Nanoscopic electrode molecular probes
Krstic, Predrag S [Knoxville, TN; Meunier, Vincent [Knoxville, TN
2012-05-22
The present invention relates to a method and apparatus for enhancing the electron transport property measurements of a molecule when the molecule is placed between chemically functionalized carbon-based nanoscopic electrodes to which a suitable voltage bias is applied. The invention includes selecting a dopant atom for the nanoscopic electrodes, the dopant atoms being chemically similar to atoms present in the molecule, and functionalizing the outer surface and terminations of the electrodes with the dopant atoms.
Toward the Atomic-Level Mass Analysis of Biomolecules by the Scanning Atom Probe.
Nishikawa, Osamu; Taniguchi, Masahiro
2017-04-01
In 1994, a new type of atom probe instrument, named the scanning atom probe (SAP), was proposed. The unique feature of the SAP is the introduction of a small extraction electrode, which scans over a specimen surface and confines the high field, required for field evaporation of surface atoms in a small space, between the specimen and the electrode. Thus, the SAP does not require a sharp specimen tip. This indicates that the SAP can mass analyze the specimens which are difficult to form in a sharp tip, such as organic materials and biomolecules. Clean single wall carbon nanotubes (CNT), made by high-pressure carbon monoxide process are found to be the best substrates for biomolecules. Various amino acids and dipeptide biomolecules were successfully mass analyzed, revealing characteristic clusters formed by strongly bound atoms in the specimens. The mass analysis indicates that SAP analysis of biomolecules is not only qualitative, but also quantitative.
Development of a DNA Sensor Based on Nanoporous Pt-Rich Electrodes
NASA Astrophysics Data System (ADS)
Van Hao, Pham; Thanh, Pham Duc; Xuan, Chu Thi; Hai, Nguyen Hoang; Tuan, Mai Anh
2017-06-01
Nanoporous Pt-rich electrodes with 72 at.% Pt composition were fabricated by sputtering a Pt-Ag alloy, followed by an electrochemical dealloying process to selectively etch away Ag atoms. The surface properties of nanoporous membranes were investigated by energy-dispersive x-ray spectroscopy (EDS), scanning electron microscopy (SEM), atomic force microscopy (AFM), a documentation system, and a gel image system (Gel Doc Imager). A single strand of probe deoxyribonucleic acid (DNA) was immobilized onto the electrode surface by physical adsorption. The DNA probe and target hybridization were measured using a lock-in amplifier and an electrochemical impedance spectroscope (EIS). The nanoporous Pt-rich electrode-based DNA sensor offers a fast response time of 3.7 s, with a limit of detection (LOD) of 4.35 × 10-10 M of DNA target.
NASA Astrophysics Data System (ADS)
Morton, Kirstin Claire
Carbon is one of the most remarkable elements due to its wide abundance on Earth and its many allotropes, which include diamond and graphite. Many carbon allotropes are conductive and in recent decades scientists have discovered and synthesized many new forms of carbon, including graphene and carbon nanotubes. The work in this thesis specifically focuses on the fabrication and characterization of pyrolyzed parylene C (PPC), a conductive pyrocarbon, as an electrode material for diodes, as a conductive coating for atomic force microscopy (AFM) probes and as an ultramicroelectrode (UME) for the electrochemical interrogation of cellular systems in vitro. Herein, planar and three-dimensional (3D) PPC electrodes were microscopically, spectroscopically and electrochemically characterized. First, planar PPC films and PPC-coated nanopipettes were utilized to detect a model redox species, Ru(NH3) 6Cl3. Then, free-standing PPC thin films were chemically doped, with hydrazine and concentrated nitric acid, to yield p- and n-type carbon films. Doped PPC thin films were positioned in conjunction with doped silicon to create Schottky and p-n junction diodes for use in an alternating current half-wave rectifier circuit. Pyrolyzed parylene C has found particular merit as a 3D electrode coating of AFM probes. Current sensing-atomic force microscopy imaging in air of nanoscale metallic features was undertaken to demonstrate the electronic imaging applicability of PPC AFM probes. Upon further insulation with parylene C and modification with a focused ion beam, a PPC UME was microfabricated near the AFM probe apex and utilized for electrochemical imaging. Subsequently, scanning electrochemical microscopy-atomic force microscopy imaging was undertaken to electrochemically quantify and image the spatial location of dopamine exocytotic release, elicited mechanically via the AFM probe itself, from differentiated pheochromocytoma 12 cells in vitro.
NASA Astrophysics Data System (ADS)
Azib, M.; Baudoin, F.; Binaud, N.; Villeneuve-Faure, C.; Bugarin, F.; Segonds, S.; Teyssedre, G.
2018-04-01
Recent experimental results demonstrated that an electrostatic force distance curve (EFDC) can be used for space charge probing in thin dielectric layers. A main advantage of the method is claimed to be its sensitivity to charge localization, which, however, needs to be substantiated by numerical simulations. In this paper, we have developed a model which permits us to compute an EFDC accurately by using the most sophisticated and accurate geometry for the atomic force microscopy probe. To avoid simplifications and in order to reproduce experimental conditions, the EFDC has been simulated for a system constituted of a polarized electrode embedded in a thin dielectric layer (SiN x ). The individual contributions of forces on the tip and on the cantilever have been analyzed separately to account for possible artefacts. The EFDC sensitivity to potential distribution is studied through the change in electrode shape, namely the width and the depth. Finally, the numerical results have been compared with experimental data.
1992-10-01
organized into hexagonal patterns, but unlike the monoatomic iodine adlayers noted above the close-packed atomic strings tend to lie along the gold ...adsorbate systems. Illustrative results of the former type are presented for the potential-dependent adsorption of iodide at low-index gold electrodes. The...presented for the potential-dependent adsorption of iodide at low-index gold electrodes. The virtues of acquiring "composite-domain" STM images, where
NASA Astrophysics Data System (ADS)
Shibata, Takayuki; Yamamoto, Kota; Sasano, Junji; Nagai, Moeto
2017-09-01
This paper presents a nanofabrication technique based on the electrochemically assisted chemical dissolution of zinc oxide (ZnO) single crystals in water at room temperature using a catalytically active Pt-coated atomic force microscopy (AFM) probe. Fabricated grooves featured depths and widths of several tens and several hundreds of nanometers, respectively. The material removal rate of ZnO was dramatically improved by controlling the formation of hydrogen ions (H+) on the surface of the catalytic Pt-coated probe via oxidation of H2O molecules; this reaction can be enhanced by applying a cathodic potential to an additional Pt-wire working electrode in a three-electrode configuration. Consequently, ZnO can be dissolved chemically in water as a soluble Zn2+ species via a reaction with H+ species present in high concentrations in the immediate vicinity of the AFM tip apex.
Preparation of nanowire specimens for laser-assisted atom probe tomography
NASA Astrophysics Data System (ADS)
Blumtritt, H.; Isheim, D.; Senz, S.; Seidman, D. N.; Moutanabbir, O.
2014-10-01
The availability of reliable and well-engineered commercial instruments and data analysis software has led to development in recent years of robust and ergonomic atom-probe tomographs. Indeed, atom-probe tomography (APT) is now being applied to a broader range of materials classes that involve highly important scientific and technological problems in materials science and engineering. Dual-beam focused-ion beam microscopy and its application to the fabrication of APT microtip specimens have dramatically improved the ability to probe a variety of systems. However, the sample preparation is still challenging especially for emerging nanomaterials such as epitaxial nanowires which typically grow vertically on a substrate through metal-catalyzed vapor phase epitaxy. The size, morphology, density, and sensitivity to radiation damage are the most influential parameters in the preparation of nanowire specimens for APT. In this paper, we describe a step-by-step process methodology to allow a precisely controlled, damage-free transfer of individual, short silicon nanowires onto atom probe microposts. Starting with a dense array of tiny nanowires and using focused ion beam, we employed a sequence of protective layers and markers to identify the nanowire to be transferred and probed while protecting it against Ga ions during lift-off processing and tip sharpening. Based on this approach, high-quality three-dimensional atom-by-atom maps of single aluminum-catalyzed silicon nanowires are obtained using a highly focused ultraviolet laser-assisted local electrode atom probe tomograph.
Tu, Yiyou; Plotnikov, Elizaveta Y; Seidman, David N
2015-04-01
This study investigates the effects of the charge-state ratio of evaporated ions on the accuracy of local-electrode atom-probe (LEAP) tomographic compositional and structural analyses, which employs a picosecond ultraviolet pulsed laser. Experimental results demonstrate that the charge-state ratio is a better indicator of the best atom-probe tomography (APT) experimental conditions compared with laser pulse energy. The thermal tails in the mass spectra decrease significantly, and the mass resolving power (m/Δm) increases by 87.5 and 185.7% at full-width half-maximum and full-width tenth-maximum, respectively, as the laser pulse energy is increased from 5 to 30 pJ/pulse. The measured composition of this alloy depends on the charge-state ratio of the evaporated ions, and the most accurate composition is obtained when Ni2+/Ni+ is in the range of 0.3-20. The γ(f.c.c.)/γ'(L12) interface is quantitatively more diffuse when determined from the measured concentration profiles for higher laser pulse energies. Conclusions of the APT compositional and structural analyses utilizing the same suitable charge-state ratio are more comparable than those collected with the same laser pulse energy.
Takahashi, J; Kawakami, K; Raabe, D
2017-04-01
The difference in quantitative analysis performance between the voltage-mode and laser-mode of a local electrode atom probe (LEAP3000X HR) was investigated using a Fe-Cu binary model alloy. Solute copper atoms in ferritic iron preferentially field evaporate because of their significantly lower evaporation field than the matrix iron, and thus, the apparent concentration of solute copper tends to be lower than the actual concentration. However, in voltage-mode, the apparent concentration was higher than the actual concentration at 40K or less due to a detection loss of matrix iron, and the concentration decreased with increasing specimen temperature due to the preferential evaporation of solute copper. On the other hand, in laser-mode, the apparent concentration never exceeded the actual concentration, even at lower temperatures (20K), and this mode showed better quantitative performance over a wide range of specimen temperatures. These results indicate that the pulsed laser atom probe prevents both detection loss and preferential evaporation under a wide range of measurement conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
Kim, Yoon-Jun; Tao, Runzhe; Klie, Robert F; Seidman, David N
2013-01-22
Imaging the three-dimensional atomic-scale structure of complex interfaces has been the goal of many recent studies, due to its importance to technologically relevant areas. Combining atom-probe tomography and aberration-corrected scanning transmission electron microscopy (STEM), we present an atomic-scale study of ultrathin (~5 nm) native oxide layers on niobium (Nb) and the formation of ordered niobium hydride phases near the oxide/Nb interface. Nb, an elemental type-II superconductor with the highest critical temperature (T(c) = 9.2 K), is the preferred material for superconducting radio frequency (SRF) cavities in next-generation particle accelerators. Nb exhibits high solubilities for oxygen and hydrogen, especially within the RF-field penetration depth, which is believed to result in SRF quality factor losses. STEM imaging and electron energy-loss spectroscopy followed by ultraviolet laser-assisted local-electrode atom-probe tomography on the same needle-like sample reveals the NbO(2), Nb(2)O(5), NbO, Nb stacking sequence; annular bright-field imaging is used to visualize directly hydrogen atoms in bulk β-NbH.
Current at Metal-Organic Interfaces
NASA Astrophysics Data System (ADS)
Kern, Klaus
2012-02-01
Charge transport through atomic and molecular constrictions greatly affects the operation and performance of organic electronic devices. Much of our understanding of the charge injection and extraction processes in these systems relays on our knowledge of the electronic structure at the metal-organic interface. Despite significant experimental and theoretical advances in studying charge transport in nanoscale junctions, a microscopic understanding at the single atom/molecule level is missing. In the present talk I will present our recent results to probe directly the nanocontact between single molecules and a metal electrode using scanning probe microscopy and spectroscopy. The experiments provide unprecedented microscopic details of single molecule and atom junctions and open new avenues to study quantum critical and many body phenomena at the atomic scale. Implications for energy conversion devices and carbon based nanoelectronics will also be discussed.
Electrochemical DNA sensor for anthrax toxin activator gene atxA-detection of PCR amplicons.
Das, Ritu; Goel, Ajay K; Sharma, Mukesh K; Upadhyay, Sanjay
2015-12-15
We report the DNA probe functionalized electrochemical genosensor for the detection of Bacillus anthracis, specific towards the regulatory gene atxA. The DNA sensor is fabricated on electrochemically deposited gold nanoparticle on self assembled layer of (3-Mercaptopropyl) trimethoxysilane (MPTS) on GC electrode. DNA hybridization is monitored by differential pulse voltammogram (DPV). The modified GC electrode is characterized by atomic force microscopy (AFM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) method. We also quantified the DNA probe density on electrode surface by the chronocoulometric method. The detection is specific and selective for atxA gene by DNA probe on the electrode surface. No report is available for the detection of B. anthracis by using atxA an anthrax toxin activator gene. In the light of real and complex sample, we have studied the PCR amplicons of 303, 361 and 568 base pairs by using symmetric and asymmetric PCR approaches. The DNA probe of atxA gene efficiently hybridizes with different base pairs of PCR amplicons. The detection limit is found to be 1.0 pM (S/N ratio=3). The results indicate that the DNA sensor is able to detect synthetic target as well as PCR amplicons of different base pairs. Copyright © 2015 Elsevier B.V. All rights reserved.
Spray Formation from a Charged Liquid Jet of a Dielectric Fluid
NASA Astrophysics Data System (ADS)
Doak, William; de Bellis, Victor; Chiarot, Paul; Microfluidics; Multiphase Flow Laboratory Team
2017-11-01
Atomization of a dielectric micro-jet is achieved via an electrohydrodynamic charge injection process. The atomizer is comprised of a grounded nozzle housing (ground electrode) and an internal probe (high voltage electrode) that is concentric with the emitting orifice. The internal probe is held at electric potentials ranging from 1-10 kV. A pressurized reservoir drives a dielectric fluid at a desired flow rate through the 100-micrometer diameter orifice. The fluid fills the cavity between the electrodes as it passes through the atomizer, impeding the transport of electrons. This process injects charge into the flowing fluid. Upon exiting the orifice, the emitted jet is highly charged and it deforms via a bending instability that is qualitatively similar to the behavior observed in the electrospinning of fibers. We observed bulging regions, or nodes, of highly charged fluid forming along the bent, rotating jet. These nodes separate into highly charged droplets that emit satellite droplets. The remaining ligaments break up due to capillarity in a process that produces additional satellites. All of the droplets possess a normal (inertial) and radial (electrically-driven) momentum component. The radial component is responsible for the formation of a conical spray envelope. Our research focuses on the jet, its break up, and the droplet dynamics of this system. This research supported by the American Chemical Society.
1994-02-01
electrochemical formation and removal of oxide films is of broadbased practical as well as fundamental importance. Studies of noble metals, such as gold and...atomic level. At the current state of development of STM, monocrystalline gold electrodes provide efficacious choices of systems, partly in view of...several in-situ STM studies have focussed on the surface morphological changes attending oxidation and rereduction of single-crystal gold electrodes
Costa, Maurilia P; Andrade, Cesar A S; Montenegro, Rosana A; Melo, Fabio L; Oliveira, Maria D L
2014-11-01
In this work, a genosensor for the electrochemical detection of genomic DNA from Mycobacterium tuberculosis was developed. The biosensor is based on self-assembled monolayers of mercaptobenzoic acid (MBA) and magnetite nanoparticles (Fe3O4Nps) on bare gold electrode for immobilization of DNA probe. The aim of this work was the development of a platform based on cysteine-coated magnetic Fe3O4Nps linked via the carboxylate group from MBA to the work electrode surface and subsequently to the DNA probe. The probe-genome interaction was evaluated using a [Fe(CN)6](4-)/[Fe(CN)6](3-) redox pair. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to evaluate the bioelectrochemical behavior of the sensor. Atomic force microscopy images showed Fe3O4Nps immobilized across the electrode surface. The interaction of the sensor with different genome DNA concentrations resulted in changes in the charge transfer resistance, indicating a possible use for tuberculosis detection at low concentrations (detection limit of 6ngμL(-1)). Copyright © 2014 Elsevier Inc. All rights reserved.
Linker Dependent Bond Rupture Force Measurements in Single-Molecule Junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frei M.; Hybertsen M.; Aradhya S.V.
We use a modified conducting atomic force microscope to simultaneously probe the conductance of a single-molecule junction and the force required to rupture the junction formed by alkanes terminated with four different chemical link groups which vary in binding strength and mechanism to the gold electrodes. Molecular junctions with amine, methylsulfide, and diphenylphosphine terminated molecules show clear conductance signatures and rupture at a force that is significantly smaller than the measured 1.4 nN force required to rupture the single-atomic gold contact. In contrast, measurements with a thiol terminated alkane which can bind covalently to the gold electrode show conductance andmore » force features unlike those of the other molecules studied. Specifically, the strong Au-S bond can cause structural rearrangements in the electrodes, which are accompanied by substantial conductance changes. Despite the strong Au-S bond and the evidence for disruption of the Au structure, the experiments show that on average these junctions also rupture at a smaller force than that measured for pristine single-atom gold contacts.« less
Thompson, Damien; Nijhuis, Christian A
2016-10-18
This Account describes a body of research in atomic level design, synthesis, physicochemical characterization, and macroscopic electrical testing of molecular devices made from ferrocene-functionalized alkanethiol molecules, which are molecular diodes, with the aim to identify, and resolve, the failure modes that cause leakage currents. The mismatch in size between the ferrocene headgroup and alkane rod makes waxlike highly dynamic self-assembled monolayers (SAMs) on coinage metals that show remarkable atomic-scale sensitivity in their electrical properties. Our results make clear that molecular tunnel junction devices provide an excellent testbed to probe the electronic and supramolecular structures of SAMs on inorganic substrates. Contacting these SAMs to a eutectic "EGaIn" alloy top-electrode, we designed highly stable long-lived molecular switches of the form electrode-SAM-electrode with robust rectification ratios of up to 3 orders of magnitude. The graphic that accompanies this conspectus displays a computed SAM packing structure, illustrating the lollipop shape of the molecules that gives dynamic SAM supramolecular structures and also the molecule-electrode van der Waals (vdW) contacts that must be controlled to form good SAM-based devices. In this Account, we first trace the evolution of SAM-based electronic devices and rationalize their operation using energy level diagrams. We describe the measurement of device properties using near edge X-ray absorption fine structure spectroscopy, cyclic voltammetry, and X-ray photoelectron spectroscopy complemented by molecular dynamics and electronic structure calculations together with large numbers of electrical measurements. We discuss how data obtained from these combined experimental/simulation codesign studies demonstrate control over the supramolecular and electronic structure of the devices, tuning odd-even effects to optimize inherent packing tendencies of the molecules in order to minimize leakage currents in the junctions. It is now possible, but still very costly to create atomically smooth electrodes and we discuss progress toward masking electrode imperfections using cooperative molecule-electrode contacts that are only accessible by dynamic SAM structures. Finally, the unique ability of SAM devices to achieve simultaneously high and atom-sensitive electrical switching is summarized and discussed. While putting these structures to work as real world electronic devices remains very challenging, we speculate on the scientific and technological advances that are required to further improve electronic and supramolecular structure, toward the creation of high yields of long-lived molecular devices with (very) large, reproducible rectification ratios.
Effect of annealing over optoelectronic properties of graphene based transparent electrodes
NASA Astrophysics Data System (ADS)
Yadav, Shriniwas; Kaur, Inderpreet
2016-04-01
Graphene, an atom-thick two dimensional graphitic material have led various fundamental breakthroughs in the field of science and technology. Due to their exceptional optical, physical and electrical properties, graphene based transparent electrodes have shown several applications in organic light emitting diodes, solar cells and thin film transistors. Here, we are presenting effect of annealing over optoelectronic properties of graphene based transparent electrodes. Graphene based transparent electrodes have been prepared by wet chemical approach over glass substrates. After fabrication, these electrodes tested for optical transmittance in visible region. Sheet resistance was measured using four probe method. Effect of thermal annealing at 200 °C was studied over optical and electrical performance of these electrodes. Optoelectronic performance was judged from ratio of direct current conductivity to optical conductivity (σdc/σopt) as a figure of merit for transparent conductors. The fabricated electrodes display good optical and electrical properties. Such electrodes can be alternatives for doped metal oxide based transparent electrodes.
NASA Astrophysics Data System (ADS)
Nony, Laurent; Bocquet, Franck; Para, Franck; Loppacher, Christian
2016-09-01
A combined experimental and theoretical approach to the coupling between frequency-shift (Δ f ) , damping, and tunneling current (It) in combined noncontact atomic force microscopy/scanning tunneling microscopy using quartz tuning forks (QTF)-based probes is reported. When brought into oscillating tunneling conditions, the tip located at the QTF prong's end radiates an electromagnetic field which couples to the QTF prong motion via its piezoelectric tensor and loads its electrodes by induction. Our approach explains how those It-related effects ultimately modify the Δ f and the damping measurements. This paradigm to the origin of the coupling between It and the nc-AFM regular signals relies on both the intrinsic piezoelectric nature of the quartz constituting the QTF and its electrodes design.
Wallen, Rachel; Gokarn, Nirmal; Bercea, Priscila; Grzincic, Elissa; Bandyopadhyay, Krisanu
2015-12-01
Vertically aligned single-walled carbon nanotube (VASWCNT) assemblies are generated on cysteamine and 2-mercaptoethanol (2-ME)-functionalized gold surfaces through amide bond formation between carboxylic groups generated at the end of acid-shortened single-walled carbon nanotubes (SWCNTs) and amine groups present on the gold surfaces. Atomic force microscopy (AFM) imaging confirms the vertical alignment mode of SWCNT attachment through significant changes in surface roughness compared to bare gold surfaces and the lack of any horizontally aligned SWCNTs present. These SWCNT assemblies are further modified with an amine-terminated single-stranded probe-DNA. Subsequent hybridization of the surface-bound probe-DNA in the presence of complementary strands in solution is followed using impedance measurements in the presence of Fe(CN)6 (3-/4-) as the redox probe in solution, which show changes in the interfacial electrochemical properties, specifically the charge-transfer resistance, due to hybridization. In addition, hybridization of the probe-DNA is also compared when it is attached directly to the gold surfaces without any intermediary SWCNTs. Contrary to our expectations, impedance measurements show a decrease in charge-transfer resistance with time due to hybridization with 300 nM complementary DNA in solution with the probe-DNA attached to SWCNTs. In contrast, an increase in charge-transfer resistance is observed with time during hybridization when the probe-DNA is attached directly to the gold surfaces. The decrease in charge-transfer resistance during hybridization in the presence of VASWCNTs indicates an enhancement in the electron transfer process of the redox probe at the VASWCNT-modified electrode. The results suggest that VASWCNTs are acting as mediators of electron transfer, which facilitate the charge transfer of the redox probe at the electrode-solution interface.
NASA Astrophysics Data System (ADS)
Wallen, Rachel; Gokarn, Nirmal; Bercea, Priscila; Grzincic, Elissa; Bandyopadhyay, Krisanu
2015-06-01
Vertically aligned single-walled carbon nanotube (VASWCNT) assemblies are generated on cysteamine and 2-mercaptoethanol (2-ME)-functionalized gold surfaces through amide bond formation between carboxylic groups generated at the end of acid-shortened single-walled carbon nanotubes (SWCNTs) and amine groups present on the gold surfaces. Atomic force microscopy (AFM) imaging confirms the vertical alignment mode of SWCNT attachment through significant changes in surface roughness compared to bare gold surfaces and the lack of any horizontally aligned SWCNTs present. These SWCNT assemblies are further modified with an amine-terminated single-stranded probe-DNA. Subsequent hybridization of the surface-bound probe-DNA in the presence of complementary strands in solution is followed using impedance measurements in the presence of Fe(CN)6 3-/4- as the redox probe in solution, which show changes in the interfacial electrochemical properties, specifically the charge-transfer resistance, due to hybridization. In addition, hybridization of the probe-DNA is also compared when it is attached directly to the gold surfaces without any intermediary SWCNTs. Contrary to our expectations, impedance measurements show a decrease in charge-transfer resistance with time due to hybridization with 300 nM complementary DNA in solution with the probe-DNA attached to SWCNTs. In contrast, an increase in charge-transfer resistance is observed with time during hybridization when the probe-DNA is attached directly to the gold surfaces. The decrease in charge-transfer resistance during hybridization in the presence of VASWCNTs indicates an enhancement in the electron transfer process of the redox probe at the VASWCNT-modified electrode. The results suggest that VASWCNTs are acting as mediators of electron transfer, which facilitate the charge transfer of the redox probe at the electrode-solution interface.
EXAFS: New tool for study of battery and fuel cell materials
NASA Technical Reports Server (NTRS)
Mcbreen, James; Ogrady, William E.; Pandya, Kaumudi I.
1987-01-01
Extended X ray absorption fine structure (EXAFS) is a powerful technique for probing the local atomic structure of battery and fuel cell materials. The major advantages of EXAFS are that both the probe and the signal are X rays and the technique is element selective and applicable to all states of matter. This permits in situ studies of electrodes and determination of the structure of single components in composite electrodes, or even complete cells. EXAFS specifically probes short range order and yields coordination numbers, bond distances, and chemical identity of nearest neighbors. Thus, it is ideal for structural studies of ions in solution and the poorly crystallized materials that are often the active materials or catalysts in batteries and fuel cells. Studies on typical battery and fuel cell components are used to describe the technique and the capability of EXAFS as a structural tool in these applications. Typical experimental and data analysis procedures are outlined. The advantages and limitations of the technique are also briefly discussed.
NASA Astrophysics Data System (ADS)
Champagne, Alexandre
This dissertation presents the development of two original experimental techniques to probe nanoscale objects. The first one studies electronic transport in single organic molecule transistors in which the source-drain electrode spacing is mechanically adjustable. The second involves the fabrication of high-resolution scanning probe microscopy sensors using a stencil mask lithography technique. We describe the fabrication of transistors in which a single organic molecule can be incorporated. The source and drain leads of these transistors are freely suspended above a flexible substrate, and their spacing can be adjusted by bending the substrate. We detail the technology developed to carry out measurements on these samples. We study electronic transport in single C60 molecules at low temperature. We observe Coulomb blockaded transport and can resolve the discrete energy spectrum of the molecule. We are able to mechanically tune the spacing between the electrodes (over a range of 5 A) to modulate the lead-molecule coupling, and can electrostatically tune the energy levels on the molecule by up to 160 meV using a gate electrode. Initial progress in studying different transport regimes in other molecules is also discussed. We present a lithographic process that allows the deposition of metal nanostructures with a resolution down to 10 nm directly onto atomic force microscope (AFM) tips. We show that multiple layers of lithography can be deposited and aligned. We fabricate high-resolution magnetic force microscopy (MFM) probes using this method and discuss progress to fabricate other scanning probe microscopy (SPM) sensors.
Preparation of genosensor for detection of specific DNA sequence of the hepatitis B virus
NASA Astrophysics Data System (ADS)
Honorato Castro, Ana C.; França, Erick G.; de Paula, Lucas F.; Soares, Marcia M. C. N.; Goulart, Luiz R.; Madurro, João M.; Brito-Madurro, Ana G.
2014-09-01
An electrochemical genosensor was constructed for detection of specific DNA sequence of the hepatitis B virus, based on graphite electrodes modified with poly(4-aminophenol) and incorporating a specific oligonucleotide probe. The modified electrode containing the probe was evaluated by differential pulse voltammetry, before and after incubation with the complementary oligonucleotide target. Detection was performed by monitoring oxidizable DNA bases (direct detection) or using ethidium bromide as indicator of the hybridization process (indirect detection). The device showed a detection limit for the oligonucleotide target of 2.61 nmol L-1. Indirect detection using ethidium bromide was promising in discriminating mismatches, which is a very desirable attribute for detection of disease-related point mutations. In addition, it was possible to observe differences between hybridized and non-hybridized surfaces by atomic force microscopy.
Zhang, Yi; Zeng, Guang Ming; Tang, Lin; Chen, Jun; Zhu, Yuan; He, Xiao Xiao; He, Yan
2015-01-20
An electrochemical sensor was developed for attomolar Hg(2+) detection. Three single-stranded DNA probes were rationally designed for selective and sensitive detection of the target, which combined T-Hg(2+)-T coordination chemistry and the characteristic of convenient modification of electrochemical signal indicator. Graphene and nanoAu were successively electrodeposited on a glass carbon electrode surface to improve the electrode conductivity and functionalize with the 10-mer thymine-rich DNA probe (P1). NanoAu carriers functionalized with 29-mer guanine-rich DNA probe (P3) labeled methyl blue (MB-nanoAu-P 3s) were used to further strengthen signal response. In the presence of Hg(2+), a T-T mismatched dsDNA would occur between P1 and a 22-mer thymine-rich DNA probe (P2) on the electrode surface due to T-Hg(2+)-T coordination chemistry. Followed by adding the MB-nanoAu-P 3s for hybridization with P2, square wave voltammetry was executed. Under optimal conditions, Hg(2+) could be detected in the range from 1.0 aM to 100 nM with a detection limit of 0.001 aM. Selectivity measurements reveal that the sensor is specific for Hg(2+) even with interference by high concentrations of other metal ions. Three different environmental samples were analyzed by the sensor and the results were compared with that from an atomic fluorescence spectrometry. The developed sensor was demonstrated to achieve excellent detectability. It may be applied to development of ultrasensitive detection strategies.
Skopalová, Jana; Barták, Petr; Bednář, Petr; Tomková, Hana; Ingr, Tomáš; Lorencová, Iveta; Kučerová, Pavla; Papoušek, Roman; Borovcová, Lucie; Lemr, Karel
2018-01-25
A carbon fiber brush electrode (CFBE) was newly designed and used as a substrate for both controlled potential electrolysis and atmospheric solids analysis probe (ASAP) mass spectrometry. Electropolymerized and strongly adsorbed products of electrolysis were directly desorbed and ionized from the electrode surface. Electrochemical properties of the electrode investigated by cyclic voltammetry revealed large electroactive surface area (23 ± 3 cm 2 ) at 1.3 cm long array of carbon fibers with diameter 6-9 μm. Some products of electrochemical oxidation of pentabromophenol and 2,4,6-tribromophenol formed a compact layer on the carbon fibers and were analyzed using ASAP. Eleven new oligomeric products were identified including quinones and biphenoquinones. These compounds were not observed previously in electrolyzed solutions by liquid or gas chromatography/mass spectrometry. The thickness around 58 nm and 45 nm of the oxidation products layers deposited on carbon fibers during electrolysis of pentabromophenol and 2,4,6-tribromophenol, respectively, was estimated from atomic force microscopy analysis and confirmed by scanning electron microscopy with energy-dispersive X-ray spectroscopy measurements. Copyright © 2017 Elsevier B.V. All rights reserved.
Electrochemical DNA sensor for Neisseria meningitidis detection.
Patel, Manoj K; Solanki, Pratima R; Kumar, Ashok; Khare, Shashi; Gupta, Sunil; Malhotra, Bansi D
2010-08-15
Meningitis sensor based on nucleic acid probe of Neisseria meningitidis has been fabricated by immobilization of 5'-thiol end labeled single stranded deoxyribonucleic acid probe (ssDNA-SH) onto gold (Au) coated glass electrode. This ssDNA-SH/Au electrode hybridized with the genomic DNA (G-dsDNA/Au) and amplified DNA (PCR-dsDNA/Au) has been characterized using atomic force microscopy (AFM), Fourier transforms infrared spectroscopy (FT-IR) and electrochemical techniques. The ssDNA-SH/Au electrode can specifically detect upto 10-60 ng/microl of G-dsDNA-SH/Au and PCR-dsDNA-SH/Au of meningitis within 60s of hybridization time at 25 degrees C by cyclic voltammetry (CV) using methylene blue (MB) as electro-active DNA hybridization indicator. The values of sensitivities of the G-dsDNA-SH/Au and PCR-dsDNA-SH/Au electrodes have been determined as 0.0115 microA/ng cm(-2) and 0.0056 microA/ng cm(-2), respectively with regression coefficient (R) as 0.999. This DNA bioelectrode is stable for about 4 months when stored at 4 degrees C. Copyright 2010 Elsevier B.V. All rights reserved.
Lee, Ki Ha; Becker, Alex; Faybishenko, Boris A.; Solbau, Ray D.
2003-10-21
A miniaturized electrical resistivity (ER) probe based on a known current-voltage (I-V) electrode structure, the Wenner array, is designed for local (point) measurement. A pair of voltage measuring electrodes are positioned between a pair of current carrying electrodes. The electrodes are typically about 1 cm long, separated by 1 cm, so the probe is only about 1 inch long. The electrodes are mounted to a rigid tube with electrical wires in the tube and a sand bag may be placed around the electrodes to protect the electrodes. The probes can be positioned in a borehole or on the surface. The electrodes make contact with the surrounding medium. In a dual mode system, individual probes of a plurality of spaced probes can be used to measure local resistance, i.e. point measurements, but the system can select different probes to make interval measurements between probes and between boreholes.
Detection and quantification of solute clusters in a nanostructured ferritic alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Michael K.; Larson, David J.; Reinhard, D. A.
2014-12-26
A series of simulated atom probe datasets were examined with a friends-of-friends method to establish the detection efficiency required to resolve solute clusters in the ferrite phase of a 14YWT nanostructured ferritic alloy. The size and number densities of solute clusters in the ferrite of the as-milled mechanically-alloyed condition and the stir zone of a friction stir weld were estimated with a prototype high-detection-efficiency (~80%) local electrode atom probe. High number densities, 1.8 × 10 24 m –3 and 1.2 × 10 24 m –3, respectively of solute clusters containing between 2 and 9 solute atoms of Ti, Y andmore » O and were detected for these two conditions. Furthermore, these results support first principle calculations that predicted that vacancies stabilize these Ti–Y–O– clusters, which retard diffusion and contribute to the excellent high temperature stability of the microstructure and radiation tolerance of nanostructured ferritic alloys.« less
Probe-based measurement of lateral single-electron transfer between individual molecules
Steurer, Wolfram; Fatayer, Shadi; Gross, Leo; Meyer, Gerhard
2015-01-01
The field of molecular electronics aims at using single molecules as functional building blocks for electronics components, such as switches, rectifiers or transistors. A key challenge is to perform measurements with atomistic control over the alignment of the molecule and its contacting electrodes. Here we use atomic force microscopy to examine charge transfer between weakly coupled pentacene molecules on insulating films with single-electron sensitivity and control over the atomistic details. We show that, in addition to the imaging capability, the probe tip can be used to control the charge state of individual molecules and to detect charge transfers to/from the tip, as well as between individual molecules. Our approach represents a novel route for molecular charge transfer studies with a host of opportunities, especially in combination with single atom/molecule manipulation and nanopatterning techniques. PMID:26387533
NASA Astrophysics Data System (ADS)
Ossola, Dario; Dorwling-Carter, Livie; Dermutz, Harald; Behr, Pascal; Vörös, János; Zambelli, Tomaso
2015-12-01
We combined scanning ion conductance microscopy (SICM) and atomic force microscopy (AFM) into a single tool using AFM cantilevers with an embedded microchannel flowing into the nanosized aperture at the apex of the hollow pyramid. An electrode was positioned in the AFM fluidic circuit connected to a second electrode in the bath. We could thus simultaneously measure the ionic current and the cantilever bending (in optical beam deflection mode). First, we quantitatively compared the SICM and AFM contact points on the approach curves. Second, we estimated where the probe in SICM mode touches the sample during scanning on a calibration grid and applied the finding to image a network of neurites on a Petri dish. Finally, we assessed the feasibility of a double controller using both the ionic current and the deflection as input signals of the piezofeedback. The experimental data were rationalized in the framework of finite elements simulations.
Zeng, Guangming; Zhang, Chen; Huang, Danlian; Lai, Cui; Tang, Lin; Zhou, Yaoyu; Xu, Piao; Wang, Hou; Qin, Lei; Cheng, Min
2017-04-15
A simple, practical and reusable electrochemical aptasensor, based on thymine-Hg 2+ -thymine (T-Hg 2+ -T) coordination chemistry and nanoporous gold (NPG) for signal amplification, was designed for sensitive and selective detection of mercury ions (Hg 2+ ). The thiol modified T-rich hairpin capture probe was self-assembled onto the surface of the NPG modified electrode for hybridizing with ferrocene-labeled T-rich probe in the presence of Hg 2+ via T-Hg 2+ -T coordination chemistry. As a result, the hairpin capture probe was opened, and the ferrocene tags were close to the NPG modified electrode. Taking advantage of the amplification effect of NPG electrode for increasing the reaction sites of thiol modified capture probe, the proposed electrochemical aptasensor could detect Hg 2+ quantitatively in the range of 0.01-5000nM, with a detection limit as low as 0.0036nM which is much lower than the maximum contamination level for Hg 2+ in drinking water defined by the U.S. Environmental Protection Agency. Moreover, the proposed electrochemical aptasensor can be regenerated by adding cysteine and Mg 2+ . The aptasensor was also used to detect Hg 2+ from real water samples, and the results showed excellent agreement with the values determined by atomic fluorescence spectrometer. This aptasensor showed a promising potential for on-site detecting Hg 2+ in drinking water. Copyright © 2016 Elsevier B.V. All rights reserved.
Gaboriau, Dorian; Boniface, Maxime; Valero, Anthony; Aldakov, Dmitry; Brousse, Thierry; Gentile, Pascal; Sadki, Said
2017-04-19
Silicon nanowires were coated by a 1-5 nm thin alumina layer by atomic layer deposition (ALD) in order to replace poorly reproducible and unstable native silicon oxide by a highly conformal passivating alumina layer. The surface coating enabled probing the behavior of symmetric devices using such electrodes in the EMI-TFSI electrolyte, allowing us to attain a large cell voltage up to 6 V in ionic liquid, together with very high cyclability with less than 4% capacitance fade after 10 6 charge/discharge cycles. These results yielded fruitful insights into the transition between an electrochemical double-layer capacitor behavior and an electrolytic capacitor behavior. Ultimately, thin ALD dielectric coatings can be used to obtain hybrid devices exhibiting large cell voltage and excellent cycle life of dielectric capacitors, while retaining energy and power densities close to the ones displayed by supercapacitors.
Smallest fullerene-like clusters in two-probe device junctions: first principle study
NASA Astrophysics Data System (ADS)
Kaur, Milanpreet; Sawhney, Ravinder Singh; Engles, Derick
2017-07-01
First principle calculations based on density functional theory are realised to investigate the electron transport of the smallest fullerene-like clusters as two-probe junction devices. The junction devices are constructed by mechanically controlled break junction techniques to ensure the maximum stability of the Be20, B20 and N20 cluster molecular junctions. We investigate the density of states, transmission spectrum, molecular orbitals, current and differential conductance characteristics at discrete bias voltages to gain insight about the various transport phenomena occurring in these nano-junctions. The results show that B20 molecule when stringed to gold electrodes works as an ideal nano-device similar to the pure C20 device and is more symmetric in its characteristic nature. However, in N20 molecular device, the conduction is negligible due to the higher atomic interactions within N20 molecule, despite the fact that it is constructed with penta-valent atoms.
2016-01-16
These characteristics far exceed those of well-lubricated interfaces of high performance steels and other expensive coatings. Despite this potential...the sharpness of these tips is a necessary characteristic to probe the high-stress wear regime. We also made progress in studying boron -doped UNCD... Boron -doping endows UNCD with electrical conductivity, which broadens its applications including for contact electrode applications, for example
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manivannan, Anbarasu, E-mail: anbarasu@iiti.ac.in, E-mail: ranjith@iith.ac.in; Sahu, Smriti; Myana, Santosh Kumar
2014-12-15
Minimizing the dimensions of the electrode could directly impact the energy-efficient threshold switching and programming characteristics of phase change memory devices. A ∼12–15 nm AFM probe-tip was employed as one of the electrodes for a systematic study of threshold switching of as-deposited amorphous GeTe{sub 6} thin films. This configuration enables low power threshold switching with an extremely low steady state current in the on state of 6–8 nA. Analysis of over 48 different probe locations on the sample reveals a stable Ovonic threshold switching behavior at threshold voltage, V{sub TH} of 2.4 ± 0.5 V and the off state was retained below a holding voltage,more » V{sub H} of 0.6 ± 0.1 V. All these probe locations exhibit repeatable on-off transitions for more than 175 pulses at each location. Furthermore, by utilizing longer biasing voltages while scanning, a plausible nano-scale control over the phase change behavior from as-deposited amorphous to crystalline phase was studied.« less
Rapid and label-free electrochemical DNA biosensor for detecting hepatitis A virus.
Manzano, Marisa; Viezzi, Sara; Mazerat, Sandra; Marks, Robert S; Vidic, Jasmina
2018-02-15
Diagnostic systems that can deliver highly specific and sensitive detection of hepatitis A virus (HAV) in food and water are of particular interest in many fields including food safety, biosecurity and control of outbreaks. Our aim was the development of an electrochemical method based on DNA hybridization to detect HAV. A ssDNA probe specific for HAV (capture probe) was designed and tested on DNAs from various viral and bacterial samples using Nested-Reverse Transcription Polymerase Chain Reaction (nRT-PCR). To develop the electrochemical device, a disposable gold electrode was functionalized with the specific capture probe and tested on complementary ssDNA and on HAV cDNA. The DNA hybridization on the electrode was measured through the monitoring of the oxidative peak potential of the indicator tripropylamine by cyclic voltammetry. To prevent non-specific binding the gold surface was treated with 3% BSA before detection. High resolution atomic force microscopy (AFM) confirmed the efficiency of electrode functionalization and on-electrode hybridization. The proposed device showed a limit of detection of 0.65pM for the complementary ssDNA and 6.94fg/µL for viral cDNA. For a comparison, nRT-PCR quantified the target HAV cDNA with a limit of detection of 6.4fg/µL. The DNA-sensor developed can be adapted to a portable format to be adopted as an easy-to- use and low cost method for screening HAV in contaminated food and water. In addition, it can be useful for rapid control of HAV infections as it takes only a few minutes to provide the results. Copyright © 2017. Published by Elsevier B.V.
Nonvolatile and Cryogenic-compatible Quantum Memory Devices (QuMEM)
2016-06-01
construction including: • 4” SiO2 /Si substrates and wafer/sample holders • Tweezers and wafer scribe • Safety glasses , gloves, and fab wipes • Probe tips...Cleaving of NbSe2 with Scotch™ Tape method ............................................................ 56 59. Transfer of NbSe2 atomic crystals to SiO2 ...O2 plasma + optional CF4 5 Top superconductor electrode evaporation Thermal Evaporation at SDSU MEMS Lab P+ Si Handle Wafer SiO2 (Oxide
Nonvolatile and Cryogenic-Compatible Quantum Memory Devices (QuMEM)
2016-06-01
construction including: • 4” SiO2 /Si substrates and wafer/sample holders • Tweezers and wafer scribe • Safety glasses , gloves, and fab wipes • Probe tips...Cleaving of NbSe2 with Scotch™ Tape method ............................................................ 56 59. Transfer of NbSe2 atomic crystals to SiO2 ...O2 plasma + optional CF4 5 Top superconductor electrode evaporation Thermal Evaporation at SDSU MEMS Lab P+ Si Handle Wafer SiO2 (Oxide
Guarded capacitance probes for measuring particle concentration and flow
Louge, M.Y.
1996-08-13
Guarded capacitance probe structures are constructed with guard electrodes surrounding one or more sensor electrodes and ground electrodes or grounded surfaces surrounding the guard electrodes. In a one sensor embodiment, the probe utilizes an apertured sensor electrode and the guard electrode both surrounds the sensor electrode and fills the aperture. This embodiment is particularly useful for measuring particle concentration in a fluid suspension contained within a vessel or pipe. The portion of the guard electrode within the aperture of the sensor electrode prevents electric field lines from emanating from the sensor electrode into the fluid suspension and toward infinity. A two sensor embodiment of the probe is useful for measuring flow velocities of fluid suspensions through cross correlation of the outputs generated by each sensor. The relative dimensions of the guard and sensor electrodes are selected to provide the most accurate measurements by confining the electric lines emanating from the sensor electrode or electrodes and terminating on the surrounding grounded surfaces to a small measurement volume of the fluid suspension near the vessel or pipe wall. 14 figs.
Guarded capacitance probes for measuring particle concentration and flow
Louge, M.Y.
1995-10-17
Guarded capacitance probe structures are constructed with guard electrodes surrounding one or more sensor electrodes and ground electrodes or grounded surfaces surrounding the guard electrodes. In a one sensor embodiment, the probe utilizes an apertured sensor electrode and the guard electrode both surrounds the sensor electrode and fills the aperture. This embodiment is particularly useful for measuring particle concentration in a fluid suspension contained within a vessel or pipe. The portion of the guard electrode within the aperture of the sensor electrode prevents electric field lines from emanating from the sensor electrode into the fluid suspension and toward infinity. A two sensor embodiment of the probe is useful for measuring flow velocities of fluid suspensions through cross correlation of the outputs generated by each sensor. The relative dimensions of the guard and sensor electrodes are selected to provide the most accurate measurements by confining the electric lines emanating from the sensor electrode or electrodes and terminating on the surrounding grounded surfaces to a small measurement volume of the fluid suspension near the vessel or pipe wall. 14 figs.
Guarded capacitance probes for measuring particle concentration and flow
Louge, Michel Y.
1995-01-01
Guarded capacitance probe structures are constructed with guard electrodes surrounding one or more sensor electrodes and ground electrodes or grounded surfaces surrounding the guard electrodes. In a one sensor embodiment, the probe utilizes an apertured sensor electrode and the guard electrode both surrounds the sensor electrode and fills the aperture. This embodiment is particularly useful for measuring particle concentration in a fluid suspension contained within a vessel or pipe. The portion of the guard electrode within the aperture of the sensor electrode prevents electric field lines from emanating from the sensor electrode into the fluid suspension and toward infinity. A two sensor embodiment of the probe is useful for measuring flow velocities of fluid suspensions through cross correlation of the outputs generated by each sensor. The relative dimensions of the guard and sensor electrodes are selected to provide the most accurate measurements by confining the electric lines emanating from the sensor electrode or electrodes and terminating on the surrounding grounded surfaces to a small measurement volume of the fluid suspension near the vessel or pipe wall.
Guarded capacitance probes for measuring particle concentration and flow
Louge, Michel Y.
1996-01-01
Guarded capacitance probe structures are constructed with guard electrodes surrounding one or more sensor electrodes and ground electrodes or grounded surfaces surrounding the guard electrodes. In a one sensor embodiment, the probe utilizes an apertured sensor electrode and the guard electrode both surrounds the sensor electrode and fills the aperture. This embodiment is particularly useful for measuring particle concentration in a fluid suspension contained within a vessel or pipe. The portion of the guard electrode within the aperture of the sensor electrode prevents electric field lines from emanating from the sensor electrode into the fluid suspension and toward infinity. A two sensor embodiment of the probe is useful for measuring flow velocities of fluid suspensions through cross correlation of the outputs generated by each sensor. The relative dimensions of the guard and sensor electrodes are selected to provide the most accurate measurements by confining the electric lines emanating from the sensor electrode or electrodes and terminating on the surrounding grounded surfaces to a small measurement volume of the fluid suspension near the vessel or pipe wall.
Zhao, Zhikai; Liu, Ran; Mayer, Dirk; Coppola, Maristella; Sun, Lu; Kim, Youngsang; Wang, Chuankui; Ni, Lifa; Chen, Xing; Wang, Maoning; Li, Zongliang; Lee, Takhee; Xiang, Dong
2018-04-01
A straightforward method to generate both atomic-scale sharp and atomic-scale planar electrodes is reported. The atomic-scale sharp electrodes are generated by precisely stretching a suspended nanowire, while the atomic-scale planar electrodes are obtained via mechanically controllable interelectrodes compression followed by a thermal-driven atom migration process. Notably, the gap size between the electrodes can be precisely controlled at subangstrom accuracy with this method. These two types of electrodes are subsequently employed to investigate the properties of single molecular junctions. It is found, for the first time, that the conductance of the amine-linked molecular junctions can be enhanced ≈50% as the atomic-scale sharp electrodes are used. However, the atomic-scale planar electrodes show great advantages to enhance the sensitivity of Raman scattering upon the variation of nanogap size. The underlying mechanisms for these two interesting observations are clarified with the help of density functional theory calculation and finite-element method simulation. These findings not only provide a strategy to control the electron transport through the molecule junction, but also pave a way to modulate the optical response as well as to improve the stability of single molecular devices via the rational design of electrodes geometries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hybrid Quantum Information Processing with Superconductors and Neutral Atoms
NASA Astrophysics Data System (ADS)
McDermott, Robert
Hybrid approaches to quantum information processing (QIP) aim to capitalize on the strengths of disparate quantum technologies to realize a system whose capabilities exceed those of any single experimental platform. At the University of Wisconsin, we are working toward integration of a fast superconducting quantum processor with a stable, long-lived quantum memory based on trapped neutral atoms. Here we describe the development of a quantum interface between superconducting thin-film cavity circuits and trapped Rydberg atoms, the key technological obstacle to realization of superconductor-atom hybrid QIP. Specific accomplishments to date include development of a theoretical protocol for high-fidelity state transfer between the atom and the cavity; fabrication and characterization of high- Q superconducting cavities with integrated trapping electrodes to enhance zero-point microwave fields at a location remote from the chip surface; and trapping and Rydberg excitation of single atoms within 1 mm of the cavity. We discuss the status of experiments to probe the strong coherent coupling of single Rydberg atoms and the superconducting cavity. Supported by ARO under contract W911NF-16-1-0133.
Development of Tuning Fork Based Probes for Atomic Force Microscopy
NASA Astrophysics Data System (ADS)
Jalilian, Romaneh; Yazdanpanah, Mehdi M.; Torrez, Neil; Alizadeh, Amirali; Askari, Davood
2014-03-01
This article reports on the development of tuning fork-based AFM/STM probes in NaugaNeedles LLC for use in atomic force microscopy. These probes can be mounted on different carriers per customers' request. (e.g., RHK carrier, Omicron carrier, and tuning fork on a Sapphire disk). We are able to design and engineer tuning forks on any type of carrier used in the market. We can attach three types of tips on the edge of a tuning fork prong (i.e., growing Ag2Ga nanoneedles at any arbitrary angle, cantilever of AFM tip, and tungsten wire) with lengths from 100-500 μm. The nanoneedle is located vertical to the fork. Using a suitable insulation and metallic coating, we can make QPlus sensors that can detect tunneling current during the AFM scan. To make Qplus sensors, the entire quartz fork will be coated with an insulating material, before attaching the nanoneedle. Then, the top edge of one prong is coated with a thin layer of conductive metal and the nanoneedle is attached to the fork end of the metal coated prong. The metal coating provides electrical connection to the tip for tunneling current readout and to the electrodes and used to read the QPlus current. Since the amount of mass added to the fork is minimal, the resonance frequency spectrum does not change and still remains around 32.6 KHz and the Q factor is around 1,200 in ambient condition. These probes can enhance the performance of tuning fork based atomic microscopy.
Origin of the transition voltage in gold-vacuum-gold atomic junctions.
Wu, Kunlin; Bai, Meilin; Sanvito, Stefano; Hou, Shimin
2013-01-18
The origin and the distance dependence of the transition voltage of gold-vacuum-gold junctions are investigated by employing first-principles quantum transport simulations. Our calculations show that atomic protrusions always exist on the electrode surface of gold-vacuum-gold junctions fabricated using the mechanically controllable break junction (MCBJ) method. The transition voltage of these gold-vacuum-gold junctions with atomically sharp electrodes is determined by the local density of states (LDOS) of the apex gold atom on the electrode surface rather than by the vacuum barrier shape. More specifically, the absolute value of the transition voltage roughly equals the rising edge of the LDOS peak contributed by the 6p atomic orbitals of the gold atoms protruding from the electrode surface, whose local Fermi level is shifted downwards when a bias voltage is applied. Since the LDOS of the apex gold atom depends strongly on the exact shape of the electrode, the transition voltage is sensitive to the variation of the atomic configuration of the junction. For asymmetric junctions, the transition voltage may also change significantly depending on the bias polarity. Considering that the occurrence of the transition voltage requires the electrode distance to be larger than a critical value, the interaction between the two electrodes is actually rather weak. Consequently, the LDOS of the apex gold atom is mainly determined by its local atomic configuration and the transition voltage only depends weakly on the electrode distance as observed in the MCBJ experiments.
NASA Astrophysics Data System (ADS)
Lichtensteiger, Céline; Dawber, Matthew; Stucki, Nicolas; Triscone, Jean-Marc; Hoffman, Jason; Yau, Jeng-Bang; Ahn, Charles H.; Despont, Laurent; Aebi, Philipp
2007-01-01
Finite size effects in ferroelectric thin films have been probed in a series of epitaxial perovskite c-axis oriented PbTiO3 films grown on thin La0.67Sr0.33MnO3 epitaxial electrodes. The film thickness ranges from 480 down to 28Å (seven unit cells). The evolution of the film tetragonality c /a, studied using high resolution x-ray diffraction measurements, shows first a decrease of c /a with decreasing film thickness followed by a recovery of c /a at small thicknesses. This recovery is accompanied by a change from a monodomain to a polydomain configuration of the polarization, as directly demonstrated by piezoresponse atomic force microscopy measurements.
Pietsch, Patrick; Hess, Michael; Ludwig, Wolfgang; Eller, Jens; Wood, Vanessa
2016-01-01
We present an operando study of a lithium ion battery combining scanning X-ray diffraction (SXRD) and synchrotron radiation X-ray tomographic microscopy (SRXTM) simultaneously for the first time. This combination of techniques facilitates the investigation of dynamic processes in lithium ion batteries containing amorphous and/or weakly attenuating active materials. While amorphous materials pose a challenge for diffraction techniques, weakly attenuating material systems pose a challenge for attenuation-contrast tomography. Furthermore, combining SXRD and SRXTM can be used to correlate processes occurring at the atomic level in the crystal lattices of the active materials with those at the scale of electrode microstructure. To demonstrate the benefits of this approach, we investigate a silicon powder electrode in lithium metal half-cell configuration. Combining SXRD and SRXTM, we are able to (i) quantify the dissolution of the metallic lithium electrode and the expansion of the silicon electrode, (ii) better understand the formation of the Li15Si4 phase, and (iii) non-invasively probe kinetic limitations within the silicon electrode. A simple model based on the 1D diffusion equation allows us to qualitatively understand the observed kinetics and demonstrates why high-capacity electrodes are more prone to inhomogeneous lithiation reactions. PMID:27324109
NASA Astrophysics Data System (ADS)
Pietsch, Patrick; Hess, Michael; Ludwig, Wolfgang; Eller, Jens; Wood, Vanessa
2016-06-01
We present an operando study of a lithium ion battery combining scanning X-ray diffraction (SXRD) and synchrotron radiation X-ray tomographic microscopy (SRXTM) simultaneously for the first time. This combination of techniques facilitates the investigation of dynamic processes in lithium ion batteries containing amorphous and/or weakly attenuating active materials. While amorphous materials pose a challenge for diffraction techniques, weakly attenuating material systems pose a challenge for attenuation-contrast tomography. Furthermore, combining SXRD and SRXTM can be used to correlate processes occurring at the atomic level in the crystal lattices of the active materials with those at the scale of electrode microstructure. To demonstrate the benefits of this approach, we investigate a silicon powder electrode in lithium metal half-cell configuration. Combining SXRD and SRXTM, we are able to (i) quantify the dissolution of the metallic lithium electrode and the expansion of the silicon electrode, (ii) better understand the formation of the Li15Si4 phase, and (iii) non-invasively probe kinetic limitations within the silicon electrode. A simple model based on the 1D diffusion equation allows us to qualitatively understand the observed kinetics and demonstrates why high-capacity electrodes are more prone to inhomogeneous lithiation reactions.
Chemical control of electrical contact to sp² carbon atoms.
Frederiksen, Thomas; Foti, Giuseppe; Scheurer, Fabrice; Speisser, Virginie; Schull, Guillaume
2014-04-16
Carbon-based nanostructures are attracting tremendous interest as components in ultrafast electronics and optoelectronics. The electrical interfaces to these structures play a crucial role for the electron transport, but the lack of control at the atomic scale can hamper device functionality and integration into operating circuitry. Here we study a prototype carbon-based molecular junction consisting of a single C60 molecule and probe how the electric current through the junction depends on the chemical nature of the foremost electrode atom in contact with the molecule. We find that the efficiency of charge injection to a C60 molecule varies substantially for the considered metallic species, and demonstrate that the relative strength of the metal-C bond can be extracted from our transport measurements. Our study further suggests that a single-C60 junction is a basic model to explore the properties of electrical contacts to meso- and macroscopic sp(2) carbon structures.
Chemical control of electrical contact to sp2 carbon atoms
NASA Astrophysics Data System (ADS)
Frederiksen, Thomas; Foti, Giuseppe; Scheurer, Fabrice; Speisser, Virginie; Schull, Guillaume
2014-04-01
Carbon-based nanostructures are attracting tremendous interest as components in ultrafast electronics and optoelectronics. The electrical interfaces to these structures play a crucial role for the electron transport, but the lack of control at the atomic scale can hamper device functionality and integration into operating circuitry. Here we study a prototype carbon-based molecular junction consisting of a single C60 molecule and probe how the electric current through the junction depends on the chemical nature of the foremost electrode atom in contact with the molecule. We find that the efficiency of charge injection to a C60 molecule varies substantially for the considered metallic species, and demonstrate that the relative strength of the metal-C bond can be extracted from our transport measurements. Our study further suggests that a single-C60 junction is a basic model to explore the properties of electrical contacts to meso- and macroscopic sp2 carbon structures.
Electrostatic atomization: Effect of electrode materials on electrostatic atomizer performance
NASA Astrophysics Data System (ADS)
Sankaran, Abhilash; Staszel, Christopher; Kashir, Babak; Perri, Anthony; Mashayek, Farzad; Yarin, Alexander
2016-11-01
Electrostatic atomization was studied experimentally with a pointed electrode in a converging nozzle. Experiments were carried out on poorly conductive canola oil where it was observed that electrode material may affect charge transfer. This points at the possible faradaic reactions that can occur at the surfaces of the electrodes. The supply voltage is applied to the sharp electrode and the grounded nozzle body constitutes the counter-electrode. The charge transfer is controlled by the electrochemical reactions on both the electrodes. The electrical performance study of the atomizer issuing a charged oil jet was conducted using three different nozzle body materials - brass, copper and stainless steel. Also, two sharp electrode materials - brass and stainless steel - were tested. The experimental results revealed that both the nozzle body material, as well as the sharp electrode material affected the spray and leak currents. Moreover, the effect of the sharp electrode material is quite significant. This research is supported by NSF Grant 1505276.
Coupled diffusion and mechanics in battery electrodes
NASA Astrophysics Data System (ADS)
Eshghinejad, Ahmadreza
We are living in a world with continuous production and consumption of energy. The energy production in the past decades has started to move away from petrochemical sources toward sustainable sources such as solar, wind and geothermal. Also, the energy consumption is further adapting to the sustainable sources. For instance, in recent years electric vehicles are growing fast that can consume sustainable electric energy stored in their batteries. In this direction, in order to further move toward sustainable energy, materials are becoming increasingly important for storing electric energy. Although, currently the technologies such as Li-ion batteries and solid-oxide fuel cells are commercially available for energy applications, improvements are crucial for the next generation of many other technologies producing or consuming sustainable energies. A critical aspect of the electrochemical activities involved in energy storage technologies such as Li-ion batteries and solid-oxide fuel cells is the diffusion of ions into the electrode materials. This process ultimately governs various functional properties of the batteries such as capacity and charging/discharging rates. The first goal of this dissertation is to develop mathematical tools to analyze the ionic diffusion and investigate its coupling with mechanics in electrodes. For this purpose, a thermodynamics-based modeling framework is developed and numerically solved using two numerical methods to analyze ionic diffusion in heterogeneous and structured electrodes. The next goal of this dissertation is to develop and analyze characterization techniques to probe the electrochemical processes at the nano-scale. To this end, the mathematical models are first employed to model a previously developed Atomic Force Microscopy based technique to probe local electrochemical activities called Electrochemical Strain Microscopy (ESM). This method probes the activities by inducing AC electric field to perturb ionic activities and measuring the surface vibrations. Different aspects of this technique are analyzed and the limitations are discussed. Such limitations moves the dissertation toward development of a new technique for probing the electrochemical activities, to overcome the previous limitations, called Scanning Thermo-ionic Microscopy (STIM). In this method, the local activities are probed by inducing AC temperature oscillations to perturb ionic activities and measuring the surface vibrations. The principle mathematical analysis of the coupled governing equations and the method of probing electrochemical activities are discussed in detail. Also, the method is implemented into the AFM hardware/software and the STIM response is confirmed using experiments on LiFePO4 and Sm-doped Ceria as well-known battery and fuel cell electrodes. The STIM method provides a clean method for analyzing energy storage materials and designing novel nano-structured materials for improved performance. Finally, conclusion of the presented work is discussed in the last chapter and the future works to continue the development of the modeling and experiments are listed.
Direct Probing of Polarization Charge at Nanoscale Level
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Owoong; Seol, Daehee; Lee, Dongkyu
Ferroelectric materials possess spontaneous polarization that can be used for multiple applications. Owing to a long-term development of reducing the sizes of devices, the preparation of ferroelectric materials and devices is entering the nanometer-scale regime. In order to evaluate the ferroelectricity, there is a need to investigate the polarization charge at the nanoscale. Nonetheless, it is generally accepted that the detection of polarization charges using a conventional conductive atomic force microscopy (CAFM) without a top electrode is not feasible because the nanometer-scale radius of an atomic force microscopy (AFM) tip yields a very low signal-to-noise ratio. But, the detection ismore » unrelated to the radius of an AFM tip and, in fact, a matter of the switched area. In this work, the direct probing of the polarization charge at the nanoscale is demonstrated using the positive-up-negative-down method based on the conventional CAFM approach without additional corrections or circuits to reduce the parasitic capacitance. The polarization charge densities of 73.7 and 119.0 µC cm -2 are successfully probed in ferroelectric nanocapacitors and thin films, respectively. The results we obtained show the feasibility of the evaluation of polarization charge at the nanoscale and provide a new guideline for evaluating the ferroelectricity at the nanoscale.« less
NASA Astrophysics Data System (ADS)
Nakano, Haruhisa; Takahashi, Makoto; Sato, Motonobu; Kotsugi, Masato; Ohkochi, Takuo; Muro, Takayuki; Nihei, Mizuhisa; Yokoyama, Naoki
2013-11-01
The resistive switching characteristics of a TiO2/Ti structure have been investigated using a conductive atomic force microscopy (AFM) system with 5-nm-diameter carbon nanotube (CNT) probes. The resistive switching showed bipolar resistive random access memory (ReRAM) behaviors with extremely low switching currents in the order of Picoamperes when voltages were applied. From transmission electron microscopy (TEM) observation, we confirmed that filament-like nanocrystals, having a diameter of about 10 nm, existed in TiO2 films at resistive switching areas after not only set operation but also reset operation. Moreover, photoemission electron microscopy (PEEM) analysis showed that the anatase-type TiO2 structure did not change after set and reset operations. From these results, we suggested that the Picoampere resistive switching occurred at the interface between the TiO2 dielectric and conductive nanocrystal without any structural changes in the TiO2 film and nanocrystal. The resistive switching mechanism we suggested is highly promising to realize extremely low-power-consumption ReRAMs with vertically contacted CNT electrodes.
Flexible probe for measuring local conductivity variations in Li-ion electrode films
NASA Astrophysics Data System (ADS)
Hardy, Emilee; Clement, Derek; Vogel, John; Wheeler, Dean; Mazzeo, Brian
2018-04-01
Li-ion battery performance is governed by electronic and ionic properties of the battery. A key metric that characterizes Li-ion battery cell performance is the electronic conductivity of the electrodes, which are metal foils with thin coatings of electrochemically active materials. To accurately measure the spatial variation of electronic conductivity of these electrodes, a micro-four-line probe (μ4LP) was designed and used to non-destructively measure the properties of commercial-quality Li-ion battery films. This previous research established that the electronic conductivity of film electrodes is not homogeneous throughout the entirety of the deposited film area. In this work, a micro-N-line probe (μNLP) and a flexible micro-flex-line probe (μFLP) were developed to improve the non-destructive micro-scale conductivity measurements that we can take. These devices were validated by comparing test results to that of the predecessor, the micro-four-line probe (μ4LP), on various commercial-quality Li-ion battery electrodes. Results show that there is significant variation in conductivity on a millimeter and even micrometer length scale through the electrode film. Compared to the μ4LP, the μNLP and μFLP also introduce additional measurement configuration possibilities, while providing a more robust design. Researchers and manufacturers can use these probes to identify heterogeneity in their electrodes during the fabrication process, which will lead to the development of better batteries.
Wang, Jingyu; Wei, Ming-Tzo; Cohen, Joel A; Ou-Yang, H Daniel
2013-07-01
AC electroosmotic (ACEO) flow above the gap between coplanar electrodes is mapped by the measurement of Stokes forces on an optically trapped polystyrene colloidal particle. E²-dependent forces on the probe particle are selected by amplitude modulation (AM) of the ACEO electric field (E) and lock-in detection at twice the AM frequency. E²-dependent DEP of the probe is eliminated by driving the ACEO at the probe's DEP crossover frequency. The location-independent DEP crossover frequency is determined, in a separate experiment, as the limiting frequency of zero horizontal force as the probe is moved toward the midpoint between the electrodes. The ACEO velocity field, uncoupled from probe DEP effects, was mapped in the region 1-9 μm above a 28 μm gap between the electrodes. By use of variously sized probes, each at its DEP crossover frequency, the frequency dependence of the ACEO flow was determined at a point 3 μm above the electrode gap and 4 μm from an electrode tip. At this location the ACEO flow was maximal at ∼117 kHz for a low salt solution. This optical trapping method, by eliminating DEP forces on the probe, provides unambiguous mapping of the ACEO velocity field. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Time Multiplexed Active Neural Probe with 1356 Parallel Recording Sites
Raducanu, Bogdan C.; Yazicioglu, Refet F.; Lopez, Carolina M.; Putzeys, Jan; Andrei, Alexandru; Rochus, Veronique; Welkenhuysen, Marleen; van Helleputte, Nick; Musa, Silke; Puers, Robert; Kloosterman, Fabian; Van Hoof, Chris; Mitra, Srinjoy
2017-01-01
We present a high electrode density and high channel count CMOS (complementary metal-oxide-semiconductor) active neural probe containing 1344 neuron sized recording pixels (20 µm × 20 µm) and 12 reference pixels (20 µm × 80 µm), densely packed on a 50 µm thick, 100 µm wide, and 8 mm long shank. The active electrodes or pixels consist of dedicated in-situ circuits for signal source amplification, which are directly located under each electrode. The probe supports the simultaneous recording of all 1356 electrodes with sufficient signal to noise ratio for typical neuroscience applications. For enhanced performance, further noise reduction can be achieved while using half of the electrodes (678). Both of these numbers considerably surpass the state-of-the art active neural probes in both electrode count and number of recording channels. The measured input referred noise in the action potential band is 12.4 µVrms, while using 678 electrodes, with just 3 µW power dissipation per pixel and 45 µW per read-out channel (including data transmission). PMID:29048396
Fabrication and surface-modification of implantable microprobes for neuroscience studies
NASA Astrophysics Data System (ADS)
Cao, H.; Nguyen, C. M.; Chiao, J. C.
2012-06-01
In this work implantable micro-probes for central nervous system (CNS) studies were developed on silicon and polyimide substrates. The probes which contained micro-electrode arrays with different surface modifications were designed for implantation in the CNS. The electrode surfaces were modified with nano-scale structures that could greatly increase the active surface area in order to enhance the electrochemical current outputs while maintaining micro-scale dimensions of the electrodes and probes. The electrodes were made of gold or platinum, and designed with different sizes. The silicon probes were modified by silicon nanowires fabricated with the vapor-liquid-solid mechanism at high temperatures. With polyimide substrates, the nanostructure modification was carried out by applying concentrated gold or silver colloid solutions onto the micro-electrodes at room temperature. The surfaces of electrodes before and after modification were observed by scanning electron microscopy. The silicon nanowire-modified surface was characterized by cyclic voltammetry. Experiments were carried out to investigate the improvement in sensing performance. The modified electrodes were tested with H2O2, electrochemical L-glutamate and dopamine. Comparisons between electrodes with and without nanostructure modification were conducted showing that the modifications have enhanced the signal outputs of the electrochemical neurotransmitter sensors.
Novel four-sided neural probe fabricated by a thermal lamination process of polymer films.
Shin, Soowon; Kim, Jae-Hyun; Jeong, Joonsoo; Gwon, Tae Mok; Lee, Seung-Hee; Kim, Sung June
2017-02-15
Ideally, neural probes should have channels with a three-dimensional (3-D) configuration to record the activities of 3-D neural circuits. Many types of 3-D neural probes have been developed; however, most of them were designed as an array of multiple shanks with electrodes located along one side of the shanks. We developed a novel liquid crystal polymer (LCP)-based neural probe with four-sided electrodes. This probe has electrodes on four sides of the shank, i.e., the front, back and two sidewalls. To generate the proposed configuration of the electrodes, we used a thermal lamination process involving LCP films and laser micromachining. The proposed novel four-sided neural probe, was used to successfully perform in vivo multichannel neural recording in the mouse primary somatosensory cortex. The multichannel neural recording showed that the proposed four-sided neural probe can record spiking activities from a more diverse neuronal population than single-sided probes. This was confirmed by a pairwise Pearson correlation coefficient (Pearson's r) analysis and a cross-correlation analysis. The developed four-sided neural probe can be used to record various signals from a complex neural network. Copyright © 2016 Elsevier B.V. All rights reserved.
STM, SECPM, AFM and Electrochemistry on Single Crystalline Surfaces
Wolfschmidt, Holger; Baier, Claudia; Gsell, Stefan; Fischer, Martin; Schreck, Matthias; Stimming, Ulrich
2010-01-01
Scanning probe microscopy (SPM) techniques have had a great impact on research fields of surface science and nanotechnology during the last decades. They are used to investigate surfaces with scanning ranges between several 100 μm down to atomic resolution. Depending on experimental conditions, and the interaction forces between probe and sample, different SPM techniques allow mapping of different surface properties. In this work, scanning tunneling microscopy (STM) in air and under electrochemical conditions (EC-STM), atomic force microscopy (AFM) in air and scanning electrochemical potential microscopy (SECPM) under electrochemical conditions, were used to study different single crystalline surfaces in electrochemistry. Especially SECPM offers potentially new insights into the solid-liquid interface by providing the possibility to image the potential distribution of the surface, with a resolution that is comparable to STM. In electrocatalysis, nanostructured catalysts supported on different electrode materials often show behavior different from their bulk electrodes. This was experimentally and theoretically shown for several combinations and recently on Pt on Au(111) towards fuel cell relevant reactions. For these investigations single crystals often provide accurate and well defined reference and support systems. We will show heteroepitaxially grown Ru, Ir and Rh single crystalline surface films and bulk Au single crystals with different orientations under electrochemical conditions. Image studies from all three different SPM methods will be presented and compared to electrochemical data obtained by cyclic voltammetry in acidic media. The quality of the single crystalline supports will be verified by the SPM images and the cyclic voltammograms. Furthermore, an outlook will be presented on how such supports can be used in electrocatalytic studies. PMID:28883327
An Atom-Probe Tomographic Study of Arc Welds in a Multi-Component High-Strength Low-Alloy Steel
NASA Astrophysics Data System (ADS)
Hunter, Allen H.; Farren, Jeffrey D.; DuPont, John N.; Seidman, David N.
2013-04-01
An experimental plate steel with the composition Fe-1.39Cu-2.7Ni-0.58Al-0.48Mn-0.48Si-0.065Nb-0.05C (wt pct) or alternatively Fe-1.43Cu-2.61Ni-1.21Al-0.48Mn-0.98Si-0.039Nb-0.23C at. pct has been recently produced at Northwestern University for use in Naval hull and deck applications—it is designated NUCu-140. To understand the microstructural changes occurring in NUCu-140 steel after gas-metal arc welding (GMAW), a detailed study of the heat-affected and fusion zones was performed throughout the weld cross section using microhardness, metallographic, chemical, and atom-probe tomographic analyses. Local-electrode atom-probe (LEAP) tomography was employed to measure the morphology and compositions of Cu-rich precipitates from each region. The mean radius, number density, volume fraction, and compositions of the precipitates, as well as the interfacial concentration profiles, are measured. The Cu precipitates dissolve partially from the heat-affected zone (HAZ) thermal cycle, and freshly formed sub-nanometer radius Cu-rich precipitates nucleate in both the HAZ and fusion zone (FZ) during cooling; however, the precipitation of Cu during cooling in the HAZ and FZ is not sufficient to restore the lost strength. The precipitation in the FZ is reduced compared to the HAZ due to a mismatched Cu composition of the weld. Multi-pass welding is suggested to restore strength in the GMAW sample by promoting Cu precipitate nucleation and growth in the HAZ and FZ.
Electrical capacitance clearanceometer
NASA Technical Reports Server (NTRS)
Hester, Norbert J. (Inventor); Hornbeck, Charles E. (Inventor); Young, Joseph C. (Inventor)
1992-01-01
A hot gas turbine engine capacitive probe clearanceometer is employed to measure the clearance gap or distance between blade tips on a rotor wheel and its confining casing under operating conditions. A braze sealed tip of the probe carries a capacitor electrode which is electrically connected to an electrical inductor within the probe which is inserted into a turbine casing to position its electrode at the inner surface of the casing. Electrical power is supplied through a voltage controlled variable frequency oscillator having a tuned circuit in which the probe is a component. The oscillator signal is modulated by a change in electrical capacitance between the probe electrode and a passing blade tip surface while an automatic feedback correction circuit corrects oscillator signal drift. A change in distance between a blade tip and the probe electrode is a change in capacitance therebetween which frequency modulates the oscillator signal. The modulated oscillator signal which is then processed through a phase detector and related circuitry to provide an electrical signal is proportional to the clearance gap.
NASA Astrophysics Data System (ADS)
Lee, Jung Ah; Rok Lim, Young; Jung, Chan Su; Choi, Jun Hee; Im, Hyung Soon; Park, Kidong; Park, Jeunghee; Kim, Gyu Tae
2016-10-01
To develop the advanced electronic devices, the surface/interface of each component must be carefully considered. Here, we investigate the electrical properties of metal-semiconductor nanoscale junction using conductive atomic force microscopy (C-AFM). Single-crystalline CdS, CdSe, and ZnO one-dimensional nanostructures are synthesized via chemical vapor transport, and individual nanobelts (or nanowires) are used to fabricate nanojunction electrodes. The current-voltage (I -V) curves are obtained by placing a C-AFM metal (PtIr) tip as a movable contact on the nanobelt (or nanowire), and often exhibit a resistive switching behavior that is rationalized by the Schottky (high resistance state) and ohmic (low resistance state) contacts between the metal and semiconductor. We obtain the Schottky barrier height and the ideality factor through fitting analysis of the I-V curves. The present nanojunction devices exhibit a lower Schottky barrier height and a higher ideality factor than those of the bulk materials, which is consistent with the findings of previous works on nanostructures. It is shown that C-AFM is a powerful tool for characterization of the Schottky contact of conducting channels between semiconductor nanostructures and metal electrodes.
Navigating conjugated polymer actuated neural probes in a brain phantom
NASA Astrophysics Data System (ADS)
Daneshvar, Eugene D.; Kipke, Daryl; Smela, Elisabeth
2012-04-01
Neural probe insertion methods have a direct impact on the longevity of the device in the brain. Initial tissue and vascular damage caused by the probe entering the brain triggers a chronic tissue response that is known to attenuate neural recordings and ultimately encapsulate the probes. Smaller devices have been found to evoke reduced inflammatory response. One way to record from undamaged neural networks may be to position the electrode sites away from the probe. To investigate this approach, we are developing probes with controllably movable electrode projections, which would move outside of the zone that is damaged by the insertion of the larger probe. The objective of this study was to test the capability of conjugated polymer bilayer actuators to actuate neural electrode projections from a probe shank into a transparent brain phantom. Parylene neural probe devices, having five electrode projections with actuating segments and with varying widths (50 - 250 μm) and lengths (200 - 1000 μm) were fabricated. The electroactive polymer polypyrrole (PPy) was used to bend or flatten the projections. The devices were inserted into the brain phantom using an electronic microdrive while simultaneously activating the actuators. Deflections were quantified based on video images. The electrode projections were successfully controlled to either remain flat or to actuate out-of-plane and into the brain phantom during insertion. The projection width had a significant effect on their ability to deflect within the phantom, with thinner probes deflecting but not the wider ones. Thus, small integrated conjugated polymer actuators may enable multiple neuro-experiments and applications not possible before.
Probing and mapping electrode surfaces in solid oxide fuel cells.
Blinn, Kevin S; Li, Xiaxi; Liu, Mingfei; Bottomley, Lawrence A; Liu, Meilin
2012-09-20
Solid oxide fuel cells (SOFCs) are potentially the most efficient and cost-effective solution to utilization of a wide variety of fuels beyond hydrogen (1-7). The performance of SOFCs and the rates of many chemical and energy transformation processes in energy storage and conversion devices in general are limited primarily by charge and mass transfer along electrode surfaces and across interfaces. Unfortunately, the mechanistic understanding of these processes is still lacking, due largely to the difficulty of characterizing these processes under in situ conditions. This knowledge gap is a chief obstacle to SOFC commercialization. The development of tools for probing and mapping surface chemistries relevant to electrode reactions is vital to unraveling the mechanisms of surface processes and to achieving rational design of new electrode materials for more efficient energy storage and conversion(2). Among the relatively few in situ surface analysis methods, Raman spectroscopy can be performed even with high temperatures and harsh atmospheres, making it ideal for characterizing chemical processes relevant to SOFC anode performance and degradation(8-12). It can also be used alongside electrochemical measurements, potentially allowing direct correlation of electrochemistry to surface chemistry in an operating cell. Proper in situ Raman mapping measurements would be useful for pin-pointing important anode reaction mechanisms because of its sensitivity to the relevant species, including anode performance degradation through carbon deposition(8, 10, 13, 14) ("coking") and sulfur poisoning(11, 15) and the manner in which surface modifications stave off this degradation(16). The current work demonstrates significant progress towards this capability. In addition, the family of scanning probe microscopy (SPM) techniques provides a special approach to interrogate the electrode surface with nanoscale resolution. Besides the surface topography that is routinely collected by AFM and STM, other properties such as local electronic states, ion diffusion coefficient and surface potential can also be investigated(17-22). In this work, electrochemical measurements, Raman spectroscopy, and SPM were used in conjunction with a novel test electrode platform that consists of a Ni mesh electrode embedded in an yttria-stabilized zirconia (YSZ) electrolyte. Cell performance testing and impedance spectroscopy under fuel containing H2S was characterized, and Raman mapping was used to further elucidate the nature of sulfur poisoning. In situ Raman monitoring was used to investigate coking behavior. Finally, atomic force microscopy (AFM) and electrostatic force microscopy (EFM) were used to further visualize carbon deposition on the nanoscale. From this research, we desire to produce a more complete picture of the SOFC anode.
Probing and Mapping Electrode Surfaces in Solid Oxide Fuel Cells
Blinn, Kevin S.; Li, Xiaxi; Liu, Mingfei; Bottomley, Lawrence A.; Liu, Meilin
2012-01-01
Solid oxide fuel cells (SOFCs) are potentially the most efficient and cost-effective solution to utilization of a wide variety of fuels beyond hydrogen 1-7. The performance of SOFCs and the rates of many chemical and energy transformation processes in energy storage and conversion devices in general are limited primarily by charge and mass transfer along electrode surfaces and across interfaces. Unfortunately, the mechanistic understanding of these processes is still lacking, due largely to the difficulty of characterizing these processes under in situ conditions. This knowledge gap is a chief obstacle to SOFC commercialization. The development of tools for probing and mapping surface chemistries relevant to electrode reactions is vital to unraveling the mechanisms of surface processes and to achieving rational design of new electrode materials for more efficient energy storage and conversion2. Among the relatively few in situ surface analysis methods, Raman spectroscopy can be performed even with high temperatures and harsh atmospheres, making it ideal for characterizing chemical processes relevant to SOFC anode performance and degradation8-12. It can also be used alongside electrochemical measurements, potentially allowing direct correlation of electrochemistry to surface chemistry in an operating cell. Proper in situ Raman mapping measurements would be useful for pin-pointing important anode reaction mechanisms because of its sensitivity to the relevant species, including anode performance degradation through carbon deposition8, 10, 13, 14 ("coking") and sulfur poisoning11, 15 and the manner in which surface modifications stave off this degradation16. The current work demonstrates significant progress towards this capability. In addition, the family of scanning probe microscopy (SPM) techniques provides a special approach to interrogate the electrode surface with nanoscale resolution. Besides the surface topography that is routinely collected by AFM and STM, other properties such as local electronic states, ion diffusion coefficient and surface potential can also be investigated17-22. In this work, electrochemical measurements, Raman spectroscopy, and SPM were used in conjunction with a novel test electrode platform that consists of a Ni mesh electrode embedded in an yttria-stabilized zirconia (YSZ) electrolyte. Cell performance testing and impedance spectroscopy under fuel containing H2S was characterized, and Raman mapping was used to further elucidate the nature of sulfur poisoning. In situ Raman monitoring was used to investigate coking behavior. Finally, atomic force microscopy (AFM) and electrostatic force microscopy (EFM) were used to further visualize carbon deposition on the nanoscale. From this research, we desire to produce a more complete picture of the SOFC anode. PMID:23023264
Keshwani, Nadia; McLean, Linda
2015-02-01
To survey commercially available intravaginal probes designed to record electromyography (EMG) from the pelvic floor muscles (PFMs), and to discuss the strengths and limitations of current technology. The MEDLINE EMBASE, CINAHL, PEDRO, and Cochrane databases were searched for articles in which intravaginal probes were described as having been used to record EMG from the PFMs. The World Wide Web was also searched using the Google search engine to find devices used to record EMG from the PFMs. Finally, a Canadian distributer of intravaginal probes was contacted to identify intravaginal EMG probes not identified through other methods. The specifications of each probe were determined through the manufacturer or their website, and each device was acquired by the investigators to verify the specifications and electrode configuration. The devices were evaluated against international standards for recording EMG data. Sixteen different models of commercially available intravaginal probes were identified: seven from published research papers, seven using the World Wide Web, and two through communication with a distributer. The probes vary in shape, dimensions, electrode positioning, and electrode configuration, with many designs prone to recording motion artifact, crosstalk, and/or inappropriate EMG signals. All commercially available intravaginal probes had deficiencies in their design such as problems with probe geometry, electrode size, location, and/or configuration. Improved intravaginal EMG probes should be developed for use in research and clinical practice. © 2013 Wiley Periodicals, Inc.
PZT Thin-Film Micro Probe Device with Dual Top Electrodes
NASA Astrophysics Data System (ADS)
Luo, Chuan
Lead zirconate titanate (PZT) thin-film actuators have been studied intensively for years because of their potential applications in many fields. In this dissertation, a PZT thin-film micro probe device is designed, fabricated, studied, and proven to be acceptable as an intracochlear acoustic actuator. The micro probe device takes the form of a cantilever with a PZT thin-film diaphragm at the tip of the probe. The tip portion of the probe will be implanted in cochlea later in animal tests to prove its feasibility in hearing rehabilitation. The contribution of the dissertation is three-fold. First, a dual top electrodes design, consisting of a center electrode and an outer electrode, is developed to improve actuation displacement of the PZT thin-film diaphragm. The improvement by the dual top electrodes design is studied via a finite element model. When the dimensions of the dual electrodes are optimized, the displacement of the PZT thin-film diaphragm increases about 30%. A PZT thin-film diaphragm with dual top electrodes is fabricated to prove the concept, and experimental results confirm the predictions from the finite element analyses. Moreover, the dual electrode design can accommodate presence of significant residual stresses in the PZT thin-film diaphragm by changing the phase difference between the two electrodes. Second, a PZT thin-film micro probe device is fabricated and tested. The fabrication process consists of PZT thin-film deposition and deep reactive ion etching (DRIE). The uniqueness of the fabrication process is an automatic dicing mechanism that allows a large number of probes to be released easily from the wafer. Moreover, the fabrication is very efficient, because the DRIE process will form the PZT thin-film diaphragm and the special dicing mechanism simultaneously. After the probes are fabricated, they are tested with various possible implantation depths (i.e., boundary conditions). Experimental results show that future implantation depths should be less than 3 mm in order to guarantee the first resonant frequency above 60 kHz. Finally, a package for the PZT thin-film micro probe device is developed to ensure its proper function in an aqueous environment, such as inside of cochlea. The package is an insulation layer of parylene coating on the probe. A finite element analysis indicates that a coating thickness of less than 1 mum will reduce the PZT diaphragm displacement by less than 10%. A special fixture is designed to hold a large number of probes for parylene deposition of a thickness of 250 nm. A packaged probe is then submerged in deionized water and functions properly for at least 55 hours. Displacement and impedance of the probe are measured via a laser Doppler vibrometer and an impedance analyzer, respectively. Experimental results show that displacement of the PZT diaphragm increases about 30% in two hours, after the probe is submerged in the deionized water. The impedance measurement shows consistent trends. A hypothesis to explain this unusual phenomenon is diffusion of water molecules into the PZT thin film. High-resolution SEM images of the probe indicate presence of numerous nano-pores in the surface of the PZT thin film, indirectly confirming the hypothesis. Keywords: PZT, Thin-Film, Dual Electrodes, Parylene Coating, Aqueous Environment, Cochlear Implant
Selective probing of mRNA expression levels within a living cell.
Nawarathna, D; Turan, T; Wickramasinghe, H Kumar
2009-08-24
We report on a selective and nondestructive measurement of mRNA (messenger ribonucleic acid) expression levels within a living cell. We first modify an atomic force microscope tip to create a tapered nanoscale coaxial cable. Application of an ac (alternating potential) between the inner and outer electrodes of this cable creates a dielectrophoretic force attracting mRNA molecules toward the tip-end which is pretreated with gene specific primers. We selectively extracted and analyzed both high ( approximately 2500) and extremely low (11 0) copy number mRNA from a living cell mRNA in less than 10 s.
Uranium migration in spark plasma sintered W/UO2 CERMETS
NASA Astrophysics Data System (ADS)
Tucker, Dennis S.; Wu, Yaqiao; Burns, Jatuporn
2018-03-01
W/UO2 CERMET samples were sintered in a Spark Plasma Sintering (SPS) furnace at various temperature under vacuum and pressure. High Resolution Transmission Electron Microscopy (HRTEM) with Energy Dispersive Spectroscopy (EDS) was performed on the samples to determine interface structures and uranium diffusion from the UO2 particles into the tungsten matrix. Local Electrode Atom Probe (LEAP) was also performed to determine stoichiometry of the UO2 particles. It was seen that uranium diffused approximately 10-15 nm into the tungsten matrix. This is explained in terms of production of oxygen vacancies and Fick's law of diffusion.
Two-probe STM experiments at the atomic level.
Kolmer, Marek; Olszowski, Piotr; Zuzak, Rafal; Godlewski, Szymon; Joachim, Christian; Szymonski, Marek
2017-11-08
Direct characterization of planar atomic or molecular scale devices and circuits on a supporting surface by multi-probe measurements requires unprecedented stability of single atom contacts and manipulation of scanning probes over large, nanometer scale area with atomic precision. In this work, we describe the full methodology behind atomically defined two-probe scanning tunneling microscopy (STM) experiments performed on a model system: dangling bond dimer wire supported on a hydrogenated germanium (0 0 1) surface. We show that 70 nm long atomic wire can be simultaneously approached by two independent STM scanners with exact probe to probe distance reaching down to 30 nm. This allows direct wire characterization by two-probe I-V characteristics at distances below 50 nm. Our technical results presented in this work open a new area for multi-probe research, which can be now performed with precision so far accessible only by single-probe scanning probe microscopy (SPM) experiments.
Nanomechanical probing of thin-film dielectric elastomer transducers
NASA Astrophysics Data System (ADS)
Osmani, Bekim; Seifi, Saman; Park, Harold S.; Leung, Vanessa; Töpper, Tino; Müller, Bert
2017-08-01
Dielectric elastomer transducers (DETs) have attracted interest as generators, actuators, sensors, and even as self-sensing actuators for applications in medicine, soft robotics, and microfluidics. Their performance crucially depends on the elastic properties of the electrode-elastomer sandwich structure. The compressive displacement of a single-layer DET can be easily measured using atomic force microscopy (AFM) in the contact mode. While polymers used as dielectric elastomers are known to exhibit significant mechanical stiffening for large strains, their mechanical properties when subjected to voltages are not well understood. To examine this effect, we measured the depths of 400 nanoindentations as a function of the applied electric field using a spherical AFM probe with a radius of (522 ± 4) nm. Employing a field as low as 20 V/μm, the indentation depths increased by 42% at a load of 100 nN with respect to the field-free condition, implying an electromechanically driven elastic softening of the DET. This at-a-glance surprising experimental result agrees with related nonlinear, dynamic finite element model simulations. Furthermore, the pull-off forces rose from (23.0 ± 0.4) to (49.0 ± 0.7) nN implying a nanoindentation imprint after unloading. This embossing effect is explained by the remaining charges at the indentation site. The root-mean-square roughness of the Au electrode raised by 11% upon increasing the field from zero to 12 V/μm, demonstrating that the electrode's morphology change is an undervalued factor in the fabrication of DET structures.
Central masking with bilateral cochlear implants
Lin, Payton; Lu, Thomas; Zeng, Fan-Gang
2013-01-01
Across bilateral cochlear implants, contralateral threshold shift has been investigated as a function of electrode difference between the masking and probe electrodes. For contralateral electric masking, maximum threshold elevations occurred when the position of the masker and probe electrode was approximately place-matched across ears. The amount of masking diminished with increasing masker-probe electrode separation. Place-dependent masking occurred in both sequentially implanted ears, and was not affected by the masker intensity or the time delay from the masker onset. When compared to previous contralateral masking results in normal hearing, the similarities between place-dependent central masking patterns suggest comparable mechanisms of overlapping excitation in the central auditory nervous system. PMID:23363113
Low Fatigue in Epitaxial Pb(Zr0.2Ti0.8)O3 on Si Substrates with LaNiO3 Electrodes by RF Sputtering
NASA Astrophysics Data System (ADS)
Wang, Chun; Kryder, Mark H.
2009-09-01
Epitaxial PZT (001) thin films with a LaNiO3 bottom electrode were deposited by radio-frequency (RF) sputtering onto Si(001) single-crystal substrates with SrTiO3/TiN buffer layers. Pb(Zr0.2Ti0.8)O3 (PZT) samples were shown to consist of a single perovskite phase and to have an (001) orientation. The orientation relationship was determined to be PZT(001)[110]∥LaNiO3(001)[110]∥SrTiO3 (001)[110]∥TiN(001)[110]∥Si(001)[110]. Atomic force microscope (AFM) measurements showed the PZT films to have smooth surfaces with a roughness of 1.15 nm. The microstructure of the multilayer was studied using transmission electron microscopy (TEM). Electrical measurements were conducted using both Pt and LaNiO3 as top electrodes. The measured remanent polarization P r and coercive field E c of the PZT thin film with Pt top electrodes were 23 μC/cm2 and 75 kV/cm, and were 25 μC/cm2 and 60 kV/cm for the PZT film with LaNiO3 top electrodes. No obvious fatigue after 1010 switching cycles indicated good electrical endurance of the PZT films using LaNiO3 electrodes, compared with the PZT film with Pt top electrodes showing a significant polarization loss after 108 cycles. These PZT films with LaNiO3 electrodes could be potential recording media for probe-based high-density data storage.
Kertesz, Vilmos; Van Berkel, Gary J.
2016-07-12
A system for sampling a surface includes a surface sampling probe comprising a solvent liquid supply conduit and a distal end, and a sample collector for suspending a sample collection liquid adjacent to the distal end of the probe. A first electrode provides a first voltage to solvent liquid at the distal end of the probe. The first voltage produces a field sufficient to generate electrospray plume at the distal end of the probe. A second electrode provides a second voltage and is positioned to produce a plume-directing field sufficient to direct the electrospray droplets and ions to the suspended sample collection liquid. The second voltage is less than the first voltage in absolute value. A voltage supply system supplies the voltages to the first electrode and the second electrode. The first electrode can apply the first voltage directly to the solvent liquid. A method for sampling for a surface is also disclosed.
Atomic switches: atomic-movement-controlled nanodevices for new types of computing
Hino, Takami; Hasegawa, Tsuyoshi; Terabe, Kazuya; Tsuruoka, Tohru; Nayak, Alpana; Ohno, Takeo; Aono, Masakazu
2011-01-01
Atomic switches are nanoionic devices that control the diffusion of metal cations and their reduction/oxidation processes in the switching operation to form/annihilate a metal atomic bridge, which is a conductive path between two electrodes in the on-state. In contrast to conventional semiconductor devices, atomic switches can provide a highly conductive channel even if their size is of nanometer order. In addition to their small size and low on-resistance, their nonvolatility has enabled the development of new types of programmable devices, which may achieve all the required functions on a single chip. Three-terminal atomic switches have also been developed, in which the formation and annihilation of a metal atomic bridge between a source electrode and a drain electrode are controlled by a third (gate) electrode. Three-terminal atomic switches are expected to enhance the development of new types of logic circuits, such as nonvolatile logic. The recent development of atomic switches that use a metal oxide as the ionic conductive material has enabled the integration of atomic switches with complementary metal-oxide-semiconductor (CMOS) devices, which will facilitate the commercialization of atomic switches. The novel characteristics of atomic switches, such as their learning and photosensing abilities, are also introduced in the latter part of this review. PMID:27877376
Label-Free Potentiometry for Detecting DNA Hybridization Using Peptide Nucleic Acid and DNA Probes
Goda, Tatsuro; Singi, Ankit Balram; Maeda, Yasuhiro; Matsumoto, Akira; Torimura, Masaki; Aoki, Hiroshi; Miyahara, Yuji
2013-01-01
Peptide nucleic acid (PNA) has outstanding affinity over DNA for complementary nucleic acid sequences by forming a PNA-DNA heterodimer upon hybridization via Watson-Crick base-pairing. To verify whether PNA probes on an electrode surface enhance sensitivity for potentiometric DNA detection or not, we conducted a comparative study on the hybridization of PNA and DNA probes on the surface of a 10-channel gold electrodes microarray. Changes in the charge density as a result of hybridization at the solution/electrode interface on the self-assembled monolayer (SAM)-formed microelectrodes were directly transformed into potentiometric signals using a high input impedance electrometer. The charge readout allows label-free, reagent-less, and multi-parallel detection of target oligonucleotides without any optical assistance. The differences in the probe lengths between 15- to 22-mer dramatically influenced on the sensitivity of the PNA and DNA sensors. Molecular type of the capturing probe did not affect the degree of potential shift. Theoretical model for charged rod-like duplex using the Gouy-Chapman equation indicates the dominant effect of electrostatic attractive forces between anionic DNA and underlying electrode at the electrolyte/electrode interface in the potentiometry. PMID:23435052
Daoudi, Jordan; Betelu, Stephanie; Tzedakis, Theodore; Bertrand, Johan; Ignatiadis, Ioannis
2017-01-01
We present an innovative electrochemical probe for the monitoring of pH, redox potential and conductivity in near-field rocks of deep geological radioactive waste repositories. The probe is composed of a monocrystalline antimony electrode for pH sensing, four AgCl/Ag-based reference or Cl− selective electrodes, one Ag2S/Ag-based reference or S2− selective electrode, as well as four platinum electrodes, a gold electrode and a glassy-carbon electrode for redox potential measurements. Galvanostatic electrochemistry impedance spectroscopy using AgCl/Ag-based and platinum electrodes measure conductivity. The use of such a multi-parameter probe provides redundant information, based as it is on the simultaneous behaviour under identical conditions of different electrodes of the same material, as well as on that of electrodes made of different materials. This identifies the changes in physical and chemical parameters in a solution, as well as the redox reactions controlling the measured potential, both in the solution and/or at the electrode/solution interface. Understanding the electrochemical behaviour of selected materials thus is a key point of our research, as provides the basis for constructing the abacuses needed for developing robust and reliable field sensors. PMID:28608820
Daoudi, Jordan; Betelu, Stephanie; Tzedakis, Theodore; Bertrand, Johan; Ignatiadis, Ioannis
2017-06-13
We present an innovative electrochemical probe for the monitoring of pH, redox potential and conductivity in near-field rocks of deep geological radioactive waste repositories. The probe is composed of a monocrystalline antimony electrode for pH sensing, four AgCl/Ag-based reference or Cl - selective electrodes, one Ag₂S/Ag-based reference or S 2- selective electrode, as well as four platinum electrodes, a gold electrode and a glassy-carbon electrode for redox potential measurements. Galvanostatic electrochemistry impedance spectroscopy using AgCl/Ag-based and platinum electrodes measure conductivity. The use of such a multi-parameter probe provides redundant information, based as it is on the simultaneous behaviour under identical conditions of different electrodes of the same material, as well as on that of electrodes made of different materials. This identifies the changes in physical and chemical parameters in a solution, as well as the redox reactions controlling the measured potential, both in the solution and/or at the electrode/solution interface. Understanding the electrochemical behaviour of selected materials thus is a key point of our research, as provides the basis for constructing the abacuses needed for developing robust and reliable field sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Shunji; Katagiri Engineering Co., Ltd., 3-5-34 Shitte Tsurumi-ku, Yokohama 230-0003; Takashima, Seigo
2009-09-01
Atomic radicals such as hydrogen (H) and oxygen (O) play important roles in process plasmas. In a previous study, we developed a system for measuring the absolute density of H, O, nitrogen, and carbon atoms in plasmas using vacuum ultraviolet absorption spectroscopy (VUVAS) with a compact light source using an atmospheric pressure microplasma [microdischarge hollow cathode lamp (MHCL)]. In this study, we developed a monitoring probe for atomic radicals employing the VUVAS with the MHCL. The probe size was 2.7 mm in diameter. Using this probe, only a single port needs to be accessed for radical density measurements. We successfullymore » measured the spatial distribution of the absolute densities of H and O atomic radicals in a radical-based plasma processing system by moving the probe along the radial direction of the chamber. This probe allows convenient analysis of atomic radical densities to be carried out for any type of process plasma at any time. We refer to this probe as a ubiquitous monitoring probe for atomic radicals.« less
Probing the localization of magnetic dichroism by atomic-size astigmatic and vortex electron beams.
Negi, Devendra Singh; Idrobo, Juan Carlos; Rusz, Ján
2018-03-05
We report localization of a magnetic dichroic signal on atomic columns in electron magnetic circular dichroism (EMCD), probed by beam distorted by four-fold astigmatism and electron vortex beam. With astigmatic probe, magnetic signal to noise ratio can be enhanced by blocking the intensity from the central part of probe. However, the simulations show that for atomic resolution magnetic measurements, vortex beam is a more effective probe, with much higher magnetic signal to noise ratio. For all considered beam shapes, the optimal SNR constrains the signal detection at low collection angles of approximately 6-8 mrad. Irrespective of the material thickness, the magnetic signal remains strongly localized within the probed atomic column with vortex beam, whereas for astigmatic probes, the magnetic signal originates mostly from the nearest neighbor atomic columns. Due to excellent signal localization at probing individual atomic columns, vortex beams are predicted to be a strong candidate for studying the crystal site specific magnetic properties, magnetic properties at interfaces, or magnetism arising from individual atomic impurities.
Efficient electrocatalytic conversion of CO.sub.2 to CO using ligand-protected Au.sub.25 clusters
Kauffman, Douglas; Matranga, Christopher; Qian, Huifeng; Jin, Rongchao; Alfonso, Dominic R.
2015-09-22
An apparatus and method for CO.sub.2 reduction using an Au.sub.25 electrode. The Au.sub.25 electrode is comprised of ligand-protected Au.sub.25 having a structure comprising an icosahedral core of 13 atoms surrounded by a shell of six semi-ring structures bonded to the core of 13 atoms, where each semi-ring structure is typically --SR--Au--SR--Au--SR or --SeR--Au--SeR--Au--SeR. The 12 semi-ring gold atoms within the six semi-ring structures are stellated on 12 of the 20 faces of the icosahedron of the Au.sub.13 core, and organic ligand --SR or --SeR groups are bonded to the Au.sub.13 core with sulfur or selenium atoms. The Au.sub.25 electrode and a counter-electrode are in contact with an electrolyte comprising CO.sub.2 and H+, and a potential of at least -0.1 volts is applied from the Au.sub.25 electrode to the counter-electrode.
Langmuir Probe Measurements in an Inductively Coupled GEC Reference Cell Plasma
NASA Technical Reports Server (NTRS)
Ji, J. S.; Kim, J. S.; Cappelli, M. A.; Sharma, S. P.; Arnold, J. O. (Technical Monitor)
1998-01-01
Measurements of electron number density, electron temperature, and electron energy distribution function (EEDF) using a compensated Langmuir probe have been performed on an inductively (transformer ) coupled Gaseous Electronics Conference (GEC) reference cell plasma. The plasma source is operated with CH4, CF4, or their mixtures with argon. The effect of independently driving the electrode supporting the wafer on the probe data is studied. In particular, we find that the plasma structure depends on the phase in addition to the magnitude of the power coupled to the electrode relative to that of the transformer coil. The Langmuir probe is translated in a plane parallel to the electrode to investigate the spatial structure of the plasma. The probe data is also compared with fluid model predictions.
Ti Ni shape memory alloy film-actuated microstructures for a MEMS probe card
NASA Astrophysics Data System (ADS)
Namazu, Takahiro; Tashiro, Youichi; Inoue, Shozo
2007-01-01
This paper describes the development of a novel silicon (Si) cantilever beam device actuated by titanium-nickel (Ti-Ni) shape memory alloy (SMA) films. A Ti-Ni SMA film can yield high work output per unit volume, so a Ti-Ni film-actuated Si cantilever beam device is a prospective tool for use as a microelectromechanical system (MEMS) probe card that provides a relatively large contact force between the probe and electrode pad in spite of its minute size. Before fabrication of the device, the thermomechanical deformation behavior of Ti-Ni SMA films with various compositions was investigated in order to determine a sufficient constituent film for a MEMS actuator. As a result, Ti-Ni films having a Ti content of 50.2 to 52.6 atomic% (at%) were found to be usable for operation as a room temperature actuator. We have developed a Ti-Ni film-actuated Si cantilever beam device, which can produce a contact force by the cantilever bending when in contact, and also by the shape memory effect (SME) of the Ti-Ni film arising from Joule heating. The SME of the Ti-Ni film can generate an additional average contact force of 200 µN with application of 500 mW to the film. In addition to physical contact, a dependable electric contact between the Au film-coated probe tip and the Al film electrode was achieved. However, the contact resistance exhibited an average value of 25 Ω, which would have to be reduced for practical use. Reliability tests confirmed the durability of the Ti-Ni film-actuated Si cantilever-beam, in that the contact resistance was constant throughout a large number of physical contacts (>104 times).
Tomography of a Probe Potential Using Atomic Sensors on Graphene.
Wyrick, Jonathan; Natterer, Fabian D; Zhao, Yue; Watanabe, Kenji; Taniguchi, Takashi; Cullen, William G; Zhitenev, Nikolai B; Stroscio, Joseph A
2016-12-27
Our ability to access and explore the quantum world has been greatly advanced by the power of atomic manipulation and local spectroscopy with scanning tunneling and atomic force microscopes, where the key technique is the use of atomically sharp probe tips to interact with an underlying substrate. Here we employ atomic manipulation to modify and quantify the interaction between the probe and the system under study that can strongly affect any measurement in low charge density systems, such as graphene. We transfer Co atoms from a graphene surface onto a probe tip to change and control the probe's physical structure, enabling us to modify the induced potential at a graphene surface. We utilize single Co atoms on a graphene field-effect device as atomic scale sensors to quantitatively map the modified potential exerted by the scanning probe over the whole relevant spatial and energy range.
Modeling of Elastic Collisions between High Energy and Slow Neutral Atoms
2015-07-01
cylindrical test cell, and the currents on the four different electrodes-Inner Cylinder , Exit Plate, Back Aperture, and Collector Plat~were measured...Inner Cylinder electrode. Nevertheless, the neutral atom current to the Inner Cylinder electrode predicted by the VHS model is comparable to the...Figure 9. Normalized curre nt at the Inner Cylinder e lectrode. the point of collision. T he discrepancy in the Exit Plate neutral atom current is due to
Efficient atom localization via probe absorption in an inverted-Y atomic system
NASA Astrophysics Data System (ADS)
Wu, Jianchun; Wu, Bo; Mao, Jiejian
2018-06-01
The behaviour of atom localization in an inverted-Y atomic system is theoretically investigated. For the atoms interacting with a weak probe field and several orthogonal standing-wave fields, their position information can be obtained by measuring the probe absorption. Compared with the traditional scheme, we couple the probe field to the transition between the middle and top levels. It is found that the probe absorption sensitively depends on the detuning and strength of the relevant light fields. Remarkably, the atom can be localized at a particular position in the standing-wave fields by coupling a microwave field to the transition between the two ground levels.
Plasma Sheet Velocity Measurement Techniques for the Pulsed Plasma Thruster SIMP-LEX
NASA Technical Reports Server (NTRS)
Nawaz, Anuscheh; Lau, Matthew
2011-01-01
The velocity of the first plasma sheet was determined between the electrodes of a pulsed plasma thruster using three measurement techniques: time of flight probe, high speed camera and magnetic field probe. Further, for time of flight probe and magnetic field probe, it was possible to determine the velocity distribution along the electrodes, as the plasma sheet is accelerated. The results from all three techniques are shown, and are compared for one thruster geometry.
Lefebvre, W; Hernandez-Maldonado, D; Moyon, F; Cuvilly, F; Vaudolon, C; Shinde, D; Vurpillot, F
2015-12-01
The geometry of atom probe tomography tips strongly differs from standard scanning transmission electron microscopy foils. Whereas the later are rather flat and thin (<20 nm), tips display a curved surface and a significantly larger thickness. As far as a correlative approach aims at analysing the same specimen by both techniques, it is mandatory to explore the limits and advantages imposed by the particular geometry of atom probe tomography specimens. Based on simulations (electron probe propagation and image simulations), the possibility to apply quantitative high angle annular dark field scanning transmission electron microscopy to of atom probe tomography specimens has been tested. The influence of electron probe convergence and the benefice of deconvolution of electron probe point spread function electron have been established. Atom counting in atom probe tomography specimens is for the first time reported in this present work. It is demonstrated that, based on single projections of high angle annular dark field imaging, significant quantitative information can be used as additional input for refining the data obtained by correlative analysis of the specimen in APT, therefore opening new perspectives in the field of atomic scale tomography. Copyright © 2015 Elsevier B.V. All rights reserved.
Three-axis particle impact probe
Fasching, George E.; Smith, Jr., Nelson S.; Utt, Carroll E.
1992-01-01
Three-axis particle impact probes detect particle impact vectors along x-, y-, and z-axes by spherical probe head mounted on the outer end of a shaft that is flexibly mounted in silicone rubber at the top of a housing so as to enable motion imparted to the head upon impact to be transmitted to a grounded electrode secured to the shaft within the housing. Excitable electrodes are mounted in the housing in a fixed position, spaced apart from the ground electrode and forming, with the ground electrode, capacitor pairs. Movement of the ground electrode results in changes in capacitance, and these difference in capacitance are used for measurement or derivation of momentum vectors along each of the three axes. In one embodiment, the ground electrode is mounted at the base of the shaft and is secured to a silicone rubber layer at the top of the housing, providing for cantilevered movement. In another embodiment, the shaft is mounted at its mid point in a flexible bushing so that it undergoes pivotal movement around that point.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Berkel, Gary J; Kertesz, Vilmos
2009-01-01
This paper reports on the conversion of a liquid microjunction surface sampling probe (LMJ-SSP) into a two electrode electrochemical cell using a conductive sample surface and the probe as the two electrodes with an appropriate battery powered circuit. With this LMJ-SSP, two-electrode cell arrangement, tagging of analyte thiol functionalities (in this case peptide cysteine residues) with hydroquinone tags was initiated electrochemically using a hydroquinone doped solution when the analyte either was initially in solution or was sampled from a surface. Efficient tagging (~90%), at flow rates of 5-10 L/min, could be achieved for up to at least two cysteines onmore » a peptide. The high tagging efficiency observed was explained with a simple kinetic model. In general, the incorporation of a two-electrode electrochemical cell, or other multiple electrode arrangement, into the LMJ-SSP is expected to add to the versatility of this approach for surface sampling and ionization coupled with mass spectrometric detection.« less
Probing the localization of magnetic dichroism by atomic-size astigmatic and vortex electron beams
Negi, Devendra Singh; Idrobo, Juan Carlos; Rusz, Ján
2018-03-05
We report localization of a magnetic dichroic signal on atomic columns in electron magnetic circular dichroism (EMCD), probed by beam distorted by four-fold astigmatism and electron vortex beam. With astigmatic probe, magnetic signal to noise ratio can be enhanced by blocking the intensity from the central part of probe. However, the simulations show that for atomic resolution magnetic measurements, vortex beam is a more effective probe, with much higher magnetic signal to noise ratio. For all considered beam shapes, the optimal SNR constrains the signal detection at low collection angles of approximately 6–8 mrad. Irrespective of the material thickness, themore » magnetic signal remains strongly localized within the probed atomic column with vortex beam, whereas for astigmatic probes, the magnetic signal originates mostly from the nearest neighbor atomic columns. Due to excellent signal localization at probing individual atomic columns, vortex beams are predicted to be a strong candidate for studying the crystal site specific magnetic properties, magnetic properties at interfaces, or magnetism arising from individual atomic impurities.« less
Probing the localization of magnetic dichroism by atomic-size astigmatic and vortex electron beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Negi, Devendra Singh; Idrobo, Juan Carlos; Rusz, Ján
We report localization of a magnetic dichroic signal on atomic columns in electron magnetic circular dichroism (EMCD), probed by beam distorted by four-fold astigmatism and electron vortex beam. With astigmatic probe, magnetic signal to noise ratio can be enhanced by blocking the intensity from the central part of probe. However, the simulations show that for atomic resolution magnetic measurements, vortex beam is a more effective probe, with much higher magnetic signal to noise ratio. For all considered beam shapes, the optimal SNR constrains the signal detection at low collection angles of approximately 6–8 mrad. Irrespective of the material thickness, themore » magnetic signal remains strongly localized within the probed atomic column with vortex beam, whereas for astigmatic probes, the magnetic signal originates mostly from the nearest neighbor atomic columns. Due to excellent signal localization at probing individual atomic columns, vortex beams are predicted to be a strong candidate for studying the crystal site specific magnetic properties, magnetic properties at interfaces, or magnetism arising from individual atomic impurities.« less
Cavity electromagnetically induced transparency with Rydberg atoms
NASA Astrophysics Data System (ADS)
Bakar Ali, Abu; Ziauddin
2018-02-01
Cavity electromagnetically induced transparency (EIT) is revisited via the input probe field intensity. A strongly interacting Rydberg atomic medium ensemble is considered in a cavity, where atoms behave as superatoms (SAs) under the dipole blockade mechanism. Each atom in the strongly interacting Rydberg atomic medium (87 Rb) follows a three-level cascade atomic configuration. A strong control and weak probe field are employed in the cavity with the ensemble of Rydberg atoms. The features of the reflected and transmitted probe light are studied under the influence of the input probe field intensity. A transparency peak (cavity EIT) is revealed at a resonance condition for small values of input probe field intensity. The manipulation of the cavity EIT is reported by tuning the strength of the input probe field intensity. Further, the phase and group delay of the transmitted and reflected probe light are studied. It is found that group delay and phase in the reflected light are negative, while for the transmitted light they are positive. The magnitude control of group delay in the transmitted and reflected light is investigated via the input probe field intensity.
In Situ Atom Probe Deintercalation of Lithium-Manganese-Oxide.
Pfeiffer, Björn; Maier, Johannes; Arlt, Jonas; Nowak, Carsten
2017-04-01
Atom probe tomography is routinely used for the characterization of materials microstructures, usually assuming that the microstructure is unaltered by the analysis. When analyzing ionic conductors, however, gradients in the chemical potential and the electric field penetrating dielectric atom probe specimens can cause significant ionic mobility. Although ionic mobility is undesirable when aiming for materials characterization, it offers a strategy to manipulate materials directly in situ in the atom probe. Here, we present experimental results on the analysis of the ionic conductor lithium-manganese-oxide with different atom probe techniques. We demonstrate that, at a temperature of 30 K, characterization of the materials microstructure is possible without measurable Li mobility. Also, we show that at 298 K the material can be deintercalated, in situ in the atom probe, without changing the manganese-oxide host structure. Combining in situ atom probe deintercalation and subsequent conventional characterization, we demonstrate a new methodological approach to study ionic conductors even in early stages of deintercalation.
Zhai, Yunfeng; Baturina, Olga; Ramaker, David; Farquhar, Erik; St-Pierre, Jean; Swider-Lyons, Karen
2015-01-01
The platinum electrocatalysts found in proton exchange membrane fuel cells are poisoned both reversibly and irreversibly by air pollutants and residual manufacturing contaminants. In this work, the poisoning of a Pt/C PEMFC cathode was probed by a trace of chlorobenzene in the air feed. Chlorobenzene inhibits the oxygen reduction reaction and causes significant cell performance loss. The performance loss is largely restored by neat air operation and potential cycling between 0.08 V and 1.2 V under H2/N2 (anode/cathode). The analysis of emissions, in situ X-ray absorption spectroscopy and electrochemical impedance spectra show the chlorobenzene adsorption/reaction and molecular orientation on Pt surface depend on the electrode potential. At low potentials, chlorobenzene deposits either on top of adsorbed H atoms or on the Pt surface via the benzene ring and is converted to benzene (ca. 0.1 V) or cyclohexane (ca. 0 V) upon Cl removal. At potentials higher than 0.2 V, chlorobenzene binds to Pt via the Cl atom and can be converted to benzene (less than 0.3 V) or desorbed. Cl− is created and remains in the membrane electrode assembly. Cl− binds to the Pt surface much stronger than chlorobenzene, but can slowly be flushed out by liquid water. PMID:26388963
Selective probing of mRNA expression levels within a living cell
Nawarathna, D.; Turan, T.; Wickramasinghe, H. Kumar
2009-01-01
We report on a selective and nondestructive measurement of mRNA (messenger ribonucleic acid) expression levels within a living cell. We first modify an atomic force microscope tip to create a tapered nanoscale coaxial cable. Application of an ac (alternating potential) between the inner and outer electrodes of this cable creates a dielectrophoretic force attracting mRNA molecules toward the tip-end which is pretreated with gene specific primers. We selectively extracted and analyzed both high (∼2500) and extremely low (11¯0) copy number mRNA from a living cell mRNA in less than 10 s. PMID:19777090
Effect of an Interfacial Layer on Electron Tunneling through Atomically Thin Al2O3 Tunnel Barriers.
Wilt, Jamie; Sakidja, Ridwan; Goul, Ryan; Wu, Judy Z
2017-10-25
Electron tunneling through high-quality, atomically thin dielectric films can provide a critical enabling technology for future microelectronics, bringing enhanced quantum coherent transport, fast speed, small size, and high energy efficiency. A fundamental challenge is in controlling the interface between the dielectric and device electrodes. An interfacial layer (IL) will contain defects and introduce defects in the dielectric film grown atop, preventing electron tunneling through the formation of shorts. In this work, we present the first systematic investigation of the IL in Al 2 O 3 dielectric films of 1-6 Å's in thickness on an Al electrode. We integrated several advanced approaches: molecular dynamics to simulate IL formation, in situ high vacuum sputtering atomic layer deposition (ALD) to synthesize Al 2 O 3 on Al films, and in situ ultrahigh vacuum scanning tunneling spectroscopy to probe the electron tunneling through the Al 2 O 3 . The IL had a profound effect on electron tunneling. We observed a reduced tunnel barrier height and soft-type dielectric breakdown which indicate that defects are present in both the IL and in the Al 2 O 3 . The IL forms primarily due to exposure of the Al to trace O 2 and/or H 2 O during the pre-ALD heating step of fabrication. As the IL was systematically reduced, by controlling the pre-ALD sample heating, we observed an increase of the ALD Al 2 O 3 barrier height from 0.9 to 1.5 eV along with a transition from soft to hard dielectric breakdown. This work represents a key step toward the realization of high-quality, atomically thin dielectrics with electron tunneling for the next generation of microelectronics.
NASA Astrophysics Data System (ADS)
Yatom, Shurik; Luo, Yuchen; Xiong, Qing; Bruggeman, Peter J.
2017-10-01
Gas phase non-equilibrium plasmas jets containing water vapor are of growing interest for many applications. In this manuscript, we report a detailed study of an atmospheric pressure nanosecond pulsed Ar + 0.26% H2O plasma jet. The plasma jet operates in an atmospheric pressure air surrounding but is shielded with a coaxial argon flow to limit the air diffusion into the jet effluent core. The jet impinges on a metal plate electrode and produces a stable plasma filament (transient spark) between the needle electrode in the jet and the metal plate. The stable plasma filament is characterized by spatially and time resolved electrical and optical diagnostics. This includes Rayleigh scattering, Stark broadening of the hydrogen Balmer lines and two-photon absorption laser induced fluorescence (TaLIF) to obtain the gas temperature, the electron density and the atomic hydrogen density respectively. Electron densities and atomic hydrogen densities up to 5 × 1022 m-3 and 2 × 1022 m-3 have been measured. This shows that atomic hydrogen is one of the main species in high density Ar-H2O plasmas. The gas temperature does not exceed 550 K in the core of the plasma. To enable in situ calibration of the H TaLIF at atmospheric pressure a previously published O density calibration scheme is extended to include a correction for the line profiles by including overlap integrals as required by H TaLIF. The line width of H TaLIF, due to collision broadening has the same trend as the neutral density obtained by Rayleigh scattering. This suggests the possibility to use this technique to in situ probe neutral gas densities.
Multifunctional carbon nanoelectrodes fabricated by focused ion beam milling.
Thakar, Rahul; Weber, Anna E; Morris, Celeste A; Baker, Lane A
2013-10-21
We report a strategy for fabrication of sub-micron, multifunctional carbon electrodes and application of these electrodes as probes for scanning electrochemical microscopy (SECM) and scanning ion conductance microscopy (SICM). The fabrication process utilized chemical vapor deposition of parylene, followed by thermal pyrolysis to form conductive carbon and then further deposition of parylene to form an insulation layer. To achieve well-defined electrode geometries, two methods of electrode exposure were utilized. In the first method, carbon probes were masked in polydimethylsiloxane (PDMS) to obtain a cone-shaped electrode. In the second method, the electrode area was exposed via milling with a focused ion beam (FIB) to reveal a carbon ring electrode, carbon ring/platinum disk electrode, or carbon ring/nanopore electrode. Carbon electrodes were batch fabricated (~35/batch) through the vapor deposition process and were characterized with scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), and cyclic voltammetry (CV) measurements. Additionally, Raman spectroscopy was utilized to examine the effects of Ga(+) ion implantation, a result of FIB milling. Constant-height, feedback mode SECM was performed with conical carbon electrodes and carbon ring electrodes. We demonstrate the utility of carbon ring/nanopore electrodes with SECM-SICM to simultaneously collect topography, ion current and electrochemical current images. In addition, carbon ring/nanopore electrodes were utilized in substrate generation/tip collection (SG/TC) SECM. In SG/TC SECM, localized delivery of redox molecules affords a higher resolution, than when the redox molecules are present in the bath solution. Multifunctional geometries of carbon electrode probes will find utility in electroanalytical applications, in general, and more specifically with electrochemical microscopy as discussed herein.
Chen, You-Yin; Lai, Hsin-Yi; Lin, Sheng-Huang; Cho, Chien-Wen; Chao, Wen-Hung; Liao, Chia-Hsin; Tsang, Siny; Chen, Yi-Fan; Lin, Si-Yue
2009-08-30
The design and testing of a new microelectrode array, the NCTU (National Chiao Tung University) probe, was presented. Evaluation results showed it has good biocompatibility, high signal-to-noise ratio (SNR: the root mean square of background noise to the average peak-to-peak amplitude of spikes) during chronic neural recordings, and high reusability for electrolytic lesions. The probe was a flexible, polyimide-based microelectrode array with a long shaft (14.9 mm in length) and 16 electrodes (5 microm-thick and 16 microm in radius); its performance in chronic in vivo recordings was examined in rodents. To improve the precision of implantation, a metallic, impact-resistant layer was sandwiched between the polyimide layers to strengthen the probe. The three-dimensional (3D) structure of electrodes fabricated by electroplating produced rough textures that increased the effective surface area. The in vitro impedance of electrodes on the NCTU probe was 2.4+/-0.52 MOmega at 1 kHz. In addition, post-surgical neural recordings of implanted NCTU probes were conducted for up to 40 days in awake, normally behaving rats. The electrodes on the NCTU probe functioned well and had a high SNR (range: 4-5) with reliable in vivo impedance (<0.7 MOmega). The electrodes were also robust enough to functionally record events, even after the anodal current (30 microA, 10s) was repeatedly applied for 60 times. With good biocompatibility, high and stable SNR for chronic recording, and high tolerance for electrolytic lesion, the NCTU probe would serve as a useful device in future neuroscience research.
NASA Astrophysics Data System (ADS)
Hu, Zongzhi
Molecular Dynamics (MD) simulation has been performed on various Electric Double Layer Capacitors (EDLCs) systems with different Room Temperature Ionic Liquids (RTILs) as well as different structures and materials of electrodes using a computationally efficient, low cost, united atom (UA)/explicit atom (EA) force filed. MD simulation studies on two 1-butyl-3-methylimidazolium (BMIM) based RTILs, i.e., [BMIM][BF4] and [BMIM][PF6], have been conducted on both atomic flat and corrugated graphite as well as (001) and (011) gold electrode surfaces to understand the correlations between the Electric Double Layer (EDL) structure and their corresponding differential capacitance (DC). Our MD simulations have strong agreement with some experimental data. The structures of electrodes also have a strong effect on the capacitance of EDLCs. MD simulations have been conducted on RTILs of N-methyl-N- propylpyrrolidinium [pyr13] and bis(fluorosulfonyl)imide (FSI) as well as [BMIM][PF6] on both curvature electrodes (fullerenes, nanotube, nanowire) and atomic flat electrode surfaces. It turns out that the nanowire electrode systems have the largest capacitance, following by fullerene systems. Nanotube electrode systems have the smallest capacitance, but they are still larger than that of atomically flat electrode system. Also, RTILs with slightly different chemical structure such as [Cnmim], n = 2, 4, 6, and 8, FSI and bis(trifluoromethylsulfonyl)imide (TFSI), have been examined by MD simulation on both flat and nonflat graphite electrode surfaces to study the effect of cation and anion's chemical structures on EDL structure and DC. With prismatic (nonflat) graphite electrodes, a transition from a bell-shape to a camel-shape DC dependence on electrode potential was observed with increase of the cation alkyl tail length for FSI systems. In contrast, the [Cnmim][TFSI] ionic liquids generated only a camel-shape DC on the rough surface regardless of the length of alkyl tail.
A Filtering Method to Reveal Crystalline Patterns from Atom Probe Microscopy Desorption Maps
2016-03-26
Gault, S.P. Ringer, J.M. Cairney, Atom probe crystallography : characterization of grain boundary orientation relationships in nanocrystalline...J.M. Cairney, Atom probe crystallography : atomic- scale 3-D orientation mapping, Scr. Mater. 66 (11) (2012) 907. L. Yao /MethodsX 3 (2016) 268–273 273
Hydrogen atom kinetics in capacitively coupled plasmas
NASA Astrophysics Data System (ADS)
Nunomura, Shota; Katayama, Hirotaka; Yoshida, Isao
2017-05-01
Hydrogen (H) atom kinetics has been investigated in capacitively coupled very high frequency (VHF) discharges at powers of 16-780 mW cm-2 and H2 gas pressures of 0.1-2 Torr. The H atom density has been measured using vacuum ultra violet absorption spectroscopy (VUVAS) with a micro-discharge hollow cathode lamp as a VUV light source. The measurements have been performed in two different electrode configurations of discharges: conventional parallel-plate diode and triode with an intermediate mesh electrode. We find that in the triode configuration, the H atom density is strongly reduced across the mesh electrode. The H atom density varies from ˜1012 cm-3 to ˜1010 cm-3 by crossing the mesh with 0.2 mm in thickness and 36% in aperture ratio. The fluid model simulations for VHF discharge plasmas have been performed to study the H atom generation, diffusion and recombination kinetics. The simulations suggest that H atoms are generated in the bulk plasma, by the electron impact dissociation (e + H2 \\to e + 2H) and the ion-molecule reaction (H2 + + H2 \\to {{{H}}}3+ + H). The diffusion of H atoms is strongly limited by a mesh electrode, and thus the mesh geometry influences the spatial distribution of the H atoms. The loss of H atoms is dominated by the surface recombination.
Characterization of Akiyama probe applied to dual-probes atomic force microscope
NASA Astrophysics Data System (ADS)
Wang, Hequn; Gao, Sitian; Li, Wei; Shi, Yushu; Li, Qi; Li, Shi; Zhu, Zhendong
2016-10-01
The measurement of nano-scale line-width has always been important and difficult in the field of nanometer measurements, while the rapid development of integrated circuit greatly raises the demand again. As one kind of scanning probe microscope (SPM), atomic force microscope (AFM) can realize quasi three-dimensional measurement, which is widely used in nanometer scale line-width measurement. Our team researched a dual-probes atomic force microscope, which can eliminate the prevalent effect of probe width on measurement results. In dual-probes AFM system, a novel head are newly designed. A kind of self-sensing and self-exciting probes which is Nanosensors cooperation's patented probe—Akiyama probe, is used in this novel head. The Akiyama probe applied to dual-probe atomic force microscope is one of the most important issues. The characterization of Akiyama probe would affect performance and accuracy of the whole system. The fundamental features of the Akiyama probe are electrically and optically characterized in "approach-withdraw" experiments. Further investigations include the frequency response of an Akiyama probe to small mechanical vibrations externally applied to the tip and the effective loading force yielding between the tip and the sample during the periodic contact. We hope that the characterization of the Akiyama probe described in this paper will guide application for dual-probe atomic force microscope.
Atomic-Layer-Deposited Transparent Electrodes for Silicon Heterojunction Solar Cells
Demaurex, Benedicte; Seif, Johannes P.; Smit, Sjoerd; ...
2014-11-01
We examine damage-free transparent-electrode deposition to fabricate high-efficiency amorphous silicon/crystalline silicon heterojunction solar cells. Such solar cells usually feature sputtered transparent electrodes, the deposition of which may damage the layers underneath. Using atomic layer deposition, we insert thin protective films between the amorphous silicon layers and sputtered contacts and investigate their effect on device operation. We find that a 20-nm-thick protective layer suffices to preserve, unchanged, the amorphous silicon layers beneath. Insertion of such protective atomic-layer-deposited layers yields slightly higher internal voltages at low carrier injection levels. However, we identify the presence of a silicon oxide layer, formed during processing,more » between the amorphous silicon and the atomic-layer-deposited transparent electrode that acts as a barrier, impeding hole and electron collection.« less
Sánchez, Carolina Ramírez; Taurino, Antonietta; Bozzini, Benedetto
2016-01-01
This paper reports on the quantitative assessment of the oxygen reduction reaction (ORR) electrocatalytic activity of electrodeposited Mn/polypyrrole (PPy) nanocomposites for alkaline aqueous solutions, based on the Rotating Disk Electrode (RDE) method and accompanied by structural characterizations relevant to the establishment of structure-function relationships. The characterization of Mn/PPy films is addressed to the following: (i) morphology, as assessed by Field-Emission Scanning Electron Microscopy (FE-SEM) and Atomic Force Microscope (AFM); (ii) local electrical conductivity, as measured by Scanning Probe Microscopy (SPM); and (iii) molecular structure, accessed by Raman Spectroscopy; these data provide the background against which the electrocatalytic activity can be rationalised. For comparison, the properties of Mn/PPy are gauged against those of graphite, PPy, and polycrystalline-Pt (poly-Pt). Due to the literature lack of accepted protocols for precise catalytic activity measurement at poly-Pt electrode in alkaline solution using the RDE methodology, we have also worked on the obtainment of an intralaboratory benchmark by evidencing some of the time-consuming parameters which drastically affect the reliability and repeatability of the measurement. PMID:28042491
Probing potential Li-ion battery electrolyte through first principles simulation of atomic clusters
NASA Astrophysics Data System (ADS)
Kushwaha, Anoop Kumar; Sahoo, Mihir Ranjan; Nayak, Saroj
2018-04-01
Li-ion battery has wide area of application starting from low power consumer electronics to high power electric vehicles. However, their large scale application in electric vehicles requires further improvement due to their low specific power density which is an essential parameter and is closely related to the working potential windows of the battery system. Several studies have found that these parameters can be taken care of by considering different cathode/anode materials and electrolytes. Recently, a unique approach has been reported on the basis of cluster size in which the use of Li3 cluster has been suggested as a potential component of the battery electrode material. The cluster based approach significantly enhances the working electrode potential up to 0.6V in the acetonitrile solvent. In the present work, using ab-initio quantum chemical calculation and the dielectric continuum model, we have investigated various dielectric solvent medium for the suitable electrolyte for the potential component Li3 cluster. This study suggests that high dielectric electrolytic solvent (ethylene carbonate and propylene carbonate) could be better for lithium cluster due to improvement in the total electrode potential in comparison to the other dielectric solvent.
Capacitance probe for fluid flow and volume measurements
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)
1995-01-01
Method and apparatus for making measurements on fluids are disclosed, including the use of a capacitive probe for measuring the flow volume of a material within a flow stream. The capacitance probe has at least two elongate electrodes and, in a specific embodiment of the invention, has three parallel elongate electrodes with the center electrode being an extension of the center conductor of a co-axial cable. A conductance probe is also provided to provide more accurate flow volume data in response to conductivity of the material within the flow stream. A preferred embodiment of the present invention provides for a gas flow stream through a microgravity environment that allows for monitoring a flow volume of a fluid sample, such as a urine sample, that is entrained within the gas flow stream.
Capacitance Probe for Fluid Flow and Volume Measurements
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)
1997-01-01
Method and apparatus for making measurements on fluids are disclosed, including the use of a capacitive probe for measuring the flow volume of a material within a flow stream. The capacitance probe has at least two elongate electrodes and, in a specific embodiment of the invention, has three parallel elongate electrodes with the center electrode being an extension of the center conductor of a co-axial cable. A conductance probe is also provided to provide more accurate flow volume data in response to conductivity of the material within the flow stream. A preferred embodiment of the present invention provides for a gas flow stream through a micro-gravity environment that allows for monitoring a flow volume of a fluid sample, such as a urine sample, that is entrained within the gas flow stream.
Sol-Gel Deposition of Iridium Oxide for Biomedical Micro-Devices
Nguyen, Cuong M.; Rao, Smitha; Yang, Xuesong; Dubey, Souvik; Mays, Jeffrey; Cao, Hung; Chiao, Jung-Chih
2015-01-01
Flexible iridium oxide (IrOx)-based micro-electrodes were fabricated on flexible polyimide substrates using a sol-gel deposition process for utilization as integrated pseudo-reference electrodes for bio-electrochemical sensing applications. The fabrication method yields reliable miniature on-probe IrOx electrodes with long lifetime, high stability and repeatability. Such sensors can be used for long-term measurements. Various dimensions of sol-gel iridium oxide electrodes including 1 mm × 1 mm, 500 μm × 500 μm, and 100 μm × 100 μm were fabricated. Sensor longevity and pH dependence were investigated by immersing the electrodes in hydrochloric acid, fetal bovine serum (FBS), and sodium hydroxide solutions for 30 days. Less pH dependent responses, compared to IrOx electrodes fabricated by electrochemical deposition processes, were measured at 58.8 ± 0.4 mV/pH, 53.8 ± 1.3 mV/pH and 48 ± 0.6 mV/pH, respectively. The on-probe IrOx pseudo-reference electrodes were utilized for dopamine sensing. The baseline responses of the sensors were higher than the one using an external Ag/AgCl reference electrode. Using IrOx reference electrodes integrated on the same probe with working electrodes eliminated the use of cytotoxic Ag/AgCl reference electrode without loss in sensitivity. This enables employing such sensors in long-term recording of concentrations of neurotransmitters in central nervous systems of animals and humans. PMID:25686309
NASA Astrophysics Data System (ADS)
Liu, Bin; Kim, Eric; Meggo, Anika; Gandhi, Sachin; Luo, Hao; Kallakuri, Srinivas; Xu, Yong; Zhang, Jinsheng
2017-04-01
Objective. Biocompatibility is a major issue for chronic neural implants, involving inflammatory and wound healing responses of neurons and glial cells. To enhance biocompatibility, we developed silicon-parylene hybrid neural probes with open architecture electrodes, microfluidic channels and a reservoir for drug delivery to suppress tissue responses. Approach. We chronically implanted our neural probes in the rat auditory cortex and investigated (1) whether open architecture electrode reduces inflammatory reaction by measuring glial responses; and (2) whether delivery of antibiotic minocycline reduces inflammatory and tissue reaction. Four weeks after implantation, immunostaining for glial fibrillary acid protein (astrocyte marker) and ionizing calcium-binding adaptor molecule 1 (macrophages/microglia cell marker) were conducted to identify immunoreactive astrocyte and microglial cells, and to determine the extent of astrocytes and microglial cell reaction/activation. A comparison was made between using traditional solid-surface electrodes and newly-designed electrodes with open architecture, as well as between deliveries of minocycline and artificial cerebral-spinal fluid diffused through microfluidic channels. Main results. The new probes with integrated micro-structures induced minimal tissue reaction compared to traditional electrodes at 4 weeks after implantation. Microcycline delivered through integrated microfluidic channels reduced tissue response as indicated by decreased microglial reaction around the neural probes implanted. Significance. The new design will help enhance the long-term stability of the implantable devices.
NASA Astrophysics Data System (ADS)
Wang, Kesheng; Cheng, Jia; Yao, Shiji; Lu, Yijia; Ji, Linhong; Xu, Dengfeng
2016-12-01
Electrostatic force measurement at the micro/nano scale is of great significance in science and engineering. In this paper, a reasonable way of applying voltage is put forward by taking an electrostatic chuck in a real integrated circuit manufacturing process as a sample, applying voltage in the probe and the sample electrode, respectively, and comparing the measurement effect of the probe oscillation phase difference by amplitude modulation atomic force microscopy. Based on the phase difference obtained from the experiment, the quantitative dependence of the absolute magnitude of the electrostatic force on the tip-sample distance and applied voltage is established by means of theoretical analysis and numerical simulation. The results show that the varying characteristics of the electrostatic force with the distance and voltage at the micro/nano scale are similar to those at the macroscopic scale. Electrostatic force gradually decays with increasing distance. Electrostatic force is basically proportional to the square of applied voltage. Meanwhile, the applicable conditions of the above laws are discussed. In addition, a comparison of the results in this paper with the results of the energy dissipation method shows the two are consistent in general. The error decreases with increasing distance, and the effect of voltage on the error is small.
Danoix, F; Grancher, G; Bostel, A; Blavette, D
2007-09-01
Atom probe is a very powerful instrument to measure concentrations on a sub nanometric scale [M.K. Miller, G.D.W. Smith, Atom Probe Microanalysis, Principles and Applications to Materials Problems, Materials Research Society, Pittsburgh, 1989]. Atom probe is therefore a unique tool to study and characterise finely decomposed metallic materials. Composition profiles or 3D mapping can be realised by gathering elemental composition measurements. As the detector efficiency is generally not equal to 1, the measured compositions are only estimates of actual values. The variance of the estimates depends on which information is to be estimated. It can be calculated when the detection process is known. These two papers are devoted to give complete analytical derivation and expressions of the variance on composition measurements in several situations encountered when using atom probe. In the first paper, we will concentrate on the analytical derivation of the variance when estimation of compositions obtained from a conventional one dimension (1D) atom probe is considered. In particular, the existing expressions, and the basic hypotheses on which they rely, will be reconsidered, and complete analytical demonstrations established. In the second companion paper, the case of 3D atom probe will be treated, highlighting how the knowledge of the 3D position of detected ions modifies the analytical derivation of the variance of local composition data.
NASA Astrophysics Data System (ADS)
Ludwig, Kip A.; Langhals, Nicholas B.; Joseph, Mike D.; Richardson-Burns, Sarah M.; Hendricks, Jeffrey L.; Kipke, Daryl R.
2011-02-01
We investigated using poly(3,4-ethylenedioxythiophene) (PEDOT) to lower the impedance of small, gold recording electrodes with initial impedances outside of the effective recording range. Smaller electrode sites enable more densely packed arrays, increasing the number of input and output channels to and from the brain. Moreover, smaller electrode sizes promote smaller probe designs; decreasing the dimensions of the implanted probe has been demonstrated to decrease the inherent immune response, a known contributor to the failure of long-term implants. As expected, chronically implanted control electrodes were unable to record well-isolated unit activity, primarily as a result of a dramatically increased noise floor. Conversely, electrodes coated with PEDOT consistently recorded high-quality neural activity, and exhibited a much lower noise floor than controls. These results demonstrate that PEDOT coatings enable electrode designs 15 µm in diameter.
Dong, Yao-Jun; Wang, Xue-Feng; Yang, Shuo-Wang; Wu, Xue-Mei
2014-08-21
We demonstrate that giant current and high spin rectification ratios can be achieved in atomic carbon chain devices connected between two symmetric ferromagnetic zigzag-graphene-nanoribbon electrodes. The spin dependent transport simulation is carried out by density functional theory combined with the non-equilibrium Green's function method. It is found that the transverse symmetries of the electronic wave functions in the nanoribbons and the carbon chain are critical to the spin transport modes. In the parallel magnetization configuration of two electrodes, pure spin current is observed in both linear and nonlinear regions. However, in the antiparallel configuration, the spin-up (down) current is prohibited under the positive (negative) voltage bias, which results in a spin rectification ratio of order 10(4). When edge carbon atoms are substituted with boron atoms to suppress the edge magnetization in one of the electrodes, we obtain a diode with current rectification ratio over 10(6).
Dong, Yao-Jun; Wang, Xue-Feng; Yang, Shuo-Wang; Wu, Xue-Mei
2014-01-01
We demonstrate that giant current and high spin rectification ratios can be achieved in atomic carbon chain devices connected between two symmetric ferromagnetic zigzag-graphene-nanoribbon electrodes. The spin dependent transport simulation is carried out by density functional theory combined with the non-equilibrium Green's function method. It is found that the transverse symmetries of the electronic wave functions in the nanoribbons and the carbon chain are critical to the spin transport modes. In the parallel magnetization configuration of two electrodes, pure spin current is observed in both linear and nonlinear regions. However, in the antiparallel configuration, the spin-up (down) current is prohibited under the positive (negative) voltage bias, which results in a spin rectification ratio of order 104. When edge carbon atoms are substituted with boron atoms to suppress the edge magnetization in one of the electrodes, we obtain a diode with current rectification ratio over 106. PMID:25142376
Souza, Elaine; Nascimento, Gustavo; Santana, Nataly; Ferreira, Danielly; Lima, Manoel; Natividade, Edna; Martins, Danyelly; Lima-Filho, José
2011-01-01
A biosensor that relies on the adsorption immobilization of the 18-mer single-stranded nucleic acid related to dengue virus gene 1 on activated pencil graphite was developed. Hybridization between the probe and its complementary oligonucleotides (the target) was investigated by monitoring guanine oxidation by differential pulse voltammetry (DPV). The pencil graphite electrode was made of ordinary pencil lead (type 4B). The polished surface of the working electrode was activated by applying a potential of 1.8 V for 5 min. Afterward, the dengue oligonucleotides probe was immobilized on the activated electrode by applying 0.5 V to the electrode in 0.5 M acetate buffer (pH 5.0) for 5 min. The hybridization process was carried out by incubating at the annealing temperature of the oligonucleotides. A time of five minutes and concentration of 1 μM were found to be the optimal conditions for probe immobilization. The electrochemical detection of annealing between the DNA probe (TS-1P) immobilized on the modified electrode, and the target (TS-1T) was achieved. The target could be quantified in a range from 1 to 40 nM with good linearity and a detection limit of 0.92 nM. The specificity of the electrochemical biosensor was tested using non-complementary sequences of dengue virus 2 and 3. PMID:22163916
Laser-Assisted Atom Probe Tomography of Deformed Minerals: A Zircon Case Study.
La Fontaine, Alexandre; Piazolo, Sandra; Trimby, Patrick; Yang, Limei; Cairney, Julie M
2017-04-01
The application of atom probe tomography to the study of minerals is a rapidly growing area. Picosecond-pulsed, ultraviolet laser (UV-355 nm) assisted atom probe tomography has been used to analyze trace element mobility within dislocations and low-angle boundaries in plastically deformed specimens of the nonconductive mineral zircon (ZrSiO4), a key material to date the earth's geological events. Here we discuss important experimental aspects inherent in the atom probe tomography investigation of this important mineral, providing insights into the challenges in atom probe tomography characterization of minerals as a whole. We studied the influence of atom probe tomography analysis parameters on features of the mass spectra, such as the thermal tail, as well as the overall data quality. Three zircon samples with different uranium and lead content were analyzed, and particular attention was paid to ion identification in the mass spectra and detection limits of the key trace elements, lead and uranium. We also discuss the correlative use of electron backscattered diffraction in a scanning electron microscope to map the deformation in the zircon grains, and the combined use of transmission Kikuchi diffraction and focused ion beam sample preparation to assist preparation of the final atom probe tip.
NASA Astrophysics Data System (ADS)
Wang, Wen; Ma, Chao; Li, Yi; Liu, Baihui; Tan, Liang
2018-03-01
A one-pot protocol based on cyclic voltammetric scan was employed to prepare new conducting composite that was abundant in amino groups. The scanning electron microscope, atomic force microscope, X-ray photoelectron spectroscopy and infrared spectrum characterization demonstrate that poly(azure A), gold nanoparticles, chitosan and cysteine were immobilized simultaneously on glassy carbon electrode surface. Von Willebrand factor (vWF) antibody (Ab) was subsequently assembled by using glutaraldehyde to construct the Ab/composite-modified electrode. The capture of vWF could inhibit the charge transfer between the ferri-/ferrocyanide probe and the electrode and exert the negative effect on the electrochemical response of the dye polymer in the conducting composite due to the strong steric hindrance effect. The DPV peak current change before and after the immunoreaction was found to be proportional to the logarithm of the vWF concentration from 0.001 to 100 μg mL-1 with a detection limit of 0.4 ng mL-1. The proposed label-free electrochemical method was employed in the investigation on the release of vWF by oxidation-injured vascular endothelial cells. The experimental results exhibit that the vWF content in growth medium was increased when the oxidation injury of the cells was intensified in the presence of H2O2.
Wang, Jin; Tapio, Kosti; Habert, Aurélie; Sorgues, Sebastien; Colbeau-Justin, Christophe; Ratier, Bernard; Scarisoreanu, Monica; Toppari, Jussi; Herlin-Boime, Nathalie; Bouclé, Johann
2016-02-23
Solid-state dye-sensitized solar cells (ssDSSC) constitute a major approach to photovoltaic energy conversion with efficiencies over 8% reported thanks to the rational design of efficient porous metal oxide electrodes, organic chromophores, and hole transporters. Among the various strategies used to push the performance ahead, doping of the nanocrystalline titanium dioxide (TiO₂) electrode is regularly proposed to extend the photo-activity of the materials into the visible range. However, although various beneficial effects for device performance have been observed in the literature, they remain strongly dependent on the method used for the production of the metal oxide, and the influence of nitrogen atoms on charge kinetics remains unclear. To shed light on this open question, we synthesized a set of N-doped TiO₂ nanopowders with various nitrogen contents, and exploited them for the fabrication of ssDSSC. Particularly, we carefully analyzed the localization of the dopants using X-ray photo-electron spectroscopy (XPS) and monitored their influence on the photo-induced charge kinetics probed both at the material and device levels. We demonstrate a strong correlation between the kinetics of photo-induced charge carriers probed both at the level of the nanopowders and at the level of working solar cells, illustrating a direct transposition of the photo-physic properties from materials to devices.
Wang, Jin; Tapio, Kosti; Habert, Aurélie; Sorgues, Sebastien; Colbeau-Justin, Christophe; Ratier, Bernard; Scarisoreanu, Monica; Toppari, Jussi; Herlin-Boime, Nathalie; Bouclé, Johann
2016-01-01
Solid-state dye-sensitized solar cells (ssDSSC) constitute a major approach to photovoltaic energy conversion with efficiencies over 8% reported thanks to the rational design of efficient porous metal oxide electrodes, organic chromophores, and hole transporters. Among the various strategies used to push the performance ahead, doping of the nanocrystalline titanium dioxide (TiO2) electrode is regularly proposed to extend the photo-activity of the materials into the visible range. However, although various beneficial effects for device performance have been observed in the literature, they remain strongly dependent on the method used for the production of the metal oxide, and the influence of nitrogen atoms on charge kinetics remains unclear. To shed light on this open question, we synthesized a set of N-doped TiO2 nanopowders with various nitrogen contents, and exploited them for the fabrication of ssDSSC. Particularly, we carefully analyzed the localization of the dopants using X-ray photo-electron spectroscopy (XPS) and monitored their influence on the photo-induced charge kinetics probed both at the material and device levels. We demonstrate a strong correlation between the kinetics of photo-induced charge carriers probed both at the level of the nanopowders and at the level of working solar cells, illustrating a direct transposition of the photo-physic properties from materials to devices. PMID:28344292
Kim, Se-Ho; Kang, Phil Woong; Park, O Ok; Seol, Jae-Bok; Ahn, Jae-Pyoung; Lee, Ji Yeong; Choi, Pyuck-Pa
2018-07-01
We present a new method of preparing needle-shaped specimens for atom probe tomography from freestanding Pd and C-supported Pt nanoparticles. The method consists of two steps, namely electrophoresis of nanoparticles on a flat Cu substrate followed by electrodeposition of a Ni film acting as an embedding matrix for the nanoparticles. Atom probe specimen preparation can be subsequently carried out by means of focused-ion-beam milling. Using this approach, we have been able to perform correlative atom probe tomography and transmission electron microscopy analyses on both nanoparticle systems. Reliable mass spectra and three-dimensional atom maps could be obtained for Pd nanoparticle specimens. In contrast, atom probe samples prepared from C-supported Pt nanoparticles showed uneven field evaporation and hence artifacts in the reconstructed atom maps. Our developed method is a viable means of mapping the three-dimensional atomic distribution within nanoparticles and is expected to contribute to an improved understanding of the structure-composition-property relationships of various nanoparticle systems. Copyright © 2018 Elsevier B.V. All rights reserved.
Wang, Dingzhong; Tang, Wei; Wu, Xiaojie; Wang, Xinyi; Chen, Gengjia; Chen, Qiang; Li, Na; Liu, Feng
2012-08-21
Toehold-mediated strand displacement reaction (SDR) is first introduced to develop a simple quartz crystal microbalance (QCM) biosensor without an enzyme or label at normal temperature for highly selective and sensitive detection of single-nucleotide polymorphism (SNP) in the p53 tumor suppressor gene. A hairpin capture probe with an external toehold is designed and immobilized on the gold electrode surface of QCM. A successive SDR is initiated by the target sequence hybridization with the toehold domain and ends with the unfolding of the capture probe. Finally, the open-loop capture probe hybridizes with the streptavidin-coupled reporter probe as an efficient mass amplifier to enhance the QCM signal. The proposed biosensor displays remarkable specificity to target the p53 gene fragment against single-base mutant sequences (e.g., the largest discrimination factor is 63 to C-C mismatch) and high sensitivity with the detection limit of 0.3 nM at 20 °C. As the crucial component of the fabricated biosensor for providing the high discrimination capability, the design rationale of the capture probe is further verified by fluorescence sensing and atomic force microscopy imaging. Additionally, a recovery of 84.1% is obtained when detecting the target sequence in spiked HeLa cells lysate, demonstrating the feasibility of employing this biosensor in detecting SNPs in biological samples.
Scanning Probe Microscopy on heterogeneous CaCu3Ti4O12 thin films
2011-01-01
The conductive atomic force microscopy provided a local characterization of the dielectric heterogeneities in CaCu3Ti4O12 (CCTO) thin films deposited by MOCVD on IrO2 bottom electrode. In particular, both techniques have been employed to clarify the role of the inter- and sub-granular features in terms of conductive and insulating regions. The microstructure and the dielectric properties of CCTO thin films have been studied and the evidence of internal barriers in CCTO thin films has been provided. The role of internal barriers and the possible explanation for the extrinsic origin of the giant dielectric response in CCTO has been evaluated. PMID:21711646
A titanium hydride gun for plasma injection into the T2-reversed field pinch device
NASA Astrophysics Data System (ADS)
Voronin, A. V.; Hellblom, K. G.
1999-02-01
A study of a plasma gun (modified Bostic type) with titanium hydride electrodes has been carried out. The total number of released hydrogen atoms was in the range 1016-1018 and the maximum plasma flow velocity was 2.5×105 m s-1. The ion density near the gun edge reached 1.8×1020 m-3 and the electron temperature was around 40 eV as estimated from probe measurements. No species other than hydrogen or titanium were seen in the plasma line radiation. The plasma injector was successfully used for gas pre-ionization in the Extrap T2 reversed-field pinch device (ohmic heating toroidal experiment (OHTE)).
Scanning Probe Microscopy on heterogeneous CaCu3Ti4O12 thin films
NASA Astrophysics Data System (ADS)
Fiorenza, Patrick; Lo Nigro, Raffaella; Raineri, Vito
2011-12-01
The conductive atomic force microscopy provided a local characterization of the dielectric heterogeneities in CaCu3Ti4O12 (CCTO) thin films deposited by MOCVD on IrO2 bottom electrode. In particular, both techniques have been employed to clarify the role of the inter- and sub-granular features in terms of conductive and insulating regions. The microstructure and the dielectric properties of CCTO thin films have been studied and the evidence of internal barriers in CCTO thin films has been provided. The role of internal barriers and the possible explanation for the extrinsic origin of the giant dielectric response in CCTO has been evaluated.
Scanning Probe Microscopy on heterogeneous CaCu3Ti4O12 thin films.
Fiorenza, Patrick; Lo Nigro, Raffaella; Raineri, Vito
2011-02-04
The conductive atomic force microscopy provided a local characterization of the dielectric heterogeneities in CaCu3Ti4O12 (CCTO) thin films deposited by MOCVD on IrO2 bottom electrode. In particular, both techniques have been employed to clarify the role of the inter- and sub-granular features in terms of conductive and insulating regions. The microstructure and the dielectric properties of CCTO thin films have been studied and the evidence of internal barriers in CCTO thin films has been provided. The role of internal barriers and the possible explanation for the extrinsic origin of the giant dielectric response in CCTO has been evaluated.
Atomic-level imaging, processing and characterization of semiconductor surfaces
Kazmerski, Lawrence L.
1995-01-01
A method for selecting and removing single specific atoms from a solid material surface uses photon biasing to break down bonds that hold the selected atom in the lattice and to reduce barrier effects that hold the atom from transferring to a probe. The photon bias is preferably light or other electromagnetic radiation with a wavelength and frequency that approximately matches the wave function of the target atom species to be removed to induce high energy, selective thermionic-like vibration. An electric field potential is then applied between the probe and the surface of the solid material to pull the atom out of the lattice and to transfer the atom to the probe. Different extrinsic atoms can be installed in the lattice sites that are vacated by the removed atoms by using a photon bias that resonates the extrinsic atom species, reversing polarity of the electric field, and blowing gas comprising the extrinsic atoms through a hollow catheter probe.
Atomic-level imaging, processing and characterization of semiconductor surfaces
Kazmerski, L.L.
1995-08-22
A method for selecting and removing single specific atoms from a solid material surface uses photon biasing to break down bonds that hold the selected atom in the lattice and to reduce barrier effects that hold the atom from transferring to a probe. The photon bias is preferably light or other electromagnetic radiation with a wavelength and frequency that approximately matches the wave function of the target atom species to be removed to induce high energy, selective thermionic-like vibration. An electric field potential is then applied between the probe and the surface of the solid material to pull the atom out of the lattice and to transfer the atom to the probe. Different extrinsic atoms can be installed in the lattice sites that are vacated by the removed atoms by using a photon bias that resonates the extrinsic atom species, reversing polarity of the electric field, and blowing gas comprising the extrinsic atoms through a hollow catheter probe. 8 figs.
Metal atomization spray nozzle
Huxford, Theodore J.
1993-01-01
A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal.
A cone-shaped 3D carbon nanotube probe for neural recording.
Su, Huan-Chieh; Lin, Chia-Min; Yen, Shiang-Jie; Chen, Yung-Chan; Chen, Chang-Hsiao; Yeh, Shih-Rung; Fang, Weileun; Chen, Hsin; Yao, Da-Jeng; Chang, Yen-Chung; Yew, Tri-Rung
2010-09-15
A novel cone-shaped 3D carbon nanotube (CNT) probe is proposed as an electrode for applications in neural recording. The electrode consists of CNTs synthesized on the cone-shaped Si (cs-Si) tip by catalytic thermal chemical vapor deposition (CVD). This probe exhibits a larger CNT surface area with the same footprint area and higher spatial resolution of neural recording compared to planar-type CNT electrodes. An approach to improve CNT characteristics by O(2) plasma treatment to modify the CNT surface will be also presented. Electrochemical characterization of O(2) plasma-treated 3D CNT (OT-CNT) probes revealed low impedance per unit area (∼64.5 Ω mm(-2)) at 1 kHz and high specific capacitance per unit area (∼2.5 mF cm(-2)). Furthermore, the OT-CNT probes were employed to record the neural signals of a crayfish nerve cord. Our findings suggest that OT-CNT probes have potential advantages as high spatial resolution and superb electrochemical properties which are suitable for neural recording applications. Copyright 2010 Elsevier B.V. All rights reserved.
Nascimento, Gustavo A; Souza, Elaine V M; Campos-Ferreira, Danielly S; Arruda, Mariana S; Castelletti, Carlos H M; Wanderley, Marcela S O; Ekert, Marek H F; Bruneska, Danyelly; Lima-Filho, José L
2012-01-01
A new electrochemical DNA biosensor for bovine papillomavirus (BPV) detection that was based on screen-printed electrodes was comprehensively studied by electrochemical methods of cyclic voltammetry (CV) and differential pulse voltammetry (DPV). A BPV probe was immobilised on a working electrode (gold) modified with a polymeric film of poly-L-lysine (PLL) and chitosan. The experimental design was carried out to evaluate the influence of polymers, probe concentration (BPV probe) and immobilisation time on the electrochemical reduction of methylene blue (MB). The polymer poly-L-lysine (PLL), a probe concentration of 1 μM and an immobilisation time of 60 min showed the best result for the BPV probe immobilisation. With the hybridisation of a complementary target sequence (BPV target), the electrochemical signal decreased compared to a BPV probe immobilised on the modified PLL-gold electrode. Viral DNA that was extracted from cattle with papillomatosis also showed a decrease in the MB electrochemical reduction, which suggested that the decreased electrochemical signal corresponded to a bovine papillomavirus infection. The hybridisation specificity experiments further indicated that the biosensor could discriminate the complementary sequence from the non-complementary sequence. Thus, the results showed that the development of analytical devices, such as a biosensor, could assist in the rapid and efficient detection of bovine papillomavirus DNA and help in the prevention and treatment of papillomatosis in cattle. Copyright © 2012 Elsevier B.V. All rights reserved.
The impact of pyrene on the electrochemical response of the ferricyanide probe using Self Assembled Monolayer (SAM)-modified gold electrodes was investigated using Cyclic Voltammetry (CV) and Square Wave Voltammetry (SWV). These results suggest the feasibility of using SAMs, par...
The sinusoidal probe: a new approach to improve electrode longevity
Sohal, Harbaljit S.; Jackson, Andrew; Jackson, Richard; Clowry, Gavin J.; Vassilevski, Konstantin; O’Neill, Anthony; Baker, Stuart N.
2014-01-01
Micromotion between the brain and implanted electrodes is a major contributor to the failure of invasive brain–machine interfaces. Movements of the electrode tip cause recording instabilities while spike amplitudes decline over the weeks/months post-implantation due to glial cell activation caused by sustained mechanical trauma. We have designed a sinusoidal probe in order to reduce movement of the recording tip relative to the surrounding neural tissue. The probe was microfabricated from flexible materials and incorporated a sinusoidal shaft to minimize tethering forces and a 3D spheroid tip to anchor the recording site within the brain. Compared to standard microwire electrodes, the signal-to-noise ratio and local field potential power of sinusoidal probe recordings from rabbits was more stable across recording periods up to 678 days. Histological quantification of microglia and astrocytes showed reduced neuronal tissue damage especially for the tip region between 6 and 24 months post-implantation. We suggest that the micromotion-reducing measures incorporated into our design, at least partially, decreased the magnitude of gliosis, resulting in enhanced longevity of recording. PMID:24808859
Close-Packed Silicon Microelectrodes for Scalable Spatially Oversampled Neural Recording
Scholvin, Jörg; Kinney, Justin P.; Bernstein, Jacob G.; Moore-Kochlacs, Caroline; Kopell, Nancy; Fonstad, Clifton G.; Boyden, Edward S.
2015-01-01
Objective Neural recording electrodes are important tools for understanding neural codes and brain dynamics. Neural electrodes that are close-packed, such as in tetrodes, enable spatial oversampling of neural activity, which facilitates data analysis. Here we present the design and implementation of close-packed silicon microelectrodes, to enable spatially oversampled recording of neural activity in a scalable fashion. Methods Our probes are fabricated in a hybrid lithography process, resulting in a dense array of recording sites connected to submicron dimension wiring. Results We demonstrate an implementation of a probe comprising 1000 electrode pads, each 9 × 9 μm, at a pitch of 11 μm. We introduce design automation and packaging methods that allow us to readily create a large variety of different designs. Significance Finally, we perform neural recordings with such probes in the live mammalian brain that illustrate the spatial oversampling potential of closely packed electrode sites. PMID:26699649
Compact ion accelerator source
Schenkel, Thomas; Persaud, Arun; Kapadia, Rehan; Javey, Ali
2014-04-29
An ion source includes a conductive substrate, the substrate including a plurality of conductive nanostructures with free-standing tips formed on the substrate. A conductive catalytic coating is formed on the nanostructures and substrate for dissociation of a molecular species into an atomic species, the molecular species being brought in contact with the catalytic coating. A target electrode placed apart from the substrate, the target electrode being biased relative to the substrate with a first bias voltage to ionize the atomic species in proximity to the free-standing tips and attract the ionized atomic species from the substrate in the direction of the target electrode.
Terry, Jonathan G; Schmüser, Ilka; Underwood, Ian; Corrigan, Damion K; Freeman, Neville J; Bunting, Andrew S; Mount, Andrew R; Walton, Anthony J
2013-12-01
A novel technique for the production of nanoscale electrode arrays that uses standard microfabrication processes and micron-scale photolithography is reported here in detail. These microsquare nanoband edge electrode (MNEE) arrays have been fabricated with highly reproducible control of the key array dimensions, including the size and pitch of the individual elements and, most importantly, the width of the nanoband electrodes. The definition of lateral features to nanoscale dimensions typically requires expensive patterning techniques that are complex and low-throughput. However, the fabrication methodology used here relies on the fact that vertical dimensions (i.e. layer thicknesses) have long been manufacturable at the nanoscale using thin film deposition techniques that are well established in mainstream microelectronics. The authors report for the first time two aspects that highlight the particular suitability of these MNEE array systems for probe monolayer biosensing. The first is simulation, which shows the enhanced sensitivity to the redox reaction of the solution redox couple. The second is the enhancement of probe film functionalisation observed for the probe film model molecule, 6-mercapto-1-hexanol compared with microsquare electrodes. Such surface modification for specific probe layer biosensing and detection is of significance for a wide range of biomedical and other sensing and analytical applications.
Swain, C P; Mills, T N; Shemesh, E; Dark, J M; Lewin, M R; Clifton, J S; Northfield, T C; Cotton, P B; Salmon, P R
1984-01-01
Several inexpensive endoscopic methods of electrocoagulation have been advocated for treatment of gastrointestinal haemorrhage. We compared four types of electrode: dry monopolar - Cameron Miller (M), liquid monopolar - Storz (L), bipolar - Bicap ACMI (B), and heater probe - Seattle (H). The electrical and thermal properties of these probes were studied using computerised monitoring of energy deposition and their efficacy and safety was tested in a randomised study in 140 experimental canine gastric ulcers. At optimal pulse settings 20J (M), 70J (L), 17J (B), 15J (H), effective haemostasis was achieved in all ulcers, the mean number of pulses being M5, L6, H6 and B11, the first three requiring significantly (p less than 0.01) less pulse than B. Relative safety of the electrodes was assessed by comparing the incidence of full thickness damage at histology: B24%, H20%, L58% and M69%; B and H proving significantly (p less than 0.01) safer than L and M. Sticking was assessed as H greater than B greater than M much greater than L. Insensitivity to extreme angulation and force of application was assessed as L greater than B greater than M (H is preset). Of the two safer electrodes the heater probe was more effective than the bipolar probe. Despite its greater tendency to stick than the other devices, the heater probe appeared the most promising of the endoscopic electrodes tested. Images Fig. 1 Fig. 2 PMID:6510772
Dynamics of trapped atoms around an optical nanofiber probed through polarimetry.
Solano, Pablo; Fatemi, Fredrik K; Orozco, Luis A; Rolston, S L
2017-06-15
The evanescent field outside an optical nanofiber (ONF) can create optical traps for neutral atoms. We present a non-destructive method to characterize such trapping potentials. An off-resonance linearly polarized probe beam that propagates through the ONF experiences a slow axis of polarization produced by trapped atoms on opposite sides along the ONF. The transverse atomic motion is imprinted onto the probe polarization through the changing atomic index of refraction. By applying a transient impulse, we measure a time-dependent polarization rotation of the probe beam that provides both a rapid and non-destructive measurement of the optical trapping frequencies.
NASA Astrophysics Data System (ADS)
Travis, Jonathan
The performance and safety of lithium-ion batteries (LIBs) are dependent on interfacial processes at the positive and negative electrodes. For example, the surface layers that form on cathodes and anodes are known to affect the kinetics and capacity of LIBs. Interfacial reactions between the electrolyte and the electrodes are also known to initiate electrolyte combustion during thermal runaway events that compromise battery safety. Atomic layer deposition (ALD) and molecular layer deposition (MLD) are thin film deposition techniques based on sequential, self-limiting surface reactions. ALD and MLD can deposit ultrathin and conformal films on high aspect ratio and porous substrates such as composite particulate electrodes in lithium-ion batteries. The effects of electrode surface modification via ALD and MLD are studied using a variety of techniques. It was found that sub-nm thick coatings of Al2O 3 deposited via ALD have beneficial effects on the stability of LIB anodes and cathodes. These same Al2O3 ALD films were found to improve the safety of graphite based anodes through prevention of exothermic solid electrolyte interface (SEI) degradation at elevated temperatures. Ultrathin and conformal metal alkoxide polymer films known as "metalcones" were grown utilizing MLD techniques with trimethylaluminum (TMA) or titanium tetrachloride (TiCl4) and organic diols or triols, such as ethylene glycol (EG), glycerol (GL) or hydroquinone (HQ), as the reactants. Pyrolysis of these metalcone films under inert gas conditions led to the development of conductive metal oxide/carbon composites. The composites were found to contain sp2 carbon using micro-Raman spectroscopy in the pyrolyzed films with pyrolysis temperatures ≥ 600°C. Four point probe measurements demonstrated that the graphitic sp2 carbon domains in the metalcone films grown using GL and HQ led to significant conductivity. The pyrolysis of conformal MLD films to obtain conductive metal oxide/carbon composite films is presented as a method for enabling non-conductive, but possibly electrochemically active materials, to be used for electrochemical applications.
Zheng, Yongping; Zhang, Tingwei; Wu, Songjie; Zhang, Jue; Fang, Jing
2018-01-01
Molecularly imprinted polymer (MIP) films prepared by bulk polymerization suffer from numerous deficiencies, including poor mass transfer ability and difficulty in controlling reaction rate and film thickness, which usually result in poor repeatability. However, polymer film synthesized by electropolymerization methods benefit from high reproducibility, simplicity and rapidity of preparation. In the present study, an Au film served as the refractive index-sensitive metal film to couple with the light leaked out from optical fiber core and the electrode for electropolymerizing MIP film simultaneously. The manufactured probe exhibited satisfactory sensitivity and specificity. Furthermore, the surface morphology and functional groups of the synthesized MIP film were characterized by Atomic Force Microscopy (AFM) and Fourier transform infrared microspectroscopy (FTIR) for further insights into the adsorption and desorption processes. Given the low cost, label-free test, simple preparation process and fast response, this method has a potential application to monitor substances in complicated real samples for out-of-lab test in the future. PMID:29522472
Miles, Robin R [Danville, CA; Belgrader, Phillip [Severna Park, MD; Fuller, Christopher D [Oakland, CA
2007-01-02
Impedance measurements are used to detect the end-point for PCR DNA amplification. A pair of spaced electrodes are located on a surface of a microfluidic channel and an AC or DC voltage is applied across the electrodes to produce an electric field. An ionically labeled probe will attach to a complementary DNA segment, and a polymerase enzyme will release the ionic label. This causes the conductivity of the solution in the area of the electrode to change. This change in conductivity is measured as a change in the impedance been the two electrodes.
Perera, Rukshan T; Rosenstein, Jacob K
2018-01-31
Nanoscale working electrodes and miniaturized electroanalytical devices are valuable platforms to probe molecular phenomena and perform chemical analyses. However, the inherent close distance of metallic electrodes integrated into a small volume of electrolyte can complicate classical electroanalytical techniques. In this study, we use a scanning nanopipette contact probe as a model miniaturized electrochemical cell to demonstrate measurable side effects of the reaction occurring at a quasi-reference electrode. We provide evidence for in situ generation of nanoparticles in the absence of any electroactive species and we critically analyze the origin, nucleation, dissolution and dynamic behavior of these nanoparticles as they appear at the working electrode. It is crucial to recognize the implications of using quasi-reference electrodes in confined electrochemical cells, in order to accurately interpret the results of nanoscale electrochemical experiments.
Caliskan, S; Laref, A
2014-07-14
Spin-polarized transport properties are determined for pentacene sandwiched between Ni surface electrodes with various anchoring ligands. These calculations are carried out using spin density functional theory in tandem with a non-equilibrium Green's function technique. The presence of a Se atom at the edge of the pentacene molecule significantly modifies the transport properties of the device because Se has a different electronegativity than S. Our theoretical results clearly show a larger current for spin-up electrons than for spin-down electrons in the molecular junction that is attached asymmetrically across the Se linker at one side of the Ni electrodes (in an APL magnetic orientation). Moreover, this molecular junction exhibits pronounced NDR as the bias voltage is increased from 0.8 to 1.0 V. However, this novel NDR behavior is only detected in this promising pentacene molecular device. The NDR in the current-voltage (I-V) curve results from the narrowness of the density of states for the molecular states. The feasibility of controlling the TMR is also predicted in these molecular device nanostructures. Spin-dependent transmission calculations show that the sign and strength of the current-bias voltage characteristics and the TMR could be tailored for the organic molecule devices. These molecular junctions are joined symmetrically and asymmetrically between Ni metallic probes across the S and Se atoms (at the ends of the edges of the pentacene molecule). Our theoretical findings show that spin-valve phenomena can occur in these prototypical molecular junctions. The TMR and NDR results show that nanoscale junctions with spin valves could play a vital role in the production of novel functional molecular devices.
Metal atomization spray nozzle
Huxford, T.J.
1993-11-16
A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal. 6 figures.
NASA Astrophysics Data System (ADS)
Hara, Seth A.; Kim, Brian J.; Kuo, Jonathan T. W.; Lee, Curtis D.; Meng, Ellis; Pikov, Victor
2016-12-01
Objective. Acquisition of reliable and robust neural recordings with intracortical neural probes is a persistent challenge in the field of neuroprosthetics. We developed a multielectrode array technology to address chronic intracortical recording reliability and present in vivo recording results. Approach. The 2 × 2 Parylene sheath electrode array (PSEA) was microfabricated and constructed from only Parylene C and platinum. The probe includes a novel three-dimensional sheath structure, perforations, and bioactive coatings that improve tissue integration and manage immune response. Coatings were applied using a sequential dip-coating method that provided coverage over the entire probe surface and interior of the sheath structure. A sharp probe tip taper facilitated insertion with minimal trauma. Fabricated probes were subject to examination by optical and electron microscopy and electrochemical testing prior to implantation. Main results. 1 × 2 arrays were successfully fabricated on wafer and then packaged together to produce 2 × 2 arrays. Then, probes having electrode sites with adequate electrochemical properties were selected. A subset of arrays was treated with bioactive coatings to encourage neuronal growth and suppress inflammation and another subset of arrays was implanted in conjunction with a virally mediated expression of Caveolin-1. Arrays were attached to a custom-made insertion shuttle to facilitate precise insertion into the rat motor cortex. Stable electrophysiological recordings were obtained during the period of implantation up to 12 months. Immunohistochemical evaluation of cortical tissue around individual probes indicated a strong correlation between the electrophysiological performance of the probes and histologically observable proximity of neurons and dendritic sprouting. Significance. The PSEA demonstrates the scalability of sheath electrode technology and provides higher electrode count and density to access a greater volume for recording. This study provided support for the importance of creating a supportive biological environment around the probes to promote the long-term electrophysiological performance of flexible probes in the cerebral cortex. In particular, we demonstrated beneficial effects of the Matrigel coating and the long-term expression of Caveolin-1. Furthermore, we provided support to an idea of using an artificial acellular tissue compartment as a way to counteract the walling-off effect of the astrocytic scar formation around the probes as a means of establishing a more intimate and stable neural interface.
Keenan, Michael R; Smentkowski, Vincent S; Ulfig, Robert M; Oltman, Edward; Larson, David J; Kelly, Thomas F
2011-06-01
We demonstrate for the first time that multivariate statistical analysis techniques can be applied to atom probe tomography data to estimate the chemical composition of a sample at the full spatial resolution of the atom probe in three dimensions. Whereas the raw atom probe data provide the specific identity of an atom at a precise location, the multivariate results can be interpreted in terms of the probabilities that an atom representing a particular chemical phase is situated there. When aggregated to the size scale of a single atom (∼0.2 nm), atom probe spectral-image datasets are huge and extremely sparse. In fact, the average spectrum will have somewhat less than one total count per spectrum due to imperfect detection efficiency. These conditions, under which the variance in the data is completely dominated by counting noise, test the limits of multivariate analysis, and an extensive discussion of how to extract the chemical information is presented. Efficient numerical approaches to performing principal component analysis (PCA) on these datasets, which may number hundreds of millions of individual spectra, are put forward, and it is shown that PCA can be computed in a few seconds on a typical laptop computer.
Single Molecule Electrochemical Detection in Aqueous Solutions and Ionic Liquids.
Byers, Joshua C; Paulose Nadappuram, Binoy; Perry, David; McKelvey, Kim; Colburn, Alex W; Unwin, Patrick R
2015-10-20
Single molecule electrochemical detection (SMED) is an extremely challenging aspect of electroanalytical chemistry, requiring unconventional electrochemical cells and measurements. Here, SMED is reported using a "quad-probe" (four-channel probe) pipet cell, fabricated by depositing carbon pyrolytically into two diagonally opposite barrels of a laser-pulled quartz quadruple-barreled pipet and filling the open channels with electrolyte solution, and quasi-reference counter electrodes. A meniscus forms at the end of the probe covering the two working electrodes and is brought into contact with a substrate working electrode surface. In this way, a nanogap cell is produced whereby the two carbon electrodes in the pipet can be used to promote redox cycling of an individual molecule with the substrate. Anticorrelated currents generated at the substrate and tip electrodes, at particular distances (typically tens of nanometers), are consistent with the detection of single molecules. The low background noise realized in this droplet format opens up new opportunities in single molecule electrochemistry, including the use of ionic liquids, as well as aqueous solution, and the quantitative assessment and analysis of factors influencing redox cycling currents, due to a precisely known gap size.
Jiang, Zhuoling; Wang, Hao; Shen, Ziyong; Sanvito, Stefano; Hou, Shimin
2016-07-28
The atomic structure and electronic transport properties of a single hydrogen molecule connected to both symmetric and asymmetric Cu electrodes are investigated by using the non-equilibrium Green's function formalism combined with the density functional theory. Our calculations show that in symmetric Cu-H2-Cu junctions, the low-bias conductance drops rapidly upon stretching, while asymmetric ones present a low-bias conductance spanning the 0.2-0.3 G0 interval for a wide range of electrode separations. This is in good agreement with experiments on Cu atomic contacts in a hydrogen environment. Furthermore, the distribution of the calculated vibrational energies of the two hydrogen atoms in the asymmetric Cu-H2-Cu junction is also consistent with experiments. These findings provide clear evidence for the formation of asymmetric Cu-H2-Cu molecular junctions in breaking Cu atomic contacts in the presence of hydrogen and are also helpful for the design of molecular devices with Cu electrodes.
Australian Red Dune Sand: A Potential Martian Regolith Analog
NASA Technical Reports Server (NTRS)
Kuhlman, K. R.; Marshall, J.; Evans, N. D.; Luttge, A.
2001-01-01
To demonstrate the potential scientific and technical merits of in situ microscopy on Mars, we analyzed a possible Martian regolith analog - an acolian red dune sand from the central Australian desert (near Mt. Olga). This sand was chosen for its ubiquitous red coating and the desert environment in which is it found. Grains of this sand were analyzed using a variety of microanalytical techniques. A database of detailed studies of such terrestrial analogs would assist the study of geological and astrobiological specimens in future missions to Mars. Potential instrument concepts for in situ deployment on Mars include local electrode atom probe nanoanalysis (LEAP), vertical scanning white light interferometry (VSWLI), scanning electron microscopies, energy dispersive x-ray microanalysis (EDX), atomic force microscopy (AFM) and X-ray diffraction (XRD). While in situ deployment of these techniques is many years away, ground-based studies using these analytical techniques extend our understanding of the data obtained from instruments to be flown in the near future.
Mullin, Maria A; Araullo-Peters, Vicente J; Gault, Baptiste; Cairney, Julie M
2015-12-01
Artefacts in atom probe tomography can impact the compositional analysis of microstructure in atom probe studies. To determine the integrity of information obtained, it is essential to understand how the positioning of features influences compositional analysis. By investigating the influence of feature orientation within atom probe data on measured composition in microstructural features within an AA2198 Al alloy, this study shows differences in the composition of T1 (Al2CuLi) plates that indicates imperfections in atom probe reconstructions. The data fits a model of an exponentially-modified Gaussian that scales with the difference in evaporation field between solutes and matrix. This information provides a guide for obtaining the most accurate information possible. Copyright © 2015 Elsevier B.V. All rights reserved.
Steimecke, Matthias; Seiffarth, Gerda; Bron, Michael
2017-10-17
We present a spectroelectrochemical setup, in which Raman microscopy is combined with scanning electrochemical microscopy (SECM) in order to provide both spectroscopic and electrochemical information on the very same location of an electrode at the same time. The setup is applied to a subject of high academic and practical interest, namely, the oxygen evolution reaction at Ni and Ni/Fe electrodes. It comprises a transparent substrate electrode, onto which Ni and Ni/Fe thin films are deposited. An ultramicroelectrode (UME) is placed closely above the substrate to obtain electrochemical information, while a Raman microscope probes the same sample spot from below. To obtain information on oxygen evolution activity and structural changes, increasingly positive potentials from 0.1 up to 0.7 V vs Hg|HgO|1 M KOH were applied to the Ni/Fe-electrodes in 0.1 M KOH solution. Evolved oxygen is detected by reduction at a Pt UME, allowing for the determination of onset potentials, while the substrate current, which is recorded in parallel, is due to both overlapping oxygen evolution and the oxidation of Ni(OH) 2 to NiOOH. An optimum of 15% Fe in Ni/Fe films with respect to oxygen evolution activity was determined. At the same time, the potential-dependent formation of γ-NiOOH characterized by the Raman double band at 475 and 557 cm -1 allows for the conclusion that a certain amount of disorder introduced by Fe atoms is necessary to obtain high oxygen evolution reaction (OER) activity.
Chu, Hui; Yang, Haifeng; Huan, Shuangyan; Shen, Guoli; Yu, Ruqin
2006-03-23
Self-assembled monolayers (SAMs) of 6-mercaptopurine (6MP) on a silver electrode in acid and alkaline media were investigated by a combination protocol of the SERS technique with Raman mapping, and it was found that the adsorption mode of 6MP SAMs changed with the pH value of the environment. Quantum calculations for the vibrational mode were performed by the BLYP/6-31G method. 6MP was adsorbed on the silver electrode with a tilted orientation via S, N1, and N7 atoms in acid medium, while the SAMs adopted head-on adsorption modes with the S atom and the N1 atom anchoring the silver surface in alkaline medium. However, 6MP SAMs turned to the same upright orientation on the electrode through the S and N7 atoms when either acid or basic solution was removed. Stability of 6MP SAMs was observed by in situ SERS spectroelectrochemical measurements. The results reveal that the desorption potentials of 6MP SAMs formed under acid and alkaline conditions from the Ag electrode were at ca. -1.3 V and -1.6 V vs SCE, respectively.
Liu, Yiqun; Li, Chen; Liu, Cong; ...
2018-04-24
In situ contrast-matched neutron scattering was used to probe the electrolyte infiltration behavior of activated supercapacitor carbon electrodes using an aquoeus 1 M NaCl solution. It was found that only about 20% of the pore volume was infiltrated at chemical equilibrium. The partial infiltration can be attributed to the co-existence of hydrophilic and hydrophilic pores. As a result, the study suggests that for the achievement of optimal capacitance, supercapacitor electrodes should be evacuated before electrolyte infiltration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yiqun; Li, Chen; Liu, Cong
In situ contrast-matched neutron scattering was used to probe the electrolyte infiltration behavior of activated supercapacitor carbon electrodes using an aquoeus 1 M NaCl solution. It was found that only about 20% of the pore volume was infiltrated at chemical equilibrium. The partial infiltration can be attributed to the co-existence of hydrophilic and hydrophilic pores. As a result, the study suggests that for the achievement of optimal capacitance, supercapacitor electrodes should be evacuated before electrolyte infiltration.
Oligonucleotide probes functionalization of nanogap electrodes.
Zaffino, Rosa Letizia; Mir, Mònica; Samitier, Josep
2017-11-01
Nanogap electrodes have attracted a lot of consideration as promising platform for molecular electronic and biomolecules detection. This is mainly for their higher aspect ratio, and because their electrical properties are easily accessed by current-voltage measurements. Nevertheless, application of standard current-voltages measurements used to characterize nanogap response, and/or to modify specific nanogap electrodes properties, represents an issue. Since the strength of electrical fields in nanoscaled devices can reach high values, even at low voltages. Here, we analyzed the effects induced by different methods of surface modification of nanogap electrodes, in test-voltage application, employed for the electrical detection of a desoxyribonucleic acid (DNA) target. Nanogap electrodes were functionalized with two antisymmetric oligo-probes designed to have 20 terminal bases complementary to the edges of the target, which after hybridization bridges the nanogap, closing the electrical circuit. Two methods of functionalization were studied for this purpose; a random self-assembling of a mixture of the two oligo-probes (OPs) used in the platform, and a selective method that controls the position of each OP at selected side of nanogap electrodes. We used for this aim, the electrophoretic effect induced on negatively charged probes by the application of an external direct current voltage. The results obtained with both functionalization methods where characterized and compared in terms of electrode surface covering, calculated by using voltammetry analysis. Moreover, we contrasted the electrical detection of a DNA target in the nanogap platform either in site-selective and in randomly assembled nanogap. According to our results, a denser, although not selective surface functionalization, is advantageous for such kind of applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Negative differential resistance observation in complex convoluted fullerene junctions
NASA Astrophysics Data System (ADS)
Kaur, Milanpreet; Sawhney, Ravinder Singh; Engles, Derick
2018-04-01
In this work, we simulated the smallest fullerene molecule, C20 in a two-probe device model with gold electrodes. The gold electrodes comprised of (011) miller planes were carved to construct the novel geometry based four unique shapes, which were strung to fullerene molecules through mechanically controlled break junction techniques. The organized devices were later scrutinized using non-equilibrium Green's function based on the density functional theory to calculate their molecular orbitals, energy levels, charge transfers, and electrical parameters. After intense scrutiny, we concluded that five-edged and six-edged devices have the lowest and highest current-conductance values, which result from their electrode-dominating and electrode-subsidiary effects, respectively. However, an interesting observation was that the three-edged and four-edged electrodes functioned as semi-metallic in nature, allowing the C20 molecule to demonstrate its performance with the complementary effect of these electrodes in the electron conduction process of a two-probe device.
Shi, Zhenzhen; Liu, Hao; Wang, Yaping; Li, Jinyan; Bai, Yiming; Wang, Fuzhi; Bian, Xingming; Hayat, Tasawar; Alsaedi, Ahmed; Tan, Zhan'ao
2017-12-20
For bulk heterojunction polymer solar cells (PSCs), the donors and acceptors featuring specific phase separation and concentration distribution within the electron donor/acceptor blends crucially affect the exciton dissociation and charge transportation. Herein, efficient and stable nonfullerene inverted PSCs incorporating a phase separated photoactive layer and a titanium chelate electrode modification layer are demonstrated. Water contact angle (WCA), scanning kelvin probe microscopy (SKPM), and atomic force microscopy (AFM) techniques are implemented to characterize the morphology of photoactive layers. Compared with the control conventional device, the short-circuit current density (J sc ) is enhanced from 14.74 to 17.45 mAcm -2 . The power conversion efficiency (PCE) for the inverted PSCs with a titanium (diisopropoxide)-bis-(2,4-pentanedionate) (TIPD) layer increases from 9.67% to 11.69% benefiting from the declined exciton recombination and fairly enhanced charge transportation. Furthermore, the nonencapsulated inverted device with a TIPD layer demonstrates the best long-term stability, 85% of initial PCE remaining and an almost undecayed open-circuit voltage (V oc ) after 1440 h. Our results reveal that the titanium chelate is an excellent electrode modification layer to incorporate with a vertical phase separated photoactive layer for producing high-efficiency and high-stability inverted nonfullerene PSCs.
Ehlers, K.W.; Voelker, F. III
1961-12-19
A thrust generating engine utilizing cesium vapor as the propellant fuel is designed. The cesium is vaporized by heat and is passed through a heated porous tungsten electrode whereby each cesium atom is fonized. Upon emergfng from the tungsten electrode, the ions are accelerated rearwardly from the rocket through an electric field between the tungsten electrode and an adjacent accelerating electrode grid structure. To avoid creating a large negative charge on the space craft as a result of the expulsion of the positive ions, a source of electrons is disposed adjacent the ion stream to neutralize the cesium atoms following acceleration thereof. (AEC)
Evaluation of Amount of Blood in Dry Blood Spots: Ring-Disk Electrode Conductometry.
Kadjo, Akinde F; Stamos, Brian N; Shelor, C Phillip; Berg, Jordan M; Blount, Benjamin C; Dasgupta, Purnendu K
2016-06-21
A fixed area punch in dried blood spot (DBS) analysis is assumed to contain a fixed amount of blood, but the amount actually depends on a number of factors. The presently preferred approach is to normalize the measurement with respect to the sodium level, measured by atomic spectrometry. Instead of sodium levels, we propose electrical conductivity of the extract as an equivalent nondestructive measure. A dip-type small diameter ring-disk electrode (RDE) is ideal for very small volumes. However, the conductance (G) measured by an RDE depends on the depth (D) of the liquid below the probe. There is no established way of computing the specific conductance (σ) of the solution from G. Using a COMSOL Multiphysics model, we were able to obtain excellent agreement between the measured and the model predicted conductance as a function of D. Using simulations over a large range of dimensions, we provide a spreadsheet-based calculator where the RDE dimensions are the input parameters and the procedure determines the 99% of the infinite depth conductance (G99) and the depth D99 at which this is reached. For typical small diameter probes (outer electrode diameter ∼ <2 mm), D99 is small enough for dip-type measurements in extract volumes of ∼100 μL. We demonstrate the use of such probes with DBS extracts. In a small group of 12 volunteers (age 20-66), the specific conductance of 100 μL aqueous extracts of 2 μL of spotted blood showed a variance of 17.9%. For a given subject, methanol extracts of DBS spots nominally containing 8 and 4 μL of blood differed by a factor of 1.8-1.9 in the chromatographically determined values of sulfate and chloride (a minor and major constituent, respectively). The values normalized with respect to the conductance of the extracts differed by ∼1%. For serum associated analytes, normalization of the analyte value by the extract conductance can thus greatly reduce errors from variations in the spotted blood volume/unit area.
Laser interferometry force-feedback sensor for an interfacial force microscope
Houston, Jack E.; Smith, William L.
2004-04-13
A scanning force microscope is provided with a force-feedback sensor to increase sensitivity and stability in determining interfacial forces between a probe and a sample. The sensor utilizes an interferometry technique that uses a collimated light beam directed onto a deflecting member, comprising a common plate suspended above capacitor electrodes situated on a substrate forming an interference cavity with a probe on the side of the common plate opposite the side suspended above capacitor electrodes. The probe interacts with the surface of the sample and the intensity of the reflected beam is measured and used to determine the change in displacement of the probe to the sample and to control the probe distance relative to the surface of the sample.
Erosion rate diagnostics in ion thrusters using laser-induced fluorescence
NASA Technical Reports Server (NTRS)
Gaeta, C. J.; Matossian, J. N.; Turley, R. S.; Beattie, J. R.; Williams, J. D.; Williamson, W. S.
1993-01-01
We have used laser-induced fluorescence (LIF) to monitor the charge-exchange ion erosion of the molybdenum accelerator electrode in ion thrusters. This real-time, nonintrusive method was implemented by operating a 30cm-diam ring-cusp thruster using xenon propellant. With the thruster operating at a total power of 5 kW, laser radiation at a wavelength of 390 nm (corresponding to a ground state atomic transition of molybdenum) was directed through the extracted ion beam adjacent to the downstream surface of the molybdenum accelerator electrode. Molybdenum atoms, sputtered from this surface as a result of charge-exchange ion erosion, were excited by the laser radiation. The intensity of the laser-induced fluorescence radiation, which is proportional to the sputter rate of the molybdenum atoms, was measured and correlated with variations in thruster operating conditions such as accelerator electrode voltage, accelerator electrode current, and test facility background pressure. We also demonstrated that the LIF technique has sufficient sensitivity and spatial resolution to evaluate accelerator electrode lifetime in ground-based test facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vissers, Daniel R.; Isheim, Dieter; Zhan, Chun
Lithium-ion batteries utilizing 5 V spinel material, LixMn1.5Ni0.5O4 have received considerable interest in recent years for their ability to deliver high energy and power densities. In this paper, we report an atomic scale analysis of the surface layer of a core–shell 5 V spinel structure where a small amount of the manganese lattice sites have been substituted with cobalt in the shell to reach a stoichiometry of LixMn1.18Ni0.55Co0.27O4. Our analyses include electrochemical analysis, atom probe tomography (APT) analysis, kinetic analysis of the interfacial reactions, and high resolution scanning transmission electron microscopy (HR-TEM) analysis. The APT analysis is performed on themore » material before and after long-term cycling at room temperature to provide insights into the atomic scale phenomena within the surface layer of the electrode material. Our APT data reveals a 25–30 nano-meter (nm) region which forms after cycling. From our analyses, we believe that the outer few nanometers of this region stabilizes the 5 V spinel within the chemical environment of the lithium-ion cell such that its structure is not compromised and thereby enables this material to cycle without significant capacity fading.« less
NASA Astrophysics Data System (ADS)
Letellier, F.; Lechevallier, L.; Lardé, R.; Le Breton, J.-M.; Akmaldinov, K.; Auffret, S.; Dieny, B.; Baltz, V.
2014-11-01
Magnetic devices are often subject to thermal processing steps, such as field cooling to set exchange bias and annealing to crystallize amorphous magnetic electrodes. These processing steps may result in interdiffusion and the subsequent deterioration of magnetic properties. In this study, we investigated thermally-activated diffusion in Cu/Co/IrMn/Pt exchange biased polycrystalline thin-film structures using atom probe tomography. Images taken after annealing at 400 °C for 60 min revealed Mn diffusion into Co grains at the Co/IrMn interface and along Pt grain boundaries for the IrMn/Pt stack, i.e., a Harrison type C regime. Annealing at 500 °C showed further Mn diffusion into Co grains. At the IrMn/Pt interface, annealing at 500 °C led to a type B behavior since Mn diffusion was detected both along Pt grain boundaries and also into Pt grains. The deterioration of the films' exchange bias properties upon annealing was correlated to the observed diffusion. In particular, the topmost Pt capping layer thickness turned out to be crucial since a faster deterioration of the exchange bias properties for thicker caps was observed. This is consistent with the idea that Pt acts as a getter for Mn, drawing Mn out of the IrMn layer.
An environmental transfer hub for multimodal atom probe tomography.
Perea, Daniel E; Gerstl, Stephan S A; Chin, Jackson; Hirschi, Blake; Evans, James E
2017-01-01
Environmental control during transfer between instruments is required for samples sensitive to air or thermal exposure to prevent morphological or chemical changes prior to analysis. Atom probe tomography is a rapidly expanding technique for three-dimensional structural and chemical analysis, but commercial instruments remain limited to loading specimens under ambient conditions. In this study, we describe a multifunctional environmental transfer hub allowing controlled cryogenic or room-temperature transfer of specimens under atmospheric or vacuum pressure conditions between an atom probe and other instruments or reaction chambers. The utility of the environmental transfer hub is demonstrated through the acquisition of previously unavailable mass spectral analysis of an intact organic molecule made possible via controlled cryogenic transfer into the atom probe using the hub. The ability to prepare and transfer specimens in precise environments promises a means to access new science across many disciplines from untainted samples and allow downstream time-resolved in situ atom probe studies.
Local structures in mixed Li{sub x}Fe{sub 1−y}M{sub y}PO{sub 4} (M=Co, Ni) electrode materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jalkanen, K.; Lindén, J.; Karppinen, M., E-mail: maarit.karppinen@aalto.fi
We employ {sup 57}Fe Mössbauer spectroscopy as a local tool to probe electrical environments of Fe{sup 2+} and Fe{sup 3+} at different lithiation (x) and cation-substitution (y) levels in Li{sub x}Fe{sub 1−y}M{sub y}PO{sub 4}/C (M=Co, Ni) Li-ion battery electrode materials. Upon delithiation the local environment of Fe{sup 3+} remains unaffected for the parent y=0 system due to the LiFePO{sub 4}/FePO{sub 4} phase separation, whereas for y>0 changes in the electrical environment are seen for Fe{sup 3+}. When the Fe{sup 2+}/Fe{sup 3+} redox couple is partially-delithiated, a decreasing quadrupole splitting value is observed for Fe{sup 3+} with increasing y, implying amore » more symmetric electrical environment. The increasing concentration of the Co{sup 2+}/Ni{sup 2+} substituent introduces increasing amounts of Li atoms in the Fe{sup 3+}-containing phase, and these nearest-neighbor Li atoms are suspected to cause the changes seen in the local environment of Fe{sup 3+}. - Graphical abstract: Local environment of iron in Li{sub x}Fe{sub 1−y}(Co/Ni){sub y}PO{sub 4} is studied by {sup 57}Fe Mössbauer spectroscopy at different lithiation (x) and cation-substitution (y) levels. - Highlights: • Local Fe environment in Li{sub x}Fe{sub 1−y}(Co/Ni){sub y}PO{sub 4} is studied by {sup 57}Fe Mössbauer spectroscopy. • Co/Ni-for-Fe substitution results in a more symmetric electrical environment for Fe{sup 3+}. • Due to presence of Co{sup 2+}/Ni{sup 2+}, Li atoms are introduced into the Fe{sup 3+}-containing phase. • These nearest-neighbor Li atoms are suggested to change the local Fe{sup 3+} environment.« less
[Bioimpedance means of skin condition monitoring during therapeutic and cosmetic procedures].
Alekseenko, V A; Kus'min, A A; Filist, S A
2008-01-01
Engineering and technological problems of bioimpedance skin surface mapping are considered. A typical design of a device based on a PIC 16F microcontroller is suggested. It includes a keyboard, LCD indicator, probing current generator with programmed frequency tuning, and units for probing current monitoring and bioimpedance measurement. The electrode matrix of the device is constructed using nanotechnology. A microcontroller-controlled multiplexor provides scanning of interelectrode impedance, which makes it possible to obtain the impedance image of the skin surface under the electrode matrix. The microcontroller controls the probing signal generator frequency and allows layer-by-layer images of skin under the electrode matrix to be obtained. This makes it possible to use reconstruction tomography methods for analysis and monitoring of the skin condition during therapeutic and cosmetic procedures.
Yao, L; Cairney, J M; Zhu, C; Ringer, S P
2011-05-01
This paper details the effects of systematic changes to the experimental parameters for atom probe microscopy of microalloyed steels. We have used assessments of the signal-to-noise ratio (SNR), compositional measurements and field desorption images to establish the optimal instrumental parameters. These corresponded to probing at the lowest possible temperature (down to 20K) with the highest possible pulse fraction (up to 30%). A steel containing a fine dispersion of solute atom clusters was used as an archetype to demonstrate the importance of running the atom probe at optimum conditions. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.
Correlating Atom Probe Crystallographic Measurements with Transmission Kikuchi Diffraction Data.
Breen, Andrew J; Babinsky, Katharina; Day, Alec C; Eder, K; Oakman, Connor J; Trimby, Patrick W; Primig, Sophie; Cairney, Julie M; Ringer, Simon P
2017-04-01
Correlative microscopy approaches offer synergistic solutions to many research problems. One such combination, that has been studied in limited detail, is the use of atom probe tomography (APT) and transmission Kikuchi diffraction (TKD) on the same tip specimen. By combining these two powerful microscopy techniques, the microstructure of important engineering alloys can be studied in greater detail. For the first time, the accuracy of crystallographic measurements made using APT will be independently verified using TKD. Experimental data from two atom probe tips, one a nanocrystalline Al-0.5Ag alloy specimen collected on a straight flight-path atom probe and the other a high purity Mo specimen collected on a reflectron-fitted instrument, will be compared. We find that the average minimum misorientation angle, calculated from calibrated atom probe reconstructions with two different pole combinations, deviate 0.7° and 1.4°, respectively, from the TKD results. The type of atom probe and experimental conditions appear to have some impact on this accuracy and the reconstruction and measurement procedures are likely to contribute further to degradation in angular resolution. The challenges and implications of this correlative approach will also be discussed.
Lithium battery electrodes with ultra-thin alumina coatings
Se-Hee, Lee; George, Steven M.; Cavanagh, Andrew S.; Yoon Seok, Jung; Dillon, Anne C.
2015-11-24
Electrodes for lithium batteries are coated via an atomic layer deposition process. The coatings can be applied to the assembled electrodes, or in some cases to particles of electrode material prior to assembling the particles into an electrode. The coatings can be as thin as 2 .ANG.ngstroms thick. The coating provides for a stable electrode. Batteries containing the electrodes tend to exhibit high cycling capacities.
Sohbatzadeh, F; Eshghabadi, M; Mohsenpour, T
2018-06-29
The surface modification of cotton samples was carried out using a liquid (ethanol) electrospray-assisted atmospheric pressure plasma jet. X-ray photoelectron spectroscopy (XPS) and Raman analysis confirmed the successful deposition of diamond like carbon (DLC) nano structures on the cotton surface. The super hydrophobic state of the samples was probed by contact angle measurements. The water repellency of the layers was tuned by controlling the voltage applied to the electrospray electrode. An investigation of the morphological and chemical structures of the samples by field emission scanning microscopy, atomic force microscopy (AFM) and XPS indicated that the physical shape, distribution and amorphization of the DLC structures were successfully adjusted and improved by applying a voltage to the electrospray electrode. Finally wash durability of the best sample was tested for 35 cycles. In this work, the use of a well-developed atmospheric pressure plasma jet for DLC nano structures deposition can enable a promising environmentally friendly and low-cost approach for modifying cotton fabrics for super water-repellent fabric applications.
NASA Astrophysics Data System (ADS)
Sohbatzadeh, F.; Eshghabadi, M.; Mohsenpour, T.
2018-06-01
The surface modification of cotton samples was carried out using a liquid (ethanol) electrospray-assisted atmospheric pressure plasma jet. X-ray photoelectron spectroscopy (XPS) and Raman analysis confirmed the successful deposition of diamond like carbon (DLC) nano structures on the cotton surface. The super hydrophobic state of the samples was probed by contact angle measurements. The water repellency of the layers was tuned by controlling the voltage applied to the electrospray electrode. An investigation of the morphological and chemical structures of the samples by field emission scanning microscopy, atomic force microscopy (AFM) and XPS indicated that the physical shape, distribution and amorphization of the DLC structures were successfully adjusted and improved by applying a voltage to the electrospray electrode. Finally wash durability of the best sample was tested for 35 cycles. In this work, the use of a well-developed atmospheric pressure plasma jet for DLC nano structures deposition can enable a promising environmentally friendly and low-cost approach for modifying cotton fabrics for super water-repellent fabric applications.
Omp85 genosensor for detection of human brain bacterial meningitis.
Dash, Sandip Kumar; Sharma, Minakshi; Khare, Shashi; Kumar, Ashok
2013-06-01
The 5'-thiolated DNA probe based on specific virulence gene, Omp85, was immobilized onto a screen-printed gold electrode followed by hybridization with 6-100 ng/6 μl (5.9 × 10(5)-9.3 × 10(6 )c.f.u.) of Neisseria meningitidis single stranded genomic DNA (ssG-DNA) for 10 min at 25 °C from the cerebrospinal fluid (CSF) of a meningitis patient. The Omp85 genosensor can detect as little as 6 ng ssG-DNA in 6 μl CSF of a human brain meningitis patient in 30 min including a response time of 1 min by cyclic voltammetry, differential pulse voltammetry (DPV) and electrochemical impedance. The sensitivity of the genosensor electrode was 2.6(μA/cm(2))/ng using DPV with regression coefficient (R(2)) 0.954. The genosensor was characterized using Fourier transform infrared spectroscopy and atomic force microscopy. Omp85 genosensor was stable for 12 months at 4 °C with 12 % loss in DPV current.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Zhuoling; Centre for Nanoscale Science and Technology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871; Wang, Hao
The atomic structure and electronic transport properties of a single hydrogen molecule connected to both symmetric and asymmetric Cu electrodes are investigated by using the non-equilibrium Green’s function formalism combined with the density functional theory. Our calculations show that in symmetric Cu–H{sub 2}–Cu junctions, the low-bias conductance drops rapidly upon stretching, while asymmetric ones present a low-bias conductance spanning the 0.2–0.3 G{sub 0} interval for a wide range of electrode separations. This is in good agreement with experiments on Cu atomic contacts in a hydrogen environment. Furthermore, the distribution of the calculated vibrational energies of the two hydrogen atoms inmore » the asymmetric Cu–H{sub 2}–Cu junction is also consistent with experiments. These findings provide clear evidence for the formation of asymmetric Cu–H{sub 2}–Cu molecular junctions in breaking Cu atomic contacts in the presence of hydrogen and are also helpful for the design of molecular devices with Cu electrodes.« less
Atom Probe Analysis of Ex Situ Gas-Charged Stable Hydrides.
Haley, Daniel; Bagot, Paul A J; Moody, Michael P
2017-04-01
In this work, we report on the atom probe tomography analysis of two metallic hydrides formed by pressurized charging using an ex situ hydrogen charging cell, in the pressure range of 200-500 kPa (2-5 bar). Specifically we report on the deuterium charging of Pd/Rh and V systems. Using this ex situ system, we demonstrate the successful loading and subsequent atom probe analysis of deuterium within a Pd/Rh alloy, and demonstrate that deuterium is likely present within the oxide-metal interface of a native oxide formed on vanadium. Through these experiments, we demonstrate the feasibility of ex situ hydrogen analysis for hydrides via atom probe tomography, and thus a practical route to three-dimensional imaging of hydrogen in hydrides at the atomic scale.
Advanced nickel-metal hydride cell development. Final report, September 1993--March 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Hong S.
1996-03-01
Inert gas atomization using metal hydride alloys for a Ni/MH{sub x}cell was studied. Atomization of the alloys was demonstrated on a small production scale up to batch size of several kg. Relative performance of the atomized and nonatomized alloys was investigated for the electrode material in a Ni/MH{sub x} cell. The study included effects of charge-discharge rates, temperature, and particle size on cell voltage (polarization) and specific capacity. Results show that the specific capacity of the present atomized alloys was apprecialy smaller than that of the nonatomized powder, especially for initial cycles. Full activation of the atomized alloys oftentook severalmore » hundreds of cycles. However, no appreciable difference in discharge rate capability was observed with R10 and R12 alloys. Chemical compositions were indistinguishable, although the oxygen contents of the atomized alloys were always higher. Effects of Ni and Cu coating on alloy performance were studied after electroless coating; the coatings noticeably improved the electrode rate capability for all the alloys. The electrode polarization was esecially improved, but not the cycle life. Further studies are needed.« less
Nanometer scale composition study of MBE grown BGaN performed by atom probe tomography
NASA Astrophysics Data System (ADS)
Bonef, Bastien; Cramer, Richard; Speck, James S.
2017-06-01
Laser assisted atom probe tomography is used to characterize the alloy distribution in BGaN. The effect of the evaporation conditions applied on the atom probe specimens on the mass spectrum and the quantification of the III site atoms is first evaluated. The evolution of the Ga++/Ga+ charge state ratio is used to monitor the strength of the applied field. Experiments revealed that applying high electric fields on the specimen results in the loss of gallium atoms, leading to the over-estimation of boron concentration. Moreover, spatial analysis of the surface field revealed a significant loss of atoms at the center of the specimen where high fields are applied. A good agreement between X-ray diffraction and atom probe tomography concentration measurements is obtained when low fields are applied on the tip. A random distribution of boron in the BGaN layer grown by molecular beam epitaxy is obtained by performing accurate and site specific statistical distribution analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yagi, Mamiko; Ito, Mitsuki; Shirakashi, Jun-ichi, E-mail: shrakash@cc.tuat.ac.jp
We report a new method for fabrication of Ni nanogaps based on electromigration induced by a field emission current. This method is called “activation” and is demonstrated here using a current source with alternately reversing polarities. The activation procedure with alternating current bias, in which the current source polarity alternates between positive and negative bias conditions, is performed with planar Ni nanogaps defined on SiO{sub 2}/Si substrates at room temperature. During negative biasing, a Fowler-Nordheim field emission current flows from the source (cathode) to the drain (anode) electrode. The Ni atoms at the tip of the drain electrode are thusmore » activated and then migrate across the gap from the drain to the source electrode. In contrast, in the positive bias case, the field emission current moves the activated atoms from the source to the drain electrode. These two procedures are repeated until the tunnel resistance of the nanogaps is successively reduced from 100 TΩ to 48 kΩ. Scanning electron microscopy and atomic force microscopy studies showed that the gap separation narrowed from approximately 95 nm to less than 10 nm because of the Ni atoms that accumulated at the tips of both the source and drain electrodes. These results show that the alternately biased activation process, which is a newly proposed atom transfer technique, can successfully control the tunnel resistance of the Ni nanogaps and is a suitable method for formation of ultrasmall nanogap structures.« less
NASA Astrophysics Data System (ADS)
Lee, Ji-hyun; Chae, Byeong-Kyu; Kim, Joong-Jeong; Lee, Sun Young; Park, Chan Gyung
2015-01-01
Dopant control becomes more difficult and critical as silicon devices become smaller. We observed the dopant distribution in a thermally annealed polysilicon gate using Transmission Electron Microscopy (TEM) and Atom probe tomography (APT). Phosphorus was doped at the silicon-nitride-diffusion-barrier-layer-covered polycrystalline silicon gate. Carbon also incorporated at the gate for the enhancement of operation uniformity. The impurity distribution was observed using atom probe tomography. The carbon atoms had segregated at grain boundaries and suppressed silicon grain growth. Phosphorus atoms, on the other hand, tended to pile-up at the interface. A 1-nm-thick diffusion barrier effectively blocked P atom out-diffusion. [Figure not available: see fulltext.
Laser-driven atomic-probe-beam diagnostics
NASA Astrophysics Data System (ADS)
Knyazev, B. A.; Greenly, J. B.; Hammer, D. A.
2000-12-01
A new laser-driven atomic-probe-beam diagnostic (LAD) is proposed for local, time-resolved measurements of electric field and ion dynamics in the accelerating gap of intense ion beam diodes. LAD adds new features to previous Stark-shift diagnostics which have been progressively developed in several laboratories, from passive observation of Stark effect on ion species or fast (charge-exchanged) neutrals present naturally in diodes, to active Stark atomic spectroscopy (ASAS) in which selected probe atoms were injected into the gap and excited to suitable states by resonant laser radiation. The LAD scheme is a further enhancement of ASAS in which the probe atoms are also used as a local (laser-ionized) ion source at an instant of time. Analysis of the ion energy and angular distribution after leaving the gap enables measurement, at the chosen ionization location in the gap, of both electrostatic potential and the development of ion divergence. Calculations show that all of these quantities can be measured with sub-mm and ns resolution. Using lithium or sodium probe atoms, fields from 0.1 to 10 MV/cm can be measured.
Zhang, Wenqiang; Cheng, Chuan; Fang, Peilin; Tang, Bin; Zhang, Jindou; Huang, Guoming; Cong, Xin; Zhang, Bao; Ji, Xiao; Miao, Ling
2016-02-14
Nowadays, MXenes have received extensive concern as a prominent electrode material of electrochemical capacitors. As two important factors to the capacitance, the influence of the intrinsical terminations (F, O and OH) and coordination atoms (C and N) is investigated using first-principles calculations. According to the density of states aligned with the standard hydrogen electrode, it turns out that a Ti3CNO2 monolayer is proven to show an obvious pseudocapacitive behavior, while the bare, F and OH terminated Ti3CN monolayers may only present electrochemical double layer characters in an aqueous electrolyte. Moreover, the illustration of molecular orbitals over the Fermi level are mainly contributed by the d-orbitals of Ti atoms coordinated with O and N atoms, indicating that the redox pseudocapacitance of the Ti3CNO2 monolayer is promoted by the coordination N atoms. Then the superiority of N bonded Ti atoms in accepting charges can be visualized through the charge population. Further, the larger ratio of C/N in the coordination environment of Ti atoms indicates that more electrons can be stored. Our investigation can give an instructional advice in the MXenes-electrode production.
Quantum Computation by Optically Coupled Steady Atoms/Quantum-Dots Inside a Quantum Cavity
NASA Technical Reports Server (NTRS)
Pradhan, P.; Wang, K. L.; Roychowdhury, V. P.; Anantram, M. P.; Mor, T.; Saini, Subhash (Technical Monitor)
1999-01-01
We present a model for quantum computation using $n$ steady 3-level atoms kept inside a quantum cavity, or using $n$ quantum-dots (QDs) kept inside a quantum cavity. In this model one external laser is pointed towards all the atoms/QDs, and $n$ pairs of electrodes are addressing the atoms/QDs, so that each atom is addressed by one pair. The energy levels of each atom/QD are controlled by an external Stark field given to the atom/QD by its external pair of electrodes. Transition between two energy levels of an individual atom/ QD are controlled by the voltage on its electrodes, and by the external laser. Interactions between two atoms/ QDs are performed with the additional help of the cavity mode (using on-resonance condition). Laser frequency, cavity frequency, and energy levels are far off-resonance most of the time, and they are brought to the resonance (using the Stark effect) only at the time of operations. Steps for a controlled-NOT gate between any two atoms/QDs have been described for this model. Our model demands some challenging technological efforts, such as manufacturing single-electron QDs inside a cavity. However, it promises big advantages over other existing models which are currently implemented, and might enable a much easier scale-up, to compute with many more qubits.
Influence of surface topology and electrostatic potential on water/electrode systems
NASA Astrophysics Data System (ADS)
Siepmann, J. Ilja; Sprik, Michiel
1995-01-01
We have used the classical molecular dynamics technique to simulate the ordering of a water film adsorbed on an atomic model of a tip of a scanning tunneling microscope approaching a planar metal surface. For this purpose, we have developed a classical model for the water-substrate interactions that solely depends on the coordinates of the particles and does not require the definition of geometrically smooth boundary surfaces or image planes. The model includes both an electrostatic induction for the metal atoms (determined by means of an extended Lagrangian technique) and a site-specific treatment of the water-metal chemisorption. As a validation of the model we have investigated the structure of water monolayers on metal substrates of various topology [the (111), (110), and (100) crystallographic faces] and composition (Pt, Ag, Cu, and Ni), and compared the results to experiments. The modeling of the electrostatic induction is compatible with a finite external potential imposed on the metal. This feature is used to investigate the structural rearrangements of the water bilayer between the pair of scanning tunneling microscope electrodes in response to an applied external voltage difference. We find significant asymmetry in the dependence on the sign of the applied voltage. Another result of the calculation is an estimate of the perturbation to the work function caused by the wetting film. For the conditions typical for operation of a scanning tunneling microscope probe, the change in the work function is found to be comparable to the applied voltage (a few hundred millivolts).
NASA Astrophysics Data System (ADS)
Triyoso, D. H.; Gregory, R.; Schaeffer, J. K.; Werho, D.; Li, D.; Marcus, S.; Wilk, G. D.
2007-11-01
TaCy has been reported to have the appropriate work function for negative metal-oxide semiconductor metal in high-k metal-oxide field-effect transistors. As device size continues to shrink, a conformal deposition for metal gate electrodes is needed. In this work, we report on the development and characterization of a novel TaCy process by atomic layer deposition (ALD). Detailed physical properties of TaCy films are studied using ellipsometry, a four-point probe, Rutherford backscattering spectrometry (RBS), x-ray photoelectron spectroscopy (XPS), and x-ray diffraction (XRD). RBS and XPS analysis indicate that TaCy films are near-stoichiometric, nitrogen free, and have low oxygen impurities. Powder XRD spectra showed that ALD films have a cubic microstructure. XPS carbon bonding studies revealed that little or no glassy carbon is present in the bulk of the film. Excellent electrical properties are obtained using ALD TaCy as a metal gate electrode. Well-behaved capacitance-voltage characteristics with ALD HfO2 gate dielectrics are demonstrated for TaCy thicknesses of 50, 100, and 250 Å. A low fixed charge (˜2-4×10-11 cm-2) is observed for all ALD HfO2/ALD TaCy devices. Increasing the thickness of ALD TaCy results in a decrease in work function (4.77 to 4.54 eV) and lower threshold voltages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
CATO DM; DAHL MM; PHILO GL
This report documents the results of tests designed to characterize the relationship between temperature and the measured potential of electrodes installed on multi-probe corrosion monitoring systems in waste tanks. This report also documents the results of tests designed to demonstrate the impact of liquid in-leakage into electrode bodies as well as the contamination of primary reference electrodes by diffusion through the electrode tip.
Measuring Vitamin C Content of Commercial Orange Juice Using a Pencil Lead Electrode
ERIC Educational Resources Information Center
King, David; Friend, Jeffrey; Kariuki, James
2010-01-01
A pencil lead successfully served as an electrode for the determination of ascorbic acid in commercial orange juice. Cyclic voltammetry was used as an electrochemical probe to measure the current produced from the oxidation of ascorbic acid with a variety of electrodes. The data demonstrate that the less expensive pencil lead electrode gives…
Urbanchek, Melanie G; Wei, Benjamin; Egeland, Brent M; Abidian, Mohammad R; Kipke, Daryl R; Cederna, Paul S
2011-01-01
Background Our goal is to develop a peripheral nerve electrode with long-term stability and fidelity for use in nerve-machine interfaces. Microelectromechanical systems (MEMS) use silicon probes that contain multi-channel actuators, sensors, and electronics. We tested the null hypothesis that implantation of MEMS probes do not have a detrimental effect on peripheral nerve function or regeneration. Methods A rat hindlimb, peroneal nerve model was utilized in all experimental groups: a) intact nerve (Control, n= 10); b) nerve division and repair (Repair, n= 9); and c) Nerve division, insertion of MEMS probe, and repair (Repair + Probe, n=9). Nerve morphology, nerve to muscle compound action potential (CMAP) studies, walking tracks, and extensor digitorum longus (EDL) muscle function tests were evaluated following an 80 day recovery. Results Repair and Repair + Probe showed no differences in axon count, axon size, percent non-neural area, CMAP amplitude, latency, muscle mass, muscle force, or walking track scores. Though there was some local fibrosis around each MEMS probe, this did not lead to measurable detrimental effects in any anatomic or functional outcome measurements. Conclusions The lack of a significant difference between Repair and Repair + Probe groups in histology, CMAP, walking tracks, and muscle force suggests that MEMS electrodes are compatible with regenerating axons and show promise for establishing chemical and electrical interfaces with peripheral nerves. PMID:21921739
NASA Astrophysics Data System (ADS)
Pothof, F.; Bonini, L.; Lanzilotto, M.; Livi, A.; Fogassi, L.; Orban, G. A.; Paul, O.; Ruther, P.
2016-08-01
Objective. Drug resistant focal epilepsy can be treated by resecting the epileptic focus requiring a precise focus localisation using stereoelectroencephalography (SEEG) probes. As commercial SEEG probes offer only a limited spatial resolution, probes of higher channel count and design freedom enabling the incorporation of macro and microelectrodes would help increasing spatial resolution and thus open new perspectives for investigating mechanisms underlying focal epilepsy and its treatment. This work describes a new fabrication process for SEEG probes with materials and dimensions similar to clinical probes enabling recording single neuron activity at high spatial resolution. Approach. Polyimide is used as a biocompatible flexible substrate into which platinum electrodes and leads are integrated with a minimal feature size of 5 μm. The polyimide foils are rolled into the cylindrical probe shape at a diameter of 0.8 mm. The resulting probe features match those of clinically approved devices. Tests in saline solution confirmed the probe stability and functionality. Probes were implanted into the brain of one monkey (Macaca mulatta), trained to perform different motor tasks. Suitable configurations including up to 128 electrode sites allow the recording of task-related neuronal signals. Main results. Probes with 32 and 64 electrode sites were implanted in the posterior parietal cortex. Local field potentials and multi-unit activity were recorded as early as one hour after implantation. Stable single-unit activity was achieved for up to 26 days after implantation of a 64-channel probe. All recorded signals showed modulation during task execution. Significance. With the novel probes it is possible to record stable biologically relevant data over a time span exceeding the usual time needed for epileptic focus localisation in human patients. This is the first time that single units are recorded along cylindrical polyimide probes chronically implanted 22 mm deep into the brain of a monkey, which suggests the potential usefulness of this probe for human applications.
Pothof, F; Bonini, L; Lanzilotto, M; Livi, A; Fogassi, L; Orban, G A; Paul, O; Ruther, P
2016-08-01
Drug resistant focal epilepsy can be treated by resecting the epileptic focus requiring a precise focus localisation using stereoelectroencephalography (SEEG) probes. As commercial SEEG probes offer only a limited spatial resolution, probes of higher channel count and design freedom enabling the incorporation of macro and microelectrodes would help increasing spatial resolution and thus open new perspectives for investigating mechanisms underlying focal epilepsy and its treatment. This work describes a new fabrication process for SEEG probes with materials and dimensions similar to clinical probes enabling recording single neuron activity at high spatial resolution. Polyimide is used as a biocompatible flexible substrate into which platinum electrodes and leads are integrated with a minimal feature size of 5 μm. The polyimide foils are rolled into the cylindrical probe shape at a diameter of 0.8 mm. The resulting probe features match those of clinically approved devices. Tests in saline solution confirmed the probe stability and functionality. Probes were implanted into the brain of one monkey (Macaca mulatta), trained to perform different motor tasks. Suitable configurations including up to 128 electrode sites allow the recording of task-related neuronal signals. Probes with 32 and 64 electrode sites were implanted in the posterior parietal cortex. Local field potentials and multi-unit activity were recorded as early as one hour after implantation. Stable single-unit activity was achieved for up to 26 days after implantation of a 64-channel probe. All recorded signals showed modulation during task execution. With the novel probes it is possible to record stable biologically relevant data over a time span exceeding the usual time needed for epileptic focus localisation in human patients. This is the first time that single units are recorded along cylindrical polyimide probes chronically implanted 22 mm deep into the brain of a monkey, which suggests the potential usefulness of this probe for human applications.
DNA microdevice for electrochemical detection of Escherichia coli 0157:H7 molecular markers.
Berganza, J; Olabarria, G; García, R; Verdoy, D; Rebollo, A; Arana, S
2007-04-15
An electrochemical DNA sensor based on the hybridization recognition of a single-stranded DNA (ssDNA) probe immobilized onto a gold electrode to its complementary ssDNA is presented. The DNA probe is bound on gold surface electrode by using self-assembled monolayer (SAM) technology. An optimized mixed SAM with a blocking molecule preventing the nonspecific adsorption on the electrode surface has been prepared. In this paper, a DNA biosensor is designed by means of the immobilization of a single stranded DNA probe on an electrochemical transducer surface to recognize specifically Escherichia coli (E. coli) 0157:H7 complementary target DNA sequence via cyclic voltammetry experiments. The 21 mer DNA probe including a C6 alkanethiol group at the 5' phosphate end has been synthesized to form the SAM onto the gold surface through the gold sulfur bond. The goal of this paper has been to design, characterise and optimise an electrochemical DNA sensor. In order to investigate the oligonucleotide probe immobilization and the hybridization detection, experiments with different concentration of DNA and mismatch sequences have been performed. This microdevice has demonstrated the suitability of oligonucleotide Self-assembled monolayers (SAMs) on gold as immobilization method. The DNA probes deposited on gold surface have been functional and able to detect changes in bases sequence in a 21-mer oligonucleotide.
Modern Focused-Ion-Beam-Based Site-Specific Specimen Preparation for Atom Probe Tomography.
Prosa, Ty J; Larson, David J
2017-04-01
Approximately 30 years after the first use of focused ion beam (FIB) instruments to prepare atom probe tomography specimens, this technique has grown to be used by hundreds of researchers around the world. This past decade has seen tremendous advances in atom probe applications, enabled by the continued development of FIB-based specimen preparation methodologies. In this work, we provide a short review of the origin of the FIB method and the standard methods used today for lift-out and sharpening, using the annular milling method as applied to atom probe tomography specimens. Key steps for enabling correlative analysis with transmission electron-beam backscatter diffraction, transmission electron microscopy, and atom probe tomography are presented, and strategies for preparing specimens for modern microelectronic device structures are reviewed and discussed in detail. Examples are used for discussion of the steps for each of these methods. We conclude with examples of the challenges presented by complex topologies such as nanowires, nanoparticles, and organic materials.
Variability of acute extracellular action potential measurements with multisite silicon probes
Scott, Kimberly M.; Du, Jiangang; Lester, Henry A.; Masmanidis, Sotiris C.
2012-01-01
Device miniaturization technologies have led to significant advances in sensors for extracellular measurements of electrical activity in the brain. Multisite, silicon-based probes containing implantable electrode arrays afford greater coverage of neuronal activity than single electrodes and therefore potentially offer a more complete view of how neuronal ensembles encode information. However, scaling up the number of sites is not sufficient to ensure capture of multiple neurons, as action potential signals from extracellular electrodes may vary due to numerous factors. In order to understand the large-scale recording capabilities and potential limitations of multisite probes, it is important to quantify this variability, and to determine whether certain key device parameters influence the recordings. Here we investigate the effect of four parameters, namely, electrode surface, width of the structural support shafts, shaft number, and position of the recording site relative to the shaft tip. This study employs acutely implanted silicon probes containing up to 64 recording sites, whose performance is evaluated by the metrics of noise, spike amplitude, and spike detection probability. On average, we find no significant effect of device geometry on spike amplitude and detection probability but we find significant differences among individual experiments, with the likelihood of detecting spikes varying by a factor of approximately three across trials. PMID:22971352
Kim, Taegyo; Branner, Almut; Gulati, Tanuj
2013-01-01
Objective To test a novel braided multi-electrode probe design with compliance exceeding that of a 50-micron microwire, thus reducing micromotion and macromotion induced tissue stress. Approach We use up to 24 ultra-fine wires interwoven into a tubular braid to obtain a highly flexible multi-electrode probe. The tether-portion wires are simply non-braided extensions of the braid structure, allowing the microprobe to follow gross neural tissue movements. Mechanical calculation and direct measurements evaluated bending stiffness and axial compression forces in the probe and tether system. These were compared to 50μm Nichrome microwire standards. Recording tests were performed in decerebrate animals. Main results Mechanical bending tests on braids comprising 9.6μm or 12.7μm Nichrome wires showed that implants (braided portions) had 4 to 21 times better mechanical compliance than a single 50μm wire and non-braided tethers were 6 to 96 times better. Braided microprobes yielded robust neural recordings from animals’ spinal cords throughout cord motions. Significance Microwire electrode arrays that can record and withstand tissue micro- and macromotion of spinal cord tissues are demonstrated. This technology may provide a stable chronic neural interface into spinal cords of freely moving animals, is extensible to various applications, and may reduce mechanical tissue stress. PMID:23723128
An ablative pulsed plasma thruster with a segmented anode
NASA Astrophysics Data System (ADS)
Zhang, Zhe; Ren, Junxue; Tang, Haibin; Ling, William Yeong Liang; York, Thomas M.
2018-01-01
An ablative pulsed plasma thruster (APPT) design with a ‘segmented anode’ is proposed in this paper. We aim to examine the effect that this asymmetric electrode configuration (a normal cathode and a segmented anode) has on the performance of an APPT. The magnetic field of the discharge arc, plasma density in the exit plume, impulse bit, and thrust efficiency were studied using a magnetic probe, Langmuir probe, thrust stand, and mass bit measurements, respectively. When compared with conventional symmetric parallel electrodes, the segmented anode APPT shows an improvement in the impulse bit of up to 28%. The thrust efficiency is also improved by 49% (from 5.3% to 7.9% for conventional and segmented designs, respectively). Long-exposure broadband emission images of the discharge morphology show that compared with a normal anode, a segmented anode results in clear differences in the luminous discharge morphology and better collimation of the plasma. The magnetic probe data indicate that the segmented anode APPT exhibits a higher current density in the discharge arc. Furthermore, Langmuir probe data collected from the central exit plane show that the peak electron density is 75% higher than with conventional parallel electrodes. These results are believed to be fundamental to the physical mechanisms behind the increased impulse bit of an APPT with a segmented electrode.
NASA Astrophysics Data System (ADS)
Kim, Taegyo; Branner, Almut; Gulati, Tanuj; Giszter, Simon F.
2013-08-01
Objective. To test a novel braided multi-electrode probe design with compliance exceeding that of a 50 µm microwire, thus reducing micromotion- and macromotion-induced tissue stress. Approach. We use up to 24 ultra-fine wires interwoven into a tubular braid to obtain a highly flexible multi-electrode probe. The tether-portion wires are simply non-braided extensions of the braid structure, allowing the microprobe to follow gross neural tissue movements. Mechanical calculation and direct measurements evaluated bending stiffness and axial compression forces in the probe and tether system. These were compared to 50 µm nichrome microwire standards. Recording tests were performed in decerebrate animals. Main results. Mechanical bending tests on braids comprising 9.6 or 12.7 µm nichrome wires showed that implants (braided portions) had 4 to 21 times better mechanical compliance than a single 50 µm wire and non-braided tethers were 6 to 96 times better. Braided microprobes yielded robust neural recordings from animals' spinal cords throughout cord motions. Significance. Microwire electrode arrays that can record and withstand tissue micro- and macromotion of spinal cord tissues are demonstrated. This technology may provide a stable chronic neural interface into spinal cords of freely moving animals, is extensible to various applications, and may reduce mechanical tissue stress.
Guan, Cao; Wang, John
2016-10-01
Electrode materials play a decisive role in almost all electrochemical energy storage devices, determining their overall performance. Proper selection, design and fabrication of electrode materials have thus been regarded as one of the most critical steps in achieving high electrochemical energy storage performance. As an advanced nanotechnology for thin films and surfaces with conformal interfacial features and well controllable deposition thickness, atomic layer deposition (ALD) has been successfully developed for deposition and surface modification of electrode materials, where there are considerable issues of interfacial and surface chemistry at atomic and nanometer scale. In addition, ALD has shown great potential in construction of novel nanostructured active materials that otherwise can be hardly obtained by other processing techniques, such as those solution-based processing and chemical vapor deposition (CVD) techniques. This review focuses on the recent development of ALD for the design and delivery of advanced electrode materials in electrochemical energy storage devices, where typical examples will be highlighted and analyzed, and the merits and challenges of ALD for applications in energy storage will also be discussed.
2016-01-01
Electrode materials play a decisive role in almost all electrochemical energy storage devices, determining their overall performance. Proper selection, design and fabrication of electrode materials have thus been regarded as one of the most critical steps in achieving high electrochemical energy storage performance. As an advanced nanotechnology for thin films and surfaces with conformal interfacial features and well controllable deposition thickness, atomic layer deposition (ALD) has been successfully developed for deposition and surface modification of electrode materials, where there are considerable issues of interfacial and surface chemistry at atomic and nanometer scale. In addition, ALD has shown great potential in construction of novel nanostructured active materials that otherwise can be hardly obtained by other processing techniques, such as those solution‐based processing and chemical vapor deposition (CVD) techniques. This review focuses on the recent development of ALD for the design and delivery of advanced electrode materials in electrochemical energy storage devices, where typical examples will be highlighted and analyzed, and the merits and challenges of ALD for applications in energy storage will also be discussed. PMID:27840793
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amirifar, Nooshin; Lardé, Rodrigue, E-mail: rodrigue.larde@univ-rouen.fr; Talbot, Etienne
2015-12-07
In the last decade, atom probe tomography has become a powerful tool to investigate semiconductor and insulator nanomaterials in microelectronics, spintronics, and optoelectronics. In this paper, we report an investigation of zinc oxide nanostructures using atom probe tomography. We observed that the chemical composition of zinc oxide is strongly dependent on the analysis parameters used for atom probe experiments. It was observed that at high laser pulse energies, the electric field at the specimen surface is strongly dependent on the crystallographic directions. This dependence leads to an inhomogeneous field evaporation of the surface atoms, resulting in unreliable measurements. We showmore » that the laser pulse energy has to be well tuned to obtain reliable quantitative chemical composition measurements of undoped and doped ZnO nanomaterials.« less
Breen, Andrew J; Moody, Michael P; Ceguerra, Anna V; Gault, Baptiste; Araullo-Peters, Vicente J; Ringer, Simon P
2015-12-01
The following manuscript presents a novel approach for creating lattice based models of Sb-doped Si directly from atom probe reconstructions for the purposes of improving information on dopant positioning and directly informing quantum mechanics based materials modeling approaches. Sophisticated crystallographic analysis techniques are used to detect latent crystal structure within the atom probe reconstructions with unprecedented accuracy. A distortion correction algorithm is then developed to precisely calibrate the detected crystal structure to the theoretically known diamond cubic lattice. The reconstructed atoms are then positioned on their most likely lattice positions. Simulations are then used to determine the accuracy of such an approach and show that improvements to short-range order measurements are possible for noise levels and detector efficiencies comparable with experimentally collected atom probe data. Copyright © 2015 Elsevier B.V. All rights reserved.
Optimizing results of lithotripsy using robust electromagnetic probe.
Keeley, F X; Pye, S D; Smith, G; Tolley, D A
1999-05-01
A significant impediment to the measurement of the pressures and forces created by lithotripter shockwaves has been their destructive properties, which have rendered most measuring devices impractical. We have developed and tested a robust electromagnetic probe to measure cavitational forces in vitro in the focal zones of extracorporeal lithotripters. The probe responds to the pressure gradient generated by the radial motion of cavitation bubbles. The effects of shockwaves from the Dornier MPL 9000 electrohydraulic lithotripter were measured over the lifetime of multiple electrodes. The pulse energy from the electrodes dropped off rapidly after approximately 50% of the lifetime quoted by the manufacturer. The electrodes were more efficient at higher power settings. As a result, we altered our protocol for the treatment of ureteral stones to use a higher kilovoltage and a second electrode whenever necessary. Stone-free rates after shockwave lithotripsy (SWL) in situ for stones < 11 mm have increased from 68.2% to 83.3%, and the retreatment rate has dropped from 23% to 15%. Despite significantly higher power settings (23.7 kV v 18.7 kV; P < 0.0001), the need for sedoanalgesia has remained relatively constant (26% v 31%). Measurement of cavitational forces from lithotripters using a robust electromagnetic probe is useful in planning treatment strategy. We have demonstrated a clinically measurable improvement since implementing our new treatment protocol. Because the probe responds directly to cavitational forces, it should also prove useful for the objective comparison of different SWL machines.
Souiri, Mina; Blel, Nesrine; Sboui, Dejla; Mhamdi, Lotfi; Epalle, Thibaut; Mzoughi, Ridha; Riffard, Serge; Othmane, Ali
2014-01-01
The microscopic surface molecular structures and properties of monoclonal anti-Legionella pneumophila antibodies on an indium-tin oxide (ITO) electrode surface were studied to elaborate an electrochemical immunosensor for Legionella pneumophila detection. A monoclonal anti-Legionella pneumophila antibody (MAb) has been immobilized onto an ITO electrode via covalent chemical bonds between antibodies amino-group and the ring of (3-Glycidoxypropyl) trimethoxysilane (GPTMS). The functionalization of the immunosensor was characterized by atomic force microscopy (AFM), water contact angle measurement, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in the presence of [Fe(CN)₆](3-/4-) as a redox probe. Specific binding of Legionella pneumophila sgp 1 cells onto the antibody-modified ITO electrode was shown by confocal laser scanning microscopy (CLSM) imaging and EIS. AFM images evidenced the dense and relatively homogeneous morphology on the ITO surface. The formation of the complex epoxysilane-antibodies acting as barriers for the electron transfer between the electrode surface and the redox species in the solution induced a significant increase in the charge transfer resistance (Rct) compared to all the electric elements. A linear relationship between the change in charge transfer resistance (ΔRct=Rct after immunoreactions - Rct control) and the logarithmic concentration value of L. pneumophila was observed in the range of 5 × 10(1)-5 × 10(4) CFU mL(-1) with a limit of detection 5 × 10(1)CFU mL(-1). The present study has demonstrated the successful deposition of an anti-L. pneumophila antibodies on an indium-tin oxide surface, opening its subsequent use as immuno-captor for the specific detection of L. pneumophila in environmental samples. © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Geerts, Wilhelmus; Simpson, Nelson; Woodall, Allen; Compton, Maclyn
2014-03-01
Indium Tin Oxide (ITO) is a transparent conducting oxide that is used in flat panel displays and optoelectronics. Highly conductive and transparent ITO films are normally produced by heating the substrate to 300 Celsius during deposition excluding plastics to be used as a substrate material. We investigated whether high quality ITO films can be sputtered at room temperature using atomic instead of molecular oxygen. The films were deposited by dual ion beam sputtering (DIBS). During deposition the substrate was exposed to a molecular or an atomic oxygen flux. Microscope glass slides and silicon wafers were used as substrates. A 29 nm thick SIO2 buffer layer was used. Optical properties were measured with a M2000 Woollam variable angle spectroscopic ellipsometer. Electrical properties were measured by linear four point probe using a Jandel 4pp setup employing silicon carbide electrodes, high input resistance, and Keithley low bias current buffer amplifiers. The figure of merit (FOM), i.e. the ratio of the conductivity and the average optical absorption coefficient (400-800 nm), was calculated from the optical and electric properties and appeared to be 1.2 to 5 times higher for the samples sputtered with atomic oxygen. The largest value obtained for the FOM was 0.08 reciprocal Ohms. The authors would like to thank the Research Corporation for Financial Support.
NASA Astrophysics Data System (ADS)
Yin, X.; Chen, G.; Li, W.; Huthchins, D. A.
2013-01-01
Previous work indicated that the capacitive imaging (CI) technique is a useful NDE tool which can be used on a wide range of materials, including metals, glass/carbon fibre composite materials and concrete. The imaging performance of the CI technique for a given application is determined by design parameters and characteristics of the CI probe. In this paper, a rapid method for calculating the whole probe sensitivity distribution based on the finite element model (FEM) is presented to provide a direct view of the imaging capabilities of the planar CI probe. Sensitivity distributions of CI probes with different geometries were obtained. Influencing factors on sensitivity distribution were studied. Comparisons between CI probes with point-to-point triangular electrode pair and back-to-back triangular electrode pair were made based on the analysis of the corresponding sensitivity distributions. The results indicated that the sensitivity distribution could be useful for optimising the probe design parameters and predicting the imaging performance.
NASA Technical Reports Server (NTRS)
Rock, M.
1981-01-01
Electrodes and electrolytes of nickel cadmium sealed batteries were analyzed. Different thermal analysis of negative and positive battery electrodes was conducted and the temperature ranges of occurrence of endotherms indicating decomposition of cadmium hydroxide and nickel hydroxide are identified. Atomic absorption spectroscopy was used to analyze electrodes and electrolytes for traces of nickel, cadmium, cobalt, and potassium. Calibration curves and data are given for each sample analyzed. Instrumentation and analytical procedures used for each method are described.
Three axis velocity probe system
Fasching, George E.; Smith, Jr., Nelson S.; Utt, Carroll E.
1992-01-01
A three-axis velocity probe system for determining three-axis positional velocities of small particles in fluidized bed systems and similar applications. This system has a sensor head containing four closely-spaced sensing electrodes of small wires that have flat ends to establish a two axis plane, e.g. a X-Y plane. Two of the sensing electrodes are positioned along one of the axes and the other two are along the second axis. These four sensing electrodes are surrounded by a guard electrode, and the outer surface is a ground electrode and support member for the sensing head. The electrodes are excited by, for example, sinusoidal voltage having a peak-to-peak voltage of up to 500 volts at a frequency of 2 MHz. Capacitive currents flowing between the four sensing electrodes and the ground electrode are influenced by the presence and position of a particle passing the sensing head. Any changes in these currents due to the particle are amplified and synchronously detected to produce positional signal values that are converted to digital form. Using these digital forms and two values of time permit generation of values of the three components of the particle vector and thus the total velocity vector.
Aberration corrected STEM by means of diffraction gratings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linck, Martin; Ercius, Peter A.; Pierce, Jordan S.
In the past 15 years, the advent of aberration correction technology in electron microscopy has enabled materials analysis on the atomic scale. This is made possible by precise arrangements of multipole electrodes and magnetic solenoids to compensate the aberrations inherent to any focusing element of an electron microscope. In this paper, we describe an alternative method to correct for the spherical aberration of the objective lens in scanning transmission electron microscopy (STEM) using a passive, nanofabricated diffractive optical element. This holographic device is installed in the probe forming aperture of a conventional electron microscope and can be designed to removemore » arbitrarily complex aberrations from the electron's wave front. In this work, we show a proof-of-principle experiment that demonstrates successful correction of the spherical aberration in STEM by means of such a grating corrector (GCOR). Our GCOR enables us to record aberration-corrected high-resolution high-angle annular dark field (HAADF-) STEM images, although yet without advancement in probe current and resolution. Finally, improvements in this technology could provide an economical solution for aberration-corrected high-resolution STEM in certain use scenarios.« less
Aberration corrected STEM by means of diffraction gratings
Linck, Martin; Ercius, Peter A.; Pierce, Jordan S.; ...
2017-06-12
In the past 15 years, the advent of aberration correction technology in electron microscopy has enabled materials analysis on the atomic scale. This is made possible by precise arrangements of multipole electrodes and magnetic solenoids to compensate the aberrations inherent to any focusing element of an electron microscope. In this paper, we describe an alternative method to correct for the spherical aberration of the objective lens in scanning transmission electron microscopy (STEM) using a passive, nanofabricated diffractive optical element. This holographic device is installed in the probe forming aperture of a conventional electron microscope and can be designed to removemore » arbitrarily complex aberrations from the electron's wave front. In this work, we show a proof-of-principle experiment that demonstrates successful correction of the spherical aberration in STEM by means of such a grating corrector (GCOR). Our GCOR enables us to record aberration-corrected high-resolution high-angle annular dark field (HAADF-) STEM images, although yet without advancement in probe current and resolution. Finally, improvements in this technology could provide an economical solution for aberration-corrected high-resolution STEM in certain use scenarios.« less
Electrochemical behavior of adrenaline at the carbon atom wire modified electrode
NASA Astrophysics Data System (ADS)
Xue, Kuan-Hong; Liu, Jia-Mei; Wei, Ri-Bing; Chen, Shao-Peng
2006-09-01
Electrochemical behavior of adrenaline at an electrode modified by carbon atom wires (CAWs), a new material, was investigated by cyclic voltammetry combined with UV-vis spectrometry, and forced convection method. As to the electrochemical response of redox of adrenaline/adrenalinequinone couple in 0.50 M H 2SO 4, at a nitric acid treated CAW modified electrode, the anodic and cathodic peak potentials Epa and Epc shifted by 87 mV negatively and 139 mV in the positive direction, respectively, and standard heterogeneous rate constant k0 increased by 16 times compared to the corresponding bare electrode, indicating the extraordinary activity of CAWs in electrocatalysis for the process.
Rusz, Ján; Idrobo, Juan Carlos
2016-03-24
It was recently proposed that electron magnetic circular dichroism (EMCD) can be measured in scanning transmission electron microscopy (STEM) with atomic resolution by tuning the phase distribution of a electron beam. Here, we describe the theoretical and practical aspects for the detection of out-of-plane and in-plane magnetization utilizing atomic size electron probes. Here we present the calculated optimized astigmatic probes and discuss how to achieve them experimentally.
An environmental transfer hub for multimodal atom probe tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perea, Daniel E.; Gerstl, Stephan S. A.; Chin, Jackson
Environmental control during transfer between instruments is required for specimens sensitive to air or thermal exposure to prevent morphological or chemical changes. Atom Probe Tomography is an expanding technique but commercial instruments remain limited to loading under ambient conditions. Here we describe a multifunctional environmental transfer hub allowing controlled cryogenic, atmospheric and vacuum transfer between an Atom Probe and other instruments containing separate chambers to allow downstream time-resolved in-situ studies.
Alden, J A; Feldman, M A; Hill, E; Prieto, F; Oyama, M; Coles, B A; Compton, R G; Dobson, P J; Leigh, P A
1998-05-01
A channel electrode array, with electrodes ranging in size from the millimeter to the submicrometer scale, is used for the amperometric interrogation of mechanistically complex electrode processes. In this way, the transport-limited current, measured as a function of both electrode size and electrolyte flow rate (convection), is shown to provide a highly sensitive probe of mechanism and kinetics. The application of "two-dimensional voltammetry" to diverse electrode processes, including E, ECE, ECEE, EC', and DISP2 reactions, is reported.
Okumura, Tetsu; Okanoya, Kazuo; Tani, Jun
2007-01-01
In chronic recording experiments, self-curing dental acrylic resins have been used as a mounting base of electrodes or microdialysis-probes. Since these acrylics do not bond to the bone, screws have been used as anchors. However, in small experimental animals like finches or mouse, their craniums are very fragile and can not successfully hold the anchors. In this report, we propose a new application of light-curing dental resins for mounting base of electrodes or microdialysis probes in chronic experiments. This material allows direct bonding to the cranium. Therefore, anchor screws are not required and surgical field can be reduced considerably. Past experiences show that the bonding effect maintains more than 2 months. Conventional resin's window of time when the materials are pliable and workable is a few minutes. However, the window of working time for these dental adhesives is significantly wider and adjustable. PMID:18997897
Orikasa, Yuki; Gogyo, Yuma; Yamashige, Hisao; Katayama, Misaki; Chen, Kezheng; Mori, Takuya; Yamamoto, Kentaro; Masese, Titus; Inada, Yasuhiro; Ohta, Toshiaki; Siroma, Zyun; Kato, Shiro; Kinoshita, Hajime; Arai, Hajime; Ogumi, Zempachi; Uchimoto, Yoshiharu
2016-05-19
Composite electrodes containing active materials, carbon and binder are widely used in lithium-ion batteries. Since the electrode reaction occurs preferentially in regions with lower resistance, reaction distribution can be happened within composite electrodes. We investigate the relationship between the reaction distribution with depth direction and electronic/ionic conductivity in composite electrodes with changing electrode porosities. Two dimensional X-ray absorption spectroscopy shows that the reaction distribution is happened in lower porosity electrodes. Our developed 6-probe method can measure electronic/ionic conductivity in composite electrodes. The ionic conductivity is decreased for lower porosity electrodes, which governs the reaction distribution of composite electrodes and their performances.
Meher, Subhashish; Rojhirunsakool, Tanaporn; Nandwana, Peeyush; ...
2015-04-28
In this study, the analytical limitations in atom probe tomography such as resolving a desired set of atomic planes, for solving complex materials science problems, have been overcome by employing a well-developed unique and reproducible crystallographic technique, involving synergetic coupling of orientation microscopy with atom probe tomography. The crystallographic information in atom probe reconstructions has been utilized to determine the solute site occupancies in Ni-Al-Cr based superalloys accurately. The structural information in atom probe reveals that both Al and Cr occupy the same sub-lattice within the L1 2-ordered g precipitates to form Ni 3(Al,Cr) precipitates in a Ni-14Al-7Cr(at.%) alloy. Interestingly,more » the addition of Co, which is a solid solution strengthener, to a Ni-14Al-7Cr alloy results in the partial reversal of Al site occupancy within g precipitates to form (Ni,Al) 3(Al,Cr,Co) precipitates. This unique evidence of reversal of Al site occupancy, resulting from the introduction of other solutes within the ordered structures, gives insights into the relative energetics of different sub-lattice sites when occupied by different solutes.« less
A Sensitive DNA Capacitive Biosensor Using Interdigitated Electrodes
Wang, Lei; Veselinovic, Milena; Yang, Lang; Geiss, Brian J.; Dandy, David S.; Chen, Tom
2017-01-01
This paper presents a label-free affinity-based capacitive biosensor using interdigitated electrodes. Using an optimized process of DNA probe preparation to minimize the effect of contaminants in commercial thiolated DNA probe, the electrode surface was functionalized with the 24-nucleotide DNA probes based on the West Nile virus sequence (Kunjin strain). The biosensor has the ability to detect complementary DNA fragments with a detection limit down to 20 DNA target molecules (1.5 aM range), making it suitable for a practical point-of-care (POC) platform for low target count clinical applications without the need for amplification. The reproducibility of the biosensor detection was improved with efficient covalent immobilization of purified single-stranded DNA probe oligomers on cleaned gold microelectrodes. In addition to the low detection limit, the biosensor showed a dynamic range of detection from 1 μL−1 to 105 μL−1 target molecules (20 to 2 million targets), making it suitable for sample analysis in a typical clinical application environment. The binding results presented in this paper were validated using fluorescent oligomers. PMID:27619528
Sun, Jian; Akiba, Uichi; Fujihira, Masamichi
2008-09-01
Stretch lengths of pure gold mono-atomic wires have been studied recently with an electrochemical scanning tunneling microscope (STM). Here, we will report a study of stretch lengths of gold mono-atomic wires with and without 1,6-hexanedithiol (HDT) using the STM break-junction method. First, the stretch length was measured as a function of electrode potentials of a bare Au(111) substrate and a gold STM tip in a 0.1 M NaClO4 aqueous solution. Second, a self-assembled monolayer (SAM) was fabricated on an Au(111) substrate by dipping the substrate into a 1 mM HDT ethanol solution. At last, we measured the stretch length of gold mono-atomic wires on a substrate covered with the SAM in place of the bare Au(111) substrate. We compared the electrode potential dependence of the stretch lengths of gold mono-atomic wires covered with and without HDT. We will discuss the effect of the electrode potential on the stretch lengths by taking account of electrocapillarity of gold mono-atomic wires.
Lopes, Pietro P.; Strmcnik, Dusan; Tripkovic, Dusan; ...
2016-03-07
The development of alternative energy systems for clean production, storage and conversion of energy is strongly dependent on our ability to understand, at atomic-molecular-levels, functional links between activity and stability of electrochemical interfaces. Whereas structure-activity relationships are rapidly evolving, the corresponding structure-stability relationships are still missing. Primarily, this is because there is no adequate experimental approach capable of monitoring in situ stability of well-defined single crystals. Here, by blending the power of Inductively Coupled Plasma-Mass Spectrometer (ICP-MS) connected to a stationary probe to measure in situ and real time dissolution rates of surface atoms (at above 0.4 pg cm-2s-1 levels)more » and a rotating disk electrode method for monitoring simultaneously the kinetic rates of electrochemical reactions in a single unite, it was possible to establish almost “atom-by-atom” the structure-stability-activity relationships for platinum single crystals in both acidic and alkaline environments. Furthermore, we found that the degree of stability is strongly dependent on the coordination of surface atoms (less coordinated yields less stable), the nature of covalent (adsorption of hydroxyl, oxygen atoms and halides species), and non-covalent interactions (interactions between hydrated Li cations and surface oxide), the thermodynamic driving force for Pt complexation (Pt ion speciation in solution) and the nature of the electrochemical reaction (the oxygen reduction/evolution and CO oxidation reactions). Consequently, these findings are opening new opportunities for elucidating key fundamental descriptors that govern both activity and stability trends, that ultimately, will assist to develop real energy conversion and storage systems.« less
Perea, Daniel E.; Liu, Jia; Bartrand, Jonah A. G.; ...
2016-02-29
In this study, we report the atomic-scale analysis of biological interfaces using atom probe tomography. Embedding the protein ferritin in an organic polymer resin lacking nitrogen provided chemical contrast to visualize atomic distributions and distinguish organic-organic and organic-inorganic interfaces. The sample preparation method can be directly extended to further enhance the study of biological, organic and inorganic nanomaterials relevant to health, energy or the environment.
Atomistic minimal model for estimating profile of electrodeposited nanopatterns
NASA Astrophysics Data System (ADS)
Asgharpour Hassankiadeh, Somayeh; Sadeghi, Ali
2018-06-01
We develop a computationally efficient and methodologically simple approach to realize molecular dynamics simulations of electrodeposition. Our minimal model takes into account the nontrivial electric field due a sharp electrode tip to perform simulations of the controllable coating of a thin layer on a surface with an atomic precision. On the atomic scale a highly site-selective electrodeposition of ions and charged particles by means of the sharp tip of a scanning probe microscope is possible. A better understanding of the microscopic process, obtained mainly from atomistic simulations, helps us to enhance the quality of this nanopatterning technique and to make it applicable in fabrication of nanowires and nanocontacts. In the limit of screened inter-particle interactions, it is feasible to run very fast simulations of the electrodeposition process within the framework of the proposed model and thus to investigate how the shape of the overlayer depends on the tip-sample geometry and dielectric properties, electrolyte viscosity, etc. Our calculation results reveal that the sharpness of the profile of a nano-scale deposited overlayer is dictated by the normal-to-sample surface component of the electric field underneath the tip.
Enhanced noise at high bias in atomic-scale Au break junctions
Chen, Ruoyu; Wheeler, Patrick J.; Di Ventra, M.; Natelson, D.
2014-01-01
Heating in nanoscale systems driven out of equilibrium is of fundamental importance, has ramifications for technological applications, and is a challenge to characterize experimentally. Prior experiments using nanoscale junctions have largely focused on heating of ionic degrees of freedom, while heating of the electrons has been mostly neglected. We report measurements in atomic-scale Au break junctions, in which the bias-driven component of the current noise is used as a probe of the electronic distribution. At low biases (<150 mV) the noise is consistent with expectations of shot noise at a fixed electronic temperature. At higher biases, a nonlinear dependence of the noise power is observed. We consider candidate mechanisms for this increase, including flicker noise (due to ionic motion), heating of the bulk electrodes, nonequilibrium electron-phonon effects, and local heating of the electronic distribution impinging on the ballistic junction. We find that flicker noise and bulk heating are quantitatively unlikely to explain the observations. We discuss the implications of these observations for other nanoscale systems, and experimental tests to distinguish vibrational and electron interaction mechanisms for the enhanced noise. PMID:24573177
A High-Q AFM Sensor Using a Balanced Trolling Quartz Tuning Fork in the Liquid
Li, Yingzi; Song, Zihang; Lin, Rui; Chen, Yifu; Qian, Jianqiang
2018-01-01
A quartz tuning fork (QTF) has been widely used as a force sensor of the frequency modulation atomic force microscope due to its ultrahigh stiffness, high quality factor and self-sensing nature. However, due to the bulky structure and exposed surface electrode arrangement, its application is limited, especially in liquid imaging of in situ biological samples, ionic liquids, electrochemical reaction, etc. Although the complication can be resolved by coating insulating materials on the QTF surface and then immersing the whole QTF into the liquid, it would result in a sharp drop of the quality factor, which will reduce the sensitivity of the QTF. To solve the problem, a novel method, called the balanced trolling quartz tuning fork (BT-QTF), is introduced here. In this method, two same probes are glued on both prongs of the QTF separately while only one probe immersed in the liquid. With the method, the hydrodynamic interaction can be reduced, thus the BT-QTF can retain a high quality factor and constant resonance frequency. The stable small vibration of the BT-QTF can be achieved in the liquid. Initially, a theoretical model is presented to analyze the sensing performance of the BT-QTF in the liquid. Then, the sensing performance analysis experiments of the BT-QTF have been performed. At last, the proposed method is applied to atomic force microscope imaging different samples in the liquid, which proves its feasibility. PMID:29783740
Taccardi, B; Arisi, G; Macchi, E; Baruffi, S; Spaggiari, S
1987-01-01
An olive-shaped probe (25 X 12 mm) with 41 evenly distributed recording electrodes on its surface was introduced into the left ventricles of seven open-chest dogs via the left atrium. In two other dogs a cylindrical probe (40 X 3 mm) was used. Electrical stimuli were delivered at 66 endocardial, midwall, or epicardial sites in the left and right ventricular walls and the septum. Mechanical stimuli were also applied at various epicardial sites. On-line mapping of equipotential contour lines on the surface of the probe invariably revealed a clear-cut potential minimum on the electrode that faced the pacing site. Time of appearance of potential minimum was 3 to 5 msec after endocardial stimuli, 10 to 25 msec for midwall and epicardial pacing, and 30 msec or more for right ventricular stimulation. Simultaneous stimulation at two sites 1.2 cm apart gave rise to two separate minima on the maps. "Pseudoisochrones" derived from electrograms recorded by the new probe were slightly less accurate in indicating the site of origin of extrasystoles. We conclude that equipotential and "isochrone" contour maps recorded from an array of semidirect electrodes, regularly distributed on the surface of an intraventricular probe, provide information on the site of origin (location and intramural depth) of ectopic paced beats in a normal dog heart.
Tan, Mingsheng; Stone, Douglas R; Triana, Joseph C; Almagri, Abdulgader F; Fiksel, Gennady; Ding, Weixing; Sarff, John S; McCollam, Karsten J; Li, Hong; Liu, Wandong
2017-02-01
A 40-channel capacitive probe has been developed to measure the electrostatic fluctuations associated with the tearing modes deep into Madison Symmetric Torus (MST) reversed field pinch plasma. The capacitive probe measures the ac component of the plasma potential via the voltage induced on stainless steel electrodes capacitively coupled with the plasma through a thin annular layer of boron nitride (BN) dielectric (also serves as the particle shield). When bombarded by the plasma electrons, BN provides a sufficiently large secondary electron emission for the induced voltage to be very close to the plasma potential. The probe consists of four stalks each with ten cylindrical capacitors that are radially separated by 1.5 cm. The four stalks are arranged on a 1.3 cm square grid so that at each radial position, there are four electrodes forming a square grid. Every two adjacent radial sets of four electrodes form a cube. The fluctuating electric field can be calculated by the gradient of the plasma potential fluctuations at the eight corners of the cube. The probe can be inserted up to 15 cm (r/a = 0.7) into the plasma. The capacitive probe has a frequency bandwidth from 13 Hz to 100 kHz, amplifier-circuit limit, sufficient for studying the tearing modes (5-30 kHz) in the MST reversed-field pinch.
NASA Astrophysics Data System (ADS)
Matsui, Fumihiko; Matsushita, Tomohiro; Daimon, Hiroshi
2018-06-01
The local atomic structure around a specific element atom can be recorded as a photoelectron diffraction pattern. Forward focusing peaks and diffraction rings around them indicate the directions and distances from the photoelectron emitting atom to the surrounding atoms. The state-of-the-art holography reconstruction algorithm enables us to image the local atomic arrangement around the excited atom in a real space. By using circularly polarized light as an excitation source, the angular momentum transfer from the light to the photoelectron induces parallax shifts in these diffraction patterns. As a result, stereographic images of atomic arrangements are obtained. These diffraction patterns can be used as atomic-site-resolved probes for local electronic structure investigation in combination with spectroscopy techniques. Direct three-dimensional atomic structure visualization and site-specific electronic property analysis methods are reviewed. Furthermore, circular dichroism was also found in valence photoelectron and Auger electron diffraction patterns. The investigation of these new phenomena provides hints for the development of new techniques for local structure probing.
Eles, James R; Vazquez, Alberto L; Snyder, Noah R; Lagenaur, Carl; Murphy, Matthew C; Kozai, Takashi D Y; Cui, X Tracy
2017-01-01
Implantable neural electrode technologies for chronic neural recordings can restore functional control to paralysis and limb loss victims through brain-machine interfaces. These probes, however, have high failure rates partly due to the biological responses to the probe which generate an inflammatory scar and subsequent neuronal cell death. L1 is a neuronal specific cell adhesion molecule and has been shown to minimize glial scar formation and promote electrode-neuron integration when covalently attached to the surface of neural probes. In this work, the acute microglial response to L1-coated neural probes was evaluated in vivo by implanting coated devices into the cortex of mice with fluorescently labeled microglia, and tracking microglial dynamics with multi-photon microscopy for the ensuing 6 h in order to understand L1's cellular mechanisms of action. Microglia became activated immediately after implantation, extending processes towards both L1-coated and uncoated control probes at similar velocities. After the processes made contact with the probes, microglial processes expanded to cover 47.7% of the control probes' surfaces. For L1-coated probes, however, there was a statistically significant 83% reduction in microglial surface coverage. This effect was sustained through the experiment. At 6 h post-implant, the radius of microglia activation was reduced for the L1 probes by 20%, shifting from 130.0 to 103.5 μm with the coating. Microglia as far as 270 μm from the implant site displayed significantly lower morphological characteristics of activation for the L1 group. These results suggest that the L1 surface treatment works in an acute setting by microglial mediated mechanisms. Copyright © 2016 Elsevier Ltd. All rights reserved.
Control of Goos-Hänchen shift via input probe field intensity
NASA Astrophysics Data System (ADS)
Ziauddin; Lee, Ray-Kuang; Qamar, Sajid
2016-11-01
We suggest a scheme to control Goos-Hänchen (GH) shift in an ensemble of strongly interacting Rydberg atoms, which act as super-atoms due to the dipole blockade mechanism. The ensemble of three-level cold Rydberg-dressed (87Rb) atoms follows a cascade configurations where two fields, i.e, a strong control and a weak field are employed [D. Petrosyan, J. Otterbach, and M. Fleischhauer, Phys. Rev. Lett. 107, 213601 (2011)]. The propagation of probe field is influenced by two-photon correlation within the blockade distance, which are damped due to the saturation of super-atoms. The amplitude of GH shift in the reflected light depends on the intensity of probe field. We observe large negative GH shift in the reflected light for small values of the probe field intensities.
NASA Astrophysics Data System (ADS)
Nagasawa, Riki; Asayama, Yoshihiro; Nakayama, Takashi
2018-04-01
Metal-atom diffusion from metal electrodes into SiO2 in electric fields was studied using first-principles calculations. It was shown in the case without electric field that the diffusion barrier of a metal atom is mainly made of the cohesive energy of bulk metal layers, while the shape of the diffusion potential reflects the hybridization of the metal-atom state with metal-induced gap states (MIGSs) and the electron transfer between the metal atom and the electrode. We found that the metal-atom diffusion is markedly accelerated by the applied electric field, such that the diffusion barrier ϕB(E) decreases almost linearly with increasing electric field strength E. By analyzing the physical origins of the metal-atom diffusion, we derived the universal formula to estimate the diffusion barrier in the electric field, which is closely related to MIGSs.
Flexible high-temperature pH probe
Bielawski, John C.; Outwater, John O.; Halbfinger, George P.
2003-04-22
A flexible pH probe device is provided for use in hot water and other high temperature environments up to about 590.degree. F. The pH probe includes a flexible, inert tubular probe member, an oxygen anion conducting, solid state electrolyte plug located at the distal end of the tubular member, oxide powder disposed at the distal end of the tubular member; a metal wire extending along the tubular member and having a distal end in contact with the oxide powder so as to form therewith an internal reference electrode; and a compression fitting forming a pressure boundary seal around a portion of the tubular member remote from the distal end thereof. Preferably, the tubular member is made of polytetrafluoroethylene, and the solid state electrolyte plug is made of stabilized zirconia. The flexibility of the probe member enables placement of the electrode into the area of interest, including around corners, into confined areas and the like.
Modulated microwave microscopy and probes used therewith
Lai, Keji; Kelly, Michael; Shen, Zhi-Xun
2012-09-11
A microwave microscope including a probe tip electrode vertically positionable over a sample and projecting downwardly from the end of a cantilever. A transmission line connecting the tip electrode to the electronic control system extends along the cantilever and is separated from a ground plane at the bottom of the cantilever by a dielectric layer. The probe tip may be vertically tapped near or at the sample surface at a low frequency and the microwave signal reflected from the tip/sample interaction is demodulated at the low frequency. Alternatively, a low-frequency electrical signal is also a non-linear electrical element associated with the probe tip to non-linearly interact with the applied microwave signal and the reflected non-linear microwave signal is detected at the low frequency. The non-linear element may be semiconductor junction formed near the apex of the probe tip or be an FET formed at the base of a semiconducting tip.
Kisban, S; Herwik, S; Seidl, K; Rubehn, B; Jezzini, A; Umiltà, M A; Fogassi, L; Stieglitz, T; Paul, O; Ruther, P
2007-01-01
This paper reports on a novel type of silicon-based microprobes with linear, two and three dimensional (3D) distribution of their recording sites. The microprobes comprise either single shafts, combs with multiple shafts or 3D arrays combining two combs with 9, 36 or 72 recording sites, respectively. The electrical interconnection of the probes is achieved through highly flexible polyimide ribbon cables attached using the MicroFlex Technology which allows a connection part of small lateral dimensions. For an improved handling, probes can be secured by a protecting canula. Low-impedance electrodes are achieved by the deposition of platinum black. First in vivo experiments proved the capability to record single action potentials in the motor cortex from electrodes close to the tip as well as body electrodes along the shaft.
NASA Astrophysics Data System (ADS)
Giacometti, Paolo; Diamond, Solomon G.
2013-02-01
A noninvasive head probe that combines near-infrared spectroscopy (NIRS) and electroencephalography (EEG) for simultaneous measurement of neural dynamics and hemodynamics in the brain is presented. It is composed of a compliant expandable mechanism that accommodates a wide range of head size variation and an elastomeric web that maintains uniform sensor contact pressure on the scalp as the mechanism expands and contracts. The design is intended to help maximize optical and electrical coupling and to maintain stability during head movement. Positioning electrodes at the inion, nasion, central, and preauricular fiducial locations mechanically shapes the probe to place 64 NIRS optodes and 65 EEG electrodes following the 10-5 scalp coordinates. The placement accuracy, precision, and scalp pressure uniformity of the sensors are evaluated. A root-mean-squared (RMS) positional precision of 0.89±0.23 mm, percent arc subdivision RMS accuracy of 0.19±0.15%, and mean normal force on the scalp of 2.28±0.88 N at 5 mm displacement were found. Geometric measurements indicate that the probe will accommodate the full range of adult head sizes. The placement accuracy, precision, and uniformity of sensor contact pressure of the proposed head probe are important determinants of data quality in noninvasive brain monitoring with simultaneous NIRS-EEG.
Strelcov, Evgheni; Yang, Sang Mo; Jesse, Stephen; ...
2016-04-21
Energy technologies of the 21st century require an understanding and precise control over ion transport and electrochemistry at all length scales – from single atoms to macroscopic devices. Our short review provides a summary of recent studies dedicated to methods of advanced scanning probe microscopy for probing electrochemical transformations in solids at the meso-, nano- and atomic scales. In this discussion we present the advantages and limitations of several techniques and a wealth of examples highlighting peculiarities of nanoscale electrochemistry.
Strelcov, Evgheni; Yang, Sang Mo; Jesse, Stephen; Balke, Nina; Vasudevan, Rama K.; Kalinin, Sergei V.
2016-01-01
Energy technologies of the 21st century require understanding and precise control over ion transport and electrochemistry at all length scales – from single atoms to macroscopic devices. This short review provides a summary of recent works dedicated to methods of advanced scanning probe microscopy for probing electrochemical transformations in solids at the meso-, nano- and atomic scales. Discussion presents advantages and limitations of several techniques and a wealth of examples highlighting peculiarities of nanoscale electrochemistry. PMID:27146961
Two-probe atomic-force microscope manipulator and its applications.
Zhukov, A A; Stolyarov, V S; Kononenko, O V
2017-06-01
We report on a manipulator based on a two-probe atomic force microscope (AFM) with an individual feedback system for each probe. This manipulator works under an upright optical microscope with 3 mm focal distance. The design of the microscope helps us tomanipulate nanowires using the microscope probes as a two-prong fork. The AFM feedback is realized based on the dynamic full-time contact mode. The applications of the manipulator and advantages of its two-probe design are presented.
Orikasa, Yuki; Gogyo, Yuma; Yamashige, Hisao; Katayama, Misaki; Chen, Kezheng; Mori, Takuya; Yamamoto, Kentaro; Masese, Titus; Inada, Yasuhiro; Ohta, Toshiaki; Siroma, Zyun; Kato, Shiro; Kinoshita, Hajime; Arai, Hajime; Ogumi, Zempachi; Uchimoto, Yoshiharu
2016-01-01
Composite electrodes containing active materials, carbon and binder are widely used in lithium-ion batteries. Since the electrode reaction occurs preferentially in regions with lower resistance, reaction distribution can be happened within composite electrodes. We investigate the relationship between the reaction distribution with depth direction and electronic/ionic conductivity in composite electrodes with changing electrode porosities. Two dimensional X-ray absorption spectroscopy shows that the reaction distribution is happened in lower porosity electrodes. Our developed 6-probe method can measure electronic/ionic conductivity in composite electrodes. The ionic conductivity is decreased for lower porosity electrodes, which governs the reaction distribution of composite electrodes and their performances. PMID:27193448
Stable glow discharge detector
Koo, Jackson C.; Yu, Conrad M.
2004-05-18
A highly sensitive electronic ion cell for the measurement of trace elements in He carrier gas which involves glow discharge. A constant wave (CW) stable glow discharge detector which is controlled through a biased resistor, can detect the change of electron density caused by impurities in the He carrier gas by many orders of magnitude larger than that caused by direct ionization or electron capture. The stable glow discharge detector utilizes a floating pseudo-electrode to form a probe in or near the plasma and a solid rod electrode. By using this probe, the large variation of electron density due to trace amounts of impurities can be directly measured. The solid rod electrode provides greater stability and thus easier alignment.
Wang, Zhiping; Cao, Dewei; Yu, Benli
2016-05-01
We present a new scheme for three-dimensional (3D) atom localization in a three-level atomic system via measuring the absorption of a weak probe field. Owing to the space-dependent atom-field interaction, the position probability distribution of the atom can be directly determined by measuring the probe absorption. It is found that, by properly varying the parameters of the system, the probability of finding the atom in 3D space can be almost 100%. Our scheme opens a promising way to achieve high-precision and high-efficiency 3D atom localization, which provides some potential applications in laser cooling or atom nano-lithography via atom localization.
Integrated Electrode Arrays for Neuro-Prosthetic Implants
NASA Technical Reports Server (NTRS)
Brandon, Erik; Mojarradi, Mohammede
2003-01-01
Arrays of electrodes integrated with chip-scale packages and silicon-based integrated circuits have been proposed for use as medical electronic implants, including neuro-prosthetic devices that might be implanted in brains of patients who suffer from strokes, spinal-cord injuries, or amyotrophic lateral sclerosis. The electrodes of such a device would pick up signals from neurons in the cerebral cortex, and the integrated circuit would perform acquisition and preprocessing of signal data. The output of the integrated circuit could be used to generate, for example, commands for a robotic arm. Electrode arrays capable of acquiring electrical signals from neurons already exist, but heretofore, there has been no convenient means to integrate these arrays with integrated-circuit chips. Such integration is needed in order to eliminate the need for the extensive cabling now used to pass neural signals to data-acquisition and -processing equipment outside the body. The proposed integration would enable progress toward neuro-prostheses that would be less restrictive of patients mobility. An array of electrodes would comprise a set of thin wires of suitable length and composition protruding from and supported by a fine-pitch micro-ball grid array or chip-scale package (see figure). The associated integrated circuit would be mounted on the package face opposite the probe face, using the solder bumps (the balls of the ball grid array) to make the electrical connections between the probes and the input terminals of the integrated circuit. The key innovation is the insertion of probe wires of the appropriate length and material into the solder bumps through a reflow process, thereby fixing the probes in place and electrically connecting them with the integrated circuit. The probes could be tailored to any distribution of lengths and made of any suitable metal that could be drawn into fine wires. Furthermore, the wires could be coated with an insulating layer using anodization or other processes, to achieve the correct electrical impedance. The probe wires and the packaging materials must be biocompatible using such materials as lead-free solders. For protection, the chip and package can be coated with parylene.
Li, Qiang; Chen, Pin-Yu; Wang, Chiao-Yin; Liu, Hao-Li; Teng, Jianfu
2014-01-01
Percutaneous radiofrequency ablation (RFA) is a minimally invasive treatment to thermally destroy tumors. Ultrasound-based electrode-displacement elastography is an emerging technique for evaluating the region of RFA-induced lesions. The angle between the imaging probe and the RFA electrode can influence electrode-displacement elastography when visualizing the ablation zone. We explored the angle effect on electrode-displacement elastography to measure the ablation zone. Phantoms embedded with meatballs were fabricated and then ablated using an RFA system to simulate RFA-induced lesions. For each phantom, a commercial ultrasound scanner with a 7.5 MHz linear probe was used to acquire raw image data at different angles, ranging from 30° to 90° at increments of 10°, to construct electrode-displacement images and facilitate comparisons with tissue section images. The results revealed that the ablation regions detected using electrode-displacement elastography were highly correlated with those from tissue section images when the angle was between 30° and 60°. However, the boundaries of lesions were difficult to distinguish, when the angle was larger than 60°. The experimental findings suggest that angle selection should be considered to achieve reliable electrode-displacement elastography to describe ablation zones. PMID:24971347
Analysis conditions of an industrial Al-Mg-Si alloy by conventional and 3D atom probes.
Danoix, F; Miller, M K; Bigot, A
2001-10-01
Industrial 6016 Al-Mg-Si(Cu) alloys are presently regarded as attractive candidates for heat treatable sheet materials. Their mechanical properties can be adjusted for a given application by age hardening of the alloys. The resulting microstructural evolution takes place at the nanometer scale, making the atom probe a well suited instrument to study it. Accuracy of atom probe analysis of these aluminium alloys is a key point for the understanding of the fine scale microstructural evolution. It is known to be strongly dependent on the analysis conditions (such as specimen temperature and pulse fraction) which have been widely studied for ID atom probes. The development of the 3D instruments, as well as the increase of the evaporation pulse repetition rate have led to different analysis conditions, in particular evaporation and detection rates. The influence of various experimental parameters on the accuracy of atom probe data, in particular with regard to hydride formation sensitivity, has been reinvestigated. It is shown that hydrogen contamination is strongly dependent on the electric field at the specimen surface, and that high evaporation rates are beneficial. Conversely, detection rate must be limited to smaller than 0.02 atoms/pulse in order to prevent drastic pile-up effect.
21 CFR 870.1220 - Electrode recording catheter or electrode recording probe.
Code of Federal Regulations, 2010 CFR
2010-04-01
... electrocardiogram, or to detect cardiac output or left-to-right heart shunts. The device may be unipolar or... a special indicator for cardiac output or left-to-right heart shunt determinations. (b...
21 CFR 870.1220 - Electrode recording catheter or electrode recording probe.
Code of Federal Regulations, 2011 CFR
2011-04-01
... electrocardiogram, or to detect cardiac output or left-to-right heart shunts. The device may be unipolar or... a special indicator for cardiac output or left-to-right heart shunt determinations. (b...
21 CFR 870.1220 - Electrode recording catheter or electrode recording probe.
Code of Federal Regulations, 2012 CFR
2012-04-01
... electrocardiogram, or to detect cardiac output or left-to-right heart shunts. The device may be unipolar or... a special indicator for cardiac output or left-to-right heart shunt determinations. (b...
21 CFR 870.1220 - Electrode recording catheter or electrode recording probe.
Code of Federal Regulations, 2013 CFR
2013-04-01
... electrocardiogram, or to detect cardiac output or left-to-right heart shunts. The device may be unipolar or... a special indicator for cardiac output or left-to-right heart shunt determinations. (b...
21 CFR 870.1220 - Electrode recording catheter or electrode recording probe.
Code of Federal Regulations, 2014 CFR
2014-04-01
... electrocardiogram, or to detect cardiac output or left-to-right heart shunts. The device may be unipolar or... a special indicator for cardiac output or left-to-right heart shunt determinations. (b...
NASA Astrophysics Data System (ADS)
Parashar, Sweta
2018-05-01
We present density functional theory-nonequilibrium Green’s function method for electron transport of dipyridazine and dipyridimine molecular junctions with gold, copper and nickel electrodes. Our investigation reveals that the junctions formed with gold and copper electrodes bridging dipyridazine molecule through thiol anchoring group enhance current as compared to the junctions in which the molecule and electrode were coupled directly. Further, nickel electrode displays weak decrease of current with increase of voltage at about 1.2 V. The result is fully rationalized by means of the distribution of molecular orbitals as well as shift in molecular energy levels and HOMO-LUMO gap with applied bias voltage. Our findings are compared with theoretical and experimental results available for other molecular junctions. Present results predict potential avenues for changing the transport behavior by not only changing the electrodes, but also the position of nitrogen atom and type of anchoring-atom that connect molecule and electrodes, thus extending applications of dipyridazine and dipyridimine molecule in future integrated circuits.
Doughten, M.W.; Gillison, J.R.
1990-01-01
Methods for the determination of 24 elements in whole coal and coal ash by inductively coupled argon plasma-atomic emission spectrometry, flame, graphite furnace, and cold vapor atomic absorption spectrometry, and by ion-selective electrode are described. Coal ashes were analyzed in triplicate to determine the precision of the methods. Results of the analyses of NBS Standard Reference Materials 1633, 1633a, 1632a, and 1635 are reported. Accuracy of the methods is determined by comparison of the analysis of standard reference materials to their certified values as well as other values in the literature.
NASA Astrophysics Data System (ADS)
Kuang, A. Q.; Brunner, D.; LaBombard, B.; Leccacorvi, R.; Vieira, R.
2018-04-01
An array of flush-mounted and toroidally elongated Langmuir probes (henceforth called rail probes) have been specifically designed for the Alcator C-Mod's vertical target plate divertor and operated over multiple campaigns. The "flush" geometry enables the tungsten electrodes to survive high heat flux conditions in which traditional "proud" tungsten electrodes suffer damage from melting. The toroidally elongated rail-like geometry reduces the influence of sheath expansion, which is an important effect to consider in the design and interpretation of flush-mounted Langmuir probes. The new rail probes successfully operated during C-Mod's FY2015 and FY2016 experimental campaigns with no evidence of damage, despite being regularly subjected to heat flux densities parallel to the magnetic field exceeding ˜1 GW m-2 for short periods of time. A comparison between rail and proud probe data indicates that sheath expansion effects were successfully mitigated by the rail design, extending the use of these Langmuir probes to incident magnetic field line angles as low as 0.5°.
Lu, Wei; Liang, Longwei; Sun, Xuan; Sun, Xiaofei; Wu, Chen; Hou, Linrui; Sun, Jinfeng
2017-01-01
Electrode materials and electrolytes play a vital role in device-level performance of rechargeable Li-ion batteries (LIBs). However, electrode structure/component degeneration and electrode-electrolyte sur-/interface evolution are identified as the most crucial obstacles in practical applications. Thanks to its congenital advantages, atomic layer deposition (ALD) methodology has attracted enormous attention in advanced LIBs. This review mainly focuses upon the up-to-date progress and development of the ALD in high-performance LIBs. The significant roles of the ALD in rational design and fabrication of multi-dimensional nanostructured electrode materials, and finely tailoring electrode-electrolyte sur-/interfaces are comprehensively highlighted. Furthermore, we clearly envision that this contribution will motivate more extensive and insightful studies in the ALD to considerably improve Li-storage behaviors. Future trends and prospects to further develop advanced ALD nanotechnology in next-generation LIBs were also presented. PMID:29036916
NASA Astrophysics Data System (ADS)
Nojima, Hideo; Park, Rae-Eun; Kwon, Jun-Hyoun; Suh, Inseon; Jeon, Junsang; Ha, Eunju; On, Hyeon-Ki; Kim, Hye-Ryung; Choi, Kyoung Hui; Lee, Kwang-Hee; Seong, Baik-Lin; Jung, Hoon; Kang, Shin Jung; Namba, Shinichi; Takiyama, Ken
2007-01-01
A novel atmospheric pressure plasma device releasing atomic hydrogen has been developed. This device has specific properties such as (1) deactivation of airborne microbial-contaminants, (2) neutralization of indoor OH radicals and (3) being harmless to the human body. It consists of a ceramic plate as a positive ion generation electrode and a needle-shaped electrode as an electron emission electrode. Release of atomic hydrogen from the device has been investigated by the spectroscopic method. Optical emission of atomic hydrogen probably due to recombination of positive ions, H+(H2O)n, generated from the ceramic plate electrode and electrons emitted from the needle-shaped electrode have been clearly observed in the He gas (including water vapour) environment. The efficacy of the device to reduce airborne concentrations of influenza virus, bacteria, mould fungi and allergens has been evaluated. 99.6% of airborne influenza virus has been deactivated with the operation of the device compared with the control test in a 1 m3 chamber after 60 min. The neutralization of the OH radical has been investigated by spectroscopic and biological methods. A remarkable reduction of the OH radical in the air by operation of the device has been observed by laser-induced fluorescence spectroscopy. The cell protection effects of the device against OH radicals in the air have been observed. Furthermore, the side effects have been checked by animal experiments. The harmlessness of the device has been confirmed.
LaBombard, B; Lyons, L
2007-07-01
A new method for the real-time evaluation of the conditions in a magnetized plasma is described. The technique employs an electronic "mirror Langmuir probe" (MLP), constructed from bipolar rf transistors and associated high-bandwidth electronics. Utilizing a three-state bias wave form and active feedback control, the mirror probe's I-V characteristic is continuously adjusted to be a scaled replica of the "actual" Langmuir electrode immersed in a plasma. Real-time high-bandwidth measurements of the plasma's electron temperature, ion saturation current, and floating potential can thereby be obtained using only a single electrode. Initial tests of a prototype MLP system are reported, proving the concept. Fast-switching metal-oxide-semiconductor field-effect transistors produce the required three-state voltage bias wave form, completing a full cycle in under 1 mus. Real-time outputs of electron temperature, ion saturation current, and floating potential are demonstrated, which accurately track an independent computation of these values from digitally stored I-V characteristics. The MLP technique represents a significant improvement over existing real-time methods, eliminating the need for multiple electrodes and sampling all three plasma parameters at a single spatial location.
A robust molecular probe for Ångstrom-scale analytics in liquids
Nirmalraj, Peter; Thompson, Damien; Dimitrakopoulos, Christos; Gotsmann, Bernd; Dumcenco, Dumitru; Kis, Andras; Riel, Heike
2016-01-01
Traditionally, nanomaterial profiling using a single-molecule-terminated scanning probe is performed at the vacuum–solid interface often at a few Kelvin, but is not a notion immediately associated with liquid–solid interface at room temperature. Here, using a scanning tunnelling probe functionalized with a single C60 molecule stabilized in a high-density liquid, we resolve low-dimensional surface defects, atomic interfaces and capture Ångstrom-level bond-length variations in single-layer graphene and MoS2. Atom-by-atom controllable imaging contrast is demonstrated at room temperature and the electronic structure of the C60–metal probe complex within the encompassing liquid molecules is clarified using density functional theory. Our findings demonstrates that operating a robust single-molecular probe is not restricted to ultra-high vacuum and cryogenic settings. Hence the scope of high-precision analytics can be extended towards resolving sub-molecular features of organic elements and gauging ambient compatibility of emerging layered materials with atomic-scale sensitivity under experimentally less stringent conditions. PMID:27516157
Prosa, T J; Alvis, R; Tsakalakos, L; Smentkowski, V S
2010-08-01
Three-dimensional quantitative compositional analysis of nanowires is a challenge for standard techniques such as secondary ion mass spectrometry because of specimen size and geometry considerations; however, it is precisely the size and geometry of nanowires that makes them attractive candidates for analysis via atom probe tomography. The resulting boron composition of various trimethylboron vapour-liquid-solid grown silicon nanowires were measured both with time-of-flight secondary ion mass spectrometry and pulsed-laser atom probe tomography. Both characterization techniques yielded similar results for relative composition. Specialized specimen preparation for pulsed-laser atom probe tomography was utilized and is described in detail whereby individual silicon nanowires are first protected, then lifted out, trimmed, and finally wet etched to remove the protective layer for subsequent three-dimensional analysis.
Detecting magnetic ordering with atomic size electron probes
Idrobo, Juan Carlos; Rusz, Ján; Spiegelberg, Jakob; ...
2016-05-27
While magnetism originates at the atomic scale, the existing spectroscopic techniques sensitive to magnetic signals only produce spectra with spatial resolution on a larger scale. However, recently, it has been theoretically argued that atomic size electron probes with customized phase distributions can detect magnetic circular dichroism. Here, we report a direct experimental real-space detection of magnetic circular dichroism in aberration-corrected scanning transmission electron microscopy (STEM). Using an atomic size-aberrated electron probe with a customized phase distribution, we reveal the checkerboard antiferromagnetic ordering of Mn moments in LaMnAsO by observing a dichroic signal in the Mn L-edge. The novel experimental setupmore » presented here, which can easily be implemented in aberration-corrected STEM, opens new paths for probing dichroic signals in materials with unprecedented spatial resolution.« less
Bringing Standardized Processes in Atom-Probe Tomography: I Establishing Standardized Terminology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Ian M; Danoix, F; Forbes, Richard
2011-01-01
Defining standardized methods requires careful consideration of the entire field and its applications. The International Field Emission Society (IFES) has elected a Standards Committee, whose task is to determine the needed steps to establish atom-probe tomography as an accepted metrology technique. Specific tasks include developing protocols or standards for: terminology and nomenclature; metrology and instrumentation, including specifications for reference materials; test methodologies; modeling and simulations; and science-based health, safety, and environmental practices. The Committee is currently working on defining terminology related to atom-probe tomography with the goal to include terms into a document published by the International Organization for Standardsmore » (ISO). A lot of terms also used in other disciplines have already been defined) and will be discussed for adoption in the context of atom-probe tomography.« less
Das, Ritu; Sharma, Mukesh K; Rao, Vepa K; Bhattacharya, B K; Garg, Iti; Venkatesh, V; Upadhyay, Sanjay
2014-10-20
In this work, we fabricated a system of integrated self-assembled layer of organosilane 3-mercaptopropyltrimethoxy silane (MPTS) on the screen printed electrode (SPE) and electrochemically deposited gold nanoparticle for Salmonella typhi detection employing Vi gene as a molecular marker. Thiolated DNA probe was immobilized on a gold nanoparticle (AuNP) modified SPE for DNA hybridization assay using methylene blue as redox (electroactive) hybridization indicator, and signal was monitored by differential pulse voltammetry (DPV) method. The modified SPE was characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and atomic force microscopy (AFM) method. The DNA biosensor showed excellent performances with high sensitivity and good selectivity. The current response was linear with the target sequence concentrations ranging from 1.0 × 10(-11) to 0.5 × 10(-8)M and the detection limit was found to be 50 (± 2.1)pM. The DNA biosensor showed good discrimination ability to the one-base, two-base and three-base mismatched sequences. The fabricated genosensor could also be regenerated easily and reused for three to four times for further hybridization studies. Copyright © 2014 Elsevier B.V. All rights reserved.
Bierer, Julie Arenberg; Faulkner, Kathleen F
2010-04-01
The goal of this study was to evaluate the ability of a threshold measure, made with a restricted electrode configuration, to identify channels exhibiting relatively poor spatial selectivity. With a restricted electrode configuration, channel-to-channel variability in threshold may reflect variations in the interface between the electrodes and auditory neurons (i.e., nerve survival, electrode placement, and tissue impedance). These variations in the electrode-neuron interface should also be reflected in psychophysical tuning curve (PTC) measurements. Specifically, it is hypothesized that high single-channel thresholds obtained with the spatially focused partial tripolar (pTP) electrode configuration are predictive of wide or tip-shifted PTCs. Data were collected from five cochlear implant listeners implanted with the HiRes90k cochlear implant (Advanced Bionics Corp., Sylmar, CA). Single-channel thresholds and most comfortable listening levels were obtained for stimuli that varied in presumed electrical field size by using the pTP configuration for which a fraction of current (sigma) from a center-active electrode returns through two neighboring electrodes and the remainder through a distant indifferent electrode. Forward-masked PTCs were obtained for channels with the highest, lowest, and median tripolar (sigma = 1 or 0.9) thresholds. The probe channel and level were fixed and presented with either the monopolar (sigma = 0) or a more focused pTP (sigma > or = 0.55) configuration. The masker channel and level were varied, whereas the configuration was fixed to sigma = 0.5. A standard, three-interval, two-alternative forced choice procedure was used for thresholds and masked levels. Single-channel threshold and variability in threshold across channels systematically increased as the compensating current, sigma, increased and the presumed electrical field became more focused. Across subjects, channels with the highest single-channel thresholds, when measured with a narrow, pTP stimulus, had significantly broader PTCs than the lowest threshold channels. In two subjects, the tips of the tuning curves were shifted away from the probe channel. Tuning curves were also wider for the monopolar probes than with pTP probes for both the highest and lowest threshold channels. These results suggest that single-channel thresholds measured with a restricted stimulus can be used to identify cochlear implant channels with poor spatial selectivity. Channels having wide or tip-shifted tuning characteristics would likely not deliver the appropriate spectral information to the intended auditory neurons, leading to suboptimal perception. As a clinical tool, quick identification of impaired channels could lead to patient-specific mapping strategies and result in improved speech and music perception.
Standard deviations of composition measurements in atom probe analyses-Part II: 3D atom probe.
Danoix, F; Grancher, G; Bostel, A; Blavette, D
2007-09-01
In a companion paper [F. Danoix, G. Grancher, A. Bostel, D. Blavette, Surf. Interface Anal. this issue (previous paper).], the derivation of variances of the estimates of measured composition, and the underlying hypotheses, have been revisited in the the case of conventional one dimensional (1D) atom probes. In this second paper, we will concentrate on the analytical derivation of the variance when the estimate of composition is obtained from a 3D atom probe. As will be discussed, when the position information is available, compositions can be derived either from constant number of atoms, or from constant volume, blocks. The analytical treatment in the first case is identical to the one developed for conventional 1D instruments, and will not be discussed further in this paper. Conversely, in the second case, the analytical treatment is different, as well as the formula of the variance. In particular, it will be shown that the detection efficiency plays an important role in the determination of the variance.
A sonotrode for electroanalysis: the determination of copper in passivating media.
Floate, Simon; Hardcastle, Joanna L; Cordemans, Eric; Compton, Richard G
2002-08-01
A sonotrode consisting of a disc shaped glassy carbon electrode attached to a quartz rod and inserted into a drilled ultrasonic probe tip has been designed and used as a novel alternative to the traditional 'face on' cell arrangement where an ultrasonic micro-tip probe is placed opposite a glassy carbon working electrode. The 'single probe' arrangement is both convenient and optimised for electroanalysis. We first report how under ultrasonic agitation of the sonotrode the mass transport to the electrode surface is enhanced compared to that observed under silent conditions and also how the sonotrode cell geometry compares with the well-established 'face on' cell geometry for cobalt electrodeposition. Second, we will show that the new sonotrode can be used in the application for the determination of copper in a series of fouling media in which conventional silent electroanalysis fails. The passivation of the electrodes surface by surfactant species can be overcome by cavitationally induced streaming and/or erosion at the sonotrode surface with recoveries of 100% and 93.8% achieved at 42 W cm-2 for Triton X-100 and sodium dodecyl sulfate (SDS), respectively. Other data indicates that the sonotrode can be successfully employed for the detection of copper in beer (Marston's bitter), a system known to be complex and highly electrode fouling and difficult to analyse using standard, silent electroanalytical techniques.
Barz, F; Livi, A; Lanzilotto, M; Maranesi, M; Bonini, L; Paul, O; Ruther, P
2017-06-01
Application-specific designs of electrode arrays offer an improved effectiveness for providing access to targeted brain regions in neuroscientific research and brain machine interfaces. The simultaneous and stable recording of neuronal ensembles is the main goal in the design of advanced neural interfaces. Here, we describe the development and assembly of highly customizable 3D microelectrode arrays and demonstrate their recording performance in chronic applications in non-human primates. System assembly relies on a microfabricated stacking component that is combined with Michigan-style silicon-based electrode arrays interfacing highly flexible polyimide cables. Based on the novel stacking component, the lead time for implementing prototypes with altered electrode pitches is minimal. Once the fabrication and assembly accuracy of the stacked probes have been characterized, their recording performance is assessed during in vivo chronic experiments in awake rhesus macaques (Macaca mulatta) trained to execute reaching-grasping motor tasks. Using a single set of fabrication tools, we implemented three variants of the stacking component for electrode distances of 250, 300 and 350 µm in the stacking direction. We assembled neural probes with up to 96 channels and an electrode density of 98 electrodes mm -2 . Furthermore, we demonstrate that the shank alignment is accurate to a few µm at an angular alignment better than 1°. Three 64-channel probes were chronically implanted in two monkeys providing single-unit activity on more than 60% of all channels and excellent recording stability. Histological tissue sections, obtained 52 d after implantation from one of the monkeys, showed minimal tissue damage, in accordance with the high quality and stability of the recorded neural activity. The versatility of our fabrication and assembly approach should significantly support the development of ideal interface geometries for a broad spectrum of applications. With the demonstrated performance, these probes are suitable for both semi-chronic and chronic applications.
NASA Astrophysics Data System (ADS)
Barz, F.; Livi, A.; Lanzilotto, M.; Maranesi, M.; Bonini, L.; Paul, O.; Ruther, P.
2017-06-01
Objective. Application-specific designs of electrode arrays offer an improved effectiveness for providing access to targeted brain regions in neuroscientific research and brain machine interfaces. The simultaneous and stable recording of neuronal ensembles is the main goal in the design of advanced neural interfaces. Here, we describe the development and assembly of highly customizable 3D microelectrode arrays and demonstrate their recording performance in chronic applications in non-human primates. Approach. System assembly relies on a microfabricated stacking component that is combined with Michigan-style silicon-based electrode arrays interfacing highly flexible polyimide cables. Based on the novel stacking component, the lead time for implementing prototypes with altered electrode pitches is minimal. Once the fabrication and assembly accuracy of the stacked probes have been characterized, their recording performance is assessed during in vivo chronic experiments in awake rhesus macaques (Macaca mulatta) trained to execute reaching-grasping motor tasks. Main results. Using a single set of fabrication tools, we implemented three variants of the stacking component for electrode distances of 250, 300 and 350 µm in the stacking direction. We assembled neural probes with up to 96 channels and an electrode density of 98 electrodes mm-2. Furthermore, we demonstrate that the shank alignment is accurate to a few µm at an angular alignment better than 1°. Three 64-channel probes were chronically implanted in two monkeys providing single-unit activity on more than 60% of all channels and excellent recording stability. Histological tissue sections, obtained 52 d after implantation from one of the monkeys, showed minimal tissue damage, in accordance with the high quality and stability of the recorded neural activity. Significance. The versatility of our fabrication and assembly approach should significantly support the development of ideal interface geometries for a broad spectrum of applications. With the demonstrated performance, these probes are suitable for both semi-chronic and chronic applications.
Novel nano-OLED based probes for very high resolution optical microscopy
NASA Astrophysics Data System (ADS)
Zhao, Yiying
Near-field scanning optical microscopy (NSOM) has been applied in the study of nanomaterials, microelectronics, photonics, plasmonics, cells, and molecules. However, conventional NSOM relies on optically pumped probes, suffering low optical transmission, heating of the tip, and poor reproducibility of probe fabrication, increasing the cost, impeding usability, reducing practical imaging resolution, and limiting NSOM's utility. In this thesis, I demonstrate a novel probe based on a nanoscale, electrically pumped organic light-emitting device (OLED) formed on the tip of a low-cost, commercially available atomic force microscopy (AFM) probe. I describe the structure, fabrication, and principles of this novel probe's operation, and discuss its potential to overcome the limitations of conventional NSOM probes. The broader significance of this work in the field of organic optoelectronics is also discussed. Briefly, OLEDs consist of organic thin films sandwiched between two electrodes. Under bias, electrons and holes are injected into the organic layers, leading to radiative recombination. Depositing a small molecular OLED in vacuum onto a pyramid-tipped AFM probe results in a laminar structure that is highly curved at the tip. Simple electrical modeling predicts concentration of electric field and localized electron injection into the organic layers at the tip, improving the local charge balance in an otherwise electron-starved OLED. Utilizing an "inverted" OLED structure (i.e. cathode on the "bottom"), light emission is localized to sub-200 nm sized, green light emitting regions on probe vertices; light output power in the range of 0.1-0.5 nanowatts was observed, comparable to that of typical fiber based NSOM probes but with greater power efficiency. Massive arrays of similar sub-micron OLEDs were also fabricated by depositing onto textured silicon substrates, demonstrating the superior scalability of the probe fabrication process (e.g. relative to pulled glass fibers). The investigation of the effect of non-planar substrate geometry on charge injection, transport and recombination provides broader insights into OLEDs made on rough substrates, general understanding of OLED operation (e.g. filamentary charge conduction) and degradation, and potentially helps to improve technologically important "inverted" OLED structures.
NASA Astrophysics Data System (ADS)
Ayaz, M. Q.; Waqas, Mohsin; Qamar, Sajid; Qamar, Shahid
2018-02-01
In this paper we propose a scheme for coherent control and storage of a microwave pulse in superconducting circuits exploiting the idea of electromagnetically induced transparency (EIT) and the Aulter-Townes (AT) effect. We show that superconducting artificial atoms in a four-level tripod configuration act as EIT based coherent microwave (μ w ) memories with gain features, when they are attached to a one-dimensional transmission line. These atoms are allowed to interact with three microwave fields, such that there are two control fields and one probe field. Our proposed system works in such a way that one control field with large Rabi frequency when interacting with atoms, produces the AT effect. While the second control field with relatively small Rabi frequency produces EIT in one of the absorption windows produced due to the AT splitting for the weak probe field. The group velocity of the probe pulse reduces significantly through this EIT window. Interestingly, the output intensity of the probe pulse increases as we increase the number of artificial atoms. Our results show that the probe microwave pulse can be stored and retrieved with high fidelity.
NASA Astrophysics Data System (ADS)
Subramanian, Balaji; Carminati, Marco; Luzzatto-Fegiz, Paolo
2017-11-01
In stratified flows, conductivity (combined with temperature) is often used to measure density. The conductivity probes typically used can resolve very fine spatial scales, but on the downside they are fragile, expensive, sensitive to environmental noise and have only single channel capability. Recently a low-cost, robust, arduino-based probe called Conduino was developed, which can be valuable in a wide range of applications where resolving extremely small spatial scales is not needed. This probe uses micro-USB connectors as actual conductivity sensors with a custom designed electronic board for simultaneous acquisition from multiple probes, with conductivity resolution comparable to commercially available PME conductivity probe. A detailed assessment of performance of this Conduino probe is described here. To establish time response and sensitivity as a function of electrode geometry, we build a variety of shapes for different kinds of applications, with tip spacing ranging from 0.5-2.5 mm, and with electrode length ranging from 2.3-6 mm. We set up a two-layer density profile and traverse it rapidly, yielding a time response comparable to PME. The Conduino's multi-channel capability is used to operate probe arrays, which helps to construct density fields in stratified flows.
121. Man with temperature probe aimed at armature measuring temperature ...
121. Man with temperature probe aimed at armature measuring temperature as armature heats up between the two electrodes. March 27, 1985 - Statue of Liberty, Liberty Island, Manhattan, New York County, NY
Effect of Molecular Crowding on the Response of an Electrochemical DNA Sensor
Ricci, Francesco; Lai, Rebecca Y.; Heeger, Alan J.; Plaxco, Kevin W.; Sumner, James J.
2009-01-01
E-DNA sensors, the electrochemical equivalent of molecular beacons, appear to be a promising means of detecting oligonucleotides. E-DNA sensors are comprised of a redox-modified (here, methylene blue or ferrocene) DNA stem-loop covalently attached to an interrogating electrode. Because E-DNA signaling arises due to binding-induced changes in the conformation of the stem-loop probe, it is likely sensitive to the nature of the molecular packing on the electrode surface. Here we detail the effects of probe density, target length, and other aspects of molecular crowding on the signaling properties, specificity, and response time of a model E-DNA sensor. We find that the highest signal suppression is obtained at the highest probe densities investigated, and that greater suppression is observed with longer and bulkier targets. In contrast, sensor equilibration time slows monotonically with increasing probe density, and the specificity of hybridization is not significantly affected. In addition to providing insight into the optimization of electrochemical DNA sensors, these results suggest that E-DNA signaling arises due to hybridization-linked changes in the rate, and thus efficiency, with which the redox moiety collides with the electrode and transfers electrons. PMID:17488132
NASA Astrophysics Data System (ADS)
Semenyshyn, R. V.; Veklich, A. N.; Babich, I. L.; Boretskij, V. F.
2014-10-01
Plasma of the free burning electric arc between Ag-SnO2-ZnO composite electrodes as well as brass electrodes were investigated. The plasma temperature distributions were obtained by Boltzmann plot method involving Cu I, Ag I or Zn I spectral line emissions. The electron density distributions were obtained from the width and from absolute intensity of spectral lines. The laser absorption spectroscopy was used for measurement of copper atom concentration in plasma. Plasma equilibrium composition was calculated using two independent groups of experimental values (temperature and copper atom concentration, temperature and electron density). It was found that plasma of the free burning electric arc between brass electrodes is in local thermodynamical equilibrium. The experimental verification of the spectroscopic data of Zn I spectral lines was carried out.
Institute for Science and Engineering Simulation (ISES)
2015-12-18
performance and other functionalities such as electrical , magnetic, optical, thermal, biological, chemical, and so forth. Structural integrity...transmission electron microscopy (HRSTEM) and three-dimensional atom probe (3DAP) tomography , the true atomic scale structure and change in chemical...atom probe tomography (3DAP) techniques, has permitted characterizing and quantifying the multimodal size distribution of different generations of γ
Multiplexed, High Density Electrophysiology with Nanofabricated Neural Probes
Du, Jiangang; Blanche, Timothy J.; Harrison, Reid R.; Lester, Henry A.; Masmanidis, Sotiris C.
2011-01-01
Extracellular electrode arrays can reveal the neuronal network correlates of behavior with single-cell, single-spike, and sub-millisecond resolution. However, implantable electrodes are inherently invasive, and efforts to scale up the number and density of recording sites must compromise on device size in order to connect the electrodes. Here, we report on silicon-based neural probes employing nanofabricated, high-density electrical leads. Furthermore, we address the challenge of reading out multichannel data with an application-specific integrated circuit (ASIC) performing signal amplification, band-pass filtering, and multiplexing functions. We demonstrate high spatial resolution extracellular measurements with a fully integrated, low noise 64-channel system weighing just 330 mg. The on-chip multiplexers make possible recordings with substantially fewer external wires than the number of input channels. By combining nanofabricated probes with ASICs we have implemented a system for performing large-scale, high-density electrophysiology in small, freely behaving animals that is both minimally invasive and highly scalable. PMID:22022568
Electrochemical detection of aqueous Ag+ based on Ag+-assisted ligation reaction
NASA Astrophysics Data System (ADS)
Miao, Peng; Han, Kun; Wang, Bidou; Luo, Gangyin; Wang, Peng; Chen, Mingli; Tang, Yuguo
2015-03-01
In this work, a novel strategy to fabricate a highly sensitive and selective biosensor for the detection of Ag+ is proposed. Two DNA probes are designed and modified on a gold electrode surface by gold-sulfur chemistry and hybridization. In the presence of Ag+, cytosine-Ag+-cytosine composite forms and facilitates the ligation event on the electrode surface, which can block the release of electrochemical signals labeled on one of the two DNA probes during denaturation process. Ag+ can be sensitively detected with the detection limit of 0.1 nM, which is much lower than the toxicity level defined by U.S. Environmental Protection Agency. This biosensor can easily distinguish Ag+ from other interfering ions and the performances in real water samples are also satisfactory. Moreover, the two DNA probes are designed to contain the recognition sequences of a nicking endonuclease, and the ligated DNA can thus be cleaved at the original site. Therefore, the electrode can be regenerated, which allows the biosensor to be reused for additional tests.
First principles calculation of current-induced forces in atomic gold contacts
NASA Astrophysics Data System (ADS)
Brandbyge, Mads; Stokbro, Kurt; Taylor, Jeremy; Mozos, Jose-Luis; Ordejon, Pablo
2002-03-01
We have recently developed an first principles method [1] for calculating the electronic structure, electronic transport, and forces acting on the atoms, for atomic scale systems connected to semi-infinite electrodes and with an applied voltage bias. Our method is based on the density functional theory (DFT) as implemented in the well tested SIESTA program [2]. We fully deal with the atomistic structure of the whole system, treating both the contact and the electrodes on the same footing. The effect of the finite bias (including selfconsistency and the solution of the electrostatic problem) is taken into account using nonequilibrium Green's functions. In this talk we show results for the forces acting on the contact atoms due to the nonequilibrium situation in the electronic subsystem, i.e. in the presence of an electronic current. We concentrate on one atom wide gold contacts/wires connected to bulk gold electrodes. References [1] Our implementation is called TranSIESTA and is described in M. Brandbyge, J. Taylor, K. Stokbro, J-L. Mozos, and P. Ordejon, cond-mat/0110650 [2] D. Sanchez-Portal, P. Ordejon, E. Artacho and J. Soler, Int. J. Quantum Chem. 65, 453 (1997).
Advances in Studies of Electrode Kinetics and Mass Transport in AMTEC Cells (abstract)
NASA Technical Reports Server (NTRS)
Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; Kisor, A.; O'Connor, D.; Kikkert, S.
1993-01-01
Previous work reported from JPL has included characterization of electrode kinetics and alkali atom transport from electrodes including Mo, W, WRh(sub x), WPt(sub x)(Mn), in sodium AMTEC cells and vapor exposure cells, and Mo in potassium vapor exposure cells. These studies were generally performed in cells with small area electrodes (about 1 to 5 cm(sup 2)), and device geometry had little effect on transport. Alkali diffusion coefficients through these electrodes have been characterized, and approximate surface diffusion coefficients derived in cases of activated transport. A basic model of electrode kinetic at the alkali metal vapor/porous metal electrode/alkali beta'-alumina solid electrolyte three phase boundary has been proposed which accounts for electrochemical reaction rates with a collision frequency near the three phase boundary and tunneling from the porous electrode partially covered with adsorbed alkali metal atoms. The small electrode effect in AMTEC cells has been discussed in several papers, but quantitative investigations have described only the overall effect and the important contribution of electrolyte resistance. The quantitative characterization of transport losses in cells with large area electrodes has been limited to simulations of large area electrode effects, or characterization of transport losses from large area electrodes with significant longitudinal temperature gradients. This paper describes new investigations of electrochemical kinetics and transport, particularily with WPt(sub 3.5) electrodes, including the influence of electrode size on the mass transport loss in the AMTEC cell. These electrodes possess excellent sodium transport properties making verification of device limitations on transport much more readily attained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y.; Sun, C.P.
We study the propagation of a probe light in an ensemble of {lambda}-type atoms, utilizing the dynamic symmetry as recently discovered when the atoms are coupled to a classical control field and a quantum probe field [Sun et al., Phys. Rev. Lett. 91, 147903 (2003)]. Under two-photon resonance, we calculate the group velocity of the probe light with collective atomic excitations. Our result gives the dependence of the group velocity on the common one-photon detuning, and can be compared with the recent experiment of E. E. Mikhailov, Y. V. Rostovtsev, and G. R. Welch, e-print quant-ph/0309173.
Xia, Ning; Liu, Ke; Zhou, Yingying; Li, Yuanyuan; Yi, Xinyao
2017-01-01
miRNAs have emerged as new biomarkers for the detection of a wide variety of cancers. By employing duplex-specific nuclease for signal amplification and gold nanoparticles (AuNPs) as the carriers of detection probes, a novel electrochemical assay of miRNAs was performed. The method is based on conversion of the well-known colorimetric assay into electrochemical analysis with enhanced sensitivity. DNA capture probes immobilized on the electrode surface and ferrocene (Fc)-labeled DNA detection probes (denoted “Fc-DNA-Fc”) presented in the solution induced the assembly of positively charged AuNPs on the electrode surface through the electrostatic interaction. As a result, a large number of Fc-DNA-Fc molecules were attached on the electrode surface, thus amplifying the electrochemical signal. When duplex-specific nuclease was added to recycle the process of miRNA-initiated digestion of the immobilized DNA probes, Fc-DNA-Fc-induced assembly of AuNPs on the electrode surface could not occur. This resulted in a significant fall in the oxidation current of Fc. The current was found to be inversely proportional to the concentration of miRNAs in the range of 0–25 fM, and a detection limit of 0.1 fM was achieved. Moreover, this work presents a new method for converting colorimetric assays into sensitive electrochemical analyses, and thus would be valuable for design of novel chemical/biosensors. PMID:28761341
Atom Probe Tomography Studies on the Cu(In,Ga)Se2 Grain Boundaries
Cojocaru-Mirédin, Oana; Schwarz, Torsten; Choi, Pyuck-Pa; Herbig, Michael; Wuerz, Roland; Raabe, Dierk
2013-01-01
Compared with the existent techniques, atom probe tomography is a unique technique able to chemically characterize the internal interfaces at the nanoscale and in three dimensions. Indeed, APT possesses high sensitivity (in the order of ppm) and high spatial resolution (sub nm). Considerable efforts were done here to prepare an APT tip which contains the desired grain boundary with a known structure. Indeed, site-specific sample preparation using combined focused-ion-beam, electron backscatter diffraction, and transmission electron microscopy is presented in this work. This method allows selected grain boundaries with a known structure and location in Cu(In,Ga)Se2 thin-films to be studied by atom probe tomography. Finally, we discuss the advantages and drawbacks of using the atom probe tomography technique to study the grain boundaries in Cu(In,Ga)Se2 thin-film solar cells. PMID:23629452
Modular apparatus for electrostatic actuation of common atomic force microscope cantilevers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Christian J., E-mail: christian.long@nist.gov; Maryland Nanocenter, University of Maryland, College Park, Maryland 20742; Cannara, Rachel J.
2015-07-15
Piezoelectric actuation of atomic force microscope (AFM) cantilevers often suffers from spurious mechanical resonances in the loop between the signal driving the cantilever and the actual tip motion. These spurious resonances can reduce the accuracy of AFM measurements and in some cases completely obscure the cantilever response. To address these limitations, we developed a specialized AFM cantilever holder for electrostatic actuation of AFM cantilevers. The holder contains electrical contacts for the AFM cantilever chip, as well as an electrode (or electrodes) that may be precisely positioned with respect to the back of the cantilever. By controlling the voltages on themore » AFM cantilever and the actuation electrode(s), an electrostatic force is applied directly to the cantilever, providing a near-ideal transfer function from drive signal to tip motion. We demonstrate both static and dynamic actuations, achieved through the application of direct current and alternating current voltage schemes, respectively. As an example application, we explore contact resonance atomic force microscopy, which is a technique for measuring the mechanical properties of surfaces on the sub-micron length scale. Using multiple electrodes, we also show that the torsional resonances of the AFM cantilever may be excited electrostatically, opening the door for advanced dynamic lateral force measurements with improved accuracy and precision.« less
Atomic-Scale Control of Electron Transport through Single Molecules
NASA Astrophysics Data System (ADS)
Wang, Y. F.; Kröger, J.; Berndt, R.; Vázquez, H.; Brandbyge, M.; Paulsson, M.
2010-04-01
Tin-phthalocyanine molecules adsorbed on Ag(111) were contacted with the tip of a cryogenic scanning tunneling microscope. Orders-of-magnitude variations of the single-molecule junction conductance were achieved by controllably dehydrogenating the molecule and by modifying the atomic structure of the surface electrode. Nonequilibrium Green’s function calculations reproduce the trend of the conductance and visualize the current flow through the junction, which is guided through molecule-electrode chemical bonds.
Liao, Lun-De; Wang, I-Jan; Chen, Sheng-Fu; Chang, Jyh-Yeong; Lin, Chin-Teng
2011-01-01
In the present study, novel dry-contact sensors for measuring electro-encephalography (EEG) signals without any skin preparation are designed, fabricated by an injection molding manufacturing process and experimentally validated. Conventional wet electrodes are commonly used to measure EEG signals; they provide excellent EEG signals subject to proper skin preparation and conductive gel application. However, a series of skin preparation procedures for applying the wet electrodes is always required and usually creates trouble for users. To overcome these drawbacks, novel dry-contact EEG sensors were proposed for potential operation in the presence or absence of hair and without any skin preparation or conductive gel usage. The dry EEG sensors were designed to contact the scalp surface with 17 spring contact probes. Each probe was designed to include a probe head, plunger, spring, and barrel. The 17 probes were inserted into a flexible substrate using a one-time forming process via an established injection molding procedure. With these 17 spring contact probes, the flexible substrate allows for high geometric conformity between the sensor and the irregular scalp surface to maintain low skin-sensor interface impedance. Additionally, the flexible substrate also initiates a sensor buffer effect, eliminating pain when force is applied. The proposed dry EEG sensor was reliable in measuring EEG signals without any skin preparation or conductive gel usage, as compared with the conventional wet electrodes.
Liao, Lun-De; Wang, I-Jan; Chen, Sheng-Fu; Chang, Jyh-Yeong; Lin, Chin-Teng
2011-01-01
In the present study, novel dry-contact sensors for measuring electro-encephalography (EEG) signals without any skin preparation are designed, fabricated by an injection molding manufacturing process and experimentally validated. Conventional wet electrodes are commonly used to measure EEG signals; they provide excellent EEG signals subject to proper skin preparation and conductive gel application. However, a series of skin preparation procedures for applying the wet electrodes is always required and usually creates trouble for users. To overcome these drawbacks, novel dry-contact EEG sensors were proposed for potential operation in the presence or absence of hair and without any skin preparation or conductive gel usage. The dry EEG sensors were designed to contact the scalp surface with 17 spring contact probes. Each probe was designed to include a probe head, plunger, spring, and barrel. The 17 probes were inserted into a flexible substrate using a one-time forming process via an established injection molding procedure. With these 17 spring contact probes, the flexible substrate allows for high geometric conformity between the sensor and the irregular scalp surface to maintain low skin-sensor interface impedance. Additionally, the flexible substrate also initiates a sensor buffer effect, eliminating pain when force is applied. The proposed dry EEG sensor was reliable in measuring EEG signals without any skin preparation or conductive gel usage, as compared with the conventional wet electrodes. PMID:22163929
A set-up for a biased electrode experiment in ADITYA Tokamak
NASA Astrophysics Data System (ADS)
Dhyani, Pravesh; Ghosh, Joydeep; Sathyanarayana, K.; Praveenlal, V. E.; Gautam, Pramila; Shah, Minsha; Tanna, R. L.; Kumar, Pintu; Chavda, C.; Patel, N. C.; Panchal, V.; Gupta, C. N.; Jadeja, K. A.; Bhatt, S. B.; Kumar, S.; Raju, D.; Atrey, P. K.; Joisa, S.; Chattopadhyay, P. K.; Saxena, Y. C.
2014-10-01
An experimental set-up to investigate the effect of a biased electrode introduced in the edge region on ADITYA tokamak discharges is presented. A specially designed double-bellow mechanical assembly is fabricated for controlling the electrode location as well as its exposed length inside the plasma. The cylindrical molybdenum electrode is powered by a capacitor-bank based pulsed power supply (PPS) using a semiconductor controlled rectifier (SCR) as a switch with forced commutation. A Langmuir probe array for radial profile measurements of plasma potential and density is fabricated and installed. Standard results of improvement of global confinement have been obtained using a biased electrode. In addition to that, in this paper we show for the first time that the same biasing system can be used to avoid disruptions through stabilisation of magnetohydrodynamic (MHD) modes. Real time disruption control experiments have also been carried out by triggering the bias-voltage on the electrode automatically when the Mirnov probe signal exceeds a preset threshold value using a uniquely designed electronic comparator circuit. Most of the results related to the improved confinement and disruption mitigation are obtained in case of the electrode tip being kept at ~3 cm inside the last closed flux surface (LCFS) with an exposed length of ~20 mm in typical discharges of ADITYA tokamak.
NASA Technical Reports Server (NTRS)
Ye, Qi Laura; Cassell, Alan M.; Stevens, Ramsey M.; Meyyappan, Meyya; Li, Jun; Han, Jie; Liu, Hongbing; Chao, Gordon
2004-01-01
Carbon nanotube (CNT) probe tips for atomic force microscopy (AFM) offer several advantages over Si/Si3N4 probe tips, including improved resolution, shape, and mechanical properties. This viewgraph presentation discusses these advantages, and the drawbacks of existing methods for fabricating CNT probe tips for AFM. The presentation introduces a bottom up wafer scale fabrication method for CNT probe tips which integrates catalyst nanopatterning and nanomaterials synthesis with traditional silicon cantilever microfabrication technology. This method makes mass production of CNT AFM probe tips feasible, and can be applied to the fabrication of other nanodevices with CNT elements.
Budker, Dmitry; Higbie, James; Corsini, Eric P.
2013-11-19
An optical atomic magnetometers is provided operating on the principles of nonlinear magneto-optical rotation. An atomic vapor is optically pumped using linearly polarized modulated light. The vapor is then probed using a non-modulated linearly polarized light beam. The resulting modulation in polarization angle of the probe light is detected and used in a feedback loop to induce self-oscillation at the resonant frequency.
Detonation wave detection probe including parallel electrodes on a flexible backing strip
Uher, Kenneth J.
1995-01-01
A device for sensing the occurrence of destructive events and events involving mechanical shock in a non-intrusive manner. A pair of electrodes is disposed in a parallel configuration on a backing strip of flexible film. Electrical circuitry is used to sense the time at which an event causes electrical continuity between the electrodes or, with a sensor configuration where the electrodes are shorted together, to sense the time at which electrical continuity is lost.
Huo, Qisheng [Albuquerque, NM; Liu, Jun [Albuquerque, NM
2008-10-21
A device for detecting and measuring the concentration of biomolecules in solution, utilizing a conducting electrode in contact with a solution containing target biomolecules, with a film with controllable pore size distribution characteristics applied to at least one surface of the conducting electrode. The film is functionalized with probe molecules that chemically interact with the target biomolecules at the film surface, blocking indicator molecules present in solution from diffusing from the solution to the electrode, thereby changing the electrochemical response of the electrode.
Understanding the detection of carbon in austenitic high-Mn steel using atom probe tomography.
Marceau, R K W; Choi, P; Raabe, D
2013-09-01
A high-Mn TWIP steel having composition Fe-22Mn-0.6C (wt%) is considered in this study, where the need for accurate and quantitative analysis of clustering and short-range ordering by atom probe analysis requires a better understanding of the detection of carbon in this system. Experimental measurements reveal that a high percentage of carbon atoms are detected as molecular ion species and on multiple hit events, which is discussed with respect to issues such as optimal experimental parameters, correlated field evaporation and directional walk/migration of carbon atoms at the surface of the specimen tip during analysis. These phenomena impact the compositional and spatial accuracy of the atom probe measurement and thus require careful consideration for further cluster-finding analysis. Copyright © 2013 Elsevier B.V. All rights reserved.
Cavity electromagnetically induced transparency via spontaneously generated coherence
NASA Astrophysics Data System (ADS)
Tariq, Muhammad; Ziauddin, Bano, Tahira; Ahmad, Iftikhar; Lee, Ray-Kuang
2017-09-01
A four-level N-type atomic ensemble enclosed in a cavity is revisited to investigate the influence of spontaneous generated coherence (SGC) on transmission features of weak probe light field. A weak probe field is propagating through the cavity where each atom inside the cavity follows four-level N-type atom-field configuration of rubidium (?) atom. We use input-output theory and study the interaction of atomic ensemble and three cavity fields which are coupled to the same cavity mode. A SGC affects the transmission properties of weak probe light field due to which a transparency window (cavity EIT) appears. At resonance condition the transparency window increases with increasing the SGC in the system. We also studied the influence of the SGC on group delay and investigated magnitude enhancement of group delay for the maximum SGC in the system.
A numerical study on liquid charging inside electrostatic atomizers
NASA Astrophysics Data System (ADS)
Kashir, Babak; Perri, Anthony; Sankaran, Abhilash; Staszel, Christopher; Yarin, Alexander; Mashayek, Farzad
2016-11-01
The charging of the dielectric liquid inside an electrostatic atomizer is studied numerically by developing codes based on the OpenFOAM platform. Electrostatic atomization is an appealing technology in painting, fuel injection and oil coating systems due to improved particle-size distribution, enhanced controlability of droplets' trajectories and lower power consumption. The numerical study is conducted concurrently to an experimental investigation to facilitate the validation and deliver feedback for further development. The atomizer includes a pin electrode that is placed at the center of a converging chamber. The chamber orifice is located at a known distance from the electrode tip. The pin electrode is connected to a high voltage that leads to the charging of the liquid. In the present work, the theoretical foundations of separated treatment of the polarized layer and the electronuetral bulk flow are set by describing the governing equations, relevant boundary conditions and the matching condition between these two domains. The resulting split domains are solved numerically to find the distribution of velocity and electrostatic fields over the specified regions. National Science Foundation Award Number: 1505276.
1998-03-31
plasma focus discharges. Part of the tests summarized here address methods and means for achieving controlled variations of the current sheath (CS) structure via electrode geometry modifications. CS parameters are monitored with multiple magnetic probes in the case of cylindrical - and open-funnel electrode
NASA Astrophysics Data System (ADS)
Hunter, Allen H.; Farren, Jeffrey D.; DuPont, John N.; Seidman, David N.
2015-07-01
An experimental steel with the composition Fe-1.39Cu-2.70Ni-0.58Al-0.48Mn-0.48Si-0.065Nb-0.05C (wt pct) or alternatively Fe-1.43Cu-2.61Ni-1.21Al-0.48Mn-0.98Si-0.039Nb-0.23C (at. pct) has been developed at Northwestern University, which has both high toughness and high strength after quenching and aging treatments. Simulated heat-affected zone (HAZ) samples are utilized to analyze the microstructures typically obtained after gas metal arc welding (GMAW). Dissolution within the HAZ of cementite (Fe3C) and NbC (F.C.C.) is revealed using synchrotron X-ray diffraction, while dissolution of Cu precipitates is measured employing local electrode atom probe tomography. The results are compared to Thermo-Calc equilibrium calculations. Comparison of measured Cu precipitate radii, number density, and volume fraction with similar measurements from a GMAW sample suggests that the cooling rate in the simulations is faster than in the experimental GMAW sample, resulting in significantly less Cu precipitate nucleation and growth during the cooling part of the weld thermal cycle. The few Cu precipitates detected in the simulated samples are primarily located on grain boundaries resulting from heterogeneous nucleation. The dissolution of NbC precipitates and the resultant austenite coarsening in the highest-temperature sample, coupled with a rapid cooling rate, results in the growth of bainite, and an increase in the strength of the matrix in the absence of significant Cu precipitation.
NASA Astrophysics Data System (ADS)
Arruda, L. G. E.; Prataviera, G. A.; de Oliveira, M. C.
2018-02-01
Phase collapse and revival for Bose-Einstein condensates are nonlinear phenomena appearing due to atomic collisions. While it has been observed in a general setting involving many modes, for one-mode condensates its occurrence is forbidden by the particle number superselection rule (SSR), which arises because there is no phase reference available. We consider a single mode atomic Bose-Einstein condensate interacting with an off-resonant optical probe field. We show that the condensate phase revival time is dependent on the atom-light interaction, allowing optical control on the atomic collapse and revival dynamics. Incoherent effects over the condensate phase are included by considering a continuous photo-detection over the probe field. We consider conditioned and unconditioned photo-counting events and verify that no extra control upon the condensate is achieved by the probe photo-detection, while further inference of the atomic system statistics is allowed leading to a useful test of the SSR on particle number and its imposition on the kind of physical condensate state.
NASA Astrophysics Data System (ADS)
Takeuchi, Osamu; Miyakoshi, Takaaki; Taninaka, Atsushi; Tanaka, Katsunori; Cho, Daichi; Fujita, Machiko; Yasuda, Satoshi; Jarvis, Suzanne P.; Shigekawa, Hidemi
2006-10-01
The accuracy of dynamic-force spectroscopy (DFS), a promising technique of analyzing the energy landscape of noncovalent molecular bonds, was reconsidered in order to justify the use of an atomic-force microscopy (AFM) cantilever as a DFS force probe. The advantages and disadvantages caused, for example, by the force-probe hardness were clarified, revealing the pivotal role of the molecular linkage between the force probe and the molecular bonds. It was shown that the feedback control of the loading rate of tensile force enables us a precise DFS measurement using an AFM cantilever as the force probe.
Atom probe trajectory mapping using experimental tip shape measurements.
Haley, D; Petersen, T; Ringer, S P; Smith, G D W
2011-11-01
Atom probe tomography is an accurate analytical and imaging technique which can reconstruct the complex structure and composition of a specimen in three dimensions. Despite providing locally high spatial resolution, atom probe tomography suffers from global distortions due to a complex projection function between the specimen and detector which is different for each experiment and can change during a single run. To aid characterization of this projection function, this work demonstrates a method for the reverse projection of ions from an arbitrary projection surface in 3D space back to an atom probe tomography specimen surface. Experimental data from transmission electron microscopy tilt tomography are combined with point cloud surface reconstruction algorithms and finite element modelling to generate a mapping back to the original tip surface in a physically and experimentally motivated manner. As a case study, aluminium tips are imaged using transmission electron microscopy before and after atom probe tomography, and the specimen profiles used as input in surface reconstruction methods. This reconstruction method is a general procedure that can be used to generate mappings between a selected surface and a known tip shape using numerical solutions to the electrostatic equation, with quantitative solutions to the projection problem readily achievable in tens of minutes on a contemporary workstation. © 2011 The Authors Journal of Microscopy © 2011 Royal Microscopical Society.
Micro-drive and headgear for chronic implant and recovery of optoelectronic probes.
Chung, Jinho; Sharif, Farnaz; Jung, Dajung; Kim, Soyoun; Royer, Sebastien
2017-06-05
Silicon probes are multisite electrodes used for the electrophysiological recording of large neuronal ensembles. Optoelectronic probes (OEPs) are recent upgrades that allow, in parallel, the delivery of local optical stimuli. The procedures to use these delicate electrodes for chronic experiments in mice are still underdeveloped and typically assume one-time uses. Here, we developed a micro-drive, a support for OEPs optical fibers, and a hat enclosure, which fabrications consist in fitting and fastening together plastic parts made with 3D printers. Excluding two parts, all components and electrodes are relatively simple to recover after the experiments, via the loosening of screws. To prevent the plugging of OEPs laser sources from altering the stability of recordings, the OEPs fibers can be transiently anchored to the hat via the tightening of screws. We test the stability of recordings in the mouse hippocampus under three different conditions: acute head-fixed, chronic head-fixed, and chronic freely moving. Drift in spike waveforms is significantly smaller in chronic compared to acute conditions, with the plugging/unplugging of head-stage and fiber connectors not affecting much the recording stability. Overall, these tools generate stable recordings of place cell in chronic conditions, and make the recovery and reuse of electrode packages relatively simple.
Three-dimensional atom probe tomography of oxide, anion, and alkanethiolate coatings on gold.
Zhang, Yi; Hillier, Andrew C
2010-07-15
We have used three-dimensional atom probe tomography to analyze several nanometer-thick and monomolecular films on gold surfaces. High-purity gold wire was etched by electropolishing to create a sharp tip suitable for field evaporation with a radius of curvature of <100 nm. The near-surface region of a freshly etched gold tip was examined with the atom probe at subnanometer spatial resolution and with atom-level composition accuracy. A thin contaminant layer, primarily consisting of water and atmospheric gases, was observed on a fresh tip. This sample exhibited crystalline lattice spacings consistent with the interlayer spacing of {200} lattice planes of bulk gold. A thin oxide layer was created on the gold surface via plasma oxidation, and the thickness and composition of this layer was measured. Clear evidence of a nanometer-thick oxide layer was seen coating the gold tip, and the atomic composition of the oxide layer was consistent with the expected stoichiometry for gold oxide. Monomolecular anions layers of Br(-) and I(-) were created via adsorption from aqueous solutions onto the gold. Atom probe data verified the presence of the monomolecular anion layers on the gold surface, with ion density values consistent with literature values. A hexanethiolate monolayer was coated onto the gold tip, and atom probe analysis revealed a thin film whose ion fragments were consistent with the molecular composition of the monolayer and a surface coverage similar to that expected from literature. Details of the various coating compositions and structures are presented, along with discussion of the reconstruction issues associated with properly analyzing these thin-film systems.
Shin, Inchul; Ambler, Brett R; Wherritt, Daniel; Griffith, Wendell P; Maldonado, Amanda C; Altman, Ryan A; Liu, Aimin
2018-03-28
Heme-based tryptophan dioxygenases are established immunosuppressive metalloproteins with significant biomedical interest. Here, we synthesized two mechanistic probes to specifically test if the α-amino group of the substrate directly participates in a critical step of the O atom transfer during catalysis in human tryptophan 2,3-dioxygenase (TDO). Substitution of the nitrogen atom of the substrate to a carbon (probe 1) or oxygen (probe 2) slowed the catalytic step following the first O atom transfer such that transferring the second O atom becomes less likely to occur, although the dioxygenated products were observed with both probes. A monooxygenated product was also produced from probe 2 in a significant quantity. Analysis of this new product by HPLC coupled UV-vis spectroscopy, high-resolution mass spectrometry, 1 H NMR, 13 C NMR, HSQC, HMBC, and infrared (IR) spectroscopies concluded that this monooxygenated product is a furoindoline compound derived from an unstable epoxyindole intermediate. These results prove that small molecules can manipulate the stepwise O atom transfer reaction of TDO and provide a showcase for a tunable mechanism by synthetic compounds. The product analysis results corroborate the presence of a substrate-based epoxyindole intermediate during catalysis and provide the first substantial experimental evidence for the involvement of the substrate α-amino group in the epoxide ring-opening step during catalysis. This combined synthetic, biochemical, and biophysical study establishes the catalytic role of the α-amino group of the substrate during the O atom transfer reactions and thus represents a substantial advance to the mechanistic comprehension of the heme-based tryptophan dioxygenases.
Dopant distributions in n-MOSFET structure observed by atom probe tomography.
Inoue, K; Yano, F; Nishida, A; Takamizawa, H; Tsunomura, T; Nagai, Y; Hasegawa, M
2009-11-01
The dopant distributions in an n-type metal-oxide-semiconductor field effect transistor (MOSFET) structure were analyzed by atom probe tomography. The dopant distributions of As, P, and B atoms in a MOSFET structure (gate, gate oxide, channel, source/drain extension, and halo) were obtained. P atoms were segregated at the interface between the poly-Si gate and the gate oxide, and on the grain boundaries of the poly-Si gate, which had an elongated grain structure along the gate height direction. The concentration of B atoms was enriched near the edge of the source/drain extension where the As atoms were implanted.
Electrode-active material for electrochemical batteries and method of preparation
Varma, R.
1983-11-07
A battery electrode material comprises a non-stoichiometric electrode-active material which forms a redox pair with the battery electrolyte, an electrically conductive polymer present in the range of from about 2% by weight to about 5% by weight of the electrode-active material, and a binder. The conductive polymer provides improved proton or ion conductivity and is a ligand resulting in metal ion or negative ion vacancies of less than about 0.1 atom percent. Specific electrodes of nickel and lead are disclosed.
Alkali metal ion battery with bimetallic electrode
Boysen, Dane A; Bradwell, David J; Jiang, Kai; Kim, Hojong; Ortiz, Luis A; Sadoway, Donald R; Tomaszowska, Alina A; Wei, Weifeng; Wang, Kangli
2015-04-07
Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.
Electrode-active material for electrochemical batteries and method of preparation
Varma, Ravi
1987-01-01
A battery electrode material comprising a non-stoichiometric electrode-active material which forms a redox pair with the battery electrolyte, an electrically conductive polymer present in the range of from about 2% by weight to about 5% by weight of the electrode-active material, and a binder. The conductive polymer provides improved proton or ion conductivity and is a ligand resulting in metal ion or negative ion vacancies of less than about 0.1 atom percent. Specific electrodes of nickel and lead are disclosed.
Detonation wave detection probe including parallel electrodes on a flexible backing strip
Uher, K.J.
1995-12-19
A device is disclosed for sensing the occurrence of destructive events and events involving mechanical shock in a non-intrusive manner. A pair of electrodes is disposed in a parallel configuration on a backing strip of flexible film. Electrical circuitry is used to sense the time at which an event causes electrical continuity between the electrodes or, with a sensor configuration where the electrodes are shorted together, to sense the time at which electrical continuity is lost. 4 figs.
Four-probe measurements with a three-probe scanning tunneling microscope.
Salomons, Mark; Martins, Bruno V C; Zikovsky, Janik; Wolkow, Robert A
2014-04-01
We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position by imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.
Bierer, Julie Arenberg; Faulkner, Kathleen F.
2010-01-01
Objectives The goal of this study was to evaluate the ability of a threshold measure, made with a restricted electrode configuration, to identify channels exhibiting relatively poor spatial selectivity. With a restricted electrode configuration, channel-to-channel variability in threshold may reflect variations in the interface between the electrodes and auditory neurons (i.e., nerve survival, electrode placement, tissue impedance). These variations in the electrode-neuron interface should also be reflected in psychophysical tuning curve measurements. Specifically, it is hypothesized that high single-channel thresholds obtained with the spatially focused partial tripolar electrode configuration are predictive of wide or tip-shifted psychophysical tuning curves. Design Data were collected from five cochlear implant listeners implanted with the HiRes 90k cochlear implant (Advanced Bionics). Single-channel thresholds and most comfortable listening levels were obtained for stimuli that varied in presumed electrical field size by using the partial tripolar configuration, for which a fraction of current (σ) from a center active electrode returns through two neighboring electrodes and the remainder through a distant indifferent electrode. Forward-masked psychophysical tuning curves were obtained for channels with the highest, lowest, and median tripolar (σ=1 or 0.9) thresholds. The probe channel and level were fixed and presented with either the monopolar (σ=0) or a more focused partial tripolar (σ ≥ 0.55) configuration. The masker channel and level were varied while the configuration was fixed to σ = 0.5. A standard, three-interval, two-alternative forced choice procedure was used for thresholds and masked levels. Results Single-channel threshold and variability in threshold across channels systematically increased as the compensating current, σ, increased and the presumed electrical field became more focused. Across subjects, channels with the highest single-channel thresholds, when measured with a narrow, partial tripolar stimulus, had significantly broader psychophysical tuning curves than the lowest threshold channels. In two subjects, the tips of the tuning curves were shifted away from the probe channel. Tuning curves were also wider for the monopolar probes than with partial tripolar probes, for both the highest and lowest threshold channels. Conclusions These results suggest that single-channel thresholds measured with a restricted stimulus can be used to identify cochlear implant channels with poor spatial selectivity. Channels having wide or tip-shifted tuning characteristics would likely not deliver the appropriate spectral information to the intended auditory neurons, leading to suboptimal perception. As a clinical tool, quick identification of impaired channels could lead to patient-specific mapping strategies and result in improved speech and music perception. PMID:20090533
Electrode structure of a compact microwave driven capacitively coupled atomic beam source
NASA Astrophysics Data System (ADS)
Shimabukuro, Yuji; Takahashi, Hidenori; Wada, Motoi
2018-01-01
A compact magnetic field free atomic beam source was designed, assembled and tested the performance to produce hydrogen and nitrogen atoms. A forced air-cooled solid-state microwave power supply at 2.45 GHz frequency drives the source up to 100 W through a coaxial transmission cable coupled to a triple stub tuner for realizing a proper matching condition to the discharge load. The discharge structure of the source affected the range of operation pressure, and the pressure was reduced by four orders of magnitude through improving the electrode geometry to enhance the local electric field intensity. Optical emission spectra of the produced plasmas indicate production of hydrogen and nitrogen atoms, while the flux intensity of excited nitrogen atoms monitored by a surface ionization type detector showed the signal level close to a source developed for molecular beam epitaxy applications with 500 W RF power.
Atomic structure of (111) SrTiO3/Pt interfaces
NASA Astrophysics Data System (ADS)
Schmidt, Steffen; Klenov, Dmitri O.; Keane, Sean P.; Lu, Jiwei; Mates, Thomas E.; Stemmer, Susanne
2006-03-01
Atomic resolution high-angle annular dark field (HAADF) imaging in scanning transmission electron microscopy was used to investigate the interface atomic structure of epitaxial, (111) oriented SrTiO3 films on epitaxial Pt electrodes grown on (0001) sapphire. The cube-on-cube orientation relationship of SrTiO3 on Pt was promoted by the use of a Ti adhesion layer underneath the Pt electrode. While a Ti-rich Pt surface was observed before SrTiO3 growth, HAADF images showed an atomically abrupt SrTiO3/Pt interface with no interfacial layers. The SrTiO3 films contained two twin variants that were related by a 180° rotation about the ⟨111⟩ surface normal. HAADF images showed two different interface atomic arrangements for the two twins. The role of Ti in promoting (111) epitaxy and the implications for the dielectric properties are discussed.
Ultraflexible nanoelectronic probes form reliable, glial scar–free neural integration
Luan, Lan; Wei, Xiaoling; Zhao, Zhengtuo; Siegel, Jennifer J.; Potnis, Ojas; Tuppen, Catherine A; Lin, Shengqing; Kazmi, Shams; Fowler, Robert A.; Holloway, Stewart; Dunn, Andrew K.; Chitwood, Raymond A.; Xie, Chong
2017-01-01
Implanted brain electrodes construct the only means to electrically interface with individual neurons in vivo, but their recording efficacy and biocompatibility pose limitations on scientific and clinical applications. We showed that nanoelectronic thread (NET) electrodes with subcellular dimensions, ultraflexibility, and cellular surgical footprints form reliable, glial scar–free neural integration. We demonstrated that NET electrodes reliably detected and tracked individual units for months; their impedance, noise level, single-unit recording yield, and the signal amplitude remained stable during long-term implantation. In vivo two-photon imaging and postmortem histological analysis revealed seamless, subcellular integration of NET probes with the local cellular and vasculature networks, featuring fully recovered capillaries with an intact blood-brain barrier and complete absence of chronic neuronal degradation and glial scar. PMID:28246640
Ultra-Compliant Transverse lntrafascicular Electrode Arrays for Electro-Pharmaceutics
2017-03-31
Distribution unlimited. Fundamental research exempt from prepublication controls . DISCLAIMER The views and conclusions contained in this document are those of...9 7.1 Probe design ............ ............................................................................................ 9 7.1 . 1 Single...probe design ........................................................................................ 9 7.1.2 Probestressmodeling
Quantized conductance observed during sintering of silver nanoparticles by intense terahertz pulses
NASA Astrophysics Data System (ADS)
Takano, Keisuke; Harada, Hirofumi; Yoshimura, Masashi; Nakajima, Makoto
2018-04-01
We show that silver nanoparticles, which are deposited on a terahertz-receiving antenna, can be sintered by intense terahertz pulse irradiation. The conductance of the silver nanoparticles between the antenna electrodes is measured under the terahertz pulse irradiation. The dispersant materials surrounding the nanoparticles are peeled off, and conduction paths are created. We reveal that, during sintering, quantum point contacts are formed, leading to quantized conductance between the electrodes with the conductance quantum, which reflects the formation of atomically thin wires. The terahertz electric pulses are sufficiently intense to activate electromigration, i.e., transfer of kinetic energy from the electrons to the silver atoms. The silver atoms move and atomically thin wires form under the intense terahertz pulse irradiation. These findings may inspire nanoscale structural processing by terahertz pulse irradiation.
Atomic characterization of Si nanoclusters embedded in SiO2 by atom probe tomography
2011-01-01
Silicon nanoclusters are of prime interest for new generation of optoelectronic and microelectronics components. Physical properties (light emission, carrier storage...) of systems using such nanoclusters are strongly dependent on nanostructural characteristics. These characteristics (size, composition, distribution, and interface nature) are until now obtained using conventional high-resolution analytic methods, such as high-resolution transmission electron microscopy, EFTEM, or EELS. In this article, a complementary technique, the atom probe tomography, was used for studying a multilayer (ML) system containing silicon clusters. Such a technique and its analysis give information on the structure at the atomic level and allow obtaining complementary information with respect to other techniques. A description of the different steps for such analysis: sample preparation, atom probe analysis, and data treatment are detailed. An atomic scale description of the Si nanoclusters/SiO2 ML will be fully described. This system is composed of 3.8-nm-thick SiO layers and 4-nm-thick SiO2 layers annealed 1 h at 900°C. PMID:21711666
Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction.
Müller, Knut; Krause, Florian F; Béché, Armand; Schowalter, Marco; Galioit, Vincent; Löffler, Stefan; Verbeeck, Johan; Zweck, Josef; Schattschneider, Peter; Rosenauer, Andreas
2014-12-15
By focusing electrons on probes with a diameter of 50 pm, aberration-corrected scanning transmission electron microscopy (STEM) is currently crossing the border to probing subatomic details. A major challenge is the measurement of atomic electric fields using differential phase contrast (DPC) microscopy, traditionally exploiting the concept of a field-induced shift of diffraction patterns. Here we present a simplified quantum theoretical interpretation of DPC. This enables us to calculate the momentum transferred to the STEM probe from diffracted intensities recorded on a pixel array instead of conventional segmented bright-field detectors. The methodical development yielding atomic electric field, charge and electron density is performed using simulations for binary GaN as an ideal model system. We then present a detailed experimental study of SrTiO3 yielding atomic electric fields, validated by comprehensive simulations. With this interpretation and upgraded instrumentation, STEM is capable of quantifying atomic electric fields and high-contrast imaging of light atoms.
Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction
NASA Astrophysics Data System (ADS)
Müller, Knut; Krause, Florian F.; Béché, Armand; Schowalter, Marco; Galioit, Vincent; Löffler, Stefan; Verbeeck, Johan; Zweck, Josef; Schattschneider, Peter; Rosenauer, Andreas
2014-12-01
By focusing electrons on probes with a diameter of 50 pm, aberration-corrected scanning transmission electron microscopy (STEM) is currently crossing the border to probing subatomic details. A major challenge is the measurement of atomic electric fields using differential phase contrast (DPC) microscopy, traditionally exploiting the concept of a field-induced shift of diffraction patterns. Here we present a simplified quantum theoretical interpretation of DPC. This enables us to calculate the momentum transferred to the STEM probe from diffracted intensities recorded on a pixel array instead of conventional segmented bright-field detectors. The methodical development yielding atomic electric field, charge and electron density is performed using simulations for binary GaN as an ideal model system. We then present a detailed experimental study of SrTiO3 yielding atomic electric fields, validated by comprehensive simulations. With this interpretation and upgraded instrumentation, STEM is capable of quantifying atomic electric fields and high-contrast imaging of light atoms.
Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction
Müller, Knut; Krause, Florian F.; Béché, Armand; Schowalter, Marco; Galioit, Vincent; Löffler, Stefan; Verbeeck, Johan; Zweck, Josef; Schattschneider, Peter; Rosenauer, Andreas
2014-01-01
By focusing electrons on probes with a diameter of 50 pm, aberration-corrected scanning transmission electron microscopy (STEM) is currently crossing the border to probing subatomic details. A major challenge is the measurement of atomic electric fields using differential phase contrast (DPC) microscopy, traditionally exploiting the concept of a field-induced shift of diffraction patterns. Here we present a simplified quantum theoretical interpretation of DPC. This enables us to calculate the momentum transferred to the STEM probe from diffracted intensities recorded on a pixel array instead of conventional segmented bright-field detectors. The methodical development yielding atomic electric field, charge and electron density is performed using simulations for binary GaN as an ideal model system. We then present a detailed experimental study of SrTiO3 yielding atomic electric fields, validated by comprehensive simulations. With this interpretation and upgraded instrumentation, STEM is capable of quantifying atomic electric fields and high-contrast imaging of light atoms. PMID:25501385
Hyper-Ramsey spectroscopy with probe-laser-intensity fluctuations
NASA Astrophysics Data System (ADS)
Beloy, K.
2018-03-01
We examine the influence of probe-laser-intensity fluctuations on hyper-Ramsey spectroscopy. We assume, as is appropriate for relevant cases of interest, that the probe-laser intensity I determines both the Rabi frequency (∝√{I } ) and the frequency shift to the atomic transition (∝I ) during probe-laser interactions with the atom. The spectroscopic signal depends on these two quantities that covary with fluctuations in the probe-laser intensity. Introducing a simple model for the fluctuations, we find that the signature robustness of the hyper-Ramsey method can be compromised. Taking the Yb+ electric octupole clock transition as an example, we quantify the clock error under different levels of probe-laser-intensity fluctuations.
NASA Astrophysics Data System (ADS)
Shanmugam, Ramasamy; Thamaraichelvan, Arunachalam; Ganesan, Tharumeya Kuppusamy; Viswanathan, Balasubramanian
2017-02-01
Metal cluster, at sub-nanometer level has a unique property in the activation of small molecules, in contrast to that of bulk surface. In the present work, singly exposed active site of copper metal cluster at sub-nanometer level was designed to arrive at the energy minimised configurations, binding energy, electrostatic potential map, frontier molecular orbitals and partial density of states. The ab initio molecular dynamics was carried out to probe the catalytic nature of the cluster. Further, the stability of the metal cluster and its catalytic activity in the electrochemical reduction of CO2 to CO were evaluated by means of computational hydrogen electrode via calculation of the free energy profile using DFT/B3LYP level of theory in vacuum. The activity of the cluster is ascertained from the fact that the copper atom, present in a two coordinative environment, performs a more selective conversion of CO2 to CO at an applied potential of -0.35 V which is comparatively lower than that of higher coordinative sites. The present study helps to design any sub-nano level metal catalyst for electrochemical reduction of CO2 to various value added chemicals.
Mode control using two electrodes on HBT-EP
NASA Astrophysics Data System (ADS)
Stewart, I. G.; Brooks, J. W.; Levesque, J. P.; Mauel, M. E.; Navratil, G. A.
2017-10-01
Understanding the effects of plasma rotation on magnetohydrodynamic (MHD) modes and tokamak plasma stability is important for performance enhancement of current magnetic confinement experiments and to future fusion devices such as ITER. In order to control plasma rotation, two molybdenum electrodes have been installed on HBT-EP toroidally separated by 144 degrees. This allows independent biasing of the two probes both spatially and temporally. When the bias probes are inserted into the edge of the plasma and a voltage is applied, the probes drive radial currents and produce plasma flow from the torque induced by the currents. If the bias probe voltage is sufficiently positive, the MHD mode rotation transitions into a state with a rapid mode rotation frequency (in excess of 25 kHz) in the direction opposite to mode rotation without bias. The transition into this reversed rotation state occurs when the torque exceeds a threshold, which can depend upon the phase of an applied n = 1 error field. We present recent studies of the two-electrode system on mode rotation, mode stability, and the toroidal symmetry of the radial current through the scrape-off-layer (SOL) during MHD activity and applied magnetic perturbations. Supported by U.S. DOE Grant DE-FG02-86ER53222.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozhukhov, A. S., E-mail: antonkozhukhov@yandex.ru; Sheglov, D. V.; Latyshev, A. V.
A technique for reversible surface modification with an atomic-force-microscope (AFM) probe is suggested. In this method, no significant mechanical or topographic changes occur upon a local variation in the surface potential of a sample under the AFM probe. The method allows a controlled relative change in the ohmic resistance of a channel in a Hall bridge within the range 20–25%.
Electric field imaging of single atoms
Shibata, Naoya; Seki, Takehito; Sánchez-Santolino, Gabriel; Findlay, Scott D.; Kohno, Yuji; Matsumoto, Takao; Ishikawa, Ryo; Ikuhara, Yuichi
2017-01-01
In scanning transmission electron microscopy (STEM), single atoms can be imaged by detecting electrons scattered through high angles using post-specimen, annular-type detectors. Recently, it has been shown that the atomic-scale electric field of both the positive atomic nuclei and the surrounding negative electrons within crystalline materials can be probed by atomic-resolution differential phase contrast STEM. Here we demonstrate the real-space imaging of the (projected) atomic electric field distribution inside single Au atoms, using sub-Å spatial resolution STEM combined with a high-speed segmented detector. We directly visualize that the electric field distribution (blurred by the sub-Å size electron probe) drastically changes within the single Au atom in a shape that relates to the spatial variation of total charge density within the atom. Atomic-resolution electric field mapping with single-atom sensitivity enables us to examine their detailed internal and boundary structures. PMID:28555629
3D ultrasound image guidance system used in RF uterine adenoma and uterine bleeding ablation system
NASA Astrophysics Data System (ADS)
Ding, Mingyue; Luo, Xiaoan; Cai, Chao; Zhou, Chengping; Fenster, Aaron
2006-03-01
Uterine adenoma and uterine bleeding are the two most prevalent diseases in Chinese women. Many women lose their fertility from these diseases. Currently, a minimally invasive ablation system using an RF button electrode is being used in Chinese hospitals to destroy tumor cells or stop bleeding. In this paper, we report on a 3D US guidance system developed to avoid accidents or death of the patient by inaccurate localization of the tumor position during treatment. A 3D US imaging system using a rotational scanning approach of an abdominal probe was built. In order to reduce the distortion produced when the rotational axis is not collinear with the central beam of the probe, a new 3D reconstruction algorithm is used. Then, a fast 3D needle segmentation algorithm is used to find the electrode. Finally, the tip of electrode is determined along the segmented 3D needle and the whole electrode is displayed. Experiments with a water phantom demonstrated the feasibility of our approach.
Field Ion Microscopy and Atom Probe Tomography of Metamorphic Magnetite Crystals
NASA Technical Reports Server (NTRS)
Kuhlman, K.; Martens, R. L.; Kelly, T. F.; Evans, N. D.; Miller, M. K.
2001-01-01
Magnetite has been analysed using Field Ion Microscopy (FIM) and Atom Probe Tomography (APT), highly attractive techniques for the nanoanalysis of geological materials despite the difficulties inherent in analyzing semiconducting and insulating materials. Additional information is contained in the original extended abstract.
NASA Astrophysics Data System (ADS)
Bełtowska-Brzezinska, M.; Łuczak, T.; Stelmach, J.; Holze, R.
2014-04-01
Kinetics and mechanism of formic acid (FA) oxidation on platinum and upd-lead ad-atoms modified platinum electrodes have been studied using unlabelled and deuterated compounds. Poisoning of the electrode surface by CO-like species was prevented by suppression of dissociative chemisorption of FA due to a fast competitive underpotential deposition of lead ad-atoms on the Pt surface from an acidic solution containing Pb2+ cations. Modification of the Pt electrode with upd lead induced a catalytic effect in the direct electrooxidation of physisorbed FA to CO2. With increasing degree of H/D substitution, the rate of this reaction decreased in the order: HCOOH > DCOOH ≥ HCOOD > DCOOD. HCOOH was oxidized 8.5-times faster on a Pt/Pb electrode than DCOOD. This primary kinetic isotope effect proves that the C-H- and O-H-bonds are simultaneously cleaved in the rate determining step. A secondary kinetic isotope effect was found in the dissociative chemisorption of FA in the hydrogen adsorption-desorption range on a bare Pt electrode after H/D exchange in the C-H bond, wherein the influence of deuterium substitution in the O-H group was negligibly small. Thus the C-H bond cleavage is accompanied by the C-OH and not the O-H bond split in the FA decomposition, producing CO-like species on the Pt surface sites.
1994-02-01
known gold atomic diameter of 2.89 A. Within a given domain, featuring adjacent terrace strings separated by monoatomic steps, the measured unit-cell...to utilize high-index gold faces in exploring the influence of monoatomic steps and related structural features on surface electrochemical phenomena...110) Gold Electrode Surfaces D1 T IC as Revealed by Scanning Tunneling Microscopy FLECTE MAR 10 19941 by E Xiaoping Gao, Gregory J. Edens, Antoinette
Wang, Tianshu; Liu, Jiyang; Gu, Xiaoxiao; Li, Dan; Wang, Jin; Wang, Erkang
2015-07-02
Here, a cytosensor was constructed with ferrocene-appended poly(allylamine hydrochloride) (Fc-PAH) functionalized graphene (Fc-PAH-G), poly(sodium-p-styrenesulfonate) (PSS) and aptamer (AS1411) by layer-by-layer assembly technology. The hybrid nanocomposite Fc-PAH-G not only brings probes on the electrode and also promotes electron transfer between the probes and the substrate electrode. Meanwhile, LBL technology provides more effective probes to enhance amplified signal for improving the sensitivity of the detection. While AS1411 forming G-quardruplex structure and binding cancer cells, the current response of the sensing electrode decreased due to the insulating properties of cellular membrane. Differential pulse voltammetry (DPV) was performed to investigate the electrochemical detection of HeLa cells attributing to its sensitivity of the current signal change. The as-prepared aptasensor showed a high sensitivity and good stability, a widely detection range from 10 to 10(6) cells/mL with a detection limit as low as 10 cells/mL for the detection of cancer cells. Copyright © 2015. Published by Elsevier B.V.
MacDonald, Gordon A; Veneman, P Alexander; Placencia, Diogenes; Armstrong, Neal R
2012-11-27
We demonstrate mapping of electrical properties of heterojunctions of a molecular semiconductor (copper phthalocyanine, CuPc) and a transparent conducting oxide (indium-tin oxide, ITO), on 20-500 nm length scales, using a conductive-probe atomic force microscopy technique, scanning current spectroscopy (SCS). SCS maps are generated for CuPc/ITO heterojunctions as a function of ITO activation procedures and modification with variable chain length alkyl-phosphonic acids (PAs). We correlate differences in small length scale electrical properties with the performance of organic photovoltaic cells (OPVs) based on CuPc/C(60) heterojunctions, built on these same ITO substrates. SCS maps the "ohmicity" of ITO/CuPc heterojunctions, creating arrays of spatially resolved current-voltage (J-V) curves. Each J-V curve is fit with modified Mott-Gurney expressions, mapping a fitted exponent (γ), where deviations from γ = 2.0 suggest nonohmic behavior. ITO/CuPc/C(60)/BCP/Al OPVs built on nonactivated ITO show mainly nonohmic SCS maps and dark J-V curves with increased series resistance (R(S)), lowered fill-factors (FF), and diminished device performance, especially near the open-circuit voltage. Nearly optimal behavior is seen for OPVs built on oxygen-plasma-treated ITO contacts, which showed SCS maps comparable to heterojunctions of CuPc on clean Au. For ITO electrodes modified with PAs there is a strong correlation between PA chain length and the degree of ohmicity and uniformity of electrical response in ITO/CuPc heterojunctions. ITO electrodes modified with 6-8 carbon alkyl-PAs show uniform and nearly ohmic SCS maps, coupled with acceptable CuPc/C(60)OPV performance. ITO modified with C14 and C18 alkyl-PAs shows dramatic decreases in FF, increases in R(S), and greatly enhanced recombination losses.
Simulating Supercapacitors: Can We Model Electrodes As Constant Charge Surfaces?
Merlet, Céline; Péan, Clarisse; Rotenberg, Benjamin; Madden, Paul A; Simon, Patrice; Salanne, Mathieu
2013-01-17
Supercapacitors based on an ionic liquid electrolyte and graphite or nanoporous carbon electrodes are simulated using molecular dynamics. We compare a simplified electrode model in which a constant, uniform charge is assigned to each carbon atom with a realistic model in which a constant potential is applied between the electrodes (the carbon charges are allowed to fluctuate). We show that the simulations performed with the simplified model do not provide a correct description of the properties of the system. First, the structure of the adsorbed electrolyte is partly modified. Second, dramatic differences are observed for the dynamics of the system during transient regimes. In particular, upon application of a constant applied potential difference, the increase in the temperature, due to the Joule effect, associated with the creation of an electric current across the cell follows Ohm's law, while unphysically high temperatures are rapidly observed when constant charges are assigned to each carbon atom.
Conjugated Polymer Actuators for Articulating Neural Probes and Electrode Interfaces
NASA Astrophysics Data System (ADS)
Daneshvar, Eugene Dariush
This thesis investigated the potential use of polypyrrole (PPy) doped with dodecylbenzenesulfonate (DBS) to controllably articulate (bend or guide) flexible neural probes and electrodes. PPy(DBS) actuation performance was characterized in the ionic mixture and temperature found in the brain. Nearly all the ions in aCSF were exchanged into the PPy---the cations Na +, K+, Mg2+, Ca2+, as well as the anion PO43-; Cl- was not present. Nevertheless, deflections in aCSF were comparable to those in NaDBS and they were monotonic with oxidation level: strain increased upon reduction, with no reversal of motion despite the mixture of ionic charges and valences being exchanged. Actuation depended on temperature. Upon warming, the cyclic voltammograms showed additional peaks and an increase of 70% in the consumed charge. Actuation strain was monotonic under these conditions, demonstrating that conducting polymer actuators can indeed be used for neural interface and neural probe applications. In addition, a novel microelectro-mechanical system (MEMS) was developed to measure previously disregarded residual stress in a bilayer actuator. Residual stresses are a major concern for MEMS devices as that they can dramatically influence their yield and functionality. This device introduced a new technique to measure micro-scaled actuation forces that may be useful for characterization of other MEMS actuators. Finally, a functional movable parylene-based neural electrode prototype was developed. Employing PPy(DBS) actuators, electrode projections were successfully controlled to either remain flat or actuate out-of-plane and into a brain phantom during insertion. An electrode projection 800 microm long and 50 microm wide was able to deflect almost 800 microm away from the probe substrate. Applications that do not require insertion into tissue may also benefit from the electrode projections described here. Implantable neural interface devices are a critical component to a broad class of emerging neuroprosthetic and neurostimulation systems aimed to restore functionality, or abate symptoms related to physical impairments, loss of sensory abilities, and neurological disorders. The therapeutic outcome and performance of these systems hinge to a large degree on the proximity, size, and placement of the device or interface with respect to the targeted neurons or tissue.
Organic thin film transistor with a simplified planar structure
NASA Astrophysics Data System (ADS)
Zhang, Lei; Yu, Jungsheng; Zhong, Jian; Jiang, Yadong
2009-05-01
Organic thin film transistor (OTFT) with a simplified planar structure is described. The gate electrode and the source/drain electrodes of OTFT are processed in one planar structure. And these three electrodes are deposited on the glass substrate by DC sputtering technology using Cr/Ni target. Then the electrode layouts of different width length ratio are made by photolithography technology at the same time. Only one step of deposition and one step of photolithography is needed while conventional process takes at least two steps of deposition and two steps of photolithography. Metal is first prepared on the other side of glass substrate and electrode is formed by photolithography. Then source/drain electrode is prepared by deposition and photolithography on the side with the insulation layer. Compared to conventional process of OTFTs, the process in this work is simplified. After three electrodes prepared, the insulation layer is made by spin coating method. The organic material of polyimide is used as the insulation layer. A small molecular material of pentacene is evaporated on the insulation layer using vacuum deposition as the active layer. The process of OTFTs needs only three steps totally. A semi-auto probe stage is used to connect the three electrodes and the probe of the test instrument. A charge carrier mobility of 0.3 cm2 /V s, is obtained from OTFTs on glass substrates with and on/off current ratio of 105. The OTFTs with the planar structure using simplified process can simplify the device process and reduce the fabrication cost.
Lithium-aluminum-magnesium electrode composition
Melendres, Carlos A.; Siegel, Stanley
1978-01-01
A negative electrode composition is presented for use in a secondary, high-temperature electrochemical cell. The cell also includes a molten salt electrolyte of alkali metal halides or alkaline earth metal halides and a positive electrode including a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent and a magnesium-aluminum alloy as a structural matrix. Various binary and ternary intermetallic phases of lithium, magnesium, and aluminum are formed but the electrode composition in both its charged and discharged state remains substantially free of the alpha lithium-aluminum phase and exhibits good structural integrity.
Atom probe tomography of lithium-doped network glasses.
Greiwe, Gerd-Hendrik; Balogh, Zoltan; Schmitz, Guido
2014-06-01
Li-doped silicate and borate glasses are electronically insulating, but provide considerable ionic conductivity. Under measurement conditions of laser-assisted atom probe tomography, mobile Li ions are redistributed in response to high electric fields. In consequence, the direct interpretation of measured composition profiles is prevented. It is demonstrated that composition profiles are nevertheless well understood by a complex model taking into account the electronic structure of dielectric materials, ionic mobility and field screening. Quantitative data on band bending and field penetration during measurement are derived which are important in understanding laser-assisted atom probe tomography of dielectric materials. Copyright © 2014 Elsevier B.V. All rights reserved.
Four-probe measurements with a three-probe scanning tunneling microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salomons, Mark; Martins, Bruno V. C.; Zikovsky, Janik
2014-04-15
We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position bymore » imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.« less
Long life lithium batteries with stabilized electrodes
Amine, Khalil [Downers Grove, IL; Liu, Jun [Naperville, IL; Vissers, Donald R [Naperville, IL; Lu, Wenquan [Darien, IL
2009-03-24
The present invention relates to non-aqueous electrolytes having electrode stabilizing additives, stabilized electrodes, and electrochemical devices containing the same. Thus the present invention provides electrolytes containing an alkali metal salt, a polar aprotic solvent, and an electrode stabilizing additive. In some embodiments the additives include a substituted or unsubstituted cyclic or spirocyclic hydrocarbon containing at least one oxygen atom and at least one alkenyl or alkynyl group. When used in electrochemical devices with, e.g., lithium manganese oxide spinel electrodes or olivine or carbon-coated olivine electrodes, the new electrolytes provide batteries with improved calendar and cycle life.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marulanda, D. M.; Trujillo, O.; Devia, A.
The Plasma Assisted Physic Vapor Deposition (PAPVD) by the pulsed arc technique has been used for deposition of Titanium Zirconium Nitride (Ti,Zr)N coatings, using a segmented target of TiZr. The deposition was performed in a vacuum chamber with two faced electrodes (target and substrate) using nitrogen as working gas, and a power-controlled source used to produce the arc discharges. Films were deposited on stainless steel 304, and they were characterized using the X-Ray Photoelectron Spectroscopy (XPS), X-Ray Diffraction (XRD), Energy Dispersion Spectroscopy (EDS) and Scanning Probe Microscopy (SPM) techniques. The XRD patterns show different planes in which the film grows.more » Through SPM, using Atomic Force Microscopy (AFM) and Lateral Force Microscopy (LFM) modes, a nanotribologic study of the thin film was made, determining hardness and friction coefficient.« less
Ke, Shanming; Li, Tao; Ye, Mao; Lin, Peng; Yuan, Wenxiang; Zeng, Xierong; Chen, Lang; Huang, Haitao
2017-08-31
(In + Nb) co-doped TiO 2 (TINO) rutile is an emerging material with a colossal dielectric permittivity (CP) and a low dielectric loss over wide temperature and frequency ranges. The electrical inhomogeneous nature of TINO ceramics is demonstrated by direct local current probing with high-resolution conductive atomic force microscopy (cAFM). The CP response in TINO is found to originate from the electron-pinned defect dipole induced conductive cluster effect and the electrode effect. Two types of dielectric relaxations are simultaneously observed due to these two effects. With the given synthesis condition, we found TINO shows a highly leaky feature that impairs its application as a dielectric material. However, the fast-temperature-rising phenomenon found in this work may open a new door for TINO to be applied as a potential electrothermal material with high efficiency, oxidation-proof, high temperature stability, and energy saving.
Development and surface characterization of a glucose biosensor based on a nanocolumnar ZnO film
NASA Astrophysics Data System (ADS)
Rodrigues, A.; Castegnaro, M. V.; Arguello, J.; Alves, M. C. M.; Morais, J.
2017-04-01
Highly oriented nanostructured ZnO films were grown on the surface of stainless steel plates (ZnO/SS) by chemical bath deposition (CBD). The films consisted of vertically aligned ZnO nanocolumns, ∼1 μm long and ∼80 nm wide, as observed by SEM (scanning electron microscopy) and FIB (focused ion beam). XRD (X-ray diffraction) confirmed the c-axis preferred orientation of the ZnO columns, which were functionalized with the glucose oxidase (GOx) enzyme into a biosensor of glucose. The electrochemical response studied by CV (cyclic voltammetry) proved that the biosensor was capable of detecting glucose from 1.5 up to 16 mM concentration range. XPS (X-ray photoelectron spectroscopy) analysis, excited with synchrotron radiation, probed the atom specific chemical environment at the electrode's surface and shed some light on the nature of the ZnO-GOx interaction.
Hwang, Ki-Hwan; Seo, Hyeon Jin; Nam, Sang-Hun; Boo, Jin-Hyo
2015-10-01
Recently, the use of PSS in flexible device electrodes has been reported. PSS treatment consists of a step in which a small amount of surfactant is added to enhance the adhesion between PSS and the substrate or TCO materials. However, basic research into the effect of the surfactant is lacking. We studied the effects of sodium dodecyl sulfate (SDS) at controlled concentrations in aqueous PSS solution and that it enhanced the conductivity in the mixed thin films with surfactant and PSS. The thin films were prepared by the spin coating method. To study the structural effects on the resulting electrical properties, the thin films were investigated by FE-SEM (Field Emission Scanning Electron Microscopy) and AFM (Atomic Force Microscopy). At the same time, the electrical properties were investigated using a 4-point probe and solar simulator.
High-energy x-ray scattering studies of battery materials
Glazer, Matthew P. B.; Okasinski, John S.; Almer, Jonathan D.; ...
2016-06-08
High-energy x-ray (HEX) scattering is a sensitive and powerful tool to nondestructively probe the atomic and mesoscale structures of battery materials under synthesis and operational conditions. The penetration power of HEXs enables the use of large, practical samples and realistic environments, allowing researchers to explore the inner workings of batteries in both laboratory and commercial formats. This article highlights the capability and versatility of HEX techniques, particularly from synchrotron sources, to elucidate materials synthesis processes and thermal instability mechanisms in situ, to understand (dis)charging mechanisms in operando under a variety of cycling conditions, and to spatially resolve electrode/electrolyte responses tomore » highlight connections between inhomogeneity and performance. Such studies have increased our understanding of the fundamental mechanisms underlying battery performance. Here, by deepening our understanding of the linkages between microstructure and overall performance, HEXs represent a powerful tool for validating existing batteries and shortening battery-development timelines.« less
High-energy x-ray scattering studies of battery materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glazer, Matthew P. B.; Okasinski, John S.; Almer, Jonathan D.
High-energy x-ray (HEX) scattering is a sensitive and powerful tool to nondestructively probe the atomic and mesoscale structures of battery materials under synthesis and operational conditions. The penetration power of HEXs enables the use of large, practical samples and realistic environments, allowing researchers to explore the inner workings of batteries in both laboratory and commercial formats. This article highlights the capability and versatility of HEX techniques, particularly from synchrotron sources, to elucidate materials synthesis processes and thermal instability mechanisms in situ, to understand (dis)charging mechanisms in operando under a variety of cycling conditions, and to spatially resolve electrode/electrolyte responses tomore » highlight connections between inhomogeneity and performance. Such studies have increased our understanding of the fundamental mechanisms underlying battery performance. Here, by deepening our understanding of the linkages between microstructure and overall performance, HEXs represent a powerful tool for validating existing batteries and shortening battery-development timelines.« less
Kron-Branin modelling of ultra-short pulsed signal microelectrode
NASA Astrophysics Data System (ADS)
Xu, Zhifei; Ravelo, Blaise; Liu, Yang; Zhao, Lu; Delaroche, Fabien; Vurpillot, Francois
2018-06-01
An uncommon circuit modelling of microelectrode for ultra-short signal propagation is developed. The proposed model is based on the Tensorial Analysis of Network (TAN) using the Kron-Branin (KB) formalism. The systemic graph topology equivalent to the considered structure problem is established by assuming as unknown variables the branch currents. The TAN mathematical solution is determined after the KB characteristic matrix identification. The TAN can integrate various structure physical parameters. As proof of concept, via hole ended microelectrodes implemented on Kapton substrate were designed, fabricated and tested. The 0.1-MHz-to-6-GHz S-parameter KB model, simulation and measurement are in good agreement. In addition, time-domain analyses with nanosecond duration pulse signals were carried out to predict the microelectrode signal integrity. The modelled microstrip electrode is usually integrated in the atom probe tomography. The proposed unfamiliar KB method is particularly beneficial with respect to the computation speed and adaptability to various structures.
The cataphoretic emitter effect exhibited in high intensity discharge lamp electrodes
NASA Astrophysics Data System (ADS)
Mentel, Juergen
2018-01-01
A mono-layer of atoms, electropositive with respect to the substrate atoms, forms a dipole layer, reducing its work function. Such a layer is generated by diffusion of emitter material from the interior of the substrate, by vapour deposition or by deposition of emitter material onto arc electrodes by cataphoresis. This cataphoretic emitter effect is investigated within metal halide lamps with transparent YAG ceramic burners, and within model lamps. Within the YAG lamps, arcs are operated with switched-dc current between rod shaped tungsten electrodes in high pressure Hg vapour seeded with metal iodides. Within the model lamps, dc arcs are operated between rod-shaped tungsten electrodes—one doped—in atmospheric pressure Ar. Electrode temperatures are determined by 1λ -pyrometry, combined with simulation of the electrode heat balance. Plasma temperatures, atom and ion densities of emitter material are determined by emission and absorption spectroscopy. Phase resolved measurements in YAG lamps seeded with CeI3, CsI, DyI3, TmI3 and LaI3 show, within the cathodic half period, a reduction of the electrode temperature and an enhanced metal ion density in front of the electrode, and an opposite behavior after phase reversal. With increasing operating frequency, the state of the cathode overlaps onto the anodic phase—except for Cs, being low in adsorption energy. Generally, the phase averaged electrode tip temperature is reduced by seeding a lamp with emitter material; its height depends on admixtures. Measurements at tungsten electrodes doped with ThO2, La2O3 and Ce2O3 within the model lamp show that evaporated emitter material is redeposited by an emitter ion current onto the electrode surface. It reduces the work function of tungsten cathodes above the evaporation temperature of the emitter material, too; and also of cold anodes, indicating a field reversal in front of them. The formation of an emitter spot at low cathode temperature and high emitter material density is traced back to a locally reduced work function generated by a locally enhanced emitter ion current density.
3D atom microscopy in the presence of Doppler shift
NASA Astrophysics Data System (ADS)
Rahmatullah; Chuang, You-Lin; Lee, Ray-Kuang; Qamar, Sajid
2018-03-01
The interaction of hot atoms with laser fields produces a Doppler shift, which can severely affect the precise spatial measurement of an atom. We suggest an experimentally realizable scheme to address this issue in the three-dimensional position measurement of a single atom in vapors of rubidium atoms. A three-level Λ-type atom-field configuration is considered where a moving atom interacts with three orthogonal standing-wave laser fields and spatial information of the atom in 3D space is obtained via an upper-level population using a weak probe laser field. The atom moves with velocity v along the probe laser field, and due to the Doppler broadening the precision of the spatial information deteriorates significantly. It is found that via a microwave field, precision in the position measurement of a single hot rubidium atom can be attained, overcoming the limitation posed by the Doppler shift.
NASA Astrophysics Data System (ADS)
Kageshima, Masami; Jensenius, Henriette; Dienwiebel, Martin; Nakayama, Yoshikazu; Tokumoto, Hiroshi; Jarvis, Suzanne P.; Oosterkamp, Tjerk H.
2002-03-01
A force sensor for noncontact atomic force microscopy in liquid environment was developed by combining a multiwalled carbon nanotube (MWNT) probe with a quartz tuning fork. Solvation shells of octamethylcyclotetrasiloxane on a graphite surface were detected both in the frequency shift and dissipation. Due to the high aspect ratio of the CNT probe, the long-range background force was barely detectable in the solvation region.
Adiabatic electron thermal pressure fluctuations in tokamak plasmas.
Meier, M A; Bengtson, R D; Hallock, G A; Wootton, A J
2001-08-20
Electron thermal pressure fluctuations measured in the edge plasma of the Texas Experimental Tokamak Upgrade are a fundamental component of plasma turbulence on both sides of the velocity shear layer. The ratio of specific heats, estimated from fluctuations in electron temperature and electron number density measured simultaneously at the same electrode, indicates that observed fluctuations are adiabatic. The observations are made by means of a novel Langmuir probe technique, the time domain triple-probe method, which concurrently measures multiple plasma properties at each of two electrodes with the temporal and the spatial resolution required to estimate thermodynamic properties in a turbulent plasma.
Superior ionic and electronic properties of ReN2 monolayers for Na-ion battery electrodes.
Zhang, Shi-Hao; Liu, Bang-Gui
2018-08-10
Excellent monolayer electrode materials can be used to design high-performance alkali-metal-ion batteries. Here, we propose two-dimensional ReN 2 monolayers as superior sodium-ion battery materials. Our total energy optimization results in a buckled tetragonal structure for the ReN 2 monolayer, and our phonon spectrum and elastic moduli prove that it is dynamically and mechanically stable. Further investigations show that it is metallic and still keeps its metallic feature after the adsorption of Na or K atoms, and the adsorption of Na (or K) atoms changes the lattice parameters by 3.2% (or 3.8%) at most. Its maximum capacity reaches 751 mA h g -1 for Na-ion batteries or 250 mA h g -1 for K-ion batteries, and the diffusion barrier is only 0.027 eV for the Na atom or 0.127 eV for the K atom. The small lattice changes, high storage capacity, metallic feature, and extremely low ion diffusion barriers make the ReN 2 monolayers a superior electrode material for Na-ion rechargeable batteries with ultrafast charging/discharging processes.
In-Process Atomic-Force Microscopy (AFM) Based Inspection
Mekid, Samir
2017-01-01
A new in-process atomic-force microscopy (AFM) based inspection is presented for nanolithography to compensate for any deviation such as instantaneous degradation of the lithography probe tip. Traditional method used the AFM probes for lithography work and retract to inspect the obtained feature but this practice degrades the probe tip shape and hence, affects the measurement quality. This paper suggests a second dedicated lithography probe that is positioned back-to-back to the AFM probe under two synchronized controllers to correct any deviation in the process compared to specifications. This method shows that the quality improvement of the nanomachining, in progress probe tip wear, and better understanding of nanomachining. The system is hosted in a recently developed nanomanipulator for educational and research purposes. PMID:28561747
Influence of electron injection into 27 cm audio plasma cell on the plasma diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haleem, N. A.; Ragheb, M. S.; Zakhary, S. G.
2013-08-15
In this article, the plasma is created in a Pyrex tube (L = 27 cm, φ= 4 cm) as a single cell, by a capacitive audio frequency (AF) discharge (f = 10–100 kHz), at a definite pressure of ∼0.2 Torr. A couple of tube linear and deviating arrangements show plasma characteristic conformity. The applied AF plasma and the injection of electrons into two gas mediums Ar and N{sub 2} revealed the increase of electron density at distinct tube regions by one order to attain 10{sup 13}/cm{sup 3}. The electrons temperature and density strengths are in contrast to each other. Whilemore » their distributions differ along the plasma tube length, they show a decaying sinusoidal shape where their peaks position varies by the gas type. The electrons injection moderates electron temperature and expands their density. The later highest peak holds for the N{sub 2} gas, at electrons injection it changes to hold for the Ar. The sinusoidal decaying density behavior generates electric fields depending on the gas used and independent of tube geometry. The effect of the injected electrons performs a responsive impact on electrons density not attributed to the gas discharge. Analytical tools investigate the interaction of the plasma, the discharge current, and the gas used on the electrodes. It points to the emigration of atoms from each one but for greater majority they behave to a preferred direction. Meanwhile, only in the linear regime, small percentage of atoms still moves in reverse direction. Traces of gas atoms revealed on both electrodes due to sheath regions denote lack of their participation in the discharge current. In addition, atoms travel from one electrode to the other by overcoming the sheaths regions occurring transportation of particles agglomeration from one electrode to the other. The electrons injection has contributed to increase the plasma electron density peaks. These electrons populations have raised the generated electrostatic fields assisting the elemental ions emigration to a preferred electrode direction. Regardless of plasma electrodes positions and plasma shape, ions can be departed from one electrode to deposit on the other one. In consequence, as an application the AF plasma type can enhance the metal deposition from one electrode to the other.« less
Yu, Ping; He, Xiulan; Zhang, Li; Mao, Lanqun
2015-01-20
Adenosine triphosphate (ATP) aptamer has been widely used as a recognition unit for biosensor development; however, its relatively poor specificity toward ATP against adenosine-5'-diphosphate (ADP) and adenosine-5'-monophosphate (AMP) essentially limits the application of the biosensors in real systems, especially in the complex cerebral system. In this study, for the first time, we demonstrate a dual recognition unit strategy (DRUS) to construct a highly selective and sensitive ATP biosensor by combining the recognition ability of aptamer toward A nucleobase and of polyimidazolium toward phosphate. The biosensors are constructed by first confining the polyimidazolium onto a gold surface by surface-initiated atom transfer radical polymerization (SI-ATRP), and then the aptamer onto electrode surface by electrostatic self-assembly to form dual-recognition-unit-functionalized electrodes. The constructed biosensor based on DRUS not only shows an ultrahigh sensitivity toward ATP with a detection limit down to the subattomole level but also an ultrahigh selectivity toward ATP without interference from ADP and AMP. The constructed biosensor is used for selective and sensitive sensing of the extracellular ATP in the cerebral system by combining in vivo microdialysis and can be used as a promising neurotechnology to probing cerebral ATP concentration.
Prasad, Bhim Bali; Srivastava, Amrita; Tiwari, Mahavir Prasad
2013-10-01
A new molecularly imprinted polymer-matrix (titanium dioxide nanoparticle/multiwalled carbon nanotubes) nanocomposite was developed for the modification of pencil graphite electrode as an enantioselective sensing probe for aspartic acid isomers, prevalent at ultra trace level in aqueous and real samples. The nanocomposite having many shape complementary cavities was synthesized adopting surface initiated-activators regenerated by electron transfer for atom transfer radical polymerization. The proposed sensor has high stability, nanocomposite uniformity, good reproducibility, and enhanced electrocatalytic activity to respond oxidative peak current of L-aspartic acid quantitatively by differential pulse anodic stripping voltammetry, without any cross-reactivity in real samples. Under the optimized operating conditions, the L-aspartic acid imprinted modified electrode showed a wide linear response for L-aspartic acid within the concentration range 9.98-532.72 ng mL(-1), with the minimum detection limit of 1.73-1.79 ng mL(-1) (S/N=3) in aqueous and real samples. Almost similar stringent limit (1.79 ng mL(-1)) was obtained with cerebrospinal fluid which is typical for the primitive diagnosis of neurological disorders, caused by an acute depletion of L-aspartic acid biomarker, in clinical settings. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bobrikov, I. A.; Samoylova, N. Yu.; Sumnikov, S. V.; Ivanshina, O. Yu.; Vasin, R. N.; Beskrovnyi, A. I.; Balagurov, A. M.
2017-12-01
A commercial lithium-ion battery with LiNi0.8Co0.15Al0.05O2 (NCA) cathode has been studied in situ using high-intensity and high-resolution neutron diffraction. Structure and phase composition of the battery electrodes have been probed during charge-discharge in different cycling modes. The dependence of the anode composition on the charge rate has been determined quantitatively. Different kinetics of Li (de)intercalation in the graphite anode during charge/discharge process have been observed. Phase separation of the cathode material has not been detected in whole voltage range. Non-linear dependencies of the unit cell parameters, atomic and layer spacing on the lithium content in the cathode have been observed. Measured dependencies of interatomic spacing and interlayer spacing, and unit cell parameters of the cathode structure on the lithium content could be qualitatively explained by several factors, such as variations of oxidation state of cation in oxygen octahedra, Coulomb repulsion of oxygen layers, changes of average effective charge of oxygen layers and van der Waals interactions between MeO2-layers at high level of the NCA delithiation.
Proceedings of the STRESS Data Review Meeting, 29-30 November 1977
1978-06-01
INSULATORS MAGNETOMETER BEACON ANTENNA fe?^ S-BAND ANTENNA- -DC PROBE SENSING ELEMENT PLASMA FREQUENCY PROBE MONOPOLE -GUARD ELECTRODE PLASMA...have demonstrated, using calculational results from MICE and MRHYDE (MHD computer codes), that the gradient-drift instability is the one primarily
Capacitance-level/density monitor for fluidized-bed combustor
Fasching, George E.; Utt, Carroll E.
1982-01-01
A multiple segment three-terminal type capacitance probe with segment selection, capacitance detection and compensation circuitry and read-out control for level/density measurements in a fluidized-bed vessel is provided. The probe is driven at a high excitation frequency of up to 50 kHz to sense quadrature (capacitive) current related to probe/vessel capacitance while being relatively insensitive to the resistance current component. Compensation circuitry is provided for generating a negative current of equal magnitude to cancel out only the resistive component current. Clock-operated control circuitry separately selects the probe segments in a predetermined order for detecting and storing this capacitance measurement. The selected segment acts as a guarded electrode and is connected to the read-out circuitry while all unselected segments are connected to the probe body, which together form the probe guard electrode. The selected probe segment capacitance component signal is directed to a corresponding segment channel sample and hold circuit dedicated to that segment to store the signal derived from that segment. This provides parallel outputs for display, computer input, etc., for the detected capacitance values. The rate of segment sampling may be varied to either monitor the dynamic density profile of the bed (high sampling rate) or monitor average bed characteristics (slower sampling rate).
Sensing mode atomic force microscope
Hough, Paul V. C.; Wang, Chengpu
2003-01-01
An atomic force microscope utilizes a pulse release system and improved method of operation to minimize contact forces between a probe tip affixed to a flexible cantilever and a specimen being measured. The pulse release system includes a magnetic particle affixed proximate the probe tip and an electromagnetic coil. When energized, the electromagnetic coil generates a magnetic field which applies a driving force on the magnetic particle sufficient to overcome adhesive forces exhibited between the probe tip and specimen. The atomic force microscope includes two independently displaceable piezo elements operable along a Z-axis. A controller drives the first Z-axis piezo element to provide a controlled approach between the probe tip and specimen up to a point of contact between the probe tip and specimen. The controller then drives the first Z-axis piezo element to withdraw the cantilever from the specimen. The controller also activates the pulse release system which drives the probe tip away from the specimen during withdrawal. Following withdrawal, the controller adjusts the height of the second Z-axis piezo element to maintain a substantially constant approach distance between successive samples.
NASA Astrophysics Data System (ADS)
Gupta, Sanju; Carrizosa, Sara B.
2016-12-01
Nanostructured cobalt oxide polymorphs (CoO and Co3O4) deposited via electrodeposition allowed optimal loading on supercapacitive graphene nanosheets producing a set of graphene-based hybrids namely, CoO/GO, CoO/ErGO, Co3O4/GO, Co3O4/rGO, and Co3O4/ErGO, as pseudocapacitive electrochemical electrodes. We gained fundamental insights into the complex physicochemical interfacial processes at electrode surfaces and electrode/electrolyte (or solid/liquid) interfaces by scanning electrochemical microscopy operating in the feedback probe approach and imaging modes while monitoring and mapping the redox probe (re)activity behavior. We determined the various experimental descriptors including diffusion coefficient, electron transfer rate, and electroactive site distribution on electrodes. We emphasize the interplay of (1) heterogeneous basal and edge plane active sites, (2) graphene surface functional moieties (conducting/semiconducting), and (3) crystalline spinel cobalt oxides (semiconducting/insulating) coated graphene, reinforcing the available electron density of states in the vicinity of the Fermi level contributing to higher electroactivity, faster interfacial diffusion, and shorter distances for electron transfer, facilitated through molecular and chemical bridges obtained by electrodeposition as compared with the physical deposition.
Work function measurement of multilayer electrodes using Kelvin probe force microscopy
NASA Astrophysics Data System (ADS)
Peres, L.; Bou, A.; Cornille, C.; Barakel, D.; Torchio, P.
2017-04-01
The workfunction of dielectric|metal|dielectric transparent and conductive electrodes, promising candidates for replacing ITO in thin film solar cells, is measured by Kelvin probe force microscopy (KPFM). Measurement on commercial ITO gives a workfunction of 4.74 eV, which is in agreement with the values reported in the literature. Measurements are then performed on optically optimised multilayer electrodes fabricated on glass by e-beam evaporation, using three different dielectrics. For TiO2(37 nm)|Ag(13 nm)|TiO2(42 nm), SnO x (45 nm)|Ag(10 nm)|SnO x (45 nm), and ZnS(47 nm)|Ag(12 nm)|ZnS(42 nm), workfunctions of 4.83 eV, 4.75 eV, and 4.48 eV are measured respectively. These values suggest that these transparent and conductive electrodes are well adapted to extract photo-generated charge carriers in photovoltaic devices in which ITO is normally used. Furthermore, the KPFM technique proves to be an efficient and relatively fast way to determine the work function values of such electrodes.
NASA Astrophysics Data System (ADS)
Kuppers, J. D.; Gouverneur, I. M.; Rodgers, M. T.; Wenger, J.; Furlong, C.
2006-08-01
In atomic probe microscopy, micro-probes of various sizes, geometries, and materials are used to define the interface between the samples under investigation and the measuring detectors and instrumentation. Therefore, measuring resolution in atomic probe microscopy is highly dependent on the transfer function characterizing the micro-probes used. In this paper, characterization of the dynamic transfer function of specific micro-cantilever probes used in an Atomic Force Microscope (AFM) operating in the tapping mode is presented. Characterization is based on the combined application of laser Doppler vibrometry (LDV) and real-time stroboscopic optoelectronic holographic microscopy (OEHM) methodologies. LDV is used for the rapid measurement of the frequency response of the probes due to an excitation function containing multiple frequency components. Data obtained from the measured frequency response is used to identify the principal harmonics. In order to identify mode shapes corresponding to the harmonics, full-field of view OEHM is applied. This is accomplished by measurements of motion at various points on the excitation curve surrounding the identified harmonics. It is shown that the combined application of LDV and OEHM enables the high-resolution characterization of mode shapes of vibration, damping characteristics, as well as transient response of the micro-cantilever probes. Such characterization is necessary in high-resolution AFM measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devaraj, Arun; Vijayakumar, Murugesan; Bao, Jie
The nanoscale compositional mapping of fresh HZSM-5 catalyst synthesized using hydrothermal process as well as after just steaming and after ethanol conversion reaction for 72 hours at realistic catalytic conditions was investigated using atom probe tomography. Atom probe tomography permitted direct atomic scale imaging of non-uniform distribution of Al within the HZSM-5 as well as for the first time image the hydrocarbon coking after ethanol reaction. Clear evidences for existence of multiple C-H molecular species which appear to aggregate as clusters within the pores of spent HZSM-5 catalyst materials is provided. These results provide evidence for the ability of atommore » probe tomography, a powerful 3D characterization tool in interrogating the atomic scale chemistry of zeolite catalyst materials at industrially relevant catalytic conditions.« less
Mechanical gate control for atom-by-atom cluster assembly with scanning probe microscopy.
Sugimoto, Yoshiaki; Yurtsever, Ayhan; Hirayama, Naoki; Abe, Masayuki; Morita, Seizo
2014-07-11
Nanoclusters supported on substrates are of great importance in physics and chemistry as well as in technical applications, such as single-electron transistors and nanocatalysts. The properties of nanoclusters differ significantly from those of either the constituent atoms or the bulk solid, and are highly sensitive to size and chemical composition. Here we propose a novel atom gating technique to assemble various atom clusters composed of a defined number of atoms at room temperature. The present gating operation is based on the transfer of single diffusing atoms among nanospaces governed by gates, which can be opened in response to the chemical interaction force with a scanning probe microscope tip. This method provides an alternative way to create pre-designed atom clusters with different chemical compositions and to evaluate their chemical stabilities, thus enabling investigation into the influence that a single dopant atom incorporated into the host clusters has on a given cluster stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lebedev, Yu. A., E-mail: lebedev@ips.ac.ru; Krashevskaya, G. V., E-mail: krashevskaya-gv@mail.ru; Gogoleva, M. A., E-mail: masha-g@list.ru
2016-01-15
Spatial distributions of charged particle concentration, electron temperature, and DC potential in an electrode microwave discharge in nitrogen at a pressure of 1 Torr have been measured using the double electric probe method. It has been shown that, near the electrode/antenna, the charged particle concentration exceeds a critical value. The concentration and heterogeneity of the discharge increase with increasing microwave power.
Yu, Zhimin; Wei, Xiuhua; Yan, Jilin; Tu, Yifeng
2012-04-21
With TiO(2) nanoparticles as carrier, a supported nano-material of Au atomic cluster/TiO(2) nano-hybrid was synthesized. It was then modified onto the surface of indium tin oxide (ITO) by Nafion to act as a working electrode for exciting the electrochemiluminescence (ECL) of luminol. The properties of the nano-hybrid and the modified electrode were characterized by XRD, XPS, electronic microscopy, electrochemistry and spectroscopy. The experimental results demonstrated that the modification of this nano-hybrid onto the ITO electrode efficiently intensified the ECL of luminol. It was also revealed that the ECL intensity of luminol on this modified electrode showed very sensitive responses to oxygen and hydrogen peroxide. The detection limits for dissolved oxygen and hydrogen peroxide were 2 μg L(-1) and 5.5 × 10(-12) M, respectively. Besides the discussion of the intensifying mechanism of this nano-hybrid for ECL of luminol, the developed method was also applied for monitoring dissolved oxygen and evaluating the scavenging efficiency of reactive oxygen species of the Ganoderma lucidum spore.
Hao, Yuanqiang; Nguyen, Khac Hong; Zhang, Yintang; Zhang, Guan; Fan, Shengnan; Li, Fen; Guo, Chao; Lu, Yuanyuan; Song, Xiaoqing; Qu, Peng; Liu, You-Nian; Xu, Maotian
2018-01-01
A highly selective and ratiometric fluorescent probe for cyanide was rationally designed and synthesized. The probe comprises a fluorophore unit of naphthalimide and a CN - acceptor of methylated trifluoroacetamide group. For these previous reported trifluoroacetamide derivative-based cyanide chemosensors, the H-atom of amide adjacent to trifluoroacetyl group is susceptible to be attacked by various anions (CN - itself, F - , AcO - , et al.) and even the solvent molecule, which resulted in the bewildered reaction mechanism and poor selectivity of the assay. In this work, the susceptible H-atom of trifluoroacetamide was artfully substituted by alkyl group. Thus a highly specific fluorescent probe was developed for cyanide sensing. Upon the nucleophilic addition of cyanide anion to the carbonyl of trifluoroacetamide moiety of the probe, the ICT process of the probe was significantly enhanced and leading to a remarkable red shift in both absorption and emission spectra of the probe. This fluorescent assay showed a linear range of 1.0-80.0µM and a LOD (limit of detection) of 0.23µM. All the investigated interference have no influence on the sensing behavior of the probe toward cyanide. Moreover, by coating on TLC plate, the probe can be utilized for practical detection of trace cyanide in water samples. Copyright © 2017. Published by Elsevier B.V.
Cash, Kevin J; Heeger, Alan J; Plaxco, Kevin W; Xiao, Yi
2009-01-15
We describe in detail a new electrochemical DNA (E-DNA) sensing platform based on target-induced conformation changes in an electrode-bound DNA pseudoknot. The pseudoknot, a DNA structure containing two stem-loops in which the first stem's loop forms part of the second stem, is modified with a methylene blue redox tag at its 3' terminus and covalently attached to a gold electrode via the 5' terminus. In the absence of a target, the structure of the pseudoknot probe minimizes collisions between the redox tag and the electrode, thus reducing faradaic current. Target binding disrupts the pseudoknot structure, liberating a flexible, single-stranded element that can strike the electrode and efficiently transfer electrons. In this article we report further characterization and optimization of this new E-DNA architecture. We find that optimal signaling is obtained at an intermediate probe density ( approximately 1.8 x 10(13) molecules/cm(2) apparent density), which presumably represents a balance between steric and electrostatic blocking at high probe densities and increased background currents arising from transfer from the pseudoknot probe at lower densities. We also find that optimal 3' stem length, which appears to be 7 base pairs, represents a balance between pseudoknot structural stability and target affinity. Finally, a 3' loop comprised of poly(A) exhibits better mismatch discrimination than the equivalent poly(T) loop, but at the cost of decreased gain. Optimization over this parameter space significantly improves the signaling of the pseudoknot-based E-DNA architecture, leading to the ability to sensitively and specifically detect DNA targets even when challenged in complex, multicomponent samples such as blood serum.
Cash, Kevin J.; Heeger, Alan J.; Plaxco, Kevin W.; Xiao, Yi
2010-01-01
We describe in detail a new electrochemical DNA (E-DNA) sensing platform based on target-induced conformation changes in an electrode-bound DNA pseudoknot. The pseudoknot, a DNA structure containing two stem-loops in which the first stem’s loop forms part of the second stem, is modified with a methylene blue redox tag at its 3′ terminus and covalently attached to a gold electrode via the 5′ terminus. In the absence of a target, the structure of the pseudoknot probe minimizes collisions between the redox tag and the electrode, thus reducing faradaic current. Target binding disrupts the pseudoknot structure, liberating a flexible, single-stranded element that can strike the electrode and efficiently transfer electrons. In this article we report further characterization and optimization of this new E-DNA architecture. We find that optimal signaling is obtained at an intermediate probe density (~1.8 × 1013 molecules/cm2 apparent density), which presumably represents a balance between steric and electrostatic blocking at high probe densities and increased background currents arising from transfer from the pseudoknot probe at lower densities. We also find that optimal 3′ stem length, which appears to be 7 base pairs, represents a balance between pseudoknot structural stability and target affinity. Finally, a 3′ loop comprised of poly(A) exhibits better mismatch discrimination than the equivalent poly(T) loop, but at the cost of decreased gain. Optimization over this parameter space significantly improves the signaling of the pseudoknot-based E-DNA architecture, leading to the ability to sensitively and specifically detect DNA targets even when challenged in complex, multicomponent samples such as blood serum. PMID:19093760
Madaan, Nitesh; Bao, Jie; Nandasiri, Manjula I.; ...
2015-08-31
The experimental atom probe tomography results from two different specimen orientations (top-down and side-ways) of a high oxygen ion conducting Samaria-doped-ceria/Scandia-stabilized-zirconia multilayer thin film solid oxide fuel cell electrolyte was correlated with level-set method based field evaporation simulations for the same specimen orientations. This experiment-theory correlation explains the dynamic specimen shape evolution and ion trajectory aberrations that can induce density artifacts in final reconstruction leading to inaccurate estimation of interfacial intermixing. This study highlights the need and importance of correlating experimental results with field evaporation simulations when using atom probe tomography for studying oxide heterostructure interfaces.
Coupling of a nanomechanical oscillator and an atomic three-level medium
NASA Astrophysics Data System (ADS)
Sanz-Mora, A.; Eisfeld, A.; Wüster, S.; Rost, J.-M.
2016-02-01
We theoretically investigate the coupling of an ultracold three-level atomic gas and a nanomechanical mirror via classical electromagnetic radiation. The radiation pressure on the mirror is modulated by absorption of a probe light field, caused by the atoms which are electromagnetically rendered nearly transparent, allowing the gas to affect the mirror. In turn, the mirror can affect the gas as its vibrations generate optomechanical sidebands in the control field. We show that the sidebands cause modulations of the probe intensity at the mirror frequency, which can be enhanced near atomic resonances. Through the radiation pressure from the probe beam onto the mirror, this results in resonant driving of the mirror. Controllable by the two-photon detuning, the phase relation of the driving to the mirror motion decides upon amplification or damping of mirror vibrations. This permits direct phase locking of laser amplitude modulations to the motion of a nanomechanical element opening a perspective for cavity-free cooling through coupling to an atomic gas.
Axnanda, Stephanus; Crumlin, Ethan J.; Mao, Baohua; ...
2015-05-07
We report a new method to probe the solid-liquid interface through the use of a thin liquid layer on a solid surface. An ambient pressure XPS (AP-XPS) endstation that is capable of detecting high kinetic energy photoelectrons (7 keV) at a pressure up to 110 Torr has been constructed and commissioned. Additionally, we have deployed a “dip & pull” method to create a stable nanometers-thick aqueous electrolyte on platinum working electrode surface. Combining the newly constructed AP-XPS system, “dip & pull” approach, with a “tender” X-ray synchrotron source (2 keV–7 keV), we are able to access the interface between liquidmore » and solid dense phases with photoelectrons and directly probe important phenomena occurring at the narrow solid-liquid interface region in an electrochemical system. Using this approach, we have performed electrochemical oxidation of the Pt electrode at an oxygen evolution reaction (OER) potential. Under this potential, we observe the formation of both Pt²⁺ and Pt⁴⁺ interfacial species on the Pt working electrode in situ. We believe this thin-film approach and the use of “tender” AP-XPS highlighted in this study is an innovative new approach to probe this key solid-liquid interface region of electrochemistry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Axnanda, Stephanus; Crumlin, Ethan J.; Mao, Baohua
We report a new method to probe the solid-liquid interface through the use of a thin liquid layer on a solid surface. An ambient pressure XPS (AP-XPS) endstation that is capable of detecting high kinetic energy photoelectrons (7 keV) at a pressure up to 110 Torr has been constructed and commissioned. Additionally, we have deployed a “dip & pull” method to create a stable nanometers-thick aqueous electrolyte on platinum working electrode surface. Combining the newly constructed AP-XPS system, “dip & pull” approach, with a “tender” X-ray synchrotron source (2 keV–7 keV), we are able to access the interface between liquidmore » and solid dense phases with photoelectrons and directly probe important phenomena occurring at the narrow solid-liquid interface region in an electrochemical system. Using this approach, we have performed electrochemical oxidation of the Pt electrode at an oxygen evolution reaction (OER) potential. Under this potential, we observe the formation of both Pt²⁺ and Pt⁴⁺ interfacial species on the Pt working electrode in situ. We believe this thin-film approach and the use of “tender” AP-XPS highlighted in this study is an innovative new approach to probe this key solid-liquid interface region of electrochemistry.« less
Electrochemical atomic force microscopy: In situ monitoring of electrochemical processes
NASA Astrophysics Data System (ADS)
Reggente, Melania; Passeri, Daniele; Rossi, Marco; Tamburri, Emanuela; Terranova, Maria Letizia
2017-08-01
The in-situ electrodeposition of polyaniline (PANI), one of the most attractive conducting polymers (CP), has been monitored performing electrochemical atomic force microscopy (EC-AFM) experiments. The electropolymerization of PANI on a Pt working electrode has been observed performing cyclic voltammetry experiments and controlling the evolution of current flowing through the electrode surface, together with a standard AFM image. The working principle and the potentialities of this emerging technique are briefly reviewed and factors limiting the studying of the in-situ electrosynthesis of organic compounds discussed.
Transparent electrodes for high E-field production using a buried indium tin oxide layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunton, Will; Polovy, Gene; Semczuk, Mariusz
2016-03-15
We present a design and characterization of optically transparent electrodes suitable for atomic and molecular physics experiments where high optical access is required. The electrodes can be operated in air at standard atmospheric pressure and do not suffer electrical breakdown even for electric fields far exceeding the dielectric breakdown of air. This is achieved by putting an indium tin oxide coated dielectric substrate inside a stack of dielectric substrates, which prevents ion avalanche resulting from Townsend discharge. With this design, we observe no arcing for fields of up to 120 kV/cm. Using these plates, we directly verify the production ofmore » electric fields up to 18 kV/cm inside a quartz vacuum cell by a spectroscopic measurement of the dc Stark shift of the 5{sup 2}S{sub 1/2} → 5{sup 2}P{sub 3/2} transition for a cloud of laser cooled rubidium atoms. We also report on the shielding of the electric field and on the residual electric fields that persist within the vacuum cell once the electrodes are discharged. In addition, we discuss observed atom loss that results from the motion of free charges within the vacuum. The observed asymmetry of these phenomena on the bias of the electrodes suggests that field emission of electrons within the vacuum is primarily responsible for these effects and may indicate a way of mitigating them.« less
Crezee, J; van der Koijk, J F; Kaatee, R S; Lagendijk, J J
1997-04-01
The 27 MHz Multi Electrode Current Source (MECS) interstitial hyperthermia system uses segmented electrodes, 10-20 mm long, to steer the 3D power deposition. This power control at a scale of 1-2 cm requires detailed and accurate temperature feedback data. To this end seven-point thermocouples are integrated into the probes. The aim of this work was to evaluate the feasibility and reliability of integrated thermometry in the 27 MHz MECS system, with special attention to the interference between electrode and thermometry and its effect on system performance. We investigated the impact of a seven-sensor thermocouple probe (outer diameter 150 microns) on the apparent impedance and power output of a 20 mm dual electrode (O.D. 1.5 mm) in a polyethylene catheter in a muscle equivalent medium (sigma 1 = 0.6 S m-1). The cross coupling between electrode and thermocouple was found to be small (1-2 pF) and to cause no problems in the dual-electrode mode, and only minimal problems in the single-electrode mode. Power loss into the thermometry system can be prevented using simple filters. The temperature readings are reliable and representative of the actual tissue temperature around the electrode. Self-heating effects, occurring in some catheter materials, are eliminated by sampling the temperature after a short power-off interval. We conclude that integrated thermocouple thermometry is compatible with 27 MHz capacitively coupled interstitial hyperthermia. The performance of the system is not affected and the temperatures measured are a reliable indication of the maximum tissue temperatures.
NASA Astrophysics Data System (ADS)
Meng, Xiangbo
2015-01-01
Targeted at fueling future transportation and sustaining smart grids, lithium-ion batteries (LIBs) are undergoing intensive investigation for improved durability and energy density. Atomic layer deposition (ALD), enabling uniform and conformal nanofilms, has recently made possible many new advances for superior LIBs. The progress was summarized by Liu and Sun in their latest review [1], offering many insightful views, covering the design of nanostructured battery components (i.e., electrodes and solid electrolytes), and nanoscale modification of electrode/electrolyte interfaces. This work well informs peers of interesting research conducted and it will also further help boost the applications of ALD in next-generation LIBs and other advanced battery technologies.
Quantum state atomic force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Passian, Ali; Siopsis, George
New classical modalities of atomic force microscopy continue to emerge to achieve higher spatial, spectral, and temporal resolution for nanometrology of materials. Here, we introduce the concept of a quantum mechanical modality that capitalizes on squeezed states of probe displacement. We show that such squeezing is enabled nanomechanically when the probe enters the van der Waals regime of interaction with a sample. The effect is studied in the non-contact mode, where we consider the parameter domains characterizing the attractive regime of the probe-sample interaction force.
Quantum state atomic force microscopy
Passian, Ali; Siopsis, George
2017-04-10
New classical modalities of atomic force microscopy continue to emerge to achieve higher spatial, spectral, and temporal resolution for nanometrology of materials. Here, we introduce the concept of a quantum mechanical modality that capitalizes on squeezed states of probe displacement. We show that such squeezing is enabled nanomechanically when the probe enters the van der Waals regime of interaction with a sample. The effect is studied in the non-contact mode, where we consider the parameter domains characterizing the attractive regime of the probe-sample interaction force.
Molecular Dynamic Simulations of Interaction of an AFM Probe with the Surface of an SCN Sample
NASA Technical Reports Server (NTRS)
Bune, Adris; Kaukler, William; Rose, M. Franklin (Technical Monitor)
2001-01-01
Molecular dynamic (MD) simulations is conducted in order to estimate forces of probe-substrate interaction in the Atomic Force Microscope (AFM). First a review of available molecular dynamic techniques is given. Implementation of MD simulation is based on an object-oriented code developed at the University of Delft. Modeling of the sample material - succinonitrile (SCN) - is based on the Lennard-Jones potentials. For the polystyrene probe an atomic interaction potential is used. Due to object-oriented structure of the code modification of an atomic interaction potential is straight forward. Calculation of melting temperature is used for validation of the code and of the interaction potentials. Various fitting parameters of the probe-substrate interaction potentials are considered, as potentials fitted to certain properties and temperature ranges may not be reliable for the others. This research provides theoretical foundation for an interpretation of actual measurements of an interaction forces using AFM.
Atomic Physics Effects on Convergent, Child-Langmuir Ion Flow between Nearly Transparent Electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santarius, John F.; Emmert, Gilbert A.
Research during this project at the University of Wisconsin Fusion Technology Institute (UW FTI) on ion and neutral flow through an arbitrary, monotonic potential difference created by nearly transparent electrodes accomplished the following: (1) developed and implemented an integral equation approach for atomic physics effects in helium plasmas; (2) extended the analysis to coupled integral equations that treat atomic and molecular deuterium ions and neutrals; (3) implemented the key deuterium and helium atomic and molecular cross sections; (4) added negative ion production and related cross sections; and (5) benchmarked the code against experimental results. The analysis and codes treat themore » species D0, D20, D+, D2+, D3+, D and, separately at present, He0 and He+. Extensions enhanced the analysis and related computer codes to include He++ ions plus planar and cylindrical geometries.« less
Katz, Michael J; Vermeer, Michael J D; Farha, Omar K; Pellin, Michael J; Hupp, Joseph T
2013-01-15
Both the adsorption of t-butylpyridine and the atomic-layer deposition of ultrathin conformal coatings of insulators (such as alumina) are known to boost open-circuit photovoltages substantially for dye-sensitized solar cells. One attractive interpretation is that these modifiers significantly shift the conduction-edge energy of the electrode, thereby shifting the onset potential for dark current arising from the interception of injected electrons by solution-phase redox shuttle components such as Co(phenanthroline)(3)(3+) and triiodide. For standard, high-area, nanoporous photoelectrodes, band-edge energies are difficult to measure directly. In contrast, for flat electrodes they are readily accessible from Mott-Schottky analyses of impedance data. Using such electrodes (specifically TiO(2)), we find that neither organic nor inorganic electrode-surface modifiers shift the conduction-band-edge energy sufficiently to account fully for the beneficial effects on electrode behavior (i.e., the suppression of dark current). Additional experiments reveal that the efficacy of ultrathin coatings of Al(2)O(3) arises chiefly from the passivation of redox-catalytic surface states. In contrast, adsorbed t-butylpyridine appears to suppress dark currents mainly by physically blocking access of shuttle molecules to the electrode surface. Studies with other derivatives of pyridine, including sterically and/or electronically diverse derivatives, show that heterocycle adsorption and the concomitant suppression of dark current does not require the coordination of surface Ti(IV) or Al(III) atoms. Notably, the favorable (i.e., negative) shifts in onset potential for the flow of dark current engendered by organic and inorganic surface modifiers are additive. Furthermore, they appear to be largely insensitive to the identity of shuttle molecules.
NASA Astrophysics Data System (ADS)
Jayaraman, Shrisudersan; Baeck, Sung-Hyeon; Jaramillo, Thomas F.; Kleiman-Shwarsctein, Alan; McFarland, Eric W.
2005-06-01
An automated system for high-throughput electrochemical synthesis and screening of fuel cell electro-oxidation catalysts is described. This system consists of an electrode probe that contains counter and reference electrodes that can be positioned inside an array of electrochemical cells created within a polypropylene block. The electrode probe is attached to an automated of X-Y-Z motion system. An externally controlled potentiostat is used to apply the electrochemical potential to the catalyst substrate. The motion and electrochemical control are integrated using a user-friendly software interface. During automated synthesis the deposition potential and/or current may be controlled by a pulse program triggered by the software using a data acquisition board. The screening includes automated experiments to obtain cyclic voltammograms. As an example, a platinum-tungsten oxide (Pt-WO3) library was synthesized and characterized for reactivity towards methanol electro-oxidation.
Collective Behavior of Water on Platinum
NASA Astrophysics Data System (ADS)
Limmer, David; Willard, Adam; Chandler, David
2012-02-01
We present the results of molecular dynamics simulations of a interface between water and a platinum electrode. Using importance sampling techniques we probe a variety of collective phenomenon that emerge at the interface. We consider platinum electrodes with two different geometries and discuss how different behaviors result from a competition between geometrical frustration and favorable local interactions.
NASA Technical Reports Server (NTRS)
Webster, C. R. (Inventor)
1986-01-01
A method and apparatus for an optogalvanic spectroscopy system are disclosed. Orthogonal geometry exists between the axis of a laser probe beam and the axis of a discharge created by a pair of spaced apart and longituduinally aligned high voltage electrodes. The electrodes are movable to permit adjustment of the location of a point in the discharge which is to irradiated by a laser beam crossing the discharge region. The cell dimensions are selected so that the cross section of the discharge region is substantly comparable in size to the cross section of the laser beam passing orthogonally through the discharge region.
Carbon granule probe microphone for leak detection. [recovery boilers
NASA Technical Reports Server (NTRS)
Parthasarathy, S. P. (Inventor)
1985-01-01
A microphone which is not subject to corrosion is provided by employing carbon granules to sense sound waves. The granules are packed into a ceramic tube and no diaphragm is used. A pair of electrodes is located in the tube adjacent the carbon granules and are coupled to a sensing circuit. Sound waves cause pressure changes on the carbon granules which results in a change in resistance in the electrical path between the electrodes. This change in resistance is detected by the sensing circuit. The microphone is suitable for use as a leak detection probe in recovery boilers, where it provides reliable operation without corrosion problems associated with conventional microphones.
Periodically modulated dark states
NASA Astrophysics Data System (ADS)
Han, Yingying; Zhang, Jun; Zhang, Wenxian
2018-04-01
Phenomena of electromagnetically induced transparency (PEIT) may be interpreted by the Autler-Townes Splitting (ATS), where the coupled states are split by the coupling laser field, or by the quantum destructive interference (QDI), where the atomic phases caused by the coupling laser and the probe laser field cancel. We propose modulated experiments to explore the PEIT in an alternative way by periodically modulating the coupling and the probe fields in a Λ-type three-level system initially in a dark state. Our analytical and numerical results rule out the ATS interpretation and show that the QDI interpretation is more appropriate for the modulated experiments. Interestingly, dark state persists in the double-modulation situation where control and probe fields never occur simultaneously, which is significant difference from the traditional dark state condition. The proposed experiments are readily implemented in atomic gases, artificial atoms in superconducting quantum devices, or three-level meta-atoms in meta-materials.
Characteristics for electrochemical machining with nanoscale voltage pulses.
Lee, E S; Back, S Y; Lee, J T
2009-06-01
Electrochemical machining has traditionally been used in highly specialized fields, such as those of the aerospace and defense industries. It is now increasingly being applied in other industries, where parts with difficult-to-cut material, complex geometry and tribology, and devices of nanoscale and microscale are required. Electric characteristic plays a principal function role in and chemical characteristic plays an assistant function role in electrochemical machining. Therefore, essential parameters in electrochemical machining can be described current density, machining time, inter-electrode gap size, electrolyte, electrode shape etc. Electrochemical machining provides an economical and effective method for machining high strength, high tension and heat-resistant materials into complex shapes such as turbine blades of titanium and aluminum alloys. The application of nanoscale voltage pulses between a tool electrode and a workpiece in an electrochemical environment allows the three-dimensional machining of conducting materials with sub-micrometer precision. In this study, micro probe are developed by electrochemical etching and micro holes are manufactured using these micro probe as tool electrodes. Micro holes and microgroove can be accurately achieved by using nanoscale voltages pulses.
NASA Astrophysics Data System (ADS)
Kim, Duckhoe; Sahin, Ozgur
2015-03-01
Scanning probe microscopes can be used to image and chemically characterize surfaces down to the atomic scale. However, the localized tip-sample interactions in scanning probe microscopes limit high-resolution images to the topmost atomic layer of surfaces, and characterizing the inner structures of materials and biomolecules is a challenge for such instruments. Here, we show that an atomic force microscope can be used to image and three-dimensionally reconstruct chemical groups inside a protein complex. We use short single-stranded DNAs as imaging labels that are linked to target regions inside a protein complex, and T-shaped atomic force microscope cantilevers functionalized with complementary probe DNAs allow the labels to be located with sequence specificity and subnanometre resolution. After measuring pairwise distances between labels, we reconstruct the three-dimensional structure formed by the target chemical groups within the protein complex using simple geometric calculations. Experiments with the biotin-streptavidin complex show that the predicted three-dimensional loci of the carboxylic acid groups of biotins are within 2 Å of their respective loci in the corresponding crystal structure, suggesting that scanning probe microscopes could complement existing structural biological techniques in solving structures that are difficult to study due to their size and complexity.
Luong, John H T; Male, Keith B; Glennon, Jeremy D
2009-10-01
In recent years, conductive diamond electrodes for electrochemical applications have been a major focus of research and development. The impetus behind such endeavors could be attributed to their wide potential window, low background current, chemical inertness, and mechanical durability. Several analytes can be oxidized by conducting diamond compared to other carbon-based materials before the breakdown of water in aqueous electrolytes. This is important for detecting and/or identifying species in solution since oxygen and hydrogen evolution do not interfere with the analysis. Thus, conductive diamond electrodes take electrochemical detection into new areas and extend their usefulness to analytes which are not feasible with conventional electrode materials. Different types of diamond electrodes, polycrystalline, microcrystalline, nanocrystalline and ultrananocrystalline, have been synthesized and characterized. Of particular interest is the synthesis of boron-doped diamond (BDD) films by chemical vapor deposition on various substrates. In the tetrahedral diamond lattice, each carbon atom is covalently bonded to its neighbors forming an extremely robust crystalline structure. Some carbon atoms in the lattice are substituted with boron to provide electrical conductivity. Modification strategies of doped diamond electrodes with metallic nanoparticles and/or electropolymerized films are of importance to impart novel characteristics or to improve the performance of diamond electrodes. Biofunctionalization of diamond films is also feasible to foster several useful bioanalytical applications. A plethora of opportunities for nanoscale analytical devices based on conducting diamond is anticipated in the very near future.
Yun, Jungheum; Wang, Wei; Bae, Tae Sung; Park, Yeon Hyun; Kang, Yong-Cheol; Kim, Dong-Ho; Lee, Sunghun; Lee, Gun-Hwan; Song, Myungkwan; Kang, Jae-Wook
2013-10-23
We report that significantly more transparent yet comparably conductive AgOx films, when compared to Ag films, are synthesized by the inclusion of a remarkably small amount of oxygen (i.e., 2 or 3 atom %) in thin Ag films. An 8 nm thick AgOx (O/Ag=2.4 atom %) film embedded between 30 nm thick ITO films (ITO/AgOx/ITO) achieves a transmittance improvement of 30% when compared to a conventional ITO/Ag/ITO electrode with the same configuration by retaining the sheet resistance in the range of 10-20 Ω sq(-1). The high transmittance provides an excellent opportunity to improve the power-conversion efficiency of organic solar cells (OSCs) by successfully matching the transmittance spectral range of the electrode to the optimal absorption region of low band gap photoactive polymers, which is highly limited in OSCs utilizing conventional ITO/Ag/ITO electrodes. An improvement of the power-conversion efficiency from 4.72 to 5.88% is achieved from highly flexible organic solar cells (OSCs) fabricated on poly(ethylene terephthalate) polymer substrates by replacing the conventional ITO/Ag/ITO electrode with the ITO/AgOx/ITO electrode. This novel transparent electrode can facilitate a cost-effective, high-throughput, room-temperature fabrication solution for producing large-area flexible OSCs on heat-sensitive polymer substrates with excellent power-conversion efficiencies.
Carlyon, Robert P; Deeks, John M; Undurraga, Jaime; Macherey, Olivier; van Wieringen, Astrid
2017-10-01
Three experiments studied the extent to which cochlear implant users' spatial selectivity can be manipulated using asymmetric waveforms and tested an efficient method for comparing spatial selectivity produced by different stimuli. Experiment 1 measured forward-masked psychophysical tuning curves (PTCs) for a partial tripolar (pTP) probe. Maskers were presented on bipolar pairs separated by one unused electrode; waveforms were either symmetric biphasic ("SYM") or pseudomonophasic with the short high-amplitude phase being either anodic ("PSA") or cathodic ("PSC") on the more apical electrode. For the SYM masker, several subjects showed PTCs consistent with a bimodal excitation pattern, with discrete excitation peaks on each electrode of the bipolar masker pair. Most subjects showed significant differences between the PSA and PSC maskers consistent with greater masking by the electrode where the high-amplitude phase was anodic, but the pattern differed markedly across subjects. Experiment 2 measured masked excitation patterns for a pTP probe and either a monopolar symmetric biphasic masker ("MP_SYM") or pTP pseudomonophasic maskers where the short high-amplitude phase was either anodic ("TP_PSA") or cathodic ("TP_PSC") on the masker's central electrode. Four of the five subjects showed significant differences between the masker types, but again the pattern varied markedly across subjects. Because the levels of the maskers were chosen to produce the same masking of a probe on the same channel as the masker, it was correctly predicted that maskers that produce broader masking patterns would sound louder. Experiment 3 exploited this finding by using a single-point measure of spread of excitation to reveal significantly better spatial selectivity for TP_PSA compared to TP_PSC maskers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhukov, Mikhail, E-mail: cloudjyk@yandex.ru; Golubok, Alexander; Institute for Analytical Instrumentation, Russian Academy of Sciences
The new specialized AFM-probes with hydroxyapatite structures for atomic force microscopy of heart tissues calcification were created and studied. A process of probe fabrication is demonstrated. The adhesive forces between specialized hydroxyapatite probe and endothelium/subendothelial layers were investigated. It was found that the adhesion forces are significantly higher for the subendothelial layers. We consider that it is connected with the formation and localization of hydroxyapatite in the area of subendothelial layers of heart tissues. In addition, the roughness analysis and structure visualization of the endothelial surface of the heart tissue were carried out. The results show high efficiency of createdmore » specialized probes at study a calcinations process of the aortic heart tissues.« less
Dynamics of fractional condensation of a substance on a probe for spectral analysis
NASA Astrophysics Data System (ADS)
Zakharov, Yu. A.; Kokorina, O. B.; Lysogorskiĭ, Yu. V.; Sevastianov, A. A.
2008-11-01
The fractional separation of trace metals on a cold tungsten probe from salt matrix vapor, which interferes with the spectral analysis, is studied. The spatial structure of the vapor flows of sodium chloride, potassium sulfate, and indium atoms is visualized at characteristic wavelengths as they interact with the probe. The vapor flow rate and the probe orientation were varied. It is found that the smoke of the matrix does not prevent the deposition of the metal on the probe because of spatial separation of these fractions and that the detrimental effect of thermal gas expansion and other factors is eliminated. The sensitivity of the atomic absorption analysis of indium impurities in these salts is increased by an order of magnitude.
NASA Astrophysics Data System (ADS)
Satija, Aman; Lucht, Robert P.
2015-06-01
Atomic hydrogen (H) is a key radical in combustion and plasmas. Accurate knowledge of its concentration can be used to better understand transient phenomenon such as ignition and extinction in combustion environments. Laser induced polarization spectroscopy is a spatially resolved absorption technique which we have adapted for quantitative measurements of H atom. This adaptation is called two-photon pump, polarization spectroscopy probe technique (TPP-PSP) and it has been implemented using two different laser excitation schemes. The first scheme involves the two-photon excitation of 1S-2S transitions using a linearly polarized 243-nm beam. An anisotropy is created amongst Zeeman states in 2S-3P levels using a circularly polarized 656-nm pump beam. This anisotropy rotates the polarization of a weak, linearly polarized probe beam at 656 nm. As a result, the weak probe beam "leaks" past an analyzer in the detection channel and is measured using a PMT. This signal can be related to H atom density in the probe volume. The laser beams were created by optical parametric generation followed by multiple pulse dye amplification stages. This resulted in narrow linewidth beams which could be scanned in frequency domain and varied in energy. This allowed us to systematically investigate saturation and Stark effect in 2S-3P transitions with the goal of developing a quantitative H atom measurement technique. The second scheme involves the two-photon excitation of 1S-2S transitions using a linearly polarized 243-nm beam. An anisotropy is created amongst Zeeman states in 2S-4P transitions using a circularly polarized 486-nm pump beam. This anisotropy rotates the polarization of a weak, linearly polarized probe beam at 486 nm. As a result the weak probe beam "leaks" past an analyzer in the detection channel and is measured using a PMT. This signal can be related to H atom density in the probe volume. A dye laser was pumped by third harmonic of a Nd:YAG laser to create a laser beam at 486 nm. The 486-nm beam was frequency doubled to a 243-nm beam. Use of the second scheme simplifies the TPP-PSP technique making it more convenient for diagnostics in practical systems.
Monolayer Contact Doping of Silicon Surfaces and Nanowires Using Organophosphorus Compounds
Hazut, Ori; Agarwala, Arunava; Subramani, Thangavel; Waichman, Sharon; Yerushalmi, Roie
2013-01-01
Monolayer Contact Doping (MLCD) is a simple method for doping of surfaces and nanostructures1. MLCD results in the formation of highly controlled, ultra shallow and sharp doping profiles at the nanometer scale. In MLCD process the dopant source is a monolayer containing dopant atoms. In this article a detailed procedure for surface doping of silicon substrate as well as silicon nanowires is demonstrated. Phosphorus dopant source was formed using tetraethyl methylenediphosphonate monolayer on a silicon substrate. This monolayer containing substrate was brought to contact with a pristine intrinsic silicon target substrate and annealed while in contact. Sheet resistance of the target substrate was measured using 4 point probe. Intrinsic silicon nanowires were synthesized by chemical vapor deposition (CVD) process using a vapor-liquid-solid (VLS) mechanism; gold nanoparticles were used as catalyst for nanowire growth. The nanowires were suspended in ethanol by mild sonication. This suspension was used to dropcast the nanowires on silicon substrate with a silicon nitride dielectric top layer. These nanowires were doped with phosphorus in similar manner as used for the intrinsic silicon wafer. Standard photolithography process was used to fabricate metal electrodes for the formation of nanowire based field effect transistor (NW-FET). The electrical properties of a representative nanowire device were measured by a semiconductor device analyzer and a probe station. PMID:24326774
Zeitler, Elizabeth L.; Ertem, Mehmed Z.; Pander, III, James E.; ...
2015-10-21
A recently proposed mechanism for electrochemical CO 2 reduction on Pt (111) catalyzed by aqueous acidic pyridine solutions suggests that the observed redox potential of ca. -600 mV vs. SCE is due to the one-electron reduction of pyridinium through proton coupled electron transfer (PCET) to form H atoms adsorbed on the Pt surface (H ads). The initial pyridinium reduction was probed isotopically via deuterium substitution. A combined experimental and theoretical analysis found equilibrium isotope effects (EIE) due to deuterium substitution at the acidic pyridinium site. A shift in the cathodic cyclic voltammetric half wave potential of -25 mV was observed,more » consistent with the theoretical prediction of -40 mV based on the recently proposed reaction mechanism where pyridinium is essential to establish a high concentration of Bronsted acid in contact with the substrate CO 2 and with the Pt surface. A prefeature in the cyclic voltammogram was examined under isotopic substitution and indicated an H-ads intermediate in pyridinium reduction. In conclusion, the theoretical prediction and observation of an BM supported the assignment of the cathodic wave to the proposed reduction of pyridinium through PCET forming H ads and eventually H 2 on the Pt surface.« less
NASA Astrophysics Data System (ADS)
Ditscherlein, L.; Peuker, U. A.
2017-04-01
For the application of colloidal probe atomic force microscopy at high temperatures (>500 K), stable colloidal probe cantilevers are essential. In this study, two new methods for gluing alumina particles onto temperature stable cantilevers are presented and compared with an existing method for borosilicate particles at elevated temperatures as well as with cp-cantilevers prepared with epoxy resin at room temperature. The durability of the fixing of the particle is quantified with a test method applying high shear forces. The force is calculated with a mechanical model considering both the bending as well as the torsion on the colloidal probe.
Dicke superradiance as nondestructive probe for the state of atoms in optical lattices
NASA Astrophysics Data System (ADS)
ten Brinke, Nicolai; Schützhold, Ralf
2016-04-01
We present a proposal for a probing scheme utilizing Dicke superradiance to obtain information about ultracold atoms in optical lattices. A probe photon is absorbed collectively by an ensemble of lattice atoms generating a Dicke state. The lattice dynamics (e.g., tunneling) affects the coherence properties of that Dicke state and thus alters the superradiant emission characteristics - which in turn provides insight into the lattice (dynamics). Comparing the Bose-Hubbard and the Fermi-Hubbard model, we find similar superradiance in the strongly interacting Mott insulator regime, but crucial differences in the weakly interacting (superfluid or metallic) phase. Furthermore, we study the possibility to detect whether a quantum phase transition between the two regimes can be considered adiabatic or a quantum quench.
Rusz, Jan; Idrobo, Juan -Carlos; Bhowmick, Somnath
2014-09-30
The calculations presented here reveal that an electron probe carrying orbital angular momentum is just a particular case of a wider class of electron beams that can be used to measure electron magnetic circular dichroism (EMCD) with atomic resolution. It is possible to obtain an EMCD signal with atomic resolution by simply breaking the symmetry of the electron probe phase front using the aberration-corrected optics of a scanning transmission electron microscope. The probe’s required phase distribution depends on the sample’s magnetic symmetry and crystal structure. The calculations indicate that EMCD signals that use the electron probe’s phase are as strongmore » as those obtained by nanodiffraction methods.« less
Improved analysis techniques for cylindrical and spherical double probes.
Beal, Brian; Johnson, Lee; Brown, Daniel; Blakely, Joseph; Bromaghim, Daron
2012-07-01
A versatile double Langmuir probe technique has been developed by incorporating analytical fits to Laframboise's numerical results for ion current collection by biased electrodes of various sizes relative to the local electron Debye length. Application of these fits to the double probe circuit has produced a set of coupled equations that express the potential of each electrode relative to the plasma potential as well as the resulting probe current as a function of applied probe voltage. These equations can be readily solved via standard numerical techniques in order to determine electron temperature and plasma density from probe current and voltage measurements. Because this method self-consistently accounts for the effects of sheath expansion, it can be readily applied to plasmas with a wide range of densities and low ion temperature (T(i)/T(e) ≪ 1) without requiring probe dimensions to be asymptotically large or small with respect to the electron Debye length. The presented approach has been successfully applied to experimental measurements obtained in the plume of a low-power Hall thruster, which produced a quasineutral, flowing xenon plasma during operation at 200 W on xenon. The measured plasma densities and electron temperatures were in the range of 1 × 10(12)-1 × 10(17) m(-3) and 0.5-5.0 eV, respectively. The estimated measurement uncertainty is +6%∕-34% in density and +∕-30% in electron temperature.
Sensing mode atomic force microscope
Hough, Paul V. C.; Wang, Chengpu
2006-08-22
An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.
Sensing mode atomic force microscope
Hough, Paul V.; Wang, Chengpu
2004-11-16
An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.
NASA Astrophysics Data System (ADS)
Aguiló-Aguayo, Noemí; Bechtold, Thomas
2014-05-01
New electrode designs are required for electrochemical applications such as batteries or fuel cells. Embroidered 3D Cu porous electrodes with a geometric surface of 100 cm2 are presented and characterised by means of the anthraquinone-1,5-disfulfonic acid (AQDS2-) redox system in alkaline solution. The electrochemical behaviour of the 3D electrode is established by the comparison of cyclic voltammetry responses using a micro cell and a 100 cm2 plane Cu-plate electrode. Dependencies of the peak currents and peak-to-peak potential separation on scan rate and AQDS2- concentration are studied. The AQDS2- characterisation is also performed by means of spectroelectrochemical experiments.
Mesoscale elucidation of laser-assisted chemical deposition of Sn nanostructured electrodes
NASA Astrophysics Data System (ADS)
Liu, Zhixiao; Deng, Biwei; Cheng, Gary J.; Deng, Huiqiu; Mukherjee, Partha P.
2015-06-01
Nanostructured tin (Sn) is a promising high-capacity electrode for improved performance in lithium-ion batteries for electric vehicles. In this work, Sn nanoisland growth for nanostructured electrodes assisted by the pulse laser irradiation has been investigated based on a mesoscale modeling formalism. The influence of pertinent processing conditions, such as pulse duration, heating/cooling rates, and atom flux, on the Sn nanostructure formation is specifically considered. The interaction between the adsorbed atom and the substrate, represented by the adatom diffusion barrier, is carefully studied. It is found that the diffusion barrier predominantly affects the distribution of Sn atoms. For both α-Sn and β-Sn, the averaged coordination number is larger than 3 when the diffusion barrier equals to 0.15 eV. The averaged coordination number decreases as the diffusion barrier increases. The substrate temperature, which is determined by heating/cooling rates and pulse duration, can also affect the formation of Sn nanoislands. For α-Sn, when applied low heating/cooling rates, nanoislands cannot form if the diffusion barrier is larger than 0.35 eV.
Highly sensitive DNA sensors based on cerium oxide nanorods
NASA Astrophysics Data System (ADS)
Nguyet, Nguyen Thi; Hai Yen, Le Thi; Van Thu, Vu; lan, Hoang; Trung, Tran; Vuong, Pham Hung; Tam, Phuong Dinh
2018-04-01
In this work, a CeO2 nanorod (NR)-based electrochemical DNA sensor was developed to identify Salmonella that causes food-borne infections. CeO2 NRs were synthesized without templates via a simple and unexpensive hydrothermal approach at 170 °C for 12 h by using CeO(NO3)3·6H2O as a Ce source. The DNA probe was immobilized onto the CeO2 NR-modified electrode through covalent attachment. The characteristics of the hybridized DNA were analyzed through electrochemical impedance spectroscopy (EIS) with [Fe(CN)6]3-/4- as a redox probe. Experimental results showed that electron transfer resistance (Ret) increased after the DNA probe was attached to the electrode surface and increased further after the DNA probe hybridized with its complementary sequence. A linear response of Ret to the target DNA concentration was found from 0.01 μM to 2 μM. The detection limit and sensitivity of the DNA sensor were 0.01 μM and 3362.1 Ω μM-1 cm-2, respectively. Various parameters, such as pH value, ionic strength, DNA probe concentration, and hybridization time, influencing DNA sensor responses were also investigated.
Electron temperature and density probe for small aeronomy satellites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oyama, K.-I.; Institute of Space and Plasma Sciences, National Cheng Kung University, Tainan, Taiwan; International Center for Space Weather Study and education, Kyushu University, Fukuoka
2015-08-15
A compact and low power consumption instrument for measuring the electron density and temperature in the ionosphere has been developed by modifying the previously developed Electron Temperature Probe (ETP). A circuit block which controls frequency of the sinusoidal signal is added to the ETP so that the instrument can measure both T{sub e} in low frequency mode and N{sub e} in high frequency mode from the floating potential shift of the electrode. The floating potential shift shows a minimum at the upper hybrid resonance frequency (f{sub UHR}). The instrument which is named “TeNeP” can be used for tiny satellites whichmore » do not have enough conductive surface area for conventional DC Langmuir probe measurements. The instrument also eliminates the serious problems associated with the contamination of satellite surface as well as the sensor electrode.« less
Hernández-Saz, J; Herrera, M; Delgado, F J; Duguay, S; Philippe, T; Gonzalez, M; Abell, J; Walters, R J; Molina, S I
2016-07-29
The analysis by atom probe tomography (APT) of InAlAsSb layers with applications in triple junction solar cells (TJSCs) has shown the existence of In- and Sb-rich regions in the material. The composition variation found is not evident from the direct observation of the 3D atomic distribution and because of this a statistical analysis has been required. From previous analysis of these samples, it is shown that the small compositional fluctuations determined have a strong effect on the optical properties of the material and ultimately on the performance of TJSCs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Xiaodong; Jau, Yuan-Yu; Deutsch, Ivan H.
We study the enhancement of cooperativity in the atom-light interface near a nanophotonic waveguide for application to QND measurement of atomic spins. Here the cooperativity per atom is determined by the ratio between the measurement strength and the decoherence rate. Counterintuitively, we find that by placing the atoms at an azimuthal position where the guided probe mode has the lowest intensity, we increase the cooperativity. This arises because the QND measurement strength depends on the interference between the probe and scattered light guided into an orthogonal polarization mode, while the decoherence rate depends on the local intensity of the probe.more » Thus, by proper choice of geometry, the ratio of good to bad scattering can be strongly enhanced for highly anisotropic modes. We apply this to study spin squeezing resulting from QND measurement of spin projection noise via the Faraday effect in two nanophotonic geometries, a cylindrical nano fiber and a square waveguide. We nd, with about 2500 atoms using realistic experimental parameters, ~ 6:3 dB and ~ 13 dB of squeezing can be achieved on the nano fiber and square waveguide, respectively.« less
Qi, Xiaodong; Jau, Yuan-Yu; Deutsch, Ivan H.
2018-03-16
We study the enhancement of cooperativity in the atom-light interface near a nanophotonic waveguide for application to QND measurement of atomic spins. Here the cooperativity per atom is determined by the ratio between the measurement strength and the decoherence rate. Counterintuitively, we find that by placing the atoms at an azimuthal position where the guided probe mode has the lowest intensity, we increase the cooperativity. This arises because the QND measurement strength depends on the interference between the probe and scattered light guided into an orthogonal polarization mode, while the decoherence rate depends on the local intensity of the probe.more » Thus, by proper choice of geometry, the ratio of good to bad scattering can be strongly enhanced for highly anisotropic modes. We apply this to study spin squeezing resulting from QND measurement of spin projection noise via the Faraday effect in two nanophotonic geometries, a cylindrical nano fiber and a square waveguide. We nd, with about 2500 atoms using realistic experimental parameters, ~ 6:3 dB and ~ 13 dB of squeezing can be achieved on the nano fiber and square waveguide, respectively.« less
Photon Shot Noise Limited Radio Frequency Electric Field Sensing Using Rydberg Atoms in Vapor Cells
NASA Astrophysics Data System (ADS)
Kumar, Santosh; Jahangiri, Akbar J.; Fan, Haoquan; Kuebler, Harald; Shaffer, James P.
2017-04-01
We report Rydberg atom-based radio frequency (RF) electrometry measurements at a sensitivity limited by probe laser photon shot noise. By utilizing the phenomena of electromagnetically induced transparency (EIT) in room temperature atomic vapor cells, Rydberg atoms can be used for absolute electric field measurements that significantly surpass conventional methods in utility, sensitivity and accuracy. We show that by using a Mach-Zehnder interferometer with homodyne detection or using frequency modulation spectroscopy with active control of residual amplitude modulation we can achieve a RF electric field detection sensitivity of 3 μVcm-1Hz/2. The sensitivity is limited by photon shot noise on the detector used to readout the probe laser of the EIT scheme. We suggest a new multi-photon scheme that can mitigate the effect of photon shot noise. The multi-photon approach allows an increase in probe laser power without decreasing atomic coherence times that result from collisions caused by an increase in Rydberg atom excitation. The multi-photon scheme also reduces Residual Doppler broadening enabling more accurate measurements to be carried out. This work is supported by DARPA, and NRO.
Atomic scale chemical tomography of human bone
NASA Astrophysics Data System (ADS)
Langelier, Brian; Wang, Xiaoyue; Grandfield, Kathryn
2017-01-01
Human bone is a complex hierarchical material. Understanding bone structure and its corresponding composition at the nanometer scale is critical for elucidating mechanisms of biomineralization under healthy and pathological states. However, the three-dimensional structure and chemical nature of bone remains largely unexplored at the nanometer scale due to the challenges associated with characterizing both the structural and chemical integrity of bone simultaneously. Here, we use correlative transmission electron microscopy and atom probe tomography for the first time, to our knowledge, to reveal structures in human bone at the atomic level. This approach provides an overlaying chemical map of the organic and inorganic constituents of bone on its structure. This first use of atom probe tomography on human bone reveals local gradients, trace element detection of Mg, and the co-localization of Na with the inorganic-organic interface of bone mineral and collagen fibrils, suggesting the important role of Na-rich organics in the structural connection between mineral and collagen. Our findings provide the first insights into the hierarchical organization and chemical heterogeneity in human bone in three-dimensions at its smallest length scale - the atomic level. We demonstrate that atom probe tomography shows potential for new insights in biomineralization research on bone.
NASA Astrophysics Data System (ADS)
Qi, Xiaodong; Jau, Yuan-Yu; Deutsch, Ivan H.
2018-03-01
We study the enhancement of cooperativity in the atom-light interface near a nanophotonic waveguide for application to quantum nondemolition (QND) measurement of atomic spins. Here the cooperativity per atom is determined by the ratio between the measurement strength and the decoherence rate. Counterintuitively, we find that by placing the atoms at an azimuthal position where the guided probe mode has the lowest intensity, we increase the cooperativity. This arises because the QND measurement strength depends on the interference between the probe and scattered light guided into an orthogonal polarization mode, while the decoherence rate depends on the local intensity of the probe. Thus, by proper choice of geometry, the ratio of good-to-bad scattering can be strongly enhanced for highly anisotropic modes. We apply this to study spin squeezing resulting from QND measurement of spin projection noise via the Faraday effect in two nanophotonic geometries, a cylindrical nanofiber and a square waveguide. We find that, with about 2500 atoms and using realistic experimental parameters, ˜6.3 and ˜13 dB of squeezing can be achieved on the nanofiber and square waveguide, respectively.
Micromachined Silicon Stimulating Probes with CMOS Circuitry for Use in the Central Nervous System
NASA Astrophysics Data System (ADS)
Tanghe, Steven John
1992-01-01
Electrical stimulation in the central nervous system is a valuable technique for studying neural systems and is a key element in the development of prostheses for deafness and other disorders. This thesis presents a family of multielectrode probe structures, fulfilling the need for chronic multipoint stimulation tools essential for interfacing to the highly complex neural networks in the brain. These probes are batch-fabricated on silicon wafers, employing photoengraving techniques to precisely control the electrode site and array geometries and to allow the integration of on-chip CMOS circuitry for signal multiplexing and stimulus current generation. Silicon micromachining is used to define the probe shapes, which have typical shank dimensions of 3 mm in length by 100 mu m in width by 15 μm in thickness. Each shank supports up to eight planar iridium oxide electrode sites capable of delivering charge densities in excess of 3 mC/cm^2 during current pulse stimulation. Three active probe circuits have been designed with varied complexity and capability. All three can deliver biphasic stimulus currents through 16 sites using only 5 external leads, and they are all compatible with the same external control system. The most complex design interprets site addresses and stimulus current amplitudes from 16-bit words shifted into the probe at 4 MHz. Sixteen on-chip, biphasic, 8-bit digital-to-analog converters deliver analog stimulus currents in the range of +/- 254 muA to any combination of electrode sites. These DACs exhibit full-scale internal linearity to better than +/-1/2 LSB and can be calibrated by varying the positive power supply voltage. The entire probe circuit dissipates only 80 muW from +/-5 V supplies when not delivering stimulus currents, it includes several safety features, and is testable from the input pads. Test results from the fabricated circuits indicate that they all function properly at clocking frequencies as high as 10 MHz, meeting or exceeding all design specifications. Probe structures without circuitry have been used for stimulation experiments in guinea pigs yielding excellent results.
Probing Single- to Multi-Cell Level Charge Transport in Geobacter sulfurreducens DL-1
2013-11-08
nanoelectrodes in which an array of nanoholes (200 400 nm2) precludes or single window (6 10 mm2) allows for direct microbe/electrode contacts (Supplementary...previous measurement with S. oneidensis MR-1 cells, which gave almost identical current output between window and nanohole electrodes30. At longer times, it...is interesting to note that the nanohole electrode was also able to yield a current, albeit at a much smaller magnitude, which could be attributed to
Ohno, Y; Inoue, K; Fujiwara, K; Kutsukake, K; Deura, M; Yonenaga, I; Ebisawa, N; Shimizu, Y; Inoue, K; Nagai, Y; Yoshida, H; Takeda, S; Tanaka, S; Kohyama, M
2017-12-01
We have developed an analytical method to determine the segregation levels on the same tilt boundaries (TBs) at the same nanoscopic location by a joint use of atom probe tomography and scanning transmission electron microscopy, and discussed the mechanism of oxygen segregation at TBs in silicon ingots in terms of bond distortions around the TBs. The three-dimensional distribution of oxygen atoms was determined at the typical small- and large-angle TBs by atom probe tomography with a low impurity detection limit (0.01 at.% on a TB plane) simultaneously with high spatial resolution (about 0.4 nm). The three-dimensional distribution was correlated with the atomic stress around the TBs; the stress at large-angle TBs was estimated by ab initio calculations based on atomic resolution scanning transmission electron microscopy data and that at small-angle TBs were calculated with the elastic theory based on dark-field transmission electron microscopy data. Oxygen atoms would segregate at bond-centred sites under tensile stress above about 2 GPa, so as to attain a more stable bonding network by reducing the local stress. The number of oxygen atoms segregating in a unit TB area N GB (in atoms nm -2 ) was determined to be proportional to both the number of the atomic sites under tensile stress in a unit TB area n bc and the average concentration of oxygen atoms around the TB [O i ] (in at.%) with N GB ∼ 50 n bc [O i ]. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meschede, Dieter; Ueberholz, Bernd; Gomer, Victor
1999-06-11
We are experimenting with individual neutral cesium atoms stored in a magneto-optical trap. The atoms are detected by their resonance fluorescence, and fluorescence fluctuations contain signatures of the atomic internal and external degrees of freedom. This noninvasive probe provides a rich source of information about atomic dynamics at all relevant time scales.
Squeezing on Momentum States for Atom Interferometry.
Salvi, Leonardo; Poli, Nicola; Vuletić, Vladan; Tino, Guglielmo M
2018-01-19
We propose and analyze a method that allows for the production of squeezed states of the atomic center-of-mass motion that can be injected into an atom interferometer. Our scheme employs dispersive probing in a ring resonator on a narrow transition in order to provide a collective measurement of the relative population of two momentum states. We show that this method is applicable to a Bragg diffraction-based strontium atom interferometer with large diffraction orders. This technique can be extended also to small diffraction orders and large atom numbers N by inducing atomic transparency at the frequency of the probe field, reaching an interferometer phase resolution scaling Δϕ∼N^{-3/4}. We show that for realistic parameters it is possible to obtain a 20 dB gain in interferometer phase estimation compared to the standard quantum limit. Our method is applicable to other atomic species where a narrow transition is available or can be synthesized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sode, M., E-mail: maik.sode@ipp.mpg.de; Schwarz-Selinger, T.; Jacob, W.
2014-07-07
In an inductively coupled H₂-Ar plasma at a total pressure of 1.5 Pa, the influence of the electrode cover material on selected line intensities of H, H₂, and Ar are determined by optical emission spectroscopy and actinometry for the electrode cover materials stainless steel, copper, tungsten, Macor{sup ®}, and aluminum. Hydrogen dissociation degrees for the considered conditions are determined experimentally from the measured emission intensity ratios. The surface loss probability β{sub H} of atomic hydrogen is correlated with the measured line intensities, and β{sub H} values are determined for the considered materials. Without the knowledge of the atomic hydrogen temperature,more » β{sub H} cannot be determined exactly. However, ratios of β{sub H} values for different surface materials are in first order approximation independent of the atomic hydrogen temperature. Our results show that β{sub H} of copper is equal to the value of stainless steel, β{sub H} of Macor{sup ®} and tungsten is about 2 times smaller and β{sub H} of aluminum about 5 times smaller compared with stainless steel. The latter ratio is in reasonable agreement with literature. The influence of the atomic hydrogen temperature T{sub H} on the absolute value is thoroughly discussed. For our assumption of T{sub H}=600 K, we determine a β{sub H} for stainless steel of 0.39±0.13.« less
ERIC Educational Resources Information Center
Harris, Lauren Julius; Almerigi, Jason B.
2009-01-01
Roberts Bartholow's 1874 experiment on Mary Rafferty is widely cited as the first demonstration, by direct application of stimulating electrodes, of the motor excitability of the human cerebral cortex. The many accounts of the experiment, however, leave certain questions and details unexamined or unresolved, especially about Bartholow's goals, the…
Design of sEMG assembly to detect external anal sphincter activity: a proof of concept.
Shiraz, Arsam; Leaker, Brian; Mosse, Charles Alexander; Solomon, Eskinder; Craggs, Michael; Demosthenous, Andreas
2017-10-31
Conditional trans-rectal stimulation of the pudendal nerve could provide a viable solution to treat hyperreflexive bladder in spinal cord injury. A set threshold of the amplitude estimate of the external anal sphincter surface electromyography (sEMG) may be used as the trigger signal. The efficacy of such a device should be tested in a large scale clinical trial. As such, a probe should remain in situ for several hours while patients attend to their daily routine; the recording electrodes should be designed to be large enough to maintain good contact while observing design constraints. The objective of this study was to arrive at a design for intra-anal sEMG recording electrodes for the subsequent clinical trials while deriving the possible recording and processing parameters. Having in mind existing solutions and based on theoretical and anatomical considerations, a set of four multi-electrode probes were designed and developed. These were tested in a healthy subject and the measured sEMG traces were recorded and appropriately processed. It was shown that while comparatively large electrodes record sEMG traces that are not sufficiently correlated with the external anal sphincter contractions, smaller electrodes may not maintain a stable electrode tissue contact. It was shown that 3 mm wide and 1 cm long electrodes with 5 mm inter-electrode spacing, in agreement with Nyquist sampling, placed 1 cm from the orifice may intra-anally record a sEMG trace sufficiently correlated with external anal sphincter activity. The outcome of this study can be used in any biofeedback, treatment or diagnostic application where the activity of the external anal sphincter sEMG should be detected for an extended period of time.
Guo, Yunfan; Zhou, Jinyuan; Liu, Yujing; Zhou, Xu; Yao, Fengrui; Tan, Congwei; Wu, Jinxiong; Lin, Li; Liu, Kaihui; Liu, Zhongfan; Peng, Hailin
2017-11-01
2D layered nanomaterials with strong covalent bonding within layers and weak van der Waals' interactions between layers have attracted tremendous interest in recent years. Layered Bi 2 Se 3 is a representative topological insulator material in this family, which holds promise for exploration of the fundamental physics and practical applications such as transparent electrode. Here, a simultaneous enhancement of optical transmittancy and electrical conductivity in Bi 2 Se 3 grid electrodes by copper-atom intercalation is presented. These Cu-intercalated 2D Bi 2 Se 3 electrodes exhibit high uniformity over large area and excellent stabilities to environmental perturbations, such as UV light, thermal fluctuation, and mechanical distortion. Remarkably, by intercalating a high density of copper atoms, the electrical and optical performance of Bi 2 Se 3 grid electrodes is greatly improved from 900 Ω sq -1 , 68% to 300 Ω sq -1 , 82% in the visible range; with better performance of 300 Ω sq -1 , 91% achieved in the near-infrared region. These unique properties of Cu-intercalated topological insulator grid nanostructures may boost their potential applications in high-performance optoelectronics, especially for infrared optoelectronic devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Lee, Jungkuk; Park, Min-Sik; Kim, Ki Jae
2017-02-01
Nitrogen-doped carbon nanotubes (NCNTs) are directly grown on the surface of a three-dimensional (3D) Ni foam substrate by floating catalytic chemical vapor deposition (FCCVD). The electrochemical properties of the 3D NCNT-Ni foam are thoroughly examined as a potential electrode for non-aqueous redox flow batteries (RFBs). During synthesis, nitrogen atoms can be successfully doped onto the carbon nanotube (CNT) lattices by forming an abundance of nitrogen-based functional groups. The 3D NCNT-Ni foam electrode exhibits excellent electrochemical activities toward the redox reactions of [Fe (bpy)3]2+/3+ (in anolyte) and [Co(bpy)3]+/2+ (in catholyte), which are mainly attributed to the hierarchical 3D structure of the NCNT-Ni foam electrode and the catalytic effect of nitrogen atoms doped onto the CNTs; this leads to faster mass transfer and charge transfer during operation. As a result, the RFB cell assembled with 3D NCNT-Ni foam electrodes exhibits a high energy efficiency of 80.4% in the first cycle; this performance is maintained up to the 50th cycle without efficiency loss.
Braided Multi-Electrode Probes (BMEPs) for Neural Interfaces
NASA Astrophysics Data System (ADS)
Kim, Tae Gyo
Although clinical use of invasive neural interfaces is very limited, due to safety and reliability concerns, the potential benefits of their use in brain machine interfaces (BMIs) seem promising and so they have been widely used in the research field. Microelectrodes as invasive neural interfaces are the core tool to record neural activities and their failure is a critical issue for BMI systems. Possible sources of this failure are neural tissue motions and their interactions with stiff electrode arrays or probes fixed to the skull. To overcome these tissue motion problems, we have developed novel braided multi-electrode probes (BMEPs). By interweaving ultra-fine wires into a tubular braid structure, we obtained a highly flexible multi-electrode probe. In this thesis we described BMEP designs and how to fabricate BMEPs, and explore experiments to show the advantages of BMEPs through a mechanical compliance comparison and a chronic immunohistological comparison with single 50microm nichrome wires used as a reference electrode type. Results from the mechanical compliance test showed that the bodies of BMEPs have 4 to 21 times higher compliance than the single 50microm wire and the tethers of BMEPs were 6 to 96 times higher compliance, depending on combinations of the wire size (9.6microm or 12.7microm), the wire numbers (12 or 24), and the length of tether (3, 5 or 10 mm). Results from the immunohistological comparison showed that both BMEPs and 50microm wires anchored to the skull caused stronger tissue reactions than unanchored BMEPs and 50microm wires, and 50microm wires caused stronger tissue reactions than BMEPs. In in-vivo tests with BMEPs, we succeeded in chronic recordings from the spinal cord of freely jumping frogs and in acute recordings from the spinal cord of decerebrate rats during air stepping which was evoked by mesencephalic locomotor region (MLR) stimulation. This technology may provide a stable and reliable neural interface to spinal cord researches with freely moving animals as well as to BMI researches. In addition this is extensible to various applications.
Jang, Yun Jung; Lee, Jihye; Jeong, Jeung-Hyun; Lee, Kang-Bong; Kim, Donghwan; Lee, Yeonhee
2018-05-01
To enhance the conversion performance of solar cells, a quantitative and depth-resolved elemental analysis of photovoltaic thin films is required. In this study, we determined the average concentration of the major elements (Cu, In, Ga, and Se) in fabricated Cu(In,Ga)Se2 (CIGS) thin films, using inductively coupled plasma atomic emission spectroscopy, X-ray fluorescence, and wavelengthdispersive electron probe microanalysis. Depth profiling results for CIGS thin films with different cell efficiencies were obtained using secondary ion mass spectrometry and Auger electron spectroscopy to compare the atomic concentrations. Atom probe tomography, a characterization technique with sub-nanometer resolution, was used to obtain three-dimensional elemental mapping and the compositional distribution at the grain boundaries (GBs). GBs are identified by Na increment accompanied by Cu depletion and In enrichment. Segregation of Na atoms along the GB had a beneficial effect on cell performance. Comparative analyses of different CIGS absorber layers using various analytical techniques provide us with understanding of the compositional distributions and structures of high efficiency CIGS thin films in solar cells.
Zhou, Panwang; Ning, Cai; Alsaedi, Ahmed; Han, Keli
2016-10-05
The effects of the incorporated heteroatoms Si and S on tuning the optical properties of rhodamine- and fluorescein-based fluorescence probes is investigated using DFT and time-dependent DFT with four different functionals. As previously proposed, the large redshift (90 nm) produced by a Si atom in both the absorption and emission spectra can be attributed to the σ*-π* conjugation between the σ* orbital of the Si atom and the π* orbital of the adjacent carbon atoms. However, the presence of a Si atom does not alter the fluorescence quenching mechanism of the nonfluorescent forms of the investigated compounds. For the first time, these theoretical results indicate that the n orbital of the S atom plays an important role in determining the optical properties of the nonfluorescent form of rhodamine-based fluorescence probes. It alters the fluorescence quenching mechanism by lowering the energy of the dark nπ* state, which is due to breakage of the C10-S52 bond upon photoexcitation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of microwave radiation on the beating rate of isolated frog hearts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yee, K.C.; Chou, C.K.; Guy, A.W.
1984-01-01
One hundred and two isolated frog hearts were divided into ten groups and placed individually in a waveguide filled with Ringer's solution and exposed to 2,450-MHz CW radiation at 2 and 8.55 W/kg. Heart rate was recorded using one of the following methods: 3-M KCl glass electrode, ultrasound probe, tension transducer, Ringer's solution glass electrode, and a metal wire inserted in the Ringer's solution electrode. An accelerated decrease of heart rate was observed only in those groups recorded using the 3-M KCl electrode and the metal wire Ringer's solution electrode. No effect was found in the other groups. These resultsmore » indicate that bradycardia in isolated hearts could be caused by electrode artifacts resulting from the intensification of electromagnetic fields.« less
Point-to-plane and plane-to-plane electrostatic charge injection atomization for insulating liquids
NASA Astrophysics Data System (ADS)
Malkawi, Ghazi
An electrostatic charge injection atomizer was fabricated and used to introduce and study the electrostatic charge injection atomization methods for highly viscous vegetable oils and high conductivity low viscosity aviation fuel, JP8. The total, spray and leakage currents and spray breakup characteristics for these liquids were investigated and compared with Diesel fuel data. Jet breakup and spray atomization mechanism showed differences for vegetable oils and lower viscosity hydrocarbon fuels. For vegetable oils, a bending/spinning instability phenomenon was observed similar to the phenomenon found in liquid jets of high viscosity polymer solutions. The spray tip lengths and cone angles were presented qualitatively and quantitatively and correlated with the appropriate empirical formulas. The different stages of the breakup mechanisms for such oils, as a function of specific charges and flow rates, were discussed. In order to make this method of atomization more suitable for practical use in high flow rate applications, a blunt face electrode (plane-to-plane) was used as the charge emitter in place of a single pointed electrode (point-to-plane). This allowed the use of a multi-orifice emitter that maintained a specific charge with the flow rate increase which could not be achieved with the needle electrode. The effect of the nozzle geometry, liquid physical properties and applied bulk flow on the spray charge, total charge, maximum critical spray specific charge and electrical efficiency compared with the needle point-to-plane atomizer results was presented. Our investigation revealed that the electrical efficiency of the atomizer is dominated by the charge forced convection rate rather than charge transport by ion motilities and liquid motion by the electric field. As a result of the electric coulomb forces between the electrified jets, the multi-orifice atomizer provided a unique means of dispersing the fuel in a hollow cone with wide angles making the new method suitable for variety of combustion applications.
Hyperfine Quantum Beat Spectroscopy of the Cs 8p level with Pulsed Pump-Probe Technique
NASA Astrophysics Data System (ADS)
Bayram, Burcin; Popov, Oleg; Kelly, Stephen; Boyle, Patrick; Salsman, Andrew
2013-05-01
Quantum beats arising from the hyperfine interaction were measured in a three-level excitation (lambda) scheme: pump for the 6s2S1 / 2 --> 8p2P3 / 2 and stimulated emission pump (probe) for the 8p2P3 / 2 --> 5d2D5 / 2 transitions of atomic cesium. In the technique, pump laser instantaneously excites the hot atomic vapor and creates anisotropy in the 8p2P3 / 2 level, and probe laser comes after some time delay. Delaying the probe time allows us to map out the motion of the polarized atoms like a stroboscope. According to the observed evolution of the hyperfine structure dependent parameters, e.g. alignment and atomic polarization, by delaying the arrival time of the stimulated emission pump laser (SEP), precise values of the magnetic dipole and electric quadrupole coefficients are obtained with an improved precision over previous results. The usefulness of the PUMP-SEP excitation scheme for the polarization hyperfine quantum beat measurements without complications from the Doppler effect will also be discussed. The financial support of the Research Corporation under the Grant number CC7133 and MiamiUniversity, College of the Arts and Sciences are acknowledged.
Adineh, Vahid R; Marceau, Ross K W; Chen, Yu; Si, Kae J; Velkov, Tony; Cheng, Wenlong; Li, Jian; Fu, Jing
2017-10-01
We present a novel approach for analysis of low-conductivity and insulating materials with conventional pulsed-voltage atom probe tomography (APT), by incorporating an ultrathin metallic coating on focused ion beam prepared needle-shaped specimens. Finite element electrostatic simulations of coated atom probe specimens were performed, which suggest remarkable improvement in uniform voltage distribution and subsequent field evaporation of the insulated samples with a metallic coating of approximately 10nm thickness. Using design of experiment technique, an experimental investigation was performed to study physical vapor deposition coating of needle specimens with end tip radii less than 100nm. The final geometries of the coated APT specimens were characterized with high-resolution scanning electron microscopy and transmission electron microscopy, and an empirical model was proposed to determine the optimal coating thickness for a given specimen size. The optimal coating strategy was applied to APT specimens of resin embedded Au nanospheres. Results demonstrate that the optimal coating strategy allows unique pulsed-voltage atom probe analysis and 3D imaging of biological and insulated samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Kavanagh, Paul; Leech, Dónal
2006-04-15
The detection of nucleic acids based upon recognition surfaces formed by co-immobilization of a redox polymer mediator and DNA probe sequences on gold electrodes is described. The recognition surface consists of a redox polymer, [Os(2,2'-bipyridine)2(polyvinylimidazole)(10)Cl](+/2+), and a model single DNA strand cross-linked and tethered to a gold electrode via an anchoring self-assembled monolayer (SAM) of cysteamine. Hybridization between the immobilized probe DNA of the recognition surface and a biotin-conjugated target DNA sequence (designed from the ssrA gene of Listeria monocytogenes), followed by addition of an enzyme (glucose oxidase)-avidin conjugate, results in electrical contact between the enzyme and the mediating redox polymer. In the presence of glucose, the current generated due to the catalytic oxidation of glucose to gluconolactone is measured, and a response is obtained that is binding-dependent. The tethering of the probe DNA and redox polymer to the SAM improves the stability of the surface to assay conditions of rigorous washing and high salt concentration (1 M). These conditions eliminate nonspecific interaction of both the target DNA and the enzyme-avidin conjugate with the recognition surfaces. The sensor response increases linearly with increasing concentration of target DNA in the range of 1 x 10(-9) to 2 x 10(-6) M. The detection limit is approximately 1.4 fmol, (corresponding to 0.2 nM of target DNA). Regeneration of the recognition surface is possible by treatment with 0.25 M NaOH solution. After rehybridization of the regenerated surface with the target DNA sequence, >95% of the current is recovered, indicating that the redox polymer and probe DNA are strongly bound to the surface. These results demonstrate the utility of the proposed approach.
An atomic-force-microscopy study of the structure of surface layers of intact fibroblasts
NASA Astrophysics Data System (ADS)
Khalisov, M. M.; Ankudinov, A. V.; Penniyaynen, V. A.; Nyapshaev, I. A.; Kipenko, A. V.; Timoshchuk, K. I.; Podzorova, S. A.; Krylov, B. V.
2017-02-01
Intact embryonic fibroblasts on a collagen-treated substrate have been studied by atomic-force microscopy (AFM) using probes of two types: (i) standard probes with tip curvature radii of 2-10 nm and (ii) special probes with a calibrated 325-nm SiO2 ball radius at the tip apex. It is established that, irrespective of probe type, the average maximum fibroblast height is on a level of 1.7 μm and the average stiffness of the probe-cell contact amounts to 16.5 mN/m. The obtained AFM data reveal a peculiarity of the fibroblast structure, whereby its external layers move as a rigid shell relative to the interior and can be pressed inside to a depth dependent on the load only.
Probing the microscopic corrugation of liquid surfaces with gas-liquid collisions
NASA Technical Reports Server (NTRS)
King, Mackenzie E.; Nathanson, Gilbert M.; Hanning-Lee, Mark A.; Minton, Timothy K.
1993-01-01
We have measured the directions and velocities of Ne, Ar, and Xe atoms scattering from perfluorinated ether and hydrocarbon liquids to probe the relationship between the microscopic roughness of liquid surfaces and gas-liquid collision dynamics. Impulsive energy transfer is governed by the angle of deflection: head-on encounters deposit more energy than grazing collisions. Many atoms scatter in the forward direction, particularly at glancing incidence. These results imply that the incoming atoms recoil locally from protruding C-H and C-F groups in hard spherelike collisions.
Enzyme-less electrochemical displacement heterogeneous immunosensor for diclofenac detection.
Nguyen, T T K; Vu, T T; Anquetin, G; Tran, H V; Reisberg, S; Noël, V; Mattana, G; Nguyen, Q V; Dai Lam, Tran; Pham, M C; Piro, B
2017-11-15
We describe an electrochemical immunosensor based on functionalization of a working electrode by electrografting two functional diazonium salts. The first one is a molecular probe, diclofenac, coupled with an arylamine onto which a specific antibody is immobilized by affinity interactions; the second is a redox probe (a quinone) also coupled with an arylamine, able to transduce the hapten-antibody association into a change in electroactivity. The steric hindrance induced by the antibody leads to a current decrease upon binding of the antibody on the grafted molecular probe; conversely, when diclofenac is present in solution, a displacement equilibrium occurs between the target diffusing into the solution and the grafted probe. This leads to dissociation of the antibody from the electrode surface, event which is transduced into a current increase ("signal-on" detection). The detection limit is ca. 20 fM, corresponding to 6pgL -1 diclofenac, which is competitive compared to other label-free immunosensors. We demonstrate that the sensor is selective and is able to quantify diclofenac in tap water. Copyright © 2017 Elsevier B.V. All rights reserved.
Li, Fengqin; Xu, Yanmei; Yu, Xiang; Yu, Zhigang; He, Xunjun; Ji, Hongrui; Dong, Jinghao; Song, Yongbin; Yan, Hong; Zhang, Guiling
2016-08-15
One "signal on" electrochemical sensing strategy was constructed for the detection of a specific hepatitis B virus (HBV) gene sequence based on the protection-displacement-hybridization-based (PDHB) signaling mechanism. This sensing system is composed of three probes, one capturing probe (CP) and one assistant probe (AP) which are co-immobilized on the Au electrode surface, and one 3-methylene blue (MB) modified signaling probe (SP) free in the detection solution. One duplex are formed between AP and SP with the target, a specific HBV gene sequence, hybridizing with CP. This structure can drive the MB labels close to the electrode surface, thereby producing a large detection current. Two electrochemical testing techniques, alternating current voltammetry (ACV) and cyclic voltammetry (CV), were used for characterizing the sensor. Under the optimized conditions, the proposed sensor exhibits a high sensitivity with the detection limit of ∼5fM for the target. When used for the discrimination of point mutation, the sensor also features an outstanding ability and its peculiar high adjustability. Copyright © 2016 Elsevier B.V. All rights reserved.
Bias stress in PDI-CN2 and P3HT studied with Kelvin Probe Force Microscopy
NASA Astrophysics Data System (ADS)
Cao, Minxuan; Moscatello, Jason; Castaneda, Chloe; Xue, Binglan; Usluer, Ozlem; Briseno, Alejandro; Aidala, Katherine
We have developed a technique that uses scanning probe microscopy (SPM) to study the real-time injection and extraction of charge carriers in organic semiconductor devices. We investigate PDI-CN2 and P3HT in a back gate field effect transistor geometry with gold electrodes. By positioning the SPM tip at an individual location and using Kelvin probe microscopy to record the potential over time, we can record how the charge carriers respond to changing the gate voltage while the source and drain electrodes are grounded. We see relatively fast screening when carriers are injected into the film. The screening is slower when carriers must escape from traps to exit the film. By incrementally stepping the gate voltage, we can probe different trap depths. By repeating the measurement, we observe the development of longer lived trap states, shown by the longer time recorded to fully screen the gate voltage. This work is supported by NSF Grant DMR-0955348, and the Center for Heirarchical Manufacturing at the University of Massachusetts, Amherst (NSF CMMI-1025020).
Shpigel, Netanel; Levi, Mikhael D; Sigalov, Sergey; Daikhin, Leonid; Aurbach, Doron
2018-01-16
Quartz crystal microbalance with dissipation monitoring (QCM-D) generates surface-acoustic waves in quartz crystal plates that can effectively probe the structure of films, particulate composite electrodes of complex geometry rigidly attached to quartz crystal surface on one side and contacting a gas or liquid phase on the other side. The output QCM-D characteristics consist of the resonance frequency (MHz frequency range) and resonance bandwidth measured with extra-ordinary precision of a few tenths of Hz. Depending on the electrodes stiffness/softness, QCM-D operates either as a gravimetric or complex mechanical probe of their intrinsic structure. For at least 20 years, QCM-D has been successfully used in biochemical and environmental science and technology for its ability to probe the structure of soft solvated interfaces. Practical battery and supercapacitor electrodes appear frequently as porous solids with their stiffness changing due to interactions with electrolyte solutions or as a result of ion intercalation/adsorption and long-term electrode cycling. Unfortunately, most QCM measurements with electrochemical systems are carried out based on a single (fundamental) frequency and, as such, provided that the resonance bandwidth remains constant, are suitable for only gravimetric sensing. The multiharmonic measurements have been carried out mainly on conducting/redox polymer films rather than on typical composite battery/supercapacitor electrodes. Here, we summarize the most recent publications devoted to the development of electrochemical QCM-D (EQCM-D)-based methodology for systematic characterization of mechanical properties of operating battery/supercapacitor electrodes. By varying the electrodes' composition and structure (thin/thick layers, small/large particles, binders with different mechanical properties, etc.), nature of the electrolyte solutions and charging/cycling conditions, the method is shown to be operated in different application modes. A variety of useful electrode-material properties are assessed noninvasively, in situ, and in real time frames of ion intercalation into the electrodes of interest. A detailed algorithm for the mechanical characterization of battery electrodes kept in the gas phase and immersed into the electrolyte solutions has been developed for fast recognition of stiff and viscoelastic materials in terms of EQCM-D signatures treated by the hydrodynamic and viscoelastic models. Working examples of the use of in situ hydrodynamic spectroscopy to characterize stiff rough/porous solids of complex geometry and viscoelastic characterization of soft electrodes are presented. The most demonstrative example relates to the formation of solid electrolyte interphase on Li 4 Ti 5 O 12 electrodes in the presence of different electrolyte solutions and additives: only a few cycles (an experiment during ∼30 min) were required for screening the electrolyte systems for their ability to form high-quality surface films in experimental EQCM-D cells as compared to 100 cycles (200 h cycling) in conventional coin cells. Thin/small-mass electrodes required for the EQCM-D analysis enable accelerated cycling tests for ultrafast mechanical characterization of these electrodes in different electrolyte solutions. Hence, this methodology can be easily implemented as a highly effective in situ analytical tool in the field of energy storage and conversion.
Atomically-thin molecular layers for electrode modification of organic transistors
NASA Astrophysics Data System (ADS)
Gim, Yuseong; Kang, Boseok; Kim, Bongsoo; Kim, Sun-Guk; Lee, Joong-Hee; Cho, Kilwon; Ku, Bon-Cheol; Cho, Jeong Ho
2015-08-01
Atomically-thin molecular layers of aryl-functionalized graphene oxides (GOs) were used to modify the surface characteristics of source-drain electrodes to improve the performances of organic field-effect transistor (OFET) devices. The GOs were functionalized with various aryl diazonium salts, including 4-nitroaniline, 4-fluoroaniline, or 4-methoxyaniline, to produce several types of GOs with different surface functional groups (NO2-Ph-GO, F-Ph-GO, or CH3O-Ph-GO, respectively). The deposition of aryl-functionalized GOs or their reduced derivatives onto metal electrode surfaces dramatically enhanced the electrical performances of both p-type and n-type OFETs relative to the performances of OFETs prepared without the GO modification layer. Among the functionalized rGOs, CH3O-Ph-rGO yielded the highest hole mobility of 0.55 cm2 V-1 s-1 and electron mobility of 0.17 cm2 V-1 s-1 in p-type and n-type FETs, respectively. Two governing factors: (1) the work function of the modified electrodes and (2) the crystalline microstructures of the benchmark semiconductors grown on the modified electrode surface were systematically investigated to reveal the origin of the performance improvements. Our simple, inexpensive, and scalable electrode modification technique provides a significant step toward optimizing the device performance by engineering the semiconductor-electrode interfaces in OFETs.Atomically-thin molecular layers of aryl-functionalized graphene oxides (GOs) were used to modify the surface characteristics of source-drain electrodes to improve the performances of organic field-effect transistor (OFET) devices. The GOs were functionalized with various aryl diazonium salts, including 4-nitroaniline, 4-fluoroaniline, or 4-methoxyaniline, to produce several types of GOs with different surface functional groups (NO2-Ph-GO, F-Ph-GO, or CH3O-Ph-GO, respectively). The deposition of aryl-functionalized GOs or their reduced derivatives onto metal electrode surfaces dramatically enhanced the electrical performances of both p-type and n-type OFETs relative to the performances of OFETs prepared without the GO modification layer. Among the functionalized rGOs, CH3O-Ph-rGO yielded the highest hole mobility of 0.55 cm2 V-1 s-1 and electron mobility of 0.17 cm2 V-1 s-1 in p-type and n-type FETs, respectively. Two governing factors: (1) the work function of the modified electrodes and (2) the crystalline microstructures of the benchmark semiconductors grown on the modified electrode surface were systematically investigated to reveal the origin of the performance improvements. Our simple, inexpensive, and scalable electrode modification technique provides a significant step toward optimizing the device performance by engineering the semiconductor-electrode interfaces in OFETs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03307a
Detection of DNA hybridization by ABEI electrochemiluminescence in DNA-chip compatible assembly.
Calvo-Muñoz, M-L; Dupont-Filliard, A; Billon, M; Guillerez, S; Bidan, G; Marquette, C; Blum, L
2005-04-01
The electrochemiluminescence (ECL) of a luminol derivate (ABEI) generated both by a carbon electrode and a polypyrrole-coated carbon electrode was examined. It was found that the polypyrrole film (ppy) did not inhibit the ECL. After that, ABEI anchored on a single stranded DNA target (ODNt) has been used for the ECL detection of the hybridization between a complementary single stranded DNA probe (ODNp) covalently linked to a polypyrrole support and the ODNt. The ECL detection has been performed using a DNA sensor having a low surface concentration of ODNp probes, constituted of a polypyrrole copolymer electrosynthesized from a pyrrole-ODNp/pyrrole monomer ratio of 1/20,000.
Scappucci, G; Klesse, W M; Hamilton, A R; Capellini, G; Jaeger, D L; Bischof, M R; Reidy, R F; Gorman, B P; Simmons, M Y
2012-09-12
Stacking of two-dimensional electron gases (2DEGs) obtained by δ-doping of Ge and patterned by scanning probe lithography is a promising approach to realize ultrascaled 3D epitaxial circuits, where multiple layers of active electronic components are integrated both vertically and horizontally. We use atom probe tomography and magnetotransport to correlate the real space 3D atomic distribution of dopants in the crystal with the quantum correction to the conductivity observed at low temperatures, probing if closely stacked δ-layers in Ge behave as independent 2DEGs. We find that at a separation of 9 nm the stacked-2DEGs, while interacting, still maintain their individuality in terms of electron transport and show long phase coherence lengths (∼220 nm). Strong vertical electron confinement is crucial to this finding, resulting in an interlayer scattering time much longer (∼1000 × ) than the scattering time within the dopant plane.
Portable probe to measure sensitization of stainless steel
Park, Jang Y.
1979-01-01
An electrochemical cell for making field measurements of metals such as stainless steel comprises a cylinder containing a reservoir of an electrolyte, a reference electrode, a capillary tube connecting the electrolyte to the surface of the metal to be measured and another electrode in electrical contact with the electrolyte. External connections from the reference electrode, the other electrode, and the sample to a measuring device provide means for maintaining the potential of the electrolyte while sweeping the potential difference between the electrolyte and the metal. Such a sweep enables the determination of a current-voltage characteristic that is a measure of sensitization in the metal.
Zhang, Chen; Lai, Cui; Zeng, Guangming; Huang, Danlian; Tang, Lin; Yang, Chunping; Zhou, Yaoyu; Qin, Lei; Cheng, Min
2016-07-15
The authors herein described an amplified detection strategy employing nanoporous Au (NPG) and gold nanoparticles (AuNPs) to detect Pb(2+) ions in aqueous solution. The thiol modified Pb(2+)-specific DNAzyme was self-assembled onto the surface of the NPG modified electrode for hybridizing with the AuNPs labeled oligonucleotide and for forming the DNA double helix structure. Electrochemical signal, redox charge of hexaammineruthenium(III) chloride (RuHex), was measured by chronocoulometry. Taking advantage of amplification effects of the NPG electrode for increasing the reaction sites of capture probe and DNA-AuNPs complexes for bringing about the adsorption of large numbers of RuHex molecules, this electrochemical sensor could detect Pb(2+) quantitatively, in the range of 0.05-100nM, with a limit of detection as low as 0.012nM. Selectivity measurements revealed that the sensor was specific for Pb(2+) even with interference by high concentrations of other metal ions. This sensor was also used to detect Pb(2+) ions from samples of tap water, river water, and landfill leachate samples spiked with Pb(2+) ions, and the results showed good agreement with the found values determined by an atomic fluorescence spectrometer. This simple aptasensor represented a promising potential for on-site detecting Pb(2+) in drinking water. Copyright © 2016 Elsevier B.V. All rights reserved.
Kapetanakis, Myron; Zhou, Wu; Oxley, Mark P.; ...
2015-09-25
Photon-based spectroscopies have played a central role in exploring the electronic properties of crystalline solids and thin films. They are a powerful tool for probing the electronic properties of nanostructures, but they are limited by lack of spatial resolution. On the other hand, electron-based spectroscopies, e.g., electron energy loss spectroscopy (EELS), are now capable of subangstrom spatial resolution. Core-loss EELS, a spatially resolved analog of x-ray absorption, has been used extensively in the study of inhomogeneous complex systems. In this paper, we demonstrate that low-loss EELS in an aberration-corrected scanning transmission electron microscope, which probes low-energy excitations, combined with amore » theoretical framework for simulating and analyzing the spectra, is a powerful tool to probe low-energy electron excitations with atomic-scale resolution. The theoretical component of the method combines density functional theory–based calculations of the excitations with dynamical scattering theory for the electron beam. We apply the method to monolayer graphene in order to demonstrate that atomic-scale contrast is inherent in low-loss EELS even in a perfectly periodic structure. The method is a complement to optical spectroscopy as it probes transitions entailing momentum transfer. The theoretical analysis identifies the spatial and orbital origins of excitations, holding the promise of ultimately becoming a powerful probe of the structure and electronic properties of individual point and extended defects in both crystals and inhomogeneous complex nanostructures. The method can be extended to probe magnetic and vibrational properties with atomic resolution.« less
Comparisons of Force Measurement Methods for DBD Plasma Actuators in Quiescent Air
NASA Technical Reports Server (NTRS)
Hoskinson, Alan R.; Hershkowitz, Noah; Ashpis, David E.
2009-01-01
We have performed measurements of the force induced by both single (one electrode insulated) and double (both electrodes insulated) dielectric barrier discharge plasma actuators in quiescent air. We have shown that, for single barrier actuators with cylindrical exposed electrodes, as the electrode diameter decrease the force efficiencies increase much faster than a previously reported linear trend. This behavior has been experimentally verified using two different measurement techniques: stagnation probe measurements of the induced flow velocity and direct measurement of the force using an electronic balance. Actuators with rectangular cross-section exposed electrodes do not show the same rapid increase at small thicknesses. We have also shown that the induced force is independent of the material used for the exposed electrode. The same techniques have shown that the induced force of a double barrier actuator increases with decreasing narrow electrode diameter.
Binder-induced surface structure evolution effects on Li-ion battery performance
NASA Astrophysics Data System (ADS)
Rezvani, S. J.; Pasqualini, M.; Witkowska, A.; Gunnella, R.; Birrozzi, A.; Minicucci, M.; Rajantie, H.; Copley, M.; Nobili, F.; Di Cicco, A.
2018-03-01
A comparative investigation on binder induced chemical and morphological evolution of Li4Ti5O12 electrodes was performed via X-ray photoemission spectroscopy, scanning electron microscopy, and electrochemical measurements. Composite electrodes were obtained using three different binders (PAA, PVdF, and CMC) with 80:10:10 ratio of active material:carbon:binder. The electrochemical performances of the electrodes, were found to be intimately correlated with the evolution of the microstructure of the electrodes, probed by XPS and SEM analysis. Our analysis shows that the surface chemistry, thickness of the passivation layers and the morphology of the electrodes are strongly dependent on the type of binders that significantly influence the electrochemical properties of the electrodes. These results point to a key role played by binders in optimization of the battery performance and improve our understanding of the previously observed and unexplained electrochemical properties of these electrodes.
Lithium effects on the mechanical and electronic properties of germanium nanowires
NASA Astrophysics Data System (ADS)
González-Macías, A.; Salazar, F.; Miranda, A.; Trejo-Baños, A.; Pérez, L. A.; Carvajal, E.; Cruz-Irisson, M.
2018-04-01
Semiconductor nanowire arrays promise rapid development of a new generation of lithium (Li) batteries because they can store more Li atoms than conventional crystals due to their large surface areas. During the charge-discharge process, the electrodes experience internal stresses that fatigue the material and limit the useful life of the battery. The theoretical study of electronic and mechanical properties of lithiated nanowire arrays allows the designing of electrode materials that could improve battery performance. In this work, we present a density functional theory study of the electronic band structure, formation energy, binding energy, and Young’s modulus (Y) of hydrogen passivated germanium nanowires (H-GeNWs) grown along the [111] and [001] crystallographic directions with surface and interstitial Li atoms. The results show that the germanium nanowires (GeNWs) with surface Li atoms maintain their semiconducting behavior but their energy gap size decreases when the Li concentration grows. In contrast, the GeNWs can have semiconductor or metallic behavior depending on the concentration of the interstitial Li atoms. On the other hand, Y is an indicator of the structural changes that GeNWs suffer due to the concentration of Li atoms. For surface Li atoms, Y stays almost constant, whereas for interstitial Li atoms, the Y values indicate important structural changes in the GeNWs.
Fabricating Atom-Sized Gaps by Field-Aided Atom Migration in Nanoscale Junctions
NASA Astrophysics Data System (ADS)
Liu, Ran; Bi, Jun-Jie; Xie, Zhen; Yin, Kaikai; Wang, Dunyou; Zhang, Guang-Ping; Xiang, Dong; Wang, Chuan-Kui; Li, Zong-Liang
2018-05-01
The gap sizes between electrodes generated by typical methods are generally much larger than the dimension of a common molecule when fabricating a single-molecule junction, which dramatically suppresses the yield of single-molecule junctions. Based on the ab initio calculations, we develop a strategy named the field-aided method to accurately fabricate an atomic-sized gap between gold nanoelectrodes. To understand the mechanism of this strategy, configuration evolutions of gold nanojunction in stretching and compressing processes are calculated. The numerical results show that, in the stretching process, the gold atoms bridged between two electrodes are likely to form atomic chains. More significantly, lattice vacant positions can be easily generated in stretching and compressing processes, which make field-aided gap generation possible. In field-aided atom migration (FAAM), the external field can exert driving force, enhance the initial energy of the system, and decrease the barrier in the migration path, which makes the atom migration feasible. Conductance and stretching and compressing forces, as measurable variables in stretching and compressing processes, present very useful signals for determining the time to perform FAAM. Following this desirable strategy, we successfully fabricate gold nanogaps with a dimension of 0.38 ±0.05 nm in the experiment, as our calculation simulates.
Force Measurements of Single and Double Barrier DBD Plasma Actuators in Quiescent Air
NASA Technical Reports Server (NTRS)
Hoskinson, Alan R.; Hershkowitz, Noah; Ashpis, David E.
2008-01-01
We have performed measurements of the force induced by both single (one electrode insulated) and double (both electrodes insulated) dielectric barrier discharge plasma actuators in quiescent air. We have shown that, for single barrier actuators, as the electrode diameter decreased below those values previously studied the induced Force increases exponentially rather than linearly. This behavior has been experimentally verified using two different measurement techniques: stagnation probe measurements of the induced flow velocity and direct measurement of the force using an electronic balance. In addition, we have shown the the induced force is independent of the material used for the exposed electrode. The same techniques have shown that the induced force of a double barrier actuator increases with decreasing narrow electrode diameter.
Johari, Priya; Qi, Yue; Shenoy, Vivek B
2011-12-14
In order to realize Si as a negative electrode material in commercial Li-ion batteries, it is important to understand the mixing mechanism of Li and Si, and stress evolution during lithiation in Si negative electrode of Li-ion batteries. Available experiments mainly provide the diffusivity of Li in Si as an averaged property, neglecting information regarding diffusivity of Si. However, if Si can diffuse as fast as Li, the stress generated during Li diffusion can be reduced. We, therefore, studied the diffusivity of Li as well as Si atoms in the Si-anode of Li-ion battery using an ab initio molecular dynamics-based methodology. The electrochemical insertion of Li into crystalline Si prompts a crystalline-to-amorphous phase transition. We considered this situation and thus examined the diffusion kinetics of Li and Si atoms in both crystalline and amorphous Si. We find that Li diffuses faster in amorphous Si as compared to crystalline Si, while Si remains relatively immobile in both cases and generates stresses during lithiation. To further understand the mixing mechanism and to relate the structure with electrochemical mixing, we analyzed the evolution of the structure during lithiation and studied the mechanism of breaking of Si-Si network by Li. We find that Li atoms break the Si rings and chains and create ephemeral structures such as stars and boomerangs, which eventually transform to Si-Si dumbbells and isolated Si atoms in the LiSi phase. Our results are found to be in agreement with the available experimental data and provide insights into the mixing mechanism of Li and Si in Si negative electrode of Li-ion batteries.
Simplifying Electron Beam Channeling in Scanning Transmission Electron Microscopy (STEM).
Wu, Ryan J; Mittal, Anudha; Odlyzko, Michael L; Mkhoyan, K Andre
2017-08-01
Sub-angstrom scanning transmission electron microscopy (STEM) allows quantitative column-by-column analysis of crystalline specimens via annular dark-field images. The intensity of electrons scattered from a particular location in an atomic column depends on the intensity of the electron probe at that location. Electron beam channeling causes oscillations in the STEM probe intensity during specimen propagation, which leads to differences in the beam intensity incident at different depths. Understanding the parameters that control this complex behavior is critical for interpreting experimental STEM results. In this work, theoretical analysis of the STEM probe intensity reveals that intensity oscillations during specimen propagation are regulated by changes in the beam's angular distribution. Three distinct regimes of channeling behavior are observed: the high-atomic-number (Z) regime, in which atomic scattering leads to significant angular redistribution of the beam; the low-Z regime, in which the probe's initial angular distribution controls intensity oscillations; and the intermediate-Z regime, in which the behavior is mixed. These contrasting regimes are shown to exist for a wide range of probe parameters. These results provide a new understanding of the occurrence and consequences of channeling phenomena and conditions under which their influence is strengthened or weakened by characteristics of the electron probe and sample.
Dynamic of cold-atom tips in anharmonic potentials
Menold, Tobias; Federsel, Peter; Rogulj, Carola; Hölscher, Hendrik; Fortágh, József
2016-01-01
Background: Understanding the dynamics of ultracold quantum gases in an anharmonic potential is essential for applications in the new field of cold-atom scanning probe microscopy. Therein, cold atomic ensembles are used as sensitive probe tips to investigate nanostructured surfaces and surface-near potentials, which typically cause anharmonic tip motion. Results: Besides a theoretical description of this anharmonic tip motion, we introduce a novel method for detecting the cold-atom tip dynamics in situ and real time. In agreement with theory, the first measurements show that particle interactions and anharmonic motion have a significant impact on the tip dynamics. Conclusion: Our findings will be crucial for the realization of high-sensitivity force spectroscopy with cold-atom tips and could possibly allow for the development of advanced spectroscopic techniques such as Q-control. PMID:28144505
Dynamics of Hollow Atom Formation in Intense X-Ray Pulses Probed by Partial Covariance Mapping
NASA Astrophysics Data System (ADS)
Frasinski, L. J.; Zhaunerchyk, V.; Mucke, M.; Squibb, R. J.; Siano, M.; Eland, J. H. D.; Linusson, P.; v. d. Meulen, P.; Salén, P.; Thomas, R. D.; Larsson, M.; Foucar, L.; Ullrich, J.; Motomura, K.; Mondal, S.; Ueda, K.; Osipov, T.; Fang, L.; Murphy, B. F.; Berrah, N.; Bostedt, C.; Bozek, J. D.; Schorb, S.; Messerschmidt, M.; Glownia, J. M.; Cryan, J. P.; Coffee, R. N.; Takahashi, O.; Wada, S.; Piancastelli, M. N.; Richter, R.; Prince, K. C.; Feifel, R.
2013-08-01
When exposed to ultraintense x-radiation sources such as free electron lasers (FELs) the innermost electronic shell can efficiently be emptied, creating a transient hollow atom or molecule. Understanding the femtosecond dynamics of such systems is fundamental to achieving atomic resolution in flash diffraction imaging of noncrystallized complex biological samples. We demonstrate the capacity of a correlation method called “partial covariance mapping” to probe the electron dynamics of neon atoms exposed to intense 8 fs pulses of 1062 eV photons. A complete picture of ionization processes competing in hollow atom formation and decay is visualized with unprecedented ease and the map reveals hitherto unobserved nonlinear sequences of photoionization and Auger events. The technique is particularly well suited to the high counting rate inherent in FEL experiments.
New atom probe approaches to studying segregation in nanocrystalline materials.
Samudrala, S K; Felfer, P J; Araullo-Peters, V J; Cao, Y; Liao, X Z; Cairney, J M
2013-09-01
Atom probe is a technique that is highly suited to the study of nanocrystalline materials. It can provide accurate atomic-scale information about the composition of grain boundaries in three dimensions. In this paper we have analysed the microstructure of a nanocrystalline super-duplex stainless steel prepared by high pressure torsion (HPT). Not all of the grain boundaries in this alloy display obvious segregation, making visualisation of the microstructure challenging. In addition, the grain boundaries present in the atom probe data acquired from this alloy have complex shapes that are curved at the scale of the dataset and the interfacial excess varies considerably over the boundaries, making the accurate characterisation of the distribution of solute challenging using existing analysis techniques. In this paper we present two new data treatment methods that allow the visualisation of boundaries with little or no segregation, the delineation of boundaries for further analysis and the quantitative analysis of Gibbsian interfacial excess at boundaries, including the capability of excess mapping. Copyright © 2013 Elsevier B.V. All rights reserved.
Precise Orientation of a Single C60 Molecule on the Tip of a Scanning Probe Microscope
NASA Astrophysics Data System (ADS)
Chiutu, C.; Sweetman, A. M.; Lakin, A. J.; Stannard, A.; Jarvis, S.; Kantorovich, L.; Dunn, J. L.; Moriarty, P.
2012-06-01
We show that the precise orientation of a C60 molecule which terminates the tip of a scanning probe microscope can be determined with atomic precision from submolecular contrast images of the fullerene cage. A comparison of experimental scanning tunneling microscopy data with images simulated using computationally inexpensive Hückel theory provides a robust method of identifying molecular rotation and tilt at the end of the probe microscope tip. Noncontact atomic force microscopy resolves the atoms of the C60 cage closest to the surface for a range of molecular orientations at tip-sample separations where the molecule-substrate interaction potential is weakly attractive. Measurements of the C60C60 pair potential acquired using a fullerene-terminated tip are in excellent agreement with theoretical predictions based on a pairwise summation of the van der Waals interactions between C atoms in each cage, i.e., the Girifalco potential [L. Girifalco, J. Phys. Chem. 95, 5370 (1991)JPCHAX0022-365410.1021/j100167a002].
Subatomic-scale force vector mapping above a Ge(001) dimer using bimodal atomic force microscopy
NASA Astrophysics Data System (ADS)
Naitoh, Yoshitaka; Turanský, Robert; Brndiar, Ján; Li, Yan Jun; Štich, Ivan; Sugawara, Yasuhiro
2017-07-01
Probing physical quantities on the nanoscale that have directionality, such as magnetic moments, electric dipoles, or the force response of a surface, is essential for characterizing functionalized materials for nanotechnological device applications. Currently, such physical quantities are usually experimentally obtained as scalars. To investigate the physical properties of a surface on the nanoscale in depth, these properties must be measured as vectors. Here we demonstrate a three-force-component detection method, based on multi-frequency atomic force microscopy on the subatomic scale and apply it to a Ge(001)-c(4 × 2) surface. We probed the surface-normal and surface-parallel force components above the surface and their direction-dependent anisotropy and expressed them as a three-dimensional force vector distribution. Access to the atomic-scale force distribution on the surface will enable better understanding of nanoscale surface morphologies, chemical composition and reactions, probing nanostructures via atomic or molecular manipulation, and provide insights into the behaviour of nano-machines on substrates.
Timpel, M; Wanderka, N; Vinod Kumar, G S; Banhart, J
2011-05-01
Strontium-modified Al-15 wt%Si casting alloys were investigated after 5 and 60 min of melt holding. The eutectic microstructures were studied using complementary methods at different length scales: focused ion beam-energy selective backscattered tomography, transmission electron microscopy and 3D atom probe. Whereas the samples after 5 min of melt holding show that the structure of eutectic Si changes into a fine fibrous morphology, the increase of prolonged melt holding (60 min) leads to the loss of Sr within the alloy with an evolution of an unmodified eutectic microstructure displaying coarse interconnected Si plates. Strontium was found at the Al/Si eutectic interfaces on the side of the eutectic Al region, measured by 3D atom probe. The new results obtained using 3D atom probe shed light on the location of Sr within the Al-Si eutectic microstructure. Copyright © 2010 Elsevier B.V. All rights reserved.
Effects of the local structure dependence of evaporation fields on field evaporation behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Lan; Marquis, Emmanuelle A., E-mail: emarq@umich.edu; Withrow, Travis
2015-12-14
Accurate three dimensional reconstructions of atomic positions and full quantification of the information contained in atom probe microscopy data rely on understanding the physical processes taking place during field evaporation of atoms from needle-shaped specimens. However, the modeling framework for atom probe microscopy has only limited quantitative justification. Building on the continuum field models previously developed, we introduce a more physical approach with the selection of evaporation events based on density functional theory calculations. This model reproduces key features observed experimentally in terms of sequence of evaporation, evaporation maps, and depth resolution, and provides insights into the physical limit formore » spatial resolution.« less
Design and fabrication of nanoelectrodes for applications with scanning electrochemical microscopy
NASA Astrophysics Data System (ADS)
Thakar, Rahul
Scanning electrochemical microscope (SECM) was introduced two decades ago and has since emerged as a powerful research tool to investigate localized electrochemical reactions at the surface of material and biological samples. The ability to obtain chemical information at a surface differentiates SECM from competing scanning probe microscopy (SPM) techniques. Although, chemical specificity is a unique advantage offered by SECM, inherent limitations due to a slow feedback response, and challenges associated with production of smaller electrodes have remained major drawbacks. Initially in this research, SECM was utilized as a characterization and investigative tool. Later, advances in SECM imaging were achieved with design and production of multifunctional nanoelectrodes. At first, platinum based nanoelectrodes were fabricated for use as electrochemical probes to investigate local electron transfer at chemically-modified surfaces. Further, micron and sub-micron platinum electrodes with chemically modified shrouds were prepared and characterized with voltammetric measurements. Studies reveal experimental evidence for the presence of edge-effects that are typically associated with submicron electrodes. Interestingly, we observed selectivity of these electrodes based on hydrophobic/ hydrophilic character. Through vapor deposition of parylene over microstructured material, single-pore membranes and porous membrane arrays were produced. Pore size characterization within porous membranes was performed with templated growth of micro/nanostructures. Characterization of transport properties of ions and redox-active molecules through hydrophobic parylene membranes was investigated with ion conductance microscopy and SECM, individually. Parylene is an insulative material that is chemically resistant, deposits conformally over high-aspect ratio objects and also converts into conductive carbon at high-temperature pyrolysis. Motivated by these results we identified a unique strategy to fabricate parylene based carbon electrodes Here, we have developed a unique strategy to obtain carbon based nanoelectrodes from vapor deposition of parylene over pulled glass nanopipettes. With this approach, multiple electrode geometries were constructed and the application of individual geomtery with SECM is demonstrated. In particular, enhanced spatial resolution and electrochemical information were obtained with the use of carbon ring/nanopore electrodes. Practical implications of edge-effects observed with carbon ring/nanopore electrodes is discussed with substrate generation tip collection (SG/TC) SECM Carbon ring/nanopore electrodes have also enabled the use of SECM in conjunction with ion conductance microscopy to alleviate the issue of poor feedback response. This has further helped in deconvolution of electrochemcial and topographical signals. Although, use of carbon nanoelectrodes is discussed with specific applications to electrochemcial microscopy, these probes have wide utility in electroanalytical applications. Initial proof-of-concept experiments along with future directions for this work are presented.
Singhal, Chaitali; Ingle, Aviraj; Chakraborty, Dhritiman; Pn, Anoop Krishna; Pundir, C S; Narang, Jagriti
2017-05-01
An impedimetric genosensor was fabricated for detection of hepatitis C virus (HCV) genotype 1 in serum, based on hybridization of the probe with complementary target cDNA from sample. To achieve it, probe DNA complementary to HCVgene was immobilized on the surface of methylene blue (MB) doped silica nanoparticles MB@SiNPs) modified fluorine doped tin oxide (FTO) electrode. The synthesized MB@SiNPs was characterized using scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) pattern. This modified electrode (ssDNA/MB@SiNPs/FTO) served both as a signal amplification platform (due to silica nanoparticles (SiNPs) as well as an electrochemical indicator (due to methylene blue (MB)) for the detection of the HCV DNA in patient serum sample. The genosensor was optimized and evaluated. The sensor showed a dynamic linear range 100-10 6 copies/mL, with a detection limit of 90 copies/mL. The sensor was applied for detection of HCV in sera of hepatitis patient and could be renewed. The half life of the sensor was 4 weeks. The MB@SiNPs/FTO electrode could be used for preparation of other gensensors also. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
DePaoli, Damon T.; Lapointe, Nicolas; Goetz, Laurent; Parent, Martin; Prudhomme, Michel; Cantin, Léo.; Galstian, Tigran; Messaddeq, Younès.; Côté, Daniel C.
2016-03-01
Deep brain stimulation's effectiveness relies on the ability of the stimulating electrode to be properly placed within a specific target area of the brain. Optical guidance techniques that can increase the accuracy of the procedure, without causing any additional harm, are therefore of great interest. We have designed a cheap optical fiber-based device that is small enough to be placed within commercially available DBS stimulating electrodes' hollow cores and that is capable of sensing biological information from the surrounding tissue, using low power white light. With this probe we have shown the ability to distinguish white and grey matter as well as blood vessels, in vitro, in human brain samples and in vivo, in rats. We have also repeated the in vitro procedure with the probe inserted in a DBS stimulating electrode and found the results were in good agreement. We are currently validating a second fiber optic device, with micro-optical components, that will result in label free, molecular level sensing capabilities, using CARS spectroscopy. The final objective will be to use this data in real time, during deep brain stimulation neurosurgery, to increase the safety and accuracy of the procedure.
Arruda, Thomas M; Kumar, Amit; Jesse, Stephen; Veith, Gabriel M; Tselev, Alexander; Baddorf, Arthur P; Balke, Nina; Kalinin, Sergei V
2013-09-24
The application of electric bias across tip-surface junctions in scanning probe microscopy can readily induce surface and bulk electrochemical processes that can be further detected though changes in surface topography, Faradaic or conductive currents, or electromechanical strain responses. However, the basic factors controlling tip-induced electrochemical processes, including the relationship between applied tip bias and the thermodynamics of local processes, remains largely unexplored. Using the model Li-ion reduction reaction on the surface in Li-ion conducting glass ceramic, we explore the factors controlling Li-metal formation and find surprisingly strong effects of atmosphere and back electrode composition on the process. We find that reaction processes are highly dependent on the nature of the counter electrode and environmental conditions. Using a nondepleting Li counter electrode, Li particles could grow significantly larger and faster than a depleting counter electrode. Significant Li ion depletion leads to the inability for further Li reduction. Time studies suggest that Li diffusion replenishes the vacant sites after ∼12 h. These studies suggest the feasibility of SPM-based quantitative electrochemical studies under proper environmental controls, extending the concepts of ultramicroelectrodes to the single-digit nanometer scale.
NASA Astrophysics Data System (ADS)
Perea, Daniel E.; Liu, Jia; Bartrand, Jonah; Dicken, Quinten; Thevuthasan, S. Theva; Browning, Nigel D.; Evans, James E.
2016-02-01
Here we report the atomic-scale analysis of biological interfaces within the ferritin protein using atom probe tomography that is facilitated by an advanced specimen preparation approach. Embedding ferritin in an organic polymer resin lacking nitrogen provided chemical contrast to visualise atomic distributions and distinguish the inorganic-organic interface of the ferrihydrite mineral core and protein shell, as well as the organic-organic interface between the ferritin protein shell and embedding resin. In addition, we definitively show the atomic-scale distribution of phosphorus as being at the surface of the ferrihydrite mineral with the distribution of sodium mapped within the protein shell environment with an enhanced distribution at the mineral/protein interface. The sample preparation method is robust and can be directly extended to further enhance the study of biological, organic and inorganic nanomaterials relevant to health, energy or the environment.
Perea, Daniel E.; Liu, Jia; Bartrand, Jonah; Dicken, Quinten; Thevuthasan, S. Theva; Browning, Nigel D.; Evans, James E.
2016-01-01
Here we report the atomic-scale analysis of biological interfaces within the ferritin protein using atom probe tomography that is facilitated by an advanced specimen preparation approach. Embedding ferritin in an organic polymer resin lacking nitrogen provided chemical contrast to visualise atomic distributions and distinguish the inorganic-organic interface of the ferrihydrite mineral core and protein shell, as well as the organic-organic interface between the ferritin protein shell and embedding resin. In addition, we definitively show the atomic-scale distribution of phosphorus as being at the surface of the ferrihydrite mineral with the distribution of sodium mapped within the protein shell environment with an enhanced distribution at the mineral/protein interface. The sample preparation method is robust and can be directly extended to further enhance the study of biological, organic and inorganic nanomaterials relevant to health, energy or the environment. PMID:26924804
Schneebeli, Severin T; Kamenetska, Maria; Cheng, Zhanling; Skouta, Rachid; Friesner, Richard A; Venkataraman, Latha; Breslow, Ronald
2011-02-23
Understanding electron transport across π-π-stacked systems will help to answer fundamental questions about biochemical redox processes and benefit the design of new materials and molecular devices. Herein we employed the STM break-junction technique to measure the single-molecule conductance of multiple π-π-stacked aromatic rings. We studied electron transport through up to four stacked benzene rings held together in an eclipsed fashion via a paracyclophane scaffold. We found that the strained hydrocarbons studied herein couple directly to gold electrodes during the measurements; hence, we did not require any heteroatom binding groups as electrical contacts. Density functional theory-based calculations suggest that the gold atoms of the electrodes bind to two neighboring carbon atoms of the outermost cyclophane benzene rings in η(2) fashion. Our measurements show an exponential decay of the conductance with an increasing number of stacked benzene rings, indicating a nonresonant tunneling mechanism. Furthermore, STM tip-substrate displacement data provide additional evidence that the electrodes bind to the outermost benzene rings of the π-π-stacked molecular wires.
Schwindt, Peter [Albuquerque, NM; Johnson, Cort N [Albuquerque, NM
2012-07-03
An atomic magnetometer is disclosed which uses a pump light beam at a D1 or D2 transition of an alkali metal vapor to magnetically polarize the vapor in a heated cell, and a probe light beam at a different D2 or D1 transition to sense the magnetic field via a polarization rotation of the probe light beam. The pump and probe light beams are both directed along substantially the same optical path through an optical waveplate and through the heated cell to an optical filter which blocks the pump light beam while transmitting the probe light beam to one or more photodetectors which generate electrical signals to sense the magnetic field. The optical waveplate functions as a quarter waveplate to circularly polarize the pump light beam, and as a half waveplate to maintain the probe light beam linearly polarized.
NASA Astrophysics Data System (ADS)
Popov, Igor; Đurišić, Ivana; Belić, Milivoj R.
2017-12-01
Engineering of materials at the atomic level is one of the most important aims of nanotechnology. The unprecedented ability of scanning probe microscopy to address individual atoms opened up the possibilities for nanomanipulation and nanolitography of surfaces and later on of two-dimensional materials. While the state-of-the-art scanning probe lithographic methods include, primarily, adsorption, desorption and repositioning of adatoms and molecules on substrates or tailoring nanoribbons by etching of trenches, the precise modification of the intrinsic atomic structure of materials is yet to be advanced. Here we introduce a new concept, scanning probe microscopy with a rotating tip, for engineering of the atomic structure of membranes based on two-dimensional materials. In order to indicate the viability of the concept, we present our theoretical research, which includes atomistic modeling, molecular dynamics simulations, Fourier analysis and electronic transport calculations. While stretching can be employed for fabrication of atomic chains only, our comprehensive molecular dynamics simulations indicate that nanomanipulation by scanning probe microscopy with a rotating tip is capable of assembling a wide range of topological defects in two-dimensional materials in a rather controllable and reproducible manner. We analyze two possibilities. In the first case the probe tip is retracted from the membrane while in the second case the tip is released beneath the membrane allowing graphene to freely relax and self-heal the pore made by the tip. The former approach with the tip rotation can be achieved experimentally by rotation of the sample, which is equivalent to rotation of the tip, whereas irradiation of the membrane by nanoclusters can be utilized for the latter approach. The latter one has the potential to yield a yet richer diversity of topological defects on account of a lesser determinacy. If successfully realized experimentally the concept proposed here could be an important step toward controllable nanostructuring of two-dimensional materials.
Popov, Igor; Đurišić, Ivana; Belić, Milivoj R
2017-12-08
Engineering of materials at the atomic level is one of the most important aims of nanotechnology. The unprecedented ability of scanning probe microscopy to address individual atoms opened up the possibilities for nanomanipulation and nanolitography of surfaces and later on of two-dimensional materials. While the state-of-the-art scanning probe lithographic methods include, primarily, adsorption, desorption and repositioning of adatoms and molecules on substrates or tailoring nanoribbons by etching of trenches, the precise modification of the intrinsic atomic structure of materials is yet to be advanced. Here we introduce a new concept, scanning probe microscopy with a rotating tip, for engineering of the atomic structure of membranes based on two-dimensional materials. In order to indicate the viability of the concept, we present our theoretical research, which includes atomistic modeling, molecular dynamics simulations, Fourier analysis and electronic transport calculations. While stretching can be employed for fabrication of atomic chains only, our comprehensive molecular dynamics simulations indicate that nanomanipulation by scanning probe microscopy with a rotating tip is capable of assembling a wide range of topological defects in two-dimensional materials in a rather controllable and reproducible manner. We analyze two possibilities. In the first case the probe tip is retracted from the membrane while in the second case the tip is released beneath the membrane allowing graphene to freely relax and self-heal the pore made by the tip. The former approach with the tip rotation can be achieved experimentally by rotation of the sample, which is equivalent to rotation of the tip, whereas irradiation of the membrane by nanoclusters can be utilized for the latter approach. The latter one has the potential to yield a yet richer diversity of topological defects on account of a lesser determinacy. If successfully realized experimentally the concept proposed here could be an important step toward controllable nanostructuring of two-dimensional materials.
Atom probe study of B2 order and A2 disorder of the FeCo matrix in an Fe-Co-Mo-alloy.
Turk, C; Leitner, H; Schemmel, I; Clemens, H; Primig, S
2017-07-01
The physical and mechanical properties of intermetallic alloys can be tailored by controlling the degree of order of the solid solution by means of heat treatments. FeCo alloys with an appropriate composition exhibit an A2-disorder↔B2-order transition during continuous cooling from the disordered bcc region. The study of atomic order in intermetallic alloys by diffraction and its influence on the material properties is well established, however, investigating magnetic FeCo-based alloys by conventional methods such as X-ray diffraction is quite challenging. Thus, the imaging of ordered FeCo-nanostructures needs to be done with high resolution techniques. Transmission electron microscopy investigations of ordered FeCo domains are difficult, due to the chemical and physical similarity of Fe and Co atoms and the ferromagnetism of the samples. In this work it will be demonstrated, that the local atomic arrangement of ordered and disordered regions in an industrial Fe-Co-Mo alloy can be successfully imaged by atom probe measurements supported by field ion microscopy and transmission Kikuchi diffraction. Furthermore, a thorough atom probe parameter study will be presented and field evaporation artefacts as a function of crystallographic orientation in Fe-Co-samples will be discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bioactive nitric oxide concentration does not increase during reactive hyperemia in human skin.
Zhao, J L; Pergola, P E; Roman, L J; Kellogg, D L
2004-02-01
This study examined whether nitric oxide (NO) is involved in the cutaneous response to reactive hyperemia (RH) in the human forearm. We enrolled seven healthy volunteers. NO concentrations were monitored using a NO selective amperometric electrode (ISO-NOP200, World Precision Instruments) inserted into the skin of the forearm. Laser-Doppler flowmetry (Moor Instruments) was used for monitoring skin blood flow (SkBF) at the same site. SkBF and NO levels were monitored and recorded continuously throughout the experiment. An intradermal microdialysis probe was inserted adjacent to the NO electrode for drug delivery. Data collection began 140 min after the NO electrodes and microdialysis probes were inserted. RH was achieved by the inflation of a blood pressure cuff to 25 mmHg above systolic pressure for 7 min after which the pressure in the cuff was abruptly released. Acetylcholine (ACh) was given by microdialysis probe at the end of RH study to verify the ability of the electrode system to detect changes in the NO concentration. SkBF and NO data before RH and immediately, 2, 5, 7, and 10 min after cuff deflation were used for analysis. SkBF increased immediately after release of the occlusion (P < 0.0001) and remained elevated for 2 min. No significant NO changes occurred with the increases in LDF. ACh induced increases in both SkBF and NO (P < 0.000 and P < 0.037, respectively). We conclude that RH increases SkBF by mechanisms that do not require a measurable increase in NO concentrations.
An H₂S Sensor Based on Electrochemistry for Chicken Coops.
Zeng, Lihua; He, Mei; Yu, Huihui; Li, Daoliang
2016-08-31
The recent modernization of the livestock industry lags behind the scale of the livestock industry, particularly in indoor environmental monitoring. In particular, the H₂S gas concentration in chicken coops affects the growth and reproductive capacity of the chickens and threatens their health. Therefore, the research and development of a low-cost, environmentally friendly sensor that can achieve on-line monitoring of H₂S gas has a notably important practical significance. This paper reports the design of an H₂S gas sensor, with selection of an electrochemical probe with high accuracy and wide measurement range using the relatively mature technology of electrochemical sensors. Although the probe of the sensor is the main factor that affects the sensor accuracy, the probe must be combined with a specifically designed signal condition circuit that can overcome the lack of an electrode to satisfy the requirements for the interconnection and matching between the output signal and the test instrument. Because the output current of the electrochemical electrode is small and likely to be disturbed by noise, we designed signal-conditioning modules. Through the signal-conditioning circuit, the output signal of the current electrode can be converted into a voltage and amplified. In addition, we designed a power control module because a bias voltage is necessary for the electrode. Finally, after the calibration experiment, the accurate concentration of H₂S gas can be measured. Based on the experimental analysis, the sensor shows good linearity and selectivity, comparatively high sensitivity, perfect stability and an extremely long operating life of up to two years.
Preparation of boron doped diamond modified by iridium for electroreduction of carbon dioxide (CO2)
NASA Astrophysics Data System (ADS)
Ichzan, A. M.; Gunlazuardi, J.; Ivandini, T. A.
2017-04-01
Electroreduction of carbon dioxide (CO2) at iridium oxide-modified boron-doped diamond (IrOx-BDD) electrodes in aqueous electrolytes was studied by voltammetric method. The aim of this study was to find out the catalytic effect of IrOx to produce fine chemicals contained of two or more carbon atoms (for example acetic acid) in high percentage. Characterization using FE-SEM and XPS indicated that IrO2 can be deposited at BDD electrode, whereas characterization using cyclic voltammetry indicated that the electrode was applicable to be used as working electrode for CO2 electroreduction.
NASA Astrophysics Data System (ADS)
Kizu, Ryosuke; Misumi, Ichiko; Hirai, Akiko; Kinoshita, Kazuto; Gonda, Satoshi
2018-07-01
A metrological atomic force microscope with a tip-tilting mechanism (tilting-mAFM) has been developed to expand the capabilities of 3D nanometrology, particularly for high-resolution topography measurements at the surfaces of vertical sidewalls and for traceable measurements of nanodevice linewidth. In the tilting-mAFM, the probe tip is tilted from vertical to 16° at maximum such that the probe tip can touch and trace the vertical sidewall of a nanometer-scale structure; the probe of a conventional atomic force microscope cannot reach the vertical surface because of its finite cone angle. Probe displacement is monitored in three axes by using high-resolution laser interferometry, which is traceable to the SI unit of length. A central-symmetric 3D scanner with a parallel spring structure allows probe scanning with extremely low interaxial crosstalk. A unique technique for scanning vertical sidewalls was also developed and applied. The experimental results indicated high repeatability in the scanned profiles and sidewall angle measurements. Moreover, the 3D measurement of a line pattern was demonstrated, and the data from both sidewalls were successfully stitched together with subnanometer accuracy. Finally, the critical dimension of the line pattern was obtained.
Unconventional molecule-resolved current rectification in diamondoid–fullerene hybrids
Randel, Jason C.; Niestemski, Francis C.; Botello-Mendez, Andrés R.; Mar, Warren; Ndabashimiye, Georges; Melinte, Sorin; Dahl, Jeremy E. P.; Carlson, Robert M. K.; Butova, Ekaterina D.; Fokin, Andrey A.; Schreiner, Peter R.; Charlier, Jean-Christophe; Manoharan, Hari C.
2014-01-01
The unimolecular rectifier is a fundamental building block of molecular electronics. Rectification in single molecules can arise from electron transfer between molecular orbitals displaying asymmetric spatial charge distributions, akin to p–n junction diodes in semiconductors. Here we report a novel all-hydrocarbon molecular rectifier consisting of a diamantane–C60 conjugate. By linking both sp3 (diamondoid) and sp2 (fullerene) carbon allotropes, this hybrid molecule opposingly pairs negative and positive electron affinities. The single-molecule conductances of self-assembled domains on Au(111), probed by low-temperature scanning tunnelling microscopy and spectroscopy, reveal a large rectifying response of the molecular constructs. This specific electronic behaviour is postulated to originate from the electrostatic repulsion of diamantane–C60 molecules due to positively charged terminal hydrogen atoms on the diamondoid interacting with the top electrode (scanning tip) at various bias voltages. Density functional theory computations scrutinize the electronic and vibrational spectroscopic fingerprints of this unique molecular structure and corroborate the unconventional rectification mechanism. PMID:25202942
Robust forests of vertically aligned carbon nanotubes chemically assembled on carbon substrates.
Garrett, David J; Flavel, Benjamin S; Shapter, Joseph G; Baronian, Keith H R; Downard, Alison J
2010-02-02
Forests of vertically aligned carbon nanotubes (VACNTs) have been chemically assembled on carbon surfaces. The structures show excellent stability over a wide potential range and are resistant to degradation from sonication in acid, base, and organic solvent. Acid-treated single-walled carbon nanotubes (SWCNTs) were assembled on amine-terminated tether layers covalently attached to pyrolyzed photoresist films. Tether layers were electrografted to the carbon substrate by reduction of the p-aminobenzenediazonium cation and oxidation of ethylenediamine. The amine-modified surfaces were incubated with cut SWCNTs in the presence of N,N'-dicyclohexylcarbodiimide (DCC), giving forests of vertically aligned carbon nanotubes (VACNTs). The SWCNT assemblies were characterized by scanning electron microscopy, atomic force microscopy, and electrochemistry. Under conditions where the tether layers slow electron transfer between solution-based redox probes and the underlying electrode, the assembly of VACNTs on the tether layer dramatically increases the electron-transfer rate at the surface. The grafting procedure, and hence the preparation of VACNTs, is applicable to a wide range of materials including metals and semiconductors.
Laboratory plasma probe studies
NASA Technical Reports Server (NTRS)
Heikkila, W. J.
1975-01-01
Diagnostic experiments performed in a collisionless plasma using CO2 as the working gas are described. In particular, simultaneous measurements that have been performed by means of Langmuir- and RF-probes are presented. A resonance occurring above the parallel resonance in the frequency characteristic of a two electrode system is interpreted as being due to the resonant excitation of electroacoustic waves.
Development of an All-Metal Thick Film Cost Effective Metallization System for Solar Cells
NASA Technical Reports Server (NTRS)
Ross, B.
1980-01-01
Materials including copper powders, silver-fluoride, and silicon wafers were procured and copper pastes were prepared. Electrodes made with copper pastes were analyzed and compared with the raw materials. A needle-like structure was observed on the electroded solar cells, and was identified as eutectic copper-silicon by electron probe X-ray spectroscopy. The existence of this phase was thought to benefit electrical and metallurgical properties of the contact. Subsequently electrodes made from new material were also shown to contain this phase while simultaneously having poor adhesion.
Tan, Lu; Ge, Junjun; Jiao, Meng; Jie, Guifen; Niu, Shuyan
2018-06-01
In the present work, we designed a unique enzyme-aided multiple amplification strategy for sensitive electrochemiluminescence (ECL) detection of DNA by using the amplified gold nanoparticles (GNPS)-polyamidoamine (PAMAM)-CdSe quantum dots (QDs) signal probe. Firstly, the novel GNPS-PAMAM dendrimers nanostructure with good biocompatibility and electroconductibility contains many amino groups, which can load a large number of CdSe QDs to develop amplified ECL signal probe. Then, the presence of target DNA activated the enzyme-assisted polymerization strand-displacement cycling reaction, and a large number of the hairpin template was opened. Subsequently, the opened stem further interacted with the capture hairpin (HP) DNA on the electrode, and the GNPS-PAMAM-CdSe signal probe hybridized with the exposed stem of the HP to trigger the second new polymerization reaction. Meanwhile, the first cycle was generating abundant DNA triggers which could directly open the template. As a result of the cascade amplification technique, a large number of CdSe QDs signal probe could be assembled on the electrode, generating much amplified ECL signal for sensitive detection of target DNA. Thus, this novel QDs-based amplified ECL strategy holds great promise for DNA detection and can be further exploited for sensing applications in clinical diagnostics. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Leepheng, Piyawan; Suramitr, Songwut; Phromyothin, Darinee
2017-09-01
The schiff base was synthesized by 2,5-thiophenedicarboxaldehyde and 1,2,4-thiadiazole-3,5-diamine with condensation method. There was modified on carbon paste electrode (CPE) and Printed circuit board (PCB) gold electrode for determination silver ion. The schiff base modified electrodes was characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM), respectively. The electrochemical study was reported by cyclic voltammetry method and impedance spectroscopy using modified electrode as working electrode, platinum wire and Ag/AgCl as counter electrode and reference electrode, respectively. The modified electrodes have suitable detection for Ag+. The determination of silver ions using the modified electrodes depended linearly on Ag+ concentration in the range 1×10-10 M to 1×10-7 M, with cyclic voltammetry sensitivity were 2.51×108 μAM-1 and 1.88×108 μAM-1 for PCB gold electrode and CPE electrode, respectively, limits of detection were 5.33×10-9 M and 1.99×10-8 M for PCB gold electrode and CPE electrode, respectively. The modified electrodes have high accuracy, inexpensive and can applied to detection Ag+ in real samples.
Autonomous Scanning Probe Microscopy in Situ Tip Conditioning through Machine Learning.
Rashidi, Mohammad; Wolkow, Robert A
2018-05-23
Atomic-scale characterization and manipulation with scanning probe microscopy rely upon the use of an atomically sharp probe. Here we present automated methods based on machine learning to automatically detect and recondition the quality of the probe of a scanning tunneling microscope. As a model system, we employ these techniques on the technologically relevant hydrogen-terminated silicon surface, training the network to recognize abnormalities in the appearance of surface dangling bonds. Of the machine learning methods tested, a convolutional neural network yielded the greatest accuracy, achieving a positive identification of degraded tips in 97% of the test cases. By using multiple points of comparison and majority voting, the accuracy of the method is improved beyond 99%.
Khan, Afzal; Nguyen, Viet Huong; Muñoz-Rojas, David; Aghazadehchors, Sara; Jiménez, Carmen; Nguyen, Ngoc Duy; Bellet, Daniel
2018-06-06
Silver nanowire (AgNW) networks offer excellent electrical and optical properties and have emerged as one of the most attractive alternatives to transparent conductive oxides to be used in flexible optoelectronic applications. However, AgNW networks still suffer from chemical, thermal, and electrical instabilities, which in some cases can hinder their efficient integration as transparent electrodes in devices such as solar cells, transparent heaters, touch screens, and organic light emitting diodes. We have used atmospheric pressure spatial atomic layer deposition (AP-SALD) to fabricate hybrid transparent electrode materials in which the AgNW network is protected by a conformal thin layer of zinc oxide. The choice of AP-SALD allows us to maintain the low-cost and scalable processing of AgNW-based transparent electrodes. The effects of the ZnO coating thickness on the physical properties of AgNW networks are presented. The composite electrodes show a drastic enhancement of both thermal and electrical stabilities. We found that bare AgNWs were stable only up to 300 °C when subjected to thermal ramps, whereas the ZnO coating improved the stability up to 500 °C. Similarly, ZnO-coated AgNWs exhibited an increase of 100% in electrical stability with respect to bare networks, withstanding up to 18 V. A simple physical model shows that the origin of the stability improvement is the result of hindered silver atomic diffusion thanks to the presence of the thin oxide layer and the quality of the interfaces of hybrid electrodes. The effects of ZnO coating on both the network adhesion and optical transparency are also discussed. Finally, we show that the AP-SALD ZnO-coated AgNW networks can be effectively used as very stable transparent heaters.
Chen, Shu Jian; Yao, Xupei; Zheng, Changxi; Duan, Wen Hui
2017-11-01
Non-equilibrium molecular dynamics was used to simulate the dynamics of atoms at the atom probe surface and five objective functions were used to quantify errors. The results suggested that before ionization, thermal vibration and collision caused the atoms to displace up to 1Å and 25Å respectively. The average atom displacements were found to vary between 0.2 and 0.5Å. About 9 to 17% of the atoms were affected by collision. Due to the effects of collision and ion-ion repulsion, the back-calculated positions were on average 0.3-0.5Å different from the pre-ionized positions of the atoms when the number of ions generated per pulse was minimal. This difference could increase up to 8-10Å when 1.5ion/nm 2 were evaporated per pulse. On the basis of the results, surface ion density was considered an important factor that needed to be controlled to minimize error in the evaporation process. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
MacDonald, Gordon Alex
This dissertation focuses on characterizing the nanoscale and surface averaged electrical properties of transparent conducting oxide electrodes such as indium tin oxide (ITO) and transparent metal-oxide (MO) electron selective interlayers (ESLs), such as zinc oxide (ZnO), the ability of these materials to rapidly extract photogenerated charges from organic semiconductors (OSCs) used in organic photovoltaic (OPV) cells, and evaluating their impact on the power conversion efficiency (PCE) of OPV devices. In Chapter 1, we will introduce the fundamental principles, benefits, and the key innovations that have advanced this technology. In Chapter 2 of this dissertation, we demonstrate an innovative application of conductive probe atomic force microscopy (CAFM) to map the nanoscale electrical heterogeneity at the interface between ITO, and a well-studied OSC, copper phthalocyanine (CuPc).(MacDonald et al. (2012) ACS Nano, 6, p. 9623) In this work we collected arrays of current-voltage (J-V) curves, using a CAFM probe as the top contact of CuPc/ITO systems, to map the local J-V responses. By comparing J-V responses to known models for charge transport, we were able to determine if the local rate-limiting-step for charge transport is through the OSC (ohmic) or the CuPc/ITO interface (non-ohmic). Chapter 3 focus on the electrical property characterization of RF-magnetron sputtered ZnO (sp-ZnO) ESL films on ITO substrates. We have shown that the energetic alignment of ESLs and the OSC active materials plays a critical role in determining the PCE of OPV devices and UV light soaking sensitivity. We have used a combination of device testing, modeling, and impedance spectroscopy to characterize the effects that energetic alignment has on the charge carrier transport and distribution within the OPV device. In Chapter 4 we demonstrate that the local properties of sp-ZnO films varies as a function of the underlying ITO crystal face. We show that the local ITO crystal face determines the local nucleation and growth of the sp-ZnO films and, in turn, affects the nanoscale distribution of electrical and chemical properties. These studies have contributed to a detailed understanding of the role that electrical heterogeneity, insulating barriers and energetic alignment at MO/OSC interfaces play in OPV PCE.
Atom probe tomography (APT) of carbonate minerals.
Pérez-Huerta, Alberto; Laiginhas, Fernando; Reinhard, David A; Prosa, Ty J; Martens, Rich L
2016-01-01
Atom probe tomography (APT) combines the highest spatial resolution with chemical data at atomic scale for the analysis of materials. For geological specimens, the process of field evaporation and molecular ion formation and interpretation is not yet entirely understood. The objective of this study is to determine the best conditions for the preparation and analysis by APT of carbonate minerals, of great importance in the interpretation of geological processes, focusing on the bulk chemical composition. Results show that the complexity of the mass spectrum is different for calcite and dolomite and relates to dissimilarities in crystalochemical parameters. In addition, APT bulk chemistry of calcite closely matches the expected stoichiometry but fails to provide accurate atomic percentages for elements in dolomite under the experimental conditions evaluated in this work. For both calcite and dolomite, APT underestimates the amount of oxygen based on their chemical formula, whereas it is able to detect small percentages of elemental substitutions in crystal lattices. Overall, our results demonstrate that APT of carbonate minerals is possible, but further optimization of the experimental parameters are required to improve the use of atom probe tomography for the correct interpretation of mineral geochemistry. Copyright © 2015 Elsevier Ltd. All rights reserved.
Copper atomic-scale transistors.
Xie, Fangqing; Kavalenka, Maryna N; Röger, Moritz; Albrecht, Daniel; Hölscher, Hendrik; Leuthold, Jürgen; Schimmel, Thomas
2017-01-01
We investigated copper as a working material for metallic atomic-scale transistors and confirmed that copper atomic-scale transistors can be fabricated and operated electrochemically in a copper electrolyte (CuSO 4 + H 2 SO 4 ) in bi-distilled water under ambient conditions with three microelectrodes (source, drain and gate). The electrochemical switching-on potential of the atomic-scale transistor is below 350 mV, and the switching-off potential is between 0 and -170 mV. The switching-on current is above 1 μA, which is compatible with semiconductor transistor devices. Both sign and amplitude of the voltage applied across the source and drain electrodes ( U bias ) influence the switching rate of the transistor and the copper deposition on the electrodes, and correspondingly shift the electrochemical operation potential. The copper atomic-scale transistors can be switched using a function generator without a computer-controlled feedback switching mechanism. The copper atomic-scale transistors, with only one or two atoms at the narrowest constriction, were realized to switch between 0 and 1 G 0 ( G 0 = 2e 2 /h; with e being the electron charge, and h being Planck's constant) or 2 G 0 by the function generator. The switching rate can reach up to 10 Hz. The copper atomic-scale transistor demonstrates volatile/non-volatile dual functionalities. Such an optimal merging of the logic with memory may open a perspective for processor-in-memory and logic-in-memory architectures, using copper as an alternative working material besides silver for fully metallic atomic-scale transistors.
NASA Astrophysics Data System (ADS)
Barr, Christopher M.; Felfer, Peter J.; Cole, James I.; Taheri, Mitra L.
2018-06-01
Radiation induced segregation in austenitic Fe-Ni-Cr stainless steels is a key detrimental microstructural modification experienced in the current generation of light water reactors. In particular, Cr depletion at grain boundaries can be a significant factor in irradiation-assisted stress corrosion cracking. Therefore, having a complete knowledge and mechanistic understanding of radiation induced segregation at high dose and after a long thermal history is desired for continued sustainability of existing reactors. Here, we examine a 12% cold worked AISI 316 stainless steel hexagonal duct exposed in the lower dose, outer blanket region of the EBR-II reactor, by using advanced characterization and analysis techniques including atom probe tomography and analytical scanning transmission electron microscopy. Contrary to existing literature, we observe an oscillatory w-shape Cr and M-shape Ni concentration profile at 31 dpa. The presence and characterization through advanced atom probe tomography analysis of the w-shape Cr RIS profile is discussed in the context of the localized GB plane interfacial excess of the other major and minor alloying elements. The key finding of a co-segregation phenomena coupling Cr, Mo, and C is discussed in the context of the existing solute segregation literature under irradiation with emphasis on improved spatial and chemical resolution of atom probe tomography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Jin; Zhao, Jie; Liu, Yayuan
Here, developing advanced technologies to stabilize positive electrodes of lithium ion batteries under high-voltage operation is becoming increasingly important, owing to the potential to achieve substantially enhanced energy density for applications such as portable electronics and electrical vehicles. Here, we deposited chemically inert and ionically conductive LiAlO 2 interfacial layers on LiCoO 2 electrodes using the atomic layer deposition technique. During prolonged cycling at high-voltage, the LiAlO 2 coating not only prevented interfacial reactions between the LiCoO 2 electrode and electrolyte, as confirmed by electrochemical impedance spectroscopy and Raman characterizations, but also allowed lithium ions to freely diffuse into LiCoOmore » 2 without sacrificing the power density. As a result, a capacity value close to 200 mA·h·g –1 was achieved for the LiCoO 2 electrodes with commercial level loading densities, cycled at the cut-off potential of 4.6 V vs. Li +/Li for 50 stable cycles; this represents a 40% capacity gain, compared with the values obtained for commercial samples cycled at the cut-off potential of 4.2 V vs. Li +/Li.« less
Xie, Jin; Zhao, Jie; Liu, Yayuan; ...
2017-07-25
Here, developing advanced technologies to stabilize positive electrodes of lithium ion batteries under high-voltage operation is becoming increasingly important, owing to the potential to achieve substantially enhanced energy density for applications such as portable electronics and electrical vehicles. Here, we deposited chemically inert and ionically conductive LiAlO 2 interfacial layers on LiCoO 2 electrodes using the atomic layer deposition technique. During prolonged cycling at high-voltage, the LiAlO 2 coating not only prevented interfacial reactions between the LiCoO 2 electrode and electrolyte, as confirmed by electrochemical impedance spectroscopy and Raman characterizations, but also allowed lithium ions to freely diffuse into LiCoOmore » 2 without sacrificing the power density. As a result, a capacity value close to 200 mA·h·g –1 was achieved for the LiCoO 2 electrodes with commercial level loading densities, cycled at the cut-off potential of 4.6 V vs. Li +/Li for 50 stable cycles; this represents a 40% capacity gain, compared with the values obtained for commercial samples cycled at the cut-off potential of 4.2 V vs. Li +/Li.« less
Development of nanowire arrays for neural probe
NASA Astrophysics Data System (ADS)
Abraham, Jose K.; Xie, Jining; Varadan, Vijay K.
2005-05-01
It is already established that functional electrical stimulation is an effective way to restore many functions of the brain in disabled individuals. The electrical stimulation can be done by using an array of electrodes. Neural probes stimulate or sense the biopotentials mainly through the exposed metal sites. These sites should be smaller relative to the spatial potential distribution so that any potential averaging in the sensing area can be avoided. At the same time, the decrease in size of these sensing sites is limited due to the increase in impedance levels and the thermal noise while decreasing its size. It is known that current density in a planar electrode is not uniform and a higher current density can be observer around the perimeter of the electrodes. Electrical measurements conducted on many nanotubes and nanowires have already proved that it could be possible to use for current density applications and the drawbacks of the present design in neural probes can be overcome by incorporating many nanotechnology solutions. In this paper we present the design and development of nanowire arrays for the neural probe for the multisite contact which has the ability to collect and analyze isolated single unit activity. An array of vertically grown nanowires is used as contact site and many of such arrays can be used for stimulating as well as recording sites. The nanolevel interaction and wireless communication solution can extend to applications involving the treatment of many neurological disorders including Parkinson"s disease, Alzheimer"s disease, spinal injuries and the treatment of blindness and paralyzed patients with minimal or no invasive surgical procedures.
2014-01-01
Background The aim of this research project was the realization of an incremental bipolar radiofrequency generator with inline 4-electrode probe for partial renal resection without clamping of the vessels. Methods The experimentation was carried out across two phases: the preliminary realization of a specific generator and an inline multielectrode probe for open surgery (Phase 1); system testing on 27 bench kidneys for a total of 47 partial resection (Phase 2). The parameters evaluated were: power level, generator automatisms, parenchymal coagulation times, needle caliber, thickness of the coagulated tissue “slice”, charring, ergonomy, feasibility of the application of “bolster” stitches. Results The analysis of the results referred to the homogeneity and thickness of coagulation, energy supply times with reference to the power level and caliber of the needles. The optimal results were obtained by using needles of 1.5 mm caliber at power level 5, and with coagulation times of 54 seconds for the first insertion and 30 seconds for the second. Conclusions The experimentation demonstrated that the apparatus, consisting of a generator named “LaparoNewPro” and fitted with a dedicated probe for open surgery, is able to carry out a coagulation of the line of resection of the renal parenchyma in a homogeneous manner, in short times, without tissue charring, and with the possibility of stitching both on coagulated tissue and the caliceal system. The generator automatism based on the flow of the current supplied by each electrode is reliable, and the cessation of energy supply coincides with optimal coagulation. PMID:24410789
Nesselberger, Markus; Ashton, Sean J; Wiberg, Gustav K H; Arenz, Matthias
2013-07-01
We present a detailed description of the construction of an in situ electrochemical ATR-FTIR setup combined with a wall-jet electrode to investigate the electrocatalytic properties of nanoparticulate catalysts in situ under controlled mass transport conditions. The presented setup allows the electrochemical interface to be probed in combination with the simultaneous determination of reaction rates. At the same time, the high level of automation allows it to be used as a standard tool in electrocatalysis research. The performance of the setup was demonstrated by probing the oxygen reduction reaction on a platinum black catalyst in sulfuric electrolyte.
Fully electronic urine dipstick probe for combinatorial detection of inflammatory biomarkers
Kamakoti, Vikramshankar; Kinnamon, David; Choi, Kang Hyeok; Jagannath, Badrinath; Prasad, Shalini
2018-01-01
Aim: An electrochemical urine dipstick probe biosensor has been demonstrated using molybdenum electrodes on nanoporous polyamide substrate for the quantitative detection of two inflammatory protein biomarkers, CRP and IL-6. Materials & methods: The electrode interface was characterized using ζ-potential and Fourier transform infrared spectroscopy. Detection of biomarkers was demonstrated by measuring impedance changes associated with the dose concentrations of the two biomarkers. A proof of feasibility of point-of-care implementation of the biosensor was demonstrated using a portable electronics platform. Results & conclusion: Limit of detection of 1 pg/ml was achieved for CRP and IL-6 in human urine and synthetic urine buffers. The developed portable hardware demonstrated close correlation with benchtop equipment results. PMID:29796304
Lithium-aluminum-iron electrode composition
Kaun, Thomas D.
1979-01-01
A negative electrode composition is presented for use in a secondary electrochemical cell. The cell also includes an electrolyte with lithium ions such as a molten salt of alkali metal halides or alkaline earth metal halides that can be used in high-temperature cells. The cell's positive electrode contains a a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent in an alloy of aluminum-iron. Various binary and ternary intermetallic phases of lithium, aluminum and iron are formed. The lithium within the intermetallic phase of Al.sub.5 Fe.sub.2 exhibits increased activity over that of lithium within a lithium-aluminum alloy to provide an increased cell potential of up to about 0.25 volt.
Fu, YunLin; Pao, Te; Chen, Sih-Zih; Yau, ShuehLin; Dow, Wei-Ping; Lee, Yuh-Lang
2012-07-03
This study employed real-time in situ STM imaging to examine the adsorption of PEG molecules on Pt(111) modified by a monolayer of copper adatoms and the subsequent bulk Cu deposition in 1 M H(2)SO(4) + 1 mM CuSO(4)+ 1 mM KCl + 88 μM PEG. At the end of Cu underpotential deposition (~0.35 V vs Ag/AgCl), a highly ordered Pt(111)-(√3 × √7)-Cu + HSO(4)(-) structure was observed in 1 M H(2)SO(4) + 1 mM CuSO(4). This adlattice restructured upon the introduction of poly(ethylene glycol) (PEG, molecular weight 200) and chloride anions. At the onset potential for bulk Cu deposition (~0 V), a Pt(111)-(√3 × √3)R30°-Cu + Cl(-) structure was imaged with a tunneling current of 0.5 nA and a bias voltage of 100 mV. Lowering the tunneling current to 0.2 nA yielded a (4 × 4) structure, presumably because of adsorbed PEG200 molecules. The subsequent nucleation and deposition processes of Cu in solution containing PEG and Cl(-) were examined, revealing the nucleation of 2- to 3-nm-wide CuCl clusters on an atomically smooth Pt(111) surface at overpotentials of less than 50 mV. With larger overpotential (η > 150 mV), Cu deposition seemed to bypass the production of CuCl species, leading to layered Cu deposition, starting preferentially at step defects, followed by lateral growth to cover the entire Pt electrode surface. These processes were observed with both PEG200 and 4000, although the former tended to produce more CuCl nanoclusters. Raising [H(2)SO(4)] to 1 M substantiates the suppressing effect of PEG on Cu deposition. This STM study provided atomic- or molecular-level insight into the effect of PEG additives on the deposition of Cu.
Subwavelength atom localization via coherent manipulation of the Raman gain process
NASA Astrophysics Data System (ADS)
Qamar, Sajid; Mehmood, Asad; Qamar, Shahid
2009-03-01
We present a simple scheme of atom localization in a subwavelength domain via manipulation of Raman gain process. We consider a four-level system with a pump and a weak probe field. In addition, we apply a coherent field to control the gain process. The system is similar to the one used by Agarwal and Dasgupta [Phys. Rev. A 70, 023802 (2004)] for the superluminal pulse propagation through Raman gain medium. For atom localization, we consider both pump and control fields to be the standing-wave fields of the cavity. We show that a much precise position of an atom passing through the standing-wave fields can be determined by measuring the gain spectrum of the probe field.
Groenland, A W; Wolters, R A M; Kovalgin, A Y; Schmitz, J
2011-09-01
In this work, metal-insulator-metal (MIM) and metal-insulator-silicon (MIS) capacitors are studied using titanium nitride (TiN) as the electrode material. The effect of structural defects on the electrical properties on MIS and MIM capacitors is studied for various electrode configurations. In the MIM capacitors the bottom electrode is a patterned 100 nm TiN layer (called BE type 1), deposited via sputtering, while MIS capacitors have a flat bottom electrode (called BE type 2-silicon substrate). A high quality 50-100 nm thick SiO2 layer, made by inductively-coupled plasma CVD at 150 degrees C, is deposited as a dielectric on top of both types of bottom electrodes. BE type 1 (MIM) capacitors have a varying from low to high concentration of structural defects in the SiO2 layer. BE type 2 (MIS) capacitors have a low concentration of structural defects and are used as a reference. Two sets of each capacitor design are fabricated with the TiN top electrode deposited either via physical vapour deposition (PVD, i.e., sputtering) or atomic layer deposition (ALD). The MIM and MIS capacitors are electrically characterized in terms of the leakage current at an electric field of 0.1 MV/cm (I leak) and for different structural defect concentrations. It is shown that the structural defects only show up in the electrical characteristics of BE type 1 capacitors with an ALD TiN-based top electrode. This is due to the excellent step coverage of the ALD process. This work clearly demonstrates the sensitivity to process-induced structural defects, when ALD is used as a step in process integration of conductors on insulation materials.
Kaliyappan, Karthikeyan; Liu, Jian; Lushington, Andrew; Li, Ruying; Sun, Xueliang
2015-08-10
For the first time, atomic layer deposition (ALD) of Al2 O3 was adopted to enhance the cyclic stability of layered P2-type Na2/3 (Mn0.54 Ni0.13 Co0.13 )O2 (MNC) cathodes for use in sodium-ion batteries (SIBs). Discharge capacities of approximately 120, 123, 113, and 105 mA h g(-1) were obtained for the pristine electrode and electrodes coated with 2, 5, and 10 ALD cycles, respectively. All electrodes were cycled at the 1C discharge current rate for voltages between 2 and 4.5 V in 1 M NaClO4 electrolyte. Among the electrodes tested, the Al2 O3 coating from 2 ALD cycles (MNC-2) exhibited the best electrochemical stability and rate capability, whereas the electrode coated by 10 ALD cycles (MNC-10) displayed the highest columbic efficiency (CE), which exceeded 97 % after 100 cycles. The enhanced electrochemical stability observed for ALD-coated electrodes could be a result of the protection effects and high band-gap energy (Eg =9.00 eV) of the Al2 O3 coating layer. Additionally, the metal-oxide coating provides structural stability against mechanical stresses occurring during the cycling process. The capacity, cyclic stability, and rate performance achieved for the MNC electrode coated with 2 ALD cycles of Al2 O3 reveal the best results for SIBs. This study provides a promising route toward increasing the stability and CE of electrode materials for SIB application. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
An electrochemiluminescent DNA sensor based on nano-gold enhancement and ferrocene quenching.
Yao, Wu; Wang, Lun; Wang, Haiyan; Zhang, Xiaolei; Li, Ling; Zhang, Na; Pan, Le; Xing, Nannan
2013-02-15
An electrochemiluminescent DNA (ECL-DNA) sensor based on nano-gold signal enhancement (i.e. gold nanoparticles, GNP) and ferrocene signal quenching was investigated. The Au electrode was first modified with GNPs through electrodeposition method, followed by subsequent immobilization of single-stranded probe DNA labeled with ruthenium complex. The resulting sensor produced a higher ECL signal due to its higher density of self-assembled probe DNAs on the surface. Upon the hybridization of probe DNA with complementary target DNA labeled with ferrocene, ECL intensity decreased significantly due to spatial separation of ECL label from the electrode surface. As a result, the ECL signal was simultaneously quenched by ferrocene. The effects of both nano-gold electrodeposition time and ferrocene on the performance of ECL-DNA sensor were studied in detail and possible reasons for these effects were suggested as well. The reported ECL-DNA sensor showed great sensitivity and may provide an alternative approach for DNA detection in diagnostics and gene analysis. Copyright © 2012 Elsevier B.V. All rights reserved.
A bio-impedance probe to assess liver steatosis during transplant surgery.
Smith, Penny Probert; You, Fusheng; Vogel, Thomas; Silva, Michael
2011-01-01
This work addresses the design of a bioimpedance probe to assess steatosis on the exposed liver in the donor during liver transplant surgery. Whereas typically bioimpedance uses needle probes to avoid surface effects, for clinical reasons a non-penetrative probe is required. In addition the need to ensure that the measurement is representative of the bulk tissue suggests a larger probe than is normally used to ensure a sufficiently large measurement volume. Using a simple model, simulations and tests on bovine liver, this paper investigates the relationship between probe dimensions and depth of measurement penetration and investigates the accuracy which might be expected in a configuration suitable for use in the operating theatre on intact but exposed livers. A probe using ECG electrodes is proposed and investigated.
Simulation of Dual-Electrode Capacitively Coupled Plasma Discharges
NASA Astrophysics Data System (ADS)
Lu, Yijia; Ji, Linhong; Cheng, Jia
2016-12-01
Dual-electrode capacitively coupled plasma discharges are investigated here to lower the non-uniformity of plasma density. The dual-electrode structure proposed by Jung splits the electrode region and increases the flexibility of fine tuning non-uniformity. Different RF voltages, frequencies, phase-shifts and electrode areas are simulated and the influences are discussed. RF voltage and electrode area have a non-monotonic effect on non-uniformity, while frequency has a monotonic effect. Phase-shift has a cyclical influence on non-uniformity. A special combination of 224 V voltage and 11% area ratio with 10 MHz lowers the non-uniformity of the original set (200 V voltage and 0% area ratio with 10 MHz) by 46.5%. The position of the plasma density peak at the probe line has been tracked and properly tuning the phase-shift can obtain the same trace as tuning frequency or voltage. supported by National Natural Science Foundation of China (No. 51405261)
Life capability of the silver electrode in alkaline electrochemical cells
NASA Technical Reports Server (NTRS)
Frank, H. A.
1976-01-01
Estimates of silver electrode degradation rates were made by comparing the recently measured capacities with the reported early life capacities. Chemical analyses were carried out to determine the extent of silver loss from the electrode and its distribution throughout the cell components. The results established that the silver electrode is very stable when stored at reduced temperatures in the range of 0 to -51 C, in which it exhibits a permanent degradation in capacity of 0.5%/year. The results also indicated that the silver electrode is not quite as stable when operated and stored at room temperature, where it exhibits permanent degradation in the range of 3% to 14%/year. These results were employed in predicting the life capability of the proposed new Ag-H2 cell and also in assessing the merits of employing silver electrodes in long-life probe batteries.
rmpM genosensor for detection of human brain bacterial meningitis in cerebrospinal fluid.
Dash, Sandip Kumar; Sharma, Minakshi; Khare, Shashi; Kumar, Ashok
2013-09-01
Human brain bacterial meningitis is a life-threatening disease caused mainly by Neisseria meningitidis, lead to damage of the outer membrane covering (meninges) of brain or even death. The usual methods of diagnosis are either time-consuming or have some limitations. The specific rmpM (reduction-modifiable protein M) virulent gene based genosensor is more sensitive, specific, and can detect N. meningitidis directly from the patient cerebrospinal fluid in 30 min including 1-min response time. 5'-Thiol-labeled single-stranded DNA (ssDNA) probe was immobilized onto screen-printed gold electrode (SPGE) and hybridized with denatured (95 °C) single-stranded genomic DNA (ssG-DNA) for 10 min at 25 °C. The electrochemical response was measured by cyclic voltammetry, differential pulse voltammetry (DPV) and electrochemical impedance using redox indicators. The sensitivity of the genosensor was 9.5087 (μA/cm(2))/ng with DPV and limit of detection was 3 ng/6 μL ssG-DNA. The immobilization of the ssDNA probe and hybridization with ssG-DNA from N. meningitidis was characterized by atomic force microscopy and Fourier transform infrared spectroscopy. The rmpM genosensor was stable for 6 months at 4 °C with 10 % loss in initial DPV current. The advantage of rmpM genosensor is to detect bacterial meningitis simultaneously in multiple patients using SPGE array during an outbreak of the disease.
Manufacturing techniques for Gravity Probe B gyroscopes
NASA Technical Reports Server (NTRS)
Rasquin, J. R.
1978-01-01
Additional and improved techniques for the manufacture of Gravity Probe B gyroscopes are reported. Improvements discussed include the redesign of the housings, new techniques for indentation of the electrode surfaces, and a new rotor ball lapping machine. These three items represent a significant improvement in operation of the gyroscope and also make possible the fabrication of a gyroscope which will meet flight requirements.
Dynamic Tunneling Junctions at the Atomic Intersection of Two Twisted Graphene Edges.
Bellunato, Amedeo; Vrbica, Sasha D; Sabater, Carlos; de Vos, Erik W; Fermin, Remko; Kanneworff, Kirsten N; Galli, Federica; van Ruitenbeek, Jan M; Schneider, Grégory F
2018-04-11
The investigation of the transport properties of single molecules by flowing tunneling currents across extremely narrow gaps is relevant for challenges as diverse as the development of molecular electronics and sequencing of DNA. The achievement of well-defined electrode architectures remains a technical challenge, especially due to the necessity of high precision fabrication processes and the chemical instability of most bulk metals. Here, we illustrate a continuously adjustable tunneling junction between the edges of two twisted graphene sheets. The unique property of the graphene electrodes is that the sheets are rigidly supported all the way to the atomic edge. By analyzing the tunneling current characteristics, we also demonstrate that the spacing across the gap junction can be controllably adjusted. Finally, we demonstrate the transition from the tunneling regime to contact and the formation of an atomic-sized junction between the two edges of graphene.
Carrier Injection and Scattering in Atomically Thin Chalcogenides
NASA Astrophysics Data System (ADS)
Li, Song-Lin; Tsukagoshi, Kazuhito
2015-12-01
Atomically thin two-dimensional chalcogenides such as MoS2 monolayers are structurally ideal channel materials for the ultimate atomic electronics. However, a heavy thickness dependence of electrical performance is shown in these ultrathin materials, and the device performance normally degrades while exhibiting a low carrier mobility as compared with corresponding bulks, constituting a main hurdle for application in electronics. In this brief review, we summarize our recent work on electrode/channel contacts and carrier scattering mechanisms to address the origins of this adverse thickness dependence. Extrinsically, the Schottky barrier height increases at the electrode/channel contact area in thin channels owing to bandgap expansion caused by quantum confinement, which hinders carrier injection and degrades device performance. Intrinsically, thin channels tend to suffer from intensified Coulomb impurity scattering, resulting from the reduced interaction distance between interfacial impurities and channel carriers. Both factors are responsible for the adverse dependence of carrier mobility on channel thickness in two-dimensional semiconductors.
Dynamic Tunneling Junctions at the Atomic Intersection of Two Twisted Graphene Edges
2018-01-01
The investigation of the transport properties of single molecules by flowing tunneling currents across extremely narrow gaps is relevant for challenges as diverse as the development of molecular electronics and sequencing of DNA. The achievement of well-defined electrode architectures remains a technical challenge, especially due to the necessity of high precision fabrication processes and the chemical instability of most bulk metals. Here, we illustrate a continuously adjustable tunneling junction between the edges of two twisted graphene sheets. The unique property of the graphene electrodes is that the sheets are rigidly supported all the way to the atomic edge. By analyzing the tunneling current characteristics, we also demonstrate that the spacing across the gap junction can be controllably adjusted. Finally, we demonstrate the transition from the tunneling regime to contact and the formation of an atomic-sized junction between the two edges of graphene. PMID:29513997
Deng, Keqin; Liu, Xinyan; Li, Chunxiang; Huang, Haowen
2018-05-31
The loading capacity of thionin (Thi) on shortened multi-walled carbon nanotubes (S-MWCNTs) and acidified multi-walled carbon nanotubes (A-MWCNTs) was compared. Two DNA probe fragments were designed for hybridization with microRNA-21 (miR-21), the microRNAs (miRNAs) model analyte. DNA probe 1 (P1) was assembled on Au nanoparticles (AuNPs) modified electrode. MiR-21 was captured by the pre-immobilized P1. A signal nanoprobe was synthesized by loading large amount of Thi on S-MWCNTs with covalently bonded probe 2 (P2). Owing to the large effective surface area of MWCNTs, fast electron shuttle of MWCNTs, high-loaded Thi on S-MWCNTs, and the increased conductivity from AuNPs, after signal probe hybridized with miR-21, it gave rise to a magnified current response on electrode. The increased electrochemical current enabled us to quantitatively detect miR-21. Expensive bioreagents and labeled target/detection DNA or miRNAs were avoided in this strategy. The operation complexity and assay cost were also reduced. Copyright © 2018 Elsevier B.V. All rights reserved.