomic number active material has been obtained using the absorption contrast mode, whereas the percolated solid network composed of active material and carbon-doped polymer binder domain (CBD) has been obtained using the Zernike phase contrast mode. The 3D absorption contrast image revealed that some LTO nano-particles tend to agglomerate and form secondary micro-sized particles with varying degrees of sphericity. Themore » tortuosity of electrode’s pore and solid phases were found to have directional dependence, different from Bruggeman’s tortuosity commonly used in macro-homogeneous models. The electrode’s heterogeneous structure was investigated by developing a numerical model to simulate galvanostatic discharge process using the Zernike phase contrast mode. The inclusion of CBD in the Zernike phase contrast results in an integrated percolated network of active material and CBD that is highly suited for continuum modeling. As a result, the simulation results highlight the importance of using the real 3D geometry since the spatial distribution of physical and electrochemical properties have a strong non-uniformity due to microstructural heterogeneities.« less
Structure Evolution and Reactivity of the Sc(2- x)V xO3+δ (0 ≤ x ≤ 2.0) System.
Lussier, Joey A; Simon, Fabian J; Whitfield, Pamela S; Singh, Kalpana; Thangadurai, Venkataraman; Bieringer, Mario
2018-05-07
Solid oxide fuel cells (SOFCs) are solid-state electrochemical devices that directly convert chemical energy of fuels into electricity with high efficiency. Because of their fuel flexibility, low emissions, high conversion efficiency, no moving parts, and quiet operation, they are considered as a promising energy conversion technology for low carbon future needs. Solid-state oxide and proton conducting electrolytes play a crucial role in improving the performance and market acceptability of SOFCs. Defect fluorite phases are some of the most promising fast oxide ion conductors for use as electrolytes in SOFCs. We report the synthesis, structure, phase diagram, and high-temperature reactivity of the Sc (2- x) V x O 3+δ (0 ≤ x ≤ 2.00) oxide defect model system. For all Sc (2- x) V x O 3.0 phases with x ≤ 1.08 phase-pure bixbyite-type structures are found, whereas for x ≥ 1.68 phase-pure corundum structures are reported, with a miscibility gap found for 1.08 < x < 1.68. Structural details obtained from the simultaneous Rietveld refinements using powder neutron and X-ray diffraction data are reported for the bixbyite phases, demonstrating a slight V 3+ preference toward the 8b site. In situ X-ray diffraction experiments were used to explore the oxidation of the Sc (2- x) V x O 3.0 phases. In all cases ScVO 4 was found as a final product, accompanied by Sc 2 O 3 for x < 1.0 and V 2 O 5 when x > 1.0; however, the oxidative pathway varied greatly throughout the series. Comments are made on different synthesis strategies, including the effect on crystallinity, reaction times, rate-limiting steps, and reaction pathways. This work provides insight into the mechanisms of solid-state reactions and strategic guidelines for targeted materials synthesis.
Liu, Pan; Han, Jiuhui; Guo, Xianwei; Ito, Yoshikazu; Yang, Chuchu; Ning, Shoucong; Fujita, Takeshi; Hirata, Akihiko; Chen, Mingwei
2018-02-16
Rechargeable non-aqueous lithium-oxygen batteries with a large theoretical capacity are emerging as a high-energy electrochemical device for sustainable energy strategy. Despite many efforts made to understand the fundamental Li-O 2 electrochemistry, the kinetic process of cathodic reactions, associated with the formation and decomposition of a solid Li 2 O 2 phase during charging and discharging, remains debate. Here we report direct visualization of the charge/discharge reactions on a gold cathode in a non-aqueous lithium-oxygen micro-battery using liquid-cell aberration-corrected scanning transmission electron microscopy (STEM) combining with synchronized electrochemical measurements. The real-time and real-space characterization by time-resolved STEM reveals the electrochemical correspondence of discharge/charge overpotentials to the nucleation, growth and decomposition of Li 2 O 2 at a constant current density. The nano-scale operando observations would enrich our knowledge on the underlying reaction mechanisms of lithium-oxygen batteries during round-trip discharging and charging and shed lights on the strategies in improving the performances of lithium-oxygen batteries by tailoring the cathodic reactions.
A carbon-air battery for high power generation.
Yang, Binbin; Ran, Ran; Zhong, Yijun; Su, Chao; Tadé, Moses O; Shao, Zongping
2015-03-16
We report a carbon-air battery for power generation based on a solid-oxide fuel cell (SOFC) integrated with a ceramic CO2-permeable membrane. An anode-supported tubular SOFC functioned as a carbon fuel container as well as an electrochemical device for power generation, while a high-temperature CO2-permeable membrane composed of a CO3(2-) mixture and an O(2-) conducting phase (Sm(0.2)Ce(0.8)O(1.9)) was integrated for in situ separation of CO2 (electrochemical product) from the anode chamber, delivering high fuel-utilization efficiency. After modifying the carbon fuel with a reverse Boudouard reaction catalyst to promote the in situ gasification of carbon to CO, an attractive peak power density of 279.3 mW cm(-2) was achieved for the battery at 850 °C, and a small stack composed of two batteries can be operated continuously for 200 min. This work provides a novel type of electrochemical energy device that has a wide range of application potentials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wei, Z.; Zhu, Y.; Zhang, W.; ...
2015-03-27
Lithium-rich material owns a particularly high capacity owing to the activation of electrochemical inactive Li 2MnO 3 phase. But at the same time, MnO 2 phase formed after Li 2MnO 3 activation confronts a severe problem of converting to spinel phase, and resulting in voltage decay. To our knowledge, this phenomenon is inherent property of layered manganese oxide materials and can hardly be overcome. Based on this, unlike previous reports, herein we design a method for the first time to accelerate the phase transformation by tuning the charge upper-limit voltage at a high value, so the phase transformation process canmore » be finished in a few cycles. Then material structure remains stable while cycling at a low upper-limit voltage. By this novel method voltage decay is eliminated significantly.« less
NASA Astrophysics Data System (ADS)
Burye, Theodore E.; Nicholas, Jason D.
2015-02-01
Here, for the first time, the average size of solid oxide fuel cell (SOFC) electrode nano-particles was reduced through the chemical desiccation of infiltrated precursor nitrate solutions. Specifically, after firing at 700 °C, CaCl2-desiccated La0.6Sr0.4Co0.8Fe0.2O3-δ (LSCF) - Ce0.9Gd0.1O1.95 (GDC) cathodes contained LSCF infiltrate particles with an average size of 22 nm. This is in contrast to comparable, undesiccated LSCF-GDC cathodes which contained LSCF infiltrate particles with an average size of 48 nm. X-ray diffraction, scanning electron microscopy, and controlled atmosphere electrochemical impedance spectroscopy revealed that desiccation reduced the average infiltrate particle size without altering the infiltrate phase purity, the cathode concentration polarization resistance, or the cathode electronic resistance. Compared to undesiccated LSCF-GDC cathodes achieving polarization resistances of 0.10 Ωcm2 at 640 °C, comparable CaCl2-dessicated LSCF-GDC cathodes achieved 0.10 Ωcm2 at 575 °C. Mathematical modeling suggested that these performance improvements resulted solely from average infiltrate particle size reductions.
NASA Astrophysics Data System (ADS)
Nie, Lifang; Liu, Juncheng; Zhang, Yujun; Liu, Meilin
La 0.6Sr 0.4Co 0.2Fe 0.8O 3- δ (LSCF) is the most widely used cathode material for intermediate temperature solid oxide fuel cells. In the present communication, porous LSCF cathodes are fabricated by tape casting, a low-cost and reproducible fabrication process. The effects of four different pore formers, namely, graphite, carbon black, rice starch, and corn starch, on the microstructure and electrochemical performance of the LSCF cathode are investigated. Examination of the microstructures reveals that the shape of the pores, the pore size, and the pore distribution in the final ceramic are related to the type of pore formers. Impedance analysis and cell testing show that the best performance is obtained from the cathode using graphite as the pore former. The microstructure indicates that graphite results in a porous LSCF cathode with a large surface area and high porosity, which can offer a considerably long triple phase boundary for catalytic reactions as well as channels for gas phase transport.
Strain Coupling of Conversion-type Fe 3O 4 Thin Films for Lithium Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Sooyeon; Meng, Qingping; Chen, Ping-Fan
2017-05-29
Lithiation/delithiation induces significant stresses and strains into the electrodes for lithium ion batteries, which can severely degrade their cycling performance. Moreover, this electrochemically induced strain can interact with the local strain existing at solid–solid interfaces. It is not clear how this interaction affects the lithiation mechanism. The effect of this coupling on the lithiation kinetics in epitaxial Fe 3O 4 thin film on a Nb-doped SrTiO 3 substrate is investigated. In-situ and ex-situ transmission electron microscopy (TEM) results show that the lithiation is suppressed by the compressive interfacial strain. At the interface between the film and substrate, the existence ofmore » Li xFe 3O 4 rock-salt phase during lithiation consequently restrains the film from delamination. 2D phase-field simulation verifies the effect of strain. This work provides critical insights of understanding the solid–solid interfaces of conversion-type electrodes.« less
Tartaj, Pedro; Amarilla, Jose M
2014-02-28
Porous inorganic nanostructures with colloidal dimensions can be considered as ideal components of electrochemical devices that operate on renewable energy sources. They combine nanoscale properties with good accessibility, a high number of active sites, short diffusion distances and good processability. Herein, we review some of the liquid-phase routes that lead to the controlled synthesis of these nanostructures in the form of non-hollow, hollow or yolk-shell configurations. From solar and fuel cells to batteries and supercapacitors, we put special emphasis on showing how these sophisticated structures can enhance the efficiency of electrochemical energy devices.
Fabrication of advanced electrochemical energy materials using sol-gel processing techniques
NASA Technical Reports Server (NTRS)
Chu, C. T.; Chu, Jay; Zheng, Haixing
1995-01-01
Advanced materials play an important role in electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. They are being used as both electrodes and electrolytes. Sol-gel processing is a versatile solution technique used in fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. The application of sol-gel processing in the fabrication of advanced electrochemical energy materials will be presented. The potentials of sol-gel derived materials for electrochemical energy applications will be discussed along with some examples of successful applications. Sol-gel derived metal oxide electrode materials such as V2O5 cathodes have been demonstrated in solid-slate thin film batteries; solid electrolytes materials such as beta-alumina for advanced secondary batteries had been prepared by the sol-gel technique long time ago; and high surface area transition metal compounds for capacitive energy storage applications can also be synthesized with this method.
Setter, Joseph R.; Maclay, G. Jordan
1989-09-12
A micro-amperometric electrochemical sensor for detecting the presence of a pre-determined species in a fluid material is disclosed. The sensor includes a smooth substrate having a thin coating of solid electrolytic material deposited thereon. The working and counter electrodes are deposited on the surface of the solid electrolytic material and adhere thereto. Electrical leads connect the working and counter electrodes to a potential source and an apparatus for measuring the change in an electrical signal caused by the electrochemical oxidation or reduction of the species. Alternatively, the sensor may be fabricated in a sandwich structure and also may be cylindrical, spherical or other shapes.
Aytar, Burcu S.; Muller, John P. E.; Kondo, Yukishige; Abbott, Nicholas L.; Lynn, David M.
2013-01-01
We report principles for active, user-defined control over the locations and timing with which DNA is expressed in cells. Our approach exploits unique properties of a ferrocenyl cationic lipid that is inactive when oxidized, but active when chemically reduced. We show that methods that exert spatial control over the administration of reducing agents can lead to local activation of lipoplexes and spatial control over gene expression. The versatility of this approach is demonstrated using both soluble and solid-phase reducing agents. These methods provide control over cell transfection, including methods for remote activation and the patterning of expression using solid-phase redox agents, that are difficult to achieve using conventional lipoplexes. PMID:23965341
Aytar, Burcu S; Muller, John P E; Kondo, Yukishige; Abbott, Nicholas L; Lynn, David M
2013-09-11
We report principles for active, user-defined control over the locations and timing with which DNA is expressed in cells. Our approach exploits unique properties of a ferrocenyl cationic lipid that is inactive when oxidized, but active when chemically reduced. We show that methods that exert spatial control over the administration of reducing agents can lead to local activation of lipoplexes and spatial control over gene expression. The versatility of this approach is demonstrated using both soluble and solid-phase reducing agents. These methods provide control over cell transfection, including methods for remote activation and the patterning of expression using solid-phase redox agents, that are difficult to achieve using conventional lipoplexes.
Yoo, Seung Joon; Evanko, Brian; Wang, Xingfeng; Romelczyk, Monica; Taylor, Aidan; Ji, Xiulei; Boettcher, Shannon W; Stucky, Galen D
2017-07-26
Research in electric double-layer capacitors (EDLCs) and rechargeable batteries is converging to target systems that have battery-level energy density and capacitor-level cycling stability and power density. This research direction has been facilitated by the use of redox-active electrolytes that add faradaic charge storage to increase energy density of the EDLCs. Aqueous redox-enhanced electrochemical capacitors (redox ECs) have, however, performed poorly due to cross-diffusion of soluble redox couples, reduced cycle life, and low operating voltages. In this manuscript, we propose that these challenges can be simultaneously met by mechanistically designing a liquid-to-solid phase transition of oxidized catholyte (or reduced anolyte) with confinement in the pores of electrodes. Here we demonstrate the realization of this approach with the use of bromide catholyte and tetrabutylammonium cation that induces reversible solid-state complexation of Br 2 /Br 3 - . This mechanism solves the inherent cross-diffusion issue of redox ECs and has the added benefit of greatly stabilizing the reactive bromine generated during charging. Based on this new mechanistic insight on the utilization of solid-state bromine storage in redox ECs, we developed a dual-redox EC consisting of a bromide catholyte and an ethyl viologen anolyte with the addition of tetrabutylammonium bromide. In comparison to aqueous and organic electric double-layer capacitors, this system enhances energy by factors of ca. 11 and 3.5, respectively, with a specific energy of ∼64 W·h/kg at 1 A/g, a maximum power density >3 kW/kg, and cycling stability over 7000 cycles.
Electrochemical slurry compositions and methods for preparing the same
Doherty, Tristan; Limthongkul, Pimpa; Butros, Asli; Duduta, Mihai; Cross, III, James C.
2016-11-01
Embodiments described herein generally relate to semi-solid suspensions, and more particularly to systems and methods for preparing semi-solid suspensions for use as electrodes in electrochemical devices such as, for example batteries. In some embodiments, a method for preparing a semi-solid electrode includes combining a quantity of an active material with a quantity of an electrolyte to form an intermediate material. The intermediate material is then combined with a conductive additive to form an electrode material. The electrode material is mixed to form a suspension having a mixing index of at least about 0.80 and is then formed into a semi-solid electrode.
NASA Astrophysics Data System (ADS)
Qiu, Guohong; Jiang, Kai; Ma, Meng; Wang, Dihua; Jin, Xianbo; Chen, George Z.
2007-06-01
Previous work, mainly from this research group, is re-visited on electrochemical reduction of solid metal oxides, in the form of compacted powder, in molten CaCl2, aiming at further understanding of the roles of cationic and elemental calcium. The discussion focuses on six aspects: 1.) debate on two mechanisms proposed in the literature, i. e. electro-metallothermic reduction and electro-reduction (or electro-deoxidation), for the electrolytic removal of oxygen from solid metals or metal oxides in molten CaCl2; 2.) novel metallic cavity working electrodes for electrochemical investigations of compacted metal oxide powders in high temperature molten salts assisted by a quartz sealed Ag/AgCl reference electrode (650 ºC- 950 ºC); 3.) influence of elemental calcium on the background current observed during electrolysis of solid metal oxides in molten CaCl2; 4.) electrochemical insertion/ inclusion of cationic calcium into solid metal oxides; 5.) typical features of cyclic voltammetry and chronoamperometry (potentiostatic electrolysis) of metal oxide powders in molten CaCl2; and 6.) some kinetic considerations on the electrolytic removal of oxygen.
Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics.
Bazant, Martin Z
2013-05-21
Advances in the fields of catalysis and electrochemical energy conversion often involve nanoparticles, which can have kinetics surprisingly different from the bulk material. Classical theories of chemical kinetics assume independent reactions in dilute solutions, whose rates are determined by mean concentrations. In condensed matter, strong interactions alter chemical activities and create variations that can dramatically affect the reaction rate. The extreme case is that of a reaction coupled to a phase transformation, whose kinetics must depend not only on the order parameter but also on its gradients at phase boundaries. Reaction-driven phase transformations are common in electrochemistry, when charge transfer is accompanied by ion intercalation or deposition in a solid phase. Examples abound in Li-ion, metal-air, and lead-acid batteries, as well as metal electrodeposition-dissolution. Despite complex thermodynamics, however, the standard kinetic model is the Butler-Volmer equation, based on a dilute solution approximation. The Marcus theory of charge transfer likewise considers isolated reactants and neglects elastic stress, configurational entropy, and other nonidealities in condensed phases. The limitations of existing theories recently became apparent for the Li-ion battery material LixFePO4 (LFP). It has a strong tendency to separate into Li-rich and Li-poor solid phases, which scientists believe limits its performance. Chemists first modeled phase separation in LFP as an isotropic "shrinking core" within each particle, but experiments later revealed striped phase boundaries on the active crystal facet. This raised the question: What is the reaction rate at a surface undergoing a phase transformation? Meanwhile, dramatic rate enhancement was attained with LFP nanoparticles, and classical battery models could not predict the roles of phase separation and surface modification. In this Account, I present a general theory of chemical kinetics, developed over the past 7 years, which is capable of answering these questions. The reaction rate is a nonlinear function of the thermodynamic driving force, the free energy of reaction, expressed in terms of variational chemical potentials. The theory unifies and extends the Cahn-Hilliard and Allen-Cahn equations through a master equation for nonequilibrium chemical thermodynamics. For electrochemistry, I have also generalized both Marcus and Butler-Volmer kinetics for concentrated solutions and ionic solids. This new theory provides a quantitative description of LFP phase behavior. Concentration gradients and elastic coherency strain enhance the intercalation rate. At low currents, the charge-transfer rate is focused on exposed phase boundaries, which propagate as "intercalation waves", nucleated by surface wetting. Unexpectedly, homogeneous reactions are favored above a critical current and below a critical size, which helps to explain the rate capability of LFP nanoparticles. Contrary to other mechanisms, elevated temperatures and currents may enhance battery performance and lifetime by suppressing phase separation. The theory has also been extended to porous electrodes and could be used for battery engineering with multiphase active materials. More broadly, the theory describes nonequilibrium chemical systems at mesoscopic length and time scales, beyond the reach of molecular simulations and bulk continuum models. The reaction rate is consistently defined for inhomogeneous, nonequilibrium states, for example, with phase separation, large electric fields, or mechanical stresses. This research is also potentially applicable to fluid extraction from nanoporous solids, pattern formation in electrophoretic deposition, and electrochemical dynamics in biological cells.
Composite electrolyte with proton conductivity for low-temperature solid oxide fuel cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raza, Rizwan, E-mail: razahussaini786@gmail.com; Department of Energy Technology, Royal Institute of Technology, KTH, Stockholm 10044; Ahmed, Akhlaq
In the present work, cost-effective nanocomposite electrolyte (Ba-SDC) oxide is developed for efficient low-temperature solid oxide fuel cells (LTSOFCs). Analysis has shown that dual phase conduction of O{sup −2} (oxygen ions) and H{sup +} (protons) plays a significant role in the development of advanced LTSOFCs. Comparatively high proton ion conductivity (0.19 s/cm) for LTSOFCs was achieved at low temperature (460 °C). In this article, the ionic conduction behaviour of LTSOFCs is explained by carrying out electrochemical impedance spectroscopy measurements. Further, the phase and structure analysis are investigated by X-ray diffraction and scanning electron microscopy techniques. Finally, we achieved an ionic transport numbermore » of the composite electrolyte for LTSOFCs as high as 0.95 and energy and power density of 90% and 550 mW/cm{sup 2}, respectively, after sintering the composite electrolyte at 800 °C for 4 h, which is promising. Our current effort toward the development of an efficient, green, low-temperature solid oxide fuel cell with the incorporation of high proton conductivity composite electrolyte may open frontiers in the fields of energy and fuel cell technology.« less
Enhancement of SOFC Cathode Electrochemical Performance Using Multi-Phase Interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, Dane
2015-09-30
This work explored the use of oxide heterostructures for enhancing the catalytic and degradation properties of solid oxide fuel cell (SOFC) cathode electrodes. We focused on heterostructures of Ruddlesden-Popper and perovskite phases. Building on previous work showing enhancement of the Ruddlesden-Popper (La,Sr) 2CoO 4 / perovskite (La,Sr)CoO 3 heterostructure compared to pure (La,Sr)CoO 3 we explored the application of related heterostructures of Ruddlesden-Popper phases on perovskite (La,Sr)(Co,Fe)O 3. Our approaches included thin-film electrodes, physical and electrochemical characterization, elementary reaction kinetics modeling, and ab initio simulations. We demonstrated that Sr segregation to surfaces is likely playing a critical role in themore » performance of (La,Sr)CoO 3 and (La,Sr)(Co,Fe)O 3 and that modification of this Sr segregation may be the mechanism by which Ruddlesden-Popper coatings enhance performances. We determined that (La,Sr)(Co,Fe)O 3 could be enhanced in thin films by about 10× by forming a heterostructure simultaneously with (La,Sr) 2CoO 4 and (La,Sr)CoO 3. We hope that future work will develop this heterostructure for use as a bulk porous electrode.« less
Method of removal of heavy metal from molten salt in IFR fuel pyroprocessing
Gay, E.C.
1995-10-03
An electrochemical method is described for separating heavy metal values from a radioactive molten salt including Li halide at temperatures of about 500 C. The method comprises positioning a solid Li--Cd alloy anode in the molten salt containing the heavy metal values, positioning a Cd-containing cathode or a solid cathode positioned above a catch crucible in the molten salt to recover the heavy metal values, establishing a voltage drop between the anode and the cathode to deposit material at the cathode to reduce the concentration of heavy metals in the salt, and controlling the deposition rate at the cathode by controlling the current between the anode and cathode. 3 figs.
Method of removal of heavy metal from molten salt in IFR fuel pyroprocessing
Gay, Eddie C.
1995-01-01
An electrochemical method of separating heavy metal values from a radioactive molten salt including Li halide at temperatures of about 500.degree. C. The method comprises positioning a solid Li--Cd alloy anode in the molten salt containing the heavy metal values, positioning a Cd-containing cathode or a solid cathode positioned above a catch crucible in the molten salt to recover the heavy metal values, establishing a voltage drop between the anode and the cathode to deposit material at the cathode to reduce the concentration of heavy metals in the salt, and controlling the deposition rate at the cathode by controlling the current between the anode and cathode.
Rod/Coil Block Copolyimides for Ion-Conducting Membranes
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B.; Kinder, James D.
2003-01-01
Rod/coil block copolyimides that exhibit high levels of ionic conduction can be made into diverse products, including dimensionally stable solid electrolyte membranes that function well over wide temperature ranges in fuel cells and in lithium-ion electrochemical cells. These rod/coil block copolyimides were invented to overcome the limitations of polymers now used to make such membranes. They could also be useful in other electrochemical and perhaps some optical applications, as described below. The membranes of amorphous polyethylene oxide (PEO) now used in lithium-ion cells have acceptably large ionic conductivities only at temperatures above 60 C, precluding use in what would otherwise be many potential applications at lower temperatures. PEO is difficult to process, and, except at the highest molecular weights it is not very dimensionally stable. It would be desirable to operate fuel cells at temperatures above 80 C to take advantage of better kinetics of redox reactions and to reduce contamination of catalysts. Unfortunately, proton-conduction performance of a typical perfluorosulfonic polymer membrane now used as a solid electrolyte in a fuel cell decreases with increasing temperature above 80 C because of loss of water from within the membrane. The loss of water has been attributed to the hydrophobic nature of the polymer backbone. In addition, perfluorosulfonic polymers are expensive and are not sufficiently stable for long-term use. Rod/coil block copolyimides are so named because each molecule of such a polymer comprises short polyimide rod segments alternating with flexible polyether coil segments (see figure). The rods and coils can be linear, branched, or mixtures of linear and branched. A unique feature of these polymers is that the rods and coils are highly incompatible, giving rise to a phase separation with a high degree of ordering that creates nanoscale channels in which ions can travel freely. The conduction of ions can occur in the coil phase, the rod phase, or both phases.
Integrated Interface Strategy toward Room Temperature Solid-State Lithium Batteries.
Ju, Jiangwei; Wang, Yantao; Chen, Bingbing; Ma, Jun; Dong, Shanmu; Chai, Jingchao; Qu, Hongtao; Cui, Longfei; Wu, Xiuxiu; Cui, Guanglei
2018-04-25
Solid-state lithium batteries have drawn wide attention to address the safety issues of power batteries. However, the development of solid-state lithium batteries is substantially limited by the poor electrochemical performances originating from the rigid interface between solid electrodes and solid-state electrolytes. In this work, a composite of poly(vinyl carbonate) and Li 10 SnP 2 S 12 solid-state electrolyte is fabricated successfully via in situ polymerization to improve the rigid interface issues. The composite electrolyte presents a considerable room temperature conductivity of 0.2 mS cm -1 , an electrochemical window exceeding 4.5 V, and a Li + transport number of 0.6. It is demonstrated that solid-state lithium metal battery of LiFe 0.2 Mn 0.8 PO 4 (LFMP)/composite electrolyte/Li can deliver a high capacity of 130 mA h g -1 with considerable capacity retention of 88% and Coulombic efficiency of exceeding 99% after 140 cycles at the rate of 0.5 C at room temperature. The superior electrochemical performance can be ascribed to the good compatibility of the composite electrolyte with Li metal and the integrated compatible interface between solid electrodes and the composite electrolyte engineered by in situ polymerization, which leads to a significant interfacial impedance decrease from 1292 to 213 Ω cm 2 in solid-state Li-Li symmetrical cells. This work provides vital reference for improving the interface compatibility for room temperature solid-state lithium batteries.
Stability and Performance of Oxygen Electrodes for Reversible Solid Oxide Cells
NASA Astrophysics Data System (ADS)
Railsback, Justin Gary
Worldwide, governments are beginning to take action to reduce anthropogenic CO2 emissions in order to mitigate the extent of global climate change. The largest fraction of global CO2 emission comes from electrical power generation, which is rapidly being converted to wind and solar installations. The intermittent nature of renewable resources requires that large scale energy storage be implemented to ensure grid stability. Pumped hydro storage is currently the only technology available for large scale energy storage; however, pumped hydro remains geographically confined and susceptible to seasonal fluctuations and offers limited discharge hours. Recent system level models predict that reversible solid oxide cells may be a competitive solution, but two key advancements are required to realize the technology: low cell resistance (<0.2 O•cm2 at <650 °C), particularly low polarization resistance at the oxygen electrode, and low degradation rate (<0.5%/khr for 50,000 hours). The oxygen electrode is typically the largest contributor to the total cell resistance, and when a cell is operated in electrolysis the oxygen electrode is known to degrade quickly. This work focuses on both aspects of the oxygen electrode. A Pr2NiO4 based electrode is developed that has improved phase stability and good polarization resistance ( 0.1 O•cm2 at 650 °C). The electrode is prepared by wet chemical impregnation (infiltration) of Pr2NiO4 precursors into a La0.9Sr 0.1Ga0.8Mg0.2O3 scaffold. Electrochemical data for a number cells is presented and the number of infiltrations is optimized. Preliminary life tests and x-ray data are presented. Pressurization of the oxygen electrode is predicted to decrease its polarization resistance and pressurization of the reversible solid oxide cell system is desirable to achieve high round-trip efficiency. The electrochemical performance of mixed electronic-ionic conducting electrodes has not been reported above 1 atm. Four candidate electrodes are examined under pressurization up to 10 atm: Pr2NiO4 infiltrated La0.9Sr0.1 Ga0.8Mg0.2O3, Sm0.5Sr 0.5CoO3 infiltrated Ce0.9Gd0.1O 2, single phase La0.6Sr0.4Co0.2Fe 0.8O3, and single phase Nd2NiO4. The role of the ion conduction mechanism (vacancy or interstitial) is explored in relation to the decrease in polarization resistance with increased pressure. Current switched life-tests designed to emulate reversible solid oxide cell operating conditions were performed for a range of current densities and overpotentials on three candidate systems: composite La0.7Sr 0.3MnO3-Zr0.84Y0.16O2, single phase La0.6Sr0.4Co0.2Fe0.8O 3, and La2NiO4 infiltrated La0.9Sr 0.1Ga0.8Mg0.2O3. The degradation mode of each system is determined by impedance spectroscopy and post-test microstructural analysis. Operating regions of improved stability are identified for each system based on the measured degradation rates. Overpotential is determined to be the major controlling factor in La0.7Sr0.3MnO 3-Zr0.84Y0.16O2. Analysis and modeling for predicting the long term degradation of an infiltrated electrode is presented. Coarsening of the nanoscale features is thought to be the main contributor to degradation under annealing for infiltrated electrodes and so a combined electrochemical - coarsening model is presented to understand the limitations of such an electrode. The model is fit to prior results to better understand the trade-off between coarsening rate and initial good performance. A figure of merit is presented for selecting materials for infiltration that takes into account the coarsening behavior.
Protective interlayer for high temperature solid electrolyte electrochemical cells
Singh, P.; Vasilow, T.R.; Richards, V.L.
1996-05-14
The invention is comprised of an electrically conducting doped or admixed cerium oxide composition with niobium oxide and/or tantalum oxide for electrochemical devices, characterized by the general formula: Nb{sub x}Ta{sub y}Ce{sub 1{minus}x{minus}y}O{sub 2} where x is about 0.0 to 0.05, y is about 0.0 to 0.05, and x+y is about 0.02 to 0.05, and where x is preferably about 0.02 to 0.05 and y is 0, and a method of making the same is also described. This novel composition is particularly applicable in forming a protective interlayer of a high temperature, solid electrolyte electrochemical cell, characterized by a first electrode; an electrically conductive interlayer of niobium and/or tantalum doped cerium oxide deposited over at least a first portion of the first electrode; an interconnect deposited over the interlayer; a solid electrolyte deposited over a second portion of the first electrode, the first portion being discontinuous from the second portion; and, a second electrode deposited over the solid electrolyte. The interlayer is characterized as being porous and selected from the group consisting of niobium doped cerium oxide, tantalum doped cerium oxide, and niobium and tantalum doped cerium oxide or admixtures of the same. The first electrode, an air electrode, is a porous layer of doped lanthanum manganite, the solid electrolyte layer is a dense yttria stabilized zirconium oxide, the interconnect layer is a dense, doped lanthanum chromite, and the second electrode, a fuel electrode, is a porous layer of nickel-zirconium oxide cermet. The electrochemical cell can take on a plurality of shapes such as annular, planar, etc. and can be connected to a plurality of electrochemical cells in series and/or in parallel to generate electrical energy. 5 figs.
NASA Astrophysics Data System (ADS)
Tien, Bui Quang; Ngoc, Nguyen Thy; Loc, Nguyen Thai; Thu, Vu Thi; Lam, Tran Dai
2017-06-01
Accurate in situ diagnostic tests play a key role in patient management and control of most infectious diseases. To achieve this, use of handheld biochips that implement sample handling, sample analysis, and result readout together is an ideal approach. We present herein a fluid-handling biochip for real-time electrochemical monitoring of nucleic acid amplification based on loop-mediated isothermal amplification and real-time electrochemical detection on a microfluidic platform. Intercalation between amplifying DNA and free redox probe in solution phase was used to monitor the number of DNA copies. The whole diagnostic process is completed within 70 min. Our platform offers a fast and easy tool for quantification of viral pathogens in shorter time and with limited risk of all potential forms of cross-contamination. Such diagnostic tools have potential to make a huge difference to the lives of millions of people worldwide.
Capacitor with a composite carbon foam electrode
Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.
1999-01-01
Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid partides being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.
Method for fabricating composite carbon foam
Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.
2001-01-01
Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.
Capacitor with a composite carbon foam electrode
Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.
1999-04-27
Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.
Composite carbon foam electrode
Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.
1997-05-06
Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.
NASA Technical Reports Server (NTRS)
O'Donnell, Patricia M. (Editor)
1990-01-01
Attention is given to topics of advanced concepts, hydrogen-oxygen fuel cells and electrolyzers, nickel electrodes, and advanced rechargeable batteries. Papers are presented on human exploration mission studies, advanced rechargeable sodium batteries with novel cathodes, advanced double-layer capacitors, recent advances in solid-polymer electrolyte fuel cell technology with low platinum loading electrodes, electrocatalysts for oxygen electrodes in fuel cells and water electrolyzers for space applications, and the corrosion testing of candidates for the alkaline fuel cell cathode. Other papers are on a structural comparison of nickel electodes and precursor phases, the application of electrochemical impedance spectroscopy for characterizing the degradation of Ni(OH)2/NiOOH electrodes, advances in lightweight nickel electrode technology, multimission nickel-hydrogen battery cell for the 1990s, a sodium-sulfur battery flight experiment definition study, and advances in ambient-temperature secondary lithium cells.
NASA Astrophysics Data System (ADS)
Li, Rui; Li, Dandan; Fei, Wenwen; Tan, Jingyun; Li, Shengli; Zhou, Hongping; Zhang, Shengyi; Wu, Jieying; Tian, Yupeng
2014-06-01
A series of triphenylamine-based chromophores (L1-3) with donor-π-donor (D-π-D) model have been designed and synthesized via solid phase Wittig reaction. Their one/two-photon fluorescence and electrochemical properties have been investigated. The results show that L2 and L3 exhibited strong and wide-dispersed two-photon-excited fluorescence (TPEF) in different solvents. Chromophore L3 displays the strongest intensity two-photon absorption activity and large cross-sections (>3600 GM) in the range of 680-840 nm in THF, the largest δ up to 8899 GM in the near-IR range, and the measured maximum TPA cross-sections per molecular weight (δmax/MW) is 8.64 GM/g (L3) in THF. Significantly, it also exhibits good solubility in common organic solvents when the chromophore was modified by polyether units as peripheral groups.
Navarro, Aude-Emmanuelle; Spinelli, Nicolas; Moustrou, Corinne; Chaix, Carole; Mandrand, Bernard; Brisset, Hugues
2004-01-01
We have developed new ferrocenyl-modified oligonucleotide (ODN) probes for electrochemical DNA sensors. A monofunctional ferrocene containing phosphoramidite group has been prepared, and a new bisfunctional ferrocene containing phosphoramidite and dimethoxytrityl (DMT) groups has been developed. These ferrocenyl-phosphoramidites have been directly employed in an automated solid-phase DNA synthesizer using phosphoramidite chemistry. The advantages of this method are that it allows a non-specialist in nucleotide chemistry to access labeled ODNs and that it has demonstrated good results. ODNs modified at the 3′ and/or 5′ extremities have been prepared, with the incorporation of the ferrocenyl group into the chain. The 5′ position appears to be more important due to its particular behavior. The thermal stability and electrochemical properties of these new ODN ferrocenes were analyzed before and after hybridization with different ODNs. The feasibility of using these new ferrocenyl-labeled ODNs in DNA sensors has been demonstrated. PMID:15466597
New Polymer Electrolyte Cell Systems
NASA Technical Reports Server (NTRS)
Smyrl, William H.; Owens, Boone B.; Mann, Kent; Pappenfus, T.; Henderson, W.
2004-01-01
PAPERS PUBLISHED: 1. Pappenfus, Ted M.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; Smyrl, William H. Complexes of Lithium Imide Salts with Tetraglyme and Their Polyelectrolyte Composite Materials. Journal of the Electrochemical Society (2004), 15 1 (2), A209-A2 15. 2. Pappenfus, Ted M.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; Smyrl, William H. Ionic-liquidlpolymer electrolyte composite materials for electrochemical device applications. Polymeric Materials Science and Engineering (2003), 88 302. 3. Pappenfus, Ted R.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; and Smyrl, William H. Ionic Conductivity of a poly(vinylpyridinium)/Silver Iodide Solid Polymer Electrolyte System. Solid State Ionics (in press 2004). 4. Pappenfus Ted M.; Mann, Kent R; Smyrl, William H. Polyelectrolyte Composite Materials with LiPFs and Tetraglyme. Electrochemical and Solid State Letters, (2004), 7(8), A254.
Structures and fabrication techniques for solid state electrochemical devices
Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.
2006-10-10
Low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures provide solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one aspect the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another aspect, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe and Cu, or alloys thereof.
Alkaline static feed electrolyzer based oxygen generation system
NASA Technical Reports Server (NTRS)
Noble, L. D.; Kovach, A. J.; Fortunato, F. A.; Schubert, F. H.; Grigger, D. J.
1988-01-01
In preparation for the future deployment of the Space Station, an R and D program was established to demonstrate integrated operation of an alkaline Water Electrolysis System and a fuel cell as an energy storage device. The program's scope was revised when the Space Station Control Board changed the energy storage baseline for the Space Station. The new scope was aimed at the development of an alkaline Static Feed Electrolyzer for use in an Environmental Control/Life Support System as an oxygen generation system. As a result, the program was divided into two phases. The phase 1 effort was directed at the development of the Static Feed Electrolyzer for application in a Regenerative Fuel Cell System. During this phase, the program emphasized incorporation of the Regenerative Fuel Cell System design requirements into the Static Feed Electrolyzer electrochemical module design and the mechanical components design. The mechanical components included a Pressure Control Assembly, a Water Supply Assembly and a Thermal Control Assembly. These designs were completed through manufacturing drawing during Phase 1. The Phase 2 effort was directed at advancing the Alkaline Static Feed Electrolyzer database for an oxygen generation system. This development was aimed at extending the Static Feed Electrolyzer database in areas which may be encountered from initial fabrication through transportation, storage, launch and eventual Space Station startup. During this Phase, the Program emphasized three major areas: materials evaluation, electrochemical module scaling and performance repeatability and Static Feed Electrolyzer operational definition and characterization.
Synthesis and characterizaton of inorganic materials for sodium-ion batteries
NASA Astrophysics Data System (ADS)
Shanmugam, Rengarajan
Development of low-cost energy storage devices is critical for wide-scale implementation of intermittent renewable energy technologies and improving the electricity grid. Commercial devices remain prohibitively expensive or lack the performance specifications for a wider market reach. Na-ion batteries would perfectly suited for these large-scale applications as the raw materials (such as soda ash, salt, etc.) are plentiful, inexpensive and geographically unconstrained. However, extensive materials research on insertion electrodes is required for better understanding of the electrochemical and structural properties and engineering high performance Na-ion batteries. This thesis research involves exploratory study on new insertion materials with various crystallographic structure-types and extensive characterization of promising new inorganic compositions. Tunnel-type materials, sodium nickel phosphate-Na4Ni7(PO4)6, and sodium cobalt titanate- Na0.8Co0.4Ti1.6O4, were investigated to capitalize on the intrinsic structural stability offered by framework materials. Sol-gel and solid-state reaction synthetic techniques were employed for inorganic powder synthesis. Galvanostatic and potentiostatic testing confirm reversible sodium insertion/de-insertion reactions albeit with inadequate electrochemical characteristics (high voltage hysteresis> 1V). Subsequent efforts involved investigating layer-structured materials supporting fast ionic transport for better electrochemical performance. P2-sodium nickel titanate, Na2/3[Ni1/3Ti2/3]O2 (P2NT), with prismatic sodium co-ordination, was synthesized by solid-state technique. The 'bifunctional' oxide contains Ni2+/4+ and Ti4+/3+ redox couples with redox potentials of 3.6 V, 0.7 V vs. Na/Na+, respectively. This bifunctional approach would simplify electrode processing and provide cost reduction opportunities in battery manufacturing. The structural changes monitored using ex-situ XRD demonstrate a favorably broad solid-solution domain. Manganese substitution, to form P2-Na2/3[Ni1/3Mn1/3Ti1/3]O2 (P2NMT), provides an enhanced high-current performance due to faster interfacial kinetics and accelerated charge carrier transport as shown by impedance spectroscopy and DC testing. Structural properties of P2NT material were studied using neutron diffraction and atomisitic simulations. Rietveld refinement shows that Naf sites have lower site occupancy than Nae sites due to unfavorable repulsive interactions from inline transition metal atoms. Buckingham and Morse-type models accurately predicted the experimental lattice parameters. The energy landscape was explored using energy minimization runs on disordered supercells. The simulated density maps are in agreement with the experiment densities with evidence of stacking fault formation. O3-sodium nickel titanate, Na0.9[Ni0.45Ti0.55]O2 (O3NT) with octahedral sodium co-ordination was synthesized by solid-state reaction technique. The influence of titanium on the poor cycleability of the O3-type electrodes was investigated. Ex-situ XRD shows two phase regions, comprised of O3+P3 phases, and a solid solution region, comprised of P3 phase. O3NT provides an excellent capacity retention of 99% for 115 cycles at C/2 rate. The good cycleability is attributed to the relative invariance of net impedance during electrode cycling using impedance spectroscopy.
Patel, Shrayesh N; Javier, Anna E; Balsara, Nitash P
2013-07-23
Block copolymers that can simultaneously conduct electronic and ionic charges on the nanometer length scale can serve as innovative conductive binder material for solid-state battery electrodes. The purpose of this work is to study the electronic charge transport of poly(3-hexylthiophene)-b-poly(ethylene oxide) (P3HT-PEO) copolymers electrochemically oxidized with lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) salt in the context of a lithium battery charge/discharge cycle. We use a solid-state three-terminal electrochemical cell that enables simultaneous conductivity measurements and control over electrochemical doping of P3HT. At low oxidation levels (ratio of moles of electrons removed to moles of 3-hexylthiophene moieties in the electrode), the electronic conductivity (σe,ox) increases from 10(-7) S/cm to 10(-4) S/cm. At high oxidation levels, σe,ox approaches 10(-2) S/cm. When P3HT-PEO is used as a conductive binder in a positive electrode with LiFePO4 active material, P3HT is electrochemically active within the voltage window of a charge/discharge cycle. The electronic conductivity of the P3HT-PEO binder is in the 10(-4) to 10(-2) S/cm range over most of the potential window of the charge/discharge cycle. This allows for efficient electronic conduction, and observed charge/discharge capacities approach the theoretical limit of LiFePO4. However, at the end of the discharge cycle, the electronic conductivity decreases sharply to 10(-7) S/cm, which means the "conductive" binder is now electronically insulating. The ability of our conductive binder to switch between electronically conducting and insulating states in the positive electrode provides an unprecedented route for automatic overdischarge protection in rechargeable batteries.
NASA Astrophysics Data System (ADS)
Leung, Kevin
2015-03-01
Electrochemical reactions at electrode/electrolyte interfaces are critically dependent on the total electrochemical potential or voltage. In this presentation, we briefly review ab initio molecular dynamics (AIMD)-based estimate of voltages on graphite basal and edge planes, and then apply similar concepts to solid-solid interfaces relevant to lithium ion and Li-air batteries. Thin solid films on electrode surfaces, whether naturally occuring during power cycling (e.g., undesirable lithium carbonate on Li-air cathodes) or are artificially introduced, can undergo electrochemical reactions as the applied voltage varies. Here the onset of oxidation of lithium carbonate and other oxide thin films on model gold electrode surfaces is correlated with the electronic structure in the presence/absence of solvent molecules. Our predictions help determine whether oxidation first occurs at the electrode-thin film or electrolyte-thin film interface. Finally, we will critically compare the voltage estimate methodology used in the fuel cell community with the lithium cohesive energy calibration method broadly applied in the battery community, and discuss why they may yield different predictions. This work was supported by Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DESC0001160. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Deparment of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Samuel L. Zelinka; Donald S. Stone
2011-01-01
This paper compares two methods of measuring the corrosion of steel and galvanized steel in wood: a long-term exposure test in solid wood and a rapid test method where fasteners are electrochemically polarized in extracts of wood treated with six different treatments. For traditional wood preservatives, the electrochemical extract method correlates with solid wood...
Matsuzaki, Yoshio; Tachikawa, Yuya; Somekawa, Takaaki; Hatae, Toru; Matsumoto, Hiroshige; Taniguchi, Shunsuke; Sasaki, Kazunari
2015-01-01
Solid oxide fuel cells (SOFCs) are promising electrochemical devices that enable the highest fuel-to-electricity conversion efficiencies under high operating temperatures. The concept of multi-stage electrochemical oxidation using SOFCs has been proposed and studied over the past several decades for further improving the electrical efficiency. However, the improvement is limited by fuel dilution downstream of the fuel flow. Therefore, evolved technologies are required to achieve considerably higher electrical efficiencies. Here we present an innovative concept for a critically-high fuel-to-electricity conversion efficiency of up to 85% based on the lower heating value (LHV), in which a high-temperature multi-stage electrochemical oxidation is combined with a proton-conducting solid electrolyte. Switching a solid electrolyte material from a conventional oxide-ion conducting material to a proton-conducting material under the high-temperature multi-stage electrochemical oxidation mechanism has proven to be highly advantageous for the electrical efficiency. The DC efficiency of 85% (LHV) corresponds to a net AC efficiency of approximately 76% (LHV), where the net AC efficiency refers to the transmission-end AC efficiency. This evolved concept will yield a considerably higher efficiency with a much smaller generation capacity than the state-of-the-art several tens-of-MW-class most advanced combined cycle (MACC). PMID:26218470
Modeling the hydrodynamic and electrochemical efficiency of semi-solid flow batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunini, VE; Chiang, YM; Carter, WC
2012-05-01
A mathematical model of flow cell operation incorporating hydrodynamic and electrochemical effects in three dimensions is developed. The model and resulting simulations apply to recently demonstrated high energy-density semi-solid flow cells. In particular, state of charge gradients that develop during low flow rate operation and their effects on the spatial non-uniformity of current density within flow cells are quantified. A one-dimensional scaling model is also developed and compared to the full three-dimensional simulation. The models are used to demonstrate the impact of the choice of electrochemical couple on flow cell performance. For semi-solid flow electrodes, which can use solid activemore » materials with a wide variety of voltage-capacity responses, we find that cell efficiency is maximized for electrochemical couples that have a relatively flat voltage vs. capacity curve, operated under slow flow conditions. For example, in flow electrodes limited by macroscopic charge transport, an LiFePO4-based system requires one-third the polarization to reach the same cycling rate as an LiCoO2-based system, all else being equal. Our conclusions are generally applicable to high energy density flow battery systems, in which flow rates can be comparatively low for a given required power. (C) 2012 Elsevier Ltd. All rights reserved.« less
Matsuzaki, Yoshio; Tachikawa, Yuya; Somekawa, Takaaki; Hatae, Toru; Matsumoto, Hiroshige; Taniguchi, Shunsuke; Sasaki, Kazunari
2015-07-28
Solid oxide fuel cells (SOFCs) are promising electrochemical devices that enable the highest fuel-to-electricity conversion efficiencies under high operating temperatures. The concept of multi-stage electrochemical oxidation using SOFCs has been proposed and studied over the past several decades for further improving the electrical efficiency. However, the improvement is limited by fuel dilution downstream of the fuel flow. Therefore, evolved technologies are required to achieve considerably higher electrical efficiencies. Here we present an innovative concept for a critically-high fuel-to-electricity conversion efficiency of up to 85% based on the lower heating value (LHV), in which a high-temperature multi-stage electrochemical oxidation is combined with a proton-conducting solid electrolyte. Switching a solid electrolyte material from a conventional oxide-ion conducting material to a proton-conducting material under the high-temperature multi-stage electrochemical oxidation mechanism has proven to be highly advantageous for the electrical efficiency. The DC efficiency of 85% (LHV) corresponds to a net AC efficiency of approximately 76% (LHV), where the net AC efficiency refers to the transmission-end AC efficiency. This evolved concept will yield a considerably higher efficiency with a much smaller generation capacity than the state-of-the-art several tens-of-MW-class most advanced combined cycle (MACC).
NASA Astrophysics Data System (ADS)
Shimada, Hiroyuki; Yamaguchi, Toshiaki; Suzuki, Toshio; Sumi, Hirofumi; Hamamoto, Koichi; Fujishiro, Yoshinobu
2016-01-01
High power density solid oxide electrochemical cells were developed using nanostructure-controlled composite powder consisting of Sr-doped SmCoO3 (SSC) and Sm-doped CeO2 (SDC) for electrode material. The SSC-SDC nano-composite powder, which was synthesized by spray pyrolysis, had a narrow particle size distribution (D10, D50, and D90 of 0.59, 0.71, and 0.94 μm, respectively), and individual particles were spherical, composing of nano-size SSC and SDC fragments (approximately 10-15 nm). The application of the powder to a cathode for an anode-supported solid oxide fuel cell (SOFC) realized extremely fine cathode microstructure and excellent cell performance. The anode-supported SOFC with the SSC-SDC cathode achieved maximum power density of 3.65, 2.44, 1.43, and 0.76 W cm-2 at 800, 750, 700, and 650 °C, respectively, using humidified H2 as fuel and air as oxidant. This result could be explained by the extended electrochemically active region in the cathode induced by controlling the structure of the starting powder at the nano-order level.
Method of electrode fabrication for solid oxide electrochemical cells
Jensen, R.R.
1990-11-20
A process for fabricating cermet electrodes for solid oxide electrochemical cells by sintering is disclosed. First, a porous metal electrode is fabricated on a solid oxide cell, such as a fuel cell by, for example, sintering, and is then infiltrated with a high volume fraction stabilized zirconia suspension. A second sintering step is used to sinter the infiltrated zirconia to a high density in order to more securely attach the electrode to the solid oxide electrolyte of the cell. High performance fuel electrodes can be obtained with this process. Further electrode performance enhancement may be achieved if stabilized zirconia doped with cerium oxide, chromium oxide, titanium oxide, and/or praseodymium oxide for electronic conduction is used. 5 figs.
Method of electrode fabrication for solid oxide electrochemical cells
Jensen, Russell R.
1990-01-01
A process for fabricating cermet electrodes for solid oxide electrochemical cells by sintering is disclosed. First, a porous metal electrode is fabricated on a solid oxide cell, such as a fuel cell by, for example, sintering, and is then infiltrated with a high volume fraction stabilized zirconia suspension. A second sintering step is used to sinter the infiltrated zirconia to a high density in order to more securely attach the electrode to the solid oxide electrolyte of the cell. High performance fuel electrodes can be obtained with this process. Further electrode performance enhancement may be achieved if stabilized zirconia doped with cerium oxide, chromium oxide, titanium oxide, and/or praseodymium oxide for electronic conduction is used.
Non-aqueous electrolytes for electrochemical cells
Zhang, Zhengcheng; Dong, Jian; Amine, Khalil
2016-06-14
An electrolyte electrochemical device includes an anodic material and an electrolyte, the electrolyte including an organosilicon solvent, a salt, and a hybrid additiving having a first and a second compound, the hybrid additive configured to form a solid electrolyte interphase film on the anodic material upon application of a potential to the electrochemical device.
NASA Astrophysics Data System (ADS)
Obeidat, Amr M.
Clean and renewable energy systems have emerged as an important area of research having diverse and significant new applications. These systems utilize different energy storage methods such as the batteries and supercapacitors. Supercapacitors are electrochemical energy storage devices that are designed to bridge the gap between batteries and conventional capacitors. Supercapacitors which store electrical energy by electrical double layer capacitance are based on large surface area structured carbons. The materials systems in which the Faradaic reversible redox reactions store electrical energy are the transition metal oxides and electronically conducting polymers. Among the different types of conducting polymers, poly (3, 4- ethylenedioxythiophene) (PEDOT) is extensively investigated owing to its chemical and mechanical stability. Due to instability of aqueous electrolytes at high voltages and toxicity of organic electrolytes, potential of supercapacitors has not been fully exploited. A novel aspect of this work is in utilizing the ionic liquid gel polymer electrolyte to design solid-state supercapacitors for energy storage. Various electrochemical systems were investigated including graphene, PEDOT, PEDOT-carbon nanotubes, PEDOT-manganese oxide, and PEDOT-iron oxide nanocomposites. The electrochemical performance of solid-state supercapacitor devices was evaluated based on cyclic voltammetry (CV), charge-discharge (CD), prolonged cyclic tests, and electrochemical impedance spectroscopy (EIS) techniques. Raman spectroscopy technique was also utilized to analyze the bonding structure of the electrode materials. The graphene solid-state supercapacitor system displayed areal capacitance density of 141.83 mF cm-2 based on high potential window up to 4V. The PEDOT solid-state supercapacitor system was synthesized in acetonitrile and aqueous mediums achieving areal capacitance density of 219.17 mF cm-2. The hybrid structure of solid-state supercapacitors was also studied in solid-state design based on PEDOT and graphene electrodes that produced areal capacitance density of 198.26 mF cm-2. Symmetrical PEDOT-manganese oxide nanocomposites were synthesized by co-deposition and dip-coating techniques to fabricate solid-state supercapacitor systems achieving areal capacitance density of 122.08 mF cm-2 credited to the PEDOT-MnO2 supercapacitor that was synthesized by dipping the PEDOT electrode in pure KMnO4 solution. The electrochemical performance of PEDOT-carbon nanotube solid-state supercapacitors was also investigated in both acetonitrile and aqueous medium showing good dispersion characteristics with optimum CNT content of 1 mg. The PEDOT-CNT solid-state supercapacitor system synthesized in acetonitrile displayed areal capacitance density of 297.43 mF cm-2. PEDOT-Fe2O3 nanocomposites were synthesized by single-step co-deposition techniques, and these were used to fabricate solid-state supercapacitors achieving areal capacitance density of 96.89 mF cm-2. Furthermore, some of these thin flexible solid-state supercapacitors were integrated with solar cells for direct storage of solar electricity, which proved to be promising as autonomous power source for flexible and wearable electronics. This dissertation describes the electrode synthesis, design and properties of solid-state supercapacitors, and their electrochemical performance in the storage of electrical energy.
Electrodics: mesoscale physicochemical interactions in lithium-ion batteries
NASA Astrophysics Data System (ADS)
Mukherjee, Partha P.; Chen, Chien-Fan
2014-06-01
Recent years have witnessed an explosion of interest and research endeavor in lithium-ion batteries to enable vehicle electrification. In particular, a critical imperative is to accelerate innovation for improved performance, life and safety of lithium-ion batteries for electric drive vehicles. Lithium ion batteries are complex, dynamical systems which include a multitude of coupled physicochemical processes encompassing electronic/ionic/diffusive transport in solid/electrolyte phases, electrochemical and phase change reactions and diffusion induced stress generation in multi-scale porous electrode microstructures. While innovations in nanomaterials and nanostructures have spurred the recent advancements, fundamental understanding of the electrode processing - microstructure - performance interplay is of paramount importance. In this presentation, mesoscale physicochemical interactions in lithium-ion battery electrodes will be elucidated.
Dispositional study of opioids in mice pretreated with sympathomimetic agents.
Dambisya, Y M; Chan, K; Wong, C L
1992-08-01
Brain and plasma levels of morphine and codeine were determined by an assay method involving solid-phase extraction and ion-pair reversed phase HPLC. Detection was by a variable wavelength UV-detector (for codeine) and an amperometric electro-chemical detector (for morphine) coupled in series. Ephedrine or phenylpropanolamine pretreatment did not interfere with the plasma disposition of morphine, evidenced by overlapping plasma concentration-time profiles. Brain opioid levels were equally unaffected by sympathomimetic pretreatment. The relative ratios of brain to plasma concentrations at the time corresponding to the respective peak anti-nociceptive activity for morphine and codeine revealed no significant differences. It is concluded that single doses of ephedrine and phenylpropanolamine do not affect the disposition of morphine and codeine in mice.
Silver nanostructures synthesis via optically induced electrochemical deposition
NASA Astrophysics Data System (ADS)
Li, Pan; Liu, Na; Yu, Haibo; Wang, Feifei; Liu, Lianqing; Lee, Gwo-Bin; Wang, Yuechao; Li, Wen Jung
2016-06-01
We present a new digitally controlled, optically induced electrochemical deposition (OED) method for fabricating silver nanostructures. Projected light patterns were used to induce an electrochemical reaction in a specialized sandwich-like microfluidic device composed of one indium tin oxide (ITO) glass electrode and an optically sensitive-layer-covered ITO electrode. Silver polyhedral nanoparticles, triangular and hexagonal nanoplates, and nanobelts were controllably synthesized in specific positions at which projected light was illuminated. The silver nanobelts had rectangular cross-sections with an average width of 300 nm and an average thickness of 100 nm. By controlling the applied voltage, frequency, and time, different silver nanostructure morphologies were obtained. Based on the classic electric double-layer theory, a dynamic process of reduction and crystallization can be described in terms of three phases. Because it is template- and surfactant-free, the digitally controlled OED method facilitates the easy, low cost, efficient, and flexible synthesis of functional silver nanostructures, especially quasi-one-dimensional nanobelts.
NASA Astrophysics Data System (ADS)
Kumar, Ajay; Jayakumar, O. D.; Naik, Vaman M.; Nazri, Gholam A.; Naik, Ratna
Li2FeSiO4 is considered as potential cathode material for next generation lithium ion batteries because of its high specific theoretical capacity, low cost, and safety. However, it suffers from poor electronic conductivity and slow lithium ion diffusion in the solid phase. To address these issues, we have studied mesoporous Li2FeSiO4/C composites synthesized by sol-gel (SG) and hydrothermal (HT) methods using tri-block copolymer (P123) as carbon source and structure directing agent. The structure and morphology of the composites were characterized by XRD, SEM and TEM and the surface area and pore size distribution were measured by using N2 adsorption/desorption. Galvanostatic cycling, electrochemical impedance spectroscopy, and cyclic voltammetry were used to evaluate the electrochemical performance of the Li2FeSiO4/C composites. The Li2FeSiO4/C (HT) composites show a superior electrochemical performance compared to Li2FeSiO4/C (SG). At C/30 rate, the discharge capacity of Li2FeSiO4/C (HT) reached ~276 mAh/g in the 1.5-4.6 V window and shows better rate capability and stability at high rates. We attribute the improved electrochemical performance of Li2FeSiO4/C (HT) to its large surface area and reduced particle size. The details of the study will be presented.
Surface Patterning Using Diazonium Ink Filled Nanopipette.
Zhou, Min; Yu, Yun; Blanchard, Pierre-Yves; Mirkin, Michael V
2015-11-03
Molecular grafting of diazonium is a widely employed surface modification technique. Local electrografting of this species is a promising approach to surface doping and related properties tailoring. The instability of diazonium cation complicates this process, so that this species was generated in situ in many reported studies. In this Article, we report the egress transfer of aryl diazonium cation across the liquid/liquid interface supported at the nanopipette tip that can be used for controlled delivery this species to the external aqueous phase for local substrate patterning. An aryl diazonium salt was prepared with weakly coordinating and lipophilic tetrakis(pentafluorophenyl)borate anion stable as a solid and soluble in low polarity media. The chemically stable solution of this salt in 1,2-dichloroethane can be used as "diazonium ink". The ink-filled nanopipette was employed as a tip in the scanning electrochemical microscope (SECM) for surface patterning with the spatial resolution controlled by the pipette orifice radius and a few nanometers film thickness. The submicrometer-size grafted spots produced on the HOPG surface were located and imaged with the atomic force microscope (AFM).
Rawlence, M; Filippin, A N; Wäckerlin, A; Lin, T-Y; Cuervo-Reyes, E; Remhof, A; Battaglia, C; Rupp, J L M; Buecheler, S
2018-04-25
Replacing the liquid electrolyte in conventional lithium-ion batteries with thin-film solid-state lithium-ion conductors is a promising approach for increasing energy density, lifetime, and safety. In particular, Li 7 La 3 Zr 2 O 12 is appealing due to its high lithium-ion conductivity and wide electrochemical stability window. Further insights into thin-film processing of this material are required for its successful integration into solid-state batteries. In this work, we investigate the phase evolution of Li 7-3 x Ga x La 3 Zr 2 O 12 in thin films with various amounts of Li and Ga for stabilizing the cubic phase. Through this work, we gain valuable insights into the crystallization processes unique to thin films and are able to form dense Li 7-3 x Ga x La 3 Zr 2 O 12 layers stabilized in the cubic phase with high in-plane lithium-ion conductivities of up to 1.6 × 10 -5 S cm -1 at 30 °C. We also note the formation of cubic Li 7 La 3 Zr 2 O 12 at the relatively low temperature of 500 °C.
Computational analysis of species transport and electrochemical characteristics of a MOLB-type SOFC
NASA Astrophysics Data System (ADS)
Hwang, J. J.; Chen, C. K.; Lai, D. Y.
A multi-physics model coupling electrochemical kinetics with fluid dynamics has been developed to simulate the transport phenomena in mono-block-layer built (MOLB) solid oxide fuel cells (SOFC). A typical MOLB module is composed of trapezoidal flow channels, corrugated positive electrode-electrolyte-negative electrode (PEN) plates, and planar inter-connecters. The control volume-based finite difference method is employed for calculation, which is based on the conservation of mass, momentum, energy, species, and electric charge. In the porous electrodes, the flow momentum is governed by a Darcy model with constant porosity and permeability. The diffusion of reactants follows the Bruggman model. The chemistry within the plates is described via surface reactions with a fixed surface-to-volume ratio, tortuosity and average pore size. Species transports as well as the local variations of electrochemical characteristics, such as overpotential and current density distributions in the electrodes of an MOLB SOFC, are discussed in detail.
NASA Astrophysics Data System (ADS)
Kim, Chanho; Park, Hyunjung; Jang, Inyoung; Kim, Sungmin; Kim, Kijung; Yoon, Heesung; Paik, Ungyu
2018-02-01
Controlling triple phase boundary (TPB), an intersection of the ionic conductor, electronic conductor and gas phase as a major reaction site, is a key to improve cell performances for low-temperature solid oxide fuel cells. We report a synthesis of morphologically well-defined Gd0.1Ce0.9O1.95 (GDC) embedded Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) nanofibers and their electrochemical performances as a cathode. Electrospun fibers prepared with a polymeric solution that contains crystalline Ba0.5Sr0.5Co0.8Fe0.2O3-δ particles in ∼200 nm size and Gd(NO3)3/Ce(NO3)3 precursors in an optimized weight ratio of 3 to 2 result in one dimensional structure without severe agglomeration and morphological collapse even after a high calcination at 1000 °C. As-prepared nanofibers have fast electron pathways along the axial direction of fibers, a higher surface area of 7.5 m2 g-1, and more oxygen reaction sites at TPBs than those of GDC/BSCF composite particles and core-shell nanofibers. As a result, the Gd0.1Ce0.9O1.95 embedded Ba0.5Sr0.5Co0.8Fe0.2O3-δ nanofiber cell shows excellent performances of the maximum power density of 0.65 W cm-2 at 550 °C and 1.02 W cm-2 at 600 °C, respectively.
A High-Performing Direct Carbon Fuel Cell with a 3D Architectured Anode Operated Below 600 °C.
Wu, Wei; Zhang, Yunya; Ding, Dong; He, Ting
2018-01-01
Direct carbon fuel cells (DCFCs) are highly efficient power generators fueled by abundant and cheap solid carbons. However, the limited triple-phase boundaries (TPBs) in the fuel electrode, due to the lack of direct contact among carbon, electrode, and electrolyte, inhibit the performance and result in poor fuel utilization. To address the challenges of low carbon oxidation activity and low carbon utilization, a highly efficient, 3D solid-state architected anode is developed to enhance the performance of DCFCs below 600 °C. The cell with the 3D textile anode framework, Gd:CeO 2 -Li/Na 2 CO 3 composite electrolyte, and Sm 0.5 Sr 0.5 CoO 3 cathode demonstrates excellent performance with maximum power densities of 143, 196, and 325 mW cm -2 at 500, 550, and 600 °C, respectively. At 500 °C, the cells can be operated steadily with a rated power density of ≈0.13 W cm -2 at a constant current density of 0.15 A cm -2 with a carbon utilization over 85.5%. These results, for the first time, demonstrate the feasibility of directly electrochemical oxidation of solid carbon at 500-600 °C, representing a promising strategy in developing high-performing fuel cells and other electrochemical systems via the integration of 3D architected electrodes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A complete two-phase model of a porous cathode of a PEM fuel cell
NASA Astrophysics Data System (ADS)
Hwang, J. J.
This paper has developed a complete two-phase model of a proton exchange membrane (PEM) fuel cell by considering fluid flow, heat transfer and current simultaneously. In fluid flow, two momentum equations governing separately the gaseous-mixture velocity (u g) and the liquid-water velocity (u w) illustrate the behaviors of the two-phase flow in a porous electrode. Correlations for the capillary pressure and the saturation level connect the above two-fluid transports. In heat transfer, a local thermal non-equilibrium (LTNE) model accounting for intrinsic heat transfer between the reactant fluids and the solid matrices depicts the interactions between the reactant-fluid temperature (T f) and the solid-matrix temperature (T s). The irreversibility heating due to electrochemical reactions, Joule heating arising from Ohmic resistance, and latent heat of water condensation/evaporation are considered in the present non-isothermal model. In current, Ohm's law is applied to yield the conservations in ionic current (i m) and electronic current (i s) in the catalyst layer. The Butler-Volmer correlation describes the relation of the potential difference (overpotential) and the transfer current between the electrolyte (such as Nafion™) and the catalyst (such as Pt/C).
Sapi, Andras; Liu, Fudong; Cai, Xiaojun; Thompson, Christopher M; Wang, Hailiang; An, Kwangjin; Krier, James M; Somorjai, Gabor A
2014-11-12
Pt nanoparticles with controlled size (2, 4, and 6 nm) are synthesized and tested in ethanol oxidation by molecular oxygen at 60 °C to acetaldehyde and carbon dioxide both in the gas and liquid phases. The turnover frequency of the reaction is ∼80 times faster, and the activation energy is ∼5 times higher at the gas-solid interface compared to the liquid-solid interface. The catalytic activity is highly dependent on the size of the Pt nanoparticles; however, the selectivity is not size sensitive. Acetaldehyde is the main product in both media, while twice as much carbon dioxide was observed in the gas phase compared to the liquid phase. Added water boosts the reaction in the liquid phase; however, it acts as an inhibitor in the gas phase. The more water vapor was added, the more carbon dioxide was formed in the gas phase, while the selectivity was not affected by the concentration of the water in the liquid phase. The differences in the reaction kinetics of the solid-gas and solid-liquid interfaces can be attributed to the molecular orientation deviation of the ethanol molecules on the Pt surface in the gas and liquid phases as evidenced by sum frequency generation vibrational spectroscopy.
NASA Astrophysics Data System (ADS)
Gao, Lei; Li, Qiang; Sun, Liping; Zhang, Xianfa; Huo, Lihua; Zhao, Hui; Grenier, Jean-Claude
2017-12-01
Cobalt-free provskite oxides Bi0.5Sr0.5Fe1-xNbxO3-δ (BSFNx, x = 0.05, 0.10 and 0.15) were prepared and evaluated as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs). In particular, the effects of Nb substitution on phase evolution, thermal expansion behavior and electrochemical performance were systematically investigated. The average thermal expansion coefficient (TEC) of BSFNx decreases from 13.3 × 10-6 K-1 at x = 0.05 to 12.6 × 10-6 K-1 at x = 0.15 within a temperature range of 50-800 °C. Among the BSFNx materials, Bi0.5Sr0.5Fe0.9Nb0.1O3-δ (BSFN0.10) oxide shows the best electrochemical performance. The polarization resistances (Rp) of BSFN0.10 cathode on CGO electrolyte are 0.038, 0.075 and 0.156 Ω cm2 at 700, 650 and 600 °C, respectively. Meanwhile the maximum power densities of the anode-supported single cells are 1.28, 1.54 and 1.34 W cm-2 at 700 °C for BSFNx cathodes with x = 0.05, 0.10, and 0.15, respectively. Furthermore, the relationship study of oxygen partial pressure dependence on Rp indicates that the oxygen reduction reaction (ORR) rate-limiting step is the oxygen adsorption-dissociation on the electrode surface. The desirable electrochemical performance demonstrates that BSFNx oxides are potential cathode materials for IT-SOFCs.
Preparation of redox polymer cathodes for thin film rechargeable batteries
Skotheim, T.A.; Lee, H.S.; Okamoto, Yoshiyuki.
1994-11-08
The present invention relates to the manufacture of thin film solid state electrochemical devices using composite cathodes comprising a redox polymer capable of undergoing oxidation and reduction, a polymer solid electrolyte and conducting carbon. The polymeric cathode material is formed as a composite of radiation crosslinked polymer electrolytes and radiation crosslinked redox polymers based on polysiloxane backbones with attached organosulfur side groups capable of forming sulfur-sulfur bonds during electrochemical oxidation.
Structures And Fabrication Techniques For Solid State Electrochemical Devices
Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.
2005-12-27
Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.
Structures and fabrication techniques for solid state electrochemical devices
Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.
2003-08-12
Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.
NASA Astrophysics Data System (ADS)
Kumar, Ajay; Jayakumar, O. D.; Bazzi, Khadije; Nazri, Gholam-Abbas; Naik, Vaman M.; Naik, Ratna
2015-03-01
Lithium iron silicate (Li2FeSiO4) has the potential as cathode for Li ion batteries due to its high theoretical capacity (~ 330 mAh/g) and improved safety. The application of Li2FeSiO4 as cathode material has been challenged by its poor electronic conductivity and slow lithium ion diffusion in the solid phase. In order to solve these problems, we have synthesized mesoporous Li2FeSiO4/C composites by sol-gel method using the tri-block copolymer (P123) as carbon source. The phase purity and morphology of the composite materials were characterized by x-ray diffraction, SEM and TEM. The XRD pattern confirmed the formation of ~ 12 nm size Li2FeSiO4 crystallites in composites annealed at 600 °C for 6 h under argon atmosphere. The electrochemical properties are measured using the composite material as positive electrode in a standard coin cell configuration with lithium as the active anode and the cells were tested using AC impedance spectroscopy, cyclic voltammetry, and galvanostatic charge/discharge cycling. The Li2FeSiO4/C composites showed a discharge capacity of ~ 240 mAh/g at a rate of C/30 at room temperature. The effect of different annealing temperature and synthesis time on the electrochemical performance of Li2FeSiO4/C will be presented.
Controlling Oxygen Mobility in Ruddlesden–Popper Oxides
Lee, Dongkyu; Lee, Ho Nyung
2017-01-01
Discovering new energy materials is a key step toward satisfying the needs for next-generation energy conversion and storage devices. Among the various types of oxides, Ruddlesden–Popper (RP) oxides (A2BO4) are promising candidates for electrochemical energy devices, such as solid oxide fuel cells, owing to their attractive physicochemical properties, including the anisotropic nature of oxygen migration and controllable stoichiometry from oxygen excess to oxygen deficiency. Thus, understanding and controlling the kinetics of oxygen transport are essential for designing optimized materials to use in electrochemical energy devices. In this review, we first discuss the basic mechanisms of oxygen migration in RP oxides depending on oxygen nonstoichiometry. We then focus on the effect of changes in the defect concentration, crystallographic orientation, and strain on the oxygen migration in RP oxides. We also briefly review their thermal and chemical stability. Finally, we conclude with a perspective on potential research directions for future investigation to facilitate controlling oxygen ion migration in RP oxides. PMID:28772732
Fabrication and characterization of solid oxide cells for energy conversion and storage
NASA Astrophysics Data System (ADS)
Yang, Chenghao
2011-12-01
There has been an increasing interest in clean and renewable energy generation for highlighted energy and environmental concerns. Solid oxide cells (SOCs) have been considered as one of the promising technologies, since they can be operated efficiently both in electrolysis mode by generating hydrogen through steam electrolysis and fuel cell mode by electrochemically combining fuel with oxidant. The present work is devoted to performing a fundamental study of SOC in both fuel cell mode for power generation and electrolysis mode for fuel production. The research work on SOCs that can be operated reversibly for power generation and fuel production has been conducted in the following six projects: (1) High performance solid oxide electrolysis cell (SOEC) Fabrication of novel structured SOEC oxygen electrode with the conventional and commercial solid oxide fuel cell materials by screen-printing and infiltration fabrication methods. The microstructure, electrochemical properties and durability of SOECs has been investigated. It was found that the LSM infiltrated cell has an area specific resistance (ASR) of 0.20 Ω cm2 at 900°C at open circuit voltage with 50% absolute humidity (AH), which is relatively lower than that of the cell with LSM-YSZ oxygen electrode made by a conventional mixing method. Electrolysis cell with LSM infiltrated oxygen electrode has demonstrated stable performance under electrolysis operation with 0.33 A/cm2 and 50 vol.% AH at 800°C. (2) Advanced performance high temperature micro-tubular solid oxide fuel cell (MT-SOFC) Phase-inversion, dip-coating, high temperature co-sintering process and impregnation method were used to fabricate micro-tubular solid oxide fuel cell. The micro-structure of the micro-tubular fuel cell will be investigated and the power output and thermal robustness has been evaluated. High performance and rapid start-up behavior have been achieved, indicates that the MT-SOFC developed in this work can be a promising technology for portable applications. (3) Promising intermediate temperature micro-tubular solid oxide fuel cells for portable power supply applications Maximum power densities of 0.5, 0.38 and 0.27 W/cm2 have been obtained using H2-15% H2O as fuel at 550, 600 and 650°C, respectively. Quick thermal cycles performed on the intermediate temperature MT-SOFC stability demonstrate that the cell has robust performance stability for portable applications. (4) Micro-tubular solid oxide cell (MT-SOC) for steam electrolysis The electrochemical properties of MT-SOC will be investigated in detail in electrolysis mode. The mechanism of the novel hydrogen electrode structure benefiting the cell performance will be demonstrated systematically. The high electrochemical performance of the MT-SOC in electrolysis mode indicates that MT-SOC can provide an efficient hydrogen generation process. (5) Micro-tubular solid oxide cell (MT-SOC) for steam and CO2 co-electrolysis The MT-SOC will be operated in co-electrolysis mode for steam and CO 2, which will provide an efficient approach to generate syngas (H2+CO) without consuming fossil fuels. This can potentially provide an alternative superior approach for carbon sequestration which has been a critical issue facing the sustainability of our society. (6) Steam and CO2 co-electrolysis using solid oxide cells fabricated by freeze-drying tape-casting Tri-layer scaffolds have been prepared by freeze-drying tape casting process and the electrode catalysts are obtained by infiltrating the porous electrode substrates. Button cells will be tested for co-electrolysis of steam and CO2. The mechanism and efficiency of steam and CO2 co-electrolysis will be systemically investigated. In conclusion, SOCs have been fabricated with conventional materials and evaluated, but their performance has been found to be limited in either SOFC or SOEC mode. The cell performance has been significantly improved by employing an infiltrated LSM-YSZ electrode, due to dramatically decreased polarization resistance. However, mass transport limitation has been observed, particularly in electrolysis mode. By utilizing micro-tubular SOCs with novel hydrogen electrode produced via a phase inversion method, mass transport limitation has been mitigated. Finally, mass transport has been further improved by using cells with electrodes fabricated through a freeze-drying tape-casting method. (Abstract shortened by UMI.)
Zhang, Dechao; Zhang, Long; Yang, Kun; Wang, Hongqiang; Yu, Chuang; Xu, Di; Xu, Bo; Wang, Li-Min
2017-10-25
Exploration of advanced solid electrolytes with good interfacial stability toward electrodes is a highly relevant research topic for all-solid-state batteries. Here, we report PCL/SN blends integrating with PAN-skeleton as solid polymer electrolyte prepared by a facile method. This polymer electrolyte with hierarchical architectures exhibits high ionic conductivity, large electrochemical windows, high degree flexibility, good flame-retardance ability, and thermal stability (workable at 80 °C). Additionally, it demonstrates superior compatibility and electrochemical stability toward metallic Li as well as LiFePO 4 cathode. The electrolyte/electrode interfaces are very stable even subjected to 4.5 V at charging state for long time. The LiFePO 4 /Li all-solid-state cells based on this electrolyte deliver high capacity, outstanding cycling stability, and superior rate capability better than those based on liquid electrolyte. This solid polymer electrolyte is eligible for next generation high energy density all-solid-state batteries.
High-Temperature Stable Anatase Titanium Oxide Nanofibers for Lithium-Ion Battery Anodes.
Lee, Sangkyu; Eom, Wonsik; Park, Hun; Han, Tae Hee
2017-08-02
Control of the crystal structure of electrochemically active materials is an important approach to fabricating high-performance electrodes for lithium-ion batteries (LIBs). Here, we report a methodology for controlling the crystal structure of TiO 2 nanofibers by adding aluminum isopropoxide to a common sol-gel precursor solution utilized to create TiO 2 nanofibers. The introduction of aluminum cations impedes the phase transformation of electrospun TiO 2 nanofibers from the anatase to the rutile phase, which inevitably occurs in the typical annealing process utilized for the formation of TiO 2 crystals. As a result, high-temperature stable anatase TiO 2 nanofibers were created in which the crystal structure was well-maintained even at high annealing temperatures of up to 700 °C. Finally, the resulting anatase TiO 2 nanofibers were utilized to prepare LIB anodes, and their electrochemical performance was compared to pristine TiO 2 nanofibers that contain both anatase and rutile phases. Compared to the electrode prepared with pristine TiO 2 nanofibers, the electrode prepared with anatase TiO 2 nanofibers exhibited excellent electrochemical performances such as an initial Coulombic efficiency of 83.9%, a capacity retention of 89.5% after 100 cycles, and a rate capability of 48.5% at a current density of 10 C (1 C = 200 mA g -1 ).
Sb-Te Phase-change Materials under Nanoscale Confinement
NASA Astrophysics Data System (ADS)
Ihalawela, Chandrasiri A.
Size, speed and efficiency are the major challenges of next generation nonvolatile memory (NVM), and phase-change memory (PCM) has captured a great attention due to its promising features. The key for PCM is rapid and reversible switching between amorphous and crystalline phases with optical or electrical excitation. The structural transition is associated with significant contrast in material properties which can be utilized in optical (CD, DVD, BD) and electronic (PCRAM) memory applications. Importantly, both the functionality and the success of PCM technology significantly depend on the core material and its properties. So investigating PC materials is crucial for the development of PCM technology to realized enhanced solutions. In regards to PC materials, Sb-Te binary plays a significant role as a basis to the well-known Ge-Sb-Te system. Unlike the conventional deposition methods (sputtering, evaporation), electrochemical deposition method is used due to its multiple advantages, such as conformality, via filling capability, etc. First, the controllable synthesis of Sb-Te thin films was studied for a wide range of compositions using this novel deposition method. Secondly, the solid electrolytic nature of stoichiometric Sb2Te3 was studied with respect to precious metals. With the understanding of 2D thin film synthesis, Sb-Te 1D nanowires (18 - 220 nm) were synthesized using templated electrodeposition, where nanoporous anodic aluminum oxide (AAO) was used as a template for the growth of nanowires. In order to gain the controllability over the deposition in high aspect ratio structures, growth mechanisms of both the thin films and nanowires were investigated. Systematic understanding gained thorough previous studies helped to formulate the ultimate goal of this dissertation. In this dissertation, the main objective is to understand the size effect of PC materials on their phase transition properties. The reduction of effective memory cell size in conjunction with multilevel cells could be promising to achieve high data densities. However the size reduction may result in changes in material properties. If phase transition properties of the materials are also tunable with respect to the size, then more attractive solutions could be realized. So we have reported the size effect on crystallization temperature of prototypical Sb2Te3 nanowires synthesized in AAO templates. Moreover, we have found that the reduction of nanowire size can elevate the crystallization temperature, which is crucial for data retention in PCM technology. Energy dispersive X-ray spectroscopy, X-ray diffraction, electron microscopy and electrical resistivity measurements were used to characterize the composition, structure, morphology, and phase transition properties of the materials. We believe that this dissertation will provide new insights into the size effect of PC materials in addition to the controllable synthesis of PC thin films and nanowires through the novel electrochemical method.
NASA Astrophysics Data System (ADS)
Kang, Young C.
The following work is the study to evaluate the impact of corrosion inhibitors on the copper metal in drinking water and to investigate the corrosion mechanism in the presence and absence of inhibitors. Electrochemical experiments were conducted to understand the effect of specific corrosion inhibitors in synthetic drinking water which was prepared with controlled specific water quality parameters. Water chemistry was studied by Inductively Coupled Plasma--Atomic Emission Spectroscopy (ICP--AES) to investigate the copper leaching rate with time. Surface morphology, crystallinity of corrosion products, copper oxidation status, and surface composition were characterized by various solid surface analysis methods, such as Scanning Electron Microscopy/Energy--Dispersive Spectrometry (SEM/EDS), Grazing-Incidence-angle X-ray Diffraction (GIXRD), X-ray Photoelectron Spectroscopy (XPS), and Time-of-Flight Secondary Ions Mass Spectrometry (ToF-SIMS). The purpose of the first set of experiments was to test various electrochemical techniques for copper corrosion for short term before studying a long term loop system. Surface analysis techniques were carried out to identify and study the corrosion products that form on the fresh copper metal surface when copper coupons were exposed to test solutions for 2 days of experiments time. The second phase of experiments was conducted with a copper pipe loop system in a synthetic tap water over an extended period of time, i.e., 4 months. Copper release and electrochemically measured corrosion activity profiles were monitored carefully with and without corrosion inhibitor, polyphosphate. A correlation between the copper released into the solution and the electrochemically measured corrosion activities was also attempted. To investigate corrosion products on the copper pipe samples, various surface analysis techniques were applied in this study. Especially, static mass spectra acquisition and element distribution mapping were carried out by ToF-SIMS. Dynamic SIMS provided shallow depth profile of corroded copper sample. The third set of the experiments was related to electrochemical noise (EN) measurement through copper coupons to pipes. Calculating corrosion rate of a metal and predicting exactly how long it lasts are problematic since the metal corrosion may be caused by combined corrosion types. Many other metals undergo not only uniform corrosion, but localized corrosion. Uniform corrosion may be conducive for copper pipe to prevent it from further severe corrosion and form passivated film, but localized corrosion causes pinhole leaks and limits the copper pipe applications. The objective of this set of experiment is to discuss the application of electrochemical noise approaches to drinking water copper corrosion problems. Specially, a fundamental description of EN is presented including a discussion of how to interpret the results and technique limitations. Although it was indicated with electrochemical analysis that the corrosion activity was affected by orthophosphate addition in the short-term test, no copper-phosphate complex or compound was found by copper surface characterization. Apparently, orthophosphate can inhibit corrosion by adsorption on the copper surface, but cannot form solid complexes with copper in such a short time, 2 days. When polyphosphate was added into recirculating copper pipe system, copper level increased and polarization resistance decreased. Greenish blue residue on the copper pipe was suspected as copper phosphate complex and corrosion inhibition mechanism was proposed.
Synthesis and characterization of high performance electrode materials for lithium ion batteries
NASA Astrophysics Data System (ADS)
Hong, Jian
Lithium-ion batteries have revolutionized portable electronics. Electrode reactions in these electrochemical systems are based on reversible intercalation of Li+ ions into the host electrode material with a concomitant addition/removal of electrons into the host. If such batteries are to find a wider market such as the automotive industry, less expensive and higher capacity electrode materials will be required. The olivine phase lithium iron phosphate has attracted the most attention because of its low cost and safety (high thermal and chemical stability). However, it is an intriguing fundamental problem to understand the fast electrochemical response from the poorly electronic conducting two-phase LiFePO4/FePO 4 system. This thesis focuses on determining the rate-limit step of LiFePO4. First, a LiFePO4 material, with vanadium substituting on the P-site, was synthesized, and found that the crystal structure change may cause high lithium diffusivity. Since an accurate Li diffusion coefficient cannot be measured by traditional electrochemical method in a three-electrode cell due to the phase transformation during measurement, a new method to measure the intrinsic electronic and ionic conductivity of mixed conductive LiFePO 4 was developed. This was based on the conductivity measurements of mixed conductive solid electrolyte using electrochemical impedance spectroscopy (EIS) and blocking electrode. The effects of ionic/electronic conductivity and phase transformation on the rate performance of LiFePO4 were also first investigated by EIS and other electrochemical technologies. Based on the above fundamental kinetics studies, an optimized LiFePO4 was used as a target to deposit 1mum LiFePO4 thin film at Oak Ridge National Laboratory using radio frequency (RF) magnetron sputtering. Similar to the carbon coated LiFePO4 powder electrode, the carbon-contained RF LiFePO4 film with no preferential orientation showed excellent capacity and rate capability both at 25°C and -20°C, although the film thickness was over 1 mum. Lithium titanate with the spinel structure is also an important anode material for high power applications. It has a unique feature of zero volume change during lithium ion intercalation, which gives its excellent performance when as nanoparticles. Our results show that a slight reduction of the titanium using hydrogen leads to a high capacity at a high rate even at moderate particle size. Silicon is currently of considerable interest as an anode for lithium secondary electrochemical batteries. The Li-Si alloy system, having average operating voltages below 500 mV versus lithium, can take up to 3.4 lithium ions during intercalation. It is also well known that a 300% volume dilatation is associated with alloying 3.4 lithium atoms per silicon atom. M-Si (M = Fe, Co, and Ni) alloys with nano-silicon domains were introduced as the anode materials for lithium ion batteries. An improved electrochemical performance was found.
Strategies to improve the electrochemical performance of electrodes for lithium-ion batteries
NASA Astrophysics Data System (ADS)
Yang, Ming-Che
Lithium-ion batteries are widely used in consumer market because of their lightweight and rechargeable property. However, for the application as power sources of hybrid electric vehicles (HEVs), which need excellent cycling performance, high energy density, high power density, capacity, and low cost, new materials still need to be developed to meet the demands. In this dissertation work, three different strategies were developed to improve the properties of the electrode of lithium batteries. First, the voltage profile and lithium diffusion battier of LiM1/2Mn 3/2O4 (M=Ti, V, Cr, Fe, Co, Ni and Cu) were predicted by first principles theory. The computation results suggest that doping with Co or Cu can potentially lower Li diffusion barrier compared with Ni doping. Our experimental research has focused on LiNixCuyMn 2-x-yO4 (0
NASA Astrophysics Data System (ADS)
Cheng, Hua; Scott, Keith
The ability to re-cycle halogenated liquid wastes, based on electrochemical hydrodehalogenation (EHDH), will provide a significant economic advantage and will reduce the environmental burden in a number of processes. The use of a solid polymer electrolyte (SPE) reactor is very attractive for this purpose. Principles and features of electrochemical HDH technology and SPE EHDH reactors are described. The SPE reactor enables selective dehalogenation of halogenated organic compounds in both aqueous and non-aqueous media with high current efficiency and low energy consumption. The influence of operating conditions, including cathode material, current density, reactant concentration and temperature on the HDH process and its stability are examined.
Li, Juchuan; Dudney, Nancy J; Nanda, Jagjit; Liang, Chengdu
2014-07-09
Electrochemical degradation on silicon (Si) anodes prevents them from being successfully used in lithium (Li)-ion battery full cells. Unlike the case of graphite anodes, the natural solid electrolyte interphase (SEI) films generated from carbonate electrolytes do not self-passivate on Si, causing continuous electrolyte decomposition and loss of Li ions. In this work, we aim at solving the issue of electrochemical degradation by fabricating artificial SEI films using a solid electrolyte material, lithium phosphorus oxynitride (Lipon), which conducts Li ions and blocks electrons. For Si anodes coated with Lipon of 50 nm or thicker, a significant effect is observed in suppressing electrolyte decomposition, while Lipon of thinner than 40 nm has a limited effect. Ionic and electronic conductivity measurements reveal that the artificial SEI is effective when it is a pure ionic conductor, but electrolyte decomposition is only partially suppressed when the artificial SEI is a mixed electronic-ionic conductor. The critical thickness for this transition in conducting behavior is found to be 40-50 nm. This work provides guidance for designing artificial SEI films for high-capacity Li-ion battery electrodes using solid electrolyte materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudney, Nancy J; Nanda, Jagjit; Liang, Chengdu
2014-01-01
Electrochemical degradation on Si anodes prevents them from being successfully used in lithium-ion full cells. Unlike the case of graphite anodes, natural solid electrolyte interphase (SEI) films generated from carbonate electrolyte do not self-passivate on Si and causes continuous electrolyte decomposition. In this work we aim at solving the issue of electrochemical degradation by fabricating artificial SEI films using a solid electrolyte material, lithium phosphor oxynitride (Lipon), that conducts Li ions and blocks electrons. For Si anodes coated with Lipon of 50 nm or thicker, significant effect is observed in suppressing the electrolyte decomposition, while Lipon of thinner than 40more » nm has little effect. Ionic and electronic conductivity measurement reveals that the artificial SEI is effective when it is a pure ionic conductor, and the electrolyte decomposition is not suppressed when the artificial SEI is a mixed electronic-ionic conductor. The critical thickness for this transition in conducting behavior is found to be 40~50 nm. This work provides guidance for designing artificial SEI for high capacity lithium-ion battery electrodes using solid electrolyte materials.« less
Multilayer porous structures of HVPE and MOCVD grown GaN for photonic applications
NASA Astrophysics Data System (ADS)
Braniste, T.; Ciers, Joachim; Monaico, Ed.; Martin, D.; Carlin, J.-F.; Ursaki, V. V.; Sergentu, V. V.; Tiginyanu, I. M.; Grandjean, N.
2017-02-01
In this paper we report on a comparative study of electrochemical processes for the preparation of multilayer porous structures in hydride vapor phase epitaxy (HVPE) and metal organic chemical vapor phase deposition (MOCVD) grown GaN. It was found that in HVPE-grown GaN, multilayer porous structures are obtained due to self-organization processes leading to a fine modulation of doping during the crystal growth. However, these processes are not totally under control. Multilayer porous structures with a controlled design have been produced by optimizing the technological process of electrochemical etching in MOCVD-grown samples, consisting of five pairs of thin layers with alternating-doping profiles. The samples have been characterized by SEM imaging, photoluminescence spectroscopy, and micro-reflectivity measurements, accompanied by transfer matrix analysis and simulations by a method developed for the calculation of optical reflection spectra. We demonstrate the applicability of the produced structures for the design of Bragg reflectors.
Electrochemical magneto immunosensor for the detection of anti-TG2 antibody in celiac disease.
Kergaravat, Silvina V; Beltramino, Luis; Garnero, Nidia; Trotta, Liliana; Wagener, Marta; Isabel Pividori, Maria; Hernandez, Silvia R
2013-10-15
An electrochemical magneto immunosensor for the detection of anti-transglutaminase antibodies (ATG2) in celiac disease was developed. The immunological reaction is performed on magnetic beads (MBs) as a solid support in which the transglutaminase enzyme (TG2) is covalently immobilized (TG2-MB) and then ATG2 were revealed by an antibody labeled with peroxidase. The electrochemical response of the enzymatic reaction with o-phenilendiamine and H₂O₂ as substrates by square wave voltammetry was correlated with the ATG2. Graphite-epoxi composite cylindrical electrodes and screen printed electrodes were used as transducers in the immunosensor. A total number of 29 sera from clinically confirmed cases of celiac disease and 19 negative control sera were tested by the electrochemical magneto immunosensor. The data were submitted to the receiver-operating characteristic plot (ROC) analysis which indicated that 16.95 units was the most effective cut-off value (COV) to discriminate correctly between celiac and non-celiac patients. Using this point for prediction, sensitivity was found to be 100%, while specificity was 84%. Copyright © 2013 Elsevier B.V. All rights reserved.
Hemalatha, K; Jayakumar, M; Prakash, A S
2018-01-23
The resurgence of sodium-ion batteries in recent years is due to their potential ability to form intercalation compounds possessing a high specific capacity and energy density comparable to existing lithium systems. To comprehend the role of cobalt substitution in the structure and electrochemical performance of Na 0.67 MnO 2 , the solid solutions of P2-Na 0.67 Mn x Co 1-x O 2 (x = 0.25, 0.5, 0.75) are synthesized and characterized. The XRD-Rietveld analysis revealed that the Co-substitution in Na 0.67 MnO 2 decreases lattice parameters 'a' and 'c' resulting in the contraction of MO 6 octahedra and the enlargement of inter-layer 'd' spacing. XPS indicates that the isovalent cobalt substitution in Na 0.67 MnO 2 results in the partial/complete replacement of Jahn-Teller active trivalent manganese to form low-spin complexes of better structural stability. The Na-ion diffusion coefficient, D Na + , derived from cyclic voltammetry and impedance spectroscopy, confirmed the enhanced mass transport in Co-rich phases compared to Mn-rich phases. Furthermore, higher diffusion coefficient values are observed for Co 3+ /Co 4+ than for their Mn 3+ /Mn 4+ redox processes. In addition, Co-rich phases exhibit a high structural stability and superior capacity retention, whereas Mn-rich phases discharge higher capacities.
NASA Astrophysics Data System (ADS)
Lee, Min-Jin; Shin, Jae-Hwa; Ji, Mi-Jung; Hwang, Hae-Jin
2018-01-01
In this work, nickel and gadolinium-doped ceria (GDC)-infiltrated lanthanum strontium titanate (LST) anodes are fabricated, and their electrode performances under a hydrogen atmosphere is investigated in terms of the Ni:GDC ratios and cell operating temperature. The Ni/GDC-infiltrated LST anode exhibits excellent electrode performance in comparison with the Ni- or GDC-infiltrated anodes, which is attributed to the synergistic effect of an extended triple-phase boundary length by GDC and good catalytic activity for hydrogen oxidation because of the Ni particles. The polarization resistances (Rp) of Ni/GDC-infiltrated LST are 0.07, 0.08, and 0.12 Ω cm2 at 800, 750, and 700 °C, respectively, which are approximately three orders of magnitude lower than that of the LST anode (68.5 Ω cm2 at 700 °C). The effect of Ni and GDC on the electrochemical performance of LST was also investigated by using electrochemical impedance spectroscopy (EIS). The anode polarization resistance (Rp) is confirmed to be dependent on the content and dispersion state (microstructure) of the Ni and GDC nanoparticles.
Lee, Younghee; Choi, Hojin; Kim, Min-Sik; Noh, Seonmyeong; Ahn, Ki-Jin; Im, Kyungun; Kwon, Oh Seok; Yoon, Hyeonseok
2016-01-27
Monodispersed polypyrrole (PPy) nanospheres were physically incorporated as guest species into stacked graphene layers without significant property degradation, thereby facilitating the formation of unique three-dimensional hybrid nanoarchitecture. The electrochemical properties of the graphene/particulate PPy (GPPy) nanohybrids were dependent on the sizes and contents of the PPy nanospheres. The nanohybrids exhibited optimum electrochemical performance in terms of redox activity, charge-transfer resistance, and specific capacitance at an 8:1 PPy/graphite (graphene precursor) weight ratio. The packing density of the alternately stacked nanohybrid structure varied with the nanosphere content, indicating the potential for high volumetric capacitance. The nanohybrids also exhibited good long-term cycling stability because of a structural synergy effect. Finally, fabricated nanohybrid-based flexible all-solid state capacitor cells exhibited good electrochemical performance in an acidic electrolyte with a maximum energy density of 8.4 Wh kg(-1) or 1.9 Wh L(-1) at a maximum power density of 3.2 kW kg(-1) or 0.7 kW L(-1); these performances were based on the mass or packing density of the electrode materials.
High H⁻ ionic conductivity in barium hydride.
Verbraeken, Maarten C; Cheung, Chaksum; Suard, Emmanuelle; Irvine, John T S
2015-01-01
With hydrogen being seen as a key renewable energy vector, the search for materials exhibiting fast hydrogen transport becomes ever more important. Not only do hydrogen storage materials require high mobility of hydrogen in the solid state, but the efficiency of electrochemical devices is also largely determined by fast ionic transport. Although the heavy alkaline-earth hydrides are of limited interest for their hydrogen storage potential, owing to low gravimetric densities, their ionic nature may prove useful in new electrochemical applications, especially as an ionically conducting electrolyte material. Here we show that barium hydride shows fast pure ionic transport of hydride ions (H(-)) in the high-temperature, high-symmetry phase. Although some conductivity studies have been reported on related materials previously, the nature of the charge carriers has not been determined. BaH2 gives rise to hydride ion conductivity of 0.2 S cm(-1) at 630 °C. This is an order of magnitude larger than that of state-of-the-art proton-conducting perovskites or oxide ion conductors at this temperature. These results suggest that the alkaline-earth hydrides form an important new family of materials, with potential use in a number of applications, such as separation membranes, electrochemical reactors and so on.
Lee, Younghee; Choi, Hojin; Kim, Min-Sik; Noh, Seonmyeong; Ahn, Ki-Jin; Im, Kyungun; Kwon, Oh Seok; Yoon, Hyeonseok
2016-01-01
Monodispersed polypyrrole (PPy) nanospheres were physically incorporated as guest species into stacked graphene layers without significant property degradation, thereby facilitating the formation of unique three-dimensional hybrid nanoarchitecture. The electrochemical properties of the graphene/particulate PPy (GPPy) nanohybrids were dependent on the sizes and contents of the PPy nanospheres. The nanohybrids exhibited optimum electrochemical performance in terms of redox activity, charge-transfer resistance, and specific capacitance at an 8:1 PPy/graphite (graphene precursor) weight ratio. The packing density of the alternately stacked nanohybrid structure varied with the nanosphere content, indicating the potential for high volumetric capacitance. The nanohybrids also exhibited good long-term cycling stability because of a structural synergy effect. Finally, fabricated nanohybrid-based flexible all–solid state capacitor cells exhibited good electrochemical performance in an acidic electrolyte with a maximum energy density of 8.4 Wh kg−1 or 1.9 Wh L−1 at a maximum power density of 3.2 kW kg−1 or 0.7 kW L−1; these performances were based on the mass or packing density of the electrode materials. PMID:26813878
NASA Astrophysics Data System (ADS)
Menon, Vikram; Fu, Qingxi; Janardhanan, Vinod M.; Deutschmann, Olaf
2015-01-01
High temperature co-electrolysis of H2O and CO2 offers a promising route for syngas (H2, CO) production via efficient use of heat and electricity. The performance of a SOEC during co-electrolysis is investigated by focusing on the interactions between transport processes and electrochemical parameters. Electrochemistry at the three-phase boundary is modeled by a modified Butler-Volmer approach that considers H2O electrolysis and CO2 electrolysis, individually, as electrochemically active charge transfer pathways. The model is independent of the geometrical structure. A 42-step elementary heterogeneous reaction mechanism for the thermo-catalytic chemistry in the fuel electrode, the dusty gas model (DGM) to account for multi-component diffusion through porous media, and a plug flow model for flow through the channels are used in the model. Two sets of experimental data are reproduced by the simulations, in order to deduce parameters of the electrochemical model. The influence of micro-structural properties, inlet cathode gas velocity, and temperature are discussed. Reaction flow analysis is performed, at OCV, to study methane production characteristics and kinetics during co-electrolysis. Simulations are carried out for configurations ranging from simple one-dimensional electrochemical button cells to quasi-two-dimensional co-flow planar cells, to demonstrate the effectiveness of the computational tool for performance and design optimization.
Kucera, Gene H.; Roche, Michael F.
1985-01-01
An ionically conductive glass is disclosed for use as electrolyte in a high temperature electrochemical cell, particularly a cell with sodium anode and sulfur cathode. The glass includes the constituents Na.sub.2 O, ZrO.sub.2, Al.sub.2 O.sub.3 and SiO.sub.2 in selected proportions to be a single phase solid solution substantially free of crystalline regions and undissolved constituents. Other advantageous properties are an ionic conductivity in excess of 2.times.10.sup.-3 (ohm-cm).sup.-1 at 300.degree. C. and a glass transition temperature in excess of 500.degree. C.
Kucera, G.H.; Roche, M.F.
1985-01-08
An ionically conductive glass is disclosed for use as electrolyte in a high temperature electrochemical cell, particularly a cell with sodium anode and sulfur cathode. The glass includes the constituents Na/sub 2/O, ZrO/sub 2/, Al/sub 2/O/sub 3/ and SiO/sub 2/ in selected proportions to be a single phase solid solution substantially free of crystalline regions and undissolved constituents. Other advantageous properties are an ionic conductivity in excess of 2 x 10/sup -3/ (ohm-cm)/sup -1/ at 300/sup 0/C and a glass transition temperature in excess of 500/sup 0/C.
Chodankar, Nilesh R; Dubal, Deepak P; Lokhande, Abhishek C; Lokhande, Chandrakant D
2015-12-15
The synthesis of polymer gel electrolyte having high ionic conductivity, excellent compatibility with active electrode material, mechanical tractability and long life is crucial to obtain majestic electrochemical performance for flexible solid state supercapacitors (FSS-SCs). Our present work describes effect of different polymers gel electrolytes on electrochemical properties of MnO2 based FSS-SCs device. It is revealed that, MnO2-FSS-SCs with polyvinyl alcohol (PVA)-Lithium perchlorate (LiClO4) gel electrolyte demonstrate excellent electrochemical features such as maximum operating potential window (1.2V), specific capacitance of 112Fg(-1) and energy density of 15Whkg(-1) with extended cycling stability up to 2500CV cycles. Moreover, the calendar life suggests negligible decrease in the electrochemical performance of MnO2-FSS-SCs after 20days. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Rosaiah, P.; Hussain, O. M.; Zhu, Jinghui; Qiu, Yejun
2017-08-01
Lithium iron phosphate (Li x FePO4) is synthesized by a solid-state reaction method. The structural, electrical and electrochemical properties are studied in detail. It is found that the increment of lithium concentration (up to x = 1.05) does not affect the structure of LiFePO4 but improves its electrical conductivity as well as electrochemical performance. Surface morphological studies exhibited the formation of rod-like nanoparticles with small size. Electric and dielectric properties are also investigated over a frequency range of 1 Hz-1 MHz at different temperatures. The conductivity increased with increasing temperature, which follows the Arrhenius relation with the activation energy of about 0.31 eV. And the electrochemical tests found that the Li1.05FePO4 cathode possessed improved discharge capacity with better cycling performance.
Enhancement of waste activated sludge aerobic digestion by electrochemical pre-treatment.
Song, Li-Jie; Zhu, Nan-Wen; Yuan, Hai-Ping; Hong, Ying; Ding, Jin
2010-08-01
Electrochemical technology with a pair of RuO(2)/Ti mesh plate electrode is first applied to pre-treat Waste Activated Sludge (WAS) prior to aerobic digestion in this study. The effects of various operating conditions were investigated including electrolysis time, electric power, current density, initial pH of sludge and sludge concentration. The study showed that the sludge reduction increased with the electrolysis time, electric power or current density, while decreased with the sludge concentration. Additionally, higher or lower pH than 7.0 was propitious to remove organic matters. The electrochemical pre-treatment removed volatile solids (VS) and volatile suspended solids (VSS) by 2.75% and 7.87%, respectively, with a WAS concentration of 12.9 g/L, electrolysis time of 30 min, electric power of 5 W and initial sludge pH of 10. In the subsequent aerobic digestion, the sludge reductions for VS and VSS after solids retention time (SRT) of 17.5 days were 34.25% and 39.59%, respectively. However, a SRT of 23.5 days was necessary to achieve equivalent reductions without electrochemical pre-treatment. Sludge analysis by Scanning Electron Microscope (SEM) images and infrared (IR) spectra indicated that electrochemical pre-treatment can rupture sludge cells, remove and solubilize intracellular substances, especially protein and polysaccharide, and consequently enhance the aerobic digestion. (c) 2010 Elsevier Ltd. All rights reserved.
Electrochemical and thermal studies of lithium ion batteries
NASA Astrophysics Data System (ADS)
Lu, Wenquan
The structural, electrochemical, and thermal characteristics of carbonaceous anodes and LiNi0.8Co0.2O2 cathode in Li-ion cells were investigated using various electrochemical and calorimetric techniques. The electrode-electrolyte interface was investigated for various carbonaceous materials such as graphite with different shapes, surface modified graphite with copper, and novel carbon material derived from sepiolite template. The structural and morphological properties were determined using XRD, TGA, SEM, BET techniques. The electrochemical characteristics were studied using conventional electrochemical techniques such as galvanostatic charge/discharge cycling, cyclic voltammetry, and impedance (AC and DC) methods. It was observed that the electrochemical active surface area instead of the BET area plays a critical role in the irreversible capacity loss associated with the carbonaceous anodes. It was also found that the exfoliation of carbon anodes especially in PC based electrolyte could be significantly reduced by protective copper coating of the natural graphite. LiNi0.8Co0.2O2 cathode material was found to possess high energy density and excellent cycling characteristics. The structural and electrochemical properties of LiNi0.8Co 0.2O2 synthesized by sol-gel and solid-state methods were studied. Results of the AC impedance spectroscopy carried out on LiNi 0.8Co0.2O2 cathodes revealed that the charge transfer resistance is a function of the state of charge. The solid state Li + diffusion was calculated to be around 10-13 cm2/s in the oxide particle by Warburg impedance method. In addition, the cell fabricated with LiNi0.8Co0.2O 2 cathode showed excellent energy and power performance under static and dynamic load conditions that prevail in Electric and Hybrid Vehicles. Thermal properties of the LiNi0.8Co0.2O2 cathode, carbonaceous anodes, and Li-ion cells fabricated with these electrodes were also investigated using isothermal microcalorimetry (IMC), differential scanning calorimetry (DSC) and accelerated rate calorimetry (ARC). Isothermal micro-calorimeter was used to investigate the thermal behavior of the Li-ion cell and its electrodes. The overall heat changes during charge-discharge processes were explained in terms of the irreversible (resistive) and reversible (entropic) heats. It was observed that the reversible heat strongly depends on the structural or phase change occurring in the electrodes during Li-ion insertion and extraction reactions. It was also found that the contribution of the reversible heat to the overall cell heat generation rate was significant only at low cycling rates.
Analysis of Long-Range Interaction in Lithium-Ion Battery Electrodes
Mistry, Aashutosh; Juarez-Robles, Daniel; Stein, Malcolm; ...
2016-12-01
The lithium-ion battery (LIB) electrode represents a complex porous composite, consisting of multiple phases including active material (AM), conductive additive, and polymeric binder. This study proposes a mesoscale model to probe the effects of the cathode composition, e.g., the ratio of active material, conductive additive, and binder content, on the electrochemical properties and performance. The results reveal a complex nonmonotonic behavior in the effective electrical conductivity as the amount of conductive additive is increased. Insufficient electronic conductivity of the electrode limits the cell operation to lower currents. Once sufficient electron conduction (i.e., percolation) is achieved, the rate performance can bemore » a strong function of ion-blockage effect and pore phase transport resistance. In conclusion, even for the same porosity, different arrangements of the solid phases may lead to notable difference in the cell performance, which highlights the need for accurate microstructural characterization and composite electrode preparation strategies.« less
Analysis of Long-Range Interaction in Lithium-Ion Battery Electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mistry, Aashutosh; Juarez-Robles, Daniel; Stein, Malcolm
The lithium-ion battery (LIB) electrode represents a complex porous composite, consisting of multiple phases including active material (AM), conductive additive, and polymeric binder. This study proposes a mesoscale model to probe the effects of the cathode composition, e.g., the ratio of active material, conductive additive, and binder content, on the electrochemical properties and performance. The results reveal a complex nonmonotonic behavior in the effective electrical conductivity as the amount of conductive additive is increased. Insufficient electronic conductivity of the electrode limits the cell operation to lower currents. Once sufficient electron conduction (i.e., percolation) is achieved, the rate performance can bemore » a strong function of ion-blockage effect and pore phase transport resistance. In conclusion, even for the same porosity, different arrangements of the solid phases may lead to notable difference in the cell performance, which highlights the need for accurate microstructural characterization and composite electrode preparation strategies.« less
In Situ Probing and Synthetic Control of Cationic Ordering in Ni-Rich Layered Oxide Cathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Jianqing; Zhang, Wei; Huq, Ashfia
Ni-rich layered oxides (LiNi1-xMxO2; M = Co, Mn, ...) are appealing alternatives to conventional LiCoO2 as cathodes in Li-ion batteries for automobile and other large-scale applications due to their high theoretical capacity and low cost. However, preparing stoichiometric LiNi1-xMxO2 with ordered layer structure and high reversible capacity, has proven difficult due to cation mixing in octahedral sites. Herein, in situ studies of synthesis reactions and the associated structural ordering in preparing LiNiO2 and the Co-substituted variant, LiNi0.8Co0.2O2, are made, to gain insights into synthetic control of the structure and electrochemical properties of Ni-rich layered oxides. Results from this study indicatemore » a direct transformation of the intermediate from the rock salt structure into hexagonal phase, and during the process, Co substitution facilities the nucleation of a Co-rich layered phase at low temperatures and subsequent growth and stabilization of solid solution Li(Ni, Co)O-2 upon further heat treatment. Optimal conditions are identified from the in situ studies and utilized to obtain stoichiometric LiNi0.8Co0.2O2 that exhibits high capacity (up to 200 mA h g(-1) ) with excellent retention. The findings shed light on designing high performance Ni-rich layered oxide cathodes through synthetic control of the structural ordering in the materials.« less
Jafari, Mostafa; Ebrahimzadeh, Homeira; Banitaba, Mohammad Hossein; Davarani, Saied Saeed Hosseiny
2014-11-01
A novel polypyrole/graphene oxide coating was made by the electrochemical polymerization of pyrrole in the presence of sodium dodecyl sulfate and graphene oxide on a platinum wire. The prepared fiber has shown a good thermal stability up to 300°C. The fiber was applied to the direct solid-phase microextraction and gas chromatographic analysis of four phthalate esters. The effect of four parameters on gas chromatography peak area including extraction temperature, extraction time, injection temperature, and ionic strength were investigated. Under the optimized conditions, the detection limits were between 0.042 and 0.26 μg/L. The intraday and interday relative standard deviations obtained at 55 μg/L, using a single fiber, were 8.2-16% and 17.3-25.6%, respectively. The method was successfully applied to the analysis of phthalate esters in two real samples of boiling water in cheap disposable clear plastic drinking cups showing recoveries from 83 to 120%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lithium alloy negative electrodes
NASA Astrophysics Data System (ADS)
Huggins, Robert A.
The 1996 announcement by Fuji Photo Film of the development of lithium batteries containing convertible metal oxides has caused a great deal of renewed interest in lithium alloys as alternative materials for use in the negative electrode of rechargeable lithium cells. The earlier work on lithium alloys, both at elevated and ambient temperatures is briefly reviewed. Basic principles relating thermodynamics, phase diagrams and electrochemical properties under near-equilibrium conditions are discussed, with the Li-Sn system as an example. Second-phase nucleation, and its hindrance under dynamic conditions plays an important role in determining deviations from equilibrium behavior. Two general types of composite microstructure electrodes, those with a mixed-conducting matrix, and those with a solid electrolyte matrix, are discussed. The Li-Sn-Si system at elevated temperatures, and the Li-Sn-Cd at ambient temperatures are shown to be examples of mixed-conducting matrix microstructures. The convertible oxides are an example of the solid electrolyte matrix type. Although the reversible capacity can be very large in this case, the first cycle irreversible capacity required to convert the oxides to alloys may be a significant handicap.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, W.J.
The state and solubility of cadmium in waste-treated soils was investigated. Three sets of experiments were designed to elucidate solid phase control of soil solution cadmium. First, the soil solution composition of two soils amended with either sludge or metal contaminated mulch was examined to determine the presence of anions capable of precipitating or co-precipitating cadmium. Results indicated that no known pure solid phases of cadmium developed but that high concentrations of phosphate, sulfate and carbonate apparently influenced cadmium solubility. Secondly, three soils were amended with 10 ug of cadmium as cadmium acetate/g of soil. Three different levels of glycerophosphate,more » cysteine and acetate were added to the soils and incubated at constant temperature and water content in order to release phosphate, sulfate and alkalinity under conditions conducive for homogeneous precipitation. Another set of treatments was prepared in the same fashion with an additional amendment of calcium carbonate to raise soil pH's to 7.0. In the presence of sulfate, cadmium solubility increased with no apparent solid phase formation. The addition of calcium carbonate shifted solid phase control to either calcium carbonate or calcium sulfate. The generation of alkalinity by acetate addition produced solid phase calcium carbonate which in turn controlled cadmium solubility through chemisorption of cadmium on calcite surfaces. In the presence of monobasic calcium phosphate, cadmium was interfacially adsorbed. In the presence of dibasic calcium phosphate, however, cadmium was homogeneously precipitated in the host crystal suggesting possible solid solution.« less
Protective interlayer for high temperature solid electrolyte electrochemical cells
Singh, Prabhakar; Vasilow, Theodore R.; Richards, Von L.
1996-01-01
The invention comprises of an electrically conducting doped or admixed cerium oxide composition with niobium oxide and/or tantalum oxide for electrochemical devices, characterized by the general formula: Nb.sub.x Ta.sub.y Ce.sub.1-x-y O.sub.2 where x is about 0.0 to 0.05, y is about 0.0 to 0.05, and x+y is about 0.02 to 0.05, and where x is preferably about 0.02 to 0.05 and y is 0, and a method of making the same. This novel composition is particularly applicable in forming a protective interlayer of a high temperature, solid electrolyte electrochemical cell (10), characterized by a first electrode (12); an electrically conductive interlayer (14) of niobium and/or tantalum doped cerium oxide deposited over at least a first portion (R) of the first electrode; an interconnect (16) deposited over the interlayer; a solid electrolyte (18) deposited over a second portion of the first electrode, the first portion being discontinuous from the second portion; and, a second electrode (20) deposited over the solid electrolyte. The interlayer (14) is characterized as being porous and selected from the group consisting of niobium doped cerium oxide, tantalum doped cerium oxide, and niobium and tantalum doped cerium oxide or admixtures of the same. The first electrode (12), an air electrode, is a porous layer of doped lanthanum manganite, the solid electrolyte layer (18) is a dense yttria stabilized zirconium oxide, the interconnect layer (16) is a dense, doped lanthanum chromite, and the second electrode (20), a fuel electrode, is a porous layer of nickel-zirconium oxide cermet. The electrochemical cell (10) can take on a plurality of shapes such as annular, planar, etc. and can be connected to a plurality of electrochemical cells in series and/or in parallel to generate electrical energy.
NASA Astrophysics Data System (ADS)
Hermann, Regina; Uhlemann, Margitta; Wendrock, Horst; Gerbeth, Gunter; Büchner, Bernd
2011-03-01
The aim of this work is growth and characterisation of Ti55Nb45 (wt%) single crystals by floating-zone single crystal growth of intermetallic compounds using two-phase radio-frequency (RF) electromagnetic heating. Thereby, the process and, in particular, the flow field in the molten zone is influenced by additional magnetic fields. The growth of massive intermetallic single crystals is very often unsuccessful due to an unfavourable solid-liquid interface geometry enclosing concave fringes. It is generally known that the crystallization process stability is enhanced if the crystallization interface is convex. For this, a tailored magnetic two-phase stirrer system has been developed, which enables a controlled influence on the melt ranging from intensive inwards to outwards flows. Since Ti is favourably light, strong and biocompatible, it is one of the few materials that naturally match the requirements for implantation in the human body. Therefore, the magnetic system was applied to crystal growth of Ti alloys. The grown crystals were oriented and cut to cubes with the desired crystallographic orientations [1 0 0] and [1 0 1] normally on a plane. The electron backscatter diffraction (EBSD) technique was applied to clearly determine crystal orientation and to localize grain boundaries. The formation of oxidic nanotubes on Ti surfaces in dependence of the grain orientation was investigated, performed electrochemically by anodic oxidation from fluoride containing electrolyte.
Du, Xiaoyong; He, Wen; Zhang, Xudong; Ma, Jinyun; Wang, Chonghai; Li, Chuanshan; Yue, Yuanzheng
2013-04-01
We demonstrate a biomimetic synthesis methodology that allows us to create Li2O-MgO-P2O5-TiO2 nanocrystalline glass with mesoporous structure at lower temperature. We design a 'nanocrystal-glass' configuration to build a nanoarchitecture by means of yeast cell templates self-assembly followed by the controlled in-situ biomineralization of materials on the cell wall. Electrochemically active nanocrystals are used as the lamellar building blocks of mesopores, and the semiconductive glass phase can act both as the 'glue' between nanocrystals and functionalized component. The Li2O-MgO-P2O5-TiO2 nanocrystalline glass exhibits outstanding thermal stability, high conductivity and wide potential window. This approach could be applied to many other multicomponent glass-ceramics to fabricate mesoporous conducting materials for solid-state lithium batteries. Copyright © 2012 Elsevier B.V. All rights reserved.
Zhou, Hui; Ruther, Rose E.; Adcock, Jamie; ...
2015-02-22
In this paper, we report a direct fluorination method under fluorine gas atmosphere using a fluidized bed reactor for converting nanophase iron oxide (n-Fe 2O 3) to an electrochemically stable and higher energy density iron oxyfluoride/fluoride phase. Interestingly, no noticeable bulk iron oxyfluoride phase (FeOF) phase was observed even at fluorination temperature close to 300 °C. Instead, at fluorination temperatures below 250 °C, scanning transmission electron microscopy coupled with electron energy loss spectroscopy (STEM-EELS) and X-ray photoelectron spectroscopy (XPS) analysis showed surface fluorination with nominal composition, Fe 2O 3-xF 2x (x < 1). At fluorination temperatures of 275 °C, STEM-EELSmore » results showed porous interconnected nanodomains of FeF 3 and Fe 2O 3 coexisting within the same particle, and overall the particles become less dense after fluorination. We performed potentiometric intermittent titration and electrochemical impedance spectroscopy studies to understand the lithium diffusion (or apparent diffusion) in both the oxyfluoride and mixed phase FeF 3 + Fe 2O 3 composition, and correlate the results to their electrochemical performance. Finally and further, we analyze from a thermodynamical perspective, the observed formation of the majority fluoride phase (77% FeF 3) and the absence of the expected oxyfluoride phase based on the relative formation energies of oxide, fluoride, and oxyfluorides.« less
Wang, ShuLing; Xu, Hui
2016-12-01
An inorganic-organic hybrid nanocomposite (zinc oxide/polypyrrole) that represents a novel kind of coating for in-tube solid-phase microextraction is reported. The composite coating was prepared by a facile electrochemical polymerization strategy on the inner surface of a stainless-steel tube. Based on the coated tube, a novel online in-tube solid-phase microextraction with liquid chromatography and mass spectrometry method was developed and applied for the extraction of three monohydroxy polycyclic aromatic hydrocarbons in human urine. The coating displayed good extraction ability toward monohydroxy polycyclic aromatic hydrocarbons. In addition, long lifespan, excellent stability, and good compression resistance were also obtained for the coating. The experimental conditions affecting the extraction were optimized systematically. Under the optimal conditions, the limits of detection and quantification were in the range of 0.039-0.050 and 0.130-0.167 ng/mL, respectively. Good linearity (0.2-100 ng/mL) was obtained with correlation coefficients larger than 0.9967. The repeatability, expressed as relative standard deviation, ranged between 2.5% and 9.4%. The method offered the advantage of process simplicity, rapidity, automation, and sensitivity in the analysis of human urinary monohydroxy polycyclic aromatic hydrocarbons in two different cities of Hubei province. An acceptable recovery of monohydroxy polycyclic aromatic hydrocarbons (64-122%) represented the additional attractive features of the method in real urine analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhen, Qi; Zhang, Min; Song, Wenlan; Wang, Huiju; Wang, Xuemei; Du, Xinzhen
2016-10-01
An oriented titanium-nickel oxide composite nanotubes coating was in situ grown on a nitinol wire by direct electrochemical anodization in ethylene glycol with ammonium fluoride and water for the first time. The morphology and composition of the resulting coating showed that the anodized nitinol wire provided a titania-rich coating. The titanium-nickel oxide composite nanotubes coated fiber was used for solid-phase microextraction of different aromatic compounds coupled to high-performance liquid chromatography with UV detection. The titanium-nickel oxide composite nanotubes coating exhibited high extraction capability, good selectivity, and rapid mass transfer for weakly polar UV filters. Thereafter the important parameters affecting extraction efficiency were investigated for solid-phase microextraction of UV filters. Under the optimized conditions, the calibration curves were linear in the range of 0.1-300 μg/L for target UV filters with limits of detection of 0.019-0.082 μg/L. The intraday and interday precision of the proposed method with the single fiber were 5.3-7.2 and 5.9-7.9%, respectively, and the fiber-to-fiber reproducibility ranged from 6.3 to 8.9% for four fibers fabricated in different batches. Finally, its applicability was evaluated by the extraction and determination of target UV filters in environmental water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Behzadi, Mansoureh; Noroozian, Ebrahim; Mirzaei, Mohammad
2013-11-01
A novel nanocomposite coating of poly(o-toluidine) and oxidized multiwalled CNTs (MWCNTs, where CNTs is carbon nanotubes) was electrochemically prepared on a stainless-steel wire. The applicability of the fiber was assessed for the headspace solid-phase microextraction of benzene, toluene, ethylbenzene, and xylenes in aqueous samples followed by GC with flame ionization detection. In order to obtain an adherent and stable composite coating, several experimental parameters related to the coating process, such as polymerization potential and time, and the concentration of o-toluidine and oxidized MWCNTs were optimized. The combination of MWCNTs and polymer in a nanocomposite form presents desirable opportunities to produce materials for new applications. The effects of various parameters on the efficiency of the headspace solid-phase microextraction process, such as desorption temperature and time, extraction temperature and time, and ionic strength were also investigated. At the optimum conditions, LODs were 0.03-0.06 μg/L. The method showed linearity in the range of 0.5-300 μg/L with coefficients of determination >0.99. The intraday and interday RSDs obtained at a 5 μg/L concentration level (n = 5) using a single fiber were 1.2-5.2 and 3.2-7.5%, respectively. The fiber-to-fiber RSD (%; n = 3) at 5 μg/L was 6.1-9.2%. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electrochemically induced actuation of liquid metal marbles
NASA Astrophysics Data System (ADS)
Tang, Shi-Yang; Sivan, Vijay; Khoshmanesh, Khashayar; O'Mullane, Anthony P.; Tang, Xinke; Gol, Berrak; Eshtiaghi, Nicky; Lieder, Felix; Petersen, Phred; Mitchell, Arnan; Kalantar-Zadeh, Kourosh
2013-06-01
Controlled actuation of soft objects with functional surfaces in aqueous environments presents opportunities for liquid phase electronics, novel assembled super-structures and unusual mechanical properties. We show the extraordinary electrochemically induced actuation of liquid metal droplets coated with nanoparticles, so-called ``liquid metal marbles''. We demonstrate that nanoparticle coatings of these marbles offer an extra dimension for affecting the bipolar electrochemically induced actuation. The nanoparticles can readily migrate along the surface of liquid metals, upon the application of electric fields, altering the capacitive behaviour and surface tension in a highly asymmetric fashion. Surprising actuation behaviours are observed illustrating that nanoparticle coatings can have a strong effect on the movement of these marbles. This significant novel phenomenon, combined with unique properties of liquid metal marbles, represents an exciting platform for enabling diverse applications that cannot be achieved using rigid metal beads.Controlled actuation of soft objects with functional surfaces in aqueous environments presents opportunities for liquid phase electronics, novel assembled super-structures and unusual mechanical properties. We show the extraordinary electrochemically induced actuation of liquid metal droplets coated with nanoparticles, so-called ``liquid metal marbles''. We demonstrate that nanoparticle coatings of these marbles offer an extra dimension for affecting the bipolar electrochemically induced actuation. The nanoparticles can readily migrate along the surface of liquid metals, upon the application of electric fields, altering the capacitive behaviour and surface tension in a highly asymmetric fashion. Surprising actuation behaviours are observed illustrating that nanoparticle coatings can have a strong effect on the movement of these marbles. This significant novel phenomenon, combined with unique properties of liquid metal marbles, represents an exciting platform for enabling diverse applications that cannot be achieved using rigid metal beads. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00185g
Li, Dan; Chen, Long; Wang, Tianshi; Fan, Li-Zhen
2018-02-28
Replacement of flammable organic liquid electrolytes with solid Li + conductors is a promising approach to realize excellent performance of Li metal batteries. However, ceramic electrolytes are either easily reduced by Li metal or penetrated by Li dendrites through their grain boundaries, and polymer electrolytes are also faced with instability on the electrode/electrolyte interface and weak mechanical property. Here, we report a three-dimensional fiber-network-reinforced bicontinuous solid composite electrolyte with flexible Li + -conductive network (lithium aluminum titanium phosphate (LATP)/polyacrylonitrile), which helps to enhance electrochemical stability on the electrode/electrolyte interface by isolating Li and LATP and suppress Li dendrites growth by mechanical reinforcement of fiber network for the composite solid electrolyte. The composite electrolyte shows an excellent electrochemical stability after 15 days of contact with Li metal and has an enlarged tensile strength (10.72 MPa) compared to the pure poly(ethylene oxide)-bistrifluoromethanesulfonimide lithium salt electrolyte, leading to a long-term stability and safety of the Li symmetric battery with a current density of 0.3 mA cm -2 for 400 h. In addition, the composite electrolyte also shows good electrochemical and thermal stability. These results provide such fiber-reinforced membranes that present stable electrode/electrolyte interface and suppress lithium dendrite growth for high-safety all-solid-state Li metal batteries.
Mashile, Geaneth Pertunia; Nomngongo, Philiswa N
2017-03-04
Cyanotoxins are toxic and are found in eutrophic, municipal, and residential water supplies. For this reason, their occurrence in drinking water systems has become a global concern. Therefore, monitoring, control, risk assessment, and prevention of these contaminants in the environmental bodies are important subjects associated with public health. Thus, rapid, sensitive, selective, simple, and accurate analytical methods for the identification and determination of cyanotoxins are required. In this paper, the sampling methodologies and applications of solid phase-based sample preparation methods for the determination of cyanotoxins in environmental matrices are reviewed. The sample preparation techniques mainly include solid phase micro-extraction (SPME), solid phase extraction (SPE), and solid phase adsorption toxin tracking technology (SPATT). In addition, advantages and disadvantages and future prospects of these methods have been discussed.
Strutwolf, Jörg; Scanlon, Micheál D; Arrigan, Damien W M
2009-01-01
Miniaturised liquid/liquid interfaces provide benefits for bioanalytical detection with electrochemical methods. In this work, microporous silicon membranes which can be used for interface miniaturisation were characterized by simulations and experiments. The microporous membranes possessed hexagonal arrays of pores with radii between 10 and 25 microm, a pore depth of 100 microm and pore centre-to-centre separations between 99 and 986 microm. Cyclic voltammetry was used to monitor ion transfer across arrays of micro-interfaces between two immiscible electrolyte solutions (microITIES) formed at these membranes, with the organic phase present as an organogel. The results were compared to computational simulations taking into account mass transport by diffusion and encompassing diffusion to recessed interfaces and overlapped diffusion zones. The simulation and experimental data were both consistent with the situation where the location of the liquid/liquid (l/l) interface was on the aqueous side of the silicon membrane and the pores were filled with the organic phase. While the current for the forward potential scan (transfer of the ion from the aqueous phase to the organic phase) was strongly dependent on the location of the l/l interface, the current peak during the reverse scan (transfer of the ion from the organic phase to the aqueous phase) was influenced by the ratio of the transferring ion's diffusion coefficients in both phases. The diffusion coefficient of the transferring ion in the gelified organic phase was ca. nine times smaller than in the aqueous phase. Asymmetric cyclic voltammogram shapes were caused by the combined effect of non-symmetrical diffusion (spherical and linear) and by the inequality of the diffusion coefficient in both phases. Overlapping diffusion zones were responsible for the observation of current peaks instead of steady-state currents during the forward scan. The characterisation of the diffusion behaviour is an important requirement for application of these silicon membranes in electroanalytical chemistry.
Allan, Phoebe K.; Griffin, John M.; Darwiche, Ali; ...
2016-01-29
We use operando pair distribution function (PDF) analysis and ex situ 23Na magic-angle spinning solid-state nuclear magnetic resonance (MAS ssNMR) spectroscopy to gain insight into the alloying mechanism of high-capacity antimony anodes for sodium-ion batteries. Subtraction of the PDF of crystalline Na xSb phases from the total PDF, an approach constrained by chemical phase information gained from 23Na ssNMR in reference to relevant model compounds, identifies two previously uncharacterized intermediate species formed electrochemically; a-Na 3–xSb (x ≈ 0.4–0.5), a structure locally similar to crystalline Na 3Sb (c-Na 3Sb) but with significant numbers of sodium vacancies and a limited correlation length,more » and a-Na1.7Sb, a highly amorphous structure featuring some Sb–Sb bonding. The first sodiation breaks down the crystalline antimony to form first a-Na 3–xSb and, finally, crystalline Na 3Sb. Desodiation results in the formation of an electrode formed of a composite of crystalline and amorphous antimony networks. We link the different reactivity of these networks to a series of sequential sodiation reactions manifesting as a cascade of processes observed in the electrochemical profile of subsequent cycles. The amorphous network reacts at higher voltages reforming a-Na 1.7Sb, then a-Na 3–xSb, whereas lower potentials are required for the sodiation of crystalline antimony, which reacts to form a-Na 3–xSb without the formation of a-Na 1.7Sb. a-Na 3–xSb is converted to crystalline Na 3Sb at the end of the second discharge. In the end, we find no evidence of formation of NaSb. Variable temperature 23Na NMR experiments reveal significant sodium mobility within c-Na 3Sb; this is a possible contributing factor to the excellent rate performance of Sb anodes.« less
2016-01-01
Operando pair distribution function (PDF) analysis and ex situ 23Na magic-angle spinning solid-state nuclear magnetic resonance (MAS ssNMR) spectroscopy are used to gain insight into the alloying mechanism of high-capacity antimony anodes for sodium-ion batteries. Subtraction of the PDF of crystalline NaxSb phases from the total PDF, an approach constrained by chemical phase information gained from 23Na ssNMR in reference to relevant model compounds, identifies two previously uncharacterized intermediate species formed electrochemically; a-Na3–xSb (x ≈ 0.4–0.5), a structure locally similar to crystalline Na3Sb (c-Na3Sb) but with significant numbers of sodium vacancies and a limited correlation length, and a-Na1.7Sb, a highly amorphous structure featuring some Sb–Sb bonding. The first sodiation breaks down the crystalline antimony to form first a-Na3–xSb and, finally, crystalline Na3Sb. Desodiation results in the formation of an electrode formed of a composite of crystalline and amorphous antimony networks. We link the different reactivity of these networks to a series of sequential sodiation reactions manifesting as a cascade of processes observed in the electrochemical profile of subsequent cycles. The amorphous network reacts at higher voltages reforming a-Na1.7Sb, then a-Na3–xSb, whereas lower potentials are required for the sodiation of crystalline antimony, which reacts to form a-Na3–xSb without the formation of a-Na1.7Sb. a-Na3–xSb is converted to crystalline Na3Sb at the end of the second discharge. We find no evidence of formation of NaSb. Variable temperature 23Na NMR experiments reveal significant sodium mobility within c-Na3Sb; this is a possible contributing factor to the excellent rate performance of Sb anodes. PMID:26824406
Mareci, D; Bolat, G; Izquierdo, J; Crimu, C; Munteanu, C; Antoniac, I; Souto, R M
2016-03-01
Biodegradable magnesium-calcium (MgCa) alloy is a very attractive biomaterial. Two MgCa alloys below the solid solubility of Ca were considered, as to solely investigate the effect of Ca content on the behavior of magnesium and the pH changes associated to metal dissolution. X-ray diffraction analysis and optical microscopy showed that both Mg-0.63Ca and Mg-0.89Ca alloys were solely composed of α(Mg) phase. Degradation characteristics and electrochemical characterization of MgCa alloys were investigated during exposure to Ringer's solution at 37 °C by electrochemical impedance spectroscopy and scanning electrochemical microscopy. The impedance behavior showed both capacitive and inductive features that are related to the alloy charge transfer reaction and the relaxation of the absorbed corrosion compounds, and can be described in terms of an equivalent circuit. Scanning electron microscopy (SEM) was employed to view the surface morphology of the MgCa samples after 1 week immersion in Ringer's solution showing extensive precipitation of corrosion products, whereas the substrate shows evidence of a non-uniform corrosion process. Energy dispersive analysis showed that the precipitates contained oxygen, calcium, magnesium and chlorine, and the Mg:Ca ratios were smaller than in the alloys. Scanning electrochemical microscopy (SECM) was used to visualize local pH changes associated to these physicochemical processes with high spatial resolution. The occurrence of pH variations in excess of 3 units between anodic and cathodic half-cell reactions was monitored in situ. Copyright © 2015 Elsevier B.V. All rights reserved.
Lan, Hangzhen; Pan, Daodong; Sun, Yangying; Guo, Yuxing; Wu, Zhen
2016-09-21
Cathodic electrodeposition (CED) has received great attention in metal-organic frameworks (MOFs) synthesis due to its distinguished properties including simplicity, controllability, mild synthesis conditions, and product continuously. Here, we report the fabrication of thin (Et3NH)2Zn3(BDC)4 (E-MOF-5) film coated solid phase microextraction (SPME) fiber by a one-step in situ cathodic electrodeposition strategy. Several etched stainless steel fibers were placed in parallel in order to achieve simultaneously electrochemical polymerization. The influence of different polymerization parameters Et3NHCl concentration and polymerization time were evaluated. The proposed method requires only 20 min for the preparation of E-MOF-5 coating. The optimum coating showed excellent thermal stability and mechanical durability with a long lifetime of more than 120 repetitions SPME operations, and also exhibited higher extraction selectivity and capacity to four estrogens than commonly-used commercial PDMS coating. The limits of detection for the estrogens were 0.17-0.56 ng mL(-1). Fiber-to-fiber reproducibility (n = 8) was in the respective ranges of 3.5%-6.1% relative standard deviation (RSD) for four estrogens for triplicate measurements at 200 ng mL(-1). Finally, the (E-MOF-5) coated fiber was evaluated for ethinylestradiol (EE2), bisphenol A (BPA), diethylstilbestrol (DES), and hexestrol (HEX) extraction in the spiked milk samples. The extraction performance of this new coating was satisfied enough for repeatable use without obvious decline. Copyright © 2016 Elsevier B.V. All rights reserved.
Livache, T; Roget, A; Dejean, E; Barthet, C; Bidan, G; Téoule, R
1994-01-01
A new methodology for the preparation of addressed DNA matrices is described. The process includes an electrochemically directed copolymerization of pyrrole and oligonucleotides bearing on their 5' end a pyrrole moiety introduced by phosphoramidite chemistry. The electro-controlled synthesis of the copolymer (poly-pyrrole) gives, in one step, a solid conducting film deposited on the surface of an electrode. The resulting polymer consists of pyrrole chains bearing covalently linked oligonucleotide. The polymer growth is limited to the electrode surface, so that it is possible to prepare a DNA matrix on a multiple electrode device by successive copolymerizations. A support bearing four oligonucleotides was used to detect three ras mutations on a synthetic DNA fragment. PMID:8065902
NASA Astrophysics Data System (ADS)
Zhang, Zhizhen; Xu, Kaiqi; Rong, Xiaohui; Hu, Yong-Sheng; Li, Hong; Huang, Xuejie; Chen, Liquan
2017-12-01
Solid electrolytes with high ionic conductivity and excellent electrochemical stability are of prime significance to enable the application of solid-state batteries in energy storage and conversion. In this study, solid composite polymer electrolytes (CPEs) based on sodium bis(trifluorosulfonyl) imide (NaTFSI) and poly (ethylene oxide) (PEO) incorporated with active ceramic filler (NASICON) are reported for the first time. With the addition of NASICON fillers, the thermal stability and electrochemical stability of the CPEs are improved. A high conductivity of 2.8 mS/cm (at 80 °C) is readily achieved when the content of the NASICON filler in the composite polymer reaches 50 wt%. Furthermore, Na3V2(PO4)3/CPE/Na solid-state batteries using this composite electrolyte display good rate and excellent cycle performance.
Temperature-Controlled High-Speed AFM: Real-Time Observation of Ripple Phase Transitions.
Takahashi, Hirohide; Miyagi, Atsushi; Redondo-Morata, Lorena; Scheuring, Simon
2016-11-01
With nanometer lateral and Angstrom vertical resolution, atomic force microscopy (AFM) has contributed unique data improving the understanding of lipid bilayers. Lipid bilayers are found in several different temperature-dependent states, termed phases; the main phases are solid and fluid phases. The transition temperature between solid and fluid phases is lipid composition specific. Under certain conditions some lipid bilayers adopt a so-called ripple phase, a structure where solid and fluid phase domains alternate with constant periodicity. Because of its narrow regime of existence and heterogeneity ripple phase and its transition dynamics remain poorly understood. Here, a temperature control device to high-speed atomic force microscopy (HS-AFM) to observe dynamics of phase transition from ripple phase to fluid phase reversibly in real time is developed and integrated. Based on HS-AFM imaging, the phase transition processes from ripple phase to fluid phase and from ripple phase to metastable ripple phase to fluid phase could be reversibly, phenomenologically, and quantitatively studied. The results here show phase transition hysteresis in fast cooling and heating processes, while both melting and condensation occur at 24.15 °C in quasi-steady state situation. A second metastable ripple phase with larger periodicity is formed at the ripple phase to fluid phase transition when the buffer contains Ca 2+ . The presented temperature-controlled HS-AFM is a new unique experimental system to observe dynamics of temperature-sensitive processes at the nanoscopic level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Gianoncelli, A.; Kaulich, B.; Kiskinova, M.; Mele, C.; Prasciolu, M.; Sgura, I.; Bozzini, B.
2013-03-01
In this paper we report on the fabrication and testing of a novel concept of electrochemical microcell for in-situ soft X-ray microspectroscopy in transmission. The microcell, fabricated by electron-beam lithography, implements an improved electrode design, with optimal current density distribution and minimised ohmic drop, allowing the same three-electrode electrochemical control achievable with traditional cells. Moreover standard electroanalytical measurements, such as cyclic voltammetry, can be routinely performed. As far as the electrolyte is concerned, we selected a room-temperature ionic-liquid. Some of the materials belonging to this class, in addition to a broad range of outstanding electrochemical properties, feature two highlights that are crucial for in situ, soft X-ray transmission work: spinnability, enabling accurate thickness control, and stability to UHV, allowing operation of an open cell in the analysis chamber vacuum (10-6 mbar). The cell can, of course, be used also with non-vacuum stable electrolytes in the sealed version developed in previous work in our group. In this study, the microcell designed, fabricated and tested in situ by applying an anodic polarisation to a Au electrode and following the formation of a distribution of corrosion features. This specific material combination presented in this work does not limit the cell concept, that can implement any electrodic material grown by lithography, any liquid electrolyte and any spinnable solid electrolyte.
Nanoionic devices: Interface nanoarchitechtonics for physical property tuning and enhancement
NASA Astrophysics Data System (ADS)
Tsuchiya, Takashi; Terabe, Kazuya; Yang, Rui; Aono, Masakazu
2016-11-01
Nanoionic devices have been developed to generate novel functions overcoming limitations of conventional materials synthesis and semiconductor technology. Various physical properties can be tuned and enhanced by local ion transport near the solid/solid interface. Two electronic carrier doping methods can be used to achieve extremely high-density electronic carriers: one is electrostatic carrier doping using an electric double layer (EDL); the other is electrochemical carrier doping using a redox reaction. Atomistic restructuring near the solid/solid interface driven by a DC voltage, namely, interface nanoarchitechtonics, has huge potential. For instance, the use of EDL enables high-density carrier doping in potential superconductors, which can hardly accept chemical doping, in order to achieve room-temperature superconductivity. Optical bandgap and photoluminescence can be controlled for various applications including smart windows and biosensors. In situ tuning of magnetic properties is promising for low-power-consumption spintronics. Synaptic plasticity in the human brain is achieved in neuromorphic devices.
Synthesis, Structure, and Electrochemical Performance of High Capacity Li 2Cu 0.5Ni 0.5O 2 Cathodes
Ruther, Rose E; Zhou, Hui; Dhital, Chetan; ...
2015-09-08
Orthorhombic Li 2NiO 2, Li 2CuO 2, and solid solutions thereof have been studied as potential cathode materials for lithium-ion batteries due to their high theoretical capacity and relatively low cost. While neither endmember shows good cycling stability, the intermediate composition, Li 2Cu 0.5Ni 0.5O 2, yields reasonably high reversible capacities. A new synthetic approach and detailed characterization of this phase and the parent Li 2CuO 2 are presented. The cycle life of Li 2Cu 0.5Ni 0.5O 2 is shown to depend critically on the voltage window. The formation of Cu 1+ at low voltage and oxygen evolution at highmore » voltage limit the electrochemical reversibility. In situ X-ray absorption spectroscopy (XAS), in situ Raman spectroscopy, and gas evolution measurements are used to follow the chemical and structural changes that occur as a function of cell voltage.« less
Electrode design for direct-methane micro-tubular solid oxide fuel cell (MT-SOFC)
NASA Astrophysics Data System (ADS)
Rabuni, Mohamad Fairus; Li, Tao; Punmeechao, Puvich; Li, Kang
2018-04-01
Herein, a micro-structured electrode design has been developed via a modified phase-inversion method. A thin electrolyte integrated with a highly porous anode scaffold has been fabricated in a single-step process and developed into a complete fuel cell for direct methane (CH4) utilisation. A continuous and well-dispersed layer of copper-ceria (Cu-CeO2) was incorporated inside the micro-channels of the anode scaffold. A complete cell was investigated for direct CH4 utilisation. The well-organised micro-channels and nano-structured Cu-CeO2 anode contributed to an increase in electrochemical reaction sites that promoted charge-transfer as well as facilitating gaseous fuel distribution, resulting in outstanding performances. Excellent electrochemical performances have been achieved in both hydrogen (H2) and CH4 operation. The power density of 0.16 Wcm-2 at 750 °C with dry CH4 as fuel is one of the highest ever reported values for similar anode materials.
Lampen, P; Neumeyer, J L; Baldessarini, R J
1988-04-29
The dopamine receptor agonist R(-)N-n-propylnorapomorphine (NPA) and its proposed pro-drug R(-)10,11-methylenedioxy-N-n-propylnoraporphine (MDO-NPA) were isolated simultaneously from monkey plasma using a solid-phase extraction procedure. R(-)Apomorphine (APO) and R(-)10,11-methylenedioxyaporphine (MDO-APO) were added as internal standards, and separation and quantification were by high-performance liquid chromatography with electrochemical or ultraviolet detection of the free catechol and MDO compounds, respectively. The detection limits for NPA and MDO-NPA in plasma were 0.5 and 10 ng/ml and the coefficient of variation (S.D./mean) within assays and between days of assays for both drugs was 5.6% or less. Quantification of plasma levels of NPA and MDO-NPA was possible at ranges of 2-1000 and 40-5000 ng/ml, respectively, including concentrations found after intravenous administration of these agents.
Sodium intercalation in the phosphosulfate cathode NaFe2(PO4)(SO4)2
NASA Astrophysics Data System (ADS)
Ben Yahia, Hamdi; Essehli, Rachid; Amin, Ruhul; Boulahya, Khalid; Okumura, Toyoki; Belharouak, Ilias
2018-04-01
The compound NaFe2(PO4)(SO4)2 is successfully synthesized via a solid state reaction route and its crystal structure is determined using powder X-ray diffraction data. NaFe2(PO4)(SO4)2 phase is also characterized by cyclic voltammetry, galvanostatic cycling and electrochemical impedance spectroscopy. NaFe2(PO4)(SO4)2 crystallizes with the well-known NASICON-type structure. SAED and HRTEM experiments confirm the structural model, and no ordering between the PO4-3 and SO4-2 polyanions is detected. The electrochemical tests indicate that NaFe2(PO4)(SO4)2 is a 3 V sodium intercalating cathode. The electrical conductivity is relatively low (2.2 × 10-6 Scm-1 at 200 °C) and the obtained activation energy is ∼0.60eV. The GITT experiments indicate that the diffusivity values are in the range of 10-11-10-12 cm2/s within the measured sodium concentrations.
Strong, Tough Glass Composites Developed for Solid Oxide Fuel Cell Seals
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Choi, Sung R.
2005-01-01
A fuel cell is an electrochemical device that continuously converts the chemical energy of a fuel directly into electrical energy. It consists of an electrolyte, an anode, and a cathode. Various types of fuel cells are available, such as direct methanol fuel cells, alkaline fuel cells, proton-exchange-membrane fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells, and solid oxide fuel cells (SOFCs). The salient features of an SOFC are all solid construction and high-temperature electrochemical-reaction-based operation, resulting in clean, efficient power generation from a variety of fuels. SOFCs are being developed for a broad range of applications, such as portable electronic devices, automobiles, power generation, and aeronautics.
A unified analysis of solidification in Bridgman crystal growth
NASA Astrophysics Data System (ADS)
Lu, Ming-Fang
2012-04-01
The simulation of multiphase solidification process can be handled by combining the VOF (Volume of Fluid) transport equation, in which the continuum mechanics model is used to simulate the melt/solid interface and the conservation of mass, momentum, and energy. Because the melt phase, the solid phase, and the melt/solid interface are controlled by a single control equation; if the enthalpy model based on porosity concept represents the processing of the phase transformation range, it is possible to solve the problem of phase transformation in the same way as solving the single-phase problem. Once the energy field of enthalpy for each step in time is resolved, the position of the interface can be precisely calculated with the use of VOF equation. This type of novel VOF method can be applied to find out the conditions of vertical Bridgman crystal growing located on the earth or under microgravity.
A unified analysis of solidification in Bridgman crystal growth
NASA Astrophysics Data System (ADS)
Lu, Ming-Fang
2011-11-01
The simulation of multiphase solidification process can be handled by combining the VOF (Volume of Fluid) transport equation, in which the continuum mechanics model is used to simulate the melt/solid interface and the conservation of mass, momentum, and energy. Because the melt phase, the solid phase, and the melt/solid interface are controlled by a single control equation; if the enthalpy model based on porosity concept represents the processing of the phase transformation range, it is possible to solve the problem of phase transformation in the same way as solving the single-phase problem. Once the energy field of enthalpy for each step in time is resolved, the position of the interface can be precisely calculated with the use of VOF equation. This type of novel VOF method can be applied to find out the conditions of vertical Bridgman crystal growing located on the earth or under microgravity.
Structure of H2Ti3O7 and its evolution during sodium insertion as anode for Na ion batteries.
Eguía-Barrio, Aitor; Castillo-Martínez, Elizabeth; Zarrabeitia, Maider; Muñoz-Márquez, Miguel A; Casas-Cabanas, Montse; Rojo, Teófilo
2015-03-14
H2Ti3O7 was prepared as a single phase material by ionic exchange from Na2Ti3O7. The complete ionic exchange was confirmed by (1)H and (23)Na solid state Nuclear Magnetic Resonance (NMR). The atomic positions of H2Ti3O7 were obtained from the Rietveld refinement of powder X-ray diffraction (PXRD) and neutron diffraction experimental data, the latter collected at two different wavelengths to precisely determine the hydrogen atomic positions in the structure. All H(+) cations are hydrogen bonded to two adjacent [Ti3O7](2-) layers leading to the gliding of the layers and lattice centring with respect to the parent Na2Ti3O7. In contrast with a previous report where protons were located in two different positions of H2Ti3O7, 3 types of proton positions were found. Two of the three types of proton are bonded to the only oxygen linked to a single titanium atom forming an H-O-H angle close to that of the water molecule. H2Ti3O7 is able to electrochemically insert Na(+). The electrochemical insertion of sodium into H2Ti3O7 starts with a solid solution regime of the C-centred phase. Then, between 0.6 and 1.2 inserted Na(+) the reaction proceeds through a two phase reaction and a plateau at 1.3 V vs. Na(+)/Na is observed in the voltage-composition curve. The second phase resembles the primitive Na2Ti3O7 cell as detected by in situ PXRD. Upon oxidation, from 0.9 to 2.2 V, the PXRD pattern remains mostly unchanged probably due to H(+) removal instead of Na(+), with the capacity quickly fading upon cycling. Conditioning H2Ti3O7 for two cycles at 0.9-2.2 V before cycling in the 0.05-1.6 V range yields similar specific capacity and better retention than the original Na2Ti3O7 in the same voltage range.
Insights into electrochemical reactions from ambient pressure photoelectron spectroscopy.
Stoerzinger, Kelsey A; Hong, Wesley T; Crumlin, Ethan J; Bluhm, Hendrik; Shao-Horn, Yang
2015-11-17
The understanding of fundamental processes in the bulk and at the interfaces of electrochemical devices is a prerequisite for the development of new technologies with higher efficiency and improved performance. One energy storage scheme of great interest is splitting water to form hydrogen and oxygen gas and converting back to electrical energy by their subsequent recombination with only water as a byproduct. However, kinetic limitations to the rate of oxygen-based electrochemical reactions hamper the efficiency in technologies such as solar fuels, fuel cells, and electrolyzers. For these reactions, the use of metal oxides as electrocatalysts is prevalent due to their stability, low cost, and ability to store oxygen within the lattice. However, due to the inherently convoluted nature of electrochemical and chemical processes in electrochemical systems, it is difficult to isolate and study individual electrochemical processes in a complex system. Therefore, in situ characterization tools are required for observing related physical and chemical processes directly at the places where and while they occur and can help elucidate the mechanisms of charge separation and charge transfer at electrochemical interfaces. X-ray photoelectron spectroscopy (XPS), also known as ESCA (electron spectroscopy for chemical analysis), has been used as a quantitative spectroscopic technique that measures the elemental composition, as well as chemical and electronic state of a material. Building from extensive ex situ characterization of electrochemical systems, initial in situ studies were conducted at or near ultrahigh vacuum (UHV) conditions (≤10(-6) Torr) to probe solid-state electrochemical systems. However, through the integration of differential-pumping stages, XPS can now operate at pressures in the torr range, comprising a technique called ambient pressure XPS (AP-XPS). In this Account, we briefly review the working principles and current status of AP-XPS. We use several recent in situ studies on model electrochemical components as well as operando studies performed by our groups at the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory to illustrate that AP-XPS is both a chemically and an electrically specific tool since photoelectrons carry information on both the local chemistry and electrical potentials. The applications of AP-XPS to oxygen electrocatalysis shown in this Account span well-defined studies of (1) the oxide/oxygen gas interface, (2) the oxide/water vapor interface, and (3) operando measurements of half and full electrochemical cells. Using specially designed model devices, we can expose and isolate the electrode or interface of interest to the incident X-ray beam and AP-XPS analyzer to relate the electrical potentials to the composition/chemical state of the key components and interfaces. We conclude with an outlook on new developments of AP-XPS end stations, which may provide significant improvement in the observation of dynamics over a wide range of time scales, higher spatial resolution, and improved characterization of boundary or interface layers (solid/solid and liquid/solid).
Nigl, Thomas P.; Smith, Nathan D.; Lichtenstein, Timothy; Gesualdi, Jarrod; Kumar, Kuldeep; Kim, Hojong
2017-01-01
A novel electrochemical cell based on a CaF2 solid-state electrolyte has been developed to measure the electromotive force (emf) of binary alkaline earth-liquid metal alloys as functions of both composition and temperature in order to acquire thermodynamic data. The cell consists of a chemically stable solid-state CaF2-AF2 electrolyte (where A is the alkaline-earth element such as Ca, Sr, or Ba), with binary A-B alloy (where B is the liquid metal such as Bi or Sb) working electrodes, and a pure A metal reference electrode. Emf data are collected over a temperature range of 723 K to 1,123 K in 25 K increments for multiple alloy compositions per experiment and the results are analyzed to yield activity values, phase transition temperatures, and partial molar entropies/enthalpies for each composition. PMID:29155770
ECLSS evolution: Advanced instrumentation interface requirements. Volume 3: Appendix C
NASA Technical Reports Server (NTRS)
1991-01-01
An Advanced ECLSS (Environmental Control and Life Support System) Technology Interfaces Database was developed primarily to provide ECLSS analysts with a centralized and portable source of ECLSS technologies interface requirements data. The database contains 20 technologies which were previously identified in the MDSSC ECLSS Technologies database. The primary interfaces of interest in this database are fluid, electrical, data/control interfaces, and resupply requirements. Each record contains fields describing the function and operation of the technology. Fields include: an interface diagram, description applicable design points and operating ranges, and an explaination of data, as required. A complete set of data was entered for six of the twenty components including Solid Amine Water Desorbed (SAWD), Thermoelectric Integrated Membrane Evaporation System (TIMES), Electrochemical Carbon Dioxide Concentrator (EDC), Solid Polymer Electrolysis (SPE), Static Feed Electrolysis (SFE), and BOSCH. Additional data was collected for Reverse Osmosis Water Reclaimation-Potable (ROWRP), Reverse Osmosis Water Reclaimation-Hygiene (ROWRH), Static Feed Solid Polymer Electrolyte (SFSPE), Trace Contaminant Control System (TCCS), and Multifiltration Water Reclamation - Hygiene (MFWRH). A summary of the database contents is presented in this report.
Portable Apparatus for Electrochemical Sensing of Ethylene
NASA Technical Reports Server (NTRS)
Manoukian, Mourad; Tempelman, Linda A.; Forchione, John; Krebs, W. Michael; Schmitt, Edwin W.
2007-01-01
A small, lightweight, portable apparatus based on an electrochemical sensing principle has been developed for monitoring low concentrations of ethylene in air. Ethylene has long been known to be produced by plants and to stimulate the growth and other aspects of the development of plants (including, notably, ripening of fruits and vegetables), even at concentrations as low as tens of parts per billion (ppb). The effects are magnified in plant-growth and -storage chambers wherein ethylene can accumulate. There is increasing recognition in agriculture and related industries that it is desirable to monitor and control ethylene concentrations in order to optimize the growth, storage, and ripening of plant products. Hence, there are numerous potential uses for the present apparatus in conjunction with equipment for controlling ethylene concentrations. The ethylene sensor is of a thick-film type with a design optimized for a low detection limit. The sensor includes a noble metal sensing electrode on a chip and a hydrated solid-electrolyte membrane that is held in contact with the chip. Also located on the sensor chip are a counter electrode and a reference electrode. The sensing electrode is held at a fixed potential versus the reference electrode. Detection takes place at active-triple-point areas where the sensing electrode, electrolyte, and sample gas meet. These areas are formed by cutting openings in the electrolyte membrane. The electrode current generated from electrochemical oxidation of ethylene at the active triple points is proportional to the concentration of ethylene. An additional film of the solid-electrolyte membrane material is deposited on the sensing electrode to increase the effective triple-point areas and thereby enhance the detection signal. The sensor chip is placed in a holder that is part of a polycarbonate housing. When fully assembled, the housing holds the solid-electrolyte membrane in contact with the chip (see figure). The housing includes a water reservoir for keeping the solid-electrolyte membrane hydrated. The housing also includes flow channels for circulating a sample stream of air over the chip: ethylene is brought to the sensing surface predominately by convection in this sample stream. The sample stream is generated by a built-in sampling pump. The forced circulation of sample air contributes to the attainment of a low detection limit.
Method for in situ carbon deposition measurement for solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Kuhn, J.; Kesler, O.
2014-01-01
Previous methods to measure carbon deposition in solid oxide fuel cell (SOFC) anodes do not permit simultaneous electrochemical measurements. Electrochemical measurements supplemented with carbon deposition quantities create the opportunity to further understand how carbon affects SOFC performance and electrochemical impedance spectra (EIS). In this work, a method for measuring carbon in situ, named here as the quantification of gasified carbon (QGC), was developed. TGA experiments showed that carbon with a 100 h residence time in the SOFC was >99.8% gasified. Comparison of carbon mass measurements between the TGA and QGC show good agreement. In situ measurements of carbon deposition in SOFCs at varying molar steam/carbon ratios were performed to further validate the QGC method, and suppression of carbon deposition with increasing steam concentration was observed, in agreement with previous studies. The technique can be used to investigate in situ carbon deposition and gasification behavior simultaneously with electrochemical measurements for a variety of fuels and operating conditions, such as determining conditions under which incipient carbon deposition is reversible.
Zhu, Lin; Wei, Bo; Wang, Zhihong; Chen, Kongfa; Zhang, Haiwu; Zhang, Yaohui; Huang, Xiqiang; Lü, Zhe
2016-09-08
The understanding of surface chemistry changes on oxygen electrodes is critical for the development of reversible solid oxide fuel cell (RSOFC). Here, we report for the first time that the electrochemical potentials can drastically affect the surface composition and hence the electrochemical activity and stability of PrBaCo2 O5+δ (PBCO) electrodes. Anodic polarization degrades the activity of the PBCO electrode, whereas the cathodic bias could recover its performance. Alternating anodic/cathodic polarization for 180 h confirms this behavior. Microstructure and chemical analysis clearly show that anodic bias leads to the accumulation and segregation of insulating nanosized BaO on the electrode surface, whereas cathodic polarization depletes the surface species. Therefore, a mechanism based on the segregation and incorporation of BaO species under electrochemical potentials is considered to be responsible for the observed deactivation and recovery process, respectively. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Fan; Nemeth, Karoly; Bareno, Javier; ...
2016-03-03
The feasibility of synthesizing functionalized h-BN (FBN) via the reaction between molten LiOH and solid h-BN is studied for the first time and its first ever application as an electrode material in Li-ion batteries is evaluated. Density functional theory (DFT) calculations are performed to provide mechanistic understanding of the possible electrochemical reactions derived from the FBN. Various materials characterizations reveal that the melt-solid reaction can lead to exfoliation and functionalization of h-BN simultaneously, while electrochemical analysis proves that the FBN can reversibly store charges through surface redox reactions with good cycle stability and coulombic efficiency. As a result, the DFTmore » calculations have provided physical insights into the observed electrochemical properties derived from the FBN.« less
Ceramic Electrolyte Membrane Technology: Enabling Revolutionary Electrochemical Energy Storage
2015-10-05
ion batteries . Solid-state Li- ion batteries could significantly improve safety and eliminate the need for complex...advancing ceramic electrolyte technology for use in solid-state Li- ion batteries . Solid-state Li- ion batteries could significantly improve safety and...technology for use in solid-state Li- ion batteries and high specific energy Li-S and Li- air batteries . Solid-state Li- ion batteries could
Jiang, Fangming; Peng, Peng
2016-01-01
Underutilization due to performance limitations imposed by species and charge transports is one of the key issues that persist with various lithium-ion batteries. To elucidate the relevant mechanisms, two groups of characteristic parameters were proposed. The first group contains three characteristic time parameters, namely: (1) te, which characterizes the Li-ion transport rate in the electrolyte phase, (2) ts, characterizing the lithium diffusion rate in the solid active materials, and (3) tc, describing the local Li-ion depletion rate in electrolyte phase at the electrolyte/electrode interface due to electrochemical reactions. The second group contains two electric resistance parameters: Re and Rs, which represent respectively, the equivalent ionic transport resistance and the effective electronic transport resistance in the electrode. Electrochemical modeling and simulations to the discharge process of LiCoO2 cells reveal that: (1) if te, ts and tc are on the same order of magnitude, the species transports may not cause any performance limitations to the battery; (2) the underlying mechanisms of performance limitations due to thick electrode, high-rate operation, and large-sized active material particles as well as effects of charge transports are revealed. The findings may be used as quantitative guidelines in the development and design of more advanced Li-ion batteries. PMID:27599870
Shape control VO2 nanorods prepared by soft chemistry and electrochemical method
NASA Astrophysics Data System (ADS)
Simo, A.; Sibanyoni, J.; Fuku, X.; Numan, N.; Omorogbe, S.; Maaza, M.
2018-07-01
"Bottom up" approach is of primary interest for chemistry and materials science because the fundamental building blocks are atoms. Thus colloidal chemical synthetic methods can be utilized to prepare uniform nanocrystals with controlled particle size. In the following work of study, thermochromic VO2 nanostructures were prepared by hydrothermal technique soft chemistry. We concentrate on solution phase synthetic methods that enable a proper shape and size control of metal oxide nanocrystals. Their structural properties were studied by Scanning Electron Microscopy (SEM), Fourier Transform IR (FTIR) and Differential Scanning Calorimetry (DSC). It is demonstrated that the surfactant assistance (NaOH) has great influence on the morphology-control of the material. Electrochemical properties of the nanospheres show good stability after 20 cycles and the surface diffusion coefficient was calculated to be 5 × 10-6 cm2 s-1.
Method of making sulfur tolerant composite cermet electrodes for solid oxide electrochemical cells
Isenberg, Arnold O.
1989-01-01
An electrochemical apparatus is made containing an exterior electorde bonded to the exterior of a tubular, solid, oxygen ion conducting electrolyte where the electrolyte is also in contact with an interior electrode, said exterior electrode comprising particles of an electronic conductor contacting the electrolyte, where a ceramic metal oxide coating partially surrounds the particles and is bonded to the electrolyte, and where a coating of an ionic-electronic conductive material is attached to the ceramic metal oxide coating and to the exposed portions of the particles.
Sulfur tolerant composite cermet electrodes for solid oxide electrochemical cells
Isenberg, Arnold O.
1987-01-01
An electrochemical apparatus is made containing an exterior electrode bonded to the exterior of a tubular, solid, oxygen ion conducting electrolyte where the electrolyte is also in contact with an interior electrode, said exterior electrode comprising particles of an electronic conductor contacting the electrolyte, where a ceramic metal oxide coating partially surrounds the particles and is bonded to the electrolyte, and where a coating of an ionic-electronic conductive material is attached to the ceramic metal oxide coating and to the exposed portions of the particles.
NASA Astrophysics Data System (ADS)
Tripathi, Biranchi M.; Mohanty, Trupti; Prakash, Deep; Tyagi, A. K.; Sinha, P. K.
2017-07-01
Pure phase monoclinic nano-crystalline Li2TiO3 powder was synthesized by a novel urea assisted solid state synthesis method using readily available and economical precursors. A single phase and well crystalline Li2TiO3 powder has been obtained at slightly lower temperature (600-700 °C) and shorter duration (2 h) as compared to the conventional solid state method. The proposed method has significant advantages in comparison to other viable methods mainly in terms of phase purity, powder properties and sinterability. Analysis of chemical composition using inductively coupled plasma atomic emission spectroscopy (ICP-AES) shows no loss of lithium from Li2TiO3 in the proposed method. The emergence of monoclinic Li2TiO3 phase was confirmed by X-ray diffraction (XRD) pattern of as-synthesized powder. The crystallite size of Li2TiO3 powder was calculated to be in the range of 15-80 nm, which varied as a function of urea composition and temperature. The morphology of as-prepared Li2TiO3 powders was examined by scanning electron microscope (SEM). The effect of urea composition on phase and morphology was investigated so as to delineate the role of urea. Upon sintering at < 1000 °C temperature, the Li2TiO3 powder compact attained about 98% of the theoretical density with fine grained (grain size: 2-3 μm) microstructure. It indicates excellent sinter-ability of Li2TiO3 powder synthesized by the proposed method. The fine grained structure is desirable for better tritium breeding performance of Li2TiO3. Electrochemical impedance spectroscopy at variable temperature showed good electrical properties of Li2TiO3. The proposed method is simple, anticipated to be cost effective and convenient to realise for large scale production of phase pure nanocrystalline and having significantly enhanced sinter-ability Li2TiO3 powder.
Srikanth, S; Venkata Mohan, S; Sarma, P N
2010-07-01
Positive influence of poised potential on microbial fuel cell (MFC) performance was observed with increase in the applied potential up to 600 mV and decreased thereafter. Higher power output (79.33 mW/m(2)) was observed at 600 mV poised potential under open circuit operation (OC). Closed circuit operation (CC) showed almost negligible power output due to continuous electron discharge against an external load (100 Omega). However, CC operation resulted in the higher substrate (chemical oxygen demand (COD)) degradation [61.23% (control); 70.46% (OC; 600 mV); 74.15% (CC; 600 mV)] and total dissolved solids (TDS) removal [29.17% (control); 43.75% (OC; 600 mV); 72.92% (CC; 600 mV)] efficiencies compared to OC. Electron discharge and energy conversion efficiency was also observed to be higher with 600 mV poised potential. Poising potential showed additional redox couples (-0.29+/-0.05 mV) on cyclic voltammetry. Application of poised potential during startup phase will help to enrich electrochemically active consortia on anode resulting in improved performance of MFC. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Parida, S. C.; Rakshit, S. K.; Dash, S.; Singh, Ziley; Prasad, R.; Venugopal, V.
2003-05-01
The standard molar Gibbs energies of formation of LnFeO 3(s) and Ln3Fe 5O 12(s) where Ln=Eu and Gd have been determined using solid-state electrochemical technique employing different solid electrolytes. The reversible e.m.f.s of the following solid-state electrochemical cells have been measured in the temperature range from 1050 to 1255 K. Cell (I): (-)Pt / { LnFeO 3(s)+ Ln2O 3(s)+Fe(s)} // YDT/CSZ // {Fe(s)+Fe 0.95O(s)} / Pt(+); Cell (II): (-)Pt/{Fe(s)+Fe 0.95O(s)}//CSZ//{ LnFeO 3(s)+ Ln3Fe 5O 12(s)+Fe 3O 4(s)}/Pt(+); Cell (III): (-)Pt/{ LnFeO 3(s)+ Ln3Fe 5O 12(s)+Fe 3O 4(s)}//YSZ//{Ni(s)+NiO(s)}/Pt(+); and Cell(IV):(-)Pt/{Fe(s)+Fe 0.95O(s)}//YDT/CSZ//{ LnFeO 3(s)+ Ln3Fe 5O 12(s)+Fe 3O 4(s)}/Pt(+). The oxygen chemical potentials corresponding to the three-phase equilibria involving the ternary oxides have been computed from the e.m.f. data. The standard Gibbs energies of formation of solid EuFeO 3, Eu 3Fe 5O 12, GdFeO 3 and Gd 3Fe 5O 12 calculated by the least-squares regression analysis of the data obtained in the present study are given by Δ fG°m(EuFeO 3, s) /kJ mol -1 (± 3.2)=-1265.5+0.2687( T/K) (1050 ⩽ T/K ⩽ 1570), Δ fG°m(Eu 3Fe 5O 12, s)/kJ mol -1 (± 3.5)=-4626.2+1.0474( T/K) (1050 ⩽ T/K ⩽ 1255), Δ fG°m(GdFeO 3, s) /kJ mol -1 (± 3.2)=-1342.5+0.2539( T/K) (1050 ⩽ T/K ⩽ 1570), and Δ fG°m(Gd 3Fe 5O 12, s)/kJ·mol -1 (± 3.5)=-4856.0+1.0021( T/K) (1050 ⩽ T/K ⩽ 1255). The uncertainty estimates for Δ fG°m include the standard deviation in the e.m.f. and uncertainty in the data taken from the literature. Based on the thermodynamic information, oxygen potential diagrams for the systems Eu-Fe-O and Gd-Fe-O and chemical potential diagrams for the system Gd-Fe-O were computed at 1250 K.
SEQUENTIAL EXTRACTIONS FOR PARTITIONING OF ARSENIC ON HYDROUS IRON OXIDES AND IRON SULFIDES
The objective of this study was to use model solids to test solutions designed to extract arsenic from relatively labile solid phase fractions. The use of sequential extractions provides analytical constraints on the identification of mineral phases that control arsenic mobility...
Synthesis, structure, and ionic conductivity of solid solution, Li10+δM1+δP2-δS12 (M = Si, Sn).
Hori, Satoshi; Suzuki, Kota; Hirayama, Masaaki; Kato, Yuki; Saito, Toshiya; Yonemura, Masao; Kanno, Ryoji
2014-01-01
Solid solutions of the silicon and tin analogous phases of the superionic conductor Li(10)MP(2)S(12) (M = Si, Sn) were synthesized by a conventional solid-state reaction in an evacuated silica tube at 823 K. The ranges of the solid solutions were determined to be 0.20 < δ < 0.43 and -0.25 < δ < -0.01 in Li(10+δ)M(1+δ)P(2-δ)S(12) (0.525 ≤k≤ 0.60 and 0.67 ≤k≤ 0.75 in Li(4-k)M(1-k)PkS(4)) for the Si and Sn systems, respectively. The ionic conductivity of these systems varied as a function of the changing M ions: the Si and Sn systems showed lower conductivity than the Ge system, Li(10+δ)Ge(1+δ)P(2-δ)S(12). The conductivity change for different elements might be due to the lattice size and lithium content affecting the ionic conduction. The relationship between ionic conduction, structure, and lithium concentration is discussed based on the structural and electrochemical information for the silicon, germanium, and tin systems.
Air plasma spray processing and electrochemical characterization of SOFC composite cathodes
NASA Astrophysics Data System (ADS)
White, B. D.; Kesler, O.; Rose, Lars
Air plasma spraying has been used to produce porous composite cathodes containing (La 0.8Sr 0.2) 0.98MnO 3- y (LSM) and yttria-stabilized zirconia (YSZ) for use in solid oxide fuel cells (SOFCs). Preliminary investigations focused on determining the range of plasma conditions under which each of the individual materials could be successfully deposited. A range of conditions was thereby determined that was suitable for the deposition of a composite cathode from pre-mixed LSM and YSZ powders. A number of composite cathodes were produced using different combinations of parameter values within the identified range according to a Uniform Design experimental grid. Coatings were then characterized for composition and microstructure using EDX and SEM. As a result of these tests, combinations of input parameter values were identified that are best suited to the production of coatings with microstructures appropriate for use in SOFC composite cathodes. A selection of coatings representative of the types of observed microstructures were then subjected to electrochemical testing to evaluate the performance of these cathodes. From these tests, it was found that, in general, the coatings that appeared to have the most suitable microstructures also had the highest electrochemical performances, provided that the deposition efficiency of both phases was sufficiently high.
Microwave synthesis of molybdenum doped LiFePO4/C and its electrochemical studies.
Naik, Amol; P, Sajan C
2016-05-10
A Mo-doped LiFePO4 composite was prepared successfully from an iron carbonyl complex by adopting a facile and rapid microwave assisted solid state method. The evolution of gases from the iron precursor produces a highly porous product. The formation and substitution of Mo in LiFePO4 were confirmed by X-ray diffraction; surface analysis was carried out by scanning electron microscopy, field emission scanning electron microscopy, and transmission electron microscopy. The electrochemical properties of the substituted LiFePO4 were examined by cyclic voltammetry, electrochemical impedance spectroscopy and by recording charge-discharge cycles. It was observed that the as prepared composites consisted of a single phase orthorhombic olivine-type structure, where Mo(6+) was successfully introduced into the M2(Fe) sites. Incorporation of supervalent Mo(6+) introduced Li(+) ion vacancies in LiFePO4. The synthesized material facilitated lithium ion diffusion during charging/discharging due to the charge compensation effect and porosity. The battery performance studies showed that LiMo0.05Fe0.095PO4 exhibited a maximum capacity of 169.7 mA h g(-1) at 0.1 C current density, with admirable stability retention. Even at higher current densities, the retention of the specific capacity was exceptional.
Lyagaeva, Julia; Danilov, Nilolay; Tarutin, Arthem; Vdovin, Gennady; Medvedev, Dmitry; Demin, Anatoly; Tsiakaras, Panagiotis
2018-06-19
The Fe-based perovskite-structured Nd0.5Ba0.5FeO3-δ (NBF) system represents the basis for developing promising electrode materials for solid oxide fuel cells with proton-conducting electrolytes. This study aims at investigating the strategy of slight doping of neodymium-barium ferrite with some transition metals (M = Ni, Cu, Co) and examining the effect of this doping on the functional characteristics, such as phase structure, thermal expansion, total and ionic conductivity as well as electrochemical behavior, of Nd0.5Ba0.5Fe0.9M0.1O3-δ (NBFM) under testing in symmetrical cell (SC) and fuel cell (FC) modes of operation. Among the investigated dopants, cobalt (Co) is found to be the optimal dopant, resulting in an enhancement of transport properties and avoiding an undesirable increase in the thermal expansion coefficient. As a result, the electrode material made of NBFCo exhibits highest ionic conductivity and lowest polarization resistance in the SC mode of operation. Electrochemical characterization of the NBFCo cathode material in a protonic ceramic fuel cell (PCFC) followed by comparison of the obtained results with literature data demonstrates that NBFCo is an attractive cathode candidate for PCFC applications.
This Small Business Innovation Research (SBIR) Phase II project will employ the large scale; highly reliable boron-doped ultrananocrystalline diamond (BD-UNCD®) electrodes developed during Phase I project to build and test Electrochemical Anodic Oxidation process (EAOP)...
Composite solid polymer electrolyte membranes
Formato, Richard M.; Kovar, Robert F.; Osenar, Paul; Landrau, Nelson; Rubin, Leslie S.
2001-06-19
The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.
Composite solid polymer electrolyte membranes
Formato, Richard M.; Kovar, Robert F.; Osenar, Paul; Landrau, Nelson; Rubin, Leslie S.
2006-05-30
The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.
Perovskite electrodes and method of making the same
Seabaugh, Matthew M [Columbus, OH; Swartz, Scott L [Columbus, OH
2009-09-22
The invention relates to perovskite oxide electrode materials in which one or more of the elements Mg, Ni, Cu, and Zn are present as minority components that enhance electrochemical performance, as well as electrode products with these compositions and methods of making the electrode materials. Such electrodes are useful in electrochemical system applications such as solid oxide fuel cells, ceramic oxygen generation systems, gas sensors, ceramic membrane reactors, and ceramic electrochemical gas separation systems.
Perovskite electrodes and method of making the same
Seabaugh, Matthew M.; Swartz, Scott L.
2005-09-20
The invention relates to perovskite oxide electrode materials in which one or more of the elements Mg, Ni, Cu, and Zn are present as minority components that enhance electrochemical performance, as well as electrode products with these compositions and methods of making the electrode materials. Such electrodes are useful in electrochemical system applications such as solid oxide fuel cells, ceramic oxygen generation systems, gas sensors, ceramic membrane reactors, and ceramic electrochemical gas separation systems.
Drug Loading Capacity of Environmentally Sensitive Polymeric Microgels
NASA Astrophysics Data System (ADS)
McDonough, Ryan; Streletzky, Kiril; Bayachou, Mekki; Peiris, Pubudu
2009-10-01
Microgel nanoparticles consisting of cross-linked polymer hydroxypropyl cellulose chains have a temperature dependent volume phase transition, prompting the use of microgels for controlled drug transport. Drug particles aggregate in the slightly hydrophobic interior of microgels. Microgels are stored in equilibrium until the critical temperature (Tv) is reached and the volume phase transition limits available space, thus expelling the drugs. Our study was designed to test this property of microgels using amperometric electrochemical methods. A critical assumption was that small molecules inside microgels would not interact via diffusion with the electrode surface and thus total current would be decreased across the electrodes in a microgel sample. A room temperature (Troom) flow amperometric measurement comparing microgel/tylenol solution with control tylenol samples yielded about 20% tylenol concentration reduction of the microgel sample. Results from the steady state electrochemical experiment confirm the presence of about 20% tylenol concentration drop of the microgel sample compared to control sample at Troom. Using the steady-state experiment with a cyclic temperature ramp from Troom to beyond Tv showed that the tylenol concentration change between the temperature extremes was greater for the microgel solution than for the control solution.
Sequential extractions can provide analytical constraints on the identification of mineral phases that control arsenic speciation in sediments. Model solids were used in this study to evaluate different solutions designed to extract arsenic from relatively labile solid phases. ...
Gao, Yunming; Yang, Chuanghuang; Zhang, Canlei; Qin, Qingwei; Chen, George Z
2017-06-21
Production of metallic iron through molten oxide electrolysis using inert electrodes is an alternative route for fast ironmaking without CO 2 emissions. The fact that many inorganic oxides melt at ultrahigh temperatures (>1500 K) challenges conventional electro-analytical techniques used in aqueous, organic and molten salt electrolytes. However, in order to design a feasible and effective electrolytic process, it is necessary to best understand the electrochemical properties of iron ions in molten oxide electrolytes. In this work, a magnesia-stabilised zirconia (MSZ) tube with a closed end was used to construct an integrated three-electrode cell with a "MSZ|Pt|O 2 (air)" assembly functioning as the solid electrolyte, the reference electrode and also the counter electrode. Electrochemical reduction of iron ions was systematically investigated on an iridium (Ir) wire working electrode in a SiO 2 -CaO-MgO-Al 2 O 3 molten slag at 1723 K by cyclic voltammetry (CV), square wave voltammetry (SWV), chronopotentiometry (CP) and potentiostatic electrolysis (PE). The results show that the electroreduction of the Fe 2+ ion to Fe on the Ir electrode in the molten slag follows a single two-electron transfer step, and the rate of the process is diffusion controlled. The peak current on the obtained CVs is proportional to the concentration of the Fe 2+ ion in the molten slag and the square root of scan rate. The diffusion coefficient of Fe 2+ ions in the molten slag containing 5 wt% FeO at 1723 K was derived to be (3.43 ± 0.06) × 10 -6 cm 2 s -1 from CP analysis. However, a couple of subsequent processes, i.e. alloy formation on the Ir electrode surface and interdiffusion, were found to affect the kinetics of iron deposition. An ECC mechanism is proposed to account for the CV observations. The findings from this work confirm that zirconia-based solid electrolytes can play an important role in electrochemical fundamental research in high temperature molten slag electrolytes.
NASA Astrophysics Data System (ADS)
Jaafar, Hassen; Aymard, Luc; Dachraoui, Walid; Demortière, Arnaud; Abdellaoui, Mohieddine
2018-04-01
We developed in the present paper the synthesis of a new AB3-type compound LaMg2Ni5Al4 by mechanical alloying (MA) process. X-ray diffraction analysis (XRD) was used to determine the structural properties and the phase evolution of the powder mixtures. Two different synthesis pathways have been investigated. The first starting from elemental metals and the second from a mixture of two binary compounds LaNi5 (CaCu5-type structure, P6/mmm space group) and Al(Mg) solid solution (cubic Fm-3 m space group). The results show multiphase alloys which contain LaMg2Ni5Al4 main phase with hexagonal PuNi3-type structure (R-3 m space group). Rietveld analysis shows that using a planetary ball mill, we obtain a good yield of LaMg2Ni5Al4 compound after 5 h of mechanical alloying for both synthesis pathways. TEM analysis confirmed XRD results. SEM-EDX analysis of the final product was in agreement with the nominal chemical formula. A setup of possible solid-gaz hydrogenation reaction will be described so far at the end of this work. Electrochemical results demonstrate evidence on hydrogen absorption in the AB3 material and the discharge capacity was equal to 5.9 H/f.u.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turick, Charles E.; Beliaev, Alex S.; Zakrajsek, Brian A.
2009-05-01
ABSTRACT - While mechanistic details of dissimilatory metal reduction are far from being understood, it is postulated that the electron transfer to solid metal oxides is mediated by outer membrane associated c-type cytochromes and electron shuttling compounds. This study focuses on the production of homogensitate in Shewanella oneidensis MR-1, an intermediate of the tyrosine degradation pathway, which is a precursor of a redox cycling metabolite, pyomelanin. We determined that two enzymes involved in this pathway, 4-hydroxyphenylpyruvate dioxygenase (4HPPD) and homogentisate 1,2-dioxygenase are responsible for homogentisate production and oxidation, respectively. Inhibition of 4-HPPD activity with the specific inhibitor sulcotrione ([2-(2- chloro-more » 4- methane sulfonylbenzoyl)-1,3-cyclohexanedione), and deletion of melA, a gene encoding 4-HPPD, resulted in no pyomelanin production by S. oneidensis MR-1. Conversely, deletion of hmgA, which encodes the putative homogentisate 1,2-dioxygenase, resulted in pyomelanin overproduction. The efficiency and rates at which MR-1 reduces hydrous ferric oxide were directly linked to the ability of mutant strains to produce pyomelanin. Electrochemical studies with whole cells demonstrated that pyomelanin substantially increases the formal potential (E°') of S. oneidensis MR-1. Based on our findings, environmental production of pyomelanin likely contributes to an increased solid-phase metal reduction capacity in S. oneidensis MR-1.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turick, C; Amy Ekechukwu, A
2007-06-01
While mechanistic details of dissimilatory metal reduction are far from being understood, it is postulated that the electron transfer to solid metal oxides is mediated by outer membrane-associated c-type cytochromes and redox active electron shuttling compounds. This study focuses on the production of homogensitate in Shewanella oneidensis MR-1, an intermediate of tyrosine degradation pathway, which is a precursor of a redox cycling metabolite, pyomelanin. In this study, we determined that two enzymes involved in this pathway, 4-hydroxyphenylpyruvate dioxygenase (4HPPD) and homogentisate 1,2-dioxygenase are responsible for homogentisate production and oxidation, respectively. Inhibition of 4-HPPD activity with the specific inhibitor sulcotrione (2-(2-chloro-4-methanemore » sulfonylbenzoyl)-1,3-cyclohexanedione), and deletion of melA, a gene encoding 4-HPPD, resulted in no pyomelanin production by S. oneidensis MR-1. Conversely, deletion of hmgA which encodes the putative homogentisate 1,2-dioxygenase, resulted in pyomelanin overproduction. The efficiency and rates, with which MR-1 reduces hydrous ferric oxide, were directly linked to the ability of mutant strains to produce pyomelanin. Electrochemical studies with whole cells demonstrated that pyomelanin substantially increases the formal potential (E{sup o}{prime}) of S. oneidensis MR-1. Based on this work, environmental production of pyomelanin likely contributes to an increased solid-phase metal reduction capacity in Shewanella oneidensis.« less
Method for removing solid particulate material from within liquid fuel injector assemblies
Simandl, R.F.; Brown, J.D.; Andriulli, J.B.; Strain, P.D.
1998-09-08
A method is described for removing residual solid particulate material from the interior of liquid fuel injectors and other fluid flow control mechanisms having or being operatively associated with a flow-regulating fixed or variable orifice. The method comprises the sequential and alternate introduction of columns of a non-compressible liquid phase and columns of a compressed gas phase into the body of a fuel injector whereby the expansion of each column of the gas phase across the orifice accelerates the liquid phase in each trailing column of the liquid phase and thereby generates turbulence in each liquid phase for lifting and entraining the solid particulates for the subsequent removal thereof from the body of the fuel injector. 1 fig.
Method for removing solid particulate material from within liquid fuel injector assemblies
Simandl, Ronald F.; Brown, John D.; Andriulli, John B.; Strain, Paul D.
1998-01-01
A method for removing residual solid particulate material from the interior of liquid fuel injectors and other fluid flow control mechanisms having or being operatively associated with a flow-regulating fixed or variable orifice. The method comprises the sequential and alternate introduction of columns of a non-compressible liquid phase and columns of a compressed gas phase into the body of a fuel injector whereby the expansion of each column of the gas phase across the orifice accelerates the liquid phase in each trailing column of the liquid phase and thereby generates turbulence in each liquid phase for lifting and entraining the solid particulates for the subsequent removal thereof from the body of the fuel injector.
NASA Astrophysics Data System (ADS)
Rakshit, S. K.; Parida, S. C.; Singh, Ziley; Prasad, R.; Venugopal, V.
2004-04-01
The standard molar Gibbs energy of formations of BaFe 12O 19(s), BaFe 2O 4(s), Ba 2Fe 2O 5(s), Ba 3Fe 2O 6(s) and Ba 5Fe 2O 8(s) have been determined using solid-state electrochemical technique employing CaF 2(s) as an electrolyte. The reversible e.m.f. values have been measured in the temperature range from 970 to 1151 K. The oxygen chemical potential corresponding to three phase equilibria involving technologically important compound BaFe 12O 19(s) has been determined using solid-state electrochemical technique employing CSZ as an electrolyte from 1048 to 1221 K. The values of Δ fGm0( T) for the above ternary oxides are given by ΔfG m0( BaFe12O19, s)/ kJ mol -1(±0.6)=-5431.3+1.5317 (T/ K) (970⩽T/ K⩽1151) ΔfG m0( BaFe2O4, s)/ kJ mol -1(±1.3)=-1461.4+0.3745 (T/ K) (970⩽T/ K⩽1151) ΔfG m0( Ba2Fe2O5, s)/ kJ mol -1(±1.4)=-2038.3+0.4433 (T/ K) (970⩽T/ K⩽1149) ΔfG m0( Ba3Fe2O6, s)/ kJ mol -1(±1.5)=-2700.1+0.6090 (T/ K) (969⩽T/ K⩽1150) and ΔfG m0( Ba5Fe2O8, s)/ kJ mol -1(±1.6)=-3984.1+0.9300 (T/ K) (973⩽T/ K⩽1150) The uncertainty estimates for Δ fGm0 includes the standard deviation in the e.m.f. and uncertainty in the data taken from the literature. An isothermal oxygen potential diagram for the system Ba-Fe-O was constructed at 1100 K based on the thermodynamic data obtained in this study.
Three-Dimensional ZnO Hierarchical Nanostructures: Solution Phase Synthesis and Applications
Wang, Xiaoliang; Ahmad, Mashkoor
2017-01-01
Zinc oxide (ZnO) nanostructures have been studied extensively in the past 20 years due to their novel electronic, photonic, mechanical and electrochemical properties. Recently, more attention has been paid to assemble nanoscale building blocks into three-dimensional (3D) complex hierarchical structures, which not only inherit the excellent properties of the single building blocks but also provide potential applications in the bottom-up fabrication of functional devices. This review article focuses on 3D ZnO hierarchical nanostructures, and summarizes major advances in the solution phase synthesis, applications in environment, and electrical/electrochemical devices. We present the principles and growth mechanisms of ZnO nanostructures via different solution methods, with an emphasis on rational control of the morphology and assembly. We then discuss the applications of 3D ZnO hierarchical nanostructures in photocatalysis, field emission, electrochemical sensor, and lithium ion batteries. Throughout the discussion, the relationship between the device performance and the microstructures of 3D ZnO hierarchical nanostructures will be highlighted. This review concludes with a personal perspective on the current challenges and future research. PMID:29137195
Shin, Hyun-Seop; Jung, Kyu-Nam; Jo, Yong Nam; Park, Min-Sik; Kim, Hansung; Lee, Jong-Won
2016-01-01
There is a great deal of current interest in the development of rechargeable sodium (Na)-ion batteries (SIBs) for low-cost, large-scale stationary energy storage systems. For the commercial success of this technology, significant progress should be made in developing robust anode (negative electrode) materials with high capacity and long cycle life. Sn-P compounds are considered promising anode materials that have considerable potential to meet the required performance of SIBs, and they have been typically prepared by high-energy mechanical milling. Here, we report Sn-P-based anodes synthesised through solvothermal transformation of Sn metal and their electrochemical Na storage properties. The temperature and time period used for solvothermal treatment play a crucial role in determining the phase, microstructure, and composition of the Sn-P compound and thus its electrochemical performance. The Sn-P compound prepared under an optimised solvothermal condition shows excellent electrochemical performance as an SIB anode, as evidenced by a high reversible capacity of ~560 mAh g−1 at a current density of 100 mA g−1 and cycling stability for 100 cycles. The solvothermal route provides an effective approach to synthesising Sn-P anodes with controlled phases and compositions, thus tailoring their Na storage behaviour. PMID:27189834
Density of Trap States and Auger-mediated Electron Trapping in CdTe Quantum-Dot Solids.
Boehme, Simon C; Azpiroz, Jon Mikel; Aulin, Yaroslav V; Grozema, Ferdinand C; Vanmaekelbergh, Daniël; Siebbeles, Laurens D A; Infante, Ivan; Houtepen, Arjan J
2015-05-13
Charge trapping is an ubiquitous process in colloidal quantum-dot solids and a major limitation to the efficiency of quantum dot based devices such as solar cells, LEDs, and thermoelectrics. Although empirical approaches led to a reduction of trapping and thereby efficiency enhancements, the exact chemical nature of the trapping mechanism remains largely unidentified. In this study, we determine the density of trap states in CdTe quantum-dot solids both experimentally, using a combination of electrochemical control of the Fermi level with ultrafast transient absorption and time-resolved photoluminescence spectroscopy, and theoretically, via density functional theory calculations. We find a high density of very efficient electron traps centered ∼0.42 eV above the valence band. Electrochemical filling of these traps increases the electron lifetime and the photoluminescence quantum yield by more than an order of magnitude. The trapping rate constant for holes is an order of magnitude lower that for electrons. These observations can be explained by Auger-mediated electron trapping. From density functional theory calculations we infer that the traps are formed by dicoordinated Te atoms at the quantum dot surface. The combination of our unique experimental determination of the density of trap states with the theoretical modeling of the quantum dot surface allows us to identify the trapping mechanism and chemical reaction at play during charge trapping in these quantum dots.
Fast ion transport at solid-solid interfaces in hybrid battery anodes
NASA Astrophysics Data System (ADS)
Tu, Zhengyuan; Choudhury, Snehashis; Zachman, Michael J.; Wei, Shuya; Zhang, Kaihang; Kourkoutis, Lena F.; Archer, Lynden A.
2018-04-01
Carefully designed solid-electrolyte interphases are required for stable, reversible and efficient electrochemical energy storage in batteries. We report that hybrid battery anodes created by depositing an electrochemically active metal (for example, Sn, In or Si) on a reactive alkali metal electrode by a facile ion-exchange chemistry lead to very high exchange currents and stable long-term performance of electrochemical cells based on Li and Na electrodes. By means of direct visualization and ex situ electrodeposition studies, Sn-Li anodes are shown to be stable at 3 mA cm-2 and 3 mAh cm-2. Prototype full cells in which the hybrid anodes are paired with high-loading LiNi0.8Co0.15Al0.05O2(NCA) cathodes are also reported. As a second demonstration, we create and study Sn-Na hybrid anodes and show that they can be cycled stably for more than 1,700 hours with minimal voltage divergence. Charge storage at the hybrid anodes is reported to involve a combination of alloying and electrodeposition reactions.
Method for improving the durability of ion insertion materials
Lee, Se-Hee; Tracy, C. Edwin; Cheong, Hyeonsik M.
2002-01-01
The invention provides a method of protecting an ion insertion material from the degradative effects of a liquid or gel-type electrolyte material by disposing a protective, solid ion conducting, electrically insulating, layer between the ion insertion layer and the liquid or gel-type electrolyte material. The invention further provides liquid or gel-type electrochemical cells having improved durability having a pair of electrodes, a pair of ion insertion layers sandwiched between the pair of electrodes, a pair of solid ion conducting layers sandwiched between the ion insertion layers, and a liquid or gel-type electrolyte material disposed between the solid ion conducting layers, where the solid ion conducting layer minimizes or prevents degradation of the faces of the ion insertion materials facing the liquid or gel-type electrolyte material. Electrochemical cells of this invention having increased durability include secondary lithium batteries and electrochromic devices.
Graphene nanocomposites for electrochemical cell electrodes
Zhamu, Aruna; Jang, Bor Z.; Shi, Jinjun
2015-11-19
A composite composition for electrochemical cell electrode applications, the composition comprising multiple solid particles, wherein (a) a solid particle is composed of graphene platelets dispersed in or bonded by a first matrix or binder material, wherein the graphene platelets are not obtained from graphitization of the first binder or matrix material; (b) the graphene platelets have a length or width in the range of 10 nm to 10 .mu.m; (c) the multiple solid particles are bonded by a second binder material; and (d) the first or second binder material is selected from a polymer, polymeric carbon, amorphous carbon, metal, glass, ceramic, oxide, organic material, or a combination thereof. For a lithium ion battery anode application, the first binder or matrix material is preferably amorphous carbon or polymeric carbon. Such a composite composition provides a high anode capacity and good cycling response. For a supercapacitor electrode application, the solid particles preferably have meso-scale pores therein to accommodate electrolyte.
Fahrenkrug, Eli; Maldonado, Stephen
2015-07-21
This Account describes a new electrochemical synthetic strategy for direct growth of crystalline covalent group IV and III-V semiconductor materials at or near ambient temperature conditions. This strategy, which we call "electrochemical liquid-liquid-solid" (ec-LLS) crystal growth, marries the semiconductor solvation properties of liquid metal melts with the utility and simplicity of conventional electrodeposition. A low-temperature liquid metal (i.e., Hg, Ga, or alloy thereof) acts simultaneously as the source of electrons for the heterogeneous reduction of oxidized semiconductor precursors dissolved in an electrolyte as well as the solvent for dissolution of the zero-valent semiconductor. Supersaturation of the semiconductor in the liquid metal triggers eventual crystal nucleation and growth. In this way, the liquid electrolyte-liquid metal-solid crystal phase boundary strongly influences crystal growth. As a synthetic strategy, ec-LLS has several intrinsic features that are attractive for preparing covalent semiconductor crystals. First, ec-LLS does not require high temperatures, toxic precursors, or high-energy-density semiconductor reagents. This largely simplifies equipment complexity and expense. In practice, ec-LLS can be performed with only a beaker filled with electrolyte and an electrical circuit capable of supplying a defined current (e.g., a battery in series with a resistor). By this same token, ec-LLS is compatible with thermally and chemically sensitive substrates (e.g., plastics) that cannot be used as deposition substrates in conventional syntheses of covalent semiconductors. Second, ec-LLS affords control over a host of crystal shapes and sizes through simple changes in common experimental parameters. As described in detail herein, large and small semiconductor crystals can be grown both homogeneously within a liquid metal electrode and heterogeneously at the interface of a liquid metal electrode and a seed substrate, depending on the particular details chosen for ec-LLS. Third, the rate of introduction of zero-valent materials into the liquid metal is precisely gated with a high degree of resolution by the applied potential/current. The intent of this Account is to summarize the key elements of ec-LLS identified to date, first contextualizing this method with respect to other semiconductor crystal growth methods and then highlighting some unique capabilities of ec-LLS. Specifically, we detail ec-LLS as a platform to prepare Ge and Si crystals from bulk- (∼1 cm(3)), micro- (∼10(-10) cm(3)), and nano-sized (∼10(-16) cm(3)) liquid metal electrodes in common solvents at low temperature. In addition, we describe our successes in the preparation of more compositionally complex binary covalent III-V semiconductors.
NASA Astrophysics Data System (ADS)
Zhu, Qi; Yuan, Xietao; Zhu, Yihao; Ni, Jiangfeng; Zhang, Xiaohua; Yang, Zhaohui
2018-05-01
In this paper we fabricate a robust flexible solid-state supercapacitor (FSC) device by embedding a conductive poly(vinyl alcohol) hydrogel into aligned carbon nanotube (CNT) arrays. We carefully investigate the effect of distribution, interface properties and densification of CNTs in the gel matrix on the electrochemical properties of an FSC. The total electrochemical capacitance of the device is measured to be 227 mF cm‑3 with a maximum energy density of 0.02 mWh cm‑3, which is dramatically enhanced compared with a similar device composed of non-parallel CNTs. Additionally, controllable in situ electrochemical oxidation greatly improved the compatibility between the hydrophobic CNTs and the hydrophilic hydrogel, which decreased the resistance of the device and introduced extra pseudocapacitance. After such oxidation treatment the energy storage ability further doubled to 430 mF cm‑3 with a maximum energy density of 0.04 mWh cm‑3 . The FSCs based on densified CNT arrays exhibited a much higher volumetric capacitance of 1140 mF cm‑3 and a larger energy density of 0.1 mWh cm‑3, with a large power density of 14 mW cm‑3. All devices show excellent stability of capacitance after at least 10 000 charge–discharge cycles with a loss of less than 2%. These easy-to-assemble hybrid arrays thus potentially provide a new method for manufacturing wearable devices and implantable medical devices.
Zhu, Qi; Yuan, Xietao; Zhu, Yihao; Ni, Jiangfeng; Zhang, Xiaohua; Yang, Zhaohui
2018-05-11
In this paper we fabricate a robust flexible solid-state supercapacitor (FSC) device by embedding a conductive poly(vinyl alcohol) hydrogel into aligned carbon nanotube (CNT) arrays. We carefully investigate the effect of distribution, interface properties and densification of CNTs in the gel matrix on the electrochemical properties of an FSC. The total electrochemical capacitance of the device is measured to be 227 mF cm -3 with a maximum energy density of 0.02 mWh cm -3 , which is dramatically enhanced compared with a similar device composed of non-parallel CNTs. Additionally, controllable in situ electrochemical oxidation greatly improved the compatibility between the hydrophobic CNTs and the hydrophilic hydrogel, which decreased the resistance of the device and introduced extra pseudocapacitance. After such oxidation treatment the energy storage ability further doubled to 430 mF cm -3 with a maximum energy density of 0.04 mWh cm -3 . The FSCs based on densified CNT arrays exhibited a much higher volumetric capacitance of 1140 mF cm -3 and a larger energy density of 0.1 mWh cm -3 , with a large power density of 14 mW cm -3 . All devices show excellent stability of capacitance after at least 10 000 charge-discharge cycles with a loss of less than 2%. These easy-to-assemble hybrid arrays thus potentially provide a new method for manufacturing wearable devices and implantable medical devices.
Raman structural studies of the nickel electrode
NASA Technical Reports Server (NTRS)
Cornilsen, B. C.
1985-01-01
Raman spectroscopy is sensitive to empirically controlled nickel electrode structural variations, and has unique potential for structural characterization of these materials. How the structure relates to electrochemical properties is examined so that the latter can be more completely understood, controlled, and optimized. Electrodes were impregnated and cycled, and cyclic voltammetry is being used for electrochemical characterization. Structural variation was observed which has escaped detection using other methods. Structural changes are induced by: (1) cobalt doping, (2) the state of change or discharge, (3) the preparation conditions and type of buffer used, and (4) the formation process. Charged active mass has an NiOOH-type structure, agreeing with X-ray diffraction results. Discharged active mass, however, is not isostructural with beta-Ni(OH)2. Chemically prepared alpha phases are not isostructural either. A disordered structural model, containing point defects, is proposed for the cycled materials. This model explains K(+) incorporation. Band assignments were made and spectra interpreted for beta-Ni(OH)2, electrochemical NiOOH and chemically precipitated NiOOH.
Portable system and method combining chromatography and array of electrochemical sensors
Zaromb, Solomon; Stetter, Joseph R.
1989-01-01
A portable system for analyzing a fluid sample includes a small, portable, low-pressure and low-power chromatographic analyzer and a chemical parameter spectrometry monitor including an array of sensors for detecting, identifying and measuring the concentrations of a variety of components in the eluent from the chromatographic analyzer. The monitor includes one or more operating condition controllers which may be used to change one or more of the operating conditions during exposure of the sensors to the eluent from the chromatography analyzer to form a response pattern which is then compared with a library of previously established patterns. Gas and liquid chromatographic embodiments are disclosed. In the gas embodiment, the operating condition controllers include heated filaments which may convert electrochemically inactive components to electrochemically active products. In the liquid chromatography embodiment, low-power, liquid-phase equivalents of heated filaments are used with appropriate sensors. The library response patterns may be divided into subsets and the formed pattern may be assigned for comparison only with the patterns of a particular subset.
Effect of Gas Pressure on Polarization of SOFC Cathode Prepared by Plasma Spray
NASA Astrophysics Data System (ADS)
Li, Cheng-Xin; Wang, Zhun-Zhun; Liu, Shuai; Li, Chang-Jiu
2013-06-01
A cermet-supported tubular SOFC was fabricated using thermal spray. The cell performance was investigated at temperatures from 750 to 900 °C and pressures from 0.1 to 0.5 MPa to examine the effect of operating gas pressure on the cell performance. The influence of gas pressure on the cathodic polarization was studied through the electrochemical impedance approach to examine the controlling electrochemical processes during cell operation. Results show that increasing the operating gas pressure improves the power output performance significantly. When the gas pressure is increased from 0.1 to 0.3 MPa, the maximum power density is increased by a factor of 32% at a temperature of 800 °C. The cathode polarization decreases significantly with the increase of the gas pressure. The electrochemical analysis shows that the main control processes of the cathode reaction are the oxygen species transfer at the three-phase boundary and oxygen diffusion on the surface or in the bulk of the cathode, which are enhanced with increasing gas pressure.
He, Huan; Zhuang, Yuan; Peng, Ying; Gao, Zhanqi; Yang, Shaogui; Sun, Cheng
2014-02-01
A porous and highly efficient polyaniline-based solid-phase microextraction (SPME) coating was successfully prepared by the electrochemical deposition method. A method based on headspace SPME followed by HPLC was established to rapidly determine trace chlorophenols in water samples. Influential parameters for the SPME, including extraction mode, extraction temperature and time, pH and ionic strength procedures, were investigated intensively. Under the optimized conditions, the proposed method was linear in the range of 0.5-200 μg/L for 4-chlorophenol and 2,4,6-trichlorophenol, 0.2-200 μg/L for 2,4-dichlorophenol and 2-200 μg/L for 2,3,4,6-tetrachlorophenol and pentachlorophenol, with satisfactory correlation coefficients (>0.99). RSDs were <15% (n = 5) and LODs were relatively low (0.10-0.50 μg/L). Compared to commercial 85 μm polyacrylate and 60 μm polydimethylsiloxane/divinylbenzene fibers, the homemade polyaniline fiber showed a higher extraction efficiency. The proposed method has been successfully applied to the determination of chlorophenols in water samples with satisfactory recoveries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Korba, Korcan; Pelit, Levent; Pelit, Füsun Okçu; Ozdokur, K Volkan; Ertaş, Hasan; Eroğlu, Ahmet E; Ertaş, F Nil
2013-06-15
A robust in house solid-phase micro extraction (SPME) surface has been developed for the headspace (HS)-SPME determination of endocrine disruptor pesticides, namely, Chlorpyrifos, Penconazole, Procymidone, Bromopropylate and Lambda-Cyhalothrin in wine sample by using sodium dodecylsulfate doped polypyrrole SPME fiber. Pyrrole monomer was electrochemically polymerized on a stainless steel wire in laboratory conditions in virtue of diminishing the cost and enhancing the analyte retention on its surface to exert better selectivity and hence the developed polymerized surface could offer to analyst to exploit it as a fiber in headspace SPME analysis. The parameters, mainly, adsorption temperature and time, desorption temperature, stirring rate and salt amount were optimized to be as 70°C and 45min, 200°C, 600rpm and 10gL(-1), respectively. Limit of detection was estimated in the range of 0.073-1.659ngmL(-1) for the pesticides studied. The developed method was applied in to red wine sample with acceptable recovery values (92-107%) which were obtained for these selected pesticides. Copyright © 2013 Elsevier B.V. All rights reserved.
Mourad, Eléonore; Coustan, Laura; Lannelongue, Pierre; Zigah, Dodzi; Mehdi, Ahmad; Vioux, André; Freunberger, Stefan A; Favier, Frédéric; Fontaine, Olivier
2017-04-01
Kinetics of electrochemical reactions are several orders of magnitude slower in solids than in liquids as a result of the much lower ion diffusivity. Yet, the solid state maximizes the density of redox species, which is at least two orders of magnitude lower in liquids because of solubility limitations. With regard to electrochemical energy storage devices, this leads to high-energy batteries with limited power and high-power supercapacitors with a well-known energy deficiency. For such devices the ideal system should endow the liquid state with a density of redox species close to the solid state. Here we report an approach based on biredox ionic liquids to achieve bulk-like redox density at liquid-like fast kinetics. The cation and anion of these biredox ionic liquids bear moieties that undergo very fast reversible redox reactions. As a first demonstration of their potential for high-capacity/high-rate charge storage, we used them in redox supercapacitors. These ionic liquids are able to decouple charge storage from an ion-accessible electrode surface, by storing significant charge in the pores of the electrodes, to minimize self-discharge and leakage current as a result of retaining the redox species in the pores, and to raise working voltage due to their wide electrochemical window.
Methods and systems for fuel production in electrochemical cells and reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marina, Olga A.; Pederson, Larry R.
Methods and systems for fuel, chemical, and/or electricity production from electrochemical cells are disclosed. A voltage is applied between an anode and a cathode of an electrochemical cell. The anode includes a metal or metal oxide electrocatalyst. Oxygen is supplied to the cathode, producing oxygen ions. The anode electrocatalyst is at least partially oxidized by the oxygen ions transported through an electrolyte from the cathode to the anode. A feed gas stream is supplied to the anode electrocatalyst, which is converted to a liquid fuel. The anode electrocatalyst is re-oxidized to higher valency oxides, or a mixture of oxide phases,more » by supplying the oxygen ions to the anode. The re-oxidation by the ions is controlled or regulated by the amount of voltage applied.« less
Solid State Ionics Advanced Materials for Emerging Technologies
NASA Astrophysics Data System (ADS)
Chowdari, B. V. R.; Careem, M. A.; Dissanayake, M. A. K. L.; Rajapakse, R. M. G.; Seneviratne, V. A.
2006-06-01
Keynote lecture. Challenges and opportunities of solid state ionic devices / W. Weppner -- pt. I. Ionically conducting inorganic solids. Invited papers. Multinuclear NMR studies of mass transport of phosphoric acid in water / J. R. P. Jayakody ... [et al.]. Crystalline glassy and polymeric electrolytes: similarities and differences in ionic transport mechanisms / J.-L. Souquet. 30 years of NMR/NQR experiments in solid electrolytes / D. Brinkmann. Analysis of conductivity and NMR measurements in Li[symbol]La[symbol]TiO[symbol] fast Li[symbol] ionic conductor: evidence for correlated Li[symbol] motion / O. Bohnké ... [et al.]. Transport pathways for ions in disordered solids from bond valence mismatch landscapes / S. Adams. Proton conductivity in condensed phases of water: implications on linear and ball lightning / K. Tennakone -- Contributed papers. Proton transport in nanocrystalline bioceramic materials: an investigative study of synthetic bone with that of natural bone / H. Jena, B. Rambabu. Synthesis and properties of the nanostructured fast ionic conductor Li[symbol]La[symbol]TiO[symbol] / Q. N. Pham ... [et al.]. Hydrogen production: ceramic materials for high temperature water electrolysis / A. Hammou. Influence of the sintering temperature on pH sensor ability of Li[symbol]La[symbol]TiO[symbol]. Relationship between potentiometric and impedance spectroscopy measurements / Q. N. Pham ... [et al.]. Microstructure chracterization and ionic conductivity of nano-sized CeO[symbol]-Sm[symbol]O[symbol] system (x=0.05 - 0.2) prepared by combustion route / K. Singh, S. A. Acharya, S. S. Bhoga. Red soil in Northern Sri Lanka is a natural magnetic ceramic / K. Ahilan ... [et al.]. Neutron scattering of LiNiO[symbol] / K. Basar ... [et al.]. Preparation and properties of LiFePO[symbol] nanorods / L. Q. Mai ... [et al.]. Structural and electrochemical properties of monoclinic and othorhombic MoO[symbol] phases / O. M. Hussain ... [et al.]. Preparation of Zircon (ZrSiO[symbol]) ceramics via solid state sintering of Zr)[symbol] and SiO[symbol] and the effect of dopants on the zircon yield / U. Dhanayake, B. S. B. Karunaratne. Preparation and properties of vanadium doped ZnTe cermet thin films / M. S. Hossain, R. Islam, K. A. Khan. Dynamical properties and electronic structure of lithium-ion conductor / M. Kobayashi ... [et al.]. Cuprous ion conducting Montmorillonite-Polypyrrole nanocomposites / D. M. M. Krishantha ... [et al.]. Frequency dependence of conductivity studies on a newly synthesized superionic solid solution/mixed system: [0.75AgI: 0.25AgCl] / R. K. Nagarch, R. Kumar. Diffuse X-ray and neutron scattering from Powder PbS / X. Lian ... [et al.]. Electron affinity and work function of Pyrolytic MnO[symbol] thin films prepared from Mn(C[symbol]H[symbol]O[symbol])[symbol].4H[symbol]) / A. K. M. Farid Ul Islam, R. Islam, K. A. Khan. Crystal structure and heat capacity of Ba[symbol]Ca[symbol]Nb[symbol]O[symbol] / T. Shimoyama ... [et al.]. XPS and impedance investigations on amorphous vanadium oxide thin films / M. Kamalanathan ... [et al.]. Sintering and mixed electronic-ionic conducting properties of La[symbol]Sr[symbol]NiO[symbol] derived from a polyaminocarboxylate complex precursor / D.-P. Huang ... [et al.]. Preparation and characteristics of ball milled MgH[symbol] + M (M= Fe, VF[symbol] and FeF[symbol]) nanocomposites for hydrogen storage / N. W. B. Balasooriya, Ch. Poinsignon. Structural studies of oxysulfide glasses by X-ray diffraction and molecular dynamics simulation / R. Prasada Rao, M. Seshasayee, J. Dheepa. Synthesis, sintering and oxygen ionic conducting properties of Bi[symbol]V[symbol]Cu[symbol]O[symbol] / F. Zhang ... [et al.]. Synthesis and transport characteristics of PbI[symbol]-Ag[symbol]O-Cr[symbol]O[symbol] superioninc system / S. A. Suthanthiraraj, V. Mathew. Electronic conductivity of La[symbol]Sr[symbol]Ga[symbol]Mg[symbol]Co[symbol]O[symbol] electrolytes / K. Yamaji ... [et al.] -- pt. II. Electrode materials. Invited papers. Cathodic properties of Al-doped LiCoO[symbol] prepared by molten salt method Li-Ion batteries / M. V. Reddy, G. V. Subba Rao, B. V. R. Chowdari. Layered ion-electron conducting materials / M. A. Santa Ana, E. Benavente, G. González. LiNi[symbol]Co[symbol]O[symbol] cathode thin-film prepared by RF sputtering for all-solid-state rechargeable microbatteries / X. J. Zhu ... [et al.] -- Contributed papers. Contributed papers. Nanocomposite cathode for SOFCs prepared by electrostatic spray deposition / A. Princivalle, E. Djurado. Effect of the addition of nanoporous carbon black on the cycling characteristics of Li[symbol]Co[symbol](MoO[symbol])[symbol] for lithium batteries / K. M. Begam, S. R. S. Prabaharan. Protonic conduction in TiP[symbol]O[symbol] / V. Nalini, T. Norby, A. M. Anuradha. Preparation and electrochemical LiMn[symbol]O[symbol] thin film by a solution deposition method / X. Y. Gan ... [et al.]. Synthesis and characterization LiMPO[symbol] (M = Ni, Co) / T. Savitha, S. Selvasekarapandian, C. S. Ramya. Synthesis and electrical characterization of LiCoO[symbol] LiFeO[symbol] and NiO compositions / A. Wijayasinghe, B. Bergman. Natural Sri Lanka graphite as conducting enhancer in manganese dioxide (Emd type) cathode of alkaline batteries / N. W. B. Balasooriya ... [et al.]. Electrochemical properties of LiNi[symbol]Al[symbol]Zn[symbol]O[symbol] cathode material synthesized by emulsion method / B.-H. Kim ... [et al.]. LiNi[symbol]Co[symbol]O[symbol] cathode materials synthesized by particulate sol-gel method for lithium ion batteries / X. J. Zhu ... [et al.]. Pulsed laser deposition of highly oriented LiCoO[symbol] and LiMn[symbol]O[symbol] thin films for microbattery applications / O. M. Hussain ... [et al.]. Preparation of LiNi[symbol]Co[symbol]O[symbol] thin films by a sol-gel method / X. J. Zhu ... [et al.]. Electrochemical lithium insertion into a manganese dioxide electrode in aqueous solutions / M. Minakshi ... [et al.]. AC impedance spectroscopic analysis of thin film LiNiVO[symbol] prepared by pulsed laser deposition technique / S. Selvasekarapandian ... [et al.]. Synthesis and characterization of LiFePO[symbol] cathode materials by microwave processing / J. Zhou ... [et al.]. Characterization of Nd[symbol]Sr[symbol]CoO[symbol] including Pt second phase as the cathode material for low-temperature SOFCs / J. W. Choi ... [et al.]. Thermodynamic behavior of lithium intercalation into natural vein and synthetic graphite / N. W. B. Balasooriya, P. W. S. K. Bandaranayake, Ph. Touzain -- pt. III. Electroactive polymers. Invited papers. Organised or disorganised? looking at polymer electrolytes from both points of view / Y.-P. Liao ... [et al.]. Polymer electrolytes - simple low permittivity solutions? / I. Albinsson, B.-E. Mellander. Dependence of conductivity enhancement on the dielectric constant of the dispersoid in polymer-ferroelectric composite electrolytes / A. Chandra, P. K. Singh, S. Chandra. Design and application of boron compounds for high-performance polymer electrolytes / T. Fujinami. Structural, vibrational and AC impedance analysis of nano composite polymer electrolytes based on PVAC / S. Selvasekarapandian ... [et al.]. Absorption intensity variation with ion association in PEO based electrolytes / J. E. Furneaux ... [et al.]. Study of ion-polymer interactions in cationic and anionic ionomers from the dependence of conductivity on pressure and temperature / M. Duclot ... [et al.]. Triol based polyurethane gel electrolytes for electrochemical devices / A. R. Kulkarni. Contributed papers. Accurate conductivity measurements to solvation energies in nafion / M. Maréchal, J.-L Souquet. Ion conducting behaviour of composite polymer gel electrolyte: PEG-PVA-(NH[symbol]CH[symbol]CO[symbol])[symbol] system / S. L. Agrawal, A. Awadhia, S. K. Patel. Impedance spectroscopy and DSC studies of poly(vinylalcohol)/ silicotungstic acid crosslinked composite membranes / A. Anis, A. K. Banthia. (PEO)[symbol]:Na[symbol]P[symbol]O[symbol]: a report on complex formation / A. Bhide, K. Hariharan. Experimental studies on (PVC+LiClO[symbol]+DMP) polymer electrolyte systems for lithium battery / Ch. V. S. Reddy. Stability of the gel electrolyte, PAN: EC: PC: LiCF[symbol]SO[symbol] towards lithium / K. Perera ... [et al.]. Montmorillonite as a conductivity enhancer in (PEO)[symbol]LiCF[symbol]SO[symbol] polymer electrolyte / C. H. Manoratne ... [et al.]. Polymeric gel electrolytes for electrochemical capacitors / M. Morita ... [et al.]. Electrical conductivity studies on proton conducting polymer electrolytes based on poly (viniyl acetate) / D. Arun Kumar ... [et al.]. Conductivity and thermal studies on plasticized PEO:LiTf-Al[symbol]O[symbol] composite polymer electrolyte / H. M. J. C. Pitawala, M. A. K. L. Dissanayake, V. A. Seneviratne. Investigation of transport properties of a new biomaterials - gum mangosteen / S. S. Pradhan, A. Sarkar. Investigation of ionic conductivity of PEO-MgCl[symbol] based solid polymer electrolyte / M. Sundar ... [et al.]. [symbol]H NMR and Raman analysis of proton conducting polymer electrolytes based on partially hydrolyzed poly (vinyl alcohol) / G. Hirankumar ... [et al.]. Influence of Al[symbol]O[symbol] nanoparticles on the phase matrix of polyethylene oxide-silver triflate polymer electrolytes / S. Austin Suthanthiraraj, D. Joice Sheeba. Effect of different types of ceramic fillers on thermal, dielectric and transport properties of PEO[symbol]LiTf solid polymer electrolyte / K. Vignarooban ... [et al.]. Characterization of PVP based solid polymer electrolytes using spectroscopic techniques / C. S. Ramya ... [et al.]. Electrochemical and structural properties of poly vinylidene fluoride - silver triflate solid polymer electrolyte system / S. Austin Suthanthiraraj, B. Joseph Paul. Micro Raman, Li NMR and AC impedance analysis of PVAC:LiClO[symbol] solid polymer eectrolytes / R. Baskaran ... [et al.].Study of Na+ ion conduction in PVA-NaSCN solid polymer electrolytes / G. M. Brahmanandhan ... [et al.]. Effect of filler addition on plasticized polymer electrolyte systems / M. Sundar, S. Selladurai. Ionic motion in PEDOT and PPy conducting polymer bilayers / U. L. Zainudeen, S. Skaarup, M. A. Careem. Film formation mechanism and electrochemical characterization of V[symbol]O[symbol] xerogel intercalated by polyaniniline / Q. Zhu ... [et al.]. Effect of NH[symbol]NO[symbol] concentration on the conductivity of PVA based solid polymer electrolyte / M. Hema ... [et al.]. Dielectric and conductivity studies of PVA-KSCN based solid polymer electrolytes / J. Malathi ... [et al.] -- pt. IV. Emerging applications. Invited papers. The use of solid state ionic materials and devices in medical applications / R. Linford. Development of all-solid-state lithium batteries / V. Thangadurai, J. Schwenzei, W. Weppner. Reversible intermediate temperature solid oxide fuel cells / B.-E. Mellander, I. Albinsson. Nano-size effects in lithium batteries / P. Balaya, Y. Hu, J. Maier. Electrochromics: fundamentals and applications / C. G. Granqvist. Electrochemical CO[symbol] gas sensor / K. Singh. Polypyrrole for artificial muscles: ionic mechanisms / S. Skaarup. Development and characterization of polyfluorene based light emitting diodes and their colour tuning using Forster resonance energy transfer / P. C. Mattur ... [et al.]. Mesoporous and nanoparticulate metal oxides: applications in new photocatalysis / C. Boxall. Proton Conducting (PC) perovskite membranes for hydrogen separation and PC-SOFC electrodes and electrolytes / H. Jena, B. Rambabu. Contributed papers. Electroceramic materials for the development of natural gas fuelled SOFC/GT plant in developing country (Trinidad and Tobogo (T&T)) / R. Saunders, H. Jena, B. Rambabu. Thin film SOFC supported on nano-porous substrate / J. Hoon Joo, G. M. Choi. Characterization and fabrication of silver solid state battery Ag/AGI-AgPO[symbol]/I[symbol], C / E. Kartini ... [et al.]. Performance of lithium polymer cells with polyacrylonitrile based electrolyte / K. Perera ... [et al.]. Hydrothermal synthesis and electrochemical behavior of MoO[symbol] nanobelts for lithium batteries / Y. Qi ... [et al.]. Electrochemical behaviour of a PPy (DBS)/polyacrylonitrile: LiTF:EC:PC/Li cell / K. Vidanapathirana ... [et al.]. Characteristics of thick film CO[symbol] sensors based on NASICON using Li[symbol]CO[symbol]-CaCO[symbol] auxiliary phases / H. J. Kim ... [et al.]. Solid state battery discharge characteristic study on fast silver ion conducting composite system: 0.9[0.75AgI:0.25AgCl]: 0.1TiO[symbol] / R. K. Nagarch, R. Kumar, P. Rawat. Intercalating protonic solid-state batteries with series and parallel combination / K. Singh, S. S. Bhoga, S. M. Bansod. Synthesis and characterization of ZnO fiber by microwave processing / Lin Wang ... [et al.]. Preparation of Sn-Ge alloy coated Ge nanoparticles and Sn-Si alloy coated Si nanoparticles by ball-milling / J. K. D. S. Jayanett, S. M. Heald. Synthesis of ultrafine and crystallized TiO[symbol] by alalkoxied free polymerizable precursor method / M. Vijayakumar ... [et al.]. Development and characterization of polythiophene/fullerene composite solar cells and their degradation studies / P. K. Bhatnagar ... [et al.].
Urbain, J L; Penninckx, F; Siegel, J A; Vandenborre, P; Van Cutsem, E; Vandenmaegdenbergh, V; De Roo, M
1990-10-01
The role of the distal stomach in gastric emptying was studied. Ten patients with proximal gastric vagotomy (PV) and 10 age-matched patients with Roux-en-Y gastro-jejunostomy (R-Y) were compared with 10 healthy controls. Gastric emptying of solids and liquids was determined by the use of Tc-99m SC scrambled eggs and In-111 DTPA. In PV, gastric emptying of both solids and liquids was delayed; the prolongation with solids was mainly accounted for by an abnormal lag phase. In R-Y patients, no lag phase was observed, and the solid emptying curve pattern was characterized by early rapid emptying followed by very slow emptying. Both the solid and liquid phases were prolonged. The lag phase is affected by proximal vagotomy and is mainly determined by the distal stomach, which appears to be essential for normal emptying.
NASA Astrophysics Data System (ADS)
Miara, Lincoln James
Solid oxide fuel cells (SOFCs) have the potential to replace conventional stationary power generation technologies; however, there are major obstacles to commercialization, the most problematic of which is poor cathode performance. Commercialization of SOFCs will follow when the mechanisms occurring at the cathode are more thoroughly understood and adapted for market use. The catalytic reduction of oxygen occurring in SOFC cathodes consists of many elementary steps such as gas phase diffusion, chemical and/or electrochemical reactions which lead to the adsorption and dissociation of molecular oxygen onto the cathode surface, mass transport of oxygen species along the surface and/or through the bulk of the cathode, and full reduction and incorporation of the oxygen at the cathode/electrolyte two or three phase boundary. Electrochemical impedance spectroscopy (EIS) is the main technique used to identify the occurrence of these different processes, but when this technique is used without an explicit model describing the kinetics it is difficult to unravel the interdependence of each of these processes. The purpose of this dissertation is to identify the heterogeneous reactions occurring at the cathode of an SOFC by combining experimental EIS results with mathematical models describing the time dependent behavior of the system. This analysis is performed on two different systems. In the first case, experimental EIS results from patterned half cells composed of Ca-doped lanthanum manganite (LCM)| yttria-doped ZrO2 (YSZ) are modeled to investigate the temperature and partial pressure of oxygen, pO2, dependence of oxygen adsorption/dissociation onto the LCM surface, surface diffusion of atomic oxygen, and electrochemical reduction and incorporation of the oxygen into the electrolyte in the vicinity of the triple phase boundary (TPB). This model determines the time-independent state-space equations from which the Faradaic admittance transfer function is obtained. The unknown rate constants (kad, k des, k1, k1¯ ), and parameters (Ds, Q°, n) arising from the governing equations are estimated from a combination of experiments, mathematical analysis, and numerical data analysis. In the second system, dense patterned films of cathode with composition: La0.6Sr0.4Co0.2Fe0.8O3-delta (LSCF-6428) were fabricated on Ga-doped CeO2 coated YSZ substrates. These samples were analyzed by EIS over a temperature and pO 2 range of 600--800 °C and 10-3--1.00 atm, respectively. To understand the EIS results, a 2-dimensional model was developed which accounted for surface oxygen exchange, and both surface and bulk transport of oxygen to the electrolyte interface. The results were obtained by numerically solving a stationary partial differential equation describing the oxygen vacancy distribution in the cathode. From these results, the model impedance was derived and then fitted to the experimental EIS results. From the fitting results the contributions to the impedance from each of the processes were estimated. Also, the surface exchange rate was estimated over the experimental operating conditions. Finally, the results suggest that the surface diffusion occurred by an interstitial type mechanism in this material. The cathode surface is intimately involved in most of the oxygen reduction processes; however, the surface structure and chemistry is typically treated as an extension of the bulk without consideration of the actual surface properties. Recent evidence suggests that significant changes occur to the surface during operation which in turn leads to changes in electrochemical performance. To investigate these phenomena, well-oriented thin films (250 nm in thickness) of Sr-doped lanthanum manginite (LSM) films were grown on single crystals of YSZ (111). Films which were cathodically biased with a -1 V applied dc potential were compared to control samples. The cathodic bias results in both an enhancement in electrochemical performance and a change in surface chemistry. The changes in electrochemical performance were monitored by ES, while the surface changes were tracked with a combination of soft x-ray techniques such as x-ray photoemission spectroscopy and x-ray absorption spectroscopy. The soft x-ray results indicated that the removal of surface passivating phases (i.e., SrO and MnO) are correlated with improved performance. This work demonstrates the success of estimating fundamental parameters, such as diffusivity and surface coverage, from experimental EIS results using a physically realistic model without, as is commonly done, assuming a specific rate limiting step or using an ambiguous equivalent circuit. This allows researchers to fabricate designer cathodes by selecting materials with optimal kinetic properties such as rapid oxygen dissociation and rapid oxygen transport in (or on) the cathode, independent of geometry.
Monolithic All-Phosphate Solid-State Lithium-Ion Battery with Improved Interfacial Compatibility.
Yu, Shicheng; Mertens, Andreas; Tempel, Hermann; Schierholz, Roland; Kungl, Hans; Eichel, Rüdiger-A
2018-06-22
High interfacial resistance between solid electrolyte and electrode of ceramic all-solid-state batteries is a major reason for the reduced performance of these batteries. A solid-state battery using a monolithic all-phosphate concept based on screen printed thick LiTi 2 (PO 4 ) 3 anode and Li 3 V 2 (PO 4 ) 3 cathode composite layers on a densely sintered Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 solid electrolyte has been realized with competitive cycling performance. The choice of materials was primarily based on the (electro-)chemical and mechanical matching of the components instead of solely focusing on high-performance of individual components. Thus, the battery utilized a phosphate backbone in combination with tailored morphology of the electrode materials to ensure good interfacial matching for a durable mechanical stability. Moreover, the operating voltage range of the active materials matches with the intrinsic electrochemical window of the electrolyte which resulted in high electrochemical stability. A highly competitive discharge capacity of 63.5 mAh g -1 at 0.39 C after 500 cycles, corresponding to 84% of the initial discharge capacity, was achieved. The analysis of interfacial charge transfer kinetics confirmed the structural and electrical properties of the electrodes and their interfaces with the electrolyte, as evidenced by the excellent cycling performance of the all-phosphate solid-state battery. These interfaces have been studied via impedance analysis with subsequent distribution of relaxation times analysis. Moreover, the prepared solid-state battery could be processed and operated in air atmosphere owing to the low oxygen sensitivity of the phosphate materials. The analysis of electrolyte/electrode interfaces after cycling demonstrates that the interfaces remained stable during cycling.
NASA Astrophysics Data System (ADS)
Vallejo, N. Diaz; Sanchez, O.; Caicedo, J. C.; Aperador, W.; Zambrano, G.
In this research, the electrochemical impedance spectroscopy (EIS) and Tafel analysis were utilized to study the hot corrosion performance at 700∘C of air plasma-sprayed (APS) yttria-stabilized zirconia (YSZ) coatings with a NiCrAlY bond coat grown by high velocity oxygen fuel spraying (HVOF), deposited on an INCONEL 625 substrate, in contact with corrosive solids salts as vanadium pentoxide V2O5 and sodium sulfate Na2SO4. The EIS data were interpreted based on proposed equivalent electrical circuits using a suitable fitting procedure performed with Echem AnalystTM Software. Phase transformations and microstructural development were examined using X-ray diffraction (XRD), with Rietveld refinement for quantitative phase analysis, scanning electron microscopy (SEM) was used to determinate the coating morphology and corrosion products. The XRD analysis indicated that the reaction between sodium vanadate (NaVO3) and yttrium oxide (Y2O3) produces yttrium vanadate (YVO4) and leads to the transformation from tetragonal to monoclinic zirconia phase.
Pushing the Theoretical Limit of Li-CFx Batteries: A Tale of Bi-functional Electrolyte
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rangasamy, Ezhiylmurugan; Li, Juchuan; Sahu, Gayatri
2014-01-01
In a typical battery, electrodes deliver capacities less or equal the theoretical maxima of the electrode materials.1 The inert electrolyte functions solely as the ionic conductor without contribution to the cell capacity because of its distinct mono-function in the concept of conventional batteries. Here we demonstrate that the most energy-dense Li-CFx battery2 delivers a capacity exceeding the theoretical maximum of CFx with a solid electrolyte of Li3PS4 (LPS) that has dual functions: as the inert electrolyte at the anode and the active component at the cathode. Such a bi-functional electrolyte reconciles both inert and active characteristics through a synergistic dischargemore » mechanism of CFx and LPS. Li3PS4 is known as an inactive solid electrolyte with a broad electrochemical window over 5 V.3 The synergy at the cathode is through LiF, the discharge product of CFx, which activates the electrochemical discharge of LPS at a close electrochemical potential of CFx. Therefore, the solid-state Li-CFx batteries output 126.6% energy beyond their theoretic limits without compromising the stability of the cell voltage. The extra energy comes from the electrochemical discharge of LPS, the inert electrolyte. This bi-functional electrolyte revolutionizes the concept of conventional batteries and opens a new avenue for the design of batteries with an unprecedentedly high energy density.« less
NASA Astrophysics Data System (ADS)
Bigdeli, Hadise; Moradi, Morteza; Hajati, Shaaker; Kiani, Mohammad Ali; Toth, Jozsef
2017-10-01
In this work, two different types of Co3O4 nano-crystals were synthesized by (i) conventional direct solid state thermolysis of cobalt terephthalate metal-organic framework (MOF-71) and (ii) new indirect solid state thermolysis of Co(OH)2 derived by alkaline aqueous treatment of MOF-71. The products were then characterized by X-ray diffraction technique (XRD), Fourier transforms infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Reflection electron energy loss spectroscopy (REELS), Brunauer, Emmett, and Teller (BET), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) techniques. By REELS analysis the energy band gap of MOF-71 was determined to be 3.7 eV. Further, electrochemical performance of each Co3O4 nanostructure was studied by the cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS) in a three-electrode system in KOH electrolyte. An asymmetric supercapacitor was fabricated using indirect Co3O4 nanoparticles as cathode and electrochemically reduced graphene oxide as anode, and the electrochemical properties were studied and showed a high energy density of 13.51 Wh kg-1 along with a power density of 9775 W kg-1 and good cycling stability with capacitance retention rate of 85% after 2000 cycles.
Metal/Metal Oxide Differential Electrode pH Sensors
NASA Technical Reports Server (NTRS)
West, William; Buehler, Martin; Keymeulen, Didier
2007-01-01
Solid-state electrochemical sensors for measuring the degrees of acidity or alkalinity (in terms of pH values) of liquid solutions are being developed. These sensors are intended to supplant older electrochemical pH sensors that include glass electrode structures and reference solutions. The older sensors are fragile and subject to drift. The present developmental solid-state sensors are more rugged and are expected to be usable in harsh environments. The present sensors are based on a differential-electrode measurement principle. Each sensor includes two electrodes, made of different materials, in equilibrium with the solution of interest.
A High-Throughput Process for the Solid-Phase Purification of Synthetic DNA Sequences
Grajkowski, Andrzej; Cieślak, Jacek; Beaucage, Serge L.
2017-01-01
An efficient process for the purification of synthetic phosphorothioate and native DNA sequences is presented. The process is based on the use of an aminopropylated silica gel support functionalized with aminooxyalkyl functions to enable capture of DNA sequences through an oximation reaction with the keto function of a linker conjugated to the 5′-terminus of DNA sequences. Deoxyribonucleoside phosphoramidites carrying this linker, as a 5′-hydroxyl protecting group, have been synthesized for incorporation into DNA sequences during the last coupling step of a standard solid-phase synthesis protocol executed on a controlled pore glass (CPG) support. Solid-phase capture of the nucleobase- and phosphate-deprotected DNA sequences released from the CPG support is demonstrated to proceed near quantitatively. Shorter than full-length DNA sequences are first washed away from the capture support; the solid-phase purified DNA sequences are then released from this support upon reaction with tetra-n-butylammonium fluoride in dry dimethylsulfoxide (DMSO) and precipitated in tetrahydrofuran (THF). The purity of solid-phase-purified DNA sequences exceeds 98%. The simulated high-throughput and scalability features of the solid-phase purification process are demonstrated without sacrificing purity of the DNA sequences. PMID:28628204
Dan, Nily
2014-11-25
Emulsions, solid lipid nanoparticles (SLN), and nanostructured lipid carriers (NLC) containing a mix of liquid and solid domains are of interest as encapsulation vehicles for hydrophobic compounds. Studies of the release rate from these particles yield contradictory results: Some find that increasing the fraction of solid phase increases the rate of release and others the opposite. In this paper we study the release of encapsulated materials from lipid-based nanoparticles using Monte Carlo simulations. We find that, quite surprisingly, the release rate is largely insensitive to the size of solid domains or the fraction of solid phase. However, the distribution of the domains significantly affects the rate of release: Solid domains located at the interface with the surrounding solution inhibit transport, while nanoparticles where the solid domains are concentrated in the center enhance it. The latter can lead to release rates in NLCs that are faster than in the equivalent emulsions. We conclude that controlling the release rate from NLCs requires the ability to determine the location and distribution of the solid phase, which may be achieved through choice of the surfactants stabilizing the particles, incorporation of nucleation sites, and/or the cooling rates and temperatures.
Crystal Chemistry of Electrochemically and Chemically Lithiated Layered α I-LiVOPO 4
He, Guang; Bridges, Craig A.; Manthiram, Arumugam
2015-09-14
LiVOPO 4 is an attractive cathode for lithium-ion batteries with a high operating voltage and the potential to achieve the reversible insertion of two lithium ions between VOPO 4 and Li 2VOPO 4. Among the three known forms of LiVOPO 4 (α, β, and αI), the α I-LiVOPO 4 has a layered structure that could promote better ionic mobility and reversibility than others. However, a comprehensive study of its lithiated product is not available as αI-LiVOPO 4 is metastable and difficult to prepare by conventional approaches. We present here a facile synthesis of highly crystalline αI-LiVOPO 4 and α I-LiVOPOmore » 4/rGO nanocomposite by a microwave-assisted solvothermal method and its electrochemical/chemical lithiation. The LiVOPO 4/rGO cathodes exhibit a high reversible capacity of 225 mAh g –1, indicating the insertion of more than one lithium into VOPO 4. Both electrochemical and chemical lithiation imply a solid-solution reaction mechanism on inserting the second lithium into α I-LiVOPO 4, but a two-phase reaction feature could also occur under certain conditions such as insufficient time for equilibration of Li + diffusion in the structure. The fully lithiated new α I-Li 2VOPO 4 phase was characterized by combined Rietveld refinement of neutron diffraction and X-ray diffraction data and by bond-valence sum maps. The results suggest that αI-Li 2VOPO 4 retains the tetragonal P4/nmm symmetry of the parent α I-LiVOPO 4 structure, where the second lithium ions are located in the lithium layers rather than in the VOPO 4 layers« less
Bitziou, Eleni; Joseph, Maxim B; Read, Tania L; Palmer, Nicola; Mollart, Tim; Newton, Mark E; Macpherson, Julie V
2014-11-04
A novel electrochemical approach to the direct detection of hydrogen sulfide (H2S), in aqueous solutions, covering a wide pH range (acid to alkali), is described. In brief, a dual band electrode device is employed, in a hydrodynamic flow cell, where the upstream electrode is used to controllably generate hydroxide ions (OH(-)), which flood the downstream detector electrode and provide the correct pH environment for complete conversion of H2S to the electrochemically detectable, sulfide (HS(-)) ion. All-diamond, coplanar conducting diamond band electrodes, insulated in diamond, were used due to their exceptional stability and robustness when applying extreme potentials, essential attributes for both local OH(-) generation via the reduction of water, and for in situ cleaning of the electrode, post oxidation of sulfide. Using a galvanostatic approach, it was demonstrated the pH locally could be modified by over five pH units, depending on the initial pH of the mobile phase and the applied current. Electrochemical detection limits of 13.6 ppb sulfide were achieved using flow injection amperometry. This approach which offers local control of the pH of the detector electrode in a solution, which is far from ideal for optimized detection of the analyte of interest, enhances the capabilities of online electrochemical detection systems.
Nanoarchitectonics for Controlling the Number of Dopant Atoms in Solid Electrolyte Nanodots.
Nayak, Alpana; Unayama, Satomi; Tai, Seishiro; Tsuruoka, Tohru; Waser, Rainer; Aono, Masakazu; Valov, Ilia; Hasegawa, Tsuyoshi
2018-02-01
Controlling movements of electrons and holes is the key task in developing today's highly sophisticated information society. As transistors reach their physical limits, the semiconductor industry is seeking the next alternative to sustain its economy and to unfold a new era of human civilization. In this context, a completely new information token, i.e., ions instead of electrons, is promising. The current trend in solid-state nanoionics for applications in energy storage, sensing, and brain-type information processing, requires the ability to control the properties of matter at the ultimate atomic scale. Here, a conceptually novel nanoarchitectonic strategy is proposed for controlling the number of dopant atoms in a solid electrolyte to obtain discrete electrical properties. Using α-Ag 2+ δ S nanodots with a finite number of nonstoichiometry excess dopants as a model system, a theory matched with experiments is presented that reveals the role of physical parameters, namely, the separation between electrochemical energy levels and the cohesive energy, underlying atomic-scale manipulation of dopants in nanodots. This strategy can be applied to different nanoscale materials as their properties strongly depend on the number of doping atoms/ions, and has the potential to create a new paradigm based on controlled single atom/ion transfer. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Bendersky, L. A.; Wang, K.; Boettinger, W. J.; Newbury, D. E.; Young, K.; Chao, B.
2010-08-01
Solidification microstructure of multicomponent (Zr,Ti)-Ni-(V,Cr,Mn,Co) alloys intended for use as negative electrodes in Ni-metal hydride (Ni-MH) batteries was studied in Part I of this series of articles. Part II of the series examines the complex internal structure of the interdendritic grains formed by solid-state transformation and believed to play an important role in the electrochemical charge/discharge characteristics of the overall alloy composition. By studying one alloy, Zr21Ti12.5V10Cr5.5Mn5.1Co5.0Ni40.2Al0.5Sn0.3, it is shown that the interdendritic grains solidify as a B2 (Ti,Zr)44(Ni,TM)56 phase, and then undergo transformation to Zr7Ni10-type, Zr9Ni11-type, and martensitic phases. The transformations obey orientation relationships between the high-temperature B2 phase and the low-temperature Zr-Ni-type intermetallics, and consequently lead to a multivariant structure. The major orientation relationship for the orthorhombic Zr7Ni10 type is [011]Zr7Ni10//[001]B2; (100)Zr7Ni10//(100)B2. The orientation relationship for the tetragonal Zr9Ni11 type is [001]Zr9Ni11//[001]B2; (130)Zr9Ni11//(100)B2. Binary Ni-Zr and ternary Ti-Ni-Zr phase diagrams were used to rationalize the formation of the observed domain structure.
NASA Technical Reports Server (NTRS)
Rolin, Terry D.
2015-01-01
NASA analyzes, tests, packages, and fabricates electrical, electronic, and electromechanical (EEE) parts used in space vehicles. One area that NASA wishes to advance is energy storage and delivery. Currently, space vehicles use rechargeable batteries that utilize silver zinc or lithium ion electrochemical processes. These current state-of-the-art rechargeable batteries cannot be rapidly charged, contain harmful chemicals, and suffer from early wear-out mechanisms. A solid state ultracapacitor is an EEE part that offers significant advantages over current electrochemical and electrolytic devices. The objective of this research is to develop an internal barrier layer ultracapacitor (IBLC) using novel dielectric materials as a battery replacement with a focus on these advantages: longer life, lower mass-toweight ratio, rapid charging, on-demand pulse power, improved on-pad standby time without maintenance, and environmental friendliness. The approach is unique in two areas. A deposition technique is used that has been shown to produce a more uniformly coated nanoparticle than sol-gel, which has resulted in colossal permittivities. These particles are then distributed in an ink formulation developed at NASA Marshall Space Flight Center (MSFC) and deposited utilizing a 3D aerosol jet technique. This additive manufacturing technique controls layer thickness, resulting in extremely large capacitance and energy density.
NASA Technical Reports Server (NTRS)
Clark, W. D. K. (Editor); Halpert, Gerald (Editor)
1992-01-01
Papers presented in these proceedings are on the state of the art in high-power lithium batteries, a design analysis of high-power Li-TiS2 battery, the performance and safety features of spiral wound lithium/thionyl chloride cells, the feasibility of a superhigh energy density battery of the Li/BrF3 electrochemical system, and an enhanced redox process of disulfide compounds and their application in high energy storage. Attention is also given to the structure and charge-discharge characteristics of mesophase-pitch based carbons, a study of carbons and graphites as anodes for lithium rechargeable cells, Li metal-free rechargeable Li(1+x)Mn2O4/carbon cells, and rechargeable lithium batteries using V6O13/V5O5 as the positive electrode material. Other papers discuss the electrochemical stability of organic electrolytes in contact with solid inorganic cathode materials, the electrochemical behavior of methyl formate solutions, and the interface between a solid polymer electrolyte and lithium anode.
Phase transformation of TiO2 powder prepared by TiCl4 hydrolysis-electrolysis
NASA Astrophysics Data System (ADS)
Nur, Adrian; Purwanto, Agus; Jumari, Arif; Dyartanti, Endah R.; A. N., Richard Leonardo; Gultom, Barry Januari
2017-01-01
Metal oxide combined with graphite becomes an interesting composition. TiO2 is a good candidate for Li ion battery anode because of low cost, availability sufficient, and environmentally friendly. The form of TiO2 crystals is highly depended on the synthesis method used. The electrochemical method is beginning to emerge as a valuable option for preparing TiO2 powders. Using the electrochemical method, the particle phase can easily be controlled by simply adjusting the imposed current or potential to the system. The present work aims to investigate the effects of electrode distance in the electrolysis of TiCl4 solution to the phase transformation of anatase to rutile. The homogeneous solution for the electro-synthesis of TiO2 powders was TiCl4 in ethanol solution. The electrolysis was carried out in an electrochemical cell consisting of two carbon electrodes with dimensions of (5×2) cm. The electrodes were set parallel with various distances of 2.6 cm, 3 cm, and 4 cm between the electrodes and were immersed in the electrolytic solution at a depth of 2 cm. The electrodes were connected to the positive and negative terminals of a DC power supply (Zhaoxin PS-3005D). The electro-synthesis was performed galvanostatically at 2.5 hours and a voltage 10 V under constant stirring at room temperature. Phase transformation from anatase to rutile occurred at 2.6 cm to 3 cm electrode distance.
Ion conduction in crystalline superionic solids and its applications
NASA Astrophysics Data System (ADS)
Chandra, Angesh
2014-06-01
Superionic solids an area of multidisciplinary research activity, incorporates to study the physical, chemical and technological aspects of rapid ion movements within the bulk of the special class of ionic materials. It is an emerging area of materials science, as these solids show tremendous technological scopes to develop wide variety of solid state electrochemical devices such as batteries, fuel cells, supercapacitors, sensors, electrochromic displays (ECDs), memories, etc. These devices have wide range of applicabilities viz. power sources for IC microchips to transport vehicles, novel sensors for controlling atmospheric pollution, new kind of memories for computers, smart windows/display panels, etc. The field grew with a rapid pace since then, especially with regards to designing new materials as well as to explore their device potentialities. Amongst the known superionic solids, fast Ag+ ion conducting crystalline solid electrolytes are attracted special attention due to their relatively higher room temperature conductivity as well as ease of materials handling/synthesis. Ion conduction in these electrolytes is very much interesting part of today. In the present review article, the ion conducting phenomenon and some device applications of crystalline/polycrystalline superionic solid electrolytes have been reviewed in brief. Synthesis and characterization tools have also been discussed in the present review article.
NASA Astrophysics Data System (ADS)
Gupta, Sanju; Price, Carson
2015-10-01
Hybrid electrode comprising an electric double-layer capacitor of graphene nanosheets and a pseudocapacitor of the electrically conducting polymers namely, polyaniline; PAni and polypyrrole; PPy are constructed that exhibited synergistic effect with excellent electrochemical performance as thin film supercapacitors for alternative energy. The hybrid supercapacitors were prepared by layer-by-layer (LbL) assembly based on controlled electrochemical polymerization followed by reduction of graphene oxide electrochemically producing ErGO, for establishing intimate electronic contact through nanoscale architecture and chemical stability, producing a single bilayer of (PAni/ErGO)1, (PPy/ErGO)1, (PAni/GO)1 and (PPy/GO)1. The rationale design is to create thin films that possess interconnected graphene nanosheets (GNS) with polymer nanostructures forming well-defined tailored interfaces allowing sufficient surface adsorption and faster ion transport due to short diffusion distances. We investigated their electrochemical properties and performance in terms of gravimetric specific capacitance, Cs, from cyclic voltammograms. The LbL-assembled bilayer films exhibited an excellent Cs of ≥350 F g-1 as compared with constituents (˜70 F g-1) at discharge current density of 0.3 A g-1 that outperformed many other hybrid supercapacitors. To gain deeper insights into the physical-chemical interfacial processes occurring at the electrode/electrolyte interface that govern their operation, we have used scanning electrochemical microscopy (SECM) technique in feedback and probe approach modes. We present our findings from viewpoint of reinforcing the role played by heterogeneous electrode surface composed of nanoscale graphene sheets (conducting) and conducting polymers (semiconducting) backbone with ordered polymer chains via higher/lower probe current distribution maps. Also targeted is SECM imaging that allowed to determine electrochemical (re)activity of surface ion adsorption sites density at solid/liquid interface.
Li, Juchuan; Zhang, Qinglin; Xiao, Xingcheng; ...
2015-10-18
The intercalation compounds are generally considered as ideal electrode materials for lithium-ion batteries thanks to their minimum volume expansion and fast lithium ion diffusion. However, cracking still occurs in those compounds and has been identified as one of the critical issues responsible for their capacity decay and short cycle life, although the diffusion-induced stress and volume expansion are much smaller than those in alloying-type electrodes. Here, we designed a thin-film model system that enables us to tailor the cation ordering in LiNi 0.5Mn 1.5O 4 spinels and correlate the stress patterns, phase evolution, and cycle performances. Surprisingly, we found thatmore » distinct reaction paths cause negligible difference in the overall stress patterns but significantly different cracking behaviors and cycling performances: 95% capacity retention for disordered LiNi 0.5Mn 1.5O 4 and 48% capacity retention for ordered LiNi 0.5Mn 1.5O 4 after 2000 cycles. We were able to pinpoint that the extended solid-solution region with suppressed phase transformation attributed to the superior electrochemical performance of disordered spinel. Furthermore, this work envisions a strategy for rationally designing stable cathodes for lithium-ion batteries through engineering the atomic structure that extends the solid-solution region and suppresses phase transformation.« less
Ghazaghi, Mehri; Mousavi, Hassan Zavvar; Shirkhanloo, Hamid; Rashidi, Alimorad
2017-01-25
A specific technique is introduced to overcome limitations of classical solidification of floating organic drop microextraction, such as tedious and time-consuming centrifuge step and using disperser solvent, by facile and efficient participation of solid and liquid phases. In this proposed method of stirring-controlled solidified floating solid-liquid drop microextraction (SC-SF-SLDME), magnetic carbon nanotube-nickel hybrid (MNi-CNT) as a solid part of the extractors are dispersed ultrasonically in sample solution, and the procedure followed by dispersion of liquid phase (1-undecanol) through high-rate stirring and easily recollection of MNi-CNT in organic solvent droplets through hydrophobic force. With the reduction in speed of stirring, one solid-liquid drop is formed on top of the solution. MNi-CNT acts as both extractor and the coalescence helper between organic droplets for a facile recollection. MNi-CNT was prepared by spray pyrolysis of nickel oleate/toluene mixture at 1000 °C. Four tyrosine kinase inhibitors were selected as model analytes and the effecting parameters were investigated. The results confirmed that magnetic nanoadsorbent has an important role in the procedure and complete collection of dispersed solvent is not achieved in the absence of the solid phase. Also, short extraction time exhibited success of the proposed method and effect of dispersed solid/liquid phases. The limits of quantification (LOQs) for imatinib, sunitinib, erlotinib, and nilotinib were determined to be as low as 0.7, 1.7, 0.6, and 1.0 μg L -1 , respectively. The intra-day precisions (RSDs) were lower than 4.5%. Method performance was investigated by determination of mentioned tyrosine kinase inhibitors (TKIs) in human serum and cerebrospinal fluid samples with good recoveries in the range of 93-98%. Copyright © 2016 Elsevier B.V. All rights reserved.
Amperometric Sensor for Detection of Chloride Ions.
Trnkova, Libuse; Adam, Vojtech; Hubalek, Jaromir; Babula, Petr; Kizek, Rene
2008-09-15
Chloride ion sensing is important in many fields such as clinical diagnosis, environmental monitoring and industrial applications. We have measured chloride ions at a carbon paste electrode (CPE) and at a CPE modified with solid AgNO₃, a solution of AgNO₃ and/or solid silver particles. Detection limits (3 S/N) for chloride ions were 100 μM, 100 μM and 10 μM for solid AgNO₃, solution of AgNO₃ and/or solid silver particles, respectively. The CPE modified with silver particles is the most sensitive to the presence chloride ions. After that we approached to the miniaturization of the whole electrochemical instrument. Measurements were carried out on miniaturized instrument consisting of a potentiostat with dimensions 35 × 166 × 125 mm, screen printed electrodes, a peristaltic pump and a PC with control software. Under the most suitable experimental conditions (Britton-Robinson buffer, pH 1.8 and working electrode potential 550 mV) we estimated the limit of detection (3 S/N) as 500 nM.
Wills, Lindsay A.; Qu, Xiaohui; Chang, I-Ya; Mustard, Thomas J. L.; Keszler, Douglas A.; Persson, Kristin A.; Cheong, Paul Ha-Yeon
2017-01-01
The characterization of water-based corrosion, geochemical, environmental and catalytic processes rely on the accurate depiction of stable phases in a water environment. The process is aided by Pourbaix diagrams, which map the equilibrium solid and solution phases under varying conditions of pH and electrochemical potential. Recently, metastable or possibly stable nanometric aqueous clusters have been proposed as intermediate species in non-classical nucleation processes. Herein, we describe a Group Additivity approach to obtain Pourbaix diagrams with full consideration of multimeric cluster speciation from computations. Comparisons with existing titration results from experiments yield excellent agreement. Applying this Group Additivity-Pourbaix approach to Group 13 elements, we arrive at a quantitative evaluation of cluster stability, as a function of pH and concentration, and present compelling support for not only metastable but also thermodynamically stable multimeric clusters in aqueous solutions. PMID:28643782
Structural Transformation of LiFePO4 during Ultrafast Delithiation.
Kuss, Christian; Trinh, Ngoc Duc; Andjelic, Stefan; Saulnier, Mathieu; Dufresne, Eric M; Liang, Guoxian; Schougaard, Steen B
2017-12-21
The prolific lithium battery electrode material lithium iron phosphate (LiFePO 4 ) stores and releases lithium ions by undergoing a crystallographic phase change. Nevertheless, it performs unexpectedly well at high rate and exhibits good cycling stability. We investigate here the ultrafast charging reaction to resolve the underlying mechanism while avoiding the limitations of prevailing electrochemical methods by using a gaseous oxidant to deintercalate lithium from the LiFePO 4 structure. Oxidizing LiFePO 4 with nitrogen dioxide gas reveals structural changes through in situ synchrotron X-ray diffraction and electronic changes through in situ UV/vis reflectance spectroscopy. This study clearly shows that ultrahigh rates reaching 100% state of charge in 10 s does not lead to a particle-wide union of the olivine and heterosite structures. An extensive solid solution phase is therefore not a prerequisite for ultrafast charge/discharge.
NASA Astrophysics Data System (ADS)
Wills, Lindsay A.; Qu, Xiaohui; Chang, I.-Ya; Mustard, Thomas J. L.; Keszler, Douglas A.; Persson, Kristin A.; Cheong, Paul Ha-Yeon
2017-06-01
The characterization of water-based corrosion, geochemical, environmental and catalytic processes rely on the accurate depiction of stable phases in a water environment. The process is aided by Pourbaix diagrams, which map the equilibrium solid and solution phases under varying conditions of pH and electrochemical potential. Recently, metastable or possibly stable nanometric aqueous clusters have been proposed as intermediate species in non-classical nucleation processes. Herein, we describe a Group Additivity approach to obtain Pourbaix diagrams with full consideration of multimeric cluster speciation from computations. Comparisons with existing titration results from experiments yield excellent agreement. Applying this Group Additivity-Pourbaix approach to Group 13 elements, we arrive at a quantitative evaluation of cluster stability, as a function of pH and concentration, and present compelling support for not only metastable but also thermodynamically stable multimeric clusters in aqueous solutions.
Structural Transformation of LiFePO 4 during Ultrafast Delithiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuss, Christian; Trinh, Ngoc Duc; Andjelic, Stefan
The prolific lithium battery electrode material lithium iron phosphate (LiFePO 4) stores and releases lithium ions by undergoing a crystallographic phase change. Nevertheless, it performs unexpectedly well at high rate and exhibits good cycling stability. Here we investigate here the ultrafast charging reaction to resolve the underlying mechanism while avoiding the limitations of prevailing electrochemical methods by using a gaseous oxidant to deintercalate lithium from the LiFePO 4 structure. Oxidizing LiFePO 4 with nitrogen dioxide gas reveals structural changes through in situ synchrotron X-ray diffraction and electronic changes through in situ UV/vis reflectance spectroscopy. This study clearly shows that ultrahighmore » rates reaching 100% state of charge in 10 s does not lead to a particle-wide union of the olivine and heterosite structures. An extensive solid solution phase is therefore not a prerequisite for ultrafast charge/discharge.« less
Structural Transformation of LiFePO 4 during Ultrafast Delithiation
Kuss, Christian; Trinh, Ngoc Duc; Andjelic, Stefan; ...
2017-12-05
The prolific lithium battery electrode material lithium iron phosphate (LiFePO 4) stores and releases lithium ions by undergoing a crystallographic phase change. Nevertheless, it performs unexpectedly well at high rate and exhibits good cycling stability. Here we investigate here the ultrafast charging reaction to resolve the underlying mechanism while avoiding the limitations of prevailing electrochemical methods by using a gaseous oxidant to deintercalate lithium from the LiFePO 4 structure. Oxidizing LiFePO 4 with nitrogen dioxide gas reveals structural changes through in situ synchrotron X-ray diffraction and electronic changes through in situ UV/vis reflectance spectroscopy. This study clearly shows that ultrahighmore » rates reaching 100% state of charge in 10 s does not lead to a particle-wide union of the olivine and heterosite structures. An extensive solid solution phase is therefore not a prerequisite for ultrafast charge/discharge.« less
Apparatus and methods for direct conversion of gaseous hydrocarbons to liquids
Kong, Peter C.; Lessing, Paul A.
2006-04-25
A chemical reactor for direct conversion of hydrocarbons includes a dielectric barrier discharge plasma cell and a solid oxide electrochemical cell in fluid communication therewith. The discharge plasma cell comprises a pair of electrodes separated by a dielectric material and passageway therebetween. The electrochemical cell comprises a mixed-conducting solid oxide electrolyte membrane tube positioned between a porous cathode and a porous anode, and a gas inlet tube for feeding oxygen containing gas to the porous cathode. An inlet is provided for feeding hydrocarbons to the passageway of the discharge plasma cell, and an outlet is provided for discharging reaction products from the reactor. A packed bed catalyst may optionally be used in the reactor to increase efficiency of conversion. The reactor can be modified to allow use of a light source for directing ultraviolet light into the discharge plasma cell and the electrochemical cell.
Method for direct conversion of gaseous hydrocarbons to liquids
Kong, Peter C.; Lessing, Paul A.
2006-03-07
A chemical reactor for direct conversion of hydrocarbons includes a dielectric barrier discharge plasma cell and a solid oxide electrochemical cell in fluid communication therewith. The discharge plasma cell comprises a pair of electrodes separated by a dielectric material and passageway therebetween. The electrochemical cell comprises a mixed-conducting solid oxide electrolyte membrane tube positioned between a porous cathode and a porous anode, and a gas inlet tube for feeding oxygen containing gas to the porous cathode. An inlet is provided for feeding hydrocarbons to the passageway of the discharge plasma cell, and an outlet is provided for discharging reaction products from the reactor. A packed bed catalyst may optionally be used in the reactor to increase efficiency of conversion. The reactor can be modified to allow use of a light source for directing ultraviolet light into the discharge plasma cell and the electrochemical cell.
NASA Astrophysics Data System (ADS)
Fang, Jin
Olivine-type lithium iron phosphate has been a very promising cathode material since it was proposed by Padhi in 1997, low-cost, environmental friendly and stable structure ensure the commercialization of LiFePO 4. In LiFePO4, during charge and discharge process, Li ions are transferred between two phases, Li-poor LialphaFePO 4 and Li-rich Li1-betaFePO4, which implies a significant energy barrier for the new phase nucleation and interface growth, contrary to the fast reaction kinetics experimentally observed. The understanding of the lithiation and delithiation mechanism of this material has spurred a lot of research interests. Many theory models have been proposed to explain the reaction mechanism of LiFePO4, among them, the single phase model claims that the reaction goes through a metastable single phase, and the over potential required to form this single phase is about 30mV, so we studied the driving force to transport lithium ions between Lialpha FePO4 and Li1-betaFePO4 phases and compared the particle sizes effect. Experiment results shows that, the nano-sized (30nm) LiFePO4 has wider solid solution range, lower solid solution formation temperature and faster kinetics than normal LiFePO4 (150nm). Also a 20mV over potential was observed in both samples, either after relaxing the FePO4/LiFePO4 system to equilibrium or transport lithium from one side to the other side, the experiment result is corresponding to theoretical calculation; indicates the reaction might go through single-phase reaction mechanism. The energy and power density of lithium ion battery largely depend on cathode materials. Mn substituted LiFePO4 has a higher voltage than LiFePO4, which results a higher theoretical energy density. Safety issue is one of the most important criterions for batteries, since cathode materials need to maintain stable structure during hundreds of charge and discharge cycles and ranges of application conditions. We have reported that iron-rich compound o-Fe1-yMnyPO4 (0≤y≤0.4) is stable up to 600 °C with particle size above 100 nm particle. And in this work Mn rich olivine phase Fe1-yMnyPO4 is found to be thermally stable up to at least 450 °C with particle size down to below 50 nm, different delithiation methods result in different decomposition routes, electrochemical delithiation results in decreased thermal stability. Moisture exposure appears the most detrimental to the thermal stability of Mn-rich samples. LiNi0.5Mn1.5O4 has attracted a lot of attentions because the potential is even higher (˜ 4.7 V vs Li +/Li0). However, electrolyte decomposition is quite often observed during electrochemistry cycles due to the high voltage operation window. Spinel LiNi0.5Mn1.5O4 is known as ordered and disordered according to the distribution of cations which relates to the synthesis conditions. Mn and Ni ions distribute either randomly in 16d sites of an Fd3m-space group or ordered in 4a and 12d sites of P4332 space group. During discharge and charge processes, Li ions insert and extract from the structure with the oxidation state of Ni changing between +2 and +4 while Mn remains as Mn4+. So far the correlation between cation distribution and electrochemical performance is still unclear, mostly the disordered samples are observed to have better rate capabilities. In order to study the reaction mechanism, combined XRD and XAS are used to investigate the oxidation state of transition metals and structure change of LiNi0.5Mn1.5O4 during electrochemical cycling, disordered and ordered samples were compared and studied, and both samples show three phases transformation during charge and discharge. However, the samples suffer from severe electrolyte decomposition which has influence on the results. Good spinel samples with nice electrochemistry performance is required, pure spinel samples are obtained by using co-precipitation method, the distribution of transition metal ions can be controlled by controlling the synthesis temperature, and electrolyte plays an important role in the electrochemistry performance of spinel LiNi0.5Mn1.5O 4.
Electrochemical separation of uranium in the molten system LiF-NaF-KF-UF4
NASA Astrophysics Data System (ADS)
Korenko, M.; Straka, M.; Szatmáry, L.; Ambrová, M.; Uhlíř, J.
2013-09-01
This article is focused on the electrochemical investigation (cyclic voltammetry and related studies) of possible reduction of U4+ ions to metal uranium in the molten system LiF-NaF-KF(eut.)-UF4 that can provide basis for the electrochemical extraction of uranium from molten salts. Two-step reduction mechanism for U4+ ions involving one electron exchange in soluble/soluble U4+/U3+ system and three electrons exchange in the second step were found on the nickel working electrode. Both steps were found to be reversible and diffusion controlled. Based on cyclic voltammetry, the diffusion coefficients of uranium ions at 530 °C were found to be D(U4+) = 1.64 × 10-5 cm2 s-1 and D(U3+) 1.76 × 10-5 cm2 s-1. Usage of the nickel spiral electrode for electrorefining of uranium showed fairly good feasibility of its extraction. However some oxidant present during the process of electrorefining caused that the solid deposits contained different uranium species such as UF3, UO2 and K3UO2F5.
NASA Astrophysics Data System (ADS)
Peng, Gangrou; Ge, Yu; Ding, Jie; Wang, Caiyun; Wallace, Gordon G.; Li, Weihua
2018-03-01
Ionogels are a new class of hybrid materials where ionic liquids are immobilized by macromolecular support. The excessive amount of crosslinking polymer enhances the mechanical strength but compromises the conductivity. Here, we report an elastomeric magnetorheological (MR) ionogel with an enhanced conductivity and mechanical strength as well. Following the application of magnetic nanoparticles into an ionic liquid containing minimum cross-linking agent, the formation, thus physical properties, of MR ionogels are co-controlled by simultaneously applied UV light and external magnetic field. The application of MR ionogels as solid electrolytes in supercapacitors is also demonstrated to study electrochemical performance. This work opens a new avenue to synthesize robust ionogels with the desired conductivity and controllable mechanical properties for soft flexible electronic devices. Besides, as a new class of conductive MR elastomers, the proposed MR ionogel also possesses the potential for engineering applications, such as sensors and actuators.
NASA Astrophysics Data System (ADS)
Pandit, Bidhan; Dubal, Deepak P.; Gómez-Romero, Pedro; Kale, Bharat B.; Sankapal, Babasaheb R.
2017-03-01
A simple and scalable approach has been reported for V2O5 encapsulation over interconnected multi-walled carbon nanotubes (MWCNTs) network using chemical bath deposition method. Chemically synthesized V2O5/MWCNTs electrode exhibited excellent charge-discharge capability with extraordinary cycling retention of 93% over 4000 cycles in liquid-electrolyte. Electrochemical investigations have been performed to evaluate the origin of capacitive behavior from dual contribution of surface-controlled and diffusion-controlled charge components. Furthermore, a complete flexible solid-state, flexible symmetric supercapacitor (FSS-SSC) device was assembled with V2O5/MWCNTs electrodes which yield remarkable values of specific power and energy densities along with enhanced cyclic stability over liquid configuration. As a practical demonstration, the constructed device was used to lit the ‘VNIT’ acronym assembled using 21 LED’s.
Influence of the β-Mg17Al12 Phase Morphology on the Corrosion Properties Of Az91hp Magnesium Alloy
NASA Astrophysics Data System (ADS)
Guo, Lingling; Zhang, Jumei
2017-09-01
The morphology of β-Mg17Al12 phase and corrosion behavior of AZ91HP magnesium alloy after spheroidizing treatment were investigated by optical microcope electrochemical and immersion tests in 3.5% NaCl at 25°C. The results show that the coarse divorced eutectic phase of AZ91HP cast magnesium alloy dissolve into Mg matrix during the isothermal process at 415°C, and the lameller β phase precipitated from magnesium solid solution as perlite-type precipitation during the slowly cooling. Next, the spheroidizing treatment at different temperatures for 20h was carried out, and the lameller β phase were spheroridizing by dissolved themselves. After spheroidizing treatment at 300°C for 20h, many small granular β phase are scattering within the magnesium matrix. The corrosion properties of AZ91HP magnesium alloy in 3.5% NaCl decreased obviously after spheroidizing treatment, the polarization measurement of the alloy can be up to -1.412V from -1.56V of the cast. The β-Mg17Al12 phase act as a corrosion barrier and hinder corrosion propagation, if the second phase is in the form of a spherical morphology.
Sharma, Vimal Kumar; Jelen, Frantisek; Trnkova, Libuse
2015-01-01
Interest in electrochemical analysis of purine nucleobases and few other important purine derivatives has been growing rapidly. Over the period of the past decade, the design of electrochemical biosensors has been focused on achieving high sensitivity and efficiency. The range of existing electrochemical methods with carbon electrode displays the highest rate in the development of biosensors. Moreover, modification of electrode surfaces based on nanomaterials is frequently used due to their extraordinary conductivity and surface to volume ratio. Different strategies for modifying electrode surfaces facilitate electron transport between the electrode surface and biomolecules, including DNA, oligonucleotides and their components. This review aims to summarize recent developments in the electrochemical analysis of purine derivatives, as well as discuss different applications. PMID:25594595
Boehme, Simon C; Walvis, T Ardaan; Infante, Ivan; Grozema, Ferdinand C; Vanmaekelbergh, Daniël; Siebbeles, Laurens D A; Houtepen, Arjan J
2014-07-22
Understanding and controlling charge transfer between different kinds of colloidal quantum dots (QDs) is important for devices such as light-emitting diodes and solar cells and for thermoelectric applications. Here we study photoinduced electron transfer between CdTe and CdSe QDs in a QD film. We find that very efficient electron trapping in CdTe QDs obstructs electron transfer to CdSe QDs under most conditions. Only the use of thiol ligands results in somewhat slower electron trapping; in this case the competition between trapping and electron transfer results in a small fraction of electrons being transferred to CdSe. However, we demonstrate that electron trapping can be controlled and even avoided altogether by using the unique combination of electrochemistry and transient absorption spectroscopy. When the Fermi level is raised electrochemically, traps are filled with electrons and electron transfer from CdTe to CdSe QDs occurs with unity efficiency. These results show the great importance of knowing and controlling the Fermi level in QD films and open up the possibility of studying the density of trap states in QD films as well as the systematic investigation of the intrinsic electron transfer rates in donor-acceptor films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hertz, Joshua L.; Prasad, Ajay K.
2015-09-06
The enclosed document provides a final report to document the research performed at the University of Delaware under Grant DE-SC0005403: Improved Electrochemical Performance of Strained Lattice Electrolytes via Modulated Doping. The ultimate goal of this project was to learn how to systematically strain the inter-atomic distance in thin ceramic films and how to use this newfound control to improve the ease by which oxygen ions can conduct through the films. Increasing the ionic conductivity of ceramics holds the promise of drastic improvements in the performance of solid oxide fuel cells, chemical sensors, gas permeation membranes, and related devices. Before thismore » work, the experimental evidence advocating for strain-based techniques was often controversial and poorly characterized. Enabling much of this work was a new method to quickly create a very wide range of ceramic nanostructures that was established during the first phase of the project. Following this initial phase, we created a variety of promising nanostructured epitaxial films and multilayers with systematic variations in lattice mismatch and dopant content. Over the course of the work, a positive effect of tensile atomic strain on the oxygen conductivity was conclusively found using a few different forms of samples and experimental techniques. The samples were built by sputtering, an industrially scalable technique, and thus the technological implementation of these results may be economically feasible. Still, two other results consistently achieved over multiple efforts in this work give pause. The first of these results was that very specific, pristine surfaces upon which to build the nanostructures were strictly required in order to achieve measurable results. The second of these results was that compressively strained films with concomitant reductions in oxygen conductivity are much easier to obtain relative to tensile-strained films with increased conductivity.« less
Rodríguez Cáceres, M I; Guiberteau Cabanillas, A; Galeano Díaz, T; Martínez Cañas, M A
2010-02-01
A selective method based on high-performance liquid chromatography with electrochemical detection (HPLC-ECD) has been developed to enable simultaneous determination of three fluoroquinolones (FQs), namely danofloxacin (DANO), difloxacin (DIFLO) and sarafloxacin (SARA). The fluoroquinolones are separated on a Novapack C-18 column and detected in a high sensitivity amperometric cell at a potential of +0.8 V. Solid-phase extraction was used for the extraction of the analytes in real samples. The range of concentration examined varied from 10 to 150 ng g(-1) for danofloxacin, from 25 to 100 ng g(-1) for sarafloxacin and from 50 to 315 ng g(-1) for difloxacin, respectively. The method presents detection limits under 10 ng g(-1) and recoveries around 90% for the three analytes have been obtained in the experiments with fortified samples. This HPLC-ECD approach can be useful in the routine analysis of antibacterial residues being less expensive and less complicated than other more powerful tools as hyphenated techniques. 2009 Elsevier B.V. All rights reserved.
Lithium dendrite growth through solid polymer electrolyte membranes
NASA Astrophysics Data System (ADS)
Harry, Katherine; Schauser, Nicole; Balsara, Nitash
2015-03-01
Replacing the graphite-based anode in current batteries with a lithium foil will result in a qualitative increase in the energy density of lithium batteries. The primary reason for not adopting lithium-foil anodes is the formation of dendrites during cell charging. In this study, stop-motion X-ray microtomography experiments were used to directly monitor the growth of lithium dendrites during electrochemical cycling of symmetric lithium-lithium cells with a block copolymer electrolyte. In an attempt to understand the relationship between viscoelastic properties of the electrolyte on dendrite formation, a series of complementary experiments including cell cycling, tomography, ac impedance, and rheology, were conducted above and below the glass transition temperature of the non-conducting poly(styrene) block; the conducting phase is a mixture of rubbery poly(ethylene oxide) and a lithium salt. The tomography experiments enable quantification of the evolution of strain in the block copolymer electrolyte. Our work provides fundamental insight into the dynamics of electrochemical deposition of metallic films in contact with high modulus polymer electrolytes. Rational approaches for slowing down and, perhaps, eliminating dendrite growth are proposed.
Analysis of the geometrical-probabilistic models of electrocrystallization
NASA Astrophysics Data System (ADS)
Isaev, V. A.; Grishenkova, O. V.; Zaykov, Yu. P.
2016-08-01
The formation of a three-dimensional electrode deposit under potentiostatic conditions, including the stages of nucleation, growth, and overlap of growing new-phase clusters and their diffusion zones, is considered. The models of electrochemical phase formation for kinetics- and diffusion-controlled growth are analyzed, and the correctness of the approximations used in these models is estimated. The possibility of application of these models to an analysis of the electrodeposition of silicon from molten salts is discussed.
Cao, Xiaoyu; Mo, Lulu; Zhu, Limin; Xie, Lingling
2017-01-01
Li3V2(PO4)3−xBrx/carbon (x = 0.08, 0.14, 0.20, and 0.26) composites as cathode materials for lithium-ion batteries were prepared through partially substituting PO43− with Br−, via a rheological phase reaction method. The crystal structure and morphology of the as-prepared composites were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and electrochemical properties were evaluated by charge/discharge cycling and electrochemical impedance spectroscopy (EIS). XRD results reveal that the Li3V2(PO4)3−xBrx/carbon composites with solid solution phase are well crystallized and have the same monoclinic structure as the pristine Li3V2(PO4)3/carbon composite. It is indicated by SEM images that the Li3V2(PO4)3−xBrx/carbon composites possess large and irregular particles, with an increasing Br− content. Among the Li3V2(PO4)3−xBrx/carbon composites, the Li3V2(PO4)2.86Br0.14/carbon composite shows the highest initial discharge capacity of 178.33 mAh·g−1 at the current rate of 30 mA·g−1 in the voltage range of 4.8–3.0 V, and the discharge capacity of 139.66 mAh·g−1 remains after 100 charge/discharge cycles. Even if operated at the current rate of 90 mA·g−1, Li3V2(PO4)2.86Br0.14/carbon composite still releases the initial discharge capacity of 156.57 mAh·g−1, and the discharge capacity of 123.3 mAh·g−1 can be maintained after the same number of cycles, which is beyond the discharge capacity and cycleability of the pristine Li3V2(PO4)3/carbon composite. EIS results imply that the Li3V2(PO4)2.86Br0.14/carbon composite demonstrates a decreased charge transfer resistance and preserves a good interfacial compatibility between solid electrode and electrolyte solution, compared with the pristine Li3V2(PO4)3/carbon composite upon cycling. PMID:28336886
Investigation of aluminosilicate refractory for solid oxide fuel cell applications
NASA Astrophysics Data System (ADS)
Gentile, Paul Steven
Stationary solid oxide fuel cells (SOFCs) have been demonstrated to provide clean and reliable electricity through electro-chemical conversion of various fuel sources (CH4 and other light hydrocarbons). To become a competitive conversion technology the costs of SOFCs must be reduced to less than $400/kW. Aluminosilicate represents a potential low cost alternative to high purity alumina for SOFC refractory applications. The objectives of this investigation are to: (1) study changes of aluminosilicate chemistry and morphology under SOFC conditions, (2) identify volatile silicon species released by aluminosilicates, (3) identify the mechanisms of aluminosilicate vapor deposition on SOFC materials, and (4) determine the effects of aluminosilicate vapors on SOFC electrochemical performance. It is shown thermodynamically and empirically that low cost aluminosilicate refractory remains chemically and thermally unstable under SOFC operating conditions between 800°C and 1000°C. Energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) of the aluminosilicate bulk and surface identified increased concentrations of silicon at the surface after exposure to SOFC gases at 1000°C for 100 hours. The presence of water vapor accelerated surface diffusion of silicon, creating a more uniform distribution. Thermodynamic equilibrium modeling showed aluminosilicate remains stable in dry air, but the introduction of water vapor indicative of actual SOFC gas streams creates low temperature (<1000°C) silicon instability due to the release of Si(OH)4 and SiO(OH) 2. Thermal gravimetric analysis and transpiration studies identified a discrete drop in the rate of silicon volatility before reaching steady state conditions after 100-200 hours. Electron microscopy observed the preferential deposition of vapors released from aluminosilicate on yttria stabilized zirconia (YSZ) over nickel. The adsorbent consisted of alumina rich clusters enclosed in an amorphous siliceous layer. Silicon penetrated the YSZ along grain boundaries, isolating grains in an insulating glassy phase. XPS did not detect spectra shifts or peak broadening associated with formation of new Si-Zr-Y-O phases. SOFC electrochemical performance testing at 800-1000°C attributed rapid degradation (0.1% per hour) of cells exposed to aluminosilicate vapors in the fuel stream predominately to ohmic polarization. EDS identified silicon concentrations above impurity levels at the electrolyte/active anode interface.
Wu, Yonghong; Liu, Junzhuo; Shen, Renfang; Fu, Bojie
2017-12-31
Nonpoint source (NPS) pollution produced by human activities in rural areas has induced excessive nutrient input into surface waters and the decline of water quality. The essence of NPS pollution is the transport of nutrients between soil and water. Traditional NPS pollution control strategies, however, are mainly based on the solid and liquid phases, with little focus on the bio-phase between water and soil. The pollutants produced from NPS can be regarded as a resource if recycled or reused in an appropriate way in the agricultural ecosystem. This mini review proposes novel strategies for NPS pollution control based on three phases (liquid, solid and bio-phase) and highlights the regulating services of an agricultural ecosystem by optimizing land use/cover types. Copyright © 2017 Elsevier B.V. All rights reserved.
Lu, Liang-Xing; Wang, Ying-Min; Srinivasan, Bharathi Madurai; Asbahi, Mohamed; Yang, Joel K W; Zhang, Yong-Wei
2016-09-01
We perform systematic two-dimensional energetic analysis to study the stability of various nanostructures formed by dewetting solid films deposited on patterned substrates. Our analytical results show that by controlling system parameters such as the substrate surface pattern, film thickness and wetting angle, a variety of equilibrium nanostructures can be obtained. Phase diagrams are presented to show the complex relations between these system parameters and various nanostructure morphologies. We further carry out both phase field simulations and dewetting experiments to validate the analytically derived phase diagrams. Good agreements between the results from our energetic analyses and those from our phase field simulations and experiments verify our analysis. Hence, the phase diagrams presented here provide guidelines for using solid-state dewetting as a tool to achieve various nanostructures.
Growth and applicability of radiation-responsive silica nanowires
NASA Astrophysics Data System (ADS)
Bettge, Martin
Surface energetics play an important role in processes on the nanoscale. Nanowire growth via vapor-liquid-solid (VLS) mechanism is no exception in this regard. Interfacial and line energies are found to impose some fundamental limits during three-phase nanowire growth and lead to formation of stranded nanowires with fascinating characteristics such as high responsiveness towards ion irradiation. By using two materials with a relatively low surface energy (indium and silicon oxide) this is experimentally and theoretically demonstrated in this doctoral thesis. The augmentation of VLS nanowire growth with ion bombardment enables fabrication of vertically aligned silica nanowires over large areas. Synthesis of their arrays begins with a thin indium film deposited on a Si or SiO 2 surface. At temperatures below 200ºC, the indium film becomes a self-organized seed layer of molten droplets, receiving a flux of atomic silicon by DC magnetron sputtering. Simultaneous vigorous ion bombardment through substrate biasing aligns the growing nanowires vertically and expedites mixing of oxygen and silicon into the indium. The vertical growth rate can reach up to 1000 nm-min-1 in an environment containing only argon and traces of water vapor. Silicon oxide precipitates from each indium seed in the form of multiple thin strands having diameters less than 9 nm and practically independent of droplet size. The strands form a single loose bundle, eventually consolidating to form one vertically aligned nanowire. These observations are in stark contrast to conventional VLS growth in which one liquid droplet precipitates a single solid nanowire and in which the precipitated wire diameter is directly proportional to the droplet diameter. The origin of these differences is revealed through a detailed force balance analysis, analogous to Young's relation, at the three-phase line. The liquid-solid interfacial energy of indium/silica is found to be the largest energy contribution at the three-phase line with 670-850 mJ-m-2. Our analysis further reveals the existence of an additional force at this line that behaves as a negative line tension (or line energy). Its contribution is relatively small, but important for stable and small nanowire growth. The value of the line tension lies in the range of -0.1 to -1.0 nJ-m-1. Spontaneous alignment of these stranded, free-standing wires toward a source of directional ion irradiation is proposed to be driven by local surface area minimization. An intuitive model for this is provided and experimentally verified through post-growth reorientation of nanowire patterns over a wide range of angles with standard focused ion beam instrumentation. Ion-induced orientation control and modification of nanowire arrays might prove to be a powerful method for nanoscale surface engineering, potentially leading to surfaces with well-organized anisotropic topographies. Another potential application of aligned silica nanowires as templates for highly textured electrodes in lithium-ion batteries is also discussed. As textured thin films are expected to provide better cycle life and enhanced charge transport, their electrochemical performance is compared to planar thin films of equal mass using two secondary materials (amorphous silicon and lithium manganese oxide). Both materials are applied directly onto the wire arrays by conventional deposition tools and galvanostatically cycled against metallic lithium. Textured silicon films, for use as negative materials, show improved capacity retention compared to planar thin films. Capacity fade is found to be relatively constant at about 0.8% per cycle over 30 cycles. Significant charge trapping occurred due to massive formation of a solid-electrolyteinterface. Electrochemical cycling and impedance spectroscopy further demonstrate that kinetic and electrochemical behavior of the electrode is qualitatively similar for planar and for highly textured silicon thin films. Textured films of lithium manganese oxide (LiMn2O4), for use as positive materials, retain their unique texture after 30 cycles, as verified by scanning and transmission electron microscopy. Some accelerated capacity fade is however observed and attributed to chemical dissolution of the oxide material. Frequency-dependent impedances of textured oxide films are lower than those for planar films. These findings suggest that thin film texturing can indeed enhance some of the material's electrochemical performance characteristics and can be applied to a wide range of materials through use of appropriate nanostructured templates. In summary, this dissertation outlines physical and chemical factors leading to the formation of free-standing and uniquely stranded nanowires. It also provides an outlook on how ion-induced nanowire bending and alignment could be exploited. Key technological advantages of the developed process are refractory nanowire growth at low substrate temperatures and the ability to form radiation-responsive nanowire arrays without the use of lithography or templates.
Shpigel, Netanel; Levi, Mikhael D; Sigalov, Sergey; Daikhin, Leonid; Aurbach, Doron
2018-01-16
Quartz crystal microbalance with dissipation monitoring (QCM-D) generates surface-acoustic waves in quartz crystal plates that can effectively probe the structure of films, particulate composite electrodes of complex geometry rigidly attached to quartz crystal surface on one side and contacting a gas or liquid phase on the other side. The output QCM-D characteristics consist of the resonance frequency (MHz frequency range) and resonance bandwidth measured with extra-ordinary precision of a few tenths of Hz. Depending on the electrodes stiffness/softness, QCM-D operates either as a gravimetric or complex mechanical probe of their intrinsic structure. For at least 20 years, QCM-D has been successfully used in biochemical and environmental science and technology for its ability to probe the structure of soft solvated interfaces. Practical battery and supercapacitor electrodes appear frequently as porous solids with their stiffness changing due to interactions with electrolyte solutions or as a result of ion intercalation/adsorption and long-term electrode cycling. Unfortunately, most QCM measurements with electrochemical systems are carried out based on a single (fundamental) frequency and, as such, provided that the resonance bandwidth remains constant, are suitable for only gravimetric sensing. The multiharmonic measurements have been carried out mainly on conducting/redox polymer films rather than on typical composite battery/supercapacitor electrodes. Here, we summarize the most recent publications devoted to the development of electrochemical QCM-D (EQCM-D)-based methodology for systematic characterization of mechanical properties of operating battery/supercapacitor electrodes. By varying the electrodes' composition and structure (thin/thick layers, small/large particles, binders with different mechanical properties, etc.), nature of the electrolyte solutions and charging/cycling conditions, the method is shown to be operated in different application modes. A variety of useful electrode-material properties are assessed noninvasively, in situ, and in real time frames of ion intercalation into the electrodes of interest. A detailed algorithm for the mechanical characterization of battery electrodes kept in the gas phase and immersed into the electrolyte solutions has been developed for fast recognition of stiff and viscoelastic materials in terms of EQCM-D signatures treated by the hydrodynamic and viscoelastic models. Working examples of the use of in situ hydrodynamic spectroscopy to characterize stiff rough/porous solids of complex geometry and viscoelastic characterization of soft electrodes are presented. The most demonstrative example relates to the formation of solid electrolyte interphase on Li 4 Ti 5 O 12 electrodes in the presence of different electrolyte solutions and additives: only a few cycles (an experiment during ∼30 min) were required for screening the electrolyte systems for their ability to form high-quality surface films in experimental EQCM-D cells as compared to 100 cycles (200 h cycling) in conventional coin cells. Thin/small-mass electrodes required for the EQCM-D analysis enable accelerated cycling tests for ultrafast mechanical characterization of these electrodes in different electrolyte solutions. Hence, this methodology can be easily implemented as a highly effective in situ analytical tool in the field of energy storage and conversion.
Özdemir, Tevfik E.; Akdoğan, Enver Koray; Şavklıyıldız, İlyas; ...
2016-12-19
Nano-TiB 2 powder of 58 nm size with TiO 2 and TiBO 3 as secondary phases was heated with 20 °C to <650 °C in argon while applying an electric field. The powder became conductive at 520 and 305 °C (T onset) for 16 and 40 V/cm, respectively, at which point current bursts of 4.5 and 10.0 A (peak value) were observed. Current bursts were accompanied by >1% TiB 2 unit cell expansion, exceeding zero field thermally induced expansion. The current bursts also induced nonisothermal reaction between TiB 2 and TiO 2, yielding TiBO 3 that is absent with nomore » field. Increase from 16 to 40 V/cm shifts the TiB 2 → TiBO 3 reaction forward, decreases T onset but increases reaction rate. Analysis using Van’t Hoff relation, including electrochemical effects, precluded possibility of appreciable Joule heating, which was supported with adiabatic internal temperature calculations. In conclusion, the observed low temperature oxidation of TiB 2 to TiBO 3 that is electrochemically driven and is mediated by the TiO 2 solid electrolyte.« less
NASA Astrophysics Data System (ADS)
Chen, Dengjie; Chen, Chi; Gao, Yang; Zhang, Zhenbao; Shao, Zongping; Ciucci, Francesco
2015-11-01
SrNb0.1Co0.9O3-δ (SNC) thin films prepared on single-crystal yttria-stabilized zirconia (YSZ) electrolytes are evaluated as promising cathodes for intermediate-temperature solid oxide fuel cells (IT-SOFCs). Geometrically well-defined polycrystalline SNC thin films with low surface roughness and high surface oxygen vacancy concentration are successfully fabricated by pulsed laser deposition. The thin films are characterized by basic techniques, e.g., X-ray diffraction for phase structure identification, scanning electron microscopy and atomic force microscopy for microstructures measurement, and X-ray photoelectron spectroscopy for elements quantification. Electrochemical impedance spectroscopy (EIS) is used to investigate oxygen reduction reaction activities of SNC thin films in symmetric electrochemical cells. Current collectors (Ag paste, Ag strip, and Au strip) are found to have negligible impact on polarization resistances. A slight decrease of the electrode polarization resistances is observed after adding a samarium doped ceria (SDC) buffer layer between SNC and YSZ. SNC thin-film electrodes exhibit low electrode polarization resistances, e.g., 0.237 Ω cm2 (SNC/SDC/YSZ/SDC/SNC) and 0.274 Ω cm2 (SNC/YSZ/SNC) at 700 °C and 0.21 atm, demonstrating the promise of SNC materials for IT-SOFCs. An oxygen reduction reaction mechanism of SNC thin films is also derived by analyzing EIS at temperature of 550-700 °C under oxygen partial pressure range of 0.04-1 atm.
A hot tip: imaging phenomena using in situ multi-stimulus probes at high temperatures
NASA Astrophysics Data System (ADS)
Nonnenmann, Stephen S.
2016-02-01
Accurate high temperature characterization of materials remains a critical challenge to the continued advancement of various important energy, nuclear, electronic, and aerospace applications. Future experimental studies must assist these communities to progress past empiricism and derive deliberate, predictable designs of material classes functioning within active, extreme environments. Successful realization of systems ranging from fuel cells and batteries to electromechanical nanogenerators and turbines requires a dynamic understanding of the excitation, surface-mediated, and charge transfer phenomena which occur at heterophase interfaces (i.e. vapor-solid, liquid-solid, solid-solid) and impact overall performance. Advancing these frontiers therefore necessitates in situ (operando) characterization methods capable of resolving, both spatially and functionally, the coherence between these complex, collective excitations, and their respective response dynamics, through studies within the operating regime. This review highlights recent developments in scanning probe microscopy in performing in situ imaging at high elevated temperatures. The influence of and evolution from vacuum-based electron and tunneling microscopy are briefly summarized and discussed. The scope includes the use of high temperature imaging to directly observe critical phase transition, electronic, and electrochemical behavior under dynamic temperature settings, thus providing key physical parameters. Finally, both challenges and directions in combined instrumentation are proposed and discussed towards the end.
Lee, Sang Chul; Benck, Jesse D.; Tsai, Charlie; ...
2015-12-01
Amorphous MoS x is a highly active, earth-abundant catalyst for the electrochemical hydrogen evolution reaction. Previous studies have revealed that this material initially has a composition of MoS 3, but after electrochemical activation, the surface is reduced to form an active phase resembling MoS 2 in composition and chemical state. However, structural changes in the Mo Sx catalyst and the mechanism of the activation process remain poorly understood. In this study, we employ transmission electron microscopy (TEM) to image amorphous MoS x catalysts activated under two hydrogen-rich conditions: ex situ in an electrochemical cell and in situ in an environmentalmore » TEM. For the first time, we directly observe the formation of crystalline domains in the MoS x catalyst after both activation procedures as well as spatially localized changes in the chemical state detected via electron energy loss spectroscopy. Using density functional theory calculations, we investigate the mechanisms for this phase transformation and find that the presence of hydrogen is critical for enabling the restructuring process. Our results suggest that the surface of the amorphous MoS x catalyst is dynamic: while the initial catalyst activation forms the primary active surface of amorphous MoS 2, continued transformation to the crystalline phase during electrochemical operation could contribute to catalyst deactivation. Finally, these results have important implications for the application of this highly active electrocatalyst for sustainable H 2 generation.« less
Yamauchi, Yusuke; Tonegawa, Akihisa; Komatsu, Masaki; Wang, Hongjing; Wang, Liang; Nemoto, Yoshihiro; Suzuki, Norihiro; Kuroda, Kazuyuki
2012-03-21
Mesoporous Pt-Au binary alloys were electrochemically synthesized from lyotropic liquid crystals (LLCs) containing corresponding metal species. Two-dimensional exagonally ordered LLC templates were prepared on conductive substrates from diluted surfactant solutions including water, a nonionic surfactant, ethanol, and metal species by drop-coating. Electrochemical synthesis using such LLC templates enabled the preparation of ordered mesoporous Pt-Au binary alloys without phase segregation. The framework composition in the mesoporous Pt-Au alloy was controlled simply by changing the compositional ratios in the precursor solution. Mesoporous Pt-Au alloys with low Au content exhibited well-ordered 2D hexagonal mesostructures, reflecting those of the original templates. With increasing Au content, however, the mesostructural order gradually decreased, thereby reducing the electrochemically active surface area. Wide-angle X-ray diffraction profiles, X-ray photoelectron spectra, and elemental mapping showed that both Pt and Au were atomically distributed in the frameworks. The electrochemical stability of mesoporous Pt-Au alloys toward methanol oxidation was highly improved relative to that of nonporous Pt and mesoporous Pt films, suggesting that mesoporous Pt-Au alloy films are potentially applicable as electrocatalysts for direct methanol fuel cells. Also, mesoporous Pt-Au alloy electrodes showed a highly sensitive amperometric response for glucose molecules, which will be useful in next-generation enzyme-free glucose sensors.
Samani, Saeed; Abdoli, Mohammad Ali; Karbassi, Abdolreza; Amin, Mohammad Mehdi
Electrical current in the hydrolytic phase of the biogas process might affect biogas yield. In this study, four 1,150 mL single membrane-less chamber electrochemical bioreactors, containing two parallel titanium plates were connected to the electrical source with voltages of 0, -0.5, -1 and -1.5 V, respectively. Reactor 1 with 0 V was considered as a control reactor. The trend of biogas production was precisely checked against pH, oxidation reduction potential and electrical power at a temperature of 37 ± 0.5°C amid cattle manure as substrate for 120 days. Biogas production increased by voltage applied to Reactors 2 and 3 when compared with the control reactor. In addition, the electricity in Reactors 2 and 3 caused more biogas production than Reactor 4. Acetogenic phase occurred more quickly in Reactor 3 than in the other reactors. The obtained results from Reactor 4 were indicative of acidogenic domination and its continuous behavior under electrical stimulation. The results of the present investigation clearly revealed that phasic electrical current could enhance the efficiency of biogas production.
Corner heating in rectangular solid oxide electrochemical cell generators
Reichner, Philip
1989-01-01
Disclosed is an improvement in a solid oxide electrochemical cell generator 1 having a rectangular design with four sides that meet at corners, and containing multiplicity of electrically connected fuel cells 11, where a fuel gas is passed over one side of said cells and an oxygen containing gas is passed into said cells, and said fuel is burned to form heat, electricity, and an exhaust gas. The improvement comprises passing the exhaust gases over the multiplicity of cells 11 in such a way that more of the heat in said exhaust gases flows at the corners of the generator, such as through channels 19.
CO2 decomposition using electrochemical process in molten salts
NASA Astrophysics Data System (ADS)
Otake, Koya; Kinoshita, Hiroshi; Kikuchi, Tatsuya; Suzuki, Ryosuke O.
2012-08-01
The electrochemical decomposition of CO2 gas to carbon and oxygen gas in LiCl-Li2O and CaCl2-CaO molten salts was studied. This process consists of electrochemical reduction of Li2O and CaO, as well as the thermal reduction of CO2 gas by the respective metallic Li and Ca. Two kinds of ZrO2 solid electrolytes were tested as an oxygen ion conductor, and the electrolytes removed oxygen ions from the molten salts to the outside of the reactor. After electrolysis in both salts, the aggregations of nanometer-scale amorphous carbon and rod-like graphite crystals were observed by transmission electron microscopy. When 9.7 %CO2-Ar mixed gas was blown into LiCl-Li2O and CaCl2-CaO molten salts, the current efficiency was evaluated to be 89.7 % and 78.5 %, respectively, by the exhaust gas analysis and the supplied charge. When a solid electrolyte with higher ionic conductivity was used, the current and carbon production became larger. It was found that the rate determining step is the diffusion of oxygen ions into the ZrO2 solid electrolyte.
NASA Astrophysics Data System (ADS)
Jayachandran, M.; Durai, G.; Vijayakumar, T.
2018-04-01
In the present study, Polyanionic compound (SO4)-group based on Li2Ni(SO4)2 (Lithium Nickel Sulphate) composite electrodes materials were prepared by a ball-milling method and solid-state reaction route. X-ray diffraction analysis confirmed the formation of a polycrystalline orthorhombic phase of composite Li2Ni(SO4)2 with an average crystallite size of about 50.16 nm. Field Emission Scanning electron microscopy investigation reveals the spherical shape particles with the particle size of around 200–500 nm. Raman and FTIR analysis confirms the structural and functional groups of the synthesized materials and also the formation of Li2Ni(SO4)2. The electrochemical measurements using cyclic voltammetry (CV) and galvanostatic charging-discharging (GCD) techniques were carried out to study the electrochemical supercapacitive performance of the composite Li2Ni (SO4)2 electrodes. From the CV investigations, an areal capacitance of 508 mF cm‑2 was obtained at 10 mV s‑1. The galvanostatic charge-discharge (GCD) measurements exhibited the areal capacitance of 101 mF cm‑2 at a constant current density of 2 mA cm‑2 in 2 M KOH. These GCD profiles were linear and also symmetric in nature with the maximum columbic efficiency of about 85%. The electrochemical performance of the composite Li2Ni(SO4)2 electrode material shows excellent performance for supercapacitor applications.
NASA Astrophysics Data System (ADS)
Yuan, Shifei; Jiang, Lei; Yin, Chengliang; Wu, Hongjie; Zhang, Xi
2017-06-01
To guarantee the safety, high efficiency and long lifetime for lithium-ion battery, an advanced battery management system requires a physics-meaningful yet computationally efficient battery model. The pseudo-two dimensional (P2D) electrochemical model can provide physical information about the lithium concentration and potential distributions across the cell dimension. However, the extensive computation burden caused by the temporal and spatial discretization limits its real-time application. In this research, we propose a new simplified electrochemical model (SEM) by modifying the boundary conditions for electrolyte diffusion equations, which significantly facilitates the analytical solving process. Then to obtain a reduced order transfer function, the Padé approximation method is adopted to simplify the derived transcendental impedance solution. The proposed model with the reduced order transfer function can be briefly computable and preserve physical meanings through the presence of parameters such as the solid/electrolyte diffusion coefficients (Ds&De) and particle radius. The simulation illustrates that the proposed simplified model maintains high accuracy for electrolyte phase concentration (Ce) predictions, saying 0.8% and 0.24% modeling error respectively, when compared to the rigorous model under 1C-rate pulse charge/discharge and urban dynamometer driving schedule (UDDS) profiles. Meanwhile, this simplified model yields significantly reduced computational burden, which benefits its real-time application.
In operando infrared spectroscopy of lithium polysulfides using a novel spectro-electrochemical cell
NASA Astrophysics Data System (ADS)
Saqib, Najmus; Ohlhausen, Gretchen M.; Porter, Jason M.
2017-10-01
A new in operando spectro-electrochemical Li-S cell has been demonstrated. The novel design allows investigations of the liquid electrolyte phase, in a commercial coin cell geometry, at C rates much higher than conventional in situ cells. We use ATR FT-IR spectroscopy, coupled with a previously developed polysulfide diagnostic to quantify the evolution of lithium polysulfides during the discharge and charge cycles of a Li-S cell. The trends observed in the polysulfide order and concentration with respect to state of charge are consistent with prevailing understanding of the electrochemical mechanisms of Li-S battery operation. During discharge, we observe the reduction of elemental sulfur to dissolved Li2S8 polysulfides, and their cascading conversion to smaller polysulfides until insoluble species (Li2S2 and Li2S) are formed. During cell charging, we observe the oxidation of insoluble polysulfides to larger, soluble polysulfides (Li2Sn , n > 3), and infer an eventual recovery of crystalline sulfur, from changes in polysulfides. Long-term evolution of polysulfides is observed over 7 discharge/charge cycles. Capacity fading is evident in the decay of polysulfide order and concentration at the same state of charge between cycles. Sulfur is not recovered by charging the cell in the latter cycles, and the active material is lost as solid Li2S .
NASA Astrophysics Data System (ADS)
He, An; Gong, Jiaming; Shikazono, Naoki
2018-05-01
In the present study, a model is introduced to correlate the electrochemical performance of solid oxide fuel cell (SOFC) with the 3D microstructure reconstructed by focused ion beam scanning electron microscopy (FIB-SEM) in which the solid surface is modeled by the marching cubes (MC) method. Lattice Boltzmann method (LBM) is used to solve the governing equations. In order to maintain the geometries reconstructed by the MC method, local effective diffusivities and conductivities computed based on the MC geometries are applied in each grid, and partial bounce-back scheme is applied according to the boundary predicted by the MC method. From the tortuosity factor and overpotential calculation results, it is concluded that the MC geometry drastically improves the computational accuracy by giving more precise topology information.