Metal spring stub and ceramic body electrode assembly
Rolf, Richard L.; Sharp, Maurice L.
1984-01-01
An electrode assembly comprising an electrically conductive ceramic electrode body having an opening therein and a metal stub retained in the opening with at least a surface of the stub in intimate contact with a surface of the body and the stub adapted with a spring to flex and prevent damage to the body from expansion of the stub when subjected to a temperature differential.
Electrochemical cell with powdered electrically insulative material as a separator
Mathers, James P.; Olszanski, Theodore W.; Boquist, Carl W.
1978-01-01
A secondary electrochemical cell includes electrodes separated by a layer of electrically insulative powder. The powder includes refractory materials selected from the oxides and nitrides of metals and metaloids. The powdered refractory material, blended with electrolyte particles, can be compacted in layers with electrode materials to form an integral electrode structure or separately assembled into the cell. The assembled cell is heated to operating temperature leaving porous layers of electrically insulative, refractory particles, containing molten electrolyte between the electrodes.
Method of preparing a powdered, electrically insulative separator for use in an electrochemical cell
Cooper, Tom O.; Miller, William E.
1978-01-01
A secondary electrochemical cell includes electrodes separated by a layer of electrically insulative powder. The powder includes refractory materials selected from the oxides and nitrides of metals and metaloids. The powdered refractory material, blended with electrolyte particles, is compacted as layers onto an electrode to form an integral electrode structure and assembled into the cell. The assembled cell is heated to its operating temperature leaving porous layers of electrically insulative, refractory particles, containing molten electrolyte between the electrodes.
Metal spring stub and ceramic body electrode assembly
Rolf, R.L.; Sharp, M.L.
1984-06-26
An electrode assembly is disclosed comprising an electrically conductive ceramic electrode body having an opening therein and a metal stub retained in the opening with at least a surface of the stub in intimate contact with a surface of the body and the stub adapted with a spring to flex and prevent damage to the body from expansion of the stub when subjected to a temperature differential. 1 fig.
Structural and thermal response of 30 cm diameter ion thruster optics
NASA Technical Reports Server (NTRS)
Macrae, G. S.; Zavesky, R. J.; Gooder, S. T.
1989-01-01
Tabular and graphical data are presented which are intended for use in calibrating and validating structural and thermal models of ion thruster optics. A 30 cm diameter, two electrode, mercury ion thruster was operated using two different electrode assembly designs. With no beam extraction, the transient and steady state temperature profiles and center electrode gaps were measured for three discharge powers. The data showed that the electrode mount design had little effect on the temperatures, but significantly impacted the motion of the electrode center. Equilibrium electrode gaps increased with one design and decreased with the other. Equilibrium displacements in excess of 0.5 mm and gap changes of 0.08 mm were measured at 450 W discharge power. Variations in equilibrium gaps were also found among assemblies of the same design. The presented data illustrate the necessity for high fidelity ion optics models and development of experimental techniques to allow their validation.
Method of making membrane-electrode assemblies for electrochemical cells and assemblies made thereby
Swathirajan, Sundararajan; Mikhail, Youssef M.
1994-01-01
A method of making a combination, unitary, membrane and electrode assembly having a solid polymer electrolyte membrane, and first and second electrodes at least partially embedded in opposed surfaces of the membrane. The electrodes each comprise a respective group of finely divided carbon particles, very finely divided catalytic particles supported on internal and external surfaces of the carbon particles and a proton conductive material intermingled with the catalytic and carbon particles. A first group of finely divided carbon particles forming the first electrode has greater water attraction and retention properties, and is more hydrophilic than a second group of carbon particles forming the second electrode. In a preferred method, the membrane electrode assembly of the invention is prepared by forming a slurry of proton conductive material and at least one group of the carbon and catalyst particles. The slurry is applied to the opposed surfaces of the membrane and heated while being pressed to the membrane for a time and at a temperature and compressive load sufficient to embed at least a portion of the particles into the membrane.
Method of making membrane-electrode assemblies for electrochemical cells and assemblies made thereby
Swathirajan, S.; Mikhail, Y.M.
1994-05-31
A method is described for making a combination, unitary, membrane and electrode assembly having a solid polymer electrolyte membrane, and first and second electrodes at least partially embedded in opposed surfaces of the membrane. The electrodes each comprise a respective group of finely divided carbon particles, very finely divided catalytic particles supported on internal and external surfaces of the carbon particles and a proton conductive material intermingled with the catalytic and carbon particles. A first group of finely divided carbon particles forming the first electrode has greater water attraction and retention properties, and is more hydrophilic than a second group of carbon particles forming the second electrode. In a preferred method, the membrane electrode assembly of the invention is prepared by forming a slurry of proton conductive material and at least one group of the carbon and catalyst particles. The slurry is applied to the opposed surfaces of the membrane and heated while being pressed to the membrane for a time and at a temperature and compressive load sufficient to embed at least a portion of the particles into the membrane. 10 figs.
Membrane electrode gasket assembly (MEGA) technology for polymer electrolyte fuel cells
NASA Astrophysics Data System (ADS)
Pozio, A.; Giorgi, L.; De Francesco, M.; Silva, R. F.; Lo Presti, R.; Danzi, A.
A new technology for the production of a membrane electrode gasket assembly (MEGA) for polymer electrolyte fuel cells (PEFCs) is defined. The MEGA system was prepared by sealing a previously prepared membrane electrode assembly (MEA) in a moulded gasket. For this aim, a proprietary silicone based liquid mixture was injected directly into the MEA borders. Gaskets obtained in different shapes and hardness grades are stable in a wide temperature range. The MEGA technology shows several advantages with respect to traditional PEFCs stack assembling systems: effective membrane saving, reduced fabrication time, possibility of quality control and failed elements substitution. This technology was successfully tested at the ENEA laboratories and the results were acquired in laboratory scale, but industrial production appears to be simple and cheap.
Membrane-electrode assemblies for electrochemical cells
Swathirajan, Sundararajan; Mikhail, Youssef M.
1993-01-01
A combination, unitary, membrane and electrode assembly with a solid polymer electrolyte membrane, and first and second electrodes at least partially embedded in opposed surfaces of the membrane. The electrodes each comprise a respective group of finely divided carbon particles, very finely divided catalytic particles supported on internal and external surfaces of the carbon particles and a proton conductive material intermingled with the catalytic and carbon particles. A first group of finely divided carbon particles forming the first electrode has greater water attraction and retention properties, and is more hydrophilic than a second group of carbon particles forming the second electrode. In a preferred method, the membrane electrode assembly of the invention is prepared by forming a slurry of proton conductive material and at least one group of the carbon and catalyst particles. The slurry is applied to the opposed surfaces of the membrane and heated while being pressed to the membrane for a time and at a temperature and compressive load sufficient to embed at least a portion of the particles into the membrane.
Method of preparing an electrochemical cell in uncharged state
Shimotake, Hiroshi; Bartholme, Louis G.; Arntzen, John D.
1977-02-01
A secondary electrochemical cell is assembled in an uncharged state for the preparation of a lithium alloy-transition metal sulfide cell. The negative electrode includes a material such as aluminum or silicon for alloying with lithium as the cell is charged. The positive electrode is prepared by blending particulate lithium sulfide, transition metal powder and electrolytic salt in solid phase. The mixture is simultaneously heated to a temperature in excess of the melting point of the electrolyte and pressed onto an electrically conductive substrate to form a plaque. The plaque is assembled as a positive electrode within the cell. During the first charge cycle lithium alloy is formed within the negative electrode and transition metal sulfide such as iron sulfide is produced within the positive electrode.
Composite electrode/electrolyte structure
Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.
2004-01-27
Provided is an electrode fabricated from highly electronically conductive materials such as metals, metal alloys, or electronically conductive ceramics. The electronic conductivity of the electrode substrate is maximized. Onto this electrode in the green state, a green ionic (e.g., electrolyte) film is deposited and the assembly is co-fired at a temperature suitable to fully densify the film while the substrate retains porosity. Subsequently, a catalytic material is added to the electrode structure by infiltration of a metal salt and subsequent low temperature firing. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in ionic (electrochemical) devices such as fuel cells and electrolytic gas separation systems.
Kamino, Takeo; Yaguchi, Toshie; Shimizu, Takahiro
2017-10-01
Polymer electrolyte fuel cells hold great potential for stationary and mobile applications due to high power density and low operating temperature. However, the structural changes during electrochemical reactions are not well understood. In this article, we detail the development of the sample holder equipped with gas injectors and electric conductors and its application to a membrane electrode assembly of a polymer electrolyte fuel cell. Hydrogen and oxygen gases were simultaneously sprayed on the surfaces of the anode and cathode catalysts of the membrane electrode assembly sample, respectively, and observation of the structural changes in the catalysts were simultaneously carried out along with measurement of the generated voltages.
Methods of making membrane electrode assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Yu Seung; Lee, Kwan -Soo; Rockward, Tommy Q. T.
Method of making a membrane electrode assembly comprising: providing a membrane comprising a perfluorinated sulfonic acid; providing a first transfer substrate; applying to a surface of the first transfer substrate a first ink, said first ink comprising an ionomer and a catalyst; applying to the first ink a suitable non-aqueous swelling agent; forming an assembly comprising: the membrane; and the first transfer substrate, wherein the surface of the first transfer substrate comprising the first ink and the non-aqueous swelling agent is disposed upon one surface of the membrane; and heating the assembly at a temperature of 150.degree. C. or lessmore » and at a pressure of from about 250 kPa to about 3000 kPa or less for a time suitable to allow substantially complete transfer of the first ink and the second ink to the membrane; and cooling the assembly to room temperature and removing the first transfer substrate and the second transfer substrate.« less
La Ferrara, Vera; Rametta, Gabriella; De Maria, Antonella
2015-07-01
Interconnected network of nanostructured polyaniline (PANI) is giving strong potential for enhancing device performances than bulk PANI counterparts. For nanostructured device processing, the main challenge is to get prototypes on large area by requiring precision, low cost and high rate assembly. Among processes meeting these requests, the alternate current electric fields are often used for nanostructure assembling. For the first time, we show the assembly of nanostructured PANI onto large electrode gaps (30-60 μm width) by applying alternate current electric fields, at low frequencies, to PANI particles dispersed in acetonitrile (ACN). An important advantage is the short assembly time, limited to 5-10 s, although electrode gaps are microsized. That encouraging result is due to a combination of forces, such as dielectrophoresis (DEP), induced-charge electrokinetic (ICEK) flow and alternate current electroosmotic (ACEO) flow, which speed up the assembly process when low frequencies and large electrode gaps are used. The main achievement of the present study is the development of ammonia sensors created by direct assembling of nanostructured PANI onto electrodes. Sensors exhibit high sensitivity to low gas concentrations as well as excellent reversibility at room temperature, even after storage in air. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, Ki-Won; Kim, Han-Ki, E-mail: imdlhkkim@khu.ac.kr; Kim, Min-Yi
2015-12-15
We investigated a self-assembled Ag nanoparticle network electrode passivated by a nano-sized ZnO layer for use in high-performance transparent and flexible film heaters (TFFHs). The low temperature atomic layer deposition of a nano-sized ZnO layer effectively filled the uncovered area of Ag network and improved the current spreading in the self-assembled Ag network without a change in the sheet resistance and optical transmittance as well as mechanical flexibility. The time-temperature profiles and heat distribution analysis demonstrate that the performance of the TFTH with the ZnO/Ag network is superior to that of a TFFH with Ag nanowire electrodes. In addition, themore » TFTHs with ZnO/Ag network exhibited better stability than the TFFH with a bare Ag network due to the effective current spreading through the nano-sized ZnO layer.« less
NASA Astrophysics Data System (ADS)
Lu, Haifei; Sun, Jingsong; Zhang, Hong; Lu, Shunmian; Choy, Wallace C. H.
2016-03-01
The exploration of low-temperature and solution-processed charge transporting and collecting layers can promote the development of low-cost and large-scale perovskite solar cells (PVSCs) through an all solution process. Here, we propose a room-temperature solution-processed and metal oxide-free nano-composite composed of a silver nano-network and graphene oxide (GO) flawless film for the transparent bottom electrode of a PVSC. Our experimental results show that the amount of GO flakes play a critical role in forming the flawless anti-corrosive barrier in the silver nano-network through a self-assembly approach under ambient atmosphere, which can effectively prevent the penetration of liquid or gaseous halides and their corrosion against the silver nano-network underneath. Importantly, we simultaneously achieve good work function alignment and surface wetting properties for a practical bottom electrode by controlling the degree of reduction of GO flakes. Finally, flexible PVSC adopting the room-temperature and solution-processed nano-composite as the flexible transparent bottom electrode has been demonstrated on a polyethylene terephthalate (PET) substrate. As a consequence, the demonstration of our room-temperature solution-processed and metal oxide-free flexible transparent bottom electrode will contribute to the emerging large-area flexible PVSC technologies.The exploration of low-temperature and solution-processed charge transporting and collecting layers can promote the development of low-cost and large-scale perovskite solar cells (PVSCs) through an all solution process. Here, we propose a room-temperature solution-processed and metal oxide-free nano-composite composed of a silver nano-network and graphene oxide (GO) flawless film for the transparent bottom electrode of a PVSC. Our experimental results show that the amount of GO flakes play a critical role in forming the flawless anti-corrosive barrier in the silver nano-network through a self-assembly approach under ambient atmosphere, which can effectively prevent the penetration of liquid or gaseous halides and their corrosion against the silver nano-network underneath. Importantly, we simultaneously achieve good work function alignment and surface wetting properties for a practical bottom electrode by controlling the degree of reduction of GO flakes. Finally, flexible PVSC adopting the room-temperature and solution-processed nano-composite as the flexible transparent bottom electrode has been demonstrated on a polyethylene terephthalate (PET) substrate. As a consequence, the demonstration of our room-temperature solution-processed and metal oxide-free flexible transparent bottom electrode will contribute to the emerging large-area flexible PVSC technologies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00011h
Ai, Na; Li, Na; Rickard, William D A; Cheng, Yi; Chen, Kongfa; Jiang, San Ping
2017-03-09
Direct assembly is a newly developed technique in which a cobaltite-based perovskite (CBP) cathode can be directly applied to a barrier-layer-free Y 2 O 3 -ZrO 2 (YSZ) electrolyte with no high-temperature pre-sintering steps. Solid oxide fuel cells (SOFCs) based on directly assembled CBPs such as La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ show high performance initially but degrade rapidly under SOFC operation conditions at 750 °C owing to Sr segregation and accumulation at the electrode/electrolyte interface. Herein, the performance and interface of Sr-free CBPs such as LaCoO 3-δ (LC) and Sm 0.95 CoO 3-δ (SmC) and their composite cathodes directly assembled on YSZ electrolyte was studied systematically. The LC electrode underwent performance degradation, most likely owing to cation demixing and accumulation of La on the YSZ electrolyte under polarization at 500 mA cm -2 and 750 °C. However, the performance and stability of LC electrodes could be substantially enhanced by the formation of LC-gadolinium-doped ceria (GDC) composite cathodes. Replacement of La by Sm increased the cell stability, and doping of 5 % Pd to form Sm 0.95 Co 0.95 Pd 0.05 O 3-δ (SmCPd) significantly improved the electrode activity. An anode-supported YSZ-electrolyte cell with a directly assembled SmCPd-GDC composite electrode exhibited a peak power density of 1.4 W cm -2 at 750 °C, and an excellent stability at 750 °C for over 240 h. The higher stability of SmC as compared to that of LC is most likely a result of the lower reactivity of SmC with YSZ. This study demonstrates the new opportunities in the design and development of intermediate-temperature SOFCs based on the directly assembled high-performance and durable Sr-free CBP cathodes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Metal halide arc discharge lamp having short arc length
NASA Technical Reports Server (NTRS)
Muzeroll, Martin E. (Inventor)
1994-01-01
A metal halide arc discharge lamp includes a sealed light-transmissive outer jacket, a light-transmissive shroud located within the outer jacket and an arc tube assembly located within the shroud. The arc tube assembly includes an arc tube, electrodes mounted within the arc tube and a fill material for supporting an arc discharge. The electrodes have a spacing such that an electric field in a range of about 60 to 95 volts per centimeter is established between the electrodes. The diameter of the arc tube and the spacing of the electrodes are selected to provide an arc having an arc diameter to arc length ratio in a range of about 1.6 to 1.8. The fill material includes mercury, sodium iodide, scandium tri-iodide and a rare gas, and may include lithium iodide. The lamp exhibits a high color rendering index, high lumen output and high color temperature.
Methods of conditioning direct methanol fuel cells
Rice, Cynthia; Ren, Xiaoming; Gottesfeld, Shimshon
2005-11-08
Methods for conditioning the membrane electrode assembly of a direct methanol fuel cell ("DMFC") are disclosed. In a first method, an electrical current of polarity opposite to that used in a functioning direct methanol fuel cell is passed through the anode surface of the membrane electrode assembly. In a second method, methanol is supplied to an anode surface of the membrane electrode assembly, allowed to cross over the polymer electrolyte membrane of the membrane electrode assembly to a cathode surface of the membrane electrode assembly, and an electrical current of polarity opposite to that in a functioning direct methanol fuel cell is drawn through the membrane electrode assembly, wherein methanol is oxidized at the cathode surface of the membrane electrode assembly while the catalyst on the anode surface is reduced. Surface oxides on the direct methanol fuel cell anode catalyst of the membrane electrode assembly are thereby reduced.
Sekine, Tomohito; Sato, Jun; Takeda, Yasunori; Kumaki, Daisuke; Tokito, Shizuo
2018-05-09
We evaluated the electrochemical behaviors and reliability of printed silver (Ag) electrodes prepared from nanoparticle inks with the use of protective self-assembled monolayers (SAMs) under electronic bias conditions. The printed Ag electrodes were fabricated by inkjet printing on a hydrophobic substrate. The SAMs, which acted as barriers to moisture, were prepared by immersing the substrate in a pentafluorobenzenethiol solution at ambient temperature (25 °C). We investigated the electrochemical migration phenomenon using the water drop method, and the results showed that the formation of dendrites connecting the cathode and the anode, which can affect the electrochemical reliability of an electric device, was suppressed in the presence of the SAMs. The time before short circuit occurred was found to depend on the spacing between the electrodes, i.e., 130 s, when the distance between the electrodes was 200 μm in the presence of an SAM. We demonstrated that Ag electrodes treated using the procedure described in this work suppress the occurrence of electrical short circuits caused by Ag dendrite formation and thus their electrochemical properties are substantially improved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiberg, Gustav K. H., E-mail: gustav.wiberg@gmail.com, E-mail: m.arenz@chem.ku.dk; Fleige, Michael; Arenz, Matthias, E-mail: gustav.wiberg@gmail.com, E-mail: m.arenz@chem.ku.dk
2015-02-15
We present a detailed description of the construction and testing of an electrochemical cell setup allowing the investigation of a gas diffusion electrode containing carbon supported high surface area catalysts. The setup is designed for measurements in concentrated phosphoric acid at elevated temperature, i.e., very close to the actual conditions in high temperature proton exchange membrane fuel cells (HT-PEMFCs). The cell consists of a stainless steel flow field and a PEEK plastic cell body comprising the electrochemical cell, which exhibits a three electrode configuration. The cell body and flow field are braced using a KF-25 vacuum flange clamp, which allowsmore » an easy assembly of the setup. As demonstrated, the setup can be used to investigate temperature dependent electrochemical processes on high surface area type electrocatalysts, but it also enables quick screening tests of HT-PEMFC catalysts under realistic conditions.« less
NASA Astrophysics Data System (ADS)
Wiberg, Gustav K. H.; Fleige, Michael; Arenz, Matthias
2015-02-01
We present a detailed description of the construction and testing of an electrochemical cell setup allowing the investigation of a gas diffusion electrode containing carbon supported high surface area catalysts. The setup is designed for measurements in concentrated phosphoric acid at elevated temperature, i.e., very close to the actual conditions in high temperature proton exchange membrane fuel cells (HT-PEMFCs). The cell consists of a stainless steel flow field and a PEEK plastic cell body comprising the electrochemical cell, which exhibits a three electrode configuration. The cell body and flow field are braced using a KF-25 vacuum flange clamp, which allows an easy assembly of the setup. As demonstrated, the setup can be used to investigate temperature dependent electrochemical processes on high surface area type electrocatalysts, but it also enables quick screening tests of HT-PEMFC catalysts under realistic conditions.
Process to produce lithium-polymer batteries
MacFadden, Kenneth Orville
1998-01-01
A polymer bonded sheet product suitable for use as an electrode in a non-aqueous battery system. A porous electrode sheet is impregnated with a solid polymer electrolyte, so as to diffuse into the pores of the electrode. The composite is allowed to cool, and the electrolyte is entrapped in the porous electrode. The sheet products composed have the solid polymer electrolyte composition diffused into the active electrode material by melt-application of the solid polymer electrolyte composition into the porous electrode material sheet. The solid polymer electrolyte is maintained at a temperature that allows for rapid diffusion into the pores of the electrode. The composite electrolyte-electrode sheets are formed on current collectors and can be coated with solid polymer electrolyte prior to battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte coating has low resistance.
NASA Astrophysics Data System (ADS)
Herden, Susanne; Hirschfeld, Julian A.; Lohri, Cyrill; Perchthaler, Markus; Haase, Stefan
2017-10-01
To improve the performance of proton exchange membrane fuel cells, membrane electrode assemblies (MEAs) with segmented cathode electrodes have been manufactured. Electrodes with a higher and lower ionomer equivalent weight (EW) were used and analyzed using current density and temperature distribution, polarization curve, temperature sweep and electrochemical impedance spectroscopy measurements. These were performed using automotive metallic bipolar plates and operating conditions. Measurement data were used to manufacture an optimized segmented cathode electrode. We were able to show that our results are transferable from a small scale hardware to automotive application and that an ionomer EW segmentation of the cathode leads to performance improvement in a broad spectrum of operating conditions. Furthermore, we confirmed our results by using in-situ electrochemical impedance spectroscopy.
Anti-fouling response of gold-carbon nanotubes composite for enhanced ethanol electrooxidation
NASA Astrophysics Data System (ADS)
Sai Siddhardha, R. S.; Anupam Kumar, Manne; Lakshminarayanan, V.; Ramamurthy, Sai Sathish
2014-12-01
We report the synthesis of gold carbon nanotubes composite through a one-pot surfactant free approach and its utility for ethanol electrooxidation reaction (EOR). The method involves the application of laser ablation for nanoparticle synthesis and simultaneous assembly of these on carbon nanotubes. The catalyst has been characterized by field emission scanning electron microscopy (FESEM), energy dispersive X-ray analysis (EDAX) and UV-vis spectroscopic techniques. A systematic study of gold carbon nanotubes modified carbon paste electrode for EOR has been pursued. The kinetic study revealed the excellent stability of the modified electrode even after 200 cycles of EOR and with an Arrhenius energy as low as ∼28 kJ mol-1. Tafel slopes that are the measure of electrode activity have been monitored as a function of temperature of the electrolyte. The results indicate that despite an increase in the reaction rate with temperature, the electrode surface has not been significantly passivated by carbonaceous species produced at high temperatures.
FINAL REPORT: Transformational electrode drying process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Claus Daniel, C.; Wixom, M.
2013-12-19
This report includes major findings and outlook from the transformational electrode drying project performance period from January 6, 2012 to August 1, 2012. Electrode drying before cell assembly is an operational bottleneck in battery manufacturing due to long drying times and batch processing. Water taken up during shipment and other manufacturing steps needs to be removed before final battery assembly. Conventional vacuum ovens are limited in drying speed due to a temperature threshold needed to avoid damaging polymer components in the composite electrode. Roll to roll operation and alternative treatments can increase the water desorption and removal rate without overheatingmore » and damaging other components in the composite electrode, thus considerably reducing drying time and energy use. The objective of this project was the development of an electrode drying procedure, and the demonstration of processes with no decrease in battery performance. The benchmark for all drying data was an 80°C vacuum furnace treatment with a residence time of 18 – 22 hours. This report demonstrates an alternative roll to roll drying process with a 500-fold improvement in drying time down to 2 minutes and consumption of only 30% of the energy compared to vacuum furnace treatment.« less
Carbon nanotube balls and their application in supercapacitors.
Kang, Da-Young; Moon, Jun Hyuk
2014-01-08
We have provided a design of the macroscopic morphology of carbon nanotubes (CNTs) using emulsion droplet confinement. The evaporation of CNT-dispersed aqueous emulsion droplets in oil produces spherical CNT assemblies, i.e., CNT balls. In this emulsion-assisted method, compact packing of CNT was obtained by the presence of capillary pressure during droplet evaporation. The size of the CNT balls could be controlled by changing the concentration of the CNT dispersion solution; typically, CNT balls with an average size in the range of 8-12 μm were obtained with a Brunauer-Emmett-Teller (BET) specific area of 200 m(2)/g. Heat treatment of the CNT balls, which was required to remove residual solvent, and cement CNTs was followed, and their effect has been characterized; the heat treatment at high temperature desorbed surface oxygenated groups of CNTs and created defective carbon structures, but did not change pore structure. The dispersion of CNT balls was applied to form CNT ball-assembled film for a supercapacitor electrode. The specific capacitance of 80 F/g was obtained at 500 °C heat treatment, but the CNT balls prepared at a higher temperature actually decreased the capacitance, because of the removal of surface oxygenated groups, thereby decreasing the pseudo-capacitance. The capacitive properties of CNT ball-assembled electrodes were compared to CNT films; the CNT ball electrodes showed 40% higher specific electrochemical capacitance and higher rate performance, which is attributed to the compact packing of CNTs in the CNT ball and the hierarchical porous structures in the ball assemblies.
Process to produce lithium-polymer batteries
MacFadden, K.O.
1998-06-30
A polymer bonded sheet product is described suitable for use as an electrode in a non-aqueous battery system. A porous electrode sheet is impregnated with a solid polymer electrolyte, so as to diffuse into the pores of the electrode. The composite is allowed to cool, and the electrolyte is entrapped in the porous electrode. The sheet products composed have the solid polymer electrolyte composition diffused into the active electrode material by melt-application of the solid polymer electrolyte composition into the porous electrode material sheet. The solid polymer electrolyte is maintained at a temperature that allows for rapid diffusion into the pores of the electrode. The composite electrolyte-electrode sheets are formed on current collectors and can be coated with solid polymer electrolyte prior to battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte coating has low resistance. 1 fig.
Kong, Peter C; Grandy, Jon D; Detering, Brent A; Zuck, Larry D
2013-09-17
Electrode assemblies for plasma reactors include a structure or device for constraining an arc endpoint to a selected area or region on an electrode. In some embodiments, the structure or device may comprise one or more insulating members covering a portion of an electrode. In additional embodiments, the structure or device may provide a magnetic field configured to control a location of an arc endpoint on the electrode. Plasma generating modules, apparatus, and systems include such electrode assemblies. Methods for generating a plasma include covering at least a portion of a surface of an electrode with an electrically insulating member to constrain a location of an arc endpoint on the electrode. Additional methods for generating a plasma include generating a magnetic field to constrain a location of an arc endpoint on an electrode.
Nanofiber membrane-electrode-assembly and method of fabricating same
Pintauro, Peter N.; Ballengee, Jason; Brodt, Matthew
2016-02-02
In one aspect of the present invention, a fuel cell membrane-electrode-assembly (MEA) has an anode electrode, a cathode electrode, and a membrane disposed between the anode electrode and the cathode electrode. At least one of the anode electrode, the cathode electrode and the membrane is formed of electrospun nanofibers.
Conversion of Signals from Ion-specific Electrodes to Linear Concentrations 1
Heath, Robert L.
1975-01-01
This paper describes the assembly (from commercially available components) of an antilog converter, which transforms the output signals of ion-specific electrodes to ionic concentrations suitable for a linear recorder. It responds linearly to cation concentrations from 10 μm to at least 10 mm and can be used for electrodes kept at any temperatures (0 to 50 C). The leakage of K+ from a unicellular algae (Chlorella sorokiniana) can be induced by Triton X-100, heating, or suspension in a tris buffer and is used to demonstrate the operation of this device. PMID:16659270
Self-shielding flex-circuit drift tube, drift tube assembly and method of making
Jones, David Alexander
2016-04-26
The present disclosure is directed to an ion mobility drift tube fabricated using flex-circuit technology in which every other drift electrode is on a different layer of the flex-circuit and each drift electrode partially overlaps the adjacent electrodes on the other layer. This results in a self-shielding effect where the drift electrodes themselves shield the interior of the drift tube from unwanted electro-magnetic noise. In addition, this drift tube can be manufactured with an integral flex-heater for temperature control. This design will significantly improve the noise immunity, size, weight, and power requirements of hand-held ion mobility systems such as those used for explosive detection.
Sputter-deposited fuel cell membranes and electrodes
NASA Technical Reports Server (NTRS)
Narayanan, Sekharipuram R. (Inventor); Jeffries-Nakamura, Barbara (Inventor); Chun, William (Inventor); Ruiz, Ron P. (Inventor); Valdez, Thomas I. (Inventor)
2001-01-01
A method for preparing a membrane for use in a fuel cell membrane electrode assembly includes the steps of providing an electrolyte membrane, and sputter-depositing a catalyst onto the electrolyte membrane. The sputter-deposited catalyst may be applied to multiple sides of the electrolyte membrane. A method for forming an electrode for use in a fuel cell membrane electrode assembly includes the steps of obtaining a catalyst, obtaining a backing, and sputter-depositing the catalyst onto the backing. The membranes and electrodes are useful for assembling fuel cells that include an anode electrode, a cathode electrode, a fuel supply, and an electrolyte membrane, wherein the electrolyte membrane includes a sputter-deposited catalyst, and the sputter-deposited catalyst is effective for sustaining a voltage across a membrane electrode assembly in the fuel cell.
Electric property measurement of free-standing SrTiO3 nanoparticles assembled by dielectrophoresis
NASA Astrophysics Data System (ADS)
Budiman, Faisal; Kotooka, Takumi; Horibe, Yoichi; Eguchi, Masanori; Tanaka, Hirofumi
2018-06-01
Free-standing strontium titanate (SrTiO3/STO) nanoparticles (NPs) were synthesized by the sol–gel method. X-ray diffractometry revealed that the required minimum annealing temperature to synthesize pure and highly crystalline STO NPs was 500 °C. Moreover, morphological observation by field emission scanning electron microscopy showed that the STO NPs have a spherical structure and their size depended on annealing condition. Electrical properties were measured using a low-temperature probing system. Here, an electrode was fabricated by electron beam lithography and the synthesized STO NPs were aligned at the electrodes by dielectrophoresis. The conductance of a sample was proportional to temperature. Two conduction mechanisms originating from hopping and tunneling appeared in the Arrhenius plot.
Cheng, J P; Liu, L; Ma, K Y; Wang, X; Li, Q Q; Wu, J S; Liu, F
2017-01-15
Supercapacitor with metal hydroxide nanosheets as electrode can have high capacitance. However, the cycling stability and high rate capacity is low due to the low electrical conductivity. Here, the exfoliated α-Co(OH) 2 nanosheets with high capacitance has been assembled on few-layer graphene with high electric conductivity by a facile yet effective and scalable solution method. Exfoliated hydrotalcite-like α-Co(OH) 2 nanosheets and few-layer graphene suspensions were prepared by a simple ultrasonication in formamide and N-methyl-2-pyrrolidone, respectively. Subsequently, a hybrid was made by self-assembly of α-Co(OH) 2 and few-layer graphene when the two dispersions were mixed at room temperature. The hybrid material provided a high specific capacitance of 567.1F/g at 1A/g, while a better rate capability and better stability were achieved compared to that mad of pristine and single exfoliated α-Co(OH) 2 . When the hybrid nanocomposite was used as a positive electrode and activated carbon was applied as negative electrode to assembly an asymmetric capacitor, an energy density of 21.2Wh/kg at a power density of 0.41kW/kg within a potential of 1.65V was delivered. The high electrochemical performance and facile solution-based synthesis method suggested that the hybrid of exfoliated α-Co(OH) 2 /few-layer graphene could be a potential electrode material for electrochemical capacitor. Copyright © 2016 Elsevier Inc. All rights reserved.
Electrode assembly for a fluidized bed apparatus
Schora, Jr., Frank C.; Matthews, Charles W.; Knowlton, Ted M.
1976-11-23
An electrode assembly comprising a high voltage electrode having a generally cylindrical shape and being electrically connected to a high voltage source, where the cylinder walls may be open to flow of fluids and solids; an electrically grounded support electrode supporting said high voltage electrode by an electrically insulating support where both of the electrically grounded and electrically insulating support may be hollow; and an electrically grounded liner electrode arranged concentrically around both the high voltage and support electrodes. This assembly is specifically adapted for use in a fluidized bed chemical reactor as an improved heating means therefor.
NASA Astrophysics Data System (ADS)
Etzel, Kai D.; Bickel, Katrin R.; Schuster, Rolf
2010-03-01
We present a microcalorimeter for measuring heat effects during electrochemical reactions with conversions down to a few percent of a monolayer, referenced to the electrode's surface atoms. The design uses a thin pyroelectric polymer foil for temperature measurement at the backside of a thin electrode, similar to the concepts pioneered by the groups of D. A. King and Ch. T. Campbell for UHV adsorption microcalorimetry. To establish intimate thermal contact between electrode and sensor and utmost sensitivity, the free standing sensor and electrode foils are pressed together by air pressure, acting on the electrochemical cell. Pyroelectric temperature sensing is combined with pulsed electrochemistry, where the electrochemical heat is released on a time scale of about 10 ms, which is long enough for thermal equalization of the electrode-sensor assembly but short enough to avoid significant heat loss into electrolyte and cell compartment. As examples heat effects upon Ag deposition and dissolution as well as the electron transfer reaction of [Fe(CN)6]4-/[Fe(CN)6]3- are presented. The latter reaction was also employed for the calibration of the calorimeter.
Direct methanol feed fuel cell with reduced catalyst loading
NASA Technical Reports Server (NTRS)
Kindler, Andrew (Inventor)
1999-01-01
Improvements to direct feed methanol fuel cells include new protocols for component formation. Catalyst-water repellent material is applied in formation of electrodes and sintered before application of ionomer. A membrane used in formation of an electrode assembly is specially pre-treated to improve bonding between catalyst and membrane. The improved electrode and the pre-treated membrane are assembled into a membrane electrode assembly.
Lin, Sen; Bai, Xiaopeng; Wang, Haiyang; Wang, Haolun; Song, Jianan; Huang, Kai; Wang, Chang; Wang, Ning; Li, Bo; Lei, Ming; Wu, Hui
2017-11-01
Electrochromic smart windows (ECSWs) are considered as the most promising alternative to traditional dimming devices. However, the electrode technology in ECSWs remains stagnant, wherein inflexible indium tin oxide and fluorine-doped tin oxide are the main materials being used. Although various complicated production methods, such as high-temperature calcination and sputtering, have been reported, the mass production of flexible and transparent electrodes remains challenging. Here, a nonheated roll-to-roll process is developed for the continuous production of flexible, extralarge, and transparent silver nanofiber (AgNF) network electrodes. The optical and mechanical properties, as well as the electrical conductivity of these products (i.e., 12 Ω sq -1 at 95% transmittance) are comparable with those AgNF networks produced via high-temperature sintering. Moreover, the as-prepared AgNF network is successfully assembled into an A4-sized ECSW with short switching time, good coloration efficiency, and flexibility. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Byrne, Stephen C.
1984-01-01
A nonconsumable electrode assembly suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a ceramic electrode body and a metal subassembly of a metal conductor rod and at least one metal strap affixed to an end of the rod with opposing portions extending radially outwardly from the rod axis and having the ends of the strap attached to the electrode body.
Membrane electrode assembly for a fuel cell
NASA Technical Reports Server (NTRS)
Prakash, Surya (Inventor); Narayanan, Sekharipuram R. (Inventor); Atti, Anthony (Inventor); Olah, George (Inventor); Smart, Marshall C. (Inventor)
2006-01-01
A catalyst ink for a fuel cell including a catalytic material and poly(vinylidene fluoride). The ink may be applied to a substrate to form an electrode, or bonded with other electrode layers to form a membrane electrode assembly (MEA).
Lithium battery electrodes with ultra-thin alumina coatings
Se-Hee, Lee; George, Steven M.; Cavanagh, Andrew S.; Yoon Seok, Jung; Dillon, Anne C.
2015-11-24
Electrodes for lithium batteries are coated via an atomic layer deposition process. The coatings can be applied to the assembled electrodes, or in some cases to particles of electrode material prior to assembling the particles into an electrode. The coatings can be as thin as 2 .ANG.ngstroms thick. The coating provides for a stable electrode. Batteries containing the electrodes tend to exhibit high cycling capacities.
Electrochemical cell assembled in discharged state
Yao, Neng-Ping; Walsh, William J.
1976-01-01
A secondary, electrochemical cell is assembled in a completely discharged state within a sealed containment. As assembled, the cell includes a positive electrode separated from a negative electrode by a molten salt electrolyte. The positive electrode is contained within a porous structure, permitting passage of molten electrolyte, and includes one or more layers of a metallic mesh, e.g. iron, impregnated with an intimate mixture of lithium sulfide and the electrolyte. The negative electrode is a porous plaque of aluminum metal. Prior to using the cell, an electrical charge forms lithium-aluminum alloy within the negative electrode and metal sulfide within the positive electrode.
HSPES membrane electrode assembly
NASA Technical Reports Server (NTRS)
Kindler, Andrew (Inventor); Yen, Shiao-Ping (Inventor)
2000-01-01
An improved fuel cell electrode, as well as fuel cells and membrane electrode assemblies that include such an electrode, in which the electrode includes a backing layer having a sintered layer thereon, and a non-sintered free-catalyst layer. The invention also features a method of forming the electrode by sintering a backing material with a catalyst material and then applying a free-catalyst layer.
High Speed, Low Cost Fabrication of Gas Diffusion Electrodes for Membrane Electrode Assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeCastro, Emory S.; Tsou, Yu-Min; Liu, Zhenyu
Fabrication of membrane electrode assemblies (MEAs) depends on creating inks or pastes of catalyst and binder, and applying this suspension to either the membrane (catalyst coated membrane) or gas diffusion media (gas diffusion electrode) and respectively laminating either gas diffusion media or gas diffusion electrodes (GDEs) to the membrane. One barrier to cost effective fabrication for either of these approaches is the development of stable and consistent suspensions. This program investigated the fundamental forces that destabilize the suspensions and developed innovative approaches to create new, highly stable formulations. These more concentrated formulations needed fewer application passes, could be coated overmore » longer and wider substrates, and resulted in significantly lower coating defects. In March of 2012 BASF Fuel Cell released a new high temperature product based on these advances, whereby our customers received higher performing, more uniform MEAs resulting in higher stack build yields. Furthermore, these new materials resulted in an “instant” increase in capacity due to higher product yields and material throughput. Although not part of the original scope of this program, these new formulations have also led us to materials that demonstrate equivalent performance with 30% less precious metal in the anode. This program has achieved two key milestones in DOE’s Manufacturing R&D program: demonstration of processes for direct coating of electrodes and continuous in-line measurement for component fabrication.« less
NASA Astrophysics Data System (ADS)
Wang, Wei; Bae, Tae-Sung; Park, Yeon Hyun; Kim, Dong Ho; Lee, Sunghun; Min, Guanghui; Lee, Gun-Hwan; Song, Myungkwan; Yun, Jungheum
2014-05-01
A three-dimensional (3D) transparent conducting electrode, consisting of a quasi-periodic array of discrete indium-tin-oxide (ITO) nanoparticles superimposed on a highly conducting oxide-metal-oxide multilayer using ITO and silver oxide (AgOx) as oxide and metal layers, respectively, is synthesized on a polymer substrate and used as an anode in highly flexible organic solar cells (OSCs). The 3D electrode is fabricated using vacuum sputtering sequences to achieve self-assembly of distinct ITO nanoparticles on a continuous ITO-AgOx-ITO multilayer at room-temperature without applying conventional high-temperature vapour-liquid-solid growth, solution-based nanoparticle coating, or complicated nanopatterning techniques. Since the 3D electrode enhances the hole-extraction rate in OSCs owing to its high surface area and low effective series resistance for hole transport, OSCs based on this 3D electrode exhibit a power conversion efficiency that is 11-22% higher than that achievable in OSCs by means of conventional planar ITO film-type electrodes. A record high efficiency of 6.74% can be achieved in a bendable OSC fabricated on a poly(ethylene terephthalate) substrate.A three-dimensional (3D) transparent conducting electrode, consisting of a quasi-periodic array of discrete indium-tin-oxide (ITO) nanoparticles superimposed on a highly conducting oxide-metal-oxide multilayer using ITO and silver oxide (AgOx) as oxide and metal layers, respectively, is synthesized on a polymer substrate and used as an anode in highly flexible organic solar cells (OSCs). The 3D electrode is fabricated using vacuum sputtering sequences to achieve self-assembly of distinct ITO nanoparticles on a continuous ITO-AgOx-ITO multilayer at room-temperature without applying conventional high-temperature vapour-liquid-solid growth, solution-based nanoparticle coating, or complicated nanopatterning techniques. Since the 3D electrode enhances the hole-extraction rate in OSCs owing to its high surface area and low effective series resistance for hole transport, OSCs based on this 3D electrode exhibit a power conversion efficiency that is 11-22% higher than that achievable in OSCs by means of conventional planar ITO film-type electrodes. A record high efficiency of 6.74% can be achieved in a bendable OSC fabricated on a poly(ethylene terephthalate) substrate. Electronic supplementary information (ESI) available: FE-SEM images of Ar plasma-treated PET surfaces, curve deconvolution of XPS Ag 3d5/2 spectra, refractive indices and extinction coefficients of the Ag and AgOx (O/Ag = 10 at%), changes in the specular reflections of the IAOI-NPA and IAI-NPA electrodes for different O/Ag atomic ratios and thicknesses of the AgOx layer, and comparisons between the Jsc values determined from simulated AM 1.5G illumination and IPCE spectra. See DOI: 10.1039/c3nr06755f
Advanced membrane electrode assemblies for fuel cells
Kim, Yu Seung; Pivovar, Bryan S.
2012-07-24
A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.
Advanced membrane electrode assemblies for fuel cells
Kim, Yu Seung; Pivovar, Bryan S
2014-02-25
A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.
Lin, Yen-Heng; Ho, Kai-Siang; Yang, Chin-Tien; Wang, Jung-Hao; Lai, Chao-Sung
2014-06-02
The number and position of assembled nanowires cannot be controlled using most nanowire sensor assembling methods. In this paper, we demonstrate a high-yield, highly flexible platform for nanowire sensor assembly using a combination of optically induced dielectrophoresis (ODEP) and conventional dielectrophoresis (DEP). With the ODEP platform, optical images can be used as virtual electrodes to locally turn on a non-contact DEP force and manipulate a micron- or nano-scale substance suspended in fluid. Nanowires were first moved next to the previously deposited metal electrodes using optical images and, then, were attracted to and arranged in the gap between two electrodes through DEP forces generated by switching on alternating current signals to the metal electrodes. A single nanowire can be assembled within 24 seconds using this approach. In addition, the number of nanowires in a single nanowire sensor can be controlled, and the assembly of a single nanowire on each of the adjacent electrodes can also be achieved. The electrical properties of the assembled nanowires were characterized by IV curve measurement. Additionally, the contact resistance between the nanowires and electrodes and the stickiness between the nanowires and substrates were further investigated in this study.
Silicon Carbide High Temperature Anemometer and Method for Assembling the Same
NASA Technical Reports Server (NTRS)
Okojie, Robert S. (Inventor); Fralick, Gustave C. (Inventor); Saad, George J. (Inventor)
2003-01-01
A high temperature anemometer includes a pair of substrates. One of the substrates has a plurality of electrodes on a facing surface, while the other of the substrates has a sensor cavity on a facing surface. A sensor is received in the sensor cavity, wherein the sensor has a plurality of bondpads, and wherein the bond pads contact the plurality of electrodes when the facing surfaces are mated with one another. The anemometer further includes a plurality of plug-in pins, wherein the substrate with the cavity has a plurality of trenches with each one receiving a plurality of plug-in pins. The plurality of plug-in pins contact the plurality of electrodes when the substrates are mated with one another. The sensor cavity is at an end of one of the substrates such that the sensor partially extends from the substrate. The sensor and the substrates are preferably made of silicon carbide.
Byrne, S.C.
1984-07-03
A nonconsumable electrode assembly is described suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a ceramic electrode body and a metal subassembly of a metal conductor rod and at least one metal strap affixed to an end of the rod with opposing portions extending radially outwardly from the rod axis and having the ends of the strap attached to the electrode body. 7 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, Oden Lee; Asif, Syed Amanulla Syed; Oh, Yunje
A testing instrument for mechanical testing at nano or micron scale includes a transducer body, and a coupling shaft coupled with a probe tip. A transducer body houses a capacitor. The capacitor includes first and second counter electrodes and a center electrode assembly interposed therebetween. The center electrode assembly is movable with the coupling shaft relative to the first and second counter electrodes, for instance in one or more of dimensions including laterally and normally. The center electrode assembly includes a center plate coupled with the coupling shaft and one or more springs extending from the center plate. Upper andmore » lower plates are coupled with the center plate and cover the center plate and the one or more springs. A shaft support assembly includes one or more support elements coupled along the coupling shaft. The shaft support assembly provides lateral support to the coupling shaft.« less
Campbell, Jeremy B; Newson, Steve
2013-02-26
Embodiments of DC source assemblies of power inverter systems of the type suitable for deployment in a vehicle having an electrically grounded chassis are provided. An embodiment of a DC source assembly comprises a housing, a DC source disposed within the housing, a first terminal, and a second terminal. The DC source also comprises a first capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the first terminal. The DC source assembly further comprises a second capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the second terminal.
Assembly for electrical conductivity measurements in the piston cylinder device
Watson, Heather Christine [Dublin, CA; Roberts, Jeffrey James [Livermore, CA
2012-06-05
An assembly apparatus for measurement of electrical conductivity or other properties of a sample in a piston cylinder device wherein pressure and heat are applied to the sample by the piston cylinder device. The assembly apparatus includes a body, a first electrode in the body, the first electrode operatively connected to the sample, a first electrical conductor connected to the first electrode, a washer constructed of a hard conducting material, the washer surrounding the first electrical conductor in the body, a second electrode in the body, the second electrode operatively connected to the sample, and a second electrical conductor connected to the second electrode.
Electrode assemblies, plasma generating apparatuses, and methods for generating plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Peter C.; Grandy, Jon D.; Detering, Brent A.
Electrode assemblies for plasma reactors include a structure or device for constraining an arc endpoint to a selected area or region on an electrode. In some embodiments, the structure or device may comprise one or more insulating members covering a portion of an electrode. In additional embodiments, the structure or device may provide a magnetic field configured to control a location of an arc endpoint on the electrode. Plasma generating modules, apparatus, and systems include such electrode assemblies. Methods for generating a plasma include covering at least a portion of a surface of an electrode with an electrically insulating membermore » to constrain a location of an arc endpoint on the electrode. Additional methods for generating a plasma include generating a magnetic field to constrain a location of an arc endpoint on an electrode.« less
Byrne, Stephen C.; Vasudevan, Asuri K.
1984-01-01
A nonconsumable electrode assembly suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a metal conductor diffusion welded to a portion of a ceramic electrode body having a level of free metal or metal alloy sufficient to effect a metal bond.
Continuous process to produce lithium-polymer batteries
Chern, Terry Song-Hsing; Keller, David Gerard; MacFadden, Kenneth Orville
1998-01-01
Solid polymer electrolytes are extruded with active electrode material in a continuous, one-step process to form composite electrolyte-electrodes ready for assembly into battery cells. The composite electrolyte-electrode sheets are extruded onto current collectors to form electrodes. The composite electrodes, as extruded, are electronically and ionically conductive. The composite electrodes can be overcoated with a solid polymer electrolyte, which acts as a separator upon battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte separator has low resistance.
NASA Astrophysics Data System (ADS)
Su, Huaneng; Pasupathi, Sivakumar; Bladergroen, Bernard Jan; Linkov, Vladimir; Pollet, Bruno G.
2013-11-01
Gas diffusion electrodes (GDEs) prepared by a novel automatic catalyst spraying under irradiation (ACSUI) technique are investigated for improving the performance of phosphoric acid (PA)-doped polybenzimidazole (PBI) high temperature proton exchange membrane fuel cell (PEMFC). The physical properties of the GDEs are characterized by pore size distribution and scanning electron microscopy (SEM). The electrochemical properties of the membrane electrode assembly (MEA) with the GDEs are evaluated and analyzed by polarization curve, cyclic voltammetry (CV) and electrochemistry impedance spectroscopy (EIS). Effects of PTFE binder content, PA impregnation and heat treatment on the GDEs are investigated to determine the optimum performance of the single cell. At ambient pressure and 160 °C, the maximum power density can reach 0.61 W cm-2, and the current density at 0.6 V is up to 0.38 A cm-2, with H2/air and a platinum loading of 0.5 mg cm-2 on both electrodes. The MEA with the GDEs shows good stability for fuel cell operating in a short term durability test.
Byrne, Stephen C.; Ray, Siba P.
1984-01-01
A nonconsumable electrode assembly suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a metal conductor attached to a ceramic electrode body by a metal bond on a portion of the body having a level of free metal or metal alloy sufficient to effect a metal bond.
Simplified process for leaching precious metals from fuel cell membrane electrode assemblies
Shore, Lawrence [Edison, NJ; Matlin, Ramail [Berkeley Heights, NJ
2009-12-22
The membrane electrode assemblies of fuel cells are recycled to recover the catalyst precious metals from the assemblies. The assemblies are cryogenically embrittled and pulverized to form a powder. The pulverized assemblies are then mixed with a surfactant to form a paste which is contacted with an acid solution to leach precious metals from the pulverized membranes.
Continuous process to produce lithium-polymer batteries
Chern, T.S.H.; Keller, D.G.; MacFadden, K.O.
1998-05-12
Solid polymer electrolytes are extruded with active electrode material in a continuous, one-step process to form composite electrolyte-electrodes ready for assembly into battery cells. The composite electrolyte electrode sheets are extruded onto current collectors to form electrodes. The composite electrodes, as extruded, are electronically and ionically conductive. The composite electrodes can be over coated with a solid polymer electrolyte, which acts as a separator upon battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte separator has low resistance. 1 fig.
Hot foil transducer skin friction sensor
NASA Technical Reports Server (NTRS)
Vranas, T. (Inventor)
1982-01-01
The device utilizes foil transducers with only one edge exposed to the fluid flow. The surfaces are polished producing a foil transducer that does not generate turbulence while sufficiently thick to carry the required electrical current for high temperature fluid flow. The assembly utilizes a precut layered metal sandwich with attached electrodes eliminating a need for welding and individual sensor calibration.
NASA Astrophysics Data System (ADS)
Saranya, P. E.; Selladurai, S.
Flower-shaped self-assembled zinc oxide (ZnO) nanoflakes were successfully synthesized via a temperature-controlled hydrothermal method. The crystallinity and phase formation of the compound were determined from powder X-ray diffraction (PXRD) result. Surface morphology investigations reveal the self-assembled ZnO nanoflakes to form a spherical flower-like structure. In addition, the particle size was determined from high-resolution transmission electron microscope measurement as 18nm which is in accord with XRD and UV results. X-ray photo electron spectroscopy studies reveal the chemical composition and oxidation state of the ZnO nanoparticle. The specific surface area was calculated, and mesoporous nature was confirmed using Brunauer-Emmett-Teller analysis. Results support the superior interaction between the electrode and electrolyte ions through surface pores. Capacitive performance of the ZnO electrode material was determined using cyclic voltammetry and galvanostatic charge/discharge studies, and a maximum specific capacitance of 322F/g was obtained at 5mV/sec. Electrochemical impedance spectrum reveals the materials fast charge transfer kinetics.
Electrokinetic electrode system for extraction of soil contaminants from unsaturated soils
Lindgren, Eric R.; Mattson, Earl D.
1995-01-01
There is presented an electrokinetic electrode assembly for use in extraction of soil contaminants from unsaturated soil in situ. The assembly includes a housing for retaining a liquid comprising an electrolyte solution, pure water, and soil water, the housing being in part of porous material capable of holding a vacuum. An electrode is mounted in the housing. The housing is provided with a vacuum orifice for effecting a vacuum within the housing selectively to control flow of soil water through the housing into the chamber and to control outflow of the liquid from the chamber. The assembly further includes conduit means for removing the liquid from the housing and returning the electrolyte solution to the housing, and a conduit for admitting pure water to the housing. There is further presented an electrode system and method for extraction of soil contaminants, the system and method utilizing at least two electrode assemblies as described above.
Electrokinetic electrode system for extraction of soil contaminants from unsaturated soils
Lindgren, E.R.; Mattson, E.D.
1995-07-25
An electrokinetic electrode assembly is described for use in extraction of soil contaminants from unsaturated soil in situ. The assembly includes a housing for retaining a liquid comprising an electrolyte solution, pure water, and soil water, the housing being in part of porous material capable of holding a vacuum. An electrode is mounted in the housing. The housing is provided with a vacuum orifice for effecting a vacuum within the housing selectively to control flow of soil water through the housing into the chamber and to control outflow of the liquid from the chamber. The assembly further includes conduit means for removing the liquid from the housing and returning the electrolyte solution to the housing, and a conduit for admitting pure water to the housing. An electrode system and method are also revealed for extraction of soil contaminants. The system and method utilize at least two electrode assemblies as described above. 5 figs.
Shi, HaoTian H; Khalili, Nazanin; Morrison, Taylor; Naguib, Hani E
2018-05-21
A novel polyaniline nanorod (PAniNR) three-dimensional structure was successfully grown on flexible polyacrylonitrile (PAN) nanofiber substrate as the electrode material for electrochemical capacitors (ECs), constructed via self-stabilized dispersion polymerization process. The electrode offered desired mechanical properties such as flexibility and bendability, whereas it maintained optimal electrochemical characteristics. The electrode and the assembled EC cell also achieved intrinsic piezoresistive sensing properties, leading to real-time monitoring of excess mechanical pressure and bending during cell operations. The PAniNR@PAN electrodes show an average diameter of 173.6 nm, with the PAniNR growth of 50.7 nm in length. Compared to the electrodes made from pristine PAni, the gravimetric capacitance increased by 39.8% to 629.6 F/g with aqueous acidic electrolyte. The electrode and the assembled EC cell with gel electrolyte were responsive to tensile, compressive, and bending stresses with a sensitivity of 0.95 MPa -1 .
Method of preparing a positive electrode for an electrochemical cell
Tomczuk, Zygmunt
1979-01-01
A method of preparing an electrochemical cell including a metal sulfide as the positive electrode reactant and lithium alloy as the negative electrochemical reactant with an alkali metal, molten salt electrolyte is disclosed which permits the assembly to be accomplished in air. The electrode reactants are introduced in the most part as a sulfide of lithium and the positive electrode metal in a single-phase compound. For instance, Li.sub.2 FeS.sub.2 is a single-phase compound that is produced by the reaction of Li.sub.2 S and FeS. This compound is an intermediate in the positive electrode cycle from FeS.sub.2 to Fe and Li.sub.2 S. Its use minimizes volumetric changes from the assembled to the charged and discharged conditions of the electrode and minimizes electrode material interaction with air and moisture during assembly.
Asymmetric Dielectric Elastomer Composite Material
NASA Technical Reports Server (NTRS)
Stewart, Brian K. (Inventor)
2014-01-01
Embodiments of the invention provide a dielectric elastomer composite material comprising a plurality of elastomer-coated electrodes arranged in an assembly. Embodiments of the invention provide improved force output over prior DEs by producing thinner spacing between electrode surfaces. This is accomplished by coating electrodes directly with uncured elastomer in liquid form and then assembling a finished component (which may be termed an actuator) from coated electrode components.
Fuel cell system with separating structure bonded to electrolyte
Bourgeois, Richard Scott; Gudlavalleti, Sauri; Quek, Shu Ching; Hasz, Wayne Charles; Powers, James Daniel
2010-09-28
A fuel cell assembly comprises a separating structure configured for separating a first reactant and a second reactant wherein the separating structure has an opening therein. The fuel cell assembly further comprises a fuel cell comprising a first electrode, a second electrode, and an electrolyte interposed between the first and second electrodes, and a passage configured to introduce the second reactant to the second electrode. The electrolyte is bonded to the separating structure with the first electrode being situated within the opening, and the second electrode being situated within the passage.
Low Cost Electrode Assembly for EEG Recordings in Mice
Vogler, Emily C.; Flynn, Daniel T.; Busciglio, Federico; Bohannan, Ryan C.; Tran, Alison; Mahavongtrakul, Matthew; Busciglio, Jorge A.
2017-01-01
Wireless electroencephalography (EEG) of small animal subjects typically utilizes miniaturized EEG devices which require a robust recording and electrode assembly that remains in place while also being well-tolerated by the animal so as not to impair the ability of the animal to perform normal living activities or experimental tasks. We developed simple and fast electrode assembly and method of electrode implantation using electrode wires and wire-wrap technology that provides both higher survival and success rates in obtaining recordings from the electrodes than methods using screws as electrodes. The new wire method results in a 51% improvement in the number of electrodes that successfully record EEG signal. Also, the electrode assembly remains affixed and provides EEG signal for at least a month after implantation. Screws often serve as recording electrodes, which require either drilling holes into the skull to insert screws or affixing screws to the surface of the skull with adhesive. Drilling holes large enough to insert screws can be invasive and damaging to brain tissue, using adhesives may interfere with conductance and result in a poor signal, and soldering screws to wire leads results in fragile connections. The methods presented in this article provide a robust implant that is minimally invasive and has a significantly higher success rate of electrode implantation. In addition, the implant remains affixed and produces good recordings for over a month, while using economical, easily obtained materials and skills readily available in most animal research laboratories. PMID:29184480
Low Cost Electrode Assembly for EEG Recordings in Mice.
Vogler, Emily C; Flynn, Daniel T; Busciglio, Federico; Bohannan, Ryan C; Tran, Alison; Mahavongtrakul, Matthew; Busciglio, Jorge A
2017-01-01
Wireless electroencephalography (EEG) of small animal subjects typically utilizes miniaturized EEG devices which require a robust recording and electrode assembly that remains in place while also being well-tolerated by the animal so as not to impair the ability of the animal to perform normal living activities or experimental tasks. We developed simple and fast electrode assembly and method of electrode implantation using electrode wires and wire-wrap technology that provides both higher survival and success rates in obtaining recordings from the electrodes than methods using screws as electrodes. The new wire method results in a 51% improvement in the number of electrodes that successfully record EEG signal. Also, the electrode assembly remains affixed and provides EEG signal for at least a month after implantation. Screws often serve as recording electrodes, which require either drilling holes into the skull to insert screws or affixing screws to the surface of the skull with adhesive. Drilling holes large enough to insert screws can be invasive and damaging to brain tissue, using adhesives may interfere with conductance and result in a poor signal, and soldering screws to wire leads results in fragile connections. The methods presented in this article provide a robust implant that is minimally invasive and has a significantly higher success rate of electrode implantation. In addition, the implant remains affixed and produces good recordings for over a month, while using economical, easily obtained materials and skills readily available in most animal research laboratories.
Byrne, Stephen C.; Ray, Siba P.; Rapp, Robert A.
1984-01-01
A nonconsumable electrode assembly suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a metal conductor and a ceramic electrode body connected by a friction weld between a portion of the body having a level of free metal or metal alloy sufficient to effect such a friction weld and a portion of the metal conductor.
Bordenick, John E.
1989-01-01
A pH measuring electrode assembly for immersion in a solution includes an enclosed cylindrical member having an aperture at a lower end thereof. An electrolyte is located in the cylindrical member above the level of the aperture and an electrode is disposed in this electrolyte. A ring formed of an ion porous material is mounted relative to the cylindrical member so that a portion of this ring is rotatable relative to and is covering the aperture in the cylindrical member. A suitable mechanism is also provided for indicating which one of a plurality of portions of the ring is covering the aperture and to keep track of which portions of the ring have already been used and become clogged. Preferably, the electrode assembly also includes a glass electrode member in the center thereof including a second electrolyte and electrode disposed therein. The cylindrical member is resiliently mounted relative to the glass electrode member to provide for easy rotation of the cylindrical member relative to the glass electrode member for changing of the portion of the ring covering the aperture.
Electrically conductive connection for an electrode
Hornack, Thomas R.; Chilko, Robert J.
1986-01-01
An electrically conductive connection for an electrode assembly of an electrolyte cell in which aluminum is produced by electrolysis in a molten salt is described. The electrode assembly comprises an electrode flask and a conductor rod. The flask has a collar above an area of minimum flask diameter. The electrically conductive connection comprises the electrode flask, the conductor rod and a structure bearing against the collar and the conductor rod for pulling the conductor rod into compressive and electrical contact with the flask.
Electrically conductive connection for an electrode
Hornack, T.R.; Chilko, R.J.
1986-09-02
An electrically conductive connection for an electrode assembly of an electrolyte cell in which aluminum is produced by electrolysis in a molten salt is described. The electrode assembly comprises an electrode flask and a conductor rod. The flask has a collar above an area of minimum flask diameter. The electrically conductive connection comprises the electrode flask, the conductor rod and a structure bearing against the collar and the conductor rod for pulling the conductor rod into compressive and electrical contact with the flask. 2 figs.
NASA Astrophysics Data System (ADS)
Xu, R. C.; Wang, X. L.; Zhang, S. Z.; Xia, Y.; Xia, X. H.; Wu, J. B.; Tu, J. P.
2018-01-01
Large interfacial resistance between electrode and electrolyte limits the development of high-performance all-solid-state batteries. Herein we report a uniform coating of Li7P3S11 solid electrolyte on MoS2 to form a MoS2/Li7P3S11 composite electrode for all-solid-state lithium ion batteries. The as-synthesized Li7P3S11 processes a high ionic of 2.0 mS cm-1 at room temperature. Due to homogeneous union and reduced interfacial resistance, the assembled all-solid-state batteries with the MoS2/Li7P3S11 composite electrode exhibit higher reversible capacity of 547.1 mAh g-1 at 0.1 C and better cycling stability than the counterpart based on untreated MoS2. Our study provides a new reference for design/fabrication of advanced electrode materials for high-performance all-solid-state batteries.
Campbell, Jeremy B [Torrance, CA; Newson, Steve [Redondo Beach, CA
2011-11-15
A power module assembly of the type suitable for deployment in a vehicular power inverter, wherein the power inverter has a grounded chassis, is provided. The power module assembly comprises a conductive base layer electrically coupled to the chassis, an insulating layer disposed on the conductive base layer, a first conductive node disposed on the insulating layer, a second conductive node disposed on the insulating layer, wherein the first and second conductive nodes are electrically isolated from each other. The power module assembly also comprises a first capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the first conductive node, and further comprises a second capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the second conductive node.
Chen, Keyun; Ren, Lei; Chen, Zhipeng; Pan, Chengfeng; Zhou, Wei; Jiang, Lelun
2016-01-01
Micro-needle electrodes (MEs) have attracted more and more attention for monitoring physiological electrical signals, including electrode-skin interface impedance (EII), electromyography (EMG) and electrocardiography (ECG) recording. A magnetization-induced self-assembling method (MSM) was developed to fabricate a microneedle array (MA). A MA coated with Ti/Au film was assembled as a ME. The fracture and insertion properties of ME were tested by experiments. The bio-signal recording performance of the ME was measured and compared with a typical commercial wet electrode (Ag/AgCl electrode). The results show that the MA self-assembled from the magnetic droplet array under the sum of gravitational surface tension and magnetic potential energies. The ME had good toughness and could easily pierce rabbit skin without being broken or buckling. When the compression force applied on the ME was larger than 2 N, ME could stably record EII, which was a lower value than that measured by Ag/AgCl electrodes. EMG signals collected by ME varied along with the contraction of biceps brachii muscle. ME could record static ECG signals with a larger amplitude and dynamic ECG signals with more distinguishable features in comparison with a Ag/AgCl electrode, therefore, ME is an alternative electrode for bio-signal monitoring in some specific situations. PMID:27657072
Ionic polymer metal composites with nanoporous carbon electrodes
NASA Astrophysics Data System (ADS)
Palmre, Viljar; Brandell, Daniel; Mäeorg, Uno; Torop, Janno; Volobujeva, Olga; Punning, Andres; Johanson, Urmas; Aabloo, Alvo
2010-04-01
Ionic Polymer Metal Composites (IPMCs) are soft electroactive polymer materials that bend in response to the voltage stimulus (1 - 4 V). They can be used as actuators or sensors. In this paper, we introduce two new highly-porous carbon materials for assembling high specific area electrodes for IPMC actuators and compare their electromechanical performance with recently reported IPMCs based on RuO2 electrodes. We synthesize ionic liquid (Emi-Tf) actuators with either Carbide-Derived Carbon (CDC) (derived from TiC) or coconut shell based activated carbon electrodes. The carbon electrodes are applied onto ionic liquid-swollen Nafion membranes using the direct assembly process. Our results show that actuators assembled with CDC electrodes have the greatest peak-to-peak strain output, reaching up to 20.4 mɛ (equivalent to >2%) at a 2 V actuation signal, exceeding that of the RuO2 electrodes by more than 100%. The electrodes synthesized from TiC-derived carbon also revealed significantly higher maximum strain rate. The differences between the materials are discussed in terms of molecular interactions and mechanisms upon actuation in the different electrodes.
NASA Astrophysics Data System (ADS)
Ai, Na; He, Shuai; Li, Na; Zhang, Qi; Rickard, William D. A.; Chen, Kongfa; Zhang, Teng; Jiang, San Ping
2018-04-01
Active and stable oxygen electrode is probably the most important in the development of solid oxide electrolysis cells (SOECs) technologies. Herein, we report the successful development of mixed ionic and electronic conducting (MIEC) La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) perovskite oxides directly assembled on barrier-layer-free yttria-stabilized zirconia (YSZ) electrolyte as highly active and stable oxygen electrodes of SOECs. Electrolysis polarization effectively induces the formation of electrode/electrolyte interface, similar to that observed under solid oxide fuel cell (SOFC) operation conditions. However, in contrast to the significant performance decay under SOFC operation conditions, the cell with directly assembled LSCF oxygen electrodes shows excellent stability, tested for 300 h at 0.5 A cm-2 and 750 °C under SOEC operation conditions. Detailed microstructure and phase analysis reveal that Sr segregation is inevitable for LSCF electrode, but anodic polarization substantially suppresses Sr segregation and migration to the electrode/electrolyte interface, leading to the formation of stable and efficient electrode/electrolyte interface for water and CO2 electrolysis under SOECs operation conditions. The present study demonstrates the feasibility of using directly assembled MIEC cobaltite based oxygen electrodes on barrier-layer-free YSZ electrolyte of SOECs.
Method for the electro-addressable functionalization of electrode arrays
Harper, Jason C.; Polsky, Ronen; Dirk, Shawn M.; Wheeler, David R.; Arango, Dulce C.; Brozik, Susan M.
2015-12-15
A method for preparing an electrochemical biosensor uses bias-assisted assembly of unreactive -onium molecules on an electrode array followed by post-assembly electro-addressable conversion of the unreactive group to a chemical or biological recognition group. Electro-addressable functionalization of electrode arrays enables the multi-target electrochemical sensing of biological and chemical analytes.
Reduced size fuel cell for portable applications
NASA Technical Reports Server (NTRS)
Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor); Clara, Filiberto (Inventor); Frank, Harvey A. (Inventor)
2004-01-01
A flat pack type fuel cell includes a plurality of membrane electrode assemblies. Each membrane electrode assembly is formed of an anode, an electrolyte, and an cathode with appropriate catalysts thereon. The anode is directly into contact with fuel via a wicking element. The fuel reservoir may extend along the same axis as the membrane electrode assemblies, so that fuel can be applied to each of the anodes. Each of the fuel cell elements is interconnected together to provide the voltage outputs in series.
Control of edge effects of oxidant electrode
Carr, Peter; Chi, Chen H.
1981-09-08
Described is an electrode assembly comprising; a. a porous electrode having a first and second exterior face with a cavity formed in the interior between said exterior faces thereby having first and second interior faces positioned opposite the first and second exterior faces; b. a counter electrode positioned facing each of the first and second exterior faces of the porous electrode; c. means for passing an oxidant through said porous electrode; and d. screening means for blocking the interior face of the porous electrode a greater amount than the blocking of the respective exterior face of the porous electrode, thereby maintaining a differential of oxidant electrode surface between the interior face and the exterior face. The electrode assembly is useful in a metal, halogen, halogen hydrate electrical energy storage device.
Method for control of edge effects of oxidant electrode
Carr, Peter; Chi, Chen H.
1980-12-23
Described is an electrode assembly comprising; a. a porous electrode having a first and second exterior face with a cavity formed in the interior between said exterior faces thereby having first and second interior faces positioned opposite the first and second exterior faces; b. a counter electrode positioned facing each of the first and second exterior faces of the porous electrode; c. means for passing an oxidant through said porous electrode; and d. screening means for blocking the interior face of the porous electrode a greater amount than the blocking of the respective exterior face of the porous electrode, thereby maintaining a differential of oxidant electrode surface between the interior face and the exterior face. The electrode assembly is useful in a metal, halogen, halogen hydrate electrical energy storage device.
Polymer electrolyte membrane assembly for fuel cells
NASA Technical Reports Server (NTRS)
Yen, Shiao-Ping S. (Inventor); Kindler, Andrew (Inventor); Yavrouian, Andre (Inventor); Halpert, Gerald (Inventor)
2002-01-01
An electrolyte membrane for use in a fuel cell can contain sulfonated polyphenylether sulfones. The membrane can contain a first sulfonated polyphenylether sulfone and a second sulfonated polyphenylether sulfone, wherein the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone have equivalent weights greater than about 560, and the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone also have different equivalent weights. Also, a membrane for use in a fuel cell can contain a sulfonated polyphenylether sulfone and an unsulfonated polyphenylether sulfone. Methods for manufacturing a membrane electrode assemblies for use in fuel cells can include roughening a membrane surface. Electrodes and methods for fabricating such electrodes for use in a chemical fuel cell can include sintering an electrode. Such membranes and electrodes can be assembled into chemical fuel cells.
Polymer electrolyte membrane assembly for fuel cells
NASA Technical Reports Server (NTRS)
Yen, Shiao-Ping S. (Inventor); Kindler, Andrew (Inventor); Yavrouian, Andre (Inventor); Halpert, Gerald (Inventor)
2000-01-01
An electrolyte membrane for use in a fuel cell can contain sulfonated polyphenylether sulfones. The membrane can contain a first sulfonated polyphenylether sulfone and a second sulfonated polyphenylether sulfone, wherein the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone have equivalent weights greater than about 560, and the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone also have different equivalent weights. Also, a membrane for use in a fuel cell can contain a sulfonated polyphenylether sulfone and an unsulfonated polyphenylether sulfone. Methods for manufacturing a membrane electrode assemblies for use in fuel cells can include roughening a membrane surface. Electrodes and methods for fabricating such electrodes for use in a chemical fuel cell can include sintering an electrode. Such membranes and electrodes can be assembled into chemical fuel cells.
Metal vapor laser including hot electrodes and integral wick
Ault, Earl R.; Alger, Terry W.
1995-01-01
A metal vapor laser, specifically one utilizing copper vapor, is disclosed herein. This laser utilizes a plasma tube assembly including a thermally insulated plasma tube containing a specific metal, e.g., copper, and a buffer gas therein. The laser also utilizes means including hot electrodes located at opposite ends of the plasma tube for electrically exciting the metal vapor and heating its interior to a sufficiently high temperature to cause the metal contained therein to vaporize and for subjecting the vapor to an electrical discharge excitation in order to lase. The laser also utilizes external wicking arrangements, that is, wicking arrangements located outside the plasma tube.
Method of preparing thin porous sheets of ceramic material
Swarr, Thomas E.; Nickols, Richard C.; Krasij, Myron
1987-03-24
A method of forming thin porous sheets of ceramic material for use as electrodes or other components in a molten carbonate fuel cell is disclosed. The method involves spray drying a slurry of fine ceramic particles in liquid carrier to produce generally spherical agglomerates of high porosity and a rough surface texture. The ceramic particles may include the electrode catalyst and the agglomerates can be calcined to improve mechanical strength. After slurrying with suitable volatile material and binder tape casting is used to form sheets that are sufficiently strong for further processing and handling in the assembly of a high temperature fuel cell.
Metal vapor laser including hot electrodes and integral wick
Ault, E.R.; Alger, T.W.
1995-03-07
A metal vapor laser, specifically one utilizing copper vapor, is disclosed herein. This laser utilizes a plasma tube assembly including a thermally insulated plasma tube containing a specific metal, e.g., copper, and a buffer gas therein. The laser also utilizes means including hot electrodes located at opposite ends of the plasma tube for electrically exciting the metal vapor and heating its interior to a sufficiently high temperature to cause the metal contained therein to vaporize and for subjecting the vapor to an electrical discharge excitation in order to lase. The laser also utilizes external wicking arrangements, that is, wicking arrangements located outside the plasma tube. 5 figs.
Method of preparing thin porous sheets of ceramic material
Swarr, T.E.; Nickols, R.C.; Krasij, M.
1984-05-23
A method of forming thin porous sheets of ceramic material for use as electrodes or other components in a molten carbonate fuel cell is disclosed. The method involves spray drying a slurry of fine ceramic particles in liquid carrier to produce generally spherical agglomerates of high porosity and a rough surface texture. The ceramic particles may include the electrode catalyst and the agglomerates can be calcined to improve mechanical strength. After slurrying with suitable volatile material and binder tape casting is used to form sheets that are sufficiently strong for further processing and handling in the assembly of a high temperature fuel cell.
Microfluidic device for the assembly and transport of microparticles
James, Conrad D [Albuquerque, NM; Kumar, Anil [Framingham, MA; Khusid, Boris [New Providence, NJ; Acrivos, Andreas [Stanford, CA
2010-06-29
A microfluidic device comprising independently addressable arrays of interdigitated electrodes can be used to assembly and transport large-scale microparticle structures. The device and method uses collective phenomena in a negatively polarized suspension exposed to a high-gradient strong ac electric field to assemble the particles into predetermined locations and then transport them collectively to a work area for final assembly by sequentially energizing the electrode arrays.
Bordenick, J.E.
1988-04-26
A pH measuring electrode assembly for immersion in a solution includes an enclosed cylindrical member having an aperture at a lower end thereof. An electrolyte is located in the cylindrical member above the level of the aperture and an electrode is disposed in this electrolyte. A ring formed of an ion porous material is mounted relative to the cylindrical member so that a portion of this ring is rotatable relative to and is covering the aperture in the cylindrical member. A suitable mechanism is also provided for indicating which one of a plurality of portions of the ring is covering the aperture and to keep track of which portions of the ring have already been used and become clogged. Preferably, the electrode assembly also includes a glass electrode member in the center thereof including a second electrolyte and electrode disposed therein. The cylindrical member is resiliently mounted relative to the glass electrode member to provide for easy rotation of the cylindrical member relative to the glass electrode member for changing of the portion of the ring covering the aperture. 2 figs.
Jung, Chi-Young; Kim, Tae-Hyun; Yi, Sung-Chul
2014-02-01
A dual-electrode membrane electrode assembly (MEA) for proton exchange membrane fuel cells with enhanced polarization under zero relative humidity (RH) is fabricated by introducing a phase-separated morphology in an agglomerated catalyst layer of Pt/C (platinum on carbon black) and Nafion. In the catalyst layer, a sufficient level of phase separation is achieved by dispersing the Pt catalyst and the Nafion dispersion in a mixed-solvent system (propane-1,2,3-triol/1-methyl-2-pyrrolidinone).The high polymer chain mobility results in improved water uptake and regular pore-size distribution with small pore diameters. The electrochemical performance of the dual-film electrode assembly with different levels of phase separation is compared to conventional electrode assemblies. As a result, good performance at 0 % RH is obtained because self-humidification is dramatically improved by attaching this dense and phase-separated catalytic overlayer onto the conventional catalyst layer. A MEA prepared using the thin-film, dual-layered electrode exhibits 39-fold increased RH stability and 28-fold improved start-up recovery time during the on-off operation relative to the conventional device. We demonstrate the successful operation of the dual-layered electrode comprised of discriminatively phase-separated agglomerates with an ultrahigh zero RH fuel-cell performance reaching over 95 % performance of a fully humidified MEA. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Transparent electrodes fabricated via the self-assembly of silver nanowires using a bubble template.
Tokuno, Takehiro; Nogi, Masaya; Jiu, Jinting; Sugahara, Tohru; Suganuma, Katsuaki
2012-06-26
To shore up the demand of transparent electrodes for wide applications such as organic light emitting diodes and solar cells, transparent electrodes are required as an alternative for indium tin oxide electrodes. Herein the self-assembly method with a bubble template paves the way for cost-effective fabrication of transparent electrodes with high conductivity and transparency using self-assembly of silver nanowires (AgNWs) in a bubble template. AgNWs were first dispersed in water that was bubbled with a surfactant and a thickening agent. Furthermore, these AgNWs were assembled by lining along the bubble ridges. When the bubbles containing the AgNWs were sandwiched between two glass substrates, the bubble ridges including the AgNWs formed continuous polygonal structures. Mesh structures were formed on both glass substrates after air-drying. The mesh structures evolved into mesh transparent electrodes following heat-treatment. The AgNW mesh structure exhibited a low sheet resistance of 6.2 Ω/square with a transparency of 84% after heat treatment at 200 °C for 20 min. The performance is higher than that of transparent electrodes with random networks of AgNWs. Furthermore, the conductivity and transparency of the mesh transparent electrodes can be adjusted by changing the amount of the AgNW suspension and the space between the two glass substrates.
Ma, Guofu; Hua, Fengting; Sun, Kanjun; Fenga, Enke; Peng, Hui; Zhang, Zhiguo; Lei, Ziqiang
2018-01-01
The electrochemical performance of an energy conversion and storage device like the supercapacitor mainly depends on the microstructure and morphology of the electrodes. In this paper, to improve the capacitance performance of the supercapacitor, the all-pseudocapacitive electrodes of lamella-like Bi 18 SeO 29 /BiSe as the negative electrode and flower-like Co 0.85 Se nanosheets as the positive electrode are synthesized by using a facile low-temperature one-step hydrothermal method. The microstructures and morphology of the electrode materials are carefully characterized, and the capacitance performances are also tested. The Bi 18 SeO 29 /BiSe and Co 0.85 Se have high specific capacitance (471.3 F g -1 and 255 F g -1 at 0.5 A g -1 ), high conductivity, outstanding cycling stability, as well as good rate capability. The assembled asymmetric supercapacitor completely based on the pseudocapacitive electrodes exhibits outstanding cycling stability (about 93% capacitance retention after 5000 cycles). Moreover, the devices exhibit high energy density of 24.2 Wh kg -1 at a power density of 871.2 W kg -1 in the voltage window of 0-1.6 V with 2 M KOH solution.
Functionalized Thick Film Impedance Sensors for Use in In Vitro Cell Culture.
Bartsch, Heike; Baca, Martin; Fernekorn, Uta; Müller, Jens; Schober, Andreas; Witte, Hartmut
2018-04-05
Multi-electrode arrays find application in electrophysiological recordings. The quality of the captured signals depends on the interfacial contact between electrogenic cells and the electronic system. Therefore, it requires reliable low-impedance electrodes. Low-temperature cofired ceramic technology offers a suitable platform for rapid prototyping of biological reactors and can provide both stable fluid supply and integrated bio-hardware interfaces for recordings in electrogenic cell cultures. The 3D assembly of thick film gold electrodes in in vitro bio-reactors has been demonstrated for neuronal recordings. However, especially when dimensions become small, their performance varies strongly. This work investigates the influence of different coatings on thick film gold electrodes with regard to their influence on impedance behavior. PSS layer, titanium oxynitride and laminin coatings are deposited on LTCC gold electrodes using different 2D and 3D MEA chip designs. Their impedance characteristics are compared and discussed. Titanium oxynitride layers emerged as suitable functionalization. Small 86-µm-electrodes have a serial resistance R s of 32 kOhm and serial capacitance C s of 4.1 pF at 1 kHz. Thick film gold electrodes with such coatings are thus qualified for signal recording in 3-dimensional in vitro cell cultures.
Transverse-type laser assembly using induced electrical discharge excitation and method
Ault, Earl R.
1994-01-01
A transverse-type laser assembly is disclosed herein. This assembly defines a laser cavity containing a vapor or gaseous substance which lases when subjected to specific electrical discharge excitation between a pair of spaced-apart electrodes located within the cavity in order to produce a source of light. An arrangement located entirely outside the laser cavity is provided for inducing a voltage across the electrodes within the cavity sufficient to provide the necessary electrical discharge excitation to cause a vapor substance between the electrodes to lase.
Transverse-type laser assembly using induced electrical discharge excitation and method
Ault, E.R.
1994-04-19
A transverse-type laser assembly is disclosed herein. This assembly defines a laser cavity containing a vapor or gaseous substance which lases when subjected to specific electrical discharge excitation between a pair of spaced-apart electrodes located within the cavity in order to produce a source of light. An arrangement located entirely outside the laser cavity is provided for inducing a voltage across the electrodes within the cavity sufficient to provide the necessary electrical discharge excitation to cause a vapor substance between the electrodes to lase. 3 figures.
Hirschfeld, Tomas B.
1985-01-01
A nonsaturable microdryer is provided for electrolytically removing moisture from sealed containers, particularly electronic equipment. An electrode/electrolyte assembly is disposed within a channel between the interior and exterior of a sealed container. A catalytic barrier disposed between the interior of the sealed container and the electrode/electrolyte assembly prevents the build-up of explosive concentrations of hydrogen by converting back-diffusing hydrogen and oxygen back into water, which is then recycled. A semipermeable membrane disposed between the exterior of the sealed container and the electrode/electrolyte assembly allows selective removal of hydrogen and prevents intake of water.
Hirschfeld, T.B.
1984-05-23
A nonsaturable microdryer is provided for electrolytically removing moisture from sealed containers, particularly electronic equipment. An electrode/electrolyte assembly is disposed within a channel between the interior and exterior of a sealed container. A catalytic barrier disposed between the interior of the sealed container and the electrode/electrolyte assembly prevents the build-up of explosive concentrations of hydrogen by converting back-diffusing hydrogen and oxygen back into water, which is then recycled. A semipermeable membrane disposed between the exterior of the sealed container and the electrode/electrolyte assembly allows selective removal of hydrogen and prevents intake of water.
Zhang, Jing; Feng, Huijie; Yang, Jiaqin; Qin, Qing; Fan, Hongmin; Wei, Caiying; Zheng, Wenjun
2015-10-07
It is meaningful to exploit copper sulfide materials with desired structure as well as potential application due to their cheapness and low toxicity. A low-temperature and facile solvothermal method for preparing three-dimensional (3D) hierarchical covellite (CuS) microspheres from an ionic liquid precursor [Bmim]2Cu2Cl6 (Bmim = 1-butyl-3-methylimidazolium) is reported. The formation of CuS nanostructures was achieved by decomposition of intermediate complex Cu(Tu)3Cl (thiourea = Tu), which produced CuS microspheres with diameters of 2.5-4 μm assembled by nanosheets with thicknesses of 10-15 nm. The ionic liquid, as an "all-in-one" medium, played a key role for the fabrication and self-assembly of CuS nanosheets. The alkylimidazolium rings ([Bmim](+)) were found to adsorb onto the (001) facets of CuS crystals, which inhibited the crystal growth along the [001] direction, while the alkyl chain had influence on the assembly of CuS nanosheets. The CuS microspheres showed enhanced electrochemical performance and high stability for the application in supercapacitors due to intriguing structural design and large specific surface area. When this well-defined CuS electrode was assembled into an asymmetric supercapacitor (ASC) with an activated carbon (AC) electrode, the CuS//AC-ASC demonstrated good cycle performance (∼88% capacitance after 4000 cycles) and high energy density (15.06 W h kg(-1) at a power density of 392.9 W kg(-1)). This work provides new insights into the use of copper sulfide electrode materials for asymmetric supercapacitors and other electrochemical devices.
ERIC Educational Resources Information Center
Ito, Takashi; Perera, D. M. Neluni T.; Nagasaka, Shinobu
2008-01-01
This article describes an undergraduate electrochemistry laboratory experiment in which the students measure the L-ascorbic acid content of a real sample. Gold electrodes modified with self-assembled monolayers (SAMs) of thioctic acid and cysteamine are prepared to study the effects of surface modification on the electrode reaction of L-ascorbic…
Kim, Ok-Hee; Cho, Yong-Hun; Kang, Soon Hyung; Park, Hee-Young; Kim, Minhyoung; Lim, Ju Wan; Chung, Dong Young; Lee, Myeong Jae; Choe, Heeman; Sung, Yung-Eun
2013-01-01
Three-dimensional, ordered macroporous materials such as inverse opal structures are attractive materials for various applications in electrochemical devices because of the benefits derived from their periodic structures: relatively large surface areas, large voidage, low tortuosity and interconnected macropores. However, a direct application of an inverse opal structure in membrane electrode assemblies has been considered impractical because of the limitations in fabrication routes including an unsuitable substrate. Here we report the demonstration of a single cell that maintains an inverse opal structure entirely within a membrane electrode assembly. Compared with the conventional catalyst slurry, an ink-based assembly, this modified assembly has a robust and integrated configuration of catalyst layers; therefore, the loss of catalyst particles can be minimized. Furthermore, the inverse-opal-structure electrode maintains an effective porosity, an enhanced performance, as well as an improved mass transfer and more effective water management, owing to its morphological advantages.
Safety of externally stimulated intracranial electrodes during functional MRI at 1.5T.
Bhattacharyya, Pallab K; Mullin, Jeffery; Lee, Bryan S; Gonzalez-Martinez, Jorge A; Jones, Stephen E
2017-05-01
Surgical resection of the epileptogenic zone (EZ) is a potential cure for medically refractory focal epilepsy. Proper identification of the EZ is essential for such resection. Synergistic application of functional magnetic resonance imaging (fMRI) simultaneously with stimulation of a single externalized intracranial stereotactic EEG (SEEG) electrode has the potential to improve identification of the EZ. While most EEG-fMRI studies use the electrodes passively to record electrical activity, it is possible to stimulate the brain using the electrodes by connecting them with conducting cables to the stimulation hardware. In this study, we investigated the effect of MRI-induced heating on a single SEEG electrode and its sensitivity to geometry, configuration, and associated connections required for the stimulation. The temperature increase of a single electrode embedded within a gel phantom and connected to an external stimulation system was measured during 1.5T MRI scans using adjacent fluoroptic temperature sensors. A receive-only split-array head coil and a transmit-receive head coil were used for testing. Sequences included a standard localizer, T1-weighted axial fast low-angle shot (FLASH), gradient echo-planar imaging (GE-EPI) axial fMRI, and a high specific absorption rate T2-weighted turbo spin-echo (TSE) axial scan. Variations of the electrode location and connecting cable configuration were tested. No unacceptable heating was observed with the standard sequences used for evaluation of the EZ. Considerable heating (up to 14°C) was observed with the TSE sequence, which is not used clinically. The temperature increase was insignificant (<0.05°C) for electrode contacts closest to the isocenter and connecting cables lying along the isocenter, and varied with configurations of the connecting cable assembly. Simultaneous intracranial electrode stimulation during fMRI using an externalized stimulation system may be safe with strict adherence to settings tested prior to the fMRI. Localizer, FLASH, and GE-EPI fMRI may be safely performed in patients with a single SEEG electrode following the configurations tested in this study, but high SAR TSE scans should not be performed in these patients. Copyright © 2017 Elsevier Inc. All rights reserved.
Bora, Anindita; Mohan, Kiranjyoti; Doley, Simanta; Dolui, Swapan Kumar
2018-03-07
Flexible energy storage devices are in great demand since the advent of flexible electronics. Until now, flexible supercapacitors based on graphene analogues usually have had low operating potential windows. To this end, two dissimilar electrode materials with complementary potential ranges are employed to obtain an optimum cell voltage of 1.8 V. A low-temperature organic sol-gel method is used to prepare two different types of functionalized reduced graphene oxide aerogels (rGOA) where Ag nanorod functionalized rGOA acts as a negative electrode while polyaniline nanotube functionalized rGOA acts as a positive electrode. Both materials comprehensively exploit their unique properties to produce a device that has high energy and power densities. An assembled all-solid-state asymmetric supercapacitor gives a high energy density of 52.85 W h kg -1 and power density of 31.5 kW kg -1 with excellent cycling and temperature stability. The device also performs extraordinarily well under different bending conditions, suggesting its potential to meet the requirements for flexible electronics.
Reliability of spring interconnects for high channel-count polyimide electrode arrays
NASA Astrophysics Data System (ADS)
Khan, Sharif; Ordonez, Juan Sebastian; Stieglitz, Thomas
2018-05-01
Active neural implants with a high channel-count need robust and reliable operational assembly for the targeted environment in order to be classified as viable fully implantable systems. The discrete functionality of the electrode array and the implant electronics is vital for intact assembly. A critical interface exists at the interconnection sites between the electrode array and the implant electronics, especially in hybrid assemblies (e.g. retinal implants) where electrodes and electronics are not on the same substrate. Since the interconnects in such assemblies cannot be hermetically sealed, reliable protection against the physiological environment is essential for delivering high insulation resistance and low defusibility of salt ions, which are limited in complexity by current assembly techniques. This work reports on a combination of spring-type interconnects on a polyimide array with silicone rubber gasket insulation for chronically active implantable systems. The spring design of the interconnects on the backend of the electrode array compensates for the uniform thickness of the sandwiched gasket during bonding in assembly and relieves the propagation of extrinsic stresses to the bulk polyimide substrate. The contact resistance of the microflex-bonded spring interconnects with the underlying metallized ceramic test vehicles and insulation through the gasket between adjacent contacts was investigated against the MIL883 standard. The contact and insulation resistances remained stable in the exhausting environmental conditions.
Kaun, T.D.; Eshman, P.F.
1980-05-09
A secondary electrochemical cell is prepared by providing positive and negative electrodes having outer enclosures of rigid perforated electrically conductive material defining an internal compartment containing the electrode material in porous solid form. The electrodes are each immersed in molten electrolyte salt prior to cell assembly to incorporate the cell electrolyte. Following solidification of the electrolyte substantially throughout the porous volume of the electrode material, the electrodes are arranged in an alternating positive-negative array with interelectrode separators of porous frangible electrically insulative material. The completed array is assembled into the cell housing and sealed such that on heating the solidified electrolyte flows into the interelectrode separator.
Side wire feed for welding apparatus
NASA Technical Reports Server (NTRS)
Arnett, J. C.
1974-01-01
Coaxial electrode arrangement has solid central electrode, insulated outer electrode, and transverse channel for feeding wire through tip of electrode assembly. Polymeric insulation is thrust aside by pressure, which is provided by separately operated mechanism acting through central electrode.
Inactive end cell assembly for fuel cells for improved electrolyte management and electrical contact
Yuh, Chao-Yi [New Milford, CT; Farooque, Mohammad [Danbury, CT; Johnsen, Richard [New Fairfield, CT
2007-04-10
An assembly for storing electrolyte in a carbonate fuel cell is provided. The combination of a soft, compliant and resilient cathode current collector and an inactive anode part including a foam anode in each assembly mitigates electrical contact loss during operation of the fuel cell stack. In addition, an electrode reservoir in the positive end assembly and an electrode sink in the negative end assembly are provided, by which ribbed and flat cathode members inhibit electrolyte migration in the fuel cell stack.
Single-wall carbon nanotube-based proton exchange membrane assembly for hydrogen fuel cells.
Girishkumar, G; Rettker, Matthew; Underhile, Robert; Binz, David; Vinodgopal, K; McGinn, Paul; Kamat, Prashant
2005-08-30
A membrane electrode assembly (MEA) for hydrogen fuel cells has been fabricated using single-walled carbon nanotubes (SWCNTs) support and platinum catalyst. Films of SWCNTs and commercial platinum (Pt) black were sequentially cast on a carbon fiber electrode (CFE) using a simple electrophoretic deposition procedure. Scanning electron microscopy and Raman spectroscopy showed that the nanotubes and the platinum retained their nanostructure morphology on the carbon fiber surface. Electrochemical impedance spectroscopy (EIS) revealed that the carbon nanotube-based electrodes exhibited an order of magnitude lower charge-transfer reaction resistance (R(ct)) for the hydrogen evolution reaction (HER) than did the commercial carbon black (CB)-based electrodes. The proton exchange membrane (PEM) assembly fabricated using the CFE/SWCNT/Pt electrodes was evaluated using a fuel cell testing unit operating with H(2) and O(2) as input fuels at 25 and 60 degrees C. The maximum power density obtained using CFE/SWCNT/Pt electrodes as both the anode and the cathode was approximately 20% better than that using the CFE/CB/Pt electrodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogel, John A.
The program began on August 1, 2003 and ended on July 31, 2007. The goal of the project was to optimize a high-temperature polybenzimidazole (PBI) membrane to meet the performance, durability, and cost targets required for stationary fuel cell applications. These targets were identified in the Fuel Cell section (3.4) of DOE’s Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan. A membrane that operates at high temperatures is important to the fuel cell industry because it is insensitive to carbon monoxide (a poison to low-temperature fuel cells), and does not require complex water management strategies.more » Together, these two benefits greatly simplify the fuel cell system. As a result, the high-temperature fuel cell system realizes a cost benefit as the number of components is reduced by nearly 30%. There is also an inherent reliability benefit as components such as humidifiers and pumps for water management are unnecessary. Furthermore, combined heat and power (CHP) systems may be the best solution for a commercial, grid-connected, stationary product that must offer a cost benefit to the end user. For a low-temperature system, the quality of the heat supplied is insufficient to meet consumer needs and comfort requirements, so peak heaters or supplemental boilers are required. The higher operating temperature of PBI technology allows the fuel cell to meet the heat and comfort demand without the additional equipment. Plug Power, working with the Rensselaer Polytechnic Institute (RPI) Polymer Science Laboratory, made significant advances in optimizing the PBI membrane material for operation at temperatures greater than 160oC with a lifetime of 40,000 hours. Supporting hardware such as flow field plates and a novel sealing concept were explored to yield the lower-cost stack assembly and corresponding manufacturing process. Additional work was conducted on acid loss, flow field design and cathode electrode development. Membranes and MEAs were supplied by team member BASF Fuel Cell (formerly PEMEAS), a manufacturer of polymer and fiber. Additional subcontractors Entegris, the University of South Carolina (USC) Fuel Cell Center, and RPI’s Fuel Cell Center conducted activities with regard to stack sealing, acid modeling, and electrode development.« less
Phosphoric acid electric utility fuel cell technology development
NASA Astrophysics Data System (ADS)
Breault, R. D.; Briggs, T. A.; Congdon, J. V.; Gelting, R. L.; Goller, G. J.; Luoma, W. L.; McCloskey, M. W.; Mientek, A. P.; Obrien, J. J.; Randall, S. A.
1985-07-01
Improved cross pressure tolerance has been demonstrated for electrodes containing impregnated seals. Electrodes, cooler assemblies, separator plates and reactant manifolds for the third 10-ft(2) short stack were completed. Assembly of the third 10-ft(2) short stack was initiated.
Lee, Wi Hyoung; Park, Jaesung; Sim, Sung Hyun; Lim, Soojin; Kim, Kwang S; Hong, Byung Hee; Cho, Kilwon
2011-03-30
Organic electronic devices that use graphene electrodes have received considerable attention because graphene is regarded as an ideal candidate electrode material. Transfer and lithographic processes during fabrication of patterned graphene electrodes typically leave polymer residues on the graphene surfaces. However, the impact of these residues on the organic semiconductor growth mechanism on graphene surface has not been reported yet. Here, we demonstrate that polymer residues remaining on graphene surfaces induce a stand-up orientation of pentacene, thereby controlling pentacene growth such that the molecular assembly is optimal for charge transport. Thus, pentacene field-effect transistors (FETs) using source/drain monolayer graphene electrodes with polymer residues show a high field-effect mobility of 1.2 cm(2)/V s. In contrast, epitaxial growth of pentacene having molecular assembly of lying-down structure is facilitated by π-π interaction between pentacene and the clean graphene electrode without polymer residues, which adversely affects lateral charge transport at the interface between electrode and channel. Our studies provide that the obtained high field-effect mobility in pentacene FETs using monolayer graphene electrodes arises from the extrinsic effects of polymer residues as well as the intrinsic characteristics of the highly conductive, ultrathin two-dimensional monolayer graphene electrodes.
Investigating Catalytic Properties of Composite Nanoparticle Assemblies
2001-11-01
electrode surfaces, were found to be catalytically active towards electrooxidation of CO and MeOH upon activation. The activation involved partial removal...to proceed under stirring at room temperature for 4 hours. producing a dark-brown solution of DT-encapsulated nanoparticles that was then cleaned in... ethanol or used in the heating treatment. Processing. Highly-monodispersed Au particles (5.3 ±0.3 nm) were prepared by thermally activated treatment of
Method for recovering catalytic elements from fuel cell membrane electrode assemblies
Shore, Lawrence [Edison, NJ; Matlin, Ramail [Berkeley Heights, NJ; Heinz, Robert [Ludwigshafen, DE
2012-06-26
A method for recovering catalytic elements from a fuel cell membrane electrode assembly is provided. The method includes converting the membrane electrode assembly into a particulate material, wetting the particulate material, forming a slurry comprising the wetted particulate material and an acid leachate adapted to dissolve at least one of the catalytic elements into a soluble catalytic element salt, separating the slurry into a depleted particulate material and a supernatant containing the catalytic element salt, and washing the depleted particulate material to remove any catalytic element salt retained within pores in the depleted particulate material.
Efficient process for previous metal recovery from cell membrane electrode assemblies
Shore, Lawrence; Matlin, Ramail; Heinz, Robert
2010-05-04
A method is provided for recovering a catalytic element from a fuel cell membrane electrode assembly. The method includes grinding the membrane electrode assembly into a powder, extracting the catalytic element by forming a slurry comprising the powder and an acid leachate adapted to dissolve the catalytic element into a soluble salt, and separating the slurry into a depleted powder and a supernatant containing the catalytic element salt. The depleted powder is washed to remove any catalytic element salt retained within pores in the depleted powder and the catalytic element is purified from the salt.
NASA Astrophysics Data System (ADS)
Liang, Huagen; Su, Huaneng; Pollet, Bruno G.; Pasupathi, Sivakumar
2015-08-01
Membrane electrode assembly (MEA), which contains cathode and anode catalytic layer, gas diffusion layers (GDL) and electrolyte membrane, is the key unit of a PEMFC. An attempt to develop MEA for ABPBI membrane based high temperature (HT) PEMFC is conducted in this work by catalyst coating membrane (CCM) method. The structure and performance of the MEA are examined by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and I-V curve. Effects of the CCM preparation method, Pt loading and binder type are investigated for the optimization of the single cell performance. Under 160 °C and atmospheric pressure, the peak power density of the MEA, with Pt loading of 0.5 mg cm-2 and 0.3 mg cm-2 for the cathode and the anode, can reach 277 mW cm-2, while a current density of 620 A cm-2 is delivered at the working voltage of 0.4 V. The MEA prepared by CCM method shows good stability operating in a short term durability test: the cell voltage maintained at ∼0.45 V without obvious drop when operated at a constant current density of 300 mA cm-2 and 160 °C under ambient pressure for 140 h.
NASA Astrophysics Data System (ADS)
Yuan, Jinlan; Wang, Jin; She, Yiyi; Hu, Jing; Tao, Pengpeng; Lv, Fucong; Lu, Zhouguang; Gu, Yingying
2014-10-01
BiOCl micro-assembles appearing spherical and plate-like in shape consisting of ultrafine nanoplates were successfully synthesized by a simple hydrothermal method. The obtained BiOCl micro-assembles were characterized as oxygen reduction reaction (ORR) catalyst for air electrode of aluminum air batteries by using linear polarization and constant-current discharge techniques. The effect of precursor concentration on the electrochemical properties of the air electrodes based on the synthesized BiOCl micro-assembles was intensively investigated. The results demonstrated that the BiOCl catalyst exhibited promising ORR performance. Koutecky-Levich analysis indicated that a two-electron reaction was favored for the ORR mechanism of the BiOCl (0.18) sample.
Zhu, Siwei; Gao, Yuan; Hu, Bin; Li, Jia; Su, Jun; Fan, Zhiyong; Zhou, Jun
2013-08-23
High performance transparent electrodes (TEs) with figures-of-merit as high as 471 were assembled using ultralong silver nanowires (Ag NWs). A room-temperature plasma was employed to enhance the conductivity of the Ag NW TEs by simultaneously removing the insulating PVP layer coating on the NWs and welding the junctions tightly. Furthermore, we developed a general way to fabricate TEs regardless of substrate limitations by transferring the as-fabricated Ag NW network onto various substrates directly, and the transmittance can remain as high as 91% with a sheet resistivity of 13 Ω/sq. The highly robust and stable flexible TEs will have broad applications in flexible optoelectronic and electronic devices.
Thermal stress analysis of a planar SOFC stack
NASA Astrophysics Data System (ADS)
Lin, Chih-Kuang; Chen, Tsung-Ting; Chyou, Yau-Pin; Chiang, Lieh-Kwang
The aim of this study is, by using finite element analysis (FEA), to characterize the thermal stress distribution in a planar solid oxide fuel cell (SOFC) stack during various stages. The temperature profiles generated by an integrated thermo-electrochemical model were applied to calculate the thermal stress distributions in a multiple-cell SOFC stack by using a three-dimensional (3D) FEA model. The constructed 3D FEA model consists of the complete components used in a practical SOFC stack, including positive electrode-electrolyte-negative electrode (PEN) assembly, interconnect, nickel mesh, and gas-tight glass-ceramic seals. Incorporation of the glass-ceramic sealant, which was never considered in previous studies, into the 3D FEA model would produce more realistic results in thermal stress analysis and enhance the reliability of predicting potential failure locations in an SOFC stack. The effects of stack support condition, viscous behavior of the glass-ceramic sealant, temperature gradient, and thermal expansion mismatch between components were characterized. Modeling results indicated that a change in the support condition at the bottom frame of the SOFC stack would not cause significant changes in thermal stress distribution. Thermal stress distribution did not differ significantly in each unit cell of the multiple-cell stack due to a comparable in-plane temperature profile. By considering the viscous characteristics of the glass-ceramic sealant at temperatures above the glass-transition temperature, relaxation of thermal stresses in the PEN was predicted. The thermal expansion behavior of the metallic interconnect/frame had a greater influence on the thermal stress distribution in the PEN than did that of the glass-ceramic sealant due to the domination of interconnect/frame in the volume of a planar SOFC assembly.
Spot-Welding Gun With Pivoting Twin-Collet Assembly
NASA Technical Reports Server (NTRS)
Nguyen, Francis; Simpson, Gareth; Hoult, William S.
1996-01-01
Modified spot-welding gun includes pivoting twin-collet assembly that holds two spot-welding electrodes. Designed to weld highly conductive (30 percent gold) brazing-alloy foils to thin nickel alloy workpieces; also suitable for other spot-welding applications compatible with two-electrode configuration.
Method for manufacturing an electrochemical cell
Kaun, Thomas D.; Eshman, Paul F.
1982-01-01
A secondary electrochemical cell is prepared by providing positive and negative electrodes having outer enclosures of rigid perforated electrically conductive material defining an internal compartment containing the electrode material in porous solid form. The electrodes are each immersed in molten electrolyte salt prior to cell assembly to incorporate the cell electrolyte. Following solidification of the electrolyte substantially throughout the porous volume of the electrode material, the electrodes are arranged in an alternating positive-negative array with interelectrode separators of porous frangible electrically insulative material. The completed array is assembled into the cell housing and sealed such that on heating the solidified electrolyte flows into the interelectrode separator.
Electrochemical cell and method of assembly
Shimotake, Hiroshi; Voss, Ernst C. H.; Bartholme, Louis G.
1979-01-01
A method of preparing an electrochemical cell is disclosed which permits the assembly to be accomplished in air. The cell includes a metal sulfide as the positive electrode reactant, lithium alloy as the negative electrode reactant and an alkali metal, molten salt electrolyte. Positive electrode reactant is introduced as Li.sub.2 FeS.sub.2, a single-phase compound produced by the reaction of Li.sub.2 S and FeS. The use of this compound permits introduction of lithium in an oxidized form. Additional lithium can be introduced in the negative electrode structure enclosed within an aluminum foil envelope between layers of porous aluminum. Molten salt electrolyte is added after assembly and evacuation of the cell by including an interelectrode separator that has been prewet with an organic solution of KCl.
Ran, Fen; Wu, Yage; Jiang, Minghuan; Tan, Yongtao; Liu, Ying; Kong, Lingbin; Kang, Long; Chen, Shaowei
2018-03-28
In this study, a hybrid electrode material for supercapacitors based on hierarchical porous carbon fiber@vanadium nitride nanoparticles is fabricated using the method of phase-separation mediated by the PAA-b-PAN-b-PAA tri-block copolymer. In the phase-separation procedure, the ionic block copolymer self-assembled on the surface of carbon nanofibers, and is used to adsorb NH 4 VO 3 . Thermal treatment at controlled temperatures under an NH 3 : N 2 atmosphere led to the formation of vanadium nitride nanoparticles that are distributed uniformly on the nanofiber surface. By changing the PAN to PAA-b-PAN-b-PAA ratio in the casting solution, a maximum specific capacitance of 240.5 F g -1 is achieved at the current density of 0.5 A g -1 with good rate capability at a capacitance retention of 72.1% at 5.0 A g -1 in an aqueous electrolyte of 6 mol L -1 KOH within the potential range of -1.10 to 0 V (rN/A = 1.5/1.0). Moreover, an asymmetric supercapacitor is assembled by using the hierarchical porous carbon fiber@vanadium nitride as the negative electrode and Ni(OH) 2 as the positive electrode. Remarkably, at the power density of 400 W kg -1 , the supercapacitor device delivers a better energy density of 39.3 W h kg -1 . It also shows excellent electrochemical stability, and thus might be used as a promising energy-storage device.
Liang, Bo; Chen, Yule; He, Jiangyu; Chen, Chen; Liu, Wenwen; He, Yuanqing; Liu, Xiaohe; Zhang, Ning; Roy, Vellaisamy A L
2018-01-31
Most reported pristine phosphates, such as NH 4 MPO 4 ·H 2 O (M = Co, Ni), are not very stable as supercapacitor electrodes because of their chemical properties. In this work, KCo x Ni 1-x PO 4 ·H 2 O microplates were fabricated by a facile hydrothermal method at low temperature and used as electrodes in supercapacitors. The Co and Ni content could be adjusted, and optimal electrochemical performance was found in KCo 0.33 Ni 0.67 PO 4 ·H 2 O, which also possessed superior specific capacitance, rate performance, and long-term chemical stability compared with NH 4 Co 0.33 Ni 0.67 PO 4 ·H 2 O because of its unique chemical composition and microstructure. Asymmetric supercapacitor cells based on KCo 0.33 Ni 0.67 PO 4 ·H 2 O and active carbon were assembled, which produce specific capacitance of 34.7 mA h g -1 (227 F g -1 ) under current density of 1.5 A g -1 and retain 82% as initial specific capacitance after charging and discharging approximately 5000 times. The assembled asymmetric supercapacitor cells (ASCs) exhibited much higher power and energy density than most previously reported transition metal phosphate ASCs. The KCo x Ni 1-x PO 4 ·H 2 O electrodes fabricated in this work are efficient, inexpensive, and composed of naturally abundant materials, rendering them promising for energy storage device applications.
Hua, Fengting; Sun, Kanjun; Fenga, Enke; Peng, Hui; Zhang, Zhiguo; Lei, Ziqiang
2018-01-01
The electrochemical performance of an energy conversion and storage device like the supercapacitor mainly depends on the microstructure and morphology of the electrodes. In this paper, to improve the capacitance performance of the supercapacitor, the all-pseudocapacitive electrodes of lamella-like Bi18SeO29/BiSe as the negative electrode and flower-like Co0.85Se nanosheets as the positive electrode are synthesized by using a facile low-temperature one-step hydrothermal method. The microstructures and morphology of the electrode materials are carefully characterized, and the capacitance performances are also tested. The Bi18SeO29/BiSe and Co0.85Se have high specific capacitance (471.3 F g–1 and 255 F g–1 at 0.5 A g–1), high conductivity, outstanding cycling stability, as well as good rate capability. The assembled asymmetric supercapacitor completely based on the pseudocapacitive electrodes exhibits outstanding cycling stability (about 93% capacitance retention after 5000 cycles). Moreover, the devices exhibit high energy density of 24.2 Wh kg–1 at a power density of 871.2 W kg–1 in the voltage window of 0–1.6 V with 2 M KOH solution. PMID:29410830
Electrocatalytic activity of ZnS nanoparticles in direct ethanol fuel cells
NASA Astrophysics Data System (ADS)
Bredol, Michael; Kaczmarek, Michał; Wiemhöfer, Hans-Dieter
2014-06-01
Low temperature fuel cells consuming ethanol without reformation would be a major step toward the use of renewable energy sources from biomass. However, the necessary electrodes and electrocatalysts still are far from being perfect and suffer from various poisoning and deactivation processes. This work describes investigations on systems using carbon/ZnS-based electrocatalysts for ethanol oxidation in complete membrane electrode assemblies (MEAs). MEAs were built on Nafion membranes with active masses prepared from ZnS nanoparticles and Vulcan carbon support. Under operation, acetic acid and acetaldehyde were identified and quantified as soluble oxidation products, whereas the amount of CO2 generated could not be quantified directly. Overall conversion efficiencies of up to 25% were estimated from cells operated over prolonged time. From polarization curves, interrupt experiments and analysis of reaction products, mass transport problems (concentration polarization) and breakthrough losses were found to be the main deficiencies of the ethanol oxidation electrodes fabricated so far.
2014-01-01
We present a useful ammonia gas sensor based on chemically reduced graphene oxide (rGO) sheets by self-assembly technique to create conductive networks between parallel Au electrodes. Negative graphene oxide (GO) sheets with large sizes (>10 μm) can be easily electrostatically attracted onto positive Au electrodes modified with cysteamine hydrochloride in aqueous solution. The assembled GO sheets on Au electrodes can be directly reduced into rGO sheets by hydrazine or pyrrole vapor and consequently provide the sensing devices based on self-assembled rGO sheets. Preliminary results, which have been presented on the detection of ammonia (NH3) gas using this facile and scalable fabrication method for practical devices, suggest that pyrrole-vapor-reduced rGO exhibits much better (more than 2.7 times with the concentration of NH3 at 50 ppm) response to NH3 than that of rGO reduced from hydrazine vapor. Furthermore, this novel gas sensor based on rGO reduced from pyrrole shows excellent responsive repeatability to NH3. Overall, the facile electrostatic self-assembly technique in aqueous solution facilitates device fabrication, the resultant self-assembled rGO-based sensing devices, with miniature, low-cost portable characteristics and outstanding sensing performances, which can ensure potential application in gas sensing fields. PMID:24917701
Paulauskas, Felix L.; Bonds, Truman
2016-09-20
A plasma treatment method that includes providing treatment chamber including an intermediate heating volume and an interior treatment volume. The interior treatment volume contains an electrode assembly for generating a plasma and the intermediate heating volume heats the interior treatment volume. A work piece is traversed through the treatment chamber. A process gas is introduced to the interior treatment volume of the treatment chamber. A plasma is formed with the electrode assembly from the process gas, wherein a reactive species of the plasma is accelerated towards the fiber tow by flow vortices produced in the interior treatment volume by the electrode assembly.
Andersen, Shuang Ma; Skou, Eivind
2014-10-08
Significant differences in catalyst performance and durability are often observed between the use of a liquid electrolyte (e.g., sulfuric acid), and a solid polymer electrolyte (e.g., Nafion). To understand this phenomenon, we studied the electrochemical behavior of a commercially available carbon supported platinum catalyst in four different electrode structures: catalyst powder (CP), catalyst ionomer electrode (CIE), half membrane electrode assembly (HMEA), and full membrane electrode assembly (FMEA) in both ex situ and in situ experiments under a simulated start/stop cycle. We found that the catalyst performance and stability are very much influenced by the presence of the Nafion ionomers. The proton conducting phase provided by the ionomer and the self-assembled electrode structure render the catalysts a higher utilization and better stability. This is probably due to an enhanced dispersion, an improved proton-catalyst interface, the restriction of catalyst particle aggregation, and the improved stability of the ionomer phase especially after the lamination. Therefore, an innovative electrode HMEA design for ex-situ catalyst characterization is proposed. The electrode structure is identical to the one used in a real fuel cell, where the protons transport takes place solely through solid state proton conducting phase.
NASA Astrophysics Data System (ADS)
Kwon, Se Ra; Jeon, Ju-Won; Lutkenhus, Jodie
2015-03-01
Sprayable batteries are growing in interest for applications in structural energy storage and power or flexible power. Spray-assisted layer-by-layer (LbL) assembly, in which complementary species are alternately sprayed onto a surface, is particularly amenable toward this application. Here, we report on the fabrication of composite films containing polyaniline nanofibers (PANI NF) and graphene oxide (GO) sheets fabricated via spray-assisted LbL assembly. The resulting films are electrochemical reduced to yield PANI NF/electrochemically reduced graphene (ERGO) electrodes for use as a cathode in non-aqueous energy storage systems. Through the spray-assisted LbL process, the hybrid electrodes could be fabricated 74 times faster than competing dip-assisted LbL assembly. The resulting electrodes are highly porous (0.72 void fraction), and are comprised of 67 wt% PANI NF and 33 wt% ERGO. The sprayed electrodes showed better rate capability, higher specific power, as well as more stable cycle life than dip-assisted LbL electrodes. It is shown here that the spray-assisted LbL approach is well-suited towards the fabrication of paintable electrodes containing polyaniline nanofibers and electrochemically reduced graphene oxide sheets.
Apparatus for inspecting fuel elements
Oakley, David J.; Groves, Oliver J.; Kaiser, Bruce J.
1986-01-01
Disclosed is an alpha monitor usable in an automated nuclear fuel pin loading and processing unit. Fuel pins or other elongated pins are fed laterally into the alpha monitor in a singular fashion and are translated by a first roller assembly into a weld flare machining and decontamination substation not forming a part of the invention. Pins return and are lifted upwardly and transferred across to a combined pin lifting and electrode operating means which lifts the pins upwardly into a clamshell electrode assembly which is spread open by a combined pin lifting and electrode operating means. Once inserted the clamshell type electrode arrangement closes around the fuel pins so that inspection can occur. Fuel pins are inspected by charging electrodes to a negative potential and measuring the change in charge occurring when positively charged alpha particles strike the negatively charged electrodes. After inspection, the fuel pins are lowered by the pin lifting and electrode operating means into a second roller assembly which longitudinally conveys approved pins from the airtight enclosure in which the alpha monitor is mounted. If the fuel pins are rejected then they are moved laterally by a second transfer means and onto another system for further processing.
Apparatus for inspecting fuel elements
Kaiser, B.J.; Oakley, D.J.; Groves, O.J.
1984-12-21
This disclosure describes an alpha monitor usable in an automated nuclear fuel pin loading and processing unit. Fuel pins or other elongated pins are fed laterally into the alpha monitor in a singular fashion and are translated by a first roller assembly into a weld flare machining and decontamination substation not forming a part of the invention. Pins return and are lifted upwardly and transferred across to a combined pin lifting and electrode operating means which lifts the pins upwardly into a clamshell electrode assembly which is spread open by a combined pin lifting and electrode operating means. Once inserted the clamshell type electrode arrangement closes around the fuel pins so that inspection can occur. Fuel pins are inspected by charging electrodes to a negative potential and measuring the change in charge occurring when positively charged alpha particles strike the negatively charged electrodes. After inspection, the fuel pins are lowered by the pin lifting and electrode operating means into a second roller assembly which longitudinally conveys approved pins from the airtight enclosure in which the alpha monitor is mounted. If the fuel pins are rejected then they are moved laterally by a second transfer means and onto another system for further processing.
Fu, Qishan; Wang, Xinyu; Zhang, Na; Wen, Jing; Li, Lu; Gao, Hong; Zhang, Xitian
2018-02-01
Two-dimensional titanium carbide has gained considerable attention in recent years as an electrode material for supercapacitors due to its high melting point, good electrical conductivity, hydrophilicity and large electrochemically active surfaces. However, the irreversible restacking during synthesis restricts its development and practical applications. Here, Ti 3 C 2 T x /SCNT self-assembled composite electrodes were rationally designed and successfully synthesized by introducing single-walled carbon nanotubes (SCNTs) as interlayer spacers to decrease the restacking of the Ti 3 C 2 T x sheets during the synthesis process. SCNTs can not only increase the specific surface area as well as the interlayer space of the Ti 3 C 2 T x electrode, but also increase the accessible capability of electrolyte ions, and thus it improved the electrochemical performance of the electrode. The as-prepared Ti 3 C 2 T x /SCNT self-assembled composite electrode achieved a high areal capacitance of 220mF/cm 2 (314F/cm 3 ) and a remarkable capacitance retention of 95% after 10,000cycles. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pintauro, Peter N.; Ballengee, Jason; Brodt, Matthew
In one aspect of the present invention, a method of fabricating a fuel cell membrane-electrode-assembly (MEA) having an anode electrode, a cathode electrode, and a membrane disposed between the anode electrode and the cathode electrode, includes fabricating each of the anode electrode, the cathode electrode, and the membrane separately by electrospinning; and placing the membrane between the anode electrode and the cathode electrode, and pressing then together to form the fuel cell MEA.
Methods and systems for in-situ electroplating of electrodes
Zappi, Guillermo Daniel; Zarnoch, Kenneth Paul; Huntley, Christian Andrew; Swalla, Dana Ray
2015-06-02
The present techniques provide electrochemical devices having enhanced electrodes with surfaces that facilitate operation, such as by formation of a porous nickel layer on an operative surface, particularly of the cathode. The porous metal layer increases the surface area of the electrode, which may result in increasing the efficiency of the electrochemical devices. The formation of the porous metal layer is performed in situ, that is, after the assembly of the electrodes into an electrochemical device. The in situ process offers a number of advantages, including the ability to protect the porous metal layer on the electrode surface from damage during assembly of the electrochemical device. The enhanced electrode and the method for its processing may be used in any number of electrochemical devices, and is particularly well suited for electrodes in an electrolyzer useful for splitting water into hydrogen and oxygen.
NASA Astrophysics Data System (ADS)
Wan, Caichao; Jiao, Yue; Li, Jian
2017-09-01
An easily-operated and inexpensive strategy (pencil-drawing-electrodeposition-electro-oxidation) is proposed to synthesize a novel class of multilayer core-shell structured composite paper electrode, which consists of copper, cuprous oxide and graphite assembled on cellulose fibers. This interesting electrode structure plays a pivotal role in providing more active sites for electrochemical reactions, facilitating ion and electron transport and shorting their diffusion pathways. This electrode demonstrates excellent electrochemical properties with a high specific capacitance of 601 F g-1 at 2 A g-1 and retains 83% of this capacitance when operated at an ultrahigh current density of 100 A g-1. In addition, a high energy density of 13.4 W h kg-1 at the power density of 0.40 kW kg-1 and a favorable cycling stability (95.3%, 8000 cycles) were achieved for this electrode. When this electrode was assembled into an asymmetric supercapacitor with carbon paper as negative electrode, the device displays remarkable electrochemical performances with a large areal capacitances (122 mF cm-2 at 1 mA cm-2), high areal energy density (10.8 μW h cm-2 at 402.5 μW cm-2) and outstanding cycling stability (91.5%, 5000 cycles). These results unveil the potential of this composite electrode as a high-performance electrode material for supercapacitors.
Narrow groove welding gas diffuser assembly and welding torch
Rooney, Stephen J.
2001-01-01
A diffuser assembly is provided for narrow groove welding using an automatic gas tungsten arc welding torch. The diffuser assembly includes a manifold adapted for adjustable mounting on the welding torch which is received in a central opening in the manifold. Laterally extending manifold sections communicate with a shield gas inlet such that shield gas supplied to the inlet passes to gas passages of the manifold sections. First and second tapered diffusers are respectively connected to the manifold sections in fluid communication with the gas passages thereof. The diffusers extend downwardly along the torch electrode on opposite sides thereof so as to release shield gas along the length of the electrode and at the distal tip of the electrode. The diffusers are of a transverse width which is on the order of the thickness of the electrode so that the diffusers can, in use, be inserted into a narrow welding groove before and after the electrode in the direction of the weld operation.
Nanothorn electrodes for ionic polymer-metal composite artificial muscles
Palmre, Viljar; Pugal, David; Kim, Kwang J.; Leang, Kam K.; Asaka, Kinji; Aabloo, Alvo
2014-01-01
Ionic polymer-metal composites (IPMCs) have recently received tremendous interest as soft biomimetic actuators and sensors in various bioengineering and human affinity applications, such as artificial muscles and actuators, aquatic propulsors, robotic end-effectors, and active catheters. Main challenges in developing biomimetic actuators are the attainment of high strain and actuation force at low operating voltage. Here we first report a nanostructured electrode surface design for IPMC comprising platinum nanothorn assemblies with multiple sharp tips. The newly developed actuator with the nanostructured electrodes shows a new way to achieve highly enhanced electromechanical performance over existing flat-surfaced electrodes. We demonstrate that the formation and growth of the nanothorn assemblies at the electrode interface lead to a dramatic improvement (3- to 5-fold increase) in both actuation range and blocking force at low driving voltage (1–3 V). These advances are related to the highly capacitive properties of nanothorn assemblies, increasing significantly the charge transport during the actuation process. PMID:25146561
Teaching pH Measurements with a Student-Assembled Combination Quinhydrone Electrode
ERIC Educational Resources Information Center
Scholz, Fritz; Steinhardt, Tim; Kahlert, Heike; Porksen, Jens R.; Behnert, Jurgen
2005-01-01
A simple combination pH electrode consisting of a solid-state quinhydrone sensor and a solid-state quinhydrone reference electrode is described. Both electrodes are essentially rubber stoppers that are inserted into a special doublewalled holder.
Adaptive Process Controls and Ultrasonics for High Temperature PEM MEA Manufacture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walczyk, Daniel F.
2015-08-26
The purpose of this 5-year DOE-sponsored project was to address major process bottlenecks associated with fuel cell manufacturing. New technologies were developed to significantly reduce pressing cycle time for high temperature PEM membrane electrode assembly (MEA) through the use of novel, robust ultrasonic (U/S) bonding processes along with low temperature (<100°C) PEM MEAs. In addition, greater manufacturing uniformity and performance was achieved through (a) an investigation into the causes of excessive variation in ultrasonically and thermally bonded MEAs using more diagnostics applied during the entire fabrication and cell build process, and (b) development of rapid, yet simple quality control measurementmore » techniques for use by industry.« less
NASA Astrophysics Data System (ADS)
Yu, Ning; Shi, Qing; Nakajima, Masahiro; Wang, Huaping; Yang, Zhan; Sun, Lining; Huang, Qiang; Fukuda, Toshio
2017-10-01
Three-dimensional carbon nanotube field-effect transistors (3D CNTFETs) possess predictable characteristics that rival those of planar CNTFETs and Si-based MOSFETs. However, due to the lack of a reliable assembly technology, they are rarely reported on, despite the amount of attention they receive. To address this problem, we propose the novel concept of a 3D CNTFET and develop its assembly strategy based on nanomanipulation and the electron-beam-induced deposition (EBID) technique inside a scanning electron microscope (SEM). In particular, the electrodes in our transistor design are three metallic cuboids of the same size, and their front, top and back surfaces are all wrapped up in CNTs. The assembly strategy is employed to build the structure through a repeated basic process of pick-up, placement, fixing and cutting of CNTs. The pick-up and placement is performed through one nanomanipulator with four degrees of freedom. Fixing is carried out through the EBID technique so as to improve the mechanical and electrical characteristics of the CNT/electrodes connection. CNT cutting is undertaken using the typical method of electrical breakdown. Experimental results showed that two CNTs were successfully assembled on the front sides of the cubic electrodes. This validates our assembly method for the 3D CNTFET. Also, when contact resistance was measured, tens of kilohms of resistance was observed at the CNT-EBID deposition-FET electrodes junction.. This manifests the electrical reliability of our assembly strategy.
Applications of Graphene-Modified Electrodes in Microbial Fuel Cells
Yu, Fei; Wang, Chengxian; Ma, Jie
2016-01-01
Graphene-modified materials have captured increasing attention for energy applications due to their superior physical and chemical properties, which can significantly enhance the electricity generation performance of microbial fuel cells (MFC). In this review, several typical synthesis methods of graphene-modified electrodes, such as graphite oxide reduction methods, self-assembly methods, and chemical vapor deposition, are summarized. According to the different functions of the graphene-modified materials in the MFC anode and cathode chambers, a series of design concepts for MFC electrodes are assembled, e.g., enhancing the biocompatibility and improving the extracellular electron transfer efficiency for anode electrodes and increasing the active sites and strengthening the reduction pathway for cathode electrodes. In spite of the challenges of MFC electrodes, graphene-modified electrodes are promising for MFC development to address the reduction in efficiency brought about by organic waste by converting it into electrical energy. PMID:28773929
Ahn, Chi-Yeong; Jang, Segeun; Cho, Yong-Hun; Choi, Jiwoo; Kim, Sungjun; Kim, Sang Moon; Sung, Yung-Eun; Choi, Mansoo
2018-01-19
Guided cracks were successfully generated in an electrode using the concentrated surface stress of a prism-patterned Nafion membrane. An electrode with guided cracks was formed by stretching the catalyst-coated Nafion membrane. The morphological features of the stretched membrane electrode assembly (MEA) were investigated with respect to variation in the prism pattern dimension (prism pitches of 20 μm and 50 μm) and applied strain (S ≈ 0.5 and 1.0). The behaviour of water on the surface of the cracked electrode was examined using environmental scanning electron microscopy. Guided cracks in the electrode layer were shown to be efficient water reservoirs and liquid water passages. The MEAs with and without guided cracks were incorporated into fuel cells, and electrochemical measurements were conducted. As expected, all MEAs with guided cracks exhibited better performance than conventional MEAs, mainly because of the improved water transport.
Zhu, Zhixiang; Wang, Jian; Qiu, Keqing; Liu, Chengyuan; Qi, Fei; Pan, Yang
2014-04-01
A novel vacuum ultraviolet (VUV) light source assembly (VUVLSA) for enhancing the ionization efficiency of photoionization mass spectrometer has been described. The VUVLSA composes of a Krypton lamp and a pair of disk electrodes with circular center cavities. The two interior surfaces that face the photoionization region were aluminum-coated. VUV light can be reflected back and forth in the photoionization region between the electrodes, thus the photoionization efficiency can be greatly enhanced. The performances of two different shaped electrodes, the coated double flat electrodes (DFE), and double conical electrodes, were studied. We showed that the signal amplification of coated DFE is around 4 times higher than that of uncoated electrodes without VUV light reflection. The relationship between the pressure of ionization chamber and mass signal enhancement has also been studied.
Selective DNA-Mediated Assembly of Gold Nanoparticles on Electroded Substrates
2008-06-01
might use the Watson - Crick base-pairing of DNA as a means for ultrahigh-precision engineering is well- known.5,6 The idea is to use the highly specific...Selective DNA -Mediated Assembly of Gold Nanoparticles on Electroded Substrates K. E. Sapsford,†,‡,∇ D. Park,§ E. R. Goldman,‡ E. E. Foos,| S. A...electrodes via DNA hybridization. Protocols are demonstrated for maximizing selectivity and coverage using 15mers as the active binding agents. Detailed
Sassin, Megan B; Garsany, Yannick; Gould, Benjamin D; Swider-Lyons, Karen E
2017-01-03
Custom catalyst-coated membranes (CCMs) and membrane electrode assemblies (MEAs) are necessary for the evaluation of advanced electrocatalysts, gas diffusion media (GDM), ionomers, polymer electrolyte membranes (PEMs), and electrode structures designed for use in next-generation fuel cells, electrolyzers, or flow batteries. This Feature provides a reliable and reproducible fabrication protocol for laboratory scale (10 cm 2 ) fuel cells based on ultrasonic spray deposition of a standard Pt/carbon electrocatalyst directly onto a perfluorosulfonic acid PEM.
Chalcogen catalysts for polymer electrolyte fuel cell
Alonso-Vante, Nicolas [Buxerolles, FR; Zelenay, Piotr [Los Alamos, NM; Choi, Jong-Ho [Los Alamos, NM; Wieckowski, Andrzej [Champaign, IL; Cao, Dianxue [Urbana, IL
2009-09-15
A methanol-tolerant cathode catalyst and a membrane electrode assembly for fuel cells that includes such a cathode catalyst. The cathode catalyst includes a support having at least one transition metal in elemental form and a chalcogen disposed on the support. Methods of making the cathode catalyst and membrane electrode assembly are also described.
Nanostructured catalyst supports
Zhu, Yimin; Goldman, Jay L.; Qian, Baixin; Stefan, Ionel C.
2012-10-02
The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.
The impact of pyrene on the electrochemical response of the ferricyanide probe using Self Assembled Monolayer (SAM)-modified gold electrodes was investigated using Cyclic Voltammetry (CV) and Square Wave Voltammetry (SWV). These results suggest the feasibility of using SAMs, par...
ERIC Educational Resources Information Center
Gerber, Ralph W.; Oliver-Hoyo, Maria
2007-01-01
The development of a new low-cost, six-electrode instrument for measuring the electrical properties of the self-assembled monolayers of gold particles is being described. The system can also be used to measure conductive liquids, except for those that contain aqua region.
Chalcogen catalysts for polymer electrolyte fuel cell
Zelenay, Piotr; Choi, Jong-Ho; Alonso-Vante, Nicolas; Wieckowski, Andrzej; Cao, Dianxue
2010-08-24
A methanol-tolerant cathode catalyst and a membrane electrode assembly for fuel cells that includes such a cathode catalyst. The cathode catalyst includes a support having at least one transition metal in elemental form and a chalcogen disposed on the support. Methods of making the cathode catalyst and membrane electrode assembly are also described.
Minimizing electrode contamination in an electrochemical cell
Kim, Yu Seung; Zelenay, Piotr; Johnston, Christina
2014-12-09
An electrochemical cell assembly that is expected to prevent or at least minimize electrode contamination includes one or more getters that trap a component or components leached from a first electrode and prevents or at least minimizes them from contaminating a second electrode.
Yagi, Ichizo; Mikami, Kensuke; Okamura, Masayuki; Uosaki, Kohei
2013-07-22
The ultrafast dynamics of photogenerated electrons in multilayer assemblies of CdS nanoparticles prepared on quartz and indium-tin oxide (ITO) substrates were followed by femtosecond (fs) visible-pump/mid-IR probe spectroscopy. Based on the observation of the photoinduced transient absorption spectra in the broad mid-IR range at the multilayer assembly of CdS nanoparticles, the occupation and fast relaxation of higher electronic states (1P(e)) were clarified. As compared with the electron dynamics of isolated (dispersed in solution) nanoparticles, the decay of photoexcited electrons in the multilayer assembly was clearly accelerated probably due to both electron hopping and scattering during interparticle electron tunneling. By using an ITO electrode as a substrate, the effect of the electric field on the photoelectron dynamics in the multilayer assembly was also investigated in situ. Both the amplitude and lifetime of photoexcited electrons gradually reduced as the potential became more positive. This result was explained by considering the reduction of the interparticle tunneling probability and the increase in the electron-transfer rate from the CdS nanoparticle assembly to the ITO electrode. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Hong, Xiaodong; Zhang, Binbin; Murphy, Elizabeth; Zou, Jianli; Kim, Franklin
2017-03-01
As a simple and versatile method, diffusion driven Layer-by-Layer assembly (dd-LbL) is developed to assemble graphene oxide (GO) into three-dimensional (3D) structure. The assembled GO macrostructure can be reduced through a hydrothermal treatment and used as a high volumetric capacitance electrode in supercapacitors. In this report we use rGO framework created from dd-LbL as a scaffold for in situ polymerization of aniline within the pores of the framework to form rGO/polyaniline (rGO/PANI) composite. The rGO/PANI composite affords a robust and porous structure, which facilitates electrolyte diffusion and exhibits excellent electrochemical performance as binder-free electrodes in a sandwich-configuration supercapacitor. Combining electric double layer capacitance and pseudo-capacitance, rGO/PANI electrodes exhibit a specific capacitance of 438.8 F g-1 at discharge rate of 5 mA (mass of electrodes were 10.0 mg, 0.5 A g-1) in 1 mol L-1 H2SO4 electrolyte; furthermore, the generated PANI nanoparticles in rGO template achieve a higher capacitance of 763 F g-1. The rGO/PANI composite electrodes also show an improved recyclability, 76.5% of capacitance retains after recycled 2000 times.
NASA Astrophysics Data System (ADS)
Kang, Juhoon; Park, Chang-Goo; Lee, Su-Han; Cho, Changsoon; Choi, Dae-Geun; Lee, Jung-Yong
2016-05-01
In this report, we describe the fabrication of periodic Ag nanogrid electrodes by capillary assembly of silver nanoparticles (AgNPs) along patterned nanogrid templates. By assembling the AgNPs into these high-aspect-ratio nanogrid patterns, we can obtain high-aspect-ratio nanogratings, which can overcome the inherent trade-off between the optical transmittance and the sheet resistance of transparent electrodes. The junction resistance between the AgNPs is effectively reduced by photochemical welding and post-annealing. The fabricated high-aspect-ratio nanogrid structure with a line width of 150 nm and a height of 450 nm has a sheet resistance of 15.2 Ω sq-1 and an optical transmittance of 85.4%.In this report, we describe the fabrication of periodic Ag nanogrid electrodes by capillary assembly of silver nanoparticles (AgNPs) along patterned nanogrid templates. By assembling the AgNPs into these high-aspect-ratio nanogrid patterns, we can obtain high-aspect-ratio nanogratings, which can overcome the inherent trade-off between the optical transmittance and the sheet resistance of transparent electrodes. The junction resistance between the AgNPs is effectively reduced by photochemical welding and post-annealing. The fabricated high-aspect-ratio nanogrid structure with a line width of 150 nm and a height of 450 nm has a sheet resistance of 15.2 Ω sq-1 and an optical transmittance of 85.4%. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01896c
Space water electrolysis: Space Station through advance missions
NASA Technical Reports Server (NTRS)
Davenport, Ronald J.; Schubert, Franz H.; Grigger, David J.
1991-01-01
Static Feed Electrolyzer (SFE) technology can satisfy the need for oxygen (O2) and Hydrogen (H2) in the Space Station Freedom and future advanced missions. The efficiency with which the SFE technology can be used to generate O2 and H2 is one of its major advantages. In fact, the SFE is baselined for the Oxygen Generation Assembly within the Space Station Freedom's Environmental Control and Life Support System (ECLSS). In the conventional SFE process an alkaline electrolyte is contained within the matrix and is sandwiched between two porous electrodes. The electrodes and matrix make up a unitized cell core. The electrolyte provides the necessary path for the transport of water and ions between the electrodes, and forms a barrier to the diffusion of O2 and H2. A hydrophobic, microporous membrane permits water vapor to diffuse from the feed water to the cell core. This membrane separates the liquid feed water from the product H2, and, therefore, avoids direct contact of the electrodes by the feed water. The feed water is also circulated through an external heat exchanger to control the temperature of the cell.
Chen, Kongfa; Liu, Shu-Sheng; Ai, Na; Koyama, Michihisa; Jiang, San Ping
2015-12-14
High temperature solid oxide cells (SOCs) are attractive for storage and regeneration of renewable energy by operating reversibly in solid oxide electrolysis cell (SOEC) and solid oxide fuel cell (SOFC) modes. However, the stability of SOCs, particularly the deterioration of the performance of oxygen electrodes in the SOEC operation mode, is the most critical issue in the development of high performance and durable SOCs. In this study, we investigate in detail the electrochemical activity and stability of La0.8Sr0.2MnO3 (LSM) oxygen electrodes in cyclic SOEC and SOFC modes. The results show that the deterioration of LSM oxygen electrodes caused by anodic polarization can be partially or completely recovered by subsequent cathodic polarization. Using in situ assembled LSM electrodes without pre-sintering, we demonstrate that the deteriorated LSM/YSZ interface can be repaired and regenerated by operating the cells under cathodic polarization conditions. This study for the first time establishes the foundation for the development of truly reversible and stable SOCs for hydrogen fuel production and electricity generation in cyclic SOEC and SOFC operation modes.
Haddad, Raoudha; Mattei, Jean-Gabriel; Thery, Jessica; Auger, Aurélien
2015-06-28
Glucose oxidase (GOx) is immobilized on ZnO nanoparticle-modified electrodes. The immobilized glucose oxidase shows efficient mediated electron transfer with ZnO nanoparticles to which the ferrocenyl moiety is π-stacked into a supramolecular architecture. The constructed ZnO-Fc/CNT modified electrode exhibits high ferrocene surface coverage, preventing any leakage of the π-stacked ferrocene from the newly described ZnO hybrid nanoparticles. The use of the new architecture of ZnO supported electron mediators to shuttle electrons from the redox centre of the enzyme to the surface of the working electrode can effectively bring about successful glucose oxidation. These modified electrodes evaluated as a highly efficient architecture provide a catalytic current for glucose oxidation and are integrated in a specially designed glucose/air fuel cell prototype using a conventional platinum-carbon (Pt/C) cathode at physiological pH (7.0). The obtained architecture leads to a peak power density of 53 μW cm(-2) at 300 mV for the Nafion® based biofuel cell under "air breathing" conditions at room temperature.
Barz, F; Livi, A; Lanzilotto, M; Maranesi, M; Bonini, L; Paul, O; Ruther, P
2017-06-01
Application-specific designs of electrode arrays offer an improved effectiveness for providing access to targeted brain regions in neuroscientific research and brain machine interfaces. The simultaneous and stable recording of neuronal ensembles is the main goal in the design of advanced neural interfaces. Here, we describe the development and assembly of highly customizable 3D microelectrode arrays and demonstrate their recording performance in chronic applications in non-human primates. System assembly relies on a microfabricated stacking component that is combined with Michigan-style silicon-based electrode arrays interfacing highly flexible polyimide cables. Based on the novel stacking component, the lead time for implementing prototypes with altered electrode pitches is minimal. Once the fabrication and assembly accuracy of the stacked probes have been characterized, their recording performance is assessed during in vivo chronic experiments in awake rhesus macaques (Macaca mulatta) trained to execute reaching-grasping motor tasks. Using a single set of fabrication tools, we implemented three variants of the stacking component for electrode distances of 250, 300 and 350 µm in the stacking direction. We assembled neural probes with up to 96 channels and an electrode density of 98 electrodes mm -2 . Furthermore, we demonstrate that the shank alignment is accurate to a few µm at an angular alignment better than 1°. Three 64-channel probes were chronically implanted in two monkeys providing single-unit activity on more than 60% of all channels and excellent recording stability. Histological tissue sections, obtained 52 d after implantation from one of the monkeys, showed minimal tissue damage, in accordance with the high quality and stability of the recorded neural activity. The versatility of our fabrication and assembly approach should significantly support the development of ideal interface geometries for a broad spectrum of applications. With the demonstrated performance, these probes are suitable for both semi-chronic and chronic applications.
NASA Astrophysics Data System (ADS)
Barz, F.; Livi, A.; Lanzilotto, M.; Maranesi, M.; Bonini, L.; Paul, O.; Ruther, P.
2017-06-01
Objective. Application-specific designs of electrode arrays offer an improved effectiveness for providing access to targeted brain regions in neuroscientific research and brain machine interfaces. The simultaneous and stable recording of neuronal ensembles is the main goal in the design of advanced neural interfaces. Here, we describe the development and assembly of highly customizable 3D microelectrode arrays and demonstrate their recording performance in chronic applications in non-human primates. Approach. System assembly relies on a microfabricated stacking component that is combined with Michigan-style silicon-based electrode arrays interfacing highly flexible polyimide cables. Based on the novel stacking component, the lead time for implementing prototypes with altered electrode pitches is minimal. Once the fabrication and assembly accuracy of the stacked probes have been characterized, their recording performance is assessed during in vivo chronic experiments in awake rhesus macaques (Macaca mulatta) trained to execute reaching-grasping motor tasks. Main results. Using a single set of fabrication tools, we implemented three variants of the stacking component for electrode distances of 250, 300 and 350 µm in the stacking direction. We assembled neural probes with up to 96 channels and an electrode density of 98 electrodes mm-2. Furthermore, we demonstrate that the shank alignment is accurate to a few µm at an angular alignment better than 1°. Three 64-channel probes were chronically implanted in two monkeys providing single-unit activity on more than 60% of all channels and excellent recording stability. Histological tissue sections, obtained 52 d after implantation from one of the monkeys, showed minimal tissue damage, in accordance with the high quality and stability of the recorded neural activity. Significance. The versatility of our fabrication and assembly approach should significantly support the development of ideal interface geometries for a broad spectrum of applications. With the demonstrated performance, these probes are suitable for both semi-chronic and chronic applications.
Particle Line Assembly/Patterning by Microfluidic AC Electroosmosis
NASA Astrophysics Data System (ADS)
Lian, Meng; Islam, Nazmul; Wu, Jie
2006-04-01
Recently AC electroosmosis has attracted research interests worldwide. This paper is the first to investigate particle line assembly/patterning by AC electroosmosis. Since AC electroosmotic force has no dependence on particle sizes, this technique is particularly useful for manipulating nanoscale substance, and hopefully constructs functional nanoscale devices. Two types of ACEO devices, in the configurations of planar interdigitated electrodes and parallel plate electrodes, and a biased ACEO technique are studied, which provides added flexibility in particle manipulation and line assembly. The paper also investigates the effects of electrical field distributions on generating microflows for particle assembly. The results are corroborated experimentally.
Ramachandran, Anup; Schuettler, Martin; Lago, Natalia; Doerge, Thomas; Koch, Klaus Peter; Navarro, Xavier; Hoffmann, Klaus-Peter; Stieglitz, Thomas
2006-06-01
This paper reports on the design, in vitro and in vivo investigation of a flexible, lightweight, polyimide based implantable sieve electrode with a hybrid assembly of multiplexers and polymer encapsulation. The integration of multiplexers enables us to connect a large number of electrodes on the sieve using few input connections. The implant assembly of the sieve electrode with the electronic circuitry was verified by impedance measurement. The 27 platinum electrodes of the sieve were coated with platinum black to reduce the electrode impedance. The impedance magnitude of the electrode sites on the sieve (geometric surface area 2,200 microm(2)) was |Z(f=1kHz)| = 5.7 kOmega. The sieve electrodes, encased in silicone, have been implanted in the transected sciatic nerve of rats. Initial experiments showed that axons regenerated through the holes of the sieve and reinnervated distal target organs. Nerve signals were recorded in preliminary tests after 3-7 months post-implantation.
Deng, Ming-Jay; Chen, Kai-Wen; Che, Yo-Cheng; Wang, I-Ju; Lin, Chih-Ming; Chen, Jin-Ming; Lu, Kueih-Tzu; Liao, Yen-Fa; Ishii, Hirofumi
2017-01-11
Here we report a simple, scalable, and low-cost method to enhance the electrochemical properties of Mn oxide electrodes for highly efficient and flexible symmetrical supercapacitors. The method involving printing on a printer, pencil-drawing, and electrodeposition is established to fabricate Mn oxide/Ni-nanotube/graphite/paper hybrid electrodes operating with a low-cost, novel urea-LiClO 4 /PVA as gel electrolyte for flexible solid-state supercapacitor (FSSC) devices. The Mn oxide nanofiber/Ni-nanotube/graphite/paper (MNNGP) electrodes in urea-LiClO 4 /PVA gel electrolyte show specific capacitance (C sp ) 960 F/g in voltage region 0.8 V at 5 mV/s and exhibit excellent rates of capacitance retention more than 85% after 5000 cycles. Moreover, the electrochemical behavior of the MNNGP electrodes in urea-LiClO 4 /PVA at operating temperatures 27-110 °C was investigated; the results show that the MNNGP electrodes in urea-LiClO 4 /PVA exhibit outstanding performance (1100 F/g), even at 90 °C. The assembled FSSC devices based on the MNNGP electrodes in urea-LiClO 4 /PVA exhibit great C sp (380 F/g in potential region of 2.0 V at 5 mV/s, exhibiting superior energy density 211.1 W h/kg) and great cycle stability (less than 15% loss after 5000 cycles at 25 mV/s). The oxidation-state change was examined by in situ X-ray absorption spectroscopy. FSSC devices would open new opportunities in developing novel portable, wearable, and roll-up electric devices owing to the cheap, high-performance, wide range of operating temperature, and simple procedures for large-area fabrication.
Weng, Xuexiang; Cao, Qingxue; Liang, Lixin; Chen, Jianrong; You, Chunping; Ruan, Yongmin; Lin, Hongjun; Wu, Lanju
2013-12-15
Multilayer films containing graphene (Gr) and chitosan (CS) were prepared on glassy carbon electrodes with layer-by-layer (LBL) assembly technique. After being characterized with cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM), the electrochemical sensor based on the resulted films was developed to simultaneously determine dopamine (DA) and uric acid (UA). The LBL assembled electrode showed excellent electrocatalytic activity towards the oxidation of DA and UA. In addition, the self-assembly electrode possessed an excellent sensing performance for detection of DA and UA with a linear range from 0.1 μM to 140 µM and from 1.0 µM to 125 µM with the detection limit as low as 0.05 µM and 0.1 µM based on S/N=3, respectively. © 2013 Elsevier B.V. All rights reserved.
Wan, Hao; Yin, Heyu; Lin, Lu; Zeng, Xiangqun; Mason, Andrew J
2018-02-01
The growing impact of airborne pollutants and explosive gases on human health and occupational safety has escalated the demand of sensors to monitor hazardous gases. This paper presents a new miniaturized planar electrochemical gas sensor for rapid measurement of multiple gaseous hazards. The gas sensor features a porous polytetrafluoroethylene substrate that enables fast gas diffusion and room temperature ionic liquid as the electrolyte. Metal sputtering was utilized for platinum electrodes fabrication to enhance adhesion between the electrodes and the substrate. Together with carefully selected electrochemical methods, the miniaturized gas sensor is capable of measuring multiple gases including oxygen, methane, ozone and sulfur dioxide that are important to human health and safety. Compared to its manually-assembled Clark-cell predecessor, this sensor provides better sensitivity, linearity and repeatability, as validated for oxygen monitoring. With solid performance, fast response and miniaturized size, this sensor is promising for deployment in wearable devices for real-time point-of-exposure gas pollutant monitoring.
Process for recycling components of a PEM fuel cell membrane electrode assembly
Shore, Lawrence [Edison, NJ
2012-02-28
The membrane electrode assembly (MEA) of a PEM fuel cell can be recycled by contacting the MEA with a lower alkyl alcohol solvent which separates the membrane from the anode and cathode layers of the assembly. The resulting solution containing both the polymer membrane and supported noble metal catalysts can be heated under mild conditions to disperse the polymer membrane as particles and the supported noble metal catalysts and polymer membrane particles separated by known filtration means.
Inert gas rejection device for zinc-halogen battery systems
Hammond, Michael J.; Arendell, Mark W.
1981-01-01
An electrolytic cell for separating chlorine gas from other (foreign) gases, having an anode, a cathode assembly, an aqueous electrolyte, a housing, and a constant voltage power supply. The cathode assembly is generally comprised of a dense graphite electrode having a winding channel formed in the face opposing the anode, a gas impermeable (but liquid permeable) membrane sealed into the side of the cathode electrode over the channel, and a packing of graphite particles contained in the channel of the cathode electrode. The housing separates and parallelly aligns the anode and cathode assembly, and provides a hermetic seal for the cell. In operation, a stream of chlorine and foreign gases enters the cell at the beginning of the cathode electrode channel. The chlorine gas is dissolved into the electrolyte and electrochemically reduced into chloride ions. The chloride ions disfuse through the gas impermeable membrane, and are electrochemically oxidized at the anode into purified chlorine gas. The foreign gases do not participate in the above electrochemical reactions, and are vented from the cell at the end of the cathode electrode channel.
NASA Technical Reports Server (NTRS)
Miller, L.
1980-01-01
A facility which produces electrodes for spacecraft power supplies is described. The electrode assembly procedures are discussed. A number of design features in the production process are reported including a batch operation mode and an independent equipment module design approach for transfering the electrode materials from process tank to process tank.
Kim, Sung-Kon; Jung, Euiyeon; Goodman, Matthew D; Schweizer, Kenneth S; Tatsuda, Narihito; Yano, Kazuhisa; Braun, Paul V
2015-05-06
We report a three-dimensional (3D) porous carbon electrode containing both nanoscale and microscale porosity, which has been hierarchically organized to provide efficient ion and electron transport. The electrode organization is provided via the colloidal self-assembly of monodisperse starburst carbon spheres (MSCSs). The periodic close-packing of the MSCSs provides continuous pores inside the 3D structure that facilitate ion and electron transport (electrode electrical conductivity ∼0.35 S m(-1)), and the internal meso- and micropores of the MSCS provide a good specific capacitance. The capacitance of the 3D-ordered porous MSCS electrode is ∼58 F g(-1) at 0.58 A g(-1), 48% larger than that of disordered MSCS electrode at the same rate. At 1 A g(-1) the capacitance of the ordered electrode is 57 F g(-1) (95% of the 0.24 A g(-1) value), which is 64% greater than the capacitance of the disordered electrode at the same rate. The ordered electrode preserves 95% of its initial capacitance after 4000 charging/discharging cycles.
Metal stub and ceramic body electrode assembly
Rolf, Richard L.
1984-01-01
An electrically conductive ceramic electrode body having an opening therein is threadably engaged with a metal stub having at least a slot therein to provide space for expansion of the stub without damage to the electrode body.
Chen, Xiaodong; Jeon, You-Moon; Jang, Jae-Won; Qin, Lidong; Huo, Fengwei; Wei, Wei; Mirkin, Chad A
2008-07-02
On-wire lithography (OWL) fabricated nanogaps are used as a new testbed to construct molecular transport junctions (MTJs) through the assembly of thiolated molecular wires across a nanogap formed between two Au electrodes. In addition, we show that one can use OWL to rapidly characterize a MTJ and optimize gap size for two molecular wires of different dimensions. Finally, we have used this new testbed to identify unusual temperature-dependent transport mechanisms for alpha,omega-dithiol terminated oligo(phenylene ethynylene).
NASA Technical Reports Server (NTRS)
Bever, R. S.
1976-01-01
Internal embedment stress measurements were performed, using tiny ferrite core transformers, whose voltage output was calibrated versus pressure by the manufacturer. Comparative internal strain measurements were made by attaching conventional strain gages to the same type of resistors and encapsulating these in various potting compounds. Both types of determinations were carried out while temperature cycling from 77 C to -50 C.
Electronic Tongue Containing Redox and Conductivity Sensors
NASA Technical Reports Server (NTRS)
Buehler, Martin
2007-01-01
The Electronic Tongue (E-tongue 2) is an assembly of sensors for measuring concentrations of metal ions and possibly other contaminants in water. Potential uses for electronic tongues include monitoring the chemical quality of water in a variety of natural, industrial, and laboratory settings, and detecting micro-organisms indirectly by measuring microbially influenced corrosion. The device includes a heater, a temperature sensor, an oxidation/reduction (redox) sensor pair, an electrical sensor, an array of eight galvanic cells, and eight ion-specific electrodes.
Graphene macro-assembly-fullerene composite for electrical energy storage
Campbell, Patrick G.; Baumann, Theodore F.; Biener, Juergen; Merrill, Matthew; Montalvo, Elizabeth; Worsley, Marcus A.; Biener, Monika M.; Hernandez, Maira Raquel Ceron
2018-01-16
Disclosed here is a method for producing a graphene macro-assembly (GMA)-fullerene composite, comprising providing a GMA comprising a three-dimensional network of graphene sheets crosslinked by covalent carbon bonds, and incorporating at least 20 wt. % of at least one fullerene compound into the GMA based on the initial weight of the GMA to obtain a GMA-fullerene composite. Also described are a GMA-fullerene composite produced, an electrode comprising the GMA-fullerene composite, and a supercapacitor comprising the electrode and optionally an organic or ionic liquid electrolyte in contact with the electrode.
Nonaqueous Electrical Storage Device
McEwen, Alan B.; Evans, David A.; Blakley, Thomas J.; Goldman, Jay L.
1999-10-26
An electrochemical capacitor is disclosed that features two, separated, high surface area carbon cloth electrodes sandwiched between two current collectors fabricated of a conductive polymer having a flow temperature greater than 130.degree. C., the perimeter of the electrochemical capacitor being sealed with a high temperature gasket to form a single cell device. The gasket material is a thermoplastic stable at temperatures greater than 100.degree. C., preferably a polyester or a polyurethane, and having a reflow temperature above 130.degree. C. but below the softening temperature of the current collector material. The capacitor packaging has good mechanical integrity over a wide temperature range, contributes little to the device equivalent series resistance (ESR), and is stable at high potentials. In addition, the packaging is designed to be easily manufacturable by assembly line methods. The individual cells can be stacked in parallel or series configuration to reach the desired device voltage and capacitance.
Wang, Lei; Wang, Dong; Dong, Xin Yi; Zhang, Zhi Jun; Pei, Xian Feng; Chen, Xin Jiang; Chen, Biao; Jin, Jian
2011-03-28
An innovative strategy of fabricating electrode material by layered assembling two kinds of one-atom-thick sheets, carboxylated graphene oxide (GO) and Co-Al layered double hydroxide nanosheet (Co-Al LDH-NS) for the application as a pseudocapacitor is reported. The Co-Al LDH-NS/GO composite exhibits good energy storage properties.
Metal stub and ceramic body electrode assembly
Rolf, R.L.
1984-05-22
An electrically conductive ceramic electrode body having an opening therein is threadably engaged with a metal stub having at least a slot therein to provide space for expansion of the stub without damage to the electrode body. 3 figs.
2017-01-01
Placing nanowires at the predetermined locations on a substrate represents one of the significant hurdles to be tackled for realization of heterogeneous nanowire systems. Here, we demonstrate spatially-controlled assembly of a single nanowire at the photolithographically recessed region at the electrode gap with high integration yield (~90%). Two popular routes, such as protruding electrode tips and recessed wells, for spatially-controlled nanowire alignment, are compared to investigate long-range dielectrophoretic nanowire attraction and short-range nanowire-nanowire electrostatic interaction for determining the final alignment of attracted nanowires. Furthermore, the post-assembly process has been developed and tested to make a robust electrical contact to the assembled nanowires, which removes any misaligned ones and connects the nanowires to the underlying electrodes of circuit. PMID:29048363
Electroosmotic pump unit and assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shaorong
An electroosmotic pump unit includes at least a first pump element, at least a second pump element, and an electrode. Each pump element includes a tube, an electrically grounded fluid inlet, a fluid outlet electrically coupled to the electrode, and a porous monolith immobilized in the tube and having open pores having net surface charges. When the electrode applies a voltage across the monoliths, a fluid supplied to the first pump element flows through the pump elements in a direction from a fluid inlet of the first pump element toward a fluid outlet of the second pump element. A pluralitymore » of electroosmotic pump units may be connected in series in a pump assembly. The electroosmotic pump unit, or pump assembly, may be connected to an apparatus such as a HPLC.« less
Molecular lego for the assembly of biosensing layers.
Mano, N; Kuhn, A
2005-03-31
We propose a procedure to assemble monolayers of redox mediator, coenzyme, enzyme and stabilizing polyelectrolyte on an electrode surface using essentially electrostatic and complexing interactions. In a first step a monolayer of redox mediator, substituted nitrofluorenones, is adsorbed. In a second step, a layer of calcium cations is immobilized at the interface. It establishes a bridge between the redox mediator and the subsequently adsorbed coenzyme NAD(+). In the next step we use the intrinsic affinity of the NAD(+) monolayer for dehydrogenases to build up a multilayer composed of mediator/Ca(2+)/NAD(+)/dehydrogenase. The so obtained modified electrode can be used as a biosensor. Quartz crystal microbalance measurements allowed us to better understand the different parameters responsible for the adsorption. A more detailed investigation of the system made it possible to finally stabilize the assembly sufficiently by the adsorption of a polyelectrolyte layer in order to perform rotating disk electrode measurements with the whole supramolecular architecture on the electrode surface.
NASA Astrophysics Data System (ADS)
Kou, Liang; Liu, Zheng; Huang, Tieqi; Zheng, Bingna; Tian, Zhanyuan; Deng, Zengshe; Gao, Chao
2015-02-01
Supercapacitors with porous electrodes of graphene macroscopic assembly are supposed to have high energy storage capacity. However, a great number of ``close pores'' in porous graphene electrodes are invalid because electrolyte ions cannot infiltrate. A quick method to prepare porous graphene electrodes with reduced ``close pores'' is essential for higher energy storage. Here we propose a wet-spinning assembly approach based on the liquid crystal behavior of graphene oxide to continuously spin orientational graphene hydrogel films with ``open pores'', which are used directly as binder-free supercapacitor electrodes. The resulting supercapacitor electrodes show better electrochemical performance than those with disordered graphene sheets. Furthermore, three reduction methods including hydrothermal treatment, hydrazine and hydroiodic acid reduction are used to evaluate the specific capacitances of the graphene hydrogel film. Hydrazine-reduced graphene hydrogel film shows the highest capacitance of 203 F g-1 at 1 A g-1 and maintains 67.1% specific capacitance (140 F g-1) at 50 A g-1. The combination of scalable wet-spinning technology and orientational structure makes graphene hydrogel films an ideal electrode material for supercapacitors.Supercapacitors with porous electrodes of graphene macroscopic assembly are supposed to have high energy storage capacity. However, a great number of ``close pores'' in porous graphene electrodes are invalid because electrolyte ions cannot infiltrate. A quick method to prepare porous graphene electrodes with reduced ``close pores'' is essential for higher energy storage. Here we propose a wet-spinning assembly approach based on the liquid crystal behavior of graphene oxide to continuously spin orientational graphene hydrogel films with ``open pores'', which are used directly as binder-free supercapacitor electrodes. The resulting supercapacitor electrodes show better electrochemical performance than those with disordered graphene sheets. Furthermore, three reduction methods including hydrothermal treatment, hydrazine and hydroiodic acid reduction are used to evaluate the specific capacitances of the graphene hydrogel film. Hydrazine-reduced graphene hydrogel film shows the highest capacitance of 203 F g-1 at 1 A g-1 and maintains 67.1% specific capacitance (140 F g-1) at 50 A g-1. The combination of scalable wet-spinning technology and orientational structure makes graphene hydrogel films an ideal electrode material for supercapacitors. Electronic supplementary information (ESI) available: The schematic diagram for fabricating graphene oxide hydrogel films, stress-strain curves and TGA curves of three GHFs, a digital photo of the test device for the two-electrode system, and comparison of the electrochemical performance of our GHF-HZ supercapacitors. See DOI: 10.1039/c4nr07038k
Zhou, Zehang; Panatdasirisuk, Weerapha; Mathis, Tyler S; Anasori, Babak; Lu, Canhui; Zhang, Xinxing; Liao, Zhiwei; Gogotsi, Yury; Yang, Shu
2018-03-29
Free-standing, highly flexible and foldable supercapacitor electrodes were fabricated through the spray-coating assisted layer-by-layer assembly of Ti3C2Tx (MXene) nanoflakes together with multi-walled carbon nanotubes (MWCNTs) on electrospun polycaprolactone (PCL) fiber networks. The open structure of the PCL network and the use of MWCNTs as spacers not only limit the restacking of Ti3C2Tx flakes but also increase the accessible surface of the active materials, facilitating fast diffusion of electrolyte ions within the electrode. Composite electrodes have areal capacitance (30-50 mF cm-2) comparable to other templated electrodes reported in the literature, but showed significantly improved rate performance (14-16% capacitance retention at a scan rate of 100 V s-1). Furthermore, the composite electrodes are flexible and foldable, demonstrating good tolerance against repeated mechanical deformation, including twisting and folding. Therefore, these tens of micron thick fiber electrodes will be attractive for applications in energy storage, electroanalytical chemistry, brain electrodes, electrocatalysis and other fields, where flexible freestanding electrodes with an open and accessible surface are highly desired.
Memory operations in Au nanoparticle single-electron transistors with floating gate electrodes
NASA Astrophysics Data System (ADS)
Azuma, Yasuo; Sakamoto, Masanori; Teranishi, Toshiharu; Majima, Yutaka
2016-11-01
Floating gate memory operations are demonstrated in a single-electron transistor (SET) fabricated by a chemical assembly using the Au nanogap electrodes and the chemisorbed Au nanoparticles. By applying pulse voltages to the control gate, phase shifts were clearly and stably observed both in the Coulomb oscillations and in the Coulomb diamonds. Writing and erasing operations on the floating gate memory were reproducibly observed, and the charges on the floating gate electrodes were maintained for at least 12 h. By considering the capacitance of the floating gate electrode, the number of electrons in the floating gate electrode was estimated as 260. Owing to the stability of the fabricated SET, these writing and erasing operations on the floating gate memory can be applied to reconfigurable SET circuits fabricated by a chemically assembled technique.
Advanced Hybrid Membranes for Next Generation PEMFC Automotive Applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herring, Andrew M; Motz, Andrew R; Kuo, Mei-Chen
The objective of this proposal is to fabricate a low cost high performance hybrid inorganic/polymer membrane that has a proton area specific resistance (ASR) < 0.02 ohm cm2 at the operating temperature of an automotive fuel cell stack (95 - 120°C) at low inlet RH <50% with good mechanical and chemical durability. Additionally the membrane will be optimized for low hydrogen and oxygen crossover with high electrical ASR at all temperatures and adequate proton ASR at lower temperatures. We also seek to gain valuable insights into rapid proton transport at the limit of proton hydration. Additional research will be performedmore » to incorporate the membrane into a 50 cm2 membrane electrode assembly (MEA). The materials at the start of this project are at a TRL of 2, as we have shown that they have proton conductivity under high and dry conditions, but we have not yet consistently shown that they will function in an operational fuel cell. At the project’s end the materials will be at a TRL of 4 and will be integrated into an MEA, demonstrating that they can function with electrodes as a single fuel cell.« less
Hyder, Md Nasim; Lee, Seung Woo; Cebeci, Fevzi Ç; Schmidt, Daniel J; Shao-Horn, Yang; Hammond, Paula T
2011-11-22
Thin film electrodes of polyaniline (PANi) nanofibers and functionalized multiwall carbon nanotubes (MWNTs) are created by layer-by-layer (LbL) assembly for microbatteries or -electrochemical capacitors. Highly stable cationic PANi nanofibers, synthesized from the rapid aqueous phase polymerization of aniline, are assembled with carboxylic acid functionalized MWNT into LbL films. The pH-dependent surface charge of PANi nanofibers and MWNTs allows the system to behave like weak polyelectrolytes with controllable LbL film thickness and morphology by varying the number of bilayers. The LbL-PANi/MWNT films consist of a nanoscale interpenetrating network structure with well developed nanopores that yield excellent electrochemical performance for energy storage applications. These LbL-PANi/MWNT films in lithium cell can store high volumetric capacitance (~238 ± 32 F/cm(3)) and high volumetric capacity (~210 mAh/cm(3)). In addition, rate-dependent galvanostatic tests show LbL-PANi/MWNT films can deliver both high power and high energy density (~220 Wh/L(electrode) at ~100 kW/L(electrode)) and could be promising positive electrode materials for thin film microbatteries or electrochemical capacitors. © 2011 American Chemical Society
Microelectromechanical flow control apparatus
Okandan, Murat [NE Albuquerque, NM
2009-06-02
A microelectromechanical (MEM) flow control apparatus is disclosed which includes a fluid channel formed on a substrate from a first layer of a nonconducting material (e.g. silicon nitride). A first electrode is provided on the first layer of the nonconducting material outside the flow channel; and a second electrode is located on a second layer of the nonconducting material above the first layer. A voltage applied between the first and second electrodes deforms the fluid channel to increase its cross-sectional size and thereby increase a flow of a fluid through the channel. In certain embodiments of the present invention, the fluid flow can be decreased or stopped by applying a voltage between the first electrode and the substrate. A peristaltic pumping of the fluid through the channel is also possible when the voltage is applied in turn between a plurality of first electrodes and the substrate. A MEM flow control assembly can also be formed by providing one or more MEM flow control devices on a common substrate together with a submicron filter. The MEM flow control assembly can optionally include a plurality of pressure sensors for monitoring fluid pressure and determining flow rates through the assembly.
NASA Astrophysics Data System (ADS)
Chanda, Debabrata; Hnát, Jaromir; Bystron, Tomas; Paidar, Martin; Bouzek, Karel
2017-04-01
In this work, the Ni-Co spinel oxides are synthesized via different methods and using different calcination temperatures. Properties of the prepared materials are compared. The best route is selected and used to prepare a Ni1+xCo2-xO4 (-1 ≤ x ≤ 1) series of materials in order to investigate their catalytic activity towards the oxygen evolution reaction (OER). The results show that hydroxide preparation yields NiCo2O4 oxide with the highest activity. 325 °C is identified as the optimum calcination temperature. Subsequently, the catalysts are tested in an electrolysis cell. To prepare an anode catalyst layer based on NiCo2O4 catalyst on top of a nickel foam substrate for membrane electrode assembly (MEA) construction, following polymer binders are used: anion-selective quaternized polyphenylene oxide (qPPO), inert polytetrafluoroethylene (PTFE®), and cation-selective Nafion®. qPPO ionomer containing MEA exhibited highest OER activity. The current density obtained using a MEA containing qPPO binder attains a value of 135 mA cm-2 at a cell voltage of 1.85 V. After 7 h chronopotentiometric experiment at a constant current density of 225 mA cm-2, the MEA employing PTFE® binder shows higher stability than the other binders in alkaline water electrolysis at 50 °C. Under similar conditions, stability of the PTFE®-binding MEA is examined for 135 h.
Optimisation and Characterisation of Anti-Fouling Ternary SAM Layers for Impedance-Based Aptasensors
Miodek, Anna; Regan, Edward M.; Bhalla, Nikhil; Hopkins, Neal A.E.; Goodchild, Sarah A.; Estrela, Pedro
2015-01-01
An aptasensor with enhanced anti-fouling properties has been developed. As a case study, the aptasensor was designed with specificity for human thrombin. The sensing platform was developed on screen printed electrodes and is composed of a self-assembled monolayer made from a ternary mixture of 15-base thiolated DNA aptamers specific for human thrombin co-immobilised with 1,6-hexanedithiol (HDT) and further passivated with 1-mercapto-6-hexanol (MCH). HDT binds to the surface by two of its thiol groups forming alkyl chain bridges and this architecture protects from non-specific attachment of molecules to the electrode surface. Using Electrochemical Impedance Spectroscopy (EIS), the aptasensor is able to detect human thrombin as variations in charge transfer resistance (Rct) upon protein binding. After exposure to a high concentration of non-specific Bovine Serum Albumin (BSA) solution, no changes in the Rct value were observed, highlighting the bio-fouling resistance of the surface generated. In this paper, we present the optimisation and characterisation of the aptasensor based on the ternary self-assembled monolayer (SAM) layer. We show that anti-fouling properties depend on the type of gold surface used for biosensor construction, which was also confirmed by contact angle measurements. We further studied the ratio between aptamers and HDT, which can determine the specificity and selectivity of the sensing layer. We also report the influence of buffer pH and temperature used for incubation of electrodes with proteins on detection and anti-fouling properties. Finally, the stability of the aptasensor was studied by storage of modified electrodes for up to 28 days in different buffers and atmospheric conditions. Aptasensors based on ternary SAM layers are highly promising for clinical applications for detection of a range of proteins in real biological samples. PMID:26426017
Carbon fiber on polyimide ultra-microelectrodes
NASA Astrophysics Data System (ADS)
Gillis, Winthrop F.; Lissandrello, Charles A.; Shen, Jun; Pearre, Ben W.; Mertiri, Alket; Deku, Felix; Cogan, Stuart; Holinski, Bradley J.; Chew, Daniel J.; White, Alice E.; Otchy, Timothy M.; Gardner, Timothy J.
2018-02-01
Objective. Most preparations for making neural recordings degrade over time and eventually fail due to insertion trauma and reactive tissue response. The magnitudes of these responses are thought to be related to the electrode size (specifically, the cross-sectional area), the relative stiffness of the electrode, and the degree of tissue tolerance for the material. Flexible carbon fiber ultra-microelectrodes have a much smaller cross-section than traditional electrodes and low tissue reactivity, and thus may enable improved longevity of neural recordings in the central and peripheral nervous systems. Only two carbon fiber array designs have been described previously, each with limited channel densities due to limitations of the fabrication processes or interconnect strategies. Here, we describe a method for assembling carbon fiber electrodes on a flexible polyimide substrate that is expected to facilitate the construction of high-density recording and stimulating arrays. Approach. Individual carbon fibers were aligned using an alignment tool that was 3D-printed with sub-micron resolution using direct laser writing. Indium deposition on the carbon fibers, followed by low-temperature microsoldering, provided a robust and reliable method of electrical connection to the polyimide interconnect. Main results. Spontaneous multiunit activity and stimulation-evoked compound responses with SNR >10 and >120, respectively, were recorded from a small (125 µm) peripheral nerve. We also improved the typically poor charge injection capacity of small diameter carbon fibers by electrodepositing 100 nm-thick iridium oxide films, making the carbon fiber arrays usable for electrical stimulation as well as recording. Significance. Our innovations in fabrication technique pave the way for further miniaturization of carbon fiber ultra-microelectrode arrays. We believe these advances to be key steps to enable a shift from labor intensive, manual assembly to a more automated manufacturing process.
Carbon fiber on polyimide ultra-microelectrodes.
Gillis, Winthrop F; Lissandrello, Charles A; Shen, Jun; Pearre, Ben W; Mertiri, Alket; Deku, Felix; Cogan, Stuart; Holinski, Bradley J; Chew, Daniel J; White, Alice E; Otchy, Timothy M; Gardner, Timothy J
2018-02-01
Most preparations for making neural recordings degrade over time and eventually fail due to insertion trauma and reactive tissue response. The magnitudes of these responses are thought to be related to the electrode size (specifically, the cross-sectional area), the relative stiffness of the electrode, and the degree of tissue tolerance for the material. Flexible carbon fiber ultra-microelectrodes have a much smaller cross-section than traditional electrodes and low tissue reactivity, and thus may enable improved longevity of neural recordings in the central and peripheral nervous systems. Only two carbon fiber array designs have been described previously, each with limited channel densities due to limitations of the fabrication processes or interconnect strategies. Here, we describe a method for assembling carbon fiber electrodes on a flexible polyimide substrate that is expected to facilitate the construction of high-density recording and stimulating arrays. Individual carbon fibers were aligned using an alignment tool that was 3D-printed with sub-micron resolution using direct laser writing. Indium deposition on the carbon fibers, followed by low-temperature microsoldering, provided a robust and reliable method of electrical connection to the polyimide interconnect. Spontaneous multiunit activity and stimulation-evoked compound responses with SNR >10 and >120, respectively, were recorded from a small (125 µm) peripheral nerve. We also improved the typically poor charge injection capacity of small diameter carbon fibers by electrodepositing 100 nm-thick iridium oxide films, making the carbon fiber arrays usable for electrical stimulation as well as recording. Our innovations in fabrication technique pave the way for further miniaturization of carbon fiber ultra-microelectrode arrays. We believe these advances to be key steps to enable a shift from labor intensive, manual assembly to a more automated manufacturing process.
Miodek, Anna; Regan, Edward M; Bhalla, Nikhil; Hopkins, Neal A E; Goodchild, Sarah A; Estrela, Pedro
2015-09-29
An aptasensor with enhanced anti-fouling properties has been developed. As a case study, the aptasensor was designed with specificity for human thrombin. The sensing platform was developed on screen printed electrodes and is composed of a self-assembled monolayer made from a ternary mixture of 15-base thiolated DNA aptamers specific for human thrombin co-immobilised with 1,6-hexanedithiol (HDT) and further passivated with 1-mercapto-6-hexanol (MCH). HDT binds to the surface by two of its thiol groups forming alkyl chain bridges and this architecture protects from non-specific attachment of molecules to the electrode surface. Using Electrochemical Impedance Spectroscopy (EIS), the aptasensor is able to detect human thrombin as variations in charge transfer resistance (Rct) upon protein binding. After exposure to a high concentration of non-specific Bovine Serum Albumin (BSA) solution, no changes in the Rct value were observed, highlighting the bio-fouling resistance of the surface generated. In this paper, we present the optimisation and characterisation of the aptasensor based on the ternary self-assembled monolayer (SAM) layer. We show that anti-fouling properties depend on the type of gold surface used for biosensor construction, which was also confirmed by contact angle measurements. We further studied the ratio between aptamers and HDT, which can determine the specificity and selectivity of the sensing layer. We also report the influence of buffer pH and temperature used for incubation of electrodes with proteins on detection and anti-fouling properties. Finally, the stability of the aptasensor was studied by storage of modified electrodes for up to 28 days in different buffers and atmospheric conditions. Aptasensors based on ternary SAM layers are highly promising for clinical applications for detection of a range of proteins in real biological samples.
Nanoengineered membrane electrode assembly interface
Song, Yujiang; Shelnutt, John A
2013-08-06
A membrane electrode structure suitable for use in a membrane electrode assembly (MEA) that comprises membrane-affixed metal nanoparticles whose formation is controlled by a photochemical process that controls deposition of the metal nanoparticles using a photocatalyst integrated with a polymer electrolyte membrane, such as an ionomer membrane. Impregnation of the polymer membrane with the photocatalyst prior to metal deposition greatly reduces the required amount of metal precursor in the deposition reaction solution by restricting metal reduction substantially to the formation of metal nanoparticles affixed on or near the surface of the polymer membrane with minimal formation of metallic particles not directly associated with the membrane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinbach, Andrew
2017-05-31
The primary project objective was development of improved polymer electrolyte membrane fuel cell (PEMFC) membrane electrode assemblies (MEAs) which address the key DOE barriers of performance, durability and cost. Additional project objectives were to address commercialization barriers specific to MEAs comprising 3M nanostructured thin film (NSTF) electrodes, including a larger-than-acceptable sensitivity to operating conditions, an unexplained loss of rated power capability with operating time, and slow break-in conditioning. Significant progress was made against each of these barriers, and most DOE 2020 targets were met or substantially approached.
Sarker, Ashis K; Hong, Jong-Dal
2012-08-28
Multilayer assemblies of uniform ultrathin film electrodes with good electrical conductivity and very large surface areas were prepared for use as electrochemical capacitors. A layer-by-layer self-assembly approach was employed in an effort to improve the processability of highly conducting polyaniline (PANi) and chemically modified graphene. The electrochemical properties of the multilayer film (MF-) electrodes, including the sheet resistance, volumetric capacitance, and charge/discharge ratio, were determined by the morphological modification and the method used to reduce the graphene oxide (GO) to reduced graphene oxide (RGO) in the multilayer films. The PANi and GO concentrations could be modulated to control the morphology of the GO monolayer film in the multilayer assemblies. Optical ellipsometry was used to determine the thickness of the GO film in a single layer (1.32 nm), which agreed well with the literature value (~1.3 nm). Hydroiodic acid (HI), hydrazine, or pyrolysis were tested for the reduction of GO to RGO. HI was found to be the most efficient technique for reducing the GO to RGO in the multilayer assemblies while minimizing damage to the virgin state of the acid-doped PANi. Ultimately, the MF-electrode, which could be optimized by fine-tuning the nanostructure and selecting a suitable reduction method, exhibited an excellent volumetric capacitance, good cycling stability, and a rapid charge/discharge rate, which are required for supercapacitors. A MF-electrode composed of 15 PANi/RGO bilayers yielded a volumetric capacitance of 584 F/cm(3) at a current density of 3.0 A/cm(3). Although this value decreased exponentially as the current density increased, approaching a value of 170 F/cm(3) at 100 A/cm(3), this volumetric capacitance is one of the best yet reported for the other carbon-based materials. The intriguing features of the MF-electrodes composed of PANi/RGO multilayer films offer a new microdimensional design for high energy storage devices for use in small portable electronic devices.
Nanoporous carbon-based electrodes for high strain ionomeric bending actuators
NASA Astrophysics Data System (ADS)
Palmre, Viljar; Brandell, Daniel; Mäeorg, Uno; Torop, Janno; Volobujeva, Olga; Punning, Andres; Johanson, Urmas; Kruusmaa, Maarja; Aabloo, Alvo
2009-09-01
Ionic polymer metal composites (IPMCs) are electroactive material devices that bend at low applied voltage (1-4 V). Inversely, a voltage is generated when the materials are deformed, which makes them useful both as sensors and actuators. In this paper, we propose two new highly porous carbon materials as electrodes for IPMC actuators, generating a high specific area, and compare their electromechanical performance with recently reported RuO2 electrodes and conventional IPMCs. Using a direct assembly process (DAP), we synthesize ionic liquid (Emi-Tf) actuators with either carbide-derived carbon (CDC) or coconut-shell-based activated carbon-based electrodes. The carbon electrodes were applied onto ionic liquid-swollen Nafion membranes using a direct assembly process. The study demonstrates that actuators based on carbon electrodes derived from TiC have the greatest peak-to-peak strain output, reaching up to 20.4 mɛ (equivalent to>2%) at a 2 V actuation signal, exceeding that of the RuO2 electrodes by more than 100%. The electrodes synthesized from TiC-derived carbon also exhibit significantly higher maximum strain rate. The differences between the materials are discussed in terms of molecular interactions and mechanisms upon actuation in the different electrodes.
Electrochemical responses on self-assembled monolayer (SAM)-coated polycrystalline gold electrodes were investigated using cyclic voltammetry and square wave voltammetry with a three electrode system. Experimental results show potential in the application of pyrene-imprinted SAM...
Kim, Yu Seung [Los Alamos, NM; Choi, Jong-Ho [Los Alamos, NM; Zelenay, Piotr [Los Alamos, NM
2009-08-18
A method of removing contaminants from a fuel cell catalyst electrode. The method includes providing a getter electrode and a fuel cell catalyst electrode having at least one contaminant to a bath and applying a voltage sufficient to drive the contaminant from the fuel cell catalyst electrode to the getter electrode. Methods of removing contaminants from a membrane electrode assembly of a fuel cell and of improving performance of a fuel cell are also provided.
Zhang, Yan; Xiao, Jian; Lv, Qiying; Wang, Lu; Dong, Xulin; Asif, Muhammad; Ren, Jinghua; He, Wenshan; Sun, Yimin; Xiao, Fei; Wang, Shuai
2017-11-08
In this work, we develop a new type of freestanding nanohybrid paper electrode assembled from 3D ionic liquid (IL) functionalized graphene framework (GF) decorated by gold nanoflowers (AuNFs), and explore its practical application in in situ electrochemical sensing of live breast cell samples by real-time tracking biomarker H 2 O 2 released from cells. The AuNFs modified IL functionalized GF (AuNFs/IL-GF) was synthesized via a facile and efficient dopamine-assisted one-pot self-assembly strategy. The as-obtained nanohybrid assembly exhibits a typical 3D hierarchical porous structure, where the highly active electrocatalyst AuNFs are well dispersed on IL-GF scaffold. And the graft of hydrophilic IL molecules (i.e., 1-butyl-3-methylimidazolium tetrafluoroborate, BMIMBF 4 ) on graphene nanosheets not only avoids their agglomeration and disorder stacking during the self-assembly but also endows the integrated IL-GF monolithic material with unique hydrophilic properties, which enables it to be readily dispersed in aqueous solution and processed into freestanding paperlike material. Because of the unique structural properties and the combinational advantages of different components in the AuNFs/IL-GF composite, the resultant nanohybrid paper electrode exhibits good nonenzymatic electrochemical sensing performance toward H 2 O 2 . When used in real-time tracking H 2 O 2 secreted from different breast cells attached to the paper electrode without or with radiotherapy treatment, the proposed electrochemical sensor based on freestanding AuNFs/IL-GF paper electrode can distinguish the normal breast cell HBL-100 from the cancer breast cells MDA-MB-231 and MCF-7 cells, and assess the radiotherapy effects to different breast cancer cells, which opens a new horizon in real-time monitoring cancer cells by electrochemical sensing platform.
NASA Astrophysics Data System (ADS)
Khoshtariya, Dimitri E.; Dolidze, Tinatin D.; Tretyakova, Tatyana; van Eldik, Rudi
2015-06-01
It has been suggested that electron transfer (ET) processes occurring in complex environments capable of glass transitions, specifically in biomolecules, under certain conditions may experience the medium’s nonlinear response and nonergodic kinetic patterns. The interiors of self-assembled organic films (SAMs) deposited on solid conducting platforms (electrodes) are known to undergo glassy dynamics as well, hence they may also exhibit the abovementioned ‘irregularities’. We took advantage of Cu2+ ions as redox-active probes trapped in the Au-deposited -COOH-terminated SAMs, either L-cysteine, or 3-mercaptopropionic acid diluted by the inert 2-mercaptoethanol, to systematically study the impact of glassy dynamics on ET using the fast-scan voltammetry technique and its temperature and high-pressure extensions. We found that respective kinetic data can be rationalized within the extended Marcus theory, taking into account the frictionally controlled (adiabatic) mechanism for short-range ET, and complications due to the medium’s nonlinear response and broken ergodicity. This combination shows up in essential deviations from the conventional energy gap (overpotential) dependence and in essentially nonlinear temperature (Arrhenius) and high-pressure patterns, respectively. Biomimetic aspects for these systems are also discussed in the context of recently published results for interfacial ET involving self-assembled blue copper protein (azurin) placed in contact with a glassy environment.
Na/beta-alumina/NaAlCl4, Cl2/C circulating cell
NASA Technical Reports Server (NTRS)
Cherng, Jing-Yih; Bennion, Douglas N.
1987-01-01
A study was made of a high specific energy battery based on a sodium negative electrode and a chlorine positive electrode with molten AlCl3-NaCl electrolyte and a solid beta alumina separator. The basic performance of a Na beta-alumina NaAlCl4, Cl2/C circulating cell at 200 C was demonstrated. This cell can be started at 150 C. The use of melting sodium chloroaluminate electrolyte overcomes some of the material problems associated with the high working temperatures of present molten salt systems, such as Na/S and LiAl/FeS, and retains the advantages of high energy density and relatively efficient electrode processes. Preliminary investigations were conducted on a sodium-chlorine static cell, material compability, electrode design, wetting, and theoretical calculations to assure a better chance of success before assembling a Na/Cl2 circulating cell. Mathematical models provide a theoretical explanation for the performance of the NaCl2 battery. The results of mathematical models match the experimental results very well. According to the result of the mathematical modeling, an output at 180 mA/sq cm and 3.2 V can be obtained with optimized cell design.
Simulation Study on the Controllable Dielectrophoresis Parameters of Graphene
NASA Astrophysics Data System (ADS)
Ji, Jian-Long; Liu, Ya-Li; Ge, Yang; Xie, Sheng-Dong; Zhang, Xi; Sang, Sheng-Bo; Jian, Ao-Qun; Duan, Qian-Qian; Zhang, Qiang; Zhang, Wen-Dong
2017-03-01
The method of using dielectrophoresis (DEP) to assemble graphene between micro-electrodes has been proven to be simple and efficient. We present an optimization method for the kinetic formula of graphene DEP, and discuss the simulation of the graphene assembly process based on the finite element method. The simulated results illustrate that the accelerated motion of graphene is in agreement with the distribution of the electric field squared gradient. We also conduct research on the controllable parameters of the DEP assembly such as the alternating current (AC) frequency, the shape of micro-electrodes, and the ratio of the gap between electrodes to the characteristic/geometric length of graphene (λ). The simulations based on the Clausius-Mossotti factor reveal that both graphene velocity and direction are influenced by the AC frequency. When graphene is close to the electrodes, the shape of micro-electrodes will exert great influence on the velocity of graphene. Also, λ has a great influence on the velocity of graphene. Generally, the velocity of graphene would be greater when λ is in the range of 0.4-0.6. The study is of a theoretical guiding significance in improving the precision and efficiency of the graphene DEP assembly. Supported by the Basic Research Project of Shanxi Province under Grant No 2015021092, the National Natural Science Foundation of China under Grant Nos 61471255, 61474079, 61501316, 51505324 and 51622507, and the National High-Technology Research and Development Program of China under Grant No 2015AA042601.
NASA Astrophysics Data System (ADS)
Zhang, Zhenbao; Wang, Jian; Chen, Yubo; Tan, Shaozao; Shao, Zongping; Chen, Dengjie
2018-05-01
BaZrxCeyY1-x-yO3-δ are recognized proton-conducting electrolyte materials for proton-conducting solid oxide fuel cells (H+-SOFCs) below 650 °C. Here Co cations are incorporated into the BaZr0.4Ce0.4Y0.2O3-δ (BZCY) scaffold to generate a 3D core-shell and triple-conducting (H+/O2-/e-) electrode in situ via infiltrating and reactive sintering. The core is the bulk BZCY scaffold, while the shell is composed of the cubic Ba(Zr0.4Ce0.4Y0.2)1-xCoxO3-δ, cubic spinel Co3O4 and cubic fluorite (Ce, Zr, Y)O2. The obtained electrode exhibits an excellent compatibility with the BZCY electrolyte, and performs well in yielding a low and stable polarization resistance for oxygen reduction reaction for intermediate-temperature H+-SOFCs. In particular, it achieves polarization resistances as low as 0.094 and 0.198 Ω cm2 at 650 and 600 °C in wet air (3% H2O) when the sintering temperature for the electrode is 900 °C. In addition, a symmetrical cell also exhibits operation stability of 70 h at 650 °C. Furthermore, a fuel cell assembled with the 3D core-shell and triple-conducting electrode delivers a peak power density of ∼330 mW cm-2 at 650 °C. The substantially improved electrochemical performance and high stability are ascribed to the unique core-shell structure and the formation of Ba(Zr0.4Ce0.4Y0.2)1-xCoxO3-δ in the shell.
Frangible electrochemical cell and sealing technique
NASA Technical Reports Server (NTRS)
Halpert, G.; Haynos, J.; Sherfey, J.
1969-01-01
Electrochemical cell assembly, which includes a positive electrode plate between two negative electrode plates, is both flexible and compact, and frangible under severe shock conditions. Leak-tight integrity of the housing is maintained by polymer-to-polymer fusion bonds through holes in the expanded metal electrode terminals.
Temperature changes in dental implants following exposure to hot substances in an ex vivo model.
Feuerstein, Osnat; Zeichner, Kobi; Imbari, Chen; Ormianer, Zeev; Samet, Nachum; Weiss, Ervin I
2008-06-01
The habitual consumption of extremely hot foods and beverages may affect implant treatment modality. Our objectives were to: (i) establish the maximum temperature produced intra-orally while consuming very hot substances and (ii) use these values in an ex vivo model to assess the temperature changes along the implant-bone interface. Temperatures were measured using thermocouples linked to a computer. The thermocouple electrodes were attached to the tooth-gum interface of the interproximal areas in 14 volunteers during consumption of extremely hot foods and beverages. The in vivo measured temperature values obtained were used in an ex vivo model of a bovine mandible block with an implant and with an assembled abutment. Temperatures were measured by thermocouple electrodes attached to five locations, three of them along the implant-bone interface. During consumption of a hot beverage, a maximum temperature of up to 76.3 degrees C was recorded, and a calculated extreme intra-oral temperature of 61.4 degrees C was established. The ex vivo model showed a high correlation between the temperature measured at the abutment and that measured at the abutment-implant interface and inside the implant, reaching maximum temperatures close to 60 degrees C. At the mid-implant-bone and apical implant-bone interfaces, the maximum temperatures measured were 43.3 and 42 degrees C, respectively. The maximum temperatures measured at the implant-bone interfaces reached the temperature threshold of transient changes in bone (42 degrees C). The results of this study support the notion that intra-oral temperatures, developed during the consumption of very hot substances, may be capable of damaging peri-implant tissues.
Layer-by-Layer Assembly of Glucose Oxidase on Carbon Nanotube Modified Electrodes.
Suroviec, Alice H
2017-01-01
The use of enzymatically modified electrodes for the detection of glucose or other non-electrochemically active analytes is becoming increasingly common. Direct heterogeneous electron transfer to glucose oxidase has been shown to be kinetically difficult, which is why electron transfer mediators or indirect detection is usually used for monitoring glucose with electrochemical sensors. It has been found, however, that electrodes modified with single or multi-walled carbon nanotubes (CNTs) demonstrate fast heterogeneous electron transfer kinetics as compared to that found for traditional electrodes. Incorporating CNTs into the assembly of electrochemical glucose sensors, therefore, affords the possibility of facile electron transfer to glucose oxidase, and a more direct determination of glucose. This chapter describes the methods used to use CNTs in a layer-by-layer structure along with glucose oxidase to produce an enzymatically modified electrode with high turnover rates, increased stability and shelf-life.
Circadian Rhythm Control: Neurophysiological Investigations
NASA Technical Reports Server (NTRS)
Glotzbach, S. F.
1985-01-01
The suprachiasmatic nucleus (SCN) was implicated as a primary component in central nervous system mechanisms governing circadian rhythms. Disruption of the normal synchronization of temperature, activity, and other rhythms is detrimental to health. Sleep wake disorders, decreases in vigilance and performance, and certain affective disorders may result from or be exacerbated by such desynchronization. To study the basic neurophysiological mechanisms involved in entrainment of circadian systems by the environment, Parylene-coated, etched microwire electrode bundles were used to record extracellular action potentials from the small somata of the SCN and neighboring hypothalamic nuclei in unanesthetized, behaving animals. Male Wistar rats were anesthetized and chronically prepared with EEG ane EMG electrodes in addition to a moveable microdrive assembly. The majority of cells had firing rates 10 Hz and distinct populations of cells which had either the highest firing rate or lowest firing rate during sleep were seen.
NASA Astrophysics Data System (ADS)
Jeong, Inho; Song, Hyunwook
2017-11-01
In this study, we fabricated and characterized graphene/molecule/graphene (GMG) vertical junctions with aryl alkane monolayers. The constituent molecules were chemically self-assembled via electrophilic diazonium reactions into a monolayer on the graphene bottom electrode, while the other end physically contacted the graphene top electrode. A full understanding of the transport properties of molecular junctions is a key step in the realization of molecular-scale electronic devices and requires detailed microscopic characterization of the junction's active region. Using a multiprobe approach combining a variety of transport techniques, we elucidated the transport mechanisms and electronic structure of the GMG junctions, including temperature- and length-variable transport measurements, and transition voltage spectroscopy. These results provide criteria to establish a valid molecular junction and to determine the most probable transport characteristics of the GMG junctions.
NASA Astrophysics Data System (ADS)
Pang, Huan; Wang, Shaomei; Shao, Weifang; Zhao, Shanshan; Yan, Bo; Li, Xinran; Li, Sujuan; Chen, Jing; Du, Weimin
2013-06-01
Ultrathin cobalt phosphate (CoHPO4.3H2O) nanosheets are successfully synthesized by a one pot hydrothermal method. Novel CoHPO4.3H2O ultrathin nanosheets are assembled for constructing the electrodes of supercapacitors. Benefiting from the nanostructures, the as-prepared electrode shows a specific capacitance of 413 F g-1, and no obvious decay even after 3000 charge-discharge cycles. Such a quasi-two-dimensional material is a new kind of supercapacitor electrode material with high performance.Ultrathin cobalt phosphate (CoHPO4.3H2O) nanosheets are successfully synthesized by a one pot hydrothermal method. Novel CoHPO4.3H2O ultrathin nanosheets are assembled for constructing the electrodes of supercapacitors. Benefiting from the nanostructures, the as-prepared electrode shows a specific capacitance of 413 F g-1, and no obvious decay even after 3000 charge-discharge cycles. Such a quasi-two-dimensional material is a new kind of supercapacitor electrode material with high performance. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01460f
Lin, Donghai; Tang, Thompson; Jed Harrison, D; Lee, William E; Jemere, Abebaw B
2015-06-15
We report on the development of a regenerable sensitive immunosensor based on electrochemical impedance spectroscopy for the detection of type 5 adenovirus. The multi-layered immunosensor fabrication involved successive modification steps on gold electrodes: (i) modification with self-assembled layer of 1,6-hexanedithiol to which gold nanoparticles were attached via the distal thiol groups, (ii) formation of self-assembled monolayer of 11-mercaptoundecanoic acid onto the gold nanoparticles, (iii) covalent immobilization of monoclonal anti-adenovirus 5 antibody, with EDC/NHS coupling reaction on the nanoparticles, completing the immunosensor. The immunosensor displayed a very good detection limit of 30 virus particles/ml and a wide linear dynamic range of 10(5). An electrochemical reductive desorption technique was employed to completely desorb the components of the immunosensor surface, then re-assemble the sensing layer and reuse the sensor. On a single electrode, the multi-layered immunosensor could be assembled and disassembled at least 30 times with 87% of the original signal intact. The changes of electrode behavior after each assembly and desorption processes were investigated by cyclic voltammetry, electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy techniques. Copyright © 2014 Elsevier B.V. All rights reserved.
Electrochemical double-layer capacitors based on functionalized graphene
NASA Astrophysics Data System (ADS)
Pope, Michael Allan
Graphene is a promising electrode material for electrochemical double-layer capacitors (EDLCs) used for energy storage due to its high electrical conductivity and theoretical specific surface area. However, the intrinsic capacitance of graphene is known to be low and governed by the electronic side of the interface. Furthermore, graphene tends to aggregate and stack together when processed into thick electrode films. This significantly lowers the ion-accessible specific surface area (SSA). Maximizing both the SSA and the intrinsic capacitance are the main problems addressed in this thesis in an effort to improve the specific capacitance and energy density of EDLCs. In contrast to pristine graphene, functionalized graphene produced by the thermal exfoliation of graphite oxide contains residual functional groups and lattice defects. To study how these properties affect the double-layer capacitance, a model electrode system capable of measuring the intrinsic electrochemical properties of functionalized graphene was developed. To prevent artifacts and uncertainties related to measurements on porous electrodes, the functionalized graphene sheets (FGSs) were assembled as densely tiled monolayers using a Langmuir-Blodgett technique. In this way, charging can be studied in a well-defined 2D geometry. The possibility of measuring and isolating the intrinsic electrochemical properties of FGS monolayers was first demonstrated by comparing capacitance and redox probe measurements carried out on coatings deposited on passivated gold and single crystal graphite substrates. This monolayer system was then used to follow the double-layer capacitance of the FGS/electrolyte interface as the structure and chemistry of graphene was varied by thermal treatments ranging from 300 °C to 2100 °C. Elemental analysis and Raman spectroscopy were used to determine the resulting chemical and structural transformation upon heat treatment. It was demonstrated that intrinsically defective graphene monolayers can exhibit four-fold higher double-layer capacitance than pristine graphene. High temperature annealing lowered the capacitance until it approached that of pristine graphene. An optimal level of functionalization and lattice disorder is found necessary to retain high double-layer capacitance suggesting that graphene-based materials can be chemically tailored to engineer higher capacitance electrodes. The second half of this thesis focuses on understanding the factors that control the SSA of FGS aggregates when processed into dense electrodes and the development of a new electrode fabrications strategy to improve the ion-accessible surface area of FGS-based electrodes. Using various processing conditions, it was demonstrated that aggregates can exhibit a wide range of SSAs (1 m 2/g to 1750 m2/g) accessible to the adsorption of nitrogen or methylene blue. The effects of capillary forces, van der Waals interactions and aggregation kinetics on the SSA were explored and an aggregation model was proposed to account for these effects. In order to minimize aggregation, a new strategy for preparing graphene-based electrodes for EDLCs was developed. Colloidal gels of graphene oxide in a water-ethanol-ionic liquid solution were assembled into graphene-ionic liquid laminated structures. Our process involves evaporating the solvents water and ethanol yielding a graphene oxide/ionic liquid composite, followed by thermal reduction of the graphene oxide to electrically conducting functionalized graphene. This yields an electrode in which the ionic liquid serves not only as the working electrolyte but also as a spacer to separate the graphene sheets and to increase their electrolyte-accessible surface area. Using this approach, we achieve an outstanding energy density of 17.5 Wh/kg at a gravimetric capacitance of 156 F/g and 3 V operating voltage, due to a high effective density of the active electrode material of 0.46 g/cm2. By increasing the ionic liquid content and degree of thermal reduction, we obtain electrodes that retain >90% of their capacity at a scan rate of 500 mV/s, illustrating that we can tailor the electrodes towards higher power density if energy density is not the primary goal. The ease of manufacturing, achieved by combining the steps of electrode assembly and electrolyte infiltration, makes this bottom-up assembly approach scalable and well suited for combinations of potentially any graphene material with ionic liquid electrolytes.
Hays, Kevin A.; Ruther, Rose E.; Kukay, Alexander J.; ...
2018-03-04
Lithium substituted polyacrylic acid (LiPAA) has previously been demonstrated as a superior binder over polyacrylic acid (PAA) for Si anodes, but from where does this enhanced performance arise? In this paper, full cells are assembled with PAA and LiPAA based Si-graphite composite anodes that dried at temperatures from 100 °C to 200 °C. The performance of full cells containing PAA based Si-graphite anodes largely depend on the secondary drying temperature, as decomposition of the binder is correlated to increased electrode moisture and a rise in cell impedance. Full cells containing LiPAA based Si-graphite composite electrodes display better Coulombic efficiency thanmore » those with PAA, because of the electrochemical reduction of the PAA binder. This is identified by attenuated total reflectance Fourier transform infrared spectrometry and observed gassing during the electrochemical reaction. Finally, Coulombic losses from the PAA and Si SEI, along with depletion of the Si capacity in the anode results in progressive underutilization of the cathode and full cell capacity loss.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hays, Kevin A.; Ruther, Rose E.; Kukay, Alexander J.
Lithium substituted polyacrylic acid (LiPAA) has previously been demonstrated as a superior binder over polyacrylic acid (PAA) for Si anodes, but from where does this enhanced performance arise? In this paper, full cells are assembled with PAA and LiPAA based Si-graphite composite anodes that dried at temperatures from 100 °C to 200 °C. The performance of full cells containing PAA based Si-graphite anodes largely depend on the secondary drying temperature, as decomposition of the binder is correlated to increased electrode moisture and a rise in cell impedance. Full cells containing LiPAA based Si-graphite composite electrodes display better Coulombic efficiency thanmore » those with PAA, because of the electrochemical reduction of the PAA binder. This is identified by attenuated total reflectance Fourier transform infrared spectrometry and observed gassing during the electrochemical reaction. Finally, Coulombic losses from the PAA and Si SEI, along with depletion of the Si capacity in the anode results in progressive underutilization of the cathode and full cell capacity loss.« less
Liu, Di-Jia; Yang, Junbing
2010-07-20
A method of making a membrane electrode assembly (MEA) having an anode and a cathode and a proton conductive membrane there between. A bundle of longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated in the nanotubes forms at least one portion of the MEA and is in contact with the membrane. A combination selected from one or more of a hydrocarbon and an organometallic compound containing an catalytically active transition metal and a nitrogen containing compound and an inert gas and a reducing gas is introduced into a first reaction zone maintained at a first reaction temperature for a time sufficient to vaporize material therein. The vaporized material is transmitted to a second reaction zone maintained at a second reaction temperature for a time sufficient to grow longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated throughout the nanotubes. The nanotubes are in contact with a portion of the MEA at production or being positioned in contact thereafter. Methods of forming a PEMFC are also disclosed.
NASA Astrophysics Data System (ADS)
Hengge, K.; Heinzl, C.; Perchthaler, M.; Varley, D.; Lochner, T.; Scheu, C.
2017-10-01
The work in hand presents an electron microscopy based in-depth study of micro- and nanoscale degradation processes that take place during the operation of high-temperature polymer-electrolyte-membrane fuel cells (HT-PEMFCs). Carbon supported Pt particles were used as cathodic catalyst material and the bimetallic, carbon supported Pt/Ru system was applied as anode. As membrane, cross-linked polybenzimidazole was used. Scanning electron microscopy analysis of cross-sections of as-prepared and long-term operated membrane-electrode-assemblies revealed insight into micrometer scale degradation processes: operation-caused catalyst redistribution and thinning of the membrane and electrodes. Transmission electron microscopy investigations were performed to unravel the nanometer scale phenomena: a band of Pt and Pt/Ru nanoparticles was detected in the membrane adjacent to the cathode catalyst layer. Quantification of the elemental composition of several individual nanoparticles and the overall band area revealed that they stem from both anode and cathode catalyst layers. The results presented do not demonstrate any catastrophic failure but rather intermediate states during fuel cell operation and indications to proceed with targeted HT-PEMFC optimization.
NASA Astrophysics Data System (ADS)
Hays, Kevin A.; Ruther, Rose E.; Kukay, Alexander J.; Cao, Pengfei; Saito, Tomonori; Wood, David L.; Li, Jianlin
2018-04-01
Lithium substituted polyacrylic acid (LiPAA) has previously been demonstrated as a superior binder over polyacrylic acid (PAA) for Si anodes, but from where does this enhanced performance arise? In this study, full cells are assembled with PAA and LiPAA based Si-graphite composite anodes that dried at temperatures from 100 °C to 200 °C. The performance of full cells containing PAA based Si-graphite anodes largely depend on the secondary drying temperature, as decomposition of the binder is correlated to increased electrode moisture and a rise in cell impedance. Full cells containing LiPAA based Si-graphite composite electrodes display better Coulombic efficiency than those with PAA, because of the electrochemical reduction of the PAA binder. This is identified by attenuated total reflectance Fourier transform infrared spectrometry and observed gassing during the electrochemical reaction. Coulombic losses from the PAA and Si SEI, along with depletion of the Si capacity in the anode results in progressive underutilization of the cathode and full cell capacity loss.
Low-Noise Implantable Electrode
NASA Technical Reports Server (NTRS)
Lund, G. F.
1982-01-01
New implantable electrocardiogram electrode much less sensitive than previous designs to spurious biological potentials. Designed in novel "pocket" configuration, new electrode is intended as sensor for radiotelemetry of biological parameters in experiments on unrestrained subjects. Electrode is esentially squashed cylinder that admits body fluid into interior. Cylinder and electrical lead are made of stainless steel. Spot welding and crimping are used for assembly, rather than soldering.
Current collectors for improved safety
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdelmalak, Michael Naguib; Allu, Srikanth; Dudney, Nancy J.
A battery electrode assembly includes a current collector with conduction barrier regions having a conductive state in which electrical conductivity through the conduction barrier region is permitted, and a safety state in which electrical conductivity through the conduction barrier regions is reduced. The conduction barrier regions change from the conductive state to the safety state when the current collector receives a short-threatening event. An electrode material can be connected to the current collector. The conduction barrier regions can define electrical isolation subregions. A battery is also disclosed, and methods for making the electrode assembly, methods for making a battery, andmore » methods for operating a battery.« less
Chickneyan, Zarui Sara; Briseno, Alejandro L; Shi, Xiangyang; Han, Shubo; Huang, Jiaxing; Zhou, Feimeng
2004-07-01
An approach to producing films of nanometer-sized copper oxide particulates, based on polyelectrolyte-mediated assembly of the precursor, copper(II)phthalocyanine tetrasulfonate (CPTS), is described. Multilayered CPTS and polydiallyldimethylammonium chloride (PDADMAC) were alternately assembled on different planar substrates via the layer-by-layer (LbL) procedure. The growth of CPTS multilayers was monitored by UV-visible spectrometry and quartz crystal microbalance (QCM) measurements. Both the UV-visible spectra and the QCM data showed that a fixed amount of CPTS could be attached to the substrate surface for a given adsorption cycle. Cyclic voltammograms at the CPTS/PDADMAC-covered gold electrode exhibited a decrease in peak currents with the layer number, indicating that the permeability of CPTS multilayers on the electrodes had diminished. When these CPTS multilayered films were calcined at elevated temperatures, uniform thin films composed of nanoparticulate copper oxide could be produced. Ellipsometry showed that the thickness of copper oxide nanoparticulate films could be precisely tailored by varying the thickness of CPTS multilayer films. The morphology and roughness of CPTS multilayer and copper oxide thin films were characterized by atomic force microscopy. X-ray diffraction (XRD) measurements indicated that these thin films contained both CuO and Cu2O nanoparticles. The preparation of such copper oxide thin films with the use of metal complex precursors represents a new route for the synthesis of inorganic oxide films with a controlled thickness.
A three-dimensional reticulate CNT-aerogel for a high mechanical flexibility fiber supercapacitor.
Li, Yong; Kang, Zhuo; Yan, Xiaoqin; Cao, Shiyao; Li, Minghua; Guo, Yan; Huan, Yahuan; Wen, Xiaosong; Zhang, Yue
2018-05-17
In recent years, the rapid development of portable and wearable electronic products has promoted the prosperity of fiber supercapacitors (FSCs), which serve as flexible and lightweight energy supply devices. However, research on FSCs is still in its infancy and the energy density of FSCs is far below the level of lithium-ion batteries. Here, we report a facile method to prepare a novel fibrous CNT-aerogel by electrochemical activation and freeze-drying. The fibrous CNT-aerogel electrode possesses a large specific surface area, high mechanical strength, excellent electrical conductivity, as well as a high specific capacitance of 160.8 F g-1 at 0.5 mA and long cycling stability. Then we assembled a non-faradaic FSC based on a fibrous CNT-aerogel as the electrode and a P(VDF-HFP)/EMIMBF4 ionogel as the electrolyte. The introduction of the ionogel electrolyte increases the operating voltage of the FSC to 3 V, and makes the device combine the intrinsic high power density (27.3 kW kg-1) of non-faradaic SCs with an ultrahigh energy density of 29.6 W h kg-1. More importantly, the assembled FSCs show excellent flexibility and bending-stability, and can still operate normally within a wide working temperature window (0-80 °C). The outstanding electrochemical performance and the mechanical/thermal stability indicate that the assembled FSC device is a promising power source for flexible electronics.
Grot, Stephen Andreas
1998-01-01
A PEM/SPE fuel cell including a membrane-electrode assembly (MEA) having a plurality of oriented filament embedded the face thereof for supporting the MEA and conducting current therefrom to contiguous electrode plates.
Assembly of photo-bioelectrochemical cells using photosystem I-functionalized electrodes
NASA Astrophysics Data System (ADS)
Efrati, Ariel; Lu, Chun-Hua; Michaeli, Dorit; Nechushtai, Rachel; Alsaoub, Sabine; Schuhmann, Wolfgang; Willner, Itamar
2016-02-01
The design of photo-bioelectrochemical cells based on native photosynthetic reaction centres is attracting substantial recent interest as a means for the conversion of solar light energy into electrical power. In the natural photosynthetic apparatus, the photosynthetic reaction centres are coupled to biocatalytic transformations leading to CO2 fixation and O2 evolution. Although significant progress in the integration of native photosystems with electrodes for light-to-electrical energy conversion has been achieved, the conjugation of the photosystems to enzymes to yield photo-bioelectrocatalytic solar cells remains a challenge. Here we demonstrate the assembly of integrated photosystem I/glucose oxidase or glucose dehydrogenase photo-bioelectrochemical electrodes. We highlight the photonic wiring of the biocatalysts by means of photosystem I using glucose as fuel. Our results provide a general approach to assemble photo-bioelectrochemical solar cells with wide implications for solar energy conversion, bioelectrocatalysis and sensing.
One-Piece Battery Incorporating A Circulating Fluid Type Heat Exchanger
Verhoog, Roelof
2001-10-02
A one-piece battery comprises a tank divided into cells each receiving an electrode assembly, closure means for the tank and a circulating fluid type heat exchanger facing the relatively larger faces of the electrode assembly. The fluid flows in a compartment defined by two flanges which incorporate a fluid inlet orifice communicating with a common inlet manifold and a fluid outlet orifice communicating with a common outlet manifold. The tank comprises at least two units and each unit comprises at least one cell delimited by walls. The wall facing a relatively larger face of the electrode assembly constitutes one of the flanges. Each unit further incorporates a portion of an inlet and outlet manifold. The units are fastened together so that the flanges when placed face-to-face form a sealed circulation compartment and the portions of the same manifold are aligned with each other.
Solid state electro-optic color filter and iris
NASA Technical Reports Server (NTRS)
1974-01-01
The electro-optic properties of lanthanum-modified lead zirconate titanate (PLZT) ferroelectric ceramic material are evaluated when utilized as a variable density and/or spectral filter in conjunction with a television scanning system. Emphasis was placed on the development of techniques and procedures for processing the PLZT disks and for applying efficient electrode structures. A number of samples were processed using different combinations of cleaning, electrode material, and deposition process. Best overall performance resulted from the direct evaporation of gold over chrome electrodes. A ruggedized mounting holder assembly was designed, fabricated, and tested. The assembly provides electrical contacts, high voltage protection, and support for the fragile PLZT disk, and permits mounting and optical alignment of the associated polarizers. Operational measurements of a PLZT sample mounted in the holder assembly were performed in conjunction with a television camera and the associated drive circuits. The data verified achievement of the elimination of the observed white-line effect.
Test-beds for molecular electronics: metal-molecules-metal junctions based on Hg electrodes.
Simeone, Felice Carlo; Rampi, Maria Anita
2010-01-01
Junctions based on mesoscopic Hg electrodes are used to characterize the electrical properties of the organic molecules organized in self-assembled monolayers (SAMs). The junctions M-SAM//SAM-Hg are formed by one electrode based on metals (M) such as Hg, Ag, Au, covered by a SAM, and by a second electrode always formed by a Hg drop carrying also a SAM. The electrodes, brought together by using a micromanipulator, sandwich SAMs of different nature at the contact area (approximately = 0.7 microm2). The high versatility of the system allows a series of both electrical and electrochemical junctions to be assembled and characterized: (i) The compliant nature of the Hg electrodes allows incorporation into the junction and measurement of the electrical behavior of a large number of molecular systems and correlation of their electronic structure to the electrical behavior; (ii) by functionalizing both electrodes with SAMs exposing different functional groups, X and Y, it is possible to compare the rate of electron transfer through different X...Y molecular interactions; (iii) when the junction incorporates one of the electrode formed by a semitransparent film of Au, it allows electrical measurements under irradiation of the sandwiched SAMs. In this case the junction behaves as a photoswitch; iv) incorporation of redox centres with low lying, easily reachable energy levels, provides electron stations as indicated by the hopping mechanism dominating the current flow; (v) electrochemical junctions incorporating redox centres by both covalent and electrostatic interactions permit control of the potential of the electrodes with respect to that of the redox state by means of an external reference electrode. Both these junctions show an electrical behavior similar to that of conventional diodes, even though the mechanism generating the current flow is different. These systems, demonstrating high mechanical stability and reproducibility, easy assembly, and a wide variety of produced results, are convenient test-beds for molecular electronics and represent a useful complement to physics-based experimental methods.
NASA Astrophysics Data System (ADS)
Badawi, Ali; Mostafa, Nasser Y.; Al-Hosiny, Najm M.; Merazga, Amar; Albaradi, Ateyyah M.; Abdel-Wahab, F.; Atta, A. A.
2018-06-01
The photovoltaic performance of silver sulfide (Ag2S) quantum dots-sensitized solar cells (QDSSCs) using different concentrations (0, 0.05, 0.1, 0.3 and 0.5 wt.%) of plasmonic Au nanoparticles (NPs)/titania (TiO2) electrodes has been investigated. Ag2S quantum dots (QDs) were adsorbed onto the Au NPs/titania electrodes using the successive ionic layer adsorption and reaction (SILAR) deposition technique. The morphological properties of the Au NPs and the prepared titania electrodes were characterized using transmission electron microscope (TEM) and scanning electron microscope (SEM), respectively. The energy-dispersive X-ray (EDX) spectra of the bare titania and Ag2S QDs-sensitized titania electrodes were recorded. The optical properties of the prepared Ag2S QDs-sensitized titania electrodes were measured using a UV-visible spectrophotometer. The estimated energy band gap of Ag2S QDs-sensitized titania electrodes is 1.96 eV. The photovoltaic performance of the assembled Ag2S QDSSCs was measured under 100 mW/cm2 solar illumination. The optimal photovoltaic parameters were obtained as follows: open circuit voltage Voc = 0.50 V, current density Jsc = 3.18 mA/cm2, fill factor (FF) = 0.35 and energy conversion efficiency η = 0.55% for 0.3 wt.% of Au NPs/titania electrode. These results are attributed to the enhancement in the absorption and decrease in the electron-hole pairs recombination rate. The open circuit voltage decay (OCVD) measurements of the assembled Ag2S QDSSCs were measured. The calculated electron lifetime (τ) in Ag2S QDSSCs with Au NPs/titania electrodes is at least one order of magnitude more than that with bare titania electrode. The cut-on-cut-off cycles of the solar illumination measurements show the rapid sensitivity and good reproducibility of the assembled Ag2S QDSSCs.
Dynamic control of remelting processes
Bertram, Lee A.; Williamson, Rodney L.; Melgaard, David K.; Beaman, Joseph J.; Evans, David G.
2000-01-01
An apparatus and method of controlling a remelting process by providing measured process variable values to a process controller; estimating process variable values using a process model of a remelting process; and outputting estimated process variable values from the process controller. Feedback and feedforward control devices receive the estimated process variable values and adjust inputs to the remelting process. Electrode weight, electrode mass, electrode gap, process current, process voltage, electrode position, electrode temperature, electrode thermal boundary layer thickness, electrode velocity, electrode acceleration, slag temperature, melting efficiency, cooling water temperature, cooling water flow rate, crucible temperature profile, slag skin temperature, and/or drip short events are employed, as are parameters representing physical constraints of electroslag remelting or vacuum arc remelting, as applicable.
Fluorination effect of activated carbons on performance of asymmetric capacitive deionization
NASA Astrophysics Data System (ADS)
Jo, Hanjoo; Kim, Kyung Hoon; Jung, Min-Jung; Park, Jae Hyun; Lee, Young-Seak
2017-07-01
Activated carbons (ACs) were fluorinated and fabricated into electrodes to investigate the effect of fluorination on asymmetric capacitive deionization (CDI). Fluorine functional groups were introduced on the AC surfaces via fluorination. The specific capacitance of the fluorinated AC (Fsbnd AC) electrode increased drastically from 261 to 337 F/g compared with the untreated AC (Rsbnd AC) electrode at a scan rate of 5 mV/s, despite a decrease in the specific surface area and total pore volume after fluorination. The desalination behavior of asymmetric CDI cells assembled with an Rsbnd AC electrode as the counter electrode and an Fsbnd AC electrode as the cathode (R || F-) or anode (R || F +) was studied. For R || F-, the salt adsorption capacity and charge efficiency increased from 10.6 mg/g and 0.58-12.4 mg/g and 0.75, respectively, compared with the CDI cell assembled with identical Rsbnd AC electrodes at 1 V. This CDI cell exhibited consistently better salt adsorption capacity and charge efficiency at different applied voltages because Fsbnd AC electrodes have a cation attractive effect originating from the partially negatively charged fluorine functional groups on the AC surface. Therefore, co-ion expulsion in the Fsbnd AC electrode as the cathode is effectively diminished, leading to enhanced CDI performance.
Flexible supercapacitor electrodes based on real metal-like cellulose papers.
Ko, Yongmin; Kwon, Minseong; Bae, Wan Ki; Lee, Byeongyong; Lee, Seung Woo; Cho, Jinhan
2017-09-14
The effective implantation of conductive and charge storage materials into flexible frames has been strongly demanded for the development of flexible supercapacitors. Here, we introduce metallic cellulose paper-based supercapacitor electrodes with excellent energy storage performance by minimizing the contact resistance between neighboring metal and/or metal oxide nanoparticles using an assembly approach, called ligand-mediated layer-by-layer assembly. This approach can convert the insulating paper to the highly porous metallic paper with large surface areas that can function as current collectors and nanoparticle reservoirs for supercapacitor electrodes. Moreover, we demonstrate that the alternating structure design of the metal and pseudocapacitive nanoparticles on the metallic papers can remarkably increase the areal capacitance and rate capability with a notable decrease in the internal resistance. The maximum power and energy density of the metallic paper-based supercapacitors are estimated to be 15.1 mW cm -2 and 267.3 μWh cm -2 , respectively, substantially outperforming the performance of conventional paper or textile-type supercapacitors.With ligand-mediated layer-by-layer assembly between metal nanoparticles and small organic molecules, the authors prepare metallic paper electrodes for supercapacitors with high power and energy densities. This approach could be extended to various electrodes for portable/wearable electronics.
Guo, Chun Xian; Chitre, Amey Anil; Lu, Xianmao
2014-03-14
A DNA-assisted assembly approach is developed to fabricate a capacitor-type electrode material, DNA-functionalized carbon nanotubes (CNTs@DNA), and a battery-type electrode material, DNA@CNTs-bridged MnO2 spheres (CNTs@DNA-MnO2), for asymmetric supercapacitors. An energy density of 11.6 W h kg(-1) is achieved at a power density of 185.5 W kg(-1) with a high MnO2 mass loading of 4.2 mg cm(-2). It is found that DNA assembly plays a critical role in the enhanced supercapacitor performance. This is because while DNA molecules functionalize carbon nanotubes (CNTs) via π-π stacking, their hydrophilic sugar-phosphate backbones also promote the dispersion of CNTs. The resultant CNTs@DNA chains can link multiple MnO2 spheres to form a networked architecture that facilitates charge transfer and effective MnO2 utilization. The improved performance of the asymmetric supercapacitors indicates that DNA-assisted assembly offers a promising approach to the fabrication of high-performance energy storage devices.
Electrode performance parameters for a radioisotope-powered AMTEC for space power applications
NASA Technical Reports Server (NTRS)
Underwood, M. L.; O'Connor, D.; Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Bankston, C. P.
1992-01-01
The alkali metal thermoelastic converter (AMTEC) is a device for the direct conversion of heat to electricity. Recently a design of an AMTEC using a radioisotope heat source was described, but the optimum condenser temperature was hotter than the temperatures used in the laboratory to develop the electrode performance model. Now laboratory experiments have confirmed the dependence of two model parameters over a broader range of condenser and electrode temperatures for two candidate electrode compositions. One parameter, the electrochemical exchange current density at the reaction interface, is independent of the condenser temperature, and depends only upon the collision rate of sodium at the reaction zone. The second parameter, a morphological parameter, which measures the mass transport resistance through the electrode, is independent of condenser and electrode temperatures for molybdenum electrodes. For rhodium-tungsten electrodes, however, this parameter increases for decreasing electrode temperature, indicating an activated mass transport mechanism such as surface diffusion.
Cyclic performance tests of Sn/MWCNT composite lithium ion battery anodes at different temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tocoglu, U., E-mail: utocoglu@sakarya.edu.tr; Cevher, O.; Akbulut, H.
In this study tin-multi walled carbon nanotube (Sn-MWCNT) lithium ion battery anodes were produced and their electrochemical galvanostatic charge/discharge tests were conducted at various (25 °C, 35 °C, 50 °C) temperatures to determine the cyclic behaviors of anode at different temperatures. Anodes were produced via vacuum filtration and DC magnetron sputtering technique. Tin was sputtered onto buckypapers to form composite structure of anodes. SEM analysis was conducted to determine morphology of buckypapers and Sn-MWCNT composite anodes. Structural and phase analyses were conducted via X-ray diffraction and Raman Spectroscopy technique. CR2016 coin cells were assembled for electrochemical tests. Cyclic voltammetry testmore » were carried out to determine the reversibility of reactions between anodes and reference electrode between 0.01-2.0 V potential window. Galvanostatic charge/discharge tests were performed to determine cycle performance of anodes at different temperatures.« less
Malkhandi, Souradip; Yang, Bo; Manohar, Aswin K; Prakash, G K Surya; Narayanan, S R
2013-01-09
Iron-based rechargeable batteries, because of their low cost, eco-friendliness, and durability, are extremely attractive for large-scale energy storage. A principal challenge in the deployment of these batteries is their relatively low electrical efficiency. The low efficiency is due to parasitic hydrogen evolution that occurs on the iron electrode during charging and idle stand. In this study, we demonstrate for the first time that linear alkanethiols are very effective in suppressing hydrogen evolution on alkaline iron battery electrodes. The alkanethiols form self-assembled monolayers on the iron electrodes. The degree of suppression of hydrogen evolution by the alkanethiols was found to be greater than 90%, and the effectiveness of the alkanethiol increased with the chain length. Through steady-state potentiostatic polarization studies and impedance measurements on high-purity iron disk electrodes, we show that the self-assembly of alkanethiols suppressed the parasitic reaction by reducing the interfacial area available for the electrochemical reaction. We have modeled the effect of chain length of the alkanethiol on the surface coverage, charge-transfer resistance, and double-layer capacitance of the interface using a simple model that also yields a value for the interchain interaction energy. We have verified the improvement in charging efficiency resulting from the use of the alkanethiols in practical rechargeable iron battery electrodes. The results of battery tests indicate that alkanethiols yield among the highest faradaic efficiencies reported for the rechargeable iron electrodes, enabling the prospect of a large-scale energy storage solution based on low-cost iron-based rechargeable batteries.
Rivas, Gustavo A; Miscoria, Silvia A; Desbrieres, Jacques; Barrera, Gustavo D
2007-01-15
We are proposing for the first time the use of a Nafion/multi-walled carbon nanotubes dispersion deposited on glassy carbon electrodes (GCE) as a new platform for developing enzymatic biosensors based on the self-assembling of a chitosan derivative and different oxidases. The electrodes are obtained by deposition of a layer of Nafion/multi-wall carbon nanotubes dispersion on glassy carbon electrodes, followed by the adsorption of a chitosan derivative as polycation and glucose oxidase, l-aminoacid oxidase or polyphenol oxidase, as polyanions and biorecognition elements. The optimum configuration for glucose biosensors has allowed a highly sensitive (sensitivity=(0.28+/-0.02)muAmM(-1), r=0.997), fast (4s in reaching the maximum response), and highly selective (0% interference of ascorbic acid and uric acid at maximum physiological levels) glucose quantification at 0.700V with detection and quantification limits of 0.035 and 0.107mM, respectively. The repetitivity for 10 measurements was 5.5%, while the reproducibility was 8.4% for eight electrodes. The potentiality of the new platform was clearly demonstrated by using the carbon nanotubes/Nafion layer as a platform for the self-assembling of l-aminoacid oxidase and polyphenol oxidase. Therefore, the platform we are proposing here, that combines the advantages of nanostructured materials with those of the layer-by-layer self-assembling of polyelectrolytes, opens the doors to new and exciting possibilities for the development of enzymatic and affinity biosensors using different transdution modes.
NASA Astrophysics Data System (ADS)
Zhuang, Xuye; Chen, Binggen; Wang, Xinlong; Yu, Lei; Wang, Fan; Guo, Shuwen
2018-03-01
A novel approach for fabrication of polysilicon hemispherical resonator gyroscopes with integrated 3-D curved electrodes is developed and experimentally demonstrated. The 3-D polysilicon electrodes are integrated as a part of the hemispherical shell resonator’s fabrication process, and no extra assembly process are needed, ensuring the symmetry of the shell resonator. The fabrication process and materials used are compatible with the traditional semiconductor process, indicating the gyroscope has a high potential for mass production and commercial development. Without any trimming or tuning of the n=2 wineglass frequencies, a 28 kHz shell resonator demonstrates a 0.009% frequency mismatch between two degenerate wineglass modes, and a 13.6 kHz resonator shows a frequency split of 0.03%. The ring-down time of a fabricated resonator is 0.51 s, corresponding to a Q of 22000, at 0.01 Pa vacuum and room temperature. The prototype of the gyroscope is experimentally analyzed, and the scale factor of the gyro is 1.15 mV/°/s, the bias instability is 80 °/h.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dentinger, Paul M.; Cardinale, Gregory F.; Hunter, Luke L.
2003-12-01
We describe the fabrication and characterization of an electrode array test structure, designed for electrical probing of molecules and nanocrystals. We use Extreme Ultraviolet Lithography (EUVL) to define the electrical test platform features. As fabricated, the platform includes nominal electrode gaps of 0 nm, 40 nm, 60 nm, and 80 nm. Additional variation in electrode gap is achieved by controlling the exposure conditions, such as dose and focus. To enable EUVL based nanofabrication, we develop a novel bi-level photoresist process. The bi-level photoresist consists of a combination of a commercially available polydimethylglutarimide (PMGI) bottom layer and an experimental EUVL photoresistmore » top (imaging) layer. We measure the sensitivity of PMGI to EUV exposure dose as a function of photoresist pre-bake temperature, and using this data, optimize a metal lift-off process. Reliable fabrication of 700 Angstrom thick Au structures with sub-1000 Angstrom critical dimensions is achieved, even without the use of a Au adhesion layer, such as Ti. Several test platforms are used to characterize electrical properties of organic molecules deposited as self assembled monolayers.« less
Lang, Xing-You; Liu, Bo-Tian; Shi, Xiang-Mei; Li, Ying-Qi; Wen, Zi; Jiang, Qing
2016-05-01
Nanostructured transition-metal oxides can store high-density energy in fast surface redox reactions, but their poor conductivity causes remarkable reductions in the energy storage of most pseudocapacitors at high power delivery (fast charge/discharge rates). Here it is shown that electron-correlated oxide hybrid electrodes made of nanocrystalline vanadium sesquioxide and manganese dioxide with 3D and bicontinuous nanoporous architecture (NP V 2 O 3 /MnO 2 ) have enhanced conductivity because of metallization of electron-correlated V 2 O 3 skeleton via insulator-to-metal transition. The conductive V 2 O 3 skeleton at ambient temperature enables fast electron and ion transports in the entire electrode and facilitates charge transfer at abundant V 2 O 3 /MnO 2 interface. These merits significantly improve the pseudocapacitive behavior and rate capability of the constituent MnO 2 . Symmetric pseudocapacitors assembled with binder-free NP V 2 O 3 /MnO 2 electrodes deliver ultrahigh electrical powers (up to ≈422 W cm 23 ) while maintaining the high volumetric energy of thin-film lithium battery with excellent stability.
Karim, Md Nurul; Lee, Ji Eun; Lee, Hye Jin
2014-11-15
A novel amperometric biosensor for catechol was developed using the layer-by-layer (LbL) self-assembly of positively charged hexadecyltrimethylammonium stabilized gold nanocubes (AuNCs), negatively charged poly(sodium 4-styrenesulfonate) and tyrosinase on a screen printed carbon electrode (SPCE). A carboxylic acid terminated alkanethiol assembled on electrochemically deposited Au nanoparticles on a SPCE was used as a platform for LbL assembly. Each SPCE sensor surface was terminated with tyrosinase and the electrocatalytic response due to the tyrosinase reaction with catechol was measured using cyclic voltammetry and square wave voltammetry (SWV). The effect of introducing AuNCs into the LbL assembly to further enhance the catechol detection performance was then investigated by comparing the SWV results to those from biosensors created using both the tyrosinase modified LbL assembly in the absence of NCs and the covalent attachment of tyrosinase. A wide dynamic range from 10nM to 80 µM of catechol with an excellent sensitivity of 13.72 A/M and a detection limit of 0.4 nM were both achieved alongside a good selectivity and reproducibility for the AuNC-modified electrodes. As a demonstration, the optimized biosensor design was applied to determine catechol concentrations in tea samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Fuel cell with electrolyte feed system
Feigenbaum, Haim
1984-01-01
A fuel cell having a pair of electrodes at the sites of electrochemical reactions of hydrogen and oxygen and a phosphoric acid electrolyte provided with an electrolyte supporting structure in the form of a laminated matrix assembly disposed between the electrodes. The matrix assembly is formed of a central layer disposed between two outer layers, each being permeable to the flow of the electrolyte. The central layer is provided with relatively large pores while the outer layers are provided with relatively small pores. An external reservoir supplies electrolyte via a feed means to the central layer to compensate for changes in electrolyte volume in the matrix assembly during the operation of fuel cell.
Hao, Pin; Zhao, Zhenhuan; Tian, Jian; Li, Haidong; Sang, Yuanhua; Yu, Guangwei; Cai, Huaqiang; Liu, Hong; Wong, C P; Umar, Ahmad
2014-10-21
Renewable, cost-effective and eco-friendly electrode materials have attracted much attention in the energy conversion and storage fields. Bagasse, the waste product from sugarcane that mainly contains cellulose derivatives, can be a promising candidate to manufacture supercapacitor electrode materials. This study demonstrates the fabrication and characterization of highly porous carbon aerogels by using bagasse as a raw material. Macro and mesoporous carbon was first prepared by carbonizing the freeze-dried bagasse aerogel; consequently, microporous structure was created on the walls of the mesoporous carbon by chemical activation. Interestingly, it was observed that the specific surface area, the pore size and distribution of the hierarchical porous carbon were affected by the activation temperature. In order to evaluate the ability of the hierarchical porous carbon towards the supercapacitor electrode performance, solid state symmetric supercapacitors were assembled, and a comparable high specific capacitance of 142.1 F g(-1) at a discharge current density of 0.5 A g(-1) was demonstrated. The fabricated solid state supercapacitor displayed excellent capacitance retention of 93.9% over 5000 cycles. The high energy storage ability of the hierarchical porous carbon was attributed to the specially designed pore structures, i.e., co-existence of the micropores and mesopores. This research has demonstrated that utilization of sustainable biopolymers as the raw materials for high performance supercapacitor electrode materials is an effective way to fabricate low-cost energy storage devices.
Shinde, Nanasaheb M; Xia, Qi Xun; Yun, Je Moon; Mane, Rajaram S; Kim, Kwang Ho
2018-04-04
Superfast (≤10 min) room-temperature (300 K) chemical synthesis of three-dimensional (3-D) polycrystalline and mesoporous bismuth(III) oxide (Bi 2 O 3 ) nanostructured negatrode (as an abbreviation of negative electrode) materials, viz., coconut shell, marigold, honey nest cross section and rose with different surface areas, charge transfer resistances, and electrochemical performances essential for energy storage, harvesting, and even catalysis devices, are directly grown onto Ni foam without and with poly(ethylene glycol), ethylene glycol, and ammonium fluoride surfactants, respectively. Smaller diffusion lengths, caused by the involvement of irregular crevices, allow electrolyte ions to infiltrate deeply, increasing the utility of inner active sites for the following electrochemical performance. A marigold 3-D Bi 2 O 3 electrode of 58 m 2 ·g -1 surface area has demonstrated a specific capacitance of 447 F·g -1 at 2 A·g -1 and chemical stability of 85% even after 5000 redox cycles at 10 A·g -1 in a 6 M KOH electrolyte solution, which were higher than those of other morphology negatrode materials. An asymmetric supercapacitor (AS) device assembled with marigold Bi 2 O 3 negatrode and manganese(II) carbonate quantum dots/nickel hydrogen-manganese(II)-carbonate (MnCO 3 QDs/NiH-Mn-CO 3 ) positrode corroborates as high as 51 Wh·kg -1 energy at 1500 W·kg -1 power and nearly 81% cycling stability even after 5000 cycles. The obtained results were comparable or superior to the values reported previously for other Bi 2 O 3 morphologies. This AS assembly glowed a red-light-emitting diode for 20 min, demonstrating the scientific and industrial credentials of the developed superfast Bi 2 O 3 nanostructured negatrodes in assembling various energy storage devices.
Frost induced damages within porous materials - from concrete technology to fuel cells technique
NASA Astrophysics Data System (ADS)
Palecki, Susanne; Gorelkov, Stanislav; Wartmann, Jens; Heinzel, Angelika
2017-12-01
Porous media like concrete or layers of membrane electrode assemblies (MEA) within fuel cells are affected by a cyclic frost exposure due to different damage mechanisms which could lead to essential degradation of the material. In general, frost damages can only occur in case of a specific material moisture content. In fuel cells, residual water is generally available after shut down inside the membrane i.e. the gas diffusion layer (GDL). During subsequent freezing, this could cause various damage phenomena such as frost heaves and delamination effects of the membrane electrode assembly, which depends on the location of pore water and on the pore structure itself. Porous materials possess a pore structure that could range over several orders of magnitudes with different properties and freezing behaviour of the pore water. Latter can be divided into macroscopic, structured and pre-structured water, influenced by surface interactions. Therefore below 0 °C different water modifications can coexist in a wide temperature range, so that during frost exposure a high amount of unfrozen and moveable water inside the pore system is still available. This induces transport mechanisms and shrinkage effects. The physical basics are similar for porous media. While the freezing behaviour of concrete has been studied over decades of years, in order to enhance the durability, the know-how about the influence of a frost attack on fuel cell systems is not fully understood to date. On the basis of frost damage models for concrete structures, an approach to describe the impact of cyclic freezing and thawing on membrane electrode assemblies has been developed within this research work. Major aim is beyond a better understanding of the frost induced mechanisms, the standardization of a suitable test procedure for the assessment of different MEA materials under such kind of attack. Within this contribution first results will be introduced.
Grot, S.A.
1998-01-13
A PEM/SPE fuel cell is described including a membrane-electrode assembly (MEA) having a plurality of oriented filament embedded the face thereof for supporting the MEA and conducting current therefrom to contiguous electrode plates. 4 figs.
Development of automatic through-insulation welding for microelectric interconnections
NASA Technical Reports Server (NTRS)
Arnett, J. C.
1972-01-01
The capability to automatically route, remove insulation from, and weld small-diameter solid conductor wire is presented. This would facilitate the economical small-quantity production of complex miniature electronic assemblies. An engineering model of equipment having this capability was developed and evaluated. Whereas early work in the use of welded magnet wire interconnections was concentrated on opposed electrode systems, and generally used heat to melt the wire insulation, the present method is based on a concentric electrode system and a wire feed system which splits the insulation by application of pressure prior to welding. The work deals with the design, fabrication, and evaluation testing of an improved version of this concentric electrode system. Two different approaches to feeding the wire to the concentric electrodes were investigated. It was concluded that the process is feasible for the interconnection of complex miniature electronic assemblies.
Ouyang, Ruizhuo; Bragg, Stefanie A.; Chambers, James Q.; Xue, Zi-Ling
2012-01-01
We report here the fabrication of a flower-like self-assembly of gold nanoparticles (AuNPs) on a glassy carbon electrode (GCE) as a highly sensitive platform for ultratrace Cr(VI) detection. Two AuNPs layers are used in the current approach, in which the first is electroplated on the GCE surface as anchors for binding to an overcoated thiol sol-gel film derived from 3-mercaptopropyltrimethoxysilane (MPTS). The second AuNPs layer is then self-assembled on the surface of the sol-gel film, forming flower-like gold nanoelectrodes enlarging the electrode surface. When functionalized by a thiol pyridinium, the fabricated electrode displays a well-defined peak for selective Cr(VI) reduction with an unusually large, linear concentration range of 10–1,200 ng L−1 and a low detection limit of 2.9 ng L−1. In comparison to previous approaches using MPTS and AuNPs on Au electrodes, the current work expands the use of AuNPs to the GCE. Subsequent functionalization of the secondary AuNPs by a thiol pyridinium and adsorption/preconcentration of Cr(VI) lead to the unusually large detection range and high sensitivity. The stepwise preparation of the electrode has been characterized by electrochemical impedance spectroscopy (EIS), scanning electronic microscopy (SEM), and IR. The newly designed electrode exhibits good stability, and has been successfully employed to measure chromium in a pre-treated blood sample. The method demonstrates acceptable fabrication reproducibility and accuracy. PMID:22444528
NASA Astrophysics Data System (ADS)
El-Himri, Abdelouhad; Marrero-López, David; Ruiz-Morales, Juan Carlos; Peña-Martínez, Juan; Núñez, Pedro
A series of compounds with composition Pr 0.7Ca 0.3Cr 1- yMn yO 3- δ (y = 0.2, 0.4, 0.6, 0.8) were prepared from an alternative freeze-drying precursor method to obtain polycrystalline powders at relatively low temperature. These perovskite-type materials were tested simultaneously as both anode and cathode in a symmetrical SOFC. The effect of the ratio Mn/Cr on the structure, microstructure and electrochemical properties was studied. The performance is rather modest at low temperature and only interesting values were obtained at high temperatures. An assembled symmetrical SOFC rendered performances of 250 and 160 mW cm -2, at 950 °C, under humidified H 2 and CH 4 respectively.
Study of weld quality real-time monitoring system for auto-body assembly
NASA Astrophysics Data System (ADS)
Xu, Jun; Li, Yong-Bing; Chen, Guan-Long
2005-12-01
Resistance spot welding (RSW) is widely used for the auto-body assembly in automotive industry. But RSW suffers from a major problem of inconsistent quality from weld to weld. The major problem is the complexity of the basic process that may involve material coatings, electrode force, electrode wear, fit up, etc. Therefore weld quality assurance is still a big challenge and goal. Electrode displacement has proved to be a particularly useful signal which correlates well with weld quality. This paper introduces a novel auto-body spot weld quality monitoring system which uses electrode displacement as the quality parameter. This system chooses the latest laser displacement sensor with high resolution to measure the real-time electrode displacement. It solves the interference problem of sensor mounting by designing special fixture, and can be successfully applied on the portable welding machine. It is capable of evaluating weld quality and making diagnosis of process variations such as surface asperities, shunting, worn electrode and weld expansion with real-time electrode displacement. As proved by application in the workshop, the monitoring system has good stability and reliability, and is qualified for monitoring weld quality in process.
NASA Astrophysics Data System (ADS)
Xie, Qinxing; Huang, Xiaolin; Zhang, Yufeng; Wu, Shihua; Zhao, Peng
2018-06-01
The main components of a supercapacitor include two electrodes, electrolyte, and a separator, which are all essential to specify the energy storage capability of the device. In this work, two kinds of porous carbon materials have been fabricated via different routes using pomelo peel as raw material. The specific surface area are 1187 m2 g-1 for the nanosized worm-like carbon, and 1744 m2 g-1 for the nitrogen-enriched microsized carbon. Both carbon materials demonstrate excellent energy storage capability as electrodes for aqueous supercapacitors. According to the three-electrode measurements, the worm-like carbon exhibits a high specific capacitance of 316 F g-1 at 0.2 A g-1 in 6 M KOH, while the other exhibits 471 F g-1 due to the highly enriched nitrogen atoms in structure. In addition, two-electrode coin-type cells have been assembled with the carbon materials as electrodes and hydrophilic poly(vinylidene fluoride) porous membrane as the separator. The assembled cells exhibit high specific capacitances, excellent rate performance and superior cycling durability because of a synergistic effect of the high performance carbon electrodes and hydrophilic porous separator.
Air breathing direct methanol fuel cell
Ren, Xiaoming
2002-01-01
An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source.
Solution-processed soldering of carbon nanotubes for flexible electronics.
Rao, K D M; Radha, B; Smith, K C; Fisher, T S; Kulkarni, G U
2013-02-22
We report a simple lithography-free, solution-based method of soldering of carbon nanotubes with Ohmic contacts, by taking specific examples of multi-walled carbon nanotubes (MWNTs). This is achieved by self-assembling a monolayer of soldering precursor, Pd(2+) anchored to 1,10 decanedithiol, onto which MWNTs could be aligned across the gap electrodes via solvent evaporation. The nanosoldering was realized by thermal/electrical activation or by both in sequence. Electrical activation and the following step of washing ensure selective retention of MWNTs spanning across the gap electrodes. The soldered joints were robust enough to sustain strain caused during the bending of flexible substrates as well as during ultrasonication. The estimated temperature generated at the MWNT-Au interface using an electro-thermal model is ∼150 °C, suggesting Joule heating as the primary mechanism of electrical activation. Further, the specific contact resistance is estimated from the transmission line model.
Dielectrophoretic trapping of nanoparticles with an electrokinetic nanoprobe.
Wood, Nicholas R; Wolsiefer, Amanda I; Cohn, Robert W; Williams, Stuart J
2013-07-01
A high aspect ratio 3D electrokinetic nanoprobe is used to trap polystyrene particles (200 nm), gold nanoshells (120 nm), and gold nanoparticles (mean diameter 35 nm) at low voltages (<1 V(rms)). The nanoprobe is fabricated using room temperature self-assembly methods, without the need for nanoresolution lithography. The nanoprobe (150-500 nm in diameter, 2-150 μm in length) is mounted on the end of a glass micropipette, enabling user-specified positioning. The nanoprobe is one electrode within a point-and-plate configuration, with an indium-tin oxide cover slip serving as the planar electrode. The 3D structure of the nanoprobe enhances dielectrophoretic capture; further, electro-hydrodynamic flow enhances trapping, increasing the effective trapping region. Numerical simulations show low heating (1 K), even in biological media of moderate conductivity (1 S/m). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Method of making MEA for PEM/SPE fuel cell
Hulett, Jay S.
2000-01-01
A method of making a membrane-electrode-assembly (MEA) for a PEM/SPE fuel cell comprising applying a slurry of electrode-forming material directly onto a membrane-electrolyte film. The slurry comprises a liquid vehicle carrying catalyst particles and a binder for the catalyst particles. The membrane-electrolyte is preswollen by contact with the vehicle before the electrode-forming slurry is applied to the membrane-electrolyte. The swollen membrane-electrolyte is constrained against shrinking in the "x" and "y" directions during drying. Following assembly of the fuel cell, the MEA is rehydrated inside the fuel cell such that it swells in the "z" direction for enhanced electrical contact with contiguous electrically conductive components of the fuel cell.
Core-shell fuel cell electrodes
Adzic, Radoslav; Bliznakov, Stoyan; Vukmirovic, Miomir
2017-12-26
Embodiments of the disclosure relate to membrane electrode assemblies. The membrane electrode assembly may include at least one gas-diffusion layer having a first side and a second side, and particle cores adhered to at least one of the first and second sides of the at least one gas-diffusion layer. The particle cores includes surfaces adhered to the at least one of the first and second sides of the at least one gas-diffusion layer and surfaces not in contact with the at least one gas-diffusion layer. Furthermore, a thin layer of catalytically atoms may be adhered to the surfaces of the particle cores not in contact with the at least one gas-diffusion layer.
NASA Astrophysics Data System (ADS)
Cheng, Qian; Tang, Jie; Shinya, Norio; Qin, Lu-Chang
2013-11-01
Graphene and single-walled carbon nanotube (CNT) composites are explored as the electrodes for supercapacitors by coating polyaniline (PANI) nano-cones onto the graphene/CNT composite to obtain graphene/CNT-PANI composite electrode. The graphene/CNT-PANI electrode is assembled with a graphene/CNT electrode into an asymmetric pseudocapacitor and a highest energy density of 188 Wh kg-1 and maximum power density of 200 kW kg-1 are achieved. The structure and morphology of the graphene/CNT composite and the PANI nano-cone coatings are characterized by both scanning electron microscopy and transmission electron microscopy. The excellent performance of the assembled supercapacitors is also discussed and it is attributed to (i) effective utilization of the large surface area of the three-dimensional network structure of graphene-based composite, (ii) the presence of CNT in the composite preventing graphene from re-stacking, and (ii) uniform and vertically aligned PANI coating on graphene offering increased electrical conductivity.
Air breathing direct methanol fuel cell
Ren, Xiaoming; Gottesfeld, Shimshon
2002-01-01
An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source. Water loss from the cell is minimized by making the conductive cathode assembly hydrophobic and the conductive anode assembly hydrophilic.
Guo, Zhiyong; Sha, Yuhong; Hu, Yufang; Wang, Sui
2016-03-28
A new-concept of an "in-electrode" Faraday cage-type electrochemiluminescence immunoassay (ECLIA) method for the ultrasensitive detection of neurotensin (NT) was reported with capture antibody (Ab1)-nanoFe3O4@graphene (GO) and detector antibody (Ab2)&N-(4-aminobutyl)-N-ethylisoluminol (ABEI)@GO, which led to about 1000-fold improvement in sensitivity by extending the Helmholtz plane (OHP) of the proposed electrode assembly effectively.
Wang, Wei; Qiao, Qingli; Gao, Weiping; Wu, Jun
2014-12-01
We studied the influence of electrode array parameters on temperature distribution to the retina during the use of retinal prosthesis in order to avoid thermal damage to retina caused by long-term electrical stimulation. Based on real epiretinal prosthesis, a three-dimensional model of electrical stimulation for retina with 4 X 4 microelectrode array had been established using the finite element software (COMSOL Multiphysics). The steady-state temperature field of electrical stimulation of the retina was calculated, and the effects of the electrode parameters such as the distance between the electrode contacts, the materials and area of the electrode contact on temperature field were considered. The maximum increase in the retina steady temperature was about 0. 004 degrees C with practical stimulation current. When the distance between the electrode contacts was changed from 130 microm to 520 microm, the temperature was reduced by about 0.006 microC. When the contact radius was doubled from 130 microm to 260 microm, the temperature decrease was about 0.005 degrees C. It was shown that there were little temperature changes in the retina with a 4 x 4 epiretinal microelectrode array, reflecting the safety of electrical stimulation. It was also shown that the maximum temperature in the retina decreased with increasing the distance between the electrode contacts, as well as increasing the area of electrode contact. However, the change of the maximum temperature was very small when the distance became larger than the diameter of electrode contact. There was no significant difference in the effects of temperature increase among the different electrode materials. Rational selection of the distance between the electrode contacts and their area in electrode design can reduce the temperature rise induced by electrical stimulation.
Electrode performance parameters for a radioisotope-powered AMTEC for space power applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Underwood, M.L.; O'Connor, D.; Williams, R.M.
1992-08-01
The alkali metal thermoelastic converter (AMTEC) is a device for the direct conversion of heat to electricity. Recently a design of an AMTEC using a radioisotope heat source was described, but the optimum condenser temperature was hotter than the temperatures used in the laboratory to develop the electrode performance model. Now laboratory experiments have confirmed the dependence of two model parameters over a broader range of condenser and electrode temperatures for two candidate electrode compositions. One parameter, the electrochemical exchange current density at the reaction interface, is independent of the condenser temperature, and depends only upon the collision rate ofmore » sodium at the reaction zone. The second parameter, a morphological parameter, which measures the mass transport resistance through the electrode, is independent of condenser and electrode temperatures for molybdenum electrodes. For rhodium-tungsten electrodes, however, this parameter increases for decreasing electrode temperature, indicating an activated mass transport mechanism such as surface diffusion. 21 refs.« less
Xu, Jun; Yang, Xia; Yang, Qingdan; Zhang, Wenjun; Lee, Chun-Sing
2014-09-24
In this work, we report a simple and low-temperature approach for the controllable synthesis of ternary Cu-S-Se alloys featuring tunable crystal structures, compositions, morphologies, and optical properties. Hexagonal CuS(y)Se(1-y) nanoplates and face centered cubic (fcc) Cu(2-x)S(y)Se(1-y) single-crystal-like stacked nanoplate assemblies are synthesized, and their phase conversion mechanism is well investigated. It is found that both copper content and chalcogen composition (S/Se atomic ratio) of the Cu-S-Se alloys are tunable during the phase conversion process. Formation of the unique single-crystal-like stacked nanoplate assemblies is resulted from oriented stacking coupled with the Ostwald ripening effect. Remarkably, optical tuning for continuous red shifts of both the band-gap absorption and the near-infrared localized surface plasmon resonance are achieved. Furthermore, the novel Cu-S-Se alloys are utilized for the first time as highly efficient counter electrodes (CEs) in quantum dot sensitized solar cells (QDSSCs), showing outstanding electrocatalytic activity for polysulfide electrolyte regeneration and yielding a 135% enhancement in power conversion efficiency (PCE) as compared to the noble metal Pt counter electrode.
Niu, Lengyuan; Li, Zhangpeng; Xu, Ye; Sun, Jinfeng; Hong, Wei; Liu, Xiaohong; Wang, Jinqing; Yang, Shengrong
2013-08-28
This study reports a simple synthesis of amorphous nickel tungstate (NiWO4) nanostructure and its application as a novel cathode material for supercapacitors. The effect of reaction temperature on the electrochemical properties of the NiWO4 electrode was studied, and results demonstrate that the material synthesized at 70 °C (NiW-70) has shown the highest specific capacitance of 586.2 F g(-1) at 0.5 A g(-1) in a three-electrode system. To achieve a high energy density, a NiW-70//activated carbon asymmetric supercapacitor is successfully assembled by use of NiW-70 and activated carbon as the cathode and anode, respectively, and then, its electrochemical performance is characterized by cyclic voltammetry and galvanostatic charge-discharge measurements. The results show that the assembled asymmetric supercapacitor can be cycled reversibly between 0 and 1.6 V with a high specific capacitance of 71.1 F g(-1) at 0.25 A g(-1), which can deliver a maximum energy density of 25.3 Wh kg(-1) at a power density of 200 W kg(-1). Furthermore, this asymmetric supercapacitor also presented an excellent, long cycle life along with 91.4% specific capacitance being retained after 5000 consecutive times of cycling.
Gao, Yunming; Yang, Chuanghuang; Zhang, Canlei; Qin, Qingwei; Chen, George Z
2017-06-21
Production of metallic iron through molten oxide electrolysis using inert electrodes is an alternative route for fast ironmaking without CO 2 emissions. The fact that many inorganic oxides melt at ultrahigh temperatures (>1500 K) challenges conventional electro-analytical techniques used in aqueous, organic and molten salt electrolytes. However, in order to design a feasible and effective electrolytic process, it is necessary to best understand the electrochemical properties of iron ions in molten oxide electrolytes. In this work, a magnesia-stabilised zirconia (MSZ) tube with a closed end was used to construct an integrated three-electrode cell with a "MSZ|Pt|O 2 (air)" assembly functioning as the solid electrolyte, the reference electrode and also the counter electrode. Electrochemical reduction of iron ions was systematically investigated on an iridium (Ir) wire working electrode in a SiO 2 -CaO-MgO-Al 2 O 3 molten slag at 1723 K by cyclic voltammetry (CV), square wave voltammetry (SWV), chronopotentiometry (CP) and potentiostatic electrolysis (PE). The results show that the electroreduction of the Fe 2+ ion to Fe on the Ir electrode in the molten slag follows a single two-electron transfer step, and the rate of the process is diffusion controlled. The peak current on the obtained CVs is proportional to the concentration of the Fe 2+ ion in the molten slag and the square root of scan rate. The diffusion coefficient of Fe 2+ ions in the molten slag containing 5 wt% FeO at 1723 K was derived to be (3.43 ± 0.06) × 10 -6 cm 2 s -1 from CP analysis. However, a couple of subsequent processes, i.e. alloy formation on the Ir electrode surface and interdiffusion, were found to affect the kinetics of iron deposition. An ECC mechanism is proposed to account for the CV observations. The findings from this work confirm that zirconia-based solid electrolytes can play an important role in electrochemical fundamental research in high temperature molten slag electrolytes.
Electrostatic Assembly of Nanomaterials for Hybrid Electrodes and Supercapacitors
NASA Astrophysics Data System (ADS)
Hammond, Paula
2015-03-01
Electrostatic assembly methods have been used to generate a range of new materials systems of interest for electrochemical energy and storage applications. Over the past several years, it has been demonstrated that carbon nanotubes, metals, metal oxides, polymeric nanomaterials, and biotemplated materials systems can be incorporated into ultrathin films to generate supercapacitors and battery electrodes that illustrate significant energy density and power. The unique ability to control the incorporation of such a broad range of materials at the nanometer length scale allows tailoring of the final properties of these unique composite systems, as well as the capability of creating complex micron-scale to nanoporous morphologies based on the scale of the nanomaterial that is absorbed within the structure, or the conditions of self-assembly. Recently we have expanded these capabilities to achieve new electrodes that are templated atop electrospun polmer fiber scaffolds, in which the polymer can be selectively removed to achieve highly porous materials. Spray-layer-by-layer and filtration methods of functionalized multiwall carbon nanotubes and polyaniline nanofibers enable the generation of electrode systems with unusually high surface. Incorporation of psuedocapacitive nanoparticles can enhance capacitive properties, and other catalytic or metallic nanoparticles can be implemented to enhance electrochemical or catalytic function.
Dioxythiophene-based polymer electrodes for supercapacitor modules.
Liu, David Y; Reynolds, John R
2010-12-01
We report on the electrochemical and capacitive behaviors of poly(2,2-dimethyl-3,4-propylene-dioxythipohene) (PProDOT-Me2) films as polymeric electrodes in Type I electrochemical supercapacitors. The supercapacitor device displays robust capacitive charging/discharging behaviors with specific capacitance of 55 F/g, based on 60 μg of PProDOT-Me2 per electrode, that retains over 85% of its storage capacity after 32 000 redox cycles at 78% depth of discharge. Moreover, an appreciable average energy density of 6 Wh/kg has been calculated for the device, along with well-behaved and rapid capacitive responses to 1.0 V between 5 to 500 mV s(-1). Tandem electrochemical supercapacitors were assembled in series, in parallel, and in combinations of the two to widen the operating voltage window and to increase the capacitive currents. Four supercapacitors coupled in series exhibited a 4.0 V charging/discharging window, whereas assembly in parallel displayed a 4-fold increase in capacitance. Combinations of both serial and parallel assembly with six supercapacitors resulted in the extension of voltage to 3 V and a 2-fold increase in capacitive currents. Utilization of bipolar electrodes facilitated the encapsulation of tandem supercapacitors as individual, flexible, and lightweight supercapacitor modules.
NASA Astrophysics Data System (ADS)
Pashnin, S. V.
2017-10-01
The paper presents the methodology and results of the development of the temperature dependence of the oxidation speed of the self-baking electrode (Soederberg Electrodes) in the ore-thermal furnaces. For the study of oxidation, the working ends of the self-baking electrodes, which were taken out from the ore-thermal furnaces after their scabbings, were used. The temperature of the electrode surface by its height was calculated with the help of the mathematical model of heat work of self-baking electrode. The comparison of electrode surface temperatures with the speed of oxidation of the electrode allowed one to obtain the temperature dependency of the oxidation of the lateral electrode surface. Comparison of the experimental data, obtained in the laboratory by various authors, showed their qualitative coincidence with results of calculations of the oxidation rate presented in this article. With the help of the mathematical model of temperatures fields of electrode, the calculations of the sizes of the cracks, appearing after burnout ribs, were performed. Calculations showed that the sizes of the cracks after the ribs burnout, calculated by means of the obtained temperature dependence, coincide with the experimental data with sufficient accuracy.
Assembly of a Robust and Economical MnO[subscript2]-Based Reference Electrode
ERIC Educational Resources Information Center
Masse´, Robert C.; Gerken, James B.
2015-01-01
There is a dearth of base-stable reference electrodes that are suitable for use by students in a teaching laboratory or undergraduate research context. To remedy this, we have developed a technique to produce reference electrodes suitable for alkaline environments. By utilizing components of a commercially available alkaline-type battery, an…
Sun, Duanping; Lu, Jing; Chen, Zuanguang; Yu, Yanyan; Mo, Manni
2015-07-23
In this work, a repeatable assembling and disassembling electrochemical aptamer cytosensor was proposed for the sensitive detection of human liver hepatocellular carcinoma cells (HepG2) based on a dual recognition and signal amplification strategy. A high-affinity thiolated TLS11a aptamer, covalently attached to a gold electrode through Au-thiol interactions, was adopted to recognize and capture the target HepG2 cells. Meanwhile, the G-quadruplex/hemin/aptamer and horseradish peroxidase (HRP) modified gold nanoparticles (G-quadruplex/hemin/aptamer-AuNPs-HRP) nanoprobe was designed. It could be used for electrochemical cytosensing with specific recognition and enzymatic signal amplification of HRP and G-quadruplex/hemin HRP-mimicking DNAzyme. With the nanoprobes as recognizing probes, the HepG2 cancer cells were captured to fabricate an aptamer-cell-nanoprobes sandwich-like superstructure on a gold electrode surface. The proposed electrochemical cytosensor delivered a wide detection range from 1×10(2) to 1×10(7) cells mL(-1) and high sensitivity with a low detection limit of 30 cells mL(-1). Furthermore, after the electrochemical detection, the activation potential of -0.9 to -1.7V was performed to break Au-thiol bond and regenerate a bare gold electrode surface, while maintaining the good characteristic of being used repeatedly. The changes of gold electrode behavior after assembling and desorption processes were investigated by electrochemical impedance spectroscopy and cyclic voltammetry techniques. These results indicate that the cytosensor has great potential in disease diagnostic of cancers and opens new insight into the reusable gold electrode with repeatable assembling and disassembling in the electrochemical sensing. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Salamon, Z.; Hazzard, J. T.; Tollin, G.
1993-07-01
Direct cyclic voltage-current responses, produced in the absence of redox mediators, for two detergent-solubilized integral membrane proteins, spinach cytochrome f and beef heart cytochrome c oxidase, have been obtained at an optically transparent indium oxide electrode modified with a self-assembled lipid-bilayer membrane. The results indicate that both proteins interact with the lipid membrane so as to support quasi-reversible electron transfer redox reactions at the semiconductor electrode. The redox potentials that were obtained from analysis of the cyclic "voltammograms," 365 mV for cytochrome f and 250 and 380 mV for cytochrome c oxidase (vs. normal hydrogen electrode), compare quite well with the values reported by using conventional titration methods. The ability to obtain direct electrochemical measurements opens up another approach to the investigation of the properties of integral membrane redox proteins.
NASA Astrophysics Data System (ADS)
Freedman, David S.; Schroeder, Joseph B.; Telian, Gregory I.; Zhang, Zhengyang; Sunil, Smrithi; Ritt, Jason T.
2016-12-01
Objective. Behavioral neuroscience studies in freely moving rodents require small, light-weight implants to facilitate neural recording and stimulation. Our goal was to develop an integrated package of 3D printed parts and assembly aids for labs to rapidly fabricate, with minimal training, an implant that combines individually positionable microelectrodes, an optical fiber, zero insertion force (ZIF-clip) headstage connection, and secondary recording electrodes, e.g. for electromyography (EMG). Approach. Starting from previous implant designs that position recording electrodes using a control screw, we developed an implant where the main drive body, protective shell, and non-metal components of the microdrives are 3D printed in parallel. We compared alternative shapes and orientations of circuit boards for electrode connection to the headstage, in terms of their size, weight, and ease of wire insertion. We iteratively refined assembly methods, and integrated additional assembly aids into the 3D printed casing. Main results. We demonstrate the effectiveness of the OptoZIF Drive by performing real time optogenetic feedback in behaving mice. A novel feature of the OptoZIF Drive is its vertical circuit board, which facilities direct ZIF-clip connection. This feature requires angled insertion of an optical fiber that still can exit the drive from the center of a ring of recording electrodes. We designed an innovative 2-part protective shell that can be installed during the implant surgery to facilitate making additional connections to the circuit board. We use this feature to show that facial EMG in mice can be used as a control signal to lock stimulation to the animal’s motion, with stable EMG signal over several months. To decrease assembly time, reduce assembly errors, and improve repeatability, we fabricate assembly aids including a drive holder, a drill guide, an implant fixture for microelectode ‘pinning’, and a gold plating fixture. Significance. The expanding capability of optogenetic tools motivates continuing development of small optoelectric devices for stimulation and recording in freely moving mice. The OptoZIF Drive is the first to natively support ZIF-clip connection to recording hardware, which further supports a decrease in implant cross-section. The integrated 3D printed package of drive components and assembly tools facilities implant construction. The easy interfacing and installation of auxiliary electrodes makes the OptoZIF Drive especially attractive for real time feedback stimulation experiments.
Sung, Da-Young; Gunjakar, Jayavant L; Kim, Tae Woo; Kim, In Young; Lee, Yu Ri; Hwang, Seong-Ju
2013-05-27
A new prompt room temperature synthetic route to 2D nanostructured metal oxide-graphene-hybrid electrode materials can be developed by the application of colloidal reduced graphene oxide (RGO) nanosheets as an efficient reaction accelerator for the synthesis of δ-MnO2 2D nanoplates. Whereas the synthesis of the 2D nanostructured δ-MnO2 at room temperature requires treating divalent manganese compounds with persulfate ions for at least 24 h, the addition of RGO nanosheet causes a dramatic shortening of synthesis time to 1 h, underscoring its effectiveness for the promotion of the formation of 2D nanostructured metal oxide. To the best of our knowledge, this is the first example of the accelerated synthesis of 2D nanostructured hybrid material induced by the RGO nanosheets. The observed acceleration of nanoplate formation upon the addition of RGO nanosheets is attributable to the enhancement of the oxidizing power of persulfate ions, the increase of the solubility of precursor MnCO3, and the promoted crystal growth of δ-MnO2 2D nanoplates. The resulting hybridization between RGO nanosheets and δ-MnO2 nanoplates is quite powerful not only in increasing the surface area of manganese oxide nanoplate but also in enhancing its electrochemical activity. Of prime importance is that the present δ-MnO2 -RGO nanocomposites show much superior electrode performance over most of 2D nanostructured manganate systems including a similar porous assembly of RGO and layered MnO2 nanosheets. This result underscores that the present RGO-assisted solution-based synthesis can provide a prompt and scalable method to produce nanostructured hybrid electrode materials. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Calvo, E J; Danilowicz, C; Lagier, C M; Manrique, J; Otero, M
2004-05-15
Multilayer immobilization of antibody and redox polymer molecules on a gold electrode was achieved, as a strategy for the potential development of an amperometric immunosensor. The step-by-step assembly of antibiotin IgG on Os(bpy)(2)ClPyCH(2)NH poly(allylamine) redox polymer (PAH-Os) adsorbed on thiolated gold electrodes was proved by quartz crystal microbalance (QCM) and atomic force microscopy (AFM) experiments, confirming the electrochemical evidence. The increase of redox charge during the layer-by-layer deposition demonstrated that charge propagation within the layers is feasible. The multilayer structure proved to be effective for the molecular recognition of horseradish peroxidase-biotin conjugate (HRP-biotin), as confirmed by the QCM measurements and the electrocatalytic reduction current obtained upon H(2)O(2) addition. The catalytic current resulting from PAH-Os mediation was shown to increase with the number of assembled layers. Furthermore, the inventory of IgG molecules on the supramolecular self-assembled structure and the specific and non-specific binding of HRP-biotin conjugate were confirmed by the QCM transient studies, giving information on the kinetics of IgG deposition and HRP-biotin conjugate binding to the IgG.
Focal Adhesion Induction at the Tip of a Functionalized Nanoelectrode
Fuentes, Daniela E.; Bae, Chilman; Butler, Peter J.
2012-01-01
Cells dynamically interact with their physical micro-environment through the assembly of nascent focal contacts and focal adhesions. The dynamics and mechanics of these contact points are controlled by transmembrane integrins and an array of intracellular adaptor proteins. In order to study the mechanics and dynamics of focal adhesion assembly, we have developed a technique for the timed induction of a nascent focal adhesion. Bovine aortic endothelial cells were approached at the apical surface by a nanoelectrode whose position was controlled with a resolution of 10s of nanometers using changes in electrode current to monitor distance from the cell surface. Since this probe was functionalized with fibronectin, a focal contact formed at the contact location. Nascent focal adhesion assembly was confirmed using time-lapse confocal fluorescent images of red fluorescent protein (RFP) – tagged talin, an adapter protein that binds to activated integrins. Binding to the cell was verified by noting a lack of change of electrode current upon retraction of the electrode. This study demonstrates that functionalized nanoelectrodes can enable precisely-timed induction and 3-D mechanical manipulation of focal adhesions and the assay of the detailed molecular kinetics of their assembly. PMID:22247742
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kano, Shinya; Maeda, Kosuke; Majima, Yutaka, E-mail: majima@msl.titech.ac.jp
2015-10-07
We present the analysis of chemically assembled double-dot single-electron transistors using orthodox model considering offset charges. First, we fabricate chemically assembled single-electron transistors (SETs) consisting of two Au nanoparticles between electroless Au-plated nanogap electrodes. Then, extraordinary stable Coulomb diamonds in the double-dot SETs are analyzed using the orthodox model, by considering offset charges on the respective quantum dots. We determine the equivalent circuit parameters from Coulomb diamonds and drain current vs. drain voltage curves of the SETs. The accuracies of the capacitances and offset charges on the quantum dots are within ±10%, and ±0.04e (where e is the elementary charge),more » respectively. The parameters can be explained by the geometrical structures of the SETs observed using scanning electron microscopy images. Using this approach, we are able to understand the spatial characteristics of the double quantum dots, such as the relative distance from the gate electrode and the conditions for adsorption between the nanogap electrodes.« less
Comparison of unusual carbon-based working electrodes for electrochemiluminescence sensors.
Noman, Muhammad; Sanginario, Alessandro; Jagadale, Pravin; Demarchi, Danilo; Tagliaferro, Alberto
2017-06-01
In this work, unconventional carbon-based materials were investigated for use in electrochemiluminescence (ECL) working electrodes. Precursors such as bamboo, pistachio shells, kevlar ® fibers and camphor were differently treated and used as working electrodes in ECL experiments. After a proper process they were assembled as electrodes and tested in an electrochemical cell. Comparison among them and with a commercial glassy carbon electrode (GCE) shows a very good response for all of them thus demonstrating their potential use as disposable low-cost electrodes for early detection electrochemical analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Methanol-tolerant cathode catalyst composite for direct methanol fuel cells
Zhu, Yimin; Zelenay, Piotr
2006-09-05
A direct methanol fuel cell (DMFC) having a methanol fuel supply, oxidant supply, and its membrane electrode assembly (MEA) formed of an anode electrode and a cathode electrode with a membrane therebetween, a methanol oxidation catalyst adjacent the anode electrode and the membrane, an oxidant reduction catalyst adjacent the cathode electrode and the membrane, comprises an oxidant reduction catalyst layer of Pt.sub.3Cr/C so that oxidation at the cathode of methanol that crosses from the anode through the membrane to the cathode is reduced with a concomitant increase of net electrical potential at the cathode electrode.
Methanol-Tolerant Cathode Catalyst Composite For Direct Methanol Fuel Cells
Zhu, Yimin; Zelenay, Piotr
2006-03-21
A direct methanol fuel cell (DMFC) having a methanol fuel supply, oxidant supply, and its membrane electrode assembly (MEA) formed of an anode electrode and a cathode electrode with a membrane therebetween, a methanol oxidation catalyst adjacent the anode electrode and the membrane, an oxidant reduction catalyst adjacent the cathode electrode and the membrane, comprises an oxidant reduction catalyst layer of a platinum-chromium alloy so that oxidation at the cathode of methanol that crosses from the anode through the membrane to the cathode is reduced with a concomitant increase of net electrical potential at the cathode electrode.
NASA Astrophysics Data System (ADS)
Yan, Yiran; Zhang, Miluo; Su, Heng Chia; Myung, Nosang V.; Haberer, Elaine D.
2014-08-01
Preliminary studies toward the assembly of a gold-polypyrrole (PPy) peapod-like chemiresistive ammonia (NH3) gas sensors are presented. The proposed synthesis process will use electropolymerization to embed gold nanoparticles in polypyrrole nanowires. Viral-templating of gold nanoparticles and PPy electrodeposition via cyclic voltammetry are the focus of this investigation. A gold-binding M13 bacteriophage was used as a bio-template to assemble continuous chains of gold nanoparticles on interdigitated Pt working electrodes. The dimensions of the resulting nanowire-like structures were examined and the electrical resistance measured. PPy films were electropolymerized using an interdigitated planar, Pt electrode integrated counter and reference electrode. Morphological characterization of the polymer films was completed.
Final Report - Advanced Cathode Catalysts and Supports for PEM Fuel Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debe, Mark
2012-09-28
The principal objectives of the program were development of a durable, low cost, high performance cathode electrode (catalyst and support), that is fully integrated into a fuel cell membrane electrode assembly with gas diffusion media, fabricated by high volume capable processes, and is able to meet or exceed the 2015 DOE targets. Work completed in this contract was an extension of the developments under three preceding cooperative agreements/grants Nos. DE-FC-02-97EE50473, DE-FC-99EE50582 and DE-FC36- 02AL67621 which investigated catalyzed membrane electrode assemblies for PEM fuel cells based on a fundamentally new, nanostructured thin film catalyst and support system, and demonstrated the feasibilitymore » for high volume manufacturability.« less
Field free, directly heated lanthanum boride cathode
Leung, Ka-Ngo; Moussa, D.; Wilde, S.B.
1987-02-02
A directly heated cylindrical lanthanum boride cathode assembly is disclosed which minimizes generation of magnetic field which would interfere with electron emission from the cathode. The cathode assembly comprises a lanthanum boride cylinder in electrical contact at one end with a central support shaft which functions as one electrode to carry current to the lanthanum boride cylinder and in electrical contact, at its opposite end with a second electrode which is coaxially position around the central support shaft so that magnetic fields generated by heater current flowing in one direction through the central support shaft are cancelled by an opposite magnetic field generated by current flowing through the lanthanum boride cylinder and the coaxial electrode in a direction opposite to the current flow in the central shaft.
In Situ Electrochemical Deposition of Microscopic Wires
NASA Technical Reports Server (NTRS)
Yun, Minhee; Myung, Nosang; Vasquez, Richard
2005-01-01
A method of fabrication of wires having micron and submicron dimensions is built around electrochemical deposition of the wires in their final positions between electrodes in integrated circuits or other devices in which the wires are to be used. Heretofore, nanowires have been fabricated by a variety of techniques characterized by low degrees of controllability and low throughput rates, and it has been necessary to align and electrically connect the wires in their final positions by use of sophisticated equipment in expensive and tedious post-growth assembly processes. The present method is more economical, offers higher yields, enables control of wire widths, and eliminates the need for post-growth assembly. The wires fabricated by this method could be used as simple electrical conductors or as transducers in sensors. Depending upon electrodeposition conditions and the compositions of the electroplating solutions in specific applications, the wires could be made of metals, alloys, metal oxides, semiconductors, or electrically conductive polymers. In this method, one uses fabrication processes that are standard in the semiconductor industry. These include cleaning, dry etching, low-pressure chemical vapor deposition, lithography, dielectric deposition, electron-beam lithography, and metallization processes as well as the electrochemical deposition process used to form the wires. In a typical case of fabrication of a circuit that includes electrodes between which microscopic wires are to be formed on a silicon substrate, the fabrication processes follow a standard sequence until just before the fabrication of the microscopic wires. Then, by use of a thermal SiO-deposition technique, the electrodes and the substrate surface areas in the gaps between them are covered with SiO. Next, the SiO is electron-beam patterned, then reactive-ion etched to form channels having specified widths (typically about 1 m or less) that define the widths of the wires to be formed. Drops of an electroplating solution are placed on the substrate in the regions containing the channels thus formed, then the wires are electrodeposited from the solution onto the exposed portions of the electrodes and into the channels. The electrodeposition is a room-temperature, atmospheric-pressure process. The figure shows an example of palladium wires that were electrodeposited into 1-mm-wide channels between gold electrodes.
Temperature field analysis for PZT pyroelectric cells for thermal energy harvesting.
Hsiao, Chun-Ching; Ciou, Jing-Chih; Siao, An-Shen; Lee, Chi-Yuan
2011-01-01
This paper proposes the idea of etching PZT to improve the temperature variation rate of a thicker PZT sheet in order to enhance the energy conversion efficiency when used as pyroelectric cells. A partially covered electrode was proven to display a higher output response than a fully covered electrode did. A mesh top electrode monitored the temperature variation rate and the electrode area. The mesh electrode width affected the distribution of the temperature variation rate in a thinner pyroelectric material. However, a pyroelectric cell with a thicker pyroelectric material was beneficial in generating electricity pyroelectrically. The PZT sheet was further etched to produce deeper cavities and a smaller electrode width to induce lateral temperature gradients on the sidewalls of cavities under homogeneous heat irradiation, enhancing the temperature variation rate.
Temperature Field Analysis for PZT Pyroelectric Cells for Thermal Energy Harvesting
Hsiao, Chun-Ching; Ciou, Jing-Chih; Siao, An-Shen; Lee, Chi-Yuan
2011-01-01
This paper proposes the idea of etching PZT to improve the temperature variation rate of a thicker PZT sheet in order to enhance the energy conversion efficiency when used as pyroelectric cells. A partially covered electrode was proven to display a higher output response than a fully covered electrode did. A mesh top electrode monitored the temperature variation rate and the electrode area. The mesh electrode width affected the distribution of the temperature variation rate in a thinner pyroelectric material. However, a pyroelectric cell with a thicker pyroelectric material was beneficial in generating electricity pyroelectrically. The PZT sheet was further etched to produce deeper cavities and a smaller electrode width to induce lateral temperature gradients on the sidewalls of cavities under homogeneous heat irradiation, enhancing the temperature variation rate. PMID:22346652
Glassy materials for lithium batteries: electrochemical properties and devices performances
NASA Astrophysics Data System (ADS)
Duclot, Michel; Souquet, Jean-Louis
Amorphous or glassy materials may be used as electrolyte or electrode materials for lithium primary or secondary batteries. A first generation proceeded from classical coin cells in which the organic electrolyte was replaced by a high lithium conductive glassy electrolyte. The solid components were assembled under isostatic pressure. The main advantages of such cells are a good storage stability and ability to operate until 200°C. Nevertheless, the high resistivity of the glassy electrolyte below room temperature and a limited depth for charge and discharge cycles makes these cells not competitive compared to conventional lithium-ion batteries. More promising, are the thin films solid state microbatteries realised by successive depositions of electrodes and electrolyte. The low resistance of the electrolyte amorphous layer allows cycling at temperatures as low as -10°C. The total thickness of thin film batteries, including packaging is less than 100 μm. A capacity of about 100 μAh cm -2 with over 10 4 charge-discharge cycles at 90% in depth of discharge is well suited for energy independent smart cards or intelligent labels, which represent for these devices a large and unrivalled market.
Performance of PEM fuel cells stack as affected by number of cell and gas flow-rate
NASA Astrophysics Data System (ADS)
Syampurwadi, A.; Onggo, H.; Indriyati; Yudianti, R.
2017-03-01
The proton exchange membrane fuel cell (PEMFC) is a promising technology as an alternative green energy due to its high power density, low operating temperatures, low local emissions, quiet operation and fast start up-shutdown. In order to apply fuel cell as portable power supply, the performance investigation of small number of cells is needed. In this study, PEMFC stacks consisting of 1, 3, 5 and 7-cells with an active area of 25 cm2 per cell have been designed and developed. Their was evaluated in variation of gas flow rate. The membrane electrode assembly (MEA) was prepared by hot-pressing commercial gas diffusion electrodes (Pt loading 0.5 mg/cm2) on pre-treated Nafion 117 membrane. The stacks were constructed using bipolar plates in serpentine pattern and Z-type gas flow configuration. The experimental results were presented as polarization and power output curves which show the effects of varying number of cells and H2/O2 flow-rates on the PEMFC performance. The experimental results showed that not only number of cells and gas flow-rates affected the fuel cells performance, but also the operating temperature as a result of electrochemistry reaction inside the cell.
3D macroporous graphene frameworks for supercapacitors with high energy and power densities.
Choi, Bong Gill; Yang, Minho; Hong, Won Hi; Choi, Jang Wook; Huh, Yun Suk
2012-05-22
In order to develop energy storage devices with high power and energy densities, electrodes should hold well-defined pathways for efficient ionic and electronic transport. Herein, we demonstrate high-performance supercapacitors by building a three-dimensional (3D) macroporous structure that consists of chemically modified graphene (CMG). These 3D macroporous electrodes, namely, embossed-CMG (e-CMG) films, were fabricated by using polystyrene colloidal particles as a sacrificial template. Furthermore, for further capacitance boost, a thin layer of MnO(2) was additionally deposited onto e-CMG. The porous graphene structure with a large surface area facilitates fast ionic transport within the electrode while preserving decent electronic conductivity and thus endows MnO(2)/e-CMG composite electrodes with excellent electrochemical properties such as a specific capacitance of 389 F/g at 1 A/g and 97.7% capacitance retention upon a current increase to 35 A/g. Moreover, when the MnO(2)/e-CMG composite electrode was asymmetrically assembled with an e-CMG electrode, the assembled full cell shows remarkable cell performance: energy density of 44 Wh/kg, power density of 25 kW/kg, and excellent cycle life.
Lara Carrillo, John Alejandro; Fierro Medina, Ricardo; Manríquez Rocha, Juan; Bustos Bustos, Erika; Insuasty Cepeda, Diego Sebastián; García Castañeda, Javier Eduardo; Rivera Monroy, Zuly Jenny
2017-11-14
In order to obtain gold electrode surfaces modified with Human Papillomavirus L1 protein (HPV L1)-derived peptides, two sequences, SPINNTKPHEAR and YIK, were chosen. Both have been recognized by means of sera from patients infected with HPV. The molecules, Fc-Ahx-SPINNTKPHEAR, Ac-C- Ahx -(Fc)KSPINNTKPHEAR, Ac-C- Ahx -SPINNTKPHEAR(Fc)K, C- Ahx -SPINNTKPHEAR, and (YIK)₂- Ahx -C, were designed, synthesized, and characterized. Our results suggest that peptides derived from the SPINNTKPHEAR sequence, containing ferrocene and cysteine residues, are not stable and not adequate for electrode surface modification. The surface of polycrystalline gold electrodes was modified with the peptides C-Ahx-SPINNTKPHEAR or (YIK)₂-Ahx-C through self-assembly. The modified polycrystalline gold electrodes were characterized via infrared spectroscopy and electrochemical measurements. The thermodynamic parameters, surface coverage factor, and medium pH effect were determined for these surfaces. The results indicate that surface modification depends on the peptide sequence (length, amino acid composition, polyvalence, etc.). The influence of antipeptide antibodies on the voltammetric response of the modified electrode was evaluated by comparing results obtained with pre-immune and post-immune serum samples.
Rahman, Tanzilur; Ichiki, Takanori
2017-10-13
The fabrication of miniaturized electrical biosensing devices can enable the rapid on-chip detection of biomarkers such as miRNA molecules, which is highly important in early-stage cancer detection. The challenge in realizing such devices remains in the miniaturization of the reference electrodes, which is an integral part of electrical detection. Here, we report on a novel thin film Ag/AgCl reference electrode (RE) that has been fabricated on top of a Au-sputtered glass surface, which was coated with a self-assembled monolayer (SAM) of 6-mercepto-1-hexanol (MCH). The electrode showed very little measurement deviation (-1.5 mv) from a commercial Ag/AgCl reference electrode and exhibited a potential drift of only ± 0.2 mV/h. In addition, the integration of this SAM-modified microfabricated thin film RE enabled the rapid detection (<30 min) of miRNA (let-7a). The electrode can be integrated seamlessly into a microfluidic device, allowing the highly stable and fast measurement of surface potential and is expected to be very useful for the development of miniature electrical biosensors.
NASA Astrophysics Data System (ADS)
Wang, Cheng; Mao, Zongqiang; Xu, Jingming; Xie, Xiaofeng; Yang, Lizhai
2003-10-01
A novel nano-porous material SiO2-gel was prepared. After being purified by H2O2, then protonized by H2SO4 and desiccated in vacuum, the SiO2-gel, mixed with Nafion solution, was coated between an electrode and a solid electrolyte, which made a new type of self-humidifying membrane electrode assembly. The SiO2 powder was characterized by FTIR, BET and XRD. The surface of the electrodes was characterized by SEM and EDS. The performances of the self-humidifying membrane electrodes were analyzed by polarization discharge and AC impedance under the operation modes of external humidification and self-humidification respectively. Experimental-results indicated that the SiO2 powder held super-hydrophilicity, and the layer of SiO2 and Nafion polymer between electrode and solid electrolyte expanded three-dimension electrochemistry reac-tion area, maintained stability of catalyst layer and enhanced back-diffusion of water from cathode to anode, so the PEM Fuel cell can generate electricity at self-humidification mode. The power density of single PEM fuel cell reached 1.5 W/cm2 under 0.2 Mpa, 70°C and dry hydrogen and oxygen.
Harper, Alice; Anderson, Mark R.
2010-01-01
In 1962, Clark and Lyons proposed incorporating the enzyme glucose oxidase in the construction of an electrochemical sensor for glucose in blood plasma. In their application, Clark and Lyons describe an electrode in which a membrane permeable to glucose traps a small volume of solution containing the enzyme adjacent to a pH electrode, and the presence of glucose is detected by the change in the electrode potential that occurs when glucose reacts with the enzyme in this volume of solution. Although described nearly 50 years ago, this seminal development provides the general structure for constructing electrochemical glucose sensors that is still used today. Despite the maturity of the field, new developments that explore solutions to the fundamental limitations of electrochemical glucose sensors continue to emerge. Here we discuss two developments of the last 15 years; confining the enzyme and a redox mediator to a very thin molecular films at electrode surfaces by electrostatic assembly, and the use of electrodes modified by carbon nanotubes (CNTs) to leverage the electrocatalytic effect of the CNTs to reduce the oxidation overpotential of the electrode reaction or for the direct electron transport to the enzyme. PMID:22163652
Harper, Alice; Anderson, Mark R
2010-01-01
In 1962, Clark and Lyons proposed incorporating the enzyme glucose oxidase in the construction of an electrochemical sensor for glucose in blood plasma. In their application, Clark and Lyons describe an electrode in which a membrane permeable to glucose traps a small volume of solution containing the enzyme adjacent to a pH electrode, and the presence of glucose is detected by the change in the electrode potential that occurs when glucose reacts with the enzyme in this volume of solution. Although described nearly 50 years ago, this seminal development provides the general structure for constructing electrochemical glucose sensors that is still used today. Despite the maturity of the field, new developments that explore solutions to the fundamental limitations of electrochemical glucose sensors continue to emerge. Here we discuss two developments of the last 15 years; confining the enzyme and a redox mediator to a very thin molecular films at electrode surfaces by electrostatic assembly, and the use of electrodes modified by carbon nanotubes (CNTs) to leverage the electrocatalytic effect of the CNTs to reduce the oxidation overpotential of the electrode reaction or for the direct electron transport to the enzyme.
Decoration of vertical graphene with aerosol nanoparticles for gas sensing
NASA Astrophysics Data System (ADS)
Cui, Shumao; Guo, Xiaoru; Ren, Ren; Zhou, Guihua; Chen, Junhong
2015-08-01
A facile method was demonstrated to decorate aerosol Ag nanoparticles onto vertical graphene surfaces using a mini-arc plasma reactor. The vertical graphene was directly grown on a sensor electrode using a plasma-enhanced chemical vapor deposition (PECVD) method. The aerosol Ag nanoparticles were synthesized by a simple vapor condensation process using a mini-arc plasma source. Then, the nanoparticles were assembled on the surface of vertical graphene through the assistance of an electric field. Based on our observation, nonagglomerated Ag nanoparticles formed in the gas phase and were assembled onto vertical graphene sheets. Nanohybrids of Ag nanoparticle-decorated vertical graphene were characterized for ammonia gas detection at room temperature. The vertical graphene served as the conductance channel, and the conductance change upon exposure to ammonia was used as the sensing signal. The sensing results show that Ag nanoparticles significantly improve the sensitivity, response time, and recovery time of the sensor.
Guan, Bu Yuan; Yu, Le; Li, Ju; Lou, Xiong Wen (David)
2016-01-01
TiO2 is exceptionally useful, but it remains a great challenge to develop a universal method to coat TiO2 nanoshells on different functional materials. We report a one-pot, low-temperature, and facile method that can rapidly form mesoporous TiO2 shells on various inorganic, organic, and inorganic-organic composite materials, including silica-based, metal, metal oxide, organic polymer, carbon-based, and metal-organic framework nanomaterials via a cooperative assembly-directed strategy. In constructing hollow, core-shell, and yolk-shell geometries, both amorphous and crystalline TiO2 nanoshells are demonstrated with excellent control. When used as electrode materials for lithium ion batteries, these crystalline TiO2 nanoshells composed of very small nanocrystals exhibit remarkably long-term cycling stability over 1000 cycles. The electrochemical properties demonstrate that these TiO2 nanoshells are promising anode materials. PMID:26973879
Multiple electrokinetic actuators for feedback control of colloidal crystal size.
Juárez, Jaime J; Mathai, Pramod P; Liddle, J Alexander; Bevan, Michael A
2012-10-21
We report a feedback control method to precisely target the number of colloidal particles in quasi-2D ensembles and their subsequent assembly into crystals in a quadrupole electrode. Our approach relies on tracking the number of particles within a quadrupole electrode, which is used in a real-time feedback control algorithm to dynamically actuate competing electrokinetic transport mechanisms. Particles are removed from the quadrupole using DC-field mediated electrophoretic-electroosmotic transport, while high-frequency AC-field mediated dielectrophoretic transport is used to concentrate and assemble colloidal crystals. Our results show successful control of the size of crystals containing 20 to 250 colloidal particles with less than 10% error. Assembled crystals are characterized by their radius of gyration, crystallinity, and number of edge particles, and demonstrate the expected size-dependent properties. Our findings demonstrate successful ensemble feedback control of the assembly of different sized colloidal crystals using multiple actuators, which has broad implications for control over nano- and micro- scale assembly processes involving colloidal components.
NASA Astrophysics Data System (ADS)
Cai, Shengbing; Duan, Zhe min; Zhang, Yong
2013-08-01
We report on the utilization of densely packed (˜10 SWCNTs µm-1), well-aligned arrays of single-chirality single-walled carbon nanotubes (SWCNTs) as an effective thin-film for integration into a gas sensor with a microtripolar electrode, based on field ionization by dielectrophoretic assembly from a monodisperse SWCNTs solution obtained by polymer-mediated sorting. The sensor is characterized as a field ionization electrode with sorted SWCNTs acting as both the sensing material and transducer gas concentrated directly into an electrical signal, an extractor serving to improve electric field uniformity and a collector electrode completing the current path. The gas sensing properties toward flammable and noxious gases, such as CO and H2, were investigated at room temperature. Besides the high sensitivity, the as-fabricated sensor exhibited attractive behaviors in terms of both the detection limit and a fast response, suggesting that our sensor could be used to partly circumvent the low sensing selectivity, long recovery time or irreversibility and allow for a preferential identification of the selected flammable and noxious analytes. Interestingly, the excellent sensing behaviors of the sensors based on the field ionization effect derive directly from the combined effects of the high-quality, low defect SWCNTs arrays, which leads to a small device-to-device variation in the properties and the optimization of electrode fabrication, highlighting the sensor as an appealing candidate in view of nanotube electronics.
Self-assembled nanogaps for molecular electronics.
Tang, Qingxin; Tong, Yanhong; Jain, Titoo; Hassenkam, Tue; Wan, Qing; Moth-Poulsen, Kasper; Bjørnholm, Thomas
2009-06-17
A nanogap for molecular devices was realized using solution-based self-assembly. Gold nanorods were assembled to gold nanoparticle-coated conducting SnO2:Sb nanowires via thiol end-capped oligo(phenylenevinylene)s (OPVs). The molecular gap was easily created by the rigid molecule itself during self-assembly and the gap length was determined by the molecule length. The gold nanorods and gold nanoparticles, respectively covalently bonded at the two ends of the molecule, had very small dimensions, e.g. a width of approximately 20 nm, and hence were expected to minimize the screening effect. The ultra-long conducting SnO2:Sb nanowires provided the bridge to connect one of the electrodes of the molecular device (gold nanoparticle) to the external circuit. The tip of the atomic force microscope (AFM) was contacted onto the other electrode (gold nanorod) for the electrical measurement of the OPV device. The conductance measurement confirmed that the self-assembly of the molecules and the subsequent self-assembly of the gold nanorods was a feasible method for the fabrication of the nanogap of the molecular devices.
Parametric and cycle tests of a 40-A-hr bipolar nickel-hydrogen battery
NASA Technical Reports Server (NTRS)
Cataldo, R. L.
1986-01-01
A series of tests was performed to characterize battery performance relating to certain operating parameters which included charge current, discharge current, temperature and pressure. The parameters were varied to confirm battery design concepts and to determine optimal operating conditions. Spacecraft power requirements are constantly increasing. Special spacecraft such as the Space Station and platforms will require energy storage systems of 130 and 25 kWh, respectively. The complexity of these high power systems will demand high reliability, and reduced mass and volume. A system that uses batteries for storage will require a cell count in excess of 400 units. These cell units must then be assembled into several batteries with over 100 cells in a series connected string. In an attempt to simplify the construction of conventional cells and batteries, the NASA Lewis Research Center battery systems group initiated work on a nickel-hydrogen battery in a bipolar configuration in early 1981. Features of the battery with this bipolar construction show promise in improving both volumetric and gravimetric energy densities as well as thermal management. Bipolar construction allows cooling in closer proximity to the cell components, thus heat removal can be accomplished at a higher rejection temperature than conventional cell designs. Also, higher current densities are achievable because of low cell impedance. Lower cell impedance is achieved via current flow perpendicular to the electrode face, thus reducing voltage drops in the electrode grid and electrode terminals tabs.
Chen, Huan; Xi, Fengna; Gao, Xia; Chen, Zhichun; Lin, Xianfu
2010-08-01
Bienzyme bionanomultilayer electrode for glucose biosensing was constructed based on functional carbon nanotubes and sugar-lectin biospecific interaction through layer-by-layer (LBL) assembly. After being functionalized by wrapping with polyelectrolyte, multiwalled carbon nanotubes (MCNTs) were water soluble and positively charged. MCNT-bienzyme bionanomultilayer electrode was then fabricated by LBL assembly of horseradish peroxidase (HRP) and glucose oxidase (GOD) on functional MCNT modified electrode. The attachment of the MCNT-bienzyme bionanomultilayer with the underlying electrode and each layer in the bionanomultilayer was based on reliably electrostatic or sugar-lectin biospecific interaction. The developed bienzyme biosensor exhibited fast amperometric response for the determination of glucose. The linear response of the developed biosensor for the determination of glucose ranged from 2.0 x 10(-6) to 1.7 x 10(-4) M with a detection limit of 2.5 x 10(-7) M. The biosensor can be used directly to determine glucose in serum. The construction of the bienzyme biosensor showed potential for the preparation of MCNT-enzyme nanocomposite with controllability and high performance. Copyright 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chu, Wenya; Zhou, Qun; Li, Shuangshuang; Zhao, Wei; Li, Na; Zheng, Junwei
2015-10-01
Electrochemical biosensors based on conducting polymers incorporated with metallic nanoparticles can greatly enhance sensitivity and selectivity. Herein, we report a facile fabrication approach for polyaniline (PAN) incorporated with a gold nanoparticle (AuNP) composite electrode by electrodeposition of PAN on a self-assembled AuNP layer on the surface of an indium tin oxide electrode. The resulting AuNP/PAN composite electrode exhibits a remarkable synergistic effect on the electrocatalytic oxidation of ascorbic acid (AA) and dopamine (DA). It is demonstrated that the oxidation reaction of AA mainly occurs at AuNPs inside the PAN film as the ascorbate anions are doped into the polymer during the oxidation of the PAN film. Conversely, the oxidation of positively charged DA may only take place at the PAN/solution interface. The different mechanisms of the electrode reactions result in the oxidation of AA and DA occurring at different potentials. As a result, the AuNP/PAN composite electrode can be employed to simultaneously detect AA and DA with a good linear range, high sensitivity, and low detection limit.
Fabrication of Quench Condensed Thin Films Using an Integrated MEMS Fab on a Chip
NASA Astrophysics Data System (ADS)
Lally, Richard; Reeves, Jeremy; Stark, Thomas; Barrett, Lawrence; Bishop, David
Atomic calligraphy is a microelectromechanical systems (MEMS)-based dynamic stencil nanolithography technique. Integrating MEMS devices into a bonded stacked array of three die provides a unique platform for conducting quench condensed thin film mesoscopic experiments. The atomic calligraphy Fab on a Chip process incorporates metal film sources, electrostatic comb driven stencil plate, mass sensor, temperature sensor, and target surface into one multi-die assembly. Three separate die are created using the PolyMUMPs process and are flip-chip bonded together. A die containing joule heated sources must be prepared with metal for evaporation prior to assembly. A backside etch of the middle/central die exposes the moveable stencil plate allowing the flux to pass through the stencil from the source die to the target die. The chip assembly is mounted in a cryogenic system at ultra-high vacuum for depositing extremely thin films down to single layers of atoms across targeted electrodes. Experiments such as the effect of thin film alloys or added impurities on their superconductivity can be measured in situ with this process.
Membrane with internal passages to permit fluid flow and an electrochemical cell containing the same
NASA Technical Reports Server (NTRS)
Cisar, Alan J. (Inventor); Murphy, Oliver J. (Inventor); Gonzalez-Martin, Anuncia (Inventor); Hitchens, G. Duncan (Inventor)
1997-01-01
The invention provides an improved proton exchange membrane for use in electrochemical cells having internal passages parallel to the membrane surface, an apparatus and process for making the membrane, membrane and electrode assemblies fabricated using the membrane, and the application of the membrane and electrode assemblies to a variety of devices, both electrochemical and otherwise. The passages in the membrane extend from one edge of the membrane to another and allow fluid flow through the membrane and give access directly to the membrane for purposes of hydration.
Liu, Xingpeng; Peng, Bin; Zhang, Wanli; Zhu, Jun; Liu, Xingzhao; Wei, Meng
2017-12-01
In order to develop film electrodes for the surface acoustic wave (SAW) devices operating in harsh high-temperature environments, novel Al₂O₃/Pt/ZnO/Al₂O₃ multilayered film electrodes were prepared by laser molecular beam epitaxy (LMBE) at 150 °C. The first Al₂O₃ layer was used as a barrier layer to prevent the diffusion of Ga, La, and Si atoms from the La₃Ga₅SiO 14 (LGS) substrate to the film electrode and thus improved the crystalline quality of ZnO and Pt films. It was found that the resistance of the Al₂O₃/Pt/ZnO/Al₂O₃ electrode did not vary up to a temperature of 1150 °C, suggesting a high reliability of electrode under harsh high-temperature environments. The mechanism of the stable resistance of the Al₂O₃/Pt/ZnO/Al₂O₃ film electrodes at high temperature was investigated by analyzing its microstructure. The proposed Al₂O₃/Pt/ZnO/Al₂O₃ film electrode has great potential for application in high-temperature SAW devices.
NASA Astrophysics Data System (ADS)
Suryapratiwi, Windha Novita; Paat, Vlagia Indira; Gaffar, Shabarni; Hartati, Yeni Wahyuni
2017-05-01
Electrochemical biosensors are currently being developed in order to handle various clinical problems in diagnosing infectious diseases caused by pathogenic bacteria, or viruses. On this research, voltammetric DNA biosensor using gold electrode modified by thiols with self-assembled monolayers had been developed to detect a certain sequence of Salmonella typhi DNA from blood sample of typhoid fever patient. Thiol groups of cysteamines (Cys) and aldehyde groups from glutaraldehydes (Glu) were used as a link to increase the performance of gold electrode in detecting guanine oxidation signal of hybridized S. typhi DNA and ssDNA probe. Standard calibration method was used to determine analytical parameters from the measurements. The result shown that, the detection of S. typhi DNA from blood sample of typhoid fever patient can be carried out by voltammetry using gold electrode modified by self-assembled monolayers of thiols. A characteristic oxidation potential of guanine using Au/Cys/Gluwas obtained at +0.17 until +0.20 V. Limit of detection and limit of quantification from this measurements were 1.91μg mL-1 and 6.35 μg mL-1. The concentration of complement DNA from sample was 6.96 μg mL-1.
Fuel cell with metal screen flow-field
Wilson, M.S.; Zawodzinski, C.
1998-08-25
A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field there between for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells. 11 figs.
Fuel cell with metal screen flow-field
Wilson, Mahlon S.; Zawodzinski, Christine
2001-01-01
A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field therebetween for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells.
Fuel cell with metal screen flow-field
Wilson, Mahlon S.; Zawodzinski, Christine
1998-01-01
A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field therebetween for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells.
NASA Astrophysics Data System (ADS)
Ren, Xiaohu; Fan, Huiqing; Ma, Jiangwei; Wang, Chao; Zhang, Mingchang; Zhao, Nan
2018-05-01
Hierarchically hollow Co3O4/polyaniline nanocages (Co3O4/PANI NCs) with enhanced specific capacitance and cycle performance for electrode material of supercapacitors are fabricated by combining self-sacrificing template and in situ polymerization route. Benefiting from the good conductivity of PANI improving an electron transport rate as well as high specific surface area from such a hollow structure, the electrode made of Co3O4/PANI NCs exhibits a large specific capacitance of 1301 F/g at the current density of 1 A/g, a much enhancement is obtained as compared with the pristine Co3O4 NCs electrode. The contact resistance (Re), charge-transfer (Rct) and Warburg resistance of Co3O4/PANI NCs electrode is significantly lower than that of the pristine Co3O4 NCs electrode, indicating the enhanced electrical conductivity. In addition, the Co3O4/PANI NCs electrode also displays superior cycling stability with 90 % capacitance retention after 2000 cycles. Moreover, an aqueous asymmetric supercapacitor was successfully assembled using Co3O4/PANI NCs as the positive electrode and activated carbon (AC) as the negative electrode, the assembled device exhibits a superior energy density of 41.5 Wh/kg at 0.8 kW/kg, outstanding power density of 15.9 kW/kg at 18.4 Wh/kg, which significantly transcending those of most previously reported. These results demonstrate that the hierarchically hollow Co3O4/PANI NCs composites have a potential for fabricating electrode of supercapacitors.
Chen, Zhihang; Li, Hua; Tian, Ran; Duan, Huanan; Guo, Yiping; Chen, Yujie; Zhou, Jie; Zhang, Chunmei; Dugnani, Roberto; Liu, Hezhou
2016-06-06
In this work it is shown how porous graphene aerogels fabricated by an eco-friendly and simple technological process, could be used as electrodes in lithium- ion batteries. The proposed graphene framework exhibited excellent performance including high reversible capacities, superior cycling stability and rate capability. A significantly lower temperature (75 °C) than the one currently utilized in battery manufacturing was utilized for self-assembly hence providing potential significant savings to the industrial production. After annealing at 600 °C, the formation of Sn-C-O bonds between the SnO2 nanoparticles and the reduced graphene sheets will initiate synergistic effect and improve the electrochemical performance. The XPS patterns revealed the formation of Sn-C-O bonds. Both SEM and TEM imaging of the electrode material showed that the three dimensional network of graphene aerogels and the SnO2 particles were distributed homogeneously on graphene sheets. Finally, the electrochemical properties of the samples as active anode materials for lithium-ion batteries were tested and examined by constant current charge-discharge cycling and the finding fully described in this manuscript.
Rieke, Peter C [Pasco, WA; Coffey, Gregory W [Richland, WA; Pederson, Larry R [Kennewick, WA; Marina, Olga A [Richland, WA; Hardy, John S [Richland, WA; Singh, Prabhaker [Richland, WA; Thomsen, Edwin C [Richland, WA
2010-07-20
The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells. Also provided are electrochemical devices that include active oxygen reduction electrodes, such as solid oxide fuel cells, sensors, pumps and the like. The compositions comprises a copper-substituted ferrite perovskite material. The invention also provides novel methods for making and using the electrode compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having cathodes comprising the compositions.
Design of electrical stimulation bioreactors for cardiac tissue engineering.
Tandon, N; Marsano, A; Cannizzaro, C; Voldman, J; Vunjak-Novakovic, G
2008-01-01
Electrical stimulation has been shown to improve functional assembly of cardiomyocytes in vitro for cardiac tissue engineering. Carbon electrodes were found in past studies to have the best current injection characteristics. The goal of this study was to develop rational experimental design principles for the electrodes and stimulation regime, in particular electrode configuration, electrode ageing, and stimulation amplitude. Carbon rod electrodes were compared via electrochemical impedance spectroscopy (EIS) and we identified a safety range of 0 to 8 V/cm by comparing excitation thresholds and maximum capture rates for neonatal rat cardiomyocytes cultured with electrical stimulation. We conclude with recommendations for studies involving carbon electrodes for cardiac tissue engineering.
Non-bonded ultrasonic transducer
Eoff, J.M.
1984-07-06
A mechanically assembled non-bonded ultrasonic transducer includes a substrate, a piezoelectric film, a wetting agent, a thin metal electrode, and a lens held in intimate contact by a mechanical clamp. No epoxy or glue is used in the assembly of this device.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, Yuichi, E-mail: yuichi.watanabe@aist.go.jp; Suemori, Kouji; Hoshino, Satoshi
2016-06-15
An indium tin oxide (ITO) nanoparticle-based porous electrode sintered at low temperatures was investigated as a transparent electrode for electrochromic displays (ECDs). The electrochromic (EC) response of the dye-modified ITO porous electrode sintered at 150 °C, which exhibited a generally low resistivity, was markedly superior to that of a conventional dye-modified TiO{sub 2} porous electrode sintered at the same temperature. Moreover, the EC characteristics of the dye-modified ITO porous electrode sintered at 150 °C were better than those of the high-temperature (450 °C) sintered conventional dye-modified TiO{sub 2} porous electrode. These improvements in the EC characteristics of the dye-modified ITO porous electrode aremore » attributed to its lower resistivity than that of the TiO{sub 2} porous electrodes. In addition to its sufficiently low resistivity attained under the sintering conditions required for flexible ECD applications, the ITO porous film had superior visible-light transparency and dye adsorption capabilities. We conclude that the process temperature, resistivity, optical transmittance, and dye adsorption capability of the ITO porous electrode make it a promising transparent porous electrode for flexible ECD applications.« less
Zhou, Xing-Hua; Xi, Feng-Na; Zhang, Yi-Ming; Lin, Xian-Fu
2011-06-01
A simple and controllable layer-by-layer (LBL) assembly method was proposed for the construction of reagentless biosensors based on electrostatic interaction between functional multiwall carbon nanotubes (MWNTs) and enzyme-mediator biocomposites. The carboxylated MWNTs were wrapped with polycations poly(allylamine hydrochloride) (PAH) and the resulting PAH-MWNTs were well dispersed and positively charged. As a water-soluble dye methylene blue (MB) could mix well with horseradish peroxidase (HRP) to form a biocompatible and negatively-charged HRP-MB biocomposite. A (PAH-MWNTs/HRP-MB)(n) bionanomultilayer was then prepared by electrostatic LBL assembly of PAH-MWNTs and HRP-MB on a polyelectrolyte precursor film-modified Au electrode. Due to the excellent biocompatibility of HRP-MB biocomposite and the uniform LBL assembly, the immobilized HRP could retain its natural bioactivity and MB could efficiently shuttle electrons between HRP and the electrode. The incorporation of MWNTs in the bionanomultilayer enhanced the surface coverage concentration of the electroactive enzyme and increased the catalytic current response of the electrode. The proposed biosensor displayed a fast response (2 s) to hydrogen peroxide with a low detection limit of 2.0×10⁻⁷ mol/L (S/N=3). This work provided a versatile platform in the further development of reagentless biosensors.
Sode, Aya; Li, Winton; Yang, Yanguo; Wong, Phillip C; Gyenge, Elod; Mitchell, Keith A R; Bizzotto, Dan
2006-05-04
The characterization of an electrochemically created Pt/Zn alloy by Auger electron spectroscopy is presented indicating the formation of the alloy, the oxidation of the alloy, and the room temperature diffusion of the Zn into the Pt regions. The Pt/Zn alloy is stable up to 1.2 V/RHE and can only be removed with the oxidation of the base Pt metal either electrochemically or in aqua regia. The Pt/Zn alloy was tested for its effectiveness toward oxygen reduction. Kinetics of the oxygen reduction reaction (ORR) were measured using a rotating disk electrode (RDE), and a 30 mV anodic shift in the potential of ORR was found when comparing the Pt/Zn alloy to Pt. The Tafel slope was slightly smaller than that measured for the pure Pt electrode. A simple procedure for electrochemically modifying a Pt-containing gas diffusion electrode (GDE) with Zn was developed. The Zn-treated GDE was pressed with an untreated GDE anode, and the created membrane electrode assembly was tested. Fuel cell testing under two operating conditions (similar anode and cathode inlet pressures, and a larger cathode inlet pressure) indicated that the 30 mV shift observed on the RDE was also evident in the fuel cell tests. The high stability of the Pt/Zn alloy in acidic environments has a potential benefit for fuel cell applications.
Method of making chalcogen catalysts for polymer electrolyte fuel cells
Choi, Jong-Ho; Zelenay, Piotr; Wieckowski, Andrzej; Cao, Dianxue
2010-12-14
A method of making an electrode catalyst material using aqueous solutions. The electrode catalyst material includes a support comprising at least one transition metal and at least one chalcogen disposed on a surface of the transition metal. The method includes reducing a metal powder, mixing the metal powder with an aqueous solution containing at least one inorganic compound of the chalcogen to form a mixture, and providing a reducing agent to the mixture to form nanoparticles of the electrode catalyst. The electrode catalyst may be used in a membrane electrode assembly for a fuel cell.
Mauger, Scott A.; Neyerlin, K. C.; Alia, Shaun M.; ...
2018-03-13
Platinum-nickel nanowire (PtNiNW) catalysts have shown exceptionally high oxygen reduction mass activity in rotating disk electrode measurements. However, the ability to successfully incorporate PtNiNWs into high performance membrane electrode assemblies (MEAs) has been challenging due to their size, shape, density, dispersion characteristics, and corrosion-susceptible nickel core. We have investigated the impact of specific processing steps and electrode composition on observed fuel cell performance and electrochemical properties in order to optimize performance. We have found that nickel ion contamination is a major concern for PtNiNWs that can be addressed through ion exchange in fabricated/tested MEAs or by acid leaching of catalystmore » materials prior to MEA incorporation, with the latter being the more successful method. Additionally, decreased ionomer incorporation has led to the highest performance demonstrating 238 mA/mg Pt (0.9 V IR-free) for PtNiNWs (pre-leached to 80 wt% Pt) with 9 wt% ionomer incorporation.« less
Huang, Ming; Zhang, Yuxin; Li, Fei; Zhang, Lili; Ruoff, Rodney S.; Wen, Zhiyu; Liu, Qing
2014-01-01
Porous nanotubes comprised of MnO2 nanosheets were fabricated with a one-pot hydrothermal method using polycarbonate membrane as the template. The diameter and thickness of nanotubes can be controlled by choice of the membrane pore size and the chemistry. The porous MnO2 nanotubes were used as a supercapacitor electrode. The specific capacitance in a three-electrode system was 365 F g−1 at a current density of 0.25 A g−1 with capacitance retention of 90.4% after 3000 cycles. An asymmetric supercapacitor with porous MnO2 nanotubes as the positive electrode and activated graphene as the negative electrode yielded an energy density of 22.5 Wh kg−1 and a maximum power density of 146.2 kW kg−1; these values exceeded those reported for other MnO2 nanostructures. The supercapacitor performance was correlated with the hierarchical structure of the porous MnO2 nanotubes. PMID:24464344
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mauger, Scott A.; Neyerlin, K. C.; Alia, Shaun M.
Platinum-nickel nanowire (PtNiNW) catalysts have shown exceptionally high oxygen reduction mass activity in rotating disk electrode measurements. However, the ability to successfully incorporate PtNiNWs into high performance membrane electrode assemblies (MEAs) has been challenging due to their size, shape, density, dispersion characteristics, and corrosion-susceptible nickel core. We have investigated the impact of specific processing steps and electrode composition on observed fuel cell performance and electrochemical properties in order to optimize performance. We have found that nickel ion contamination is a major concern for PtNiNWs that can be addressed through ion exchange in fabricated/tested MEAs or by acid leaching of catalystmore » materials prior to MEA incorporation, with the latter being the more successful method. Additionally, decreased ionomer incorporation has led to the highest performance demonstrating 238 mA/mg Pt (0.9 V IR-free) for PtNiNWs (pre-leached to 80 wt% Pt) with 9 wt% ionomer incorporation.« less
Zeis, Roswitha
2015-01-01
The performance of high-temperature polymer electrolyte membrane fuel cells (HT-PEMFC) is critically dependent on the selection of materials and optimization of individual components. A conventional high-temperature membrane electrode assembly (HT-MEA) primarily consists of a polybenzimidazole (PBI)-type membrane containing phosphoric acid and two gas diffusion electrodes (GDE), the anode and the cathode, attached to the two surfaces of the membrane. This review article provides a survey on the materials implemented in state-of-the-art HT-MEAs. These materials must meet extremely demanding requirements because of the severe operating conditions of HT-PEMFCs. They need to be electrochemically and thermally stable in highly acidic environment. The polymer membranes should exhibit high proton conductivity in low-hydration and even anhydrous states. Of special concern for phosphoric-acid-doped PBI-type membranes is the acid loss and management during operation. The slow oxygen reduction reaction in HT-PEMFCs remains a challenge. Phosphoric acid tends to adsorb onto the surface of the platinum catalyst and therefore hampers the reaction kinetics. Additionally, the binder material plays a key role in regulating the hydrophobicity and hydrophilicity of the catalyst layer. Subsequently, the binder controls the electrode-membrane interface that establishes the triple phase boundary between proton conductive electrolyte, electron conductive catalyst, and reactant gases. Moreover, the elevated operating temperatures promote carbon corrosion and therefore degrade the integrity of the catalyst support. These are only some examples how materials properties affect the stability and performance of HT-PEMFCs. For this reason, materials characterization techniques for HT-PEMFCs, either in situ or ex situ, are highly beneficial. Significant progress has recently been made in this field, which enables us to gain a better understanding of underlying processes occurring during fuel cell operation. Various novel tools for characterizing and diagnosing HT-PEMFCs and key components are presented in this review, including FTIR and Raman spectroscopy, confocal Raman microscopy, synchrotron X-ray imaging, X-ray microtomography, and atomic force microscopy.
PEMFC development at Asahi Glass Co., Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshitake, M.; Yanagisawa, E.; Naganuma, T.
2000-07-01
Perfluorinated ion exchange membranes were studied and the membrane technology for PEMFC has been developed. Thermal stability, mechanical strength, water content, AC specific resistance and gas permeability were measured. The influence of membrane thickness on gas permeability and the influence of incorporation of cations on water content and AC specific resistance of Flemion{reg_sign} and Nafion{reg_sign}117 were estimated. Gas permeation rates of the membranes decreased in inverse proportion to the increase of the membrane thickness and gas permeability coefficients were nearly constant and independent of the thickness. Hydrogen permeation rates of Flemion S at 70 C were converted to 2.1 mA/cm{supmore » 2} as current density. Flemion R-electrode assembly showed to maintain stable performance for over 3,500 hr. Furthermore, it was found that usage of thinner membranes of one with higher ion-exchange capacity gave not only lower internal cell voltage but also higher IR-free cell voltage. PTFE-yarn embedded type membrane (Flemion Mc and Sc) and PTFE-fibril dispersed type (Flemion Rf2) was examined to afford improvement in mechanical strength at moist and high temperature atmosphere. Flemion Sc (80{micro}m) was examined to give high cell performance of 0.67V at 0.5A/cm2, 80 C, 1 ata. Flemion Mc-electrode assembly was examined to keep stable performance during the life test of over 1,500 hr.« less
NASA Technical Reports Server (NTRS)
Srinivasan, Supramaniam; Mukerjee, Sanjeev; Parthasarathy, A.; CesarFerreira, A.; Wakizoe, Masanobu; Rho, Yong Woo; Kim, Junbom; Mosdale, Renaut A.; Paetzold, Ronald F.; Lee, James
1994-01-01
The proton exchange membrane fuel cell (PEMFC) is one of the most promising electrochemical power sources for space and electric vehicle applications. The wide spectrum of R&D activities on PEMFC's, carried out in our Center from 1988 to date, is as follows (1) Electrode Kinetic and Electrocatalysis of Oxygen Reduction; (2) Optimization of Structures of Electrodes and of Membrane and Electrode Assemblies; (3) Selection and Evaluation of Advanced Proton Conducting Membranes and of Operating Conditions to Attain High Energy Efficiency; (4) Modeling Analysis of Fuel Cell Performance and of Thermal and Water Management; and (5) Engineering Design and Development of Multicell Stacks. The accomplishments on these tasks may be summarized as follows: (1) A microelectrode technique was developed to determine the electrode kinetic parameters for the fuel cell reactions and mass transport parameters for the H2 and O2 reactants in the proton conducting membrane. (2) High energy efficiencies and high power densities were demonstrated in PEMFCs with low platinum loading electrodes (0.4 mg/cm(exp 2) or less), advanced membranes and optimized structures of membrane and electrode assemblies, as well as operating conditions. (3) The modeling analyses revealed methods to minimize mass transport limitations, particularly with air as the cathodic reactant; and for efficient thermal and water management. (4) Work is in progress to develop multi-kilowatt stacks with the electrodes containing low platinum loadings.
Construction and direct electrochemistry of orientation controlled laccase electrode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ying; Zhang, Jiwei; Huang, Xirong, E-mail: xrhuang@sdu.edu.cn
2014-03-28
Highlights: • A recombinant laccase with Cys-6×His tag at the N or C terminus was generated. • Orientation controlled laccase electrodes were constructed via self assembly. • The electrochemical behavior of laccase electrodes was orientation dependent. • The C terminus tagged laccase was better for bioelectrocatalytic reduction of O{sub 2}. - Abstract: A laccase has multiple redox centres. Chemisorption of laccases on a gold electrode through a polypeptide tag introduced at the protein surface provides an isotropic orientation of laccases on the Au surface, which allows the orientation dependent study of the direct electrochemistry of laccase. In this paper, usingmore » genetic engineering technology, two forms of recombinant laccase which has Cys-6×His tag at the N or C terminus were generated. Via the Au-S linkage, the recombinant laccase was assembled orientationally on gold electrode. A direct electron transfer and a bioelectrocatalytic activity toward oxygen reduction were observed on the two orientation controlled laccase electrodes, but their electrochemical behaviors were found to be quite different. The orientation of laccase on the gold electrode affects both the electron transfer pathway and the electron transfer efficiency of O{sub 2} reduction. The present study is helpful not only to the in-depth understanding of the direct electrochemistry of laccase, but also to the development of laccase-based biofuel cells.« less
Butler, Caitlyn S; Nerenberg, Robert
2010-05-01
Microbial fuel cells (MFCs) can be built with layered electrode assemblies, where the anode, proton exchange membrane (PEM), and cathode are pressed into a single unit. We studied the performance and microbial community structure of MFCs with layered assemblies, addressing the effect of materials and oxygen crossover on the community structure. Four MFCs with layered assemblies were constructed using Nafion or Ultrex PEMs and a plain carbon cloth electrode or a cathode with an oxygen-resistant polytetrafluoroethylene diffusion layer. The MFC with Nafion PEM and cathode diffusion layer achieved the highest power density, 381 mW/m(2) (20 W/m(3)). The rates of oxygen diffusion from cathode to anode were three times higher in the MFCs with plain cathodes compared to those with diffusion-layer cathodes. Microsensor studies revealed little accumulation of oxygen within the anode cloth. However, the abundance of bacteria known to use oxygen as an electron acceptor, but not known to have exoelectrogenic activity, was greater in MFCs with plain cathodes. The MFCs with diffusion-layer cathodes had high abundance of exoelectrogenic bacteria within the genus Geobacter. This work suggests that cathode materials can significantly influence oxygen crossover and the relative abundance of exoelectrogenic bacteria on the anode, while PEM materials have little influence on anode community structure. Our results show that oxygen crossover can significantly decrease the performance of air-cathode MFCs with layered assemblies, and therefore limiting crossover may be of particular importance for these types of MFCs.
Non-bonded piezoelectric ultrasonic transducer
Eoff, James M.
1985-01-01
A mechanically assembled non-bonded ultrasonic transducer includes a substrate, a piezoelectric film, a wetting agent, a thin metal electrode, and a lens held in intimate contact by a mechanical clamp. No epoxy or glue is used in the assembly of this device.
Renewable-juglone-based high-performance sodium-ion batteries.
Wang, Hua; Hu, Pengfei; Yang, Jie; Gong, Guangming; Guo, Lin; Chen, Xiaodong
2015-04-08
A renewable-biomolecule-based electrode is developed through a facile synchronous reduction and self-assembly process, without any binder or additional conductive agent. The hybridized electrodes can be fabricated with arbitrary size and shape and exhibit superior capacity and cycle performance. The renewable-biomaterial-based high-performance electrodes will hold a place in future energy-storage devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Abdur, Rahim; Lim, Jeongeun; Jeong, Kyunghoon; Rahman, Mohammad Arifur; Kim, Jiyoung; Lee, Jaegab
2016-03-01
An efficient process for the low contact resistance and adherent source/drain Au electrode in bottom-contact organic thin film transistors (OTFTs) was developed. This was achieved by using two different surface-functional groups of self-assembled monolayers, 3-aminopropyltriethoxysilane (APS), and octadecyltrichlorosilane (OTS), combined with atmospheric-pressure (AP) plasma treatment. Prior to the deposition of Au electrode, the aminoterminated monolayer self-assembles on SiO2 dielectrics, enhancing the adhesion of Au electrode as a result of the acid-base interaction of Au with the amino-terminal groups. AP plasma treatment of the patterned Au electrode on the APS-coated surface activates the entire surface to form an OTS monolayer, allowing the formation of a high quality pentacene layer on both the electrode and active region by evaporation. In addition, negligible damage by AP plasma was observed for the device performance. The fabricated OTFTs based on the two monolayers by AP plasma treatment showed the mobility of 0.23 cm2/Vs, contact resistance of 29 kΩ-cm, threshold voltage of -1.63 V, and on/off ratio of 9.8 × 105, demonstrating the application of the simple process for robust and high-performance OTFTs. [Figure not available: see fulltext.
Matsuda, Naoki; Okabe, Hirotaka; Omura, Ayako; Nakano, Miki; Miyake, Koji
2017-01-01
To immobilize cytochrome c (cyt.c) on an ITO electrode while keeping its direct electron transfer (DET) functionality, the ITO electrode surface was modified with 11-{2-[2-(2-methoxyethoxy)ethoxy]ethoxy}undecylphosphonic acid (CH 3 O (CH 2 CH 2 O) 3 C 11 H 22 PO(OH) 2 , M-EG 3 -UPA) self-assembled monolayer (SAM) film. After a 100-times washing process to exchange a phosphate buffer saline solution surrounding cyt.c and ITO electrode to a fresh one, an in situ observation of visible absorption spectral change with slab optical waveguide (SOWG) spectroscopy showed that 87.7% of the cyt.c adsorbed on the M-EG 3 -UPA modified ITO electrode remained on the ITO electrode. The SOWG absorption spectra corresponding to oxidized and reduced cyt.c were observed with setting the ITO electrode potential at 0.3 and -0.3 V vs. Ag/AgCl, respectively, while probing the DET reaction between cyt.c and ITO electrode occurred. The amount of cyt.c was evaluated to be about 19.4% of a monolayer coverage based on the coulomb amount in oxidation and reduction peaks on cyclic voltammetry (CV) data. The CV peak current maintained to be 83.4% compared with the initial value for a M-EG 3 -UPA modified ITO electrode after 60 min continuous scan with 0.1 V/s between 0.3 and -0.3 V vs. Ag/AgCl.
Properties of barium strontium titanate and niobate nanoparticles produced in gas discharge
NASA Astrophysics Data System (ADS)
Plyaka, Pavel; Kazaryan, Mishik; Pavlenko, Anatoly
2018-03-01
Dust particles produced in the gas-discharge plasma by barium-strontium titanate and niobate targets sputtering have been investigated in the paper. Particles shape, size and chemical composition were identified. It have been established by Raman scattering investigation and X-ray structure analysis that a part of the collected dust particles retained original crystal structure of the sputtering target. For electro-physical investigations two discs were formed by pressuring from produced particles, and electrodes were deposited on disc flat surface. Capacitance and dielectric loss temperature dependences measurement resulted in the frequency range proving the ferroelectric properties of assembled nanoparticles, similar to the sputtered material.
Benneckendorf, Frank S; Hillebrandt, Sabina; Ullrich, Florian; Rohnacher, Valentina; Hietzschold, Sebastian; Jänsch, Daniel; Freudenberg, Jan; Beck, Sebastian; Mankel, Eric; Jaegermann, Wolfram; Pucci, Annemarie; Bunz, Uwe H F; Müllen, Klaus
2018-06-20
Studying the structure-property relations of tailored dipolar phenyl and biphenylphosphonic acids we report self-assembled monolayers with a significant decrease of the work function (WF) of indium-tin oxide (ITO) electrodes. While the strengths of the dipoles are varied through the different molecular lengths and the introduction of electron-withdrawing fluorine atoms, the surface energy is kept constant through the electron-donating N,N dimethylamine head groups. The self-assembled monolayer formation and its modification of the electrodes are investigated via infrared reflection absorption spectroscopy, contact angle measurements, and photoelectron spectroscopy. The WF decrease of ITO correlates with increasing molecular dipoles. The lowest ever recorded WF of 3.7 eV is achieved with the fluorinated biphenylphosphonic acid.
Low inductance busbar assembly
Holbrook, Meghan Ann
2010-09-21
A busbar assembly for electrically coupling first and second busbars to first and second contacts, respectively, on a power module is provided. The assembly comprises a first terminal integrally formed with the first busbar, a second terminal integrally formed with the second busbar and overlapping the first terminal, a first bridge electrode having a first tab electrically coupled to the first terminal and overlapping the first and second terminals, and a second tab electrically coupled to the first contact, a second bridge electrode having a third tab electrically coupled to the second terminal, and overlapping the first and second terminals and the first tab, and a fourth tab electrically coupled to the second contact, and a fastener configured to couple the first tab to the first terminal, and the third tab to the second terminal.
Low Current Surface Flashover for Initiation of Electric Propulsion Devices
NASA Astrophysics Data System (ADS)
Dary, Omar G.
There has been a recent increase in interest in miniaturization of propulsion systems for satellites. These systems are needed to propel micro- and nano-satellites, where platforms are much smaller than conventional satellites and require smaller levels of thrust. Micro-propulsion systems for these satellites are in their infancy and they must manage with smaller power systems and smaller propellant volumes. Electric propulsion systems operating on various types of electric discharges are typically used for these needs. One of the central components of such electrical micropropulsion systems are ignitor subsystems, which are required for creation the breakdown and initiation of the main discharge. Ignitors have to provide reliable ignition for entire lifetime of the micropropulsion system. Electric breakdown in vacuum usually require high voltage potentials of hundreds of kilovolts per mm to induce breakdown. The breakdown voltage can be significantly decreased (down to several kVs per mm) if dielectric surface flashover is utilized. However, classical dielectric surface flashover operates at large electric current (100s of Amperes) and associated with overheating and damage of the electrodes/dielectric assembly after several flashover events. The central idea of this work was to eliminate the damage to the flashover electrode assembly by limiting the flashover currents to low values in milliampere range (Low Current Surface Flashover -LCSF) and utilize LCSF system as an ignition source for the main discharge on the micropropulsion system. The main objective of this research was to create a robust LCSF ignition system, capable producing a large number of surface flashover triggering events without significant damage to the LCSF electrode assembly. The thesis aims to characterize the plasma plume created at LCSF, study electrodes ablation and identify conditions required for robust triggering of main discharge utilized on micro-propulsion system. Conditioning of a new LCSF assembly (flashover current was limited to <100 mA in all experiments) was measured and breakdown voltages in the range of 8kV to 12kV were observed for the fully conditioned assembly. No damage to the LCSF electrode assembly was observed after about 104 LCSF events. The LCSF assembly created sufficient amount of seed plasma in order to bridge a vacuum gap between the high-current electrodes and to reliably ignite high-current arcs (10A-12A arc were used in this work). Ignition of the high-current arc was observed at three different cases of LCSF with limiting currents 100 mA, 33 mA and 20 mA respectively. Plasma parameter measurements were conducted with variety of Langmuir probes inside the LCSF plume. Ion currents created by the LCSF were primarily expelled directly perpendicular from the insulator surface. The plasma expansion for the LCSF assembly was measured to be 2 x 106-6 x 106 cm/s. Plasma density was measured to range 10 10-1011 cm-3. The plasma density was maximal near the LCSF assembly and quickly reduced radially. Temporal decay of the plasma was observed on a time scale of about 5 micros after the LCSF event. The results of this work are significant for creation of ignitor for micropropulsion systems. LCSF system offers reliable triggering for numerous ignition pulses for entire lifetime of the micropropulsion system and reduces complexity and volume of the system by excluding moving parts and the need for an external gas tanks.
NASA Astrophysics Data System (ADS)
Yang, Chun-Chen; Chiu, Shwu-Jer; Lin, Che-Tseng
A novel composite polymer membrane based on poly(vinyl alcohol)/hydroxyapatite (PVA/HAP) was successfully prepared by a solution casting method. The characteristic properties of the PVA/HAP composite polymer membranes were examined by thermal gravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), micro-Raman spectroscopy and AC impedance method. An air-breathing DMFC, comprised of an air cathode electrode with MnO 2/BP2000 carbon inks on Ni-foam, an anode electrode with PtRu black on Ti-mesh, and the PVA/HAP composite polymer membrane, was assembled and studied. It was found that this alkaline DMFC showed an improved electrochemical performance at ambient temperature and pressure; the maximum peak power density of an air-breathing DMFC in 8 M KOH + 2 M CH 3OH solution is about 11.48 mW cm -2. From the application point of view, these composite polymer membranes show a high potential for the DMFC applications.
NASA Astrophysics Data System (ADS)
Holst-Olesen, Kaspar; Nesselberger, Markus; Perchthaler, Markus; Hacker, Viktor; Arenz, Matthias
2014-12-01
In the presented work we systematically study the influence of phosphoric acid, ammonium trifluoromethanesulfonate (ATFMS), and polyvinylidene difluoride (PVDF) on the oxygen reduction reaction (ORR) activity of carbon supported, Pt based catalysts. The influence of phosphoric acid is investigated in a mixed solution of perchloric acid with small amounts of phosphoric acid added. Thin-film rotating disk electrode (TF-RDE) measurements show that such a mixed electrolyte is advantageous as the oxygen reduction reaction (ORR) is inhibited without influencing the oxygen solubility in the electrolyte. In contrast to previous reports it is seen when investigating additives that ATFMS acts as a catalyst poison; whereas the results provide evidence of a better performance in case of the PVDF incorporated catalysts as compared to reference samples without PVDF. The technological relevance of the PVDF improvements and its stability over prolonged time was validated by membrane electrode assembly (MEA) tests.
Mahmood, Asif; Zou, Ruqiang; Wang, Qingfei; Xia, Wei; Tabassum, Hassina; Qiu, Bin; Zhao, Ruo
2016-01-27
This work successfully demonstrates metal-organic framework (MOF) derived strategy to prepare nanoporous carbon (NPC) with or without Fe3O4/Fe nanoparticles by the optimization of calcination temperature as highly active electrode materials for asymmetric supercapacitors (ASC). The nanostructured Fe3O4/Fe/C hybrid shows high specific capacitance of 600 F/g at a current density of 1 A/g and excellent capacitance retention up to 500 F/g at 8 A/g. Furthermore, hierarchically NPC with high surface area also obtained from MOF gels displays excellent electrochemical performance of 272 F/g at 2 mV/s. Considering practical applications, aqueous ASC (aASC) was also assembled, which shows high energy density of 17.496 Wh/kg at the power density of 388.8 W/kg. The high energy density and excellent capacity retention of the developed materials show great promise for the practical utilization of these energy storage devices.
Capacity extended bismuth-antimony cathode for high-performance liquid metal battery
NASA Astrophysics Data System (ADS)
Dai, Tao; Zhao, Yue; Ning, Xiao-Hui; Lakshmi Narayan, R.; Li, Ju; Shan, Zhi-wei
2018-03-01
Li-Bi based liquid metal batteries (LMBs) have attracted interest due to their potential for solving grid scale energy storage problems. In this study, the feasibility of replacing the bismuth cathode with a bismuth-antimony alloy cathode in lithium based LMBs is investigated. The influence of the Bi:Sb ratio on voltage characteristics is evaluated via the constant current discharge method and electrochemical titration. On observing the cross section of the electrode at various stages of discharge, it is determined that both Sb and Bi form solid intermetallics with Li on the cathode. Additionally, the addition of Bi not only reduces the melting temperature of the Bi:Sb intermetallic but also actively contributes to the electrode capacity. Thereafter, a Li|LiCl-LiF|Sb-Bi liquid metal battery with 3 A h nameplate capacity, assembled and cycled at 1 C rate, is found to possess a stable capacity for over 160 cycles. The overall performance of this battery is discussed in the context of cost effectiveness, energy and coulombic efficiencies.
Metal Electrodeposition on an Integrated, Screen-Printed Electrode Assembly
ERIC Educational Resources Information Center
Chyan, Yieu; Chyan, Oliver
2008-01-01
In this lab experiment, screen-printed electrode strips are used to illustrate the essential concepts of electrochemistry, giving students an opportunity to explore metal electrodeposition processes. In the past, metal electrodeposition experiments were seldom included in general chemistry labs because of the difficulty of maintaining separate…
Linear particle accelerator with seal structure between electrodes and insulators
Broadhurst, John H.
1989-01-01
An electrostatic linear accelerator includes an electrode stack comprised of primary electrodes formed or Kovar and supported by annular glass insulators having the same thermal expansion rate as the electrodes. Each glass insulator is provided with a pair of fused-in Kovar ring inserts which are bonded to the electrodes. Each electrode is designed to define a concavo-convex particle trap so that secondary charged particles generated within the accelerated beam area cannot reach the inner surface of an insulator. Each insulator has a generated inner surface profile which is so configured that the electrical field at this surface contains no significant tangential component. A spark gap trigger assembly is provided, which energizes spark gaps protecting the electrodes affected by over voltage to prevent excessive energy dissipation in the electrode stack.
Stretchable Platinum Network-Based Transparent Electrodes for Highly Sensitive Wearable Electronics.
Wang, Yuting; Cheng, Jing; Xing, Yan; Shahid, Muhammad; Nishijima, Hiroki; Pan, Wei
2017-07-01
A platinum network-based transparent electrode has been fabricated by electrospinning. The unique nanobelt structured electrode demonstrates low sheet resistance (about 16 Ω sq -1 ) and high transparency of 80% and excellent flexibility. One of the most interesting demonstrations of this Pt nanobelt electrode is its excellent reversibly resilient characteristic. The electric conductivity of the flexible Pt electrode can recover to its initial value after 160% extending and this performance is repeatable and stable. The good linear relationship between the resistance and strain of the unique structured Pt electrode makes it possible to assemble a wearable high sensitive strain sensor. Present reported Pt nanobelt electrode also reveals potential applications in electrode for flexible fuel cells and highly transparent ultraviolet (UV) sensors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High surface area electrodes by template-free self-assembled hierarchical porous gold architecture.
Morag, Ahiud; Golub, Tatiana; Becker, James; Jelinek, Raz
2016-06-15
The electrode active surface area is a crucial determinant in many electrochemical applications and devices. Porous metal substrates have been employed in electrode design, however construction of such materials generally involves multistep processes, generating in many instances electrodes exhibiting incomplete access to internal pore surfaces. Here we describe fabrication of electrodes comprising hierarchical, nano-to-microscale porous gold matrix, synthesized through spontaneous crystallization of gold thiocyanate in water. Cyclic voltammetry analysis revealed that the specific surface area of the conductive nanoporous Au microwires was very high and depended only upon the amount of gold used, not electrode areas or geometries. Application of the electrode in a pseudo-capacitor device is presented. Copyright © 2016 Elsevier Inc. All rights reserved.
Adhesive coated electrical apparatus having sublimable protective covering and an assembly method
Wootton, Roy E.
1982-01-01
Electrical apparatus including an enclosure, an electrode disposed within the enclosure, and supports for insulatably supporting the electrode within the enclosure has a permanently sticky adhesive material which is disposed on the interior surface of the outer enclosure. A high-vapor-pressure sublimable material is disposed on the permanently sticky adhesive material, with the sublimable material capable of subliming away in the presence of a vacuum. The presence of the sublimable material enables the apparatus to be non-sticky during assembly and handling operations, while being rendered sticky upon commissioning of the apparatus.
Membrane with supported internal passages
NASA Technical Reports Server (NTRS)
Gonzalez-Martin, Anuncia (Inventor); Salinas, Carlos E. (Inventor); Cisar, Alan J. (Inventor); Hitchens, G. Duncan (Inventor); Murphy, Oliver J. (Inventor)
2000-01-01
The invention provides an improved proton exchange membrane for use in electrochemical cells having internal passages parallel to the membrane surface comprising permanent tubes preferably placed at the ends of the fluid passages. The invention also provides an apparatus and process for making the membrane, membrane and electrode assemblies fabricated using the membrane, and the application of the membrane and electrode assemblies to a variety of devices, both electrochemical and otherwise. The passages in the membrane extend from one edge of the membrane to another and allow fluid flow through the membrane and give access directly to the membrane.
Electrolysis Performance Improvement Concept Study (EPICS) flight experiment phase C/D
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Lee, M. G.
1995-01-01
The overall purpose of the Electrolysis Performance Improvement Concept Study flight experiment is to demonstrate and validate in a microgravity environment the Static Feed Electrolyzer concept as well as investigate the effect of microgravity on water electrolysis performance. The scope of the experiment includes variations in microstructural characteristics of electrodes and current densities in a static feed electrolysis cell configuration. The results of the flight experiment will be used to improve efficiency of the static feed electrolysis process and other electrochemical regenerative life support processes by reducing power and expanding the operational range. Specific technologies that will benefit include water electrolysis for propulsion, energy storage, life support, extravehicular activity, in-space manufacturing and in-space science in addition to other electrochemical regenerative life support technologies such as electrochemical carbon dioxide and oxygen separation, electrochemical oxygen compression and water vapor electrolysis. The Electrolysis Performance Improvement Concept Study flight experiment design incorporates two primary hardware assemblies: the Mechanical/Electrochemical Assembly and the Control/Monitor Instrumentation. The Mechanical/Electrochemical Assembly contains three separate integrated electrolysis cells along with supporting pressure and temperature control components. The Control/Monitor Instrumentation controls the operation of the experiment via the Mechanical/Electrochemical Assembly components and provides for monitoring and control of critical parameters and storage of experimental data.
Design of Electrical Stimulation Bioreactors for Cardiac Tissue Engineering
Tandon, N.; Marsano, A.; Cannizzaro, C.; Voldman, J.; Vunjak-Novakovic, G.
2009-01-01
Electrical stimulation has been shown to improve functional assembly of cardiomyocytes in vitro for cardiac tissue engineering. Carbon electrodes were found in past studies to have the best current injection characteristics. The goal of this study was to develop rational experimental design principles for the electrodes and stimulation regime, in particular electrode configuration, electrode ageing, and stimulation amplitude. Carbon rod electrodes were compared via electrochemical impedance spectroscopy (EIS) and we identified a safety range of 0 to 8 V/cm by comparing excitation thresholds and maximum capture rates for neonatal rat cardiomyocytes cultured with electrical stimulation. We conclude with recommendations for studies involving carbon electrodes for cardiac tissue engineering. PMID:19163486
Fuel cell with electrolyte matrix assembly
Kaufman, Arthur; Pudick, Sheldon; Wang, Chiu L.
1988-01-01
This invention is directed to a fuel cell employing a substantially immobilized electrolyte imbedded therein and having a laminated matrix assembly disposed between the electrodes of the cell for holding and distributing the electrolyte. The matrix assembly comprises a non-conducting fibrous material such as silicon carbide whiskers having a relatively large void-fraction and a layer of material having a relatively small void-fraction.
Wu, Baoyan; Hou, Shihua; Miao, Zhiying; Zhang, Cong; Ji, Yanhong
2015-09-18
A novel amperometric glucose biosensor was fabricated by layer-by-layer self-assembly of gold nanorods (AuNRs) and glucose oxidase (GOD) onto single-walled carbon nanotubes (SWCNTs)-functionalized three-dimensional sol-gel matrix. A thiolated aqueous silica sol containing SWCNTs was first assembled on the surface of a cleaned Au electrode, and then the alternate self-assembly of AuNRs and GOD were repeated to assemble multilayer films of AuNRs-GOD onto SWCNTs-functionalized silica gel for optimizing the biosensor. Among the resulting glucose biosensors, the four layers of AuNRs-GOD-modified electrode showed the best performance. The sol-SWCNTs-(AuNRs- GOD)₄/Au biosensor exhibited a good linear range of 0.01-8 mM glucose, high sensitivity of 1.08 μA/mM, and fast amperometric response within 4 s. The good performance of the proposed glucose biosensor could be mainly attributed to the advantages of the three-dimensional sol-gel matrix and stereo self-assembly films, and the natural features of one-dimensional nanostructure SWCNTs and AuNRs. This study may provide a new facile way to fabricate the enzyme-based biosensor with high performance.
Fujimoto, Hiroyuki; Kato, Koichi; Iwata, Hiroo
2010-05-01
Electroporation microarrays have been developed for the high-throughput transfection of expression constructs and small interfering RNAs (siRNAs) into living mammalian cells. These techniques have potential to provide a platform for the cell-based analysis of gene functions. One of the key issues associated with microarray technology is the efficiency of transfection. The capability of attaining reasonably high transfection efficiency is the basis for obtaining functional data without false negatives. In this study, we aimed at improving the transfection efficiency in the system that siRNA loaded on an electrode is electroporated into cells cultured directly on the electrode. The strategy we adopted here is to increase the surface density of siRNA loaded onto electrodes. For this purpose, the layer-by-layer assembly of siRNA and cationic polymers, branched or linear form of poly(ethyleneimine), was performed. The multilayer thus obtained was characterized by infrared reflection-adsorption spectroscopy and surface plasmon resonance analysis. Transfection efficiency was evaluated in a system that siRNA specific for enhanced green fluorescent protein (EGFP) was electroporated on the electrode into human embryonic kidney cells stably transformed with the EGFP gene. The suppression of EGFP expression was assessed by fluorescence microscopy and flow cytometry. Our data showed that the layer-by-layer assembly of siRNA with branched poly(ethyleneimine) facilitated to increase the surface density of loaded siRNA. As a result, the expression of EGFP gene in the electroporated cells was suppressed much more on the electrodes with the multilayer of siRNA than that with the monolayer.
Electron transfer of quinone self-assembled monolayers on a gold electrode.
Nagata, Morio; Kondo, Masaharu; Suemori, Yoshiharu; Ochiai, Tsuyoshi; Dewa, Takehisa; Ohtsuka, Toshiaki; Nango, Mamoru
2008-06-15
Dialkyl disulfide-linked naphthoquinone, (NQ-Cn-S)2, and anthraquinone, (AQ-Cn-S)2, derivatives with different spacer alkyl chains (Cn: n=2, 6, 12) were synthesized and these quinone derivatives were self-assembled on a gold electrode. The formation of self-assembled monolayers (SAMs) of these derivatives on a gold electrode was confirmed by infrared reflection-absorption spectroscopy (IR-RAS). Electron transfer between the derivatives and the gold electrode was studied by cyclic voltammetry. On the cyclic voltammogram a reversible redox reaction between quinone (Q) and hydroquinone (QH2) was clearly observed under an aqueous condition. The formal potentials for NQ and AQ derivatives were -0.48 and -0.58 V, respectively, that did not depend on the spacer length. The oxidation and reduction peak currents were strongly dependent on the spacer alkyl chain length. The redox behavior of quinone derivatives depended on the pH condition of the buffer solution. The pH dependence was in agreement with a theoretical value of E 1/2 (mV)=E'-59pH for 2H+/2e(-) process in the pH range 3-11. In the range higher than pH 11, the value was estimated with E 1/2 (mV)=E'-30pH , which may correspond to H+/2e(-) process. The tunneling barrier coefficients (beta) for NQ and AQ SAMs were determined to be 0.12 and 0.73 per methylene group (CH2), respectively. Comparison of the structures and the alkyl chain length of quinones derivatives on these electron transfers on the electrode is made.
Cementation of colloidal particles on electrodes in a galvanic microreactor.
Jan, Linda; Punckt, Christian; Aksay, Ilhan A
2013-07-10
We have studied the processes leading to the cementation of colloidal particles during their autonomous assembly on corroding copper electrodes within a Cu-Au galvanic microreactor. We determined the onset of particle immobilization through particle tracking, monitored the dissolution of copper as well as the deposition of insoluble products of the corrosion reactions in situ, and showed that particle immobilization initiated after reaction products (RPs) began to deposit on the electrode substrate. We further demonstrated that the time and the extent of RP precipitation and thus the strength of the particle-substrate bond could be tuned by varying the amount of copper in the system and the microreactor pH. The ability to cement colloidal particles at locations undergoing corrosion illustrates that the studied colloidal assembly approach holds potential for applications in dynamic material property adaptation.
Aligned and Electrospun Piezoelectric Polymer Fiber Assembly and Scaffold
NASA Technical Reports Server (NTRS)
Holloway, Nancy M. (Inventor); Scott-Carnell, Lisa A. (Inventor); Siochi, Emilie J. (Inventor); Leong, Kam W. (Inventor); Kulangara, Karina (Inventor)
2015-01-01
A scaffold assembly and related methods of manufacturing and/or using the scaffold for stem cell culture and tissue engineering applications are disclosed which at least partially mimic a native biological environment by providing biochemical, topographical, mechanical and electrical cues by using an electroactive material. The assembly includes at least one layer of substantially aligned, electrospun polymer fiber having an operative connection for individual voltage application. A method of cell tissue engineering and/or stem cell differentiation uses the assembly seeded with a sample of cells suspended in cell culture media, incubates and applies voltage to one or more layers, and thus produces cells and/or a tissue construct. In another aspect, the invention provides a method of manufacturing the assembly including the steps of providing a first pre-electroded substrate surface; electrospinning a first substantially aligned polymer fiber layer onto the first surface; providing a second pre-electroded substrate surface; electrospinning a second substantially aligned polymer fiber layer onto the second surface; and, retaining together the layered surfaces with a clamp and/or an adhesive compound.
Aligned and Electrospun Piezoelectric Polymer Fiber Assembly and Scaffold
NASA Technical Reports Server (NTRS)
Kulangara, Karina (Inventor); Scott Carnell, Lisa A. (Inventor); Holloway, Nancy M. (Inventor); Leong, Kam W. (Inventor); Siochi, Emilie J. (Inventor)
2017-01-01
A method of manufacturing and/or using a scaffold assembly for stem cell culture and tissue engineering applications is disclosed. The scaffold at least partially mimics a native biological environment by providing biochemical, topographical, mechanical and electrical cues by using an electroactive material. The assembly includes at least one layer of substantially aligned, electrospun polymer fiber having an operative connection for individual voltage application. A method of cell tissue engineering and/or stem cell differentiation that uses the assembly seeded with a sample of cells suspended in cell culture media, incubates and applies voltage to one or more layers, and thus produces cells and/or a tissue construct. In another aspect, the invention provides a method of manufacturing the assembly including the steps of providing a first pre-electroded substrate surface; electrospinning a first substantially aligned polymer fiber layer onto the first surface; providing a second pre-electroded substrate surface; electrospinning a second substantially aligned polymer fiber layer onto the second surface; and, retaining together the layered surfaces with a clamp and/or an adhesive compound.
A numerical model for CO effect evaluation in HT-PEMFCs: Part 2 - Application to different membranes
NASA Astrophysics Data System (ADS)
Cozzolino, R.; Chiappini, D.; Tribioli, L.
2016-06-01
In this paper, a self-made numerical model of a high temperature polymer electrolyte membrane fuel cell is presented. In particular, we focus on the impact of CO poisoning on fuel cell performance and its influence on electrochemical modelling. More specifically, the aim of this work is to demonstrate the effectiveness of our zero-dimensional electrochemical model of HT-PEMFCs, by comparing numerical and experimental results, obtained from two different commercial membranes electrode assemblies: the first one is based on polybenzimidazole (PBI) doped with phosphoric acid, while the second one uses a PBI electrolyte with aromatic polyether polymers/copolymers bearing pyridine units, always doped with H3PO4. The analysis has been carried out considering both the effect of CO poisoning and operating temperature for the two membranes above mentioned.
Attaching Thiolated Superconductor Grains on Gold Surfaces for Nanoelectronics Applications
NASA Astrophysics Data System (ADS)
De Los Santos Valladares, Luis; Bustamante Dominguez, Angel; Llandro, Justin; Suzuki, Seiichi; Mitrelias, Thanos; Bellido Quispe, Richard; Barnes, Crispin H. W.; Majima, Yutaka
2010-09-01
We report that the high critical temperature superconductor (HTCS) LaCaBaCu3O7 in the form of nanograins can be linked to Au(111) surfaces through self assembled monolayers (SAMs) of HS-C8H16-HS [octane (di)thiol]. We show that La1113 particles (100 nm mean diameter) can be functionalized by octane (di)thiol without affecting their superconducting critical temperature (TC=80 K). X-ray photoemission spectroscopy (XPS) analysis reveals that the thiol functional heads link the superconducting grain surfaces creating sulfonates and we deduce that bonding between the S atoms and Cu(1) atoms of the La1113 structure would be formed. We suggest a design for a superconducting transistor fabricated by immobilized La1113 nanograins in between two gold electrodes which could be controlled by an external magnetic field gate.
Jakubowicz, Jessica F; Bai, Shasha; Matlock, David N; Jones, Michelle L; Hu, Zhuopei; Proffitt, Betty; Courtney, Sherry E
2018-05-01
High electrode temperature during transcutaneous monitoring is associated with skin burns in extremely premature infants. We evaluated the accuracy and precision of CO 2 and O 2 measurements using lower transcutaneous electrode temperatures below 42°C. We enrolled 20 neonates. Two transcutaneous monitors were placed simultaneously on each neonate, with one electrode maintained at 42°C and the other randomized to temperatures of 38, 39, 40, 41, and 42°C. Arterial blood was collected twice at each temperature. At the time of arterial blood sampling, values for transcutaneously measured partial pressure of CO 2 (P tcCO 2 ) were not significantly different among test temperatures. There was no evidence of skin burning at any temperature. For P tcCO 2 , Bland-Altman analyses of all test temperatures versus 42°C showed good precision and low bias. Transcutaneously measured partial pressure of O 2 (P tcO 2 ) values trended arterial values but had large negative bias. Transcutaneous electrode temperatures as low as 38°C allow an assessment of P tcCO 2 as accurate as that with electrodes at 42°C. Copyright © 2018 by Daedalus Enterprises.
Mohan, S Venkata; Chandrasekhar, K
2011-07-01
Solid phase microbial fuel cells (SMFC; graphite electrodes; open-air cathode) were designed to evaluate the potential of bioelectricity production by stabilizing composite canteen based food waste. The performance was evaluated with three variable electrode-membrane assemblies. Experimental data depicted feasibility of bioelectricity generation from solid state fermentation of food waste. Distance between the electrodes and presence of proton exchange membrane (PEM) showed significant influence on the power yields. SMFC-B (anode placed 5 cm from cathode-PEM) depicted good power output (463 mV; 170.81 mW/m(2)) followed by SMFC-C (anode placed 5 cm from cathode; without PEM; 398 mV; 53.41 mW/m(2)). SMFC-A (PEM sandwiched between electrodes) recorded lowest performance (258 mV; 41.8 mW/m(2)). Sodium carbonate amendment documented marked improvement in power yields due to improvement in the system buffering capacity. SMFCs operation also documented good substrate degradation (COD, 76%) along with bio-ethanol production. The operation of SMFC mimicked solid-sate fermentation which might lead to sustainable solid waste management practices. Copyright © 2011 Elsevier Ltd. All rights reserved.
Selectivity and Sensitivity of Ultrathin Monolayer Electrodes
NASA Astrophysics Data System (ADS)
Cheng, Quan
The objective of this work is to build a molecular architecture on the electrode surface with a well-defined morphology and desirable electrochemical characteristics. The goal is accomplished by means of self-assembly of thioctic acid, a sulfur-terminated organic molecule with a short alkyl chain and a hydrophilic carboxylic headgroup, on a gold electrode. Characterization of the monolayer structure and the electrochemical response of the monolayer electrodes is performed by means of capacitance measurements and voltammetry. Investigation of the capacitance of the self-assembled monolayers provides insight into the macroscopic permeability of the films and reveals that penetration of solvent/ions into the thioctic acid monolayer film occurs extensively. Voltammetric results demonstrate that permselectivity of the monolayer electrode can be obtained as a result of the induced electrostatic interactions between the monolayer interface and the electroactive species. Measurement of the voltammetric response of the redox probes at the monolayers as a function of the electrolyte concentration and composition is used to qualitatively analyze the effect of electrolyte on response. A model describing the role of the interfacial charge in the electrochemical response of the monolayers as a function of the solution composition and surface smoothness is proposed. A strategy is developed to further explore the applications of the monolayer electrodes to control the electrochemical response of the biological molecules such as catecholamines. The ability to control the surface hydrophobicity of the monolayer electrodes through coadsorption of thioctic acid and hexanethiol, to display different electrochemical properties towards biological molecules is tested. The optimum conditions for detection of the biological molecules on the monolayer electrodes are discussed. In order to pursue selective analysis in microenvironments, the thioctic acid monolayer formed on the ultramicroelectrodes (UME) is investigated, demonstrating high permselectivity and high sensitivity of the monolayer modified UMEs. Because of the more effective mass transport to the UMEs, effects of electrolyte on the monolayer response can be characterized facilely. Amperometric pH sensing on the thioctic acid UMEs using a redox mediator is discussed. Finally, the thioctic acid monolayer microelectrode is applied to investigate direct electrochemistry of a redox protein, cytochrome c. A sketch for developing a biosensor via mediation effects using the monolayer assembly is proposed.
Reversible storage of lithium in a rambutan-like tin-carbon electrode.
Deng, Da; Lee, Jim Yang
2009-01-01
Fruity electrodes: A simple bottom-up self-assembly method was used to fabricate rambutan-like tin-carbon (Sn@C) nanoarchitecture (see scheme, green Sn) to improve the reversible storage of lithium in tin. The mechanism of the growth of the pear-like hairs is explored.
Method of synthesizing polymers from a solid electrolyte
Skotheim, Terje A.
1985-01-01
A method of synthesizing electrically conductive polymers from a solvent-free solid polymer electrolyte wherein an assembly of a substrate having an electrode thereon, a thin coating of solid electrolyte including a solution of PEO complexed with an alkali salt, and a thin transparent noble metal electrode are disposed in an evacuated chamber into which a selected monomer vapor is introduced while an electric potential is applied across the solid electrolyte to hold the thin transparent electrode at a positive potential relative to the electrode on the substrate, whereby a highly conductive polymer film is grown on the transparent electrode between it and the solid electrolyte.
Method of synthesizing polymers from a solid electrolyte
Skotheim, T.A.
1984-10-19
A method of synthesizing electrically conductive polymers from a solvent-free solid polymer electrolyte is disclosed. An assembly of a substrate having an electrode thereon, a thin coating of solid electrolyte including a solution of PEO complexed with an alkali salt, and a thin transparent noble metal electrode are disposed in an evacuated chamber into which a selected monomer vapor is introduced while an electric potential is applied across the solid electrolyte to hold the thin transparent electrode at a positive potential relative to the electrode on the substrate, whereby a highly conductive polymer film is grown on the transparent electrode between it and the solid electrolyte.
NASA Astrophysics Data System (ADS)
Thangavel, Ranjith; Kannan, Aravindaraj G.; Ponraj, Rubha; Thangavel, Vigneysh; Kim, Dong-Won; Lee, Yun-Sung
2018-04-01
Development of supercapacitors with high energy density and long cycle life using sustainable materials for next-generation applications is of paramount importance. The ongoing challenge is to elevate the energy density of supercapacitors on par with batteries, while upholding the power and cyclability. In addition, attaining such superior performance with green and sustainable bio-mass derived compounds is very crucial to address the rising environmental concerns. Herein, we demonstrate the use of watermelon rind, a bio-waste from watermelons, towards high energy, and ultra-stable high temperature green supercapacitors with a high-voltage ionic liquid electrolyte. Supercapacitors assembled with ultra-high surface area, hierarchically porous carbon exhibits a remarkable performance both at room temperature and at high temperature (60 °C) with maximum energy densities of ∼174 Wh kg-1 (25 °C), and 177 Wh kg-1 (60 °C) - based on active mass of both electrodes. Furthermore, an ultra-high specific power of ∼20 kW kg-1 along with an ultra-stable cycling performance with 90% retention over 150,000 cycles has been achieved even at 60 °C, outperforming supercapacitors assembled with other carbon based materials. These results demonstrate the potential to develop high-performing, green energy storage devices using eco-friendly materials for next generation electric vehicles and other advanced energy storage systems.
She, Zimin; Ghosh, Debasis; Pope, Michael A
2017-10-24
A major stumbling block in the development of high energy density graphene-based supercapacitors has been maintaining high ion-accessible surface area combined with high electrode density. Herein, we develop an ionic liquid (IL)-surfactant microemulsion system that is found to facilitate the spontaneous adsorption of IL-filled micelles onto graphene oxide (GO). This adsorption distributes the IL over all available surface area and provides an aqueous formulation that can be slurry cast onto current collectors, leaving behind a dense nanocomposite film of GO/IL/surfactant. By removing the surfactant and reducing the GO through a low-temperature (360 °C) heat treatment, the IL plays a dual role of spacer and electrolyte. We study the effect of IL content and operating temperature on the performance, demonstrating a record high gravimetric capacitance (302 F/g at 1 A/g) for 80 wt % IL composites. At 60 wt % IL, combined high capacitance and bulk density (0.76 g/cm 3 ), yields one of the highest volumetric capacitances (218 F/cm 3 , at 1 A/g) ever reported for a high-voltage IL-based supercapacitor. While achieving promising rate performance and cycle-life, the approach also eliminates the long and costly electrolyte imbibition step of cell assembly as the electrolyte is cast directly with the electrode material.
Study on component interface evolution of a solid oxide fuel cell stack after long term operation
NASA Astrophysics Data System (ADS)
Yang, Jiajun; Huang, Wei; Wang, Xiaochun; Li, Jun; Yan, Dong; Pu, Jian; Chi, Bo; Li, Jian
2018-05-01
A 5-cell solid oxide fuel cell (SOFC) stack with external manifold structure is assembled and underwent a durability test with an output of 250 W for nearly 4400 h when current density and operating temperature are 355 mA/cm2 and 750 °C. Cells used in the stack are anode-supported cells (ASC) with yttria-stabilized zirconia (YSZ) electrolytes, Ni/YSZ hydrogen electrodes, and YSZ based composite cathode. The dimension of the cell is 150 × 150 mm (active area: 130 × 130 mm). Ceramic-glass sealant is used in the stack to keep the gas tightness between cells, interconnects and manifolds. Pure hydrogen and dry air are used as fuel and oxidant respectively. The stack has a maximum output of 340 W at 562 mA/cm2 current density at 750 °C. The stack shows a degradation of 1.5% per 1000 h during the test with 2 thermal cycles to room temperature. After the test, the stack was dissembled and examined. The relationship between microstructure changes of interfaces and degradation in the stack are discussed. The microstructure evolution of interfaces between electrode, contact material and current collector are unveiled and their relationship with the degradation is discussed.
Takahashi, Kiyonori; Ishii, Ryo; Nakamura, Takashi; Suzuki, Asami; Ebina, Takeo; Yoshida, Manabu; Kubota, Munehiro; Nge, Thi Thi; Yamada, Tatsuhiko
2017-05-01
Requirements for flexible electronic substrate are successfully accomplished by green nanocomposite film fabricated with two natural components: glycol-modified biomass lignin and Li + montmorillonite clay. In addition to these major components, a cross-linking polymer between the lignin is incorporated into montmorillonite. Multilayer-assembled structure is formed due to stacking nature of high aspect montmorillonite, resulting in thermal durability up to 573 K, low thermal expansion, and oxygen barrier property below measurable limit. Preannealing for montmorillonite and the cross-linking formation enhance moisture barrier property superior to that of industrial engineering plastics, polyimide. As a result, the film has advantages for electronic film substrate. Furthermore, these properties can be achieved at the drying temperature up to 503 K, while the polyimide films are difficult to fabricate by this temperature. In order to examine its applicability for substrate film, flexible electrodes are finely printed on it and touch sensor device can be constructed with rigid elements on the electrode. In consequence, this nanocomposite film is expected to contribute to production of functional materials, progresses in expansion of biomass usage with low energy consumption, and construction of environmental friendly flexible electronic devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Joule heating problem in silver nanowire transparent electrodes
NASA Astrophysics Data System (ADS)
Khaligh, H. H.; Xu, L.; Khosropour, A.; Madeira, A.; Romano, M.; Pradére, C.; Tréguer-Delapierre, M.; Servant, L.; Pope, M. A.; Goldthorpe, I. A.
2017-10-01
Silver nanowire transparent electrodes have shown considerable potential to replace conventional transparent conductive materials. However, in this report we show that Joule heating is a unique and serious problem with these electrodes. When conducting current densities encountered in organic solar cells, the average surface temperature of indium tin oxide (ITO) and silver nanowire electrodes, both with sheet resistances of 60 ohms/square, remains below 35 °C. However, in contrast to ITO, the temperature in the nanowire electrode is very non-uniform, with some localized points reaching temperatures above 250 °C. These hotspots accelerate nanowire degradation, leading to electrode failure after 5 days of continuous current flow. We show that graphene, a commonly used passivation layer for these electrodes, slows nanowire degradation and creates a more uniform surface temperature under current flow. However, the graphene does not prevent Joule heating in the nanowires and local points of high temperature ultimately shift the failure mechanism from nanowire degradation to melting of the underlying plastic substrate. In this paper, surface temperature mapping, lifetime testing under current flow, post-mortem analysis, and modelling illuminate the behaviour and failure mechanisms of nanowires under extended current flow and provide guidelines for managing Joule heating.
Maity, Kuntal; Mandal, Dipankar
2018-05-30
Rapid development of wearable electronics, piezoelectric nanogenerator (PNG), has been paid a special attention because of its sustainable and accessible energy generation. In this context, we present a simple yet highly efficient design strategy to enhance the output performance of an all-organic PNG (OPNG) based on multilayer assembled electrospun poly(vinylidene fluoride) (PVDF) nanofiber (NF) mats where vapor-phase polymerized poly(3,4-ethylenedioxythiophene)-coated PVDF NFs are assembled as electrodes and neat PVDF NFs are utilized as an active component. In addition to the multilayer assembly, electrode compatibility and durability remain a challenging task to mitigate the primary requirements of wearable electronics. A multilayer networked three-dimensional structure integrated with a compatible electrode thereby provides enhanced output voltage and current (e.g., open-circuit voltage, V oc ≈ 48 V, and short-circuit current, I sc ≈ 6 μA, upon 8.3 kPa of the applied stress amplitude) with superior piezoelectric energy conversion efficiency of 66% compared to the single-mat device. Besides, OPNG also shows ultrasensitivity toward human movements such as foot strikes and walking. The weight measurement mapping is critically explored by principal component analysis that may have enormous applications in medical diagnosis to smart packaging industries. More importantly, fatigue test under continuous mechanical impact (over 6 months) shows great promise as a robust wearable mechanical energy harvester.
Structure and Modification of Electrode Materials for Protein Electrochemistry.
Jeuken, Lars J C
The interactions between proteins and electrode surfaces are of fundamental importance in bioelectrochemistry, including photobioelectrochemistry. In order to optimise the interaction between electrode and redox protein, either the electrode or the protein can be engineered, with the former being the most adopted approach. This tutorial review provides a basic description of the most commonly used electrode materials in bioelectrochemistry and discusses approaches to modify these surfaces. Carbon, gold and transparent electrodes (e.g. indium tin oxide) are covered, while approaches to form meso- and macroporous structured electrodes are also described. Electrode modifications include the chemical modification with (self-assembled) monolayers and the use of conducting polymers in which the protein is imbedded. The proteins themselves can either be in solution, electrostatically adsorbed on the surface or covalently bound to the electrode. Drawbacks and benefits of each material and its modifications are discussed. Where examples exist of applications in photobioelectrochemistry, these are highlighted.
Uncharged positive electrode composition
Kaun, Thomas D.; Vissers, Donald R.; Shimotake, Hiroshi
1977-03-08
An uncharged positive-electrode composition contains particulate lithium sulfide, another alkali metal or alkaline earth metal compound other than sulfide, e.g., lithium carbide, and a transition metal powder. The composition along with a binder, such as electrolytic salt or a thermosetting resin is applied onto an electrically conductive substrate to form a plaque. The plaque is assembled as a positive electrode within an electrochemical cell opposite to a negative electrode containing a material such as aluminum or silicon for alloying with lithium. During charging, lithium alloy is formed within the negative electrode and transition metal sulfide such as iron sulfide is produced within the positive electrode. Excess negative electrode capacity over that from the transition metal sulfide is provided due to the electrochemical reaction of the other than sulfide alkali metal or alkaline earth metal compound.
Microscale mass spectrometry systems, devices and related methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramsey, John Michael
Mass spectrometry systems or assemblies therefore include an ionizer that includes at least one planar conductor, a mass analyzer with a planar electrode assembly, and a detector comprising at least one planar conductor. The ionizer, the mass analyzer and the detector are attached together in a compact stack assembly. The stack assembly has a perimeter that bounds an area that is between about 0.01 mm.sup.2 to about 25 cm.sup.2 and the stack assembly has a thickness that is between about 0.1 mm to about 25 mm.
Ion thruster design and analysis
NASA Technical Reports Server (NTRS)
Kami, S.; Schnelker, D. E.
1976-01-01
Questions concerning the mechanical design of a thruster are considered, taking into account differences in the design of an 8-cm and a 30-cm model. The components of a thruster include the thruster shell assembly, the ion extraction electrode assembly, the cathode isolator vaporizer assembly, the neutralizer isolator vaporizer assembly, ground screen and mask, and the main isolator vaporizer assembly. Attention is given to the materials used in thruster fabrication, the advanced manufacturing methods used, details of thruster performance, an evaluation of thruster life, structural and thermal design considerations, and questions of reliability and quality assurance.
Microscale mass spectrometry systems, devices and related methods
Ramsey, John Michael
2016-06-21
Mass spectrometry systems or assemblies therefore include an ionizer that includes at least one planar conductor, a mass analyzer with a planar electrode assembly, and a detector comprising at least one planar conductor. The ionizer, the mass analyzer and the detector are attached together in a compact stack assembly. The stack assembly has a perimeter that bounds an area that is between about 0.01 mm.sup.2 to about 25 cm.sup.2 and the stack assembly has a thickness that is between about 0.1 mm to about 25 mm.
Ferrick, Adam; Wang, Mei; Woehl, Taylor J
2018-05-29
Electric field-directed assembly of colloidal nanoparticles (NPs) has been widely adopted for fabricating functional thin films and nanostructured surfaces. While first-order electrokinetic effects on NPs are well-understood in terms of classical models, effects of second-order electrokinetics that involve induced surface charge are still poorly understood. Induced charge electroosmotic phenomena, such as electrohydrodynamic (EHD) flow, have long been implicated in electric field-directed NP assembly with little experimental basis. Here, we use in situ dark-field optical microscopy and plasmonic NPs to directly observe the dynamics of planar assembly of colloidal NPs adjacent to a planar electrode in low-frequency (<1 kHz) oscillatory electric fields. We exploit the change in plasmonic NP color resulting from interparticle plasmonic coupling to visualize the assembly dynamics and assembly structure of silver NPs. Planar assembly of NPs is unexpected because of strong electrostatic repulsion between NPs and indicates that there are strong attractive interparticle forces oriented perpendicular to the electric field direction. A parametric investigation of the voltage- and frequency-dependent phase behavior reveals that planar NP assembly occurs over a narrow frequency range below which irreversible ballistic deposition occurs. Two key experimental observations are consistent with EHD flow-induced NP assembly: (1) NPs remain mobile during assembly and (2) electron microscopy observations reveal randomly close-packed planar assemblies, consistent with strong interparticle attraction. We interpret planar assembly in terms of EHD fluid flow and develop a scaling model that qualitatively agrees with the measured phase regions. Our results are the first direct in situ observations of EHD flow-induced NP assembly and shed light on long-standing unresolved questions concerning the formation of NP superlattices during electric field-induced NP deposition.
Systems and Methods for Implementing High-Temperature Tolerant Supercapacitors
NASA Technical Reports Server (NTRS)
Bugga, Ratnakumar V. (Inventor); Brandon, Erik J. (Inventor); West, William C. (Inventor)
2016-01-01
Systems and methods in accordance with embodiments of the invention implement high-temperature tolerant supercapacitors. In one embodiment, a high-temperature tolerant super capacitor includes a first electrode that is thermally stable between at least approximately 80C and approximately 300C; a second electrode that is thermally stable between at least approximately 80C and approximately 300C; an ionically conductive separator that is thermally stable between at least approximately 80C and 300C; an electrolyte that is thermally stable between approximately at least 80C and approximately 300C; where the first electrode and second electrode are separated by the separator such that the first electrode and second electrode are not in physical contact; and where each of the first electrode and second electrode is at least partially immersed in the electrolyte solution.
Electric field directed assembly of high-density microbead arrays†
Barbee, Kristopher D.; Hsiao, Alexander P.; Heller, Michael J.; Huang, Xiaohua
2010-01-01
We report a method for rapid, electric field directed assembly of high-density protein-conjugated microbead arrays. Photolithography is used to fabricate an array of micron to sub-micron-scale wells in an epoxy-based photoresist on a silicon wafer coated with a thin gold film, which serves as the primary electrode. A thin gasket is used to form a microfluidic chamber between the wafer and a glass coverslip coated with indium-tin oxide, which serves as the counter electrode. Streptavidin-conjugated microbeads suspended in a low conductance buffer are introduced into the chamber and directed into the wells via electrophoresis by applying a series of low voltage electrical pulses across the electrodes. Hundreds of millions of microbeads can be permanently assembled on these arrays in as little as 30 seconds and the process can be monitored in real time using epifluorescence microscopy. The binding of the microbeads to the gold film is robust and occurs through electrochemically induced gold-protein interactions, which allows excess beads to be washed away or recycled. The well and bead sizes are chosen such that only one bead can be captured in each well. Filling efficiencies greater than 99.9% have been demonstrated across wafer-scale arrays with densities as high as 69 million beads per cm2. Potential applications for this technology include the assembly of DNA arrays for high-throughput genome sequencing and antibody arrays for proteomic studies. Following array assembly, this device may also be used to enhance the concentration-dependent processes of various assays through the accelerated transport of molecules using electric fields. PMID:19865735
High-efficiency, low-temperature cesium diodes with lanthanum-hexaboride electrodes
NASA Technical Reports Server (NTRS)
Morris, J. F.
1974-01-01
Lanthanum hexaboride electrodes in 1700 K cesium diodes may triple power outputs compared with those demonstrated for nuclear thermionic space applications. Still greater relative gains seem possible for emitters below 1700 K. Further improvements in cesium diode performance should result from the lower collector temperatures allowed for earth and low power space duties. Decreased temperatures will lessen thermal transport losses that attend thermionic conversion mechanisms. Such advantages will add to those from collector Carnot and electrode effects. If plasma ignition difficulties impede diode temperature reductions, recycling small fractions of the output power could provide ionization. So high efficiency, low temperature cesium diodes with lanthanum hexaboride electrodes appear feasible.
Method of assembling a thermal expansion compensator
NASA Technical Reports Server (NTRS)
Matejczyk, Daniel Edward (Inventor); Determan, William (Inventor)
2012-01-01
A thermal expansion compensator is provided and includes a first electrode structure having a first surface, a second electrode structure having a second surface facing the first surface and an elastic element bonded to the first and second surfaces and including a conductive element by which the first and second electrode structures electrically and/or thermally communicate, the conductive element having a length that is not substantially longer than a distance between the first and second surfaces.
NASA Astrophysics Data System (ADS)
Ge, Jun; Cheng, Guanghui; Chen, Liwei
2011-08-01
Large-scale transparent and flexible electronic devices have been pursued for potential applications such as those in touch sensors and display technologies. These applications require that the power source of these devices must also comply with transparent and flexible features. Here we present transparent and flexible supercapacitors assembled from polyaniline (PANI)/single-walled carbon nanotube (SWNT) composite thin film electrodes. The ultrathin, optically homogeneous and transparent, electrically conducting films of the PANI/SWNT composite show a large specific capacitance due to combined double-layer capacitance and pseudo-capacitance mechanisms. A supercapacitor assembled using electrodes with a SWNT density of 10.0 µg cm-2 and 59 wt% PANI gives a specific capacitance of 55.0 F g-1 at a current density of 2.6 A g-1, showing its possibility for transparent and flexible energy storage.
Lu, Xue-Feng; Huang, Zhi-Xiang; Tong, Ye-Xiang; Li, Gao-Ren
2016-01-01
Helical hierarchical porous Na x MnO 2 /CC and MoO 2 /CC, which are assembled from nanosheets and nanoparticles, respectively, are fabricated using a simple electrodeposition method. These unique helical porous structures enable electrodes to have a high capacitance and an outstanding cycling performance. Based on the helical Na x MnO 2 /CC as the positive electrodes and helical MoO 2 /CC as the negative electrodes, high performance Na x MnO 2 /CC//MoO 2 /CC asymmetric supercapacitors (ASCs) are successfully assembled, and they achieve a maximum volume C sp of 2.04 F cm -3 and a maximum energy density of 0.92 mW h cm -3 for the whole device and an excellent cycling stability with 97.22% C sp retention after 6000 cycles.
Ge, Jun; Cheng, Guanghui; Chen, Liwei
2011-08-01
Large-scale transparent and flexible electronic devices have been pursued for potential applications such as those in touch sensors and display technologies. These applications require that the power source of these devices must also comply with transparent and flexible features. Here we present transparent and flexible supercapacitors assembled from polyaniline (PANI)/single-walled carbon nanotube (SWNT) composite thin film electrodes. The ultrathin, optically homogeneous and transparent, electrically conducting films of the PANI/SWNT composite show a large specific capacitance due to combined double-layer capacitance and pseudo-capacitance mechanisms. A supercapacitor assembled using electrodes with a SWNT density of 10.0 µg cm(-2) and 59 wt% PANI gives a specific capacitance of 55.0 F g(-1) at a current density of 2.6 A g(-1), showing its possibility for transparent and flexible energy storage. This journal is © The Royal Society of Chemistry 2011
ARC length control for plasma welding
NASA Technical Reports Server (NTRS)
Iceland, William F. (Inventor)
1988-01-01
A control system to be used with a plasma arc welding apparatus is disclosed. The plasma arc welding apparatus includes a plasma arc power supply, a contactor, and an electrode assembly for moving the electrode relative to a work piece. The electrode assembly is raised or lowered by a drive motor. The present apparatus includes a plasma arc adapter connected across the power supply to measure the voltage across the plasma arc. The plasma arc adapter forms a dc output signal input to a differential amplifier. A second input is defined by an adjustable resistor connected to a dc voltage supply to permit operator control. The differential amplifier forms an output difference signal provided to an adder circuit. The adder circuit then connects with a power amplifier which forms the driving signal for the motor. In addition, the motor connects to a tachometor which forms a feedback signal delivered to the adder to provide damping, therby avoiding servo loop overshoot.
Noyhouzer, Tomer; Mandler, Daniel
2011-01-17
The electrochemical determination of low levels of Cd using a self-assembled monolayer (SAM) modified Au electrode is reported. Determination was based on the stripping of Cd, which was deposited by under potential deposition (UPD). A series of short alkanethiol SAMs bearing different end groups, i.e., sulfonate, carboxylate and ammonium, were examined. Lowest level of detection (ca. 50 ngL(-1)) was achieved with a 3-mercaptopropionic acid (MPA) monolayer using subtractive anodic square wave voltammetry (SASV). Additional surface methods, namely, reductive desorption and X-ray photoelectron spectroscopy, were applied to determine the interfacial structure of the electrodeposited Cd on the modified electrodes. We conclude that the deposited Cd forms a monoatomic layer, which bridges between the gold surface and the alkanethiol monolayer associating with both the gold and the sulfur atoms. Copyright © 2010 Elsevier B.V. All rights reserved.
Nanocrystalline LaOx/NiO composite as high performance electrodes for supercapacitors.
Du, Guo; Zeng, Zifan; Xiao, Bangqing; Wang, Dengzhi; Yuan, Yuan; Zhu, Xiaohong; Zhu, Jiliang
2017-12-21
Nanocrystalline LaO x /NiO composite electrodes were synthesized via two types of facile cathodic electrodeposition methods onto nickel foam followed by thermal annealing without any binders. Scanning electron microscopy and transmission electron microscopy investigation revealed that LaO x nanocrystalline particles with an average diameter of 50 nm are uniformly distributed in the NiO layer or alternately deposited with the NiO layer onto the substrate. It is speculated that LaO x particles can participate in the faradaic reaction directly and offer more redox sites. Besides this, the unique Ni/La layered structure facilitates the diffusion of ions and retards the electrode polarization, thus leading to a better rate capability and cycling stability of NiO. As a result, the obtained electrodes display very competitive electrochemical performance (a specific capacitance of 1238 F g -1 at a current density of 0.5 A g -1 , excellent rate capability of 86% of the original capacitance at 10 A g -1 and excellent cycling stability of 93% capacitance after 10 000 cycles). In addition, asymmetric coin devices were assembled using LaO x /NiO as the positive electrode and active carbon as the negative electrode. The assembled asymmetric devices demonstrate a high energy density of 13.12 W h kg -1 at a power density of 90.72 W kg -1 .
Huang, Yuhong; Wei, Oiang; Chu, Chung-tse; Zheng, Haixing
2001-01-01
Metal nitride, carbonitride, and oxycarbonitride powder with high surface area (up to 150 m.sup.2 /g) is prepared by using sol-gel process. The metal organic precursor, alkoxides or amides, is synthesized firstly. The metal organic precursor is modified by using unhydrolyzable organic ligands or templates. A wet gel is formed then by hydrolysis and condensation process. The solvent in the wet gel is then be removed supercritically to form porous amorphous hydroxide. This porous hydroxide materials is sintered to 725.degree. C. under the ammonia flow and porous nitride powder is formed. The other way to obtain high surface area nitride, carbonitride, and oxycarbonitride powder is to pyrolyze polymerized templated metal amides aerogel in an inert atmosphere. The electrochemical capacitors are prepared by using sol-gel prepared nitride, carbonitride, and oxycarbonitride powder. Two methods are used to assemble the capacitors. Electrode is formed either by pressing the mixture of nitride powder and binder to a foil, or by depositing electrode coating onto metal current collector. The binder or coating is converted into a continuous network of electrode material after thermal treatment to provide enhanced energy and power density. Liquid electrolyte is soaked into porous electrode. The electrochemical capacitor assembly further has a porous separator layer between two electrodes/electrolyte and forming a unit cell.
Assembly of a Cost-Effective Anode Using Palladium Nanoparticles for Alkaline Fuel Cell Applications
ERIC Educational Resources Information Center
Feliciano-Ramos, Ileana; Casan~as-Montes, Barbara; García-Maldonado, María M.; Menendez, Christian L.; Mayol, Ana R.; Díaz-Vazquez, Liz M.; Cabrera, Carlos R.
2015-01-01
Nanotechnology allows the synthesis of nanoscale catalysts, which offer an efficient alternative for fuel cell applications. In this laboratory experiment, the student selects a cost-effective anode for fuel cells by comparing three different working electrodes. These are commercially available palladium (Pd) and glassy carbon (GC) electrodes, and…
Liang, Junfei; Cai, Zhi; Tian, Yu; Li, Lidong; Geng, Jianxin; Guo, Lin
2013-11-27
It is currently very urgent to develop flexible energy storage devices because of the growing academic interest in and strong technical demand of flexible electronics. Exploration of high-performance electrode materials and a corresponding assembly method for fabrication of flexible energy storage devices plays a critical role in fulfilling this demand. Here, we have developed a facile, economic, and green hydrothermal process to synthesize ultrasmall SnO2 nanocrystallites/nitrogen-doped graphene nanocomposites (USNGs) as a high-performance electrode material for Li-ion batteries (LIBs). Furthermore, using the glass microfiber filters (GMFs) as supporting substrate, the novel flexible USNG-GMF bilayered films have been prepared by depositing the as-prepared USNG on GMF through a simple vacuum filtration. Significantly, for the first time, the flexible USNG-GMF bilayered films have directly been used for assembling LIBs, where the GMF further functions as a separator. The obtained highly robust, binder-free, conducting agent-free, and current collector-free new type of flexible electrodes show excellent LIB performance.
Liu, Ximeng; Guan, Cao; Hu, Yating; Zhang, Lei; Elshahawy, Abdelnaby M; Wang, John
2017-10-27
Direct assembling of active materials on carbon cloth (CC) is a promising way to achieve flexible electrodes for energy storage. However, the overall surface area and electrical conductivity of such electrodes are usually limited. Herein, 2D metal-organic framework derived nanocarbon nanowall (MOFC) arrays are successfully developed on carbon cloth by a facile solution + carbonization process. Upon growth of the MOFC arrays, the sites for growth of the active materials are greatly increased, and the equivalent series resistance is decreased, which contribute to the enhancement of the bare CC substrate. After decorating ultrathin flakes of MnO 2 and Bi 2 O 3 on the flexible CC/MOFC substrate, the hierarchical electrode materials show an abrupt improvement of areal capacitances by around 50% and 100%, respectively, compared to those of the active materials on pristine carbon cloth. A flexible supercapacitor can be further assembled using two hierarchical electrodes, which demonstrates an energy density of 124.8 µWh cm -2 at the power density of 2.55 mW cm -2 . © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
New Ti3C2 aerogel as promising negative electrode materials for asymmetric supercapacitors
NASA Astrophysics Data System (ADS)
Li, Lu; Zhang, Mingyi; Zhang, Xitian; Zhang, Zhiguo
2017-10-01
Novel 3D Ti3C2 aerogel has been first synthesized by a simple EDA-assisted self-assembly process. Its inside are channels and pores structure. The interconnected aerogel structure could efficiently restrain restacking of Ti3C2 flakes. Thus, it exhibits a large specific surface area as high as 176.3 m2 g-1. The electrochemical performances have been measured. The Ti3C2 aerogel achieves a quite high areal capacitance of 1012.5 mF cm-2 for the mass loading of 15 mg at a scan rate of 2 mV s-1 in 1 M KOH electrolyte. An asymmetric supercapacitor (ASC) has been assembled by using the Ti3C2 aerogel electrode as the negative electrode and electrospinning carbon nanofiber film as the positive electrode. The device can deliver a high energy density of 120.0 μWh cm-2 and a maximum power density of 26123 μW cm-2. A lamp panel with nineteen red light-emitting diodes has been powered by two ASCs in series.
Tugba Camic, B; Jeong Shin, Hee; Hasan Aslan, M; Basarir, Fevzihan; Choi, Hyosung
2018-02-15
Solution-processed transparent conducting electrodes (TCEs) were fabricated via the self-assembly deposition of silver nanowires (Ag NWs). Glass substrates modified with (3-aminopropyl)triethoxysilane (APTES) and (3-mercaptopropyl)trimethoxysilane (MPTES) were coated with Ag NWs for various deposition times, leading to three different Ag NWs samples (APTES-Ag NWs (PVP), MPTES-Ag NWs (PVP), and APTES-Ag NWs (COOH)). Controlling the deposition time produced Ag NWs monolayer thin films with different optical transmittance and sheet resistance. Post-annealing treatment improved their electrical conductivity. The Ag NWs films were successfully characterized using UV-Vis spectroscopy, field emission scanning electron microscopy, optical microscopy and four-point probe. Three Ag NWs films exhibited low sheet resistance of 4-19Ω/sq and high optical transmittance of 65-81% (at 550nm), which are comparable to those of commercial ITO electrode. We fabricated an organic photovoltaic device by using Ag NWs as the anode instead of ITO electrode, and optimized device with Ag NWs exhibited power conversion efficiency of 1.72%. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhang, Fang; Ahn, Yongtae; Logan, Bruce E
2014-01-01
The effectiveness of refinery wastewater (RW) treatment using air-cathode, microbial fuel cells (MFCs) was examined relative to previous tests based on completely anaerobic microbial electrolysis cells (MECs). MFCs were configured with separator electrode assembly (SEA) or spaced electrode (SPA) configurations to measure power production and relative impacts of oxygen crossover on organics removal. The SEA configuration produced a higher maximum power density (280±6 mW/m(2); 16.3±0.4 W/m(3)) than the SPA arrangement (255±2 mW/m(2)) due to lower internal resistance. Power production in both configurations was lower than that obtained with the domestic wastewater (positive control) due to less favorable (more positive) anode potentials, indicating poorer biodegradability of the RW. MFCs with RW achieved up to 84% total COD removal, 73% soluble COD removal and 92% HBOD removal. These removals were higher than those previously obtained in mini-MEC tests, as oxygen crossover from the cathode enhanced degradation in MFCs compared to MECs. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Ristenpart, W. D.; Aksay, I. A.; Saville, D. A.
2004-01-01
Electric fields generate transverse flows near electrodes that sweep colloidal particles into densely packed assemblies. We interpret this behavior in terms of electrohydrodynamic motion stemming from distortions of the field by the particles that alter the body force distribution in the electrode charge polarization layer. A scaling analysis shows how the action of the applied electric field generates fluid motion that carries particles toward one another. The resulting fluid velocity is proportional to the square of the applied field and decreases inversely with frequency. Experimental measurements of the particle aggregation rate accord with the electrohydrodynamic theory over a wide range of voltages and frequencies.
Electrostatically controlled heat shutter
NASA Technical Reports Server (NTRS)
Derr, L. J. (Inventor)
1973-01-01
A heat transfer assembly for conducting thermal energy is described. The assembly includes a hermetically sealed container enclosing a quantity of inert gas such as nitrogen. Two opposed walls of the container have high thermal conducting characteristics while the connecting walls have low thermal conducting characteristics. Electrodes are positioned adjacent to the high thermal conducing walls and biased relative to the conducting walls to a corona potential for creating an ionic gas wind which must contact the conducting walls to be neutralized. The contact of the gas molecules permits the maximum thermal energy transfer between the walls. Baffles can be positioned adjacent to the electrodes to regulate gas flow between the high thermal conducting surfaces.
Chen, Ying; Mao, Jianfei; Liu, Chunhua; Yuan, Hongyan; Xiao, Dan; Choi, Martin M F
2009-01-20
In this work, solid-state tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) ditetrakis(4-chlorophenyl)borate ([Ru(dpp)(3)][(4-Clph)(4)B](2)) nanoislands are assembled spontaneously and simultaneously on an indium-doped tin oxide (ITO) glass electrode surface via a facile dewetting procedure. The fabrication process is very simple and also amenable to mass production. The as-prepared ruthenium complex nanoislands exhibit useful properties. The electrode is more electrochemically active and can produce strong, stable, reproducible solid-state electrochemiluminescence (ECL) signals using oxalate as the coreactant. The self-assembled nanoislands exhibit semiconductor-like broad, red-shift ECL spectrum. More importantly, they extend the application of the ruthenium complex ECL system from the usual alkaline to acidic conditions. The pH turn-off behavior of the ECL is observed for the first time and can serve as an ultrasensitive pH sensor around physiological pH 7.0. The solid-state [Ru(dpp)(3)][(4-Clph)(4)B](2) ECL signal is efficiently inhibited by phenol even at a very low concentration (i.e., 20 nM), thus providing the potential for the determination of phenolic compounds in practical applications.
Corrigan, Damion K; Vezza, Vincent; Schulze, Holger; Bachmann, Till T; Mount, Andrew R; Walton, Anthony J; Terry, Jonathan G
2018-06-09
For analytical applications involving label-free biosensors and multiple measurements, i.e., across an electrode array, it is essential to develop complete sensor systems capable of functionalization and of producing highly consistent responses. To achieve this, a multi-microelectrode device bearing twenty-four equivalent 50 µm diameter Pt disc microelectrodes was designed in an integrated 3-electrode system configuration and then fabricated. Cyclic voltammetry and electrochemical impedance spectroscopy were used for initial electrochemical characterization of the individual working electrodes. These confirmed the expected consistency of performance with a high degree of measurement reproducibility for each microelectrode across the array. With the aim of assessing the potential for production of an enhanced multi-electrode sensor for biomedical use, the working electrodes were then functionalized with 6-mercapto-1-hexanol (MCH). This is a well-known and commonly employed surface modification process, which involves the same principles of thiol attachment chemistry and self-assembled monolayer (SAM) formation commonly employed in the functionalization of electrodes and the formation of biosensors. Following this SAM formation, the reproducibility of the observed electrochemical signal between electrodes was seen to decrease markedly, compromising the ability to achieve consistent analytical measurements from the sensor array following this relatively simple and well-established surface modification. To successfully and consistently functionalize the sensors, it was necessary to dilute the constituent molecules by a factor of ten thousand to support adequate SAM formation on microelectrodes. The use of this multi-electrode device therefore demonstrates in a high throughput manner irreproducibility in the SAM formation process at the higher concentration, even though these electrodes are apparently functionalized simultaneously in the same film formation environment, confirming that the often seen significant electrode-to-electrode variation in label-free SAM biosensing films formed under such conditions is not likely to be due to variation in film deposition conditions, but rather kinetically controlled variation in the SAM layer formation process at these microelectrodes.
Effect of process parameters on temperature distribution in twin-electrode TIG coupling arc
NASA Astrophysics Data System (ADS)
Zhang, Guangjun; Xiong, Jun; Gao, Hongming; Wu, Lin
2012-10-01
The twin-electrode TIG coupling arc is a new type of welding heat source, which is generated in a single welding torch that has two tungsten electrodes insulated from each other. This paper aims at determining the distribution of temperature for the coupling arc using the Fowler-Milne method under the assumption of local thermodynamic equilibrium. The influences of welding current, arc length, and distance between both electrode tips on temperature distribution of the coupling arc were analyzed. Based on the results, a better understanding of the twin-electrode TIG welding process was obtained.
Cai, Yun; Ziegelbauer, Joseph M.; Baker, Andrew M.; ...
2018-03-14
PtCo-alloy cathode electrocatalysts release Co cations under operation, and the presence of these cations in the membrane electrode assembly (MEA) can result in large performance losses. It is unlikely that these cations are static, but change positions depending on operating conditions. A thorough accounting of these Co cation positions and concentrations has been impossible to obtain owing to the inability to monitor these processes in operando. Indeed, the environment (water and ion content, potential, and temperature) within a fuel cell varies widely from inlet to outlet, from anode to cathode, and from active to inactive area. Here, synchrotron micro-X-ray fluorescencemore » (μ-XRF) was leveraged to directly monitor Co 2+ transport in an operating H 2/air MEA for the first time. A Nafion membrane was exchanged to a known Co cation capacity, and standard Pt/C electrocatalysts were utilized for both electrodes. Co Kα 1 XRF maps revealed through-plane transient Co transport responses driven by cell potential and current density. Because of the cell design and imaging geometry, the distributions were strongly impacted by the MEA edge configuration. These findings will drive future imaging cell designs to allow for quantitative mapping of cation through-plane distributions during operation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Yun; Ziegelbauer, Joseph M.; Baker, Andrew M.
PtCo-alloy cathode electrocatalysts release Co cations under operation, and the presence of these cations in the membrane electrode assembly (MEA) can result in large performance losses. It is unlikely that these cations are static, but change positions depending on operating conditions. A thorough accounting of these Co cation positions and concentrations has been impossible to obtain owing to the inability to monitor these processes in operando. Indeed, the environment (water and ion content, potential, and temperature) within a fuel cell varies widely from inlet to outlet, from anode to cathode, and from active to inactive area. Here, synchrotron micro-X-ray fluorescencemore » (μ-XRF) was leveraged to directly monitor Co 2+ transport in an operating H 2/air MEA for the first time. A Nafion membrane was exchanged to a known Co cation capacity, and standard Pt/C electrocatalysts were utilized for both electrodes. Co Kα 1 XRF maps revealed through-plane transient Co transport responses driven by cell potential and current density. Because of the cell design and imaging geometry, the distributions were strongly impacted by the MEA edge configuration. These findings will drive future imaging cell designs to allow for quantitative mapping of cation through-plane distributions during operation.« less
Song, Ji-Min; Lee, Jang-Sik
2016-01-01
Metal-oxide-based resistive switching memory device has been studied intensively due to its potential to satisfy the requirements of next-generation memory devices. Active research has been done on the materials and device structures of resistive switching memory devices that meet the requirements of high density, fast switching speed, and reliable data storage. In this study, resistive switching memory devices were fabricated with nano-template-assisted bottom up growth. The electrochemical deposition was adopted to achieve the bottom-up growth of nickel nanodot electrodes. Nickel oxide layer was formed by oxygen plasma treatment of nickel nanodots at low temperature. The structures of fabricated nanoscale memory devices were analyzed with scanning electron microscope and atomic force microscope (AFM). The electrical characteristics of the devices were directly measured using conductive AFM. This work demonstrates the fabrication of resistive switching memory devices using self-assembled nanoscale masks and nanomateirals growth from bottom-up electrochemical deposition. PMID:26739122
Radiofrequency multielectrode catheter ablation in the atrium.
Panescu, D; Fleischman, S D; Whayne, J G; Swanson, D K; Mirotznik, M S; McRury, I; Haines, D E
1999-04-01
We developed a temperature-controlled radiofrequency (RF) system which can ablate by delivering energy to up to six 12.5 mm long coil electrodes simultaneously. Temperature feedback was obtained from temperature sensors placed at each end of coil electrodes, in diametrically opposite positions. The coil electrodes were connected in parallel, via a set of electronic switches, to a 150 W 500 kHz temperature-controlled RF generator. Temperatures measured at all user-selected coil electrodes were processed by a microcontroller which sent the maximum value to the temperature input of the generator. The generator adjusted the delivered power to regulate the temperature at its input within a 5 degrees C interval about a user-defined set point. The microcontroller also activated the corresponding electronic switches so that temperatures at all selected electrodes were controlled within a 5 degrees C interval with respect to each other. Physical aspects of tissue heating were first analysed using finite element models and current density measurements. Results from these analyses also constituted design input. The performance of this system was studied in vitro and in vivo. In vitro, at set temperatures of 70 degrees C, 85% of the lesions were contiguous. All lesions created at set temperatures of 80 and 90 degrees C were contiguous. The lesion length increased almost linearly with the number of electrodes. Power requirements to reach a set temperature were larger as more electrodes were driven by the generator. The system impedance decreased as more electrodes were connected in the ablation circuit and reached a low of 45.5 ohms with five coil electrodes in the circuit. In vivo, right atrial lesions were created in eight mongrel canines. The power needed to reach 70 degrees C set temperature varied between 15 and 114 W. The system impedance was 105+/-16 ohms, with one coil electrode in the circuit, and dropped to 75+/-12 ohms when two coil electrodes were simultaneously powered. The length and the width of the lesion set varied between 17.6+/-6.1 and 59.2+/-11.7 mm and 5.9+/-0.7 and 7.1+/-1.2 mm respectively. No sudden impedance rises occurred and 75% of the lesions were contiguous. From the set of contiguous lesions, 90% were potentially therapeutic as they were transmural and extended over the entire target region. The average total procedure and fluoroscopy times were 83.4 and 5.9 min respectively. We concluded that the system can safely perform long and contiguous lesions in canine right atria.
NASA Astrophysics Data System (ADS)
Li, Jing; Shangguan, Enbo; Guo, Dan; Li, Quanmin; Chang, Zhaorong; Yuan, Xiao-Zi; Wang, Haijiang
2014-10-01
In this paper, a novel additive, calcium metaborate (CMB), is proposed to improve the high-temperature characteristics of the nickel electrodes for nickel-metal hydride batteries. As a soluble calcium salt, CMB can easily and uniformly be dispersed in the nickel electrodes. The effects of CMB on the nickel electrode are investigated via a combination of cyclability, capacity retention, electrochemical impedance spectroscopy, scanning electron microscope and X-ray diffraction. Compared with conventional nickel electrodes, the electrode containing 0.5 wt.% CMB exhibits superior electrode properties including enhanced discharge capacity, improved high-rate discharge ability and excellent cycle stability at an elevated temperature (70 °C). The improved cell performance of the nickel electrode containing CMB additives can be attributable to the increased oxygen evolution overvoltage and slower oxygen evolution rate. Compared with insoluble calcium salts, such as Ca(OH)2, CaCO3, and CaF2, CMB is more effective as a cathode additive to improve the high-temperature performance of Ni-MH batteries.
Cao, Shaomei; Feng, Xin; Song, Yuanyuan; Xue, Xin; Liu, Hongjiang; Miao, Miao; Fang, Jianhui; Shi, Liyi
2015-05-27
A free-standing lithium titanate (Li4Ti5O12)/carbon nanotube/cellulose nanofiber hybrid network film is successfully assembled by using a pressure-controlled aqueous extrusion process, which is highly efficient and easily to scale up from the perspective of disposable and recyclable device production. This hybrid network film used as a lithium-ion battery (LIB) electrode has a dual-layer structure consisting of Li4Ti5O12/carbon nanotube/cellulose nanofiber composites (hereinafter referred to as LTO/CNT/CNF), and carbon nanotube/cellulose nanofiber composites (hereinafter referred to as CNT/CNF). In the heterogeneous fibrous network of the hybrid film, CNF serves simultaneously as building skeleton and a biosourced binder, which substitutes traditional toxic solvents and synthetic polymer binders. Of importance here is that the CNT/CNF layer is used as a lightweight current collector to replace traditional heavy metal foils, which therefore reduces the total mass of the electrode while keeping the same areal loading of active materials. The free-standing network film with high flexibility is easy to handle, and has extremely good conductivity, up to 15.0 S cm(-1). The flexible paper-electrode for LIBs shows very good high rate cycling performance, and the specific charge/discharge capacity values are up to 142 mAh g(-1) even at a current rate of 10 C. On the basis of the mild condition and fast assembly process, a CNF template fulfills multiple functions in the fabrication of paper-electrode for LIBs, which would offer an ever increasing potential for high energy density, low cost, and environmentally friendly flexible electronics.
Pang, Huan; Wang, Shaomei; Shao, Weifang; Zhao, Shanshan; Yan, Bo; Li, Xinran; Li, Sujuan; Chen, Jing; Du, Weimin
2013-07-07
Ultrathin cobalt phosphate (CoHPO4 · 3H2O) nanosheets are successfully synthesized by a one pot hydrothermal method. Novel CoHPO4 · 3H2O ultrathin nanosheets are assembled for constructing the electrodes of supercapacitors. Benefiting from the nanostructures, the as-prepared electrode shows a specific capacitance of 413 F g(-1), and no obvious decay even after 3000 charge-discharge cycles. Such a quasi-two-dimensional material is a new kind of supercapacitor electrode material with high performance.
NASA Technical Reports Server (NTRS)
1972-01-01
Electrocardiographic and vectorcardiographic bioinstrumentation work centered on the development of a new electrode system harness for Project Skylab. Evaluation of several silver electrode configurations proved superior impedance voltage performance for silver/silver chloride electrodes mounted flush by using a paste adhesive. A portable ECG processor has been designed and a breadboard unit has been built to sample ECG input data at a rate of 500 samples per second for arrhythmia detection. A small real time display driver program has been developed for statistical analysis on selected QPS features. Engineering work on a sleep monitoring cap assembly continued.
Numerical Modeling of Electrode Degradation During Resistance Spot Welding Using CuCrZr Electrodes
NASA Astrophysics Data System (ADS)
Gauthier, Elise; Carron, Denis; Rogeon, Philippe; Pilvin, Philippe; Pouvreau, Cédric; Lety, Thomas; Primaux, François
2014-05-01
Resistance spot welding is a technique widely used by the automotive industry to assemble thin steel sheets. The cyclic thermo-mechanical loading associated with the accumulation of weld spots progressively deteriorates the electrodes. This study addresses the development of a comprehensive multi-physical model that describes the sequential deterioration. Welding tests achieved on uncoated and Zn-coated steel sheets are analyzed. Finite element analysis is performed using an electrical-thermal-metallurgical model. A numerical experimental design is carried out to highlight the main process parameters and boundary conditions which affect electrode degradation.
Cheng, Xingxing; Li, Bohan; Chen, Zhangwei; Mi, Shengli; Lao, Changshi
2017-01-01
LiFePO4 (LFP) is a promising cathode material for lithium-ion batteries. In this study, low temperature direct writing (LTDW)-based 3D printing was used to fabricate three-dimensional (3D) LFP electrodes for the first time. LFP inks were deposited into a low temperature chamber and solidified to maintain the shape and mechanical integrity of the printed features. The printed LFP electrodes were then freeze-dried to remove the solvents so that highly-porous architectures in the electrodes were obtained. LFP inks capable of freezing at low temperature was developed by adding 1,4 dioxane as a freezing agent. The rheological behavior of the prepared LFP inks was measured and appropriate compositions and ratios were selected. A LTDW machine was developed to print the electrodes. The printing parameters were optimized and the printing accuracy was characterized. Results showed that LTDW can effectively maintain the shape and mechanical integrity during the printing process. The microstructure, pore size and distribution of the printed LFP electrodes was characterized. In comparison with conventional room temperature direct ink writing process, improved pore volume and porosity can be obtained using the LTDW process. The electrochemical performance of LTDW-fabricated LFP electrodes and conventional roller-coated electrodes were conducted and compared. Results showed that the porous structure that existed in the printed electrodes can greatly improve the rate performance of LFP electrodes. PMID:28796182
Liu, Changyong; Cheng, Xingxing; Li, Bohan; Chen, Zhangwei; Mi, Shengli; Lao, Changshi
2017-08-10
LiFePO₄ (LFP) is a promising cathode material for lithium-ion batteries. In this study, low temperature direct writing (LTDW)-based 3D printing was used to fabricate three-dimensional (3D) LFP electrodes for the first time. LFP inks were deposited into a low temperature chamber and solidified to maintain the shape and mechanical integrity of the printed features. The printed LFP electrodes were then freeze-dried to remove the solvents so that highly-porous architectures in the electrodes were obtained. LFP inks capable of freezing at low temperature was developed by adding 1,4 dioxane as a freezing agent. The rheological behavior of the prepared LFP inks was measured and appropriate compositions and ratios were selected. A LTDW machine was developed to print the electrodes. The printing parameters were optimized and the printing accuracy was characterized. Results showed that LTDW can effectively maintain the shape and mechanical integrity during the printing process. The microstructure, pore size and distribution of the printed LFP electrodes was characterized. In comparison with conventional room temperature direct ink writing process, improved pore volume and porosity can be obtained using the LTDW process. The electrochemical performance of LTDW-fabricated LFP electrodes and conventional roller-coated electrodes were conducted and compared. Results showed that the porous structure that existed in the printed electrodes can greatly improve the rate performance of LFP electrodes.
Improved Low Temperature Performance of Supercapacitors
NASA Technical Reports Server (NTRS)
Brandon, Erik J.; West, William C.; Smart, Marshall C.; Gnanaraj, Joe
2013-01-01
Low temperature double-layer capacitor operation enabled by: - Base acetonitrile / TEATFB salt formulation - Addition of low melting point formates, esters and cyclic ethers center dot Key electrolyte design factors: - Volume of co-solvent - Concentration of salt center dot Capacity increased through higher capacity electrodes: - Zeolite templated carbons - Asymmetric cell designs center dot Continuing efforts - Improve asymmetric cell performance at low temperature - Cycle life testing Motivation center dot Benchmark performance of commercial cells center dot Approaches for designing low temperature systems - Symmetric cells (activated carbon electrodes) - Symmetric cells (zeolite templated carbon electrodes) - Asymmetric cells (lithium titanate/activated carbon electrodes) center dot Experimental results center dot Summary
NASA Astrophysics Data System (ADS)
Duboviks, V.; Lomberg, M.; Maher, R. C.; Cohen, L. F.; Brandon, N. P.; Offer, G. J.
2015-10-01
One of the attractive applications for reversible Solid Oxide Cells (SOCs) is to convert CO2 into CO via high temperature electrolysis, which is particularly important for biogas upgrading. To improve biogas utility, the CO2 component can be converted into fuel via electrolysis. A significant issue for SOC operation on biogas is carbon-induced catalyst deactivation. Nickel is widely used in SOC electrodes for reasons of cost and performance, but it has a low tolerance to carbon deposition. Two different modes of carbon formation on Ni-based electrodes are proposed in the present work based on ex-situ Raman measurements which are in agreement with previous studies. While copper is known to be resistant towards carbon formation, two significant issues have prevented its application in SOC electrodes - namely its relatively low melting temperature, inhibiting high temperature sintering, and low catalytic activity for hydrogen oxidation. In this study, the electrodes were prepared through a low temperature metal infiltration technique. Since the metal infiltration technique avoids high sintering temperatures, Cu-Ce0.9Gd0.1O2-δ (Cu-CGO) electrodes were fabricated and tested as an alternative to Ni-CGO electrodes. We demonstrate that the performance of Cu-CGO electrodes is equivalent to Ni-CGO electrodes, whilst carbon formation is fully suppressed when operated on biogas mixture.
Implantable electrode for recording nerve signals in awake animals
NASA Technical Reports Server (NTRS)
Ninomiya, I.; Yonezawa, Y.; Wilson, M. F.
1976-01-01
An implantable electrode assembly consisting of collagen and metallic electrodes was constructed to measure simultaneously neural signals from the intact nerve and bioelectrical noises in awake animals. Mechanical artifacts, due to bodily movement, were negligibly small. The impedance of the collagen electrodes, measured in awake cats 6-7 days after implantation surgery, ranged from 39.8-11.5 k ohms at a frequency range of 20-5 kHz. Aortic nerve activity and renal nerve activity, measured in awake conditions using the collagen electrode, showed grouped activity synchronous with the cardiac cycle. Results indicate that most of the renal nerve activity was from postganglionic sympathetic fibers and was inhibited by the baroceptor reflex in the same cardiac cycle.
NASA Astrophysics Data System (ADS)
Huang, Xiaoming
Direct methanol fuel cell (DMFC) is an attractive power source for portable applications in the near future, due to the high energy density of liquid methanol. Towards commercialization of the DMFC, several technical and economic challenges need to be addressed though. The present study aims at developing and characterizing high performance membrane electrode assemblies (MEAs) for the DMFCs by using a hydrocarbon type membrane (PolyFuel 62) and supported catalysts (PtRu/C). First, methanol and water transport properties in the PolyFuel 62 membrane were examined by various material characterization methods. Compared with the currently used perflurosulfonated Nafion 212 membrane, the PolyFuel membrane has lower methanol crossover, especially at high testing temperature. In addition, based on results of water diffusivity test, water diffusion through the PolyFuel membrane was also lower compared with the Nafion membrane. In order to check the possible impacts of the low methanol and water diffusivities in the PolyFuel membrane, a MEA with this new type of membrane was developed and its performance was compared with a Nafion MEA with otherwise identical electrodes and GDLs. The results showed anode performance was identical, while cathode performance of the PolyFuel MEA was lower. More experiments combined with a transmission line model revealed that low water transport through the PolyFuel membrane resulted in a higher proton resistance in the cathode electrode and thus, leading to a low cathode performance. Thus increasing the water content in the cathode electrode is critical for using the PolyFuel membrane in the DMFC MEA. Then, a low loading carbon supported catalyst, PtRu/C, was prepared and tested as the anode electrode in a MEA of the DMFC. Compared with performance of an unsupported MEA, we could find that lower performance in the supported MEA was due to methanol transport limitation because of the denser and thicker supported catalyst layer. Accordingly, an addition of a pore former, Li 2CO3, was proposed during the catalyst ink preparation. This was proved to be very effective, largely improving anode performance with only 1/3 of catalyst loading. Finally, the PolyFuel membrane and supported catalysts were ready to be applied in the new MEA for the DMFCs. The new made MEA, with the catalyst loading of 2.6-time lower than a reference MEA, showed a very promising result, about only 10mV performance loss under the current density of 150mA/cm² compared with the reference MEA. Moreover, a short-term decay test indicated that the new MEA may have better durability and life because of its low methanol crossover on the cathode electrode due the PolyFuel membrane.
Wu, Baoyan; Hou, Shihua; Miao, Zhiying; Zhang, Cong; Ji, Yanhong
2015-01-01
A novel amperometric glucose biosensor was fabricated by layer-by-layer self-assembly of gold nanorods (AuNRs) and glucose oxidase (GOD) onto single-walled carbon nanotubes (SWCNTs)-functionalized three-dimensional sol-gel matrix. A thiolated aqueous silica sol containing SWCNTs was first assembled on the surface of a cleaned Au electrode, and then the alternate self-assembly of AuNRs and GOD were repeated to assemble multilayer films of AuNRs-GOD onto SWCNTs-functionalized silica gel for optimizing the biosensor. Among the resulting glucose biosensors, the four layers of AuNRs-GOD-modified electrode showed the best performance. The sol-SWCNTs-(AuNRs-GOD)4/Au biosensor exhibited a good linear range of 0.01–8 mM glucose, high sensitivity of 1.08 μA/mM, and fast amperometric response within 4 s. The good performance of the proposed glucose biosensor could be mainly attributed to the advantages of the three-dimensional sol-gel matrix and stereo self-assembly films, and the natural features of one-dimensional nanostructure SWCNTs and AuNRs. This study may provide a new facile way to fabricate the enzyme-based biosensor with high performance. PMID:28347080
Zheng, Xin; Yan, Xiaoqin; Sun, Yihui; Yu, Yinsheng; Zhang, Guangjie; Shen, Yanwei; Liang, Qijie; Liao, Qingliang; Zhang, Yue
2016-03-15
The design and optimization of supercapacitors electrodes nanostructures are critically important since the properties of supercapacitors can be dramatically enhanced by tunable ion transport channels. Herein, we demonstrate high-performance supercapacitor electrodes materials based on α-Fe2O3 by rationally designing the electrode microstructure. The large solid-liquid reaction interfaces induced by hollow nanoshuttle-like structures not only provide more active sites for faradic reactions but also facilitate the diffusion of the electrolyte into electrodes. These result in the optimized electrodes with high capacitance of 249 F g(-1) at a discharging current density of 0.5 A g(-1) as well as good cycle stability. In addition, the relationship between charge storage and the operating temperature has been researched. The specific capacitance has no significant change when the working temperature increased from 20 °C to 60 °C (e.g. 203 F g(-1) and 234 F g(-1) at 20 °C and 60 °C, respectively), manifesting the electrodes can work stably in a wide temperature range. These findings here elucidate the α-Fe2O3 hollow nanoshuttles can be applied as a promising supercapacitor electrode material for the efficient energy storage at various potential temperatures. Copyright © 2015 Elsevier Inc. All rights reserved.
The effect of electrode temperature on the sparking voltage of short spark gaps
NASA Technical Reports Server (NTRS)
Silsbee, F B
1924-01-01
This report presents the results of an investigation to determine what effect the temperature of spark plug electrodes might have on the voltage at which a spark occurred. A spark gap was set up so that one electrode could be heated to temperatures up to 700 degrees C., while the other electrode and the air in the gap were maintained at room temperature. The sparking voltages were measured both with direct voltage and with voltage impulse from ignition coil. It was found that the sparking voltage of the gap decreased materially with increase of temperature. This change was more marked when the hot electrode was of negative polarity. The phenomena observed can be explained by the ionic theory of gaseous conduction, and serve to account for certain hitherto unexplained actions in the operation of internal combustion engines. These results indicate that the ignition spark will pass more readily when the spark-plug design is such as to make the electrodes run hot. This possible gain is, however, very closely limited by the danger of producing preignition. These experiments also show that sparking is somewhat easier when the hot electrode (which is almost always the central electrode) is negative than when the polarity is reversed.
Influence of cell temperature on sulfur dioxide contamination in proton exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Zhai, Y.; Bender, G.; Bethune, K.; Rocheleau, R.
2014-02-01
The effects of temperature on sulfur dioxide (SO2) contamination in PEMFCs are investigated by operating single cells with 2 ppm SO2 in the cathode at different temperatures. Cell performance response shows that voltage degradation was delayed and appears a transition of multiple processes at low temperatures; a similar performance loss is observed when performances reached steady state. The restored performance from the reversible and the irreversible degradations highly depends on temperature. At low temperature, the performance recovery is only negligible with neat air operation (self-recovery), while full recovery is observed after cyclic voltammetry (CV) scanning. As temperature increased, so did the self-recovery performance. However, the total recovery performance decreased. Electrochemical impedance spectroscopy analysis indicates that the potential-dependent poisoning process was delayed at low temperature, and the removal of the sulfur species from Pt/C was inhibited during the self-recovery. Water balance analysis implies that the delay could be attributed to the effect of liquid water scavenging and the mass transport of SO2 in the membrane electrode assemblies. The CV analysis confirms that the decomposition/desorption of the sulfur adsorbates was inhibited and indicates that the SO2 crossover from the cathode to the anode side was also mitigated at low temperature.
Yang, Huiling; Xu, Henghui; Wang, Libin; Zhang, Lei; Huang, Yunhui; Hu, Xianluo
2017-03-23
Recently ion-intercalation hybrid supercapacitors, with high energy density at high power density, have been widely investigated to meet ever-increasing practical demands. Here, a unique hybrid supercapacitor has been designed and fabricated using self-assembled orthorhombic-phase niobium oxide@carbon (T-Nb 2 O 5 @C) nanowires as an anode and commercially available activated carbon as a cathode. The 3D-interconnected T-Nb 2 O 5 @C nanowires have been synthesized through a highly efficient microwave-solvothermal method, combined with subsequent thermal treatment. The experimental parameters (e.g., time and temperature) can be easily programmed, and the synthesis time can be significantly shortened, thus enabling the buildup of abundant recipes for the engineering of scaled-up production. The Li-ion intercalation pseudocapacitance electrode, made from the as-formed self-assembled T-Nb 2 O 5 @C nanowires, shows excellent charge storage and transfer capability. When assembled into a hybrid supercapacitor with a cathode of activated carbon, a high energy density of 60.6 Wh kg -1 and a high power density of 8.5 kW kg -1 with outstanding stability are achieved. In virtue of easy optimization and programmability of the synthetic strategy, and the remarkable electrochemical performance, the self-assembled T-Nb 2 O 5 @C nanowires offer a promising anode for asymmetric hybrid supercapacitors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tepper, Armand W J W
2010-05-12
A method for the electrical contacting of redox enzymes that obtain oxidizing or reducing equivalents from small electron-transfer proteins is demonstrated. The electrochemical contacting of redox enzymes through their immobilization onto electrode supports offers great potential for technological applications and for fundamental studies, but finding appropriate methods to immobilize the enzymes in an orientation allowing rapid electron transfer with the electrode has proven difficult. The copper enzyme nitrite reductase (NiR) and its natural electron-exchange partner pseudoazurin (Paz) are conjugated to a specific DNA tag and immobilized to a gold electrode into a stoichiometrically defined assembly. The DNA tethered to the electrode surface acts as flexible place-holder for the protein components, allowing both proteins to move within the construct. It is shown that Paz efficiently shuttles electrons between the electrode and the NiR enzyme, allowing the electrochemically driven NiR catalysis to be monitored. The activity of the NiR enzyme remains unperturbed by the immobilization. The rate-limiting step of the system is tentatively ascribed to the dissociation of the Paz/NiR complex. The electrochemical response of the system reports not only on the NiR catalysis and on interfacial electron transfer but also on the interaction between NiR and Paz.
NASA Astrophysics Data System (ADS)
Gokhale, Rohan; Agarkar, Shruti; Debgupta, Joyashish; Shinde, Deodatta; Lefez, Benoit; Banerjee, Abhik; Jog, Jyoti; More, Mahendra; Hannoyer, Beatrice; Ogale, Satishchandra
2012-10-01
A laser photochemical process is introduced to realize superhydrophobic conducting carbon coatings with broccoli-type hierarchical morphology for use as a metal-free counter electrode in a dye sensitized solar cell. The process involves pulsed excimer laser irradiation of a thin layer of liquid haloaromatic organic solvent o-dichlorobenzene (DCB). The coating reflects a carbon nanoparticle-self assembled and process-controlled morphology that yields solar to electric power conversion efficiency of 5.1% as opposed to 6.2% obtained with the conventional Pt-based electrode.A laser photochemical process is introduced to realize superhydrophobic conducting carbon coatings with broccoli-type hierarchical morphology for use as a metal-free counter electrode in a dye sensitized solar cell. The process involves pulsed excimer laser irradiation of a thin layer of liquid haloaromatic organic solvent o-dichlorobenzene (DCB). The coating reflects a carbon nanoparticle-self assembled and process-controlled morphology that yields solar to electric power conversion efficiency of 5.1% as opposed to 6.2% obtained with the conventional Pt-based electrode. Electronic supplementary information (ESI) available: Materials and equipment details, solar cell fabrication protocol, electrolyte spreading time measurement details, XPS spectra, electronic study, film adhesion test detailed analysis and field emission results. See DOI: 10.1039/c2nr32082g
Pang, Wei Kong; Lu, Cheng-Zhang; Liu, Chia-Erh; Peterson, Vanessa K; Lin, Hsiu-Fen; Liao, Shih-Chieh; Chen, Jin-Ming
2016-06-29
High-voltage spinel LiNi0.5Mn1.5O4 (LNMO) is considered a potential high-power-density positive electrode for lithium-ion batteries, however, it suffers from capacity decay after extended charge-discharge cycling, severely hindering commercial application. Capacity fade is thought to occur through the significant volume change of the LNMO electrode occurring on cycling, and in this work we use operando neutron powder diffraction to compare the structural evolution of the LNMO electrode in an as-assembled 18650-type battery containing a Li4Ti5O12 negative electrode with that in an identical battery following 1000 cycles at high-current. We reveal that the capacity reduction in the battery post cycling is directly proportional to the reduction in the maximum change of the LNMO lattice parameter during its evolution. This is correlated to a corresponding reduction in the MnO6 octahedral distortion in the spinel structure in the cycled battery. Further, we find that the rate of lattice evolution, which reflects the rate of lithium insertion and removal, is ∼9 and ∼10% slower in the cycled than in the as-assembled battery during the Ni(2+)/Ni(3+) and Ni(3+)/Ni(4+) transitions, respectively.
NASA Astrophysics Data System (ADS)
Iqbal, Z.; Azhar, Ehtsham; Mehmood, Zaffar; Maraj, E. N.
Present article is a study of stagnation point flow over Riga plate with erratic thickness. Riga plate is an electromagnetic surface in which electrodes are assembled alternatively. This arrangement generates electromagnetic hydrodynamic behavior in the fluid flow. This is an attempt to investigate influence of melting heat, thermal radiation and viscous dissipation effects on Riga plate. A traversal electric and magnetic fields are produced by Riga plate. It causes Lorentz force parallel to wall which contributes in directing flow pattern. Physical problem is modeled and reduced nonlinear system is solved numerically. Comparative analysis is carried out between solutions obtained by Keller Box Method and shooting technique with Runge-Kutta Fehlberg method of order 5. It is noted that melting heat transfer reduces temperature distribution whereas radiation parameter upsurge it. Velocity is accelerated by modified Hartman number and Eckert number contributes in raising temperature.
Improved FCG-1 cell technology
NASA Astrophysics Data System (ADS)
Breault, R. D.; Congdon, J. V.; Coykendall, R. D.; Luoma, W. L.
1980-10-01
Fuel cell performance in the ribbed substrate cell configuration consistent with that projected for a commercial power plant is demonstrated. Tests were conducted on subscale cells and on two 20 cell stacks of 4.8 MW demonstrator size cell components. These tests evaluated cell stack materials, processes, components, and assembly configurations. The first task was to conduct a component development effort to introduce improvements in 3.7 square foot, ribbed substrate acid cell repeating parts which represented advances in performance, function, life, and lower cost for application in higher pressure and temperature power plants. Specific areas of change were the electrode substrate, catalyst, matrix, seals, separator plates, and coolers. Full sized ribbed substrate stack components incorporating more stable materials were evaluated at increased pressure (93 psia) and temperature (405 F) conditions. Two 20 cell stacks with a 3.7 square feet, ribbed substrate cell configuration were tested.
The self-assembly of redox active peptides: Synthesis and electrochemical capacitive behavior.
Piccoli, Julia P; Santos, Adriano; Santos-Filho, Norival A; Lorenzón, Esteban N; Cilli, Eduardo M; Bueno, Paulo R
2016-05-01
The present work reports on the synthesis of a redox-tagged peptide with self-assembling capability aiming applications in electrochemically active capacitive surfaces (associated with the presence of the redox centers) generally useful in electroanalytical applications. Peptide containing ferrocene (fc) molecular (redox) group (Ac-Cys-Ile-Ile-Lys(fc)-Ile-Ile-COOH) was thus synthesized by solid phase peptide synthesis (SPPS). To obtain the electrochemically active capacitive interface, the side chain of the cysteine was covalently bound to the gold electrode (sulfur group) and the side chain of Lys was used to attach the ferrocene in the peptide chain. After obtaining the purified redox-tagged peptide, the self-assembly and redox capability was characterized by cyclic voltammetry (CV) and electrochemical impedance-based capacitance spectroscopy techniques. The obtained results confirmed that the redox-tagged peptide was successfully attached by forming an electroactive self-assembled monolayer onto gold electrode. The design of redox active self-assembly ferrocene-tagged peptide is predictably useful in the development of biosensor devices precisely to detect, in a label-free platform, those biomarkers of clinical relevance. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 357-367, 2016. © 2016 Wiley Periodicals, Inc.
Fuel cell assembly unit for promoting fluid service and electrical conductivity
Jones, Daniel O.
1999-01-01
Fluid service and/or electrical conductivity for a fuel cell assembly is promoted. Open-faced flow channel(s) are formed in a flow field plate face, and extend in the flow field plate face between entry and exit fluid manifolds. A resilient gas diffusion layer is located between the flow field plate face and a membrane electrode assembly, fluidly serviced with the open-faced flow channel(s). The resilient gas diffusion layer is restrained against entering the open-faced flow channel(s) under a compressive force applied to the fuel cell assembly. In particular, a first side of a support member abuts the flow field plate face, and a second side of the support member abuts the resilient gas diffusion layer. The support member is formed with a plurality of openings extending between the first and second sides of the support member. In addition, a clamping pressure is maintained for an interface between the resilient gas diffusion layer and a portion of the membrane electrode assembly. Preferably, the support member is spikeless and/or substantially flat. Further, the support member is formed with an electrical path for conducting current between the resilient gas diffusion layer and position(s) on the flow field plate face.
Magnetic assembly of transparent and conducting graphene-based functional composites
NASA Astrophysics Data System (ADS)
Le Ferrand, Hortense; Bolisetty, Sreenath; Demirörs, Ahmet F.; Libanori, Rafael; Studart, André R.; Mezzenga, Raffaele
2016-06-01
Innovative methods producing transparent and flexible electrodes are highly sought in modern optoelectronic applications to replace metal oxides, but available solutions suffer from drawbacks such as brittleness, unaffordability and inadequate processability. Here we propose a general, simple strategy to produce hierarchical composites of functionalized graphene in polymeric matrices, exhibiting transparency and electron conductivity. These are obtained through protein-assisted functionalization of graphene with magnetic nanoparticles, followed by magnetic-directed assembly of the graphene within polymeric matrices undergoing sol-gel transitions. By applying rotating magnetic fields or magnetic moulds, both graphene orientation and distribution can be controlled within the composite. Importantly, by using magnetic virtual moulds of predefined meshes, graphene assembly is directed into double-percolating networks, reducing the percolation threshold and enabling combined optical transparency and electrical conductivity not accessible in single-network materials. The resulting composites open new possibilities on the quest of transparent electrodes for photovoltaics, organic light-emitting diodes and stretchable optoelectronic devices.
Nanopatched Graphene with Molecular Self-Assembly Toward Graphene-Organic Hybrid Soft Electronics.
Kang, Boseok; Lee, Seong Kyu; Jung, Jaehyuck; Joe, Minwoong; Lee, Seon Baek; Kim, Jinsung; Lee, Changgu; Cho, Kilwon
2018-06-01
Increasing the mechanical durability of large-area polycrystalline single-atom-thick materials is a necessary step toward the development of practical and reliable soft electronics based on these materials. Here, it is shown that the surface assembly of organosilane by weak epitaxy forms nanometer-thick organic patches on a monolayer graphene surface and dramatically increases the material's resistance to harsh postprocessing environments, thereby increasing the number of ways in which graphene can be processed. The nanopatched graphene with the improved mechanical durability enables stable operation when used as transparent electrodes of wearable strain sensors. Also, the nanopatched graphene applied as an electrode modulates the molecular orientation of deposited organic semiconductor layers, and yields favorable nominal charge injection for organic transistors. These results demonstrate the potential for use of self-assembled organic nanopatches in graphene-based soft electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NonLinear Optical Spectroscopy of Polymers
1989-01-01
temperature is reduced by a negligible amount, although at higher temperatures, the relaxation occurs more rapidly. 25- 20’ Needle Electrode N =15 Cr .-10C...sample in 23a was poled with a needle electrode , while the sample in 23b was poled by parallel wire electrodes . Mortazavl et al. (104) conducted...when an Inhomogeneous electric field causes a partial breakdown in a gas between the electrodes . Two electrode configurations were tested: a needle
Jin, Yu; Chen, Hongyuan; Chen, Minghai; Liu, Ning; Li, Qingwen
2013-04-24
MnO2 has been widely studied as the pseudo-capactive electrode material of high-performance supercapacitors for its large operating voltage, low cost, and environmental friendliness. However, it suffers from low conductivity and being hardly handle as the electrodes of supercapacitors especially with flexibility, which largely limit its electrochemical performance and application. Herein, we report a novel ternary composite paper composed of reduced graphene sheet (GR)-patched carbon nanotube (CNT)/MnO2, which has controllable structures and prominent electrochemical properties for a flexible electrode of the supercapacitor. The composite paper was prepared by electrochemical deposition of MnO2 on a flexible CNT paper and further adsorption of GR on its surface to enhance the surface conductivity of the electrode and prohibit MnO2 nanospheres from detaching with the electrode. The presence of GR was found remarkably effective in enhancing the initial electrochemical capacitance of the composite paper from 280 F/g to 486.6 F/g. Furthermore, it ensures the stability of the capacitance after a long period of charge/discharge cycles. A flexible CNT/polyaniline/CNT/MnO2/GR asymmetric supercapacitor was assembled with this composite paper as an electrode and aqueous electrolyte gel as the separator. Its operating voltage reached 1.6 V, with an energy density at 24.8 Wh/kg. Such a composite structure derived from a multiscale assembly can offer not only a robust scaffold loading MnO2 nanospheres but also a conductive network for efficient ionic and electronic transport; thus, it is potentially promising as a novel electrode architecture for high-performance flexible energy storage devices.
Li, Da; Liu, Jingquan; Barrow, Colin J; Yang, Wenrong
2014-08-04
We describe a new electrochemical detection approach towards single protein molecules (microperoxidase-11, MP-11), which are attached to the surface of graphene nanosheets. The non-covalently functionalized graphene nanosheets exhibit enhanced electroactive surface area, where amplified redox current is produced when graphene nanosheets collide with the electrode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Guang; Li, Song; Atchison, Jennifer S.
2013-04-12
Molecular dynamics (MD) simulations of supercapacitors with single-walled carbon nanotube (SWCNT) electrodes in room-temperature ionic liquids were performed to investigate the influences of the applied electrical potential, the radius/curvature of SWCNTs, and temperature on their capacitive behavior. It is found that (1) SWCNTs-based supercapacitors exhibit a near-flat capacitance–potential curve, (2) the capacitance increases as the tube radius decreases, and (3) the capacitance depends little on the temperature. We report the first MD study showing the influence of the electrode curvature on the capacitance–potential curve and negligible dependence of temperature on capacitance of tubular electrode. The latter is in good agreementmore » with recent experimental findings and is attributed to the similarity of the electrical double layer (EDL) microstructure with temperature varying from 260 to 400 K. The electrode curvature effect is explained by the dominance of charge overscreening and increased ion density per unit area of electrode surface.« less
Han, Jae Hee; Lee, Jang Yong; Suh, Dong Hack; Hong, Young Taik; Kim, Tae-Ho
2017-10-04
We present cross-linkable precursor-type gel polymer electrolytes (GPEs) that have large ionic liquid uptake capability, can easily penetrate electrodes, have high ion conductivity, and are mechanically strong as high-performance, flexible all-solid-state supercapacitors (SC). Our polymer precursors feature a hydrophilic-hydrophobic poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock main-chain structure and trifunctional silane end groups that can be multi-cross-linked with each other through a sol-gel process. The cross-linked solid-state electrolyte film with moderate IL content (200 wt %) shows a well-balanced combination of excellent ionic conductivity (5.0 × 10 -3 S cm -1 ) and good mechanical stability (maximum strain = 194%). Moreover, our polymer electrolytes have various advantages including high thermal stability (decomposition temperature > 330 °C) and the capability to impregnate electrodes to form an excellent electrode-electrolyte interface due to the very low viscosity of the precursors. By assembling our GPE-impregnated electrodes and solid-state GPE film, we demonstrate an all-solid-state SC that can operate at 3 V and provides an improved specific capacitance (112.3 F g -1 at 0.1 A g -1 ), better rate capability (64% capacity retention until 20 A g -1 ), and excellent cycle stability (95% capacitance decay over 10 000 charge/discharge cycles) compared with those of a reference SC using a conventional PEO electrolyte. Finally, flexible SCs with a high energy density (22.6 W h kg -1 at 1 A g -1 ) and an excellent flexibility (>93% capacitance retention after 5000 bending cycles) can successfully be obtained.
Tao, Kai; Han, Xue; Ma, Qingxiang; Han, Lei
2018-03-06
Metal-organic frameworks (MOFs) have emerged as a new platform for the construction of various functional materials for energy related applications. Here, a facile MOF templating method is developed to fabricate a hierarchical nickel-cobalt sulfide nanosheet array on conductive Ni foam (Ni-Co-S/NF) as a binder-free electrode for supercapacitors. A uniform 2D Co-MOF nanowall array is first grown in situ on Ni foam in aqueous solution at room temperature, and then the Co-MOF nanowalls are converted into hierarchical Ni-Co-S nanoarchitectures via an etching and ion-exchange reaction with Ni(NO 3 ) 2 , and a subsequent solvothermal sulfurization. Taking advantage of the compositional and structural merits of the hierarchical Ni-Co-S nanosheet array and conductive Ni foam, such as fast electron transportation, short ion diffusion path, abundant active sites and rich redox reactions, the obtained Ni-Co-S/NF electrode exhibits excellent electrochemical capacitive performance (1406.9 F g -1 at 0.5 A g -1 , 53.9% retention at 10 A g -1 and 88.6% retention over 1000 cycles), which is superior to control CoS/NF. An asymmetric supercapacitor (ASC) assembled by using the as-fabricated Ni-Co-S/NF as the positive electrode and activated carbon (AC) as the negative electrode delivers a high energy density of 24.8 W h kg -1 at a high power density of 849.5 W kg -1 . Even when the power density is as high as 8.5 kW kg -1 , the ASC still exhibits a high energy density of 12.5 W h kg -1 . This facile synthetic strategy can also be extended to fabricate other hierarchical integrated electrodes for high-efficiency electrochemical energy conversion and storage devices.
Ge, Lei; Yan, Jixian; Song, Xianrang; Yan, Mei; Ge, Shenguang; Yu, Jinghua
2012-02-01
In this work, electrochemiluminescence (ECL) immunoassay was introduced into the recently proposed microfluidic paper-based analytical device (μPADs) based on directly screen-printed electrodes on paper for the very first time. The screen-printed paper-electrodes will be more important for further development of this paper-based ECL device in simple, low-cost and disposable application than commercialized ones. To further perform high-performance, high-throughput, simple and inexpensive ECL immunoassay on μPAD for point-of-care testing, a wax-patterned three-dimensional (3D) paper-based ECL device was demonstrated for the very first time. In this 3D paper-based ECL device, eight carbon working electrodes including their conductive pads were screen-printed on a piece of square paper and shared the same Ag/AgCl reference and carbon counter electrodes on another piece of square paper after stacking. Using typical tris-(bipyridine)-ruthenium (Ⅱ) - tri-n-propylamine ECL system, the application test of this 3D paper-based ECL device was performed through the diagnosis of four tumor markers in real clinical serum samples. With the aid of a facile device-holder and a section-switch assembled on the analyzer, eight working electrodes were sequentially placed into the circuit to trigger the ECL reaction in the sweeping range from 0.5 to 1.1 V at room temperature. In addition, this 3D paper-based ECL device can be easily integrated and combined with the recently emerging paper electronics to further develop simple, sensitive, low-cost, disposable and portable μPAD for point-of-care testing, public health and environmental monitoring in remote regions, developing or developed countries. Copyright © 2011 Elsevier Ltd. All rights reserved.
Deng, Lingjuan; Gao, Yihong; Ma, Zhanying; Fan, Guang
2017-11-01
Preparation of free-standing electrode materials with three-dimensional network architecture has emerged as an effective strategy for acquiring advanced portable and wearable power sources. Herein, graphene/vanadium oxide (GR/V 2 O 5 ) free-standing monolith composite has been prepared via a simple hydrothermal process. Flexible GR sheets acted as binder to connect the belt-like V 2 O 5 for assembling three-dimensional network architecture. The obtained GR/V 2 O 5 composite can be reshaped into GR/V 2 O 5 flexible film which exhibits more compact structure by ultrasonication and vacuum filtration. A high specific capacitance of 358Fg -1 for GR/V 2 O 5 monolith compared with that of GR/V 2 O 5 flexible film (272Fg -1 ) has been achieved in 0.5molL -1 K 2 SO 4 solution when used as binder free electrodes in three-electrode system. An asymmetrical supercapacitor has been assembled using GR/V 2 O 5 monolith as positive electrode and GR monolith as negative electrode, and it can be reversibly charged-discharged at a cell voltage of 1.7V in 0.5molL -1 K 2 SO 4 electrolyte. The asymmetrical capacitor can deliver an energy density of 26.22Whkg -1 at a power density of 425Wkg -1 , much higher than that of the symmetrical supercapacitor based on GR/V 2 O 5 monolith electrode. Moreover, the asymmetrical supercapacitor preserves 90% of its initial capacitance over 1000 cycles at a current density of 5Ag -1 . Copyright © 2017 Elsevier Inc. All rights reserved.
Trielectrode capacitive pressure transducer
NASA Technical Reports Server (NTRS)
Coon, G. W. (Inventor)
1976-01-01
A capacitive transducer and circuit especially suited for making measurements in a high-temperature environment are described. The transducer includes two capacitive electrodes and a shield electrode. As the temperature of the transducer rises, the resistance of the insulation between the capacitive electrode decreases and a resistive current attempts to interfere with the capacitive current between the capacitive electrodes. The shield electrode and the circuit coupled there reduce the resistive current in the transducer. A bridge-type circuit coupled to the transducer ignores the resistive current and measures only the capacitive current flowing between the capacitive electrodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahluwalia, R. K.; Wang, X.; Peng, J. -K.
Here, the durability of de-alloyed platinum-nickel catalysts supported on high-surface area carbon (d-PtNi/C) in optimized electrodes and membrane electrode assemblies (MEAs) under an accelerated stress test (AST) protocol is investigated with the objective of developing a quantitative understanding of the degradation mechanisms and their relationship to the electrode structure, pre-conditioning, and operating conditions. It is found that the cell degradation can be mitigated by controlling the voltage cycle, acid washing the MEA to remove Ni contaminants that enter the electrode and membrane during fabrication, and monitoring the operating conditions. For example, the electrochemical surface area (ECSA) loss is <25% aftermore » 30,000 triangle cycles with 0.925 V upper potential limit if the MEA is acid washed and extensive diagnostics are avoided. The parameters that exacerbate the cell degradation also accelerate the rate at which Ni leaches out from the catalyst. A mechanistic model is presented for the degradation in performance of d-PtNi/C electrodes. The model correlates a) the degradation in ORR mass and specific activities with ECSA and Ni losses, b) the decrease in limiting current density ( iL), which is inversely proportional to the O 2 mass transport resistance, with the degradation in catalyst roughness factor, and c) the increase in mass transfer overpotentials with the reduced current density, i/iL .« less
Ahluwalia, R. K.; Wang, X.; Peng, J. -K.; ...
2018-04-25
Here, the durability of de-alloyed platinum-nickel catalysts supported on high-surface area carbon (d-PtNi/C) in optimized electrodes and membrane electrode assemblies (MEAs) under an accelerated stress test (AST) protocol is investigated with the objective of developing a quantitative understanding of the degradation mechanisms and their relationship to the electrode structure, pre-conditioning, and operating conditions. It is found that the cell degradation can be mitigated by controlling the voltage cycle, acid washing the MEA to remove Ni contaminants that enter the electrode and membrane during fabrication, and monitoring the operating conditions. For example, the electrochemical surface area (ECSA) loss is <25% aftermore » 30,000 triangle cycles with 0.925 V upper potential limit if the MEA is acid washed and extensive diagnostics are avoided. The parameters that exacerbate the cell degradation also accelerate the rate at which Ni leaches out from the catalyst. A mechanistic model is presented for the degradation in performance of d-PtNi/C electrodes. The model correlates a) the degradation in ORR mass and specific activities with ECSA and Ni losses, b) the decrease in limiting current density ( iL), which is inversely proportional to the O 2 mass transport resistance, with the degradation in catalyst roughness factor, and c) the increase in mass transfer overpotentials with the reduced current density, i/iL .« less
Park, Se-Chul; Biswas, Shantonu; Fang, Jun; Mozafari, Mahsa; Stauden, Thomas; Jacobs, Heiko O
2015-06-24
A millimeter thin rubber-like solid-state lighting module is reported. The fabrication of the lighting module incorporates assembly and electrical connection of light-emitting diodes (LEDs). The assembly is achieved using a roll-to-roll fluidic self-assembly. The LEDs are sandwiched in-between a stretchable top and bottom electrode to relieve the mechanical stress. The top contact is realized using a lamination technique that eliminates wire-bonding. © 2015 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Chen, Kongfa; He, Shuai; Li, Na; Cheng, Yi; Ai, Na; Chen, Minle; Rickard, William D. A.; Zhang, Teng; Jiang, San Ping
2018-02-01
La0.6Sr0.2Co0.2Fe0.8O3-δ (LSCF) is the most intensively investigated high performance cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs), but strontium segregation and migration at the electrode/electrolyte interface is a critical issue limiting the electrocatalytic activity and stability of LSCF based cathodes. Herein, we report a Nb and Pd co-doped LSCF (La0.57Sr0.38Co0.19Fe0.665Nb0.095Pd0.05O3-δ, LSCFNPd) perovskite as stable and active cathode on a barrier-layer-free anode-supported yttria-stabilized zirconia (YSZ) electrolyte cell using direct assembly method without pre-sintering at high temperatures. The cell exhibits a peak power density of 1.3 W cm-2 at 750 °C and excellent stability with no degradation during polarization at 500 mA cm-2 and 750 °C for 175 h. Microscopic and spectroscopic analysis show that the electrochemical polarization promotes the formation of electrode/electrolyte interface in operando and exsolution of Pd/PdO nanoparticles. The Nb doping in the B-site of LSCF significantly reduces the Sr surface segregation, enhancing the stability of the cathode, while the exsoluted Pd/PdO nanoparticles increases the electrocatalytic activity for the oxygen reduction reaction. The present study opens up a new route for the development of cobaltite-based perovskite cathodes with high activity and stability for barrier-layer-free YSZ electrolyte based IT-SOFCs.
Gas permeable electrode for electrochemical system
Ludwig, Frank A.; Townsend, Carl W.
1989-01-01
An electrode apparatus adapted for use in electrochemical systems having an anode compartment and a cathode compartment in which gas and ions are produced and consumed in the compartments during generation of electrical current. The electrode apparatus includes a membrane for separating the anode compartment from the cathode compartment wherein the membrane is permeable to both ions and gas. The cathode and anode for the assembly are provided on opposite sides of the membrane. During use of the membrane-electrode apparatus in electrochemical cells, the gas and ions generated at the cathode or anode migrate through the membrane to provide efficient transfer of gas and ions between the anode and cathode compartments.
Electrode for electrochemical cell
Kaun, T.D.; Nelson, P.A.; Miller, W.E.
1980-05-09
An electrode structure for a secondary electrochemical cell includes an outer enclosure defining a compartment containing electrochemical active material. The enclosure includes a rigid electrically conductive metal sheet with perforated openings over major side surfaces. The enclosure can be assembled as first and second trays each with a rigid sheet of perforated electrically conductive metal at major side surfaces and normally extending flanges at parametric margins. The trays can be pressed together with moldable active material between the two to form an expandable electrode. A plurality of positive and negative electrodes thus formed are arranged in an alternating array with porous frangible interelectrode separators within the housing of the secondary electrochemical cell.
Electrode for electrochemical cell
Kaun, Thomas D.; Nelson, Paul A.; Miller, William E.
1981-01-01
An electrode structure for a secondary electrochemical cell includes an outer enclosure defining a compartment containing electrochemical active material. The enclosure includes a rigid electrically conductive metal sheet with perforated openings over major side surfaces. The enclosure can be assembled as first and second trays each with a rigid sheet of perforated electrically conductive metal at major side surfaces and normally extending flanges at parametric margins. The trays can be pressed together with moldable active material between the two to form an expandable electrode. A plurality of positive and negative electrodes thus formed are arranged in an alternating array with porous frangible interelectrode separators within the housing of the secondary electrochemical cell.
NASA Astrophysics Data System (ADS)
Kumar, S.; Jayanti, S.
2017-08-01
In this paper, we present a study of the effect of electrode intrusion into the flow channel in an all-vanadium redox flow battery. Permeability, pressure drop and electrochemical performance have been measured in a cell with active area 100 cm2and 414 cm2 fitted with a carbon felt electrode of thickness of 3, 6 or 9 mm compressed to 1.5, 2.5 or 4 mm, respectively, during assembly. Results show that the pressure drop is significantly higher than what can be expected in the thick electrode case while its electrochemical performance is lower. Detailed flow analysis using computational fluid dynamics simulations in two different flow fields shows that both these results can be attributed to electrode intrusion into the flow channel leading to increased resistance to electrolyte flow through the electrode. A correlation is proposed to evaluate electrode intrusion depth as a function of compression.
Electrochemical Study of Hydrocarbon-Derived Electrolytes for Supercapacitors
NASA Astrophysics Data System (ADS)
Noorden, Zulkarnain A.; Matsumoto, Satoshi
2013-10-01
In this paper, we evaluate the essential electrochemical properties - capacitive and resistive behaviors - of hydrocarbon-derived electrolytes for supercapacitor application using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The electrolytes were systematically prepared from three hydrocarbon-derived compounds, which have different molecular structures and functional groups, by treatment with high-concentration sulfuric acid (H2SO4) at room temperature. Two-electrode cells were assembled by sandwiching an electrolyte-containing glass wool separator with two active electrodes of activated carbon sheets. The dc electrical properties of the tested cells in terms of their capacitive behavior were investigated by CV, and in order to observe the frequency characteristics of the constructed cells, EIS was carried out. Compared with the tested cell with only high-concentration H2SO4 as the electrolyte, the cell with the derived electrolytes exhibit a capacitance as high as 135 F/g with an improved overall internal resistance of 2.5 Ω. Through the use of a simple preparation method and low-cost precursors, hydrocarbon-derived electrolytes could potentially find large-scale and higher-rating supercapacitor applications.
Versatile multi-functionalization of protein nanofibrils for biosensor applications
NASA Astrophysics Data System (ADS)
Sasso, L.; Suei, S.; Domigan, L.; Healy, J.; Nock, V.; Williams, M. A. K.; Gerrard, J. A.
2014-01-01
Protein nanofibrils offer advantages over other nanostructures due to the ease in their self-assembly and the versatility of surface chemistry available. Yet, an efficient and general methodology for their post-assembly functionalization remains a significant challenge. We introduce a generic approach, based on biotinylation and thiolation, for the multi-functionalization of protein nanofibrils self-assembled from whey proteins. Biochemical characterization shows the effects of the functionalization onto the nanofibrils' surface, giving insights into the changes in surface chemistry of the nanostructures. We show how these methods can be used to decorate whey protein nanofibrils with several components such as fluorescent quantum dots, enzymes, and metal nanoparticles. A multi-functionalization approach is used, as a proof of principle, for the development of a glucose biosensor platform, where the protein nanofibrils act as nanoscaffolds for glucose oxidase. Biotinylation is used for enzyme attachment and thiolation for nanoscaffold anchoring onto a gold electrode surface. Characterization via cyclic voltammetry shows an increase in glucose-oxidase mediated current response due to thiol-metal interactions with the gold electrode. The presented approach for protein nanofibril multi-functionalization is novel and has the potential of being applied to other protein nanostructures with similar surface chemistry.Protein nanofibrils offer advantages over other nanostructures due to the ease in their self-assembly and the versatility of surface chemistry available. Yet, an efficient and general methodology for their post-assembly functionalization remains a significant challenge. We introduce a generic approach, based on biotinylation and thiolation, for the multi-functionalization of protein nanofibrils self-assembled from whey proteins. Biochemical characterization shows the effects of the functionalization onto the nanofibrils' surface, giving insights into the changes in surface chemistry of the nanostructures. We show how these methods can be used to decorate whey protein nanofibrils with several components such as fluorescent quantum dots, enzymes, and metal nanoparticles. A multi-functionalization approach is used, as a proof of principle, for the development of a glucose biosensor platform, where the protein nanofibrils act as nanoscaffolds for glucose oxidase. Biotinylation is used for enzyme attachment and thiolation for nanoscaffold anchoring onto a gold electrode surface. Characterization via cyclic voltammetry shows an increase in glucose-oxidase mediated current response due to thiol-metal interactions with the gold electrode. The presented approach for protein nanofibril multi-functionalization is novel and has the potential of being applied to other protein nanostructures with similar surface chemistry. Electronic supplementary information (ESI) available: Cyclic voltammetry characterization of biosensor platforms including bare Au electrodes (Fig. S1), biosensor response to various glucose concentrations (Fig. S2), and AFM roughness measurements due to WPNF modifications (Fig. S3). See DOI: 10.1039/c3nr05752f
All-solid-state lithium-oxygen battery with high safety in wide ambient temperature range
NASA Astrophysics Data System (ADS)
Kitaura, Hirokazu; Zhou, Haoshen
2015-08-01
There is need to develop high energy storage devices with high safety to satisfy the growing industrial demands. Here, we show the potential to realize such batteries by assembling a lithium-oxygen cell using an inorganic solid electrolyte without any flammable liquid or polymer materials. The lithium-oxygen battery using Li1.575Al0.5Ge1.5(PO4)3 solid electrolyte was examined in the pure oxygen atmosphere from room temperature to 120 °C. The cell works at room temperature and first full discharge capacity of 1420 mAh g-1 at 10 mA g-1 (based on the mass of carbon material in the air electrode) was obtained. The charge curve started from 3.0 V, and that the majority of it lay below 4.2 V. The cell also safely works at high temperature over 80 °C with the improved battery performance. Furthermore, fundamental data of the electrochemical performance, such as cyclic voltammogram, cycle performance and rate performance was obtained and this work demonstrated the potential of the all-solid-state lithium-oxygen battery for wide temperature application as a first step.
All-solid-state lithium-oxygen battery with high safety in wide ambient temperature range
Kitaura, Hirokazu; Zhou, Haoshen
2015-01-01
There is need to develop high energy storage devices with high safety to satisfy the growing industrial demands. Here, we show the potential to realize such batteries by assembling a lithium-oxygen cell using an inorganic solid electrolyte without any flammable liquid or polymer materials. The lithium-oxygen battery using Li1.575Al0.5Ge1.5(PO4)3 solid electrolyte was examined in the pure oxygen atmosphere from room temperature to 120 °C. The cell works at room temperature and first full discharge capacity of 1420 mAh g−1 at 10 mA g−1 (based on the mass of carbon material in the air electrode) was obtained. The charge curve started from 3.0 V, and that the majority of it lay below 4.2 V. The cell also safely works at high temperature over 80 °C with the improved battery performance. Furthermore, fundamental data of the electrochemical performance, such as cyclic voltammogram, cycle performance and rate performance was obtained and this work demonstrated the potential of the all-solid-state lithium-oxygen battery for wide temperature application as a first step. PMID:26293134
All-solid-state lithium-oxygen battery with high safety in wide ambient temperature range.
Kitaura, Hirokazu; Zhou, Haoshen
2015-08-21
There is need to develop high energy storage devices with high safety to satisfy the growing industrial demands. Here, we show the potential to realize such batteries by assembling a lithium-oxygen cell using an inorganic solid electrolyte without any flammable liquid or polymer materials. The lithium-oxygen battery using Li1.575Al0.5Ge1.5(PO4)3 solid electrolyte was examined in the pure oxygen atmosphere from room temperature to 120 °C. The cell works at room temperature and first full discharge capacity of 1420 mAh g(-1) at 10 mA g(-1) (based on the mass of carbon material in the air electrode) was obtained. The charge curve started from 3.0 V, and that the majority of it lay below 4.2 V. The cell also safely works at high temperature over 80 °C with the improved battery performance. Furthermore, fundamental data of the electrochemical performance, such as cyclic voltammogram, cycle performance and rate performance was obtained and this work demonstrated the potential of the all-solid-state lithium-oxygen battery for wide temperature application as a first step.
NASA Technical Reports Server (NTRS)
Bolotov, A. V.; Yukhimchuk, S. A.
1985-01-01
An analysis is made of the electrophysical processes occurring at the end surface of rod electrodes during constant and alternating arc discharge in hydrogen. Experiments are reported on the effect of surface temperature of tungsten electrodes on their erosion. The influence of activating additions of thorium oxide, the structure of the tungsten, and the gas surrounding the electrode on the specific thermal loading and the erosion of the electrodes is discussed.
Multi-functional sensor system for molten salt technologies
Redey, Laszlo [Downers Grove, IL; Gourishankar, Karthick [Downers Grove, IL; Williamson, Mark A [Naperville, IL
2009-12-15
The present invention relates to a multi-functional sensor system that simultaneously measures cathode and anode electrode potentials, dissolved ion (i.e. oxide) concentration, and temperatures in an electrochemical cell. One embodiment of the invented system generally comprises: a reference(saturated) electrode, a reference(sensing) electrode, and a data acquisition system. Thermocouples are built into the two reference electrodes to provide important temperature information.
Lee, Inyoung; Loew, Noya; Tsugawa, Wakako; Lin, Chi-En; Probst, David; La Belle, Jeffrey T; Sode, Koji
2018-06-01
Continuous glucose monitoring (CGM) is a vital technology for diabetes patients by providing tight glycemic control. Currently, many commercially available CGM sensors use glucose oxidase (GOD) as sensor element, but this enzyme is not able to transfer electrons directly to the electrode without oxygen or an electronic mediator. We previously reported a mutated FAD dependent glucose dehydrogenase complex (FADGDH) capable of direct electron transfer (DET) via an electron transfer subunit without involving oxygen or a mediator. In this study, we investigated the electrochemical response of DET by controlling the immobilization of DET-FADGDH using 3 types of self-assembled monolayers (SAMs) with varying lengths. With the employment of DET-FADGDH and SAM, high current densities were achieved without being affected by interfering substances such as acetaminophen and ascorbic acid. Additionally, the current generated from DET-FADGDH electrodes decreased with increasing length of SAM, suggesting that the DET ability can be affected by the distance between the enzyme and the electrode. These results indicate the feasibility of controlling the immobilization state of the enzymes on the electrode surface. Copyright © 2017. Published by Elsevier B.V.
Rectified tunneling current response of bio-functionalized metal-bridge-metal junctions.
Liu, Yaqing; Offenhäusser, Andreas; Mayer, Dirk
2010-01-15
Biomolecular bridged nanostructures allow direct electrical addressing of electroactive biomolecules, which is of interest for the development of bioelectronic and biosensing hybrid junctions. In the present paper, the electroactive biomolecule microperoxidase-11 (MP-11) was integrated into metal-bridge-metal (MBM) junctions assembled from a scanning tunneling microscope (STM) setup. Before immobilization of MP-11, the Au working electrode was first modified by a self-assembled monolayer of 1-undecanethiol (UDT). A symmetric and potential independent response of current-bias voltage (I(t)/V(b)) was observed for the Au (substrate)/UDT/Au (tip) junction. However, the I(t)/V(b) characteristics became potential dependent and asymmetrical after binding of MP-11 between the electrodes of the junction. The rectification ratio of the asymmetric current response varies with gate electrode modulation. A resonant tunneling process between metal electrode and MP-11 enhances the tunneling current and is responsible for the observed rectification. Our investigations demonstrated that functional building blocks of proteins can be reassembled into new conceptual devices with operation modes deviating from their native function, which could prove highly useful in the design of future biosensors and bioelectronic devices. Copyright 2009 Elsevier B.V. All rights reserved.
Xiao, Fei; Song, Jibin; Gao, Hongcai; Zan, Xiaoli; Xu, Rong; Duan, Hongwei
2012-01-24
The development of flexible electrodes is of considerable current interest because of the increasing demand for modern electronics, portable medical products, and compact energy devices. We report a modular approach to fabricating high-performance flexible electrodes by structurally integrating 2D-assemblies of nanoparticles with freestanding graphene paper. We have shown that the 2D array of gold nanoparticles at oil-water interfaces can be transferred on freestanding graphene oxide paper, leading to a monolayer of densely packed gold nanoparticles of uniform sizes loaded on graphene oxide paper. One major finding is that the postassembly electrochemical reduction of graphene oxide paper restores the ordered structure and electron-transport properties of graphene, and gives rise to robust and biocompatible freestanding electrodes with outstanding electrocatalytic activities, which have been manifested by the sensitive and selective detection of two model analytes: glucose and hydrogen peroxide (H(2)O(2)) secreted by live cells. The modular nature of this approach coupled with recent progress in nanocrystal synthesis and surface engineering opens new possibilities to systematically study the dependence of catalytic performance on the structural parameters and chemical compositions of the nanocrystals. © 2011 American Chemical Society
Manufacturing of Low Cost, Durable Membrane Electrode Assemblies Engineered for Rapid Conditioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Busby, Colin
Over the past 20 years significant progress in membrane-electrode assembly (MEA) technology development for polymer electrolyte fuel cells (PEMFCs) has resulted in the PEMFC technology approaching a commercial reality for transportation applications. However, there remain two primary technical challenges to be addressed in the MEA. First and foremost is meeting the automotive cost targets: Producing a fuel cell stack cost competitive with today’s internal combustion engine. In addition to the material cost, MEA (and other components) and stack assembly production methods must be amenable for use in low cost, high speed, automotive assembly line. One impediment to this latter goalmore » is that stack components must currently go through a long and tedious conditioning procedure before they produce optimal power. This so-called “break-in” can take many hours, and can involve quite complex voltage, temperature and/or pressure steps. These break-in procedures must be simplified and the time required reduced if fuel cells are to become a viable automotive engine. The second challenge is to achieve the durability targets in real-world automotive duty cycle operations. Significant improvements in cost, break-in time, and durability for the key component of fuel cell stacks, MEAs were achieved in this project. Advanced modeling was used to guide design of the new MEA to maximize performance and durability. A new, innovative process and manufacturing approach utilizing direct in-line coating using scalable, cost-competitive, continuous high volume 3-layer rolled-good manufacturing processes was developed and validated by single cell and short stack testing. In addition, the direct coating methods employed were shown to reduce the cost for sacrificial films. Furthermore, Gore has demonstrated a 10 µm reinforced membrane that is used in the new low-cost process and can meet automotive power density and durability targets. Across a wide range of operating conditions, the direct-coated MEA outperformed the commercial baseline MEA, and did so through a process that delivers MEAs at $92.35/m2 at a volume of 500,000 systems per year, according to Strategic Analysis (SA) estimates.« less
Crezee, J; van der Koijk, J F; Kaatee, R S; Lagendijk, J J
1997-04-01
The 27 MHz Multi Electrode Current Source (MECS) interstitial hyperthermia system uses segmented electrodes, 10-20 mm long, to steer the 3D power deposition. This power control at a scale of 1-2 cm requires detailed and accurate temperature feedback data. To this end seven-point thermocouples are integrated into the probes. The aim of this work was to evaluate the feasibility and reliability of integrated thermometry in the 27 MHz MECS system, with special attention to the interference between electrode and thermometry and its effect on system performance. We investigated the impact of a seven-sensor thermocouple probe (outer diameter 150 microns) on the apparent impedance and power output of a 20 mm dual electrode (O.D. 1.5 mm) in a polyethylene catheter in a muscle equivalent medium (sigma 1 = 0.6 S m-1). The cross coupling between electrode and thermocouple was found to be small (1-2 pF) and to cause no problems in the dual-electrode mode, and only minimal problems in the single-electrode mode. Power loss into the thermometry system can be prevented using simple filters. The temperature readings are reliable and representative of the actual tissue temperature around the electrode. Self-heating effects, occurring in some catheter materials, are eliminated by sampling the temperature after a short power-off interval. We conclude that integrated thermocouple thermometry is compatible with 27 MHz capacitively coupled interstitial hyperthermia. The performance of the system is not affected and the temperatures measured are a reliable indication of the maximum tissue temperatures.
Method of preparing an electrode material of lithium-aluminum alloy
Settle, Jack L.; Myles, Kevin M.; Battles, James E.
1976-01-01
A solid compact having a uniform alloy composition of lithium and aluminum is prepared as a negative electrode for an electrochemical cell. Lithium losses during preparation are minimized by dissolving aluminum within a lithium-rich melt at temperatures near the liquidus temperatures. The desired alloy composition is then solidified and fragmented. The fragments are homogenized to a uniform composition by annealing at a temperature near the solidus temperature. After comminuting to fine particles, the alloy material can be blended with powdered electrolyte and pressed into a solid compact having the desired electrode shape. In the preparation of some electrodes, an electrically conductive metal mesh is embedded into the compact as a current collector.
Evaluation of Case Size 0603 BME Ceramic Capacitors
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander A.
2015-01-01
High volumetric efficiency of commercial base metal electrode (BME) ceramic capacitors allows for a substantial reduction of weight and sizes of the parts compared to currently used military grade precious metal electrode (PME) capacitors. Insertion of BME capacitors in space applications requires a thorough analysis of their performance and reliability. In this work, six types of cases size 0603 BME capacitors from three vendors have been evaluated. Three types of multilayer ceramic capacitors (MLCCs) were designed for automotive industry and three types for general purposes. Leakage currents in the capacitors have been measured in a wide range of voltages and temperatures, and measurements of breakdown voltages (VBR) have been used to assess the proportion and severity of defects in the parts. The effect of soldering-related thermal shock stresses was evaluated by analysis of distributions of VBR for parts in 'as is' condition and after terminal solder dip testing at 350 C. Highly Accelerated Life Testing (HALT) at different temperatures was used to assess the activation energy of degradation of leakage currents and predict behavior of the parts at life test and normal operating conditions. To address issues related to rework and manual soldering, capacitors were soldered onto different substrates at different soldering conditions. The results show that contrary to a common assumption that large-size capacitors are mostly vulnerable to soldering stresses, cracking in small size capacitors does happen unless special measures are taken during assembly processes.
Improved Cathode Structure for a Direct Methanol Fuel Cell
NASA Technical Reports Server (NTRS)
Valdez, Thomas; Narayanan, Sekharipuram
2005-01-01
An improved cathode structure on a membrane/electrode assembly has been developed for a direct methanol fuel cell, in a continuing effort to realize practical power systems containing such fuel cells. This cathode structure is intended particularly to afford better cell performance at a low airflow rate. A membrane/electrode assembly of the type for which the improved cathode structure was developed (see Figure 1) is fabricated in a process that includes brush painting and spray coating of catalyst layers onto a polymer-electrolyte membrane and onto gas-diffusion backings that also act as current collectors. The aforementioned layers are then dried and hot-pressed together. When completed, the membrane/electrode assembly contains (1) an anode containing a fine metal black of Pt/Ru alloy, (2) a membrane made of Nafion 117 or equivalent (a perfluorosulfonic acid-based hydrophilic, proton-conducting ion-exchange polymer), (3) a cathode structure (in the present case, the improved cathode structure described below), and (4) the electrically conductive gas-diffusion backing layers, which are made of Toray 060(TradeMark)(or equivalent) carbon paper containing between 5 and 6 weight percent of poly(tetrafluoroethylene). The need for an improved cathode structure arises for the following reasons: In the design and operation of a fuel-cell power system, the airflow rate is a critical parameter that determines the overall efficiency, cell voltage, and power density. It is desirable to operate at a low airflow rate in order to obtain thermal and water balance and to minimize the size and mass of the system. The performances of membrane/electrode assemblies of prior design are limited at low airflow rates. Methanol crossover increases the required airflow rate. Hence, one way to reduce the required airflow rate is to reduce the effect of methanol crossover. Improvement of the cathode structure - in particular, addition of hydrophobic particles to the cathode - has been demonstrated to mitigate the effects of crossover and decrease the airflow required.
Charge transport in vertically aligned, self-assembled peptide nanotube junctions.
Mizrahi, Mordechay; Zakrassov, Alexander; Lerner-Yardeni, Jenny; Ashkenasy, Nurit
2012-01-21
The self-assembly propensity of peptides has been extensively utilized in recent years for the formation of supramolecular nanostructures. In particular, the self-assembly of peptides into fibrils and nanotubes makes them promising building blocks for electronic and electro-optic applications. However, the mechanisms of charge transfer in these wire-like structures, especially in ambient conditions, are not yet fully understood. We describe here a layer-by-layer deposition methodology of short self-assembled cyclic peptide nanotubes, which results in vertically oriented nanotubes on gold substrates. Using this novel deposition methodology, we have fabricated molecular junctions with a conductive atomic force microscopy tip as a second electrode. Studies of the junctions' current-voltage characteristics as a function of the nanotube length revealed an efficient charge transfer in these supramolecular structures, with a low current attenuation constant of 0.1 Å(-1), which indicate that electron transfer is dominated by hopping. Moreover, the threshold voltage to field-emission dominated transport was found to increase with peptide length in a manner that depends on the nature of the contact with the electrodes. The flexibility in the design of the peptide monomers and the ability to control their sequential order over the nanotube by means of the layer-by-layer assembly process, which is demonstrated in this work, can be used to engineer the electronic properties of self-assembled peptide nanotubes toward device applications.
Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations.
Liu, Lili; Niu, Zhiqiang; Chen, Jun
2016-07-25
As energy storage devices, supercapacitors that are also called electrochemical capacitors possess high power density, excellent reversibility and long cycle life. The recent boom in electronic devices with different functions in transparent LED displays, stretchable electronic systems and artificial skin has increased the demand for supercapacitors to move towards light, thin, integrated macro- and micro-devices with transparent, flexible, stretchable, compressible and/or wearable abilities. The successful fabrication of such supercapacitors depends mainly on the preparation of innovative electrode materials and the design of unconventional supercapacitor configurations. Tremendous research efforts have been recently made to design and construct innovative nanocarbon-based electrode materials and supercapacitors with unconventional configurations. We review here recent developments in supercapacitors from nanocarbon-based electrode materials to device configurations. The advances in nanocarbon-based electrode materials mainly include the assembly technologies of macroscopic nanostructured electrodes with different dimensions of carbon nanotubes/nanofibers, graphene, mesoporous carbon, activated carbon, and their composites. The electrodes with macroscopic nanostructured carbon-based materials overcome the issues of low conductivity, poor mechanical properties, and limited dimensions that are faced by conventional methods. The configurational design of advanced supercapacitor devices is presented with six types of unconventional supercapacitor devices: flexible, micro-, stretchable, compressible, transparent and fiber supercapacitors. Such supercapacitors display unique configurations and excellent electrochemical performance at different states such as bending, stretching, compressing and/or folding. For example, all-solid-state simplified supercapacitors that are based on nanostructured graphene composite paper are able to maintain 95% of the original capacity at a 180° folding state. The progress made so far will guide further developments in the structural design of nanocarbon-based electrode materials and the configurational diversity of supercapacitor devices. Future developments and prospects in the controllable assembly of macroscopic nanostructured electrodes and the innovation of unconventional supercapacitor configurations are also discussed. This should shed light on the R&D of supercapacitors.
Redey, L.I.; Vissers, D.R.; Prakash, J.
1994-02-01
An electrochemical cell is described having a bimodal positive electrode, a negative electrode of an alkali metal, and a compatible electrolyte including an alkali metal salt molten at the cell operating temperature. The positive electrode has an electrochemically active layer of at least one transition metal chloride at least partially present as a charging product, and additives of bromide and/or iodide and sulfur in the positive electrode or the electrolyte. Electrode volumetric capacity is in excess of 400 Ah/cm[sup 3]; the cell can be 90% recharged in three hours and can operate at temperatures below 160 C. There is also disclosed a method of reducing the operating temperature and improving the overall volumetric capacity of an electrochemical cell and for producing a positive electrode having a BET area greater than 6[times]10[sup 4] cm[sup 2]/g of Ni. 8 figures.
Redey, Laszlo I.; Vissers, Donald R.; Prakash, Jai
1994-01-01
An electrochemical cell having a bimodal positive electrode, a negative electrode of an alkali metal, and a compatible electrolyte including an alkali metal salt molten at the cell operating temperature. The positive electrode has an electrochemically active layer of at least one transition metal chloride at least partially present as a charging product, and additives of bromide and/or iodide and sulfur in the positive electrode or the electrolyte. Electrode volumetric capacity is in excess of 400 Ah/cm.sup.3 ; the cell can be 90% recharged in three hours and can operate at temperatures below 160.degree. C. There is also disclosed a method of reducing the operating temperature and improving the overall volumetric capacity of an electrochemical cell and for producing a positive electrode having a BET area greater than 6.times.10.sup.4 cm.sup.2 /g of Ni.
Redey, Laszlo I.; Vissers, Donald R.; Prakash, Jai
1996-01-01
An electrochemical cell having a bimodal positive electrode, a negative electrode of an alkali metal, and a compatible electrolyte including an alkali metal salt molten at the cell operating temperature. The positive electrode has an electrochemically active layer of at least one transition metal chloride at least partially present as a charging product, and additives of bromide and/or iodide and sulfur in the positive electrode or the electrolyte. Electrode volumetric capacity is in excess of 400 Ah/cm.sup.3 ; the cell can be 90% recharged in three hours and can operate at temperatures below 160.degree. C. There is also disclosed a method of reducing the operating temperature and improving the overall volumetric capacity of an electrochemical cell and for producing a positive electrode having a BET area greater than 6.times.10.sup.4 cm.sup.2 /g of Ni.
Redey, L.I.; Vissers, D.R.; Prakash, J.
1996-07-16
An electrochemical cell is described having a bimodal positive electrode, a negative electrode of an alkali metal, and a compatible electrolyte including an alkali metal salt molten at the cell operating temperature. The positive electrode has an electrochemically active layer of at least one transition metal chloride at least partially present as a charging product, and additives of bromide and/or iodide and sulfur in the positive electrode or the electrolyte. Electrode volumetric capacity is in excess of 400 Ah/cm{sup 3}; the cell can be 90% recharged in three hours and can operate at temperatures below 160 C. There is also disclosed a method of reducing the operating temperature and improving the overall volumetric capacity of an electrochemical cell and for producing a positive electrode having a BET area greater than 6{times}10{sup 4}cm{sup 2}/g of Ni. 6 figs.
Yuan, Sujun; Mu, Jiuke; Mao, Ruiyi; Li, Yaogang; Zhang, Qinghong; Wang, Hongzhi
2014-04-23
The multilaminated ZnO/TiO2 heterojunction films were successfully deposited on conductive substrates including fluorine-doped tin oxide (FTO) glass and flexible indium tin oxide coated poly(ethylene terephthalate) via the layer-by-layer (LBL) self assembly method from the oxide colloids without using any polyelectrolytes. The positively charged ZnO nanoparticles and the negatively charged TiO2 nanoparticles were directly used as the components in the consecutive deposition process to prepare the heterojunction thin films by varying the thicknesses. Moreover, the crystal growth of both oxides could be efficiently inhibited by the good connection between ZnO and TiO2 nanoparticles even after calcination at 500 °C, especially for ZnO which was able to keep the crystallite size under 25 nm. The as-prepared films were used as the working electrodes in the three-electrode photoelectrochemical cells. Because the well-contacted nanoscale heterojunctions were formed during the LBL self-assembling process, the ZnO/TiO2 all-nanoparticle films deposited on both substrates showed remarkably enhanced photoelectrochemical properties compared to that of the well-established TiO2 LBL thin films with similar thicknesses. The photocurrent response collected from the ZnO/TiO2 electrode on the FTO glass substrate was about five times higher than that collected from the TiO2 electrode. Owing to the absence of the insulating layer of dried polyelectrolytes, the ZnO/TiO2 all-nanoparticle heterojunction films were expected to be used in the photoelectrochemical device before calcination.
Apparatus for electrohydrodynamically assembling patterned colloidal structures
NASA Technical Reports Server (NTRS)
Trau, Mathias (Inventor); Aksay, Ilhan A. (Inventor); Saville, Dudley A. (Inventor)
2000-01-01
A method apparatus is provided for electrophoretically depositing particles onto an electrode, and electrohydrodynamically assembling the particles into crystalline structures. Specifically, the present method and apparatus creates a current flowing through a solution to cause identically charged electrophoretically deposited colloidal particles to attract each other over very large distances (<5 particle diameters) on the surface of electrodes to form two-dimensional colloidal crystals. The attractive force can be created with both DC and AC fields and can modulated by adjusting either the field strength or frequency of the current. Modulating this lateral attraction between the particles causes the reversible formation of two-dimensional fluid and crystalline colloidal states on the electrode surface. Further manipulation allows for the formation of two or three-dimensional colloidal crystals, as well as more complex designed structures. Once the required structures are formed, these three-dimension colloidal crystals can be permanently frozen or glued by controlled coagulation induced by to the applied field to form a stable crystalline structure.
NASA Astrophysics Data System (ADS)
Fan, Xin; Chen, Weiliang; Pang, Shuhua; Lu, Wei; Zhao, Yu; Liu, Zheng; Fang, Dong
2017-12-01
In the present work, asymmetric supercapacitors (ASCs) are assembled using a highly conductive N-doped nanocarbon (NDC) material derived from a polyaniline hydrogel as a cathode, and Ni foam covered with flower-like Co3O4 nanosheets (Co3O4-Ni) prepared from a zeolitic imidazolate metal-organic framework as a single precursor serves as a high gravimetric capacitance anode. At a current of 0.2 A g-1, the Co3O4-Ni electrode provides a gravimetric capacitance of 637.7 F g-1, and the NDC electrode provides a gravimetric capacitance of 359.6 F g-1. The ASC assembled with an optimal active material loading operates within a wide potential window of 0-1.1 V, and provides a high areal capacitance of 25.7 mF cm-2. The proposed ASC represents a promising strategy for designing high-performance supercapacitors.
Lu, Xue-Feng; Huang, Zhi-Xiang; Tong, Ye-Xiang
2016-01-01
Helical hierarchical porous NaxMnO2/CC and MoO2/CC, which are assembled from nanosheets and nanoparticles, respectively, are fabricated using a simple electrodeposition method. These unique helical porous structures enable electrodes to have a high capacitance and an outstanding cycling performance. Based on the helical NaxMnO2/CC as the positive electrodes and helical MoO2/CC as the negative electrodes, high performance NaxMnO2/CC//MoO2/CC asymmetric supercapacitors (ASCs) are successfully assembled, and they achieve a maximum volume C sp of 2.04 F cm–3 and a maximum energy density of 0.92 mW h cm–3 for the whole device and an excellent cycling stability with 97.22% C sp retention after 6000 cycles. PMID:28791103
Yun, Su-Won; Park, Shin-Ae; Kim, Tae-June; Kim, Jun-Hyuk; Pak, Gi-Woong; Kim, Yong-Tae
2017-02-08
A simple, inexpensive approach is proposed for enhancing the durability of automotive proton exchange membrane fuel cells by selective promotion of the hydrogen oxidation reaction (HOR) and suppression of the oxygen reduction reaction (ORR) at the anode in startup/shutdown events. Dodecanethiol forms a self-assembled monolayer (SAM) on the surface of Pt particles, thus decreasing the number of Pt ensemble sites. Interestingly, by controlling the dodecanethiol concentration during SAM formation, the number of ensemble sites can be precisely optimized such that it is sufficient for the HOR but insufficient for the ORR. Thus, a Pt surface with an SAM of dodecanethiol clearly effects HOR-selective electrocatalysis. Clear HOR selectivity is demonstrated in unit cell tests with the actual membrane electrode assembly, as well as in an electrochemical three-electrode setup with a thin-film rotating disk electrode configuration. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Method for electrohydrodynamically assembling patterned colloidal structures
NASA Technical Reports Server (NTRS)
Trau, Mathias (Inventor); Aksay, Ilhan A. (Inventor); Saville, Dudley A. (Inventor)
1999-01-01
A method apparatus is provided for electrophoretically depositing particles onto an electrode, and electrohydrodynamically assembling the particles into crystalline structures. Specifically, the present method and apparatus creates a current flowing through a solution to cause identically charged electrophoretically deposited colloidal particles to attract each other over very large distances (<5 particle diameters) on the surface of electrodes to form two-dimensional colloidal crystals. The attractive force can be created with both DC and AC fields and can modulated by adjusting either the field strength or frequency of the current. Modulating this lateral attraction between the particles causes the reversible formation of two-dimensional fluid and crystalline colloidal states on the electrode surface. Further manipulation allows for the formation of two or three-dimensional colloidal crystals, as well as more complex designed structures. Once the required structures are formed, these three-dimension colloidal crystals can be permanently frozen or glued by controlled coagulation induced by to the applied field to form a stable crystalline structure.
Zhang, Fang; Xia, Xue; Luo, Yong; Sun, Dan; Call, Douglas F; Logan, Bruce E
2013-04-01
In a separator electrode assembly microbial fuel cell, oxygen crossover from the cathode inhibits current generation by exoelectrogenic bacteria, resulting in poor reactor startup and performance. To determine the best approach for improving startup performance, the effect of acclimation to a low set potential (-0.2V, versus standard hydrogen electrode) was compared to startup at a higher potential (+0.2 V) or no set potential, and inoculation with wastewater or pre-acclimated cultures. Anodes acclimated to -0.2 V produced the highest power of 1330±60 mW m(-2) for these different anode conditions, but unacclimated wastewater inocula produced inconsistent results despite the use of this set potential. By inoculating reactors with transferred cell suspensions, however, startup time was reduced and high power was consistently produced. These results show that pre-acclimation at -0.2 V consistently improves power production compared to use of a more positive potential or the lack of a set potential. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Eungje; Salgado, Ruben Arash; Lee, Byeongdu
Thermal management remains one of the major challenges in the design of safe and reliable Li-ion batteries. We show that composite electrodes assembled from commercially available 100 μm long carbon nanotubes (CNTs) and LiCoO2 (LCO) particles demonstrate the in-plane thermal conductivity of 205.8 W/m*K. This value exceeds the thermal conductivity of dry conventional laminated electrodes by about three orders of magnitude. The cross-plane thermal conductivity of CNT-based electrodes is in the same range as thermal conductivities of conventional laminated electrodes. The CNT-based electrodes demonstrate a similar capacity to conventional laminated design electrodes, but revealed a better rate performance and stability.more » The introduction of diamond particles into CNT-based electrodes further improves the rate performance. Our lightweight, flexible electrode design can potentially be a general platform for fabricating polymer binder- and aluminum and copper current collector- free electrodes from a broad range of electrochemically active materials with efficient thermal management.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumoto, R.; Sasama, Y.; Yamaguchi, T.
2016-07-15
A novel diamond anvil cell suitable for electrical transport measurements under high pressure has been developed. A boron-doped metallic diamond film was deposited as an electrode on a nano-polycrystalline diamond anvil using a microwave plasma-assisted chemical vapor deposition technique combined with electron beam lithography. The maximum pressure that can be achieved by this assembly is above 30 GPa. We report electrical transport measurements of Pb up to 8 GPa. The boron-doped metallic diamond electrodes showed no signs of degradation after repeated compression.
Transparent, flexible supercapacitors from nano-engineered carbon films.
Jung, Hyun Young; Karimi, Majid B; Hahm, Myung Gwan; Ajayan, Pulickel M; Jung, Yung Joon
2012-01-01
Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications.
Transparent, flexible supercapacitors from nano-engineered carbon films
Jung, Hyun Young; Karimi, Majid B.; Hahm, Myung Gwan; Ajayan, Pulickel M.; Jung, Yung Joon
2012-01-01
Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications. PMID:23105970
Transparent, flexible supercapacitors from nano-engineered carbon films
NASA Astrophysics Data System (ADS)
Jung, Hyun Young; Karimi, Majid B.; Hahm, Myung Gwan; Ajayan, Pulickel M.; Jung, Yung Joon
2012-10-01
Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications.
Small Aperture BPM to Quadrupole Assembly Tolerance Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fong, K. W.
2010-12-07
The LCLS injector and linac systems utilize a series of quadrupole magnets with a beam position monitor (BPM) captured in the magnet pole tips. The BPM measures the electron beam position by comparing the electrical signal from 4 electrodes and interpolating beam position from these signals. The manufacturing tolerances of the magnet and BPM are critical in determining the mechanical precision of the electrodes relative to the nominal electron beam Z-axis. This study evaluates the statistical uncertainty of the electrodes center axis relative to the nominal electron beam axis.
NASA Astrophysics Data System (ADS)
Guo, Jiabin; Zhang, Qichong; Sun, Juan; Li, Chaowei; Zhao, Jingxin; Zhou, Zhenyu; He, Bing; Wang, Xiaona; Man, Ping; Li, Qiulong; Zhang, Jun; Xie, Liyan; Li, Mingxing; Yao, Yagang
2018-04-01
Significant efforts have been recently devoted to constructing high-performance fiber-shaped asymmetric supercapacitors. However, it is still a paramount challenge to develop high-energy-density fiber-shaped asymmetric supercapacitors for practical applications in portable and wearable electronics. This work reports a simple and efficient method to directly grow vanadium nitride nanosheets on carbon nanotube fibers as advanced negative electrodes with a high specific capacitance of 188 F/cm3 (564 mF/cm2). Taking advantage of their attractive structure, we successfully fabricated a fiber-shaped asymmetric supercapacitor device with a maximum operating voltage of 1.6 V by assembling the vanadium nitride/carbon nanotube fiber negative electrode with the Zinc-Nickel-Cobalt ternary oxides nanowire arrays positive electrode. Due to the excellent synergistic effects between positive and negative electrodes, a remarkable specific capacitance of 50 F/cm3 (150 mF/cm2) and an outstanding energy density of 17.78 mWh/cm3 (53.33 μWh/cm2) for our fiber-shaped asymmetric supercapacitor can be achieved. Furthermore, the as-assembled fiber-shaped asymmetric supercapacitor device has excellent mechanical flexibility in that 91% of the capacitance retained after bending 90° for 3000 times. Thus, this work exploits a pathway to construct high-energy-density fiber-shaped asymmetric supercapacitor for next-generation portable and wearable electronics.
Wang, Fuan; Liu, Xiaoqing; Willner, Itamar
2013-01-18
Light-triggered biological processes provide the principles for the development of man-made optobioelectronic systems. This Review addresses three recently developed topics in the area of optobioelectronics, while addressing the potential applications of these systems. The topics discussed include: (i) the reversible photoswitching of the bioelectrocatalytic functions of redox proteins by the modification of proteins with photoisomerizable units or by the integration of proteins with photoisomerizable environments; (ii) the integration of natural photosynthetic reaction centers with electrodes and the construction of photobioelectrochemical cells and photobiofuel cells; and (iii) the synthesis of biomolecule/semiconductor quantum dots hybrid systems and their immobilization on electrodes to yield photobioelectrochemical and photobiofuel cell elements. The fundamental challenge in the tailoring of optobioelectronic systems is the development of means to electrically contact photoactive biomolecular assemblies with the electrode supports. Different methods to establish electrical communication between the photoactive biomolecular assemblies and electrodes are discussed. These include the nanoscale engineering of the biomolecular nanostructures on surfaces, the development of photoactive molecular wires and the coupling of photoinduced electron transfer reactions with the redox functions of proteins. The different possible applications of optobioelectronic systems are discussed, including their use as photosensors, the design of biosensors, and the construction of solar energy conversion and storage systems. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chemical sintering of direct-written silver nanowire flexible electrodes under room temperature.
Hui, Zhuang; Liu, Yangai; Guo, Wei; Li, Lihang; Mu, Nan; Jin, Chao; Zhu, Ying; Peng, Peng
2017-07-14
Transparent and flexible electrodes on cost effective plastic substrates for wearable electronics have attract great attention recently. Due to the conductivity and flexibility in network form, metal nanowire is regarded as one of the most promising candidates for flexible electrode fabrication. Prior to application, low temperature joining of nanowire processes are required to reduce the resistance of electrodes and simultaneously maintain the dimensionality and uniformity of those nanowires. In the present work, we presented an innovative, robust and cost effective method to minimize the heat effect to plastic substrate and silver nanowires which allows silver nanowire electrodes been directly written on polycarbonate substrate and sintered by different electrolyte solutions at room temperature or near. It has been rigorously demonstrated that the resistance of silver nanowire electrodes has been reduced by 90% after chemical sintering at room temperature due to the joining of silver nanowires at junction areas. After ∼1000 bending cycles, the measured resistance of silver nanowire electrode was stable during both up-bending and down-bending states. The changes of silver nanowires after sintering were characterized using x-ray photoelectron spectroscopy and transmission electron microscopy and a sintering mechanism was proposed and validated. This direct-written silver nanowire electrode with good performance has broad applications in flexible electronics fabrication and packaging.
The Lead-Lead Oxide Secondary Cell as a Teaching Resource
ERIC Educational Resources Information Center
Smith, Michael J.; Fonseca, Antonio M.; Silva, M. Manuela
2009-01-01
The assembly and use of a laboratory version of a secondary cell based on the lead-lead oxide system is described. The cell is easy to construct, sufficiently robust for student use, and has a conveniently low practical capacity of about 5 mA h. This modest cell capacity allows cell assembly, electrode formation and discharge characterization…
NASA Astrophysics Data System (ADS)
Jiang, Wenchao; Zhang, Kaixi; Wei, Li; Yu, Dingshan; Wei, Jun; Chen, Yuan
2013-10-01
Modern portable electronic devices create a strong demand for flexible energy storage devices. Paper based nanocomposites are attractive as sustainable materials for such applications. Here, we directly explored the hydroxyl chemistry of cellulose fibers to synthesize hybrid ternary nanocomposites, comprised of rice paper, single-walled carbon nanotubes (SWCNTs) and manganese oxide nanoparticles. The functional groups on cellulose fibers can react with adsorbed permanganate ions, resulting in uniform deposition of manganese oxide nanoparticles. SWCNTs coated on top of manganese oxide nanoparticles form a highly conductive network connecting individual manganese oxide particles. By using the hybrid ternary composites as electrodes, the assembled two-electrode supercapacitors demonstrated high capacitance (260.2 F g-1), energy (9.0 W h kg-1), power (59.7 kW kg-1), and cycle stability (12% drop after 3000 cycles). In addition, the nanocomposites show good strength and excellent mechanical flexibility, and their capacitance shows negligible changes after bending more than 100 times. These findings suggest that opportunities exist to further explore the rich chemistry of cellulose fibers for innovative energy applications.Modern portable electronic devices create a strong demand for flexible energy storage devices. Paper based nanocomposites are attractive as sustainable materials for such applications. Here, we directly explored the hydroxyl chemistry of cellulose fibers to synthesize hybrid ternary nanocomposites, comprised of rice paper, single-walled carbon nanotubes (SWCNTs) and manganese oxide nanoparticles. The functional groups on cellulose fibers can react with adsorbed permanganate ions, resulting in uniform deposition of manganese oxide nanoparticles. SWCNTs coated on top of manganese oxide nanoparticles form a highly conductive network connecting individual manganese oxide particles. By using the hybrid ternary composites as electrodes, the assembled two-electrode supercapacitors demonstrated high capacitance (260.2 F g-1), energy (9.0 W h kg-1), power (59.7 kW kg-1), and cycle stability (12% drop after 3000 cycles). In addition, the nanocomposites show good strength and excellent mechanical flexibility, and their capacitance shows negligible changes after bending more than 100 times. These findings suggest that opportunities exist to further explore the rich chemistry of cellulose fibers for innovative energy applications. Electronic supplementary information (ESI) available: Chemical structures of functional groups on cellulose fibers, the surface water wettability of rice paper, CV curves of supercapacitors at different scan rates, galvanostatic charge-discharge curves of supercapacitors at different current densities, TGA profiles of the SWCNT-MnO2-paper composites synthesized at different temperatures, TEM images of MnO2 particles deposited on rice paper at different temperatures, photographs of supercapacitors under different bending test conditions, and a video of bending and folding the SWCNT-MnO2-paper composites. See DOI: 10.1039/c3nr03010e
Numerical simulation of RF catheter ablation for the treatment of arterial aneurysm.
Guo, Xuemei; Nan, Qun; Qiao, Aike
2015-01-01
Considering the blood coagulation induced by the heating of radio frequency ablation (RFA) and the mechanism of aneurysm embolization, we proposed that RFA may be used to treat arterial aneurysm. But the safety of this method should be investigated. A finite element method (FEM) was used to simulate temperature and pressure distribution in aneurysm with different electrode position, electric field intensity and ablation time. When the electrode is in the middle of the artery aneurysm sac, temperature rose clearly in half side of artery aneurysm, which is not suitable for RFA. Temperature rose in the whole aneurysm when the electrode is under the artery aneurysm orifice, which is suitable for the ablation therapy. And in this way, the highest temperature was 69.585°C when power was 5.0 V/mm with 60 s. It can promote the coagulation and thrombosis generation in the aneurysm sac while the outside tissue temperature rises a little. Meanwhile, the pressure (10 Pa) at the top of aneurysm sac with electrode insertion is less than that (60 Pa) without electrode, so electrode implant may protect the aneurysm from rupture. The results can provide a theoretical basis for interventional treatment of aneurysm with RFA.
Dochter, Alexandre; Garnier, Tony; Pardieu, Elodie; Chau, Nguyet Trang Thanh; Maerten, Clément; Senger, Bernard; Schaaf, Pierre; Jierry, Loïc; Boulmedais, Fouzia
2015-09-22
The development of new surface functionalization methods that are easy to use, versatile, and allow local deposition represents a real scientific challenge. Overcoming this challenge, we present here a one-pot process that consists in self-assembling, by electrochemistry on an electrode, films made of oppositely charged macromolecules. This method relies on a charge-shifting polyanion, dimethylmaleic-modified poly(allylamine) (PAHd), that undergoes hydrolysis at acidic pH, leading to an overall switching of its charge. When a mixture of the two polyanions, PAHd and poly(styrenesulfonate) (PSS), is placed in contact with an electrode, where the pH is decreased locally by electrochemistry, the transformation of PAHd into a polycation (PAH) leads to the continuous self-assembly of a nanometric PAH/PSS film by electrostatic interactions. The pH decrease is obtained by the electrochemical oxidation of hydroquinone, which produces protons locally over nanometric distances. Using a negatively charged enzyme, alkaline phosphatase (AP), instead of PSS, this one-pot process allows the creation of enzymatically active films. Under mild conditions, self-assembled PAH/AP films have an enzymatic activity which is adjustable simply by controlling the self-assembly time. The selective functionalization of microelectrode arrays by PAH/AP was achieved, opening the route toward miniaturized biosensors.
HF/H2O2 treated graphite felt as the positive electrode for vanadium redox flow battery
NASA Astrophysics Data System (ADS)
He, Zhangxing; Jiang, Yingqiao; Meng, Wei; Jiang, Fengyun; Zhou, Huizhu; Li, Yuehua; Zhu, Jing; Wang, Ling; Dai, Lei
2017-11-01
In order to improve the electrochemical performance of the positive graphite felt electrode in vanadium flow redox battery, a novel method is developed to effectively modify the graphite felt by combination of etching of HF and oxidation of H2O2. After the etching of HF for the graphite felt at ambient temperature, abundant oxygen-containing functional groups were further introduced on the surface of graphite felt by hydrothermal treatment using H2O2 as oxidant. Benefiting from the surface etching and introduction of functional groups, mass transfer and electrode process can be improved significantly on the surface of graphite felt. VO2+/VO2+ redox reaction on the graphite felt modified by HF and H2O2 jointly (denote: GF-HF/H2O2) exhibits superior electrochemical kinetics in comparison with the graphite felt modified by single HF or H2O2 treatment. The cell using GF-HF/H2O2 as the positive electrode was assembled and its electrochemical properties were evaluated. The increase of energy efficiency of 4.1% for GF-HF/H2O2 at a current density of 50 mA cm-2 was obtained compared with the pristine graphite felt. The cell using GF-HF/H2O2 also demonstrated higher discharge capacity. Our study revealed that HF/H2O2 treatment is an efficient method to enhance the electrochemical performance of graphite felt, further improving the comprehensive energy storage performance of the vanadium flow redox battery.
Oligonucleotide probes functionalization of nanogap electrodes.
Zaffino, Rosa Letizia; Mir, Mònica; Samitier, Josep
2017-11-01
Nanogap electrodes have attracted a lot of consideration as promising platform for molecular electronic and biomolecules detection. This is mainly for their higher aspect ratio, and because their electrical properties are easily accessed by current-voltage measurements. Nevertheless, application of standard current-voltages measurements used to characterize nanogap response, and/or to modify specific nanogap electrodes properties, represents an issue. Since the strength of electrical fields in nanoscaled devices can reach high values, even at low voltages. Here, we analyzed the effects induced by different methods of surface modification of nanogap electrodes, in test-voltage application, employed for the electrical detection of a desoxyribonucleic acid (DNA) target. Nanogap electrodes were functionalized with two antisymmetric oligo-probes designed to have 20 terminal bases complementary to the edges of the target, which after hybridization bridges the nanogap, closing the electrical circuit. Two methods of functionalization were studied for this purpose; a random self-assembling of a mixture of the two oligo-probes (OPs) used in the platform, and a selective method that controls the position of each OP at selected side of nanogap electrodes. We used for this aim, the electrophoretic effect induced on negatively charged probes by the application of an external direct current voltage. The results obtained with both functionalization methods where characterized and compared in terms of electrode surface covering, calculated by using voltammetry analysis. Moreover, we contrasted the electrical detection of a DNA target in the nanogap platform either in site-selective and in randomly assembled nanogap. According to our results, a denser, although not selective surface functionalization, is advantageous for such kind of applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Flexible robust binder-free carbon nanotube membranes for solid state and microcapacitor application
NASA Astrophysics Data System (ADS)
Adu, Kofi; Ma, Danhao; Wang, Yuxiang; Spencer, Michael; Rajagopalan, Ramakrishnan; Wang, C.-Yu; Randall, Clive
2018-01-01
We present a liquid phase post synthesis self-assemble protocol that transforms trillions of carbon nanotubes (CNTs) in powder form into densely packed flexible, robust and binder-free macroscopic membranes with a hierarchical pore structure. We employ charge transfer engineering to spontaneously disperse the CNTs in a liquid medium. The processing protocol has limited or no impact on the intrinsic properties of the CNTs. As the thickness of the CNT membrane is increased, we observed a gradual transition from high flexibility to buckling and brittleness in the flexural properties of the membranes. The binder-free CNT membranes have bulk mass density greater than that of water (1.0 g cm-3). We correlate the mass of the CNTs in the membrane to the thickness of the membrane and obtained a bulk mass density of ˜1.11 g cm-3 ± 0.03 g cm-3. We demonstrate the use of the CNT membranes as electrode in a pristine and oxidized single/stacked solid-state capacitor as well as pristine interdigitated microcapacitor that show time constant of ˜32 ms with no degradation in performance even after 10 000 cycles. The capacitors show very good temperature dependence over a wide range of temperatures with good cycling performance up to 90 °C. The specific capacitance of the pseudocapacitive CNT electrode at room temperature was 72 F g-1 and increased to 100 F g-1 at 70 °C. The leakage current of bipolar stacked solid state capacitor was ˜100 nA cm-2 at 2.5 V when held for 72 h.
González-Suárez, Ana; Berjano, Enrique; Guerra, Jose M.; Gerardo-Giorda, Luca
2016-01-01
Radiofrequency catheter ablation (RFCA) is a routine treatment for cardiac arrhythmias. During RFCA, the electrode-tissue interface temperature should be kept below 80°C to avoid thrombus formation. Open-irrigated electrodes facilitate power delivery while keeping low temperatures around the catheter. No computational model of an open-irrigated electrode in endocardial RFCA accounting for both the saline irrigation flow and the blood motion in the cardiac chamber has been proposed yet. We present the first computational model including both effects at once. The model has been validated against existing experimental results. Computational results showed that the surface lesion width and blood temperature are affected by both the electrode design and the irrigation flow rate. Smaller surface lesion widths and blood temperatures are obtained with higher irrigation flow rate, while the lesion depth is not affected by changing the irrigation flow rate. Larger lesions are obtained with increasing power and the electrode-tissue contact. Also, larger lesions are obtained when electrode is placed horizontally. Overall, the computational findings are in close agreement with previous experimental results providing an excellent tool for future catheter research. PMID:26938638
NASA Astrophysics Data System (ADS)
Park, Jong Cheol; Choi, Chang Hyuck
2017-08-01
Non-precious metal catalysts (typically Fe(Co)-N-C catalysts) have been widely investigated for use as cost-effective cathode materials in low temperature fuel cells. Despite the high oxygen reduction activity and methanol-tolerance of graphene-based Fe(Co)-N-C catalysts in an acidic medium, their use in direct methanol fuel cells (DMFCs) has not yet been successfully implemented, and only a few studies have investigated this topic. Herein, we synthesized a nano-sized graphene-derived Fe/Co-N-C catalyst by physical ball-milling and a subsequent chemical modification of the graphene oxide. Twelve membrane-electrode-assemblies are fabricated with various cathode compositions to determine the effects of the methanol concentration, ionomer (i.e. Nafion) content, and catalyst loading on the DMFC performance. The results show that a graphene-based catalyst is capable of tolerating a highly-concentrated methanol feed up to 10.0 M. The optimized electrode composition has an ionomer content and catalyst loading of 66.7 wt% and 5.0 mg cm-2, respectively. The highest maximum power density is ca. 32 mW cm-2 with a relatively low PtRu content (2 mgPtRu cm-2). This study overcomes the drawbacks of conventional graphene-based electrodes using a nano-sized graphene-based catalyst and further shows the feasibility of their potential applications in DMFC systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moradi, M; Li, Z; Qi, JF
In this work we investigated an energy-efficient biotemplated route to synthesize nanostructured FePO4 for sodium-based batteries. Self-assembled M13 viruses and single wall carbon nanotubes (SWCNTs) have been used as a template to grow amorphous FePO4 nanoparticles at room temperature (the active composite is denoted as Bio-FePO4-CNT) to enhance the electronic conductivity of the active material. Preliminary tests demonstrate a discharge capacity as high as 166 mAh/g at C/10 rate, corresponding to composition Na0.9FePO4, which along with higher C-rate tests show this material to have the highest capacity and power performance reported for amorphous FePO4 electrodes to date.
Novel surface diffusion characteristics for a robust pentacene derivative on Au(1 1 1) surfaces
NASA Astrophysics Data System (ADS)
Miller, Ryan A.; Larson, Amanda; Pohl, Karsten
2017-06-01
Molecular dynamics simulations have been performed in both the ab initio and classical mechanics frameworks of 5,6,7-trithiapentacene-13-one (TTPO) molecules on flat Au(1 1 1) surfaces. Results show new surface diffusion characteristics including a strong preference for the molecule to align its long axis parallel to the sixfold Au(1 1 1) symmetry directions and subsequently diffuse along these close-packed directions, and a calculated activation energy for diffusion of 0.142 eV, about four times larger than that for pure pentacene on Au. The temperature-dependent diffusion coefficients were calculated to help quantify the molecular mobility during the experimentally observed process of forming self-assembled monolayers on gold electrodes.
Distance scaling of electric-field noise in a surface-electrode ion trap
NASA Astrophysics Data System (ADS)
Sedlacek, J. A.; Greene, A.; Stuart, J.; McConnell, R.; Bruzewicz, C. D.; Sage, J. M.; Chiaverini, J.
2018-02-01
We investigate anomalous ion-motional heating, a limitation to multiqubit quantum-logic gate fidelity in trapped-ion systems, as a function of ion-electrode separation. Using a multizone surface-electrode trap in which ions can be held at five discrete distances from the metal electrodes, we measure power-law dependencies of the electric-field noise experienced by the ion on the ion-electrode distance d . We find a scaling of approximately d-4 regardless of whether the electrodes are at room temperature or cryogenic temperature, despite the fact that the heating rates are approximately two orders of magnitude smaller in the latter case. Through auxiliary measurements using the application of noise to the electrodes, we rule out technical limitations to the measured heating rates and scalings. We also measure the frequency scaling of the inherent electric-field noise close to 1 /f at both temperatures. These measurements eliminate from consideration anomalous-heating models which do not have a d-4 distance dependence, including several microscopic models of current interest.
NASA Astrophysics Data System (ADS)
Nohara, Shinji; Asahina, Toshihide; Wada, Hajime; Furukawa, Naoji; Inoue, Hiroshi; Sugoh, Nozomu; Iwasaki, Hideharu; Iwakura, Chiaki
A new hybrid capacitor (HC) cell was assembled using an activated carbon (AC) negative electrode, an Ni(OH) 2 positive electrode and a polymer hydrogel electrolyte prepared from crosslinked potassium poly(acrylate) (PAAK) and KOH aqueous solution. The HC cell was characterized compared with an electric double layer capacitor (EDLC) using two AC electrodes and the polymer hydrogel electrolyte. It was found that the HC cell successfully worked in the larger voltage range and exhibited ca. 2.4 times higher capacitance than the EDLC cell. High-rate dischargeability of the HC cell was also superior to that of the EDLC cell. These improved characteristics strongly suggest that the HC cell can be a promising system of capacitors with high energy and power densities.
Welding fixture for joining bar-wound stator conductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Souza, Urban J.; Rhoads, Frederick W.; Hanson, Justin
A fixture assembly for welding a plurality of stator wire end pairs may include an anvil, a movable clamp configured to translate between an unclamped state and a clamped state, a first grounding electrode, and a second grounding electrode. The movable clamp may be configured to urge the plurality of stator wire ends against the anvil when in the clamped state. The moveable clamp includes a separator feature that generally extends toward the anvil. Each of the first grounding electrode and second grounding electrodes may be configured to translate between a clamped state and an unclamped state. When in themore » clamped state, each of the first and second grounding electrodes is configured to urge a pair of the plurality of stator wire end pairs against the separator feature.« less
High-performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes.
Kim, Tae Young; Lee, Hyun Wook; Stoller, Meryl; Dreyer, Daniel R; Bielawski, Christopher W; Ruoff, Rodney S; Suh, Kwang S
2011-01-25
We report a high-performance supercapacitor incorporating a poly(ionic liquid)-modified reduced graphene oxide (PIL:RG-O) electrode and an ionic liquid (IL) electrolyte (specifically, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide or EMIM-NTf(2)). PIL:RG-O provides enhanced compatibility with the IL electrolyte, thereby increasing the effective electrode surface area accessible to electrolyte ions. The supercapacitor assembled with PIL:RG-O electrode and EMIM-NTf(2) electrolyte showed a stable electrochemical response up to 3.5 V operating voltage and was capable of yielding a maximum energy density of 6.5 W·h/kg with a power density of 2.4 kW/kg. These results demonstrate the potential of the PIL:RG-O material as an electrode in high-performance supercapacitors.
Crossbar nanoarchitectonics of the crosslinked self-assembled monolayer
2014-01-01
A bottom-up approach was devised to build a crossbar device using the crosslinked SAM of the 5,5′-bis (mercaptomethyl)-2,2′-bipyridine-Ni2+ (BPD- Ni2+) on a gold surface. To avoid metal diffusion through the organic film, the author used (i) nanoscale bottom electrodes to reduce the probability of defects on the bottom electrodes and (ii) molecular crosslinked technology to avoid metal diffusion through the SAMs. The properties of the crosslinked self-assembled monolayer were determined by XPS. I-V characteristics of the device show thermally activated hopping transport. The implementation of this type of architecture will open up new vistas for a new class of devices for transport, storage, and computing. PMID:24994952
Field-Distortion Air-Insulated Switches for Next-Generation Pulsed-Power Accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wisher, Matthew Louis; Johns, Owen M.; Breden, Eric Wayne
We have developed two advanced designs of a field-distortion air-insulated spark-gap switch that reduce the size of a linear-transformer-driver (LTD) brick. Both designs operate at 200 kV and a peak current of ~50 kA. At these parameters, both achieve a jitter of less than 2 ns and a prefire rate of ~0.1% over 5000 shots. We have reduced the number of switch parts and assembly steps, which has resulted in a more uniform, design-driven assembly process. We will characterize the performance of tungsten-copper and graphite electrodes, and two different electrode geometries. The new switch designs will substantially improve the electricalmore » and operational performance of next-generation pulsed-power accelerators.« less
NASA Astrophysics Data System (ADS)
Li, Yana; Hou, Xianhua; Li, Yajie; Ru, Qiang; Wang, Shaofeng; Hu, Shejun; Lam, Kwok-ho
2017-09-01
Hierarchical CoMn2O4 microspheres assembled by nanoparticles have been successfully synthesized by a facile hydrothermal method and a subsequent annealing treatment. XRD detection indicate the crystal structure. SEM and TEM results reveal the 3-dimensional porous and micro-/nanostructural microsphere assembled by nanoparticles with a size of 20-100 nm. The CoMn2O4 electrode show initial specific discharge capacity of approximately 1546 mAh/g at the current rates 100 mA/g with a coulombic efficiency of 66.7% and remarkable specific capacities (1029-485 mAh/g) at various current rates (100-2800 mA/g). [Figure not available: see fulltext.
Jung, Dong-Won; Kim, Jun-Ho; Kim, Se-Hoon; Kim, Jun-Bom; Oh, Eun-Suok
2013-05-01
The effect of dual-layered membrane electrode assemblies (d-MEAs) on the performance of a polymer electrolyte membrane fuel cell (PEMFC) was investigated using the following characterization techniques: single cell performance test, electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). It has been shown that the PEMFC with d-MEAs has better cell performance than that with typical mono-layered MEAs (m-MEAs). In particular, the d-MEA whose inner layer is composed of multi-walled carbon nanotubes (MWCNTs) showed the best fuel cell performance. This is due to the fact that the d-MEAs with MWCNTs have the highest electrochemical surface area and the lowest activation polarization, as observed from the CV and EIS test.
Nieciecka, Dorota; Krysinski, Pawel
2011-02-01
We present the results on the partitioning of doxorubicin (DOX), a potent anticancer drug, through the model membrane system, self-assembled monolayers (SAMs) on gold electrodes. The monolayers were formed from alkanethiols of comparable length with different ω-terminal groups facing the aqueous electrolyte: the hydrophobic -CH(3) groups for the case of dodecanethiol SAMs or hydrophilic -OH groups of mercaptoundecanol SAMs. The electrochemical experiments combined with the surface plasmon resonance (SPR) and gravimetric studies show that doxorubicin is likely adsorbed onto the surface of hydrophilic monolayer, while for the case of the hydrophobic one the drug mostly penetrates the monolayer moiety. The adsorption of the drug hinders further penetration of doxorubicin into the monolayer moiety.
Fundamental modeling the performance and degradation of HEV Lithium-ion battery
NASA Astrophysics Data System (ADS)
Fang, Weifang
Li-ion battery is now replacing nickel-metal hydride (NiMH) for hybrid electric vehicles (HEV). The advantages of Li-ion battery over NiMH are that it can provide longer life, higher cell voltage and higher energy density, etc. However, there are still some issues unsolved for Li-ion battery to fully satisfy the HEV requirement. At high temperature, thermal runaway may cause safety issues. At low temperature, however, its performance is dramatically reduced and also Li deposition may occur. Furthermore, degradation due to side reactions in the electrodes during cycling and storage results in capacity loss and impedance rise. An electrochemical-thermal coupled model is first used to predict performance of individual electrodes of Li-ion cells under HEV conditions that encompass a wide range of ambient temperatures. The model is validated against experimental data of not only the full cell but also individual electrodes and then used to study lithium deposition on the negative electrode during charging Li-ion battery at subzero temperature. The simulated property evolution, e.g. Li concentrations in electrode and electrolyte, shows that either low temperature or high charge rate may force Li insertion (into the negative carbon electrode) to occur in a narrow region near the separator. Therefore, Li deposition is mostly like to happen in this location. Modeling simulation shows that reduction of the negative electrode particle size can reduce Li deposition, which has same effect as improvement of the Li diffusion coefficient in the negative electrode. The model is also used to study charge protocols at subzero temperature. Model simulation shows that employing pulse current can improve cell temperature by the heat generated inside the cell, thus this designed charge protocol is able to reduce Li deposition and improve the charge efficiency as well. Individual aging mechanism is then implemented into each electrode to study Li-ion battery degradation during accelerated aging tests. The experimentally observed aging phenomena are interpreted using the degradation model. The simulated results show that the positive electrode active material loss is the main cause of capacity loss and impedance growth. And this is the key step for a model to well catch the experimentally observed aging phenomena in the two electrodes. In the future work, the degradation model will further help to prolong battery life through engineering and optimization in HEV applications.
Thermally Regenerative Battery with Intercalatable Electrodes and Selective Heating Means
NASA Technical Reports Server (NTRS)
Sharma, Pramod K. (Inventor); Narayanan, Sekharipuram R. (Inventor); Hickey, Gregory S. (Inventor)
2000-01-01
The battery contains at least one electrode such as graphite that intercalates a first species from the electrolyte disposed in a first compartment such as bromine to form a thermally decomposable complex during discharge. The other electrode can also be graphite which supplies another species such as lithium to the electrolyte in a second electrode compartment. The thermally decomposable complex is stable at room temperature but decomposes at elevated temperatures such as 50 C. to 150 C. The electrode compartments are separated by a selective ion permeable membrane that is impermeable to the first species. Charging is effected by selectively heating the first electrode.
Titanyl phthalocyanine ambipolar thin film transistors making use of carbon nanotube electrodes
NASA Astrophysics Data System (ADS)
Coppedè, Nicola; Valitova, Irina; Mahvash, Farzaneh; Tarabella, Giuseppe; Ranzieri, Paolo; Iannotta, Salvatore; Santato, Clara; Martel, Richard; Cicoira, Fabio
2014-12-01
The capability of efficiently injecting charge carriers into organic films and finely tuning their morphology and structure is crucial to improve the performance of organic thin film transistors (OTFTs). In this work, we investigate OTFTs employing carbon nanotubes (CNTs) as the source-drain electrodes and, as the organic semiconductor, thin films of titanyl phthalocyanine (TiOPc) grown by supersonic molecular beam deposition (SuMBD). While CNT electrodes have shown an unprecedented ability to improve charge injection in OTFTs, SuMBD is an effective technique to tune film morphology and structure. Varying the substrate temperature during deposition, we were able to grow both amorphous (low substrate temperature) and polycrystalline (high substrate temperature) films of TiOPc. Regardless of the film morphology and structure, CNT electrodes led to superior charge injection and transport performance with respect to benchmark Au electrodes. Vacuum annealing of polycrystalline TiOPc films with CNT electrodes yielded ambipolar OTFTs.
Gas permeable electrode for electrochemical system
Ludwig, F.A.; Townsend, C.W.
1989-09-12
An electrode apparatus is described which is adapted for use in electrochemical systems having an anode compartment and a cathode compartment in which gas and ions are produced and consumed in the compartments during generation of electrical current. The electrode apparatus includes a membrane for separating the anode compartment from the cathode compartment wherein the membrane is permeable to both ions and gas. The cathode and anode for the assembly are provided on opposite sides of the membrane. During use of the membrane-electrode apparatus in electrochemical cells, the gas and ions generated at the cathode or anode migrate through the membrane to provide efficient transfer of gas and ions between the anode and cathode compartments. 3 figs.
Ultra-thin solid oxide fuel cells: Materials and devices
NASA Astrophysics Data System (ADS)
Kerman, Kian
Solid oxide fuel cells are electrochemical energy conversion devices utilizing solid electrolytes transporting O2- that typically operate in the 800 -- 1000 °C temperature range due to the large activation barrier for ionic transport. Reducing electrolyte thickness or increasing ionic conductivity can enable lower temperature operation for both stationary and portable applications. This thesis is focused on the fabrication of free standing ultrathin (<100 nm) oxide membranes of prototypical O 2- conducting electrolytes, namely Y2O3-doped ZrO2 and Gd2O3-doped CeO2. Fabrication of such membranes requires an understanding of thin plate mechanics coupled with controllable thin film deposition processes. Integration of free standing membranes into proof-of-concept fuel cell devices necessitates ideal electrode assemblies as well as creative processing schemes to experimentally test devices in a high temperature dual environment chamber. We present a simple elastic model to determine stable buckling configurations for free standing oxide membranes. This guides the experimental methodology for Y 2O3-doped ZrO2 film processing, which enables tunable internal stress in the films. Using these criteria, we fabricate robust Y2O3-doped ZrO2 membranes on Si and composite polymeric substrates by semiconductor and micro-machining processes, respectively. Fuel cell devices integrating these membranes with metallic electrodes are demonstrated to operate in the 300 -- 500 °C range, exhibiting record performance at such temperatures. A model combining physical transport of electronic carriers in an insulating film and electrochemical aspects of transport is developed to determine the limits of performance enhancement expected via electrolyte thickness reduction. Free standing oxide heterostructures, i.e. electrolyte membrane and oxide electrodes, are demonstrated. Lastly, using Y2O3-doped ZrO2 and Gd2O 3-doped CeO2, novel electrolyte fabrication schemes are explored to develop oxide alloys and nanoscale compositionally graded membranes that are thermomechanically robust and provide added interfacial functionality. The work in this thesis advances experimental state-of-the-art with respect to solid oxide fuel cell operation temperature, provides fundamental boundaries expected for ultrathin electrolytes, develops the ability to integrate highly dissimilar material (such as oxide-polymer) heterostructures, and introduces nanoscale compositionally graded electrolyte membranes that can lead to monolithic materials having multiple functionalities.
2014-01-24
Interfacial Tuning via Electron-Blocking/Hole-Transport Layers and Indium Tin Oxide Surface Treatment in Bulk- Heterojunction Organic Photovoltaic Cells...devices Figure 3 shows the compounds we prepared to assemble on gold (Au) surfaces. Results of TPA-C60 dyads (1 and 2) self-assembled on Au electrodes...surface hydroxyl groups, respectively, we decided to prepare compounds 5-7 to attach as SAMs, see Figure 5. Difficulties and unexpected problems
Solid cartridge for a pulse weld forming electrode and method of joining tubular members
Bonnen, John Joseph Francis; Golovashchenko, Sergey Fedorovich; Mamutov, Alexander; Maison, Lloyd Douglas; Dawson, Scott Alwyn; deVries, James
2016-02-23
A cartridge assembly is disclosed for a pulse welding a first tube supported on a mandrel to a second tube. An outer tool is assembled over the second tube and a stored charge is discharged in the cartridge assembly. The cartridge comprises an annular conductor and a solid casing enveloping the conductor. The stored charge is electrically connected to the conductor and discharged through the conductor to compress the second tube and pulse weld the second tube to the first tube.