Sample records for electrocortical stimulation mapping

  1. Variability in Cortical Representations of Speech Sound Perception

    ERIC Educational Resources Information Center

    Boatman, Dana F.

    2007-01-01

    Recent brain mapping studies have provided new insights into the cortical systems that mediate human speech perception. Electrocortical stimulation mapping (ESM) is a brain mapping method that is used clinically to localize cortical functions in neurosurgical patients. Recent ESM studies have yielded new insights into the cortical systems that…

  2. Direct evidence from intraoperative electrocortical stimulation indicates shared and distinct speech production center between Chinese and English languages.

    PubMed

    Wu, Jinsong; Lu, Junfeng; Zhang, Han; Zhang, Jie; Yao, Chengjun; Zhuang, Dongxiao; Qiu, Tianming; Guo, Qihao; Hu, Xiaobing; Mao, Ying; Zhou, Liangfu

    2015-12-01

    Chinese processing has been suggested involving distinct brain areas from English. However, current functional localization studies on Chinese speech processing use mostly "indirect" techniques such as functional magnetic resonance imaging and electroencephalography, lacking direct evidence by means of electrocortical recording. In this study, awake craniotomies in 66 Chinese-speaking glioma patients provide a unique opportunity to directly map eloquent language areas. Intraoperative electrocortical stimulation was conducted and the positive sites for speech arrest, anomia, and alexia were identified separately. With help of stereotaxic neuronavigation system and computational modeling, all positive sites elicited by stimulation were integrated and a series of two- and three-dimension Chinese language probability maps were built. We performed statistical comparisons between the Chinese maps and previously derived English maps. While most Chinese speech arrest areas located at typical language production sites (i.e., 50% positive sites in ventral precentral gyrus, 28% in pars opercularis and pars triangularis), which also serve English production, an additional brain area, the left middle frontal gyrus (Brodmann's areas 6/9), was found to be unique in Chinese production (P < 0.05). Moreover, Chinese speakers' inferior ventral precentral gyrus (Brodmann's area 6) was used more than that in English speakers. Our finding suggests that Chinese involves more perisylvian region (extending to left middle frontal gyrus) than English. This is the first time that direct evidence supports cross-cultural neurolinguistics differences in human beings. The Chinese language atlas will also helpful in brain surgery planning for Chinese-speakers. Copyright © 2015 Wiley Periodicals, Inc.

  3. Cortical Bases of Speech Perception: Evidence from Functional Lesion Studies

    ERIC Educational Resources Information Center

    Boatman, Dana

    2004-01-01

    Functional lesion studies have yielded new information about the cortical organization of speech perception in the human brain. We will review a number of recent findings, focusing on studies of speech perception that use the techniques of electrocortical mapping by cortical stimulation and hemispheric anesthetization by intracarotid amobarbital.…

  4. Intracranial mapping of auditory perception: event-related responses and electrocortical stimulation.

    PubMed

    Sinai, A; Crone, N E; Wied, H M; Franaszczuk, P J; Miglioretti, D; Boatman-Reich, D

    2009-01-01

    We compared intracranial recordings of auditory event-related responses with electrocortical stimulation mapping (ESM) to determine their functional relationship. Intracranial recordings and ESM were performed, using speech and tones, in adult epilepsy patients with subdural electrodes implanted over lateral left cortex. Evoked N1 responses and induced spectral power changes were obtained by trial averaging and time-frequency analysis. ESM impaired perception and comprehension of speech, not tones, at electrode sites in the posterior temporal lobe. There was high spatial concordance between ESM sites critical for speech perception and the largest spectral power (100% concordance) and N1 (83%) responses to speech. N1 responses showed good sensitivity (0.75) and specificity (0.82), but poor positive predictive value (0.32). Conversely, increased high-frequency power (>60Hz) showed high specificity (0.98), but poorer sensitivity (0.67) and positive predictive value (0.67). Stimulus-related differences were observed in the spatial-temporal patterns of event-related responses. Intracranial auditory event-related responses to speech were associated with cortical sites critical for auditory perception and comprehension of speech. These results suggest that the distribution and magnitude of intracranial auditory event-related responses to speech reflect the functional significance of the underlying cortical regions and may be useful for pre-surgical functional mapping.

  5. Intracranial mapping of auditory perception: Event-related responses and electrocortical stimulation

    PubMed Central

    Sinai, A.; Crone, N.E.; Wied, H.M.; Franaszczuk, P.J.; Miglioretti, D.; Boatman-Reich, D.

    2010-01-01

    Objective We compared intracranial recordings of auditory event-related responses with electrocortical stimulation mapping (ESM) to determine their functional relationship. Methods Intracranial recordings and ESM were performed, using speech and tones, in adult epilepsy patients with subdural electrodes implanted over lateral left cortex. Evoked N1 responses and induced spectral power changes were obtained by trial averaging and time-frequency analysis. Results ESM impaired perception and comprehension of speech, not tones, at electrode sites in the posterior temporal lobe. There was high spatial concordance between ESM sites critical for speech perception and the largest spectral power (100% concordance) and N1 (83%) responses to speech. N1 responses showed good sensitivity (0.75) and specificity (0.82), but poor positive predictive value (0.32). Conversely, increased high-frequency power (>60 Hz) showed high specificity (0.98), but poorer sensitivity (0.67) and positive predictive value (0.67). Stimulus-related differences were observed in the spatial-temporal patterns of event-related responses. Conclusions Intracranial auditory event-related responses to speech were associated with cortical sites critical for auditory perception and comprehension of speech. Significance These results suggest that the distribution and magnitude of intracranial auditory event-related responses to speech reflect the functional significance of the underlying cortical regions and may be useful for pre-surgical functional mapping. PMID:19070540

  6. Electrocortical effects of MDMA are potentiated by acoustic stimulation in rats.

    PubMed

    Iannone, Michelangelo; Bulotta, Stefania; Paolino, Donatella; Zito, Maria Cristina; Gratteri, Santo; Costanzo, Francesco S; Rotiroti, Domenicantonio

    2006-02-16

    3,4-Methylenedioxymethamphetamine (MDMA; ecstasy) is known for its toxicological, psychopathological and abuse potential. Some environmental conditions, e.g. acoustic stimulation typical of the "rave scene" can influence the toxicity of this drug. We investigated the effects of low doses of MDMA in vivo using Wistar rats in the absence of acoustic stimulation (white noise; 95 Db) demonstrating that ecstasy is able to induce a significant activation (reduction of Electrocortical total power) of the telencephalic cortex that spontaneously reverts in the absence of sensorial stimuli, whereas it persists for several days if, in addition to MDMA, the animals are exposed to acoustic stimulation. Our data demonstrate that low doses of MDMA are able to reduce electrocortical total power, and that this effect is potentiated by sensorial stimuli commonly present in certain environments, such as rave parties.

  7. Electrocortical effects of MDMA are potentiated by acoustic stimulation in rats

    PubMed Central

    Iannone, Michelangelo; Bulotta, Stefania; Paolino, Donatella; Zito, Maria Cristina; Gratteri, Santo; Costanzo, Francesco S; Rotiroti, Domenicantonio

    2006-01-01

    Background 3,4-Methylenedioxymethamphetamine (MDMA; ecstasy) is known for its toxicological, psychopathological and abuse potential. Some environmental conditions, e.g. acoustic stimulation typical of the "rave scene" can influence the toxicity of this drug. Results We investigated the effects of low doses of MDMA in vivo using Wistar rats in the absence of acoustic stimulation (white noise; 95 Db) demonstrating that ecstasy is able to induce a significant activation (reduction of Electrocortical total power) of the telencephalic cortex that spontaneously reverts in the absence of sensorial stimuli, whereas it persists for several days if, in addition to MDMA, the animals are exposed to acoustic stimulation. Conclusion Our data demonstrate that low doses of MDMA are able to reduce electrocortical total power, and that this effect is potentiated by sensorial stimuli commonly present in certain environments, such as rave parties. PMID:16480519

  8. Laser speckle imaging identification of increases in cortical microcirculatory blood flow induced by motor activity during awake craniotomy.

    PubMed

    Klijn, Eva; Hulscher, Hester C; Balvers, Rutger K; Holland, Wim P J; Bakker, Jan; Vincent, Arnaud J P E; Dirven, Clemens M F; Ince, Can

    2013-02-01

    The goal of awake neurosurgery is to maximize resection of brain lesions with minimal injury to functional brain areas. Laser speckle imaging (LSI) is a noninvasive macroscopic technique with high spatial and temporal resolution used to monitor changes in capillary perfusion. In this study, the authors hypothesized that LSI can be useful as a noncontact method of functional brain mapping during awake craniotomy for tumor removal. Such a modality would be an advance in this type of neurosurgery since current practice involves the application of invasive intraoperative single-point electrocortical (electrode) stimulation and measurements. After opening the dura mater, patients were woken up, and LSI was set up to image the exposed brain area. Patients were instructed to follow a rest-activation-rest protocol in which activation consisted of the hand-clenching motor task. Subsequently, exposed brain areas were mapped for functional motor areas by using standard electrocortical stimulation (ECS). Changes in the LSI signal were analyzed offline and compared with the results of ECS. In functional motor areas of the hand mapped with ECS, cortical blood flow measured using LSI significantly increased from 2052 ± 818 AU to 2471 ± 675 AU during hand clenching, whereas capillary blood flow did not change in the control regions (areas mapped using ECS with no functional activity). The main finding of this study was that changes in laser speckle perfusion as a measure of cortical microvascular blood flow when performing a motor task with the hand relate well to the ECS map. The authors have shown the feasibility of using LSI for direct visualization of cortical microcirculatory blood flow changes during neurosurgery.

  9. Electrocortical and behavioral responses elicited by acute electrical stimulation of inferior thalamic peduncle and nucleus reticularis thalami in a patient with major depression disorder.

    PubMed

    Velasco, Marcos; Velasco, Francisco; Jiménez, Fiacro; Carrillo-Ruiz, José D; Velasco, Ana Luisa; Salín-Pascual, Rafael

    2006-02-01

    Our aim was to study electrocortical and behavioral responses elicited by 6, 60 and 3/s stimulation of the inferior thalamic peduncle (ITP) and nucleus reticularis thalami (Re) in a patient with of major depression disorder resistant to psychotherapy, pharmacotherapy and electroconvulsive therapy and candidate to be treated by electrical stimulation of the ITP. In this patient, two multicontact electrodes were implanted bilaterally through frontal coronal parasagittal burr-holes with oblique trajectories aiming ITP and Re. Stimulation was performed through externalized systems. Referential scalp electroencephalographic (EEG) recordings were performed and subjective sensations and clinical symptoms reported by patient and changes in responsiveness in single response tasks during stimulation trials were systematically recorded. Unilateral, low (6/s) and high (60/s) frequency stimulation of either ITP or Re produced identical recruiting-like responses or desynchronization-DC shift changes predominant at frontopolar region, bilaterally. Billateral, high intensity 3/s stimulation or either ITP or Re produced electrocortical responses that consisted in generalized 3/s spike-wave complexes predominant at frontopolar, frontocentral and frontotemporal regions. However, while ITP responses were accompanied by all symptoms described for a spontaneous absence attack, Re responses were behaviorly accompanied only by delayed reaction time. These data suggests that in humans as in cats, ITP and Re are both part of a non-specific thalamo-orbitofrontal system normally engaged in cortical synchronization, selective attention and sleep. Under abnormal conditions, ITP and RE may play a role in the physiopathology of typical absence attacks and depression disorders.

  10. A Novel Data-Driven Approach to Preoperative Mapping of Functional Cortex Using Resting-State Functional Magnetic Resonance Imaging

    PubMed Central

    Mitchell, Timothy J.; Hacker, Carl D.; Breshears, Jonathan D.; Szrama, Nick P.; Sharma, Mohit; Bundy, David T.; Pahwa, Mrinal; Corbetta, Maurizio; Snyder, Abraham Z.; Shimony, Joshua S.

    2013-01-01

    BACKGROUND: Recent findings associated with resting-state cortical networks have provided insight into the brain's organizational structure. In addition to their neuroscientific implications, the networks identified by resting-state functional magnetic resonance imaging (rs-fMRI) may prove useful for clinical brain mapping. OBJECTIVE: To demonstrate that a data-driven approach to analyze resting-state networks (RSNs) is useful in identifying regions classically understood to be eloquent cortex as well as other functional networks. METHODS: This study included 6 patients undergoing surgical treatment for intractable epilepsy and 7 patients undergoing tumor resection. rs-fMRI data were obtained before surgery and 7 canonical RSNs were identified by an artificial neural network algorithm. Of these 7, the motor and language networks were then compared with electrocortical stimulation (ECS) as the gold standard in the epilepsy patients. The sensitivity and specificity for identifying these eloquent sites were calculated at varying thresholds, which yielded receiver-operating characteristic (ROC) curves and their associated area under the curve (AUC). RSNs were plotted in the tumor patients to observe RSN distortions in altered anatomy. RESULTS: The algorithm robustly identified all networks in all patients, including those with distorted anatomy. When all ECS-positive sites were considered for motor and language, rs-fMRI had AUCs of 0.80 and 0.64, respectively. When the ECS-positive sites were analyzed pairwise, rs-fMRI had AUCs of 0.89 and 0.76 for motor and language, respectively. CONCLUSION: A data-driven approach to rs-fMRI may be a new and efficient method for preoperative localization of numerous functional brain regions. ABBREVIATIONS: AUC, area under the curve BA, Brodmann area BOLD, blood oxygen level dependent ECS, electrocortical stimulation fMRI, functional magnetic resonance imaging ICA, independent component analysis MLP, multilayer perceptron MP-RAGE, magnetization-prepared rapid gradient echo ROC, receiver-operating characteristic rs-fMRI, resting-state functional magnetic resonance imaging RSN, resting-state network PMID:24264234

  11. Passive language mapping combining real-time oscillation analysis with cortico-cortical evoked potentials for awake craniotomy.

    PubMed

    Tamura, Yukie; Ogawa, Hiroshi; Kapeller, Christoph; Prueckl, Robert; Takeuchi, Fumiya; Anei, Ryogo; Ritaccio, Anthony; Guger, Christoph; Kamada, Kyousuke

    2016-12-01

    OBJECTIVE Electrocortical stimulation (ECS) is the gold standard for functional brain mapping; however, precise functional mapping is still difficult in patients with language deficits. High gamma activity (HGA) between 80 and 140 Hz on electrocorticography is assumed to reflect localized cortical processing, whereas the cortico-cortical evoked potential (CCEP) can reflect bidirectional responses evoked by monophasic pulse stimuli to the language cortices when there is no patient cooperation. The authors propose the use of "passive" mapping by combining HGA mapping and CCEP recording without active tasks during conscious resections of brain tumors. METHODS Five patients, each with an intraaxial tumor in their dominant hemisphere, underwent conscious resection of their lesion with passive mapping. The authors performed functional localization for the receptive language area, using real-time HGA mapping, by listening passively to linguistic sounds. Furthermore, single electrical pulses were delivered to the identified receptive temporal language area to detect CCEPs in the frontal lobe. All mapping results were validated by ECS, and the sensitivity and specificity were evaluated. RESULTS Linguistic HGA mapping quickly identified the language area in the temporal lobe. Electrical stimulation by linguistic HGA mapping to the identified temporal receptive language area evoked CCEPs on the frontal lobe. The combination of linguistic HGA and frontal CCEPs needed no patient cooperation or effort. In this small case series, the sensitivity and specificity were 93.8% and 89%, respectively. CONCLUSIONS The described technique allows for simple and quick functional brain mapping with higher sensitivity and specificity than ECS mapping. The authors believe that this could improve the reliability of functional brain mapping and facilitate rational and objective operations. Passive mapping also sheds light on the underlying physiological mechanisms of language in the human brain.

  12. Contributions to singing ability by the posterior portion of the superior temporal gyrus of the non-language-dominant hemisphere: First evidence from subdural cortical stimulation, Wada testing, and fMRI

    PubMed Central

    Suarez, Ralph O.; Golby, Alexandra; Whalen, Stephen; Sato, Susumu; Theodore, William H.; Kufta, Conrad V.; Devinsky, Orrin; Balish, Marshall; Bromfield, Edward B.

    2009-01-01

    INTRODUCTION Although the substrates that mediate singing abilities in the human brain are not well understood, invasive brain mapping techniques used for clinical decision making such as intracranial electrocortical testing and Wada testing offer a rare opportunity to examine music-related function in a select group of subjects, affording exceptional spatial and temporal specificity. METHODS We studied eight patients with medically refractory epilepsy undergoing indwelling subdural electrode seizure focus localization. All patients underwent Wada testing for language lateralization. Functional assessment of language and music tasks was done by electrode grid cortical stimulation. One patient was also tested non-invasively with functional MRI. Functional organization of singing ability compared to language ability was determined based on four regions-ofinterest: left and right inferior frontal gyrus (IFG), and left and right posterior superior temporal gyrus (pSTG). RESULTS In some subjects, electrical stimulation of dominant pSTG can interfere with speech and not singing, whereas stimulation of non-dominant pSTG area can interfere with singing and not speech. Stimulation of the dominant IFG tends to interfere with both musical and language expression, while non-dominant IFG stimulation was often observed to cause no interference with either task; and finally, that stimulation of areas adjacent to but not within non-dominant pSTG typically does not affect either ability. FMRI mappings of one subject revealed similar music/language dissociation with respect to activation asymmetry within the regions-of-interest. CONCLUSION Despite inherent limitations with respect to strictly research objectives, invasive clinical techniques offer a rare opportunity to probe musical and language cognitive processes of the brain in a select group of patients. PMID:19570530

  13. Brain Regions Underlying Word Finding Difficulties in Temporal Lobe Epilepsy

    ERIC Educational Resources Information Center

    Trebuchon-Da Fonseca, Agnes; Guedj, Eric; Alario, F-Xavier; Laguitton, Virginie; Mundler, Olivier; Chauvel, Patrick; Liegeois-Chauvel, Catherine

    2009-01-01

    Word finding difficulties are often reported by epileptic patients with seizures originating from the language dominant cerebral hemisphere, for example, in temporal lobe epilepsy. Evidence regarding the brain regions underlying this deficit comes from studies of peri-operative electro-cortical stimulation, as well as post-surgical performance.…

  14. Assessing Language Dominance with Functional MRI: The Role of Control Tasks and Statistical Analysis

    ERIC Educational Resources Information Center

    Dodoo-Schittko, Frank; Rosengarth, Katharina; Doenitz, Christian; Greenlee, Mark W.

    2012-01-01

    There is a discrepancy between the brain regions revealed by functional neuroimaging techniques and those brain regions where a loss of function, either by lesion or by electrocortical stimulation, induces language disorders. To differentiate between essential and non-essential language-related processes, we investigated the effects of linguistic…

  15. Amplitude-Integrated EEG and Range-EEG Modulation Associated with Pneumatic Orocutaneous Stimulation in Preterm Infants

    PubMed Central

    Barlow, Steven M; Jegatheesan, Priya; Weiss, Sunshine; Govindaswami, Balaji; Wang, Jingyan; Lee, Jaehoon; Oder, Austin; Song, Dongli

    2013-01-01

    Background Controlled somatosensory stimulation strategies have demonstrated merit in developing oral feeding skills in premature infants who lack a functional suck, however, the effects of orosensory entrainment stimulation on electrocortical dynamics is unknown. Objective To determine the effects of servo-controlled pneumatic orocutaneous stimulation presented during gavage feedings on the modulation of aEEG and rEEG activity. Methods Two-channel EEG recordings were collected during 180 sessions that included orocutaneous stimulation and non-stimulation epochs among 22 preterm infants (mean gestational age = 28.56 weeks) who were randomized to treatment and control ‘sham’ conditions. The study was initiated at around 32 weeks post-menstrual age (PMA). The raw EEG was transformed into amplitude-integrated EEG (aEEG) margins, and range-EEG (rEEG) amplitude bands measured at 1-minute intervals and subjected to a mixed models statistical analysis. Results Multiple significant effects were observed in the processed EEG during and immediately following 3-minute periods of orocutaneous stimulation, including modulation of the upper and lower margins of the aEEG, and a reorganization of rEEG with an apparent shift from amplitude bands D and E to band C throughout the 23-minute recording period that followed the first stimulus block when compared to the sham condition. Cortical asymmetry also was apparent in both EEG measures. Conclusions Orocutaneous stimulation represents a salient trigeminal input which has both short- and long-term effects in modulating electrocortical activity, and thus, is hypothesized to represent a form of neural adaptation or plasticity that may benefit the preterm infant during this critical period of brain maturation. PMID:24310443

  16. Rapid online language mapping with electrocorticography.

    PubMed

    Miller, Kai J; Abel, Taylor J; Hebb, Adam O; Ojemann, Jeffrey G

    2011-05-01

    Emerging research in evoked broadband electrocorticographic (ECoG) measurement from the cortical surface suggests that it might cleanly delineate the functional organization of cortex. The authors sought to demonstrate whether this could be done in a same-session, online manner to identify receptive and expressive language areas. The authors assessed the efficacy of simple integration of "χ-band" (76-200 Hz) change in the ECoG signal by implementing a simple band-pass filter to estimate broadband spectral change. Following a brief (less than 10-second) period to characterize baseline activity, χ-band activity was integrated while 7 epileptic patients with implanted ECoG electrodes performed a verb-generation task. While the patients were performing verb-generation or noun-reading tasks, cortical activation was consistently identified in primary mouth motor area, superior temporal gyrus, and Broca and Wernicke association areas. Maps were robust after a mean time of 47 seconds (using an "activation overlap" measure). Correlation with electrocortical stimulation was not complete and was stronger for noun reading than verb generation. Broadband ECoG changes can be captured online to identify eloquent cortex. This demonstrates the existence of a powerful new tool for functional mapping in the operative and chronic implant setting.

  17. Electrocorticographic language mapping with a listening task consisting of alternating speech and music phrases.

    PubMed

    Mooij, Anne H; Huiskamp, Geertjan J M; Gosselaar, Peter H; Ferrier, Cyrille H

    2016-02-01

    Electrocorticographic (ECoG) mapping of high gamma activity induced by language tasks has been proposed as a more patient friendly alternative for electrocortical stimulation mapping (ESM), the gold standard in pre-surgical language mapping of epilepsy patients. However, ECoG mapping often reveals more language areas than considered critical with ESM. We investigated if critical language areas can be identified with a listening task consisting of speech and music phrases. Nine patients with implanted subdural grid electrodes listened to an audio fragment in which music and speech alternated. We analysed ECoG power in the 65-95 Hz band and obtained task-related activity patterns in electrodes over language areas. We compared the spatial distribution of sites that discriminated between listening to speech and music to ESM results using sensitivity and specificity calculations. Our listening task of alternating speech and music phrases had a low sensitivity (0.32) but a high specificity (0.95). The high specificity indicates that this test does indeed point to areas that are critical to language processing. Our test cannot replace ESM, but this short and simple task can give a reliable indication where to find critical language areas, better than ECoG mapping using language tasks alone. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Clinical Impact and Implication of Real-Time Oscillation Analysis for Language Mapping.

    PubMed

    Ogawa, Hiroshi; Kamada, Kyousuke; Kapeller, Christoph; Prueckl, Robert; Takeuchi, Fumiya; Hiroshima, Satoru; Anei, Ryogo; Guger, Christoph

    2017-01-01

    We developed a functional brain analysis system that enabled us to perform real-time task-related electrocorticography (ECoG) and evaluated its potential in clinical practice. We hypothesized that high gamma activity (HGA) mapping would provide better spatial and temporal resolution with high signal-to-noise ratios. Seven awake craniotomy patients were evaluated. ECoG was recorded during language tasks using subdural grids, and HGA (60-170 Hz) maps were obtained in real time. The patients also underwent electrocortical stimulation (ECS) mapping to validate the suspected functional locations on HGA mapping. The results were compared and calculated to assess the sensitivity and specificity of HGA mapping. For reference, bedside HGA-ECS mapping was performed in 5 epilepsy patients. HGA mapping demonstrated functional brain areas in real time and was comparable with ECS mapping. Sensitivity and specificity for the language area were 90.1% ± 11.2% and 90.0% ± 4.2%, respectively. Most HGA-positive areas were consistent with ECS-positive regions in both groups, and there were no statistical between-group differences. Although this study included a small number of subjects, it showed real-time HGA mapping with the same setting and tasks under different conditions. This study demonstrates the clinical feasibility of real-time HGA mapping. Real-time HGA mapping enabled simple and rapid detection of language functional areas in awake craniotomy. The mapping results were highly accurate, although the mapping environment was noisy. Further studies of HGA mapping may provide the potential to elaborate complex brain functions and networks. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Language Mapping in Multilingual Patients: Electrocorticography and Cortical Stimulation During Naming

    PubMed Central

    Cervenka, Mackenzie C.; Boatman-Reich, Dana F.; Ward, Julianna; Franaszczuk, Piotr J.; Crone, Nathan E.

    2011-01-01

    Multilingual patients pose a unique challenge when planning epilepsy surgery near language cortex because the cortical representations of each language may be distinct. These distinctions may not be evident with routine electrocortical stimulation mapping (ESM). Electrocorticography (ECoG) has recently been used to detect task-related spectral perturbations associated with functional brain activation. We hypothesized that using broadband high gamma augmentation (HGA, 60–150 Hz) as an index of cortical activation, ECoG would complement ESM in discriminating the cortical representations of first (L1) and second (L2) languages. We studied four adult patients for whom English was a second language, in whom subdural electrodes (a total of 358) were implanted to guide epilepsy surgery. Patients underwent ECoG recordings and ESM while performing the same visual object naming task in L1 and L2. In three of four patients, ECoG found sites activated during naming in one language but not the other. These language-specific sites were not identified using ESM. In addition, ECoG HGA was observed at more sites during L2 versus L1 naming in two patients, suggesting that L2 processing required additional cortical resources compared to L1 processing in these individuals. Post-operative language deficits were identified in three patients (one in L2 only). These deficits were predicted by ECoG spectral mapping but not by ESM. These results suggest that pre-surgical mapping should include evaluation of all utilized languages to avoid post-operative functional deficits. Finally, this study suggests that ECoG spectral mapping may potentially complement the results of ESM of language. PMID:21373361

  20. Involuntary switching into the native language induced by electrocortical stimulation of the superior temporal gyrus: a multimodal mapping study.

    PubMed

    Tomasino, Barbara; Marin, Dario; Canderan, Cinzia; Maieron, Marta; Budai, Riccardo; Fabbro, Franco; Skrap, Miran

    2014-09-01

    We describe involuntary language switching from L2 to L1 evoked by electro-stimulation in the superior temporal gyrus in a 30-year-old right-handed Serbian (L1) speaker who was also a late Italian learner (L2). The patient underwent awake brain surgery. Stimulation of other portions of the exposed cortex did not cause language switching as did not stimulation of the left inferior frontal gyrus, where we evoked a speech arrest. Stimulation effects on language switching were selective, namely, interfered with counting behaviour but not with object naming. The coordinates of the positive site were combined with functional and fibre tracking (DTI) data. Results showed that the language switching site belonged to a significant fMRI cluster in the left superior temporal gyrus/supramarginal gyrus found activated for both L1 and L2, and for both the patient and controls, and did not overlap with the inferior fronto-occipital fasciculus (IFOF), the inferior longitudinal fasciculus (ILF) and the superior longitudinal fasciculus (SLF). This area, also known as Stp, has a role in phonological processing. Language switching phenomenon we observed can be partly explained by transient dysfunction of the feed-forward control mechanism hypothesized by the DIVA (Directions Into Velocities of Articulators) model (Golfinopoulos, E., Tourville, J. A., & Guenther, F. H. (2010). The integration of large-scale neural network modeling and functional brain imaging in speech motor control. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Rapid and minimum invasive functional brain mapping by real-time visualization of high gamma activity during awake craniotomy.

    PubMed

    Ogawa, Hiroshi; Kamada, Kyousuke; Kapeller, Christoph; Hiroshima, Satoru; Prueckl, Robert; Guger, Christoph

    2014-11-01

    Electrocortical stimulation (ECS) is the gold standard for functional brain mapping during an awake craniotomy. The critical issue is to set aside enough time to identify eloquent cortices by ECS. High gamma activity (HGA) ranging between 80 and 120 Hz on electrocorticogram is assumed to reflect localized cortical processing. In this report, we used real-time HGA mapping and functional neuronavigation integrated with functional magnetic resonance imaging (fMRI) for rapid and reliable identification of motor and language functions. Four patients with intra-axial tumors in their dominant hemisphere underwent preoperative fMRI and lesion resection with an awake craniotomy. All patients showed significant fMRI activation evoked by motor and language tasks. During the craniotomy, we recorded electrocorticogram activity by placing subdural grids directly on the exposed brain surface. Each patient performed motor and language tasks and demonstrated real-time HGA dynamics in hand motor areas and parts of the inferior frontal gyrus. Sensitivity and specificity of HGA mapping were 100% compared with ECS mapping in the frontal lobe, which suggested HGA mapping precisely indicated eloquent cortices. We found different HGA dynamics of language tasks in frontal and temporal regions. Specificities of the motor and language-fMRI did not reach 85%. The results of HGA mapping was mostly consistent with those of ECS mapping, although fMRI tended to overestimate functional areas. This novel technique enables rapid and accurate identification of motor and frontal language areas. Furthermore, real-time HGA mapping sheds light on underlying physiological mechanisms related to human brain functions. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Serotonin transporter genotype (5-HTTLPR) and electrocortical responses indicating the sensitivity to negative emotional cues.

    PubMed

    Papousek, Ilona; Reiser, Eva M; Schulter, Günter; Fink, Andreas; Holmes, Emily A; Niederstätter, Harald; Nagl, Simone; Parson, Walther; Weiss, Elisabeth M

    2013-12-01

    Growing literature indicates that emotional reactivity and regulation are strongly linked to genetic modulation of serotonergic neurotransmission. However, until now, most studies have focused on the relationship between genotypic markers, in particular the serotonin transporter-linked polymorphic region (5-HTTLPR), and neural structures using MRI. The current study aimed to bridge the gap between the relevant MRI literature on the effects of the 5-HTTLPR genotype and the research tradition focusing on transient lateralized changes of electrocortical activity in the prefrontal cortex using electroencephalography (EEG). Lateral shifts of EEG alpha asymmetry in response to an aversive film consisting of scenes of real injury and death were assessed in healthy participants (n = 165). To evaluate the specificity of the 5-HTTLPR effect, participants were also tested for the COMT Val158Met polymorphism which is linked to dopamine inactivation. While viewing the film, individuals homozygous for the 5-HTTLPR short allele displayed a clear lateral shift of dorsolateral frontal activity to the right, which was virtually absent in participants carrying the long allele. The heightened electrocortical response to the aversive stimulation and its direction indicates a greater propensity of s/s homozygotes to experience withdrawal oriented affect in response to negative emotion cues in the environment. Moreover, together with previous research the findings support the notion of a link between the serotonergic system and self-regulation related to avoidance motivation, and a link between the dopaminergic system and self-regulation related to approach motivation.

  3. Electrocorticographic Frequency Alteration Mapping of Speech Cortex during an Awake Craniotomy: Case Report

    PubMed Central

    Breshears, J.; Sharma, M.; Anderson, N.R.; Rashid, S.; Leuthardt, E.C.

    2010-01-01

    Objective Traditional electrocortical stimulation (ECS) mapping is limited by the lengthy serial investigation (one location at a time) and the risk of afterdischarges in localizing eloquent cortex. Electrocorticographic frequency alteration mapping (EFAM) allows the parallel investigation of many cortical sites in much less time and with no risk of afterdischarges because of its passive nature. We examined its use with ECS in the context of language mapping during an awake craniotomy for a tumor resection. Clinical Presentation The patient was a 61-year-old right-handed Caucasian male who presented with headache and mild aphasia. Imaging demonstrated a 3-cm cystic mass in the posterior temporal-parietal lobe. The patient underwent an awake craniotomy for the mapping of his speech cortex and resection of the mass. Intervention Using a 32-contact electrode array, electrocorticographic signals were recorded from the exposed cortex as the patient participated in a 3-min screening task involving active (patient naming visually presented words) and rest (patient silent) conditions. A spectral comparison of the 2 conditions revealed specific cortical locations associated with activation during speech. The patient was then widely mapped using ECS. Three of 4 sites identified by ECS were also identified passively and in parallel by EFAM, 2 with statistical significance and the third by qualitative inspection. Conclusion EFAM was technically achieved in an awake craniotomy patient and had good concordance with ECS mapping. Because it poses no risk of afterdischarges and offers substantial time savings, EFAM holds promise for future development as an adjunct intraoperative mapping tool. Additionally, the cortical signals obtained by this modality can be utilized for localization in the presence of a tumor adjacent to the eloquent regions. PMID:19940544

  4. Understanding Epileptiform After-Discharges as Rhythmic Oscillatory Transients.

    PubMed

    Baier, Gerold; Taylor, Peter N; Wang, Yujiang

    2017-01-01

    Electro-cortical activity in patients with epilepsy may show abnormal rhythmic transients in response to stimulation. Even when using the same stimulation parameters in the same patient, wide variability in the duration of transient response has been reported. These transients have long been considered important for the mapping of the excitability levels in the epileptic brain but their dynamic mechanism is still not well understood. To investigate the occurrence of abnormal transients dynamically, we use a thalamo-cortical neural population model of epileptic spike-wave activity and study the interaction between slow and fast subsystems. In a reduced version of the thalamo-cortical model, slow wave oscillations arise from a fold of cycles (FoC) bifurcation. This marks the onset of a region of bistability between a high amplitude oscillatory rhythm and the background state. In vicinity of the bistability in parameter space, the model has excitable dynamics, showing prolonged rhythmic transients in response to suprathreshold pulse stimulation. We analyse the state space geometry of the bistable and excitable states, and find that the rhythmic transient arises when the impending FoC bifurcation deforms the state space and creates an area of locally reduced attraction to the fixed point. This area essentially allows trajectories to dwell there before escaping to the stable steady state, thus creating rhythmic transients. In the full thalamo-cortical model, we find a similar FoC bifurcation structure. Based on the analysis, we propose an explanation of why stimulation induced epileptiform activity may vary between trials, and predict how the variability could be related to ongoing oscillatory background activity. We compare our dynamic mechanism with other mechanisms (such as a slow parameter change) to generate excitable transients, and we discuss the proposed excitability mechanism in the context of stimulation responses in the epileptic cortex.

  5. Reliability of functional MR imaging with word-generation tasks for mapping Broca's area.

    PubMed

    Brannen, J H; Badie, B; Moritz, C H; Quigley, M; Meyerand, M E; Haughton, V M

    2001-10-01

    Functional MR (fMR) imaging of word generation has been used to map Broca's area in some patients selected for craniotomy. The purpose of this study was to measure the reliability, precision, and accuracy of word-generation tasks to identify Broca's area. The Brodmann areas activated during performance of word-generation tasks were tabulated in 34 consecutive patients referred for fMR imaging mapping of language areas. In patients performing two iterations of the letter word-generation tasks, test-retest reliability was quantified by using the concurrence ratio (CR), or the number of voxels activated by each iteration in proportion to the average number of voxels activated from both iterations of the task. Among patients who also underwent category or antonym word generation or both, the similarity of the activation from each task was assessed with the CR. In patients who underwent electrocortical stimulation (ECS) mapping of speech function during craniotomy while awake, the sites with speech function were compared with the locations of activation found during fMR imaging of word generation. In 31 of 34 patients, activation was identified in the inferior frontal gyri or middle frontal gyri or both in Brodmann areas 9, 44, 45, or 46, unilaterally or bilaterally, with one or more of the tasks. Activation was noted in the same gyri when the patient performed a second iteration of the letter word-generation task or second task. The CR for pixel precision in a single section averaged 49%. In patients who underwent craniotomy while awake, speech areas located with ECS coincided with areas of the brain activated during a word-generation task. fMR imaging with word-generation tasks produces technically satisfactory maps of Broca's area, which localize the area accurately and reliably.

  6. Electrocortical measures of information processing biases in social anxiety disorder: A review.

    PubMed

    Harrewijn, Anita; Schmidt, Louis A; Westenberg, P Michiel; Tang, Alva; van der Molen, Melle J W

    2017-10-01

    Social anxiety disorder (SAD) is characterized by information processing biases, however, their underlying neural mechanisms remain poorly understood. The goal of this review was to give a comprehensive overview of the most frequently studied EEG spectral and event-related potential (ERP) measures in social anxiety during rest, anticipation, stimulus processing, and recovery. A Web of Science search yielded 35 studies reporting on electrocortical measures in individuals with social anxiety or related constructs. Social anxiety was related to increased delta-beta cross-frequency correlation during anticipation and recovery, and information processing biases during early processing of faces (P1) and errors (error-related negativity). These electrocortical measures are discussed in relation to the persistent cycle of information processing biases maintaining SAD. Future research should further investigate the mechanisms of this persistent cycle and study the utility of electrocortical measures in early detection, prevention, treatment and endophenotype research. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Fractal dimension values of cerebral and cerebellar activity in rats loaded with aluminium.

    PubMed

    Kekovic, Goran; Culic, Milka; Martac, Ljiljana; Stojadinovic, Gordana; Capo, Ivan; Lalosevic, Dusan; Sekulic, Slobodan

    2010-07-01

    Aluminium interferes with a variety of cellular metabolic processes in the mammalian nervous system and its intake might increase a risk of developing Alzheimer's disease (AD). While cerebral involvement even at the early stages of intoxication is well known, the role of cerebellum is underestimated. Our aim was to investigate cerebral and cerebellar electrocortical activity in adult male rats exposed to chronic aluminium treatment by nonlinear analytic tools. The adult rats in an aluminium-treated group were injected by AlCl(3), intraperitoneally (2 mg Al/kg, daily for 4 weeks). Fractal analysis of brain activity was performed off-line using Higuchi's algorithm. The average fractal dimension of electrocortical activity in aluminium-treated animals was lower than the average fractal dimension of electrocortical activity in the control rats, at cerebral but not at cerebellar level. The changes in the stationary and nonlinear properties of time series were more expressed in cerebral electrocortical activity than in cerebellar activity. This can be useful for developing effective diagnostic and therapeutic strategies in neurodegenerative diseases.

  8. Additive effects of emotional content and spatial selective attention on electrocortical facilitation.

    PubMed

    Keil, Andreas; Moratti, Stephan; Sabatinelli, Dean; Bradley, Margaret M; Lang, Peter J

    2005-08-01

    Affectively arousing visual stimuli have been suggested to automatically attract attentional resources in order to optimize sensory processing. The present study crosses the factors of spatial selective attention and affective content, and examines the relationship between instructed (spatial) and automatic attention to affective stimuli. In addition to response times and error rate, electroencephalographic data from 129 electrodes were recorded during a covert spatial attention task. This task required silent counting of random-dot targets embedded in a 10 Hz flicker of colored pictures presented to both hemifields. Steady-state visual evoked potentials (ssVEPs) were obtained to determine amplitude and phase of electrocortical responses to pictures. An increase of ssVEP amplitude was observed as an additive function of spatial attention and emotional content. Statistical parametric mapping of this effect indicated occipito-temporal and parietal cortex activation contralateral to the attended visual hemifield in ssVEP amplitude modulation. This difference was most pronounced during selection of the left visual hemifield, at right temporal electrodes. In line with this finding, phase information revealed accelerated processing of aversive arousing, compared to affectively neutral pictures. The data suggest that affective stimulus properties modulate the spatiotemporal process along the ventral stream, encompassing amplitude amplification and timing changes of posterior and temporal cortex.

  9. Electrocortical correlations between pairs of isolated people: A reanalysis

    PubMed Central

    Radin, Dean

    2017-01-01

    A previously reported experiment collected electrocortical data recorded simultaneously in pairs of people separated by distance. Reanalysis of those data confirmed the presence of a time-synchronous, statistically significant correlation in brain electrical activity of these distant “sender-receiver” pairs. Given the sensory shielding employed in the original experiment to avoid mundane explanations for such a correlation, this outcome is suggestive of an anomalous intersubjective connection. PMID:28713556

  10. Electrocortical dynamics reflect age-related differences in movement kinematics among children and adults.

    PubMed

    Pangelinan, Melissa M; Kagerer, Florian A; Momen, Bahram; Hatfield, Bradley D; Clark, Jane E

    2011-04-01

    Previous neuroimaging and behavioral studies demonstrated structural and functional changes in the motor system across childhood. However, it is unclear what functionally relevant electrocortical processes underlie developmental differences in motor planning and control during multijoint, goal-directed movements. The current study characterized age-related differences in electrocortical processes during the performance of discrete aiming movements in children and adults. Electroencephalography and movement kinematics were recorded from 3 groups of participants (n = 15 each): young children (mean 6.7 years), older children (mean 10.2 years), and adults (mean 22.1 years). Age-related differences were evident in the electroencephalographic (EEG) signals. First, young children exhibited less movement-related activity in task-relevant motor areas compared with adults (movement-related cortical potentials). Second, young children exhibited greater activation (less alpha power) of the frontal areas and less activation of the parietal areas as compared with the other groups. At the behavioral level, young children made slower and jerkier movements, with less consistent directional planning compared with older children and adults. Significant correlations were also found between EEG and movement kinematic measures. Taken together, the results of this study provide evidence that age-related differences in the quality of motor planning and performance are reflected in the differences in electrocortical dynamics among children and adults.

  11. Electrocortical Analysis of Patients with Intercostobrachial Pain Treated with TENS after Breast Cancer Surgery

    PubMed Central

    Silva, Julio Guilherme; Santana, Camila Gonçalves; Inocêncio, Kelly Rosane; Orsini, Marco; Machado, Sergio; Bergmann, Anke

    2014-01-01

    [Purpose] Among the physical therapeutic procedures to decrease pain, there is transcutaneous electrical neural stimulation (TENS). There is no consensus about its efficacy for oncological patients, especially for post-mastectomy pain and eletrocortical changes in somatosensory areas. The aim of this study was to analyze acute electrocortical changes after TENS treatment of patients with intercostobrachial post mastectomy pain. [Subjects] Eighteen patients were divided into acupuncture (A) and burst (B) group. [Methods] In this pre and post-intervention study each group was measured for EEG analysis in absulte power in alpha band (8–14 Hz). Outcomes variables were the alpha waveband in the sensorymotor cortex and pain pre-and-post TENS intervention. Data were analyzed using ANOVA to compare times (rest, 10 and 15 min), group and electrodes. Pain was analyzed using percentual pain evaluation (PPE) in both groups. [Results] Outcomes indicate main effects of time and electrodes because of slow (8–10 Hz) and fast alpha (10–12 Hz) wavebands decreased. PPE reduced 88.4% in A and 66.3% in G. [Conclusion] TENS promoted electrical modification in the parietal region and a decrease in pain. Future studies should investigate other wave must be proposed for other bands and use different methods of EEG analysis to elucidate the actual mechanisms behind the efficacy of TENS treatment. PMID:24707082

  12. Electrocortical Analysis of Patients with Intercostobrachial Pain Treated with TENS after Breast Cancer Surgery.

    PubMed

    Silva, Julio Guilherme; Santana, Camila Gonçalves; Inocêncio, Kelly Rosane; Orsini, Marco; Machado, Sergio; Bergmann, Anke

    2014-03-01

    [Purpose] Among the physical therapeutic procedures to decrease pain, there is transcutaneous electrical neural stimulation (TENS). There is no consensus about its efficacy for oncological patients, especially for post-mastectomy pain and eletrocortical changes in somatosensory areas. The aim of this study was to analyze acute electrocortical changes after TENS treatment of patients with intercostobrachial post mastectomy pain. [Subjects] Eighteen patients were divided into acupuncture (A) and burst (B) group. [Methods] In this pre and post-intervention study each group was measured for EEG analysis in absulte power in alpha band (8-14 Hz). Outcomes variables were the alpha waveband in the sensorymotor cortex and pain pre-and-post TENS intervention. Data were analyzed using ANOVA to compare times (rest, 10 and 15 min), group and electrodes. Pain was analyzed using percentual pain evaluation (PPE) in both groups. [Results] Outcomes indicate main effects of time and electrodes because of slow (8-10 Hz) and fast alpha (10-12 Hz) wavebands decreased. PPE reduced 88.4% in A and 66.3% in G. [Conclusion] TENS promoted electrical modification in the parietal region and a decrease in pain. Future studies should investigate other wave must be proposed for other bands and use different methods of EEG analysis to elucidate the actual mechanisms behind the efficacy of TENS treatment.

  13. Neuropsychology Within a Tertiary Care Epilepsy Center.

    PubMed

    Morrison, Chris E; MacAllister, William S; Barr, William B

    2018-05-01

    Epilepsy is a prevalent condition characterized by variations in its clinical presentation, etiology, and amenability to treatment. Through history, neuropsychologists have played a significant role in performing research studies on changes in language, memory, and executive functioning in patients with epilepsy, including those undergoing surgical treatment for medically refractory seizures. These studies provided a foundation for establishing neuropsychologists as critical members of interdisciplinary clinical teams specializing in evaluation and treatment of epilepsy. This article describes a number of elements of specialized neuropsychological practice that have evolved over the years within a tertiary care epilepsy center. Through diagnostic interview and objective testing, the neuropsychologist is able to provide a more complete and objective understanding of a patient's cognitive and behavioral functioning than what is obtained by other clinicians through brief office visits. While assessment of cognition, mood, and behavior is the most commonly provided service to patients with epilepsy from all age groups, there are many instances when neuropsychologists in surgical settings are called to perform more specialized procedures, including the intracarotid amytal (Wada) procedure, electrocortical stimulation mapping of language eloquent brain regions, and functional brain imaging procedures. While working as a neuropsychologist on an interdisciplinary epilepsy care team requires specialized knowledge and clinical training, it is extremely satisfying due to the diversity of the patient population and the particular challenges resulting from the often unique manner that cognition and behavior can be affected in patients with epilepsy across the lifespan.

  14. Inclusion of attentional networks in the pre-surgical neuroimaging assessment of a large deep hemispheric cavernous malformation: an FMRI case report.

    PubMed

    Mickleborough, Marla J S; Kelly, Michael E; Gould, Layla; Ekstrand, Chelsea; Lorentz, Eric; Ellchuk, Tasha; Babyn, Paul; Borowsky, Ron

    2015-01-01

    Functional magnetic resonance imaging (fMRI) is a noninvasive and reliable tool for mapping eloquent cortex in patients prior to brain surgery. Ensuring intact perceptual and cognitive processing is a key goal for neurosurgeons, and recent research has indicated the value of including attentional network processing in pre-surgical fMRI in order to help preserve such abilities, including reading, after surgery. We report a 42-year-old patient with a large cavernous malformation, near the left basal ganglia. The lesion measured 3.8 × 1.7 × 1.8 cm. In consultation with the patient and the multidisciplinary cerebrovascular team, the decision was made to offer the patient surgical resection. The surgical resection involved planned access via the left superior parietal lobule using stereotactic location. The patient declined an awake craniotomy; therefore, direct electrocortical stimulation (ECS) could not be used for intraoperative language localization in this case. Pre-surgical planning included fMRI localization of language, motor, sensory, and attentional processing. The key finding was that both reading and attention-processing tasks revealed consistent activation of the left superior parietal lobule, part of the attentional control network, and the site of the planned surgical access. Given this information, surgical access was adjusted to avoid interference with the attentional control network. The lesion was removed via the left inferior parietal lobule. The patient had no new neurologic deficits postoperatively but did develop mild neuropathic pain in the left hand. This case report supports recent research that indicates the value of including fMRI maps of attentional tasks along with traditional language-processing tasks in preoperative planning in patients undergoing neurosurgery procedures. © 2015 S. Karger AG, Basel.

  15. Factors predicting language lateralization in patients with perisylvian vascular malformations

    PubMed Central

    Lee, Darrin J.; Pouratian, Nader; Bookheimer, Susan Y.; Martin, Neil A.

    2017-01-01

    Object The authors conducted a study to determine the factors associated with right-sided language dominance in patients with cerebrovascular malformations. Methods Twenty-two patients with either arteriovenous malformations (AVMs [15 cases]) or cavernous malformations (7 cases) underwent functional MR (fMR) imaging studies of language function; a 3.0-T head-only unit was used. Lateralization indices were calculated separately for Broca and Wernicke areas. Lesion size, Spetzler-Martin grade, and the distance between the lesion and anatomically defined language cortex were calculated for each patient. Results Right-sided language dominance occurred in 5 patients, all of whom had AVMs within 10 mm of canonical language areas. Three patients had right-sided language dominance in the Wernicke area alone whereas 2 had right-sided language dominance in both Broca and Wernicke areas. Wada testing and intraoperative electrocortical stimulation were performed as clinically indicated to corroborate fMR imaging findings. Conclusions The primary factor associated with right-sided language dominance was the AVM being within 10 mm of anatomically defined language areas. The lesion size and the Spetzler-Martin grade were not significant factors. Anomalous fMR imaging laterality was typically confined to the language area proximate to the lesion, with the distal language area remaining in the left hemisphere dominant. This study emphasizes the need to map each case individually in patients with left perisylvian AVMs. Assumptions about eloquent cortex based on anatomical landmarks (a key component of Spetzler-Martin grading) may have to be reconsidered. PMID:20302390

  16. Carotid blood flow changes with behavioral states in the late gestation llama fetus in utero.

    PubMed

    Blanco, C E; Giussani, D A; Riquelme, R A; Hanson, M A; Llanos, A J

    1997-12-19

    This study tested the hypothesis that in the llama fetus changes in cerebral blood flow are closely associated with changes in cerebral oxidative metabolism such as occur during transitions between electrocortical states. For the first time reported in any species, instantaneous changes in common carotid blood flow, employed as a continuous index of cerebrovascular perfusion, were related to instantaneous changes in electrocortical activity. Three late gestation fetal llamas were surgically prepared under general anesthesia with vascular catheters, a tracheal and amniotic catheter, and with electrodes implanted to monitor the fetal electrocorticogram (ECoG). In addition, Transonic flow probes were placed around a common carotid artery and a femoral artery. At least 4 days after surgery fetal arterial blood, amniotic and tracheal pressures, carotid and femoral blood flows and the fetal ECoG were recorded continuously. Our results suggest a close association between increases in common carotid blood flow and low voltage ECoG in the llama fetus. Close coupling between instantaneous changes in carotid blood flow and electrocortical states together with the lack of an increase in brain blood flow without increased cerebral oxygen extraction during hypoxemia in the llama fetus supports a fall in cerebral oxidative metabolism in this species during hypoxemic episodes.

  17. Electrocortical changes associated with minocycline treatment in fragile X syndrome.

    PubMed

    Schneider, Andrea; Leigh, Mary Jacena; Adams, Patrick; Nanakul, Rawi; Chechi, Tasleem; Olichney, John; Hagerman, Randi; Hessl, David

    2013-10-01

    Minocycline normalizes synaptic connections and behavior in the knockout mouse model of fragile X syndrome (FXS). Human-targeted treatment trials with minocycline have shown benefits in behavioral measures and parent reports. Event-related potentials (ERPs) may provide a sensitive method of monitoring treatment response and changes in coordinated brain activity. Measurement of electrocortical changes due to minocycline was done in a double-blind, placebo-controlled crossover treatment trial in children with FXS. Children with FXS (Meanage 10.5 years) were randomized to minocycline or placebo treatment for 3 months then changed to the other treatment for 3 months. The minocycline dosage ranged from 25-100 mg daily, based on weight. Twelve individuals with FXS (eight male, four female) completed ERP studies using a passive auditory oddball paradigm. Current source density (CSD) and ERP analysis at baseline showed high-amplitude, long-latency components over temporal regions. After 3 months of treatment with minocycline, the temporal N1 and P2 amplitudes were significantly reduced compared with placebo. There was a significant amplitude increase of the central P2 component on minocycline. Electrocortical habituation to auditory stimuli improved with minocycline treatment. Our study demonstrated improvements of the ERP in children with FXS treated with minocycline, and the potential feasibility and sensitivity of ERPs as a cognitive biomarker in FXS treatment trials.

  18. Saliency Detection as a Reactive Process: Unexpected Sensory Events Evoke Corticomuscular Coupling

    PubMed Central

    Kilintari, Marina; Srinivasan, Mandayam; Haggard, Patrick

    2018-01-01

    Survival in a fast-changing environment requires animals not only to detect unexpected sensory events, but also to react. In humans, these salient sensory events generate large electrocortical responses, which have been traditionally interpreted within the sensory domain. Here we describe a basic physiological mechanism coupling saliency-related cortical responses with motor output. In four experiments conducted on 70 healthy participants, we show that salient substartle sensory stimuli modulate isometric force exertion by human participants, and that this modulation is tightly coupled with electrocortical activity elicited by the same stimuli. We obtained four main results. First, the force modulation follows a complex triphasic pattern consisting of alternating decreases and increases of force, time-locked to stimulus onset. Second, this modulation occurs regardless of the sensory modality of the eliciting stimulus. Third, the magnitude of the force modulation is predicted by the amplitude of the electrocortical activity elicited by the same stimuli. Fourth, both neural and motor effects are not reflexive but depend on contextual factors. Together, these results indicate that sudden environmental stimuli have an immediate effect on motor processing, through a tight corticomuscular coupling. These observations suggest that saliency detection is not merely perceptive but reactive, preparing the animal for subsequent appropriate actions. SIGNIFICANCE STATEMENT Salient events occurring in the environment, regardless of their modalities, elicit large electrical brain responses, dominated by a widespread “vertex” negative-positive potential. This response is the largest synchronization of neural activity that can be recorded from a healthy human being. Current interpretations assume that this vertex potential reflects sensory processes. Contrary to this general assumption, we show that the vertex potential is strongly coupled with a modulation of muscular activity that follows the same pattern. Both the vertex potential and its motor effects are not reflexive but strongly depend on contextual factors. These results reconceptualize the significance of these evoked electrocortical responses, suggesting that saliency detection is not merely perceptive but reactive, preparing the animal for subsequent appropriate actions. PMID:29378865

  19. Attending to affect: appraisal strategies modulate the electrocortical response to arousing pictures.

    PubMed

    Hajcak, Greg; Moser, Jason S; Simons, Robert F

    2006-08-01

    Arousing (unpleasant and pleasant) pictures elicit increased neurophysiological measures of perceptual processing. In particular, the electrocortical late positive potential (LPP) is enhanced for arousing, compared with neutral, pictures. To determine whether the magnitude of the LPP is sensitive to the way stimuli are appraised, 16 participants viewed both pleasant and unpleasant pictures and categorized them along an affective or nonaffective dimension. Results indicate that the LPP was reduced for both pleasant and unpleasant pictures when participants made nonaffective, compared with affective, judgments. These results are consistent with previous studies that have used functional neuroimaging to investigate the role of appraisal on emotional processing. The results are further discussed in terms of the utility of using the LPP to study emotion regulation. (c) 2006 APA, all rights reserved

  20. Esophageal sensation in premature human neonates: temporal relationships and implications of aerodigestive reflexes and electrocortical arousals

    PubMed Central

    Parks, Vanessa N.; Peng, Juan; Dzodzomenyo, Samuel; Fernandez, Soledad; Shaker, Reza; Splaingard, Mark

    2012-01-01

    Electrocortical arousal (ECA) as an effect of visceral provocation or of its temporal relationships with aerodigestive reflexes in premature neonates is not known. We tested the hypothesis that esophageal provocation results in both esophageal reflex responses and ECAs during sleep and that ECAs are dependent on the frequency characteristics of esophageal neuromotor responses. We defined the spatiotemporal relationship of ECAs in relation to 1) spontaneous pharyngoesophageal swallow sequences and gastroesophageal reflux (GER) events and 2) sensory-motor characteristics of esophageal reflexes. Sixteen healthy premature neonates born at 27.9 ± 3.4 wk were tested at 36.8 ± 1.9 wk postmenstrual age. Ninety-five midesophageal and 31 sham stimuli were given in sleep during concurrent manometry and videopolysomnography. With stimulus onset as reference point, we scored the response latency, frequency occurrence and duration of arousals, peristaltic reflex, and upper esophageal sphincter contractile reflex (UESCR). Changes in polysomnography-respiratory patterns and esophageal sensory-motor parameters were scored by blinded observers. Significantly (for each characteristic listed, P < 0.05), swallow sequences were associated with arousals and sleep state changes, and arousals were associated with incomplete peristalsis, response delays to lower esophageal sphincter relaxation, and prolonged esophageal clearance. GER events (73.5%) provoked arousals, and arousals were associated with response delays to peristaltic reflexes or clearance, sleep state modification, and prolonged respiratory arousal. Midesophageal stimuli (54%) provoked arousals and were associated with increased frequency, prolonged latency, prolonged response duration of peristaltic reflexes and UESCR, and increased frequency of sleep state changes and respiratory arousals. In human neonates, ECAs are provoked upon esophageal stimulation; the sensory-motor characteristics of esophageal reflexes are distinct when accompanied by arousals. Aerodigestive homeostasis is defended by multiple tiers of aerodigestive safety mechanisms, and when esophageal reflexes are delayed, cortical hypervigilance (ECAs) occurs. PMID:21852361

  1. Loss of balance during balance beam walking elicits a multifocal theta band electrocortical response

    PubMed Central

    Gwin, Joseph T.; Makeig, Scott; Ferris, Daniel P.

    2013-01-01

    Determining the neural correlates of loss of balance during walking could lead to improved clinical assessment and treatment for individuals predisposed to falls. We used high-density electroencephalography (EEG) combined with independent component analysis (ICA) to study loss of balance during human walking. We examined 26 healthy young subjects performing heel-to-toe walking on a treadmill-mounted balance beam as well as walking on the treadmill belt (both at 0.22 m/s). ICA identified clusters of electrocortical EEG sources located in or near anterior cingulate, anterior parietal, superior dorsolateral-prefrontal, and medial sensorimotor cortex that exhibited significantly larger mean spectral power in the theta band (4–7 Hz) during walking on the balance beam compared with treadmill walking. Left and right sensorimotor cortex clusters produced significantly less power in the beta band (12–30 Hz) during walking on the balance beam compared with treadmill walking. For each source cluster, we also computed a normalized mean time/frequency spectrogram time locked to the gait cycle during loss of balance (i.e., when subjects stepped off the balance beam). All clusters except the medial sensorimotor cluster exhibited a transient increase in theta band power during loss of balance. Cluster spectrograms demonstrated that the first electrocortical indication of impending loss of balance occurred in the left sensorimotor cortex at the transition from single support to double support prior to stepping off the beam. These findings provide new insight into the neural correlates of walking balance control and could aid future studies on elderly individuals and others with balance impairments. PMID:23926037

  2. Loss of balance during balance beam walking elicits a multifocal theta band electrocortical response.

    PubMed

    Sipp, Amy R; Gwin, Joseph T; Makeig, Scott; Ferris, Daniel P

    2013-11-01

    Determining the neural correlates of loss of balance during walking could lead to improved clinical assessment and treatment for individuals predisposed to falls. We used high-density electroencephalography (EEG) combined with independent component analysis (ICA) to study loss of balance during human walking. We examined 26 healthy young subjects performing heel-to-toe walking on a treadmill-mounted balance beam as well as walking on the treadmill belt (both at 0.22 m/s). ICA identified clusters of electrocortical EEG sources located in or near anterior cingulate, anterior parietal, superior dorsolateral-prefrontal, and medial sensorimotor cortex that exhibited significantly larger mean spectral power in the theta band (4-7 Hz) during walking on the balance beam compared with treadmill walking. Left and right sensorimotor cortex clusters produced significantly less power in the beta band (12-30 Hz) during walking on the balance beam compared with treadmill walking. For each source cluster, we also computed a normalized mean time/frequency spectrogram time locked to the gait cycle during loss of balance (i.e., when subjects stepped off the balance beam). All clusters except the medial sensorimotor cluster exhibited a transient increase in theta band power during loss of balance. Cluster spectrograms demonstrated that the first electrocortical indication of impending loss of balance occurred in the left sensorimotor cortex at the transition from single support to double support prior to stepping off the beam. These findings provide new insight into the neural correlates of walking balance control and could aid future studies on elderly individuals and others with balance impairments.

  3. Brain stem stimulation and the acetylcholine-evoked inhibition of neurones in the feline nucleus reticularis thalami

    PubMed Central

    Dingledine, Raymond; Kelly, J. S.

    1977-01-01

    1. In cats anaesthetized with halothane and nitrous oxide, the responses to iontophoretically applied acetylcholine (ACh) and to high-frequency stimulation of the mid-brain reticular formation (MRF) were tested on spontaneously active neurones in the nucleus reticularis thalami and underlying ventrobasal complex. 2. The initial response to MRF stimulation of 90% of the ACh-inhibited neurones found in the region of the dorsolateral nucleus reticularis was an inhibition. Conversely, the initial response of 82% of the ACh-excited neurones in the ventrobasal complex was an excitation. Neurones in the rostral pole of the nucleus reticularis were inhibited by both ACh and RMF stimulation. 3. The mean latency (and s.e. of mean) for the MRF-evoked inhibition was 13·7 ± 3·2 ms (n = 42) and that for the MRF-evoked excitation, 44.1 ± 4.2 ms (n = 35). 4. The ACh-evoked inhibitions were blocked by iontophoretic atropine, in doses that did not block amino acid-evoked inhibition. In twenty-four ACh-inhibited neurones the effect of iontophoretic atropine was tested on MRF-evoked inhibition. In all twenty-four neurones atropine had no effect on the early phase of MRF-evoked inhibition but weakly antagonized the late phase of inhibition in nine of fourteen neurones. 5. Interspike-interval histograms showed that the firing pattern of neurones in the nucleus reticularis was characterized by periods of prolonged, high-frequency bursting. Both the ACh-evoked inhibitions and the late phase of MRF-evoked inhibitions were accompanied by an increased burst activity. In contrast, iontophoretic atropine tended to suppress burst activity. 6. The possibility is discussed that electrical stimulation of the MRF activates an inhibitory cholinergic projection to the nucleus reticularis. Since neurones of the nucleus reticularis have been shown to inhibit thalamic relay cells, activation of this inhibitory pathway may play a role in MRF-evoked facilitation of thalamo-cortical relay transmission and the associated electrocortical desynchronization. PMID:915830

  4. A comparison of the electrocortical response to monetary and social reward

    PubMed Central

    Distefano, Amanda; Jackson, Felicia; Levinson, Amanda R; Infantolino, Zachary P; Jarcho, Johanna M; Nelson, Brady D

    2018-01-01

    Abstract Affective science research on reward processing has primarily focused on monetary rewards. There has been a growing interest in evaluating the neural basis of social decision-making and reward processing. The present study employed a within-subject design and compared the reward positivity (RewP), an event-related potential component that is present following favorable feedback and absent or reduced following unfavorable feedback, during monetary and social reward tasks. Specifically, 114 participants (75 females) completed a monetary reward task and a novel social reward task that were matched on trial structure, timing, and feedback stimuli in a counterbalanced order. Results indicated that the monetary and social RewP were of similar magnitude, positively correlated and demonstrated comparable psychometric properties, including reliability and dependability. Across both the monetary and social tasks, women demonstrated a greater RewP compared with men. This study provides a novel methodological approach toward examining the electrocortical response to social reward that is comparable to monetary reward. PMID:29373743

  5. Electrocortical processing of food and emotional pictures in anorexia nervosa and bulimia nervosa.

    PubMed

    Blechert, Jens; Feige, Bernd; Joos, Andreas; Zeeck, Almut; Tuschen-Caffier, Brunna

    2011-06-01

    Objective To compare the electrocortical processing of food pictures in participants with anorexia nervosa (n = 21), bulimia nervosa (n = 22), and healthy controls (HCs) (n = 32) by measuring the early posterior negativity, an event-related potential that reflects stimulus salience and selective attention. Methods We exposed these three groups to a rapid stream of high- and low-calorie food pictures, as well as standard emotional and neutral pictures. Results Event-related potentials in the time range of 220 milliseconds to 310 milliseconds on posterior electrodes differed between groups: patients with eating disorders showed facilitated processing of both high- and low-calorie food pictures relative to neutral pictures, whereas HC participants did so only for the high-calorie pictures. Subjective palatability of the pictures was rated highest by patients with anorexia nervosa, followed by the HC and bulimia nervosa groups. Conclusions Patients with eating disorders show a generalized attentional bias for food images, regardless of caloric value. This might explain the persistent preoccupation with food in these individuals.

  6. Anxiety and spatial attention moderate the electrocortical response to aversive pictures.

    PubMed

    MacNamara, Annmarie; Hajcak, Greg

    2009-11-01

    Aversive stimuli capture attention and elicit increased neural activity, as indexed by behavioral, electrocortical and hemodynamic measures; moreover, individual differences in anxiety relate to a further increased sensitivity to threatening stimuli. Evidence has been mixed, however, as to whether aversive pictures elicit increased neural response when presented in unattended spatial locations. In the current study, ERP and behavioral data were recorded from 49 participants as aversive and neutral pictures were simultaneously presented in spatially attended and unattended locations; on each trial, participants made same/different judgments about pictures presented in attended locations. Aversive images presented in unattended locations resulted in increased error rate and reaction time. The late positive potential (LPP) component of the ERP was only larger when aversive images were presented in attended locations, and this increase was positively correlated with self-reported state anxiety. Findings are discussed in regard to the sensitivity of ERP and behavioral responses to aversive distracters, and in terms of increased neural processing of threatening stimuli in anxiety.

  7. Error-Related Electrocortical Responses in 10-Year-Old Children and Young Adults

    ERIC Educational Resources Information Center

    Santesso, Diane L.; Segalowitz, Sidney J.; Schmidt, Louis A.

    2006-01-01

    Recent anatomical and electrophysiological evidence suggests that the anterior cingulate cortex (ACC) is relatively late to mature. This brain region appears to be critical for monitoring, evaluating, and adjusting ongoing behaviors. This monitoring elicits characteristic ERP components including the error-related negativity (ERN), error…

  8. Electrocortical Reactivity to Emotional Faces in Young Children and Associations with Maternal and Paternal Depression

    ERIC Educational Resources Information Center

    Kujawa, Autumn; Hajcak, Greg; Torpey, Dana; Kim, Jiyon; Klein, Daniel N.

    2012-01-01

    Background: The late positive potential (LPP) is an event-related potential component that indexes selective attention toward motivationally salient information and is sensitive to emotional stimuli. Few studies have examined the LPP in children. Depression has been associated with reduced reactivity to negative and positive emotional stimuli,…

  9. Physical Activity and Executive Control: Implications for Increased Cognitive Health during Older Adulthood

    ERIC Educational Resources Information Center

    Hillman, Charles H.; Belopolsky, Artem V.; Snook, Erin M.; Kramer, Arthur F.; McAuley, Edward

    2004-01-01

    Electrocortical and behavioral responses of low, moderate, and high physically active older adults where compared with a younger control group on neutral and incompatible conditions of a flankers task. Compared to younger adults, high and moderate active older adults exhibited increased event-related potentials component P3 amplitude for the…

  10. The Use of Electrocortical Activity to Monitor Human Decision Making

    DTIC Science & Technology

    1974-02-01

    processor’ lies in a principle i of neural organization rather than in a specific locus in the CNS. We cannot assume that activity related to the...Slov potential changes and choice RT as a function cf Ir.terctlmitlua Interval, Acta Paychoiepical 37, 173-186, 1973. Gerbrandt, L. K., Coff , W. R

  11. Love withdrawal predicts electrocortical responses to emotional faces with performance feedback: a follow-up and extension.

    PubMed

    Huffmeijer, Renske; Bakermans-Kranenburg, Marian J; Alink, Lenneke R A; van IJzendoorn, Marinus H

    2014-06-02

    Parental use of love withdrawal is thought to affect children's later psychological functioning because it creates a link between children's performance and relational consequences. In addition, recent studies have begun to show that experiences of love withdrawal also relate to the neural processing of socio-emotional information relevant to a performance-relational consequence link, and can moderate effects of oxytocin on social information processing and behavior. The current study follows-up on our previous results by attempting to confirm and extend previous findings indicating that experiences of maternal love withdrawal are related to electrocortical responses to emotional faces presented with performance feedback. More maternal love withdrawal was related to enhanced early processing of facial feedback stimuli (reflected in more positive VPP amplitudes, and confirming previous findings). However, attentional engagement with and processing of the stimuli at a later stage were diminished in those reporting higher maternal love withdrawal (reflected in less positive LPP amplitudes, and diverging from previous findings). Maternal love withdrawal affects the processing of emotional faces presented with performance feedback differently in different stages of neural processing.

  12. Factors of psychopathy and electrocortical response to emotional pictures: Further evidence for a two-process theory.

    PubMed

    Venables, Noah C; Hall, Jason R; Yancey, James R; Patrick, Christopher J

    2015-05-01

    The Two-Process theory of psychopathy posits that distinct etiological mechanisms contribute to the condition: (a) a weakness in defensive (fear) reactivity related to affective-interpersonal features, and (b) impaired cognitive-executive functioning, marked by reductions in brain responses such as P3, related to impulsive-antisocial features. The current study examined relations between psychopathy factors and electrocortical response to emotional and neutral pictures in male offenders (N = 139) assessed using the Psychopathy Checklist-Revised (PCL-R). Impulsive-antisocial features of the PCL-R (Factor 2) were associated with reduced amplitude of earlier P3 brain response to pictures regardless of valence, whereas the affective-interpersonal dimension (Factor 1) was associated specifically with reductions in late positive potential response to aversive pictures. Findings provide further support for the Two-Process theory and add to a growing body of evidence linking the impulsive-antisocial facet of psychopathy to the broader construct of externalizing proneness. Findings are discussed in terms of current initiatives directed at incorporating neuroscientific concepts into psychopathology classification. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  13. Factors of Psychopathy and Electrocortical Response to Emotional Pictures: Further Evidence for a Two-Process Theory

    PubMed Central

    Venables, Noah C.; Hall, Jason R.; Yancey, James R.; Patrick, Christopher J.

    2014-01-01

    The Two-Process theory of psychopathy posits distinct etiological mechanisms contribute to the disorder: 1) a weakness in defensive (fear) reactivity related to affective-interpersonal features, and 2) impaired cognitive-executive functioning, marked by reductions in brain responses such as P3, related to impulsive-antisocial features. The current study examined relations between psychopathy factors and electrocortical response to emotional and neutral pictures in male offenders (N=139) assessed using the Psychopathy Checklist-Revised (PCL-R). Impulsive-antisocial features of the PCL-R (Factor 2) were associated with reduced amplitude of earlier P3 brain response to pictures regardless of valence, whereas the affective-interpersonal dimension (Factor 1) was associated specifically with reductions in late positive potential response to aversive pictures. Findings provide further support for the Two-Process theory and add to a growing body of evidence linking the impulsive-antisocial facet of psychopathy to the broader construct of externalizing proneness. Findings are discussed in terms of current initiatives directed at incorporating neuroscientific concepts into psychopathology classification. PMID:25603361

  14. From speech to thought: the neuronal basis of cognitive units in non-experimental, real-life communication investigated using ECoG

    PubMed Central

    Derix, Johanna; Iljina, Olga; Weiske, Johanna; Schulze-Bonhage, Andreas; Aertsen, Ad; Ball, Tonio

    2014-01-01

    Exchange of thoughts by means of expressive speech is fundamental to human communication. However, the neuronal basis of real-life communication in general, and of verbal exchange of ideas in particular, has rarely been studied until now. Here, our aim was to establish an approach for exploring the neuronal processes related to cognitive “idea” units (IUs) in conditions of non-experimental speech production. We investigated whether such units corresponding to single, coherent chunks of speech with syntactically-defined borders, are useful to unravel the neuronal mechanisms underlying real-world human cognition. To this aim, we employed simultaneous electrocorticography (ECoG) and video recordings obtained in pre-neurosurgical diagnostics of epilepsy patients. We transcribed non-experimental, daily hospital conversations, identified IUs in transcriptions of the patients' speech, classified the obtained IUs according to a previously-proposed taxonomy focusing on memory content, and investigated the underlying neuronal activity. In each of our three subjects, we were able to collect a large number of IUs which could be assigned to different functional IU subclasses with a high inter-rater agreement. Robust IU-onset-related changes in spectral magnitude could be observed in high gamma frequencies (70–150 Hz) on the inferior lateral convexity and in the superior temporal cortex regardless of the IU content. A comparison of the topography of these responses with mouth motor and speech areas identified by electrocortical stimulation showed that IUs might be of use for extraoperative mapping of eloquent cortex (average sensitivity: 44.4%, average specificity: 91.1%). High gamma responses specific to memory-related IU subclasses were observed in the inferior parietal and prefrontal regions. IU-based analysis of ECoG recordings during non-experimental communication thus elicits topographically- and functionally-specific effects. We conclude that segmentation of spontaneous real-world speech in linguistically-motivated units is a promising strategy for elucidating the neuronal basis of mental processing during non-experimental communication. PMID:24982625

  15. Your brain on speed: cognitive performance of a spatial working memory task is not affected by walking speed

    PubMed Central

    Kline, Julia E.; Poggensee, Katherine; Ferris, Daniel P.

    2014-01-01

    When humans walk in everyday life, they typically perform a range of cognitive tasks while they are on the move. Past studies examining performance changes in dual cognitive-motor tasks during walking have produced a variety of results. These discrepancies may be related to the type of cognitive task chosen, differences in the walking speeds studied, or lack of controlling for walking speed. The goal of this study was to determine how young, healthy subjects performed a spatial working memory task over a range of walking speeds. We used high-density electroencephalography to determine if electrocortical activity mirrored changes in cognitive performance across speeds. Subjects stood (0.0 m/s) and walked (0.4, 0.8, 1.2, and 1.6 m/s) with and without performing a Brooks spatial working memory task. We hypothesized that performance of the spatial working memory task and the associated electrocortical activity would decrease significantly with walking speed. Across speeds, the spatial working memory task caused subjects to step more widely compared with walking without the task. This is typically a sign that humans are adapting their gait dynamics to increase gait stability. Several cortical areas exhibited power fluctuations time-locked to memory encoding during the cognitive task. In the somatosensory association cortex, alpha power increased prior to stimulus presentation and decreased during memory encoding. There were small significant reductions in theta power in the right superior parietal lobule and the posterior cingulate cortex around memory encoding. However, the subjects did not show a significant change in cognitive task performance or electrocortical activity with walking speed. These findings indicate that in young, healthy subjects walking speed does not affect performance of a spatial working memory task. These subjects can devote adequate cortical resources to spatial cognition when needed, regardless of walking speed. PMID:24847239

  16. Electrocortical correlates of human level-ground, slope, and stair walking

    PubMed Central

    Nakagome, Sho; Zhu, Fangshi; Contreras-Vidal, Jose L.

    2017-01-01

    This study investigated electrocortical dynamics of human walking across different unconstrained walking conditions (i.e., level ground (LW), ramp ascent (RA), and stair ascent (SA)). Non-invasive active-electrode scalp electroencephalography (EEG) signals were recorded and a systematic EEG processing method was implemented to reduce artifacts. Source localization combined with independent component analysis and k-means clustering revealed the involvement of four clusters in the brain during the walking tasks: Left and Right Occipital Lobe (LOL, ROL), Posterior Parietal Cortex (PPC), and Central Sensorimotor Cortex (SMC). Results showed that the changes of spectral power in the PPC and SMC clusters were associated with the level of motor task demands. Specifically, we observed α and β suppression at the beginning of the gait cycle in both SA and RA walking (relative to LW) in the SMC. Additionally, we observed significant β rebound (synchronization) at the initial swing phase of the gait cycle, which may be indicative of active cortical signaling involved in maintaining the current locomotor state. An increase of low γ band power in this cluster was also found in SA walking. In the PPC, the low γ band power increased with the level of task demands (from LW to RA and SA). Additionally, our results provide evidence that electrocortical amplitude modulations (relative to average gait cycle) are correlated with the level of difficulty in locomotion tasks. Specifically, the modulations in the PPC shifted to higher frequency bands when the subjects walked in RA and SA conditions. Moreover, low γ modulations in the central sensorimotor area were observed in the LW walking and shifted to lower frequency bands in RA and SA walking. These findings extend our understanding of cortical dynamics of human walking at different level of locomotion task demands and reinforces the growing body of literature supporting a shared-control paradigm between spinal and cortical networks during locomotion. PMID:29190704

  17. Electrocortical Reflections of Face and Gaze Processing in Children with Pervasive Developmental Disorder

    ERIC Educational Resources Information Center

    Kemner, C.; Schuller, A-M.; Van Engeland, H.

    2006-01-01

    Background: Children with pervasive developmental disorder (PDD) show behavioral abnormalities in gaze and face processing, but recent studies have indicated that normal activation of face-specific brain areas in response to faces is possible in this group. It is not clear whether the brain activity related to gaze processing is also normal in…

  18. Impaired visuocortical discrimination learning of socially conditioned stimuli in social anxiety

    PubMed Central

    Mühlberger, Andreas; Pauli, Paul; Wieser, Matthias J.

    2015-01-01

    In search of causative factors of social anxiety disorder (SAD), classical conditioning has been discussed as a potential trigger mechanism for many years. Recent findings suggest that the social relevance of the unconditioned stimulus (US) might play a major role in learning theories of SAD. Thus, this study applied a social conditioning paradigm with disorder-relevant US to examine the electrocortical correlates of affective learning. Twenty-four high socially anxious (HSA) and 23 age- and gender-matched low socially anxious (LSA) subjects were conditioned to 3 different faces flickering at a frequency of 15 Hz which were paired with auditory insults, compliments or neutral comments (US). The face-evoked electrocortical response was measured via steady-state visually evoked potentials and subjective measures of valence and arousal were obtained. Results revealed a significant interaction of social anxiety and conditioning, with LSA showing highest cortical activity to faces paired with insults and lowest activity to faces paired with compliments, while HSA did not differentiate between faces. No group differences were discovered in the affective ratings. The findings indicate a potentially impaired ability of HSA to discriminate between relevant and irrelevant social stimuli, which may constitute a perpetuating factor of SAD. PMID:25338634

  19. Mycobacterium paratuberculosis, Mycobacterium smegmatis, and lipopolysaccharide induce different transcriptional and post-transcriptional regulation of the IRG1 gene in murine macrophages.

    PubMed

    Basler, Tina; Jeckstadt, Sabine; Valentin-Weigand, Peter; Goethe, Ralph

    2006-03-01

    Mycobacterium avium subspecies paratuberculosis (MAP) causes a chronic enteritis in ruminants. In addition, MAP is presently the most favored pathogen linked to Crohn's disease. In this study, we were interested in dissecting the molecular mechanisms of macrophage activation or deactivation after infection with MAP. By subtractive hybridization of cDNAs, we identified the immune-responsive gene 1 (IRG1), which was expressed substantially higher in lipopolysaccharide (LPS)-stimulated than in MAP-infected murine macrophage cell lines. A nuclear run-on transcription assay revealed that the IRG1 gene was activated transcriptionally in LPS-stimulated and MAP-infected macrophages with higher expression in LPS-stimulated cells. Analysis of post-transcriptional regulation demonstrated that IRG1 mRNA stability was increased in LPS-stimulated but not in MAP-infected macrophages. Furthermore, IRG1 gene expression of macrophages infected with the nonpathogenic Mycobacterium smegmatis differed from those of LPS-stimulated and MAP-infected macrophages. At 2 h postinfection, M. smegmatis-induced IRG1 gene expression was as low as in MAP-infected, and 8 h postinfection, it increased nearly to the level in LPS-stimulated macrophages. Transient transfection experiments revealed similar IRG1 promoter activities in MAP- and M. smegmatis-infected cells. Northern analysis demonstrated increased IRG1 mRNA stability in M. smegmatis-infected macrophages. IRG1 mRNA stabilization was p38 mitogen-activated protein kinase-independent. Inhibition of protein synthesis revealed that constitutively expressed factors seemed to be responsible for IRG1 mRNA destabilization. Thus, our data demonstrate that transcriptional and post-transcriptional mechanisms are responsible for a differential IRG1 gene expression in murine macrophages treated with LPS, MAP, and M. smegmatis.

  20. Electro-cortical implicit race bias does not vary with participants’ race or sex

    PubMed Central

    Mallan, Kimberley M.; Martin, Frances H.; Terry, Deborah J.; Smith, Joanne R.

    2011-01-01

    Earlier research found evidence for electro-cortical race bias towards black target faces in white American participants irrespective of the task relevance of race. The present study investigated whether an implicit race bias generalizes across cultural contexts and racial in- and out-groups. An Australian sample of 56 Chinese and Caucasian males and females completed four oddball tasks that required sex judgements for pictures of male and female Chinese and Caucasian posers. The nature of the background (across task) and of the deviant stimuli (within task) was fully counterbalanced. Event-related potentials (ERPs) to deviant stimuli recorded from three midline sites were quantified in terms of mean amplitude for four components: N1, P2, N2 and a late positive complex (LPC; 350–700 ms). Deviants that differed from the backgrounds in sex or race elicited enhanced LPC activity. These differences were not modulated by participant race or sex. The current results replicate earlier reports of effects of poser race relative to background race on the LPC component of the ERP waveform. In addition, they indicate that an implicit race bias occurs regardless of participant’s or poser’s race and is not confined to a particular cultural context. PMID:21097957

  1. Intra-operative multi-site stimulation: Expanding methodology for cortical brain mapping of language functions

    PubMed Central

    Korn, Akiva; Kirschner, Adi; Perry, Daniella; Hendler, Talma; Ram, Zvi

    2017-01-01

    Direct cortical stimulation (DCS) is considered the gold-standard for functional cortical mapping during awake surgery for brain tumor resection. DCS is performed by stimulating one local cortical area at a time. We present a feasibility study using an intra-operative technique aimed at improving our ability to map brain functions which rely on activity in distributed cortical regions. Following standard DCS, Multi-Site Stimulation (MSS) was performed in 15 patients by applying simultaneous cortical stimulations at multiple locations. Language functioning was chosen as a case-cognitive domain due to its relatively well-known cortical organization. MSS, performed at sites that did not produce disruption when applied in a single stimulation point, revealed additional language dysfunction in 73% of the patients. Functional regions identified by this technique were presumed to be significant to language circuitry and were spared during surgery. No new neurological deficits were observed in any of the patients following surgery. Though the neuro-electrical effects of MSS need further investigation, this feasibility study may provide a first step towards sophistication of intra-operative cortical mapping. PMID:28700619

  2. Intra-operative multi-site stimulation: Expanding methodology for cortical brain mapping of language functions.

    PubMed

    Gonen, Tal; Gazit, Tomer; Korn, Akiva; Kirschner, Adi; Perry, Daniella; Hendler, Talma; Ram, Zvi

    2017-01-01

    Direct cortical stimulation (DCS) is considered the gold-standard for functional cortical mapping during awake surgery for brain tumor resection. DCS is performed by stimulating one local cortical area at a time. We present a feasibility study using an intra-operative technique aimed at improving our ability to map brain functions which rely on activity in distributed cortical regions. Following standard DCS, Multi-Site Stimulation (MSS) was performed in 15 patients by applying simultaneous cortical stimulations at multiple locations. Language functioning was chosen as a case-cognitive domain due to its relatively well-known cortical organization. MSS, performed at sites that did not produce disruption when applied in a single stimulation point, revealed additional language dysfunction in 73% of the patients. Functional regions identified by this technique were presumed to be significant to language circuitry and were spared during surgery. No new neurological deficits were observed in any of the patients following surgery. Though the neuro-electrical effects of MSS need further investigation, this feasibility study may provide a first step towards sophistication of intra-operative cortical mapping.

  3. A Multi-Channel, Flex-Rigid ECoG Microelectrode Array for Visual Cortical Interfacing

    PubMed Central

    Tolstosheeva, Elena; Gordillo-González, Víctor; Biefeld, Volker; Kempen, Ludger; Mandon, Sunita; Kreiter, Andreas K.; Lang, Walter

    2015-01-01

    High-density electrocortical (ECoG) microelectrode arrays are promising signal-acquisition platforms for brain-computer interfaces envisioned, e.g., as high-performance communication solutions for paralyzed persons. We propose a multi-channel microelectrode array capable of recording ECoG field potentials with high spatial resolution. The proposed array is of a 150 mm2 total recording area; it has 124 circular electrodes (100, 300 and 500 μm in diameter) situated on the edges of concentric hexagons (min. 0.8 mm interdistance) and a skull-facing reference electrode (2.5 mm2 surface area). The array is processed as a free-standing device to enable monolithic integration of a rigid interposer, designed for soldering of fine-pitch SMD-connectors on a minimal assembly area. Electrochemical characterization revealed distinct impedance spectral bands for the 100, 300 and 500 μm-type electrodes, and for the array's own reference. Epidural recordings from the primary visual cortex (V1) of an awake Rhesus macaque showed natural electrophysiological signals and clear responses to standard visual stimulation. The ECoG electrodes of larger surface area recorded signals with greater spectral power in the gamma band, while the skull-facing reference electrode provided higher average gamma power spectral density (γPSD) than the common average referencing technique. PMID:25569757

  4. Women's clitoris, vagina and cervix mapped on the sensory cortex: fMRI evidence

    PubMed Central

    Komisaruk, Barry R.; Wise, Nan; Frangos, Eleni; Liu, Wen-Ching; Allen, Kachina; Brody, Stuart

    2011-01-01

    Introduction The projection of vagina, uterine cervix, and nipple to the sensory cortex in humans has not been reported. Aims To map the sensory cortical fields of the clitoris, vagina, cervix and nipple, toward an elucidation of the neural systems underlying sexual response. Methods Using functional Magnetic Resonance Imaging (fMRI) we mapped sensory cortical responses to clitoral, vaginal, cervical, and nipple self-stimulation. For points of reference on the homunculus, we also mapped responses to the thumb and great toe (hallux) stimulation. Main Outcome Measures fMRI of brain regions activated by the various sensory stimuli. Results Clitoral, vaginal, and cervical self-stimulation activate differentiable sensory cortical regions, all clustered in the medial cortex (medial paracentral lobule). Nipple self-stimulation activated the genital sensory cortex (as well as the thoracic) region of the homuncular map. Conclusion The genital sensory cortex, identified in the classical Penfield homunculus based on electrical stimulation of the brain only in men, was confirmed for the first time in the literature by the present study in women, applying clitoral, vaginal, and cervical self-stimulation, and observing their regional brain responses using fMRI. Vaginal, clitoral, and cervical regions of activation were differentiable, consistent with innervation by different afferent nerves and different behavioral correlates. Activation of the genital sensory cortex by nipple self-stimulation was unexpected, but suggests a neurological basis for women’s reports of its erotogenic quality. PMID:21797981

  5. Genetic activation, inactivation and deletion reveal a limited and nuanced role for somatostatin-containing basal forebrain neurons in behavioral state control.

    PubMed

    Anaclet, Christelle; De Luca, Roberto; Venner, Anne; Malyshevskaya, Olga; Lazarus, Michael; Arrigoni, Elda; Fuller, Patrick M

    2018-05-07

    Recent studies have identified an especially important role for basal forebrain GABAergic (BF VGAT ) neurons in the regulation of behavioral waking and fast cortical rhythms associated with cognition. However, BF VGAT neurons comprise several neurochemically and anatomically distinct sub-populations, including parvalbumin- and somatostatin-containing BF VGAT neurons (BF Parv and BF SOM ), and it was recently reported that optogenetic activation of BF SOM neurons increases the probability of a wakefulness to non-rapid-eye movement (NREM) sleep transition when stimulated during the animal's rest period. This finding was unexpected given that most BF SOM neurons are not NREM sleep active and that central administration of the synthetic SOM analog, octreotide, suppresses NREM sleep or increases REM sleep. Here we employed a combination of genetically-driven chemogenetic and optogenetic activation, chemogenetic inhibition and ablation approaches to further explore the in vivo role of BF SOM neurons in arousal control. Our findings indicate that acute activation or inhibition of BF SOM neurons is neither wakefulness- nor NREM sleep-promoting, is without significant effect on the EEG, and that chronic loss of these neurons is without effect on total 24h sleep amounts, although a small but significant increase in waking was observed in the lesioned mice during the early active period. Our in vitro cell recordings further reveal electrophysiological heterogeneity in BF SOM neurons, specifically suggesting at least two distinct sub-populations. Taken together our data support the more nuanced view that BF SOM are electrically heterogeneous and are not NREM sleep- or wake-promoting per se , but may exert, in particular during the early active period, a modest inhibitory influence on arousal circuitry. SIGNIFICANCE STATEMENT The cellular basal forebrain (BF) is a highly complex area of the brain that is implicated in a wide-range of higher-level neurobiological processes, including regulating and maintaining normal levels of electrocortical and behavioral arousal. The respective in vivo roles of BF cell populations and their neurotransmitter systems in the regulation of electrocortical and behavioral arousal remains incompletely understood. Here we seek to define the neurobiological contribution of GABAergic somatostanin-containing BF neurons to arousal control. Understanding the respective contribution of BF cell populations to arousal control may provide critical insight into the pathogenesis of a host of neuropsychiatric and neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, schizophrenia and the cognitive impairments of normal aging. Copyright © 2018 the authors.

  6. Parietotemporal Stimulation Affects Acquisition of Novel Grapheme-Phoneme Mappings in Adult Readers

    PubMed Central

    Younger, Jessica W.; Booth, James R.

    2018-01-01

    Neuroimaging work from developmental and reading intervention research has suggested a cause of reading failure may be lack of engagement of parietotemporal cortex during initial acquisition of grapheme-phoneme (letter-sound) mappings. Parietotemporal activation increases following grapheme-phoneme learning and successful reading intervention. Further, stimulation of parietotemporal cortex improves reading skill in lower ability adults. However, it is unclear whether these improvements following stimulation are due to enhanced grapheme-phoneme mapping abilities. To test this hypothesis, we used transcranial direct current stimulation (tDCS) to manipulate parietotemporal function in adult readers as they learned a novel artificial orthography with new grapheme-phoneme mappings. Participants received real or sham stimulation to the left inferior parietal lobe (L IPL) for 20 min before training. They received explicit training over the course of 3 days on 10 novel words each day. Learning of the artificial orthography was assessed at a pre-training baseline session, the end of each of the three training sessions, an immediate post-training session and a delayed post-training session about 4 weeks after training. Stimulation interacted with baseline reading skill to affect learning of trained words and transfer to untrained words. Lower skill readers showed better acquisition, whereas higher skill readers showed worse acquisition, when training was paired with real stimulation, as compared to readers who received sham stimulation. However, readers of all skill levels showed better maintenance of trained material following parietotemporal stimulation, indicating a differential effect of stimulation on initial learning and consolidation. Overall, these results indicate that parietotemporal stimulation can enhance learning of new grapheme-phoneme relationships in readers with lower reading skill. Yet, while parietotemporal function is critical to new learning, its role in continued reading improvement likely changes as readers progress in skill. PMID:29628882

  7. Angiotensin II regulation of neuromodulation: downstream signaling mechanism from activation of mitogen-activated protein kinase.

    PubMed

    Lu, D; Yang, H; Raizada, M K

    1996-12-01

    Angiotensin II (Ang II) stimulates expression of tyrosine hydroxylase and norepinephrine transporter genes in brain neurons; however, the signal-transduction mechanism is not clearly defined. This study was conducted to determine the involvement of the mitogen-activated protein (MAP) kinase signaling pathway in Ang II stimulation of these genes. MAP kinase was localized in the perinuclear region of the neuronal soma. Ang II caused activation of MAP kinase and its subsequent translocation from the cytoplasmic to nuclear compartment, both effects being mediated by AT1 receptor subtype. Ang II also stimulated SRE- and AP1-binding activities and fos gene expression and its translocation in a MAP kinase-dependent process. These observations are the first demonstration of a downstream signaling pathway involving MAP kinase in Ang II-mediated neuromodulation in noradrenergic neurons.

  8. Macroscopic brain dynamics during verbal and pictorial processing of affective stimuli.

    PubMed

    Keil, Andreas

    2006-01-01

    Emotions can be viewed as action dispositions, preparing an individual to act efficiently and successfully in situations of behavioral relevance. To initiate optimized behavior, it is essential to accurately process the perceptual elements indicative of emotional relevance. The present chapter discusses effects of affective content on neural and behavioral parameters of perception, across different information channels. Electrocortical data are presented from studies examining affective perception with pictures and words in different task contexts. As a main result, these data suggest that sensory facilitation has an important role in affective processing. Affective pictures appear to facilitate perception as a function of emotional arousal at multiple levels of visual analysis. If the discrimination between affectively arousing vs. nonarousing content relies on fine-grained differences, amplification of the cortical representation may occur as early as 60-90 ms after stimulus onset. Affectively arousing information as conveyed via visual verbal channels was not subject to such very early enhancement. However, electrocortical indices of lexical access and/or activation of semantic networks showed that affectively arousing content may enhance the formation of semantic representations during word encoding. It can be concluded that affective arousal is associated with activation of widespread networks, which act to optimize sensory processing. On the basis of prioritized sensory analysis for affectively relevant stimuli, subsequent steps such as working memory, motor preparation, and action may be adjusted to meet the adaptive requirements of the situation perceived.

  9. Changes in cortical activity measured with EEG during a high-intensity cycling exercise

    PubMed Central

    Cortese, Filomeno; Maurer, Christian; Baltich, Jennifer; Protzner, Andrea B.; Nigg, Benno M.

    2015-01-01

    This study investigated the effects of a high-intensity cycling exercise on changes in spectral and temporal aspects of electroencephalography (EEG) measured from 10 experienced cyclists. Cyclists performed a maximum aerobic power test on the first testing day followed by a time-to-exhaustion trial at 85% of their maximum power output on 2 subsequent days that were separated by ∼48 h. EEG was recorded using a 64-channel system at 500 Hz. Independent component (IC) analysis parsed the EEG scalp data into maximal ICs. An equivalent current dipole model was calculated for each IC, and results were clustered across subjects. A time-frequency analysis of the identified electrocortical clusters was performed to investigate the magnitude and timing of event-related spectral perturbations. Significant changes (P < 0.05) in electrocortical activity were found in frontal, supplementary motor and parietal areas of the cortex. Overall, there was a significant increase in EEG power as fatigue developed throughout the exercise. The strongest increase was found in the frontal area of the cortex. The timing of event-related desynchronization within the supplementary motor area corresponds with the onset of force production and the transition from flexion to extension in the pedaling cycle. The results indicate an involvement of the cerebral cortex during the pedaling task that most likely involves executive control function, as well as motor planning and execution. PMID:26538604

  10. Aiming routines and their electrocortical concomitants among competitive rifle shooters.

    PubMed

    Konttinen, N; Landers, D M; Lyytinen, H

    2000-06-01

    The present study focused on an examination of competitive shooters' aiming process during a rifle shooting task. The barrel movements of the rifle, as detected by a laser system during the last 1000-ms time period preceding the triggering, were recorded from six elite and six pre-elite shooters. Electrocortical slow potentials (SPs) from frontal (Fz), centro-lateral (C3, C4), and occipital (Oz) brain areas were recorded to get an additional insight into the underlying covert processing. The results suggested that the elite shooters did not pull the trigger until they reached a sustained rifle position. In the pre-elite shooters the rifle appeared to be in a less stable position, and their strategy was to take advantage of the first appropriate moment of steadiness without a sustained rifle position so they could pull the trigger. The observed pre-trigger readiness potential (RP) shifts at Fz and Oz were more positive among the elite shooters relative to the pre-elite shooters, reflecting their more pronounced covert effort, rather than increasing preparedness for the trigger pull. The present study lends support for the view that a successful aiming strategy is mainly based on sustained rifle balancing. With regards to the brain slow potentials, it can be concluded that the RP shift does not specifically reflect the preparation for the trigger pull.

  11. Combined noninvasive language mapping by navigated transcranial magnetic stimulation and functional MRI and its comparison with direct cortical stimulation.

    PubMed

    Ille, Sebastian; Sollmann, Nico; Hauck, Theresa; Maurer, Stefanie; Tanigawa, Noriko; Obermueller, Thomas; Negwer, Chiara; Droese, Doris; Zimmer, Claus; Meyer, Bernhard; Ringel, Florian; Krieg, Sandro M

    2015-07-01

    Repetitive navigated transcranial magnetic stimulation (rTMS) is now increasingly used for preoperative language mapping in patients with lesions in language-related areas of the brain. Yet its correlation with intraoperative direct cortical stimulation (DCS) has to be improved. To increase rTMS's specificity and positive predictive value, the authors aim to provide thresholds for rTMS's positive language areas. Moreover, they propose a protocol for combining rTMS with functional MRI (fMRI) to combine the strength of both methods. The authors performed multimodal language mapping in 35 patients with left-sided perisylvian lesions by using rTMS, fMRI, and DCS. The rTMS mappings were conducted with a picture-to-trigger interval (PTI, time between stimulus presentation and stimulation onset) of either 0 or 300 msec. The error rates (ERs; that is, the number of errors per number of stimulations) were calculated for each region of the cortical parcellation system (CPS). Subsequently, the rTMS mappings were analyzed through different error rate thresholds (ERT; that is, the ER at which a CPS region was defined as language positive in terms of rTMS), and the 2-out-of-3 rule (a stimulation site was defined as language positive in terms of rTMS if at least 2 out of 3 stimulations caused an error). As a second step, the authors combined the results of fMRI and rTMS in a predefined protocol of combined noninvasive mapping. To validate this noninvasive protocol, they correlated its results to DCS during awake surgery. The analysis by different rTMS ERTs obtained the highest correlation regarding sensitivity and a low rate of false positives for the ERTs of 15%, 20%, 25%, and the 2-out-of-3 rule. However, when comparing the combined fMRI and rTMS results with DCS, the authors observed an overall specificity of 83%, a positive predictive value of 51%, a sensitivity of 98%, and a negative predictive value of 95%. In comparison with fMRI, rTMS is a more sensitive but less specific tool for preoperative language mapping than DCS. Moreover, rTMS is most reliable when using ERTs of 15%, 20%, 25%, or the 2-out-of-3 rule and a PTI of 0 msec. Furthermore, the combination of fMRI and rTMS leads to a higher correlation to DCS than both techniques alone, and the presented protocols for combined noninvasive language mapping might play a supportive role in the language-mapping assessment prior to the gold-standard intraoperative DCS.

  12. Results on the spatial resolution of repetitive transcranial magnetic stimulation for cortical language mapping during object naming in healthy subjects.

    PubMed

    Sollmann, Nico; Hauck, Theresa; Tussis, Lorena; Ille, Sebastian; Maurer, Stefanie; Boeckh-Behrens, Tobias; Ringel, Florian; Meyer, Bernhard; Krieg, Sandro M

    2016-10-24

    The spatial resolution of repetitive navigated transcranial magnetic stimulation (rTMS) for language mapping is largely unknown. Thus, to determine a minimum spatial resolution of rTMS for language mapping, we evaluated the mapping sessions derived from 19 healthy volunteers for cortical hotspots of no-response errors. Then, the distances between hotspots (stimulation points with a high error rate) and adjacent mapping points (stimulation points with low error rates) were evaluated. Mean distance values of 13.8 ± 6.4 mm (from hotspots to ventral points, range 0.7-30.7 mm), 10.8 ± 4.8 mm (from hotspots to dorsal points, range 2.0-26.5 mm), 16.6 ± 4.8 mm (from hotspots to apical points, range 0.9-27.5 mm), and 13.8 ± 4.3 mm (from hotspots to caudal points, range 2.0-24.2 mm) were measured. According to the results, the minimum spatial resolution of rTMS should principally allow for the identification of a particular gyrus, and according to the literature, it is in good accordance with the spatial resolution of direct cortical stimulation (DCS). Since measurement was performed between hotspots and adjacent mapping points and not on a finer-grained basis, we only refer to a minimum spatial resolution. Furthermore, refinement of our results within the scope of a prospective study combining rTMS and DCS for resolution measurement during language mapping should be the next step.

  13. Linking physics with physiology in TMS: a sphere field model to determine the cortical stimulation site in TMS.

    PubMed

    Thielscher, Axel; Kammer, Thomas

    2002-11-01

    A fundamental problem of transcranial magnetic stimulation (TMS) is determining the site and size of the stimulated cortical area. In the motor system, the most common procedure for this is motor mapping. The obtained two-dimensional distribution of coil positions with associated muscle responses is used to calculate a center of gravity on the skull. However, even in motor mapping the exact stimulation site on the cortex is not known and only rough estimates of its size are possible. We report a new method which combines physiological measurements with a physical model used to predict the electric field induced by the TMS coil. In four subjects motor responses in a small hand muscle were mapped with 9-13 stimulation sites at the head perpendicular to the central sulcus in order to keep the induced current direction constant in a given cortical region of interest. Input-output functions from these head locations were used to determine stimulator intensities that elicit half-maximal muscle responses. Based on these stimulator intensities the field distribution on the individual cortical surface was calculated as rendered from anatomical MR data. The region on the cortical surface in which the different stimulation sites produced the same electric field strength (minimal variance, 4.2 +/- 0.8%.) was determined as the most likely stimulation site on the cortex. In all subjects, it was located at the lateral part of the hand knob in the motor cortex. Comparisons of model calculations with the solutions obtained in this manner reveal that the stimulated cortex area innervating the target muscle is substantially smaller than the size of the electric field induced by the coil. Our results help to resolve fundamental questions raised by motor mapping studies as well as motor threshold measurements.

  14. MAP kinase-independent signaling in angiotensin II regulation of neuromodulation in SHR neurons.

    PubMed

    Yang, H; Raizada, M K

    1998-09-01

    Angiotensin II (Ang II), via its interaction with the angiotensin type 1 (AT1) receptor subtype, causes enhanced stimulation of norepinephrine (NE) neuromodulation. This involves increased transcription of NE transporter, tyrosine hydroxylase, and dopamine ss-hydroxylase genes in Wistar-Kyoto rat (WKY) brain neurons. AT1 receptor-mediated regulation of certain signaling events (such as activation of the Ras-Raf-1-mitogen activated protein (MAP) kinase signaling pathway, nuclear translocation of transcription factors such as Fos and Jun, and the interactions of these factors with AP-1 binding sites) is involved in this NE neuromodulation (Lu et al. J Cell Biol. 1996;135:1609-1617). The aim of this study was to compare the signal transduction mechanism of Ang II regulation of NE neuromodulation in WKY and spontaneously hypertensive rat (SHR) brain neurons, in view of the fact that AT1 receptor expression and Ang II stimulation of NE neuromodulation are higher in SHR neurons compared with WKY neurons. Despite this hyperactivity, Ang II stimulation of Ras, Raf-1, and MAP kinase activities was comparable between the neurons from WKY and SHR. Similarly, central injections of Ang II caused a comparable stimulation of MAP kinase in the hypothalamic and brain stem areas of adult WKY and SHR. Inhibition of MAP kinase by either an MAP kinase kinase inhibitor (PD98059) or an MAP kinase antisense oligonucleotide completely attenuated the stimulatory effects of Ang II on [3H]-NE uptake, NE transporter mRNA, and tyrosine hydroxylase mRNA levels in WKY neurons. These treatments resulted in only 43% to 50% inhibition of [3H]-NE uptake and NE transporter and tyrosine hydroxylase mRNAs in SHR neurons. Thus, Ang II stimulation of NE neuromodulation was completely blocked by MAP kinase inhibition in WKY neurons and only partially blocked in the SHR neurons. These observations suggest the presence of an additional signal transduction pathway involved in NE neuromodulation in SHR neurons that is independent of the MAP kinase pathway.

  15. Manipulating central nervous mechanisms of food intake and body weight regulation by intranasal administration of neuropeptides in man.

    PubMed

    Hallschmid, Manfred; Benedict, Christian; Born, Jan; Fehm, Horst-Lorenz; Kern, Werner

    2004-10-30

    Maintaining a stable body weight set-point is assumed to rely on a homeostatic central nervous system (CNS) regulation of body fat with the particular involvement of hypothalamic pathways. The peripheral adiposity signals insulin and leptin convey information on the amount of energy stored as body fat to the arcuate nucleus of the hypothalamus, where anabolic/orexigenic and catabolic/anorexigenic pathways interact to regulate food intake and energy expenditure. One of the most prominent orexigenic messengers is neuropeptide Y (NPY), whereas melanocortins, including alpha-melanocyte-stimulating hormone (alpha-MSH), are essential for inducing anorexigenic effects. The melanocortin receptor 4 (MC4-R) plays the most important role in mediating catabolic effects of alpha-MSH. In this review, we present a series of own studies on NPY, insulin and MSH/ACTH4-10, an MC4-R agonist. The studies were all based on the intranasal route of administration which enables a direct access of the peptides to hypothalamic functions. NPY acutely attenuated electrocortical signs of meal-related satiety. Prolonged intranasal administration of insulin as well as of MSH induced weight loss in healthy human subjects. However, overweight subjects did not lose body fat after MSH administration. The results corroborate in humans the significance of all three messengers for the central nervous regulation of adiposity and might contribute to the future development of medical strategies against body-weight-related disorders.

  16. Atlas-Independent, Electrophysiological Mapping of the Optimal Locus of Subthalamic Deep Brain Stimulation for the Motor Symptoms of Parkinson Disease.

    PubMed

    Conrad, Erin C; Mossner, James M; Chou, Kelvin L; Patil, Parag G

    2018-05-23

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) improves motor symptoms of Parkinson disease (PD). However, motor outcomes can be variable, perhaps due to inconsistent positioning of the active contact relative to an unknown optimal locus of stimulation. Here, we determine the optimal locus of STN stimulation in a geometrically unconstrained, mathematically precise, and atlas-independent manner, using Unified Parkinson Disease Rating Scale (UPDRS) motor outcomes and an electrophysiological neuronal stimulation model. In 20 patients with PD, we mapped motor improvement to active electrode location, relative to the individual, directly MRI-visualized STN. Our analysis included a novel, unconstrained and computational electrical-field model of neuronal activation to estimate the optimal locus of DBS. We mapped the optimal locus to a tightly defined ovoid region 0.49 mm lateral, 0.88 mm posterior, and 2.63 mm dorsal to the anatomical midpoint of the STN. On average, this locus is 11.75 lateral, 1.84 mm posterior, and 1.08 mm ventral to the mid-commissural point. Our novel, atlas-independent method reveals a single, ovoid optimal locus of stimulation in STN DBS for PD. The methodology, here applied to UPDRS and PD, is generalizable to atlas-independent mapping of other motor and non-motor effects of DBS. © 2018 S. Karger AG, Basel.

  17. Mitogen-Activated Protein Kinase 8 (MAP3K8) Mediates the Signaling Pathway of Estradiol Stimulating Progesterone Production Through G Protein-Coupled Receptor 30 (GPR30) in Mouse Corpus Luteum.

    PubMed

    Liu, Ying; Li, Yueqin; Zhang, Di; Liu, Jiali; Gou, Kemian; Cui, Sheng

    2015-05-01

    The corpus luteum (CL) is a transient endocrine gland developed from the ovulated follicles, and the most important function is to synthesize and secrete progesterone (P(4)), a key hormone to maintain normal pregnancy and estrous cycle in most mammals. It is known that estrogen has a vital role in stimulating P(4) synthesis in CL, but it still remains unclear about the mechanism of estradiol (E(2)) regulating P(4) production in CL. Our results here first show that all of the CL cells express MAPK 8 (MAP3K8), and the MAP3K8 level is much higher at the midstage than at the early and late stages during CL development. The further functional studies show that the forced inhibition of endogenous MAP3K8 by using MAP3K8 small interfering RNA and MAP3K8 signaling inhibitor (MAP3K8i) in the luteal cells significantly block the P(4) synthesis and neutralize the enhancing effect of E(2) on P(4) production in the CL. In addition, our results here demonstrate that the stimulating effect of E(2) on P(4) synthesis relies on the estrogen no-classical protein-coupled receptor 30, and MAP3K8 is involved in mediating the protein-coupled receptor 30signaling of E(2) affecting P(4) synthesis via stimulating ERK phosphorylation. These novel findings are critical for our understanding the ovary physiology and pathological mechanism.

  18. Language mapping with navigated transcranial magnetic stimulation in pediatric and adult patients undergoing epilepsy surgery: Comparison with extraoperative direct cortical stimulation.

    PubMed

    Lehtinen, Henri; Mäkelä, Jyrki P; Mäkelä, Teemu; Lioumis, Pantelis; Metsähonkala, Liisa; Hokkanen, Laura; Wilenius, Juha; Gaily, Eija

    2018-06-01

    Navigated transcranial magnetic stimulation (nTMS) is becoming increasingly popular in noninvasive preoperative language mapping, as its results correlate well enough with those obtained by direct cortical stimulation (DCS) during awake surgery in adult patients with tumor. Reports in the context of epilepsy surgery or extraoperative DCS in adults are, however, sparse, and validation of nTMS with DCS in children is lacking. Furthermore, little is known about the risk of inducing epileptic seizures with nTMS in pediatric epilepsy patients. We provide the largest validation study to date in an epilepsy surgery population. We compared language mapping with nTMS and extraoperative DCS in 20 epilepsy surgery patients (age range 9-32 years; 14 children and adolescents). In comparison with DCS, sensitivity of nTMS was 68%, specificity 76%, positive predictive value 27%, and negative predictive value 95%. Age, location of ictal-onset zone near or within DCS-mapped language areas or severity of cognitive deficits had no significant effect on these values. None of our patients had seizures during nTMS. Our study suggests that nTMS language mapping is clinically useful and safe in epilepsy surgery patients, including school-aged children and patients with extensive cognitive dysfunction. Similar to in tumor surgery, mapping results in the frontal region are most reliable. False negative findings may be slightly more likely in epilepsy than in tumor surgery patients. Mapping results should always be verified by other methods in individual patients.

  19. Electrocortical activity distinguishes between uphill and level walking in humans.

    PubMed

    Bradford, J Cortney; Lukos, Jamie R; Ferris, Daniel P

    2016-02-01

    The objective of this study was to determine if electrocortical activity is different between walking on an incline compared with level surface. Subjects walked on a treadmill at 0% and 15% grades for 30 min while we recorded electroencephalography (EEG). We used independent component (IC) analysis to parse EEG signals into maximally independent sources and then computed dipole estimations for each IC. We clustered cortical source ICs and analyzed event-related spectral perturbations synchronized to gait events. Theta power fluctuated across the gait cycle for both conditions, but was greater during incline walking in the anterior cingulate, sensorimotor and posterior parietal clusters. We found greater gamma power during level walking in the left sensorimotor and anterior cingulate clusters. We also found distinct alpha and beta fluctuations, depending on the phase of the gait cycle for the left and right sensorimotor cortices, indicating cortical lateralization for both walking conditions. We validated the results by isolating movement artifact. We found that the frequency activation patterns of the artifact were different than the actual EEG data, providing evidence that the differences between walking conditions were cortically driven rather than a residual artifact of the experiment. These findings suggest that the locomotor pattern adjustments necessary to walk on an incline compared with level surface may require supraspinal input, especially from the left sensorimotor cortex, anterior cingulate, and posterior parietal areas. These results are a promising step toward the use of EEG as a feed-forward control signal for ambulatory brain-computer interface technologies.

  20. Electrocortical reactivity to negative and positive facial expressions in individuals with a family history of major depression.

    PubMed

    Watters, Anna J; Harris, Anthony W F; Williams, Leanne M

    2018-05-21

    Facial expressions signaling threat and mood-congruent loss have been used to probe abnormal neural reactivity in major depressive disorder (MDD) and may be implicated in genetic vulnerability to MDD. This study investigated electro-cortical reactivity to facial expressions 101 unaffected, adult first degree relatives of probands with MDD and non-relative controls (n = 101). We investigated event-related potentials (ERPs) to five facial expressions of basic emotion: fear, anger, disgust, sadness and happiness under both subliminal (masked) and conscious (unmasked) presentation conditions, and the source localization of group differences. In the conscious condition, controls showed a distinctly positive-going shift in responsive to negative versus happy faces, reflected in a greater positivity for the VPP frontally and the P300 parietally, and less negativity for the N200. By contrast, relatives showed less differentiation of emotions, reflected in less VPP and P300 positivity, particularly for anger and disgust, and which produced an enhanced N200 for sadness. These group differences were consistently source localized to the anterior cingulate cortex. The findings contribute new evidence for neural disruptions underlying the differentiation of salient emotions in familial risk for depression. These disruptions occur in the appraisal (∼200 ms post-stimulus) through to the context evaluation (∼300 ms+ post-stimulus) phases of of emotion processing, consistent with theories that risk for depression involves biased or attenuated processing of emotion. Copyright © 2018. Published by Elsevier B.V.

  1. Blood Pressure Responses to Endovascular Stimulation: A Potential Therapy for Autonomic Disorders With Vasodilatation.

    PubMed

    Naksuk, Niyada; Killu, Ammar M; Yogeswaran, Vidhushei; Desimone, Christopher V; Suddendorf, Scott H; Ladewig, Dorothy J; Powers, Joanne M; Weber, Sarah; Madhavan, Malini; Cha, Yong-Mei; Kapa, Suraj; Asirvatham, Samuel J

    2016-09-01

    We have previously shown that sympathetic ganglia stimulation via the renal vein rapidly increases blood pressure. This study further investigated the optimal target sites and effective energy levels for stimulation of the renal vasculatures and nearby sympathetic ganglia for rapid increase in blood pressure. The pre-study protocol for endovascular stimulations included 2 minutes of stimulation (1-150 V and 10 pulses per second) and at least 2 minutes of rest during poststimulation. If blood pressure and/or heart rate were changed during the stimulation, time to return to baseline was allowed prior to the next stimulation. In 11 acute canine studies, we performed 85 renal artery, 30 renal vein, and 8 hepatic vasculature stimulations. The mean arterial pressure (MAP) rapidly increased during stimulation of renal artery (95 ± 18 mmHg vs. 103 ± 15 mmHg; P < 0.0001), renal vein (90 ± 16 mmHg vs. 102 ± 20 mmHg; P = 0.001), and hepatic vasculatures (74 ± 8 mmHg vs. 82 ± 11 mmHg; P = 0.04). Predictors of a significant increase in MAP were energy >10 V focused on the left renal artery, bilateral renal arteries, and bilateral renal veins (especially the mid segment). Overall, heart rate was unchanged, but muscle fasciculation was observed in 22.0% with an output >10 V (range 15-150 V). Analysis after excluding the stimulations that resulted in fasciculation yielded similar results to the main findings. Stimulation of intra-abdominal vasculatures promptly increased the MAP and thus may be a potential treatment option for hypotension in autonomic disorders. Predictors of optimal stimulation include energy delivery and the site of stimulation (for the renal vasculatures), which informs the design of subsequent research. © 2016 Wiley Periodicals, Inc.

  2. Conduction aphasia as a function of the dominant posterior perisylvian cortex. Report of two cases.

    PubMed

    Quigg, Mark; Geldmacher, David S; Elias, W Jeff

    2006-05-01

    Assessment of eloquent functions during brain mapping usually relies on testing reading, speech, and comprehension to uncover transient deficits during electrical stimulation. These tests stem from findings predicted by the Geschwind-Wernicke hypothesis of receptive and expressive cortices connected by white matter tracts. Later work, however, has emphasized cortical mechanisms of language function. The authors report two cases that demonstrate that conduction aphasia is cortically mediated and can be inadequately assessed if not specifically evaluated during brain mapping. To determine the distribution of language on the dominant cortex, electrical cortical stimulation was performed in two cases by using implanted subdural electrodes during brain mapping before epilepsy surgery. A transient isolated deficit in repetition of language was reported during stimulation of the posterior portion of the dominant superior temporal gyrus in one patient and during stimulation of the supramarginal gyrus in the other patient. These cases demonstrate a localization of language repetition to the posterior perisylvian cortex. Brain mapping of this region should include assessment of verbal repetition to avoid potential deficits resembling conduction aphasia.

  3. Mapping organelle motion reveals a vesicular conveyor belt spatially replenishing secretory vesicles in stimulated chromaffin cells.

    PubMed

    Maucort, Guillaume; Kasula, Ravikiran; Papadopulos, Andreas; Nieminen, Timo A; Rubinsztein-Dunlop, Halina; Meunier, Frederic A

    2014-01-01

    How neurosecretory cells spatially adjust their secretory vesicle pools to replenish those that have fused and released their hormonal content is currently unknown. Here we designed a novel set of image analyses to map the probability of tracked organelles undergoing a specific type of movement (free, caged or directed). We then applied our analysis to time-lapse z-stack confocal imaging of secretory vesicles from bovine Chromaffin cells to map the global changes in vesicle motion and directionality occurring upon secretagogue stimulation. We report a defined region abutting the cortical actin network that actively transports secretory vesicles and is dissipated by actin and microtubule depolymerizing drugs. The directionality of this "conveyor belt" towards the cell surface is activated by stimulation. Actin and microtubule networks therefore cooperatively probe the microenvironment to transport secretory vesicles to the periphery, providing a mechanism whereby cells globally adjust their vesicle pools in response to secretagogue stimulation.

  4. TASK Channels on Basal Forebrain Cholinergic Neurons Modulate Electrocortical Signatures of Arousal by Histamine

    PubMed Central

    Vu, Michael T.; Du, Guizhi; Bayliss, Douglas A.

    2015-01-01

    Basal forebrain cholinergic neurons are the main source of cortical acetylcholine, and their activation by histamine elicits cortical arousal. TWIK-like acid-sensitive K+ (TASK) channels modulate neuronal excitability and are expressed on basal forebrain cholinergic neurons, but the role of TASK channels in the histamine-basal forebrain cholinergic arousal circuit is unknown. We first expressed TASK channel subunits and histamine Type 1 receptors in HEK cells. Application of histamine in vitro inhibited the acid-sensitive K+ current, indicating a functionally coupled signaling mechanism. We then studied the role of TASK channels in modulating electrocortical activity in vivo using freely behaving wild-type (n = 12) and ChAT-Cre:TASKf/f mice (n = 12), the latter lacking TASK-1/3 channels on cholinergic neurons. TASK channel deletion on cholinergic neurons significantly altered endogenous electroencephalogram oscillations in multiple frequency bands. We then identified the effect of TASK channel deletion during microperfusion of histamine into the basal forebrain. In non-rapid eye movement sleep, TASK channel deletion on cholinergic neurons significantly attenuated the histamine-induced increase in 30–50 Hz activity, consistent with TASK channels contributing to histamine action on basal forebrain cholinergic neurons. In contrast, during active wakefulness, histamine significantly increased 30–50 Hz activity in ChAT-Cre:TASKf/f mice but not wild-type mice, showing that the histamine response depended upon the prevailing cortical arousal state. In summary, we identify TASK channel modulation in response to histamine receptor activation in vitro, as well as a role of TASK channels on cholinergic neurons in modulating endogenous oscillations in the electroencephalogram and the electrocortical response to histamine at the basal forebrain in vivo. SIGNIFICANCE STATEMENT Attentive states and cognitive function are associated with the generation of γ EEG activity. Basal forebrain cholinergic neurons are important modulators of cortical arousal and γ activity, and in this study we investigated the mechanism by which these neurons are activated by the wake-active neurotransmitter histamine. We found that histamine inhibited a class of K+ leak channels called TASK channels and that deletion of TASK channels selectively on cholinergic neurons modulated baseline EEG activity as well as histamine-induced changes in γ activity. By identifying a discrete brain circuit where TASK channels can influence γ activity, these results represent new knowledge that enhances our understanding of how subcortical arousal systems may contribute to the generation of attentive states. PMID:26446210

  5. Stimulating Graphical Summarization in Late Elementary Education: The Relationship between Two Instructional Mind-Map Approaches and Student Characteristics

    ERIC Educational Resources Information Center

    Merchie, Emmelien; Van Keer, Hilde

    2016-01-01

    This study examined the effectiveness of two instructional mind-mapping approaches to stimulate fifth and sixth graders' graphical summarization skills. Thirty-five fifth- and sixth-grade teachers and 644 students from 17 different elementary schools participated. A randomized quasi-experimental repeated-measures design was set up with two…

  6. A novel approach for monitoring writing interferences during navigated transcranial magnetic stimulation mappings of writing related cortical areas.

    PubMed

    Rogić Vidaković, Maja; Gabelica, Dragan; Vujović, Igor; Šoda, Joško; Batarelo, Nikolina; Džimbeg, Andrija; Zmajević Schönwald, Marina; Rotim, Krešimir; Đogaš, Zoran

    2015-11-30

    It has recently been shown that navigated repetitive transcranial magnetic stimulation (nTMS) is useful in preoperative neurosurgical mapping of motor and language brain areas. In TMS mapping of motor cortices the evoked responses can be quantitatively monitored by electromyographic (EMG) recordings. No such setup exists for monitoring of writing during nTMS mappings of writing related cortical areas. We present a novel approach for monitoring writing during nTMS mappings of motor writing related cortical areas. To our best knowledge, this is the first demonstration of quantitative monitoring of motor evoked responses from hand by EMG, and of pen related activity during writing with our custom made pen, together with the application of chronometric TMS design and patterned protocol of rTMS. The method was applied in four healthy subjects participating in writing during nTMS mapping of the premotor cortical area corresponding to BA 6 and close to the superior frontal sulcus. The results showed that stimulation impaired writing in all subjects. The corresponding spectra of measured signal related to writing movements was observed in the frequency band 0-20 Hz. Magnetic stimulation affected writing by suppressing normal writing frequency band. The proposed setup for monitoring of writing provides additional quantitative data for monitoring and the analysis of rTMS induced writing response modifications. The setup can be useful for investigation of neurophysiologic mechanisms of writing, for therapeutic effects of nTMS, and in preoperative mapping of language cortical areas in patients undergoing brain surgery. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Stereotactic probability and variability of speech arrest and anomia sites during stimulation mapping of the language dominant hemisphere.

    PubMed

    Chang, Edward F; Breshears, Jonathan D; Raygor, Kunal P; Lau, Darryl; Molinaro, Annette M; Berger, Mitchel S

    2017-01-01

    OBJECTIVE Functional mapping using direct cortical stimulation is the gold standard for the prevention of postoperative morbidity during resective surgery in dominant-hemisphere perisylvian regions. Its role is necessitated by the significant interindividual variability that has been observed for essential language sites. The aim in this study was to determine the statistical probability distribution of eliciting aphasic errors for any given stereotactically based cortical position in a patient cohort and to quantify the variability at each cortical site. METHODS Patients undergoing awake craniotomy for dominant-hemisphere primary brain tumor resection between 1999 and 2014 at the authors' institution were included in this study, which included counting and picture-naming tasks during dense speech mapping via cortical stimulation. Positive and negative stimulation sites were collected using an intraoperative frameless stereotactic neuronavigation system and were converted to Montreal Neurological Institute coordinates. Data were iteratively resampled to create mean and standard deviation probability maps for speech arrest and anomia. Patients were divided into groups with a "classic" or an "atypical" location of speech function, based on the resultant probability maps. Patient and clinical factors were then assessed for their association with an atypical location of speech sites by univariate and multivariate analysis. RESULTS Across 102 patients undergoing speech mapping, the overall probabilities of speech arrest and anomia were 0.51 and 0.33, respectively. Speech arrest was most likely to occur with stimulation of the posterior inferior frontal gyrus (maximum probability from individual bin = 0.025), and variance was highest in the dorsal premotor cortex and the posterior superior temporal gyrus. In contrast, stimulation within the posterior perisylvian cortex resulted in the maximum mean probability of anomia (maximum probability = 0.012), with large variance in the regions surrounding the posterior superior temporal gyrus, including the posterior middle temporal, angular, and supramarginal gyri. Patients with atypical speech localization were far more likely to have tumors in canonical Broca's or Wernicke's areas (OR 7.21, 95% CI 1.67-31.09, p < 0.01) or to have multilobar tumors (OR 12.58, 95% CI 2.22-71.42, p < 0.01), than were patients with classic speech localization. CONCLUSIONS This study provides statistical probability distribution maps for aphasic errors during cortical stimulation mapping in a patient cohort. Thus, the authors provide an expected probability of inducing speech arrest and anomia from specific 10-mm 2 cortical bins in an individual patient. In addition, they highlight key regions of interindividual mapping variability that should be considered preoperatively. They believe these results will aid surgeons in their preoperative planning of eloquent cortex resection.

  8. Imaging the Spatio-Temporal Dynamics of Supragranular Activity in the Rat Somatosensory Cortex in Response to Stimulation of the Paws

    PubMed Central

    Morales-Botello, M. L.; Aguilar, J.; Foffani, G.

    2012-01-01

    We employed voltage-sensitive dye (VSD) imaging to investigate the spatio-temporal dynamics of the responses of the supragranular somatosensory cortex to stimulation of the four paws in urethane-anesthetized rats. We obtained the following main results. (1) Stimulation of the contralateral forepaw evoked VSD responses with greater amplitude and smaller latency than stimulation of the contralateral hindpaw, and ipsilateral VSD responses had a lower amplitude and greater latency than contralateral responses. (2) While the contralateral stimulation initially activated only one focus, the ipsilateral stimulation initially activated two foci: one focus was typically medial to the focus activated by contralateral stimulation and was stereotaxically localized in the motor cortex; the other focus was typically posterior to the focus activated by contralateral stimulation and was stereotaxically localized in the somatosensory cortex. (3) Forepaw and hindpaw somatosensory stimuli activated large areas of the sensorimotor cortex, well beyond the forepaw and hindpaw somatosensory areas of classical somatotopic maps, and forepaw stimuli activated larger cortical areas with greater activation velocity than hindpaw stimuli. (4) Stimulation of the forepaw and hindpaw evoked different cortical activation dynamics: forepaw responses displayed a clear medial directionality, whereas hindpaw responses were much more uniform in all directions. In conclusion, this work offers a complete spatio-temporal map of the supragranular VSD cortical activation in response to stimulation of the paws, showing important somatotopic differences between contralateral and ipsilateral maps as well as differences in the spatio-temporal activation dynamics in response to forepaw and hindpaw stimuli. PMID:22829873

  9. PET Mapping for Brain-Computer Interface Stimulation of the Ventroposterior Medial Nucleus of the Thalamus in Rats with Implanted Electrodes.

    PubMed

    Zhu, Yunqi; Xu, Kedi; Xu, Caiyun; Zhang, Jiacheng; Ji, Jianfeng; Zheng, Xiaoxiang; Zhang, Hong; Tian, Mei

    2016-07-01

    Brain-computer interface (BCI) technology has great potential for improving the quality of life for neurologic patients. This study aimed to use PET mapping for BCI-based stimulation in a rat model with electrodes implanted in the ventroposterior medial (VPM) nucleus of the thalamus. PET imaging studies were conducted before and after stimulation of the right VPM. Stimulation induced significant orienting performance. (18)F-FDG uptake increased significantly in the paraventricular thalamic nucleus, septohippocampal nucleus, olfactory bulb, left crus II of the ansiform lobule of the cerebellum, and bilaterally in the lateral septum, amygdala, piriform cortex, endopiriform nucleus, and insular cortex, but it decreased in the right secondary visual cortex, right simple lobule of the cerebellum, and bilaterally in the somatosensory cortex. This study demonstrated that PET mapping after VPM stimulation can identify specific brain regions associated with orienting performance. PET molecular imaging may be an important approach for BCI-based research and its clinical applications. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  10. Mechanism of orientation of stimulating currents in magnetic brain stimulation (abstract)

    NASA Astrophysics Data System (ADS)

    Ueno, S.; Matsuda, T.

    1991-04-01

    We made a functional map of the human motor cortex related to the hand and foot areas by stimulating the human brain with a focused magnetic pulse. We observed that each functional area in the cortex has an optimum direction for which stimulating currents can produce neural excitation. The present report focuses on the mechanism which is responsible for producing this anisotropic response to brain stimulation. We first obtained a functional map of the brain related to the left ADM (abductor digiti minimi muscles). When the stimulating currents were aligned in the direction from the left to the right hemisphere, clear EMG (electromyographic) responses were obtained only from the left ADM to magnetic stimulation of both hemisphere. When the stimulating currents were aligned in the direction from the right to the left hemisphere, clear EMG signals were obtained only from the right ADM to magnetic stimulation of both hemisphere. The functional maps of the brain were sensitive to changes in the direction of the stimulating currents. To explain the phenomena obtained in the experiments, we developed a model of neural excitation elicited by magnetic stimulation. When eddy currents which are induced by pulsed magnetic fields flow in the direction from soma to the distal part of neural fiber, depolarized area in the distal part are excited, and the membrane excitation propagates along the nerve fiber. In contrast, when the induced currents flow in the direction from the distal part to soma, hyperpolarized parts block or inhibit neural excitation even if the depolarized parts near the soma can be excited. The model explains our observation that the orientation of the induced current vectors reflect both the functional and anatomical organization of the neural fibers in the brain.

  11. Enhanced basal activation of mitogen-activated protein kinases in adipocytes from type 2 diabetes: potential role of p38 in the downregulation of GLUT4 expression.

    PubMed

    Carlson, Christian J; Koterski, Sandra; Sciotti, Richard J; Poccard, German Braillard; Rondinone, Cristina M

    2003-03-01

    Serine and threonine kinases may contribute to insulin resistance and the development of type 2 diabetes. To test the potential for members of the mitogen-activated protein (MAP) kinase family to contribute to type 2 diabetes, we examined basal and insulin-stimulated Erk 1/2, JNK, and p38 phosphorylation in adipocytes isolated from healthy and type 2 diabetic individuals. Maximal insulin stimulation increased the phosphorylation of Erk 1/2 and JNK in healthy control subjects but not type 2 diabetic patients. Insulin stimulation did not increase p38 phosphorylation in either healthy control subjects or type 2 diabetic patients. In type 2 diabetic adipocytes, the basal phosphorylation status of these MAP kinases was significantly elevated and was associated with decreased IRS-1 and GLUT4 in these fat cells. To determine whether MAP kinases were involved in the downregulation of IRS-1 and GLUT4 protein levels, selective inhibitors were used to inhibit these MAP kinases in 3T3-L1 adipocytes treated chronically with insulin. Inhibition of Erk 1/2, JNK, or p38 had no effect on insulin-stimulated reduction of IRS-1 protein levels. However, inhibition of the p38 pathway prevented the insulin-stimulated decrease in GLUT4 protein levels. In summary, type 2 diabetes is associated with an increased basal activation of the MAP kinase family. Furthermore, upregulation of the p38 pathway might contribute to the loss of GLUT4 expression observed in adipose tissue from type 2 diabetic patients.

  12. In vivo mapping of current density distribution in brain tissues during deep brain stimulation (DBS)

    NASA Astrophysics Data System (ADS)

    Sajib, Saurav Z. K.; Oh, Tong In; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2017-01-01

    New methods for in vivo mapping of brain responses during deep brain stimulation (DBS) are indispensable to secure clinical applications. Assessment of current density distribution, induced by internally injected currents, may provide an alternative method for understanding the therapeutic effects of electrical stimulation. The current flow and pathway are affected by internal conductivity, and can be imaged using magnetic resonance-based conductivity imaging methods. Magnetic resonance electrical impedance tomography (MREIT) is an imaging method that can enable highly resolved mapping of electromagnetic tissue properties such as current density and conductivity of living tissues. In the current study, we experimentally imaged current density distribution of in vivo canine brains by applying MREIT to electrical stimulation. The current density maps of three canine brains were calculated from the measured magnetic flux density data. The absolute current density values of brain tissues, including gray matter, white matter, and cerebrospinal fluid were compared to assess the active regions during DBS. The resulting current density in different tissue types may provide useful information about current pathways and volume activation for adjusting surgical planning and understanding the therapeutic effects of DBS.

  13. Language Mapping in Awake Surgery: Report of Two Cases with Review of Language Networks.

    PubMed

    Lim, Liang Hooi; Idris, Zamzuri; Reza, Faruque; Wan Hassan, Wan Mohd Nazaruddin; Mukmin, Laila Abd; Abdullah, Jafri Malin

    2018-01-01

    The role of language in communication plays a crucial role in human development and function. In patients who have a surgical lesion at the functional language areas, surgery should be intricately planned to avoid incurring further morbidity. This normally requires extensive functional and anatomical mappings of the brain to identify regions that are involved in language processing and production. In our case report, regions of the brain that are important for language functions were studied before surgery by employing (a) extraoperative methods such as functional magnetic resonance imaging, transmagnetic stimulation, and magnetoencephalography; (b) during the surgery by utilizing intraoperative awake surgical methods such as an intraoperative electrical stimulation; and (c) a two-stage surgery, in which electrical stimulation and first mapping are made thoroughly in the ward before second remapping during surgery. The extraoperative methods before surgery can guide the neurosurgeon to localize the functional language regions and tracts preoperatively. This will be confirmed using single-stage intraoperative electrical brain stimulation during surgery or a two-stage electrical brain stimulation before and during surgery. Here, we describe two cases in whom one has a superficial lesion and another a deep-seated lesion at language-related regions, in which language mapping was done to preserve its function. Additional review on the neuroanatomy of language regions, language network, and its impairment was also described.

  14. Singleshot T1 Mapping using Simultaneous Acquisitions of Spin- and STimulated-Echo Planar Imaging (2D ss-SESTEPI)

    PubMed Central

    Shi, Xianfeng; Kim, Seong-Eun; Jeong, Eun-Kee

    2011-01-01

    The conventional stimulated-echo NMR sequence only measures the longitudinal component, while discarding the transverse component, after tipping up the prepared magnetization. This transverse magnetization can be used to measure a spin-echo, in addition to the stimulated-echo. 2D ss-SESTEPI is an EPI-based singleshot imaging technique that simultaneously acquires a spin-echo-planar image (SEPI) and a stimulated-echo-planar image (STEPI) after a single RF excitation. The magnitudes of SEPI and STEPI differ by T1 decay and diffusion weighting for perfect 90° RF, and thus can be used to rapidly measure T1. However, the spatial variation of B1 amplitude induces un-even splitting of the transverse magnetization for SEPI and STEPI within the imaging FOV. Correction for B1 inhomogeneity is therefore critical for 2D ss-SESTEPI to be used for T1 measurement. We developed a method for B1 inhomogeneity correction by acquiring an additional STEPI with minimal mixing time, calculating the difference between the spin-echo and the stimulated-echo and multiplying the STEPI by the inverse functional map. Diffusion-induced decay is corrected by measuring the average diffusivity during the prescanning. Rapid singleshot T1 mapping may be useful for various applications, such as dynamic T1 mapping for real-time estimation of the concentration of contrast agent in DCE-MRI. PMID:20564579

  15. Amygdala stimulation promotes recovery of behavioral performance in a spatial memory task and increases GAP-43 and MAP-2 in the hippocampus and prefrontal cortex of male rats.

    PubMed

    Mercerón-Martínez, D; Almaguer-Melian, W; Alberti-Amador, E; Bergado, J A

    2018-06-19

    The relationships between affective and cognitive processes are an important issue of present neuroscience. The amygdala, the hippocampus and the prefrontal cortex appear as main players in these mechanisms. We have shown that post-training electrical stimulation of the basolateral amygdala (BLA) speeds the acquisition of a motor skill, and produces a recovery in behavioral performance related to spatial memory in fimbria-fornix (FF) lesioned animals. BLA electrical stimulation rises bdnf RNA expression, BDNF protein levels, and arc RNA expression in the hippocampus. In the present paper we have measured the levels of one presynaptic protein (GAP-43) and one postsynaptic protein (MAP-2) both involved in synaptogenesis to assess whether structural neuroplastic mechanisms are involved in the memory enhancing effects of BLA stimulation. A single train of BLA stimulation produced in healthy animals an increase in the levels of GAP-43 and MAP-2 that lasted days in the hippocampus and the prefrontal cortex. In FF-lesioned rats, daily post-training stimulation of the BLA ameliorates the memory deficit of the animals and induces an increase in the level of both proteins. These results support the hypothesis that the effects of amygdala stimulation on memory recovery are sustained by an enhanced formation of new synapses. Copyright © 2018. Published by Elsevier Inc.

  16. Repeated mapping of cortical language sites by preoperative navigated transcranial magnetic stimulation compared to repeated intraoperative DCS mapping in awake craniotomy

    PubMed Central

    2014-01-01

    Background Repetitive navigated transcranial magnetic stimulation (rTMS) was recently described for mapping of human language areas. However, its capability of detecting language plasticity in brain tumor patients was not proven up to now. Thus, this study was designed to evaluate such data in order to compare rTMS language mapping to language mapping during repeated awake surgery during follow-up in patients suffering from language-eloquent gliomas. Methods Three right-handed patients with left-sided gliomas (2 opercular glioblastomas, 1 astrocytoma WHO grade III of the angular gyrus) underwent preoperative language mapping by rTMS as well as intraoperative language mapping provided via direct cortical stimulation (DCS) for initial as well as for repeated Resection 7, 10, and 15 months later. Results Overall, preoperative rTMS was able to elicit clear language errors in all mappings. A good correlation between initial rTMS and DCS results was observed. As a consequence of brain plasticity, initial DCS and rTMS findings only corresponded with the results obtained during the second examination in one out of three patients thus suggesting changes of language organization in two of our three patients. Conclusions This report points out the usefulness but also the limitations of preoperative rTMS language mapping to detect plastic changes in language function or for long-term follow-up prior to DCS even in recurrent gliomas. However, DCS still has to be regarded as gold standard. PMID:24479694

  17. The electrocortical correlates of fluctuating states of attention during vigilance tasks

    NASA Technical Reports Server (NTRS)

    Cunningham, Stephen G.; Freeman, Frederick

    1994-01-01

    This study investigated the electrocortical correlates of attention. Sixteen subjects (seven females, nine males) engaged in a forty-minute target detection vigilance task. Task-irrelevant probe tones were presented every 2-4 seconds. While performing the vigilance task, the subjects were asked to press a button if they were daydreaming (i.e. having a task unrelated thought or TUT). Continuous electroencephalograms (EEG's) and event-related potentials (ERP's) were recorded from the subjects during the entire task. The continuous EEG data were analyzed for differences in absolute power throughout the task as well as before and after the subjects indicated that they were daydreaming (TUT response). ERP's elicited by task-irrelevant probe tones were analyzed in the same manner. The results indicated performance decrements as reflected by increased RT to correct detections, and decreased number of hits. Further, as the task progressed, the number of reports of daydreaming increased. The analysis of the EEG data indicated a significant difference in the absolute power of the different frequency bands across periods. The greatest difference was observed at the posterior parietal electrode sites. In addition, when the EEG data was converted into band ratios (beta/alpha and beta/alpha+theta), the pre-TUT conditions were found to be significantly different than the post-TUT conditions in the posterior sites. The ERP components (N1, N2, and P2) were not significantly different before and after a TUT response or across periods. However, the ERP's across periods exhibited amplitudes that were similar to those found in previous studies of vigilance and ERP's.

  18. Selective processing of multiple features in the human brain: effects of feature type and salience.

    PubMed

    McGinnis, E Menton; Keil, Andreas

    2011-02-09

    Identifying targets in a stream of items at a given constant spatial location relies on selection of aspects such as color, shape, or texture. Such attended (target) features of a stimulus elicit a negative-going event-related brain potential (ERP), termed Selection Negativity (SN), which has been used as an index of selective feature processing. In two experiments, participants viewed a series of Gabor patches in which targets were defined as a specific combination of color, orientation, and shape. Distracters were composed of different combinations of color, orientation, and shape of the target stimulus. This design allows comparisons of items with and without specific target features. Consistent with previous ERP research, SN deflections extended between 160-300 ms. Data from the subsequent P3 component (300-450 ms post-stimulus) were also examined, and were regarded as an index of target processing. In Experiment A, predominant effects of target color on SN and P3 amplitudes were found, along with smaller ERP differences in response to variations of orientation and shape. Manipulating color to be less salient while enhancing the saliency of the orientation of the Gabor patch (Experiment B) led to delayed color selection and enhanced orientation selection. Topographical analyses suggested that the location of SN on the scalp reliably varies with the nature of the to-be-attended feature. No interference of non-target features on the SN was observed. These results suggest that target feature selection operates by means of electrocortical facilitation of feature-specific sensory processes, and that selective electrocortical facilitation is more effective when stimulus saliency is heightened.

  19. Error, rather than its probability, elicits specific electrocortical signatures: a combined EEG-immersive virtual reality study of action observation.

    PubMed

    Pezzetta, Rachele; Nicolardi, Valentina; Tidoni, Emmanuele; Aglioti, Salvatore Maria

    2018-06-06

    Detecting errors in one's own actions, and in the actions of others, is a crucial ability for adaptable and flexible behavior. Studies show that specific EEG signatures underpin the monitoring of observed erroneous actions (error-related negativity, error-positivity, mid-frontal theta oscillations). However, the majority of studies on action observation used sequences of trials where erroneous actions were less frequent than correct actions. Therefore, it was not possible to disentangle whether the activation of the performance monitoring system was due to an error - as a violation of the intended goal - or a surprise/novelty effect, associated with a rare and unexpected event. Combining EEG and immersive virtual reality (IVR-CAVE system), we recorded the neural signal of 25 young adults who observed in first-person perspective, simple reach-to-grasp actions performed by an avatar aiming for a glass. Importantly, the proportion of erroneous actions was higher than correct actions. Results showed that the observation of erroneous actions elicits the typical electro-cortical signatures of error monitoring and therefore the violation of the action goal is still perceived as a salient event. The observation of correct actions elicited stronger alpha suppression. This confirmed the role of the alpha frequency band in the general orienting response to novel and infrequent stimuli. Our data provides novel evidence that an observed goal error (the action slip) triggers the activity of the performance monitoring system even when erroneous actions, which are, typically, relevant events, occur more often than correct actions and thus are not salient because of their rarity.

  20. Functionally dissociated aspects in anterior and posterior electrocortical processing of facial threat.

    PubMed

    Schutter, Dennis J L G; de Haan, Edward H F; van Honk, Jack

    2004-06-01

    The angry facial expression is an important socially threatening stimulus argued to have evolved to regulate social hierarchies. In the present study, event-related potentials (ERP) were used to investigate the involvement and temporal dynamics of the frontal and parietal regions in the processing of angry facial expressions. Angry, happy and neutral faces were shown to eighteen healthy right-handed volunteers in a passive viewing task. Stimulus-locked ERPs were recorded from the frontal and parietal scalp sites. The P200, N300 and early contingent negativity variation (eCNV) components of the electric brain potentials were investigated. Analyses revealed statistical significant reductions in P200 amplitudes for the angry facial expression on both frontal and parietal electrode sites. Furthermore, apart from being strongly associated with the anterior P200, the N300 showed to be more negative for the angry facial expression in the anterior regions also. Finally, the eCNV was more pronounced over the parietal sites for the angry facial expressions. The present study demonstrated specific electrocortical correlates underlying the processing of angry facial expressions in the anterior and posterior brain sectors. The P200 is argued to indicate valence tagging by a fast and early detection mechanism. The lowered N300 with an anterior distribution for the angry facial expressions indicates more elaborate evaluation of stimulus relevance. The fact that the P200 and the N300 are highly correlated suggests that they reflect different stages of the same anterior evaluation mechanism. The more pronounced posterior eCNV suggests sustained attention to socially threatening information. Copyright 2004 Elsevier B.V.

  1. Psychological, neuropsychological, and electrocortical effects of mixed mold exposure.

    PubMed

    Crago, B Robert; Gray, Michael R; Nelson, Lonnie A; Davis, Marilyn; Arnold, Linda; Thrasher, Jack D

    2003-08-01

    The authors assessed the psychological, neuropsychological, and electrocortical effects of human exposure to mixed colonies of toxigenic molds. Patients (N = 182) with confirmed mold-exposure history completed clinical interviews, a symptom checklist (SCL-90-R), limited neuropsychological testing, quantitative electroencephalogram (QEEG) with neurometric analysis, and measures of mold exposure. Patients reported high levels of physical, cognitive, and emotional symptoms. Ratings on the SCL-90-R were "moderate" to "severe," with a factor reflecting situational depression accounting for most of the variance. Most of the patients were found to suffer from acute stress, adjustment disorder, or post-traumatic stress. Differential diagnosis confirmed an etiology of a combination of external stressors, along with organic metabolically based dysregulation of emotions and decreased cognitive functioning as a result of toxic or metabolic encephalopathy. Measures of toxic mold exposure predicted QEEG measures and neuropsychological test performance. QEEG results included narrowed frequency bands and increased power in the alpha and theta bands in the frontal areas of the cortex. These findings indicated a hypoactivation of the frontal cortex, possibly due to brainstem involvement and insufficient excitatory input from the reticular activating system. Neuropsychological testing revealed impairments similar to mild traumatic brain injury. In comparison with premorbid estimates of intelligence, findings of impaired functioning on multiple cognitive tasks predominated. A dose-response relationship between measures of mold exposure and abnormal neuropsychological test results and QEEG measures suggested that toxic mold causes significant problems in exposed individuals. Study limitations included lack of a comparison group, patient selection bias, and incomplete data sets that did not allow for comparisons among variables.

  2. A radial map of multi-whisker correlation selectivity in the rat barrel cortex

    PubMed Central

    Estebanez, Luc; Bertherat, Julien; Shulz, Daniel E.; Bourdieu, Laurent; Léger, Jean- François

    2016-01-01

    In the barrel cortex, several features of single-whisker stimuli are organized in functional maps. The barrel cortex also encodes spatio-temporal correlation patterns of multi-whisker inputs, but so far the cortical mapping of neurons tuned to such input statistics is unknown. Here we report that layer 2/3 of the rat barrel cortex contains an additional functional map based on neuronal tuning to correlated versus uncorrelated multi-whisker stimuli: neuron responses to uncorrelated multi-whisker stimulation are strongest above barrel centres, whereas neuron responses to correlated and anti-correlated multi-whisker stimulation peak above the barrel–septal borders, forming rings of multi-whisker synchrony-preferring cells. PMID:27869114

  3. A radial map of multi-whisker correlation selectivity in the rat barrel cortex.

    PubMed

    Estebanez, Luc; Bertherat, Julien; Shulz, Daniel E; Bourdieu, Laurent; Léger, Jean-François

    2016-11-21

    In the barrel cortex, several features of single-whisker stimuli are organized in functional maps. The barrel cortex also encodes spatio-temporal correlation patterns of multi-whisker inputs, but so far the cortical mapping of neurons tuned to such input statistics is unknown. Here we report that layer 2/3 of the rat barrel cortex contains an additional functional map based on neuronal tuning to correlated versus uncorrelated multi-whisker stimuli: neuron responses to uncorrelated multi-whisker stimulation are strongest above barrel centres, whereas neuron responses to correlated and anti-correlated multi-whisker stimulation peak above the barrel-septal borders, forming rings of multi-whisker synchrony-preferring cells.

  4. Simultaneous recording of mouse retinal ganglion cells during epiretinal or subretinal stimulation

    PubMed Central

    Sim, S.L.; Szalewski, R.J.; Johnson, L.J.; Akah, L.E.; Shoemaker, L.E.; Thoreson, W.B.; Margalit, E.

    2015-01-01

    We compared response patterns and electrical receptive fields (ERF) of retinal ganglion cells (RGCs) during epiretinal and subretinal electrical stimulation of isolated mouse retina. Retinas were stimulated with an array of 3200 independently controllable electrodes. Four response patterns were observed: a burst of activity immediately after stimulation (Type I cells, Vision Research (2008), 48, 1562–1568), delayed bursts beginning >25 ms after stimulation (Type II), a combination of both (Type III), and inhibition of ongoing spike activity. Type I responses were produced more often by epiretinal than subretinal stimulation whereas delayed and inhibitory responses were evoked more frequently by subretinal stimulation. Response latencies were significantly shorter with epiretinal than subretinal stimulation. These data suggest that subretinal stimulation is more effective at activating intraretinal circuits than epiretinal stimulation. There was no significant difference in charge threshold between subretinal and epiretinal configurations. ERFs were defined by the stimulating array surface area that successfully stimulated spikes in an RGC. ERFs were complex in shape, similar to receptive fields mapped with light. ERF areas were significantly smaller with subretinal than epiretinal stimulation. This may reflect the greater distance between stimulating electrodes and RGCs in the subretinal configuration. ERFs for immediate and delayed responses mapped within the same Type III cells differed in shape and size, consistent with different sites and mechanisms for generating these two response types. PMID:24863584

  5. Afferent vagal stimulation, vasopressin, and nitroprusside alter cerebrospinal fluid kinin.

    PubMed

    Thomas, G R; Thibodeaux, H; Margolius, H S; Webb, J G; Privitera, P J

    1987-07-01

    The effects of afferent vagal stimulation, cerebroventricular vasopressin, and intravenous nitroprusside on cerebrospinal fluid (CSF) kinin levels, mean arterial pressure (MAP), and heart rate (HR) were determined in anesthetized dogs in which a ventriculocisternal perfusion system (VP) was established. Following bilateral vagotomy, stimulation of the central ends of both vagi for 60 min significantly increased MAP and CSF perfusate levels of kinin and norepinephrine (NE). MAP was increased a maximum of 32 +/- 4 mmHg, and the rates of kinin and NE appearance into the CSF perfusate increased from 4.2 +/- 1.4 to 22.1 +/- 6.9 and from 28 +/- 5 to 256 +/- 39 pg/min, respectively. A significant correlation was found between CSF kinin and NE levels in these experiments. In other experiments the addition of arginine vasopressin to the VP system caused a significant increase in CSF perfusate kinin without affecting MAP or HR. Intravenous infusion of nitroprusside lowered MAP without affecting kinin levels in the CSF. However, on cessation of nitroprusside infusion, CSF kinin increased significantly in association with the return in MAP to predrug level. Collectively the data are consistent with the hypothesis that central nervous system kinins have some role in cardiovascular regulation, and furthermore that this role may involve an interaction between brain kinin and central noradrenergic neuronal pathways.

  6. Comparison of diffusion tensor imaging tractography of language tracts and intraoperative subcortical stimulations.

    PubMed

    Leclercq, Delphine; Duffau, Hugues; Delmaire, Christine; Capelle, Laurent; Gatignol, Peggy; Ducros, Mathieu; Chiras, Jacques; Lehéricy, Stéphane

    2010-03-01

    Diffusion tensor (DT) imaging tractography is increasingly used to map fiber tracts in patients with surgical brain lesions to reduce the risk of postoperative functional deficit. There are few validation studies of DT imaging tractography in these patients. The aim of this study was to compare DT imaging tractography of language fiber tracts by using intraoperative subcortical electrical stimulations. The authors included 10 patients with low-grade gliomas or dysplasia located in language areas. The MR imaging examination included 3D T1-weighted images for anatomical coregistration, FLAIR, and DT images. Diffusion tensors and fiber tracts were calculated using in-house software. Four tracts were reconstructed in each patient including the arcuate fasciculus, the inferior occipitofrontal fasciculus, and 2 premotor fasciculi (the subcallosal medialis fiber tract and cortical fibers originating from the medial and lateral premotor areas). The authors compared fiber tracts reconstructed using DT imaging with those evidenced using intraoperative subcortical language mapping. Seventeen (81%) of 21 positive stimulations were concordant with DT imaging fiber bundles (located within 6 mm of a fiber tract). Four positive stimulations were not located in the vicinity of a DT imaging fiber tract. Stimulations of the arcuate fasciculus mostly induced articulatory and phonemic/syntactic disorders and less frequently semantic paraphasias. Stimulations of the inferior occipitofrontal fasciculus induced semantic paraphasias. Stimulations of the premotor-related fasciculi induced dysarthria and articulatory planning deficit. There was a good correspondence between positive stimulation sites and fiber tracts, suggesting that DT imaging fiber tracking is a reliable technique but not yet optimal to map language tracts in patients with brain lesions. Negative tractography does not rule out the persistence of a fiber tract, especially when invaded by the tumor. Stimulations of the different tracts induced variable language disorders that were specific to each fiber tract.

  7. A high-resolution computational localization method for transcranial magnetic stimulation mapping.

    PubMed

    Aonuma, Shinta; Gomez-Tames, Jose; Laakso, Ilkka; Hirata, Akimasa; Takakura, Tomokazu; Tamura, Manabu; Muragaki, Yoshihiro

    2018-05-15

    Transcranial magnetic stimulation (TMS) is used for the mapping of brain motor functions. The complexity of the brain deters determining the exact localization of the stimulation site using simplified methods (e.g., the region below the center of the TMS coil) or conventional computational approaches. This study aimed to present a high-precision localization method for a specific motor area by synthesizing computed non-uniform current distributions in the brain for multiple sessions of TMS. Peritumoral mapping by TMS was conducted on patients who had intra-axial brain neoplasms located within or close to the motor speech area. The electric field induced by TMS was computed using realistic head models constructed from magnetic resonance images of patients. A post-processing method was implemented to determine a TMS hotspot by combining the computed electric fields for the coil orientations and positions that delivered high motor-evoked potentials during peritumoral mapping. The method was compared to the stimulation site localized via intraoperative direct brain stimulation and navigated TMS. Four main results were obtained: 1) the dependence of the computed hotspot area on the number of peritumoral measurements was evaluated; 2) the estimated localization of the hand motor area in eight non-affected hemispheres was in good agreement with the position of a so-called "hand-knob"; 3) the estimated hotspot areas were not sensitive to variations in tissue conductivity; and 4) the hand motor areas estimated by this proposal and direct electric stimulation (DES) were in good agreement in the ipsilateral hemisphere of four glioma patients. The TMS localization method was validated by well-known positions of the "hand-knob" in brains for the non-affected hemisphere, and by a hotspot localized via DES during awake craniotomy for the tumor-containing hemisphere. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Long-Term Evolution of the Electrical Stimulation Levels for Cochlear Implant Patients

    PubMed Central

    Vargas, Jose Luis; Sainz, Manuel; Roldan, Cristina; de la Torre, Angel

    2012-01-01

    Objectives The stimulation levels programmed in cochlear implant systems are affected by an evolution since the first switch-on of the processor. This study was designed to evaluate the changes in stimulation levels over time and the relationship between post-implantation physiological changes and with the hearing experience provided by the continuous use of the cochlear implant. Methods Sixty-two patients, ranging in age from 4 to 68 years at the moment of implantation participated in this study. All subjects were implanted with the 12 channels COMBI 40+ cochlear implant at San Cecilio University Hospital, Granada, Spain. Hearing loss etiology and progression characteristics varied across subjects. Results The analyzed programming maps show that the stimulation levels suffer a fast evolution during the first weeks after the first switch-on of the processor. Then, the evolution becomes slower and the programming parameters tend to be stable at about 6 months after the first switch-on. The evolution of the stimulation levels implies an increment of the electrical dynamic range, which is increased from 15.4 to 20.7 dB and improves the intensity resolution. A significant increment of the sensitivity to acoustic stimuli is also observed. For some patients, we have also observed transitory changes in the electrode impedances associated to secretory otitis media, which cause important changes in the programming maps. Conclusion We have studied the long-term evolution of the stimulation levels in cochlear implant patients. Our results show the importance of systematic measurements of the electrode impedances before the revision of the programming map. This report also highlights that the evolution of the programming maps is an important factor to be considered in order to determine an adequate calendar fitting of the cochlear implant processor. PMID:23205223

  9. Epitope mapping of tsh receptor-blocking antibodies in Graves' disease that appear during pregnancy.

    PubMed

    Kung, A W; Lau, K S; Kohn, L D

    2001-08-01

    Spontaneous remission of Graves' disease during pregnancy is thought to be due to a reduction of thyroid-stimulating antibody activity. We suspected, however, that a broader change in TSH receptor antibody characteristics might play an important role in modulating disease activity during pregnancy. We measured TSH binding inhibitory Ig, thyroid-stimulating antibody, and thyroid stimulating-blocking antibody activities in 13 pregnant Graves' disease patients at first, second, and third trimesters and 4 months postpartum. To measure and epitope-map thyroid-stimulating antibody and thyroid stimulating-blocking antibody activities, we used CHO cells transfected with wild-type human TSH receptor or with several TSH receptor-LH/hCG receptor chimeras: Mc1+2, Mc2, and Mc4. These chimeric cells have their respective TSH receptor residues 9-165, 90-165, and 261-370 substituted with equivalent residues of the LH/hCG receptor. Overall thyroid-stimulating antibody decreased, whereas thyroid stimulating-blocking antibody increased progressively during pregnancy. TSH binding inhibitory Ig fluctuated in individual patients, but overall the activities remained statistically unchanged. Thyroid stimulating-blocking antibody appeared in subjects who were either negative for thyroid-stimulating antibody or whose thyroid-stimulating antibody activity increased or decreased during pregnancy. Epitope mapping showed that the thyroid-stimulating antibodies were mainly directed against residues 9-165 of the N-terminus of the TSH receptor extracellular domain. All thyroid stimulating-blocking antibodies had blocking activities against residues 261-370 of the C-terminus of the ectodomain. However, the majority of the thyroid stimulating-blocking antibodies had a hybrid conformational epitope directed against N-terminal residues 9-89 or 90-165 as well. Despite a change in the activity level, we did not observe any change in the epitope of either the stimulatory or blocking Abs as pregnancy advanced. In conclusion, a change in the specificity of TSH receptor antibody from stimulatory to blocking activity was observed during pregnancy, and the appearance of thyroid stimulating-blocking antibody may contribute to the remission of Graves' disease during pregnancy.

  10. [INHIBITORS OF MAP-KINASE PATHWAY U0126 AND PD98059 DIFFERENTLY AFFECT ORGANIZATION OF TUBULIN CYTOSKELETON AFTER STIMULATION OF EGF RECEPTOR ENDOCYTOSIS].

    PubMed

    Zlobina, M V; Steblyanko, Yu Yu; Shklyaeva, M A; Kharchenko, V V; Salova, A V; Kornilova, E S

    2015-01-01

    To confirm the hypothesis about the involvement of EGF-stimulated MAP-kinase ERK1/2 in the regulation of microtubule (MT) system, the influence of two widely used ERK1/2 inhibitors, U0126 and PD98059, on the organization of tubulin cytoskeleton in interphase HeLa cells during EGF receptor endocytosis has been investigated. We have found that addition of U0126 or PD98059 to not-stimulated with EGF ells for 30 min has no effect on radially organized MT system. However, in the case of U0126 addition before EGF endocytosis stimulation, the number of MT per cell decreased within 15 min after such stimulation and was followed by complete MT depolymerization by 60-90 min. Stimulation of EGF endocytosis in the presence of PD98059 resulted only in insignificant depolymerization of MT and it could be detected mainly from their minus-ends. At the same time, MT regions close to plasma membrane became stabilized, which was proved by increase in tubulin acetylation level. This situation was characteristic for all period of the experiment. It has been also found that the inhibitors affect endocytosis dynamics of EGF-receptor complexes. Quantitative analysis demonstrated that the stimulation of endocytosis in the presence of U0126 generated a greater number of endosomes compared to control cells, and their number did not change significantly during the experiment. All these endosomes were localized peripherally. Effect of PD98059 resulted in the formation of lower number of endosomes that in control, but they demonstrated very slow clusterization despite the presence of some intact MT. Both inhibitors decreased EGFR colocolization with early endosomal marker EEA1, which indicated a delay in endosome fusions and maturation. The inhibitors were also shown to affect differently phospho-ERK 1 and 2 forms: U0126 completely inhibited phospho-ERK1 and 2, white, in the presence of PD98059, the two ERK forms demonstrated sharp transient activation in 15 min after stimulation, but only phospho-ERK2 could be detected after 60 min of endocytosis. In both cases, MAP-kinase activation dynamics was significantly different from the control. Our results suggest involvement of EGF-stimulated MAP-kinase pathway in cytoskeleton regulation. At the same time, they demonstrate that the two studied and widely used inhibitors are not equivalent with respect to not only the effect on MAP-kinase activity but also to such interdependent processes such as changes in cytoskeleton organization and signaling receptor' endocytosis.

  11. Extent and Location of the Excitatory and Inhibitory Cortical Hand Representation Maps: A Navigated Transcranial Magnetic Stimulation Study.

    PubMed

    Pitkänen, Minna; Kallioniemi, Elisa; Julkunen, Petro

    2015-09-01

    Voluntary muscle action and control are modulated by the primary motor cortex, which is characterized by a well-defined somatotopy. Muscle action and control depend on a sensitive balance between excitatory and inhibitory mechanisms in the cortex and in the corticospinal tract. The cortical locations evoking excitatory and inhibitory responses in brain stimulation can be mapped, for example, as a pre-surgical procedure. The purpose of this study was to find the differences between excitatory and inhibitory motor representations mapped using navigated transcranial magnetic stimulation (nTMS). The representations of small hand muscles were mapped to determine the areas and the center of gravities (CoGs) in both hemispheres of healthy right-handed volunteers. The excitatory representations were obtained via resting motor evoked potential (MEP) mapping, with and without a stimulation grid. The inhibitory representations were mapped using the grid and measuring corticospinal silent periods (SPs) during voluntary muscle contraction. The excitatory representations were larger on the dominant hemisphere compared with the non-dominant (p < 0.05). The excitatory CoGs were more medial (p < 0.001) and anterior (p < 0.001) than the inhibitory CoGs. The use of the grid did not influence the areas or the CoGs. The results support the common hypothesis that the MEP and SP representations are located at adjacent sites. Furthermore, the dominant hemisphere seems to be better organized for controlling excitatory motor functions with respect to TMS. In addition, the inhibitory representations could provide further information about motor reorganization and aid in surgery planning when the functional cortical representations are located in abnormal cortical regions.

  12. Impairment of preoperative language mapping by lesion location: a functional magnetic resonance imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation study.

    PubMed

    Ille, Sebastian; Sollmann, Nico; Hauck, Theresa; Maurer, Stefanie; Tanigawa, Noriko; Obermueller, Thomas; Negwer, Chiara; Droese, Doris; Boeckh-Behrens, Tobias; Meyer, Bernhard; Ringel, Florian; Krieg, Sandro M

    2015-08-01

    Language mapping by repetitive navigated transcranial magnetic stimulation (rTMS) is increasingly used and has already replaced functional MRI (fMRI) in some institutions for preoperative mapping of neurosurgical patients. Yet some factors affect the concordance of both methods with direct cortical stimulation (DCS), most likely by lesions affecting cortical oxygenation levels. Therefore, the impairment of the accuracy of rTMS and fMRI was analyzed and compared with DCS during awake surgery in patients with intraparenchymal lesions. Language mapping was performed by DCS, rTMS, and fMRI using an object-naming task in 27 patients with left-sided perisylvian lesions, and the induced language errors of each method were assigned to the cortical parcellation system. Subsequently, the receiver operating characteristics were calculated for rTMS and fMRI and compared with DCS as ground truth for regions with (w/) and without (w/o) the lesion in the mapped regions. The w/ subgroup revealed a sensitivity of 100% (w/o 100%), a specificity of 8% (w/o 5%), a positive predictive value of 34% (w/o: 53%), and a negative predictive value (NPV) of 100% (w/o: 100%) for the comparison of rTMS versus DCS. Findings for the comparison of fMRI versus DCS within the w/ subgroup revealed a sensitivity of 32% (w/o: 62%), a specificity of 88% (w/o: 60%), a positive predictive value of 56% (w/o: 62%), and a NPV of 73% (w/o: 60%). Although strengths and weaknesses exist for both rTMS and fMRI, the results show that rTMS is less affected by a brain lesion than fMRI, especially when performing mapping of language-negative cortical regions based on sensitivity and NPV.

  13. Regional anatomy of the pedunculopontine nucleus: relevance for deep brain stimulation.

    PubMed

    Fournier-Gosselin, Marie-Pierre; Lipsman, Nir; Saint-Cyr, Jean A; Hamani, Clement; Lozano, Andres M

    2013-09-01

    The pedunculopontine nucleus (PPN) is currently being investigated as a potential deep brain stimulation target to improve gait and posture in Parkinson's disease. This review examines the complex anatomy of the PPN region and suggests a functional mapping of the surrounding nuclei and fiber tracts that may serve as a guide to a more accurate placement of electrodes while avoiding potentially adverse effects. The relationships of the PPN were examined in different human brain atlases. Schematic representations of those structures in the vicinity of the PPN were generated and correlated with their potential stimulation effects. By providing a functional map and representative schematics of the PPN region, we hope to optimize the placement of deep brain stimulation electrodes, thereby maximizing safety and clinical efficacy. © 2013 International Parkinson and Movement Disorder Society.

  14. Electromyographic control of functional electrical stimulation in selected patients.

    PubMed

    Graupe, D; Kohn, K H; Basseas, S; Naccarato, E

    1984-07-01

    The paper describes initial results of above-lesion electromyographic (EMG) controlled functional electrical stimulation (FES) of paraplegics. Such controlled stimulation is to provide upper-motor-neuron paraplegics (T5 to T12) with self-controlled standing and some walking without braces and with only the help of walkers or crutches. The above-lesion EMG signal employed serves to map the posture of the patient's upper trunk via a computerized mapping of the temporal patterns of that EMG. Such control also has an inherent safety feature in that it prevents the patient from performing a lower-limb movement via FES unless his trunk posture is adequate. Copyright 2013, SLACK Incorporated.

  15. Stable long-term chronic brain mapping at the single-neuron level.

    PubMed

    Fu, Tian-Ming; Hong, Guosong; Zhou, Tao; Schuhmann, Thomas G; Viveros, Robert D; Lieber, Charles M

    2016-10-01

    Stable in vivo mapping and modulation of the same neurons and brain circuits over extended periods is critical to both neuroscience and medicine. Current electrical implants offer single-neuron spatiotemporal resolution but are limited by such factors as relative shear motion and chronic immune responses during long-term recording. To overcome these limitations, we developed a chronic in vivo recording and stimulation platform based on flexible mesh electronics, and we demonstrated stable multiplexed local field potentials and single-unit recordings in mouse brains for at least 8 months without probe repositioning. Properties of acquired signals suggest robust tracking of the same neurons over this period. This recording and stimulation platform allowed us to evoke stable single-neuron responses to chronic electrical stimulation and to carry out longitudinal studies of brain aging in freely behaving mice. Such advantages could open up future studies in mapping and modulating changes associated with learning, aging and neurodegenerative diseases.

  16. Mapping of Arithmetic Processing by Navigated Repetitive Transcranial Magnetic Stimulation in Patients with Parietal Brain Tumors and Correlation with Postoperative Outcome.

    PubMed

    Ille, Sebastian; Drummer, Katharina; Giglhuber, Katrin; Conway, Neal; Maurer, Stefanie; Meyer, Bernhard; Krieg, Sandro M

    2018-06-01

    Preserving functionality is important during neurosurgical resection of brain tumors. Specialized centers also map further brain functions apart from motor and language functions, such as arithmetic processing (AP). The mapping of AP by navigated repetitive transcranial magnetic stimulation (nrTMS) in healthy volunteers has been reported. The present study aimed to correlate the results of mapping AP with functional patient outcomes. We included 26 patients with parietal brain tumors. Because of preoperative impairment of AP, mapping was not possible in 8 patients (31%). We stimulated 52 cortical sites by nrTMS while patients performed a calculation task. Preoperatively and postoperatively, patients underwent a standardized number-processing and calculation test (NPCT). Tumor resection was blinded to nrTMS results, and the change in NPCT performance was correlated to resected AP-positive spots as identified by nrTMS. The resection of AP-positive sites correlated with a worsening of the postoperative NPCT result in 12 cases. In 3 cases, no AP-positive sites were resected and the postoperative NPCT result was similar to or better than preoperatively. Also, in 3 cases, the postoperative NPCT result was better than preoperatively, although AP-positive sites were resected. Despite presenting only a few cases, nrTMS might be a useful tool for preoperative mapping of AP. However, the reliability of the present results has to be evaluated in a larger series and by intraoperative mapping data. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Concept Mapping

    ERIC Educational Resources Information Center

    Technology & Learning, 2005

    2005-01-01

    Concept maps are graphical ways of working with ideas and presenting information. They reveal patterns and relationships and help students to clarify their thinking, and to process, organize and prioritize. Displaying information visually--in concept maps, word webs, or diagrams--stimulates creativity. Being able to think logically teaches…

  18. Accurate motor mapping in awake common marmosets using micro-electrocorticographical stimulation and stochastic threshold estimation

    NASA Astrophysics Data System (ADS)

    Kosugi, Akito; Takemi, Mitsuaki; Tia, Banty; Castagnola, Elisa; Ansaldo, Alberto; Sato, Kenta; Awiszus, Friedemann; Seki, Kazuhiko; Ricci, Davide; Fadiga, Luciano; Iriki, Atsushi; Ushiba, Junichi

    2018-06-01

    Objective. Motor map has been widely used as an indicator of motor skills and learning, cortical injury, plasticity, and functional recovery. Cortical stimulation mapping using epidural electrodes is recently adopted for animal studies. However, several technical limitations still remain. Test-retest reliability of epidural cortical stimulation (ECS) mapping has not been examined in detail. Many previous studies defined evoked movements and motor thresholds by visual inspection, and thus, lacked quantitative measurements. A reliable and quantitative motor map is important to elucidate the mechanisms of motor cortical reorganization. The objective of the current study was to perform reliable ECS mapping of motor representations based on the motor thresholds, which were stochastically estimated by motor evoked potentials and chronically implanted micro-electrocorticographical (µECoG) electrode arrays, in common marmosets. Approach. ECS was applied using the implanted µECoG electrode arrays in three adult common marmosets under awake conditions. Motor evoked potentials were recorded through electromyographical electrodes implanted in upper limb muscles. The motor threshold was calculated through a modified maximum likelihood threshold-hunting algorithm fitted with the recorded data from marmosets. Further, a computer simulation confirmed reliability of the algorithm. Main results. Computer simulation suggested that the modified maximum likelihood threshold-hunting algorithm enabled to estimate motor threshold with acceptable precision. In vivo ECS mapping showed high test-retest reliability with respect to the excitability and location of the cortical forelimb motor representations. Significance. Using implanted µECoG electrode arrays and a modified motor threshold-hunting algorithm, we were able to achieve reliable motor mapping in common marmosets with the ECS system.

  19. Accurate motor mapping in awake common marmosets using micro-electrocorticographical stimulation and stochastic threshold estimation.

    PubMed

    Kosugi, Akito; Takemi, Mitsuaki; Tia, Banty; Castagnola, Elisa; Ansaldo, Alberto; Sato, Kenta; Awiszus, Friedemann; Seki, Kazuhiko; Ricci, Davide; Fadiga, Luciano; Iriki, Atsushi; Ushiba, Junichi

    2018-06-01

    Motor map has been widely used as an indicator of motor skills and learning, cortical injury, plasticity, and functional recovery. Cortical stimulation mapping using epidural electrodes is recently adopted for animal studies. However, several technical limitations still remain. Test-retest reliability of epidural cortical stimulation (ECS) mapping has not been examined in detail. Many previous studies defined evoked movements and motor thresholds by visual inspection, and thus, lacked quantitative measurements. A reliable and quantitative motor map is important to elucidate the mechanisms of motor cortical reorganization. The objective of the current study was to perform reliable ECS mapping of motor representations based on the motor thresholds, which were stochastically estimated by motor evoked potentials and chronically implanted micro-electrocorticographical (µECoG) electrode arrays, in common marmosets. ECS was applied using the implanted µECoG electrode arrays in three adult common marmosets under awake conditions. Motor evoked potentials were recorded through electromyographical electrodes implanted in upper limb muscles. The motor threshold was calculated through a modified maximum likelihood threshold-hunting algorithm fitted with the recorded data from marmosets. Further, a computer simulation confirmed reliability of the algorithm. Computer simulation suggested that the modified maximum likelihood threshold-hunting algorithm enabled to estimate motor threshold with acceptable precision. In vivo ECS mapping showed high test-retest reliability with respect to the excitability and location of the cortical forelimb motor representations. Using implanted µECoG electrode arrays and a modified motor threshold-hunting algorithm, we were able to achieve reliable motor mapping in common marmosets with the ECS system.

  20. Preservation of motor maps with increased motor evoked potential amplitude threshold in RMT determination.

    PubMed

    Lucente, Giuseppe; Lam, Steven; Schneider, Heike; Picht, Thomas

    2018-02-01

    Non-invasive pre-surgical mapping of eloquent brain areas with navigated transcranial magnetic stimulation (nTMS) is a useful technique linked to the improvement of surgical planning and patient outcomes. The stimulator output intensity and subsequent resting motor threshold determination (rMT) are based on the motor-evoked potential (MEP) elicited in the target muscle with an amplitude above a predetermined threshold of 50 μV. However, a subset of patients is unable to achieve complete relaxation in the target muscles, resulting in false positives that jeopardize mapping validity with conventional MEP determination protocols. Our aim is to explore the feasibility and reproducibility of a novel mapping approach that investigates how an increase of the MEP amplitude threshold to 300 and 500 μV affects subsequent motor maps. Seven healthy subjects underwent motor mapping with nTMS. RMT was calculated with the conventional methodology in conjunction with experimental 300- and 500-μV MEP amplitude thresholds. Motor mapping was performed with 105% of rMT stimulator intensity using the FDI as the target muscle. Motor mapping was possible in all patients with both the conventional and experimental setups. Motor area maps with a conventional 50-μV threshold showed poor correlation with 300-μV (α = 0.446, p < 0.001) maps, but showed excellent consistency with 500-μV motor area maps (α = 0.974, p < 0.001). MEP latencies were significantly less variable (23 ms for 50 μV vs. 23.7 ms for 300 μV vs. 23.7 ms for 500 μV, p < 0.001). A slight but significant increase of the electric field (EF) value was found (EF: 60.8 V/m vs. 64.8 V/m vs. 66 V/m p < 0.001). Our study demonstrates the feasibility of increasing the MEP detection threshold to 500 μV in rMT determination and motor area mapping with nTMS without losing precision.

  1. Artificial redirection of sensation from prosthetic fingers to the phantom hand map on transradial amputees: vibrotactile versus mechanotactile sensory feedback.

    PubMed

    Antfolk, Christian; D'Alonzo, Marco; Controzzi, Marco; Lundborg, Göran; Rosén, Birgitta; Sebelius, Fredrik; Cipriani, Christian

    2013-01-01

    This work assesses the ability of transradial amputees to discriminate multi-site tactile stimuli in sensory discrimination tasks. It compares different sensory feedback modalities using an artificial hand prosthesis in: 1) a modality matched paradigm where pressure recorded on the five fingertips of the hand was fed back as pressure stimulation on five target points on the residual limb; and 2) a modality mismatched paradigm where the pressures were transformed into mechanical vibrations and fed back. Eight transradial amputees took part in the study and were divided in two groups based on the integrity of their phantom map; group A had a complete phantom map on the residual limb whereas group B had an incomplete or nonexisting map. The ability in localizing stimuli was compared with that of 10 healthy subjects using the vibration feedback and 11 healthy subjects using the pressure feedback (in a previous study), on their forearms, in similar experiments. Results demonstrate that pressure stimulation surpassed vibrotactile stimulation in multi-site sensory feedback discrimination. Furthermore, we demonstrate that subjects with a detailed phantom map had the best discrimination performance and even surpassed healthy participants for both feedback paradigms whereas group B had the worst performance overall. Finally, we show that placement of feedback devices on a complete phantom map improves multi-site sensory feedback discrimination, independently of the feedback modality.

  2. Down-Regulation by Resveratrol of Basic Fibroblast Growth Factor-Stimulated Osteoprotegerin Synthesis through Suppression of Akt in Osteoblasts

    PubMed Central

    Kuroyanagi, Gen; Otsuka, Takanobu; Yamamoto, Naohiro; Matsushima-Nishiwaki, Rie; Nakakami, Akira; Mizutani, Jun; Kozawa, Osamu; Tokuda, Haruhiko

    2014-01-01

    It is firmly established that resveratrol, a natural food compound abundantly found in grape skins and red wine, has beneficial properties for human health. In the present study, we investigated the effect of basic fibroblast growth factor (FGF-2) on osteoprotegerin (OPG) synthesis in osteoblast-like MC3T3-E1 cells and whether resveratrol affects the OPG synthesis. FGF-2 stimulated both the OPG release and the expression of OPG mRNA. Resveratrol significantly suppressed the FGF-2-stimulated OPG release and the mRNA levels of OPG. SRT1720, an activator of SIRT1, reduced the FGF-2-induced OPG release and the OPG mRNA expression. PD98059, an inhibitor of upstream kinase activating p44/p42 mitogen-activated protein (MAP) kinase, had little effect on the FGF-2-stimulated OPG release. On the other hand, SB203580, an inhibitor of p38 MAP kinase, SP600125, an inhibitor of stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), and Akt inhibitor suppressed the OPG release induced by FGF-2. Resveratrol failed to affect the FGF-2-induced phosphorylation of p44/p42 MAP kinase, p38 MAP kinase or SAPK/JNK. The phosphorylation of Akt induced by FGF-2 was significantly suppressed by resveratrol or SRT1720. These findings strongly suggest that resveratrol down-regulates FGF-2-stimulated OPG synthesis through the suppression of the Akt pathway in osteoblasts and that the inhibitory effect of resveratrol is mediated at least in part by SIRT1 activation. PMID:25290095

  3. Induction and separation of motion artifacts in EEG data using a mobile phantom head device.

    PubMed

    Oliveira, Anderson S; Schlink, Bryan R; Hairston, W David; König, Peter; Ferris, Daniel P

    2016-06-01

    Electroencephalography (EEG) can assess brain activity during whole-body motion in humans but head motion can induce artifacts that obfuscate electrocortical signals. Definitive solutions for removing motion artifact from EEG have yet to be found, so creating methods to assess signal processing routines for removing motion artifact are needed. We present a novel method for investigating the influence of head motion on EEG recordings as well as for assessing the efficacy of signal processing approaches intended to remove motion artifact. We used a phantom head device to mimic electrical properties of the human head with three controlled dipolar sources of electrical activity embedded in the phantom. We induced sinusoidal vertical motions on the phantom head using a custom-built platform and recorded EEG signals with three different acquisition systems while the head was both stationary and in varied motion conditions. Recordings showed up to 80% reductions in signal-to-noise ratio (SNR) and up to 3600% increases in the power spectrum as a function of motion amplitude and frequency. Independent component analysis (ICA) successfully isolated the three dipolar sources across all conditions and systems. There was a high correlation (r > 0.85) and marginal increase in the independent components' (ICs) power spectrum (∼15%) when comparing stationary and motion parameters. The SNR of the IC activation was 400%-700% higher in comparison to the channel data SNR, attenuating the effects of motion on SNR. Our results suggest that the phantom head and motion platform can be used to assess motion artifact removal algorithms and compare different EEG systems for motion artifact sensitivity. In addition, ICA is effective in isolating target electrocortical events and marginally improving SNR in relation to stationary recordings.

  4. Electrocortical activity associated with subjective communication with the deceased

    PubMed Central

    Delorme, Arnaud; Beischel, Julie; Michel, Leena; Boccuzzi, Mark; Radin, Dean; Mills, Paul J.

    2013-01-01

    During advanced meditative practices, unusual perceptions can arise including the sense of receiving information about unknown people who are deceased. As with meditation, this mental state of communication with the deceased involves calming mental chatter and becoming receptive to subtle feelings and sensations. Psychometric and brain electrophysiology data were collected from six individuals who had previously reported accurate information about deceased individuals under double-blind conditions. Each experimental participant performed two tasks with eyes closed. In the first task, the participant was given only the first name of a deceased person and asked 25 questions. After each question, the participant was asked to silently perceive information relevant to the question for 20 s and then respond verbally. Responses were transcribed and then scored for accuracy by individuals who knew the deceased persons. Of the four mediums whose accuracy could be evaluated, three scored significantly above chance (p < 0.03). The correlation between accuracy and brain activity during the 20 s of silent mediumship communication was significant in frontal theta for one participant (p < 0.01). In the second task, participants were asked to experience four mental states for 1 min each: (1) thinking about a known living person, (2) listening to a biography, (3) thinking about an imaginary person, and (4) interacting mentally with a known deceased person. Each mental state was repeated three times. Statistically significant differences at p < 0.01 after correction for multiple comparisons in electrocortical activity among the four conditions were obtained in all six participants, primarily in the gamma band (which might be due to muscular activity). These differences suggest that the impression of communicating with the deceased may be a distinct mental state distinct from ordinary thinking or imagination. PMID:24312063

  5. Self-Reported Trait Mindfulness and Affective Reactivity: A Motivational Approach Using Multiple Psychophysiological Measures

    PubMed Central

    Cosme, Danielle; Wiens, Stefan

    2015-01-01

    As a form of attention, mindfulness is qualitatively receptive and non-reactive, and is thought to facilitate adaptive emotional responding. One suggested mechanism is that mindfulness facilitates disengagement from an affective stimulus and thereby decreases affective reactivity. However, mindfulness has been conceptualized as a state, intervention, and trait. Because evidence is mixed as to whether self-reported trait mindfulness decreases affective reactivity, we used a multi-method approach to study the relationship between individual differences in self-reported trait mindfulness and electrocortical, electrodermal, electromyographic, and self-reported responses to emotional pictures. Specifically, while participants (N = 51) passively viewed pleasant, neutral, and unpleasant IAPS pictures, we recorded high-density (128 channels) electrocortical, electrodermal, and electromyographic data to the pictures as well as to acoustic startle probes presented during the pictures. Afterwards, participants rated their subjective valence and arousal while viewing the pictures again. If trait mindfulness spontaneously reduces general emotional reactivity, then for individuals reporting high rather than low mindfulness, response differences between emotional and neutral pictures would show relatively decreased early posterior negativity (EPN) and late positive potential (LPP) amplitudes, decreased skin conductance responses, and decreased subjective ratings for valence and arousal. High mindfulness would also be associated with decreased emotional modulation of startle eyeblink and P3 amplitudes. Although results showed clear effects of emotion on the dependent measures, in general, mindfulness did not moderate these effects. For most measures, effect sizes were small with rather narrow confidence intervals. These data do not support the hypothesis that individual differences in self-reported trait mindfulness are related to spontaneous emotional responses during picture viewing. PMID:25749431

  6. Induction and separation of motion artifacts in EEG data using a mobile phantom head device

    NASA Astrophysics Data System (ADS)

    Oliveira, Anderson S.; Schlink, Bryan R.; Hairston, W. David; König, Peter; Ferris, Daniel P.

    2016-06-01

    Objective. Electroencephalography (EEG) can assess brain activity during whole-body motion in humans but head motion can induce artifacts that obfuscate electrocortical signals. Definitive solutions for removing motion artifact from EEG have yet to be found, so creating methods to assess signal processing routines for removing motion artifact are needed. We present a novel method for investigating the influence of head motion on EEG recordings as well as for assessing the efficacy of signal processing approaches intended to remove motion artifact. Approach. We used a phantom head device to mimic electrical properties of the human head with three controlled dipolar sources of electrical activity embedded in the phantom. We induced sinusoidal vertical motions on the phantom head using a custom-built platform and recorded EEG signals with three different acquisition systems while the head was both stationary and in varied motion conditions. Main results. Recordings showed up to 80% reductions in signal-to-noise ratio (SNR) and up to 3600% increases in the power spectrum as a function of motion amplitude and frequency. Independent component analysis (ICA) successfully isolated the three dipolar sources across all conditions and systems. There was a high correlation (r > 0.85) and marginal increase in the independent components’ (ICs) power spectrum (˜15%) when comparing stationary and motion parameters. The SNR of the IC activation was 400%-700% higher in comparison to the channel data SNR, attenuating the effects of motion on SNR. Significance. Our results suggest that the phantom head and motion platform can be used to assess motion artifact removal algorithms and compare different EEG systems for motion artifact sensitivity. In addition, ICA is effective in isolating target electrocortical events and marginally improving SNR in relation to stationary recordings.

  7. Distinct cortical circuit mechanisms for complex forelimb movement and motor map topography.

    PubMed

    Harrison, Thomas C; Ayling, Oliver G S; Murphy, Timothy H

    2012-04-26

    Cortical motor maps are the basis of voluntary movement, but they have proven difficult to understand in the context of their underlying neuronal circuits. We applied light-based motor mapping of Channelrhodopsin-2 mice to reveal a functional subdivision of the forelimb motor cortex based on the direction of movement evoked by brief (10 ms) pulses. Prolonged trains of electrical or optogenetic stimulation (100-500 ms) targeted to anterior or posterior subregions of motor cortex evoked reproducible complex movements of the forelimb to distinct positions in space. Blocking excitatory cortical synaptic transmission did not abolish basic motor map topography, but the site-specific expression of complex movements was lost. Our data suggest that the topography of movement maps arises from their segregated output projections, whereas complex movements evoked by prolonged stimulation require intracortical synaptic transmission. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Mapping Inhibitory Neuronal Circuits by Laser Scanning Photostimulation

    PubMed Central

    Ikrar, Taruna; Olivas, Nicholas D.; Shi, Yulin; Xu, Xiangmin

    2011-01-01

    Inhibitory neurons are crucial to cortical function. They comprise about 20% of the entire cortical neuronal population and can be further subdivided into diverse subtypes based on their immunochemical, morphological, and physiological properties1-4. Although previous research has revealed much about intrinsic properties of individual types of inhibitory neurons, knowledge about their local circuit connections is still relatively limited3,5,6. Given that each individual neuron's function is shaped by its excitatory and inhibitory synaptic input within cortical circuits, we have been using laser scanning photostimulation (LSPS) to map local circuit connections to specific inhibitory cell types. Compared to conventional electrical stimulation or glutamate puff stimulation, LSPS has unique advantages allowing for extensive mapping and quantitative analysis of local functional inputs to individually recorded neurons3,7-9. Laser photostimulation via glutamate uncaging selectively activates neurons perisomatically, without activating axons of passage or distal dendrites, which ensures a sub-laminar mapping resolution. The sensitivity and efficiency of LSPS for mapping inputs from many stimulation sites over a large region are well suited for cortical circuit analysis. Here we introduce the technique of LSPS combined with whole-cell patch clamping for local inhibitory circuit mapping. Targeted recordings of specific inhibitory cell types are facilitated by use of transgenic mice expressing green fluorescent proteins (GFP) in limited inhibitory neuron populations in the cortex3,10, which enables consistent sampling of the targeted cell types and unambiguous identification of the cell types recorded. As for LSPS mapping, we outline the system instrumentation, describe the experimental procedure and data acquisition, and present examples of circuit mapping in mouse primary somatosensory cortex. As illustrated in our experiments, caged glutamate is activated in a spatially restricted region of the brain slice by UV laser photolysis; simultaneous voltage-clamp recordings allow detection of photostimulation-evoked synaptic responses. Maps of either excitatory or inhibitory synaptic input to the targeted neuron are generated by scanning the laser beam to stimulate hundreds of potential presynaptic sites. Thus, LSPS enables the construction of detailed maps of synaptic inputs impinging onto specific types of inhibitory neurons through repeated experiments. Taken together, the photostimulation-based technique offers neuroscientists a powerful tool for determining the functional organization of local cortical circuits. PMID:22006064

  9. Endothelin-1 activates p38 mitogen-activated protein kinase and cytosolic phospholipase A2 in cat iris sphincter smooth muscle cells.

    PubMed

    Husain, S; Abdel-Latif, A A

    1999-08-15

    We have shown previously that cytosolic phospholipase A(2) (cPLA(2)) is responsible for endothelin-1-induced release of arachidonic acid for prostaglandin synthesis in cat iris sphincter smooth muscle (CISM) cells [Husain and Abdel-Latif (1998) Biochim. Biophys. Acta 1392, 127-144]. Here we show that p38 mitogen-activated protein (MAP) kinase, but not p42/p44 MAP kinases, plays an important role in the phosphorylation and activation of cPLA(2) in endothelin-1-stimulated CISM cells. This conclusion is supported by the following findings. Both p38 MAP kinase and p42/p44 MAP kinases were present in the CISM cells and both were activated by endothelin-1. SB203580, a potent specific inhibitor of p38 MAP kinase, but not the p42/p44 MAP kinases specific inhibitor, PD98059, markedly suppressed endothelin-1-enhanced cPLA(2) phosphorylation, cPLA(2) activity and arachidonic acid release. The addition of endothelin-1 resulted in the phosphorylation and activation of cPLA(2). Endothelin-1 stimulated p38 MAP kinase activity in a time- and concentration-dependent manner, and these effects were mediated through the endothelin-A receptor subtype. The protein kinase C (PKC) inhibitor, RO 31-8220, had no inhibitory effect on endothelin-1-induced p38 MAP kinase activation, suggesting that endothelin-1 activation of p38 MAP kinase is independent of PKC. Pertussis toxin inhibited both endothelin-1 and mastoparan stimulation of p38 MAP kinase activity and arachidonic acid release. The inhibitory effects of pertussis toxin are not mediated through cAMP formation. Mastoparan-stimulated [(3)H]arachidonic acid release and cPLA(2) activation was inhibited by SB203580, but not by RO 31-8220. These data suggest that endothelin-1 binds to the endothelin-A receptor to activate the Gi-protein which, through a series of kinases, leads to the activation of p38 MAP kinase and subsequently to phosphorylation and activation of cPLA(2). Activation of cPLA(2) leads to the liberation of arachidonic acid from membrane phospholipids. The ability of the activated endothelin-A receptor, which is coupled to both Gq- and Gi-proteins, to recruit and activate this complex signal transduction pathway remains to be elucidated. Further studies on the mechanism of these relationships could provide important information about the functions of p38 MAP kinase in smooth muscle.

  10. Endothelin-1 activates p38 mitogen-activated protein kinase and cytosolic phospholipase A2 in cat iris sphincter smooth muscle cells.

    PubMed Central

    Husain, S; Abdel-Latif, A A

    1999-01-01

    We have shown previously that cytosolic phospholipase A(2) (cPLA(2)) is responsible for endothelin-1-induced release of arachidonic acid for prostaglandin synthesis in cat iris sphincter smooth muscle (CISM) cells [Husain and Abdel-Latif (1998) Biochim. Biophys. Acta 1392, 127-144]. Here we show that p38 mitogen-activated protein (MAP) kinase, but not p42/p44 MAP kinases, plays an important role in the phosphorylation and activation of cPLA(2) in endothelin-1-stimulated CISM cells. This conclusion is supported by the following findings. Both p38 MAP kinase and p42/p44 MAP kinases were present in the CISM cells and both were activated by endothelin-1. SB203580, a potent specific inhibitor of p38 MAP kinase, but not the p42/p44 MAP kinases specific inhibitor, PD98059, markedly suppressed endothelin-1-enhanced cPLA(2) phosphorylation, cPLA(2) activity and arachidonic acid release. The addition of endothelin-1 resulted in the phosphorylation and activation of cPLA(2). Endothelin-1 stimulated p38 MAP kinase activity in a time- and concentration-dependent manner, and these effects were mediated through the endothelin-A receptor subtype. The protein kinase C (PKC) inhibitor, RO 31-8220, had no inhibitory effect on endothelin-1-induced p38 MAP kinase activation, suggesting that endothelin-1 activation of p38 MAP kinase is independent of PKC. Pertussis toxin inhibited both endothelin-1 and mastoparan stimulation of p38 MAP kinase activity and arachidonic acid release. The inhibitory effects of pertussis toxin are not mediated through cAMP formation. Mastoparan-stimulated [(3)H]arachidonic acid release and cPLA(2) activation was inhibited by SB203580, but not by RO 31-8220. These data suggest that endothelin-1 binds to the endothelin-A receptor to activate the Gi-protein which, through a series of kinases, leads to the activation of p38 MAP kinase and subsequently to phosphorylation and activation of cPLA(2). Activation of cPLA(2) leads to the liberation of arachidonic acid from membrane phospholipids. The ability of the activated endothelin-A receptor, which is coupled to both Gq- and Gi-proteins, to recruit and activate this complex signal transduction pathway remains to be elucidated. Further studies on the mechanism of these relationships could provide important information about the functions of p38 MAP kinase in smooth muscle. PMID:10432304

  11. Validation of finite element model of transcranial electrical stimulation using scalp potentials: implications for clinical dose

    NASA Astrophysics Data System (ADS)

    Datta, Abhishek; Zhou, Xiang; Su, Yuzhou; Parra, Lucas C.; Bikson, Marom

    2013-06-01

    Objective. During transcranial electrical stimulation, current passage across the scalp generates voltage across the scalp surface. The goal was to characterize these scalp voltages for the purpose of validating subject-specific finite element method (FEM) models of current flow. Approach. Using a recording electrode array, we mapped skin voltages resulting from low-intensity transcranial electrical stimulation. These voltage recordings were used to compare the predictions obtained from the high-resolution model based on the subject undergoing transcranial stimulation. Main results. Each of the four stimulation electrode configurations tested resulted in a distinct distribution of scalp voltages; these spatial maps were linear with applied current amplitude (0.1 to 1 mA) over low frequencies (1 to 10 Hz). The FEM model accurately predicted the distinct voltage distributions and correlated the induced scalp voltages with current flow through cortex. Significance. Our results provide the first direct model validation for these subject-specific modeling approaches. In addition, the monitoring of scalp voltages may be used to verify electrode placement to increase transcranial electrical stimulation safety and reproducibility.

  12. Experimental assessment of thermal effects of high power density light stimulation for optogenetics control of deep brain structures (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Senova, Suhan; Scisniak, Ilona; Chiang, Chih Chieh; Doignon, Isabelle; Martin, Claire; Palfi, Stephane; Chaillet, Antoine; Pain, Frederic

    2016-03-01

    2D surface maps of light distribution and temperature increase were recorded in wild type anesthetized rats brains during 90s light stimulation at 478nm (blue) and 638nm (red) with continuous or pulsed optical stimulations with corresponding power ranging from 100 up to 1200 mW/mm² at the output of an optical fiber. Post mortem maps were recorded in the same animals to assess the cooling effect of blood flow. Post mortem histological analysis were carried out to assess whether high power light stimulations had phototoxic effects or could trigger non physiological functional activation. Temperature increase remains below physiological changes (0,5 -1°) for stimulations up to 400mW/mm² at 40Hz. . Histology did not show significant irreversible modifications or damage to the tissues. The spatial profile of light distribution and heat were correlated and demonstrate as expected a rapid attenuation with diatnce to the fiber.

  13. Pyroglutamic acid stimulates DNA synthesis in rat primary hepatocytes through the mitogen-activated protein kinase pathway.

    PubMed

    Inoue, Shinjiro; Okita, Yoichi; de Toledo, Andreia; Miyazaki, Hiroyuki; Hirano, Eiichi; Morinaga, Tetsuo

    2015-01-01

    We purified pyroglutamic acid from human placental extract and identified it as a potent stimulator of rat primary hepatocyte DNA synthesis. Pyroglutamic acid dose-dependently stimulated DNA synthesis, and this effect was inhibited by PD98059, a dual specificity mitogen-activated protein kinase kinase 1 (MAP2K1) inhibitor. Therefore, pyroglutamic acid stimulated DNA synthesis in rat primary hepatocytes via MAPK signaling.

  14. The VERRUN and VERNAL software systems for steady-state visual evoked response experimentation

    NASA Technical Reports Server (NTRS)

    Levison, W. H.; Zacharias, G. L.

    1984-01-01

    Two digital computer programs were developed for use in experiments involving steady-state visual evoked response (VER): VERRUN, whose primary functions are to generate a sum-of-sines (SOS) stimulus and to digitize and store electro-cortical response; and VERNAL, which provides both time- and frequency-domain metrics of the evoked response. These programs were coded in FORTRAN for operation on the PDP-11/34, using the RSX-11 Operating System, and the PDP-11/23, using the RT-11 Operating System. Users' and programmers' guides to these programs are provided, and guidelines for model analysis of VER data are suggested.

  15. Effects of instructed emotion regulation on valence, arousal, and attentional measures of affective processing.

    PubMed

    Bernat, Edward M; Cadwallader, Meredith; Seo, Dongju; Vizueta, Nathalie; Patrick, Christopher J

    2011-01-01

    Cognitive control of emotion has been investigated using tasks prompting participants to increase or decrease emotional responding to affective pictures. This study provides a more comprehensive evaluation of responding in this task by including: pleasant and unpleasant pictures, increase and decrease instructions, additional physiological measures, and a fully randomized design. Findings suggest that control efforts did modulate higher-level affective responses indexed by self-reported valence and expressive facial muscles, but not lower-level affective responses indexed by startle blink and heart rate. Similarly, electrocortical measures evidenced expectable affective responses and control-related activity, but no modulation of affective patterns due to the control efforts.

  16. Descriptive Linear modeling of steady-state visual evoked response

    NASA Technical Reports Server (NTRS)

    Levison, W. H.; Junker, A. M.; Kenner, K.

    1986-01-01

    A study is being conducted to explore use of the steady state visual-evoke electrocortical response as an indicator of cognitive task loading. Application of linear descriptive modeling to steady state Visual Evoked Response (VER) data is summarized. Two aspects of linear modeling are reviewed: (1) unwrapping the phase-shift portion of the frequency response, and (2) parsimonious characterization of task-loading effects in terms of changes in model parameters. Model-based phase unwrapping appears to be most reliable in applications, such as manual control, where theoretical models are available. Linear descriptive modeling of the VER has not yet been shown to provide consistent and readily interpretable results.

  17. Thalamic and extrathalamic mechanisms of consciousness after severe brain injury.

    PubMed

    Lutkenhoff, Evan S; Chiang, Jeffrey; Tshibanda, Luaba; Kamau, Evelyn; Kirsch, Murielle; Pickard, John D; Laureys, Steven; Owen, Adrian M; Monti, Martin M

    2015-07-01

    What mechanisms underlie the loss and recovery of consciousness after severe brain injury? We sought to establish, in the largest cohort of patients with disorders of consciousness (DOC) to date, the link between gold standard clinical measures of awareness and wakefulness, and specific patterns of local brain pathology-thereby possibly providing a mechanistic framework for patient diagnosis, prognosis, and treatment development. Structural T1-weighted magnetic resonance images were collected, in a continuous sample of 143 severely brain-injured patients with DOC (and 96 volunteers), across 2 tertiary expert centers. Brain atrophy in subcortical regions (bilateral thalamus, basal ganglia, hippocampus, basal forebrain, and brainstem) was assessed across (1) healthy volunteers and patients, (2) clinical entities (eg, vegetative state, minimally conscious state), (3) clinical measures of consciousness (Coma Recovery Scale-Revised), and (4) injury etiology. Compared to volunteers, patients exhibited significant atrophy across all structures (p < 0.05, corrected). Strikingly, we found almost no significant differences across clinical entities. Nonetheless, the clinical measures of awareness and wakefulness upon which differential diagnosis rely were systematically associated with tissue atrophy within thalamic and basal ganglia nuclei, respectively; the basal forebrain was atrophied in proportion to patients' response to sensory stimulation. In addition, nontraumatic injuries exhibited more extensive thalamic atrophy. These findings provide, for the first time, a grounding in pathology for gold standard behavior-based clinical measures of consciousness, and reframe our current models of DOC by stressing the different links tying thalamic mechanisms to willful behavior and extrathalamic mechanisms to behavioral (and electrocortical) arousal. © 2015 American Neurological Association.

  18. Mapping of cortical language function by functional magnetic resonance imaging and repetitive navigated transcranial magnetic stimulation in 40 healthy subjects.

    PubMed

    Sollmann, Nico; Ille, Sebastian; Boeckh-Behrens, Tobias; Ringel, Florian; Meyer, Bernhard; Krieg, Sandro M

    2016-07-01

    Functional magnetic resonance imaging (fMRI) is considered to be the standard method regarding non-invasive language mapping. However, repetitive navigated transcranial magnetic stimulation (rTMS) gains increasing importance with respect to that purpose. However, comparisons between both methods are sparse. We performed fMRI and rTMS language mapping of the left hemisphere in 40 healthy, right-handed subjects in combination with the tasks that are most commonly used in the neurosurgical context (fMRI: word-generation = WGEN task; rTMS: object-naming = ON task). Different rTMS error rate thresholds (ERTs) were calculated, and Cohen's kappa coefficient and the cortical parcellation system (CPS) were used for systematic comparison of the two techniques. Overall, mean kappa coefficients were low, revealing no distinct agreement. We found the highest agreement for both techniques when using the 2-out-of-3 rule (CPS region defined as language positive in terms of rTMS if at least 2 out of 3 stimulations led to a naming error). However, kappa for this threshold was only 0.24 (kappa of <0, 0.01-0.20, 0.21-0.40, 0.41-0.60, 0.61-0.80 and 0.81-0.99 indicate less than chance, slight, fair, moderate, substantial and almost perfect agreement, respectively). Because of the inherent differences in the underlying physiology of fMRI and rTMS, the different tasks used and the impossibility of verifying the results via direct cortical stimulation (DCS) in the population of healthy volunteers, one must exercise caution in drawing conclusions about the relative usefulness of each technique for language mapping. Nevertheless, this study yields valuable insights into these two mapping techniques for the most common language tasks currently used in neurosurgical practice.

  19. Articular Chondrocytes Express the Receptor for Advanced Glycation End Products

    PubMed Central

    Loeser, Richard F.; Yammani, Raghunatha R.; Carlson, Cathy S.; Chen, Hong; Cole, Ada; Im, Hee-Jeong; Bursch, Laura S.; Yan, Shi Du

    2006-01-01

    Objective The receptor for advanced glycation end products (RAGE) binds multiple ligands, including S100 proteins, high mobility group box chromosomal protein 1 (HMGB-1), and AGEs, all of which are present in articular cartilage. Stimulation of RAGE signaling can lead to MAP kinase activation and increased NF-κB activity. The objective of the present study was to determine if chondrocytes express functional RAGE. Methods The presence of chondrocyte RAGE was analyzed by immunohistochemistry using normal and osteoarthritic (OA) cartilage from young and old monkeys and humans, immunoblotting of chondrocyte lysates and human cartilage extracts, and reverse transcription–polymerase chain reaction (RT-PCR) analysis of RNA from chondrocytes treated with interleukin-1 (IL-1) and fibronectin fragments. RAGE signaling was evaluated by stimulating chondrocytes with S100B and HMGB-1 and analyzing for activation of the ERK MAP kinase and NF-κB. The ability of S100B and HMGB-1 to stimulate matrix metalloproteinase 13 (MMP-13) production was also assessed. A pull-down assay using biotin-labeled S100B was used to demonstrate binding to RAGE. Results RAGE was detected in sections of monkey knee cartilage and human knee and ankle cartilage. Increased immunostaining for RAGE was noted in cartilage from older adult monkeys and humans and was further increased in OA tissue. RAGE was also detected by immunoblotting and by RT-PCR, where IL-1β and fibronectin fragments were found to stimulate RAGE expression. Stimulation of chondrocytes with S100B or HMGB-1 increased phosphorylation of the ERK MAP kinase and the p65 subunit of NF-κB and increased the production of MMP-13. This signaling was inhibited in cells pretreated with soluble RAGE, and S100B was shown to bind to chondrocyte RAGE. Conclusion Articular chondrocytes express functional RAGE. The increase in RAGE noted in OA cartilage and the ability of RAGE ligands to stimulate chondrocyte MAP kinase and NF-κB activity and to stimulate MMP-13 production suggests that chondrocyte RAGE signaling could play a role in OA. PMID:16052547

  20. Optimal timing of pulse onset for language mapping with navigated repetitive transcranial magnetic stimulation.

    PubMed

    Krieg, Sandro M; Tarapore, Phiroz E; Picht, Thomas; Tanigawa, Noriko; Houde, John; Sollmann, Nico; Meyer, Bernhard; Vajkoczy, Peter; Berger, Mitchel S; Ringel, Florian; Nagarajan, Srikantan

    2014-10-15

    Within the primary motor cortex, navigated transcranial magnetic stimulation (nTMS) has been shown to yield maps strongly correlated with those generated by direct cortical stimulation (DCS). However, the stimulation parameters for repetitive nTMS (rTMS)-based language mapping are still being refined. For this purpose, the present study compares two rTMS protocols, which differ in the timing of pulse train onset relative to picture presentation onset during object naming. Results were the correlated with DCS language mapping during awake surgery. Thirty-two patients with left-sided perisylvian tumors were examined by rTMS prior to awake surgery. Twenty patients underwent rTMS pulse trains starting at 300 ms after picture presentation onset (delayed TMS), whereas another 12 patients received rTMS pulse trains starting at the picture presentation onset (ONSET TMS). These rTMS results were then evaluated for correlation with intraoperative DCS results as gold standard in terms of differential consistencies in receiver operating characteristics (ROC) statistics. Logistic regression analysis by protocols and brain regions were conducted. Within and around Broca's area, there was no difference in sensitivity (onset TMS: 100%, delayed TMS: 100%), negative predictive value (NPV) (onset TMS: 100%, delayed TMS: 100%), and positive predictive value (PPV) (onset TMS: 55%, delayed TMS: 54%) between the two protocols compared to DCS. However, specificity differed significantly (onset TMS: 67%, delayed TMS: 28%). In contrast, for posterior language regions, such as supramarginal gyrus, angular gyrus, and posterior superior temporal gyrus, early pulse train onset stimulation showed greater specificity (onset TMS: 92%, delayed TMS: 20%), NPV (onset TMS: 92%, delayed TMS: 57%) and PPV (onset TMS: 75%, delayed TMS: 30%) with comparable sensitivity (onset TMS: 75%, delayed TMS: 70%). Logistic regression analysis also confirmed the greater fit of the predictions by rTMS that had the pulse train onset coincident with the picture presentation onset when compared to the delayed stimulation. Analyses of differential disruption patterns of mapped cortical regions were further able to distinguish clusters of cortical regions standardly associated with semantic and pre-vocalization phonological networks proposed in various models of word production. Repetitive nTMS predictions by both protocols correlate well with DCS outcomes especially in Broca's region, particularly with regard to TMS negative predictions. With this study, we have demonstrated that rTMS stimulation onset coincident with picture presentation onset improves the accuracy of preoperative language maps, particularly within posterior language areas. Moreover, immediate and delayed pulse train onsets may have complementary disruption patterns that could differentially capture cortical regions causally necessary for semantic and pre-vocalization phonological networks. Published by Elsevier Inc.

  1. The effects of anaesthetic agents on cortical mapping during neurosurgical procedures involving eloquent areas of the brain.

    PubMed

    Adhikary, Sanjib D; Thiruvenkatarajan, Venkatesan; Babu, K Srinivasa; Tharyan, Prathap

    2011-11-09

    In patients presenting for surgical resection of lesions involving, or adjacent to, the functionally important eloquent cortical areas, it is vital to achieve complete or near complete resection of the pathology without damaging the healthy surrounding tissues.The eloquent areas that the surgeons are concerned with are the primary motor, premotor cortex, supplementary motor cortex and speech areas. If the lesions are within these regions surgeons could either take a biopsy or do a intracapsular decompression without damaging the mentioned areas to avoid postoperative dysfunction. If the lesions are adjacent to the above mentioned areas, the normal anatomy would get distorted. However, proper identification of the above mentioned areas would enable the surgeon to radically remove the tumours. Intraoperative mapping of the cortex with stimulating and recording electrodes is termed as electrophysiological (EP) mapping.The EP mapping of motor, sensory and language cortex is widely employed in the resection of lesions involving or adjacent to the eloquent areas. Both intravenous and inhalational agents are known to affect these EP mapping techniques. The aim of this review was to evaluate the effect of anaesthetic agents on intra-operative EP mapping in patients undergoing neurosurgical procedures involving, or adjacent to, the functional areas of the cortex under general anaesthesia. We searched the Cochrane Epilepsy Group Specialized Register (7 March 2011), The Cochrane Central Register of Controlled Trials (CENTRAL issue 1 of 4, The Cochrane Library 2011), MEDLINE (Ovid, 1948 to February week 4, 2011), PsycINFO (EBSCOhost, 7 March 2011), and the National Research Register Archive and UK Clinical Research Network (7 March 2011). We also contacted other researchers in the field in an attempt to ascertain unpublished studies. We planned to include randomised and quasi randomised controlled trials irrespective of blinding in patients of any age or gender undergoing neurosurgery under general anaesthesia where cortical mapping was attempted to identify eloquent areas using either somatosensory evoked potentials (SSEPs), or direct cortical stimulation (DCS) triggered muscle motor evoked potentials (mMEPs), or both. We excluded patients from trials where the anaesthetic effects were evaluated during spinal cord surgery or where MEPs were recorded from modes other than direct cortical stimulation such as transcranial electrical stimulation (TcMEPs), MEPs derived from epidural electrodes (D waves) and magnetic stimulation and trials involving awake craniotomies or the asleep-awake-asleep technique during cortical mapping. Two review authors planned to independently apply the inclusion criteria and extract data. No RCTs were found for this study population. This review highlights the need for well-designed randomised controlled trials to assess the effect of anaesthetic agents on cortical mapping during neurosurgical procedures involving eloquent areas of the brain.

  2. Whole body heat stress attenuates the pressure response to muscle metaboreceptor stimulation in humans.

    PubMed

    Cui, Jian; Blaha, Cheryl; Sinoway, Lawrence I

    2016-11-01

    The effects of whole body heat stress on sympathetic and cardiovascular responses to stimulation of muscle metaboreceptors and mechanoreceptors remains unclear. We examined the muscle sympathetic nerve activity (MSNA), blood pressure, and heart rate in 14 young healthy subjects during fatiguing isometric handgrip exercise, postexercise circulatory occlusion (PECO), and passive muscle stretch during PECO. The protocol was performed under normothermic and whole body heat stress (increase internal temperature ~0.6°C via a heating suit) conditions. Heat stress increased the resting MSNA and heart rate. Heat stress did not alter the mean blood pressure (MAP), heart rate, and MSNA responses (i.e., changes) to fatiguing exercise. During PECO, whole body heat stress accentuated the heart rate response [change (Δ) of 5.8 ± 1.5 to Δ10.0 ± 2.1 beats/min, P = 0.03], did not alter the MSNA response (Δ16.4 ± 2.8 to Δ17.3 ± 3.8 bursts/min, P = 0.74), and lowered the MAP response (Δ20 ± 2 to Δ12 ± 1 mmHg, P < 0.001). Under normothermic conditions, passive stretch during PECO evoked significant increases in MAP and MSNA (both P < 0.001). Of note, heat stress prevented the MAP and MSNA responses to stretch during PECO (both P > 0.05). These data suggest that whole body heat stress attenuates the pressor response due to metaboreceptor stimulation, and the sympathetic nerve response due to mechanoreceptor stimulation. Copyright © 2016 the American Physiological Society.

  3. Effect of selective vagal nerve stimulation on blood pressure, heart rate and respiratory rate in rats under metoprolol medication.

    PubMed

    Gierthmuehlen, Mortimer; Plachta, Dennis T T

    2016-02-01

    Selective vagal nerve stimulation (sVNS) has been shown to reduce blood pressure without major side effects in rats. This technology might be the key to non-medical antihypertensive treatment in patients with therapy-resistant hypertension. β-blockers are the first-line therapy of hypertension and have in general a bradycardic effect. As VNS itself can also promote bradycardia, it was the aim of this study to investigate the influence of the β1-selective blocker Metoprolol on the effect of sVNS especially with respect to the heart rate. In 10 male Wistar rats, a polyimide multichannel-cuff electrode was placed around the vagal nerve bundle to selectively stimulate the aortic depressor nerve fibers. The stimulation parameters were adapted to the thresholds of individual animals and were in the following ranges: frequency 30-50 Hz, amplitude 0.3-1.8 mA and pulse width 0.3-1.3 ms. Blood pressure responses were detected with a microtip transducer in the carotid artery, and electrocardiography was recorded with s.c. chest electrodes. After IV administration of Metoprolol (2 mg kg(-1) body weight), the animals' mean arterial blood pressure (MAP) and heart rate (HR) decreased significantly. Although the selective electrical stimulation of the baroreceptive fibers reduced MAP and HR, both effects were significantly alleviated by Metoprolol. As a side effect, the rate of stimulation-induced apnea significantly increased after Metoprolol administration. sVNS can lower the MAP under Metoprolol without causing severe bradycardia.

  4. Opioid hedonic hotspot in nucleus accumbens shell: mu, delta, and kappa maps for enhancement of sweetness "liking" and "wanting".

    PubMed

    Castro, Daniel C; Berridge, Kent C

    2014-03-19

    A specialized cubic-millimeter hotspot in the rostrodorsal quadrant of medial shell in nucleus accumbens (NAc) of rats may mediate opioid enhancement of gustatory hedonic impact or "liking". Here, we selectively stimulated the three major subtypes of opioid receptors via agonist microinjections [mu (DAMGO), delta (DPDPE), or kappa (U50488H)] and constructed anatomical maps for functional localizations of consequent changes in hedonic "liking" (assessed by affective orofacial reactions to sucrose taste) versus "wanting" (assessed by changes in food intake). Results indicated that the NAc rostrodorsal quadrant contains a shared opioid hedonic hotspot that similarly mediates enhancements of sucrose "liking" for mu, delta, and kappa stimulations. Within the rostrodorsal hotspot boundaries each type of stimulation generated at least a doubling or higher enhancement of hedonic reactions, with comparable intensities for all three types of opioid stimulation. By contrast, a negative hedonic coldspot was mapped in the caudal half of medial shell, where all three types of opioid stimulation suppressed "liking" reactions to approximately one-half normal levels. Different anatomical patterns were produced for stimulation of food "wanting", reflected in food intake. Altogether, these results indicate that the rostrodorsal hotspot in medial shell is unique for generating opioid-induced hedonic enhancement, and add delta and kappa signals to mu as hedonic generators within the hotspot. Also, the identification of a separable NAc caudal coldspot for hedonic suppression, and separate NAc opioid mechanisms for controlling food "liking" versus "wanting" further highlights NAc anatomical heterogeneity and localizations of function within subregions of medial shell.

  5. Mapping for Acute Transvenous Phrenic Nerve Stimulation Study (MAPS Study).

    PubMed

    Dekker, Lukas R C; Gerritse, Bart; Scheiner, Avram; Kornet, Lilian

    2017-03-01

    Central sleep apnea syndrome, correlated with the occurrence of heart failure, is characterized by periods of insufficient ventilation during sleep. This acute study in 15 patients aims to map the venous system and determine if diaphragmatic movement can be achieved by phrenic nerve stimulation at various locations within the venous system. Subjects underwent a scheduled catheter ablation procedure. During the procedural waiting time, one multielectrode electrophysiology catheter was subsequently placed at the superior and inferior vena cava and the junctions of the left jugular and left brachiocephalic vein and right jugular and right brachiocephalic vein, for phrenic nerve stimulation (1-2 seconds ON/2-3 seconds OFF, 40 Hz, pulse width 210 μs). Diaphragmatic movement was assessed manually and by a breathing mask. During a follow-up assessment between 2 and 4 weeks postprocedure, occurrence of adverse events was assessed. In all patients diaphragmatic movement was induced at one or more locations using a median threshold of at least 2 V and maximally 7.5 V (i.e., e 3.3 mA, 14.2 mA). The lowest median current to obtain diaphragmatic stimulation without discomfort was found for the right brachiocephalic vein (4.7 mA). In 12/15 patients diaphragmatic movement could be induced without any discomfort, but in three patients hiccups occurred. Diaphragmatic stimulation from the brachiocephalic and caval veins is feasible. Potential side effects should be eliminated by adapting the stimulation pattern. This information could be used to design a catheter, combining cardiac pacing with enhancing diaphragm movement during a sleep apnea episode. © 2017 Wiley Periodicals, Inc.

  6. Double dissociation between syntactic gender and picture naming processing: a brain stimulation mapping study.

    PubMed

    Vidorreta, Jose Garbizu; Garcia, Roser; Moritz-Gasser, Sylvie; Duffau, Hugues

    2011-03-01

    Neural foundations of syntactic gender processing remain poorly understood. We used electrostimulation mapping in nine right-handed awake patients during surgery for a glioma within the left hemisphere, to study whether the cortico-subcortical structures involved in naming versus syntactic gender processing are common or distinct. In French, the article determines the grammatical gender. Thus, the patient was asked to perform a picture naming task and to give the appropriate article for each picture, with and without stimulation. Cortical stimulation elicited reproducible syntactic gender disturbances in six patients, in the inferior frontal gyrus (three cases), and in the posterior middle temporal gyrus (three cases). Interestingly, no naming disorders were generated during stimulation of the syntactic sites, while cortical areas inducing naming disturbances never elicited grammatical gender errors when stimulated. Moreover, at the subcortical level, stimulation of the white matter lateral to the caudate nucleus induced gender errors in three patients, with no naming disorders. Using cortico-subcortical electrical mapping in awake patients, we demonstrate for the first time (1) a double dissociation between syntactic gender and naming processing, supporting independent network model rather than serial theory, (2) the involvement of the left inferior frontal gyrus, especially the pars triangularis, and the posterior left middle temporal gyrus in grammatical gender processing, (3) the existence of white matter pathways, likely a sub-part of the left superior longitudinal fasciculus, underlying a large-scale distributed cortico-subcortical circuit which might selectively sub-serve syntactic gender processing, even if interconnected with parallel sub-networks involved in naming (semantic and phonological) processing. Copyright © 2010 Wiley-Liss, Inc.

  7. Normal p21Ras/MAP kinase pathway expression and function in PBMC from patients with polycystic ovary disease.

    PubMed

    Buchs, A; Chagag, P; Weiss, M; Kish, E; Levinson, R; Aharoni, D; Rapoport, M J

    2004-04-01

    Polycystic ovary disease (PCOD) is associated with insulin resistance and increased prevalence of type II diabetes mellitus (T2DM). The p21Ras/MAP kinase is a major intracellular signaling pathway mediating insulin signaling in insulin responsive tissues. The expression, regulation and function of the p21Ras/MAP kinase pathway in PCOD patients were examined. Peripheral blood mononuclear cells (PBMC) were isolated from ten patients with PCOD and ten controls. The expression of p21Ras and its regulatory proteins; hSOS1 and p120GAP were studied. The basal and phytohemaglutinin (PHA) or insulin stimulated phosphorylation of MAP kinase was determined. Expression of p21Ras, and its regulatory proteins hSOS1 and p120GAP were similar in PCOD patients and controls. Basal, PHA and insulin stimulated phosphorylation of MAP kinase, were also comparable in the two groups as well as their PBMC proliferative response. These data indicate that the expression and overall function of the p21Ras/MAP kinase pathway remain intact in non-diabetic patients with PCOD.

  8. Awake Craniotomy in Arteriovenous Malformation Surgery: The Usefulness of Cortical and Subcortical Mapping of Language Function in Selected Patients.

    PubMed

    Gamble, Alexander J; Schaffer, Sarah G; Nardi, Dominic J; Chalif, David J; Katz, Jeffery; Dehdashti, Amir R

    2015-11-01

    Awake craniotomy for removal of intra-axial lesions is a well-established procedure. Few studies, however, have investigated the usefulness of this approach for resection of arteriovenous malformations adjacent to eloquent language areas. We demonstrate our experience by using cortical stimulation mapping and report for the first time on the usefulness of subcortical stimulation with interrogation of language function during resection of arteriovenous malformations (AVMs) located near language zones. Patients undergoing awake craniotomy for AVMs located in language zones and at least 5 mm away from the closest functional magnetic resonance imaging activation were analyzed. During surgery, cortical bipolar stimulation at 50 Hz, with an intensity of 2 mA, increased to a maximum of 10 mA was performed in the region around the AVM before claiming it negative for language function. In positive language site, the area was restimulated 3 times to confirm the functional deficit. The AVM resection was started based on cortical mapping findings. Further subcortical stimulation performed in concert with speech interrogation by the neuropsychologist continued at key points throughout the resection as feasible. The usefulness of cortical and subcortical stimulation in addition to patient outcomes was analyzed. Between March 2009 and September 2014, 42 brain AVM resections were performed. Four patients with left-sided language zone AVMs underwent awake craniotomy. The AVM locations were fronto-opercular in 2 patients and posterior temporal in 2. The AVM Spetzler-Martin grades were II (2 patients) and III (2 patients). In 1 patient, complete speech arrest was noticed during mapping of the peri-malformation zone, which was not breached during resection. In a second patient who initially demonstrated negative cortical mapping, a speech deficit was noticed during resection and subcortical stimulation. This guided the approach to protect and avoid the sensitive zone. This patient experienced mild postoperative expressive dysphasia that improved to normal within 6 weeks. Complete resection was achieved in all 4 patients. There were no other complications and no permanent neurological morbidity, resulting in good outcome in all 4 patients. Language mapping, both cortical and subcortical during AVM resection, may be valuable in a very select group of AVMs in language zones. Defining safe margins and feedback to the surgeon may provide the highest chances of a surgical cure while minimizing the risk of incurring a language deficit. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Cognitive Maps as a Way of Presenting the Dimension of Comparison within the History of Psychology.

    ERIC Educational Resources Information Center

    Diekhoff, George M.

    1982-01-01

    Describes how cognitive maps can help to stimulate discussion of the structural inter-relationships of psychological theory in college-level history of psychology classes. The author describes a cognitive mapping activity in which students pair prominent theorists and theories, rate their degrees of similarity, and graph the relationships of their…

  10. The Emergence of Route Map Reading Skills in Young Children.

    ERIC Educational Resources Information Center

    Frank, Rita E.

    There is little agreement about how the ability to read route maps initially emerges and about how it should be stimulated by early childhood educators. This study assessed the route map reading behavior of young children and the basic skills that might contribute to that behavior. In individual videotaped sessions, 120 four, five, and six year…

  11. Subcortical pathways serving cortical language sites: initial experience with diffusion tensor imaging fiber tracking combined with intraoperative language mapping.

    PubMed

    Henry, Roland G; Berman, Jeffrey I; Nagarajan, Srikantan S; Mukherjee, Pratik; Berger, Mitchel S

    2004-02-01

    The combination of mapping functional cortical neurons by intraoperative cortical stimulation and axonal architecture by diffusion tensor MRI fiber tracking can be used to delineate the pathways between functional regions. In this study the authors investigated the feasibility of combining these techniques to yield connectivity associated with motor speech and naming. Diffusion tensor MRI fiber tracking provides maps of axonal bundles and was combined with intraoperative mapping of eloquent cortex for a patient undergoing brain tumor surgery. Tracks from eight stimulated sites in the inferior frontal cortex including mouth motor, speech arrest, and anomia were generated from the diffusion tensor MRI data. The regions connected by the fiber tracking were compared to foci from previous functional imaging reports on language tasks. Connections were found between speech arrest, mouth motor, and anomia sites and the SMA proper and cerebral peduncle. The speech arrest and a mouth motor site were also seen to connect to the putamen via the external capsule. This is the first demonstration of delineation of subcortical pathways using diffusion tensor MRI fiber tracking with intraoperative cortical stimulation. The combined techniques may provide improved preservation of eloquent regions during neurological surgery, and may provide access to direct connectivity information between functional regions of the brain.

  12. Subcortical pathways serving cortical language sites: initial experience with diffusion tensor imaging fiber tracking combined with intraoperative language mapping

    PubMed Central

    Henry, Roland G.; Berman, Jeffrey I.; Nagarajan, Srikantan S.; Mukherjee, Pratik; Berger, Mitchel S.

    2014-01-01

    The combination of mapping functional cortical neurons by intraoperative cortical stimulation and axonal architecture by diffusion tensor MRI fiber tracking can be used to delineate the pathways between functional regions. In this study the authors investigated the feasibility of combining these techniques to yield connectivity associated with motor speech and naming. Diffusion tensor MRI fiber tracking provides maps of axonal bundles and was combined with intraoperative mapping of eloquent cortex for a patient undergoing brain tumor surgery. Tracks from eight stimulated sites in the inferior frontal cortex including mouth motor, speech arrest, and anomia were generated from the diffusion tensor MRI data. The regions connected by the fiber tracking were compared to foci from previous functional imaging reports on language tasks. Connections were found between speech arrest, mouth motor, and anomia sites and the SMA proper and cerebral peduncle. The speech arrest and a mouth motor site were also seen to connect to the putamen via the external capsule. This is the first demonstration of delineation of subcortical pathways using diffusion tensor MRI fiber tracking with intraoperative cortical stimulation. The combined techniques may provide improved preservation of eloquent regions during neurological surgery, and may provide access to direct connectivity information between functional regions of the brain. PMID:14980564

  13. Acute functional reorganisation of the human motor cortex during resection of central lesions: a study using intraoperative brain mapping

    PubMed Central

    Duffau, H

    2001-01-01

    OBJECTIVES—Brain plasticity is supposed to allow the compensation of motor function in cases of rolandic lesion. The aim was to analyse the mechanisms of functional reorganisation during surgery in the central area.
METHODS—A motor brain mapping was performed in three right handed patients without any neurological deficit, operated on for a slow growing lesion near the rolandic region (two precentral resected under general anaesthesia and one retrocentral removed under local anaesthesia to allow also sensory mapping) using intraoperative direct electrical stimulations (5 mm space tips bipolar stimulator probe, biphasic square wave pulse current: 1 ms/phase, 60 Hz, 4 to 18mA).
RESULTS—For each patient, the motor areas of the hand and forearm in the primary motor cortex (M1) were identified before and after lesion removal with the same stimulation parameters: the same eloquent sites were found, plus the appearance after resection of additional sites in M1 inducing the same movement during stimulations as the previous areas.
CONCLUSIONS—Multiple cortical representations for hand and forearm movements in M1 seem to exist. In addition, the results demonstrate the short term capacity of the brain to make changes in local motor maps, by sudden unmasking after tumour resection of a second redundant site participating in the same movement. Finally, it seems not necessary for the whole of the redundant sites to be functional to provide normal movement, a concept with potential implications for surgery within the central region.

 PMID:11254775

  14. Interaction of Motor Training and Intermittent Theta Burst Stimulation in Modulating Motor Cortical Plasticity: Influence of BDNF Val66Met Polymorphism

    PubMed Central

    Lee, Mina; Kim, Song E.; Kim, Won Sup; Lee, Jungyeun; Yoo, Hye Kyung; Park, Kee-Duk; Choi, Kyoung-Gyu; Jeong, Seon-Yong; Kim, Byung Gon; Lee, Hyang Woon

    2013-01-01

    Cortical physiology in human motor cortex is influenced by behavioral motor training (MT) as well as repetitive transcranial magnetic stimulation protocol such as intermittent theta burst stimulation (iTBS). This study aimed to test whether MT and iTBS can interact with each other to produce additive changes in motor cortical physiology. We hypothesized that potential interaction between MT and iTBS would be dependent on BDNF Val66Met polymorphism, which is known to affect neuroplasticity in the human motor cortex. Eighty two healthy volunteers were genotyped for BDNF polymorphism. Thirty subjects were assigned for MT alone, 23 for iTBS alone, and 29 for MT + iTBS paradigms. TMS indices for cortical excitability and motor map areas were measured prior to and after each paradigm. MT alone significantly increased the motor cortical excitability and expanded the motor map areas. The iTBS alone paradigm also enhanced excitability and increased the motor map areas to a slightly greater extent than MT alone. A combination of MT and iTBS resulted in the largest increases in the cortical excitability, and the representational motor map expansion of MT + iTBS was significantly greater than MT or iTBS alone only in Val/Val genotype. As a result, the additive interaction between MT and iTBS was highly dependent on BDNF Val66Met polymorphism. Our results may have clinical relevance in designing rehabilitative strategies that combine therapeutic cortical stimulation and physical exercise for patients with motor disabilities. PMID:23451258

  15. Interaction of motor training and intermittent theta burst stimulation in modulating motor cortical plasticity: influence of BDNF Val66Met polymorphism.

    PubMed

    Lee, Mina; Kim, Song E; Kim, Won Sup; Lee, Jungyeun; Yoo, Hye Kyung; Park, Kee-Duk; Choi, Kyoung-Gyu; Jeong, Seon-Yong; Kim, Byung Gon; Lee, Hyang Woon

    2013-01-01

    Cortical physiology in human motor cortex is influenced by behavioral motor training (MT) as well as repetitive transcranial magnetic stimulation protocol such as intermittent theta burst stimulation (iTBS). This study aimed to test whether MT and iTBS can interact with each other to produce additive changes in motor cortical physiology. We hypothesized that potential interaction between MT and iTBS would be dependent on BDNF Val66Met polymorphism, which is known to affect neuroplasticity in the human motor cortex. Eighty two healthy volunteers were genotyped for BDNF polymorphism. Thirty subjects were assigned for MT alone, 23 for iTBS alone, and 29 for MT + iTBS paradigms. TMS indices for cortical excitability and motor map areas were measured prior to and after each paradigm. MT alone significantly increased the motor cortical excitability and expanded the motor map areas. The iTBS alone paradigm also enhanced excitability and increased the motor map areas to a slightly greater extent than MT alone. A combination of MT and iTBS resulted in the largest increases in the cortical excitability, and the representational motor map expansion of MT + iTBS was significantly greater than MT or iTBS alone only in Val/Val genotype. As a result, the additive interaction between MT and iTBS was highly dependent on BDNF Val66Met polymorphism. Our results may have clinical relevance in designing rehabilitative strategies that combine therapeutic cortical stimulation and physical exercise for patients with motor disabilities.

  16. A comparative study of approaches to compute the field distribution of deep brain stimulation in the Hemiparkinson rat model.

    PubMed

    Bohme, Andrea; van Rienen, Ursula

    2016-08-01

    Computational modeling of the stimulating field distribution during Deep Brain Stimulation provides an opportunity to advance our knowledge of this neurosurgical therapy for Parkinson's disease. There exist several approaches to model the target region for Deep Brain Stimulation in Hemi-parkinson Rats with volume conductor models. We have described and compared the normalized mapping approach as well as the modeling with three-dimensional structures, which include curvilinear coordinates to assure an anatomically realistic conductivity tensor orientation.

  17. Minimalism through intraoperative functional mapping.

    PubMed

    Berger, M S

    1996-01-01

    Intraoperative stimulation mapping may be used to avoid unnecessary risk to functional regions subserving language and sensori-motor pathways. Based on the data presented here, language localization is variable in the entire population, with only certainty existing for the inferior frontal region responsible for motor speech. Anatomical landmarks such as the anterior temporal tip for temporal lobe language sites and the posterior aspect of the lateral sphenoid wing for the frontal lobe language zones are unreliable in avoiding postoperative aphasias. Thus, individual mapping to identify essential language sites has the greatest likelihood of avoiding permanent deficits in naming, reading, and motor speech. In a similar approach, motor and sensory pathways from the cortex and underlying white matter may be reliably stimulated and mapped in both awake and asleep patients. Although these techniques require an additional operative time and equipment nominally priced, the result is often gratifying, as postoperative morbidity has been greatly reduced in the process of incorporating these surgical strategies. The patients quality of life is improved in terms of seizure control, with or without antiepileptic drugs. This avoids having to perform a second costly operative procedure, which is routinely done when extraoperative stimulation and recording is done via subdural grids. In addition, an aggressive tumor resection at the initial operation lengthens the time to tumor recurrence and often obviates the need for a subsequent reoperation. Thus, intraoperative functional mapping may be best alluded to as a surgical technique that results in "minimalism in the long term".

  18. Multi-component intrinsic brain activities as a safe, alternative to cortical stimulation for sensori-motor mapping in neurosurgery.

    PubMed

    Neshige, Shuichiro; Matsuhashi, Masao; Kobayashi, Katsuya; Sakurai, Takeyo; Shimotake, Akihiro; Hitomi, Takefumi; Kikuchi, Takayuki; Yoshida, Kazumichi; Kunieda, Takeharu; Matsumoto, Riki; Takahashi, Ryosuke; Miyamoto, Susumu; Maruyama, Hirofumi; Matsumoto, Masayasu; Ikeda, Akio

    2018-06-18

    To assess the feasibility of multi-component electrocorticography (ECoG)-based mapping using "wide-spectrum, intrinsic-brain activities" for identifying the primary sensori-motor area (S1-M1) by comparing that using electrical cortical stimulation (ECS). We evaluated 14 epilepsy patients with 1514 subdural electrodes implantation covering the perirolandic cortices at Kyoto University Hospital between 2011 and 2016. We performed multi-component, ECoG-based mapping (band-pass filter, 0.016-300/600 Hz) involving combined analyses of the single components: movement-related cortical potential (<0.5-1 Hz), event-related synchronization (76-200 Hz), and event-related de-synchronization (8-24 Hz) to identify the S1-M1. The feasibility of multi-component mapping was assessed through comparisons with single-component mapping and ECS. Among 54 functional areas evaluation, ECoG-based maps showed significantly higher rate of localization concordances with ECS maps when the three single-component maps were consistent than when those were inconsistent with each other (p < 0.001 in motor, and p = 0.02 in sensory mappings). Multi-component mapping revealed high sensitivity (89-90%) and specificity (94-97%) as compared with ECS. Wide-spectrum, multi-component ECoG-based mapping is feasible, having high sensitivity/specificity relative to ECS. This safe (non-stimulus) mapping strategy, alternative to ECS, would allow clinicians to rule in/out the possibility of brain function prior to resection surgery. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  19. Brain mapping after prolonged cycling and during recovery in the heat.

    PubMed

    De Pauw, Kevin; Roelands, Bart; Marusic, Uros; Tellez, Helio Fernandez; Knaepen, Kristel; Meeusen, Romain

    2013-11-01

    The aim of this study was to determine the effect of prolonged intensive cycling and postexercise recovery in the heat on brain sources of altered brain oscillations. After a max test and familiarization trial, nine trained male subjects (23 ± 3 yr; maximal oxygen uptake = 62.1 ± 5.3 ml·min(-1)·kg(-1)) performed three experimental trials in the heat (30°C; relative humidity 43.7 ± 5.6%). Each trial consisted of two exercise tasks separated by 1 h. The first was a 60-min constant-load trial, followed by a 30-min simulated time trial (TT1). The second comprised a 12-min simulated time trial (TT2). After TT1, active recovery (AR), passive rest (PR), or cold water immersion (CWI) was applied for 15 min. Electroencephalography was measured at baseline and during postexercise recovery. Standardized low-resolution brain electromagnetic tomography was applied to accurately pinpoint and localize altered electrical neuronal activity. After CWI, PR and AR subjects completed TT2 in 761 ± 42, 791 ± 76, and 794 ± 62 s, respectively. A prolonged intensive cycling performance in the heat decreased β activity across the whole brain. Postexercise AR and PR elicited no significant electrocortical differences, whereas CWI induced significantly increased β3 activity in Brodmann areas (BA) 13 (posterior margin of insular cortex) and BA 40 (supramarginal gyrus). Self-paced prolonged exercise in the heat seems to decrease β activity, hence representing decreased arousal. Postexercise CWI increased β3 activity at BA 13 and 40, brain areas involved in somatosensory information processing.

  20. Role of phosphatidylinositol 3-kinase in angiotensin II regulation of norepinephrine neuromodulation in brain neurons of the spontaneously hypertensive rat.

    PubMed

    Yang, H; Raizada, M K

    1999-04-01

    Chronic stimulation of norepinephrine (NE) neuromodulation by angiotensin II (Ang II) involves activation of the Ras-Raf-MAP kinase signal transduction pathway in Wistar Kyoto (WKY) rat brain neurons. This pathway is only partially responsible for this heightened action of Ang II in the spontaneously hypertensive rat (SHR) brain neurons. In this study, we demonstrate that the MAP kinase-independent signaling pathway in the SHR neuron involves activation of PI3-kinase and protein kinase B (PKB/Akt). Ang II stimulated PI3-kinase activity in both WKY and SHR brain neurons and was accompanied by its translocation from the cytoplasmic to the nuclear compartment. Although the magnitude of stimulation by Ang II was comparable, the stimulation was more persistent in the SHR neuron compared with the WKY rat neuron. Inhibition of PI3-kinase had no significant effect in the WKY rat neuron. However, it caused a 40-50% attenuation of the Ang II-induced increase in norepinephrine transporter (NET) and tyrosine hydroxylase (TH) mRNAs and [3H]-NE uptake in the SHR neuron. In contrast, inhibition of MAP kinase completely attenuated Ang II stimulation of NET and TH mRNA levels in the WKY rat neuron, whereas it caused only a 45% decrease in the SHR neuron. However, an additive attenuation was observed when both kinases of the SHR neurons were inhibited. Ang II also stimulated PKB/Akt activity in both WKY and SHR neurons. This stimulation was 30% higher and lasted longer in the SHR neuron compared with the WKY rat neuron. In conclusion, these observations demonstrate an exclusive involvement of PI3-kinase-PKB-dependent signaling pathway in a heightened NE neuromodulatory action of Ang II in the SHR neuron. Thus, this study offers an excellent potential for the development of new therapies for the treatment of centrally mediated hypertension.

  1. A translational platform for prototyping closed-loop neuromodulation systems

    PubMed Central

    Afshar, Pedram; Khambhati, Ankit; Stanslaski, Scott; Carlson, David; Jensen, Randy; Linde, Dave; Dani, Siddharth; Lazarewicz, Maciej; Cong, Peng; Giftakis, Jon; Stypulkowski, Paul; Denison, Tim

    2013-01-01

    While modulating neural activity through stimulation is an effective treatment for neurological diseases such as Parkinson's disease and essential tremor, an opportunity for improving neuromodulation therapy remains in automatically adjusting therapy to continuously optimize patient outcomes. Practical issues associated with achieving this include the paucity of human data related to disease states, poorly validated estimators of patient state, and unknown dynamic mappings of optimal stimulation parameters based on estimated states. To overcome these challenges, we present an investigational platform including: an implanted sensing and stimulation device to collect data and run automated closed-loop algorithms; an external tool to prototype classifier and control-policy algorithms; and real-time telemetry to update the implanted device firmware and monitor its state. The prototyping system was demonstrated in a chronic large animal model studying hippocampal dynamics. We used the platform to find biomarkers of the observed states and transfer functions of different stimulation amplitudes. Data showed that moderate levels of stimulation suppress hippocampal beta activity, while high levels of stimulation produce seizure-like after-discharge activity. The biomarker and transfer function observations were mapped into classifier and control-policy algorithms, which were downloaded to the implanted device to continuously titrate stimulation amplitude for the desired network effect. The platform is designed to be a flexible prototyping tool and could be used to develop improved mechanistic models and automated closed-loop systems for a variety of neurological disorders. PMID:23346048

  2. A translational platform for prototyping closed-loop neuromodulation systems.

    PubMed

    Afshar, Pedram; Khambhati, Ankit; Stanslaski, Scott; Carlson, David; Jensen, Randy; Linde, Dave; Dani, Siddharth; Lazarewicz, Maciej; Cong, Peng; Giftakis, Jon; Stypulkowski, Paul; Denison, Tim

    2012-01-01

    While modulating neural activity through stimulation is an effective treatment for neurological diseases such as Parkinson's disease and essential tremor, an opportunity for improving neuromodulation therapy remains in automatically adjusting therapy to continuously optimize patient outcomes. Practical issues associated with achieving this include the paucity of human data related to disease states, poorly validated estimators of patient state, and unknown dynamic mappings of optimal stimulation parameters based on estimated states. To overcome these challenges, we present an investigational platform including: an implanted sensing and stimulation device to collect data and run automated closed-loop algorithms; an external tool to prototype classifier and control-policy algorithms; and real-time telemetry to update the implanted device firmware and monitor its state. The prototyping system was demonstrated in a chronic large animal model studying hippocampal dynamics. We used the platform to find biomarkers of the observed states and transfer functions of different stimulation amplitudes. Data showed that moderate levels of stimulation suppress hippocampal beta activity, while high levels of stimulation produce seizure-like after-discharge activity. The biomarker and transfer function observations were mapped into classifier and control-policy algorithms, which were downloaded to the implanted device to continuously titrate stimulation amplitude for the desired network effect. The platform is designed to be a flexible prototyping tool and could be used to develop improved mechanistic models and automated closed-loop systems for a variety of neurological disorders.

  3. Selective Radiofrequency Stimulation of the Dorsal Root Ganglion (DRG) as a Method for Predicting Targets for Neuromodulation in Patients With Post Amputation Pain: A Case Series.

    PubMed

    Hunter, Corey W; Yang, Ajax; Davis, Tim

    2017-10-01

    While spinal cord stimulation (SCS) has established itself as an accepted and validated treatment for neuropathic pain, there are a number of conditions where it has experienced less, long-term success: post amputee pain (PAP) being one of them. Dorsal root ganglion (DRG) stimulation has shown great promise, particularly in conditions where traditional SCS has fallen short. One major difference between DRG stimulation and traditional SCS is the ability to provide focal stimulation over targeted areas. While this may be a contributing factor to its superiority, it can also be a limitation insofar stimulating the wrong DRG(s) can lead to failure. This is particularly relevant in conditions like PAP where neuroplastic maladaptation occurs causing the pain to deviate from expected patterns, thus creating uncertainty and variability in predicting targets for stimulation. We propose selective radiofrequency (RF) stimulation of the DRG as a method for preoperatively predicting targets for neuromodulation in patients with PAP. We present four patients with PAP of the lower extremities. RF stimulation was used to selectively stimulate individual DRG's, creating areas of paresthesias to see which most closely correlated/overlapped with the painful area(s). RF stimulation to the DRG's that resulted in the desirable paresthesia coverage in the residual or the missing limb(s) was recorded as "positive." Trial DRG leads were placed based on the positive RF stimulation findings. In each patient, stimulating one or more DRG(s) produced paresthesias patterns that were contradictory to know dermatomal patterns. Upon completion of a one-week trial all four patients reported 60-90% pain relief, with coverage over the painful areas, and opted for permanent implant. Mapping the DRG via RF stimulation appears to provide improved accuracy for determining lead placement in the setting of PAP where pain patterns are known to deviate from conventional dermatomal mapping. © 2017 International Neuromodulation Society.

  4. Language Mapping with Navigated Repetitive TMS: Proof of Technique and Validation

    PubMed Central

    Tarapore, Phiroz E.; Findlay, Anne M.; Honma, Susanne M.; Mizuiri, Danielle; Houde, John F.; Berger, Mitchel S.; Nagarajan, Srikantan S.

    2013-01-01

    Objective Lesion-based mapping of speech pathways has been possible only during invasive neurosurgical procedures using direct cortical stimulation (DCS). However, navigated transcranial magnetic stimulation (nTMS) may allow for lesion-based interrogation of language pathways noninvasively. Although not lesion-based, magnetoencephalographic imaging (MEGI) is another noninvasive modality for language mapping. In this study, we compare the accuracy of nTMS and MEGI with DCS. Methods Subjects with lesions around cortical language areas underwent preoperative nTMS and MEGI for language mapping. nTMS maps were generated using a repetitive TMS protocol to deliver trains of stimulations during a picture naming task. MEGI activation maps were derived from adaptive spatial filtering of beta-band power decreases prior to overt speech during picture naming and verb generation tasks. The subjects subsequently underwent awake language mapping via intraoperative DCS. The language maps obtained from each of the 3 modalities were recorded and compared. Results nTMS and MEGI were performed on 12 subjects. nTMS yielded 21 positive language disruption sites (11 speech arrest, 5 anomia, and 5 other) while DCS yielded 10 positive sites (2 speech arrest, 5 anomia, and 3 other). MEGI isolated 32 sites of peak activation with language tasks. Positive language sites were most commonly found in the pars opercularis for all three modalities. In 9 instances the positive DCS site corresponded to a positive nTMS site, while in 1 instance it did not. In 4 instances, a positive nTMS site corresponded to a negative DCS site, while 169 instances of negative nTMS and DCS were recorded. The sensitivity of nTMS was therefore 90%, specificity was 98%, the positive predictive value was 69% and the negative predictive value was 99% as compared with intraoperative DCS. MEGI language sites for verb generation and object naming correlated with nTMS sites in 5 subjects, and with DCS sites in 2 subjects. Conclusion Maps of language function generated with nTMS correlate well with those generated by DCS. Negative nTMS mapping also correlates with negative DCS mapping. In our study, MEGI lacks the same level of correlation with intraoperative mapping; nevertheless it provides useful adjunct information in some cases. nTMS may offer a lesion-based method for noninvasively interrogating language pathways and be valuable in managing patients with peri-eloquent lesions. PMID:23702420

  5. Responses of dorsal spinal cord blood flow to noxious mechanical stimulation of the skin in anesthetized rats.

    PubMed

    Toda, Hiroko; Maruyama, Hitoshi; Budgell, Brian; Kurosawa, Mieko

    2008-08-01

    In urethane-anesthetized, artificially ventilated rats, alterations in dorsal spinal cord blood flow (SCBF) at the L4-6 level were measured with laser Doppler flowmetry in response to noxious mechanical cutaneous stimulation (pinching) of either a forepaw or a hindpaw. The stimulation was delivered ipsilaterally or contralaterally to the site of blood flow measurement. Pinching of the forepaw or the hindpaw on either side increased mean arterial pressure (MAP) to the same degree. However, the SCBF response to pinching of the ipsilateral hindpaw was significantly greater than that to other stimulations. These responses were not influenced by denervation of the baroreceptors. The responses of SCBF to pinching of the ipsilateral hindpaw persisted both after treatment with phenoxybenzamine and after spinalization at the C1-2 level, whereas the responses to pinching at other sites disappeared. The responses of MAP to stimulation at all four sites became negligible after treatment with phenoxybenzamine and after spinalization at the C1-2 level. These results indicate that noxious mechanical stimulation of the skin produces increases in SCBF via two mechanisms: one is via an elevation of systemic arterial pressure; the other is via a localized spinal mechanism evoked by ipsilateral, segmental inputs.

  6. Activation of MAP kinase kinase (MEK) and Ras by cholecystokinin in rat pancreatic acini.

    PubMed

    Duan, R D; Zheng, C F; Guan, K L; Williams, J A

    1995-06-01

    Cholecystokinin (CCK) has recently been shown to activate mitogen-activated protein (MAP) kinase in rat pancreatic acini [Duan and Williams, Am. J. Physiol. 267 (Gastrointest. Liver Physiol. 30): G401-G408, 1994]. To evaluate the mechanism of MAP kinase activation, we studied the effects of CCK on MAP kinase kinase (MEK) in rat pancreatic acini. Two forms of MEK were identified by immunoblotting, using antibodies specific to MEK1 and MEK2. MEK activity in acinar extracts and after immunoprecipitation with anti-MEK was detected using a recombinant fusion protein, glutathione S-transferase-MAP kinase, as a substrate. MEK activity rapidly increased after stimulation of acini by CCK, with significant stimulation at 1 min and a maximal effect at 5 min, followed by a slow decline to slightly above control levels after 30 min. The threshold concentration of CCK was approximately 10 pM, and the maximal effect was induced by 1 nM CCK, which increased MEK activity by 120%. In addition to CCK, bombesin and carbachol, but not secretin or vasoactive intestinal peptide, enhanced MEK activity. Phorbol ester mimicked the effect of CCK, whereas ionomycin and thapsigargin failed to activate MEK. We further studied the activation of Ras, an important component leading to activation of MEK by growth factors. Ras in acini was immunoprecipitated and identified by Western blotting. CCK and 12-O-tetradecanoylphorbol-13-acetate stimulated the incorporation of GTP into Ras, a requirement for its activation, reaching a maximum at 10 min of approximately 120% over control. In conclusion, the activation of MAP kinase by CCK can be explained by activation of MEK and may involve the activation of Ras by a protein kinase C-dependent mechanism.

  7. The "neuro-mapping locator" software. A real-time intraoperative objective paraesthesia mapping tool to evaluate paraesthesia coverage of the painful zone in patients undergoing spinal cord stimulation lead implantation.

    PubMed

    Guetarni, F; Rigoard, P

    2015-03-01

    Conventional spinal cord stimulation (SCS) generates paraesthesia, as the efficacy of this technique is based on the relationship between the paraesthesia provided by SCS on the painful zone and an analgesic effect on the stimulated zone. Although this basic postulate is based on clinical evidence, it is clear that this relationship has never been formally demonstrated by scientific studies. There is a need for objective evaluation tools ("transducers") to transpose electrical signals to clinical effects and to guide therapeutic choices. We have developed a software at Poitiers University hospital allowing real-time objective mapping of the paraesthesia generated by SCS lead placement and programming during the implantation procedure itself, on a touch screen interface. The purpose of this article is to describe this intraoperative mapping software, in terms of its concept and technical aspects. The Neuro-Mapping Locator (NML) software is dedicated to patients with failed back surgery syndrome, candidates for SCS lead implantation, to actively participate in the implantation procedure. Real-time geographical localization of the paraesthesia generated by percutaneous or multicolumn surgical SCS lead implanted under awake anaesthesia allows intraoperative lead programming and possibly lead positioning to be modified with the patient's cooperation. Software updates should enable us to refine objectives related to the use of this tool and minimize observational biases. The ultimate goals of NML software should not be limited to optimize one specific device implantation in a patient but also allow to compare instantaneously various stimulation strategies, by characterizing new technical parameters as "coverage efficacy" and "device specificity" on selected subgroups of patients. Another longer-term objective would be to organize these predictive factors into computer science ontologies, which could constitute robust and helpful data for device selection and programming of tomorrow's neurostimulators. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  8. Multimodal evidence of regional midcingulate gray matter volume underlying conflict monitoring

    PubMed Central

    Parvaz, Muhammad A.; Maloney, Thomas; Moeller, Scott J.; Malaker, Pias; Konova, Anna B.; Alia-Klein, Nelly; Goldstein, Rita Z.

    2014-01-01

    Functional neuroimaging studies have long implicated the mid-cingulate cortex (MCC) in conflict monitoring, but it is not clear whether its structural integrity (i.e., the gray matter volume) influences its conflict monitoring function. In this multimodal study, we used T1-weighted MRI scans as well as event-related potentials (ERPs) to test whether the MCC gray matter volume is associated with the electrocortical marker (i.e., No-go N200 ERP component) of conflict monitoring in healthy individuals. The specificity of such a relationship in health was determined in two ways: by (A) acquiring the same data from individuals with cocaine use disorder (CUD), known to have deficits in executive function including behavioral monitoring; and (B) acquiring the P300 ERP component that is linked with attention allocation and not specifically with conflict monitoring. Twenty-five (39.1 ± 8.4 years; 8 females) healthy individuals and 25 (42.7 ± 5.9 years; 6 females) individuals with CUD underwent a rewarded Go/No-go task during which the ERP data was collected, and they also underwent a structural MRI scan. The whole brain regression analysis showed a significant correlation between MCC structural integrity and the well-known ERP measure of conflict monitoring (N200, but not the P300) in healthy individuals, which was absent in CUD who were characterized by reduced MCC gray matter volume, N200 abnormalities as well as reduced task accuracy. In individuals with CUD instead, the N200 amplitude was associated with drug addiction symptomatology. These results show that the integrity of MCC volume is directly associated with the electrocortical correlates of conflict monitoring in healthy individuals, and such an association breaks down in psychopathologies that impact these brain processes. Taken together, this MCC–N200 association may serve as a biomarker of improved behavioral monitoring processes in diseased populations. PMID:24918068

  9. Multimodal evidence of regional midcingulate gray matter volume underlying conflict monitoring.

    PubMed

    Parvaz, Muhammad A; Maloney, Thomas; Moeller, Scott J; Malaker, Pias; Konova, Anna B; Alia-Klein, Nelly; Goldstein, Rita Z

    2014-01-01

    Functional neuroimaging studies have long implicated the mid-cingulate cortex (MCC) in conflict monitoring, but it is not clear whether its structural integrity (i.e., the gray matter volume) influences its conflict monitoring function. In this multimodal study, we used T1-weighted MRI scans as well as event-related potentials (ERPs) to test whether the MCC gray matter volume is associated with the electrocortical marker (i.e., No-go N200 ERP component) of conflict monitoring in healthy individuals. The specificity of such a relationship in health was determined in two ways: by (A) acquiring the same data from individuals with cocaine use disorder (CUD), known to have deficits in executive function including behavioral monitoring; and (B) acquiring the P300 ERP component that is linked with attention allocation and not specifically with conflict monitoring. Twenty-five (39.1 ± 8.4 years; 8 females) healthy individuals and 25 (42.7 ± 5.9 years; 6 females) individuals with CUD underwent a rewarded Go/No-go task during which the ERP data was collected, and they also underwent a structural MRI scan. The whole brain regression analysis showed a significant correlation between MCC structural integrity and the well-known ERP measure of conflict monitoring (N200, but not the P300) in healthy individuals, which was absent in CUD who were characterized by reduced MCC gray matter volume, N200 abnormalities as well as reduced task accuracy. In individuals with CUD instead, the N200 amplitude was associated with drug addiction symptomatology. These results show that the integrity of MCC volume is directly associated with the electrocortical correlates of conflict monitoring in healthy individuals, and such an association breaks down in psychopathologies that impact these brain processes. Taken together, this MCC-N200 association may serve as a biomarker of improved behavioral monitoring processes in diseased populations.

  10. Cognitive-behavioral therapy induces sensorimotor and specific electrocortical changes in chronic tic and Tourette's disorder.

    PubMed

    Morand-Beaulieu, Simon; O'Connor, Kieron P; Sauvé, Geneviève; Blanchet, Pierre J; Lavoie, Marc E

    2015-12-01

    Tic disorders, such as the Gilles de la Tourette syndrome and persistent tic disorder, are neurodevelopmental movement disorders involving impaired motor control. Hence, patients show repetitive unwanted muscular contractions in one or more parts of the body. A cognitive-behavioral therapy, with a particular emphasis on the psychophysiology of tic expression and sensorimotor activation, can reduce the frequency and intensity of tics. However, its impact on motor activation and inhibition is not fully understood. To study the effects of a cognitive-behavioral therapy on electrocortical activation, we recorded the event-related potentials (ERP) and lateralized readiness potentials (LRP), before and after treatment, of 20 patients with tic disorders and 20 healthy control participants (matched on age, sex and intelligence), during a stimulus-response compatibility inhibition task. The cognitive-behavioral therapy included informational, awareness training, relaxation, muscle discrimination, cognitive restructuration and relapse prevention strategies. Our results revealed that prior to treatment; tic patients had delayed stimulus-locked LRP onset latency, larger response-locked LRP peak amplitude, and a frontal overactivation during stimulus inhibition processing. Both stimulus-locked LRP onset latency and response-locked LRP peak amplitude normalized after the cognitive behavioral therapy completion. However, the frontal overactivation related to inhibition remained unchanged following therapy. Our results showed that P300 and reaction times are sensitive to stimulus-response compatibility, but are not related to tic symptoms. Secondly, overactivity of the frontal LPC and impulsivity in TD patients were not affected by treatment. Finally, CBT had normalizing effects on the activation of the pre-motor and motor cortex in TD patients. These results imply specific modifications of motor processes following therapy, while inhibition processes remained unchanged. Given that LRPs are partially generated within the sensorimotor and supplementary motor area, the reported reduction in tic frequency and improvements of LRPs components suggest that CBT induced a physiological change in patients' motor area. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Hypothalamic stimulation and baroceptor reflex interaction on renal nerve activity.

    NASA Technical Reports Server (NTRS)

    Wilson, M. F.; Ninomiya, I.; Franz, G. N.; Judy, W. V.

    1971-01-01

    The basal level of mean renal nerve activity (MRNA-0) measured in anesthetized cats was found to be modified by the additive interaction of hypothalamic and baroceptor reflex influences. Data were collected with the four major baroceptor nerves either intact or cut, and with mean aortic pressure (MAP) either clamped with a reservoir or raised with l-epinephrine. With intact baroceptor nerves, MRNA stayed essentially constant at level MRNA-0 for MAP below an initial pressure P1, and fell approximately linearly to zero as MAP was raised to P2. Cutting the baroceptor nerves kept MRNA at MRNA-0 (assumed to represent basal central neural output) independent of MAP. The addition of hypothalamic stimulation produced nearly constant increments in MRNA for all pressure levels up to P2, with complete inhibition at some level above P2. The increments in MRNA depended on frequency and location of the stimulus. A piecewise linear model describes MRNA as a linear combination of hypothalamic, basal central neural, and baroceptor reflex activity.

  12. Surgery of the mind, mood, and conscious state: an idea in evolution.

    PubMed

    Robison, R Aaron; Taghva, Alexander; Liu, Charles Y; Apuzzo, Michael L J

    2012-01-01

    Since the beginning of recorded history, humans have sought a physical means of altering disordered behavior and consciousness. This quest has spawned numerous innovations in neurosurgery and the neurosciences, from the earliest prehistoric attempts at trepanation to the electrocortical and anatomic localization of cerebral function that emerged in the 19th century. At the start of the 20th century, the overwhelming social impact of psychiatric illness intersected with the novel but imperfect understanding of frontal lobe function, establishing a decades-long venture into the modern origin of psychosurgery, the prefrontal lobotomy. The subsequent social and ethical ramifications of the widespread overuse of transorbital lobotomies drove psychosurgery to near extinction. However, as the pharmacologic treatment of psychiatric illness was established, numerous concomitant technical and neuroscientific innovations permitted the incremental development of a new paradigm of treating the disordered mind. In this article, we retrospectively examine these early origins of psychosurgery and then look to the recent past, present, and future for emerging trends in surgery of the psyche. Recent decades have seen a revolution in minimalism, noninvasive imaging, and functional manipulation of the human cerebrum that have created new opportunities and treatment modalities for disorders of the human mind and mood. Early contemporary efforts were directed at focal lesioning of abnormal pathways, but deep-brain stimulation now aims to reversibly alter and modulate those neurologic activities responsible for not only psychiatric disorders, but also to modulate and even to augment consciousness, memory, and other elements of cerebral function. As new tools become available, the social and medical impact of psychosurgery promises to revolutionize not only neurosurgery, but also humans' capability for positively impacting life and society. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Surgery of the mind, mood, and conscious state: an idea in evolution.

    PubMed

    Robison, R Aaron; Taghva, Alexander; Liu, Charles Y; Apuzzo, Michael L J

    2013-01-01

    Since the beginning of recorded history, humans have sought a physical means of altering disordered behavior and consciousness. This quest has spawned numerous innovations in neurosurgery and the neurosciences, from the earliest prehistoric attempts at trepanation to the electrocortical and anatomic localization of cerebral function that emerged in the 19th century. At the start of the 20th century, the overwhelming social impact of psychiatric illness intersected with the novel but imperfect understanding of frontal lobe function, establishing a decades-long venture into the modern origin of psychosurgery, the prefrontal lobotomy. The subsequent social and ethical ramifications of the widespread overuse of transorbital lobotomies drove psychosurgery to near extinction. However, as the pharmacologic treatment of psychiatric illness was established, numerous concomitant technical and neuroscientific innovations permitted the incremental development of a new paradigm of treating the disordered mind. In this article, we retrospectively examine these early origins of psychosurgery and then look to the recent past, present, and future for emerging trends in surgery of the psyche. Recent decades have seen a revolution in minimalism, noninvasive imaging, and functional manipulation of the human cerebrum that have created new opportunities and treatment modalities for disorders of the human mind and mood. Early contemporary efforts were directed at focal lesioning of abnormal pathways, but deep-brain stimulation now aims to reversibly alter and modulate those neurologic activities responsible for not only psychiatric disorders, but also to modulate and even to augment consciousness, memory, and other elements of cerebral function. As new tools become available, the social and medical impact of psychosurgery promises to revolutionize not only neurosurgery, but also humans' capability for positively impacting life and society. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. A re-examination of neural basis of language processing: proposal of a dynamic hodotopical model from data provided by brain stimulation mapping during picture naming.

    PubMed

    Duffau, Hugues; Moritz-Gasser, Sylvie; Mandonnet, Emmanuel

    2014-04-01

    From recent findings provided by brain stimulation mapping during picture naming, we re-examine the neural basis of language. We studied structural-functional relationships by correlating the types of language disturbances generated by stimulation in awake patients, mimicking a transient virtual lesion both at cortical and subcortical levels (white matter and deep grey nuclei), with the anatomical location of the stimulation probe. We propose a hodotopical (delocalized) and dynamic model of language processing, which challenges the traditional modular and serial view. According to this model, following the visual input, the language network is organized in parallel, segregated (even if interconnected) large-scale cortico-subcortical sub-networks underlying semantic, phonological and syntactic processing. Our model offers several advantages (i) it explains double dissociations during stimulation (comprehension versus naming disorders, semantic versus phonemic paraphasias, syntactic versus naming disturbances, plurimodal judgment versus naming disorders); (ii) it takes into account the cortical and subcortical anatomic constraints; (iii) it explains the possible recovery of aphasia following a lesion within the "classical" language areas; (iv) it establishes links with a model executive functions. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. SPECT-imaging of activity-dependent changes in regional cerebral blood flow induced by electrical and optogenetic self-stimulation in mice.

    PubMed

    Kolodziej, Angela; Lippert, Michael; Angenstein, Frank; Neubert, Jenni; Pethe, Annette; Grosser, Oliver S; Amthauer, Holger; Schroeder, Ulrich H; Reymann, Klaus G; Scheich, Henning; Ohl, Frank W; Goldschmidt, Jürgen

    2014-12-01

    Electrical and optogenetic methods for brain stimulation are widely used in rodents for manipulating behavior and analyzing functional connectivities in neuronal circuits. High-resolution in vivo imaging of the global, brain-wide, activation patterns induced by these stimulations has remained challenging, in particular in awake behaving mice. We here mapped brain activation patterns in awake, intracranially self-stimulating mice using a novel protocol for single-photon emission computed tomography (SPECT) imaging of regional cerebral blood flow (rCBF). Mice were implanted with either electrodes for electrical stimulation of the medial forebrain bundle (mfb-microstim) or with optical fibers for blue-light stimulation of channelrhodopsin-2 expressing neurons in the ventral tegmental area (vta-optostim). After training for self-stimulation by current or light application, respectively, mice were implanted with jugular vein catheters and intravenously injected with the flow tracer 99m-technetium hexamethylpropyleneamine oxime (99mTc-HMPAO) during seven to ten minutes of intracranial self-stimulation or ongoing behavior without stimulation. The 99mTc-brain distributions were mapped in anesthetized animals after stimulation using multipinhole SPECT. Upon self-stimulation rCBF strongly increased at the electrode tip in mfb-microstim mice. In vta-optostim mice peak activations were found outside the stimulation site. Partly overlapping brain-wide networks of activations and deactivations were found in both groups. When testing all self-stimulating mice against all controls highly significant activations were found in the rostromedial nucleus accumbens shell. SPECT-imaging of rCBF using intravenous tracer-injection during ongoing behavior is a new tool for imaging regional brain activation patterns in awake behaving rodents providing higher spatial and temporal resolutions than 18F-2-fluoro-2-dexoyglucose positron emission tomography. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Causal Measurement Models: Can Criticism Stimulate Clarification?

    ERIC Educational Resources Information Center

    Markus, Keith A.

    2016-01-01

    In their 2016 work, Aguirre-Urreta et al. provided a contribution to the literature on causal measurement models that enhances clarity and stimulates further thinking. Aguirre-Urreta et al. presented a form of statistical identity involving mapping onto the portion of the parameter space involving the nomological net, relationships between the…

  17. Interactive roles of Ras, insulin receptor substrate-1, and proteins with Src homology-2 domains in insulin signaling in Xenopus oocytes.

    PubMed

    Chuang, L M; Hausdorff, S F; Myers, M G; White, M F; Birnbaum, M J; Kahn, C R

    1994-11-04

    Insulin receptor substrate-1 (IRS-1) serves as the major immediate substrate of insulin/insulin-like growth factor (IGF)-1 receptors and following tyrosine phosphorylation binds to specific Src homology-2 (SH2) domain-containing proteins including the p85 subunit of phosphatidylinositol (PI) 3-kinase and GRB2, a molecule believed to link IRS-1 to the Ras pathway. To investigate how these SH2-containing signaling molecules interact to regulate insulin/IGF-1 action, IRS-1, glutathione S-transferase (GST)-SH2 domain fusion proteins and Ras proteins were microinjected into Xenopus oocytes. We found that pleiotropic insulin actions are mediated by IRS-1 through two independent, but convergent, pathways involving PI 3-kinase and GRB2. Thus, microinjection of GST-fusion proteins of either p85 or GRB2 inhibited IRS-1-dependent activation of mitogen-activated protein (MAP) and S6 kinases and oocyte maturation, although only the GST-SH2 of p85 reduced insulin-stimulated PI 3-kinase activation. Co-injection of a dominant negative Ras (S17N) with IRS-1 inhibited insulin-stimulated MAP and S6 kinase activation. Micro-injection of activated [Arg12,Thr59]Ras increased basal MAP and S6 kinase activities and sensitized the oocytes to insulin-stimulated maturation without altering insulin-stimulated PI 3-kinase. The Ras-enhanced oocyte maturation response, but not the elevated basal level of MAP and S6 kinase, was partially blocked by the SH2-p85, but not SH2-GRB2. These data strongly suggest that IRS-1 can mediate many of insulin's actions on cellular enzyme activation and cell cycle progression requires binding and activation of multiple different SH2-domain proteins.

  18. Pediatric awake craniotomy and intra-operative stimulation mapping.

    PubMed

    Balogun, James A; Khan, Osaama H; Taylor, Michael; Dirks, Peter; Der, Tara; Carter Snead Iii, O; Weiss, Shelly; Ochi, Ayako; Drake, James; Rutka, James T

    2014-11-01

    The indications for operating on lesions in or near areas of cortical eloquence balance the benefit of resection with the risk of permanent neurological deficit. In adults, awake craniotomy has become a versatile tool in tumor, epilepsy and functional neurosurgery, permitting intra-operative stimulation mapping particularly for language, sensory and motor cortical pathways. This allows for maximal tumor resection with considerable reduction in the risk of post-operative speech and motor deficits. We report our experience of awake craniotomy and cortical stimulation for epilepsy and supratentorial tumors located in and around eloquent areas in a pediatric population (n=10, five females). The presenting symptom was mainly seizures and all children had normal neurological examinations. Neuroimaging showed lesions in the left opercular (n=4) and precentral or peri-sylvian regions (n=6). Three right-sided and seven left-sided awake craniotomies were performed. Two patients had a history of prior craniotomy. All patients had intra-operative mapping for either speech or motor or both using cortical stimulation. The surgical goal for tumor patients was gross total resection, while for all epilepsy procedures, focal cortical resections were completed without any difficulty. None of the patients had permanent post-operative neurologic deficits. The patient with an epileptic focus over the speech area in the left frontal lobe had a mild word finding difficulty post-operatively but this improved progressively. Follow-up ranged from 6 to 27 months. Pediatric awake craniotomy with intra-operative mapping is a precise, safe and reliable method allowing for resection of lesions in eloquent areas. Further validations on larger number of patients will be needed to verify the utility of this technique in the pediatric population. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Vasopressin responses to unloading arterial baroreceptors during cardiac nerve blockade in conscious dogs

    NASA Technical Reports Server (NTRS)

    O'Donnell, C. P.; Keil, L. C.; Thrasher, T. N.

    1992-01-01

    We examined the relative contributions of afferent input from the heart and from arterial baroreceptors in the stimulation of arginine vasopressin (AVP) secretion in response to hypotension caused by thoracic inferior vena caval constriction (TIVCC). Afferent input from cardiac receptors was reversibly blocked by infusing 2% procaine into the pericardial space to anesthetize the cardiac nerves. Acute cardiac nerve blockade (CNB) alone caused a rise in mean arterial pressure (MAP) of 24 +/- 3 mmHg but no change in plasma AVP. If the rise in MAP was prevented by TIVCC, plasma AVP increased by 39 +/- 15 pg/ml, and if MAP was allowed to increase and then was forced back to control by TIVCC, plasma AVP increased by 34 +/- 15 pg/ml. Thus the rise in MAP during CNB stimulated arterial baroreceptors, which in turn compensated for the loss of inhibitory input from cardiac receptors on AVP secretion. These results indicate that the maximum secretory response resulting from complete unloading of cardiac receptors at a normal MAP results in a mean increase in plasma AVP of 39 pg/ml in this group of dogs. When MAP was reduced 25% below control levels (from 95 +/- 5 to 69 +/- 3 mmHg) by TIVCC during pericardial saline infusion, plasma AVP increased by 79 +/- 42 pg/ml. However, the same degree of hypotension during CNB (MAP was reduced from 120 +/- 5 to 71 +/- 3 mmHg) led to a greater (P less than 0.05) increase in plasma AVP of 130 +/- 33 pg/ml. Because completely unloading cardiac receptors can account for an increase of only 39 pg/ml on average in this group of dogs, the remainder of the increase in plasma AVP must be due to other sources of stimulation. We suggest that the principal stimulus to AVP secretion after acute CNB in these studies arises from unloading the arterial baroreceptors.

  20. Predictable bacterial composition and hydrocarbon degradation in Arctic soils following diesel and nutrient disturbance.

    PubMed

    Bell, Terrence H; Yergeau, Etienne; Maynard, Christine; Juck, David; Whyte, Lyle G; Greer, Charles W

    2013-06-01

    Increased exploration and exploitation of resources in the Arctic is leading to a higher risk of petroleum contamination. A number of Arctic microorganisms can use petroleum for growth-supporting carbon and energy, but traditional approaches for stimulating these microorganisms (for example, nutrient addition) have varied in effectiveness between sites. Consistent environmental controls on microbial community response to disturbance from petroleum contaminants and nutrient amendments across Arctic soils have not been identified, nor is it known whether specific taxa are universally associated with efficient bioremediation. In this study, we contaminated 18 Arctic soils with diesel and treated subsamples of each with monoammonium phosphate (MAP), which has successfully stimulated degradation in some contaminated Arctic soils. Bacterial community composition of uncontaminated, diesel-contaminated and diesel+MAP soils was assessed through multiplexed 16S (ribosomal RNA) rRNA gene sequencing on an Ion Torrent Personal Genome Machine, while hydrocarbon degradation was measured by gas chromatography analysis. Diversity of 16S rRNA gene sequences was reduced by diesel, and more so by the combination of diesel and MAP. Actinobacteria dominated uncontaminated soils with <10% organic matter, while Proteobacteria dominated higher-organic matter soils, and this pattern was exaggerated following disturbance. Degradation with and without MAP was predictable by initial bacterial diversity and the abundance of specific assemblages of Betaproteobacteria, respectively. High Betaproteobacteria abundance was positively correlated with high diesel degradation in MAP-treated soils, suggesting this may be an important group to stimulate. The predictability with which bacterial communities respond to these disturbances suggests that costly and time-consuming contaminated site assessments may not be necessary in the future.

  1. A flexible and rapid frequency selective scheme for SRS microscopy

    NASA Astrophysics Data System (ADS)

    Li, Jingting; Yue, Yuankai; Shih, Wei-Chuan

    2017-02-01

    Stimulated Raman scattering (SRS) is a label-free imaging technique suitable for studying biological systems. Due to stimulated nature by ultrafast laser pulses, SRS microscopy has the advantage of significantly higher sensitivity but often reduced spectroscopic information. In this paper, we present a newly constructed femtosecond SRS microscope with a high-speed dynamic micromirror device based pulse shaper to achieve flexible and rapid frequency selection within the C-H stretch region near 2800 to 3100 cm-1 with spectral width of 30 cm-1. This technique is applicable to lipid profiling such as cell activity mapping, lipid distribution mapping and distinction among subclasses.

  2. Multimodality language mapping in patients with left-hemispheric language dominance on Wada test

    PubMed Central

    Kojima, Katsuaki; Brown, Erik C.; Rothermel, Robert; Carlson, Alanna; Matsuzaki, Naoyuki; Shah, Aashit; Atkinson, Marie; Mittal, Sandeep; Fuerst, Darren; Sood, Sandeep; Asano, Eishi

    2012-01-01

    Objective We determined the utility of electrocorticography (ECoG) and stimulation for detecting language-related sites in patients with left-hemispheric language-dominance on Wada test. Methods We studied 13 epileptic patients who underwent language mapping using event-related gamma-oscillations on ECoG and stimulation via subdural electrodes. Sites showing significant gamma-augmentation during an auditory-naming task were defined as language-related ECoG sites. Sites at which stimulation resulted in auditory perceptual changes, failure to verbalize a correct answer, or sensorimotor symptoms involving the mouth were defined as language-related stimulation sites. We determined how frequently these methods revealed language-related sites in the superior-temporal, inferior-frontal, dorsolateral-premotor, and inferior-Rolandic regions. Results Language-related sites in the superior-temporal and inferior-frontal gyri were detected by ECoG more frequently than stimulation (p < 0.05), while those in the dorsolateral-premotor and inferior-Rolandic regions were detected by both methods equally. Stimulation of language-related ECoG sites, compared to the others, more frequently elicited language symptoms (p < 0.00001). One patient developed dysphasia requiring in-patient speech therapy following resection of the dorsolateral-premotor and inferior-Rolandic regions containing language-related ECoG sites not otherwise detected by stimulation. Conclusions Language-related gamma-oscillations may serve as an alternative biomarker of underlying language function in patients with left-hemispheric language-dominance. Significance Measurement of language-related gamma-oscillations is warranted in presurgical evaluation of epileptic patients. PMID:22503906

  3. Using Proton Magnetic Resonance Imaging and Spectroscopy to Understand Brain "Activation"

    ERIC Educational Resources Information Center

    Baslow, Morris H.; Guilfoyle, David N.

    2007-01-01

    Upon stimulation, areas of the brain associated with specific cognitive processing tasks may undergo observable physiological changes, and measures of such changes have been used to create brain maps for visualization of stimulated areas in task-related brain "activation" studies. These perturbations usually continue throughout the period of the…

  4. Testing a linear time invariant model for skin conductance responses by intraneural recording and stimulation

    PubMed Central

    Gerster, Samuel; Namer, Barbara; Elam, Mikael

    2017-01-01

    Abstract Skin conductance responses (SCR) are increasingly analyzed with model‐based approaches that assume a linear and time‐invariant (LTI) mapping from sudomotor nerve (SN) activity to observed SCR. These LTI assumptions have previously been validated indirectly, by quantifying how much variance in SCR elicited by sensory stimulation is explained under an LTI model. This approach, however, collapses sources of variability in the nervous and effector organ systems. Here, we directly focus on the SN/SCR mapping by harnessing two invasive methods. In an intraneural recording experiment, we simultaneously track SN activity and SCR. This allows assessing the SN/SCR relationship but possibly suffers from interfering activity of non‐SN sympathetic fibers. In an intraneural stimulation experiment under regional anesthesia, such influences are removed. In this stimulation experiment, about 95% of SCR variance is explained under LTI assumptions when stimulation frequency is below 0.6 Hz. At higher frequencies, nonlinearities occur. In the intraneural recording experiment, explained SCR variance is lower, possibly indicating interference from non‐SN fibers, but higher than in our previous indirect tests. We conclude that LTI systems may not only be a useful approximation but in fact a rather accurate description of biophysical reality in the SN/SCR system, under conditions of low baseline activity and sporadic external stimuli. Intraneural stimulation under regional anesthesia is the most sensitive method to address this question. PMID:28862764

  5. Mitogen-activated protein kinase inhibitors suppress prostaglandin F(2alpha)-induced myosin-light chain phosphorylation and contraction in iris sphincter smooth muscle.

    PubMed

    Yousufzai, S Y; Gao, G; Abdel-Latif, A A

    2000-10-27

    The purpose of this study was to investigate the potential role of mitogen-activated protein (MAP) kinase in contraction by monitoring MAP kinase phosphorylation (activation) and contraction during agonist stimulation of cat iris sphincter smooth muscle. Changes in tension in response to prostaglandin F(2alpha), latanoprost, a prostaglandin F(2alpha) analog used as an anti-glaucoma drug, and carbachol were recorded isometrically, and MAP kinase activation was monitored by Western blot using a phosphospecific p42/p44 MAP kinase antibody. We found that treatment of the muscle with 2'-Amino-3'-methoxyflavone (PD98059) (10 microM), a specific inhibitor of MAP kinase kinase (MEK), inhibited significantly prostaglandin F(2alpha)- and latanoprost-induced phosphorylation and contraction, but had little effect on those evoked by carbachol. Prostaglandin F(2alpha) increased MAP kinase phosphorylation in a concentration-dependent manner with EC(50) value of 1.1 x 10(-8) M and increased contraction with EC(50) of 0.92 x 10(-9) M. The MAP kinase inhibitors PD98059, Apigenin and 1,4-Diamino-2,3-dicyano-1, 4bis(2-aminophenylthio)butadiene (UO126) inhibited prostaglandin F(2alpha)-induced contraction in a concentration-dependent manner with IC(50) values of 2.4, 3.0 and 4.8 microM, respectively. PD98059 had no effect on prostaglandin F(2alpha)- or on carbachol-stimulated inositol-1,4,5-trisphosphate (IP(3)) production. In contrast, the MAP kinase inhibitor inhibited prostaglandin F(2alpha)-induced myosin-light chain (MLC) phosphorylation, but had no effect on that of carbachol. N-[2-(N-(4-Chloro-cinnamyl)-N-methylaminomethyl)phenyl]-N-[2- hydroxyethyl]-4-methoxybenzenesulfonamide (KN-93) (10 microM), a Ca(2+)-calmodulin-dependent protein kinase inhibitor, and Wortmannin (10 microM), an MLC kinase inhibitor, inhibited significantly (by 80%) prostaglandin F(2alpha)- and carbachol-induced contraction. It can be concluded that in this smooth muscle p42/p44 MAP kinases are involved in the mechanism of prostaglandin F(2alpha)-, but not in that of carbachol, induced contraction. In addition, these data clearly indicate that the stimulation of the iris sphincter with prostaglandin F(2alpha) and carbachol activate two distinct pathways, the MAP kinase pathway and the Ca(2+) mobilization pathway.

  6. Analysis of erectile responses to BAY 41-8543 and muscarinic receptor stimulation in the rat.

    PubMed

    Lasker, George F; Pankey, Edward A; Allain, Alexander V; Dhaliwal, Jasdeep S; Stasch, Johannes-Peter; Murthy, Subramanyam N; Kadowitz, Philip J

    2013-03-01

    Soluble guanylate cyclase (sGC) is the receptor for nitric oxide (NO) and in pathophysiologic conditions where NO formation or bioavailability is impaired, erectile dysfunction (ED) occurs. The aim of this study was to investigate erectile responses to the sGC stimulator BAY 41-8543 in physiologic and pathophysiologic conditions. Increases in intracavernosal pressure (ICP) in response to intracavernosal (ic) injections of BAY 41-8543 were investigated in the anesthetized rat. Increases in ICP/MAP in response to ic injections of BAY 41-8543 and the interaction of BAY 41-8543 with exogenous and endogenously released NO were investigated and the effect of the sGC stimulator on cavernosal nerve injury was assessed. The mechanism of the increase in ICP/MAP in response to ic injection of acetylcholine was investigated. The ic injections of BAY 41-8543 increased ICP/MAP and the duration of the response. BAY 41-8543 was less potent than sodium nitroprusside (SNP) and ic injections of BAY 41-8543 and SNP produced a larger response than the algebraic sum of responses to either agent alone. Simultaneous ic injection of BAY 41-8543 and cavernosal nerve stimulation produced a greater response than either intervention alone. Atropine and cavernosal nerve crush injury decreased the response to nerve stimulation and ic injection of BAY 41-8543 restored the response. These data show that BAY 41-8543 has significant erectile activity and can synergize with exogenous and endogenously released NO. This study shows that atropine and nerve crush attenuate the response to cavernosal nerve stimulation and that BAY 41-8543 can restore the response. The results with atropine, L-NAME and hexamethonium indicate that the response to ic injection of acetylcholine is mediated by muscarinic receptors and the release of NO with no significant role for nicotinic receptors. These results suggest that BAY 41-8543 would be useful in the treatment of ED. © 2012 International Society for Sexual Medicine.

  7. Cortical regions involved in semantic processing investigated by repetitive navigated transcranial magnetic stimulation and object naming.

    PubMed

    Sollmann, Nico; Tanigawa, Noriko; Tussis, Lorena; Hauck, Theresa; Ille, Sebastian; Maurer, Stefanie; Negwer, Chiara; Zimmer, Claus; Ringel, Florian; Meyer, Bernhard; Krieg, Sandro M

    2015-04-01

    Knowledge about the cortical representation of semantic processing is mainly derived from functional magnetic resonance imaging (fMRI) or direct cortical stimulation (DCS) studies. Because DCS is regarded as the gold standard in terms of language mapping but can only be used during awake surgery due to its invasive character, repetitive navigated transcranial magnetic stimulation (rTMS)—a non-invasive modality that uses a similar technique as DCS—seems highly feasible for use in the investigation of semantic processing in the healthy human brain. A total number of 100 (50 left-hemispheric and 50 right-hemispheric) rTMS-based language mappings were performed in 50 purely right-handed, healthy volunteers during an object-naming task. All rTMS-induced semantic naming errors were then counted and evaluated systematically. Furthermore, since the distribution of stimulations within both hemispheres varied between individuals and cortical regions stimulated, all elicited errors were standardized and subsequently related to their cortical sites by projecting the mapping results into the cortical parcellation system (CPS). Overall, the most left-hemispheric semantic errors were observed after targeting the rTMS to the posterior middle frontal gyrus (pMFG; standardized error rate: 7.3‰), anterior supramarginal gyrus (aSMG; 5.6‰), and ventral postcentral gyrus (vPoG; 5.0‰). In contrast to that, the highest right-hemispheric error rates occurred after stimulation of the posterior superior temporal gyrus (pSTG; 12.4‰), middle superior temporal gyrus (mSTG; 6.2‰), and anterior supramarginal gyrus (aSMG; 6.2‰). Although error rates were low, the rTMS-based approach of investigating semantic processing during object naming shows convincing results compared to the current literature. Therefore, rTMS seems a valuable, safe, and reliable tool for the investigation of semantic processing within the healthy human brain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Navigated transcranial magnetic stimulation in preoperative planning for the treatment of motor area cavernous angiomas

    PubMed Central

    Paiva, Wellingson Silva; Fonoff, Erich Talamoni; Marcolin, Marco Antonio; Bor-Seng-Shu, Edson; Figueiredo, Eberval Gadelha; Teixeira, Manoel Jacobsen

    2013-01-01

    Since the introduction of microscopic techniques, radical surgery for cavernous angiomas has become a recommended treatment option. However, the treatment of motor area cavernous angioma represents a great challenge for the surgical team. Here, we describe an approach guided by frameless neuronavigation and preoperative functional mapping with transcranial magnetic stimulation (TMS), for surgical planning. We used TMS to map the motor cortex and its relationship with the angioma. We achieved complete resection of the lesions in the surgeries, while avoiding areas of motor response identified during the preoperative mapping. We verified the complete control of seizures (Engel class 1A) in the patients with previous refractory epilepsy. Postsurgery, one patient was seizure-free without medication, and two patients required only one medication for seizure control. Thus, navigated TMS appears to be a useful tool, in preoperative planning for cavernous angiomas of the motor area. PMID:24353424

  9. Direct integrin alphavbeta6-ERK binding: implications for tumour growth.

    PubMed

    Ahmed, Nuzhat; Niu, Jun; Dorahy, Douglas J; Gu, Xinhua; Andrews, Sarah; Meldrum, Cliff J; Scott, Rodney J; Baker, Mark S; Macreadie, Ian G; Agrez, Michael V

    2002-02-21

    Blockade of the mitogen-activated protein (MAP) kinase pathway suppresses growth of colon cancer in vivo. Here we demonstrate a direct link between the extracellular signal-regulated kinase ERK2 and the growth-promoting cell adhesion molecule, integrin alphavbeta6, in colon cancer cells. Down-regulation of beta6 integrin subunit expression inhibits tumour growth in vivo and MAP kinase activity in response to serum stimulation. In alphavbeta6-expressing cells ERK2 is bound only to the beta6 subunit. The increase in cytosolic MAP kinase activity upon epidermal growth factor stimulation is all accounted for by beta6-bound ERK. Deletion of the ERK2 binding site on the beta6 cytoplasmic domain inhibits tumour growth and leads to an association between ERK and the beta5 subunit. The physical interaction between integrin alphavbeta6 and ERK2 defines a novel paradigm of integrin-mediated signalling and provides a therapeutic target for cancer treatment.

  10. Ventilator waveforms on anesthesia machine: a simple tool for intraoperative mapping of phrenic nerve and mid-cervical roots.

    PubMed

    Georgoulis, George; Papagrigoriou, Eirini; Sindou, Marc

    2015-12-01

    A crucial aspect of surgery on the supraclavicular region, lateral neck, and mid-cervical vertebral region is the identification and sparing of the phrenic nerve and cervical (C4) root that are responsible for diaphragmatic innervation. Therefore intraoperative mapping of these nerve structures can be useful for difficult cases. Electrical stimulation with simultaneous observation of the ventilator waveforms of the anesthesia machine provides an effective method for the precise intraoperative mapping of these structures. In the literature, there is only one publication reporting the use of one of the waveforms (capnography) for this purpose. Capnography and pressure-time waveforms, two mandatory curves in anesthesiological monitoring, were studied under electrical stimulation of the phrenic nerve (one patient) and the C4 root (eight patients). The aim was to detect changes that would verify diaphragmatic contraction. No modifications in anesthesia or surgery and no additional maneuvers were required. In all patients, stimulation was followed by identifiable changes in the two waveforms, compatible with diaphragmatic contraction: acute reduction in amplitude on capnography and repetitive saw-like elevations on pressure-time curve. Frequency of patterns on pressure-time curve coincided with the frequency of stimulation; therefore the two recordings were complementary. This simple method proved effective in identifying the neural structures responsible for diaphragmatic function. We therefore suggest that it should be employed in the various types of surgery where these structures are at risk.

  11. Design and Application of a Circuit for Measuring Frequency and Duty Cycle of Stimulated Bioelectrical Signal

    NASA Astrophysics Data System (ADS)

    Tang, Li-Ming; Chang, Ben-Kang; Liu, Tie-Bing; Wu, Min; Ling, Gang

    2002-12-01

    To design a new type of circuit for measuring frequency & duty cycle of stimulated bioelectrical signal for the project of 'the map of neuron-threshold in human brain and its clinical application'. This circuit was designed according to the character of stimulated bioelectrical signals. It was tested and improved and then used in the neuron -threshold stimulator. The circuit was found to be very accurate for measuring frequency and the error for measuring duty cycle was below 0.2%. This circuit is well-designed, simple, easy to use, and can be applied in many systems.

  12. Using transcranial magnetic stimulation of the undamaged brain to identify lesion sites that predict language outcome after stroke

    PubMed Central

    Lorca-Puls, Diego L.; Gajardo-Vidal, Andrea; Seghier, Mohamed L.; Leff, Alexander P.; Sethi, Varun; Prejawa, Susan; Hope, Thomas M. H.; Devlin, Joseph T.

    2017-01-01

    Abstract Transcranial magnetic stimulation focused on either the left anterior supramarginal gyrus or opercular part of the left inferior frontal gyrus has been reported to transiently impair the ability to perform phonological more than semantic tasks. Here we tested whether phonological processing abilities were also impaired following lesions to these regions in right-handed, English speaking adults, who were investigated at least 1 year after a left-hemisphere stroke. When our regions of interest were limited to 0.5 cm3 of grey matter centred around sites that had been identified with transcranial magnetic stimulation-based functional localization, phonological impairments were observed in 74% (40/54) of patients with damage to the regions and 21% (21/100) of patients sparing these regions. This classification accuracy was better than that observed when using regions of interest centred on activation sites in previous functional magnetic resonance imaging studies of phonological processing, or transcranial magnetic stimulation sites that did not use functional localization. New regions of interest were generated by redefining the borders of each of the transcranial magnetic stimulation sites to include areas that were consistently damaged in the patients with phonological impairments. This increased the incidence of phonological impairments in the presence of damage to 85% (46/54) and also reduced the incidence of phonological impairments in the absence of damage to 15% (15/100). The difference in phonological processing abilities between those with and without damage to these ‘transcranial magnetic stimulation-guided’ regions remained highly significant even after controlling for the effect of lesion size. The classification accuracy of the transcranial magnetic stimulation-guided regions was validated in a second sample of 108 patients and found to be better than that for (i) functional magnetic resonance imaging-guided regions; (ii) a region identified from an unguided lesion overlap map; and (iii) a region identified from voxel-based lesion-symptom mapping. Finally, consistent with prior findings from functional imaging and transcranial magnetic stimulation in healthy participants, we show how damage to our transcranial magnetic stimulation-guided regions affected performance on phonologically more than semantically demanding tasks. The observation that phonological processing abilities were impaired years after the stroke, suggests that other brain regions were not able to fully compensate for the contribution that the transcranial magnetic stimulation-guided regions make to language tasks. More generally, our novel transcranial magnetic stimulation-guided lesion-deficit mapping approach shows how non-invasive stimulation of the healthy brain can be used to guide the identification of regions where brain damage is likely to cause persistent behavioural effects. PMID:28430974

  13. Using transcranial magnetic stimulation of the undamaged brain to identify lesion sites that predict language outcome after stroke.

    PubMed

    Lorca-Puls, Diego L; Gajardo-Vidal, Andrea; Seghier, Mohamed L; Leff, Alexander P; Sethi, Varun; Prejawa, Susan; Hope, Thomas M H; Devlin, Joseph T; Price, Cathy J

    2017-06-01

    Transcranial magnetic stimulation focused on either the left anterior supramarginal gyrus or opercular part of the left inferior frontal gyrus has been reported to transiently impair the ability to perform phonological more than semantic tasks. Here we tested whether phonological processing abilities were also impaired following lesions to these regions in right-handed, English speaking adults, who were investigated at least 1 year after a left-hemisphere stroke. When our regions of interest were limited to 0.5 cm3 of grey matter centred around sites that had been identified with transcranial magnetic stimulation-based functional localization, phonological impairments were observed in 74% (40/54) of patients with damage to the regions and 21% (21/100) of patients sparing these regions. This classification accuracy was better than that observed when using regions of interest centred on activation sites in previous functional magnetic resonance imaging studies of phonological processing, or transcranial magnetic stimulation sites that did not use functional localization. New regions of interest were generated by redefining the borders of each of the transcranial magnetic stimulation sites to include areas that were consistently damaged in the patients with phonological impairments. This increased the incidence of phonological impairments in the presence of damage to 85% (46/54) and also reduced the incidence of phonological impairments in the absence of damage to 15% (15/100). The difference in phonological processing abilities between those with and without damage to these 'transcranial magnetic stimulation-guided' regions remained highly significant even after controlling for the effect of lesion size. The classification accuracy of the transcranial magnetic stimulation-guided regions was validated in a second sample of 108 patients and found to be better than that for (i) functional magnetic resonance imaging-guided regions; (ii) a region identified from an unguided lesion overlap map; and (iii) a region identified from voxel-based lesion-symptom mapping. Finally, consistent with prior findings from functional imaging and transcranial magnetic stimulation in healthy participants, we show how damage to our transcranial magnetic stimulation-guided regions affected performance on phonologically more than semantically demanding tasks. The observation that phonological processing abilities were impaired years after the stroke, suggests that other brain regions were not able to fully compensate for the contribution that the transcranial magnetic stimulation-guided regions make to language tasks. More generally, our novel transcranial magnetic stimulation-guided lesion-deficit mapping approach shows how non-invasive stimulation of the healthy brain can be used to guide the identification of regions where brain damage is likely to cause persistent behavioural effects. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.

  14. N-acetylcysteine attenuates TNF-α-induced p38 MAP kinase activation and p38 MAP kinase-mediated IL-8 production by human pulmonary vascular endothelial cells

    PubMed Central

    Hashimoto, Shu; Gon, Yasuhiro; Matsumoto, Ken; Takeshita, Ikuko; Horie, Takashi

    2001-01-01

    We have previously shown that tumour necrosis factor-α (TNF-α) activates p38 mitogen-activated protein (MAP) kinase to produce interleukin-8 (IL-8) by human pulmonary vascular endothelial cells. Reactive oxygen species (ROS) including H2O2 generated by TNF-α can act as signalling intermediates for cytokine induction; therefore, scavenging ROS by anti-oxidants is important for the regulation of cytokine production. However, the effect of N-acetylcysteine (NAC), which acts as a precursor of glutathione (GSH) synthesis, on TNF-α-induced activation of p38 MAP kinase pathway and p38 MAP kinase-mediated IL-8 production by human pulmonary vascular endothelial cells has not been determined. To clarify these issues, we examined the effect of NAC on TNF-α-induced activation of p38 MAP kinase, MAP kinase kinase (MKK) 3 and MKK6 which are upstream regulators of p38 MAP kinase, and p38 MAP kinase-mediated IL-8 production. Human pulmonary vascular endothelial cells that had been preincubated with NAC were stimulated with TNF-α and then the activation of p38 MAP kinase and MKK3/MKK6 in the cells and IL-8 concentrations in the culture supernatants were determined. Intracellular GSH levels increased in NAC-treated cells. NAC attenuated TNF-α-induced activation of p38 MAP kinase and MKK3/MKK6. NAC attenuated p38 MAP kinase-mediated IL-8 production by TNF-α-stimulated cells. These results indicate that the cellular reduction and oxidation (redox) regulated by intracellular GSH is critical for TNF-α-induced activation of p38 MAP kinase pathway and p38 MAP kinase-mediated IL-8 production by human pulmonary vascular endothelial cells, and we emphasize that anti-oxidant therapy is an important strategy for the treatment of acute lung injury. PMID:11156586

  15. N-acetylcysteine attenuates TNF-alpha-induced p38 MAP kinase activation and p38 MAP kinase-mediated IL-8 production by human pulmonary vascular endothelial cells.

    PubMed

    Hashimoto, S; Gon, Y; Matsumoto, K; Takeshita, I; Horie, T

    2001-01-01

    1. We have previously shown that tumour necrosis factor-alpha (TNF-alpha) activates p38 mitogen-activated protein (MAP) kinase to produce interleukin-8 (IL-8) by human pulmonary vascular endothelial cells. Reactive oxygen species (ROS) including H(2)O(2) generated by TNF-alpha can act as signalling intermediates for cytokine induction; therefore, scavenging ROS by anti-oxidants is important for the regulation of cytokine production. However, the effect of N-acetylcysteine (NAC), which acts as a precursor of glutathione (GSH) synthesis, on TNF-alpha-induced activation of p38 MAP kinase pathway and p38 MAP kinase-mediated IL-8 production by human pulmonary vascular endothelial cells has not been determined. To clarify these issues, we examined the effect of NAC on TNF-alpha-induced activation of p38 MAP kinase, MAP kinase kinase (MKK) 3 and MKK6 which are upstream regulators of p38 MAP kinase, and p38 MAP kinase-mediated IL-8 production. 2. Human pulmonary vascular endothelial cells that had been preincubated with NAC were stimulated with TNF-alpha and then the activation of p38 MAP kinase and MKK3/MKK6 in the cells and IL-8 concentrations in the culture supernatants were determined. 3. Intracellular GSH levels increased in NAC-treated cells. 4. NAC attenuated TNF-alpha-induced activation of p38 MAP kinase and MKK3/MKK6. 5. NAC attenuated p38 MAP kinase-mediated IL-8 production by TNF-alpha-stimulated cells. 6. These results indicate that the cellular reduction and oxidation (redox) regulated by intracellular GSH is critical for TNF-alpha-induced activation of p38 MAP kinase pathway and p38 MAP kinase-mediated IL-8 production by human pulmonary vascular endothelial cells, and we emphasize that anti-oxidant therapy is an important strategy for the treatment of acute lung injury.

  16. Epicardial distribution of ST segment and T wave changes produced by stimulation of intrathoracic ganglia or cardiopulmonary nerves in dogs.

    PubMed

    Savard, P; Cardinal, R; Nadeau, R A; Armour, J A

    1991-06-01

    Sixty-three ventricular epicardial electrograms were recorded simultaneously in 8 atropinized dogs during stimulation of acutely decentralized intrathoracic autonomic ganglia or cardiopulmonary nerves. Three variables were measured: (1) isochronal maps representing the epicardial activation sequence, (2) maps depicting changes in areas under the QRS complex and T wave (regional inhomogeneity of repolarization), and (3) local and total QT intervals. Neural stimulations did not alter the activation sequence but induced changes in the magnitude and polarity of the ST segments and T waves as well as in QRST areas. Stimulation of the same neural structure in different dogs induced electrical changes with different amplitudes and in different regions of the ventricles, except for the ventral lateral cardiopulmonary nerve which usually affected the dorsal wall of the left ventricle. Greatest changes occurred when the right recurrent, left intermediate medial, left caudal pole, left ventral lateral cardiopulmonary nerves and stellate ganglia were stimulated. Local QT durations either decreased or did not change, whereas total QT duration as measured using a root-mean-square signal did not change, indicating the regional nature of repolarization changes. Taken together, these data indicate that intrathoracic efferent sympathetic neurons can induce regional inhomogeneity of repolarization without prolonging the total QT interval.

  17. Reservoir fracture mapping using microearthquakes: Austin chalk, Giddings field, TX and 76 field, Clinton Co., KY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, W.S.; Rutledge, J.T.; Gardner, T.L.

    1996-11-01

    Patterns of microearthquakes detected downhole defined fracture orientation and extent in the Austin chalk, Giddings field, TX and the 76 field, Clinton Co., KY. We collected over 480 and 770 microearthquakes during hydraulic stimulation at two sites in the Austin chalk, and over 3200 during primary production in Clinton Co. Data were of high enough quality that 20%, 31% and 53% of the events could be located, respectively. Reflected waves constrained microearthquakes to the stimulated depths at the base of the Austin chalk. In plan view, microearthquakes defined elongate fracture zones extending from the stimulation wells parallel to the regionalmore » fracture trend. However, widths of the stimulated zones differed by a factor of five between the two Austin chalk sites, indicating a large difference in the population of ancillary fractures. Post-stimulation production was much higher from the wider zone. At Clinton Co., microearthquakes defined low-angle, reverse-fault fracture zones above and below a producing zone. Associations with depleted production intervals indicated the mapped fractures had been previously drained. Drilling showed that the fractures currently contain brine. The seismic behavior was consistent with poroelastic models that predicted slight increases in compressive stress above and below the drained volume.« less

  18. Reservoir fracture mapping using microearthquakes: Austin chalk, Giddings field, TX and 76 field, Clinton Co., KY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, W.S.; Rutledge, J.T.; Fairbanks, T.D.

    1996-12-31

    Patterns of microearthquakes detected downhole defined fracture orientation and extent in the Austin chalk, Giddings field, TX and the 76 field, Clinton Co., KY. We collected over 480 and 770 microearthquakes during hydraulic stimulation at two sites in the Austin chalk, and over 3200 during primary production in Clinton Co. Data were of high enough quality that 20%, 31% and 53% of the events could be located, respectively. Reflected waves constrained microearthquakes to the stimulated depths at the base of the Austin chalk. In plan view, microearthquakes defined elongate fracture zones extending from the stimulation wells parallel to the regionalmore » fracture trend. However, widths of the stimulated zones differed by a factor of live between the two Austin chalk sites, indicating a large difference in the population of ancillary fractures. Post-stimulation production was much higher from the wider zone. At Clinton Co., microearthquakes defined low-angle, reverse-fault fracture zones above and below a producing zone. Associations with depleted production intervals indicated the mapped fractures had been previously drained. Drilling showed that the fractures currently contain brine. The seismic behavior was consistent with poroelastic models that predicted slight increases in compressive stress above and below the drained volume.« less

  19. Predictable bacterial composition and hydrocarbon degradation in Arctic soils following diesel and nutrient disturbance

    PubMed Central

    Bell, Terrence H; Yergeau, Etienne; Maynard, Christine; Juck, David; Whyte, Lyle G; Greer, Charles W

    2013-01-01

    Increased exploration and exploitation of resources in the Arctic is leading to a higher risk of petroleum contamination. A number of Arctic microorganisms can use petroleum for growth-supporting carbon and energy, but traditional approaches for stimulating these microorganisms (for example, nutrient addition) have varied in effectiveness between sites. Consistent environmental controls on microbial community response to disturbance from petroleum contaminants and nutrient amendments across Arctic soils have not been identified, nor is it known whether specific taxa are universally associated with efficient bioremediation. In this study, we contaminated 18 Arctic soils with diesel and treated subsamples of each with monoammonium phosphate (MAP), which has successfully stimulated degradation in some contaminated Arctic soils. Bacterial community composition of uncontaminated, diesel-contaminated and diesel+MAP soils was assessed through multiplexed 16S (ribosomal RNA) rRNA gene sequencing on an Ion Torrent Personal Genome Machine, while hydrocarbon degradation was measured by gas chromatography analysis. Diversity of 16S rRNA gene sequences was reduced by diesel, and more so by the combination of diesel and MAP. Actinobacteria dominated uncontaminated soils with <10% organic matter, while Proteobacteria dominated higher-organic matter soils, and this pattern was exaggerated following disturbance. Degradation with and without MAP was predictable by initial bacterial diversity and the abundance of specific assemblages of Betaproteobacteria, respectively. High Betaproteobacteria abundance was positively correlated with high diesel degradation in MAP-treated soils, suggesting this may be an important group to stimulate. The predictability with which bacterial communities respond to these disturbances suggests that costly and time-consuming contaminated site assessments may not be necessary in the future. PMID:23389106

  20. Cortical and subcortical mapping of language areas: correlation of functional MRI and tractography in a 3T scanner with intraoperative cortical and subcortical stimulation in patients with brain tumors located in eloquent areas.

    PubMed

    Jiménez de la Peña, M; Gil Robles, S; Recio Rodríguez, M; Ruiz Ocaña, C; Martínez de Vega, V

    2013-01-01

    To describe the detection of cortical areas and subcortical pathways involved in language observed in MRI activation studies and tractography in a 3T MRI scanner and to correlate the findings of these functional studies with direct intraoperative cortical and subcortical stimulation. We present a series of 14 patients with focal brain tumors adjacent to eloquent brain areas. All patients underwent neuropsychological evaluation before and after surgery. All patients underwent MRI examination including structural sequences, perfusion imaging, spectroscopy, functional imaging to determine activation of motor and language areas, and 3D tractography. All patients underwent cortical mapping through cortical and subcortical stimulation during the operation to resect the tumor. Postoperative follow-up studies were done 24 hours after surgery. The correlation of motor function and of the corticospinal tract determined by functional MRI and tractography with intraoperative mapping of cortical and subcortical motor areas was complete. The eloquent brain areas of language expression and reception were strongly correlated with intraoperative cortical mapping in all but two cases (a high grade infiltrating glioma and a low grade glioma located in the frontal lobe). 3D tractography identified the arcuate fasciculus, the lateral part of the superior longitudinal fasciculus, the subcallosal fasciculus, the inferior fronto-occipital fasciculus, and the optic radiations, which made it possible to mark the limits of the resection. The correlation with the subcortical mapping of the anatomic arrangement of the fasciculi with respect to the lesions was complete. The best treatment for brain tumors is maximum resection without associated deficits, so high quality functional studies are necessary for preoperative planning. Copyright © 2011 SERAM. Published by Elsevier Espana. All rights reserved.

  1. Midazolam suppresses interleukin-1β-induced interleukin-6 release from rat glial cells

    PubMed Central

    2011-01-01

    Background Peripheral-type benzodiazepine receptor (PBR) expression levels are low in normal human brain, but their levels increase in inflammation, brain injury, neurodegenerative states and gliomas. It has been reported that PBR functions as an immunomodulator. The mechanisms of action of midazolam, a benzodiazepine, in the immune system in the CNS remain to be fully elucidated. We previously reported that interleukin (IL)-1β stimulates IL-6 synthesis from rat C6 glioma cells and that IL-1β induces phosphorylation of inhibitory kappa B (IκB), p38 mitogen-activated protein (MAP) kinase, stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase 1/2, and signal transducer and activator of transcription (STAT)3. It has been shown that p38 MAP kinase is involved in IL-1β-induced IL-6 release from these cells. In the present study, we investigated the effect of midazolam on IL-1β-induced IL-6 release from C6 cells, and the mechanisms of this effect. Methods Cultured C6 cells were stimulated by IL-1β. IL-6 release from C6 cells was measured using an enzyme-linked immunosorbent assay, and phosphorylation of IκB, the MAP kinase superfamily, and STAT3 was analyzed by Western blotting. Results Midazolam, but not propofol, inhibited IL-1β-stimulated IL-6 release from C6 cells. The IL-1β-stimulated levels of IL-6 were suppressed by wedelolactone (an inhibitor of IκB kinase), SP600125 (an inhibitor of SAPK/JNK), and JAK inhibitor I (an inhibitor of JAK 1, 2 and 3). However, IL-6 levels were not affected by PD98059 (an inhibitor of MEK1/2). Midazolam markedly suppressed IL-1β-stimulated STAT3 phosphorylation without affecting the phosphorylation of p38 MAP kinase, SAPK/JNK or IκB. Conclusion These results strongly suggest that midazolam inhibits IL-1β-induced IL-6 release in rat C6 glioma cells via suppression of STAT3 activation. Midazolam may affect immune system function in the CNS. PMID:21682888

  2. Creating Meaning and Making Connections: Lifeplanning Exploration Workshop.

    ERIC Educational Resources Information Center

    Shepard, Blythe

    This paper presents three activities developed from research on the life-career development process of youth. The activities are designed to stimulate young people to develop new views of self within the context of their world. The possible selves mapping exercise, community life-space mapping, and photographic displays are self-assessment and…

  3. A S[t]imulating Study of Map Projections: An Exploration Integrating Mathematics and Social Studies.

    ERIC Educational Resources Information Center

    Wilkins, Jesse L. M.; Hicks, David

    2001-01-01

    Presents a map-projection activity that combines mathematics and geography through investigating the proportion of land and water that covers the earth. Focuses on helping students become familiar with characteristics of different projections or representations of the world while estimating and graphing and encouraging them to investigate the…

  4. Clinical Applications of Transcranial Magnetic Stimulation in Pediatric Neurology.

    PubMed

    Narayana, Shalini; Papanicolaou, Andrew C; McGregor, Amy; Boop, Frederick A; Wheless, James W

    2015-08-01

    Noninvasive brain stimulation is now an accepted technique that is used as a diagnostic aid and in the treatment of neuropsychiatric disorders in adults, and is being increasingly used in children. In this review, we will discuss the basic principles and safety of one noninvasive brain stimulation method, transcranial magnetic stimulation. Improvements in the spatial accuracy of transcranial magnetic stimulation are described in the context of image-guided transcranial magnetic stimulation. The article describes and provides examples of the current clinical applications of transcranial magnetic stimulation in children as an aid in the diagnosis and treatment of neuropsychiatric disorders and discusses future potential applications. Transcranial magnetic stimulation is a noninvasive tool that is safe for use in children and adolescents for functional mapping and treatment, and for many children it aids in the preoperative evaluation and the risk-benefit decision making. © The Author(s) 2014.

  5. The Effect of Mycobacterium avium Complex Infections on Routine Mycobacterium bovis Diagnostic Tests

    PubMed Central

    Barry, Claire; Corbett, David; Bakker, Douwe; Andersen, Peter; McNair, Jim; Strain, Sam

    2011-01-01

    Bovine tuberculosis (bTB) is diagnosed in naturally infected populations exposed to a wide variety of other pathogens. This study describes the cell-mediated immune responses of cattle exposed to Mycobacterium avium subspecies paratuberculosis (Map) and Mycobacterium avium subspecies avium with particular reference to routine antefmortem Mycobacterium bovis diagnostic tests. The IFN-γ released in response to stimulated blood was found to peak later in the Map-exposed group and was more sustained when compared to the Maa-exposed group. There was a very close correlation between the responses to the purified protein derivatives (PPD) used for stimulation (PPDa, PPDb, and PPDj) with PPDa and PPDj most closely correlated. On occasion, in the Map-infected cattle, PPDb-biased responses were seen compared to PPDa suggesting that some Map-infected cattle could be misclassified as M. bovis infected using this test with these reagents. This bias was not seen when PPDj was used. SICCT results were consistent with the respective infections and all calves would have been classed skin test negative. PMID:21772961

  6. Mimicking muscle activity with electrical stimulation

    NASA Astrophysics Data System (ADS)

    Johnson, Lise A.; Fuglevand, Andrew J.

    2011-02-01

    Functional electrical stimulation is a rehabilitation technology that can restore some degree of motor function in individuals who have sustained a spinal cord injury or stroke. One way to identify the spatio-temporal patterns of muscle stimulation needed to elicit complex upper limb movements is to use electromyographic (EMG) activity recorded from able-bodied subjects as a template for electrical stimulation. However, this requires a transfer function to convert the recorded (or predicted) EMG signals into an appropriate pattern of electrical stimulation. Here we develop a generalized transfer function that maps EMG activity into a stimulation pattern that modulates muscle output by varying both the pulse frequency and the pulse amplitude. We show that the stimulation patterns produced by this transfer function mimic the active state measured by EMG insofar as they reproduce with good fidelity the complex patterns of joint torque and joint displacement.

  7. The warning-sign hierarchy between quantitative subcortical motor mapping and continuous motor evoked potential monitoring during resection of supratentorial brain tumors.

    PubMed

    Seidel, Kathleen; Beck, Jürgen; Stieglitz, Lennart; Schucht, Philippe; Raabe, Andreas

    2013-02-01

    Mapping and monitoring are believed to provide an early warning sign to determine when to stop tumor removal to avoid mechanical damage to the corticospinal tract (CST). The objective of this study was to systematically compare subcortical monopolar stimulation thresholds (1-20 mA) with direct cortical stimulation (DCS)-motor evoked potential (MEP) monitoring signal abnormalities and to correlate both with new postoperative motor deficits. The authors sought to define a mapping threshold and DCS-MEP monitoring signal changes indicating a minimal safe distance from the CST. A consecutive cohort of 100 patients underwent tumor surgery adjacent to the CST while simultaneous subcortical motor mapping and DCS-MEP monitoring was used. Evaluation was done regarding the lowest subcortical mapping threshold (monopolar stimulation, train of 5 stimuli, interstimulus interval 4.0 msec, pulse duration 500 μsec) and signal changes in DCS-MEPs (same parameters, 4 contact strip electrode). Motor function was assessed 1 day after surgery, at discharge, and at 3 months postoperatively. The lowest individual motor thresholds (MTs) were as follows (MT in mA, number of patients): > 20 mA, n = 12; 11-20 mA, n = 13; 6-10 mA, n = 20; 4-5 mA, n = 30; and 1-3 mA, n = 25. Direct cortical stimulation showed stable signals in 70 patients, unspecific changes in 18, irreversible alterations in 8, and irreversible loss in 4 patients. At 3 months, 5 patients had a postoperative new or worsened motor deficit (lowest mapping MT 20 mA, 13 mA, 6 mA, 3 mA, and 1 mA). In all 5 patients DCS-MEP monitoring alterations were documented (2 sudden irreversible threshold increases and 3 sudden irreversible MEP losses). Of these 5 patients, 2 had vascular ischemic lesions (MT 20 mA, 13 mA) and 3 had mechanical CST damage (MT 1 mA, 3 mA, and 6 mA; in the latter 2 cases the resection continued after mapping and severe DCS-MEP alterations occurred thereafter). In 80% of patients with a mapping MT of 1-3 mA and in 75% of patients with a mapping MT of 1 mA, DCS-MEPs were stable or showed unspecific reversible changes, and none had a permanent motor worsening at 3 months. In contrast, 25% of patients with irreversible DCS-MEP changes and 75% of patients with irreversible DCS-MEP loss had permanent motor deficits. Mapping should primarily guide tumor resection adjacent to the CST. DCS-MEP is a useful predictor of deficits, but its value as a warning sign is limited because signal alterations were reversible in only approximately 60% of the present cases and irreversibility is a post hoc definition. The true safe mapping MT is lower than previously thought. The authors postulate a mapping MT of 1 mA or less where irreversible DCS-MEP changes and motor deficits regularly occur. Therefore, they recommend stopping tumor resection at an MT of 2 mA at the latest. The limited spatial and temporal coverage of contemporary mapping may increase error and may contribute to false, higher MTs.

  8. Improving fMRI reliability in presurgical mapping for brain tumours.

    PubMed

    Stevens, M Tynan R; Clarke, David B; Stroink, Gerhard; Beyea, Steven D; D'Arcy, Ryan Cn

    2016-03-01

    Functional MRI (fMRI) is becoming increasingly integrated into clinical practice for presurgical mapping. Current efforts are focused on validating data quality, with reliability being a major factor. In this paper, we demonstrate the utility of a recently developed approach that uses receiver operating characteristic-reliability (ROC-r) to: (1) identify reliable versus unreliable data sets; (2) automatically select processing options to enhance data quality; and (3) automatically select individualised thresholds for activation maps. Presurgical fMRI was conducted in 16 patients undergoing surgical treatment for brain tumours. Within-session test-retest fMRI was conducted, and ROC-reliability of the patient group was compared to a previous healthy control cohort. Individually optimised preprocessing pipelines were determined to improve reliability. Spatial correspondence was assessed by comparing the fMRI results to intraoperative cortical stimulation mapping, in terms of the distance to the nearest active fMRI voxel. The average ROC-r reliability for the patients was 0.58±0.03, as compared to 0.72±0.02 in healthy controls. For the patient group, this increased significantly to 0.65±0.02 by adopting optimised preprocessing pipelines. Co-localisation of the fMRI maps with cortical stimulation was significantly better for more reliable versus less reliable data sets (8.3±0.9 vs 29±3 mm, respectively). We demonstrated ROC-r analysis for identifying reliable fMRI data sets, choosing optimal postprocessing pipelines, and selecting patient-specific thresholds. Data sets with higher reliability also showed closer spatial correspondence to cortical stimulation. ROC-r can thus identify poor fMRI data at time of scanning, allowing for repeat scans when necessary. ROC-r analysis provides optimised and automated fMRI processing for improved presurgical mapping. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  9. Effect of brain shift on the creation of functional atlases for deep brain stimulation surgery

    PubMed Central

    Pallavaram, Srivatsan; Remple, Michael S.; Neimat, Joseph S.; Kao, Chris; Konrad, Peter E.; D’Haese, Pierre-François

    2011-01-01

    Purpose In the recent past many groups have tried to build functional atlases of the deep brain using intra-operatively acquired information such as stimulation responses or micro-electrode recordings. An underlying assumption in building such atlases is that anatomical structures do not move between pre-operative imaging and intra-operative recording. In this study, we present evidences that this assumption is not valid. We quantify the effect of brain shift between pre-operative imaging and intra-operative recording on the creation of functional atlases using intra-operative somatotopy recordings and stimulation response data. Methods A total of 73 somatotopy points from 24 bilateral subthalamic nucleus (STN) implantations and 52 eye deviation stimulation response points from 17 bilateral STN implantations were used. These points were spatially normalized on a magnetic resonance imaging (MRI) atlas using a fully automatic non-rigid registration algorithm. Each implantation was categorized as having low, medium or large brain shift based on the amount of pneumocephalus visible on post-operative CT. The locations of somatotopy clusters and stimulation maps were analyzed for each category. Results The centroid of the large brain shift cluster of the somatotopy data (posterior, lateral, inferior: 3.06, 11.27, 5.36 mm) was found posterior, medial and inferior to that of the medium cluster (2.90, 13.57, 4.53 mm) which was posterior, medial and inferior to that of the low shift cluster (1.94, 13.92, 3.20 mm). The coordinates are referenced with respect to the mid-commissural point. Euclidean distances between the centroids were 1.68, 2.44 and 3.59 mm, respectively for low-medium, medium-large and low-large shift clusters. We found similar trends for the positions of the stimulation maps. The Euclidian distance between the highest probability locations on the low and medium-large shift maps was 4.06 mm. Conclusion The effect of brain shift in deep brain stimulation (DBS) surgery has been demonstrated using intra-operative somatotopy recordings as well as stimulation response data. The results not only indicate that considerable brain shift happens before micro-electrode recordings in DBS but also that brain shift affects the creation of accurate functional atlases. Therefore, care must be taken when building and using such atlases of intra-operative data and also when using intra-operative data to validate anatomical atlases. PMID:20033503

  10. Use of functional near-infrared spectroscopy to monitor cortical plasticity induced by transcranial direct current stimulation

    NASA Astrophysics Data System (ADS)

    Khan, Bilal; Hervey, Nathan; Stowe, Ann; Hodics, Timea; Alexandrakis, George

    2013-03-01

    Electrical stimulation of the human cortex in conjunction with physical rehabilitation has been a valuable approach in facilitating the plasticity of the injured brain. One such method is transcranial direct current stimulation (tDCS) which is a non-invasive method to elicit neural stimulation by delivering current through electrodes placed on the scalp. In order to better understand the effects tDCS has on cortical plasticity, neuroimaging techniques have been used pre and post tDCS stimulation. Recently, neuroimaging methods have discovered changes in resting state cortical hemodynamics after the application of tDCS on human subjects. However, analysis of the cortical hemodynamic activity for a physical task during and post tDCS stimulation has not been studied to our knowledge. A viable and sensitive neuroimaging method to map changes in cortical hemodynamics during activation is functional near-infrared spectroscopy (fNIRS). In this study, the cortical activity during an event-related, left wrist curl task was mapped with fNIRS before, during, and after tDCS stimulation on eight healthy adults. Along with the fNIRS optodes, two electrodes were placed over the sensorimotor hand areas of both brain hemispheres to apply tDCS. Changes were found in both resting state cortical connectivity and cortical activation patterns that occurred during and after tDCS. Additionally, changes to surface electromyography (sEMG) measurements of the wrist flexor and extensor of both arms during the wrist curl movement, acquired concurrently with fNIRS, were analyzed and related to the transient cortical plastic changes induced by tDCS.

  11. Multimodality language mapping in patients with left-hemispheric language dominance on Wada test.

    PubMed

    Kojima, Katsuaki; Brown, Erik C; Rothermel, Robert; Carlson, Alanna; Matsuzaki, Naoyuki; Shah, Aashit; Atkinson, Marie; Mittal, Sandeep; Fuerst, Darren; Sood, Sandeep; Asano, Eishi

    2012-10-01

    We determined the utility of electrocorticography (ECoG) and stimulation for detecting language-related sites in patients with left-hemispheric language-dominance on Wada test. We studied 13 epileptic patients who underwent language mapping using event-related gamma-oscillations on ECoG and stimulation via subdural electrodes. Sites showing significant gamma-augmentation during an auditory-naming task were defined as language-related ECoG sites. Sites at which stimulation resulted in auditory perceptual changes, failure to verbalize a correct answer, or sensorimotor symptoms involving the mouth were defined as language-related stimulation sites. We determined how frequently these methods revealed language-related sites in the superior-temporal, inferior-frontal, dorsolateral-premotor, and inferior-Rolandic regions. Language-related sites in the superior-temporal and inferior-frontal gyri were detected by ECoG more frequently than stimulation (p < 0.05), while those in the dorsolateral-premotor and inferior-Rolandic regions were detected by both methods equally. Stimulation of language-related ECoG sites, compared to the others, more frequently elicited language symptoms (p < 0.00001). One patient developed dysphasia requiring in-patient speech therapy following resection of the dorsolateral-premotor and inferior-Rolandic regions containing language-related ECoG sites not otherwise detected by stimulation. Language-related gamma-oscillations may serve as an alternative biomarker of underlying language function in patients with left-hemispheric language-dominance. Measurement of language-related gamma-oscillations is warranted in presurgical evaluation of epileptic patients. Copyright © 2012 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Direct electrical stimulation of human cortex evokes high gamma activity that predicts conscious somatosensory perception

    NASA Astrophysics Data System (ADS)

    Muller, Leah; Rolston, John D.; Fox, Neal P.; Knowlton, Robert; Rao, Vikram R.; Chang, Edward F.

    2018-04-01

    Objective. Direct electrical stimulation (DES) is a clinical gold standard for human brain mapping and readily evokes conscious percepts, yet the neurophysiological changes underlying these percepts are not well understood. Approach. To determine the neural correlates of DES, we stimulated the somatosensory cortex of ten human participants at frequency-amplitude combinations that both elicited and failed to elicit conscious percepts, meanwhile recording neural activity directly surrounding the stimulation site. We then compared the neural activity of perceived trials to that of non-perceived trials. Main results. We found that stimulation evokes distributed high gamma activity, which correlates with conscious perception better than stimulation parameters themselves. Significance. Our findings suggest that high gamma activity is a reliable biomarker for perception evoked by both natural and electrical stimuli.

  13. Curcumin Stimulates Proliferation of Spinal Cord Neural Progenitor Cells via a Mitogen-Activated Protein Kinase Signaling Pathway

    PubMed Central

    Son, Sihoon; Cho, Dae-Chul; Kim, Hye-Jeong; Sung, Joo-Kyung; Bae, Jae-Sung

    2014-01-01

    Objective The aims of our study are to evaluate the effect of curcumin on spinal cord neural progenitor cell (SC-NPC) proliferation and to clarify the mechanisms of mitogen-activated protein (MAP) kinase signaling pathways in SC-NPCs. Methods We established cultures of SC-NPCs, extracted from the spinal cord of Sprague-Dawley rats weighing 250 g to 350 g. We measured proliferation rates of SC-NPCs after curcumin treatment at different dosage. The immuno-blotting method was used to evaluate the MAP kinase signaling protein that contains extracellular signal-regulated kinases (ERKs), p38, c-Jun NH2-terminal kinases (JNKs) and β-actin as the control group. Results Curcumin has a biphasic effect on SC-NPC proliferation. Lower dosage (0.1, 0.5, 1 µM) of curcumin increased SC-NPC proliferation. However, higher dosage decreased SC-NPC proliferation. Also, curcumin stimulates proliferation of SC-NPCs via the MAP kinase signaling pathway, especially involving the p-ERK and p-38 protein. The p-ERK protein and p38 protein levels varied depending on curcumin dosage (0.5 and 1 µM, p<0.05). Conclusion Curcumin can stimulate proliferation of SC-NPCs via ERKs and the p38 signaling pathway in low concentrations. PMID:25289117

  14. Tumor necrosis factor-alpha stimulation of calcitonin gene-related peptide expression and secretion from rat trigeminal ganglion neurons.

    PubMed

    Bowen, Elizabeth J; Schmidt, Thomas W; Firm, Christina S; Russo, Andrew F; Durham, Paul L

    2006-01-01

    Expression of the neuropeptide calcitonin gene-related peptide (CGRP) in trigeminal ganglion is implicated in neurovascular headaches and temporomandibular joint disorders. Elevation of cytokines contributes to the pathology of these diseases. However, a connection between cytokines and CGRP gene expression in trigeminal ganglion nerves has not been established. We have focused on the effects of the cytokine tumor necrosis factor-alpha (TNF-alpha). TNFR1 receptors were found on the majority of CGRP-containing rat trigeminal ganglion neurons. Treatment of cultures with TNF-alpha stimulated CGRP secretion. In addition, the intracellular signaling intermediate from the TNFR1 receptor, ceramide, caused a similar increase in CGRP release. TNF-alpha caused a coordinate increase in CGRP promoter activity. TNF-alpha treatment activated the transcription factor NF-kappaB, as well as the Jun N-terminal kinase (JNK) and p38 mitogen-activated protein (MAP) kinase pathways. The importance of TNF-alpha induction of MAP kinase pathways was demonstrated by inhibiting MAP kinases with pharmacological reagents and gene transfer with an adenoviral vector encoding MAP kinase phosphatase-1 (MKP-1). We propose that selective and regulated inhibition of MAP kinases in trigeminal neurons may be therapeutically beneficial for inflammatory disorders involving elevated CGRP levels.

  15. Tumor necrosis factor-α stimulation of calcitonin gene-related peptide expression and secretion from rat trigeminal ganglion neurons

    PubMed Central

    Bowen, Elizabeth J.; Schmidt, Thomas W.; Firm, Christina S.; Russo, Andrew F.; Durham, Paul L.

    2006-01-01

    Expression of the neuropeptide calcitonin gene-related peptide (CGRP) in trigeminal ganglion is implicated in neurovascular headaches and temporomandibular joint disorders. Elevation of cytokines contributes to the pathology of these diseases. However, a connection between cytokines and CGRP gene expression in trigeminal ganglion nerves has not been established. We have focused on the effects of the cytokine tumor necrosis factorα (TNFα). TNFR1 receptors were found on the majority of CGRP-containing rat trigeminal ganglion neurons. Treatment of cultures with TNFα stimulated CGRP secretion. In addition, the intracellular signaling intermediate from the TNFR1 receptor, ceramide, caused a similar increase in CGRP release. TNFα caused a coordinate increase in CGRP promoter activity. TNFα treatment activated the transcription factor NF-κB, as well as the Jun N-terminal kinase (JNK) and p38 mitogen-activated protein (MAP) kinase pathways. The importance of TNFα induction of MAP kinase pathways was demonstrated by inhibiting MAP kinases with pharmacological reagents and gene transfer with an adenoviral vector encoding MAP kinase phosphatase-1 (MKP-1). We propose that selective and regulated inhibition of MAP kinases in trigeminal neurons may be therapeutically beneficial for inflammatory disorders involving elevated CGRP levels. PMID:16277606

  16. Effects of prostaglandin F(2alpha)and carbachol on MAP kinases, cytosolic phospholipase A(2)and arachidonic acid release in cat iris sphincter smooth muscle cells.

    PubMed

    Husain, S; Abdel-Latif, A A

    2001-05-01

    The signal transduction pathways initiated by Ca(2+)-mobilizing agonists, such as prostaglandin F(2alpha)(PGF(2alpha)) and carbachol (CCh), leading to activation of cytosolic phospholipase A(2)(cPLA(2)) and arachidonic acid (AA) release in a wide variety of tissues remain obscure. To further define the role of protein kinases in receptor mediated stimulation of cPLA(2)and consequently AA release we have investigated the role of mitogen-activated protein (MAP) kinases and protein kinase C (PKC) in PGF(2alpha)- and CCh-induced cPLA(2)phosphorylation and AA release in cat iris sphincter smooth muscle (CISM) cells. The cells were prelabeled with [(3)H]AA for 24 hr and incubated in the absence or presence of the agonist for 5-10 min as indicated. MAP kinases activities and cPLA(2)phosphorylation were determined in immunoprecipitates obtained by using anti-p38 MAP kinase and anti-cPLA(2)antibodies. We found that: (a) PGF(2alpha)and CCh increased p38 MAP kinase activity by 197 and 215%, respectively, and increased p42/p44 MAP kinase activity by 200 and 125%, respectively. (b) SB202190, a p38 MAP kinase specific inhibitor, inhibited PGF(2alpha)- and CCh-induced cPLA(2)phosphorylation by 92 and 85%, respectively, and AA release by 62 and 78%, respectively. (c) PD98059, a p42/p44 MAP kinase inhibitor, inhibited CCh-induced cPLA(2)phosphorylation by 70% and AA release by 71%, but had no effect on that of PGF(2alpha). (d) Inhibition of PKC activity by RO 31-8220 inhibited both PGF(2alpha)- and CCh-stimulation of p38 MAP kinase, p42/p44 MAP kinases and cPLA(2)phosphorylation. We conclude from these results that in CISM cells PGF(2alpha)-induced cPLA(2)phosphorylation and AA release is mediated through p38 MAP kinase, but not through p42/p44 MAP kinases, whereas that of CCh is mediated through both p38 MAP kinase and p42/p44 MAP kinases. These effects of PGF(2alpha)and CCh are regulated by the MAP kinases in a PKC-dependent manner. Studies aimed at elucidating the role of protein kinases in the coupling mechanism between the activation of PGF(2alpha)and muscarinic receptors, and the stimulation of cPLA(2)and AA release in the smooth muscles of the iris-ciliary body will provide important information about the role of protein kinases signaling pathways in smooth muscle function, as well as about the mechanism of the intraocular pressure-lowering effects of PGF(2alpha)and its analog, latanoprost, in glaucoma therapy. Copyright 2001 Academic Press.

  17. Stimulation-Based Control of Dynamic Brain Networks

    PubMed Central

    Pasqualetti, Fabio; Gu, Shi; Cieslak, Matthew

    2016-01-01

    The ability to modulate brain states using targeted stimulation is increasingly being employed to treat neurological disorders and to enhance human performance. Despite the growing interest in brain stimulation as a form of neuromodulation, much remains unknown about the network-level impact of these focal perturbations. To study the system wide impact of regional stimulation, we employ a data-driven computational model of nonlinear brain dynamics to systematically explore the effects of targeted stimulation. Validating predictions from network control theory, we uncover the relationship between regional controllability and the focal versus global impact of stimulation, and we relate these findings to differences in the underlying network architecture. Finally, by mapping brain regions to cognitive systems, we observe that the default mode system imparts large global change despite being highly constrained by structural connectivity. This work forms an important step towards the development of personalized stimulation protocols for medical treatment or performance enhancement. PMID:27611328

  18. Preoperative transcutaneous electrical nerve stimulation for localizing superficial nerve paths.

    PubMed

    Natori, Yuhei; Yoshizawa, Hidekazu; Mizuno, Hiroshi; Hayashi, Ayato

    2015-12-01

    During surgery, peripheral nerves are often seen to follow unpredictable paths because of previous surgeries and/or compression caused by a tumor. Iatrogenic nerve injury is a serious complication that must be avoided, and preoperative evaluation of nerve paths is important for preventing it. In this study, transcutaneous electrical nerve stimulation (TENS) was used for an in-depth analysis of peripheral nerve paths. This study included 27 patients who underwent the TENS procedure to evaluate the peripheral nerve path (17 males and 10 females; mean age: 59.9 years, range: 18-83 years) of each patient preoperatively. An electrode pen coupled to an electrical nerve stimulator was used for superficial nerve mapping. The TENS procedure was performed on patients' major peripheral nerves that passed close to the surgical field of tumor resection or trauma surgery, and intraoperative damage to those nerves was apprehensive. The paths of the target nerve were detected in most patients preoperatively. The nerve paths of 26 patients were precisely under the markings drawn preoperatively. The nerve path of one patient substantially differed from the preoperative markings with numbness at the surgical region. During surgery, the nerve paths could be accurately mapped preoperatively using the TENS procedure as confirmed by direct visualization of the nerve. This stimulation device is easy to use and offers highly accurate mapping of nerves for surgical planning without major complications. The authors conclude that TENS is a useful tool for noninvasive nerve localization and makes tumor resection a safe and smooth procedure. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  19. Optical mapping of optogenetically shaped cardiac action potentials.

    PubMed

    Park, Sarah A; Lee, Shin-Rong; Tung, Leslie; Yue, David T

    2014-08-19

    Light-mediated silencing and stimulation of cardiac excitability, an important complement to electrical stimulation, promises important discoveries and therapies. To date, cardiac optogenetics has been studied with patch-clamp, multielectrode arrays, video microscopy, and an all-optical system measuring calcium transients. The future lies in achieving simultaneous optical acquisition of excitability signals and optogenetic control, both with high spatio-temporal resolution. Here, we make progress by combining optical mapping of action potentials with concurrent activation of channelrhodopsin-2 (ChR2) or halorhodopsin (eNpHR3.0), via an all-optical system applied to monolayers of neonatal rat ventricular myocytes (NRVM). Additionally, we explore the capability of ChR2 and eNpHR3.0 to shape action-potential waveforms, potentially aiding the study of short/long QT syndromes that result from abnormal changes in action potential duration (APD). These results show the promise of an all-optical system to acquire action potentials with precise temporal optogenetics control, achieving a long-sought flexibility beyond the means of conventional electrical stimulation.

  20. Optical mapping of optogenetically shaped cardiac action potentials

    PubMed Central

    Park, Sarah A.; Lee, Shin-Rong; Tung, Leslie; Yue, David T.

    2014-01-01

    Light-mediated silencing and stimulation of cardiac excitability, an important complement to electrical stimulation, promises important discoveries and therapies. To date, cardiac optogenetics has been studied with patch-clamp, multielectrode arrays, video microscopy, and an all-optical system measuring calcium transients. The future lies in achieving simultaneous optical acquisition of excitability signals and optogenetic control, both with high spatio-temporal resolution. Here, we make progress by combining optical mapping of action potentials with concurrent activation of channelrhodopsin-2 (ChR2) or halorhodopsin (eNpHR3.0), via an all-optical system applied to monolayers of neonatal rat ventricular myocytes (NRVM). Additionally, we explore the capability of ChR2 and eNpHR3.0 to shape action-potential waveforms, potentially aiding the study of short/long QT syndromes that result from abnormal changes in action potential duration (APD). These results show the promise of an all-optical system to acquire action potentials with precise temporal optogenetics control, achieving a long-sought flexibility beyond the means of conventional electrical stimulation. PMID:25135113

  1. Temporal lobe stimulation reveals anatomic distinction between auditory naming processes.

    PubMed

    Hamberger, M J; Seidel, W T; Goodman, R R; Perrine, K; McKhann, G M

    2003-05-13

    Language errors induced by cortical stimulation can provide insight into function(s) supported by the area stimulated. The authors observed that some stimulation-induced errors during auditory description naming were characterized by tip-of-the-tongue responses or paraphasic errors, suggesting expressive difficulty, whereas others were qualitatively different, suggesting receptive difficulty. They hypothesized that these two response types reflected disruption at different stages of auditory verbal processing and that these "subprocesses" might be supported by anatomically distinct cortical areas. To explore the topographic distribution of error types in auditory verbal processing. Twenty-one patients requiring left temporal lobe surgery underwent preresection language mapping using direct cortical stimulation. Auditory naming was tested at temporal sites extending from 1 cm from the anterior tip to the parietal operculum. Errors were dichotomized as either "expressive" or "receptive." The topographic distribution of error types was explored. Sites associated with the two error types were topographically distinct from one another. Most receptive sites were located in the middle portion of the superior temporal gyrus (STG), whereas most expressive sites fell outside this region, scattered along lateral temporal and temporoparietal cortex. Results raise clinical questions regarding the inclusion of the STG in temporal lobe epilepsy surgery and suggest that more detailed cortical mapping might enable better prediction of postoperative language decline. From a theoretical perspective, results carry implications regarding the understanding of structure-function relations underlying temporal lobe mediation of auditory language processing.

  2. Noninvasive near-infrared topography of human brain activity using intensity modulation spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamashita, Yuichi; Maki, Atsushi; Ito, Yoshitoshi; Watanabe, Eiju; Mayanagi, Yoshiaki; Koizumi, Hideaki

    1996-04-01

    We describe the functional topography of human brain activity due to motor stimulation by using near-infrared spectroscopy. Finger motion by each hand was used as the motor stimulation, and activity in the left fronto-central region of the brain was measured. A greater change in oxyhemoglobin concentration due to brain activity during the stimulation was obtained for the right hand than for the left hand. Localization of the activity was obtained by topographically mapping the measured changes for ten positions within the region.

  3. Mapping of electrical muscle stimulation using MRI

    NASA Technical Reports Server (NTRS)

    Adams, Gregory R.; Harris, Robert T.; Woodard, Daniel; Dudley, Gary A.

    1993-01-01

    The pattern of muscle contractile activity elicited by electromyostimulation (EMS) was mapped and compared to the contractile-activity pattern produced by voluntary effort. This was done by examining the patterns and the extent of contrast shift, as indicated by T2 values, im magnetic resonance (MR) images after isometric activity of the left m. quadriceps of human subjects was elicited by EMS (1-sec train of 500-microsec sine wave pulses at 50 Hz) or voluntary effort. The results suggest that, whereas EMS stimulates the same fibers repeatedly, thereby increasing the metabolic demand and T2 values, the voluntary efforts are performed by more diffuse asynchronous activation of skeletal muscle even at forces up to 75 percent of maximal to maintain performance.

  4. Making sense of human ecology mapping: an overview of approaches to integrating socio-spatial data into environmental planning

    Treesearch

    Rebecca McLain; Melissa R. Poe; Kelly Biedenweg; Lee K. Cerveny; Diane Besser; Dale J. Blahna

    2013-01-01

    Ecosystem-based planning and management have stimulated the need to gather sociocultural values and human uses of land in formats accessible to diverse planners and researchers. Human Ecology Mapping (HEM) approaches offer promising spatial data gathering and analytical tools, while also addressing important questions about human-landscape connections. This article...

  5. Sensory Feedback for Lower Extremity Prostheses Incorporating Targeted Muscle Reinnervation (TMR)

    DTIC Science & Technology

    2017-10-01

    hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and...map and characterize the sensory capabilities of lower extremity Targeted Reinnervation (TR) sites under tactile stimulation , and (2) Measure the...descent machine; developed new tactile stimulators that we expect to use in later stages of this project; and completed baseline studies to calibrate

  6. EEG and chaos: Description of underlying dynamics and its relation to dissociative states

    NASA Technical Reports Server (NTRS)

    Ray, William J.

    1994-01-01

    The goal of this work is the identification of states especially as related to the process of error production and lapses of awareness as might be experienced during aviation. Given the need for further articulation of the characteristics of 'error prone state' or 'hazardous state of awareness,' this NASA grant focused on basic ground work for the study of the psychophysiology of these states. In specific, the purpose of this grant was to establish the necessary methodology for addressing three broad questions. The first is how the error prone state should be conceptualized, and whether it is similar to a dissociative state, a hypnotic state, or absent mindedness. Over 1200 subjects completed a variety of psychometric measures reflecting internal states and proneness to mental lapses and absent mindedness; the study suggests that there exists a consistency of patterns displayed by individuals who self-report dissociative experiences such that those individuals who score high on measures of dissociation also score high on measures of absent mindedness, errors, and absorption, but not on scales of hypnotizability. The second broad question is whether some individuals are more prone to enter these states than others. A study of 14 young adults who scored either high or low on the dissociation experiences scale performed a series of six tasks. This study suggests that high and low dissociative individuals arrive at the experiment in similar electrocortical states and perform cognitive tasks (e.g., mental math) in a similar manner; it is in the processing of internal emotional states that differences begin to emerge. The third question to be answered is whether recent research in nonlinear dynamics, i.e., chaos, offer an addition and/or alternative to traditional signal processing methods, i.e., fast Fourier transforms, and whether chaos procedures can be modified to offer additional information useful in identifying brain states. A preliminary review suggests that current nonlinear dynamical techniques such as dimensional analysis can be successfully applied to electrocortical activity. Using the data set developed in the study of the young adults, chaos analyses using the Farmer algorithm were performed; it is concluded that dimensionality measures reflect information not contained in traditional EEG Fourier analysis.

  7. MR-based measurements and simulations of the magnetic field created by a realistic transcranial magnetic stimulation (TMS) coil and stimulator.

    PubMed

    Mandija, Stefano; Petrov, Petar I; Neggers, Sebastian F W; Luijten, Peter R; van den Berg, Cornelis A T

    2016-11-01

    Transcranial magnetic stimulation (TMS) is an emerging technique that allows non-invasive neurostimulation. However, the correct validation of electromagnetic models of typical TMS coils and the correct assessment of the incident TMS field (B TMS ) produced by standard TMS stimulators are still lacking. Such a validation can be performed by mapping B TMS produced by a realistic TMS setup. In this study, we show that MRI can provide precise quantification of the magnetic field produced by a realistic TMS coil and a clinically used TMS stimulator in the region in which neurostimulation occurs. Measurements of the phase accumulation created by TMS pulses applied during a tailored MR sequence were performed in a phantom. Dedicated hardware was developed to synchronize a typical, clinically used, TMS setup with a 3-T MR scanner. For comparison purposes, electromagnetic simulations of B TMS were performed. MR-based measurements allow the mapping and quantification of B TMS starting 2.5 cm from the TMS coil. For closer regions, the intra-voxel dephasing induced by B TMS prohibits TMS field measurements. For 1% TMS output, the maximum measured value was ~0.1 mT. Simulations reflect quantitatively the experimental data. These measurements can be used to validate electromagnetic models of TMS coils, to guide TMS coil positioning, and for dosimetry and quality assessment of concurrent TMS-MRI studies without the need for crude methods, such as motor threshold, for stimulation dose determination. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Digital field mapping for stimulating Secondary School students in the recognition of geological features and landforms

    NASA Astrophysics Data System (ADS)

    Giardino, Marco; Magagna, Alessandra; Ferrero, Elena; Perrone, Gianluigi

    2015-04-01

    Digital field mapping has certainly provided geoscientists with the opportunity to map and gather data in the field directly using digital tools and software rather than using paper maps, notebooks and analogue devices and then subsequently transferring the data to a digital format for subsequent analysis. But, the same opportunity has to be recognized for Geoscience education, as well as for stimulating and helping students in the recognition of landforms and interpretation of the geological and geomorphological components of a landscape. More, an early exposure to mapping during school and prior to university can optimise the ability to "read" and identify uncertainty in 3d models. During 2014, about 200 Secondary School students (aged 12-15) of the Piedmont region (NW Italy) participated in a research program involving the use of mobile devices (smartphone and tablet) in the field. Students, divided in groups, used the application Trimble Outdoors Navigators for tracking a geological trail in the Sangone Valley and for taking georeferenced pictures and notes. Back to school, students downloaded the digital data in a .kml file for the visualization on Google Earth. This allowed them: to compare the hand tracked trail on a paper map with the digital trail, and to discuss about the functioning and the precision of the tools; to overlap a digital/semitransparent version of the 2D paper map (a Regional Technical Map) used during the field trip on the 2.5D landscape of Google Earth, as to help them in the interpretation of conventional symbols such as contour lines; to perceive the landforms seen during the field trip as a part of a more complex Pleistocene glacial landscape; to understand the classical and innovative contributions from different geoscientific disciplines to the generation of a 3D structural geological model of the Rivoli-Avigliana Morainic Amphitheatre. In 2013 and 2014, some other pilot projects have been carried out in different areas of the Piedmont region, and in the Sesia Val Grande Geopark, for testing the utility of digital field mapping in Geoscience education. Feedback from students are positive: they are stimulated and involved by the use of ICT for learning Geoscience, and they voluntary choose to work with their personal mobile device (more than 90% of them own a smartphone); they are interested in knowing the features of GPS, and of software for the visualization of satellite and aerial images, but they recognize the importance of integrating and comparing traditional and innovative methods in the field.

  9. Technical principles of direct bipolar electrostimulation for cortical and subcortical mapping in awake craniotomy.

    PubMed

    Pallud, J; Mandonnet, E; Corns, R; Dezamis, E; Parraga, E; Zanello, M; Spena, G

    2017-06-01

    Intraoperative application of electrical current to the brain is a standard technique during brain surgery for inferring the function of the underlying brain. The purpose of intraoperative functional mapping is to reliably identify cortical areas and subcortical pathways involved in eloquent functions, especially motor, sensory, language and cognitive functions. The aim of this article is to review the rationale and the electrophysiological principles of the use of direct bipolar electrostimulation for cortical and subcortical mapping under awake conditions. Direct electrical stimulation is a window into the whole functional network that sustains a particular function. It is an accurate (spatial resolution of about 5mm) and a reproducible technique particularly adapted to clinical practice for brain resection in eloquent areas. If the procedure is rigorously applied, the sensitivity of direct electrical stimulation for the detection of cortical and subcortical eloquent areas is nearly 100%. The main disadvantage of this technique is its suboptimal specificity. Another limitation is the identification of eloquent areas during surgery, which, however, could have been functionally compensated postoperatively if removed surgically. Direct electrical stimulation is an easy, accurate, reliable and safe invasive technique for the intraoperative detection of both cortical and subcortical functional brain connectivity for clinical purpose. In our opinion, it is the optimal technique for minimizing the risk of neurological sequelae when resecting in eloquent brain areas. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Asynchronous inputs alter excitability, spike timing, and topography in primary auditory cortex

    PubMed Central

    Pandya, Pritesh K.; Moucha, Raluca; Engineer, Navzer D.; Rathbun, Daniel L.; Vazquez, Jessica; Kilgard, Michael P.

    2010-01-01

    Correlation-based synaptic plasticity provides a potential cellular mechanism for learning and memory. Studies in the visual and somatosensory systems have shown that behavioral and surgical manipulation of sensory inputs leads to changes in cortical organization that are consistent with the operation of these learning rules. In this study, we examine how the organization of primary auditory cortex (A1) is altered by tones designed to decrease the average input correlation across the frequency map. After one month of separately pairing nucleus basalis stimulation with 2 and 14 kHz tones, a greater proportion of A1 neurons responded to frequencies below 2 kHz and above 14 kHz. Despite the expanded representation of these tones, cortical excitability was specifically reduced in the high and low frequency regions of A1, as evidenced by increased neural thresholds and decreased response strength. In contrast, in the frequency region between the two paired tones, driven rates were unaffected and spontaneous firing rate was increased. Neural response latencies were increased across the frequency map when nucleus basalis stimulation was associated with asynchronous activation of the high and low frequency regions of A1. This set of changes did not occur when pulsed noise bursts were paired with nucleus basalis stimulation. These results are consistent with earlier observations that sensory input statistics can shape cortical map organization and spike timing. PMID:15855025

  11. Features of the Retinotopic Representation in the Visual Wulst of a Laterally Eyed Bird, the Zebra Finch (Taeniopygia guttata)

    PubMed Central

    Michael, Neethu; Löwel, Siegrid; Bischof, Hans-Joachim

    2015-01-01

    The visual wulst of the zebra finch comprises at least two retinotopic maps of the contralateral eye. As yet, it is not known how much of the visual field is represented in the wulst neuronal maps, how the organization of the maps is related to the retinal architecture, and how information from the ipsilateral eye is involved in the activation of the wulst. Here, we have used autofluorescent flavoprotein imaging and classical anatomical methods to investigate such characteristics of the most posterior map of the multiple retinotopic representations. We found that the visual wulst can be activated by visual stimuli from a large part of the visual field of the contralateral eye. Horizontally, the visual field representation extended from -5° beyond the beak tip up to +125° laterally. Vertically, a small strip from -10° below to about +25° above the horizon activated the visual wulst. Although retinal ganglion cells had a much higher density around the fovea and along a strip extending from the fovea towards the beak tip, these areas were not overrepresented in the wulst map. The wulst area activated from the foveal region of the ipsilateral eye, overlapped substantially with the middle of the three contralaterally activated regions in the visual wulst, and partially with the other two. Visual wulst activity evoked by stimulation of the frontal visual field was stronger with contralateral than with binocular stimulation. This confirms earlier electrophysiological studies indicating an inhibitory influence of the activation of the ipsilateral eye on wulst activity elicited by stimulating the contralateral eye. The lack of a foveal overrepresentation suggests that identification of objects may not be the primary task of the zebra finch visual wulst. Instead, this brain area may be involved in the processing of visual information necessary for spatial orientation. PMID:25853253

  12. On the relative merits of invasive and non-invasive pre-surgical brain mapping: New tools in ablative epilepsy surgery.

    PubMed

    Papanicolaou, Andrew C; Rezaie, Roozbeh; Narayana, Shalini; Choudhri, Asim F; Abbas-Babajani-Feremi; Boop, Frederick A; Wheless, James W

    2018-05-01

    Cortical Stimulation Mapping (CSM) and the Wada procedure have long been considered the gold standard for localizing motor and language-related cortical areas and for determining the language and memory-dominant hemisphere, respectively. In recent years, however, non-invasive methods such as magnetoencephalography (MEG), functional magnetic resonance imaging (fMRI), and transcranial magnetic stimulation (TMS) have emerged as promising alternatives to the aforementioned procedures, particularly in cases where the invasive localization of eloquent cortex has proven to be challenging. To illustrate this point, we will first introduce the evidence of the compatibility of invasive and non-invasive methods and subsequently outline the rationale and the conditions where the latter methods are applicable. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Trait behavioral approach sensitivity (BAS) relates to early (<150 ms) electrocortical responses to appetitive stimuli.

    PubMed

    Gable, Philip A; Harmon-Jones, Eddie

    2013-10-01

    Much past research has focused on how traits related to the behavioral inhibition system (BIS) and avoidance motivation influence the almost obligatory attentional processing of aversive stimuli as measured as early as 100 ms into stimulus processing. These results fit with the functional importance assigned to the negativity bias. But do traits related to the behavioral approach system (BAS) influence attentional processing with similar rapidity? The present study addressed this unanswered question by testing whether trait BAS relates to event-related potentials (ERP) involved in rapid motivated attentional processing to appetitive stimuli. Results indicated that individual differences in BAS were correlated with larger ERP amplitudes as early as 100 ms into the processing of appetitive pictures. These results provide the first evidence linking trait approach motivational tendencies to very early stages of motivated attentional processing.

  14. Negative attention bias and processing deficits during the cognitive reappraisal of unpleasant emotions in HIV+ women.

    PubMed

    McIntosh, Roger C; Tartar, Jaime L; Widmayer, Susan; Rosselli, Monica

    2015-01-01

    Deficits in emotional processing may be attributed to HIV disease or comorbid psychiatric disorders. Electrocortical markers of emotional attention, i.e., amplitude of the P2 and late positive potential (LPP), were compared between 26 HIV+ women and 25 healthy controls during an emotional regulation paradigm. HIV+ women showed early attention bias to negative stimuli indexed by greater P2 amplitude. In contrast, compared with the passive viewing of unpleasant images, HIV+ women demonstrated attenuation of the early and late LPP during positive reappraisal. This interaction remained significant after adjusting for individual differences in apathy, anxiety, and depression. Post hoc analyses implicated time since HIV diagnosis with LPP attenuation during positive reappraisal. Advancing HIV disease may disrupt neural generators associated with the cognitive reappraisal of emotions independent of psychiatric function.

  15. Classical eyeblink conditioning in Parkinson's disease.

    PubMed

    Daum, I; Schugens, M M; Breitenstein, C; Topka, H; Spieker, S

    1996-11-01

    Patients with Parkinson's disease (PD) show impairments of a range of motor learning tasks, including tracking or serial reaction time task learning. Our study investigated whether such deficits would also be seen on a simple type of motor learning, classic conditioning of the eyeblink response. Medicated and unmediated patients with PD showed intact unconditioned eyeblink responses and significant learning across acquisition; the learning rates did not differ from those of healthy control subjects. The overall frequency of conditioned responses was significantly higher in the medicated patients with PD relative to control subjects, and there was also some evidence of facilitation in the unmedicated patients with PD. Conditioning of electrodermal and electrocortical responses was comparable in all groups. The findings are discussed in terms of enhanced excitability of brainstem pathways in PD and of the involvement of different neuronal circuits in different types of motor learning.

  16. Alteration of Electro-Cortical Activity in Microgravity

    NASA Astrophysics Data System (ADS)

    Schneider, Stefan; Brummer, Vera; Carnahan, Heather; Askew, Christopher D.; Guardiera, Simon; Struder, Heiko K.

    2008-06-01

    There is growing interest in the effects of weightlessness on central nervous system (CNS) activity. Due to technical and logistical limitations it presently seems impossible to apply imaging techniques as fMRI or PET in weightless environments e.g. on ISS or during parabolic flights. Within this study we evaluated changes in brain cortical activity using low resolution brain electromagnetic tomography (LORETA) during parabolic flights. Results showed a distinct inhibition of right frontal area activity >12Hz during phases of microgravity compared to normal gravity. We conclude that the inhibition of high frequency frontal activity during microgravity may serve as a marker of emotional anxiety and/or indisposition associated with weightlessness. This puts a new light on the debate as to whether cognitive and sensorimotor impairments are attributable to primary physiological effects or secondary psychological effects of a weightless environment.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsukamoto, Ikuko, E-mail: tukamoto@med.kagawa-u.ac.jp; Sakakibara, Norikazu; Maruyama, Tokumi

    Research highlights: {yields} A novel nucleic acid analogue (2Cl-C.OXT-A, m.w. 284) showed angiogenic potency. {yields} It stimulated the tube formation, proliferation and migration of HUVEC in vitro. {yields} 2Cl-C.OXT-A induced the activation of ERK1/2 and MEK in HUVEC. {yields} Angiogenic potency in vivo was confirmed in CAM assay and rabbit cornea assay. {yields} A synthesized small angiogenic agent would have great clinical therapeutic value. -- Abstract: A novel nucleic acid analogue (2Cl-C.OXT-A) significantly stimulated tube formation of human umbilical endothelial cells (HUVEC). Its maximum potency at 100 {mu}M was stronger than that of vascular endothelial growth factor (VEGF), a positivemore » control. At this concentration, 2Cl-C.OXT-A moderately stimulated proliferation as well as migration of HUVEC. To gain mechanistic insights how 2Cl-C.OXT-A promotes angiogenic responses in HUVEC, we performed immunoblot analyses using phospho-specific antibodies as probes. 2Cl-C.OXT-A induced robust phosphorylation/activation of MAP kinase ERK1/2 and an upstream MAP kinase kinase MEK. Conversely, a MEK inhibitor PD98059 abolished ERK1/2 activation and tube formation both enhanced by 2Cl-C.OXT-A. In contrast, MAP kinase responses elicited by 2Cl-C.OXT-A were not inhibited by SU5416, a specific inhibitor of VEGF receptor tyrosine kinase. Collectively these results suggest that 2Cl-C.OXT-A-induces angiogenic responses in HUVEC mediated by a MAP kinase cascade comprising MEK and ERK1/2, but independently of VEGF receptor tyrosine kinase. In vivo assay using chicken chorioallantoic membrane (CAM) and rabbit cornea also suggested the angiogenic potency of 2Cl-C.OXT-A.« less

  18. Transcranial direct current stimulation (tDCS) Paired with massed practice training to promote adaptive plasticity and motor recovery in chronic incomplete tetraplegia: a pilot study.

    PubMed

    Potter-Baker, Kelsey A; Janini, Daniel P; Lin, Yin-Liang; Sankarasubramanian, Vishwanath; Cunningham, David A; Varnerin, Nicole M; Chabra, Patrick; Kilgore, Kevin L; Richmond, Mary Ann; Frost, Frederick S; Plow, Ela B

    2017-08-07

    Objective Our goal was to determine if pairing transcranial direct current stimulation (tDCS) with rehabilitation for two weeks could augment adaptive plasticity offered by these residual pathways to elicit longer-lasting improvements in motor function in incomplete spinal cord injury (iSCI). Design Longitudinal, randomized, controlled, double-blinded cohort study. Setting Cleveland Clinic Foundation, Cleveland, Ohio, USA. Participants Eight male subjects with chronic incomplete motor tetraplegia. Interventions Massed practice (MP) training with or without tDCS for 2 hrs, 5 times a week. Outcome Measures We assessed neurophysiologic and functional outcomes before, after and three months following intervention. Neurophysiologic measures were collected with transcranial magnetic stimulation (TMS). TMS measures included excitability, representational volume, area and distribution of a weaker and stronger muscle motor map. Functional assessments included a manual muscle test (MMT), upper extremity motor score (UEMS), action research arm test (ARAT) and nine hole peg test (NHPT). Results We observed that subjects receiving training paired with tDCS had more increased strength of weak proximal (15% vs 10%), wrist (22% vs 10%) and hand (39% vs. 16%) muscles immediately and three months after intervention compared to the sham group. Our observed changes in muscle strength were related to decreases in strong muscle map volume (r=0.851), reduced weak muscle excitability (r=0.808), a more focused weak muscle motor map (r=0.675) and movement of weak muscle motor map (r=0.935). Conclusion Overall, our results encourage the establishment of larger clinical trials to confirm the potential benefit of pairing tDCS with training to improve the effectiveness of rehabilitation interventions for individuals with SCI. Trial Registration NCT01539109.

  19. fMRI brain mapping during motion capture and FES induced motor tasks: signal to noise ratio assessment.

    PubMed

    Gandolla, Marta; Ferrante, Simona; Casellato, Claudia; Ferrigno, Giancarlo; Molteni, Franco; Martegani, Alberto; Frattini, Tiziano; Pedrocchi, Alessandra

    2011-10-01

    Functional Electrical Stimulation (FES) is a well known clinical rehabilitation procedure, however the neural mechanisms that underlie this treatment at Central Nervous System (CNS) level are still not completely understood. Functional magnetic resonance imaging (fMRI) is a suitable tool to investigate effects of rehabilitative treatments on brain plasticity. Moreover, monitoring the effective executed movement is needed to correctly interpret activation maps, most of all in neurological patients where required motor tasks could be only partially accomplished. The proposed experimental set-up includes a 1.5 T fMRI scanner, a motion capture system to acquire kinematic data, and an electro-stimulation device. The introduction of metallic devices and of stimulation current in the MRI room could affect fMRI acquisitions so as to prevent a reliable activation maps analysis. What we are interested in is that the Blood Oxygenation Level Dependent (BOLD) signal, marker of neural activity, could be detected within a given experimental condition and set-up. In this paper we assess temporal Signal to Noise Ratio (SNR) as image quality index. BOLD signal change is about 1-2% as revealed by a 1.5 T scanner. This work demonstrates that, with this innovative set-up, in the main cortical sensorimotor regions 1% BOLD signal change can be detected at least in the 93% of the sub-volumes, and almost 100% of the sub-volumes are suitable for 2% signal change detection. The integrated experimental set-up will therefore allows to detect FES induced movements fMRI maps simultaneously with kinematic acquisitions so as to investigate FES-based rehabilitation treatments contribution at CNS level. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.

  20. The effect of losartan on differential reflex control of sympathetic nerve activity in chronic kidney disease.

    PubMed

    Yao, Yimin; Hildreth, Cara M; Farnham, Melissa M; Saha, Manash; Sun, Qi-Jian; Pilowsky, Paul M; Phillips, Jacqueline K

    2015-06-01

    The effect of angiotensin II type I receptor (AT1R) inhibition on the pattern of reflex sympathetic nerve activity (SNA) to multiple target organs in the Lewis polycystic kidney (LPK) rat model of chronic kidney disease was determined. Mean arterial pressure (MAP), splanchnic SNA (sSNA), renal SNA (rSNA) and lumbar SNA (lSNA) were recorded in urethane-anaesthetized LPK and Lewis controls (total n = 39). Baroreflex, peripheral and central chemoreflex, and somatosensory reflex control of SNA (evoked by phenylephrine/sodium nitroprusside infusion, 10% O2 in N2 or 100% N2 ventilation, 5% CO2 ventilation and sciatic nerve stimulation, respectively) were determined before and after administration of losartan (AT1R antagonist 3 mg/kg, intravenous). Baseline MAP was higher in LPK rats and baroreflex control of sSNA and rSNA, but not lSNA, was reduced. Losartan reduced MAP in both strains and selectively improved baroreflex gain for sSNA (-1.2 ± 0.1 vs. -0.7 ± 0.07 %/mmHg; P < 0.05) in LPK. The peripheral and central chemoreflex increased MAP and all SNA in Lewis controls, but reduced or had no effect on these parameters, respectively, in LPK. The SNA response to somatosensory stimulation was biphasic, with latency to second peak less in LPK. Losartan ameliorated the depressor and sympathoinhibitory responses to peripheral chemoreflex stimulation in the LPK, but did not alter the central chemoreflex or somatosympathetic responses. Inhibition of the AT1R selectively improved baroreflex control of sSNA and peripheral chemoreflex control of all three sympathetic nerve outflows in the LPK rat, suggesting these anomalies in reflex function are driven in part by angiotensin II.

  1. Probabilistic map of critical functional regions of the human cerebral cortex: Broca's area revisited.

    PubMed

    Tate, Matthew C; Herbet, Guillaume; Moritz-Gasser, Sylvie; Tate, Joseph E; Duffau, Hugues

    2014-10-01

    The organization of basic functions of the human brain, particularly in the right hemisphere, remains poorly understood. Recent advances in functional neuroimaging have improved our understanding of cortical organization but do not allow for direct interrogation or determination of essential (versus participatory) cortical regions. Direct cortical stimulation represents a unique opportunity to provide novel insights into the functional distribution of critical epicentres. Direct cortical stimulation (bipolar, 60 Hz, 1-ms pulse) was performed in 165 consecutive patients undergoing awake mapping for resection of low-grade gliomas. Tasks included motor, sensory, counting, and picture naming. Stimulation sites eliciting positive (sensory/motor) or negative (speech arrest, dysarthria, anomia, phonological and semantic paraphasias) findings were recorded and mapped onto a standard Montreal Neurological Institute brain atlas. Montreal Neurological Institute-space functional data were subjected to cluster analysis algorithms (K-means, partition around medioids, hierarchical Ward) to elucidate crucial network epicentres. Sensorimotor function was observed in the pre/post-central gyri as expected. Articulation epicentres were also found within the pre/post-central gyri. However, speech arrest localized to ventral premotor cortex, not the classical Broca's area. Anomia/paraphasia data demonstrated foci not only within classical Wernicke's area but also within the middle and inferior frontal gyri. We report the first bilateral probabilistic map for crucial cortical epicentres of human brain functions in the right and left hemispheres, including sensory, motor, and language (speech, articulation, phonology and semantics). These data challenge classical theories of brain organization (e.g. Broca's area as speech output region) and provide a distributed framework for future studies of neural networks. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Factor Xa Inhibitor Suppresses the Release of Phosphorylated HSP27 from Collagen-Stimulated Human Platelets: Inhibition of HSP27 Phosphorylation via p44/p42 MAP Kinase

    PubMed Central

    Tsujimoto, Masanori; Kuroyanagi, Gen; Matsushima-Nishiwaki, Rie; Kito, Yuko; Enomoto, Yukiko; Iida, Hiroki; Ogura, Shinji; Otsuka, Takanobu; Tokuda, Haruhiko; Kozawa, Osamu; Iwama, Toru

    2016-01-01

    Selective inhibitors of factor Xa (FXa) are widely recognized as useful therapeutic tools for stroke prevention in non-valvular atrial fibrillation or venous thrombosis. Thrombin, which is rapidly generated from pro-thrombin through the activation of factor X to FXa, acts as a potent activator of human platelets. Thus, the reduction of thrombin generation by FXa inhibitor eventually causes a suppressive effect on platelet aggregation. However, little is known whether FXa inhibitors directly affect the function of human platelets. We have previously reported that collagen induces the phosphorylation of heat shock protein 27 (HSP27), a low-molecular weight heat shock protein via Rac-dependent activation of p44/p42 mitogen-activated protein (MAP) kinase in human platelets, eventually resulting in the release of HSP27. In the present study, we investigated the direct effect of FXa inhibitor on the collagen-induced human platelet activation. Rivaroxaban as well as edoxaban significantly reduced the collagen-induced phosphorylation of both HSP27 and p44/p42 MAP kinase without affecting the platelet aggregation. Rivaroxaban significantly inhibited the release of phosphorylated HSP27 from collagen-stimulated platelets but not the secretion of platelet derived growth factor-AB. In patients administrated with rivaroxaban, the collagen-induced levels of phosphorylated HSP27 were markedly diminished after 2 days of administration, which failed to affect the platelet aggregation. These results strongly suggest that FXa inhibitor reduces the collagen-stimulated release of phosphorylated HSP27 from human platelets due to the inhibition of HSP27 phosphorylation via p44/p42 MAP kinase. PMID:26867010

  3. Factor Xa Inhibitor Suppresses the Release of Phosphorylated HSP27 from Collagen-Stimulated Human Platelets: Inhibition of HSP27 Phosphorylation via p44/p42 MAP Kinase.

    PubMed

    Tsujimoto, Masanori; Kuroyanagi, Gen; Matsushima-Nishiwaki, Rie; Kito, Yuko; Enomoto, Yukiko; Iida, Hiroki; Ogura, Shinji; Otsuka, Takanobu; Tokuda, Haruhiko; Kozawa, Osamu; Iwama, Toru

    2016-01-01

    Selective inhibitors of factor Xa (FXa) are widely recognized as useful therapeutic tools for stroke prevention in non-valvular atrial fibrillation or venous thrombosis. Thrombin, which is rapidly generated from pro-thrombin through the activation of factor X to FXa, acts as a potent activator of human platelets. Thus, the reduction of thrombin generation by FXa inhibitor eventually causes a suppressive effect on platelet aggregation. However, little is known whether FXa inhibitors directly affect the function of human platelets. We have previously reported that collagen induces the phosphorylation of heat shock protein 27 (HSP27), a low-molecular weight heat shock protein via Rac-dependent activation of p44/p42 mitogen-activated protein (MAP) kinase in human platelets, eventually resulting in the release of HSP27. In the present study, we investigated the direct effect of FXa inhibitor on the collagen-induced human platelet activation. Rivaroxaban as well as edoxaban significantly reduced the collagen-induced phosphorylation of both HSP27 and p44/p42 MAP kinase without affecting the platelet aggregation. Rivaroxaban significantly inhibited the release of phosphorylated HSP27 from collagen-stimulated platelets but not the secretion of platelet derived growth factor-AB. In patients administrated with rivaroxaban, the collagen-induced levels of phosphorylated HSP27 were markedly diminished after 2 days of administration, which failed to affect the platelet aggregation. These results strongly suggest that FXa inhibitor reduces the collagen-stimulated release of phosphorylated HSP27 from human platelets due to the inhibition of HSP27 phosphorylation via p44/p42 MAP kinase.

  4. Construction and use of a zebrafish heart voltage and calcium optical mapping system, with integrated electrocardiogram and programmable electrical stimulation

    PubMed Central

    Lin, Eric; Craig, Calvin; Lamothe, Marcel; Sarunic, Marinko V.; Beg, Mirza Faisal

    2015-01-01

    Zebrafish are increasingly being used as a model of vertebrate cardiology due to mammalian-like cardiac properties in many respects. The size and fecundity of zebrafish make them suitable for large-scale genetic and pharmacological screening. In larger mammalian hearts, optical mapping is often used to investigate the interplay between voltage and calcium dynamics and to investigate their respective roles in arrhythmogenesis. This report outlines the construction of an optical mapping system for use with zebrafish hearts, using the voltage-sensitive dye RH 237 and the calcium indicator dye Rhod-2 using two industrial-level CCD cameras. With the use of economical cameras and a common 532-nm diode laser for excitation, the rate dependence of voltage and calcium dynamics within the atrial and ventricular compartments can be simultaneously determined. At 140 beats/min, the atrial action potential duration was 36 ms and the transient duration was 53 ms. With the use of a programmable electrical stimulator, a shallow rate dependence of 3 and 4 ms per 100 beats/min was observed, respectively. In the ventricle the action potential duration was 109 ms and the transient duration was 124 ms, with a steeper rate dependence of 12 and 16 ms per 100 beats/min. Synchronous electrocardiograms and optical mapping recordings were recorded, in which the P-wave aligns with the atrial voltage peak and R-wave aligns with the ventricular peak. A simple optical pathway and imaging chamber are detailed along with schematics for the in-house construction of the electrocardiogram amplifier and electrical stimulator. Laboratory procedures necessary for zebrafish heart isolation, cannulation, and loading are also presented. PMID:25740339

  5. Electric ventilation: indications for and technical aspects of diaphragm pacing stimulation surgical implantation.

    PubMed

    Tedde, Miguel Lia; Onders, Raymond P; Teixeira, Manoel Jacobsen; Lage, Silvia Gelas; Ballester, Gerson; Brotto, Mario Wilson Iersolino; Okumura, Erica Mie; Jatene, Fabio Biscegli

    2012-01-01

    Patients with high cervical spinal cord injury are usually dependent on mechanical ventilation support, which, albeit life saving, is associated with complications and decreased life expectancy because of respiratory infections. Diaphragm pacing stimulation (DPS), sometimes referred to as electric ventilation, induces inhalation by stimulating the inspiratory muscles. Our objective was to highlight the indications for and some aspects of the surgical technique employed in the laparoscopic insertion of the DPS electrodes, as well as to describe five cases of tetraplegic patients submitted to the technique. Patient selection involved transcutaneous phrenic nerve studies in order to determine whether the phrenic nerves were preserved. The surgical approach was traditional laparoscopy, with four ports. The initial step was electrical mapping in order to locate the "motor points" (the points at which stimulation would cause maximal contraction of the diaphragm). If the diaphragm mapping was successful, four electrodes were implanted into the abdominal surface of the diaphragm, two on each side, to stimulate the branches of the phrenic nerve. Of the five patients, three could breathe using DPS alone for more than 24 h, one could do so for more than 6 h, and one could not do so at all. Although a longer follow-up period is needed in order to reach definitive conclusions, the initial results have been promising. At this writing, most of our patients have been able to remain ventilator-free for long periods of time.

  6. FDG-PET study of the bilateral subthalamic nucleus stimulation effects on the regional cerebral metabolism in advanced Parkinson disease.

    PubMed

    Li, D; Zuo, C; Guan, Y; Zhao, Y; Shen, J; Zan, S; Sun, B

    2006-01-01

    The aim of the study was to evaluate the changes in regional cerebral metabolic rate of glucose (rCMRGlu) induced by bilateral subthalamic nucleurs (STN) stimulation in advanced Parkinson's disease (PD). 18F-Fluorodeoxyglucose (FDG) PET data obtained before and one month after stimulation were analyzed with statistical parametric mapping (SPM). As a result of clinically effective bilateral STN stimulation, rCMRGlu increased in lateral globus pallidus (GP), upper brain stem, dorsolateral prefrontal cortex (DLPFC) and posterior parietal-occipital cortex, and decreased in the orbital frontal cortex and parahippocampus gyrus (p < 0.001). We conclude that the alleviation of clinical symptoms in advanced PD by bilateral STN stimulation may be the result of activation of both ascending and descending pathways from STN and of restoration of the impaired higher-order cortex functions.

  7. [Experimental studies on the diffusion of excitation on the right ventricular surface in the dog, during normal and stimulated beats].

    PubMed

    Arisi, G; Macchi, E; Baruffi, S; Musso, E; Spaggiari, S; Stilli, D; Taccardi, B

    1982-01-01

    Previous work on the spread of excitation on the dog's ventricular surface enabled us to locate up to 30 breakthrough points (BKTPs) where excitation reaches the ventricular surface. In particular the equipotential contour maps enabled us to detect 3 to 5 BKTPs on the anterior right ventricular surface, near the a-v groove when a large part of ventricular surface was still at rest. With a view to investigating the mechanism underlying the early excitation of these basal regions, we stimulated the heart at several right ventricular BKTPs and in other points located at a distance from the BKTPs. The instantaneous equipotential maps showed that after stimulation most right ventricular BKTPs remained in the same position as observed the normal beats. The early appearance of epicardial wavefronts in the basal region and generally in other areas of the right ventricle was attributed to the rapid propagation of excitation waves through the Purkinje network, probably associated to a short transmural crossing time, due to a local thinness of the ventricular wall.

  8. Metalloproteinase-dependent transforming growth factor-alpha release mediates neurotensin-stimulated MAP kinase activation in human colonic epithelial cells.

    PubMed

    Zhao, Dezheng; Zhan, Yanai; Koon, Hon Wai; Zeng, Huiyan; Keates, Sarah; Moyer, Mary P; Pothoulakis, Charalabos

    2004-10-15

    Expression of the neuropeptide neurotensin (NT) and its high affinity receptor (NTR1) is increased during the course of Clostridium difficile toxin A-induced acute colitis, and NTR1 antagonism attenuates the severity of toxin A-induced inflammation. We recently demonstrated in non-transformed human colonic epithelial NCM460 cells that NT treatment caused activation of a Ras-mediated MAP kinase pathway that significantly contributes to NT-induced interleukin-8 (IL-8) secretion. Here we used NCM460 cells, which normally express low levels of NTR1, and NCM460 cells stably transfected with NTR1 to identify the upstream signaling molecules involved in NT-NTR1-mediated MAP kinase activation. We found that inhibition of the epidermal growth factor receptor (EGFR) by either an EGFR neutralizing antibody or by its specific inhibitor AG1478 (0.2 microm) blocked NT-induced MAP kinase activation. Moreover, NT stimulated tyrosine phosphorylation of the EGFR, and pretreatment with a broad spectrum metalloproteinase inhibitor batimastat reduced NT-induced MAP kinase activation. Using neutralizing antibodies against the EGFR ligands EGF, heparin-binding-EGF, transforming growth factor-alpha (TGFalpha), or amphiregulin we have shown that only the anti-TGFalpha antibody significantly decreases NT-induced phosphorylation of EGFR and MAP kinases. Furthermore, inhibition of the EGF receptor by AG1478 significantly reduced NT-induced IL-8 promoter activity and IL-8 secretion. This is the first report demonstrating that NT binding to NTR1 transactivates the EGFR and that this response is linked to NT-mediated proinflammatory signaling. Our findings indicate that matrix metalloproteinase-mediated release of TGFalpha and subsequent EGFR transactivation triggers a NT-mediated MAP kinase pathway that leads to IL-8 gene expression in human colonic epithelial cells.

  9. Progressive gait ataxia following deep brain stimulation for essential tremor: adverse effect or lack of efficacy?

    PubMed

    Reich, Martin M; Brumberg, Joachim; Pozzi, Nicolò G; Marotta, Giorgio; Roothans, Jonas; Åström, Mattias; Musacchio, Thomas; Lopiano, Leonardo; Lanotte, Michele; Lehrke, Ralph; Buck, Andreas K; Volkmann, Jens; Isaias, Ioannis U

    2016-11-01

    Thalamic deep brain stimulation is a mainstay treatment for severe and drug-refractory essential tremor, but postoperative management may be complicated in some patients by a progressive cerebellar syndrome including gait ataxia, dysmetria, worsening of intention tremor and dysarthria. Typically, this syndrome manifests several months after an initially effective therapy and necessitates frequent adjustments in stimulation parameters. There is an ongoing debate as to whether progressive ataxia reflects a delayed therapeutic failure due to disease progression or an adverse effect related to repeated increases of stimulation intensity. In this study we used a multimodal approach comparing clinical stimulation responses, modelling of volume of tissue activated and metabolic brain maps in essential tremor patients with and without progressive ataxia to disentangle a disease-related from a stimulation-induced aetiology. Ten subjects with stable and effective bilateral thalamic stimulation were stratified according to the presence (five subjects) of severe chronic-progressive gait ataxia. We quantified stimulated brain areas and identified the stimulation-induced brain metabolic changes by multiple 18 F-fluorodeoxyglucose positron emission tomography performed with and without active neurostimulation. Three days after deactivating thalamic stimulation and following an initial rebound of symptom severity, gait ataxia had dramatically improved in all affected patients, while tremor had worsened to the presurgical severity, thus indicating a stimulation rather than disease-related phenomenon. Models of the volume of tissue activated revealed a more ventrocaudal stimulation in the (sub)thalamic area of patients with progressive gait ataxia. Metabolic maps of both patient groups differed by an increased glucose uptake in the cerebellar nodule of patients with gait ataxia. Our data suggest that chronic progressive gait ataxia in essential tremor is a reversible cerebellar syndrome caused by a maladaptive response to neurostimulation of the (sub)thalamic area. The metabolic signature of progressive gait ataxia is an activation of the cerebellar nodule, which may be caused by inadvertent current spread and antidromic stimulation of a cerebellar outflow pathway originating in the vermis. An anatomical candidate could be the ascending limb of the uncinate tract in the subthalamic area. Adjustments in programming and precise placement of the electrode may prevent this adverse effect and help fine-tuning deep brain stimulation to ameliorate tremor without negative cerebellar signs. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Cortico-subcortical organization of language networks in the right hemisphere: an electrostimulation study in left-handers.

    PubMed

    Duffau, Hugues; Leroy, Marianne; Gatignol, Peggy

    2008-12-01

    We have studied the configuration of the cortico-subcortical language networks within the right hemisphere (RH) in nine left-handers, being operated on while awake for a cerebral glioma. Intraoperatively, language was mapped using cortico-subcortical electrostimulation, to avoid permanent deficit. In frontal regions, cortical stimulation elicited articulatory disorders (ventral premotor cortex), anomia (dorsal premotor cortex), speech arrest (pars opercularis), and semantic paraphasia (dorsolateral prefrontal cortex). Insular stimulation generated dysarthria, parietal stimulation phonemic paraphasias, and temporal stimulation semantic paraphasias. Subcortically, the superior longitudinal fasciculus (inducing phonological disturbances when stimulated), inferior occipito-frontal fasciculus (eliciting semantic disturbances during stimulation), subcallosal fasciculus (generating control disturbances when stimulated), and common final pathway (inducing articulatory disorders during stimulation) were identified. These cortical and subcortical structures were preserved, avoiding permanent aphasia, despite a transient immediate postoperative language worsening. Both intraoperative results and postsurgical transitory dysphasia support the major role of the RH in language in left-handers, and provide new insights into the anatomo-functional cortico-subcortical organization of the language networks in the RH-suggesting a "mirror" configuration in comparison to the left hemisphere.

  11. Neuroplasticity in post-stroke gait recovery and noninvasive brain stimulation

    PubMed Central

    Xu, Yi; Hou, Qing-hua; Russell, Shawn D.; Bennett, Bradford C.; Sellers, Andrew J.; Lin, Qiang; Huang, Dong-feng

    2015-01-01

    Gait disorders drastically affect the quality of life of stroke survivors, making post-stroke rehabilitation an important research focus. Noninvasive brain stimulation has potential in facilitating neuroplasticity and improving post-stroke gait impairment. However, a large inter-individual variability in the response to noninvasive brain stimulation interventions has been increasingly recognized. We first review the neurophysiology of human gait and post-stroke neuroplasticity for gait recovery, and then discuss how noninvasive brain stimulation techniques could be utilized to enhance gait recovery. While post-stroke neuroplasticity for gait recovery is characterized by use-dependent plasticity, it evolves over time, is idiosyncratic, and may develop maladaptive elements. Furthermore, noninvasive brain stimulation has limited reach capability and is facilitative-only in nature. Therefore, we recommend that noninvasive brain stimulation be used adjunctively with rehabilitation training and other concurrent neuroplasticity facilitation techniques. Additionally, when noninvasive brain stimulation is applied for the rehabilitation of gait impairment in stroke survivors, stimulation montages should be customized according to the specific types of neuroplasticity found in each individual. This could be done using multiple mapping techniques. PMID:26889202

  12. The ameliorating effects of long-term electroacupuncture on cardiovascular remodeling in spontaneously hypertensive rats.

    PubMed

    Huo, Ze-Jun; Li, Quan; Tian, Gui-Hua; Zhou, Chang-Man; Wei, Xiao-Hong; Pan, Chun-Shui; Yang, Lei; Bai, Yan; Zhang, You-Yi; He, Ke; Wang, Chuan-She; Li, Zhi-Gang; Han, Jing-Yan

    2014-04-01

    The purpose of this study was to investigate the inhibitory effects of long-term electroacupuncture at BaiHui (DU20) and ZuSanLi (ST36) on cardiovascular remodeling in spontaneously hypertensive rats (SHR) and underlying mechanisms. 6-weeks-old SHR or Wistar male rats were randomly, divided into 6 groups: the control group (SHR/Wistar), the non-acupoint electroacupuncture stimulation group (SHR-NAP/Wistar-NAP) and the electroacupuncture stimulation at DU20 and ST36 group (SHR-AP/Wistar-AP), 24 rats in each group. Rats were treated with or without electroacupuncture at DU20 and ST36, once every other day for a period of 8 weeks. The mean arterial pressure (MAP) was measured once every 2 weeks. By the end of the 8th week, the left ventricular structure and function were assessed by echocardiography. The content of angiotensin II (Ang II), endothelin-1 (ET-1) and nitric oxide (NO) in the plasma was determined using enzyme-linked immunosorbent assay. Histological studies on the heart and the ascending aorta were performed. The expression of angiotensin II type 1 receptor (AT1R), endothelin-1 type A receptor (ETAR), eNOS and iNOS in rat myocardium and ascending aorta was investigated by Western blotting. The MAP in SHR increased linearly over the observation period and significantly reduced following electroacupuncture as compared with sham control SHR rats, while no difference in MAP was observed in Wistar rats between electroacupuncture and sham control. The aortic wall thickness, cardiac hypertrophy and increased collagen level in SHR were attenuated by long term electroacupuncture. The content of Ang II, ET-1 in the plasma decreased, but the content of NO increased after electroacupuncture stimulation in SHR. Long term electroacupuncture significantly inhibited the expression of AT1R, ETAR and iNOS, whereas increased eNOS expression, in myocardium and ascending aorta of SHR. The long term electroacupuncture stimulation at DU20 and ST36 relieves the increased MAP and cardiovascular abnormality in both structure and function in SHR, this beneficial action is most likely mediated via modulation of AT1R-AT1R-ET-1-ETAR and NOS/NO pathway.

  13. Stress-induced stimulation of choline transport in cultured choroid plexus epithelium exposed to low concentrations of cadmium.

    PubMed

    Young, Robin K; Villalobos, Alice R A

    2014-03-01

    The choroid plexus epithelium forms the blood-cerebrospinal fluid barrier and accumulates essential minerals and heavy metals. Choroid plexus is cited as being a "sink" for heavy metals and excess minerals, serving to minimize accumulation of these potentially toxic agents in the brain. An understanding of how low doses of contaminant metals might alter transport of other solutes in the choroid plexus is limited. Using primary cultures of epithelial cells isolated from neonatal rat choroid plexus, our objective was to characterize modulation of apical uptake of the model organic cation choline elicited by low concentrations of the contaminant metal cadmium (CdCl₂). At 50-1,000 nM, cadmium did not directly decrease or increase 30-min apical uptake of 10 μM [(3)H]choline. However, extended exposure to 250-500 nM cadmium increased [(3)H]choline uptake by as much as 75% without marked cytotoxicity. In addition, cadmium induced heat shock protein 70 and heme oxygenase-1 protein expression and markedly induced metallothionein gene expression. The antioxidant N-acetylcysteine attenuated stimulation of choline uptake and induction of stress proteins. Conversely, an inhibitor of glutathione synthesis l-buthionine-sulfoximine (BSO) enhanced stimulation of choline uptake and induction of stress proteins. Cadmium also activated ERK1/2 MAP kinase. The MEK1 inhibitor PD98059 diminished ERK1/2 activation and attenuated stimulation of choline uptake. Furthermore, inhibition of ERK1/2 activation abated stimulation of choline uptake in cells exposed to cadmium with BSO. These data indicate that in the choroid plexus, exposure to low concentrations of cadmium may induce oxidative stress and consequently stimulate apical choline transport through activation of ERK1/2 MAP kinase.

  14. Clinical Paresthesia Atlas Illustrates Likelihood of Coverage Based on Spinal Cord Stimulator Electrode Location.

    PubMed

    Taghva, Alexander; Karst, Edward; Underwood, Paul

    2017-08-01

    Concordant paresthesia coverage is an independent predictor of pain relief following spinal cord stimulation (SCS). Using aggregate data, our objective is to produce a map of paresthesia coverage as a function of electrode location in SCS. This retrospective analysis used x-rays, SCS programming data, and paresthesia coverage maps from the EMPOWER registry of SCS implants for chronic neuropathic pain. Spinal level of dorsal column stimulation was determined by x-ray adjudication and active cathodes in patient programs. Likelihood of paresthesia coverage was determined as a function of stimulating electrode location. Segments of paresthesia coverage were grouped anatomically. Fisher's exact test was used to identify significant differences in likelihood of paresthesia coverage as a function of spinal stimulation level. In the 178 patients analyzed, the most prevalent areas of paresthesia coverage were buttocks, anterior and posterior thigh (each 98%), and low back (94%). Unwanted paresthesia at the ribs occurred in 8% of patients. There were significant differences in the likelihood of achieving paresthesia, with higher thoracic levels (T5, T6, and T7) more likely to achieve low back coverage but also more likely to introduce paresthesia felt at the ribs. Higher levels in the thoracic spine were associated with greater coverage of the buttocks, back, and thigh, and with lesser coverage of the leg and foot. This paresthesia atlas uses real-world, aggregate data to determine likelihood of paresthesia coverage as a function of stimulating electrode location. It represents an application of "big data" techniques, and a step toward achieving personalized SCS therapy tailored to the individual's chronic pain. © 2017 International Neuromodulation Society.

  15. Stress-induced stimulation of choline transport in cultured choroid plexus epithelium exposed to low concentrations of cadmium

    PubMed Central

    Young, Robin K.

    2013-01-01

    The choroid plexus epithelium forms the blood-cerebrospinal fluid barrier and accumulates essential minerals and heavy metals. Choroid plexus is cited as being a “sink” for heavy metals and excess minerals, serving to minimize accumulation of these potentially toxic agents in the brain. An understanding of how low doses of contaminant metals might alter transport of other solutes in the choroid plexus is limited. Using primary cultures of epithelial cells isolated from neonatal rat choroid plexus, our objective was to characterize modulation of apical uptake of the model organic cation choline elicited by low concentrations of the contaminant metal cadmium (CdCl2). At 50–1,000 nM, cadmium did not directly decrease or increase 30-min apical uptake of 10 μM [3H]choline. However, extended exposure to 250–500 nM cadmium increased [3H]choline uptake by as much as 75% without marked cytotoxicity. In addition, cadmium induced heat shock protein 70 and heme oxygenase-1 protein expression and markedly induced metallothionein gene expression. The antioxidant N-acetylcysteine attenuated stimulation of choline uptake and induction of stress proteins. Conversely, an inhibitor of glutathione synthesis l-buthionine-sulfoximine (BSO) enhanced stimulation of choline uptake and induction of stress proteins. Cadmium also activated ERK1/2 MAP kinase. The MEK1 inhibitor PD98059 diminished ERK1/2 activation and attenuated stimulation of choline uptake. Furthermore, inhibition of ERK1/2 activation abated stimulation of choline uptake in cells exposed to cadmium with BSO. These data indicate that in the choroid plexus, exposure to low concentrations of cadmium may induce oxidative stress and consequently stimulate apical choline transport through activation of ERK1/2 MAP kinase. PMID:24401988

  16. Accelerometer-based automatic voice onset detection in speech mapping with navigated repetitive transcranial magnetic stimulation.

    PubMed

    Vitikainen, Anne-Mari; Mäkelä, Elina; Lioumis, Pantelis; Jousmäki, Veikko; Mäkelä, Jyrki P

    2015-09-30

    The use of navigated repetitive transcranial magnetic stimulation (rTMS) in mapping of speech-related brain areas has recently shown to be useful in preoperative workflow of epilepsy and tumor patients. However, substantial inter- and intraobserver variability and non-optimal replicability of the rTMS results have been reported, and a need for additional development of the methodology is recognized. In TMS motor cortex mappings the evoked responses can be quantitatively monitored by electromyographic recordings; however, no such easily available setup exists for speech mappings. We present an accelerometer-based setup for detection of vocalization-related larynx vibrations combined with an automatic routine for voice onset detection for rTMS speech mapping applying naming. The results produced by the automatic routine were compared with the manually reviewed video-recordings. The new method was applied in the routine navigated rTMS speech mapping for 12 consecutive patients during preoperative workup for epilepsy or tumor surgery. The automatic routine correctly detected 96% of the voice onsets, resulting in 96% sensitivity and 71% specificity. Majority (63%) of the misdetections were related to visible throat movements, extra voices before the response, or delayed naming of the previous stimuli. The no-response errors were correctly detected in 88% of events. The proposed setup for automatic detection of voice onsets provides quantitative additional data for analysis of the rTMS-induced speech response modifications. The objectively defined speech response latencies increase the repeatability, reliability and stratification of the rTMS results. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Language Mapping Using fMRI and Direct Cortical Stimulation for Brain Tumor Surgery

    PubMed Central

    Brennan, Nicole Petrovich; Peck, Kyung K.; Holodny, Andrei

    2016-01-01

    Language functional magnetic resonance imaging for neurosurgical planning is a useful but nuanced technique. Consideration of primary and secondary language anatomy, task selection, and data analysis choices all impact interpretation. In the following chapter, we consider practical considerations and nuances alike for language functional magnetic resonance imaging in the support of and comparison with the neurosurgical gold standard, direct cortical stimulation. Pitfalls and limitations are discussed. PMID:26848555

  18. Multi-factorial modulation of hemispheric specialization and plasticity for language in healthy and pathological conditions: A review.

    PubMed

    Tzourio-Mazoyer, Nathalie; Perrone-Bertolotti, Marcela; Jobard, Gael; Mazoyer, Bernard; Baciu, Monica

    2017-01-01

    This review synthesizes anatomo-functional variability of language hemispheric representation and specialization (hemispheric specialization for language, HSL) as well as its modulation by several variables (demographic, anatomical, developmental, genetic, clinical, and psycholinguistic) in physiological and pathological conditions. The left hemisphere (LH) dominance for language, observed in approximately 90% of healthy individuals and in 70% of patients, is grounded by intra-hemispheric connections mediated by associative bundles such as the arcuate fasciculus and inter-hemispheric transcallosal connections mediated by the corpus callosum that connects homotopic regions of the left and right hemispheres (RH). In typical brains, inter-hemispheric inhibition, exerted from the LH to the RH, permits the LH to maintain language dominance. In pathological conditions, inter- and intra-hemispheric inhibition is decreased, inducing modifications on the degree of HSL and of language networks. HSL evaluation is classically performed in clinical practice with the Wada test and electro-cortical stimulation, gold standard methods. The advent of functional neuroimaging has allowed a more detailed assessment of the language networks and their lateralization, consistent with the results provided by the gold standard methods. In the first part, we describe anatomo-functional support for HSL in healthy conditions, its developmental course, its relationship with cognitive skills, and the various modulatory factors acting on HSL. The second section is devoted to the assessment of HSL in patients with focal and drug-resistant epilepsy (FDRE). FDRE is considered a neurological model associated with patterns of language plasticity, both before and after surgery: FDRE patients show significant modification of language networks induced by changes mediated by transcallosal connections (explaining inter-hemispheric patterns of language reorganization) or collateral connections (explaining intra-hemispheric patterns of language reorganization). Finally, we propose several predictive and explicative models of language organization and reorganization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Brain regions underlying word finding difficulties in temporal lobe epilepsy.

    PubMed

    Trebuchon-Da Fonseca, Agnes; Guedj, Eric; Alario, F-Xavier; Laguitton, Virginie; Mundler, Olivier; Chauvel, Patrick; Liegeois-Chauvel, Catherine

    2009-10-01

    Word finding difficulties are often reported by epileptic patients with seizures originating from the language dominant cerebral hemisphere, for example, in temporal lobe epilepsy. Evidence regarding the brain regions underlying this deficit comes from studies of peri-operative electro-cortical stimulation, as well as post-surgical performance. This evidence has highlighted a role for the anterior part of the dominant temporal lobe in oral word production. These conclusions contrast with findings from activation studies involving healthy speakers or acute ischaemic stroke patients, where the region most directly related to word retrieval appears to be the posterior part of the left temporal lobe. To clarify the neural basis of word retrieval in temporal lobe epilepsy, we tested forty-three drug-resistant temporal lobe epilepsy patients (28 left, 15 right). Comprehensive neuropsychological and language assessments were performed. Single spoken word production was elicited with picture or definition stimuli. Detailed analysis allowed the distinction of impaired word retrieval from other possible causes of naming failure. Finally, the neural substrate of the deficit was assessed by correlating word retrieval performance and resting-state brain metabolism in 18 fluoro-2-deoxy-d-glucose-Positron Emission Tomography. Naming difficulties often resulted from genuine word retrieval failures (anomic states), both in picture and in definition tasks. Left temporal lobe epilepsy patients showed considerably worse performance than right temporal lobe epilepsy patients. Performance was poorer in the definition than in the picture task. Across patients and the left temporal lobe epilepsy subgroup, frequency of anomic state was negatively correlated with resting-state brain metabolism in left posterior and basal temporal regions (Brodmann's area 20-37-39). These results show the involvement of posterior temporal regions, within a larger antero-posterior-basal temporal network, in the specific process of word retrieval in temporal lobe epilepsy. A tentative explanation for these findings is that epilepsy induces functional deafferentation between anterior temporal structures devoted to semantic processing and neocortical posterior temporal structures devoted to lexical processing.

  20. Multichannel optical mapping: investigation of depth information

    NASA Astrophysics Data System (ADS)

    Sase, Ichiro; Eda, Hideo; Seiyama, Akitoshi; Tanabe, Hiroki C.; Takatsuki, Akira; Yanagida, Toshio

    2001-06-01

    Near infrared (NIR) light has become a powerful tool for non-invasive imaging of human brain activity. Many systems have been developed to capture the changes in regional brain blood flow and hemoglobin oxygenation, which occur in the human cortex in response to neural activity. We have developed a multi-channel reflectance imaging system, which can be used as a `mapping device' and also as a `multi-channel spectrophotometer'. In the present study, we visualized changes in the hemodynamics of the human occipital region in multiple ways. (1) Stimulating left and right primary visual cortex independently by showing sector shaped checkerboards sequentially over the contralateral visual field, resulted in corresponding changes in the hemodynamics observed by `mapping' measurement. (2) Simultaneous measurement of functional-MRI and NIR (changes in total hemoglobin) during visual stimulation showed good spatial and temporal correlation with each other. (3) Placing multiple channels densely over the occipital region demonstrated spatial patterns more precisely, and depth information was also acquired by placing each pair of illumination and detection fibers at various distances. These results indicate that optical method can provide data for 3D analysis of human brain functions.

  1. Tactile stimulations and wheel rotation responses: toward augmented lane departure warning systems

    PubMed Central

    Tandonnet, Christophe; Burle, Borís; Vidal, Franck; Hasbroucq, Thierry

    2014-01-01

    When an on-board system detects a drift of a vehicle to the left or to the right, in what way should the information be delivered to the driver? Car manufacturers have so far neglected relevant results from Experimental Psychology and Cognitive Neuroscience. Here we show that this situation possibly led to the sub-optimal design of a lane departure warning system (AFIL, PSA Peugeot Citroën) implemented in commercially available automobile vehicles. Twenty participants performed a two-choice reaction time task in which they were to respond by clockwise or counter-clockwise wheel-rotations to tactile stimulations of their left or right wrist. They performed poorer when responding counter-clockwise to the right vibration and clockwise to the left vibration (incompatible mapping) than when responding according to the reverse (compatible) mapping. This suggests that AFIL implements the worse (incompatible) mapping for the operators. This effect depended on initial practice with the interface. The present research illustrates how basic approaches in Cognitive Science may benefit to Human Factors Engineering and ultimately improve man-machine interfaces and show how initial learning can affect interference effects. PMID:25324791

  2. Cerebral cortex activation mapping upon electrical muscle stimulation by 32-channel time-domain functional near-infrared spectroscopy.

    PubMed

    Re, Rebecca; Muthalib, Makii; Contini, Davide; Zucchelli, Lucia; Torricelli, Alessandro; Spinelli, Lorenzo; Caffini, Matteo; Ferrari, Marco; Quaresima, Valentina; Perrey, Stephane; Kerr, Graham

    2013-01-01

    The application of different EMS current thresholds on muscle activates not only the muscle but also peripheral sensory axons that send proprioceptive and pain signals to the cerebral cortex. A 32-channel time-domain fNIRS instrument was employed to map regional cortical activities under varied EMS current intensities applied on the right wrist extensor muscle. Eight healthy volunteers underwent four EMS at different current thresholds based on their individual maximal tolerated intensity (MTI), i.e., 10 % < 50 % < 100 % < over 100 % MTI. Time courses of the absolute oxygenated and deoxygenated hemoglobin concentrations primarily over the bilateral sensorimotor cortical (SMC) regions were extrapolated, and cortical activation maps were determined by general linear model using the NIRS-SPM software. The stimulation-induced wrist extension paradigm significantly increased activation of the contralateral SMC region according to the EMS intensities, while the ipsilateral SMC region showed no significant changes. This could be due in part to a nociceptive response to the higher EMS current intensities and result also from increased sensorimotor integration in these cortical regions.

  3. Late emergence of the vibrissa direction selectivity map in the rat barrel cortex.

    PubMed

    Kremer, Yves; Léger, Jean-François; Goodman, Dan; Brette, Romain; Bourdieu, Laurent

    2011-07-20

    In the neocortex, neuronal selectivities for multiple sensorimotor modalities are often distributed in topographical maps thought to emerge during a restricted period in early postnatal development. Rodent barrel cortex contains a somatotopic map for vibrissa identity, but the existence of maps representing other tactile features has not been clearly demonstrated. We addressed the issue of the existence in the rat cortex of an intrabarrel map for vibrissa movement direction using in vivo two-photon imaging. We discovered that the emergence of a direction map in rat barrel cortex occurs long after all known critical periods in the somatosensory system. This map is remarkably specific, taking a pinwheel-like form centered near the barrel center and aligned to the barrel cortex somatotopy. We suggest that this map may arise from intracortical mechanisms and demonstrate by simulation that the combination of spike-timing-dependent plasticity at synapses between layer 4 and layer 2/3 and realistic pad stimulation is sufficient to produce such a map. Its late emergence long after other classical maps suggests that experience-dependent map formation and refinement continue throughout adult life.

  4. Electrical stimulation vs. pulsed and continuous-wave optical stimulation of the rat prostate cavernous nerves, in vivo

    NASA Astrophysics Data System (ADS)

    Perkins, William C.; Lagoda, Gwen A.; Burnett, Arthur; Fried, Nathaniel M.

    2015-07-01

    Identification and preservation of the cavernous nerves (CNs) during prostate cancer surgery is critical for post-operative sexual function. Electrical nerve stimulation (ENS) mapping has previously been tested as an intraoperative tool for CN identification, but was found to be unreliable. ENS is limited by the need for electrode-tissue contact, poor spatial precision from electrical current spreading, and stimulation artifacts interfering with detection. Alternatively, optical nerve stimulation (ONS) provides noncontact stimulation, improved spatial selectivity, and elimination of stimulation artifacts. This study compares ENS to pulsed/CW ONS to explore the ONS mechanism. A total of eighty stimulations were performed in 5 rats, in vivo. ENS (4 V, 5 ms, 10 Hz) was compared to ONS using a pulsed diode laser nerve stimulator (1873 nm, 5 ms, 10 Hz) or CW diode laser nerve stimulator (1455 nm). Intracavernous pressure (ICP) response and nerve compound action potentials (nCAPs) were measured. All three stimulation modes (ENS, ONS-CW, ONS-P) produced comparable ICP magnitudes. However, ENS demonstrated more rapid ICP response times and well defined nCAPs compared to unmeasurable nCAPs for ONS. Further experiments measuring single action potentials during ENS and ONS are warranted to further understand differences in the ENS and ONS mechanisms.

  5. Hyperspectral Stimulated Raman Scattering Microscopy Unravels Aberrant Accumulation of Saturated Fat in Human Liver Cancer.

    PubMed

    Yan, Shuai; Cui, Sishan; Ke, Kun; Zhao, Bixing; Liu, Xiaolong; Yue, Shuhua; Wang, Ping

    2018-06-05

    Lipid metabolism is dysregulated in human cancers. The analytical tools that could identify and quantitatively map metabolites in unprocessed human tissues with submicrometer resolution are highly desired. Here, we implemented analytical hyperspectral stimulated Raman scattering microscopy to map the lipid metabolites in situ in normal and cancerous liver tissues from 24 patients. In contrast to the conventional wisdom that unsaturated lipid accumulation enhances tumor cell survival and proliferation, we unexpectedly visualized substantial amount of saturated fat accumulated in cancerous liver tissues, which was not seen in majority of their adjacent normal tissues. Further analysis by mass spectrometry confirmed significant high levels of glyceryl tripalmitate specifically in cancerous liver. These findings suggest that the aberrantly accumulated saturated fat may have great potential to be a metabolic biomarker for liver cancer.

  6. Awake surgery for hemispheric low-grade gliomas: oncological, functional and methodological differences between pediatric and adult populations.

    PubMed

    Trevisi, Gianluca; Roujeau, Thomas; Duffau, Hugues

    2016-10-01

    Brain mapping through a direct cortical and subcortical electrical stimulation during an awake craniotomy has gained an increasing popularity as a powerful tool to prevent neurological deficit while increasing extent of resection of hemispheric diffuse low-grade gliomas in adults. However, few case reports or very limited series of awake surgery in children are currently available in the literature. In this paper, we review the oncological and functional differences between pediatric and adult populations, and the methodological specificities that may limit the use of awake mapping in pediatric low-grade glioma surgery. This could be explained by the fact that pediatric low-grade gliomas have a different epidemiology and biologic behavior in comparison to adults, with pilocytic astrocytomas (WHO grade I glioma) as the most frequent histotype, and with WHO grade II gliomas less prone to anaplastic transformation than their adult counterparts. In addition, aside from the issue of poor collaboration of younger children under 10 years of age, some anatomical and functional peculiarities of children developing brain (cortical and subcortical myelination, maturation of neural networks and of specialized cortical areas) can influence direct electrical stimulation methodology and sensitivity, limiting its use in children. Therefore, even though awake procedure with cortical and axonal stimulation mapping can be adapted in a specific subgroup of children with a diffuse glioma from the age of 10 years, only few pediatric patients are nonetheless candidates for awake brain surgery.

  7. Cross-Modal Recruitment of Auditory and Orofacial Areas During Sign Language in a Deaf Subject.

    PubMed

    Martino, Juan; Velasquez, Carlos; Vázquez-Bourgon, Javier; de Lucas, Enrique Marco; Gomez, Elsa

    2017-09-01

    Modern sign languages used by deaf people are fully expressive, natural human languages that are perceived visually and produced manually. The literature contains little data concerning human brain organization in conditions of deficient sensory information such as deafness. A deaf-mute patient underwent surgery of a left temporoinsular low-grade glioma. The patient underwent awake surgery with intraoperative electrical stimulation mapping, allowing direct study of the cortical and subcortical organization of sign language. We found a similar distribution of language sites to what has been reported in mapping studies of patients with oral language, including 1) speech perception areas inducing anomias and alexias close to the auditory cortex (at the posterior portion of the superior temporal gyrus and supramarginal gyrus); 2) speech production areas inducing speech arrest (anarthria) at the ventral premotor cortex, close to the lip motor area and away from the hand motor area; and 3) subcortical stimulation-induced semantic paraphasias at the inferior fronto-occipital fasciculus at the temporal isthmus. The intraoperative setup for sign language mapping with intraoperative electrical stimulation in deaf-mute patients is similar to the setup described in patients with oral language. To elucidate the type of language errors, a sign language interpreter in close interaction with the neuropsychologist is necessary. Sign language is perceived visually and produced manually; however, this case revealed a cross-modal recruitment of auditory and orofacial motor areas. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Corticocortical evoked potentials reveal projectors and integrators in human brain networks.

    PubMed

    Keller, Corey J; Honey, Christopher J; Entz, Laszlo; Bickel, Stephan; Groppe, David M; Toth, Emilia; Ulbert, Istvan; Lado, Fred A; Mehta, Ashesh D

    2014-07-02

    The cerebral cortex is composed of subregions whose functional specialization is largely determined by their incoming and outgoing connections with each other. In the present study, we asked which cortical regions can exert the greatest influence over other regions and the cortical network as a whole. Previous research on this question has relied on coarse anatomy (mapping large fiber pathways) or functional connectivity (mapping inter-regional statistical dependencies in ongoing activity). Here we combined direct electrical stimulation with recordings from the cortical surface to provide a novel insight into directed, inter-regional influence within the cerebral cortex of awake humans. These networks of directed interaction were reproducible across strength thresholds and across subjects. Directed network properties included (1) a decrease in the reciprocity of connections with distance; (2) major projector nodes (sources of influence) were found in peri-Rolandic cortex and posterior, basal and polar regions of the temporal lobe; and (3) major receiver nodes (receivers of influence) were found in anterolateral frontal, superior parietal, and superior temporal regions. Connectivity maps derived from electrical stimulation and from resting electrocorticography (ECoG) correlations showed similar spatial distributions for the same source node. However, higher-level network topology analysis revealed differences between electrical stimulation and ECoG that were partially related to the reciprocity of connections. Together, these findings inform our understanding of large-scale corticocortical influence as well as the interpretation of functional connectivity networks. Copyright © 2014 the authors 0270-6474/14/349152-12$15.00/0.

  9. Language mapping with verbs and sentences in awake surgery: a review.

    PubMed

    Rofes, Adrià; Miceli, Gabriele

    2014-06-01

    Intraoperative language mapping in awake surgery is typically conducted by asking the patient to produce automatic speech and to name objects. These tasks might not map language with sufficient accuracy, as some linguistic processes can only be triggered by tasks that use verbs and sentences. Verb and sentence processing tasks are currently used during surgery, albeit sparsely. Medline, PubMed, and Web of Science records were searched to retrieve studies focused on language mapping with verbs/sentences in awake surgery. We review the tasks reported in the published literature, spell out the language processes assessed by each task, list the cortical and subcortical regions whose stimulation inhibited language processing, and consider the types of errors elicited by stimulation in each region. We argue that using verb tasks allows a more thorough evaluation of language functions. We also argue that verb tasks are preferable to object naming tasks in the case of frontal lesions, as lesion and neuroimaging data demonstrate that these regions play a critical role in verb and sentence processing. We discuss the clinical value of these tasks and the current limitations of the procedure, and provide some guidelines for their development. Future research should aim toward a differentiated approach to language mapping - one that includes the administration of standardized and customizable tests and the use of longitudinal neurocognitive follow-up studies. Further work will allow researchers and clinicians to understand brain and language correlates and to improve the current surgical practice.

  10. The Anti-Inflammatory Effect of Human Telomerase-Derived Peptide on P. gingivalis Lipopolysaccharide-Induced Inflammatory Cytokine Production and Its Mechanism in Human Dental Pulp Cells

    PubMed Central

    Ko, Yoo-Jin; Kwon, Kil-Young; Kum, Kee-Yeon; Lee, Woo-Cheol; Baek, Seung-Ho; Kang, Mo K.; Shon, Won-Jun

    2015-01-01

    Porphyromonas gingivalis is considered with inducing pulpal inflammation and has lipopolysaccharide (LPS) as an inflammatory stimulator. GV1001 peptide has anticancer and anti-inflammation activity due to inhibiting activation of signaling molecules after penetration into the various types of cells. Therefore, this study examined inhibitory effect of GV1001 on dental pulp cells (hDPCs) stimulated by P. gingivalis LPS. The intracellular distribution of GV1001 was analyzed by confocal microscopy. Real-time RT-PCR was performed to determine the expression levels of TNF-α and IL-6 cytokines. The role of signaling by MAP kinases (ERK and p38) was explored using Western blot analysis. The effect of GV1001 peptide on hDPCs viability was measured by MTT assay. GV1001 was predominantly located in hDPC cytoplasm. The peptide inhibited P. gingivalis LPS-induced TNF-α and IL-6 production in hDPCs without significant cytotoxicity. Furthermore, GV1001 treatment markedly inhibited the phosphorylation of MAP kinases (ERK and p38) in LPS-stimulated hDPCs. GV1001 may prevent P. gingivalis LPS-induced inflammation of apical tissue. Also, these findings provide mechanistic insight into how GV1001 peptide causes anti-inflammatory actions in LPS-stimulated pulpitis without significantly affecting cell viability. PMID:26604431

  11. Impact of systemically active neurohumoral factors on the erectile response of the rat.

    PubMed

    MacKenzie, Lindsay D; Heaton, Jeremy P W; Adams, Michael A

    2011-09-01

    Mean arterial pressure (MAP) and specific regulation of penile blood flow are the primary determinants of an erection. While this concept is well recognized, the differential relationship between systemically acting vasoactive factors on arterial pressure and erectile responses is not well described. The aim of this study was to determine how the modification of systemic levels of neurohumoral factors impacts on the magnitude and efficiency of the erectile response. The main outcome measures for this study are changes in MAP and intracavernosal pressure (ICP) following electrostimulation of the cavernous nerve. Anesthetized adult, male Sprague-Dawley rats were catheterized for measuring MAP (carotid), ICP, and drug administration (vena cava). Erections were induced via cavernous nerve electrostimulation. Vasoactive drug infusions were used to produce changes in MAP levels including: hexamethonium, angiotensin II (ANGII)±hexamethonium, methoxamine±hexamethonium, losartan, MAHMA NONOate, and terbutaline. In general, ICP and MAP were linearly correlated regardless of treatment. Hexamethonium markedly dropped MAP and proportionately decreased the magnitude of the erectile response. ANGII or methoxamine given to hexamethonium-pretreated or untreated rats increased MAP similarly, but produced contrasting effects on erectile responses. ANGII-induced pressor responses were associated with increased erectile responses whereas all methoxamine treatments markedly decreased erectile responses. Depressor changes with losartan or terbutaline, but not MAHMA NONOate, also impacted negatively on the efficiency of the erectile responses at lower arterial pressures. In general, the magnitude of the erectile responses was found to be dependent upon the level of MAP, although the mechanism by which arterial pressure was changed impacted substantially on the characteristics of the relationship. The major finding was that circulation-wide α-adrenoceptor stimulation was extremely deleterious to erectile responses whereas global stimulation of ANG II receptors was actually proerectile. Overall, the results indicate that neurohumoral specificity in systemic hemodynamic control is also critical in establishing the optimal erectile environment in rats. © 2011 International Society for Sexual Medicine.

  12. Electrocorticographic language mapping in children by high-gamma synchronization during spontaneous conversation: comparison with conventional electrical cortical stimulation.

    PubMed

    Arya, Ravindra; Wilson, J Adam; Vannest, Jennifer; Byars, Anna W; Greiner, Hansel M; Buroker, Jason; Fujiwara, Hisako; Mangano, Francesco T; Holland, Katherine D; Horn, Paul S; Crone, Nathan E; Rose, Douglas F

    2015-02-01

    This study describes development of a novel language mapping approach using high-γ modulation in electrocorticograph (ECoG) during spontaneous conversation, and its comparison with electrical cortical stimulation (ECS) in childhood-onset drug-resistant epilepsy. Patients undergoing invasive pre-surgical monitoring and able to converse with the investigator were eligible. ECoG signals and synchronized audio were acquired during quiet baseline and during natural conversation between investigator and the patient. Using Signal Modeling for Real-time Identification and Event Detection (SIGFRIED) procedure, a statistical model for baseline high-γ (70-116 Hz) power, and a single score for each channel representing the probability that the power features in the experimental signal window belonged to the baseline model, were calculated. Electrodes with significant high-γ responses (HGS) were plotted on the 3D cortical model. Sensitivity, specificity, positive and negative predictive values (PPV, NPV), and classification accuracy were calculated compared to ECS. Seven patients were included (4 males, mean age 10.28 ± 4.07 years). Significant high-γ responses were observed in classic language areas in the left hemisphere plus in some homologous right hemispheric areas. Compared with clinical standard ECS mapping, the sensitivity and specificity of HGS mapping was 88.89% and 63.64%, respectively, and PPV and NPV were 35.29% and 96.25%, with an overall accuracy of 68.24%. HGS mapping was able to correctly determine all ECS+ sites in 6 of 7 patients and all false-sites (ECS+, HGS- for visual naming, n = 3) were attributable to only 1 patient. This study supports the feasibility of language mapping with ECoG HGS during spontaneous conversation, and its accuracy compared to traditional ECS. Given long-standing concerns about ecological validity of ECS mapping of cued language tasks, and difficulties encountered with its use in children, ECoG mapping of spontaneous language may provide a valid alternative for clinical use. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Functional Plasticity in Somatosensory Cortex Supports Motor Learning by Observing.

    PubMed

    McGregor, Heather R; Cashaback, Joshua G A; Gribble, Paul L

    2016-04-04

    An influential idea in neuroscience is that the sensory-motor system is activated when observing the actions of others [1, 2]. This idea has recently been extended to motor learning, in which observation results in sensory-motor plasticity and behavioral changes in both motor and somatosensory domains [3-9]. However, it is unclear how the brain maps visual information onto motor circuits for learning. Here we test the idea that the somatosensory system, and specifically primary somatosensory cortex (S1), plays a role in motor learning by observing. In experiment 1, we applied stimulation to the median nerve to occupy the somatosensory system with unrelated inputs while participants observed a tutor learning to reach in a force field. Stimulation disrupted motor learning by observing in a limb-specific manner. Stimulation delivered to the right arm (the same arm used by the tutor) disrupted learning, whereas left arm stimulation did not. This is consistent with the idea that a somatosensory representation of the observed effector must be available during observation for learning to occur. In experiment 2, we assessed S1 cortical processing before and after observation by measuring somatosensory evoked potentials (SEPs) associated with median nerve stimulation. SEP amplitudes increased only for participants who observed learning. Moreover, SEPs increased more for participants who exhibited greater motor learning following observation. Taken together, these findings support the idea that motor learning by observing relies on functional plasticity in S1. We propose that visual signals about the movements of others are mapped onto motor circuits for learning via the somatosensory system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. β-adrenergic-stimulated macrophages: Comprehensive localization in the M1–M2 spectrum

    PubMed Central

    Lamkin, Donald M.; Ho, Hsin-Yun; Ong, Tiffany H.; Kawanishi, Carly K.; Stoffers, Victoria L.; Ahlawat, Nivedita; Ma, Jeffrey C.Y.; Arevalo, Jesusa M. G.; Cole, Steve W.; Sloan, Erica K.

    2016-01-01

    β-adrenergic signaling can regulate macrophage involvement in several diseases and often produces anti-inflammatory properties in macrophages, which are similar to M2 properties in a dichotomous M1 vs. M2 macrophage taxonomy. However, it is not clear that β-adrenergic-stimulated macrophages may be classified strictly as M2. In this in vitro study, we utilized recently published criteria and transcriptome-wide bioinformatics methods to map the relative polarity of murine β-adrenergic-stimulated macrophages within a wider M1–M2 spectrum. Results show that β-adrenergic-stimulated macrophages did not fit entirely into any one predefined category of the M1–M2 spectrum but did express genes that are representative of some M2 side categories. Moreover, transcript origin analysis of genome-wide transcriptional profiles located β-adrenergic-stimulated macrophages firmly on the M2 side of the M1–M2 spectrum and found active suppression of M1 side gene transcripts. The signal transduction pathways involved were mapped through blocking experiments and bioinformatics analysis of transcription factor binding motifs. M2-promoting effects were mediated specifically through β2-adrenergic receptors and were associated with CREB, C/EBPβ, and ATF transcription factor pathways but not with established M1–M2 STAT pathways. Thus, β-adrenergic-signaling induces a macrophage transcriptome that locates on the M2 side of the M1–M2 spectrum but likely accomplishes this effect through a signaling pathway that is atypical for M2-spectrum macrophages. PMID:27485040

  15. β-Adrenergic-stimulated macrophages: Comprehensive localization in the M1-M2 spectrum.

    PubMed

    Lamkin, Donald M; Ho, Hsin-Yun; Ong, Tiffany H; Kawanishi, Carly K; Stoffers, Victoria L; Ahlawat, Nivedita; Ma, Jeffrey C Y; Arevalo, Jesusa M G; Cole, Steve W; Sloan, Erica K

    2016-10-01

    β-Adrenergic signaling can regulate macrophage involvement in several diseases and often produces anti-inflammatory properties in macrophages, which are similar to M2 properties in a dichotomous M1 vs. M2 macrophage taxonomy. However, it is not clear that β-adrenergic-stimulated macrophages may be classified strictly as M2. In this in vitro study, we utilized recently published criteria and transcriptome-wide bioinformatics methods to map the relative polarity of murine β-adrenergic-stimulated macrophages within a wider M1-M2 spectrum. Results show that β-adrenergic-stimulated macrophages did not fit entirely into any one pre-defined category of the M1-M2 spectrum but did express genes that are representative of some M2 side categories. Moreover, transcript origin analysis of genome-wide transcriptional profiles located β-adrenergic-stimulated macrophages firmly on the M2 side of the M1-M2 spectrum and found active suppression of M1 side gene transcripts. The signal transduction pathways involved were mapped through blocking experiments and bioinformatics analysis of transcription factor binding motifs. M2-promoting effects were mediated specifically through β2-adrenergic receptors and were associated with CREB, C/EBPβ, and ATF transcription factor pathways but not with established M1-M2 STAT pathways. Thus, β-adrenergic-signaling induces a macrophage transcriptome that locates on the M2 side of the M1-M2 spectrum but likely accomplishes this effect through a signaling pathway that is atypical for M2-spectrum macrophages. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Quantitative aspects of the clinical performance of transverse tripolar spinal cord stimulation.

    PubMed

    Wesselink, W A; Holsheimer, J; King, G W; Torgerson, N A; Boom, H B

    1999-01-01

    A multicenter study was initiated to evaluate the performance of the transverse tripolar system for spinal cord stimulation. Computer modeling had predicted steering of paresthesia with a dual channel stimulator to be the main benefit of the system. The quantitative analysis presented here includes the results of 484 tests in 30 patients. For each test, paresthesia coverage as a function of voltage levels was stored in a computerized database, including a body map which enabled calculation of the degree of paresthesia coverage of separate body areas, as well as the overlap with the painful areas. The results show that with the transverse tripolar system steering of the paresthesia is possible, although optimal steering requires proper placement of the electrode with respect to the spinal cord. Therefore, with this steering ability as well as a larger therapeutic stimulation window as compared to conventional systems, we expect an increase of the long-term efficacy of spinal cord stimulation. Moreover, in view of the stimulation-induced paresthesia patterns, the system allows selective stimulation of the medial dorsal columns.

  17. 3D silicone rubber interfaces for individually tailored implants.

    PubMed

    Stieghorst, Jan; Bondarenkova, Alexandra; Burblies, Niklas; Behrens, Peter; Doll, Theodor

    2015-01-01

    For the fabrication of customized silicone rubber based implants, e.g. cochlear implants or electrocortical grid arrays, it is required to develop high speed curing systems, which vulcanize the silicone rubber before it runs due to a heating related viscosity drop. Therefore, we present an infrared radiation based cross-linking approach for the 3D-printing of silicone rubber bulk and carbon nanotube based silicone rubber electrode materials. Composite materials were cured in less than 120 s and material interfaces were evaluated with scanning electron microscopy. Furthermore, curing related changes in the mechanical and cell-biological behaviour were investigated with tensile and WST-1 cell biocompatibility tests. The infrared absorption properties of the silicone rubber materials were analysed with fourier transform infrared spectroscopy in transmission and attenuated total reflection mode. The heat flux was calculated by using the FTIR data, emissivity data from the infrared source manufacturer and the geometrical view factor of the system.

  18. Electrophysiological correlates of looking at paintings and its association with art expertise.

    PubMed

    Pang, C Y; Nadal, M; Müller-Paul, J S; Rosenberg, R; Klein, C

    2013-04-01

    This study investigated the electrocortical correlates of art expertise, as defined by a newly developed, content-valid and internally consistent 23-item art expertise questionnaire in N=27 participants that varied in their degree of art expertise. Participants viewed each 50 paintings, filtering-distorted versions of these paintings and plain colour stimuli under free-viewing conditions whilst the EEG was recorded from 64 channels. Results revealed P3b-/LPC-like bilateral posterior event-related potentials (ERP) that were larger over the right hemisphere than over the left hemisphere. Art expertise correlated negatively with the amplitude of the ERP responses to paintings and control stimuli. We conclude that art expertise is associated with reduced ERP responses to visual stimuli in general that can be considered to reflect increased neural efficiency due to extensive practice in the contemplation of visual art. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Physiological correlates of psychopathy, antisocial personality disorder, habitual aggression, and violence.

    PubMed

    Patrick, Christopher J

    2014-01-01

    This chapter reviews the existing literature on physiological correlates of psychopathy, antisocial personality disorder, and persistent violence/aggression. Coverage is provided of findings from studies utilizing peripheral, electrocortical, and neuroimaging measures. The review begins with a discussion of how psychopathy and antisocial personality are defined, and how these conditions relate to one another and to violent behavior. A case is made that the relationships psychopathy and ASPD show with violent and aggressive behavior, and similarities and differences in associations of each with physiological measures of various types can be understood in terms of symptomatic features these conditions have in common versus features that distinguish them. Following this, an overview is provided of major lines of evidence emerging from psychophysiological and neuroimaging studies conducted to date on these conditions. The final section of the chapter summarizes what has been learned from these existing studies and discusses implications and directions for future research.

  20. The neural basis of belief updating and rational decision making

    PubMed Central

    Achtziger, Anja; Hügelschäfer, Sabine; Steinhauser, Marco

    2014-01-01

    Rational decision making under uncertainty requires forming beliefs that integrate prior and new information through Bayes’ rule. Human decision makers typically deviate from Bayesian updating by either overweighting the prior (conservatism) or overweighting new information (e.g. the representativeness heuristic). We investigated these deviations through measurements of electrocortical activity in the human brain during incentivized probability-updating tasks and found evidence of extremely early commitment to boundedly rational heuristics. Participants who overweight new information display a lower sensibility to conflict detection, captured by an event-related potential (the N2) observed around 260 ms after the presentation of new information. Conservative decision makers (who overweight prior probabilities) make up their mind before new information is presented, as indicated by the lateralized readiness potential in the brain. That is, they do not inhibit the processing of new information but rather immediately rely on the prior for making a decision. PMID:22956673

  1. The neural basis of belief updating and rational decision making.

    PubMed

    Achtziger, Anja; Alós-Ferrer, Carlos; Hügelschäfer, Sabine; Steinhauser, Marco

    2014-01-01

    Rational decision making under uncertainty requires forming beliefs that integrate prior and new information through Bayes' rule. Human decision makers typically deviate from Bayesian updating by either overweighting the prior (conservatism) or overweighting new information (e.g. the representativeness heuristic). We investigated these deviations through measurements of electrocortical activity in the human brain during incentivized probability-updating tasks and found evidence of extremely early commitment to boundedly rational heuristics. Participants who overweight new information display a lower sensibility to conflict detection, captured by an event-related potential (the N2) observed around 260 ms after the presentation of new information. Conservative decision makers (who overweight prior probabilities) make up their mind before new information is presented, as indicated by the lateralized readiness potential in the brain. That is, they do not inhibit the processing of new information but rather immediately rely on the prior for making a decision.

  2. Maternal report of infant negative affect predicts attenuated brain response to own infant.

    PubMed

    Kuzava, Sierra; Bernard, Kristin

    2018-06-24

    Parent-infant interaction is known to be influenced bidirectionally by parent and infant characteristics. However, it is unclear whether infant temperament affects parents' neural responses to infant stimuli. 85 infants (6-12 months) were filmed in distress-eliciting tasks, which were coded for infants' negative affect. Mothers' reported infant affect was obtained from the Infant Behavior Questionnaire Very Short Form-Revised. Mothers' EEG activity was recorded while passively viewing photos of own, familiarized, and unfamiliar infants. Multiple regression indicated that mothers who reported greater infant negative affect showed a smaller difference in the late positive potential (LPP) response to own infant versus familiarized infant, controlling for researcher-coded infant negative affect. The findings suggest that parents' perceptions of their infant's temperament, but not independent measures of infant temperament, are related to electrocortical indices of emotional attention. © 2018 Wiley Periodicals, Inc.

  3. The heart-break of social rejection versus the brain wave of social acceptance

    PubMed Central

    van der Molen, Maurits W.; Sahibdin, Priya P.; Franken, Ingmar H. A.

    2014-01-01

    The effect of social rejection on cardiac and brain responses was examined in a study in which participants had to decide on the basis of pictures of virtual peers whether these peers would like them or not. Physiological and behavioral responses to expected and unexpected acceptance and rejection were compared. It was found that participants expected that about 50% of the virtual judges gave them a positive judgment. Cardiac deceleration was strongest for unexpected social rejection. In contrast, the brain response was strongest to expected acceptance and was characterized by a positive deflection peaking around 325 ms following stimulus onset and the observed difference was maximal at fronto-central positions. The cardiac and electro-cortical responses were not related. It is hypothesized that these differential response patterns might be related to earlier described differential involvement of the dorsal and ventral portion of the anterior cingulate cortex. PMID:23887821

  4. Electrical stimulation of a small brain area reversibly disrupts consciousness.

    PubMed

    Koubeissi, Mohamad Z; Bartolomei, Fabrice; Beltagy, Abdelrahman; Picard, Fabienne

    2014-08-01

    The neural mechanisms that underlie consciousness are not fully understood. We describe a region in the human brain where electrical stimulation reproducibly disrupted consciousness. A 54-year-old woman with intractable epilepsy underwent depth electrode implantation and electrical stimulation mapping. The electrode whose stimulation disrupted consciousness was between the left claustrum and anterior-dorsal insula. Stimulation of electrodes within 5mm did not affect consciousness. We studied the interdependencies among depth recording signals as a function of time by nonlinear regression analysis (h(2) coefficient) during stimulations that altered consciousness and stimulations of the same electrode at lower current intensities that were asymptomatic. Stimulation of the claustral electrode reproducibly resulted in a complete arrest of volitional behavior, unresponsiveness, and amnesia without negative motor symptoms or mere aphasia. The disruption of consciousness did not outlast the stimulation and occurred without any epileptiform discharges. We found a significant increase in correlation for interactions affecting medial parietal and posterior frontal channels during stimulations that disrupted consciousness compared with those that did not. Our findings suggest that the left claustrum/anterior insula is an important part of a network that subserves consciousness and that disruption of consciousness is related to increased EEG signal synchrony within frontal-parietal networks. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Electrical Stimulation Modulates High γ Activity and Human Memory Performance

    PubMed Central

    Berry, Brent M.; Miller, Laura R.; Khadjevand, Fatemeh; Ezzyat, Youssef; Wanda, Paul; Sperling, Michael R.; Lega, Bradley; Stead, S. Matt

    2018-01-01

    Direct electrical stimulation of the brain has emerged as a powerful treatment for multiple neurological diseases, and as a potential technique to enhance human cognition. Despite its application in a range of brain disorders, it remains unclear how stimulation of discrete brain areas affects memory performance and the underlying electrophysiological activities. Here, we investigated the effect of direct electrical stimulation in four brain regions known to support declarative memory: hippocampus (HP), parahippocampal region (PH) neocortex, prefrontal cortex (PF), and lateral temporal cortex (TC). Intracranial EEG recordings with stimulation were collected from 22 patients during performance of verbal memory tasks. We found that high γ (62–118 Hz) activity induced by word presentation was modulated by electrical stimulation. This modulatory effect was greatest for trials with “poor” memory encoding. The high γ modulation correlated with the behavioral effect of stimulation in a given brain region: it was negative, i.e., the induced high γ activity was decreased, in the regions where stimulation decreased memory performance, and positive in the lateral TC where memory enhancement was observed. Our results suggest that the effect of electrical stimulation on high γ activity induced by word presentation may be a useful biomarker for mapping memory networks and guiding therapeutic brain stimulation. PMID:29404403

  6. Electrical stimulation of the midbrain excites the auditory cortex asymmetrically.

    PubMed

    Quass, Gunnar Lennart; Kurt, Simone; Hildebrandt, Jannis; Kral, Andrej

    2018-05-17

    Auditory midbrain implant users cannot achieve open speech perception and have limited frequency resolution. It remains unclear whether the spread of excitation contributes to this issue and how much it can be compensated by current-focusing, which is an effective approach in cochlear implants. The present study examined the spread of excitation in the cortex elicited by electric midbrain stimulation. We further tested whether current-focusing via bipolar and tripolar stimulation is effective with electric midbrain stimulation and whether these modes hold any advantage over monopolar stimulation also in conditions when the stimulation electrodes are in direct contact with the target tissue. Using penetrating multielectrode arrays, we recorded cortical population responses to single pulse electric midbrain stimulation in 10 ketamine/xylazine anesthetized mice. We compared monopolar, bipolar, and tripolar stimulation configurations with regard to the spread of excitation and the characteristic frequency difference between the stimulation/recording electrodes. The cortical responses were distributed asymmetrically around the characteristic frequency of the stimulated midbrain region with a strong activation in regions tuned up to one octave higher. We found no significant differences between monopolar, bipolar, and tripolar stimulation in threshold, evoked firing rate, or dynamic range. The cortical responses to electric midbrain stimulation are biased towards higher tonotopic frequencies. Current-focusing is not effective in direct contact electrical stimulation. Electrode maps should account for the asymmetrical spread of excitation when fitting auditory midbrain implants by shifting the frequency-bands downward and stimulating as dorsally as possible. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Pharmacology of o-chlorobenzylidene malononitrile (CS)

    PubMed Central

    Brimblecombe, R. W.; Green, D. M.; Muir, A. W.

    1972-01-01

    1. The effects of o-chlorobenzylidene malononitrile (CS) have been studied on several isolated organs and tissues, anaesthetized animals and cat encéphale isolé preparations. 2. On the isolated guinea-pig ileum an initial dose of CS produced a small, non-maintained contraction. Subsequent doses had reduced effects. There was no effect on peristalsis when the substance was given intraluminally. 3. No significant effects of CS were detected on the rat phrenic nerve-diaphragm preparation, the isolated perfused rabbit heart or on the contractor response of the indirectly stimulated cat tibialis muscle. 4. In the cat encéphale isolé preparation 1 mg/kg (i.v.) produced a brief period of electrocortical alerting but no abnormal activity in the electrocorticogram. Doses in excess of 10 mg/kg produced cortical depression. 5. Intravascular injection into the chloralose anaesthetized cat resulted typically in a pressor response accompanied by a brief period of apnoea. The threshold dose for the pressor response varied with the route of administration, but generally lay between 2·5 and 12·5 μg/kg; the threshold dose for apnoea was slightly higher. Small variations in this pattern of response were seen with different species and other anaesthetics. 6. When administered by stomach tube to chloralose anaesthetized cats, CS produced no measurable effects at doses of up to 100 mg/kg. 7. No changes in blood pressure or respiration were detected in anaesthetized cats given pure CS aerosol for 1 h in concentrations of between 345 mg/m3 and 1·39 g/m3 via a tracheal cannula or through the upper respiratory tract. Pure CS solution given by slow intravenous infusion at a similar dose and over a similar period produced significant effects on blood pressure and respiration. 8. Pyrotechnically generated (grenade) CS produced variable effects when given by inhalation in concentrations of between 460 and 1,040 mg/m3 for 1 hour. Respiratory depression, possibly reflex in nature, regularly occurred when the material was given via the upper respiratory tract, and respiratory stimulation occurred when it was given via a tracheal cannula. 9. Some cats were pre-exposed to a dose of 500 (mg/min)/m3 on 4 successive days and on the fifth day anaesthetized and exposed to high concentrations of grenade CS. Three out of six cats died during or after this final exposure compared to one out of six among animals not so pre-exposed. The general pattern of response to the final exposure to CS in the two groups was similar. PMID:5040666

  8. Between Clinic and Experiment: Wilder Penfield's Stimulation Reports and the Search for Mind, 1929-55.

    PubMed

    Guenther, Katja

    In medicine, the realm of the clinic and the realm of experimentation often overlap and conflict, and physicians have to develop practices to negotiate their differences. The work of Canadian neurosurgeon Wilder Penfield (1891-1976) is a case in point. Engaging closely with the nearly 5,000 pages of unpublished and hitherto unconsidered reports of electrical cortical stimulation that Penfield compiled between 1929 and 1955, I trace how Penfield's interest shifted from the production of hospital-based records designed to help him navigate the brains of individual patients to the construction of universal brain maps to aid his search for an ever-elusive "mind." Reading the developments of Penfield's operation records over time, I examine the particular ways in which Penfield straddled the individual and the universal while attempting to align his clinical and scientific interests, thereby exposing his techniques to standardize and normalize his brain maps.

  9. Cardio-Pulmonary Response to Shock.

    DTIC Science & Technology

    1979-12-01

    increased 0.6 L/min (p < .05). These results indicate that local surgical trauma can stimulate the pulmonary secretion of PGI 2 to levels that have been... pulmonary metabolic changes induced by PEEP and examines the influence of the latter on hemodynmics. Experiments were conducted in 25 isolated, temperature...arterial pressure (MAP) from 113 ± 17 to 100 ± 26 mm Hg (p < .01). PEEP yielded no change in C0 or MAP in Group III. Pulse, pulmonary arterial wedge

  10. Intraoperative Hypoglossal Nerve Mapping During Carotid Endarterectomy: Technical Note.

    PubMed

    Kojima, Atsuhiro; Saga, Isako; Ishikawa, Mami

    2018-05-01

    Hypoglossal nerve deficit is a possible complication caused by carotid endarterectomy (CEA). The accidental injury of the hypoglossal nerve during surgery is one of the major reasons for permanent hypoglossal nerve palsy. In this study, we investigated the usefulness of intraoperative mapping of the hypoglossal nerve to identify this nerve during CEA. Five consecutive patients who underwent CEA for the treatment of symptomatic or asymptomatic carotid artery stenosis were studied. A hand-held probe was used to detect the hypoglossal nerve in the operative field, and the tongue motor evoked potentials (MEPs) were recorded. The tongue MEPs were obtained in all the patients. The invisible hypoglossal nerve was successfully identified without any difficulty when the internal carotid artery was exposed. Intraoperative mapping was particularly useful for identifying the hypoglossal nerve when the hypoglossal nerve passed beneath the posterior belly of the digastric muscle. In 1 of 2 cases, MEP was also elicited when the ansa cervicalis was stimulated, although the resulting amplitude was much smaller than that obtained by direct stimulation of the hypoglossal nerve. Postoperatively, none of the patients presented with hypoglossal nerve palsy. Intraoperative hypoglossal nerve mapping enabled us to locate the invisible hypoglossal nerve during the exposure of the internal carotid artery accurately without retracting the posterior belly of the digastric muscle and other tissues in the vicinity of the internal carotid artery. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Topography of eye-position sensitivity of saccades evoked electrically from the cat's superior colliculus.

    PubMed

    McIlwain, J T

    1990-03-01

    Saccades evoked electrically from the deep layers of the superior colliculus have been examined in the alert cat with its head fixed. Amplitudes of the vertical and horizontal components varied linearly with the starting position of the eye. The slopes of the linear-regression lines provided an estimate of the sensitivity of these components to initial eye position. In observations on 29 sites in nine cats, the vertical and horizontal components of saccades evoked from a given site were rarely influenced to the same degree by initial eye position. For most sites, the horizontal component was more sensitive than the vertical component. Sensitivities of vertical and horizontal components were lowest near the representations of the horizontal and vertical meridians, respectively, of the collicular retinotopic map, but otherwise exhibited no systematic retinotopic dependence. Estimates of component amplitudes for saccades evoked from the center of the oculomotor range also diverged significantly from those predicted from the retinotopic map. The results of this and previous studies indicate that electrical stimulation of the cat's superior colliculus cannot yield a unique oculomotor map or one that is in register everywhere with the sensory retinotopic map. Several features of these observations suggest that electrical stimulation of the colliculus produces faulty activation of a saccadic control system that computes target position with respect to the head and that small and large saccades are controlled differently.

  12. Noninvasive Brain Stimulation: Challenges and Opportunities for a New Clinical Specialty.

    PubMed

    Boes, Aaron D; Kelly, Michael S; Trapp, Nicholas T; Stern, Adam P; Press, Daniel Z; Pascual-Leone, Alvaro

    2018-04-24

    Noninvasive brain stimulation refers to a set of technologies and techniques with which to modulate the excitability of the brain via transcranial stimulation. Two major modalities of noninvasive brain stimulation are transcranial magnetic stimulation (TMS) and transcranial current stimulation. Six TMS devices now have approved uses by the U.S. Food and Drug Administration and are used in clinical practice: five for treating medication refractory depression and the sixth for presurgical mapping of motor and speech areas. Several large, multisite clinical trials are currently underway that aim to expand the number of clinical applications of noninvasive brain stimulation in a way that could affect multiple clinical specialties in the coming years, including psychiatry, neurology, pediatrics, neurosurgery, physical therapy, and physical medicine and rehabilitation. In this article, the authors review some of the anticipated challenges facing the incorporation of noninvasive brain stimulation into clinical practice. Specific topics include establishing efficacy, safety, economics, and education. In discussing these topics, the authors focus on the use of TMS in the treatment of medication refractory depression when possible, because this is the most widely accepted clinical indication for TMS to date. These challenges must be thoughtfully considered to realize the potential of noninvasive brain stimulation as an emerging specialty that aims to enhance the current ability to diagnose and treat disorders of the brain.

  13. Temporal profiles and 2-dimensional oxy-, deoxy-, and total-hemoglobin somatosensory maps in rat versus mouse cortex

    PubMed Central

    Prakash, Neal; Biag, Jonathan D.; Sheth, Sameer A.; Mitsuyama, Satoshi; Theriot, Jeremy; Ramachandra, Chaithanya; Toga, Arthur W.

    2007-01-01

    Background Mechanisms of neurovascular coupling—the relationship between neuronal chemoelectrical activity and compensatory metabolic and hemodynamic changes—appear to be preserved across species from rats to humans despite differences in scale. However, previous work suggests that the highly cellular dense mouse somatosensory cortex has different functional hemodynamic changes compared to other species. Methods We developed novel hardware and software for 2-dimensional optical spectroscopy (2DOS). Optical changes at four simultaneously recorded wavelengths were measured in both rat and mouse primary somatosensory cortex (S1) evoked by forepaw stimulation to create four spectral maps. The spectral maps were converted to maps of deoxy-, oxy-, and total-hemoglobin (HbR, HbO, and HbT) concentration changes using the modified Beer-Lambert law and phantom HbR and HbO absorption spectra. Results Functional hemodynamics were different in mouse versus rat neocortex. On average, hemodynamics were as expected in rat primary somatosensory cortex (S1): the fractional change in the log of HbT concentration increased monophasically 2 s after stimulus, whereas HbO changes mirrored HbR changes, with HbO showing a small initial dip at 0.5 s followed by a large increase 3.0 s post stimulus. In contrast, mouse S1 showed a novel type of stimulus-evoked hemodynamic response, with prolonged, concurrent, monophasic increases in HbR and HbT and a parallel decrease in HbO that all peaked 3.5–4.5 s post stimulus onset. For rats, at any given time point the average size and shape of HbO and HbR forepaw maps were the same, whereas surface veins distorted the shape of the HbT map. For mice, HbO, HbR, and HbT forepaw maps were generally the same size and shape at any post-stimulus time point. Conclusions 2DOS using image splitting optics is feasible across species for brain mapping and quantifying the map topography of cortical hemodynamics. These results suggest that during physiologic stimulation, different species and/or cortical architecture may give rise to different hemodynamic changes during neurovascular coupling. PMID:17574868

  14. Non-invasive mapping of calculation function by repetitive navigated transcranial magnetic stimulation.

    PubMed

    Maurer, Stefanie; Tanigawa, Noriko; Sollmann, Nico; Hauck, Theresa; Ille, Sebastian; Boeckh-Behrens, Tobias; Meyer, Bernhard; Krieg, Sandro M

    2016-11-01

    Concerning calculation function, studies have already reported on localizing computational function in patients and volunteers by functional magnetic resonance imaging and transcranial magnetic stimulation. However, the development of accurate repetitive navigated TMS (rTMS) with a considerably higher spatial resolution opens a new field in cognitive neuroscience. This study was therefore designed to evaluate the feasibility of rTMS for locating cortical calculation function in healthy volunteers, and to establish this technique for future scientific applications as well as preoperative mapping in brain tumor patients. Twenty healthy subjects underwent rTMS calculation mapping using 5 Hz/10 pulses. Fifty-two previously determined cortical spots of the whole hemispheres were stimulated on both sides. The subjects were instructed to perform the calculation task composed of 80 simple arithmetic operations while rTMS pulses were applied. The highest error rate (80 %) for all errors of all subjects was observed in the right ventral precentral gyrus. Concerning division task, a 45 % error rate was achieved in the left middle frontal gyrus. The subtraction task showed its highest error rate (40 %) in the right angular gyrus (anG). In the addition task a 35 % error rate was observed in the left anterior superior temporal gyrus. Lastly, the multiplication task induced a maximum error rate of 30 % in the left anG. rTMS seems feasible as a way to locate cortical calculation function. Besides language function, the cortical localizations are well in accordance with the current literature for other modalities or lesion studies.

  15. Quaternary geologic map of the north-central part of the Salinas River Valley and Arroyo Seco, Monterey County, California

    USGS Publications Warehouse

    Taylor, Emily M.; Sweetkind, Donald S.

    2014-01-01

    Arroyo Seco, a perennial drainage in the central Coast Range of California, records a sequence of strath terraces. These terraces preserve an erosional and depositional history, controlled by both climate change and regional tectonics. These deposits have been mapped and correlated on the basis of field investigations, digital terrain analysis, stream gradient profiles, evaluation of published regional soil maps, and satellite imagery. Seven of the strath terraces and associated alluvial fans have been dated by optically stimulated luminescence (OSL) or infrared stimulated luminescence (IRSL). The OSL and IRSL dates on seven of the strath terraces and associated alluvial fans in Arroyo Seco are approximately >120 ka, >65 ka, 51–46 ka, 36–35 ka, 9 ka, and 2–1 ka. These dates generally fall within the range of ages reported from many well-dated marine terraces on the California coast that are formed during sea-level high stands. Tectonic movements, consistently upward, result in a constantly and slowly emerging coastline, however, the regional effects of climate change and resulting eustatic sea-level rises are interpreted as the driving mechanism for erosion and aggradation in Arroyo Seco.

  16. Challenging the Myth of Right Nondominant Hemisphere: Lessons from Corticosubcortical Stimulation Mapping in Awake Surgery and Surgical Implications.

    PubMed

    Vilasboas, Tatiana; Herbet, Guillaume; Duffau, Hugues

    2017-07-01

    For many years, the right hemisphere (RH) was considered as nondominant, especially in right-handers. In neurosurgical practice, this dogma resulted in the selection of awake procedure with language mapping only for lesions of the left dominant hemisphere. Conversely, surgery under general anesthesia (possibly with motor mapping) was usually proposed for right lesions. However, when objective neuropsychological assessments were performed, they frequently showed cognitive and behavioral deficits after brain surgery, even in the RH. Therefore, to preserve an optimal quality of life, especially in patients with a long survival expectancy (as in low-grade gliomas), awake surgery with cortical and axonal electrostimulation mapping has recently been proposed for resection of right tumors. Here, we review new insights gained from intraoperative stimulation into the pivotal role of the RH in movement execution and control, visual processes and spatial cognition, language and nonverbal semantic processing, executive functions (e.g., attention), and social cognition (mentalizing and emotion recognition). These original findings, which break with the myth of a nondominant RH, may have important implications in cognitive neurosciences, by improving our knowledge of the functional connectivity of the RH, as well as for the clinical management of patients with a right lesion. In brain surgery, awake mapping should be considered more systematically in the RH. Moreover, neuropsychological examination must be achieved in a more systematic manner before and after surgery within the RH, to optimize care by predicting the likelihood of functional recovery and by elaborating specific programs of rehabilitation. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. A pilot study on the correlation between fat fraction values and glucose uptake values in supraclavicular fat by simultaneous PET/MRI.

    PubMed

    McCallister, Andrew; Zhang, Le; Burant, Alex; Katz, Laurence; Branca, Rosa Tamara

    2017-11-01

    To assess the spatial correlation between MRI and 18F-fludeoxyglucose positron emission tomography (FDG-PET) maps of human brown adipose tissue (BAT) and to measure differences in fat fraction (FF) between glucose avid and non-avid regions of the supraclavicular fat depot using a hybrid FDG-PET/MR scanner. In 16 healthy volunteers, mean age of 30 and body mass index of 26, FF, R2*, and FDG uptake maps were acquired simultaneously using a hybrid PET/MR system while employing an individualized cooling protocol to maximally stimulate BAT. Fourteen of the 16 volunteers reported BAT-positive FDG-PET scans. MR FF maps of BAT correlate well with combined FDG-PET/MR maps of BAT only in subjects with intense glucose uptake. The results indicate that the extent of the spatial correlation positively correlates with maximum FDG uptake in the supraclavicular fat depot. No consistent, significant differences were found in FF or R2* between FDG avid and non-avid supraclavicular fat regions. In a few FDG-positive subjects, a small but significant linear decrease in BAT FF was observed during BAT stimulation. MR FF, when used in conjunction with FDG uptake maps, can be seen as a valuable, radiation-free alternative to CT and can be used to measure tissue hydration and lipid consumption in some subjects. Magn Reson Med 78:1922-1932, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  18. Tactile exploration of virtual objects for blind and sighted people: the role of beta 1 EEG band in sensory substitution and supramodal mental mapping

    PubMed Central

    Brayda, L.; De Carli, F.; Chellali, R.; Famà, F.; Bruzzo, C.; Lucagrossi, L.; Rodriguez, G.

    2012-01-01

    The neural correlates of exploration and cognitive mapping in blindness remain elusive. The role of visuo-spatial pathways in blind vs. sighted subjects is still under debate. In this preliminary study, we investigate, as a possible estimation of the activity in the visuo-spatial pathways, the EEG patterns of blind and blindfolded-sighted subjects during the active tactile construction of cognitive maps from virtual objects compared with rest and passive tactile stimulation. Ten blind and ten matched, blindfolded-sighted subjects participated in the study. Events were defined as moments when the finger was only stimulated (passive stimulation) or the contour of a virtual object was touched (during active exploration). Event-related spectral power and coherence perturbations were evaluated within the beta 1 band (14–18 Hz). They were then related to a subjective cognitive-load estimation required by the explorations [namely, perceived levels of difficulty (PLD)]. We found complementary cues for sensory substitution and spatial processing in both groups: both blind and sighted subjects showed, while exploring, late power decreases and early power increases, potentially associated with motor programming and touch, respectively. The latter involved occipital areas only for blind subjects (long-term plasticity) and only during active exploration, thus supporting tactile-to-visual sensory substitution. In both groups, coherences emerged among the fronto-central, centro-parietal, and occipito-temporal derivations associated with visuo-spatial processing. This seems in accordance with mental map construction involving spatial processing, sensory-motor processing, and working memory. The observed involvement of the occipital regions suggests that a substitution process also occurs in sighted subjects. Only during explorations did coherence correlate positively with PLD for both groups and in derivations, which can be related to visuo-spatial processing, supporting the existence of supramodal spatial processing independently of vision capabilities. PMID:22338024

  19. Thrombin Receptor-Activating Protein (TRAP)-Activated Akt Is Involved in the Release of Phosphorylated-HSP27 (HSPB1) from Platelets in DM Patients

    PubMed Central

    Tokuda, Haruhiko; Kuroyanagi, Gen; Tsujimoto, Masanori; Matsushima-Nishiwaki, Rie; Akamatsu, Shigeru; Enomoto, Yukiko; Iida, Hiroki; Otsuka, Takanobu; Ogura, Shinji; Iwama, Toru; Kojima, Kumi; Kozawa, Osamu

    2016-01-01

    It is generally known that heat shock protein 27 (HSP27) is phosphorylated through p38 mitogen-activated protein (MAP) kinase. We have previously reported that HSP27 is released from human platelets associated with collagen-induced phosphorylation. In the present study, we conducted an investigation into the effect of thrombin receptor-activating protein (TRAP) on the release of HSP27 in platelets in type 2 diabetes mellitus (DM) patients. The phosphorylated-HSP27 levels induced by TRAP were directly proportional to the aggregation of platelets. The levels of phosphorylated-HSP27 (Ser-78) were correlated with the levels of phosphorylated-p38 MAP kinase and phosphorylated-Akt in the platelets stimulated by 10 µM TRAP but not with those of phosphorylated-p44/p42 MAP kinase. The levels of HSP27 released from the TRAP (10 µM)-stimulated platelets were correlated with the levels of phosphorylated-HSP27 in the platelets. The released platelet-derived growth factor-AB (PDGF-AB) levels were in parallel with the HSP27 levels released from the platelets stimulated by 10 µM TRAP. Although the area under the curve (AUC) of small aggregates (9–25 µm) induced by 10 µM TRAP showed no significant correlation with the released HSP27 levels, AUC of medium aggregates (25–50 µm), large aggregates (50–70 µm) and light transmittance were significantly correlated with the released HSP27 levels. TRAP-induced phosphorylation of HSP27 was truly suppressed by deguelin, an inhibitor of Akt, in the platelets from a healthy subject. These results strongly suggest that TRAP-induced activation of Akt in addition to p38 MAP kinase positively regulates the release of phosphorylated-HSP27 from human platelets, which is closely related to the platelet hyper-aggregation in type 2 DM patients. PMID:27187380

  20. Thrombin Receptor-Activating Protein (TRAP)-Activated Akt Is Involved in the Release of Phosphorylated-HSP27 (HSPB1) from Platelets in DM Patients.

    PubMed

    Tokuda, Haruhiko; Kuroyanagi, Gen; Tsujimoto, Masanori; Matsushima-Nishiwaki, Rie; Akamatsu, Shigeru; Enomoto, Yukiko; Iida, Hiroki; Otsuka, Takanobu; Ogura, Shinji; Iwama, Toru; Kojima, Kumi; Kozawa, Osamu

    2016-05-14

    It is generally known that heat shock protein 27 (HSP27) is phosphorylated through p38 mitogen-activated protein (MAP) kinase. We have previously reported that HSP27 is released from human platelets associated with collagen-induced phosphorylation. In the present study, we conducted an investigation into the effect of thrombin receptor-activating protein (TRAP) on the release of HSP27 in platelets in type 2 diabetes mellitus (DM) patients. The phosphorylated-HSP27 levels induced by TRAP were directly proportional to the aggregation of platelets. The levels of phosphorylated-HSP27 (Ser-78) were correlated with the levels of phosphorylated-p38 MAP kinase and phosphorylated-Akt in the platelets stimulated by 10 µM TRAP but not with those of phosphorylated-p44/p42 MAP kinase. The levels of HSP27 released from the TRAP (10 µM)-stimulated platelets were correlated with the levels of phosphorylated-HSP27 in the platelets. The released platelet-derived growth factor-AB (PDGF-AB) levels were in parallel with the HSP27 levels released from the platelets stimulated by 10 µM TRAP. Although the area under the curve (AUC) of small aggregates (9-25 µm) induced by 10 µM TRAP showed no significant correlation with the released HSP27 levels, AUC of medium aggregates (25-50 µm), large aggregates (50-70 µm) and light transmittance were significantly correlated with the released HSP27 levels. TRAP-induced phosphorylation of HSP27 was truly suppressed by deguelin, an inhibitor of Akt, in the platelets from a healthy subject. These results strongly suggest that TRAP-induced activation of Akt in addition to p38 MAP kinase positively regulates the release of phosphorylated-HSP27 from human platelets, which is closely related to the platelet hyper-aggregation in type 2 DM patients.

  1. The ameliorating effects of long-term electroacupuncture on cardiovascular remodeling in spontaneously hypertensive rats

    PubMed Central

    2014-01-01

    Background The purpose of this study was to investigate the inhibitory effects of long-term electroacupuncture at BaiHui (DU20) and ZuSanLi (ST36) on cardiovascular remodeling in spontaneously hypertensive rats (SHR) and underlying mechanisms. Methods 6-weeks-old SHR or Wistar male rats were randomly, divided into 6 groups: the control group (SHR/Wistar), the non-acupoint electroacupuncture stimulation group (SHR-NAP/Wistar-NAP) and the electroacupuncture stimulation at DU20 and ST36 group (SHR-AP/Wistar-AP), 24 rats in each group. Rats were treated with or without electroacupuncture at DU20 and ST36, once every other day for a period of 8 weeks. The mean arterial pressure (MAP) was measured once every 2 weeks. By the end of the 8th week, the left ventricular structure and function were assessed by echocardiography. The content of angiotensin II (Ang II), endothelin-1 (ET-1) and nitric oxide (NO) in the plasma was determined using enzyme-linked immunosorbent assay. Histological studies on the heart and the ascending aorta were performed. The expression of angiotensin II type 1 receptor (AT1R), endothelin-1 type A receptor (ETAR), eNOS and iNOS in rat myocardium and ascending aorta was investigated by Western blotting. Results The MAP in SHR increased linearly over the observation period and significantly reduced following electroacupuncture as compared with sham control SHR rats, while no difference in MAP was observed in Wistar rats between electroacupuncture and sham control. The aortic wall thickness, cardiac hypertrophy and increased collagen level in SHR were attenuated by long term electroacupuncture. The content of Ang II, ET-1 in the plasma decreased, but the content of NO increased after electroacupuncture stimulation in SHR. Long term electroacupuncture significantly inhibited the expression of AT1R, ETAR and iNOS, whereas increased eNOS expression, in myocardium and ascending aorta of SHR. Conclusions The long term electroacupuncture stimulation at DU20 and ST36 relieves the increased MAP and cardiovascular abnormality in both structure and function in SHR, this beneficial action is most likely mediated via modulation of AT1R-AT1R-ET-1-ETAR and NOS/NO pathway. PMID:24685050

  2. Antioxidant and immunoregulatory activity of alkali-extractable polysaccharides from mung bean.

    PubMed

    Yao, Yang; Zhu, Yingying; Ren, Guixing

    2016-03-01

    Alkali-extractable polysaccharides from the seeds of mung beans and two polysaccharide sub-fractions (MAP-1 and MAP-2) were isolated and purified by anion-exchange and gel filtration chromatography. The average molecular weights (Mws) of MAP-1 and MAP-2 were 94.2 kDa and 60.4 kDa, respectively. Monosaccharide component analysis indicated that MAP-1 was composed of Rha, Ara, Glu, Gal, and GalA in a molar ratio of 1.1:0.4:0.7:0.5:0.3. MAP-2 consisted of Xyl, Rha, Gal, Glu and GalA with a relative molar ratio of 0.4:1.4:1.6:0.5:0.2. Antioxidant assays indicated that both MAP-1 and MAP-2 exhibit significant antioxidant activity in a dose-dependent manner. An in vitro study further showed that MAP-1 and MAP-2 were both able to stimulate the production of secretory molecules (NO, TNF-α and IL-6) by RAW 264.7 murine macrophages in a concentration-dependent manner. These findings suggest that the polysaccharides isolated in our study have immunoregulatory effects on macrophages and can be used as a beneficial health food. Copyright © 2015. Published by Elsevier B.V.

  3. Mapping the human brain during a specific Vojta's tactile input: the ipsilateral putamen's role.

    PubMed

    Sanz-Esteban, Ismael; Calvo-Lobo, Cesar; Ríos-Lago, Marcos; Álvarez-Linera, Juan; Muñoz-García, Daniel; Rodríguez-Sanz, David

    2018-03-01

    A century of research in human brain parcellation has demonstrated that different brain areas are associated with functional tasks. New neuroscientist perspectives to achieve the parcellation of the human brain have been developed to know the brain areas activation and its relationship with different stimuli. This descriptive study aimed to compare brain regions activation by specific tactile input (STI) stimuli according to the Vojta protocol (STI-group) to a non-STI stimulation (non-STI-group). An exploratory functional magnetic resonance imaging (fMRI) study was performed. The 2 groups of participants were passively stimulated by an expert physical therapist using the same paradigm structure, although differing in the place of stimulation. The stimulation was presented to participants using a block design in all cases. A sample of 16 healthy participants, 5 men and 11 women, with mean age 31.31 ± 8.13 years was recruited. Indeed, 12 participants were allocated in the STI-group and 4 participants in the non-STI-group. fMRI was used to map the human brain in vivo while these tactile stimuli were being applied. Data were analyzed using a general linear model in SPM12 implemented in MATLAB. Differences between groups showed a greater activation in the right cortical areas (temporal and frontal lobes), subcortical regions (thalamus, brainstem, and basal nuclei), and in the cerebellum (anterior lobe). STI-group had specific difference brain activation areas, such as the ipsilateral putamen. Future studies should study clinical implications in neurorehabilitation patients.

  4. Opioid and orexin hedonic hotspots in rat orbitofrontal cortex and insula

    PubMed Central

    Castro, Daniel C.; Berridge, Kent C.

    2017-01-01

    Hedonic hotspots are brain sites where particular neurochemical stimulations causally amplify the hedonic impact of sensory rewards, such as “liking” for sweetness. Here, we report the mapping of two hedonic hotspots in cortex, where mu opioid or orexin stimulations enhance the hedonic impact of sucrose taste. One hedonic hotspot was found in anterior orbitofrontal cortex (OFC), and another was found in posterior insula. A suppressive hedonic coldspot was also found in the form of an intervening strip stretching from the posterior OFC through the anterior and middle insula, bracketed by the two cortical hotspots. Opioid/orexin stimulations in either cortical hotspot activated Fos throughout a distributed “hedonic circuit” involving cortical and subcortical structures. Conversely, cortical coldspot stimulation activated circuitry for “hedonic suppression.” Finally, food intake was increased by stimulations at several prefrontal cortical sites, indicating that the anatomical substrates in cortex for enhancing the motivation to eat are discriminable from those for hedonic impact. PMID:29073109

  5. Marketing Tools for Increasing Proactivity in Technical Information Centers. (Les Outils de Marketing dans la Stimulation de la Proactivite au Sein des Infocentres)

    DTIC Science & Technology

    1994-02-01

    others in the cluster . Think about this map when you develop your research survey. The positioning map technique can help you discover customer percep...AD-A277 574 ________________!___ Il~llrlrIJill 11 II ’I IlI !Ill ,,______,.____.,,___A.RD AR 32 AGARD-A-2 SADVISORY GROUP FOR AEROSPACE RESEARCH ...Published February 1994 Dlstrihhutlon and Avwilahillv nn RA.k rnytr AGARD-AR-326 ADVISORY GROUP FOR AEROSPACE RESEARCH & DEVELOPMENT 7 RUE ANCELLE

  6. Evoking visual neglect-like deficits in healthy volunteers - an investigation by repetitive navigated transcranial magnetic stimulation.

    PubMed

    Giglhuber, Katrin; Maurer, Stefanie; Zimmer, Claus; Meyer, Bernhard; Krieg, Sandro M

    2017-02-01

    In clinical practice, repetitive navigated transcranial magnetic stimulation (rTMS) is of particular interest for non-invasive mapping of cortical language areas. Yet, rTMS studies try to detect further cortical functions. Damage to the underlying network of visuospatial attention function can result in visual neglect-a severe neurological deficit and influencing factor for a significantly reduced functional outcome. This investigation aims to evaluate the use of rTMS for evoking visual neglect in healthy volunteers and the potential of specifically locating cortical areas that can be assigned for the function of visuospatial attention. Ten healthy, right-handed subjects underwent rTMS visual neglect mapping. Repetitive trains of 5 Hz and 10 pulses were applied to 52 pre-defined cortical spots on each hemisphere; each cortical spot was stimulated 10 times. Visuospatial attention was tested time-locked to rTMS pulses by a landmark task. Task pictures were displayed tachistoscopically for 50 ms. The subjects' performance was analyzed by video, and errors were referenced to cortical spots. We observed visual neglect-like deficits during the stimulation of both hemispheres. Errors were categorized into leftward, rightward, and no response errors. Rightward errors occurred significantly more often during stimulation of the right hemisphere than during stimulation of the left hemisphere (mean rightward error rate (ER) 1.6 ± 1.3 % vs. 1.0 ± 1.0 %, p = 0.0141). Within the left hemisphere, we observed predominantly leftward errors rather than rightward errors (mean leftward ER 2.0 ± 1.3 % vs. rightward ER 1.0 ± 1.0 %; p = 0.0005). Visual neglect can be elicited non-invasively by rTMS, and cortical areas eloquent for visuospatial attention can be detected. Yet, the correlation of this approach with clinical findings has to be shown in upcoming steps.

  7. Motor Cortex Reorganization and Repetitive Transcranial Magnetic Stimulation for Pain-A Methodological Study.

    PubMed

    Nurmikko, Turo; MacIver, Kathryn; Bresnahan, Rebecca; Hird, Emily; Nelson, Andrew; Sacco, Paul

    2016-10-01

    Somatotopic reorganization of primary motor cortex (M1) has been described in several neurological conditions associated with chronic pain. We hypothesized that such reorganization impacts on the mechanisms of M1 stimulation induced analgesia and may either compromise the treatment effect of or provide an alternative target site for repetitive transcranial magnetic stimulation (rTMS). The aim of the study was to compare pain relief following rTMS of the standard motor "hotspot" with that of the reorganized area. We used TMS motor mapping in 30 patients to establish the location of the standard motor "hotspot" (site A) and an alternative site located in the reorganized area (site B), both within M1. Where TMS mapping was not possible (N = 8) we determined the location of the two sites using task-related fMRI. We compared the analgesic effect on neuropathic pain of 5 sessions of navigated rTMS applied over (i) site A, (ii) site B, and (iii) occipital fissure (SHAM stimulation site). Total Pain Relief (TOTPAR) was determined as the difference in average weekly pain scores between baseline and following each rTMS cycle, over three weeks. Data from 27 patients was analyzed. rTMS of sites A and B resulted in greater TOTPAR than that of SHAM. No difference was seen between sites A and B. Responders (≥15% pain relief) were seen in both groups, with partial overlap only. Addition of stimulation over site B improved the responder rate by 58% compared with site A. In an open-label extension study of five sessions of rTMS aimed at the optimized target site, 8/11 responders and 1/12 nonresponders reported pain relief. Cortical reorganization may provide a more effective stimulation target for rTMS in some individuals with neuropathic pain. © 2016 International Neuromodulation Society.

  8. Low-Intensity Repetitive Transcranial Magnetic Stimulation Improves Abnormal Visual Cortical Circuit Topography and Upregulates BDNF in Mice

    PubMed Central

    Makowiecki, Kalina; Harvey, Alan R.; Sherrard, Rachel M.

    2014-01-01

    Repetitive transcranial magnetic stimulation (rTMS) is increasingly used as a treatment for neurological and psychiatric disorders. Although the induced field is focused on a target region during rTMS, adjacent areas also receive stimulation at a lower intensity and the contribution of this perifocal stimulation to network-wide effects is poorly defined. Here, we examined low-intensity rTMS (LI-rTMS)-induced changes on a model neural network using the visual systems of normal (C57Bl/6J wild-type, n = 22) and ephrin-A2A5−/− (n = 22) mice, the latter possessing visuotopic anomalies. Mice were treated with LI-rTMS or sham (handling control) daily for 14 d, then fluorojade and fluororuby were injected into visual cortex. The distribution of dorsal LGN (dLGN) neurons and corticotectal terminal zones (TZs) was mapped and disorder defined by comparing their actual location with that predicted by injection sites. In the afferent geniculocortical projection, LI-rTMS decreased the abnormally high dispersion of retrogradely labeled neurons in the dLGN of ephrin-A2A5−/− mice, indicating geniculocortical map refinement. In the corticotectal efferents, LI-rTMS improved topography of the most abnormal TZs in ephrin-A2A5−/− mice without altering topographically normal TZs. To investigate a possible molecular mechanism for LI-rTMS-induced structural plasticity, we measured brain derived neurotrophic factor (BDNF) in the visual cortex and superior colliculus after single and multiple stimulations. BDNF was upregulated after a single stimulation for all groups, but only sustained in the superior colliculus of ephrin-A2A5−/− mice. Our results show that LI-rTMS upregulates BDNF, promoting a plastic environment conducive to beneficial reorganization of abnormal cortical circuits, information that has important implications for clinical rTMS. PMID:25100609

  9. Recording and Modulation of Epileptiform Activity in Rodent Brain Slices Coupled to Microelectrode Arrays.

    PubMed

    Panuccio, Gabriella; Colombi, Ilaria; Chiappalone, Michela

    2018-05-15

    Temporal lobe epilepsy (TLE) is the most common partial complex epileptic syndrome and the least responsive to medications. Deep brain stimulation (DBS) is a promising approach when pharmacological treatment fails or neurosurgery is not recommended. Acute brain slices coupled to microelectrode arrays (MEAs) represent a valuable tool to study neuronal network interactions and their modulation by electrical stimulation. As compared to conventional extracellular recording techniques, they provide the added advantages of a greater number of observation points and a known inter-electrode distance, which allow studying the propagation path and speed of electrophysiological signals. However, tissue oxygenation may be greatly impaired during MEA recording, requiring a high perfusion rate, which comes at the cost of decreased signal-to-noise ratio and higher oscillations in the experimental temperature. Electrical stimulation further stresses the brain tissue, making it difficult to pursue prolonged recording/stimulation epochs. Moreover, electrical modulation of brain slice activity needs to target specific structures/pathways within the brain slice, requiring that electrode mapping be easily and quickly performed live during the experiment. Here, we illustrate how to perform the recording and electrical modulation of 4-aminopyridine (4AP)-induced epileptiform activity in rodent brain slices using planar MEAs. We show that the brain tissue obtained from mice outperforms rat brain tissue and is thus better suited for MEA experiments. This protocol guarantees the generation and maintenance of a stable epileptiform pattern that faithfully reproduces the electrophysiological features observed with conventional field potential recording, persists for several hours, and outlasts sustained electrical stimulation for prolonged epochs. Tissue viability throughout the experiment is achieved thanks to the use of a small-volume custom recording chamber allowing for laminar flow and quick solution exchange even at low (1 mL/min) perfusion rates. Quick MEA mapping for real-time monitoring and selection of stimulating electrodes is performed by a custom graphic user interface (GUI).

  10. Global, quantitative and dynamic mapping of protein subcellular localization.

    PubMed

    Itzhak, Daniel N; Tyanova, Stefka; Cox, Jürgen; Borner, Georg Hh

    2016-06-09

    Subcellular localization critically influences protein function, and cells control protein localization to regulate biological processes. We have developed and applied Dynamic Organellar Maps, a proteomic method that allows global mapping of protein translocation events. We initially used maps statically to generate a database with localization and absolute copy number information for over 8700 proteins from HeLa cells, approaching comprehensive coverage. All major organelles were resolved, with exceptional prediction accuracy (estimated at >92%). Combining spatial and abundance information yielded an unprecedented quantitative view of HeLa cell anatomy and organellar composition, at the protein level. We subsequently demonstrated the dynamic capabilities of the approach by capturing translocation events following EGF stimulation, which we integrated into a quantitative model. Dynamic Organellar Maps enable the proteome-wide analysis of physiological protein movements, without requiring any reagents specific to the investigated process, and will thus be widely applicable in cell biology.

  11. Awake surgery between art and science. Part II: language and cognitive mapping

    PubMed Central

    Talacchi, Andrea; Santini, Barbara; Casartelli, Marilena; Monti, Alessia; Capasso, Rita; Miceli, Gabriele

    Summary Direct cortical and subcortical stimulation has been claimed to be the gold standard for exploring brain function. In this field, efforts are now being made to move from intraoperative naming-assisted surgical resection towards the use of other language and cognitive tasks. However, before relying on new protocols and new techniques, we need a multi-staged system of evidence (low and high) relating to each step of functional mapping and its clinical validity. In this article we examine the possibilities and limits of brain mapping with the aid of a visual object naming task and various other tasks used to date. The methodological aspects of intraoperative brain mapping, as well as the clinical and operative settings, were discussed in Part I of this review. PMID:24139658

  12. Flexible Neural Electrode Array Based-on Porous Graphene for Cortical Microstimulation and Sensing

    NASA Astrophysics Data System (ADS)

    Lu, Yichen; Lyu, Hongming; Richardson, Andrew G.; Lucas, Timothy H.; Kuzum, Duygu

    2016-09-01

    Neural sensing and stimulation have been the backbone of neuroscience research, brain-machine interfaces and clinical neuromodulation therapies for decades. To-date, most of the neural stimulation systems have relied on sharp metal microelectrodes with poor electrochemical properties that induce extensive damage to the tissue and significantly degrade the long-term stability of implantable systems. Here, we demonstrate a flexible cortical microelectrode array based on porous graphene, which is capable of efficient electrophysiological sensing and stimulation from the brain surface, without penetrating into the tissue. Porous graphene electrodes show superior impedance and charge injection characteristics making them ideal for high efficiency cortical sensing and stimulation. They exhibit no physical delamination or degradation even after 1 million biphasic stimulation cycles, confirming high endurance. In in vivo experiments with rodents, same array is used to sense brain activity patterns with high spatio-temporal resolution and to control leg muscles with high-precision electrical stimulation from the cortical surface. Flexible porous graphene array offers a minimally invasive but high efficiency neuromodulation scheme with potential applications in cortical mapping, brain-computer interfaces, treatment of neurological disorders, where high resolution and simultaneous recording and stimulation of neural activity are crucial.

  13. Numerical dosimetry of transcranial magnetic stimulation coils

    NASA Astrophysics Data System (ADS)

    Crowther, Lawrence; Hadimani, Ravi; Jiles, David

    2014-03-01

    Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulation technique capable of stimulating neurons by means of electromagnetic induction. TMS can be used to map brain function and shows promise for the diagnosis and treatment of neurological and psychiatric disorders. Calculation of fields induced in the brain are necessary to accurately identify stimulated neural tissue during TMS. This allows the development of novel TMS coil designs capable of stimulating deeper brain regions and increasing the localization of stimulation that can be achieved. We have performed numerical calculations of magnetic and electric field with high-resolution anatomically realistic human head models to find these stimulated brain regions for a variety of proposed TMS coil designs. The realistic head models contain heterogeneous tissue structures and electrical conductivities, yielding superior results to those obtained from the simplified homogeneous head models that are commonly employed. The attenuation of electric field as a function of depth in the brain and the localization of stimulating field have been methodically investigated. In addition to providing a quantitative comparison of different TMS coil designs the variation of induced field between subjects has been investigated. We also show the differences in induced fields between adult, adolescent and child head models to preemptively identify potential safety issues in the application of pediatric TMS.

  14. Systematic study of the effects of stimulus parameters and stimulus location on afterdischarges elicited by electrical stimulation in the rat.

    PubMed

    Shigeto, Hiroshi; Boongird, Atthaporn; Baker, Kenneth; Kellinghaus, Christoph; Najm, Imad; Lüders, Hans

    2013-03-01

    Electrical brain stimulation is used in a variety of clinical situations, including cortical mapping for epilepsy surgery, cortical stimulation therapy to terminate seizure activity in the cortex, and in deep brain stimulation therapy. However, the effects of stimulus parameters are not fully understood. In this study, we systematically tested the impact of various stimulation parameters on the generation of motor symptoms and afterdischarges (ADs). Focal electrical stimulation was delivered at subdural cortical, intracortical, and hippocampal sites in a rat model. The effects of stimulus parameter on the generation of motor symptoms and on the occurrence of ADs were examined. The effect of stimulus irregularity was tested using random or regular 50Hz stimulation through subdural electrodes. Hippocampal stimulation produced ADs at lower thresholds than neocortical stimulation. Hippocampal stimulation also produced significantly longer ADs. Both in hippocampal and cortical stimulation, when the total current was kept constant with changing pulse width, the threshold for motor symptom or AD was lowest between 50 and 100Hz and higher at both low and high frequencies. However, if the pulse width was fixed, the threshold did not increase above 100Hz and it apparently continued to decrease through 800Hz even if the difference did not reach statistical significance. There was no significant difference between random and regular stimulation. Overall, these results indicate that electrode location and several stimulus parameters including frequency, pulse width, and total electricity are important in electrical stimulation to produce motor symptoms and ADs. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Temporally Coordinated Deep Brain Stimulation in the Dorsal and Ventral Striatum Synergistically Enhances Associative Learning.

    PubMed

    Katnani, Husam A; Patel, Shaun R; Kwon, Churl-Su; Abdel-Aziz, Samer; Gale, John T; Eskandar, Emad N

    2016-01-04

    The primate brain has the remarkable ability of mapping sensory stimuli into motor behaviors that can lead to positive outcomes. We have previously shown that during the reinforcement of visual-motor behavior, activity in the caudate nucleus is correlated with the rate of learning. Moreover, phasic microstimulation in the caudate during the reinforcement period was shown to enhance associative learning, demonstrating the importance of temporal specificity to manipulate learning related changes. Here we present evidence that extends upon our previous finding by demonstrating that temporally coordinated phasic deep brain stimulation across both the nucleus accumbens and caudate can further enhance associative learning. Monkeys performed a visual-motor associative learning task and received stimulation at time points critical to learning related changes. Resulting performance revealed an enhancement in the rate, ceiling, and reaction times of learning. Stimulation of each brain region alone or at different time points did not generate the same effect.

  16. Bioluminescence of Marine Dinoflagellates

    PubMed Central

    Seliger, H. H.; Fastie, W. G.; Taylor, W. R.; McElroy, W. D.

    1962-01-01

    Portable light-baffled underwater photometers have been designed for the measurement of dinoflagellate bioluminescence by day and night. Maximal light emission is obtained by mechanical stimulation in a defined volume. The pump which stimulates the dinoflagellates also constantly replenishes the sample volume so that continuous measurements are possible. Evidence for both diurnal variation and vertical migration is presented. Using luminous bacteria for calibration a single dinoflagellate has been found to emit of the order of 1010 light quanta per flash. The technique suggests that large scale mapping of bioluminescence is feasible. PMID:19873546

  17. Muscle synergies obtained from comprehensive mapping of the primary motor cortex forelimb representation using high-frequency, long-duration ICMS.

    PubMed

    Amundsen Huffmaster, Sommer L; Van Acker, Gustaf M; Luchies, Carl W; Cheney, Paul D

    2017-07-01

    Simplifying neuromuscular control for movement has previously been explored by extracting muscle synergies from voluntary movement electromyography (EMG) patterns. The purpose of this study was to investigate muscle synergies represented in EMG recordings associated with direct electrical stimulation of single sites in primary motor cortex (M1). We applied single-electrode high-frequency, long-duration intracortical microstimulation (HFLD-ICMS) to the forelimb region of M1 in two rhesus macaques using parameters previously found to produce forelimb movements to stable spatial end points (90-150 Hz, 90-150 μA, 1,000-ms stimulus train lengths). To develop a comprehensive representation of cortical output, stimulation was applied systematically across the full extent of M1. We recorded EMG activity from 24 forelimb muscles together with movement kinematics. Nonnegative matrix factorization (NMF) was applied to the mean stimulus-evoked EMG, and the weighting coefficients associated with each synergy were mapped to the cortical location of the stimulating electrode. Synergies were found for three data sets including 1 ) all stimulated sites in the cortex, 2 ) a subset of sites that produced stable movement end points, and 3 ) EMG activity associated with voluntary reaching. Two or three synergies accounted for 90% of the overall variation in voluntary movement EMG whereas four or five synergies were needed for HFLD-ICMS-evoked EMG data sets. Maps of the weighting coefficients from the full HFLD-ICMS data set show limited regional areas of higher activation for particular synergies. Our results demonstrate fundamental NMF-based muscle synergies in the collective M1 output, but whether and how the central nervous system might coordinate movements using these synergies remains unclear. NEW & NOTEWORTHY While muscle synergies have been investigated in various muscle activity sets, it is unclear whether and how synergies may be organized in the cortex. We have investigated muscle synergies resulting from high-frequency, long-duration intracortical microstimulation (HFLD-ICMS) applied throughout M1. We compared HFLD-ICMS synergies to synergies from voluntary movement. While synergies can be identified from M1 stimulation, they are not clearly related to voluntary movement synergies and do not show an orderly topographic organization across M1. Copyright © 2017 the American Physiological Society.

  18. Deep Stimulation at Newberry Volcano EGS Demonstration

    NASA Astrophysics Data System (ADS)

    Grasso, K.; Cladouhos, T. T.; Petty, S.; Garrison, G. H.; Nordin, Y.; Uddenberg, M.; Swyer, M.

    2014-12-01

    The Newberry Volcano EGS Demonstration is a 5 year field project designed to demonstrate recent technological advances for engineered geothermal systems (EGS) development. Advances in reservoir stimulation, diverter, and monitoring are being tested in a hot (>300 C), dry well (NWG 55-29) drilled in 2008. These technologies could reduce the cost of electrical power generation. The project began in 2010 with two years of permitting, technical planning, and development of a project-specific Induced Seismicity Mitigation Plan (ISMP), and is funded in part by the Department of Energy. In 2012, the well was hydraulically stimulated with water at pressures below the principle stress for 7 weeks, resulting in hydroshearing. The depth of stimulation was successfully shifted by injection of two pills of Thermally-degradable Zonal Isolation Materials (TZIMs). Injectivity changes, thermal profiles and seismicity indicate that fracture permeability in well NWG 55-29 was enhanced during stimulation. This work successfully demonstrated the viability of large-volume (40,000 m3), low-pressure stimulation coupled with non-mechanical diverter technology, and microseismic monitoring for reservoir mapping. Further analysis and field testing in 2013 indicates further stimulation will be required in order to develop an economically viable reservoir, and is scheduled in 2014. The 2014 stimulation will use improved stimulation and monitoring equipment, better knowledge based on 2012 outcomes, and create a deep EGS reservoir in the hottest part of the wellbore.

  19. Neural and Hemodynamic Responses Elicited by Forelimb- and Photo-stimulation in Channelrhodopsin-2 Mice: Insights into the Hemodynamic Point Spread Function

    PubMed Central

    Vazquez, Alberto L.; Fukuda, Mitsuhiro; Crowley, Justin C.; Kim, Seong-Gi

    2014-01-01

    Hemodynamic responses are commonly used to map brain activity; however, their spatial limits have remained unclear because of the lack of a well-defined and malleable spatial stimulus. To examine the properties of neural activity and hemodynamic responses, multiunit activity, local field potential, cerebral blood volume (CBV)-sensitive optical imaging, and laser Doppler flowmetry were measured from the somatosensory cortex of transgenic mice expressing Channelrhodopsin-2 in cortex Layer 5 pyramidal neurons. The magnitude and extent of neural and hemodynamic responses were modulated using different photo-stimulation parameters and compared with those induced by somatosensory stimulation. Photo-stimulation-evoked spiking activity across cortical layers was similar to forelimb stimulation, although their activity originated in different layers. Hemodynamic responses induced by forelimb- and photo-stimulation were similar in magnitude and shape, although the former were slightly larger in amplitude and wider in extent. Altogether, the neurovascular relationship differed between these 2 stimulation pathways, but photo-stimulation-evoked changes in neural and hemodynamic activities were linearly correlated. Hemodynamic point spread functions were estimated from the photo-stimulation data and its full-width at half-maximum ranged between 103 and 175 µm. Therefore, submillimeter functional structures separated by a few hundred micrometers may be resolved using hemodynamic methods, such as optical imaging and functional magnetic resonance imaging. PMID:23761666

  20. Purification and cDNA cloning of SAPKK3, the major activator of RK/p38 in stress- and cytokine-stimulated monocytes and epithelial cells.

    PubMed Central

    Cuenda, A; Alonso, G; Morrice, N; Jones, M; Meier, R; Cohen, P; Nebreda, A R

    1996-01-01

    Two chromatographically distinct stress-activated protein kinase kinases (SAPKKs) have been identified in several mammalian cells, termed SAPKK2 and SAPKK3, which activate the MAP kinase family member RK/p38 but not JNK/SAPK in vitro. Here we demonstrate that SAPKK2 is identical or very closely related to the MAP kinase kinase family member MKK3. However, under our assay conditions, SAPKK3 was the major activator of RK/p38 detected in extracts prepared from stress- or interleukin-1-stimulated epithelial (KB) cells, from bacterial lipopolysaccharide and tumour necrosis factor alpha-stimulated THP1 monocytes or from rabbit skeletal muscle. The activated form of SAPKK3 was purified from muscle to near homogeneity, and tryptic peptide sequences were used to clone human and murine cDNAs encoding this enzyme. Human SAPKK3 comprised 334 amino acids and was 78% identical to MKK3. The murine and human SAPKK3 were 97% identical in their amino acid sequences. We also cloned a different murine cDNA that appears to encode a SAPKK3 protein truncated at the N-terminus. SAPKK3 is identical to the recently cloned MKK6. Images PMID:8861944

  1. Defining meridians: a modern basis of understanding.

    PubMed

    Longhurst, John C

    2010-06-01

    Acupuncture, one of the primary methods of treatment in traditional Oriental medicine, is based on a system of meridians. Along the meridians lie acupuncture points or acupoints, which are stimulated by needling, pressure or heat to resolve a clinical problem. A number of methods have been used to identify meridians and to explain them anatomically. Thus, tendinomuscular structures, primo-vessels (Bonghan ducts), regions of increased temperature and low skin resistance have been suggested to represent meridians or as methods to identify them. However, none of these methods have met the criteria for a meridian, an entity that, when stimulated by acupuncture can result in clinical improvement. More recently, modern physiologists have put forward the "neural hypothesis" stating that the clinical influence of acupuncture is transmitted primarily through stimulation of sensory nerves that provide signals to the brain, which processes this information and then causes clinical changes associated with treatment. Although additional research is warranted to investigate the role of some of the structures identified, it seems clear that the peripheral and central nervous system can now be considered to be the most rational basis for defining meridians. The meridian maps and associated acupoints located along them are best viewed as road maps that can guide practitioners towards applying acupuncture to achieve optimal clinical results. Copyright 2010 Korean Pharmacopuncture Institute. Published by .. All rights reserved.

  2. MAP4-regulated dynein-dependent trafficking of BTN3A1 controls the TBK1–IRF3 signaling axis

    PubMed Central

    Seo, Minji; Lee, Seong-Ok; Kim, Ji-Hoon; Hong, Yujin; Kim, Seongchan; Kim, Yeumin; Min, Dal-Hee; Kong, Young-Yun; Shin, Jinwook; Ahn, Kwangseog

    2016-01-01

    The innate immune system detects viral nucleic acids and induces type I interferon (IFN) responses. The RNA- and DNA-sensing pathways converge on the protein kinase TANK-binding kinase 1 (TBK1) and the transcription factor IFN-regulatory factor 3 (IRF3). Activation of the IFN signaling pathway is known to trigger the redistribution of key signaling molecules to punctate perinuclear structures, but the mediators of this spatiotemporal regulation have yet to be defined. Here we identify butyrophilin 3A1 (BTN3A1) as a positive regulator of nucleic acid-mediated type I IFN signaling. Depletion of BTN3A1 inhibits the cytoplasmic nucleic acid- or virus-triggered activation of IFN-β production. In the resting state, BTN3A1 is constitutively associated with TBK1. Stimulation with nucleic acids induces the redistribution of the BTN3A1–TBK1 complex to the perinuclear region, where BTN3A1 mediates the interaction between TBK1 and IRF3, leading to the phosphorylation of IRF3. Furthermore, we show that microtubule-associated protein 4 (MAP4) controls the dynein-dependent transport of BTN3A1 in response to nucleic acid stimulation, thereby identifying MAP4 as an upstream regulator of BTN3A1. Thus, the depletion of either MAP4 or BTN3A1 impairs cytosolic DNA- or RNA-mediated type I IFN responses. Our findings demonstrate a critical role for MAP4 and BTN3A1 in the spatiotemporal regulation of TBK1, a central player in the intracellular nucleic acid-sensing pathways involved in antiviral signaling. PMID:27911820

  3. Interdependence of Platelet-Derived Growth Factor and Estrogen-Signaling Pathways in Inducing Neonatal Rat Testicular Gonocytes Proliferation1

    PubMed Central

    Thuillier, Raphael; Mazer, Monty; Manku, Gurpreet; Boisvert, Annie; Wang, Yan; Culty, Martine

    2010-01-01

    We previously found that platelet-derived growth factor (PDGF) and 17beta-estradiol stimulate gonocyte proliferation in a dose-dependent, nonadditive manner. In the present study, we report that gonocytes express RAF1, MAP2K1, and MAPK1/3. Inhibition of RAF1 and MAP2K1/2, but not phosphoinositide-3-kinase, blocked PDGF-induced proliferation. AG-370, an inhibitor of PDGF receptor kinase activity, suppressed not only PDGF-induced proliferation but also that induced by 17beta-estradiol. In addition, RAF1 and MAP2K1/2 inhibitors blocked 17beta-estradiol-activated proliferation. The estrogen receptor antagonist ICI 182780 inhibited both the effects of 17beta-estradiol and PDGF. PDGF lost its stimulatory effect when steroid-depleted serum or no serum was used. Similarly, 17beta-estradiol did not induce gonocyte proliferation in the absence of PDGF. The xenoestrogens genistein, bisphenol A, and DES, but not coumestrol, stimulated gonocyte proliferation in a dose-dependent and PDGF-dependent manner similarly to 17beta-estradiol. Their effects were blocked by ICI 182780, suggesting that they act via the estrogen receptor. AG-370 blocked genistein and bisphenol A effects, demonstrating their requirement of PDGF receptor activation in a manner similar to 17beta-estradiol. These results demonstrate the interdependence of PDGF and estrogen pathways in stimulating in vitro gonocyte proliferation, suggesting that this critical step in gonocyte development might be regulated in vivo by the coordinated action of PDGF and estrogen. Thus, the inappropriate exposure of gonocytes to xenoestrogens might disrupt the crosstalk between the two pathways and potentially interfere with gonocyte development. PMID:20089883

  4. Setup presentation and clinical outcome analysis of treating highly language-eloquent gliomas via preoperative navigated transcranial magnetic stimulation and tractography.

    PubMed

    Sollmann, Nico; Kelm, Anna; Ille, Sebastian; Schröder, Axel; Zimmer, Claus; Ringel, Florian; Meyer, Bernhard; Krieg, Sandro M

    2018-06-01

    OBJECTIVE Awake surgery combined with intraoperative direct electrical stimulation (DES) and intraoperative neuromonitoring (IONM) is considered the gold standard for the resection of highly language-eloquent brain tumors. Different modalities, such as functional magnetic resonance imaging (fMRI) or magnetoencephalography (MEG), are commonly added as adjuncts for preoperative language mapping but have been shown to have relevant limitations. Thus, this study presents a novel multimodal setup consisting of preoperative navigated transcranial magnetic stimulation (nTMS) and nTMS-based diffusion tensor imaging fiber tracking (DTI FT) as an adjunct to awake surgery. METHODS Sixty consecutive patients (63.3% men, mean age 47.6 ± 13.3 years) suffering from highly language-eloquent left-hemispheric low- or high-grade glioma underwent preoperative nTMS language mapping and nTMS-based DTI FT, followed by awake surgery for tumor resection. Both nTMS language mapping and DTI FT data were available for resection planning and intraoperative guidance. Clinical outcome parameters, including craniotomy size, extent of resection (EOR), language deficits at different time points, Karnofsky Performance Scale (KPS) score, duration of surgery, and inpatient stay, were assessed. RESULTS According to postoperative evaluation, 28.3% of patients showed tumor residuals, whereas new surgery-related permanent language deficits occurred in 8.3% of patients. KPS scores remained unchanged (median preoperative score 90, median follow-up score 90). CONCLUSIONS This is the first study to present a clinical outcome analysis of this very modern approach, which is increasingly applied in neurooncological centers worldwide. Although human language function is a highly complex and dynamic cortico-subcortical network, the presented approach offers excellent functional and oncological outcomes in patients undergoing surgery of lesions affecting this network.

  5. Stress and vascular responses: atheroprotective effect of laminar fluid shear stress in endothelial cells: possible role of mitogen-activated protein kinases.

    PubMed

    Yoshizumi, Masanori; Abe, Jun-Ichi; Tsuchiya, Koichiro; Berk, Bradford C; Tamaki, Toshiaki

    2003-03-01

    Atherosclerosis preferentially occurs in areas of turbulent blood flow and low fluid shear stress, whereas laminar blood flow and high shear stress are atheroprotective. Inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha), stimulate expression of endothelial cell (EC) genes that may promote atherosclerosis. Recent findings suggest a steady laminar blood flow decreases EC apoptosis and inhibits TNF-mediated EC activation. EC apoptosis or activation is suggested to be involved in plaque erosion, which may lead to platelet aggregation. TNF-alpha regulates gene expression in ECs, in part, by stimulating mitogen-activated protein (MAP) kinases, which phosphorylate transcription factors. We hypothesized that steady laminar flow inhibits cytokine-mediated activation of MAP kinases in ECs. To test this hypothesis, we determined the effects of steady laminar flow (shear stress = 12 dynes/cm(2)) on TNF-alpha-stimulated activity of three MAP kinases in human umbilical vein ECs (HUVEC): extracellular signal-regulated kinase (ERK1/2), c-Jun N-terminal kinase (JNK), and p38. TNF-alpha activated ERK1/2, JNK, and p38 maximally at 15 min in HUVEC. Pre-exposing HUVEC for 10 min to flow inhibited TNF-alpha activation of JNK, but showed no significant effect on ERK1/2 or p38 activation. Incubation of HUVEC with PD98059, a specific ERK1/2 inhibitor, blocked the flow-mediated inhibition of TNF activation of JNK. Transfection studies with dominant-negative constructs of the protein kinase MEK5 suggested an important role for big mitogen-activated protein kinase 1 (BMK1) in flow-mediated regulation of EC activation by TNF-alpha. Understanding the mechanisms by which steady laminar flow regulates JNK activation by cytokines may provide insight into the atheroprotective mechanisms induced by laminar blood flow.

  6. Vagus Nerve Stimulation Delivered During Motor Rehabilitation Improves Recovery in a Rat Model of Stroke

    PubMed Central

    Khodaparast, Navid; Hays, Seth A.; Sloan, Andrew M.; Fayyaz, Tabbassum; Hulsey, Daniel R.; Rennaker, Robert L.; Kilgard, Michael P.

    2014-01-01

    Neural plasticity is widely believed to support functional recovery following brain damage. Vagus nerve stimulation paired with different forelimb movements causes long-lasting map plasticity in rat primary motor cortex that is specific to the paired movement. We tested the hypothesis that repeatedly pairing vagus nerve stimulation with upper forelimb movements would improve recovery of motor function in a rat model of stroke. Rats were separated into three groups: vagus nerve stimulation during rehab, vagus nerve stimulation after rehab, and rehab alone. Animals underwent 4 training stages: shaping (motor skill learning), pre-lesion training, post-lesion training, and therapeutic training. Rats were given a unilateral ischemic lesion within motor cortex and implanted with a left vagus nerve cuff. Animals were allowed one week of recovery before post-lesion baseline training. During the therapeutic training stage, rats received vagus nerve stimulation paired with each successful trial. All seventeen trained rats demonstrated significant contralateral forelimb impairment when performing a bradykinesia assessment task. Forelimb function was recovered completely to pre-lesion levels when vagus nerve stimulation was delivered during rehab training. Alternatively, intensive rehab training alone (without stimulation) failed to restore function to pre-lesion levels. Delivering the same amount of stimulation after rehab training did not yield improvements compared to rehab alone. These results demonstrate that vagus nerve stimulation repeatedly paired with successful forelimb movements can improve recovery after motor cortex ischemia and may be a viable option for stroke rehabilitation. PMID:24553102

  7. Transcriptional enhancer from milk protein genes

    DOEpatents

    Casperson, Gerald F.; Schmidhauser, Christian T.; Bissell, Mina J.

    1999-01-01

    The invention relates to novel enhancer nucleotide sequences which stimulate transcription of heterologous DNA in cells in culture. The enhancers are derived from major milk protein genes by the process of deletion mapping and functional analysis. The invention also relates to expression vectors containing the novel enhancers.

  8. Intraoperative language localization in multilingual patients with gliomas.

    PubMed

    Bello, Lorenzo; Acerbi, Francesco; Giussani, Carlo; Baratta, Pietro; Taccone, Paolo; Songa, Valeria; Fava, Marica; Stocchetti, Nino; Papagno, Costanza; Gaini, Sergio M

    2006-07-01

    Intraoperative localization of speech is problematic in patients who are fluent in different languages. Previous studies have generated various results depending on the series of patients studied, the type of language, and the sensitivity of the tasks applied. It is not clear whether languages are mediated by multiple and separate cortical areas or shared by common areas. Globally considered, previous studies recommended performing a multiple intraoperative mapping for all the languages in which the patient is fluent. The aim of this work was to study the feasibility of performing an intraoperative multiple language mapping in a group of multilingual patients with a glioma undergoing awake craniotomy for tumor removal and to describe the intraoperative cortical and subcortical findings in the area of craniotomy, with the final goal to maximally preserve patients' functional language. Seven late, highly proficient multilingual patients with a left frontal glioma were submitted preoperatively to a battery of tests to evaluate oral language production, comprehension, and repetition. Each language was tested serially starting from the first acquired language. Items that were correctly named during these tests were used to build personalized blocks to be used intraoperatively. Language mapping was undertaken during awake craniotomies by the use of an Ojemann cortical stimulator during counting and oral naming tasks. Subcortical stimulation by using the same current threshold was applied during tumor resection, in a back and forth fashion, and the same tests. Cortical sites essential for oral naming were found in 87.5% of patients, those for the first acquired language in one to four sites, those for the other languages in one to three sites. Sites for each language were distinct and separate. Number and location of sites were not predictable, being randomly and widely distributed in the cortex around or less frequently over the tumor area. Subcortical stimulations found tracts for the first acquired language in four patients and for the other languages in three patients. Three of these patients decreased their fluency immediately after surgery, affecting the first acquired language, which fully recovered in two patients and partially in one. The procedure was agile and well tolerated by the patients. These findings show that multiple cortical and subcortical language mapping during awake craniotomy for tumor removal is a feasible procedure. They support the concept that intraoperative mapping should be performed for all the languages in which the patient is fluent in to preserve functional integrity.

  9. All‐optical functional synaptic connectivity mapping in acute brain slices using the calcium integrator CaMPARI

    PubMed Central

    Sha, Fern; Johenning, Friedrich W.; Schreiter, Eric R.; Looger, Loren L.; Larkum, Matthew E.

    2016-01-01

    Key points The genetically encoded fluorescent calcium integrator calcium‐modulated photoactivatable ratiobetric integrator (CaMPARI) reports calcium influx induced by synaptic and neural activity. Its fluorescence is converted from green to red in the presence of violet light and calcium.The rate of conversion – the sensitivity to activity – is tunable and depends on the intensity of violet light.Synaptic activity and action potentials can independently initiate significant CaMPARI conversion.The level of conversion by subthreshold synaptic inputs is correlated to the strength of input, enabling optical readout of relative synaptic strength.When combined with optogenetic activation of defined presynaptic neurons, CaMPARI provides an all‐optical method to map synaptic connectivity. Abstract The calcium‐modulated photoactivatable ratiometric integrator (CaMPARI) is a genetically encoded calcium integrator that facilitates the study of neural circuits by permanently marking cells active during user‐specified temporal windows. Permanent marking enables measurement of signals from large swathes of tissue and easy correlation of activity with other structural or functional labels. One potential application of CaMPARI is labelling neurons postsynaptic to specific populations targeted for optogenetic stimulation, giving rise to all‐optical functional connectivity mapping. Here, we characterized the response of CaMPARI to several common types of neuronal calcium signals in mouse acute cortical brain slices. Our experiments show that CaMPARI is effectively converted by both action potentials and subthreshold synaptic inputs, and that conversion level is correlated to synaptic strength. Importantly, we found that conversion rate can be tuned: it is linearly related to light intensity. At low photoconversion light levels CaMPARI offers a wide dynamic range due to slower conversion rate; at high light levels conversion is more rapid and more sensitive to activity. Finally, we employed CaMPARI and optogenetics for functional circuit mapping in ex vivo acute brain slices, which preserve in vivo‐like connectivity of axon terminals. With a single light source, we stimulated channelrhodopsin‐2‐expressing long‐range posteromedial (POm) thalamic axon terminals in cortex and induced CaMPARI conversion in recipient cortical neurons. We found that POm stimulation triggers robust photoconversion of layer 5 cortical neurons and weaker conversion of layer 2/3 neurons. Thus, CaMPARI enables network‐wide, tunable, all‐optical functional circuit mapping that captures supra‐ and subthreshold depolarization. PMID:27861906

  10. Primary writing tremor: motor cortex reorganisation and disinhibition.

    PubMed

    Byrnes, Michelle L; Mastaglia, Frank L; Walters, Susan E; Archer, Sarah-Anne R; Thickbroom, Gary W

    2005-01-01

    Primary writing tremor (PWT) is a task-specific tremor of uncertain origin. There has been debate as to whether PWT represents a variant of essential tremor or a tremulous form of focal dystonia related to writer's cramp. In writer's cramp there is evidence of changes in intracortical inhibition (ICI), as well as cortical motor reorganisation. To study corticomotor organisation and short-latency ICI in a patient with typical task-specific PWT. Transcranial magnetic stimulation mapping of the corticomotor representation of the hand and studies of ICI using paired-pulse stimulation were performed in a 47-year-old right-handed woman with a pure task-specific writing tremor. The motor maps for the hand were displaced posteriorly on both sides and reverted to a normal position after treatment with botulinum toxin. Short-latency ICI was reduced for the dominant hand. The findings indicate reorganisation and disinhibition of the corticomotor projection to the hand and point to the participation of cortical centres in the origin of PWT.

  11. Research and implementation of role-playing teaching mode supported by gamification

    NASA Astrophysics Data System (ADS)

    Cui, Xu; Zhang, Zhenglei; Sun, Lei

    2017-08-01

    The paper designs a Role-playing Teaching Mode Supported by Gamification to stimulate the interest of learners. In the process of creating the teaching mode, the factors of incentive factors, teaching mode and course selection are the most important factors gained by investigate and research. Then under the guidance of the three factors, a leaning framework of role-playing teaching mode which is called Gamification Learning Framework (GM1.0) is determined. In the design of GM1.0, First, collect problem cases which students interested in and select three courses which are Algorithm Design, Data Structure and Program Design. Then, extract the knowledge points of the three courses and merge into the problem cases to form game maps. Last, Learners gain a role-playing actor to join games with the support of game maps and finish selected tasks reaching a higher task level by upgrade checkpoints, experience promotions and award medals changing. After that, learners’ enthusiasm for learning can be stimulated and the innovation abilities can also be improved gradually.

  12. A studyforrest extension, retinotopic mapping and localization of higher visual areas

    PubMed Central

    Sengupta, Ayan; Kaule, Falko R.; Guntupalli, J. Swaroop; Hoffmann, Michael B.; Häusler, Christian; Stadler, Jörg; Hanke, Michael

    2016-01-01

    The studyforrest (http://studyforrest.org) dataset is likely the largest neuroimaging dataset on natural language and story processing publicly available today. In this article, along with a companion publication, we present an update of this dataset that extends its scope to vision and multi-sensory research. 15 participants of the original cohort volunteered for a series of additional studies: a clinical examination of visual function, a standard retinotopic mapping procedure, and a localization of higher visual areas—such as the fusiform face area. The combination of this update, the previous data releases for the dataset, and the companion publication, which includes neuroimaging and eye tracking data from natural stimulation with a motion picture, form an extremely versatile and comprehensive resource for brain imaging research—with almost six hours of functional neuroimaging data across five different stimulation paradigms for each participant. Furthermore, we describe employed paradigms and present results that document the quality of the data for the purpose of characterising major properties of participants’ visual processing stream. PMID:27779618

  13. Dynamic and Inherent B0 Correction for DTI Using Stimulated Echo Spiral Imaging

    PubMed Central

    Avram, Alexandru V.; Guidon, Arnaud; Truong, Trong-Kha; Liu, Chunlei; Song, Allen W.

    2013-01-01

    Purpose To present a novel technique for high-resolution stimulated echo (STE) diffusion tensor imaging (DTI) with self-navigated interleaved spirals (SNAILS) readout trajectories that can inherently and dynamically correct for image artifacts due to spatial and temporal variations in the static magnetic field (B0) resulting from eddy currents, tissue susceptibilities, subject/physiological motion, and hardware instabilities. Methods The Hahn spin echo formed by the first two 90° radio-frequency pulses is balanced to consecutively acquire two additional images with different echo times (TE) and generate an inherent field map, while the diffusion-prepared STE signal remains unaffected. For every diffusion-encoding direction, an intrinsically registered field map is estimated dynamically and used to effectively and inherently correct for off-resonance artifacts in the reconstruction of the corresponding diffusion-weighted image (DWI). Results After correction with the dynamically acquired field maps, local blurring artifacts are specifically removed from individual STE DWIs and the estimated diffusion tensors have significantly improved spatial accuracy and larger fractional anisotropy. Conclusion Combined with the SNAILS acquisition scheme, our new method provides an integrated high-resolution short-TE DTI solution with inherent and dynamic correction for both motion-induced phase errors and off-resonance effects. PMID:23630029

  14. Fast periodic stimulation (FPS): a highly effective approach in fMRI brain mapping.

    PubMed

    Gao, Xiaoqing; Gentile, Francesco; Rossion, Bruno

    2018-06-01

    Defining the neural basis of perceptual categorization in a rapidly changing natural environment with low-temporal resolution methods such as functional magnetic resonance imaging (fMRI) is challenging. Here, we present a novel fast periodic stimulation (FPS)-fMRI approach to define face-selective brain regions with natural images. Human observers are presented with a dynamic stream of widely variable natural object images alternating at a fast rate (6 images/s). Every 9 s, a short burst of variable face images contrasting with object images in pairs induces an objective face-selective neural response at 0.111 Hz. A model-free Fourier analysis achieves a twofold increase in signal-to-noise ratio compared to a conventional block-design approach with identical stimuli and scanning duration, allowing to derive a comprehensive map of face-selective areas in the ventral occipito-temporal cortex, including the anterior temporal lobe (ATL), in all individual brains. Critically, periodicity of the desired category contrast and random variability among widely diverse images effectively eliminates the contribution of low-level visual cues, and lead to the highest values (80-90%) of test-retest reliability in the spatial activation map yet reported in imaging higher level visual functions. FPS-fMRI opens a new avenue for understanding brain function with low-temporal resolution methods.

  15. Mapping the human brain during a specific Vojta's tactile input: the ipsilateral putamen's role

    PubMed Central

    Sanz-Esteban, Ismael; Calvo-Lobo, Cesar; Ríos-Lago, Marcos; Álvarez-Linera, Juan; Muñoz-García, Daniel; Rodríguez-Sanz, David

    2018-01-01

    Abstract A century of research in human brain parcellation has demonstrated that different brain areas are associated with functional tasks. New neuroscientist perspectives to achieve the parcellation of the human brain have been developed to know the brain areas activation and its relationship with different stimuli. This descriptive study aimed to compare brain regions activation by specific tactile input (STI) stimuli according to the Vojta protocol (STI-group) to a non-STI stimulation (non-STI-group). An exploratory functional magnetic resonance imaging (fMRI) study was performed. The 2 groups of participants were passively stimulated by an expert physical therapist using the same paradigm structure, although differing in the place of stimulation. The stimulation was presented to participants using a block design in all cases. A sample of 16 healthy participants, 5 men and 11 women, with mean age 31.31 ± 8.13 years was recruited. Indeed, 12 participants were allocated in the STI-group and 4 participants in the non-STI-group. fMRI was used to map the human brain in vivo while these tactile stimuli were being applied. Data were analyzed using a general linear model in SPM12 implemented in MATLAB. Differences between groups showed a greater activation in the right cortical areas (temporal and frontal lobes), subcortical regions (thalamus, brainstem, and basal nuclei), and in the cerebellum (anterior lobe). STI-group had specific difference brain activation areas, such as the ipsilateral putamen. Future studies should study clinical implications in neurorehabilitation patients. PMID:29595683

  16. Non-invasive mapping of bilateral motor speech areas using navigated transcranial magnetic stimulation and functional magnetic resonance imaging.

    PubMed

    Könönen, Mervi; Tamsi, Niko; Säisänen, Laura; Kemppainen, Samuli; Määttä, Sara; Julkunen, Petro; Jutila, Leena; Äikiä, Marja; Kälviäinen, Reetta; Niskanen, Eini; Vanninen, Ritva; Karjalainen, Pasi; Mervaala, Esa

    2015-06-15

    Navigated transcranial magnetic stimulation (nTMS) is a modern precise method to activate and study cortical functions noninvasively. We hypothesized that a combination of nTMS and functional magnetic resonance imaging (fMRI) could clarify the localization of functional areas involved with motor control and production of speech. Navigated repetitive TMS (rTMS) with short bursts was used to map speech areas on both hemispheres by inducing speech disruption during number recitation tasks in healthy volunteers. Two experienced video reviewers, blinded to the stimulated area, graded each trial offline according to possible speech disruption. The locations of speech disrupting nTMS trials were overlaid with fMRI activations of word generation task. Speech disruptions were produced on both hemispheres by nTMS, though there were more disruptive stimulation sites on the left hemisphere. Grade of the disruptions varied from subjective sensation to mild objectively recognizable disruption up to total speech arrest. The distribution of locations in which speech disruptions could be elicited varied among individuals. On the left hemisphere the locations of disturbing rTMS bursts with reviewers' verification followed the areas of fMRI activation. Similar pattern was not observed on the right hemisphere. The reviewer-verified speech disruptions induced by nTMS provided clinically relevant information, and fMRI might explain further the function of the cortical area. nTMS and fMRI complement each other, and their combination should be advocated when assessing individual localization of speech network. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Low-Dose Curcumin Stimulates Proliferation, Migration and Phagocytic Activity of Olfactory Ensheathing Cells

    PubMed Central

    Tello Velasquez, Johana; Watts, Michelle E.; Todorovic, Michael; Nazareth, Lynnmaria; Pastrana, Erika; Diaz-Nido, Javier; Lim, Filip; Ekberg, Jenny A. K.; Quinn, Ronald J.; John, James A. St

    2014-01-01

    One of the promising strategies for neural repair therapies is the transplantation of olfactory ensheathing cells (OECs) which are the glial cells of the olfactory system. We evaluated the effects of curcumin on the behaviour of mouse OECs to determine if it could be of use to further enhance the therapeutic potential of OECs. Curcumin, a natural polyphenol compound found in the spice turmeric, is known for its anti-cancer properties at doses over 10 µM, and often at 50 µM, and it exerts its effects on cancer cells in part by activation of MAP kinases. In contrast, we found that low-dose curcumin (0.5 µM) applied to OECs strikingly modulated the dynamic morphology, increased the rate of migration by up to 4-fold, and promoted significant proliferation of the OECs. Most dramatically, low-dose curcumin stimulated a 10-fold increase in the phagocytic activity of OECs. All of these potently stimulated behavioural characteristics of OECs are favourable for neural repair therapies. Importantly, low-dose curcumin gave a transient activation of p38 kinases, which is in contrast to the high dose curcumin effects on cancer cells in which these MAP kinases tend to undergo prolonged activation. Low-dose curcumin mediated effects on OECs demonstrate cell-type specific stimulation of p38 and ERK kinases. These results constitute the first evidence that low-dose curcumin can modulate the behaviour of olfactory glia into a phenotype potentially more favourable for neural repair and thereby improve the therapeutic use of OECs for neural repair therapies. PMID:25360677

  18. Cot/tpl2 activity is required for TLR-induced activation of the Akt p70 S6k pathway in macrophages: Implications for NO synthase 2 expression.

    PubMed

    López-Peláez, Marta; Soria-Castro, Irene; Boscá, Lisardo; Fernández, Margarita; Alemany, Susana

    2011-06-01

    LPS stimulation activates IKK and different MAP kinase pathways, as well as the PI3K-Akt-mTOR-p70 S6k pathway, a negative regulator of these MyD88-dependent intracellular signals. Here, we show that Cot/tpl2, a MAP3K responsible for the activation of the MKK1-Erk1/2, controls P-Ser473 Akt and P-Thr389 p70 S6k phosphorylation in LPS-stimulated macrophages. Analysis of the intracellular signalling in Cot/tpl2 KO macrophages versus WT macrophages reveals lower IκBα recovery and higher phosphorylation of JNK and p38α after 1 h of LPS stimulation. Moreover, Cot/tpl2 deficiency increases LPS-induced NO synthase 2 (NOS2) expression in macrophages. Inhibition of the PI3K pathway abolishes the differences in IκBα and NOS2 expression between Cot/tpl2 KO and WT macrophages following LPS administration. Furthermore, in zymosan- and polyI:C-stimulated macrophages, Cot/tpl2 mediates P-Ser473 Akt phosphorylation, increases IκBα levels and decreases NOS2 expression. In conclusion, these data reveal a novel role for the Cot/tpl2 pathway in mediating TLR activation of the Akt-mTOR-p70 S6k pathway, allowing Cot/tpl2 to fine-control the activation state of other signalling pathways. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Role of the left frontal aslant tract in stuttering: a brain stimulation and tractographic study.

    PubMed

    Kemerdere, Rahsan; de Champfleur, Nicolas Menjot; Deverdun, Jérémy; Cochereau, Jérôme; Moritz-Gasser, Sylvie; Herbet, Guillaume; Duffau, Hugues

    2016-01-01

    The neural correlates of stuttering are to date incompletely understood. Although the possible involvement of the basal ganglia, the cerebellum and certain parts of the cerebral cortex in this speech disorder has previously been reported, there are still not many studies investigating the role of white matter fibers in stuttering. Axonal stimulation during awake surgery provides a unique opportunity to study the functional role of structural connectivity. Here, our goal was to investigate the white matter tracts implicated in stuttering, by combining direct electrostimulation mapping and postoperative tractography imaging, with a special focus on the left frontal aslant tract. Eight patients with no preoperative stuttering underwent awake surgery for a left frontal low-grade glioma. Intraoperative cortical and axonal electrical mapping was used to interfere in speech processing and subsequently provoke stuttering. We further assessed the relationship between the subcortical sites leading to stuttering and the spatial course of the frontal aslant tract. All patients experienced intraoperative stuttering during axonal electrostimulation. On postsurgical tractographies, the subcortical distribution of stimulated sites matched the topographical position of the left frontal aslant tract. This white matter pathway was preserved during surgery, and no patients had postoperative stuttering. For the first time to our knowledge, by using direct axonal stimulation combined with postoperative tractography, we provide original data supporting a pivotal role of the left frontal aslant tract in stuttering. We propose that this speech disorder could be the result of a disconnection within a large-scale cortico-subcortical circuit subserving speech motor control.

  20. Single-sensor system for spatially resolved, continuous, and multiparametric optical mapping of cardiac tissue

    PubMed Central

    Lee, Peter; Bollensdorff, Christian; Quinn, T. Alexander; Wuskell, Joseph P.; Loew, Leslie M.; Kohl, Peter

    2011-01-01

    Background Simultaneous optical mapping of multiple electrophysiologically relevant parameters in living myocardium is desirable for integrative exploration of mechanisms underlying heart rhythm generation under normal and pathophysiologic conditions. Current multiparametric methods are technically challenging, usually involving multiple sensors and moving parts, which contributes to high logistic and economic thresholds that prevent easy application of the technique. Objective The purpose of this study was to develop a simple, affordable, and effective method for spatially resolved, continuous, simultaneous, and multiparametric optical mapping of the heart, using a single camera. Methods We present a new method to simultaneously monitor multiple parameters using inexpensive off-the-shelf electronic components and no moving parts. The system comprises a single camera, commercially available optical filters, and light-emitting diodes (LEDs), integrated via microcontroller-based electronics for frame-accurate illumination of the tissue. For proof of principle, we illustrate measurement of four parameters, suitable for ratiometric mapping of membrane potential (di-4-ANBDQPQ) and intracellular free calcium (fura-2), in an isolated Langendorff-perfused rat heart during sinus rhythm and ectopy, induced by local electrical or mechanical stimulation. Results The pilot application demonstrates suitability of this imaging approach for heart rhythm research in the isolated heart. In addition, locally induced excitation, whether stimulated electrically or mechanically, gives rise to similar ventricular propagation patterns. Conclusion Combining an affordable camera with suitable optical filters and microprocessor-controlled LEDs, single-sensor multiparametric optical mapping can be practically implemented in a simple yet powerful configuration and applied to heart rhythm research. The moderate system complexity and component cost is destined to lower the threshold to broader application of functional imaging and to ease implementation of more complex optical mapping approaches, such as multiparametric panoramic imaging. A proof-of-principle application confirmed that although electrically and mechanically induced excitation occur by different mechanisms, their electrophysiologic consequences downstream from the point of activation are not dissimilar. PMID:21459161

  1. Electrocorticographic high gamma activity versus electrical cortical stimulation mapping of naming.

    PubMed

    Sinai, Alon; Bowers, Christopher W; Crainiceanu, Ciprian M; Boatman, Dana; Gordon, Barry; Lesser, Ronald P; Lenz, Frederick A; Crone, Nathan E

    2005-07-01

    Subdural electrocorticographic (ECoG) recordings in patients undergoing epilepsy surgery have shown that functional activation is associated with event-related broadband gamma activity in a higher frequency range (>70 Hz) than previously studied in human scalp EEG. To investigate the utility of this high gamma activity (HGA) for mapping language cortex, we compared its neuroanatomical distribution with functional maps derived from electrical cortical stimulation (ECS), which remains the gold standard for predicting functional impairment after surgery for epilepsy, tumours or vascular malformations. Thirteen patients had undergone subdural electrode implantation for the surgical management of intractable epilepsy. Subdural ECoG signals were recorded while each patient verbally named sequentially presented line drawings of objects, and estimates of event-related HGA (80-100 Hz) were made at each recording site. Routine clinical ECS mapping used a subset of the same naming stimuli at each cortical site. If ECS disrupted mouth-related motor function, i.e. if it affected the mouth, lips or tongue, naming could not be tested with ECS at the same cortical site. Because naming during ECoG involved these muscles of articulation, the sensitivity and specificity of ECoG HGA were estimated relative to both ECS-induced impairments of naming and ECS disruption of mouth-related motor function. When these estimates were made separately for 12 electrode sites per patient (the average number with significant HGA), the specificity of ECoG HGA with respect to ECS was 78% for naming and 81% for mouth-related motor function, and equivalent sensitivities were 38% and 46%, respectively. When ECS maps of naming and mouth-related motor function were combined, the specificity and sensitivity of ECoG HGA with respect to ECS were 84% and 43%, respectively. This study indicates that event-related ECoG HGA during confrontation naming predicts ECS interference with naming and mouth-related motor function with good specificity but relatively low sensitivity. Its favourable specificity suggests that ECoG HGA can be used to construct a preliminary functional map that may help identify cortical sites of lower priority for ECS mapping. Passive recordings of ECoG gamma activity may be done simultaneously at all electrode sites without the risk of after-discharges associated with ECS mapping, which must be done sequentially at pairs of electrodes. We discuss the relative merits of these two functional mapping techniques.

  2. Sensitivity to pulse phase duration in cochlear implant listeners: Effects of stimulation mode

    PubMed Central

    Chatterjee, Monita; Kulkarni, Aditya M.

    2014-01-01

    The objective of this study was to investigate charge-integration at threshold by cochlear implant listeners using pulse train stimuli in different stimulation modes (monopolar, bipolar, tripolar). The results partially confirmed and extended the findings of previous studies conducted in animal models showing that charge-integration depends on the stimulation mode. The primary overall finding was that threshold vs pulse phase duration functions had steeper slopes in monopolar mode and shallower slopes in more spatially restricted modes. While the result was clear-cut in eight users of the Cochlear CorporationTM device, the findings with the six user of the Advanced BionicsTM device who participated were less consistent. It is likely that different stimulation modes excite different neuronal populations and/or sites of excitation on the same neuron (e.g., peripheral process vs central axon). These differences may influence not only charge integration but possibly also temporal dynamics at suprathreshold levels and with more speech-relevant stimuli. Given the present interest in focused stimulation modes, these results have implications for cochlear implant speech processor design and protocols used to map acoustic amplitude to electric stimulation parameters. PMID:25096116

  3. Patterned optogenetic modulation of neurovascular and metabolic signals

    PubMed Central

    Richner, Thomas J; Baumgartner, Ryan; Brodnick, Sarah K; Azimipour, Mehdi; Krugner-Higby, Lisa A; Eliceiri, Kevin W; Williams, Justin C; Pashaie, Ramin

    2015-01-01

    The hemodynamic and metabolic response of the cortex depends spatially and temporally on the activity of multiple cell types. Optogenetics enables specific cell types to be modulated with high temporal precision and is therefore an emerging method for studying neurovascular and neurometabolic coupling. Going beyond temporal investigations, we developed a microprojection system to apply spatial photostimulus patterns in vivo. We monitored vascular and metabolic fluorescence signals after photostimulation in Thy1-channelrhodopsin-2 mice. Cerebral arteries increased in diameter rapidly after photostimulation, while nearby veins showed a slower smaller response. The amplitude of the arterial response was depended on the area of cortex stimulated. The fluorescence signal emitted at 450/100 nm and excited with ultraviolet is indicative of reduced nicotinamide adenine dinucleotide, an endogenous fluorescent enzyme involved in glycolysis and the citric acid cycle. This fluorescence signal decreased quickly and transiently after optogenetic stimulation, suggesting that glucose metabolism is tightly locked to optogenetic stimulation. To verify optogenetic stimulation of the cortex, we used a transparent substrate microelectrode array to map cortical potentials resulting from optogenetic stimulation. Spatial optogenetic stimulation is a new tool for studying neurovascular and neurometabolic coupling. PMID:25388678

  4. Precision rodent whisker stimulator with integrated servo-locked control and displacement measurement.

    PubMed

    Walker, Jennifer L; Monjaraz-Fuentes, Fernanda; Pedrow, Christi R; Rector, David M

    2011-03-15

    We developed a high speed voice coil based whisker stimulator that delivers precise deflections of a single whisker or group of whiskers in a repeatable manner. The device is miniature, quiet, and inexpensive to build. Multiple stimulators fit together for independent stimulation of four or more whiskers. The system can be used with animals under anesthesia as well as awake animals with head-restraint, and does not require trimming the whiskers. The system can deliver 1-2 mm deflections in 2 ms resulting in velocities up to 900 mm/s to attain a wide range of evoked responses. Since auditory artifacts can influence behavioral studies using whisker stimulation, we tested potential effects of auditory noise by recording somatosensory evoked potentials (SEP) with varying auditory click levels, and with/without 80 dBa background white noise. We found that auditory clicks as low as 40 dBa significantly influence the SEP. With background white noise, auditory clicks as low as 50 dBa were still detected in components of the SEP. For behavioral studies where animals must learn to respond to whisker stimulation, these sounds must be minimized. Together, the stimulator and data system can be used for psychometric vigilance tasks, mapping of the barrel cortex and other electrophysiological paradigms. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Brainstem stimulation increases functional connectivity of basal forebrain-paralimbic network in isoflurane-anesthetized rats.

    PubMed

    Pillay, Siveshigan; Liu, Xiping; Baracskay, Péter; Hudetz, Anthony G

    2014-09-01

    Brain states and cognitive-behavioral functions are precisely controlled by subcortical neuromodulatory networks. Manipulating key components of the ascending arousal system (AAS), via deep-brain stimulation, may help facilitate global arousal in anesthetized animals. Here we test the hypothesis that electrical stimulation of the oral part of the pontine reticular nucleus (PnO) under light isoflurane anesthesia, associated with loss of consciousness, leads to cortical desynchronization and specific changes in blood-oxygenation-level-dependent (BOLD) functional connectivity (FC) of the brain. BOLD signals were acquired simultaneously with frontal epidural electroencephalogram before and after PnO stimulation. Whole-brain FC was mapped using correlation analysis with seeds in major centers of the AAS. PnO stimulation produced cortical desynchronization, a decrease in δ- and θ-band power, and an increase in approximate entropy. Significant increases in FC after PnO stimulation occurred between the left nucleus Basalis of Meynert (NBM) as seed and numerous regions of the paralimbic network. Smaller increases in FC were present between the central medial thalamic nucleus and retrosplenium seeds and the left caudate putamen and NBM. The results suggest that, during light anesthesia, PnO stimulation preferentially modulates basal forebrain-paralimbic networks. We speculate that this may be a reflection of disconnected awareness.

  6. Olprinone/dopamine combination for improving diaphragmatic fatigue in pentobarbital-anesthetized dogs.

    PubMed

    Fujii, Yoshitaka

    2006-05-01

    Diaphragmatic fatigue might contribute to the development of respiratory failure. In particular, the spontaneous, natural rate of phrenic nerve discharge occurs mainly in low-frequency ranges making low-frequency fatigue clinically important in both humans and animals. Olprinone, a phosphodiesterase 3 inhibitor, improves contractility in fatigued diaphragm, but is also associated with hypotension. Dopamine might be used concomitantly for treating related hypotension. The purpose of the study was to assess the effect of olprinoneplus dopamine on diaphragmatic fatigue in pentobarbital-anesthetized dogs. This nonblinded study was conducted at the Department ofAnesthesiology, Institute of Clinical Medicine, Tsukuba, Japan. Diaphragmatic fatigue (assessed by a decrease in diaphragmatic contractility) was induced by intermittent supramaximal bilateral electrophrenic stimulation at a frequency of 20 Hz applied for 30 minutes. Immediately after the fatigue-producing period, groups 2, 3, and 4 received an initial 10 μg/kg dose of olprinone. Group 2 then received maintenance olprinone of 0.3 μg/kg · min; group 3 received maintenance olprinone 0.3 μg/kg · min plus dopamine 2 μg/kg · min; and group 4 received maintenance olprinone 0.3 μg/kg · min plus dopamine 5 μg/kg · min. Group 1 received no study drug. Olprinone and dopamine were administered IV for 30 minutes. Diaphragmatic contractility was assessed by measuring the maximal transdiaphragmatic pressure (Pdi) generated by test stimuli after airway occlusion at functional residual capacity. Hypotension induced by the study drugs was defined as a >10 mm Hg decrease in mean arterial pressure (MAP), calculated by diastolic pressure plus ⅓ pulse pressure, from baseline. Twenty-eight mongrel dogs (18 males and 10 females, weighing 10-15 kg)were used in the study; 7 dogs were randomly assigned to each treatment group. When fatigue was established in each group, mean (SD) Pdi at low-frequency (20 Hz) stimulation decreased significantly from baseline in all groups (group 1: 15.6 [2.2] vs 11.7 [2.4] cm H2O, P = 0.008; group 2: 15.4 [1.5] vs 11.6 [1.3] cm H2O, P= 0.005; group 3:15.5 [2.0] vs 11.6 [1.8] cm H2O, P= 0.006; group 4: 15.7 [1.4] vs 12.0 [1.4] cm H2O, P= 0.008), while no significant change existed in Pdi at high-frequency (100 Hz) stimulation (P = NS). After study drug administration, Pdi in groups 2, 3, and 4 increased significantly from fatigued values at both 20 Hz stimulation (group 2: 11.6 [1.3] vs 21.8 [2.0] cm H2O, P = 0.001; group 3: 11.6 [1.8] vs 22.2 [1.8] cm H2O, P = 0.001; group 4: 12.0 [1.4] vs 25.9 [1.9 ] cm H2O, P = 0.001) and 100 Hz stimulation (group 2: 22.0 [2.2] vs 29.0 [1.9] cm H2O, P = 0.002; group 3: 22.1 [2.0] vs 29.3 [2.2] cm H2O, P = 0.002; group 4: 21.8 [2.2] vs 31.7 [2.4] cm H2O, P= 0.001). The increase in Pdi was significantly larger in group 4 compared with the other 3 groups (all, P < 0.05). Hypotension was not observed in group 4. MAP did not change significantly in group 1 or group 4 compared with baseline or fatigued MAP values (P = NS). Groups 2 and 3 had significant decreases in MAP with treatment compared with values in group 1 and with baseline and fatigued MAP values (all, P < 0.05). The MAP of group 4 was significantly greater than the MAP of groups 2 and 3 with treatment (both, P < 0.05). Olprinone 0.3 μg/kg sd min plus dopamine 5 μg/kg · min improved contractility in fatigued diaphragms and was not associated with hypotension in these pentobarbital-anesthetized dogs. Olprinone monotherapy and olprinone 0.3 μg/kg · min plus dopamine 2 μg/kg · min might improve contractility significantly. However, it was also associated with significant decreases in MAP.

  7. CsMAP34, a teleost MAP with dual role: A promoter of MASP-assisted complement activation and a regulator of immune cell activity.

    PubMed

    Li, Mo-Fei; Li, Jun; Sun, Li

    2016-12-23

    In teleost fish, the immune functions of mannan-binding lectin (MBL) associated protein (MAP) and MBL associated serine protease (MASP) are scarcely investigated. In the present study, we examined the biological properties both MAP (CsMAP34) and MASP (CsMASP1) molecules from tongue sole (Cynoglossus semilaevis). We found that CsMAP34 and CsMASP1 expressions occurred in nine different tissues and were upregulated by bacterial challenge. CsMAP34 protein was detected in blood, especially during bacterial infection. Recombinant CsMAP34 (rCsMAP34) bound C. semilaevis MBL (rCsBML) when the latter was activated by bacteria, while recombinant CsMASP1 (rCsMASP1) bound activated rCsBML only in the presence of rCsMAP34. rCsMAP34 stimulated the hemolytic and bactericidal activities of serum complement, whereas anti-CsMAP34 antibody blocked complement activities. Knockdown of CsMASP1 in C. semilaevis resulted in significant inhibition of complement activities. Furthermore, rCsMAP34 interacted directly with peripheral blood leukocytes (PBL) and enhanced the respiratory burst, acid phosphatase activity, chemotactic activity, and gene expression of PBL. These results indicate for the first time that a teleost MAP acts one hand as a regulator that promotes the lectin pathway of complement activation via its ability to recruit MBL to MASP, and other hand as a modulator of immune cell activity.

  8. Distraction versus Intensity: The Importance of Exercise Classes for Cognitive Performance in School.

    PubMed

    Wollseiffen, Petra; Vogt, Tobias; Strüder, Heiko K; Schneider, Stefan

    2018-01-01

    The aim of this study was to compare the influence of a class of aerobic exercise and an art class on brain cortical activity and possible effects on cognitive performance. Electroencephalography was used to record the electrocortical activity of 16 schoolchildren (8-10 years old) before and after an aerobic exercise class and an art class. Performance in a standardized test of educational attainment (VERA-3) was assessed following both classes. A significant decrease in cortical activity was detected in all 4 lobes after exercise but not after art classes (p < 0.05). No changes in cognitive performance were observed after exercise and art classes. In this study, cortical activity was reduced after an exercise class but no effect on cognitive performance was observed. Hence, the neurophysiological effect of exercise should be further evaluated regarding different kinds of cognitive performance: creativity, knowledge acquisition as well as the outlasting effects of exercise on academic achievement. © 2017 The Author(s) Published by S. Karger AG, Basel.

  9. Cardiac and electro-cortical concomitants of social feedback processing in women

    PubMed Central

    van der Molen, Melle J. W.; Gunther Moor, Bregtje; van der Veen, Frederik M.; van der Molen, Maurits W.

    2015-01-01

    This study provides a joint analysis of the cardiac and electro-cortical—early and late P3 and feedback-related negativity (FRN)—responses to social acceptance and rejection feedback. Twenty-five female participants performed on a social- and age-judgment control task, in which they received feedback with respect to their liking and age judgments, respectively. Consistent with previous reports, results revealed transient cardiac slowing to be selectively prolonged to unexpected social rejection feedback. Late P3 amplitude was more pronounced to unexpected relative to expected feedback. Both early and late P3 amplitudes were shown to be context dependent, in that they were more pronounced to social as compared with non-social feedback. FRN amplitudes were more pronounced to unexpected relative to expected feedback, irrespective of context and feedback valence. This pattern of findings indicates that social acceptance and rejection feedback have widespread effects on bodily state and brain function, which are modulated by prior expectancies. PMID:25870439

  10. Electrocortical processing of social signals of threat in combat-related post-traumatic stress disorder.

    PubMed

    MacNamara, Annmarie; Post, David; Kennedy, Amy E; Rabinak, Christine A; Phan, K Luan

    2013-10-01

    Post-traumatic stress disorder (PTSD) is characterized by avoidance, emotional numbing, increased arousal and hypervigilance for threat following a trauma. Thirty-three veterans (19 with PTSD, 14 without PTSD) who had experienced combat trauma while on deployment in Iraq and/or Afghanistan completed an emotional faces matching task while electroencephalography was recorded. Vertex positive potentials (VPPs) elicited by happy, angry and fearful faces were smaller in veterans with versus without PTSD. In addition, veterans with PTSD exhibited smaller late positive potentials (LPPs) to angry faces and greater intrusive symptoms predicted smaller LPPs to fearful faces in the PTSD group. Veterans with PTSD were also less accurate at identifying angry faces, and accuracy decreased in the PTSD group as hyperarousal symptoms increased. These findings show reduced early processing of emotional faces, irrespective of valence, and blunted prolonged processing of social signals of threat in conjunction with impaired perception for angry faces in PTSD. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Electrocortical and ocular indices of attention to fearful and neutral faces presented under high and low working memory load.

    PubMed

    MacNamara, Annmarie; Schmidt, Joseph; Zelinsky, Gregory J; Hajcak, Greg

    2012-12-01

    Working memory load reduces the late positive potential (LPP), consistent with the notion that functional activation of the DLPFC attenuates neural indices of sustained attention. Visual attention also modulates the LPP. In the present study, we sought to determine whether working memory load might exert its influence on ERPs by reducing fixations to arousing picture regions. We simultaneously recorded eye-tracking and EEG while participants performed a working memory task interspersed with the presentation of task-irrelevant fearful and neutral faces. As expected, fearful compared to neutral faces elicited larger N170 and LPP amplitudes; in addition, working memory load reduced the N170 and the LPP. Participants made more fixations to arousing regions of neutral faces and faces presented under high working memory load. Therefore, working memory load did not induce avoidance of arousing picture regions and visual attention cannot explain load effects on the N170 and LPP. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Neural Reactivity to Angry Faces Predicts Treatment Response in Pediatric Anxiety.

    PubMed

    Bunford, Nora; Kujawa, Autumn; Fitzgerald, Kate D; Swain, James E; Hanna, Gregory L; Koschmann, Elizabeth; Simpson, David; Connolly, Sucheta; Monk, Christopher S; Phan, K Luan

    2017-02-01

    Although cognitive-behavioral psychotherapy (CBT) and pharmacotherapy are evidence-based treatments for pediatric anxiety, many youth with anxiety disorders fail to respond to these treatments. Given limitations of clinical measures in predicting treatment response, identifying neural predictors is timely. In this study, 35 anxious youth (ages 7-19 years) completed an emotional face-matching task during which the late positive potential (LPP), an event-related potential (ERP) component that indexes sustained attention towards emotional stimuli, was measured. Following the ERP measurement, youth received CBT or selective serotonin reuptake inhibitor (SSRI) treatment, and the LPP was examined as a predictor of treatment response. Findings indicated that, accounting for pre-treatment anxiety severity, neural reactivity to emotional faces predicted anxiety severity post- CBT and SSRI treatment such that enhanced electrocortical response to angry faces was associated with better treatment response. An enhanced LPP to angry faces may predict treatment response insofar as it may reflect greater emotion dysregulation or less avoidance and/or enhanced engagement with environmental stimuli in general, including with treatment.

  13. Peptidase inhibitors reduce opiate narcotic withdrawal signs, including seizure activity, in the rat.

    PubMed

    Pinsky, C; Dua, A K; LaBella, F S

    1982-07-15

    Narcotic withdrawal was precipitated by administration of naloxone in a low dose at 2 h after the final dose of morphine in a 9-day dependency-inducing schedule. Withdrawal was characterized by leaps, increased nocifensor activity and by cerebral cortical epileptiform activity, the latter not generally reported to be prominent in narcotic withdrawal. Single large doses of morphine did not provoke epileptiform activity at 2 h postinjection but did induce an acute opioid dependency wherein a moderately high dose of naloxone, ineffective in non-dependent rats, provoked upward leaping and electrocortical epileptiform activity. Pretreatment of the 9-day dependent rats with peptidase inhibitors, administered intracerebroventricularly, significantly reduced withdrawal severity including the epileptiform activity. We propose that peptidase inhibitors protect certain species of endogenous opioids and/or other neuropeptides that tend to suppress expression of the narcotic withdrawal syndrome. Furthermore, our findings suggest that epileptiform activity is a nascent form of cerebral activity hitherto largely unnoticed in narcotic withdrawal and that neuropeptides may be involved in certain epileptic states.

  14. Anticonvulsant properties of Euterpe oleracea in mice.

    PubMed

    Souza-Monteiro, José Rogerio; Hamoy, Moisés; Santana-Coelho, Danielle; Arrifano, Gabriela P F; Paraense, Ricardo S O; Costa-Malaquias, Allan; Mendonça, Jackson R; da Silva, Rafael F; Monteiro, Wallena S C; Rogez, Hervé; de Oliveira, Diogo L; do Nascimento, José Luiz M; Crespo-López, Maria Elena

    2015-11-01

    Açai (Euterpe oleracea Mart.), a highly consumed fruit in Amazon, is from a common palm with remarkable antioxidant properties. Because oxidative stress and seizures are intimately linked, this study investigated the potential neuroprotective and anticonvulsant effects of commercial clarified açai juice (EO). EO did not alter spontaneous locomotor activity. Four doses of EO were sufficient to increase latencies to both first myoclonic jerk and first generalized tonic-clonic seizure and significantly decrease the total duration of tonic-clonic seizures caused by pentylenetetrazol administration. Also, electrocortical alterations provoked by pentylenetetrazol were prevented, significantly decreasing amplitude of discharges and frequencies above 50 Hz. EO was also able to completely prevent lipid peroxidation in the cerebral cortex, showing a potent direct scavenging property. These results demonstrate for the first time that E. oleracea significantly protects against seizures and seizure-related oxidative stress, indicating an additional protection for humans who consume this fruit. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. A brain electrical signature of left-lateralized semantic activation from single words.

    PubMed

    Koppehele-Gossel, Judith; Schnuerch, Robert; Gibbons, Henning

    2016-01-01

    Lesion and imaging studies consistently indicate a left-lateralization of semantic language processing in human temporo-parietal cortex. Surprisingly, electrocortical measures, which allow a direct assessment of brain activity and the tracking of cognitive functions with millisecond precision, have not yet been used to capture this hemispheric lateralization, at least with respect to posterior portions of this effect. Using event-related potentials, we employed a simple single-word reading paradigm to compare neural activity during three tasks requiring different degrees of semantic processing. As expected, we were able to derive a simple temporo-parietal left-right asymmetry index peaking around 300ms into word processing that neatly tracks the degree of semantic activation. The validity of this measure in specifically capturing verbal semantic activation was further supported by a significant relation to verbal intelligence. We thus posit that it represents a promising tool to monitor verbal semantic processing in the brain with little technological effort and in a minimal experimental setup. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Eat your troubles away: electrocortical and experiential correlates of food image processing are related to emotional eating style and emotional state.

    PubMed

    Blechert, Jens; Goltsche, Julia E; Herbert, Beate M; Wilhelm, Frank H

    2014-02-01

    Emotional eating, a trait-like style of food intake in response to negative emotion states, represents an important aspect of overeating and eating related psychopathology. The mechanisms of emotional eating both on experiential and neuronal levels are not well delineated. We recorded event related potentials (ERPs) while individuals with high or low emotional eating style (HEE, n=25; LEE, n=20) viewed and rated pictures of high-caloric food during neutral state vs. negative idiosyncratic emotion induction. Craving ratings increased in HEE and decreased in LEE during negative relative to neutral states. ERPs to food pictures showed an enhanced late positive potential (LPP) over parieto-occipital regions for HEE compared to LEE. Emotional state modulated food picture evoked ERPs over right frontal regions in HEE only. This suggests that appetitive food processing is susceptible to both concurrent emotion and habitual eating style which is of relevance for overeating in healthy and abnormal eating. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Working memory load reduces the late positive potential and this effect is attenuated with increasing anxiety.

    PubMed

    MacNamara, Annmarie; Ferri, Jamie; Hajcak, Greg

    2011-09-01

    Emotion regulation decreases the processing of arousing stimuli, as indexed by the late positive potential (LPP), an electrocortical component that varies in amplitude with emotional arousal. Emotion regulation increases activity in the prefrontal areas associated with cognitive control, including the dosolateral prefrontal cortex (DLPFC). The present study manipulated working memory load, known to activate the DLPFC, and recorded the LPP elicited by aversive and neutral IAPS pictures presented during the retention interval. The LPP was larger on low-load compared to high-load trials, and on trials with aversive compared to neutral pictures. These LPP data suggest that emotional content and working memory load have opposing effects on attention to distracting stimuli. State anxiety was associated with reduced modulation of the LPP by working memory load. Results are discussed in terms of competition for attention between emotion and cognition and suggest a relationship between DLPFC activation and the allocation of attentional resources to distracting visual stimuli-a relationship that may be disrupted with increasing anxiety.

  18. Re-entrant Projections Modulate Visual Cortex in Affective Perception: Evidence From Granger Causality Analysis

    PubMed Central

    Keil, Andreas; Sabatinelli, Dean; Ding, Mingzhou; Lang, Peter J.; Ihssen, Niklas; Heim, Sabine

    2013-01-01

    Re-entrant modulation of visual cortex has been suggested as a critical process for enhancing perception of emotionally arousing visual stimuli. This study explores how the time information inherent in large-scale electrocortical measures can be used to examine the functional relationships among the structures involved in emotional perception. Granger causality analysis was conducted on steady-state visual evoked potentials elicited by emotionally arousing pictures flickering at a rate of 10 Hz. This procedure allows one to examine the direction of neural connections. Participants viewed pictures that varied in emotional content, depicting people in neutral contexts, erotica, or interpersonal attack scenes. Results demonstrated increased coupling between visual and cortical areas when viewing emotionally arousing content. Specifically, intraparietal to inferotemporal and precuneus to calcarine connections were stronger for emotionally arousing picture content. Thus, we provide evidence for re-entrant signal flow during emotional perception, which originates from higher tiers and enters lower tiers of visual cortex. PMID:18095279

  19. Teaching French via Driver Education.

    ERIC Educational Resources Information Center

    Berwald, Jean-Pierre

    1980-01-01

    Driver instruction through the medium of a foreign language is useful in teaching vocabulary, grammar, and culture. The maps, driving manuals, and cars stimulate discussion and communication. Course techniques can include Asher's concept of Total Physical Response wherein students act in response to commands in the foreign language. (PMJ)

  20. Regulatory T cells in cattle and their potential role in bovine paratuberculosis.

    PubMed

    Coussens, Paul M; Sipkovsky, Sue; Murphy, Brooke; Roussey, Jon; Colvin, Christopher J

    2012-05-01

    The intracellular bacterium Mycobacterium avium subspecies paratuberculosis (MAP) causes Johne's disease in wild and domestic ruminants. Johne's disease presents as a chronic enteritis with severe inflammation of intestinal tissues, characterized by widespread infiltration of macrophages, the target cell of MAP. Clinical signs of Johne's disease are typically accompanied by a loss of peripheral CD4+ T cell responses to MAP antigens and an increase in anti-MAP serum IgG levels. Recently, it was proposed that regulatory T cells might develop over the lengthy course of subclinical MAP infection. In the past five years, significant progress in defining bovine regulatory T cells has been made. These studies grew out of observations that IL-10 is produced by PBMCs in response to MAP antigen stimulation and that neutralization of this IL-10 could enhance IFN-γ production from MAP-antigen reactive effector T cells. Depletion studies revealed that MAP responsive cell populations producing IL-10 were largely CD4+ and CD25+, although monocytes have also been shown to produce IL-10 in response to MAP. In addition, evidence for a regulatory population of γδ T cells has also begun to accumulate. We summarize current thinking regarding regulatory T cells in MAP infection and provide data suggesting a potential link between regulatory T cells, bovine leukemia virus, and MAP. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Use of the concept mapping in teaching during a medical rotation of interns: an exploratory study.

    PubMed

    Kwas, Hamida; Ghédira, Habib

    2017-12-01

    Concept mapping is an excellent learning toolallowing to stimulate active learning.For this reason, the concept mapping is currently used increasingly in the medical and paramedical field. The aim of our study is to determine the contribution of teaching of medical interns by the concept mapping. Fourteen students enrolled at the same time in a medical rotation in Pulmonology were recruited for this exploratory study. Interns are divided into two groups (A and B).Both groups are taught by the clinical case method, illustrated by a concept mapping for group A interns. The evolution of the knowledge accuracy at post-testing has been greater in the group taught by the method of concept mapping: the number of correct responses increased in all participants of group A versus only 4 of group B. All students taught by concept mapping had at the post-test a note higher than or equal to 10/20 versus only three of the group taught by the method without concept map. The average score was 13 (11-15) in group A versus 10.28 (6-14) in group B. We emphasize the use of concept mapping in teaching especially in the faculty of medicine and we encourage clinicians to use this method in teaching interns in the hospital.

  2. Global, quantitative and dynamic mapping of protein subcellular localization

    PubMed Central

    Itzhak, Daniel N; Tyanova, Stefka; Cox, Jürgen; Borner, Georg HH

    2016-01-01

    Subcellular localization critically influences protein function, and cells control protein localization to regulate biological processes. We have developed and applied Dynamic Organellar Maps, a proteomic method that allows global mapping of protein translocation events. We initially used maps statically to generate a database with localization and absolute copy number information for over 8700 proteins from HeLa cells, approaching comprehensive coverage. All major organelles were resolved, with exceptional prediction accuracy (estimated at >92%). Combining spatial and abundance information yielded an unprecedented quantitative view of HeLa cell anatomy and organellar composition, at the protein level. We subsequently demonstrated the dynamic capabilities of the approach by capturing translocation events following EGF stimulation, which we integrated into a quantitative model. Dynamic Organellar Maps enable the proteome-wide analysis of physiological protein movements, without requiring any reagents specific to the investigated process, and will thus be widely applicable in cell biology. DOI: http://dx.doi.org/10.7554/eLife.16950.001 PMID:27278775

  3. Shapes and sounds as self-objects in learning geography.

    PubMed

    Baum, E A

    1978-01-01

    The pleasure which some children find in maps and map reading is manifold in origin. Children cathect patterns of configuration and color and derive joy from the visual mastery of these. This gratification is enhanced by the child's knowledge that the map represents something bigger than and external to itself. Likewise, some children take pleasure in the pronunciation of names themselves. The phonetic transcription of multisyllabic names is often a plearurable challenge. The vocalized name has its origin in the self, becomes barely external to self, and is self-monitored. Thus, in children both the configurations and the vocalizations associated with map reading have the properties of "self=objects" (Kohut, 1971). From the author's observation the delight which some children take in sounding out geographic names on a map may, in some instances, indicate pre-existing gratifying sound associations. Childish amusement in punning on cognomens may be an even greater stimulant for learning than visual configurations or artificial cognitive devices.

  4. Functional organization of glomerular maps in the mouse accessory olfactory bulb

    PubMed Central

    Hammen, Gary F.; Turaga, Diwakar; Holy, Timothy E.; Meeks, Julian P.

    2014-01-01

    Summary The mammalian accessory olfactory system (AOS) extracts information about species, sex, and individual identity from social odors, but its functional organization remains unclear. We imaged presynaptic Ca2+ signals in vomeronasal inputs to the accessory olfactory bulb (AOB) during peripheral stimulation using light sheet microscopy. Urine- and steroid-responsive glomeruli densely innervated the anterior AOB. Glomerular activity maps for sexually mature female mouse urine overlapped maps for juvenile and/or gonadectomized urine of both sexes, whereas maps for sexually mature male urine were highly distinct. Further spatial analysis revealed a complicated organization involving selective juxtaposition and dispersal of functionally-grouped glomerular classes. Glomeruli that were similarly tuned to urines were often closely associated, whereas more disparately tuned glomeruli were selectively dispersed. Maps to a panel of sulfated steroid odorants identified tightly-juxtaposed groups that were disparately tuned and dispersed groups that were similarly tuned. These results reveal a modular, non-chemotopic spatial organization in the AOB. PMID:24880215

  5. Evaluation of aircraft microwave data for locating zones for well stimulation and enhanced gas recovery. [Arkansas Arkoma Basin

    NASA Technical Reports Server (NTRS)

    Macdonald, H.; Waite, W.; Elachi, C.; Babcock, R.; Konig, R.; Gattis, J.; Borengasser, M.; Tolman, D.

    1980-01-01

    Imaging radar was evaluated as an adjunct to conventional petroleum exploration techniques, especially linear mapping. Linear features were mapped from several remote sensor data sources including stereo photography, enhanced LANDSAT imagery, SLAR radar imagery, enhanced SAR radar imagery, and SAR radar/LANDSAT combinations. Linear feature maps were compared with surface joint data, subsurface and geophysical data, and gas production in the Arkansas part of the Arkoma basin. The best LANDSAT enhanced product for linear detection was found to be a winter scene, band 7, uniform distribution stretch. Of the individual SAR data products, the VH (cross polarized) SAR radar mosaic provides for detection of most linears; however, none of the SAR enhancements is significantly better than the others. Radar/LANDSAT merges may provide better linear detection than a single sensor mapping mode, but because of operator variability, the results are inconclusive. Radar/LANDSAT combinations appear promising as an optimum linear mapping technique, if the advantages and disadvantages of each remote sensor are considered.

  6. Linkage Analyses of Stimulant Dependence, Craving and Heavy Use in American Indians

    PubMed Central

    Ehlers, Cindy L.; Gizer, Ian R.; Gilder, David A.; Wilhelmsen, Kirk C.

    2011-01-01

    Amphetamine-type substances are the second most widely used illicit drugs in the United States. There is evidence to suggest that stimulant use (cocaine and methamphetamine) has a heritable component, yet the areas of the genome underlying these use disorders are yet to be identified. This study’s aims were to map loci linked to stimulant dependence, heavy use, and craving in an American Indian community at high risk for substance dependence. DSM diagnosis of stimulant dependence, as well as indices of stimulant “craving” and “heavy use”, were obtained using the Semi-Structured Assessment for the Genetics of Alcoholism (SSAGA). Genotypes were determined for a panel of 791 micro-satellite polymorphisms in 381 members of multiplex families using SOLAR. Stimulant dependence, stimulant “craving” and “heavy stimulant use”, were all found to be heritable. Analyses of multipoint variance component LOD scores, failed to yield evidence of linkage for stimulant dependence. For the stimulant “craving” phenotype, linkage analysis revealed a locus that had a LOD score of 3.02 on chromosome 15q25.3-26.1 near the nicotinic receptor gene cluster. A LOD score of 2.05 was found at this same site for “heavy stimulant use”. Additional loci with LOD scores above 2.00 were found for stimulant “craving” on chromosomes 12p13.33-13.32 and 18q22.3. These results corroborate the importance of “craving” as an important phenotype that is associated with regions on chromosome 12, 15 and 18, that have been highlighted in prior segregation studies in this and other populations for substance dependence-related phenotypes. PMID:21812097

  7. Activation of lower back muscles via FES for pressure sores prevention in paraplegia: a case study.

    PubMed

    Vanoncini, M; Holderbaum, W; Andrews, B J

    2010-04-01

    The aim of this paper is to show the feasibility of the use of functional electrical stimulation (FES) applied to the lower back muscles for pressure sores prevention in paraplegia. The hypothesis under study is that FES induces a change in the pressure distribution on the contact area during sitting. Tests were conducted on a paraplegic subject (T5), sitting on a standard wheelchair and cushion. Trunk extensors (mainly the erector spinae) were stimulated using surface electrodes placed on the skin. A pressure mapping system was used to measure the pressure on the sitting surface in four situations: (a) no stimulation; (b) stimulation on one side of the spine only; (c) stimulation on both sides, at different levels; and (d) stimulation at the same level on both sides, during pressure-relief manoeuvres. A session of prolonged stimulation was also conducted. The experimental results show that the stimulation of the erector spinae on one side of the spine can induce a trunk rotation on the sagittal plane, which causes a change in the pressure distribution. A decrease of pressure on the side opposite to the stimulation was recorded. The phenomenon is intensified when different levels of stimulation are applied to the two sides, and such change can be sustained for a considerable time (around 5 minutes). The stimulation did not induce changes during pressure-relief manoeuvres. Finally, from this research we can conclude that the stimulation of the trunk extensors can be a useful tool for pressure sores prevention, and can potentially be used in a routine for pressure sores prevention based on periodical weight shifts.

  8. Recording Human Electrocorticographic (ECoG) Signals for Neuroscientific Research and Real-time Functional Cortical Mapping

    PubMed Central

    Hill, N. Jeremy; Gupta, Disha; Brunner, Peter; Gunduz, Aysegul; Adamo, Matthew A.; Ritaccio, Anthony; Schalk, Gerwin

    2012-01-01

    Neuroimaging studies of human cognitive, sensory, and motor processes are usually based on noninvasive techniques such as electroencephalography (EEG), magnetoencephalography or functional magnetic-resonance imaging. These techniques have either inherently low temporal or low spatial resolution, and suffer from low signal-to-noise ratio and/or poor high-frequency sensitivity. Thus, they are suboptimal for exploring the short-lived spatio-temporal dynamics of many of the underlying brain processes. In contrast, the invasive technique of electrocorticography (ECoG) provides brain signals that have an exceptionally high signal-to-noise ratio, less susceptibility to artifacts than EEG, and a high spatial and temporal resolution (i.e., <1 cm/<1 millisecond, respectively). ECoG involves measurement of electrical brain signals using electrodes that are implanted subdurally on the surface of the brain. Recent studies have shown that ECoG amplitudes in certain frequency bands carry substantial information about task-related activity, such as motor execution and planning1, auditory processing2 and visual-spatial attention3. Most of this information is captured in the high gamma range (around 70-110 Hz). Thus, gamma activity has been proposed as a robust and general indicator of local cortical function1-5. ECoG can also reveal functional connectivity and resolve finer task-related spatial-temporal dynamics, thereby advancing our understanding of large-scale cortical processes. It has especially proven useful for advancing brain-computer interfacing (BCI) technology for decoding a user's intentions to enhance or improve communication6 and control7. Nevertheless, human ECoG data are often hard to obtain because of the risks and limitations of the invasive procedures involved, and the need to record within the constraints of clinical settings. Still, clinical monitoring to localize epileptic foci offers a unique and valuable opportunity to collect human ECoG data. We describe our methods for collecting recording ECoG, and demonstrate how to use these signals for important real-time applications such as clinical mapping and brain-computer interfacing. Our example uses the BCI2000 software platform8,9 and the SIGFRIED10 method, an application for real-time mapping of brain functions. This procedure yields information that clinicians can subsequently use to guide the complex and laborious process of functional mapping by electrical stimulation. Prerequisites and Planning: Patients with drug-resistant partial epilepsy may be candidates for resective surgery of an epileptic focus to minimize the frequency of seizures. Prior to resection, the patients undergo monitoring using subdural electrodes for two purposes: first, to localize the epileptic focus, and second, to identify nearby critical brain areas (i.e., eloquent cortex) where resection could result in long-term functional deficits. To implant electrodes, a craniotomy is performed to open the skull. Then, electrode grids and/or strips are placed on the cortex, usually beneath the dura. A typical grid has a set of 8 x 8 platinum-iridium electrodes of 4 mm diameter (2.3 mm exposed surface) embedded in silicon with an inter-electrode distance of 1cm. A strip typically contains 4 or 6 such electrodes in a single line. The locations for these grids/strips are planned by a team of neurologists and neurosurgeons, and are based on previous EEG monitoring, on a structural MRI of the patient's brain, and on relevant factors of the patient's history. Continuous recording over a period of 5-12 days serves to localize epileptic foci, and electrical stimulation via the implanted electrodes allows clinicians to map eloquent cortex. At the end of the monitoring period, explantation of the electrodes and therapeutic resection are performed together in one procedure. In addition to its primary clinical purpose, invasive monitoring also provides a unique opportunity to acquire human ECoG data for neuroscientific research. The decision to include a prospective patient in the research is based on the planned location of their electrodes, on the patient's performance scores on neuropsychological assessments, and on their informed consent, which is predicated on their understanding that participation in research is optional and is not related to their treatment. As with all research involving human subjects, the research protocol must be approved by the hospital's institutional review board. The decision to perform individual experimental tasks is made day-by-day, and is contingent on the patient's endurance and willingness to participate. Some or all of the experiments may be prevented by problems with the clinical state of the patient, such as post-operative facial swelling, temporary aphasia, frequent seizures, post-ictal fatigue and confusion, and more general pain or discomfort. At the Epilepsy Monitoring Unit at Albany Medical Center in Albany, New York, clinical monitoring is implemented around the clock using a 192-channel Nihon-Kohden Neurofax monitoring system. Research recordings are made in collaboration with the Wadsworth Center of the New York State Department of Health in Albany. Signals from the ECoG electrodes are fed simultaneously to the research and the clinical systems via splitter connectors. To ensure that the clinical and research systems do not interfere with each other, the two systems typically use separate grounds. In fact, an epidural strip of electrodes is sometimes implanted to provide a ground for the clinical system. Whether research or clinical recording system, the grounding electrode is chosen to be distant from the predicted epileptic focus and from cortical areas of interest for the research. Our research system consists of eight synchronized 16-channel g.USBamp amplifier/digitizer units (g.tec, Graz, Austria). These were chosen because they are safety-rated and FDA-approved for invasive recordings, they have a very low noise-floor in the high-frequency range in which the signals of interest are found, and they come with an SDK that allows them to be integrated with custom-written research software. In order to capture the high-gamma signal accurately, we acquire signals at 1200Hz sampling rate-considerably higher than that of the typical EEG experiment or that of many clinical monitoring systems. A built-in low-pass filter automatically prevents aliasing of signals higher than the digitizer can capture. The patient's eye gaze is tracked using a monitor with a built-in Tobii T-60 eye-tracking system (Tobii Tech., Stockholm, Sweden). Additional accessories such as joystick, bluetooth Wiimote (Nintendo Co.), data-glove (5th Dimension Technologies), keyboard, microphone, headphones, or video camera are connected depending on the requirements of the particular experiment. Data collection, stimulus presentation, synchronization with the different input/output accessories, and real-time analysis and visualization are accomplished using our BCI2000 software8,9. BCI2000 is a freely available general-purpose software system for real-time biosignal data acquisition, processing and feedback. It includes an array of pre-built modules that can be flexibly configured for many different purposes, and that can be extended by researchers' own code in C++, MATLAB or Python. BCI2000 consists of four modules that communicate with each other via a network-capable protocol: a Source module that handles the acquisition of brain signals from one of 19 different hardware systems from different manufacturers; a Signal Processing module that extracts relevant ECoG features and translates them into output signals; an Application module that delivers stimuli and feedback to the subject; and the Operator module that provides a graphical interface to the investigator. A number of different experiments may be conducted with any given patient. The priority of experiments will be determined by the location of the particular patient's electrodes. However, we usually begin our experimentation using the SIGFRIED (SIGnal modeling For Realtime Identification and Event Detection) mapping method, which detects and displays significant task-related activity in real time. The resulting functional map allows us to further tailor subsequent experimental protocols and may also prove as a useful starting point for traditional mapping by electrocortical stimulation (ECS). Although ECS mapping remains the gold standard for predicting the clinical outcome of resection, the process of ECS mapping is time consuming and also has other problems, such as after-discharges or seizures. Thus, a passive functional mapping technique may prove valuable in providing an initial estimate of the locus of eloquent cortex, which may then be confirmed and refined by ECS. The results from our passive SIGFRIED mapping technique have been shown to exhibit substantial concurrence with the results derived using ECS mapping10. The protocol described in this paper establishes a general methodology for gathering human ECoG data, before proceeding to illustrate how experiments can be initiated using the BCI2000 software platform. Finally, as a specific example, we describe how to perform passive functional mapping using the BCI2000-based SIGFRIED system. PMID:22782131

  9. Speech map in the human ventral sensory-motor cortex.

    PubMed

    Conant, David; Bouchard, Kristofer E; Chang, Edward F

    2014-02-01

    The study of spatial maps of the ventral sensory-motor cortex (vSMC) dates back to the earliest cortical stimulation studies. This review surveys a number of recent and historical reports of the features and function of spatial maps within vSMC towards the human behavior of speaking. Representations of the vocal tract, like other body parts, are arranged in a somatotopic fashion within ventral SMC. This region has unique features and connectivity that may give insight into its specialized function in speech production. New methods allow us to probe further into the functional role of this organization by studying the spatial dynamics of vSMC during natural speaking in humans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. [Effects of the renal blood flow at different levels by transcutaneous electrical acupoint stimulation combined general anesthesia induced controlled hypotension].

    PubMed

    Fang, Jian-Qiao; Zhang, Le-Le; Shao, Xiao-Mei

    2012-11-01

    To observe the intervention of transcutaneous electrical acupoint stimulation (TEAS) on the renal blood flow at different levels of mean arterial pressure (MAP) in controlled hypotension. Forty-two male beagle dogs were randomly divided into seven groups, i. e., the general anesthesia group, the 50% controlled group, the 40% controlled group, the 30% controlled group, the 50% experimental group, the 40% experimental group, and the 30% experimental group, 6 in each group. Beagles in the general anesthesia group were not treated with controlled hypotension, and the target MAP was achieved in those of the rest groups and maintained for 60 min. In the experimental groups, TEAS was applied to bilateral Hegu (LI4), Zusanli (ST36), Sanyinjiao (SP6), and Quchi (LI11) at 2/100 Hz with the stimulation strength of (4 +/- 1) mA starting from the stability of their physiological conditions to 60 min of maintaining the target MAP level. The changes of the renal blood flow were monitored at different time points using laser Doppler. From starting pressure control to the target MAP level, the renal blood flow was significantly lower in the 30% controlled group than in the general anesthesia group and the basic level of the same group (P < 0.05), while there was no obvious change in the 30% experimental group. In maintaining the blood pressure, the renal blood flow was significantly lower in the 50% controlled group, the 40% controlled group, the 30% controlled group, and the 30% experimental group than in the general anesthesia group (P < 0.05), while there was no obvious change in the 50% experimental group or the 40% experimental group. By the end of blood pressure recovery, the renal blood flow restored to the basic level in the 50% controlled group, the 50% experimental group, and the 40% experimental group (P > 0.05), while it was not restored to the basic level in the 40% controlled group, the 30% controlled group, and the 30% experimental group (P < 0.05). TEAS combined general anesthesia in controlled hypotension could effectively improve the renal blood flow, thus protecting the kidney.

  11. Mapping of cingulate motor function by cortical stimulation.

    PubMed

    Basha, Maysaa M; Fernández-Baca Vaca, Guadalupe; Lüders, Hans O

    2013-09-01

    An 8-year-old boy with intractable left mesiofrontal lobe epilepsy underwent placement of stereotactic intracerebral depth electrodes to better localise the epileptogenic zone. Co-registration of preoperative MRI and post-electrode implantation CAT allowed for anatomical localisation of electrode contacts. Electrical stimulation of electrodes over the dorsal and ventral banks of the cingulate cortex on the left produced right foot dorsiflexion and right wrist and elbow flexion, respectively, demonstrating detailed representation of cingulate motor function in humans, somatotopically distributed along the banks of the cingulate sulcus, as seen in the non-human primate. [Published with video sequences].

  12. Protein Kinase G Induces an Immune Response in Cows Exposed to Mycobacterium avium Subsp. paratuberculosis

    PubMed Central

    Bach, Eviatar; Chaffer, Marcelo; Lai, Wanika; Keefe, Greg; Begg, Douglas J.

    2018-01-01

    To establish infection, pathogens secrete virulence factors, such as protein kinases and phosphatases, to modulate the signal transduction pathways used by host cells to initiate immune response. The protein MAP3893c is annotated in the genome sequence of Mycobacterium avium subspecies paratuberculosis (MAP), the causative agent of Johne's disease, as the serine/threonine protein kinase G (PknG). In this work, we report that PknG is a functional kinase that is secreted within macrophages at early stages of infection. The antigen is able to induce an immune response from cattle exposed to MAP in the form of interferon gamma production after stimulation of whole blood with PknG. These findings suggest that PknG may contribute to the pathogenesis of MAP by phosphorylating macrophage signalling and/or adaptor molecules as observed with other pathogenic mycobacterial species. PMID:29581962

  13. Protein Kinase G Induces an Immune Response in Cows Exposed to Mycobacterium avium Subsp. paratuberculosis.

    PubMed

    Bach, Horacio; Richard-Greenblatt, Melissa; Bach, Eviatar; Chaffer, Marcelo; Lai, Wanika; Keefe, Greg; Begg, Douglas J

    2018-01-01

    To establish infection, pathogens secrete virulence factors, such as protein kinases and phosphatases, to modulate the signal transduction pathways used by host cells to initiate immune response. The protein MAP3893c is annotated in the genome sequence of Mycobacterium avium subspecies paratuberculosis (MAP), the causative agent of Johne's disease, as the serine/threonine protein kinase G (PknG). In this work, we report that PknG is a functional kinase that is secreted within macrophages at early stages of infection. The antigen is able to induce an immune response from cattle exposed to MAP in the form of interferon gamma production after stimulation of whole blood with PknG. These findings suggest that PknG may contribute to the pathogenesis of MAP by phosphorylating macrophage signalling and/or adaptor molecules as observed with other pathogenic mycobacterial species.

  14. Three-dimensional mapping and regulation of action potential propagation in nanoelectronics-innervated tissues.

    PubMed

    Dai, Xiaochuan; Zhou, Wei; Gao, Teng; Liu, Jia; Lieber, Charles M

    2016-09-01

    Real-time mapping and manipulation of electrophysiology in three-dimensional (3D) tissues could have important impacts on fundamental scientific and clinical studies, yet realization is hampered by a lack of effective methods. Here we introduce tissue-scaffold-mimicking 3D nanoelectronic arrays consisting of 64 addressable devices with subcellular dimensions and a submillisecond temporal resolution. Real-time extracellular action potential (AP) recordings reveal quantitative maps of AP propagation in 3D cardiac tissues, enable in situ tracing of the evolving topology of 3D conducting pathways in developing cardiac tissues and probe the dynamics of AP conduction characteristics in a transient arrhythmia disease model and subsequent tissue self-adaptation. We further demonstrate simultaneous multisite stimulation and mapping to actively manipulate the frequency and direction of AP propagation. These results establish new methodologies for 3D spatiotemporal tissue recording and control, and demonstrate the potential to impact regenerative medicine, pharmacology and electronic therapeutics.

  15. Three-dimensional mapping and regulation of action potential propagation in nanoelectronics innervated tissues

    PubMed Central

    Dai, Xiaochuan; Zhou, Wei; Gao, Teng; Liu, Jia; Lieber, Charles M.

    2016-01-01

    Real-time mapping and manipulation of electrophysiology in three-dimensional (3D) tissues could impact broadly fundamental scientific and clinical studies, yet realization lacks effective methods. Here we introduce tissue-scaffold-mimicking 3D nanoelectronic arrays consisting of 64 addressable devices with subcellular dimensions and sub-millisecond time-resolution. Real-time extracellular action potential (AP) recordings reveal quantitative maps of AP propagation in 3D cardiac tissues, enable in situ tracing of the evolving topology of 3D conducting pathways in developing cardiac tissues, and probe the dynamics of AP conduction characteristics in a transient arrhythmia disease model and subsequent tissue self-adaptation. We further demonstrate simultaneous multi-site stimulation and mapping to manipulate actively the frequency and direction of AP propagation. These results establish new methodologies for 3D spatiotemporal tissue recording and control, and demonstrate the potential to impact regenerative medicine, pharmacology and electronic therapeutics. PMID:27347837

  16. Functional Connectivity of Resting Hemodynamic Signals in Submillimeter Orientation Columns of the Visual Cortex.

    PubMed

    Vasireddi, Anil K; Vazquez, Alberto L; Whitney, David E; Fukuda, Mitsuhiro; Kim, Seong-Gi

    2016-09-07

    Resting-state functional magnetic resonance imaging has been increasingly used for examining connectivity across brain regions. The spatial scale by which hemodynamic imaging can resolve functional connections at rest remains unknown. To examine this issue, deoxyhemoglobin-weighted intrinsic optical imaging data were acquired from the visual cortex of lightly anesthetized ferrets. The neural activity of orientation domains, which span a distance of 0.7-0.8 mm, has been shown to be correlated during evoked activity and at rest. We performed separate analyses to assess the degree to which the spatial and temporal characteristics of spontaneous hemodynamic signals depend on the known functional organization of orientation columns. As a control, artificial orientation column maps were generated. Spatially, resting hemodynamic patterns showed a higher spatial resemblance to iso-orientation maps than artificially generated maps. Temporally, a correlation analysis was used to establish whether iso-orientation domains are more correlated than orthogonal orientation domains. After accounting for a significant decrease in correlation as a function of distance, a small but significant temporal correlation between iso-orientation domains was found, which decreased with increasing difference in orientation preference. This dependence was abolished when using artificially synthetized orientation maps. Finally, the temporal correlation coefficient as a function of orientation difference at rest showed a correspondence with that calculated during visual stimulation suggesting that the strength of resting connectivity is related to the strength of the visual stimulation response. Our results suggest that temporal coherence of hemodynamic signals measured by optical imaging of intrinsic signals exists at a submillimeter columnar scale in resting state.

  17. Concept mapping as a tool to engage a community in health disparity identification.

    PubMed

    Risisky, Debra; Hogan, Vijaya K; Kane, Mary; Burt, Beneta; Dove, Cassandra; Payton, Marinelle

    2008-01-01

    To engage a community to critically examine local health disparities. Concept mapping is a tool used to rapidly assess the variations in thinking of large stakeholder groups' about a particular topic. Jackson, Mississippi. Community members. Dialog groups and community meetings were held, and participants were asked to respond to the statement, "A specific thing that causes African Americans to get sicker and die sooner is..." Aggregate responses were rated for importance and feasibility and then sorted into related groups. Aggregate sorts and ratings were then processed by using multidimensional scaling and hierarchical cluster analysis. There were 132 (unduplicated) reported contributors to health disparities. These responses fell into eight general clusters: economic issues, government, contextual factors, cultural factors, HIV, stress, environment, and motivation. Factors respondents felt were the most important contributors to disparities (economic factors, contextual factors, stress) did not correlate with those that they thought were most likely to be changed in society (contextual factors, government, motivation). Concept mapping provided a mechanism for rapidly documenting community thinking about health disparities. This mechanism stimulated community dialog and was used as a first step toward the long-term goal of creating equal community, academic, and medical partnerships for addressing disparities. The concept mapping process stimulated critical thinking about contributors to health inequities and uncovered contextual factors previously unknown to researchers and public health planners. The process allowed for active engagement and exchange of knowledge between the community and researchers and allowed a mechanism for identifying and rectifying disconnects in knowledge within and between stakeholder groups.

  18. Interaction of Phase Singularities on Spiral Wave Tail: Reconsideration of Capturing the Excitable Gap.

    PubMed

    Tomii, Naoki; Yamazaki, Masatoshi; Arafune, Tatsuhiko; Kamiya, Kaichiro; Nakazawa, Kazuo; Honjo, Haruo; Shibata, Nitaro; Sakuma, Ichiro

    2018-03-09

    The action mechanism of stimulation toward spiral waves (SWs) owing to the complex excitation patterns that occur just after point stimulation has not yet been experimentally clarified. This study sought to test our hypothesis that the effect of capturing excitable gap of SW by stimulation can also be explained as the interaction of original phase singularity (PS) and PSs induced by the stimulation on the wave tail (WT) of the original SW. Phase variance analysis was used to quantitatively analyze the post-shock PS trajectories. In a two-dimensional subepicardial layer of Langendorff-perfused rabbit hearts, optical mapping was utilized to record the excitation pattern during stimulation. After SW was induced by S1-S2 shock, single biphasic point stimulation S3 was applied. In 70 of the S1-S2-S3 stimulation episodes applied on six hearts, the original PS was clearly observed just before the S3 point stimulation in 37 episodes. Pairwise PSs were newly induced by the S3 in 20 episodes. The original PS collided with the newly-induced PSs in 16 episodes; otherwise, they did not interact with the original PS. SW shift occurred most efficiently when the S3 shock was applied at the relative refractory period, and PS shifted in the direction of WT. Quantitative tracking of PS clarified that stimulation in desirable conditions induces pairwise PSs on WT and that the collision of PSs causes SW shift along the WT. Results of this study indicate the importance of the interaction of shock-induced excitation with the WT for effective stimulation.

  19. Functional correlates of the therapeutic and adverse effects evoked by thalamic stimulation for essential tremor

    PubMed Central

    Gibson, William S.; Jo, Hang Joon; Testini, Paola; Cho, Shinho; Felmlee, Joel P.; Welker, Kirk M.; Klassen, Bryan T.; Min, Hoon-Ki

    2016-01-01

    Deep brain stimulation is an established neurosurgical therapy for movement disorders including essential tremor and Parkinson’s disease. While typically highly effective, deep brain stimulation can sometimes yield suboptimal therapeutic benefit and can cause adverse effects. In this study, we tested the hypothesis that intraoperative functional magnetic resonance imaging could be used to detect deep brain stimulation-evoked changes in functional and effective connectivity that would correlate with the therapeutic and adverse effects of stimulation. Ten patients receiving deep brain stimulation of the ventralis intermedius thalamic nucleus for essential tremor underwent functional magnetic resonance imaging during stimulation applied at a series of stimulation localizations, followed by evaluation of deep brain stimulation-evoked therapeutic and adverse effects. Correlations between the therapeutic effectiveness of deep brain stimulation (3 months postoperatively) and deep brain stimulation-evoked changes in functional and effective connectivity were assessed using region of interest-based correlation analysis and dynamic causal modelling, respectively. Further, we investigated whether brain regions might exist in which activation resulting from deep brain stimulation might correlate with the presence of paraesthesias, the most common deep brain stimulation-evoked adverse effect. Thalamic deep brain stimulation resulted in activation within established nodes of the tremor circuit: sensorimotor cortex, thalamus, contralateral cerebellar cortex and deep cerebellar nuclei (FDR q < 0.05). Stimulation-evoked activation in all these regions of interest, as well as activation within the supplementary motor area, brainstem, and inferior frontal gyrus, exhibited significant correlations with the long-term therapeutic effectiveness of deep brain stimulation (P < 0.05), with the strongest correlation (P < 0.001) observed within the contralateral cerebellum. Dynamic causal modelling revealed a correlation between therapeutic effectiveness and attenuated within-region inhibitory connectivity in cerebellum. Finally, specific subregions of sensorimotor cortex were identified in which deep brain stimulation-evoked activation correlated with the presence of unwanted paraesthesias. These results suggest that thalamic deep brain stimulation in tremor likely exerts its effects through modulation of both olivocerebellar and thalamocortical circuits. In addition, our findings indicate that deep brain stimulation-evoked functional activation maps obtained intraoperatively may contain predictive information pertaining to the therapeutic and adverse effects induced by deep brain stimulation. PMID:27329768

  20. Historical Perspectives on School Psychology.

    ERIC Educational Resources Information Center

    Grimley, Liam K., Ed.

    This monograph was created to stimulate more thorough study of the history of school psychology. In the first section, "Mapping the Territory for Historical Study of School Psychology," by Liam K. Grimley, some fundamental questions are raised about what should be studied in the history of school psychology, how that study might be…

  1. Regulation of angiotensin II-induced neuromodulation by MARCKS in brain neurons.

    PubMed

    Lu, D; Yang, H; Lenox, R H; Raizada, M K

    1998-07-13

    Angiotensin II (Ang II) exerts chronic stimulatory actions on tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DbetaH), and the norepinephrine transporter (NET), in part, by influencing the transcription of their genes. These neuromodulatory actions of Ang II involve Ras-Raf-MAP kinase signal transduction pathways (Lu, D., H. Yang, and M.K. Raizada. 1997. J. Cell Biol. 135:1609-1617). In this study, we present evidence to demonstrate participation of another signaling pathway in these neuronal actions of Ang II. It involves activation of protein kinase C (PKC)beta subtype and phosphorylation and redistribution of myristoylated alanine-rich C kinase substrate (MARCKS) in neurites. Ang II caused a dramatic redistribution of MARCKS from neuronal varicosities to neurites. This was accompanied by a time-dependent stimulation of its phosphorylation, that was mediated by the angiotensin type 1 receptor subtype (AT1). Incubation of neurons with PKCbeta subtype specific antisense oligonucleotide (AON) significantly attenuated both redistribution and phosphorylation of MARCKS. Furthermore, depletion of MARCKS by MARCKS-AON treatment of neurons resulted in a significant decrease in Ang II-stimulated accumulation of TH and DbetaH immunoreactivities and [3H]NE uptake activity in synaptosomes. In contrast, mRNA levels of TH, DbetaH, and NET were not influenced by MARKS-AON treatment. MARCKS pep148-165, which contains PKC phosphorylation sites, inhibited Ang II stimulation of MARCKS phosphorylation and reduced the amount of TH, DbetaH, and [3H]NE uptake in neuronal synaptosomes. These observations demonstrate that phosphorylation of MARCKS by PKCbeta and its redistribution from varicosities to neurites is important in Ang II-induced synaptic accumulation of TH, DbetaH, and NE. They suggest that a coordinated stimulation of transcription of TH, DbetaH, and NET, mediated by Ras-Raf-MAP kinase followed by their transport mediated by PKCbeta-MARCKS pathway are key in persistent stimulation of Ang II's neuromodulatory actions.

  2. The MAP kinase pathway is involved in odontoblast stimulation via p38 phosphorylation.

    PubMed

    Simon, Stephane; Smith, Anthony J; Berdal, Ariane; Lumley, Philip J; Cooper, Paul R

    2010-02-01

    We have previously shown that the p38 gene is highly expressed in odontoblasts during active primary dentinogenesis, but is drastically down-regulated as cells become quiescent in secondary dentinogenesis. Based on these observations, we hypothesized that p38 expression might be upregulated, and the protein activated by phosphorylation, when odontoblasts are stimulated such as during tertiary reactionary dentinogenesis. We stimulated immortalized, odontoblast-like MDPC-23 cells, alone or in combination, with heat-inactivated Streptococcus mutans, EDTA-extracted dentine matrix proteins (DMPs), or growth factors, including transforming growth factor (TGF)-beta1, tumor necrosis factor-alpha (TNF-alpha), and adrenomedullin (ADM). We used ELISA to measure the resulting phosphorylation of the p38 protein, as well as its degree of nuclear translocation. Our results suggest that the p38-MAPKinase pathway is activated during odontoblast stimulation in tertiary dentinogenesis by both p38 phosphorylation and enhanced nuclear translocation. Data indicate that odontoblast behaviour therefore potentially recapitulates that during active primary dentinogenesis. Copyright 2010 American Association of Endodontists. All rights reserved.

  3. Prostaglandin F(2alpha) stimulates tyrosine phosphorylation of phospholipase C-gamma1.

    PubMed

    Husain, Shahid; Jafri, Farahdiba

    2002-10-11

    In this study, we investigated the ability of prostaglandin F(2alpha) (PGF(2alpha)) to induce tyrosine phosphorylation of phospholipase C-gamma1 (PLC-gamma1) in cat iris sphincter smooth muscle (CISM) cells. PGF(2alpha)(1 microM) stimulated PLC-gamma1 tyrosine phosphorylation in a time- and dose-dependent manner with a maximum increase of 3-fold at 0.5min. The protein tyrosine kinase inhibitors, genistein, and tyrphostin A-25, blocked the stimulatory effects of PGF(2alpha), suggesting involvement of protein tyrosine kinase activity in the physiological actions of the PGF(2alpha). Furthermore, PGF(2alpha)-induced p42/p44 MAP kinase activation was also completely blocked by protein tyrosine kinase inhibitors. In summary, these findings show that PGF(2alpha) stimulates tyrosine phosphorylation of PLC-gamma1 in CISM cells and indicate that PGF(2alpha)-stimulated tyrosine phosphorylation is responsible for an early signal transduction event.

  4. Brain processing of biologically relevant odors in the awake rat, as revealed by manganese-enhanced MRI.

    PubMed

    Lehallier, Benoist; Rampin, Olivier; Saint-Albin, Audrey; Jérôme, Nathalie; Ouali, Christian; Maurin, Yves; Bonny, Jean-Marie

    2012-01-01

    So far, an overall view of olfactory structures activated by natural biologically relevant odors in the awake rat is not available. Manganese-enhanced MRI (MEMRI) is appropriate for this purpose. While MEMRI has been used for anatomical labeling of olfactory pathways, functional imaging analyses have not yet been performed beyond the olfactory bulb. Here, we have used MEMRI for functional imaging of rat central olfactory structures and for comparing activation maps obtained with odors conveying different biological messages. Odors of male fox feces and of chocolate flavored cereals were used to stimulate conscious rats previously treated by intranasal instillation of manganese (Mn). MEMRI activation maps showed Mn enhancement all along the primary olfactory cortex. Mn enhancement elicited by male fox feces odor and to a lesser extent that elicited by chocolate odor, differed from that elicited by deodorized air. This result was partly confirmed by c-Fos immunohistochemistry in the piriform cortex. By providing an overall image of brain structures activated in awake rats by odorous stimulation, and by showing that Mn enhancement is differently sensitive to different stimulating odors, the present results demonstrate the interest of MEMRI for functional studies of olfaction in the primary olfactory cortex of laboratory small animals, under conditions close to natural perception. Finally, the factors that may cause the variability of the MEMRI signal in response to different odor are discussed.

  5. p38 mitogen-activated protein kinase up-regulates NF-{kappa}B transcriptional activation through RelA phosphorylation during stretch-induced myogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Guoping; Liu, Dongxu; Liu, Jing

    2010-01-01

    p38 MAPK and nuclear factor-B (NF-B) signaling pathways play an indispensable role in the control of skeletal myogenesis. The specific contribution of these signaling pathways to the response of myoblast to the mechanical stimulation and the molecular mechanisms underlying this response remain unresolved. Using an established in vitro model, we now show that p38 MAP kinase activity regulates the transcriptional activation of NF-{kappa}B in response to mechanical stimulation of myoblasts. Furthermore, SB203580 blocked stretch-induced NF-{kappa}B activation during myogenesis, not through down-regulation of degradation of I{kappa}B-{alpha}, and consequent translocation of the p65 subunit of NF-{kappa}B to the nucleus. It is likelymore » that stretch-induced NF-{kappa}B activation by phosphorylation of p65 NF-{kappa}B. Moreover, depletion of p38{alpha} using siRNA significantly reduces stretch-induced phosphorylation of RelA and NF-{kappa}B activity. These results provides the first evidence of a cross-talk between p38 MAPK and NF-{kappa}B signaling pathways during stretch-induced myogenesis, with phosphorylation of RelA being one of the effectors of this promyogenic mechanism. The {alpha} isoform of p38MAP kinase regulates the transcriptional activation of NF-{kappa}B following stimulation with cyclic stretch.« less

  6. Single Pulse Electrical Stimulation to identify epileptogenic cortex: Clinical information obtained from early evoked responses.

    PubMed

    Mouthaan, B E; van 't Klooster, M A; Keizer, D; Hebbink, G J; Leijten, F S S; Ferrier, C H; van Putten, M J A M; Zijlmans, M; Huiskamp, G J M

    2016-02-01

    Single Pulse Electrical Stimulation (SPES) probes epileptogenic cortex during electrocorticography. Two SPES responses are described: pathological delayed responses (DR, >100 ms) associated with the seizure onset zone (SOZ) and physiological early responses (ER, <100 ms) that map cortical connectivity. We analyzed properties of ERs, including frequencies >80 Hz, in the SOZ and seizure propagation areas. We used data from 12 refractory epilepsy patients. SPES consisted of 10 pulses of 1 ms, 4-8 mA and 5s interval on adjacent electrodes pairs. Data were available at 2048 samples/s for six and 512 samples/s (22 bits) for eight patients and analyzed in the time-frequency (TF) and time-domain (TD). Electrodes with ERs were stronger associated with SOZ than non-SOZ electrodes. ERs with frequency content >80 Hz exist and are specific for SOZ channels. ERs evoked by stimulation of seizure onset electrodes were associated with electrodes involved in seizure propagation. Analysis of ERs can reveal aspects of pathology, manifested by association with seizure propagation and areas with high ER numbers that coincide with the SOZ. Not only DRs, but also ERs could have clinical value for mapping epileptogenic cortex and help to unravel aspects of the epileptic network. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  7. The kinases MEKK2 and MEKK3 regulate transforming growth factor-β-mediated helper T cell differentiation.

    PubMed

    Chang, Xing; Liu, Fang; Wang, Xiaofang; Lin, Aiping; Zhao, Hongyu; Su, Bing

    2011-02-25

    Mitogen-activated protein kinases (MAPKs) are key mediators of the T cell receptor (TCR) signals but their roles in T helper (Th) cell differentiation are unclear. Here we showed that the MAPK kinase kinases MEKK2 (encoded by Map3k2) and MEKK3 (encoded by Map3k3) negatively regulated transforming growth factor-β (TGF-β)-mediated Th cell differentiation. Map3k2(-/-)Map3k3(Lck-Cre/-) mice showed an abnormal accumulation of regulatory T (Treg) and Th17 cells in the periphery, consistent with Map3k2(-/-)Map3k3(Lck-Cre/-) naive CD4(+) T cells' differentiation into Treg and Th17 cells with a higher frequency than wild-type (WT) cells after TGF-β stimulation in vitro. In addition, Map3k2(-/-)Map3k3(Lck-Cre/-) mice developed more severe experimental autoimmune encephalomyelitis. Map3k2(-/-)Map3k3(Lck-Cre/-) T cells exhibited impaired phosphorylation of SMAD2 and SMAD3 proteins at their linker regions, which negatively regulated the TGF-β responses in T cells. Thus, the crosstalk between TCR-induced MAPK and the TGF-β signaling pathways is important in regulating Th cell differentiation. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Embodying Others in Immersive Virtual Reality: Electro-Cortical Signatures of Monitoring the Errors in the Actions of an Avatar Seen from a First-Person Perspective.

    PubMed

    Pavone, Enea Francesco; Tieri, Gaetano; Rizza, Giulia; Tidoni, Emmanuele; Grisoni, Luigi; Aglioti, Salvatore Maria

    2016-01-13

    Brain monitoring of errors in one's own and other's actions is crucial for a variety of processes, ranging from the fine-tuning of motor skill learning to important social functions, such as reading out and anticipating the intentions of others. Here, we combined immersive virtual reality and EEG recording to explore whether embodying the errors of an avatar by seeing it from a first-person perspective may activate the error monitoring system in the brain of an onlooker. We asked healthy participants to observe, from a first- or third-person perspective, an avatar performing a correct or an incorrect reach-to-grasp movement toward one of two virtual mugs placed on a table. At the end of each trial, participants reported verbally how much they embodied the avatar's arm. Ratings were maximal in first-person perspective, indicating that immersive virtual reality can be a powerful tool to induce embodiment of an artificial agent, even through mere visual perception and in the absence of any cross-modal boosting. Observation of erroneous grasping from a first-person perspective enhanced error-related negativity and medial-frontal theta power in the trials where human onlookers embodied the virtual character, hinting at the tight link between early, automatic coding of error detection and sense of embodiment. Error positivity was similar in 1PP and 3PP, suggesting that conscious coding of errors is similar for self and other. Thus, embodiment plays an important role in activating specific components of the action monitoring system when others' errors are coded as if they are one's own errors. Detecting errors in other's actions is crucial for social functions, such as reading out and anticipating the intentions of others. Using immersive virtual reality and EEG recording, we explored how the brain of an onlooker reacted to the errors of an avatar seen from a first-person perspective. We found that mere observation of erroneous actions enhances electrocortical markers of error detection in the trials where human onlookers embodied the virtual character. Thus, the cerebral system for action monitoring is maximally activated when others' errors are coded as if they are one's own errors. The results have important implications for understanding how the brain can control the external world and thus creating new brain-computer interfaces. Copyright © 2016 the authors 0270-6474/16/360268-12$15.00/0.

  9. The neuronal correlates of intranasal trigeminal function – An ALE meta-analysis of human functional brain imaging data

    PubMed Central

    Albrecht, Jessica; Kopietz, Rainer; Frasnelli, Johannes; Wiesmann, Martin; Hummel, Thomas; Lundström, Johan N.

    2009-01-01

    Almost every odor we encounter in daily life has the capacity to produce a trigeminal sensation. Surprisingly, few functional imaging studies exploring human neuronal correlates of intranasal trigeminal function exist, and results are to some degree inconsistent. We utilized activation likelihood estimation (ALE), a quantitative voxel-based meta-analysis tool, to analyze functional imaging data (fMRI/PET) following intranasal trigeminal stimulation with carbon dioxide (CO2), a stimulus known to exclusively activate the trigeminal system. Meta-analysis tools are able to identify activations common across studies, thereby enabling activation mapping with higher certainty. Activation foci of nine studies utilizing trigeminal stimulation were included in the meta-analysis. We found significant ALE scores, thus indicating consistent activation across studies, in the brainstem, ventrolateral posterior thalamic nucleus, anterior cingulate cortex, insula, precentral gyrus, as well as in primary and secondary somatosensory cortices – a network known for the processing of intranasal nociceptive stimuli. Significant ALE values were also observed in the piriform cortex, insula, and the orbitofrontal cortex, areas known to process chemosensory stimuli, and in association cortices. Additionally, the trigeminal ALE statistics were directly compared with ALE statistics originating from olfactory stimulation, demonstrating considerable overlap in activation. In conclusion, the results of this meta-analysis map the human neuronal correlates of intranasal trigeminal stimulation with high statistical certainty and demonstrate that the cortical areas recruited during the processing of intranasal CO2 stimuli include those outside traditional trigeminal areas. Moreover, through illustrations of the considerable overlap between brain areas that process trigeminal and olfactory information; these results demonstrate the interconnectivity of flavor processing. PMID:19913573

  10. Distinct Neural-Functional Effects of Treatments With Selective Serotonin Reuptake Inhibitors, Electroconvulsive Therapy, and Transcranial Magnetic Stimulation and Their Relations to Regional Brain Function in Major Depression: A Meta-analysis.

    PubMed

    Chau, David T; Fogelman, Phoebe; Nordanskog, Pia; Drevets, Wayne C; Hamilton, J Paul

    2017-05-01

    Functional neuroimaging studies have examined the neural substrates of treatments for major depressive disorder (MDD). Low sample size and methodological heterogeneity, however, undermine the generalizability of findings from individual studies. We conducted a meta-analysis to identify reliable neural changes resulting from different modes of treatment for MDD and compared them with each other and with reliable neural functional abnormalities observed in depressed versus control samples. We conducted a meta-analysis of studies reporting changes in brain activity (e.g., as indexed by positron emission tomography) following treatments with selective serotonin reuptake inhibitors (SSRIs), electroconvulsive therapy (ECT), or transcranial magnetic stimulation. Additionally, we examined the statistical reliability of overlap among thresholded meta-analytic SSRI, ECT, and transcranial magnetic stimulation maps as well as a map of abnormal neural function in MDD. Our meta-analysis revealed that 1) SSRIs decrease activity in the anterior insula, 2) ECT decreases activity in central nodes of the default mode network, 3) transcranial magnetic stimulation does not result in reliable neural changes, and 4) regional effects of these modes of treatment do not significantly overlap with each other or with regions showing reliable functional abnormality in MDD. SSRIs and ECT produce neurally distinct effects relative to each other and to the functional abnormalities implicated in depression. These treatments therefore may exert antidepressant effects by diminishing neural functions not implicated in depression but that nonetheless impact mood. We discuss how the distinct neural changes resulting from SSRIs and ECT can account for both treatment effects and side effects from these therapies as well as how to individualize these treatments. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  11. Technological advances in the surgical treatment of movement disorders.

    PubMed

    Gross, Robert E; McDougal, Margaret E

    2013-08-01

    Technological innovations have driven the advancement of the surgical treatment of movement disorders, from the invention of the stereotactic frame to the adaptation of deep brain stimulation (DBS). Along these lines, this review will describe recent advances in inserting neuromodulation modalities, including DBS, to the target, and in the delivery of therapy at the target. Recent radiological advances are altering the way that DBS leads are targeted and inserted, by refining the ability to visualize the subcortical targets using high-field strength magnetic resonance imaging and other innovations, such as diffusion tensor imaging, and the development of novel targeting devices enabling purely anatomical implantations without the need for neurophysiological monitoring. New portable computed tomography scanners also are facilitating lead implantation without monitoring, as well as improving radiological verification of DBS lead location. Advances in neurophysiological mapping include efforts to develop automatic target verification algorithms, and probabilistic maps to guide target selection. The delivery of therapy at the target is being improved by the development of the next generation of internal pulse generators (IPGs). These include constant current devices that mitigate the variability introduced by impedance changes of the stimulated tissue and, in the near future, devices that deliver novel stimulation patterns with improved efficiency. Closed-loop adaptive IPGs are being tested, which may tailor stimulation to ongoing changes in the nervous system, reflected in biomarkers continuously recorded by the devices. Finer-grained DBS leads, in conjunction with new IPGs and advanced programming tools, may offer improved outcomes via current steering algorithms. Finally, even thermocoagulation-essentially replaced by DBS-is being advanced by new minimally-invasive approaches that may improve this therapy for selected patients in whom it may be preferred. Functional neurosurgery has a history of being driven by technological innovation, a tradition that continues into its future.

  12. Protein kinases as mediators of fluid shear stress stimulated signal transduction in endothelial cells: a hypothesis for calcium-dependent and calcium-independent events activated by flow.

    PubMed

    Berk, B C; Corson, M A; Peterson, T E; Tseng, H

    1995-12-01

    Fluid shear stress regulates endothelial cell function, but the signal transduction mechanisms involved in mechanotransduction remain unclear. Recent findings demonstrate that several intracellular kinases are activated by mechanical forces. In particular, members of the mitogen-activated protein (MAP) kinase family are stimulated by hyperosmolarity, stretch, and stress such as heat shock. We propose a model for mechanotransduction in endothelial cells involving calcium-dependent and calcium-independent protein kinase pathways. The calcium-dependent pathway involves activation of phospholipase C, hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2), increases in intracellular calcium and stimulation of kinases such as calcium-calmodulin and C kinases (PKC). The calcium-independent pathway involves activation of a small GTP-binding protein and stimulation of calcium-independent PKC and MAP kinases. The calcium-dependent pathway mediates the rapid, transient response to fluid shear stress including activation of nitric oxide synthase (NOS) and ion transport. In contrast, the calcium-independent pathway mediates a slower response including the sustained activation of NOS and changes in cell morphology and gene expression. We propose that focal adhesion complexes link the calcium-dependent and calcium-independent pathways by regulating activity of phosphatidylinositol 4-phosphate (PIP) 5-kinase (which regulates PIP2 levels) and p125 focal adhesion kinase (FAK, which phosphorylates paxillin and interacts with cytoskeletal proteins). This model predicts that dynamic interactions between integrin molecules present in focal adhesion complexes and membrane events involved in mechanotransduction will be integrated by calcium-dependent and calcium-independent kinases to generate intracellular signals involved in the endothelial cell response to flow.

  13. Frontal eye field, where art thou? Anatomy, function, and non-invasive manipulation of frontal regions involved in eye movements and associated cognitive operations

    PubMed Central

    Vernet, Marine; Quentin, Romain; Chanes, Lorena; Mitsumasu, Andres; Valero-Cabré, Antoni

    2014-01-01

    The planning, control and execution of eye movements in 3D space relies on a distributed system of cortical and subcortical brain regions. Within this network, the Eye Fields have been described in animals as cortical regions in which electrical stimulation is able to trigger eye movements and influence their latency or accuracy. This review focuses on the Frontal Eye Field (FEF) a “hub” region located in Humans in the vicinity of the pre-central sulcus and the dorsal-most portion of the superior frontal sulcus. The straightforward localization of the FEF through electrical stimulation in animals is difficult to translate to the healthy human brain, particularly with non-invasive neuroimaging techniques. Hence, in the first part of this review, we describe attempts made to characterize the anatomical localization of this area in the human brain. The outcome of functional Magnetic Resonance Imaging (fMRI), Magneto-encephalography (MEG) and particularly, non-invasive mapping methods such a Transcranial Magnetic Stimulation (TMS) are described and the variability of FEF localization across individuals and mapping techniques are discussed. In the second part of this review, we will address the role of the FEF. We explore its involvement both in the physiology of fixation, saccade, pursuit, and vergence movements and in associated cognitive processes such as attentional orienting, visual awareness and perceptual modulation. Finally in the third part, we review recent evidence suggesting the high level of malleability and plasticity of these regions and associated networks to non-invasive stimulation. The exploratory, diagnostic, and therapeutic interest of such interventions for the modulation and improvement of perception in 3D space are discussed. PMID:25202241

  14. BA3b and BA1 activate in a serial fashion after median nerve stimulation: direct evidence from combining source analysis of evoked fields and cytoarchitectonic probabilistic maps.

    PubMed

    Papadelis, Christos; Eickhoff, Simon B; Zilles, Karl; Ioannides, Andreas A

    2011-01-01

    This study combines source analysis imaging data for early somatosensory processing and the probabilistic cytoarchitectonic maps (PCMs). Human somatosensory evoked fields (SEFs) were recorded by stimulating left and right median nerves. Filtering the recorded responses in different frequency ranges identified the most responsive frequency band. The short-latency averaged SEFs were analyzed using a single equivalent current dipole (ECD) model and magnetic field tomography (MFT). The identified foci of activity were superimposed with PCMs. Two major components of opposite polarity were prominent around 21 and 31 ms. A weak component around 25 ms was also identified. For the most responsive frequency band (50-150 Hz) ECD and MFT revealed one focal source at the contralateral Brodmann area 3b (BA3b) at the peak of N20. The component ~25 ms was localised in Brodmann area 1 (BA1) in 50-150 Hz. By using ECD, focal generators around 28-30 ms located initially in BA3b and 2 ms later to BA1. MFT also revealed two focal sources - one in BA3b and one in BA1 for these latencies. Our results provide direct evidence that the earliest cortical response after median nerve stimulation is generated within the contralateral BA3b. BA1 activation few milliseconds later indicates a serial mode of somatosensory processing within cytoarchitectonic SI subdivisions. Analysis of non-invasive magnetoencephalography (MEG) data and the use of PCMs allow unambiguous and quantitative (probabilistic) interpretation of cytoarchitectonic identity of activated areas following median nerve stimulation, even with the simple ECD model, but only when the model fits the data extremely well. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. An experimental study of pain upon stimulation of the nasal and sinus cavities.

    PubMed

    Clerico, Dean M

    2014-01-01

    To map different areas of pain sensitivity and to determine the existence and/or pattern of referred pain from upon stimulating the sinonasal cavity. Experimental human study. Mechanical and electrical stimulations to various anatomical structures and areas of the nasal and sinus cavities were conducted on nine volunteers. Intensity, location and character of pain were recorded in all subjects. The postero-superior (cephalic) aspect of the nasal cavity, primarily the anterior face of the sphenoid sinus and the superior turbinate, were the most sensitive sites, and the antero-inferior (caudal) region was the least sensitive. Referred pain to the head and face was reported by several subjects. Topographical differences in pain sensitivity exist in the sinonasal cavity. The phenomenon of referred pain from the nasal cavity was demonstrated. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Optogenetic stimulation of cortex to map evoked whisker movements in awake head-restrained mice.

    PubMed

    Auffret, Matthieu; Ravano, Veronica L; Rossi, Giulia M C; Hankov, Nicolas; Petersen, Merissa F A; Petersen, Carl C H

    2018-01-01

    Whisker movements are used by rodents to touch objects in order to extract spatial and textural tactile information about their immediate surroundings. To understand the mechanisms of such active sensorimotor processing it is important to investigate whisker motor control. The activity of neurons in the neocortex affects whisker movements, but many aspects of the organization of cortical whisker motor control remain unknown. Here, we filmed whisker movements evoked by sequential optogenetic stimulation of different locations across the left dorsal sensorimotor cortex of awake head-restrained mice. Whisker movements were evoked by optogenetic stimulation of many regions in the dorsal sensorimotor cortex. Optogenetic stimulation of whisker sensory barrel cortex evoked retraction of the contralateral whisker after a short latency, and a delayed rhythmic protraction of the ipsilateral whisker. Optogenetic stimulation of frontal cortex evoked rhythmic bilateral whisker protraction with a longer latency compared to stimulation of sensory cortex. Compared to frontal cortex stimulation, larger amplitude bilateral rhythmic whisking in a less protracted position was evoked at a similar latency by stimulating a cortical region posterior to Bregma and close to the midline. These data suggest that whisker motor control might be broadly distributed across the dorsal mouse sensorimotor cortex. Future experiments must investigate the complex neuronal circuits connecting specific cell-types in various cortical regions with the whisker motor neurons located in the facial nucleus. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  17. A new intracavitary probe for detecting the site of origin of ectopic ventricular beats during one cardiac cycle.

    PubMed

    Taccardi, B; Arisi, G; Macchi, E; Baruffi, S; Spaggiari, S

    1987-01-01

    An olive-shaped probe (25 X 12 mm) with 41 evenly distributed recording electrodes on its surface was introduced into the left ventricles of seven open-chest dogs via the left atrium. In two other dogs a cylindrical probe (40 X 3 mm) was used. Electrical stimuli were delivered at 66 endocardial, midwall, or epicardial sites in the left and right ventricular walls and the septum. Mechanical stimuli were also applied at various epicardial sites. On-line mapping of equipotential contour lines on the surface of the probe invariably revealed a clear-cut potential minimum on the electrode that faced the pacing site. Time of appearance of potential minimum was 3 to 5 msec after endocardial stimuli, 10 to 25 msec for midwall and epicardial pacing, and 30 msec or more for right ventricular stimulation. Simultaneous stimulation at two sites 1.2 cm apart gave rise to two separate minima on the maps. "Pseudoisochrones" derived from electrograms recorded by the new probe were slightly less accurate in indicating the site of origin of extrasystoles. We conclude that equipotential and "isochrone" contour maps recorded from an array of semidirect electrodes, regularly distributed on the surface of an intraventricular probe, provide information on the site of origin (location and intramural depth) of ectopic paced beats in a normal dog heart.

  18. Direct electrical stimulation as an input gate into brain functional networks: principles, advantages and limitations.

    PubMed

    Mandonnet, Emmanuel; Winkler, Peter A; Duffau, Hugues

    2010-02-01

    While the fundamental and clinical contribution of direct electrical stimulation (DES) of the brain is now well acknowledged, its advantages and limitations have not been re-evaluated for a long time. Here, we critically review exactly what DES can tell us about cerebral function. First, we show that DES is highly sensitive for detecting the cortical and axonal eloquent structures. Moreover, DES also provides a unique opportunity to study brain connectivity, since each area responsive to stimulation is in fact an input gate into a large-scale network rather than an isolated discrete functional site. DES, however, also has a limitation: its specificity is suboptimal. Indeed, DES may lead to interpretations that a structure is crucial because of the induction of a transient functional response when stimulated, whereas (1) this effect is caused by the backward spreading of the electro-stimulation along the network to an essential area and/or (2) the stimulated region can be functionally compensated owing to long-term brain plasticity mechanisms. In brief, although DES is still the gold standard for brain mapping, its combination with new methods such as perioperative neurofunctional imaging and biomathematical modeling is now mandatory, in order to clearly differentiate those networks that are actually indispensable to function from those that can be compensated.

  19. Desynchronization boost by non-uniform coordinated reset stimulation in ensembles of pulse-coupled neurons

    PubMed Central

    Lücken, Leonhard; Yanchuk, Serhiy; Popovych, Oleksandr V.; Tass, Peter A.

    2013-01-01

    Several brain diseases are characterized by abnormal neuronal synchronization. Desynchronization of abnormal neural synchrony is theoretically compelling because of the complex dynamical mechanisms involved. We here present a novel type of coordinated reset (CR) stimulation. CR means to deliver phase resetting stimuli at different neuronal sub-populations sequentially, i.e., at times equidistantly distributed in a stimulation cycle. This uniform timing pattern seems to be intuitive and actually applies to the neural network models used for the study of CR so far. CR resets the population to an unstable cluster state from where it passes through a desynchronized transient, eventually resynchronizing if left unperturbed. In contrast, we show that the optimal stimulation times are non-uniform. Using the model of weakly pulse-coupled neurons with phase response curves, we provide an approach that enables to determine optimal stimulation timing patterns that substantially maximize the desynchronized transient time following the application of CR stimulation. This approach includes an optimization search for clusters in a low-dimensional pulse coupled map. As a consequence, model-specific non-uniformly spaced cluster states cause considerably longer desynchronization transients. Intriguingly, such a desynchronization boost with non-uniform CR stimulation can already be achieved by only slight modifications of the uniform CR timing pattern. Our results suggest that the non-uniformness of the stimulation times can be a medically valuable parameter in the calibration procedure for CR stimulation, where the latter has successfully been used in clinical and pre-clinical studies for the treatment of Parkinson's disease and tinnitus. PMID:23750134

  20. Functional mapping of cell surface proteins with localized stimulation of single cells

    NASA Astrophysics Data System (ADS)

    Sun, Bingyun; Chiu, Daniel T.

    2003-11-01

    This paper describes the development of using individual micro and nano meter-sized vesicles as delivery vessels to functionally map the distribution of cell surface proteins at the level of single cells. The formation of different sizes of vesicles from tens of nanometers to a few micrometers in diameter that contain the desired molecules is addressed. An optical trap is used to manipulate the loaded vesicle to specific cell morphology of interest, and a pulsed UV laser is used to photo-release the stimuli onto the cell membrane. Carbachol activated cellular calcium flux, upon binding to muscarinic acetylcholine receptors, is studied by this method, and the potential of using this method for the functional mapping of localized proteins on the cell surface membrane is discussed.

  1. Metabolic Mapping of the Brain's Response to Visual Stimulation: Studies in Humans.

    ERIC Educational Resources Information Center

    Phelps, Michael E.; Kuhl, David E.

    1981-01-01

    Studies demonstrate increasing glucose metabolic rates in human primary (PVC) and association (AVC) visual cortex as complexity of visual scenes increase. AVC increased more rapidly with scene complexity than PVC and increased local metabolic activities above control subject with eyes closed; indicates wide range and metabolic reserve of visual…

  2. Brain Mapping of Language and Auditory Perception in High-Functioning Autistic Adults: A PET Study.

    ERIC Educational Resources Information Center

    Muller, R-A.; Behen, M. E.; Rothermel, R. D.; Chugani, D. C.; Muzik, O.; Mangner, T. J.; Chugani, H. T.

    1999-01-01

    A study used positron emission tomography (PET) to study patterns of brain activation during auditory processing in five high-functioning adults with autism. Results found that participants showed reversed hemispheric dominance during the verbal auditory stimulation and reduced activation of the auditory cortex and cerebellum. (CR)

  3. Some Thoughts about a New International Geography Test

    ERIC Educational Resources Information Center

    van der Schee, Joop; Notte, Henk; Zwartjes, Luc

    2010-01-01

    An important question for geography teachers all over the world is how to define, stimulate and test geographic literacy. Although modern technology is no guarantee of quality, it offers new possibilities for teaching and testing, as can be seen in contemporary geography learning/teaching units using digital maps and interactive tests. Tests such…

  4. Human Hrs, a tyrosine kinase substrate in growth factor-stimulated cells: cDNA cloning and mapping of the gene to chromosome 17.

    PubMed

    Lu, L; Komada, M; Kitamura, N

    1998-06-15

    Hrs is a 115kDa zinc finger protein which is rapidly tyrosine phosphorylated in cells stimulated with various growth factors. We previously purified the protein from a mouse cell line and cloned its cDNA. In the present study, we cloned a human Hrs cDNA from a human placenta cDNA library by cross-hybridization, using the mouse cDNA as a probe, and determined its nucleotide sequence. The human Hrs cDNA encoded a 777-amino-acid protein whose sequence was 93% identical to that of mouse Hrs. Northern blot analysis showed that the Hrs mRNA was about 3.0kb long and was expressed in all the human adult and fetal tissues tested. In addition, we showed by genomic Southern blot analysis that the human Hrs gene was a single-copy gene with a size of about 20kb. Furthermore, the human Hrs gene was mapped to chromosome 17 by Southern blotting of genomic DNAs from human/rodent somatic cell hybrids. Copyright 1998 Elsevier Science B.V. All rights reserved.

  5. A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology.

    PubMed

    Viventi, Jonathan; Kim, Dae-Hyeong; Moss, Joshua D; Kim, Yun-Soung; Blanco, Justin A; Annetta, Nicholas; Hicks, Andrew; Xiao, Jianliang; Huang, Younggang; Callans, David J; Rogers, John A; Litt, Brian

    2010-03-24

    In all current implantable medical devices such as pacemakers, deep brain stimulators, and epilepsy treatment devices, each electrode is independently connected to separate control systems. The ability of these devices to sample and stimulate tissues is hindered by this configuration and by the rigid, planar nature of the electronics and the electrode-tissue interfaces. Here, we report the development of a class of mechanically flexible silicon electronics for multiplexed measurement of signals in an intimate, conformal integrated mode on the dynamic, three-dimensional surfaces of soft tissues in the human body. We demonstrate this technology in sensor systems composed of 2016 silicon nanomembrane transistors configured to record electrical activity directly from the curved, wet surface of a beating porcine heart in vivo. The devices sample with simultaneous submillimeter and submillisecond resolution through 288 amplified and multiplexed channels. We use this system to map the spread of spontaneous and paced ventricular depolarization in real time, at high resolution, on the epicardial surface in a porcine animal model. This demonstration is one example of many possible uses of this technology in minimally invasive medical devices.

  6. UV laser interaction with a fluorescent dye solution studied using pulsed digital holography.

    PubMed

    Amer, Eynas; Gren, Per; Sjödahl, Mikael

    2013-10-21

    A frequency tripled Q-switched Nd-YAG laser (wavelength 355 nm, pulse duration 12 ns) has been used to pump Coumarin 153 dye solved in ethanol. Simultaneously, a frequency doubled pulse (532 nm) from the same laser is used to probe the solvent perpendicularly resulting in a gain through stimulated laser induced fluorescence (LIF) emission. The resulting gain of the probe beam is recorded using digital holography by blending it with a reference beam on the detector. Two digital holograms without and with the pump beam were recorded. Intensity maps were calculated from the recorded digital holograms and used to calculate the gain of the probe beam due to the stimulated LIF. In addition numerical data of the local temperature rise was calculated from the corresponding phase maps using Radon inversion. It was concluded that about 15% of the pump beam energy is transferred to the dye solution as heat while the rest is consumed in the radiative process. The results show that pulsed digital holography is a promising technique for quantitative study of fluorescent species.

  7. Optimal stimulus scheduling for active estimation of evoked brain networks.

    PubMed

    Kafashan, MohammadMehdi; Ching, ShiNung

    2015-12-01

    We consider the problem of optimal probing to learn connections in an evoked dynamic network. Such a network, in which each edge measures an input-output relationship between sites in sensor/actuator-space, is relevant to emerging applications in neural mapping and neural connectivity estimation. We show that the problem of scheduling nodes to a probe (i.e., stimulate) amounts to a problem of optimal sensor scheduling. By formulating the evoked network in state-space, we show that the solution to the greedy probing strategy has a convenient form and, under certain conditions, is optimal over a finite horizon. We adopt an expectation maximization technique to update the state-space parameters in an online fashion and demonstrate the efficacy of the overall approach in a series of detailed numerical examples. The proposed method provides a principled means to actively probe time-varying connections in neuronal networks. The overall method can be implemented in real time and is particularly well-suited to applications in stimulation-based cortical mapping in which the underlying network dynamics are changing over time.

  8. Optimal stimulus scheduling for active estimation of evoked brain networks

    NASA Astrophysics Data System (ADS)

    Kafashan, MohammadMehdi; Ching, ShiNung

    2015-12-01

    Objective. We consider the problem of optimal probing to learn connections in an evoked dynamic network. Such a network, in which each edge measures an input-output relationship between sites in sensor/actuator-space, is relevant to emerging applications in neural mapping and neural connectivity estimation. Approach. We show that the problem of scheduling nodes to a probe (i.e., stimulate) amounts to a problem of optimal sensor scheduling. Main results. By formulating the evoked network in state-space, we show that the solution to the greedy probing strategy has a convenient form and, under certain conditions, is optimal over a finite horizon. We adopt an expectation maximization technique to update the state-space parameters in an online fashion and demonstrate the efficacy of the overall approach in a series of detailed numerical examples. Significance. The proposed method provides a principled means to actively probe time-varying connections in neuronal networks. The overall method can be implemented in real time and is particularly well-suited to applications in stimulation-based cortical mapping in which the underlying network dynamics are changing over time.

  9. Integrating anatomy and function for zebrafish circuit analysis.

    PubMed

    Arrenberg, Aristides B; Driever, Wolfgang

    2013-01-01

    Due to its transparency, virtually every brain structure of the larval zebrafish is accessible to light-based interrogation of circuit function. Advanced stimulation techniques allow the activation of optogenetic actuators at different resolution levels, and genetically encoded calcium indicators report the activity of a large proportion of neurons in the CNS. Large datasets result and need to be analyzed to identify cells that have specific properties-e.g., activity correlation to sensory stimulation or behavior. Advances in three-dimensional (3D) functional mapping in zebrafish are promising; however, the mere coordinates of implicated neurons are not sufficient. To comprehensively understand circuit function, these functional maps need to be placed into the proper context of morphological features and projection patterns, neurotransmitter phenotypes, and key anatomical landmarks. We discuss the prospect of merging functional and anatomical data in an integrated atlas from the perspective of our work on long-range dopaminergic neuromodulation and the oculomotor system. We propose that such a resource would help researchers to surpass current hurdles in circuit analysis to achieve an integrated understanding of anatomy and function.

  10. Angiotensin II stimulates calcium-dependent activation of c-Jun N-terminal kinase.

    PubMed Central

    Zohn, I E; Yu, H; Li, X; Cox, A D; Earp, H S

    1995-01-01

    In GN4 rat liver epithelial cells, angiotensin II (Ang II) and other agonists which activate phospholipase C stimulate tyrosine kinase activity in a calcium-dependent, protein kinase C (PKC)-independent manner. Since Ang II also produces a proliferative response in these cells, we investigated downstream signaling elements traditionally linked to growth control by tyrosine kinases. First, Ang II, like epidermal growth factor (EGF), stimulated AP-1 binding activity in a PKC-independent manner. Because increases in AP-1 can reflect induction of c-Jun and c-Fos, we examined the activity of the mitogen-activated protein (MAP) kinase family members Erk-1 and -2 and the c-Jun N-terminal kinase (JNK), which are known to influence c-Jun and c-Fos transcription. Ang II stimulated MAP kinase (MAPK) activity but only approximately 50% as effectively as EGF; again, these effects were independent of PKC. Ang II also produced a 50- to 200-fold activation of JNK in a PKC-independent manner. Unlike its smaller effect on MAPK, Ang II was approximately four- to sixfold more potent in activating JNK than EGF was. Although others had reported a lack of calcium ionophore-stimulated JNK activity in lymphocytes and several other cell lines, we examined the role of calcium in GN4 cells. The following results suggest that JNK activation in rat liver epithelial cells is at least partially Ca(2+) dependent: (i) norepinephrine and vasopressin hormones that increase inositol 1,4,5-triphosphate stimulated JNK; (ii) both thapsigargin, a compound that produces an intracellular Ca(2+) signal, and Ca(2+) ionophores stimulated a dramatic increase in JNK activity (up to 200-fold); (iii) extracellular Ca(2+) chelation with ethylene glycol tetraacetic acid (EGTA) inhibited JNK activation by ionophore and intracellular chelation with 1,2-bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid tetraacetoxymethyl-ester (BAPTA-AM) partially inhibited JNK activation by Ang II or thapsigargin; and (iv) JNK activation by Ang II was inhibited by pretreatment of cells with thapsigargin and EGTA, a procedure which depletes intracellular Ca(2+) stores. JNK activation following Ang II stimulation did not involve calmodulin; either W-7 nor calmidizolium, in concentrations sufficient to inhibit Ca(2+)/calmodulin-dependent kinase II, blocked JNK activation by Ang II. In contrast, genistein, in concentrations sufficient to inhibit Ca(2+)-dependent tyrosine phosphorylation, prevented Ang II and thapsigargin-induced JNK activation. In summary, in GN4 rat liver epithelial cells, Ang II stimulates JNK via a novel Ca(2+)-dependent pathway. The inhibition by genistein suggest that Ca(2+)-dependent tyrosine phosphorylation may modulate the JNK pathway in a cell type-specific manner, particularly in cells with a readily detectable Ca(2+)-regulated tyrosine kinase. PMID:7565768

  11. Role of protein kinase C alpha and mitogen-activated protein kinases in endothelin-1-stimulation of cytosolic phospholipase A2 in iris sphincter smooth muscle.

    PubMed

    Abdel-Latif, A A; Husain, S; Yousufzai, S Y

    2000-11-01

    We have investigated the roles of protein kinase C (PKC) and mitogen-activated protein kinases (MAPK) in the phosphorylation and activation of cytosolic phospholipase A2 (cPLA2) in endothelin-1- (ET-1) stimulated cat iris sphincter smooth muscle (CISM) cells. We found that in these cells both PKC and p38 MAP kinases play a critical role in ET-1-induced cPLA, phosphorylation and arachidonic acid (AA) release. Our findings indicate that stimulation of the endothelin-A- (ET(A)) receptor leads to: (1) activation of Gq protein which stimulates phospholipase C to hydrolyze the polyphosphoinositide PIP, into diacylglycerol (DAG) and inositol trisphosphate (IP3), the DAG may then activate PKC to phosphorylate and activate cPLA2; and (2) activation of Gi protein, which, through a series of kinases, leads to the stimulation of p38 MAPK and subsequently to phosphorylation and activation of cPLA2. The ability of the activated ET(A)-receptor, which is coupled to both Gq and Gi proteins, to recruit and activate this complex signal transduction mechanism remains to be clarified.

  12. Single-shot time stretch stimulated Raman spectroscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Saltarelli, Francesco; Kumar, Vikas; Viola, Daniele; Crisafi, Francesco; Preda, Fabrizio; Cerullo, Giulio; Polli, Dario

    2017-02-01

    Stimulated Raman scattering spectroscopy is a powerful technique for label-free molecular identification, but its broadband implementation is technically challenging. We introduce and experimentally demonstrate a novel approach based on photonic time stretch. The broadband femtosecond Stokes pulse, after interacting with the sample, is stretched by a telecom fiber to 15ns, mapping its spectrum in time. The signal is sampled through a fast analog-to-digital converter, providing single-shot spectra at 80-kHz rate. We demonstrate 10^-5 sensitivity over 500 cm-1 in the C-H region. Our results pave the way to high-speed broadband vibrational imaging for materials science and biophotonics.

  13. The Impact of Diffusion Tensor Imaging Fiber Tracking of the Corticospinal Tract Based on Navigated Transcranial Magnetic Stimulation on Surgery of Motor-Eloquent Brain Lesions.

    PubMed

    Raffa, Giovanni; Conti, Alfredo; Scibilia, Antonino; Cardali, Salvatore Massimiliano; Esposito, Felice; Angileri, Filippo Flavio; La Torre, Domenico; Sindorio, Carmela; Abbritti, Rosaria Viola; Germanò, Antonino; Tomasello, Francesco

    2017-11-29

    Navigated transcranial magnetic stimulation (nTMS) enables preoperative mapping of the motor cortex (M1). The combination of nTMS with diffusion tensor imaging fiber tracking (DTI-FT) of the corticospinal tract (CST) has been described; however, its impact on surgery of motor-eloquent lesions has not been addressed. To analyze the impact of nTMS-based mapping on surgery of motor-eloquent lesions. In this retrospective case-control study, we reviewed the data of patients operated for suspected motor-eloquent lesions between 2012 and 2015. The patients underwent nTMS mapping of M1 and, from 2014, nTMS-based DTI-FT of the CST. The impact on the preoperative risk/benefit analysis, surgical strategy, craniotomy size, extent of resection (EOR), and outcome were compared with a control group. We included 35 patients who underwent nTMS mapping of M1 (group A), 35 patients who also underwent nTMS-based DTI-FT of the CST (group B), and a control group composed of 35 patients treated without nTMS (group C). The patients in groups A and B received smaller craniotomies (P = .01; P = .001), had less postoperative seizures (P = .02), and a better postoperative motor performance (P = .04) and Karnofsky Performance Status (P = .009) than the controls. Group B exhibited an improved risk/benefit analysis (P = .006), an increased EOR of nTMS-negative lesions in absence of preoperative motor deficits (P = .01), and less motor and Karnofsky Performance Status worsening in case of preoperative motor deficits (P = .02, P = .03) than group A. nTMS-based mapping enables a tailored surgical approach for motor-eloquent lesions. It may improve the risk/benefit analysis, EOR and outcome, particularly when nTMS-based DTI-FT is performed. Copyright © 2017 by the Congress of Neurological Surgeons

  14. WC1+ γδ T cells from cattle naturally infected with Mycobacterium avium subsp. paratuberculosis respond differentially to stimulation with PPD-J.

    PubMed

    Albarrak, S M; Waters, W R; Stabel, J R; Hostetter, J M

    2017-08-01

    A role for γδ T cells in protection against mycobacterial infections including Johne's disease (JD) has been suggested. In neonatal calves where the risk to infection with Mycobacterium avium subsp. paratuberculosis (MAP) is high, the majority of circulating CD3 + lymphocytes are γδ TCR + . Bovine γδ T cells are divided into two major subsets based on the surface expression of workshop cluster 1 (WC1). The WC1 + subset, the predominant subset in periphery, is further divided into WC1.1 + and WC1.2 + subpopulations. The ability of γδ T cells to produce IFN-γ prior to CD4 + αβ T cell activation could be crucial to the outcome of MAP infection. In the current study, cattle were naturally infected with MAP and were classified as either in the subclinical or clinical stage of infection. Compared to the control non-infected group, γδ T cell frequency in circulating lymphocytes was significantly lower in the clinical group. The observed decline in frequency was restricted to the WC1.2 + subset, and was not associated with preferential migration to infection sites (distal-ileum). γδ T cells proliferated significantly in recall responses to stimulation with purified protein derivative from MAP (PPD-J) only in subclinically infected cattle. These responses were a heterogeneous mixture of WC1.1 and WC1.2 subsets. Proliferation and IFN-γ production by the WC1.1 + γδ T cell subset was significantly higher in the subclinical group compared to the control and clinical groups. Our data indicates differences in MAP-specific ex-vivo responses of peripheral WC1 + γδ T cells of cattle with the subclinical or clinical form of JD. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Analysis on bilateral hindlimb mapping in motor cortex of the rat by an intracortical microstimulation method.

    PubMed

    Seong, Han Yu; Cho, Ji Young; Choi, Byeong Sam; Min, Joong Kee; Kim, Yong Hwan; Roh, Sung Woo; Kim, Jeong Hoon; Jeon, Sang Ryong

    2014-04-01

    Intracortical microstimulation (ICMS) is a technique that was developed to derive movement representation of the motor cortex. Although rats are now commonly used in motor mapping studies, the precise characteristics of rat motor map, including symmetry and consistency across animals, and the possibility of repeated stimulation have not yet been established. We performed bilateral hindlimb mapping of motor cortex in six Sprague-Dawley rats using ICMS. ICMS was applied to the left and the right cerebral hemisphere at 0.3 mm intervals vertically and horizontally from the bregma, and any movement of the hindlimbs was noted. The majority (80%± 11%) of responses were not restricted to a single joint, which occurred simultaneously at two or three hindlimb joints. The size and shape of hindlimb motor cortex was variable among rats, but existed on the convex side of the cerebral hemisphere in all rats. The results did not show symmetry according to specific joints in each rats. Conclusively, the hindlimb representation in the rat motor cortex was conveniently mapped using ICMS, but the characteristics and inter-individual variability suggest that precise individual mapping is needed to clarify motor distribution in rats.

  16. Mapping perception to action in piano practice: a longitudinal DC-EEG study

    PubMed Central

    Bangert, Marc; Altenmüller, Eckart O

    2003-01-01

    Background Performing music requires fast auditory and motor processing. Regarding professional musicians, recent brain imaging studies have demonstrated that auditory stimulation produces a co-activation of motor areas, whereas silent tapping of musical phrases evokes a co-activation in auditory regions. Whether this is obtained via a specific cerebral relay station is unclear. Furthermore, the time course of plasticity has not yet been addressed. Results Changes in cortical activation patterns (DC-EEG potentials) induced by short (20 minute) and long term (5 week) piano learning were investigated during auditory and motoric tasks. Two beginner groups were trained. The 'map' group was allowed to learn the standard piano key-to-pitch map. For the 'no-map' group, random assignment of keys to tones prevented such a map. Auditory-sensorimotor EEG co-activity occurred within only 20 minutes. The effect was enhanced after 5-week training, contributing elements of both perception and action to the mental representation of the instrument. The 'map' group demonstrated significant additional activity of right anterior regions. Conclusion We conclude that musical training triggers instant plasticity in the cortex, and that right-hemispheric anterior areas provide an audio-motor interface for the mental representation of the keyboard. PMID:14575529

  17. Neurophysiologic markers of primary motor cortex for laryngeal muscles and premotor cortex in caudal opercular part of inferior frontal gyrus investigated in motor speech disorder: a navigated transcranial magnetic stimulation (TMS) study.

    PubMed

    Rogić Vidaković, Maja; Jerković, Ana; Jurić, Tomislav; Vujović, Igor; Šoda, Joško; Erceg, Nikola; Bubić, Andreja; Zmajević Schönwald, Marina; Lioumis, Pantelis; Gabelica, Dragan; Đogaš, Zoran

    2016-11-01

    Transcranial magnetic stimulation studies have so far reported the results of mapping the primary motor cortex (M1) for hand and tongue muscles in stuttering disorder. This study was designed to evaluate the feasibility of repetitive navigated transcranial magnetic stimulation (rTMS) for locating the M1 for laryngeal muscle and premotor cortical area in the caudal opercular part of inferior frontal gyrus, corresponding to Broca's area in stuttering subjects by applying new methodology for mapping these motor speech areas. Sixteen stuttering and eleven control subjects underwent rTMS motor speech mapping using modified patterned rTMS. The subjects performed visual object naming task during rTMS applied to the (a) left M1 for laryngeal muscles for recording corticobulbar motor-evoked potentials (CoMEP) from cricothyroid muscle and (b) left premotor cortical area in the caudal opercular part of inferior frontal gyrus while recording long latency responses (LLR) from cricothyroid muscle. The latency of CoMEP in control subjects was 11.75 ± 2.07 ms and CoMEP amplitude was 294.47 ± 208.87 µV, and in stuttering subjects CoMEP latency was 12.13 ± 0.75 ms and 504.64 ± 487.93 µV CoMEP amplitude. The latency of LLR in control subjects was 52.8 ± 8.6 ms and 54.95 ± 4.86 in stuttering subjects. No significant differences were found in CoMEP latency, CoMEP amplitude, and LLR latency between stuttering and control-fluent speakers. These results indicate there are probably no differences in stuttering compared to controls in functional anatomy of the pathway used for transmission of information from premotor cortex to the M1 cortices for laryngeal muscle representation and from there via corticobulbar tract to laryngeal muscles.

  18. Glucagon-like peptide-1 increases myocardial glucose uptake via p38alpha MAP kinase-mediated, nitric oxide-dependent mechanisms in conscious dogs with dilated cardiomyopathy.

    PubMed

    Bhashyam, Siva; Fields, Anjali V; Patterson, Brandy; Testani, Jeffrey M; Chen, Li; Shen, You-Tang; Shannon, Richard P

    2010-07-01

    We have shown that glucagon-like peptide-1 (GLP-1[7-36] amide) stimulates myocardial glucose uptake in dilated cardiomyopathy (DCM) independent of an insulinotropic effect. The cellular mechanisms of GLP-1-induced myocardial glucose uptake are unknown. Myocardial substrates and glucoregulatory hormones were measured in conscious, chronically instrumented dogs at control (n=6), DCM (n=9) and DCM after treatment with a 48-hour infusion of GLP-1 (7-36) amide (n=9) or vehicle (n=6). GLP-1 receptors and cellular pathways implicated in myocardial glucose uptake were measured in sarcolemmal membranes harvested from the 4 groups. GLP-1 stimulated myocardial glucose uptake (DCM: 20+/-7 nmol/min/g; DCM+GLP-1: 61+/-12 nmol/min/g; P=0.001) independent of increased plasma insulin levels. The GLP-1 receptors were upregulated in the sarcolemmal membranes (control: 98+/-2 density units; DCM: 256+/-58 density units; P=0.046) and were expressed in their activated (65 kDa) form in DCM. The GLP-1-induced increases in myocardial glucose uptake did not involve adenylyl cyclase or Akt activation but was associated with marked increases in p38alpha MAP kinase activity (DCM+vehicle: 97+/-22 pmol ATP/mg/min; DCM+GLP-1: 170+/-36 pmol ATP/mg/min; P=0.051), induction of nitric oxide synthase 2 (DCM+vehicle: 151+/-13 density units; DCM+GLP-1: 306+/-12 density units; P=0.001), and GLUT-1 translocation (DCM+vehicle: 21+/-3% membrane bound; DCM+GLP-1: 39+/-3% membrane bound; P=0.005). The effects of GLP-1 on myocardial glucose uptake were blocked by pretreatment with the p38alpha MAP kinase inhibitor or the nonspecific nitric oxide synthase inhibitor nitro-l-arginine. GLP-1 stimulates myocardial glucose uptake through a non-Akt-1-dependent mechanism by activating cellular pathways that have been identified in mediating chronic hibernation and the late phase of ischemic preconditioning.

  19. Bedside functional brain imaging in critically-ill children using high-density EEG source modeling and multi-modal sensory stimulation.

    PubMed

    Eytan, Danny; Pang, Elizabeth W; Doesburg, Sam M; Nenadovic, Vera; Gavrilovic, Bojan; Laussen, Peter; Guerguerian, Anne-Marie

    2016-01-01

    Acute brain injury is a common cause of death and critical illness in children and young adults. Fundamental management focuses on early characterization of the extent of injury and optimizing recovery by preventing secondary damage during the days following the primary injury. Currently, bedside technology for measuring neurological function is mainly limited to using electroencephalography (EEG) for detection of seizures and encephalopathic features, and evoked potentials. We present a proof of concept study in patients with acute brain injury in the intensive care setting, featuring a bedside functional imaging set-up designed to map cortical brain activation patterns by combining high density EEG recordings, multi-modal sensory stimulation (auditory, visual, and somatosensory), and EEG source modeling. Use of source-modeling allows for examination of spatiotemporal activation patterns at the cortical region level as opposed to the traditional scalp potential maps. The application of this system in both healthy and brain-injured participants is demonstrated with modality-specific source-reconstructed cortical activation patterns. By combining stimulation obtained with different modalities, most of the cortical surface can be monitored for changes in functional activation without having to physically transport the subject to an imaging suite. The results in patients in an intensive care setting with anatomically well-defined brain lesions suggest a topographic association between their injuries and activation patterns. Moreover, we report the reproducible application of a protocol examining a higher-level cortical processing with an auditory oddball paradigm involving presentation of the patient's own name. This study reports the first successful application of a bedside functional brain mapping tool in the intensive care setting. This application has the potential to provide clinicians with an additional dimension of information to manage critically-ill children and adults, and potentially patients not suited for magnetic resonance imaging technologies.

  20. Systems-level identification of PKA-dependent signaling in epithelial cells.

    PubMed

    Isobe, Kiyoshi; Jung, Hyun Jun; Yang, Chin-Rang; Claxton, J'Neka; Sandoval, Pablo; Burg, Maurice B; Raghuram, Viswanathan; Knepper, Mark A

    2017-10-17

    G protein stimulatory α-subunit (G αs )-coupled heptahelical receptors regulate cell processes largely through activation of protein kinase A (PKA). To identify signaling processes downstream of PKA, we deleted both PKA catalytic subunits using CRISPR-Cas9, followed by a "multiomic" analysis in mouse kidney epithelial cells expressing the G αs -coupled V2 vasopressin receptor. RNA-seq (sequencing)-based transcriptomics and SILAC (stable isotope labeling of amino acids in cell culture)-based quantitative proteomics revealed a complete loss of expression of the water-channel gene Aqp2 in PKA knockout cells. SILAC-based quantitative phosphoproteomics identified 229 PKA phosphorylation sites. Most of these PKA targets are thus far unannotated in public databases. Surprisingly, 1,915 phosphorylation sites with the motif x-(S/T)-P showed increased phosphooccupancy, pointing to increased activity of one or more MAP kinases in PKA knockout cells. Indeed, phosphorylation changes associated with activation of ERK2 were seen in PKA knockout cells. The ERK2 site is downstream of a direct PKA site in the Rap1GAP, Sipa1l1, that indirectly inhibits Raf1. In addition, a direct PKA site that inhibits the MAP kinase kinase kinase Map3k5 (ASK1) is upstream of JNK1 activation. The datasets were integrated to identify a causal network describing PKA signaling that explains vasopressin-mediated regulation of membrane trafficking and gene transcription. The model predicts that, through PKA activation, vasopressin stimulates AQP2 exocytosis by inhibiting MAP kinase signaling. The model also predicts that, through PKA activation, vasopressin stimulates Aqp2 transcription through induction of nuclear translocation of the acetyltransferase EP300, which increases histone H3K27 acetylation of vasopressin-responsive genes (confirmed by ChIP-seq).

  1. Cost-effectiveness of preoperative motor mapping with navigated transcranial magnetic brain stimulation in patients with high-grade glioma.

    PubMed

    Butenschön, Vicki M; Ille, Sebastian; Sollmann, Nico; Meyer, Bernhard; Krieg, Sandro M

    2018-06-01

    OBJECTIVE Navigated transcranial magnetic stimulation (nTMS) is used to identify the motor cortex prior to surgery. Yet, there has, until now, been no published evidence on the economic impact of nTMS. This study aims to analyze the cost-effectiveness of nTMS, evaluating the incremental costs of nTMS motor mapping per additional quality-adjusted life year (QALY). By doing so, this study also provides a model allowing for future analysis of general cost-effectiveness of new neuro-oncological treatment options. METHODS The authors used a microsimulation model based on their cohort population sampled for 1000 patients over the time horizon of 2 years. A health care provider perspective was used to assemble direct costs of total treatment. Transition probabilities and health utilities were based on published literature. Effects were stated in QALYs and established for health state subgroups. RESULTS In all scenarios, preoperative mapping was considered cost-effective with a willingness-to-pay threshold < 3*per capita GDP (gross domestic product). The incremental cost-effectiveness ratio (ICER) of nTMS versus no nTMS was 45,086 Euros/QALY. Sensitivity analyses showed robust results with a high impact of total treatment costs and utility of progression-free survival. Comparing the incremental costs caused by nTMS implementation only, the ICER decreased to 1967 Euros/QALY. CONCLUSIONS Motor mapping prior to surgery provides a cost-effective tool to improve the clinical outcome and overall survival of high-grade glioma patients in a resource-limited setting. Moreover, the model used in this study can be used in the future to analyze new treatment options in neuro-oncology in terms of their general cost-effectiveness.

  2. Deep brain stimulation, brain maps and personalized medicine: lessons from the human genome project.

    PubMed

    Fins, Joseph J; Shapiro, Zachary E

    2014-01-01

    Although the appellation of personalized medicine is generally attributed to advanced therapeutics in molecular medicine, deep brain stimulation (DBS) can also be so categorized. Like its medical counterpart, DBS is a highly personalized intervention that needs to be tailored to a patient's individual anatomy. And because of this, DBS like more conventional personalized medicine, can be highly specific where the object of care is an N = 1. But that is where the similarities end. Besides their differing medical and surgical provenances, these two varieties of personalized medicine have had strikingly different impacts. The molecular variant, though of a more recent vintage has thrived and is experiencing explosive growth, while DBS still struggles to find a sustainable therapeutic niche. Despite its promise, and success as a vetted treatment for drug resistant Parkinson's Disease, DBS has lagged in broadening its development, often encountering regulatory hurdles and financial barriers necessary to mount an adequate number of quality trials. In this paper we will consider why DBS-or better yet neuromodulation-has encountered these challenges and contrast this experience with the more successful advance of personalized medicine. We will suggest that personalized medicine and DBS's differential performance can be explained as a matter of timing and complexity. We believe that DBS has struggled because it has been a journey of scientific exploration conducted without a map. In contrast to molecular personalized medicine which followed the mapping of the human genome and the Human Genome Project, DBS preceded plans for the mapping of the human brain. We believe that this sequence has given personalized medicine a distinct advantage and that the fullest potential of DBS will be realized both as a cartographical or electrophysiological probe and as a modality of personalized medicine.

  3. The California Seafloor and Coastal Mapping Program – Providing science and geospatial data for California's State Waters

    USGS Publications Warehouse

    Johnson, Samuel Y.; Cochrane, Guy R.; Golden, Nadine; Dartnell, Peter; Hartwell, Stephen; Cochran, Susan; Watt, Janet

    2017-01-01

    The California Seafloor and Coastal Mapping Program (CSCMP) is a collaborative effort to develop comprehensive bathymetric, geologic, and habitat maps and data for California's State Waters. CSCMP began in 2007 when the California Ocean Protection Council (OPC) and the National Oceanic and Atmospheric Administration (NOAA) allocated funding for high-resolution bathymetric mapping, largely to support the California Marine Life Protection Act and to update nautical charts. Collaboration and support from the U.S. Geological Survey and other partners has led to development and dissemination of one of the world's largest seafloor-mapping datasets. CSCMP provides essential science and data for ocean and coastal management, stimulates and enables research, and raises public education and awareness of coastal and ocean issues. Specific applications include:•Delineation and designation of marine protected areas•Characterization and modeling of benthic habitats and ecosystems•Updating nautical charts•Earthquake hazard assessments•Tsunami hazard assessments•Planning offshore infrastructure•Providing baselines for monitoring change•Input to models of sediment transport, coastal erosion, and coastal flooding•Regional sediment management•Understanding coastal aquifers•Providing geospatial data for emergency response

  4. Background sounds contribute to spectrotemporal plasticity in primary auditory cortex.

    PubMed

    Moucha, Raluca; Pandya, Pritesh K; Engineer, Navzer D; Rathbun, Daniel L; Kilgard, Michael P

    2005-05-01

    The mammalian auditory system evolved to extract meaningful information from complex acoustic environments. Spectrotemporal selectivity of auditory neurons provides a potential mechanism to represent natural sounds. Experience-dependent plasticity mechanisms can remodel the spectrotemporal selectivity of neurons in primary auditory cortex (A1). Electrical stimulation of the cholinergic nucleus basalis (NB) enables plasticity in A1 that parallels natural learning and is specific to acoustic features associated with NB activity. In this study, we used NB stimulation to explore how cortical networks reorganize after experience with frequency-modulated (FM) sweeps, and how background stimuli contribute to spectrotemporal plasticity in rat auditory cortex. Pairing an 8-4 kHz FM sweep with NB stimulation 300 times per day for 20 days decreased tone thresholds, frequency selectivity, and response latency of A1 neurons in the region of the tonotopic map activated by the sound. In an attempt to modify neuronal response properties across all of A1 the same NB activation was paired in a second group of rats with five downward FM sweeps, each spanning a different octave. No changes in FM selectivity or receptive field (RF) structure were observed when the neural activation was distributed across the cortical surface. However, the addition of unpaired background sweeps of different rates or direction was sufficient to alter RF characteristics across the tonotopic map in a third group of rats. These results extend earlier observations that cortical neurons can develop stimulus specific plasticity and indicate that background conditions can strongly influence cortical plasticity.

  5. The effects of altered intrathoracic pressure on resting cerebral blood flow and its response to visual stimulation

    PubMed Central

    Hayen, Anja; Herigstad, Mari; Kelly, Michael; Okell, Thomas W.; Murphy, Kevin; Wise, Richard G.; Pattinson, Kyle T.S.

    2013-01-01

    Investigating how intrathoracic pressure changes affect cerebral blood flow (CBF) is important for a clear interpretation of neuroimaging data in patients with abnormal respiratory physiology, intensive care patients receiving mechanical ventilation and in research paradigms that manipulate intrathoracic pressure. Here, we investigated the effect of experimentally increased and decreased intrathoracic pressures upon CBF and the stimulus-evoked CBF response to visual stimulation. Twenty healthy volunteers received intermittent inspiratory and expiratory loads (plus or minus 9 cmH2O for 270 s) and viewed an intermittent 2 Hz flashing checkerboard, while maintaining stable end-tidal CO2. CBF was recorded with transcranial Doppler sonography (TCD) and whole-brain pseudo-continuous arterial spin labeling magnetic resonance imaging (PCASL MRI). Application of inspiratory loading (negative intrathoracic pressure) showed an increase in TCD-measured CBF of 4% and a PCASL-measured increase in grey matter CBF of 5%, but did not alter mean arterial pressure (MAP). Expiratory loading (positive intrathoracic pressure) did not alter CBF, while MAP increased by 3%. Neither loading condition altered the perfusion response to visual stimulation in the primary visual cortex. In both loading conditions localized CBF increases were observed in the somatosensory and motor cortices, and in the cerebellum. Altered intrathoracic pressures, whether induced experimentally, therapeutically or through a disease process, have possible significant effects on CBF and should be considered as a potential systematic confound in the interpretation of perfusion-based neuroimaging data. PMID:23108273

  6. Using Temporal Modulation Sensitivity to Select Stimulation Sites for Processor MAPs in Cochlear Implant Listeners

    PubMed Central

    Garadat, Soha N.; Zwolan, Teresa A.; Pfingst, Bryan E.

    2013-01-01

    Previous studies in our laboratory showed that temporal acuity as assessed by modulation detection thresholds (MDTs) varied across activation sites and that this site-to-site variability was subject specific. Using two 10-channel MAPs, the previous experiments showed that processor MAPs that had better across-site mean (ASM) MDTs yielded better speech recognition than MAPs with poorer ASM MDTs tested in the same subject. The current study extends our earlier work on developing more optimal fitting strategies to test the feasibility of using a site-selection approach in the clinical domain. This study examined the hypothesis that revising the clinical speech processor MAP for cochlear implant (CI) recipients by turning off selected sites that have poorer temporal acuity and reallocating frequencies to the remaining electrodes would lead to improved speech recognition. Twelve CI recipients participated in the experiments. We found that site selection procedure based on MDTs in the presence of a masker resulted in improved performance on consonant recognition and recognition of sentences in noise. In contrast, vowel recognition was poorer with the experimental MAP than with the clinical MAP, possibly due to reduced spectral resolution when sites were removed from the experimental MAP. Overall, these results suggest a promising path for improving recipient outcomes using personalized processor-fitting strategies based on a psychophysical measure of temporal acuity. PMID:23881208

  7. Predicting successful tactile mapping of virtual objects.

    PubMed

    Brayda, Luca; Campus, Claudio; Gori, Monica

    2013-01-01

    Improving spatial ability of blind and visually impaired people is the main target of orientation and mobility (O&M) programs. In this study, we use a minimalistic mouse-shaped haptic device to show a new approach aimed at evaluating devices providing tactile representations of virtual objects. We consider psychophysical, behavioral, and subjective parameters to clarify under which circumstances mental representations of spaces (cognitive maps) can be efficiently constructed with touch by blindfolded sighted subjects. We study two complementary processes that determine map construction: low-level perception (in a passive stimulation task) and high-level information integration (in an active exploration task). We show that jointly considering a behavioral measure of information acquisition and a subjective measure of cognitive load can give an accurate prediction and a practical interpretation of mapping performance. Our simple TActile MOuse (TAMO) uses haptics to assess spatial ability: this may help individuals who are blind or visually impaired to be better evaluated by O&M practitioners or to evaluate their own performance.

  8. Group-level variations in motor representation areas of thenar and anterior tibial muscles: Navigated Transcranial Magnetic Stimulation Study.

    PubMed

    Niskanen, Eini; Julkunen, Petro; Säisänen, Laura; Vanninen, Ritva; Karjalainen, Pasi; Könönen, Mervi

    2010-08-01

    Navigated transcranial magnetic stimulation (TMS) can be used to stimulate functional cortical areas at precise anatomical location to induce measurable responses. The stimulation has commonly been focused on anatomically predefined motor areas: TMS of that area elicits a measurable muscle response, the motor evoked potential. In clinical pathologies, however, the well-known homunculus somatotopy theory may not be straightforward, and the representation area of the muscle is not fixed. Traditionally, the anatomical locations of TMS stimulations have not been reported at the group level in standard space. This study describes a methodology for group-level analysis by investigating the normal representation areas of thenar and anterior tibial muscle in the primary motor cortex. The optimal representation area for these muscles was mapped in 59 healthy right-handed subjects using navigated TMS. The coordinates of the optimal stimulation sites were then normalized into standard space to determine the representation areas of these muscles at the group-level in healthy subjects. Furthermore, 95% confidence interval ellipsoids were fitted into the optimal stimulation site clusters to define the variation between subjects in optimal stimulation sites. The variation was found to be highest in the anteroposterior direction along the superior margin of the precentral gyrus. These results provide important normative information for clinical studies assessing changes in the functional cortical areas because of plasticity of the brain. Furthermore, it is proposed that the presented methodology to study TMS locations at the group level on standard space will be a suitable tool for research purposes in population studies. 2010 Wiley-Liss, Inc.

  9. Utilising reinforcement learning to develop strategies for driving auditory neural implants.

    PubMed

    Lee, Geoffrey W; Zambetta, Fabio; Li, Xiaodong; Paolini, Antonio G

    2016-08-01

    In this paper we propose a novel application of reinforcement learning to the area of auditory neural stimulation. We aim to develop a simulation environment which is based off real neurological responses to auditory and electrical stimulation in the cochlear nucleus (CN) and inferior colliculus (IC) of an animal model. Using this simulator we implement closed loop reinforcement learning algorithms to determine which methods are most effective at learning effective acoustic neural stimulation strategies. By recording a comprehensive set of acoustic frequency presentations and neural responses from a set of animals we created a large database of neural responses to acoustic stimulation. Extensive electrical stimulation in the CN and the recording of neural responses in the IC provides a mapping of how the auditory system responds to electrical stimuli. The combined dataset is used as the foundation for the simulator, which is used to implement and test learning algorithms. Reinforcement learning, utilising a modified n-Armed Bandit solution, is implemented to demonstrate the model's function. We show the ability to effectively learn stimulation patterns which mimic the cochlea's ability to covert acoustic frequencies to neural activity. Time taken to learn effective replication using neural stimulation takes less than 20 min under continuous testing. These results show the utility of reinforcement learning in the field of neural stimulation. These results can be coupled with existing sound processing technologies to develop new auditory prosthetics that are adaptable to the recipients current auditory pathway. The same process can theoretically be abstracted to other sensory and motor systems to develop similar electrical replication of neural signals.

  10. Antinociception induced by epidural motor cortex stimulation in naive conscious rats is mediated by the opioid system.

    PubMed

    Fonoff, Erich Talamoni; Dale, Camila Squarzoni; Pagano, Rosana Lima; Paccola, Carina Cicconi; Ballester, Gerson; Teixeira, Manoel Jacobsen; Giorgi, Renata

    2009-01-03

    Epidural motor cortex stimulation (MCS) has been used for treating patients with neuropathic pain resistant to other therapeutic approaches. Experimental evidence suggests that the motor cortex is also involved in the modulation of normal nociceptive response, but the underlying mechanisms of pain control have not been clarified yet. The aim of this study was to investigate the effects of epidural electrical MCS on the nociceptive threshold of naive rats. Electrodes were placed on epidural motor cortex, over the hind paw area, according to the functional mapping accomplished in this study. Nociceptive threshold and general activity were evaluated under 15-min electrical stimulating sessions. When rats were evaluated by the paw pressure test, MCS induced selective antinociception in the paw contralateral to the stimulated cortex, but no changes were noticed in the ipsilateral paw. When the nociceptive test was repeated 15 min after cessation of electrical stimulation, the nociceptive threshold returned to basal levels. On the other hand, no changes in the nociceptive threshold were observed in rats evaluated by the tail-flick test. Additionally, no behavioral or motor impairment were noticed in the course of stimulation session at the open-field test. Stimulation of posterior parietal or somatosensory cortices did not elicit any changes in the general activity or nociceptive response. Opioid receptors blockade by naloxone abolished the increase in nociceptive threshold induced by MCS. Data shown herein demonstrate that epidural electrical MCS elicits a substantial and selective antinociceptive effect, which is mediated by opioids.

  11. Optical imaging of the retina in response to the electrical stimulation

    NASA Astrophysics Data System (ADS)

    Fujikado, Takashi; Okawa, Yoshitaka; Miyoshi, Tomomitsu; Hirohara, Yoko; Mihashi, Toshifumi; Tano, Yasuo

    2008-02-01

    Purposes: To determine if reflectance changes of the retina can be detected following electrical stimulation to the retina using a newly developed optical-imaging fundus camera. Methods: Eyes of cats were examined after pupil dilation. Retina was stimulated either focally by a ball-type electrode (BE) placed on the fenestrated sclera or diffusely using a ring-type electrode (RE) placed on the corneoscleral limbus. Electrical stimulation by biphasic pulse trains was applied for 4 seconds. Fundus images with near-infrared (800-880 nm) light were obtained between 2 seconds before and 20 seconds after the electrical stimulation (ES). A two-dimensional map of the reflectance changes (RCs) was constructed. The effect of Tetrodotoxin (TTX) was also investigated on RCs by ES using RE. Results: RCs were observed around the retinal locus where the stimulating electrodes were positioned (BE) or in the retina of the posterior pole (RE), in which the latency was about 0.5 to 1.0 sec and the peak time about 2 to 5 sec after the onset of ES. The intensity of the RCs increased with the increase of the stimulus current in both cases. RCs were completely suppressed after the injection of TTX. Conclusions: The functional changes of the retina either by focal or diffuse electrical stimulation were successfully detected by optical imaging of the retina. The contribution of retinal ganglion cells on RCs by ES was confirmed by TTX experiment. This method may be applied to the objective evaluation of the artificial retina.

  12. Mapping cell-specific functional connections in the mouse brain using ChR2-evoked hemodynamics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bauer, Adam Q.; Kraft, Andrew; Baxter, Grant A.; Bruchas, Michael; Lee, Jin-Moo; Culver, Joseph P.

    2017-02-01

    Functional magnetic resonance imaging (fMRI) has transformed our understanding of the brain's functional organization. However, mapping subunits of a functional network using hemoglobin alone presents several disadvantages. Evoked and spontaneous hemodynamic fluctuations reflect ensemble activity from several populations of neurons making it difficult to discern excitatory vs inhibitory network activity. Still, blood-based methods of brain mapping remain powerful because hemoglobin provides endogenous contrast in all mammalian brains. To add greater specificity to hemoglobin assays, we integrated optical intrinsic signal(OIS) imaging with optogenetic stimulation to create an Opto-OIS mapping tool that combines the cell-specificity of optogenetics with label-free, hemoglobin imaging. Before mapping, titrated photostimuli determined which stimulus parameters elicited linear hemodynamic responses in the cortex. Optimized stimuli were then scanned over the left hemisphere to create a set of optogenetically-defined effective connectivity (Opto-EC) maps. For many sites investigated, Opto-EC maps exhibited higher spatial specificity than those determined using spontaneous hemodynamic fluctuations. For example, resting-state functional connectivity (RS-FC) patterns exhibited widespread ipsilateral connectivity while Opto-EC maps contained distinct short- and long-range constellations of ipsilateral connectivity. Further, RS-FC maps were usually symmetric about midline while Opto-EC maps displayed more heterogeneous contralateral homotopic connectivity. Both Opto-EC and RS-FC patterns were compared to mouse connectivity data from the Allen Institute. Unlike RS-FC maps, Thy1-based maps collected in awake, behaving mice closely recapitulated the connectivity structure derived using ex vivo anatomical tracer methods. Opto-OIS mapping could be a powerful tool for understanding cellular and molecular contributions to network dynamics and processing in the mouse brain.

  13. The effect of pulse width and contact configuration on paresthesia coverage in spinal cord stimulation.

    PubMed

    Holsheimer, Jan; Buitenweg, Jan R; Das, John; de Sutter, Paul; Manola, Ljubomir; Nuttin, Bart

    2011-05-01

    In spinal cord stimulation for the management of chronic, intractable pain, a satisfactory analgesic effect can be obtained only when the stimulation-induced paresthesias cover all painful body areas completely or partially. To investigate the effect of stimulus pulse width (PW) and contact configuration (CC) on the area of paresthesia (PA), perception threshold (VPT), discomfort threshold (VDT), and usage range (UR) in spinal cord stimulation. Chronic pain patients were tested during a follow-up visit. They were stimulated monopolarly and with the CC giving each patient the best analgesia. VPT, VDT, and UR were determined for PWs of 90, 210, and 450 microseconds. The paresthesia contours at VDT were drawn on a body map and digitized; PA was calculated; and its anatomic composition was described. The effects of PW and CC on PA, VPT, VDT, and UR were tested statistically. Twenty-four of 31 tests with low thoracic stimulation and 8 of 9 tests with cervical stimulation gave a significant extension of PA at increasing PW. In 14 of 18 tests (low thoracic), a caudal extension was obtained (primarily in L5-S2). In cervical stimulation the extension was predominantly caudal as well. In contrast to VPT and VDT, UR is not significantly different when stimulating with any CC. PA extends caudally with increasing PW. The mechanism includes that the larger and smaller dorsal column fibers have a different mediolateral distribution and that smaller dorsal column fibers have a smaller UR and can be activated only when PW is sufficiently large. A similar effect of CC on PA is unlikely as long as electrodes with a large intercontact distance are applied.

  14. Winter in Northern Europe (WINE). The project Winter in Northern Europe (MAP/WINE): Introduction and outlook

    NASA Technical Reports Server (NTRS)

    Vonzahn, U.

    1989-01-01

    The project Winter in Northern Europe (WINE) of the international Middle Atmosphere Program (MAP) comprised a multinational study of the structure, dynamics and composition of the middle atmosphere in winter at high latitudes. Coordinated field measurements were performed during the winter 1983 to 1984 by a large number of ground-based, air-borne, rocket-borne and satellite-borne instruments. Many of the individual experiments were performed in the European sector of the high latitude and polar atmosphere. Studies of the stratosphere, were, in addition, expanded to hemispheric scales by the use of data obtained from remotely sensing satellites. Beyond its direct scientific results, which are reviewed, MAP/WINE has stimulated quite a number of follow-on experiments and projects which address the aeronomy of the middle atmosphere at high and polar latitudes.

  15. Improved Microseismicity Detection During Newberry EGS Stimulations

    DOE Data Explorer

    Templeton, Dennise

    2013-10-01

    Effective enhanced geothermal systems (EGS) require optimal fracture networks for efficient heat transfer between hot rock and fluid. Microseismic mapping is a key tool used to infer the subsurface fracture geometry. Traditional earthquake detection and location techniques are often employed to identify microearthquakes in geothermal regions. However, most commonly used algorithms may miss events if the seismic signal of an earthquake is small relative to the background noise level or if a microearthquake occurs within the coda of a larger event. Consequently, we have developed a set of algorithms that provide improved microearthquake detection. Our objective is to investigate the microseismicity at the DOE Newberry EGS site to better image the active regions of the underground fracture network during and immediately after the EGS stimulation. Detection of more microearthquakes during EGS stimulations will allow for better seismic delineation of the active regions of the underground fracture system. This improved knowledge of the reservoir network will improve our understanding of subsurface conditions, and allow improvement of the stimulation strategy that will optimize heat extraction and maximize economic return.

  16. Improved Microseismicity Detection During Newberry EGS Stimulations

    DOE Data Explorer

    Templeton, Dennise

    2013-11-01

    Effective enhanced geothermal systems (EGS) require optimal fracture networks for efficient heat transfer between hot rock and fluid. Microseismic mapping is a key tool used to infer the subsurface fracture geometry. Traditional earthquake detection and location techniques are often employed to identify microearthquakes in geothermal regions. However, most commonly used algorithms may miss events if the seismic signal of an earthquake is small relative to the background noise level or if a microearthquake occurs within the coda of a larger event. Consequently, we have developed a set of algorithms that provide improved microearthquake detection. Our objective is to investigate the microseismicity at the DOE Newberry EGS site to better image the active regions of the underground fracture network during and immediately after the EGS stimulation. Detection of more microearthquakes during EGS stimulations will allow for better seismic delineation of the active regions of the underground fracture system. This improved knowledge of the reservoir network will improve our understanding of subsurface conditions, and allow improvement of the stimulation strategy that will optimize heat extraction and maximize economic return.

  17. A tripolar current-steering stimulator ASIC for field shaping in deep brain stimulation.

    PubMed

    Valente, Virgilio; Demosthenous, Andreas; Bayford, Richard

    2012-06-01

    A significant problem with clinical deep brain stimulation (DBS) is the high variability of its efficacy and the frequency of side effects, related to the spreading of current beyond the anatomical target area. This is the result of the lack of control that current DBS systems offer on the shaping of the electric potential distribution around the electrode. This paper presents a stimulator ASIC with a tripolar current-steering output stage, aiming at achieving more selectivity and field shaping than current DBS systems. The ASIC was fabricated in a 0.35-μ m CMOS technology occupying a core area of 0.71 mm(2). It consists of three current sourcing/sinking channels. It is capable of generating square and exponential-decay biphasic current pulses with five different time constants up to 28 ms and delivering up to 1.85 mA of cathodic current, in steps of 4 μA, from a 12 V power supply. Field shaping was validated by mapping the potential distribution when injecting current pulses through a multicontact DBS electrode in saline.

  18. Effect of hindpaw electrical stimulation on capillary flow heterogeneity and oxygen delivery (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Li, Yuandong; Wei, Wei; Li, Chenxi; Wang, Ruikang K.

    2017-02-01

    We report a novel use of optical coherence tomography (OCT) based angiography to visualize and quantify dynamic response of cerebral capillary flow pattern in mice upon hindpaw electrical stimulation through the measurement of the capillary transit-time heterogeneity (CTH) and capillary mean transit time (MTT) in a wide dynamic range of a great number of vessels in vivo. The OCT system was developed to have a central wavelength of 1310 nm, a spatial resolution of 8 µm and a system dynamic range of 105 dB at an imaging rate of 92 kHz. The mapping of dynamic cerebral microcirculations was enabled by optical microangiography protocol. From the imaging results, the spatial homogenization of capillary velocity (decreased CTH) was observed in the region of interest (ROI) corresponding to the stimulation, along with an increase in the MTT in the ROI to maintain sufficient oxygen exchange within the brain tissue during functional activation. We validated the oxygen consumption due to an increase of the MTT through demonstrating an increase in the deoxygenated hemoglobin (HbR) during the stimulation by the use of laser speckle contrast imaging.

  19. Unbalanced neuronal circuits in addiction.

    PubMed

    Volkow, Nora D; Wang, Gen-Jack; Tomasi, Dardo; Baler, Ruben D

    2013-08-01

    Through sequential waves of drug-induced neurochemical stimulation, addiction co-opts the brain's neuronal circuits that mediate reward, motivation to behavioral inflexibility and a severe disruption of self-control and compulsive drug intake. Brain imaging technologies have allowed neuroscientists to map out the neural landscape of addiction in the human brain and to understand how drugs modify it. Published by Elsevier Ltd.

  20. Mapping the Past, Present, and Future of Teaching Leadership Chairs in Canada: A Report

    ERIC Educational Resources Information Center

    Andrews, David M.; Bornais, Judy A. K.; Cramer, Ken M.

    2016-01-01

    We explore the advent and initiatives of teaching leadership chairs--modeled after the Canada Research Chair framework--to instill individuals or small groups of teaching leaders at various centres across the country to stimulate educational change. In its past, present, and future, we explore the grassroots of teaching leadership chairs and their…

  1. Beyond La Nina, La Pinta, and La Santa Maria: The Invention and Mental Mapping of the New World

    ERIC Educational Resources Information Center

    Fernandez, Luis Martinez

    2013-01-01

    The topics of Columbus's voyages of exploration, the first encounters between Amerindians and Europeans, and the ensuing collision of their respective worlds provide ample opportunities for creative and stimulating pedagogical approaches that go beyond the stale memorization of dates, places, and names. This essay and accompanying classroom…

  2. Chronic spatial working memory deficit associated with the superior longitudinal fasciculus: a study using voxel-based lesion-symptom mapping and intraoperative direct stimulation in right prefrontal glioma surgery.

    PubMed

    Kinoshita, Masashi; Nakajima, Riho; Shinohara, Harumichi; Miyashita, Katsuyoshi; Tanaka, Shingo; Okita, Hirokazu; Nakada, Mitsutoshi; Hayashi, Yutaka

    2016-10-01

    OBJECTIVE Although the right prefrontal region is regarded as a silent area, chronic deficits of the executive function, including working memory (WM), could occur after resection of a right prefrontal glioma. This may be overlooked by postoperative standard examinations, and the disabilities could affect the patient's professional life. The right prefrontal region is a part of the frontoparietal network and is subserved by the superior longitudinal fasciculus (SLF); however, the role of the SLF in spatial WM is unclear. This study investigated a persistent spatial WM deficit in patients who underwent right prefrontal glioma resection, and evaluated the relationship between the spatial WM deficit and the SLF. METHODS Spatial WM was examined in 24 patients who underwent prefrontal glioma resection (right, n = 14; left, n = 10) and in 14 healthy volunteers using a spatial 2-back task during the long-term postoperative period. The neural correlates of spatial WM were evaluated using lesion mapping and voxel-based lesion-symptom mapping. In addition, the spatial 2-back task was performed during surgery under direct subcortical electrical stimulation in 2 patients with right prefrontal gliomas. RESULTS Patients with a right prefrontal lesion had a significant chronic spatial WM deficit. Voxel-based lesion-symptom mapping analysis revealed a significant correlation between spatial WM deficit and the region that overlapped the first and second segments of the SLF (SLF I and SLF II). Two patients underwent awake surgery and had difficulties providing the correct responses in the spatial 2-back task with direct subcortical electrical stimulation on the SLF I, which was preserved and confirmed by postoperative diffusion tensor imaging tractography. These patients exhibited no spatial WM deficits during the postoperative immediate and long-term periods. CONCLUSIONS Spatial WM deficits may persist in patients who undergo resection of the tumor located in the right prefrontal brain parenchyma. Injury to the dorsal frontoparietal subcortical white matter pathway, i.e., the SLF I or SLF I and II, could play a causal role in this chronic deficit. A persistent spatial WM deficit, without motor and language deficits, could affect the professional life of the patient. In such cases, awake surgery would be useful to detect the spatial WM network with appropriate task during tumor exploration.

  3. Substituted N-aryl-6-pyrimidinones: A new class of potent, selective, and orally active p38 MAP kinase inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devadas, Balekudru; Selness, Shaun R.; Xing, Li

    2012-02-28

    A novel series of highly potent and selective p38 MAP kinase inhibitors was developed originating from a substituted N-aryl-6-pyrimidinone scaffold. SAR studies coupled with in vivo evaluations in rat arthritis model culminated in the identification of 10 with excellent oral efficacy. Compound 10 exhibited a significantly enhanced dissolution rate compared to 1, translating to a high oral bioavailability (>90%) in rat. In animal studies 10 inhibited LPS-stimulated production of tumor necrosis factor-{alpha} in a dose-dependent manner and demonstrated robust efficacy comparable to dexamethasone in a rat streptococcal cell wall-induced arthritis model.

  4. Non-invasive assessment of skeletal muscle activity

    NASA Astrophysics Data System (ADS)

    Merletti, Roberto; Orizio, Claudio; di Prampero, Pietro E.; Tesch, Per

    2005-10-01

    After the first 3 years (2002-2005), the MAP project has made available: - systems fo electrodes, signal conditioning and digital processing for multichannel simultaneously-detected EMG and MMG as well as for simultaneous electrical stimulation and EMG detection with artifact cancellation. - innovative non-invasive techniques for the extraction of individual motor unit action potentials (MUAPS) and individual motor and MMG contributions from the surface EMG interference signal and the MMG signal. - processing techniques for extractions of indicators of progressive fatigue from the electrically-elicited (M-wave) EMG signal. - techniques for the analysis of dynamic multichannel EMG during cyclic or explosive exercise (in collaboration with project EXER/MAP-MED-027).

  5. Recording and assessment of evoked potentials with electrode arrays.

    PubMed

    Miljković, N; Malešević, N; Kojić, V; Bijelić, G; Keller, T; Popović, D B

    2015-09-01

    In order to optimize procedure for the assessment of evoked potentials and to provide visualization of the flow of action potentials along the motor systems, we introduced array electrodes for stimulation and recording and developed software for the analysis of the recordings. The system uses a stimulator connected to an electrode array for the generation of evoked potentials, an electrode array connected to the amplifier, A/D converter and computer for the recording of evoked potentials, and a dedicated software application. The method has been tested for the assessment of the H-reflex on the triceps surae muscle in six healthy humans. The electrode array with 16 pads was positioned over the posterior aspect of the thigh, while the recording electrode array with 16 pads was positioned over the triceps surae muscle. The stimulator activated all the pads of the stimulation electrode array asynchronously, while the signals were recorded continuously at all the recording sites. The results are topography maps (spatial distribution of evoked potentials) and matrices (spatial visualization of nerve excitability). The software allows the automatic selection of the lowest stimulation intensity to achieve maximal H-reflex amplitude and selection of the recording/stimulation pads according to predefined criteria. The analysis of results shows that the method provides rich information compared with the conventional recording of the H-reflex with regard the spatial distribution.

  6. Modulation of experimental arthritis by vagal sensory and central brain stimulation.

    PubMed

    Bassi, Gabriel Shimizu; Dias, Daniel Penteado Martins; Franchin, Marcelo; Talbot, Jhimmy; Reis, Daniel Gustavo; Menezes, Gustavo Batista; Castania, Jaci Airton; Garcia-Cairasco, Norberto; Resstel, Leonardo Barbosa Moraes; Salgado, Helio Cesar; Cunha, Fernando Queiróz; Cunha, Thiago Mattar; Ulloa, Luis; Kanashiro, Alexandre

    2017-08-01

    Articular inflammation is a major clinical burden in multiple inflammatory diseases, especially in rheumatoid arthritis. Biological anti-rheumatic drug therapies are expensive and increase the risk of systemic immunosuppression, infections, and malignancies. Here, we report that vagus nerve stimulation controls arthritic joint inflammation by inducing local regulation of innate immune response. Most of the previous studies of neuromodulation focused on vagal regulation of inflammation via the efferent peripheral pathway toward the viscera. Here, we report that vagal stimulation modulates arthritic joint inflammation through a novel "afferent" pathway mediated by the locus coeruleus (LC) of the central nervous system. Afferent vagal stimulation activates two sympatho-excitatory brain areas: the paraventricular hypothalamic nucleus (PVN) and the LC. The integrity of the LC, but not that of the PVN, is critical for vagal control of arthritic joint inflammation. Afferent vagal stimulation suppresses articular inflammation in the ipsilateral, but not in the contralateral knee to the hemispheric LC lesion. Central stimulation is followed by subsequent activation of joint sympathetic nerve terminals inducing articular norepinephrine release. Selective adrenergic beta-blockers prevent the effects of articular norepinephrine and thereby abrogate vagal control of arthritic joint inflammation. These results reveals a novel neuro-immune brain map with afferent vagal signals controlling side-specific articular inflammation through specific inflammatory-processing brain centers and joint sympathetic innervations. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Computer-Guided Deep Brain Stimulation Programming for Parkinson's Disease.

    PubMed

    Heldman, Dustin A; Pulliam, Christopher L; Urrea Mendoza, Enrique; Gartner, Maureen; Giuffrida, Joseph P; Montgomery, Erwin B; Espay, Alberto J; Revilla, Fredy J

    2016-02-01

    Pilot study to evaluate computer-guided deep brain stimulation (DBS) programming designed to optimize stimulation settings using objective motion sensor-based motor assessments. Seven subjects (five males; 54-71 years) with Parkinson's disease (PD) and recently implanted DBS systems participated in this pilot study. Within two months of lead implantation, the subject returned to the clinic to undergo computer-guided programming and parameter selection. A motion sensor was placed on the index finger of the more affected hand. Software guided a monopolar survey during which monopolar stimulation on each contact was iteratively increased followed by an automated assessment of tremor and bradykinesia. After completing assessments at each setting, a software algorithm determined stimulation settings designed to minimize symptom severities, side effects, and battery usage. Optimal DBS settings were chosen based on average severity of motor symptoms measured by the motion sensor. Settings chosen by the software algorithm identified a therapeutic window and improved tremor and bradykinesia by an average of 35.7% compared with baseline in the "off" state (p < 0.01). Motion sensor-based computer-guided DBS programming identified stimulation parameters that significantly improved tremor and bradykinesia with minimal clinician involvement. Automated motion sensor-based mapping is worthy of further investigation and may one day serve to extend programming to populations without access to specialized DBS centers. © 2015 International Neuromodulation Society.

  8. Stimulation Mapping of Myelinated Tracts in Awake Patients

    PubMed Central

    Duffau, Hugues

    2016-01-01

    For a long time, although the functional anatomy of human cortex has extensively been studied, subcortical white matter tracts have received little consideration. Recent advances in tractography have opened the door to a non-invasive investigation of the subcortical fibers in vivo. However, this method cannot study directly the function of the bundles. Interestingly, for the first time in the history of cognitive neurosciences, direct axonal electrostimulation (DES) mapping of the neural pathways offers the unique opportunity to investigate the function of the connectomal anatomy. Indeed, this technique is able to perform real-time anatomo-functional correlations in awake patients who undergo brain surgery, especially at the level of the subcortical fibers. Here, the aim is to review original data issued from DES of myelinated tracts in adults, with regard to the functional connectivity mediating the sensorimotor, visuo-spatial, language, cognitive and emotional functions, as well as the interactions between these different sub-networks, leading ultimately to explore consciousness. Therefore, axonal stimulation is a valuable tool in the field of connectomics, that is, the map of neural connections, in order to switch from the traditional localizationist view of brain processing to a networking model in which cerebral functions are underpinned by the dynamic interactions of large-scale distributed and parallel sub-circuits. Such connectomal account should integrate the anatomic constraint represented by the subcortical fascicles. Indeed, post-lesional neuroplasticity is possible only on the condition that the white matter fibers are preserved, to allow communication and temporal synchronization among delocalized inter-connected networks. PMID:29765851

  9. Brain and Music: An Intraoperative Stimulation Mapping Study of a Professional Opera Singer.

    PubMed

    Riva, Marco; Casarotti, Alessandra; Comi, Alessandro; Pessina, Federico; Bello, Lorenzo

    2016-09-01

    Music is one of the most sophisticated and fascinating functions of the brain. Yet, how music is instantiated within the brain is not fully characterized. Singing is a peculiar aspect of music, in which both musical and linguistic skills are required to provide a merged vocal output. Identifying the neural correlates of this process is relevant for both clinical and research purposes. An adult white man with a presumed left temporal glioma was studied. He is a professional opera singer. A tailored music evaluation, the Montreal Battery of Evaluation of Amusia, was performed preoperatively and postoperatively, with long-term follow-up. Intraoperative stimulation mapping (ISM) with awake surgery with a specific music evaluation battery was used to identify and preserve the cortical and subcortical structures subserving music, along with standard motor-sensory and language mapping. A total resection of a grade I glioma was achieved. The Montreal Battery of Evaluation of Amusia reported an improvement in musical scores after the surgery. ISM consistently elicited several types of errors in the superior temporal gyrus and, to a lesser extent, in the inferior frontal operculum. Most errors occurred during score reading; fewer errors were elicited during the assessment of rhythm. No spontaneous errors were recorded. These areas did not overlap with eloquent sites for counting or naming. ISM and a tailored music battery enabled better characterization of a specific network within the brain subserving score reading independently from speech with long-term clinical impact. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Personality, emotion, and individual differences in physiological responses.

    PubMed

    Stemmler, Gerhard; Wacker, Jan

    2010-07-01

    A dominant paradigm in biopsychological personality research seeks to establish links between emotional and motivational traits and habitual, transsituationally consistent individual differences in measures of physiological activity. An alternative approach conceptualizes traits as dispositions that are only operative in certain situational contexts and consequently predicts associations between emotional and motivational traits and physiological activity only for trait-relevant situational contexts in which the physiological systems underlying the traits in question are engaged. In the present paper we first examine and contrast these personistic and interactionistic conceptualizations of personality and personality-physiology associations and then present data from several large studies (N>100) in which electrocortical (e.g., frontal alpha asymmetry) and somatovisceral parameters were measured in various situational contexts (e.g., after the induction of either anger, or fear, or anxiety). As predicted by the interactionistic conceptualization of traits as dispositions the situational context and its subjective representation by the participants moderated the personality-physiology relationships for measures of both central and peripheral nervous system activity. We conclude by outlining the implications of the interactionistic approach for biopsychological personality research. Copyright © 2009 Elsevier B.V. All rights reserved.

  11. Network Analysis of Foramen Ovale Electrode Recordings in Drug-resistant Temporal Lobe Epilepsy Patients

    PubMed Central

    Sanz-García, Ancor; Vega-Zelaya, Lorena; Pastor, Jesús; Torres, Cristina V.; Sola, Rafael G.; Ortega, Guillermo J.

    2016-01-01

    Approximately 30% of epilepsy patients are refractory to antiepileptic drugs. In these cases, surgery is the only alternative to eliminate/control seizures. However, a significant minority of patients continues to exhibit post-operative seizures, even in those cases in which the suspected source of seizures has been correctly localized and resected. The protocol presented here combines a clinical procedure routinely employed during the pre-operative evaluation of temporal lobe epilepsy (TLE) patients with a novel technique for network analysis. The method allows for the evaluation of the temporal evolution of mesial network parameters. The bilateral insertion of foramen ovale electrodes (FOE) into the ambient cistern simultaneously records electrocortical activity at several mesial areas in the temporal lobe. Furthermore, network methodology applied to the recorded time series tracks the temporal evolution of the mesial networks both interictally and during the seizures. In this way, the presented protocol offers a unique way to visualize and quantify measures that considers the relationships between several mesial areas instead of a single area. PMID:28060326

  12. High working memory load impairs the effect of cognitive reappraisal on emotional response: Evidence from an event-related potential study.

    PubMed

    Gan, Shuzhen; Yang, Jianfeng; Chen, Xuhai; Zhang, Xiuping; Yang, Yufang

    2017-02-03

    This study investigates how the working memory (WM) load influenced the efficacy of cognitive reappraisal, a frequently used strategy for emotion regulation. In a dual-task paradigm, the participants were required to perform a high-load or a low-load memory task and simultaneously reappraise aversive pictures with a negative or a neutral meaning. In the low-load condition, we found that the amplitude of emotion-enhanced late positive potential (LPP) was significantly decreased by neutral reappraisal compared to negative reappraisal. In the high-load condition, this regulatory effect of reappraisal disappeared. These results suggest that successful reappraisal relies on cognitive resources and WM processes. If the necessary resources involved in reappraisal are over-depleted by a concurrent memory task, the reappraisal effect will be impaired. Moreover, we found that emotion-enhanced LPP was significant in both of the high-load and low-load tasks, which suggests that emotional electrocortical response may not be susceptible to the available resources. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  13. The Motivational Hierarchy between the Personal Self and Close Others in the Chinese Brain: an ERP Study.

    PubMed

    Zhu, Xiangru; Wang, Lili; Yang, Suyong; Gu, Ruolei; Wu, Haiyan; Luo, Yuejia

    2016-01-01

    People base their decisions not only on their own self-interest but also on the interests of close others. Generally, the personal self has primacy in the motivational hierarchy in the Western culture. A recent study found that friends have the same motivational hierarchy as the personal self in the Eastern collectivist culture. Remaining unknown is whether the motivational hierarchy of the personal self and close others can be manifested in the collectivist brain. In the present study, we asked participants to gamble for the personal self, close others (i.e., mother, father, and close friend), and strangers. The positive-going deflection of event-related potentials (ERPs) in response to positive feedback showed the following pattern: personal self = mother = father > friend > stranger. In the loss condition, no significant beneficiary effect was observed. The present results indicate that the personal self and parents are intertwined in the motivational system in the Chinese undergraduate student brain, supporting the view that the personal self and parents have the same motivational primacy at the electrocortical level.

  14. Antecedent descriptions change brain reactivity to emotional stimuli: a functional magnetic resonance imaging study of an extrinsic and incidental reappraisal strategy.

    PubMed

    Mocaiber, I; Sanchez, T A; Pereira, M G; Erthal, F S; Joffily, M; Araujo, D B; Volchan, E; de Oliveira, L

    2011-10-13

    In the present study we investigated whether individuals would take advantage of an extrinsic and incidental reappraisal strategy by giving them precedent descriptions to attenuate the emotional impact of unpleasant pictures. In fact, precedent descriptions have successfully promoted down-regulation of electrocortical activity and physiological responses to unpleasant pictures. However, the neuronal substrate underlying this effect remains unclear. Particularly, we investigated whether amygdala and insula responses, brain regions consistently implicated in emotional processing, would be modulated by this strategy. To achieve this, highly unpleasant pictures were shown in two contexts in which a prior description presented them as taken from movie scenes (fictitious) or real scenes. Results showed that the fictitious condition was characterized by down-regulation of amygdala and insula responses. Thus, the present study provides new evidence on reappraisal strategies to down-regulate emotional reactions and suggest that amygdala and insula responses to emotional stimuli are adaptive and highly flexible. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Effects of Cable Sway, Electrode Surface Area, and Electrode Mass on Electroencephalography Signal Quality during Motion.

    PubMed

    Symeonidou, Evangelia-Regkina; Nordin, Andrew D; Hairston, W David; Ferris, Daniel P

    2018-04-03

    More neuroscience researchers are using scalp electroencephalography (EEG) to measure electrocortical dynamics during human locomotion and other types of movement. Motion artifacts corrupt the EEG and mask underlying neural signals of interest. The cause of motion artifacts in EEG is often attributed to electrode motion relative to the skin, but few studies have examined EEG signals under head motion. In the current study, we tested how motion artifacts are affected by the overall mass and surface area of commercially available electrodes, as well as how cable sway contributes to motion artifacts. To provide a ground-truth signal, we used a gelatin head phantom with embedded antennas broadcasting electrical signals, and recorded EEG with a commercially available electrode system. A robotic platform moved the phantom head through sinusoidal displacements at different frequencies (0-2 Hz). Results showed that a larger electrode surface area can have a small but significant effect on improving EEG signal quality during motion and that cable sway is a major contributor to motion artifacts. These results have implications in the development of future hardware for mobile brain imaging with EEG.

  16. An electrocortical investigation of emotional face processing in military-related posttraumatic stress disorder.

    PubMed

    DiGangi, Julia A; Burkhouse, Katie L; Aase, Darrin M; Babione, Joseph M; Schroth, Christopher; Kennedy, Amy E; Greenstein, Justin E; Proescher, Eric; Phan, K Luan

    2017-09-01

    PTSD is a disorder of emotion dysregulation. Although much work has intended to elucidate the neural underpinnings of the disorder, much remains unknown about the neurobiological substrates of emotion dysregulation in PTSD. In order to assess the relationship between a neural measure of attention to emotion (i.e. the late positive potential; LPP) and PTSD symptoms, EEG was recorded and examined as a potential predictor of military-related PTSD symptoms in a sample of 73 OEF/OIF/OND veterans. Results revealed that higher PTSD symptoms were related to an attenuated LPP response to angry facial expressions. This finding was not observed for happy or fearful faces. The current study provides initial evidence that, in a relatively young, mostly male sample of OEF/OIF/OND veterans, hyporeactivity to angry faces at the neural level may provide phenotypic data to characterize individual differences in PTSD symptom severity. This work may assist in future studies that seek to examine useful psychophysiologic targets for treatment and early interventions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Frontal EEG and emotion regulation: electrocortical activity in response to emotional film clips is associated with reduced mood induction and attention interference effects.

    PubMed

    Dennis, Tracy A; Solomon, Beylul

    2010-12-01

    Frontal EEG activity is thought to reflect affective dispositions, but may also reflect the emotional demands of a specific context combined with the capability to regulate emotions in that context. The present study examined this hypothesis by testing whether frontal EEG activity during mood inductions versus a resting baseline predicted emotion regulation. EEG was recorded while participants (N=66, 40 females) received a fearful, sad, or neutral mood induction. Emotion regulation was measured following the mood inductions as self-reported change in negative mood and as attention interference in a task with mood-congruent emotional distracters. Greater frontal EEG activity during the mood inductions versus baseline was associated with more effective emotion regulation: less post-induction sadness and anxiety and reduced mood-congruent attention interference effects. Effects did not differ between the left and right hemispheres. Results support the hypothesis that frontal EEG activity reflects both emotional context and emotion-regulatory capabilities. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Neural Reactivity to Angry Faces Predicts Treatment Response in Pediatric Anxiety

    PubMed Central

    Kujawa, Autumn; Fitzgerald, Kate D.; Swain, James E.; Hanna, Gregory L.; Koschmann, Elizabeth; Simpson, David; Connolly, Sucheta; Monk, Christopher S.; Phan, K. Luan

    2018-01-01

    Although cognitive-behavioral psychotherapy (CBT) and pharmacotherapy are evidence-based treatments for pediatric anxiety, many youth with anxiety disorders fail to respond to these treatments. Given limitations of clinical measures in predicting treatment response, identifying neural predictors is timely. In this study, 35 anxious youth (ages 7–19 years) completed an emotional face-matching task during which the late positive potential (LPP), an event-related potential (ERP) component that indexes sustained attention towards emotional stimuli, was measured. Following the ERP measurement, youth received CBT or selective serotonin reuptake inhibitor (SSRI) treatment, and the LPP was examined as a predictor of treatment response. Findings indicated that, accounting for pre-treatment anxiety severity, neural reactivity to emotional faces predicted anxiety severity post-CBT and SSRI treatment such that enhanced electrocortical response to angry faces was associated with better treatment response. An enhanced LPP to angry faces may predict treatment response insofar as it may reflect greater emotion dysregulation or less avoidance and/or enhanced engagement with environmental stimuli in general, including with treatment. PMID:27255517

  19. 'Faceness' and affectivity: evidence for genetic contributions to distinct components of electrocortical response to human faces.

    PubMed

    Shannon, Robert W; Patrick, Christopher J; Venables, Noah C; He, Sheng

    2013-12-01

    The ability to recognize a variety of different human faces is undoubtedly one of the most important and impressive functions of the human perceptual system. Neuroimaging studies have revealed multiple brain regions (including the FFA, STS, OFA) and electrophysiological studies have identified differing brain event-related potential (ERP) components (e.g., N170, P200) possibly related to distinct types of face information processing. To evaluate the heritability of ERP components associated with face processing, including N170, P200, and LPP, we examined ERP responses to fearful and neutral face stimuli in monozygotic (MZ) and dizygotic (DZ) twins. Concordance levels for early brain response indices of face processing (N170, P200) were found to be stronger for MZ than DZ twins, providing evidence of a heritable basis to each. These findings support the idea that certain key neural mechanisms for face processing are genetically coded. Implications for understanding individual differences in recognition of facial identity and the emotional content of faces are discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Authoritarian parenting predicts reduced electrocortical response to observed adolescent offspring rewards

    PubMed Central

    Speed, Brittany C.; Nelson, Brady; Bress, Jennifer N.; Hajcak, Greg

    2017-01-01

    Abstract Parenting styles are robust predictors of offspring outcomes, yet little is known about their neural underpinnings. In this study, 44 parent-adolescent dyads (Mage of adolescent = 12.9) completed a laboratory guessing task while EEG was continuously recorded. In the task, each pair member received feedback about their own monetary wins and losses and also observed the monetary wins and losses of the other member of the pair. We examined the association between self-reported parenting style and parents’ electrophysiological responses to watching their adolescent winning and losing money, dubbed the observational Reward Positivity (RewP) and observational feedback negativity (FN), respectively. Self-reported authoritarian parenting predicted reductions in parents’ observational RewP but not FN. This predictive relationship remained after adjusting for sex of both participants, parents’ responsiveness to their own wins, and parental psychopathology. ‘Exploratory analyses found that permissive parenting was associated with a blunting of the adolescents’ response to their parents’ losses’. These findings suggest that parents’ rapid neural responses to their child’s successes may relate to the harsh parenting behaviors associated with authoritarian parenting. PMID:27613780

  1. Awake craniotomy and electrophysiological mapping for eloquent area tumours.

    PubMed

    Chacko, Ari George; Thomas, Santhosh George; Babu, K Srinivasa; Daniel, Roy Thomas; Chacko, Geeta; Prabhu, Krishna; Cherian, Varghese; Korula, Grace

    2013-03-01

    An awake craniotomy facilitates radical excision of eloquent area gliomas and ensures neural integrity during the excision. The study describes our experience with 67 consecutive awake craniotomies for the excision of such tumours. Sixty-seven patients with gliomas in or adjacent to eloquent areas were included in this study. The patient was awake during the procedure and intraoperative cortical and white matter stimulation was performed to safely maximize the extent of surgical resection. Of the 883 patients who underwent craniotomies for supratentorial intraaxial tumours during the study period, 84 were chosen for an awake craniotomy. Sixty-seven with a histological diagnosis of glioma were included in this study. There were 55 men and 12 women with a median age of 34.6 years. Forty-two (62.6%) patients had positive localization on cortical stimulation. In 6 (8.9%) patients white matter stimulation was positive, five of whom had responses at the end of a radical excision. In 3 patients who developed a neurological deficit during tumour removal, white matter stimulation was negative and cessation of the surgery did not result in neurological improvement. Sixteen patients (24.6%) had intraoperative neurological deficits at the time of wound closure, 9 (13.4%) of whom had persistent mild neurological deficits at discharge, while the remaining 7 improved to normal. At a mean follow-up of 40.8 months, only 4 (5.9%) of these 9 patients had persistent neurological deficits. Awake craniotomy for excision of eloquent area gliomas enable accurate mapping of motor and language areas as well as continuous neurological monitoring during tumour removal. Furthermore, positive responses on white matter stimulation indicate close proximity of eloquent cortex and projection fibres. This should alert the surgeon to the possibility of postoperative deficits to change the surgical strategy. Thus the surgeon can resect tumour safely, with the knowledge that he has not damaged neurological function up to that point in time thus maximizing the tumour resection and minimizing neurological deficits. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Endothelial atheroprotective and anti-inflammatory mechanisms.

    PubMed

    Berk, B C; Abe, J I; Min, W; Surapisitchat, J; Yan, C

    2001-12-01

    Atherosclerosis preferentially occurs in areas of turbulent flow and low fluid shear stress, whereas laminar flow and high shear stress are atheroprotective. Inflammatory cytokines, such as tumor necrosis factor-alpha (TNF), have been shown to stimulate expression of endothelial cell (EC) genes that may promote atherosclerosis. Recent data suggest that steady laminar flow decreases EC apoptosis and blocks TNF-mediated EC activation. EC apoptosis is likely important in the process termed "plaque erosion" that leads to platelet aggregation. Steady laminar flow inhibits EC apoptosis by preventing cell cycle entry, by increasing antioxidant mechanisms (e.g., superoxide dismutase), and by stimulating nitric oxide-dependent protective pathways that involve enzymes PI3-kinase and Akt. Conversely, our laboratory has identified nitric oxide-independent mechanisms that limit TNF signal transduction. TNF regulates gene expression in EC, in part, by stimulating mitogen-activated protein kinases (MAPK) which phosphorylate transcription factors. We hypothesized that fluid shear stress modulates TNF effects on EC by inhibiting TNF-mediated activation of MAP kinases. To test this hypothesis, we determined the effects of steady laminar flow (shear stress = 12 dynes/cm2) on TNF-stimulated activity of two MAP kinases: extracellular signal regulated kinase (ERK1/2) and c-Jun N-terminal kinase (JNK). Flow alone stimulated ERK1/2 activity, but decreased JNK activity compared to static controls. TNF (10 ng/ml) alone activated both ERK1/2 and JNK maximally at 15 minutes in human umbilical vein EC (HUVEC). Pre-exposing HUVEC for 10 minutes to flow inhibited TNF activation of JNK by 46%, but it had no significant effect on ERK1/2 activation. Incubation of EC with PD98059, a specific mitogen-activated protein kinase kinase inhibitor, blocked the flow-mediated inhibition of TNF activation of JNK. Flow-mediated inhibition of JNK was unaffected by 0.1 mM L-nitroarginine, 100 pM 8-bromo-cyclic GMP, or 100 microM 8-bromo-cyclic AMP. Transfection studies with dominant negative constructs of the protein kinase MEK1 and MEK5 suggested an important role for BMK1 in flow-mediated regulation of TNF signals. In summary, the atheroprotective effects of steady laminar flow on the endothelium involve multiple synergistic mechanisms.

  3. Short-term plasticity in auditory cognition.

    PubMed

    Jääskeläinen, Iiro P; Ahveninen, Jyrki; Belliveau, John W; Raij, Tommi; Sams, Mikko

    2007-12-01

    Converging lines of evidence suggest that auditory system short-term plasticity can enable several perceptual and cognitive functions that have been previously considered as relatively distinct phenomena. Here we review recent findings suggesting that auditory stimulation, auditory selective attention and cross-modal effects of visual stimulation each cause transient excitatory and (surround) inhibitory modulations in the auditory cortex. These modulations might adaptively tune hierarchically organized sound feature maps of the auditory cortex (e.g. tonotopy), thus filtering relevant sounds during rapidly changing environmental and task demands. This could support auditory sensory memory, pre-attentive detection of sound novelty, enhanced perception during selective attention, influence of visual processing on auditory perception and longer-term plastic changes associated with perceptual learning.

  4. Protopine reduces the inflammatory activity of lipopolysaccharide-stimulated murine macrophages.

    PubMed

    Bae, Deok Sung; Kim, Young Hoon; Pan, Cheol-Ho; Nho, Chu Won; Samdan, Javzan; Yansan, Jamyansan; Lee, Jae Kown

    2012-02-01

    Protopine is an isoquinoline alkaloid contained in plants in northeast Asia. In this study, we investigated whether protopine derived from Hypecoum erectum L could suppress lipopolysaccharide (LPS)-induced inflammatory responses in murine macrophages (Raw 264.7 cells). Protopine was found to reduce nitric oxide (NO), cyclooxygenase-2 (COX-2), and prostaglandin E(2) (PGE(2)) production by LPS-stimulated Raw 264.7 cells, without a cytotoxic effect. Pre-treatment of Raw 264.7 cells with protopine reduced the production of pro-inflammatory cytokines. These inhibitory effects were caused by blocking phosphorylation of mitogen-activated protein kinases (MAP kinases) and also blocking activation of a nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB).

  5. Transparent, conformable, active multielectrode array using organic electrochemical transistors.

    PubMed

    Lee, Wonryung; Kim, Dongmin; Matsuhisa, Naoji; Nagase, Masae; Sekino, Masaki; Malliaras, George G; Yokota, Tomoyuki; Someya, Takao

    2017-10-03

    Mechanically flexible active multielectrode arrays (MEA) have been developed for local signal amplification and high spatial resolution. However, their opaqueness limited optical observation and light stimulation during use. Here, we show a transparent, ultraflexible, and active MEA, which consists of transparent organic electrochemical transistors (OECTs) and transparent Au grid wirings. The transparent OECT is made of Au grid electrodes and has shown comparable performance with OECTs with nontransparent electrodes/wirings. The transparent active MEA realizes the spatial mapping of electrocorticogram electrical signals from an optogenetic rat with 1-mm spacing and shows lower light artifacts than noise level. Our active MEA would open up the possibility of precise investigation of a neural network system with direct light stimulation.

  6. Neuromodulation: Selected approaches and challenges

    PubMed Central

    Parpura, Vladimir; Silva, Gabriel A.; Tass, Peter A.; Bennet, Kevin E.; Meyyappan, Meyya; Koehne, Jessica; Lee, Kendall H.; Andrews, Russell J.

    2012-01-01

    The brain operates through complex interactions in the flow of information and signal processing within neural networks. The “wiring” of such networks, being neuronal or glial, can physically and/or functionally go rogue in various pathological states. Neuromodulation, as a multidisciplinary venture, attempts to correct such faulty nets. In this review, selected approaches and challenges in neuromoduation are discussed. The use of water-dispersible carbon nanotubes have proven effective in modulation of neurite outgrowth in culture as well as in aiding regeneration after spinal cord injury in vivo. Studying neural circuits using computational biology and analytical engineering approaches brings to light geometrical mapping of dynamics within neural networks, much needed information for stimulation interventions in medical practice. Indeed, sophisticated desynchronization approaches used for brain stimulation have been successful in coaxing “misfiring” neuronal circuits to resume productive firing patterns in various human disorders. Devices have been developed for the real time measurement of various neurotransmitters as well as electrical activity in the human brain during electrical deep brain stimulation. Such devices can establish the dynamics of electrochemical changes in the brain during stimulation. With increasing application of nanomaterials in devices for electrical and chemical recording and stimulating in the brain, the era of cellular, and even intracellular, precision neuromodulation will soon be upon us. PMID:23190025

  7. An MRI-based leg model used to simulate biomechanical phenomena during cuff algometry: a finite element study.

    PubMed

    Manafi-Khanian, Bahram; Arendt-Nielsen, Lars; Graven-Nielsen, Thomas

    2016-03-01

    Cuff pressure stimulation is applicable for assessing deep-tissue pain sensitivity by exciting a variety of deep-tissue nociceptors. In this study, the relative transfer of biomechanical stresses and strains from the cuff via the skin to the muscle and the somatic tissue layers around bones were investigated. Cuff pressure was applied on the lower leg at three different stimulation intensities (mild pressure to pain). Three-dimensional finite element models including bones and three different layers of deep tissues were developed based on magnetic resonance images (MRI). The skin indentation maps at mild pressure, pain threshold, and intense painful stimulations were extracted from MRI and applied to the model. The mean stress under the cuff position around tibia was 4.6, 4.9 and around fibula 14.8, 16.4 times greater than mean stress of muscle surface in the same section at pain threshold and intense painful stimulations, respectively. At the same stimulation intensities, the mean strains around tibia were 36.4, 42.3 % and around fibula 32.9, 35.0 %, respectively, of mean strain on the muscle surface. Assuming strain as the ideal stimulus for nociceptors the results suggest that cuff algometry is less capable to challenge the nociceptors of tissues around bones as compared to more superficially located muscles.

  8. Mode and site of acupuncture modulation in the human brain: 3D (124-ch) EEG power spectrum mapping and source imaging.

    PubMed

    Chen, Andrew C N; Liu, Feng-Jun; Wang, Li; Arendt-Nielsen, Lars

    2006-02-15

    This study determined: (a) if acupuncture stimulation at a traditional site might modulate ongoing EEG as compared with stimulation of a control site; (b) if high-frequency vs. low-frequency stimulation could exert differential effects of acupuncture; (c) if the observed effects of acupuncture were specific to certain EEG bands; and (d) if the acupuncture effect could be isolated at a specific scalp field, with its putative underlying intracranial source. Twelve healthy male volunteers (age range 22-35) participated in two experimental sessions separated by 1 week, which involved transcutaneous acupoint stimulation at selected acupoint (Li 4, HeGu) vs. a mock point at the fourth interosseous muscle area on the left hand in high (HF: 100 Hz) vs. low-frequency (LF: 2 Hz) stimulation by counter-balanced order. 124-ch EEG data were used to analyze the Delta, Theta, Alpha-1, Alpha-2, Beta, and Gamma bands. The absolute EEG powers (muv2) at focal maxima across three stages (baseline, stimulation, post) were examined by two-way (condition, stage) repeated measures ANOVA. The activity of the Theta power significantly decreased (P = 0.02), compared with control during HF but not LF stimulation at acupoint stimulation, however, there was no study effect at the mock point. A decreased Theta EEG power was prominent at the frontal midline sites (FCz, Fz) and the contralateral right hemisphere front site (FCC2h). In contrast, the Theta power of low-frequency stimulation showed an increase from the baseline as those in both controlled mock point stimulations. The observed high-frequency acupoint stimulation effects of Theta EEG were only present during, but not after, simulation. The topographic Theta activity was tentatively identified to originate from the intracranial current source in cingulate cortex, likely ACC. It is likely that short-term cortical plasticity occurs during high-frequency but not low-frequency stimulation at the HeGu point, but not mock point. We suggest that HeGu acupuncture stimulation modulates limbic cingulum by a frequency modulation mode, which then may damp nociceptive processing in the brain.

  9. A Conserved p38 Mitogen-Activated Protein Kinase Pathway Regulates Drosophila Immunity Gene Expression

    PubMed Central

    Han, Zhiqiang Stanley; Enslen, Hervé; Hu, Xiaodi; Meng, Xiangjun; Wu, I-Huan; Barrett, Tamera; Davis, Roger J.; Ip, Y. Tony

    1998-01-01

    Accumulating evidence suggests that the insect and mammalian innate immune response is mediated by homologous regulatory components. Proinflammatory cytokines and bacterial lipopolysaccharide stimulate mammalian immunity by activating transcription factors such as NF-κB and AP-1. One of the responses evoked by these stimuli is the initiation of a kinase cascade that leads to the phosphorylation of p38 mitogen-activated protein (MAP) kinase on Thr and Tyr within the motif Thr-Gly-Tyr, which is located within subdomain VIII. We have investigated the possible involvement of the p38 MAP kinase pathway in the Drosophila immune response. Two genes that are highly homologous to the mammalian p38 MAP kinase were molecularly cloned and characterized. Furthermore, genes that encode two novel Drosophila MAP kinase kinases, D-MKK3 and D-MKK4, were identified. D-MKK3 is an efficient activator of both Drosophila p38 MAP kinases, while D-MKK4 is an activator of D-JNK but not D-p38. These data establish that Drosophila indeed possesses a conserved p38 MAP kinase signaling pathway. We have examined the role of the D-p38 MAP kinases in the regulation of insect immunity. The results revealed that one of the functions of D-p38 is to attenuate antimicrobial peptide gene expression following exposure to lipopolysaccharide. PMID:9584193

  10. Lunar and Planetary Science XXXV: Venus

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session"Venus" included the following reports:Venera-Vega Geochemical Analyses: What Geologic Units are the Source of the Analyzed Material?; Mapping of Rift Zones on Venus, Preliminary Results: Spatial Distribution, Relationship with Regional Plains, Morphology of Fracturing, Topography and Style of Volcanism; An Effect of Stimulated Radiation Processes on Radio Emission from Major Planets; and Venusian Craters and the Origin of Coronae.

  11. WC1+ gamma delta T cells from cattle naturally infected with Mycobacterium avium subsp. paratuberculosis respond differentially to stimulation with PPD-J.

    USDA-ARS?s Scientific Manuscript database

    A role for gamma delta T cells in protection against mycobacterial infections including Johne’s disease (JD) has been suggested. In neonatal calves where the risk to infection with Mycobacterium avium subsp. paratuberculosis (MAP) is high, the majority of circulating CD3+ lymphocytes are gamma delta...

  12. A Brief Review on the Use of Functional Near-Infrared Spectroscopy (fNIRS) for Language Imaging Studies in Human Newborns and Adults

    ERIC Educational Resources Information Center

    Quaresima, Valentina; Bisconti, Silvia; Ferrari, Marco

    2012-01-01

    Upon stimulation, real time maps of cortical hemodynamic responses can be obtained by non-invasive functional near-infrared spectroscopy (fNIRS) which measures changes in oxygenated and deoxygenated hemoglobin after positioning multiple sources and detectors over the human scalp. The current commercially available transportable fNIRS systems have…

  13. The Use of Information and Communications Technology To Support the Teaching of Science in Primary Schools.

    ERIC Educational Resources Information Center

    Skinner, Nigel C.; Preece, Peter F. W.

    2003-01-01

    Describes the AstraZeneca-Exeter Science through Telematics (AZEST) project and reports that the Internet has much potential as a communication channel for the provision and discussion of INSET materials for primary science in the UK. Evaluates websites dedicated to primary science at the local level, concept mapping for stimulating discussion,…

  14. Local delivery of molecules from a nanopipette for quantitative receptor mapping on live cells.

    PubMed

    Babakinejad, Babak; Jönsson, Peter; López Córdoba, Ainara; Actis, Paolo; Novak, Pavel; Takahashi, Yasufumi; Shevchuk, Andrew; Anand, Uma; Anand, Praveen; Drews, Anna; Ferrer-Montiel, Antonio; Klenerman, David; Korchev, Yuri E

    2013-10-01

    Using nanopipettes to locally deliver molecules to the surface of living cells could potentially open up studies of biological processes down to the level of single molecules. However, in order to achieve precise and quantitative local delivery it is essential to be able to determine the amount and distribution of the molecules being delivered. In this work, we investigate how the size of the nanopipette, the magnitude of the applied pressure or voltage, which drives the delivery, and the distance to the underlying surface influences the number and spatial distribution of the delivered molecules. Analytical expressions describing the delivery are derived and compared with the results from finite element simulations and experiments on delivery from a 100 nm nanopipette in bulk solution and to the surface of sensory neurons. We then developed a setup for rapid and quantitative delivery to multiple subcellular areas, delivering the molecule capsaicin to stimulate opening of Transient Receptor Potential Vanilloid subfamily member 1 (TRPV1) channels, membrane receptors involved in pain sensation. Overall, precise and quantitative delivery of molecules from nanopipettes has been demonstrated, opening up many applications in biology such as locally stimulating and mapping receptors on the surface of live cells.

  15. Trichinella spiralis infection enhances protein kinase C phosphorylation in guinea pig alveolar macrophages.

    PubMed

    Dzik, J M; Zieliński, Z; Cieśla, J; Wałajtys-Rode, E

    2010-03-01

    To learn more about the signalling pathways involved in superoxide anion production in guinea pig alveolar macrophages, triggered by Trichinella spiralis infection, protein level and phosphorylation of mitogen activated protein (MAP) kinases and protein kinase C (PKC) were investigated. Infection with T. spiralis, the nematode having 'lung phase' during colonization of the host, enhances PKC phosphorylation in guinea pig alveolar macrophages. Isoenzymes beta and delta of PKC have been found significantly phosphorylated, although their location was not changed as a consequence of T. spiralis infection. Neither in macrophages from T. spiralis-infected guinea pig nor in platelet-activating factor (PAF)-stimulated macrophages from uninfected animals, participation of MAP kinases in respiratory burst activation was statistically significant. The parasite antigens seem to act through macrophage PAF receptors, transducing a signal for enhanced NADPH oxidase activity, as stimulating effect of newborn larvae homogenate on respiratory burst was abolished by specific PAF receptor antagonist CV 6209. A suppressive action of T. spiralis larvae on host alveolar macrophage innate immunological response was reflected by diminished protein level of ERK2 kinase and suppressed superoxide anion production, in spite of high level of PKC phosphorylation.

  16. Preliminary evidence for performance enhancement following parietal lobe stimulation in Developmental Dyscalculia.

    PubMed

    Iuculano, Teresa; Cohen Kadosh, Roi

    2014-01-01

    Nearly 7% of the population exhibit difficulties in dealing with numbers and performing arithmetic, a condition named Developmental Dyscalculia (DD), which significantly affects the educational and professional outcomes of these individuals, as it often persists into adulthood. Research has mainly focused on behavioral rehabilitation, while little is known about performance changes and neuroplasticity induced by the concurrent application of brain-behavioral approaches. It has been shown that numerical proficiency can be enhanced by applying a small-yet constant-current through the brain, a non-invasive technique named transcranial electrical stimulation (tES). Here we combined a numerical learning paradigm with transcranial direct current stimulation (tDCS) in two adults with DD to assess the potential benefits of this methodology to remediate their numerical difficulties. Subjects learned to associate artificial symbols to numerical quantities within the context of a trial and error paradigm, while tDCS was applied to the posterior parietal cortex (PPC). The first subject (DD1) received anodal stimulation to the right PPC and cathodal stimulation to the left PPC, which has been associated with numerical performance's improvements in healthy subjects. The second subject (DD2) received anodal stimulation to the left PPC and cathodal stimulation to the right PPC, which has been shown to impair numerical performance in healthy subjects. We examined two indices of numerical proficiency: (i) automaticity of number processing; and (ii) mapping of numbers onto space. Our results are opposite to previous findings with non-dyscalculic subjects. Only anodal stimulation to the left PPC improved both indices of numerical proficiency. These initial results represent an important step to inform the rehabilitation of developmental learning disabilities, and have relevant applications for basic and applied research in cognitive neuroscience, rehabilitation, and education.

  17. Preliminary evidence for performance enhancement following parietal lobe stimulation in Developmental Dyscalculia

    PubMed Central

    Iuculano, Teresa; Cohen Kadosh, Roi

    2014-01-01

    Nearly 7% of the population exhibit difficulties in dealing with numbers and performing arithmetic, a condition named Developmental Dyscalculia (DD), which significantly affects the educational and professional outcomes of these individuals, as it often persists into adulthood. Research has mainly focused on behavioral rehabilitation, while little is known about performance changes and neuroplasticity induced by the concurrent application of brain-behavioral approaches. It has been shown that numerical proficiency can be enhanced by applying a small—yet constant—current through the brain, a non-invasive technique named transcranial electrical stimulation (tES). Here we combined a numerical learning paradigm with transcranial direct current stimulation (tDCS) in two adults with DD to assess the potential benefits of this methodology to remediate their numerical difficulties. Subjects learned to associate artificial symbols to numerical quantities within the context of a trial and error paradigm, while tDCS was applied to the posterior parietal cortex (PPC). The first subject (DD1) received anodal stimulation to the right PPC and cathodal stimulation to the left PPC, which has been associated with numerical performance's improvements in healthy subjects. The second subject (DD2) received anodal stimulation to the left PPC and cathodal stimulation to the right PPC, which has been shown to impair numerical performance in healthy subjects. We examined two indices of numerical proficiency: (i) automaticity of number processing; and (ii) mapping of numbers onto space. Our results are opposite to previous findings with non-dyscalculic subjects. Only anodal stimulation to the left PPC improved both indices of numerical proficiency. These initial results represent an important step to inform the rehabilitation of developmental learning disabilities, and have relevant applications for basic and applied research in cognitive neuroscience, rehabilitation, and education. PMID:24570659

  18. Altered Connectivity of the Balance Processing Network After Tongue Stimulation in Balance-Impaired Individuals

    PubMed Central

    Tyler, Mitchell E.; Danilov, Yuri P.; Kaczmarek, Kurt A.; Meyerand, Mary E.

    2013-01-01

    Abstract Some individuals with balance impairment have hypersensitivity of the motion-sensitive visual cortices (hMT+) compared to healthy controls. Previous work showed that electrical tongue stimulation can reduce the exaggerated postural sway induced by optic flow in this subject population and decrease the hypersensitive response of hMT+. Additionally, a region within the brainstem (BS), likely containing the vestibular and trigeminal nuclei, showed increased optic flow-induced activity after tongue stimulation. The aim of this study was to understand how the modulation induced by tongue stimulation affects the balance-processing network as a whole and how modulation of BS structures can influence cortical activity. Four volumes of interest, discovered in a general linear model analysis, constitute major contributors to the balance-processing network. These regions were entered into a dynamic causal modeling analysis to map the network and measure any connection or topology changes due to the stimulation. Balance-impaired individuals had downregulated response of the primary visual cortex (V1) to visual stimuli but upregulated modulation of the connection between V1 and hMT+ by visual motion compared to healthy controls (p≤1E–5). This upregulation was decreased to near-normal levels after stimulation. Additionally, the region within the BS showed increased response to visual motion after stimulation compared to both prestimulation and controls. Stimulation to the tongue enters the central nervous system at the BS but likely propagates to the cortex through supramodal information transfer. We present a model to explain these brain responses that utilizes an anatomically present, but functionally dormant pathway of information flow within the processing network. PMID:23216162

  19. Differential impact of continuous theta-burst stimulation over left and right DLPFC on planning.

    PubMed

    Kaller, Christoph P; Heinze, Katharina; Frenkel, Annekathrein; Läppchen, Claus H; Unterrainer, Josef M; Weiller, Cornelius; Lange, Rüdiger; Rahm, Benjamin

    2013-01-01

    Most neuroimaging studies on planning report bilateral activations of the dorsolateral prefrontal cortex (dlPFC). Recently, these concurrent activations of left and right dlPFC have been shown to double dissociate with different cognitive demands imposed by the planning task: Higher demands on the extraction of task-relevant information led to stronger activation in left dlPFC, whereas higher demands on the integration of interdependent information into a coherent action sequence entailed stronger activation of right dlPFC. Here, we used continuous theta-burst stimulation (cTBS) to investigate the supposed causal structure-function mapping underlying this double dissociation. Two groups of healthy subjects (left-lateralized stimulation, n = 26; right-lateralized stimulation, n = 26) were tested within-subject on a variant of the Tower of London task following either real cTBS over dlPFC or sham stimulation over posterior parietal cortex. Results revealed that, irrespective of specific task demands, cTBS over left and right dlPFC was associated with a global decrease and increase, respectively, in initial planning times compared to sham stimulation. Moreover, no interaction between task demands and stimulation type (real vs. sham) and/or stimulation side (left vs. right hemisphere) were found. Together, against expectations from previous neuroimaging data, lateralized cTBS did not lead to planning-parameter specific changes in performance, but instead revealed a global asymmetric pattern of faster versus slower task processing after left versus right cTBS. This global asymmetry in the absence of any task-parameter specific impact of cTBS suggests that different levels of information processing may span colocalized, but independent axes of functional lateralization in the dlPFC. Copyright © 2011 Wiley Periodicals, Inc.

  20. Rapid radiofrequency field mapping in vivo using single-shot STEAM MRI.

    PubMed

    Helms, Gunther; Finsterbusch, Jürgen; Weiskopf, Nikolaus; Dechent, Peter

    2008-09-01

    Higher field strengths entail less homogeneous RF fields. This may influence quantitative MRI and MRS. A method for rapidly mapping the RF field in the human head with minimal distortion was developed on the basis of a single-shot stimulated echo acquisition mode (STEAM) sequence. The flip angle of the second RF pulse in the STEAM preparation was set to 60 degrees and 100 degrees instead of 90 degrees , inducing a flip angle-dependent signal change. A quadratic approximation of this trigonometric signal dependence together with a calibration accounting for slice excitation-related bias allowed for directly determining the RF field from the two measurements only. RF maps down to the level of the medulla could be obtained in less than 1 min and registered to anatomical volumes by means of the T(2)-weighted STEAM images. Flip angles between 75% and 125% of the nominal value were measured in line with other methods.

  1. Mycobacterium avium subspecies impair dendritic cell maturation.

    PubMed

    Basler, Tina; Brumshagen, Christina; Beineke, Andreas; Goethe, Ralph; Bäumer, Wolfgang

    2013-10-01

    Mycobacterium avium ssp. paratuberculosis (MAP) causes Johne's disease, a chronic, granulomatous enteritis of ruminants. Dendritic cells (DC) of the gut are ideally placed to combat invading mycobacteria; however, little is known about their interaction with MAP. Here, we investigated the interaction of MAP and the closely related M. avium ssp. avium (MAA) with murine DC and the effect of infected macrophages on DC maturation. The infection of DC with MAP or MAA induced DC maturation, which differed to that of LPS as maturation was accompanied by higher production of IL-10 and lower production of IL-12. Treatment of maturing DC with supernatants from mycobacteria-infected macrophages resulted in impaired DC maturation, leading to a semi-mature, tolerogenic DC phenotype expressing low levels of MHCII, CD86 and TNF-α after LPS stimulation. Though the cells were not completely differentiated they responded with an increased IL-10 and a decreased IL-12 production. Using recombinant cytokines we provide evidence that the semi-mature DC phenotype results from a combination of secreted cytokines and released antigenic mycobacterial components of the infected macrophage. Our results indicate that MAP and MAA are able to subvert DC function directly by infecting and indirectly via the milieu created by infected macrophages.

  2. Covariance mapping techniques

    NASA Astrophysics Data System (ADS)

    Frasinski, Leszek J.

    2016-08-01

    Recent technological advances in the generation of intense femtosecond pulses have made covariance mapping an attractive analytical technique. The laser pulses available are so intense that often thousands of ionisation and Coulomb explosion events will occur within each pulse. To understand the physics of these processes the photoelectrons and photoions need to be correlated, and covariance mapping is well suited for operating at the high counting rates of these laser sources. Partial covariance is particularly useful in experiments with x-ray free electron lasers, because it is capable of suppressing pulse fluctuation effects. A variety of covariance mapping methods is described: simple, partial (single- and multi-parameter), sliced, contingent and multi-dimensional. The relationship to coincidence techniques is discussed. Covariance mapping has been used in many areas of science and technology: inner-shell excitation and Auger decay, multiphoton and multielectron ionisation, time-of-flight and angle-resolved spectrometry, infrared spectroscopy, nuclear magnetic resonance imaging, stimulated Raman scattering, directional gamma ray sensing, welding diagnostics and brain connectivity studies (connectomics). This review gives practical advice for implementing the technique and interpreting the results, including its limitations and instrumental constraints. It also summarises recent theoretical studies, highlights unsolved problems and outlines a personal view on the most promising research directions.

  3. Susceptibility-based functional brain mapping by 3D deconvolution of an MR-phase activation map.

    PubMed

    Chen, Zikuan; Liu, Jingyu; Calhoun, Vince D

    2013-05-30

    The underlying source of T2*-weighted magnetic resonance imaging (T2*MRI) for brain imaging is magnetic susceptibility (denoted by χ). T2*MRI outputs a complex-valued MR image consisting of magnitude and phase information. Recent research has shown that both the magnitude and the phase images are morphologically different from the source χ, primarily due to 3D convolution, and that the source χ can be reconstructed from complex MR images by computed inverse MRI (CIMRI). Thus, we can obtain a 4D χ dataset from a complex 4D MR dataset acquired from a brain functional MRI study by repeating CIMRI to reconstruct 3D χ volumes at each timepoint. Because the reconstructed χ is a more direct representation of neuronal activity than the MR image, we propose a method for χ-based functional brain mapping, which is numerically characterised by a temporal correlation map of χ responses to a stimulant task. Under the linear imaging conditions used for T2*MRI, we show that the χ activation map can be calculated from the MR phase map by CIMRI. We validate our approach using numerical simulations and Gd-phantom experiments. We also analyse real data from a finger-tapping visuomotor experiment and show that the χ-based functional mapping provides additional activation details (in the form of positive and negative correlation patterns) beyond those generated by conventional MR-magnitude-based mapping. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Directing lineage specification of human mesenchymal stem cells by decoupling electrical stimulation and physical patterning on unmodified graphene

    NASA Astrophysics Data System (ADS)

    Balikov, Daniel A.; Fang, Brian; Chun, Young Wook; Crowder, Spencer W.; Prasai, Dhiraj; Lee, Jung Bok; Bolotin, Kiril I.; Sung, Hak-Joon

    2016-07-01

    The organization and composition of the extracellular matrix (ECM) have been shown to impact the propagation of electrical signals in multiple tissue types. To date, many studies with electroactive biomaterial substrates have relied upon passive electrical stimulation of the ionic media to affect cell behavior. However, development of cell culture systems in which stimulation can be directly applied to the material - thereby isolating the signal to the cell-material interface and cell-cell contracts - would provide a more physiologically-relevant paradigm for investigating how electrical cues modulate lineage-specific stem cell differentiation. In the present study, we have employed unmodified, directly-stimulated, (un)patterned graphene as a cell culture substrate to investigate how extrinsic electrical cycling influences the differentiation of naïve human mesenchymal stem cells (hMSCs) without the bias of exogenous biochemicals. We first demonstrated that cyclic stimulation does not deteriorate the cell culture media or result in cytotoxic pH, which are critical experiments for correct interpretation of changes in cell behavior. We then measured how the expression of osteogenic and neurogenic lineage-specific markers were altered simply by exposure to electrical stimulation and/or physical patterns. Expression of the early osteogenic transcription factor RUNX2 was increased by electrical stimulation on all graphene substrates, but the mature marker osteopontin was only modulated when stimulation was combined with physical patterns. In contrast, the expression of the neurogenic markers MAP2 and β3-tubulin were enhanced in all electrical stimulation conditions, and were less responsive to the presence of patterns. These data indicate that specific combinations of non-biological inputs - material type, electrical stimulation, physical patterns - can regulate hMSC lineage specification. This study represents a substantial step in understanding how the interplay of electrophysical stimuli regulate stem cell behavior and helps to clarify the potential for graphene substrates in tissue engineering applications.

  5. Contributions of dopaminergic and non-dopaminergic neurons to VTA-stimulation induced neurovascular responses in brain reward circuits.

    PubMed

    Brocka, Marta; Helbing, Cornelia; Vincenz, Daniel; Scherf, Thomas; Montag, Dirk; Goldschmidt, Jürgen; Angenstein, Frank; Lippert, Michael

    2018-04-30

    Mapping the activity of the human mesolimbic dopamine system by BOLD-fMRI is a tempting approach to non-invasively study the action of the brain reward system during different experimental conditions. However, the contribution of dopamine release to the BOLD signal is disputed. To assign the actual contribution of dopaminergic and non-dopaminergic VTA neurons to the formation of BOLD responses in target regions of the mesolimbic system, we used two optogenetic approaches in rats. We either activated VTA dopaminergic neurons selectively, or dopaminergic and mainly glutamatergic projecting neurons together. We further used electrical stimulation to non-selectively activate neurons in the VTA. All three stimulation conditions effectively activated the mesolimbic dopaminergic system and triggered dopamine releases into the NAcc as measured by in vivo fast-scan cyclic voltammetry. Furthermore, both optogenetic stimulation paradigms led to indistinguishable self-stimulation behavior. In contrast to these similarities, however, the BOLD response pattern differed greatly between groups. In general, BOLD responses were weaker and sparser with increasing stimulation specificity for dopaminergic neurons. In addition, repetitive stimulation of the VTA caused a progressive decoupling of dopamine release and BOLD signal strength, and dopamine receptor antagonists were unable to block the BOLD signal elicited by VTA stimulation. To exclude that the sedation during fMRI is the cause of minimal mesolimbic BOLD in response to specific dopaminergic stimulation, we repeated our experiments using CBF SPECT in awake animals. Again, we found activations only for less-specific stimulation. Based on these results we conclude that canonical BOLD responses in the reward system represent mainly the activity of non-dopaminergic neurons. Thus, the minor effects of projecting dopaminergic neurons are concealed by non-dopaminergic activity, a finding which highlights the importance of a careful interpretation of reward-related human fMRI data. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Aberrant Ras regulation and reduced p190 tyrosine phosphorylation in cells lacking p120-Gap.

    PubMed Central

    van der Geer, P; Henkemeyer, M; Jacks, T; Pawson, T

    1997-01-01

    The Ras guanine nucleotide-binding protein functions as a molecular switch in signalling downstream of protein-tyrosine kinases. Ras is activated by exchange of GDP for GTP and is turned off by hydrolysis of bound GTP to GDP. Ras itself has a low intrinsic GTPase activity that can be stimulated by GTPase-activating proteins (GAPs), including p120-Gap and neurofibromin. These GAPs possess a common catalytic domain but contain distinct regulatory elements that may couple different external signals to control of the Ras pathway. p120-Gap, for example, has two N-terminal SH2 domains that directly recognize phosphotyrosine motifs on activated growth factor receptors and cytoplasmic phosphoproteins. To analyze the role of p120-Gap in Ras regulation in vivo, we have used fibroblasts derived from mouse embryos with a null mutation in the gene for p120-Gap (Gap). Platelet-derived growth factor stimulation of Gap-/- cells led to an abnormally large increase in the level of Ras-GTP and in the duration of mitogen-activated protein (MAP) kinase activation compared with wild-type cells, suggesting that p120-Gap is specifically activated following growth factor stimulation. Induction of DNA synthesis in response to platelet-derived growth factor and morphological transformation by the v-src and EJ-ras oncogenes were not significantly affected by the absence of p120-Gap. However, we found that normal tyrosine phosphorylation of p190-rhoGap, a cytoplasmic protein that associates with the p120-Gap SH2 domains, was dependent on the presence of p120-Gap. Our results suggest that p120-Gap has specific functions in downregulating the Ras/MAP kinase pathway following growth factor stimulation, and in modulating the phosphorylation of p190-rhoGap, but is not required for mitogenic signalling. PMID:9121432

  7. Effective intracortical microstimulation parameters applied to primary motor cortex for evoking forelimb movements to stable spatial end points

    PubMed Central

    Van Acker, Gustaf M.; Amundsen, Sommer L.; Messamore, William G.; Zhang, Hongyu Y.; Luchies, Carl W.; Kovac, Anthony

    2013-01-01

    High-frequency, long-duration intracortical microstimulation (HFLD-ICMS) applied to motor cortex is recognized as a useful and informative method for corticomotor mapping by evoking natural-appearing movements of the limb to consistent stable end-point positions. An important feature of these movements is that stimulation of a specific site in motor cortex evokes movement to the same spatial end point regardless of the starting position of the limb. The goal of this study was to delineate effective stimulus parameters for evoking forelimb movements to stable spatial end points from HFLD-ICMS applied to primary motor cortex (M1) in awake monkeys. We investigated stimulation of M1 as combinations of frequency (30–400 Hz), amplitude (30–200 μA), and duration (0.5–2 s) while concurrently recording electromyographic (EMG) activity from 24 forelimb muscles and movement kinematics with a motion capture system. Our results suggest a range of parameters (80–140 Hz, 80–140 μA, and 1,000-ms train duration) that are effective and safe for evoking forelimb translocation with subsequent stabilization at a spatial end point. The mean time for stimulation to elicit successful movement of the forelimb to a stable spatial end point was 475.8 ± 170.9 ms. Median successful frequency and amplitude were 110 Hz and 110 μA, respectively. Attenuated parameters resulted in inconsistent, truncated, or undetectable movements, while intensified parameters yielded no change to movement end points and increased potential for large-scale physiological spread and adverse focal motor effects. Establishing cortical stimulation parameters yielding consistent forelimb movements to stable spatial end points forms the basis for a systematic and comprehensive mapping of M1 in terms of evoked movements and associated muscle synergies. Additionally, the results increase our understanding of how the central nervous system may encode movement. PMID:23741044

  8. Technological Advances In The Surgical Treatment Of Movement Disorders

    PubMed Central

    Gross, Robert E.; McDougal, Margaret E.

    2013-01-01

    Technological innovations have driven the advancement of the surgical treatment of movement disorders, from the invention of the stereotactic frame to the adaptation of deep brain stimulation (DBS). Along these lines, this review will describe recent advances in getting neuromodulation modalities, including DBS, to the target; and in the delivery of therapy at the target. Recent radiological advances are altering the way that DBS leads are targeted and inserted, by refining the ability to visualize the subcortical targets using high-field strength MRI and other innovations such as diffusion tensor imaging, and the development of novel targeting devices enabling purely anatomical implantations without the need for neurophysiological monitoring. New portable CT scanners also are facilitating lead implantation without monitoring as well as improving radiological verification of DBS lead location. Advances in neurophysiological mapping include efforts to develop automatic target verification algorithms, and probabilistic maps to guide target selection. The delivery of therapy at the target is being improved by the development of the next generation of internal pulse generators (IPGs). These include constant current devices that mitigate the variability introduced by impedance changes of the stimulated tissue, and in the near future, devices that deliver novel stimulation patterns with improved efficiency. Closed-loop adaptive IPGs are being tested, which may tailor stimulation to ongoing changes in the nervous system reflected in Œbiomarkers1 continuously recorded by the devices. Finer grained DBS leads, in conjunction with new IPGs and advanced programming tools, may offer improved outcomes via Œcurrent steering1 algorithms. Finally, even thermocoagulation - essentially replaced by DBS - is being advanced by new Œminimally-invasive1 approaches that may improve this therapy for selected patients in whom it may be preferred. Functional neurosurgery has a history of being driven by technological innovation, a tradition that continues into its future. PMID:23812894

  9. A functional magnetic resonance imaging study of human brain in pain-related areas induced by electrical stimulation with different intensities.

    PubMed

    Yuan, Wang; Ming, Zhang; Rana, Netra; Hai, Liu; Chen-wang, Jin; Shao-hui, Ma

    2010-01-01

    Pain-related studies have mainly been performed through traditional methods, which lack the rigorous analysis of anatomical locations. Functional magnetic resonance imaging (fMRI) is a noninvasive method detecting neural activity, and has the ability to precisely locate related activations in vivo. Moreover, few studies have used painful stimulation of changed intensity to investigate relevant functioning nuclei in the human brain. This study mainly focused on the pain-related activations induced by electrical stimulation with different intensities using fMRI. Furthermore, the electrophysiological characteristics of different pain-susceptible-neurons were analyzed to construct the pain modulatory network, which was corresponding to painful stimulus of changed intensity. Twelve volunteers underwent functional scanning receiving different electrical stimulation. The data were collected and analyzed to generate the corresponding functional activation maps and response time curves related to pain. The common activations were mainly located in several specific regions, including the secondary somatosensory cortex (SII), insula, anterior cingulate cortex (ACC), thalamus, and other cerebral regions. Moreover, innocuous electrical stimulation primarily activated the lateral portions of SII and thalamus, as well as the posterior insula, anterior ACC, whereas noxious electrical stimulation primarily activated the medial portions of SII and thalamus, as well as the anterior insula, the posterior ACC, with larger extensions and greater intensities. Several specified cerebral regions displayed different response patterns during electrical stimulation by means of fMRI, which implied that the corresponding pain-susceptible-neurons might process specific aspects of pain. Elucidation of functions on pain-related regions will help to understand the delicate pain modulation of human brain.

  10. Transcriptional response to muscarinic acetylcholine receptor stimulation: regulation of Egr-1 biosynthesis by ERK, Elk-1, MKP-1, and calcineurin in carbachol-stimulated human neuroblastoma cells.

    PubMed

    Rössler, Oliver G; Henss, Isabell; Thiel, Gerald

    2008-02-01

    Carbachol-mediated activation of type M(3) muscarinic acetylcholine receptors induces the biosynthesis of the transcription factor Egr-1 in human SH-SY5Y neuroblastoma cells involving an activation of extracellular signal-regulated protein kinase. Carbachol triggered the phosphorylation of the ternary complex factor Elk-1, a key transcriptional regulator of serum response element-driven gene transcription, and strikingly enhanced the transcriptional activation potential of Elk-1. Chromatin immunoprecipitation experiments revealed that Elk-1 binds in vivo to the 5'-upstream region of the Egr-1 gene in carbachol-stimulated neuroblastoma cells. Together, these data indicate that Elk-1 connects the intracellular signaling cascade elicited by activation of M(3) muscarinic acetylcholine receptors with the transcription of the Egr-1 gene. Lentiviral-mediated expression of either MAP kinase phosphatase-1 (MKP-1) or a constitutively active mutant of calcineurin A inhibited Egr-1 biosynthesis following carbachol stimulation, indicating that these phosphatases function as shut-off devices of muscarinic acetylcholine receptor signaling. Additionally, carbachol stimulation increased transcription of a chromatin-embedded collagenase promoter/reporter gene, showing that AP-1 activity is enhanced in carbachol-stimulated neuroblastoma. Expression experiments revealed that both MKP-1 and a constitutively active mutant of calcineurin A impaired carbachol-induced upregulation of AP-1 activity. The fact that carbachol stimulation of neuroblastoma cells activates the transcription factors Egr-1 and AP-1 suggests that changes in the gene expression pattern are an integral part of muscarinic acetylcholine receptor signaling.

  11. In Vivo Monitoring of pH, Redox Status, and Glutathione Using L-Band EPR for Assessment of Therapeutic Effectiveness in Solid Tumors

    PubMed Central

    Bobko, Andrey A.; Eubank, Timothy D.; Voorhees, Jeffrey L.; Efimova, Olga V.; Kirilyuk, Igor A.; Petryakov, Sergey; Trofimiov, Dmitrii G.; Marsh, Clay B.; Zweier, Jay L.; Grigor’ev, Igor A.; Samouilov, Alexandre; Khramtsov, Valery V.

    2011-01-01

    Approach for in vivo real-time assessment of tumor tissue extracellular pH (pHe), redox, and intracellular glutathione based on L-band EPR spectroscopy using dual function pH and redox nitroxide probe and disulfide nitroxide biradical, is described. These parameters were monitored in PyMT mice bearing breast cancer tumors during treatment with granulocyte macrophage colony-stimulating factor. It was observed that tumor pHe is about 0.4 pH units lower than that in normal mammary gland tissue. Treatment with granulocyte macrophage colony-stimulating factor decreased the value of pHe by 0.3 units compared with PBS control treatment. Tumor tissue reducing capacity and intracellular glutathione were elevated compared with normal mammary gland tissue. Granulocyte macrophage colony-stimulating factor treatment resulted in a decrease of the tumor tissue reducing capacity and intracellular glutathione content. In addition to spectroscopic studies, pHe mapping was performed using recently proposed variable frequency proton–electron double-resonance imaging. The pH mapping superimposed with MRI image supports probe localization in mammary gland/tumor tissue, shows high heterogeneity of tumor tissue pHe and a difference of about 0.4 pH units between average pHe values in tumor and normal mammary gland. In summary, the developed multifunctional approach allows for in vivo, noninvasive pHe, extracellular redox, and intracellular glutathione content monitoring during investigation of various therapeutic strategies for solid tumors. Magn Reson Med 000:000–000, 2011. PMID:22113626

  12. Background sounds contribute to spectrotemporal plasticity in primary auditory cortex

    PubMed Central

    Moucha, Raluca; Pandya, Pritesh K.; Engineer, Navzer D.; Rathbun, Daniel L.

    2010-01-01

    The mammalian auditory system evolved to extract meaningful information from complex acoustic environments. Spectrotemporal selectivity of auditory neurons provides a potential mechanism to represent natural sounds. Experience-dependent plasticity mechanisms can remodel the spectrotemporal selectivity of neurons in primary auditory cortex (A1). Electrical stimulation of the cholinergic nucleus basalis (NB) enables plasticity in A1 that parallels natural learning and is specific to acoustic features associated with NB activity. In this study, we used NB stimulation to explore how cortical networks reorganize after experience with frequency-modulated (FM) sweeps, and how background stimuli contribute to spectrotemporal plasticity in rat auditory cortex. Pairing an 8–4 kHz FM sweep with NB stimulation 300 times per day for 20 days decreased tone thresholds, frequency selectivity, and response latency of A1 neurons in the region of the tonotopic map activated by the sound. In an attempt to modify neuronal response properties across all of A1 the same NB activation was paired in a second group of rats with five downward FM sweeps, each spanning a different octave. No changes in FM selectivity or receptive field (RF) structure were observed when the neural activation was distributed across the cortical surface. However, the addition of unpaired background sweeps of different rates or direction was sufficient to alter RF characteristics across the tonotopic map in a third group of rats. These results extend earlier observations that cortical neurons can develop stimulus specific plasticity and indicate that background conditions can strongly influence cortical plasticity PMID:15616812

  13. Role of development in reorganization of the SI forelimb-stump representation in fetally, neonatally, and adult amputated rats.

    PubMed

    Pluto, Charles P; Lane, Richard D; Chiaia, Nicolas L; Stojic, Andrey S; Rhoades, Robert W

    2003-09-01

    Rats that sustain forelimb removal on postnatal day (P) 0 exhibit numerous multi-unit recording sites in the forelimb-stump representation of primary somatosensory cortex (SI) that also respond to hindlimb stimulation when cortical GABAA+B receptors are blocked. Most of these hindlimb inputs originate in the medial SI hindlimb representation. Although many forelimb-stump sites in these animals respond to hindlimb stimulation, very few respond to stimulation of the face (vibrissae or lower jaw), which is represented in SI just lateral to the forelimb. The lateral to medial development of SI may influence the capacity of hindlimb (but not face) inputs to "invade" the forelimb-stump region in neonatal amputees. The SI forelimb-stump was mapped in adult (>60 days) rats that had sustained amputation on embryonic day (E) 16, on P0, or during adulthood. GABA receptors were blocked and subsequent mapping revealed increases in nonstump inputs in E16 and P0 amputees: fetal amputees exhibited forelimb-stump sites responsive to face (34%), hindlimb (10%), and both (22%); neonatal amputees exhibited 10% face, 39% hindlimb, and 5% both; adult amputees exhibited 10% face, 5% hindlimb, and 0% both, with approximately 80% stump-only sites. These results indicate age-dependent differences in receptive-field reorganization of the forelimb-stump representation, which may reflect the spatiotemporal development of SI. Results from cobalt chloride inactivation of the SI vibrissae region and electrolesioning of the dysgranular cortex suggest that normally suppressed vibrissae inputs to the SI forelimb-stump area originate in the SI vibrissae region and synapse in the dysgranular cortex.

  14. Planar implantable sensor for in vivo measurement of cellular oxygen metabolism in brain tissue.

    PubMed

    Tsytsarev, Vassiliy; Akkentli, Fatih; Pumbo, Elena; Tang, Qinggong; Chen, Yu; Erzurumlu, Reha S; Papkovsky, Dmitri B

    2017-04-01

    Brain imaging methods are continually improving. Imaging of the cerebral cortex is widely used in both animal experiments and charting human brain function in health and disease. Among the animal models, the rodent cerebral cortex has been widely used because of patterned neural representation of the whiskers on the snout and relative ease of activating cortical tissue with whisker stimulation. We tested a new planar solid-state oxygen sensor comprising a polymeric film with a phosphorescent oxygen-sensitive coating on the working side, to monitor dynamics of oxygen metabolism in the cerebral cortex following sensory stimulation. Sensory stimulation led to changes in oxygenation and deoxygenation processes of activated areas in the barrel cortex. We demonstrate the possibility of dynamic mapping of relative changes in oxygenation in live mouse brain tissue with such a sensor. Oxygenation-based functional magnetic resonance imaging (fMRI) is very effective method for functional brain mapping but have high costs and limited spatial resolution. Optical imaging of intrinsic signal (IOS) does not provide the required sensitivity, and voltage-sensitive dye optical imaging (VSDi) has limited applicability due to significant toxicity of the voltage-sensitive dye. Our planar solid-state oxygen sensor imaging approach circumvents these limitations, providing a simple optical contrast agent with low toxicity and rapid application. The planar solid-state oxygen sensor described here can be used as a tool in visualization and real-time analysis of sensory-evoked neural activity in vivo. Further, this approach allows visualization of local neural activity with high temporal and spatial resolution. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Non-imaged based method for matching brains in a common anatomical space for cellular imagery.

    PubMed

    Midroit, Maëllie; Thevenet, Marc; Fournel, Arnaud; Sacquet, Joelle; Bensafi, Moustafa; Breton, Marine; Chalençon, Laura; Cavelius, Matthias; Didier, Anne; Mandairon, Nathalie

    2018-04-22

    Cellular imagery using histology sections is one of the most common techniques used in Neuroscience. However, this inescapable technique has severe limitations due to the need to delineate regions of interest on each brain, which is time consuming and variable across experimenters. We developed algorithms based on a vectors field elastic registration allowing fast, automatic realignment of experimental brain sections and associated labeling in a brain atlas with high accuracy and in a streamlined way. Thereby, brain areas of interest can be finely identified without outlining them and different experimental groups can be easily analyzed using conventional tools. This method directly readjusts labeling in the brain atlas without any intermediate manipulation of images. We mapped the expression of cFos, in the mouse brain (C57Bl/6J) after olfactory stimulation or a non-stimulated control condition and found an increased density of cFos-positive cells in the primary olfactory cortex but not in non-olfactory areas of the odor-stimulated animals compared to the controls. Existing methods of matching are based on image registration which often requires expensive material (two-photon tomography mapping or imaging with iDISCO) or are less accurate since they are based on mutual information contained in the images. Our new method is non-imaged based and relies only on the positions of detected labeling and the external contours of sections. We thus provide a new method that permits automated matching of histology sections of experimental brains with a brain reference atlas. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Initial Results With Image-guided Cochlear Implant Programming in Children.

    PubMed

    Noble, Jack H; Hedley-Williams, Andrea J; Sunderhaus, Linsey; Dawant, Benoit M; Labadie, Robert F; Camarata, Stephen M; Gifford, René H

    2016-02-01

    Image-guided cochlear implant (CI) programming can improve hearing outcomes for pediatric CI recipients. CIs have been highly successful for children with severe-to-profound hearing loss, offering potential for mainstreamed education and auditory-oral communication. Despite this, a significant number of recipients still experience poor speech understanding, language delay, and, even among the best performers, restoration to normal auditory fidelity is rare. Although significant research efforts have been devoted to improving stimulation strategies, few developments have led to significant hearing improvement over the past two decades. Recently introduced techniques for image-guided CI programming (IGCIP) permit creating patient-customized CI programs by making it possible, for the first time, to estimate the position of implanted CI electrodes relative to the nerves they stimulate using CT images. This approach permits identification of electrodes with high levels of stimulation overlap and to deactivate them from a patient's map. Previous studies have shown that IGCIP can significantly improve hearing outcomes for adults with CIs. The IGCIP technique was tested for 21 ears of 18 pediatric CI recipients. Participants had long-term experience with their CI (5 mo to 13 yr) and ranged in age from 5 to 17 years old. Speech understanding was assessed after approximately 4 weeks of experience with the IGCIP map. Using a two-tailed Wilcoxon signed-rank test, statistically significant improvement (p < 0.05) was observed for word and sentence recognition in quiet and noise, as well as pediatric self-reported quality-of-life (QOL) measures. Our results indicate that image guidance significantly improves hearing and QOL outcomes for pediatric CI recipients.

  17. Electrical stimulation-based renal nerve mapping exacerbates ventricular arrhythmias during acute myocardial ischaemia.

    PubMed

    Huang, Bing; Zhou, Xiaoya; Wang, Menglong; Li, Xuefei; Zhou, Liping; Meng, Guannan; Wang, Yuhong; Wang, Zhuo; Wang, Songyun; Yu, Lilei; Jiang, Hong

    2018-06-01

    Blood pressure elevation in response to transient renal nerve stimulation (RNS) has been used to determine the ablation target and endpoint of renal denervation. This study aimed to evaluate the safety of transient RNS in canines with normal or ischaemic hearts. In ten normal (Group 1) and six healed myocardial infarction (HMI) (Group 2) canines, a large-tip catheter was inserted into the left or right renal artery to perform transient RNS. The left stellate ganglion neural activity (LSGNA) and ventricular electrophysiological parameters were measured at baseline and during transient RNS. In another 20 acute myocardial infarction (AMI) canines, RNS (Group 3, n = 10) or sham RNS (Group 4, n = 10) was intermittently (1 min ON and 4 min OFF) performed for 1 h following AMI induction. The LSGNA and AMI-induced ventricular arrhythmias were analysed. In normal and HMI canines, although transient RNS significantly increased the LSGNA and facilitated the action potential duration (APD) alternans, it did not induce any ventricular arrhythmias and did not change the ventricular effective refractory period, APD or maximum slope of the APD restitution curve. In AMI canines, transient RNS significantly exacerbated LSG activation and promoted the incidence of ventricular arrhythmias. Transient RNS did not increase the risk of ventricular arrhythmias in normal or HMI hearts, but it significantly promoted the occurrence of ventricular arrhythmias in AMI hearts. Therefore, electrical stimulation-based renal nerve mapping may be unsafe in AMI patients and in patients with a high risk for malignant ventricular arrhythmias.

  18. Dynamic mapping of the human visual cortex by high-speed magnetic resonance imaging.

    PubMed Central

    Blamire, A M; Ogawa, S; Ugurbil, K; Rothman, D; McCarthy, G; Ellermann, J M; Hyder, F; Rattner, Z; Shulman, R G

    1992-01-01

    We report the use of high-speed magnetic resonance imaging to follow the changes in image intensity in the human visual cortex during stimulation by a flashing checkerboard stimulus. Measurements were made in a 2.1-T, 1-m-diameter magnet, part of a Bruker Biospec spectrometer that we had programmed to do echo-planar imaging. A 15-cm-diameter surface coil was used to transmit and receive signals. Images were acquired during periods of stimulation from 2 s to 180 s. Images were acquired in 65.5 ms in a 10-mm slice with in-plane voxel size of 6 x 3 mm. Repetition time (TR) was generally 2 s, although for the long flashing periods, TR = 8 s was used. Voxels were located onto an inversion recovery image taken with 2 x 2 mm in-plane resolution. Image intensity increased after onset of the stimulus. The mean change in signal relative to the prestimulation level (delta S/S) was 9.7% (SD = 2.8%, n = 20) with an echo time of 70 ms. Irrespective of the period of stimulation, the increase in magnetic resonance signal intensity was delayed relative to the stimulus. The mean delay measured from the start of stimulation for each protocol was as follows: 2-s stimulation, delay = 3.5 s (SD = 0.5 s, n = 10) (the delay exceeds stimulus duration); 20- to 24-s stimulation, delay = 5 s (SD = 2 s, n = 20). PMID:1438317

  19. Subcortical electrostimulation to identify network subserving motor control.

    PubMed

    Schucht, Philippe; Moritz-Gasser, Sylvie; Herbet, Guillaume; Raabe, Andreas; Duffau, Hugues

    2013-11-01

    Recent anatomical-functional studies have transformed our understanding of cerebral motor control away from a hierarchical structure and toward parallel and interconnected specialized circuits. Subcortical electrical stimulation during awake surgery provides a unique opportunity to identify white matter tracts involved in motor control. For the first time, this study reports the findings on motor modulatory responses evoked by subcortical stimulation and investigates the cortico-subcortical connectivity of cerebral motor control. Twenty-one selected patients were operated while awake for frontal, insular, and parietal diffuse low-grade gliomas. Subcortical electrostimulation mapping was used to search for interference with voluntary movements. The corresponding stimulation sites were localized on brain schemas using the anterior and posterior commissures method. Subcortical negative motor responses were evoked in 20/21 patients, whereas acceleration of voluntary movements and positive motor responses were observed in three and five patients, respectively. The majority of the stimulation sites were detected rostral of the corticospinal tract near the vertical anterior-commissural line, and additional sites were seen in the frontal and parietal white matter. The diverse interferences with motor function resulting in inhibition and acceleration imply a modulatory influence of the detected fiber network. The subcortical stimulation sites were distributed veil-like, anterior to the primary motor fibers, suggesting descending pathways originating from premotor areas known for negative motor response characteristics. Further stimulation sites in the parietal white matter as well as in the anterior arm of the internal capsule indicate a large-scale fronto-parietal motor control network. Copyright © 2012 Wiley Periodicals, Inc.

  20. Nonlinear X-Ray and Auger Spectroscopy at X-Ray Free-Electron Laser Sources

    NASA Astrophysics Data System (ADS)

    Rohringer, Nina

    2015-05-01

    X-ray free-electron lasers (XFELs) open the pathway to transfer non-linear spectroscopic techniques to the x-ray domain. A promising all x-ray pump probe technique is based on coherent stimulated electronic x-ray Raman scattering, which was recently demonstrated in atomic neon. By tuning the XFEL pulse to core-excited resonances, a few seed photons in the spectral tail of the XFEL pulse drive an avalanche of resonant inelastic x-ray scattering events, resulting in exponential amplification of the scattering signal by of 6-7 orders of magnitude. Analysis of the line profile of the emitted radiation permits to demonstrate the cross over from amplified spontaneous emission to coherent stimulated resonance scattering. In combination with statistical covariance mapping, a high-resolution spectrum of the resonant inelastic scattering process can be obtained, opening the path to coherent stimulated x-ray Raman spectroscopy. An extension of these ideas to molecules and a realistic feasibility study of stimulated electronic x-ray Raman scattering in CO will be presented. Challenges to realizing stimulated electronic x-ray Raman scattering at present-day XFEL sources will be discussed, corroborated by results of a recent experiment at the LCLS XFEL. Due to the small gain cross section in molecular targets, other nonlinear spectroscopic techniques such as nonlinear Auger spectroscopy could become a powerful alternative. Theory predictions of a novel pump probe technique based on resonant nonlinear Auger spectroscopic will be discussed and the method will be compared to stimulated x-ray Raman spectroscopy.

Top