Detection of vitamin b1 (thiamine) using modified carbon paste electrodes with polypyrrole
NASA Astrophysics Data System (ADS)
Muppariqoh, N. M.; Wahyuni, W. T.; Putra, B. R.
2017-03-01
Vitamin B1 (thiamine) is oxidized in alkaline medium and can be detected by cyclic voltammetry technique using carbon paste electrode (CPE) as a working electrode. polypyrrole-modified CPE were used in this study to increase sensitivity and selectivity measurement of thiamine. Molecularly imprinted polymers (MIP) of the modified CPE was prepared through electrodeposition of pyrrole. Measurement of thiamine performed in KCl 0.05 M (pH 10, tris buffer) using CPE and the modified CPE gave an optimum condition anodic current of thiamine at 0.3 V, potential range (-1.6_1 V), and scan rate of 100 mV/s. Measurement of thiamine using polypyrrole modified CPE (CPE-MIPpy) showed better result than CPE itself with detection limit of 6.9×10-5 M and quantitation limit 2.1×10-4 M. CPE-MIPpy is selective to vita min B1. In conclusion, CPE-MIPpy as a working electrode showed better performance of thiamine measurement than that of CPE.
NASA Astrophysics Data System (ADS)
Leepheng, Piyawan; Suramitr, Songwut; Phromyothin, Darinee
2017-09-01
The schiff base was synthesized by 2,5-thiophenedicarboxaldehyde and 1,2,4-thiadiazole-3,5-diamine with condensation method. There was modified on carbon paste electrode (CPE) and Printed circuit board (PCB) gold electrode for determination silver ion. The schiff base modified electrodes was characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM), respectively. The electrochemical study was reported by cyclic voltammetry method and impedance spectroscopy using modified electrode as working electrode, platinum wire and Ag/AgCl as counter electrode and reference electrode, respectively. The modified electrodes have suitable detection for Ag+. The determination of silver ions using the modified electrodes depended linearly on Ag+ concentration in the range 1×10-10 M to 1×10-7 M, with cyclic voltammetry sensitivity were 2.51×108 μAM-1 and 1.88×108 μAM-1 for PCB gold electrode and CPE electrode, respectively, limits of detection were 5.33×10-9 M and 1.99×10-8 M for PCB gold electrode and CPE electrode, respectively. The modified electrodes have high accuracy, inexpensive and can applied to detection Ag+ in real samples.
NASA Astrophysics Data System (ADS)
Ye, Fengying; Feng, Chenqi; Fu, Ning; Wu, Huihui; Jiang, Jibo; Han, Sheng
2015-12-01
A home-made carbon paste electrode (CPE) was reformed by graphene oxide (GO)/lanthanum (La) complexes, and a modified electrode, called GO-La/CPE, was fabricated for the selective determination of dopamine (DA) by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Several factors affecting the electrocatalytic performance of the modified sensor were investigated. Owning to the combination of GO and La ions, the GO-La/CPE sensor exhibited large surface area, well selectivity, good repeatability and stability in the oxidation reaction of DA. At optimal conditions, the response of the GO-La/CPE electrode for determining DA was linear in the region of 0.01-0.1 μM and 0.1-400.0 μM. The limit of detection was down to 0.32 nM (S/N = 3). In addition, this modified electrode was successfully applied to the detection of DA in real urine and serum samples by using standard adding method, showing its promising application in the electroanalysis of real samples.
Li, Jing; Huang, Minghua; Liu, Xiaoqing; Wei, Hui; Xu, Yuanhong; Xu, Guobao; Wang, Erkang
2007-07-01
The electrochemiluminescence (ECL) of tris(2,2'-bipyridyl)ruthenium(II) [Ru(bpy)(3)(2+)] ion-exchanged in the sulfonic-functionalized MCM-41 silicas was developed with tripropylamine (TPrA) as a co-reactant in a carbon paste electrode (CPE) using a room temperature ionic liquid (IL) as a binder. The sulfonic-functionalized silicas MCM-41 were used for preparing an ECL sensor by the electrostatic interactions between Ru(bpy)(3)(2+) cations and sulfonic acid groups. We used the IL as a binder to construct the CPE (IL-CPE) to replace the traditional binder of the CPE (T-CPE)--silicone oil. The results indicated that the MCM-41-modified IL-CPE had more open structures to allow faster diffusion of Ru(bpy)(3)(2+) and that the ionic liquid also acted as a conducting bridge to connect TPrA with Ru(bpy)(3)(2+) sites immobilized in the electrode, resulting in a higher ECL intensity compared with the MCM-41-modified T-CPE. Herein, the detection limit for TPrA of the MCM-41-modified IL-CPE was 7.2 nM, which was two orders of magnitude lower than that observed at the T-CPE. When this new sensor was used in flow injection analysis (FIA), the MCM-41-modified IL-CPE ECL sensor also showed good reproducibility. Furthermore, the sensor could also be renewed easily by mechanical polishing whenever needed.
Aswini, K K; Vinu Mohan, A M; Biju, V M
2014-04-01
A methacrylic acid (MAA) based molecularly imprinted polymer (MIP) modified carbon paste electrode (CPE) was developed for electrochemical detection of L-cysteine (Cys). Characterisation of MIP was done with FTIR and the modified electrode with cyclic voltammetry (CV) and differential pulse voltammetry (DPV). CV, DPV and impedance analysis demonstrated that the modified electrode is responsive towards the target molecule. The optimum percentage composition of MIP for MIP/CPE and the effect of pH towards the electrode response for Cys were studied. The detection of Cys in the range of 2×10(-8) to 18×10(-8)M at MIP/CPE was monitored by DPV with a limit of detection of 9.6nM and R(2) of 0.9974. Also, various physiological interferents such as ascorbic acid, L-tryptophan, D-glucose, D-cysteine and L-cysteine were found to have little effect on DPV response at MIP/CPE. The utility of the electrode was proved by the effective detection of Cys from tap water and human blood plasma samples with reproducible results. Copyright © 2014 Elsevier B.V. All rights reserved.
Amiripour, Fatemeh; Azizi, Seyed Naser; Ghasemi, Shahram
2018-06-01
In this report, a facile, efficient and low cost electrochemical sensor based on bimetallic Au-Cu nanoparticles supported on P nanozeolite modified carbon paste electrode (Au-Cu/NPZ/CPE) was constructed and its efficiency for determination of hydrazine in trace level was studied. For this purpose, agro waste material, stem sweep ash (SSA) was employed as the starting material (silica source) for the synthesis of nano P zeolite (NPZ). After characterization of the synthesized NPZ by analytical instruments (scanning electronic microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy), construction of Au-Cu/NPZ/CPE was performed by three steps procedure involving preparation of nano P zeolite modified carbon paste electrode (NPZ/CPE), introducing Cu +2 ions into nano zeolite structure by ion exchange and electrochemical reduction of Cu +2 ions upon applying constant potential. This procedure is followed by partial replacement of Cu by Au due to galvanic replacement reaction (GRR). The electrochemical properties of hydrazine at the surface of Au-Cu/NPZ/CPE was evaluated using cyclic voltammetry (CV), amperometry, and chronoamperometry methods in 0.1 M phosphate buffer solution (PBS). It was found that the prepared sensor has higher electrocatalytic activity at a relatively lower potential compared to other modified electrodes including Au/NPZ/CPE, Cu/NPZ/CPE, Au-Cu/CPE and etc. Moreover, the proposed electrochemical sensor presented the favorable analytical properties for determination of hydrazine such as low detection limit (0.04 µM), rapid response time (3 s), wide linear range (0.01-150 mM), and high sensitivity (99.53 µA mM -1 ) that are related to the synergic effect of bimetallic of Au-Cu, porous structure and enough surface area of NPZ. In addition, capability of Au-Cu/NPZ/CPE sensor was successfully tested in real samples with good accuracy and precision. Copyright © 2018 Elsevier B.V. All rights reserved.
Electrochemical detection of phenolic estrogenic compounds at clay modified carbon paste electrode
NASA Astrophysics Data System (ADS)
Belkamssa, N.; Ouattara, L.; Kawachi, A.; Tsujimura, M.; Isoda, H.; Chtaini, A.; Ksibi, M.
2015-04-01
A simple and sensitive electroanalytical method was developed to determine the Endocrine Disrupting chemical 4-tert-octylphenol on clay modified carbon paste electrode (Clay/CPE). The electrochemical response of the proposed electrode was studied by means of cyclic and square wave voltammetry. It has found that the oxidation of 4-tert-octylphenol on the clay/CPE displayed a well-defined oxidation peak. Under these optimal conditions, a linear relation between concentrations of 4-tert-octylphenol current response was obtained over range of 7.26×10-6 to 3.87×10-7 with a detection and quantification limit of 9.2×10-7 M and 3.06×10-6 M, respectively. The correlation coefficient is 0.9963. The modified electrode showed suitable sensitivity, high stability and an accurate detection of 4-tert-octylphenol. The modified electrode also relevant suitable selectivity for various phenolic estrogenic compounds.
Kalanur, Shankara S; Seetharamappa, Jaldappagari; Prashanth, S N
2010-07-01
In this work, we have prepared nano-material modified carbon paste electrode (CPE) for the sensing of an antidepressant, buzepide methiodide (BZP) by incorporating TiO2 nanoparticles in carbon paste matrix. Electrochemical studies indicated that the TiO2 nanoparticles efficiently increased the electron transfer kinetics between drug and the electrode. Compared with the nonmodified CPE, the TiO2-modified CPE greatly enhances the oxidation signal of BZP with negative shift in peak potential. Based on this, we have proposed a sensitive, rapid and convenient electrochemical method for the determination of BZP. Under the optimized conditions, the oxidation peak current of BZP is found to be proportional to its concentration in the range of 5 x 10(-8) to 5 x 10(-5)M with a detection limit of 8.2 x 10(-9)M. Finally, this sensing method was successfully applied for the determination of BZP in human blood serum and urine samples with good recoveries. 2010 Elsevier B.V. All rights reserved.
Wang, Hongjuan; Qian, Duo; Xiao, Xilin; Deng, Chunyan; Liao, Lifu; Deng, Jian; Lin, Ying-Wu
2018-06-01
An innovative electrochemical sensor was fabricated for the sensitive and selective determination of tinidazole (TNZ), based on a carbon paste electrode (CPE) modified with multi-walled carbon nanotubes (MWCNTs) and boron-embedded molecularly imprinted composite membranes (B-MICMs). Density functional theory (DFT) calculations were carried out to investigate the utility of template-monomer interactions to screen appropriate monomers for the rational design of B-MICMs. The distinct synergic effect of MWCNTs and B-MICMs was evidenced by the positive shift of the reduction peak potential of TNZ at B-MICMs/MWCNTs modified CPE (B-MICMs/MWCNTs/CPE) by about 200 mV, and the 12-fold amplification of the peak current, compared with a bare carbon paste electrode (CPE). Moreover, the coordinate interactions between trisubstituted boron atoms embedded in B-MICMs matrix and nitrogen atoms of TNZ endow the sensor with advanced affinity and specific directionality. Thereafter, a highly sensitive electrochemical analytical method for TNZ was established by different pulse voltammetry (DPV) at B-MICMs/MWCNTs/CPE with a lower detection limit (1.25 × 10 -12 mol L -1 ) (S/N = 3). The practical application of the sensor was demonstrated by determining TNZ in pharmaceutical and biological samples with good precision (RSD 1.36% to 3.85%) and acceptable recoveries (82.40%-104.0%). Copyright © 2018 Elsevier B.V. All rights reserved.
Khaleghi, Fatemeh; Irai, Abolfazl Elyasi; Sadeghi, Roya; Gupta, Vinod Kumar; Wen, Yangping
2016-01-01
Vitamin B9 or folic acid is an important food supplement with wide clinical applications. Due to its importance and its side effects in pregnant women, fast determination of this vitamin is very important. In this study we present a new fast and sensitive voltammetric sensor for the analysis of trace levels of vitamin B9 using a carbon paste electrode (CPE) modified with 1,3-dipropylimidazolium bromide (1,3-DIBr) as a binder and ZnO/CNTs nanocomposite as a mediator. The electro-oxidation signal of vitamin B9 at the surface of the 1,3-DIBr/ZnO/CNTs/CPE electrode appeared at 800 mV, which was about 95 mV less positive compared to the corresponding unmodified CPE. The oxidation current of vitamin B9 by square wave voltammetry (SWV) increased linearly with its concentration in the range of 0.08–650 μM. The detection limit for vitamin B9 was 0.05 μM. Finally, the utility of the new 1,3-DIBr/ZnO/CNTs/CPE electrode was tested in the determination of vitamin B9 in food and pharmaceutical samples. PMID:27231909
Lakić, Mladen; Vukadinović, Aleksandar; Kalcher, Kurt; Nikolić, Aleksandar S; Stanković, Dalibor M
2016-12-01
This work presents the simultaneous determination of catechol (CC) and hydroquinone (HQ), employing a modified carbon paste electrode (CPE) with ferrite nanomaterial. Ferrite nanomaterial was doped with different amount of cobalt and this was investigated toward simultaneous oxidation of CC and HQ. It was shown that this modification strongly increases electrochemical characteristics of the CPE. Also, electrocatalytic activity of such materials strongly depends on the level of substituted Co in the ferrite nanoparticles. The modified electrodes, labeled as CoFerrite/CPE, showed two pairs of well-defined redox peaks for the electrochemical processes of catechol and hydroquinone. Involving of ferrite material in the structure of CPE, cause increase in the potentials differences between redox couples of the investigated compounds, accompanied with increases in peaks currents. Several important parameters were optimized and calibration curves, with limits of detection (LOD) of 0.15 and 0.3µM for catechol and hydroquinone, respectively, were constructed by employing amperometric detection. Effect of possible interfering compounds was also studied, and proposed method was successfully applied for CC and HQ quantification in real samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Amperometric Sensor for Detection of Chloride Ions.
Trnkova, Libuse; Adam, Vojtech; Hubalek, Jaromir; Babula, Petr; Kizek, Rene
2008-09-15
Chloride ion sensing is important in many fields such as clinical diagnosis, environmental monitoring and industrial applications. We have measured chloride ions at a carbon paste electrode (CPE) and at a CPE modified with solid AgNO₃, a solution of AgNO₃ and/or solid silver particles. Detection limits (3 S/N) for chloride ions were 100 μM, 100 μM and 10 μM for solid AgNO₃, solution of AgNO₃ and/or solid silver particles, respectively. The CPE modified with silver particles is the most sensitive to the presence chloride ions. After that we approached to the miniaturization of the whole electrochemical instrument. Measurements were carried out on miniaturized instrument consisting of a potentiostat with dimensions 35 × 166 × 125 mm, screen printed electrodes, a peristaltic pump and a PC with control software. Under the most suitable experimental conditions (Britton-Robinson buffer, pH 1.8 and working electrode potential 550 mV) we estimated the limit of detection (3 S/N) as 500 nM.
Sex determination based on amelogenin DNA by modified electrode with gold nanoparticle.
Mazloum-Ardakani, Mohammad; Rajabzadeh, Nooshin; Benvidi, Ali; Heidari, Mohammad Mehdi
2013-12-15
We have developed a simple and renewable electrochemical biosensor based on carbon paste electrode (CPE) for the detection of DNA synthesis and hybridization. CPE was modified with gold nanoparticles (AuNPs), which are helpful for immobilization of thiolated bioreceptors. AuNPs were characterized by scanning electron microscopy (SEM). Self-assembled monolayers (SAMs) of thiolated single-stranded DNA (SH-ssDNA) of the amelogenin gene was formed on CPE. The immobilization of the probe and its hybridization with the target DNA was optimized using different experimental conditions. The modified electrode was characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The electrochemical response of ssDNA hybridization and DNA synthesis was measured using differential pulse voltammetry (DPV) with methylene blue (MB) as an electroactive indicator. The new biosensor can distinguish between complementary and non-complementary strands of amelogenin ssDNA. Genomic DNA was extracted from blood and was detected based on changes in the MB reduction signal. These results demonstrated that the new biosensor could be used for sex determination. The proposed biosensor in this study could be used for detection and discrimination of polymerase chain reaction (PCR) products of amelogenin DNA. Copyright © 2013 Elsevier Inc. All rights reserved.
Ghaedi, Hamed; Afkhami, Abbas; Madrakian, Tayyebeh; Soltani-Felehgari, Farzaneh
2016-02-01
A new chemically modified carbon paste electrode (CMCPE) was applied to the simple, rapid, highly selective and sensitive determination of citalopram in human serum and pharmaceutical preparations using adsorptive square wave voltammetry (ASWV). The ZnO nanoparticles and multi-walled carbon nanotubes modified CPE (ZnO-MWCNT/CPE) electrode was prepared by incorporation of the ZnO nanoparticles and multi-walled carbon nanotubes (MWCNT) in carbon paste electrode. The limit of detection and the linear range were found to be 0.005 and 0.012 to 1.54μmolL(-1) of citalopram, respectively. The effects of potentially interfering substances on the determination of this compound were investigated and found that the electrode is highly selective. The proposed CMCPE was used to the determination of citalopram in human serum, urine and pharmaceutical samples. This reveals that ZnO-MWCNT/CPE shows excellent analytical performance for the determination of citalopram in terms of very low detection limit, high sensitivity, very good repeatability and reproducibility over other methods reported in the literature. Copyright © 2015. Published by Elsevier B.V.
Wang, Hongjuan; Qian, Duo; Xiao, Xilin; Gao, Shuqin; Cheng, Jianlin; He, Bo; Liao, Lifu; Deng, Jian
2017-08-15
An innovative electrochemical sensor, based on a carbon paste electrode (CPE) modified with graphene (GR) and a boron-embedded duplex molecularly imprinted hybrid membrane (B-DMIHM), was fabricated for the highly sensitive and selective determination of lamotrigine (LMT). Density functional theory (DFT) was employed to study the interactions between the template and monomers to screen appropriate functional monomers for rational design of the B-DMIHM. The distinct synergic effect of GR and B-DMIHM was evidenced by the positive shift of the reduction peak potential of LMT at B-DMIHM/GR modified CPE (B-DMIHM/GR/CPE) by about 300mV, and the 13-fold amplification of the peak current, compared to a bare carbon paste electrode (CPE). The electrochemical reduction mechanism of lamotrigine was investigated by different voltammetric techniques. It was illustrated that square wave voltammetry (SWV) was more sensitive than different pulse voltammetry (DPV) for the quantitative analysis of LMT. Thereafter, a highly sensitive electroanalytical method for LMT was established by SWV at B-DMIHM/GR/CPE with a good linear relationship from 5.0×10 -8 to 5.0×10 -5 and 5.0×10 -5 to 3.0×10 -4 molL -1 with a lower detection limit (1.52×10 -9 molL -1 ) based on the lower linear range(S/N=3). The practical application of the sensor was demonstrated by determining the concentration of LMT in pharmaceutical and biological samples with good precision (RSD 1.04-4.41%) and acceptable recoveries (92.40-107.0%). Copyright © 2017 Elsevier B.V. All rights reserved.
Amperometric Sensor for Detection of Chloride Ions†
Trnkova, Libuse; Adam, Vojtech; Hubalek, Jaromir; Babula, Petr; Kizek, Rene
2008-01-01
Chloride ion sensing is important in many fields such as clinical diagnosis, environmental monitoring and industrial applications. We have measured chloride ions at a carbon paste electrode (CPE) and at a CPE modified with solid AgNO3, a solution of AgNO3 and/or solid silver particles. Detection limits (3 S/N) for chloride ions were 100 μM, 100 μM and 10 μM for solid AgNO3, solution of AgNO3 and/or solid silver particles, respectively. The CPE modified with silver particles is the most sensitive to the presence chloride ions. After that we approached to the miniaturization of the whole electrochemical instrument. Measurements were carried out on miniaturized instrument consisting of a potentiostat with dimensions 35 × 166 × 125 mm, screen printed electrodes, a peristaltic pump and a PC with control software. Under the most suitable experimental conditions (Britton-Robinson buffer, pH 1.8 and working electrode potential 550 mV) we estimated the limit of detection (3 S/N) as 500 nM. PMID:27873832
Shahamirifard, Seyed Alireza; Ghaedi, Mehrorang; Razmi, Zahra; Hajati, Shaaker
2018-08-30
The determination of gallic acid (GA) and uric acid (UA) is essential due to their biological properties. Numerous methods have been reported for the analysis of GA and UA in various real samples. However, the development of a simple, rapid and practical sensor still remains a great challenge. Here, a carbon paste electrode (CPE) was modified by nanocomposite containing zirconia nanoparticles (ZrO 2 NPs), Choline chloride (ChCl) and gold nanoparticles (AuNPs) to construct ZrO 2 -ChCl-AuNPs/CPE as electrochemical sensor for the simultaneous electro-oxidation of GA and UA. Characterization was performed by Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy and energy dispersive X-ray spectroscopy. The modified electrode was investigated by different methods including electrochemical impedance spectroscopy and cyclic voltammetry. Kinetic parameters such as charge transfer coefficient, standard heterogeneous electron transfer rate constant and other parameters were calculated via voltammetry techniques. Differential pulse voltammetry was used for simultaneous determination of GA and UA applying the ZrO 2 -ChCl-AuNPs/CPE electrode. At the optimum conditions, this sensor showed a linear response in the ranges 0.22- 55 and 0.12-55 µM for GA and UA, respectively. In addition, low detection limits of 25 and 15 nM were obtained for GA and UA, respectively. Furthermore, ZrO 2 -ChCl-AuNPs/CPE was successfully applied for the independent determination of GA in green tea and fruit juice as well as the simultaneous determination of GA and UA in human urine samples. Copyright © 2018 Elsevier B.V. All rights reserved.
Jahanbani, Shahriar; Benvidi, Ali
2016-11-15
In this research, we have improved two aptasensors based on a modified carbon paste electrode (CPE) with oleic acid (OA), and a magnetic bar carbon paste electrode (MBCPE) with Fe3O4 magnetic nanoparticles and oleic acid (OA). After the immobilization process of anti-TET at the electrode surfaces, the aptasensors were named CPE/OA/anti-TET and MBCPE/Fe3O4NPs/OA/anti-TET respectively. In this paper, the detection of tetracycline is compared using CPE/OA/anti-TET and MBCPE/Fe3O4NPs/OA/anti-TET aptasensors. These modified electrodes were characterized by infrared spectroscopy (IR), scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), UV-vis spectroscopy, and voltammetric methods. The linear range and the detection limit for TET with the CPE/OA/anti-TET aptasensor were found to be 1.0×10(-12)-1.0×10(-7)M and 3.0×10(-13)M respectively by EIS method. The linear range and the detection limit for TET with the CPE/OA/anti-TET aptasensor were found to be 1.0×10(-10)-1.0×10(-7)M with a limit of detection of 2.9×10(-11)M using differential pulse voltammetry (DPV) technique. The MBCPE/Fe3O4NPs/OA/anti-TET aptasensor was used for determination of TET, and a liner range of 1.0×10(-14)-1.0×10(-6)M with a detection limit of 3.8×10(-15)M was obtained by EIS method. Also, the linear range and detection limit of 1.0×10(-12)-1.0×10(-6)M and 3.1×10(-13)M respectively, were obtained for MBCPE/Fe3O4NPs/OA/anti-TET aptasensor using DPV. The proposed aptasensors were applied for determination of tetracycline in some real samples such as drug, milk, honey and blood serum samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Khalil, M M; Abed El-Aziz, G M
2016-02-01
This article focused on the construction and characteristics of novel and sensitive gentamicin carbon paste electrodes which are based on the incorporation of multiwall carbon nanotubes (MWCNTs) which improve the characteristics of the electrodes. The electrodes were constructed based on gentamicin-phosphotungstate (GNS-PTA) called CPE1, gentamicin-phosphomolybdate (GNS-PMA) called CPE2, GNS-PTA+ MWMCNTs called MWCPE1, and GNS-PMA+ MWMCNTs called MWCPE2. The constructed electrodes, at optimum paste composition, exhibited good Nernstian response for determination of gentamicin sulfate (GNS) over a linear concentration range from 2.5×10(-6) to 1×10(-2), 3.0×10(-6) to 1×10(-2), 4.9×10(-7) to 1×10(-2) and 5.0×10(-7) to 1×10(-2)molL(-1), with lower detection limit 1×10(-6), 1×10(-6), 1.9×10(-7) and 2.2×10(-7)molL(-1), and with slope values of 29.0±0.4, 29.2±0.7, 31.2±0.5 and 31.0±0.6mV/decade for CPE1, CPE2, MWCPE1 and MWCPE2, respectively. The response of electrodes is not affected by pH in the range 3-8 for CPE1 and CPE2 and in the range 2.5-8.5 for MWCPE1 and MWCPE2. The results showed fast dynamic response time (about 8-5s) and long lifetime (more than 2months) for all electrodes. The sensors showed high selectivity for gentamicin sulfate (GNS) with respect to a large number of interfering species. The constructed electrodes were successfully applied for determination of GNS in pure form, its pharmaceutical preparations and biological fluids using standard addition and potentiometric titration methods with high accuracy and precision. Published by Elsevier B.V.
Svegl, I G; Ogorevc, B
2000-08-01
Carbon paste electrodes (CPEs) modified with different soils in their native form were prepared to create a soil-like solid phase suitable for application in studies of heavy metal ion uptake and binding interactions. The preparation of CPEs modified with five different soils was examined and their heavy metal ion uptake behavior investigated using a model Cu(II) aqueous solution. Metal ions were accumulated under open circuit conditions and were determined after a medium exchange using differential pulse anodic stripping voltammetry, applying preelectrolysis at -0.7 V. The soil-modified CPE accumulation behavior, including the linearity of the current response versus Cu(II) concentration, the influence of the pH on the solution, and the uptake kinetics, was thoroughly investigated. The correlation between the soil-modified CPE uptake capability and the standard soil parameters, such as ion exchange capacity, soil pH, organic matter and clay content, were evaluated for all five examined soils. The influence of selected endogenous cations (K(I), Ca(II), Fe(III)) on the transfer of Cu(II) ions from a solution to the simulated soil solid phase was examined and is discussed. Preliminary examinations of the soil-modified CPE uptake behavior with some exogenous heavy metal ions of strong environmental interest (Pb(II), Hg(II), Cd(II) and Ag(I)) are also presented. This work demonstrates some attractive possibilities for the application of a soil-modified CPE in studying soil-heavy metal ion binding interactions, with a further potential use as a new environmental sensor appropriate for fist on-site testing of polluted soils.
Bai, Huiping; Xiong, Caiyun; Wang, Chunqiong; Liu, Peng; Dong, Su; Cao, Qiue
2018-05-01
A rhodium (III) ion carbon paste electrode (CPE) based on an ion imprinted polymer (IIP) as a new modifying agent has been prepared and studied. Rh(III) ion imprinted polymer was synthesized by copolymerization of acrylamide-Rh(III) complex and ethylene glycol dimethacrylate according to the precipitation polymerization. Acrylamide acted as both functional monomer and complexing agent to create selective coordination sites in a cross-linked polymer. The ion imprinted carbon paste electrode (IIP-CPE) was prepared by mixing rhodium IIP-nanoparticles and graphite powder in n-eicosane as an adhesive and then embedding them in a Teflon tube. Amperometric i-t curve method was applied as the determination technique. Several parameters, including the functional monomer, molar ratio of template, monomer and cross-linking agent, the amounts of IIP, the applied potential, the buffer solution and pH have been studied. According to the results, IIP-CPE showed a considerably higher response in comparison with the electrode embedded with non-imprinted polymer (NIP), indicating the formation of suitable recognition sites in the IIP structure during the polymerization stage. The introduced electrode showed a linear range of 1.00×10-8~3.0×10-5 mol·L-1 and detection limit of 6.0 nmol L-1 (S/N = 3). The IIP-CPE was successfully applied for the trace rhodium determination in catalyst and plant samples with RSD of less than 3.3% (n = 5) and recoveries in the range of 95.5~102.5%.
Pd-Cu/poly(o-Anisidine) nanocomposite as an efficient catalyst for formaldehyde oxidation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosseini, Sayed Reza, E-mail: r.hosseini@umz.ac.ir; Raoof, Jahan-Bakhsh; Ghasemi, Shahram
Highlights: • o-Anisidine monomer was electro-polymerized at the pCPE surface in acid medium. • Palladium/copper NPs were prepared by galvanic replacement method at the POA/pCPE. • Pd-Cu NPs showed excellent electrocatalytic activity towards formaldehyde oxidation. • The bimetallic Pd-Cu NPs/POA nanocomposite showed satisfactory long-term stability. - Abstract: In this work, for the first time, the electrocatalytic oxidation of formaldehyde in 0.5 M sulfuric acid solution at spherical bimetallic palladium-copper nanoparticles (Pd-Cu NPs) deposited on the poly (o-Anisidine) film modified electrochemically pretreated carbon paste electrode (POA/pCPE) has been investigated. Highly porous POA film prepared by electropolymerization onto the pCPE was usedmore » as a potent support for deposition of the Pd-Cu NPs. The Pd-Cu NPs were prepared through spontaneous and irreversible reaction via galvanic replacement between Pd{sup II} ions and the Cu{sup 0} particles. The prepared Pd-Cu NPs were characterized by scanning electron microscopy, energy dispersive spectroscopy and electrochemical methods. The obtained results showed that the utilization of Cu nanoparticles and pretreatment technique enhances the electrocatalytic activity of the modified electrode towards formaldehyde oxidation. The influence of several parameters on formaldehyde oxidation as well as stability of the Pd-Cu/POA/pCPE has been investigated.« less
Song, Han; Wang, Yuli; Zhang, Lu; Tian, Liping; Luo, Jun; Zhao, Na; Han, Yajie; Zhao, Feilang; Ying, Xue; Li, Yingchun
2017-11-01
A highly sensitive and selective electrochemical sensor based on carbon paste electrode (CPE) modified with molecularly imprinted polymers (MIPs) has been developed for the determination of estrone 3-sulfate sodium salt (ESS). MIPs were prepared in polar medium via bulk polymerization and characterized by scanning electron microscopy and infrared spectroscopy. Cyclic voltammetry was performed to the study preparation process and binding behavior of the MIP-modified CPE (MIP/CPE) toward ESS. The conditions for preparing MIPs and MIP/CPE as well as ESS detection were optimized. Under the optimal experimental conditions, the detection linear range for ESS is 4 × 10 -12 to 6 × 10 -9 M with a limit of detection of 1.18 × 10 -12 M (S/N = 3). In addition, the sensor exhibits high binding affinity toward ESS over its structural analogues with excellent repeatability and stability. The fabricated MIP/CPE was then successfully employed to detect ESS in pregnant mare urine (PMU) without any pretreatment, and the average recoveries were from 99.6 to 104.9% with relative standard deviation less than 3.0%. High-performance liquid chromatography was adopted as a reference to validate the established approach in detecting ESS and their results showed good agreement. The as-prepared sensor has high potential to be a decent tool for on-site determination of ESS in PMU in a fast and convenient manner. Graphical Abstract ᅟ.
Thomas, Tony; Mascarenhas, Ronald J; D' Souza, Ozma J; Detriche, Simon; Mekhalif, Zineb; Martis, Praveen
2014-07-01
An amperometric sensor for the determination of epinephrine (EP) was fabricated by modifying the carbon paste electrode (CPE) with pristine multi-walled carbon nanotubes (pMWCNTs) using bulk modification followed by drop casting of sodium dodecyl sulfate (SDS) onto the surface for its optimal potential application. The modified electrode showed an excellent electrocatalytic activity towards EP by decreasing the overpotential and greatly enhancing the current sensitivity. FE-SEM images confirmed the dispersion of pMWCNTs in the CPE matrix. EDX analysis ensured the surface coverage of SDS. A comparative study of pMWCNTs with those of oxidized MWCNTs (MWCNTsOX) modified electrodes reveals that the former is the best base material for the construction of the sensor with advantages of lower oxidation overpotential and the least background current. The performance of the modified electrode was impressive in terms of the least charge transfer resistance (Rct), highest values for diffusion coefficient (DEP) and standard heterogeneous electron transfer rate constant (k°). Analytical characterization of the modified electrode exhibited two linear dynamic ranges from 1.0×10(-7) to 1.0×10(-6)M and 1.0×10(-6) to 1.0×10(-4)M with a detection limit of (4.5±0.18)×10(-8)M. A 100-fold excess of serotonin, acetaminophen, folic acid, uric acid, tryptophan, tyrosine and cysteine, 10-fold excess of ascorbic acid and twofold excess of dopamine do not interfere in the quantification of EP at this electrode. The analytical applications of the modified electrode were demonstrated by determining EP in spiked blood serum and adrenaline tartrate injection. The modified electrode involves a simple fabrication procedure, minimum usage of the modifier, quick response, excellent stability, reproducibility and anti-fouling effects. Copyright © 2014 Elsevier B.V. All rights reserved.
Santiago, Mitk’El B.; Vélez, Meredith M.; Borrero, Solmarie; Díaz, Agustín; Casillas, Craig A.; Hofmann, Cristina; Guadalupe, Ana R.; Colón, Jorge L.
2007-01-01
We present a carbon paste electrode (CPE) modified using the electron mediator bis(1,10-phenanthroline-5,6-dione) (2,2′-bipyridine)ruthenium(II) ([Ru(phend)2bpy]2+) exchanged into the inorganic layered material zirconium phosphate (ZrP). X-Ray powder diffraction showed that the interlayer distance of ZrP increases upon [Ru(phend)2bpy]2+ intercalation from 10.3 Å to 14.2 Å. The UV-vis and IR spectroscopies results showed the characteristic peaks expected for [Ru(phend)2bpy]2+. The UV-vis spectrophotometric results indicate that the [Ru(phend)2bpy]2+ concentration inside the ZrP layers increased as a function of the loading level. The exchanged [Ru(phend)2bpy]2+ exhibited luminescence even at low concentration. Modified CPEs were constructed and analyzed using cyclic voltammetry. The intercalated mediator remained electroactive within the layers (E°′ = −38.5 mV vs. Ag/AgCl, 3.5 M NaCl) and electrocatalysis of NADH oxidation was observed. The kinetics of the modified CPE shows a Michaelis –Menten behavior. This CPE was used for the oxidation of NADH in the presence of Bakers’ yeast alcohol dehydrogenase. A calibration plot for ethanol is presented. PMID:18516242
Mbokou, Serge Foukmeniok; Pontié, Maxime; Razafimandimby, Bienvenue; Bouchara, Jean-Philippe; Njanja, Evangéline; Tonle Kenfack, Ignas
2016-08-01
The nonpathogenic filamentous fungus Scedosporium dehoogii was used for the first time to study the electrochemical biodegradation of acetaminophen (APAP). A carbon fiber microelectrode (CFME) modified by nickel tetrasulfonated phthalocyanine (p-NiTSPc) and a carbon paste electrode (CPE) modified with coffee husks (CH) were prepared to follow the kinetics of APAP biodegradation. The electrochemical response of APAP at both electrodes was studied by cyclic voltammetry and square wave voltammetry. p-NiTSPc-CFME was suitable to measure high concentrations of APAP, whereas CH-CPE gave rise to high current densities but was subject to the passivation phenomenon. p-NiTSPc-CFME was then successfully applied as a sensor to describe the kinetics of APAP biodegradation: this was found to be of first order with a kinetics constant of 0.11 day(-1) (at 25 °C) and a half-life of 6.30 days. APAP biodegradation by the fungus did not lead to the formation of p-aminophenol (PAP) and hydroquinone (HQ) that are carcinogenic, mutagenic, and reprotoxic (CMR). Graphical Abstract The kinetics of APAP biodegradation, followed by a poly-nickel tetrasulfonated phtalocyanine modified carbon fiber microelectrode.
Koudelkova, Zuzana; Syrovy, Tomas; Ambrozova, Pavlina; Moravec, Zdenek; Kubac, Lubomir; Hynek, David; Adam, Vojtech
2017-01-01
In this study, the preparation and electrochemical application of a chromium(III) oxide modified carbon paste electrode (Cr-CPE) and a screen printed electrode (SPE), made from the same material and optimized for the simple, cheap and sensitive simultaneous determination of zinc, cadmium, lead, copper and the detection of silver ions, is described. The limits of detection and quantification were 25 and 80 µg·L−1 for Zn(II), 3 and 10 µg·L−1 for Cd(II), 3 and 10 µg·L−1 for Pb(II), 3 and 10 µg·L−1 for Cu(II), and 3 and 10 µg·L−1 for Ag(I), respectively. Furthermore, this promising modification was transferred to the screen-printed electrode. The limits of detection for the simultaneous determination of zinc, cadmium, copper and lead on the screen printed electrodes were found to be 350 µg·L−1 for Zn(II), 25 µg·L−1 for Cd(II), 3 µg·L−1 for Pb(II) and 3 µg·L−1 for Cu(II). Practical usability for the simultaneous detection of these heavy metal ions by the Cr-CPE was also demonstrated in the analyses of wastewaters. PMID:28792450
Koudelkova, Zuzana; Syrovy, Tomas; Ambrozova, Pavlina; Moravec, Zdenek; Kubac, Lubomir; Hynek, David; Richtera, Lukas; Adam, Vojtech
2017-08-09
In this study, the preparation and electrochemical application of a chromium(III) oxide modified carbon paste electrode (Cr-CPE) and a screen printed electrode (SPE), made from the same material and optimized for the simple, cheap and sensitive simultaneous determination of zinc, cadmium, lead, copper and the detection of silver ions, is described. The limits of detection and quantification were 25 and 80 µg·L -1 for Zn(II), 3 and 10 µg·L -1 for Cd(II), 3 and 10 µg·L -1 for Pb(II), 3 and 10 µg·L -1 for Cu(II), and 3 and 10 µg·L -1 for Ag(I), respectively. Furthermore, this promising modification was transferred to the screen-printed electrode. The limits of detection for the simultaneous determination of zinc, cadmium, copper and lead on the screen printed electrodes were found to be 350 µg·L -1 for Zn(II), 25 µg·L -1 for Cd(II), 3 µg·L -1 for Pb(II) and 3 µg·L -1 for Cu(II). Practical usability for the simultaneous detection of these heavy metal ions by the Cr-CPE was also demonstrated in the analyses of wastewaters.
Abdel-Haleem, Fatehy M; Saad, Mohamed; Barhoum, Ahmed; Bechelany, Mikhael; Rizk, Mahmoud S
2018-08-01
We report on highly-sensitive ion-selective electrodes (ISEs) for potentiometric determining of galantamine hydrobromide (GB) in physiological fluids. Galantamine hydrobromide (GB) was selected for this study due to its previous medical importance for treating Alzheimer's disease. Three different types of ISEs were investigated: PVC membrane electrode (PVCE), carbon-paste electrode (CPE), and coated-wire electrode (CWE). In the construction of these electrodes, galantaminium-reineckate (GR) ion-pair was used as a sensing species for GB in solutions. The modified carbon-paste electrode (MCPE) was prepared using graphene oxide (MCPE-GO) and sodium tetrakis (trifluoromethyl) phenyl borate (MCPE-STFPB) as ion-exchanger. The potentiometric modified CPEs (MCPE-GO and MCPE-STFPB) show an improved performance in term of Nernstian slope, selectivity, response time, and response stability compared to the unmodified CPE. The prepared electrodes PVCE, CWE, CPE, MCPE-GO and MCPE-STFPB show Nernstian slopes of 59.9, 59.5, 58.1, 58.3 and 57.0 mV/conc. decade, and detection limits of 5.0 × 10 -6 , 6.3 × 10 -6 , 8.0 × 10 -6 , 6.0 × 10 -6 and 8.0 × 10 -6 mol L -1 , respectively. The prepared ISEs also show high selectivity against cations (i.e. Na + , K + , NH 4 + , Ca 2+ , Al 3+ , Fe 3+ ), amino acids (i.e. glycine, L-alanine alanine), and sugars (i.e. fructose, glucose, maltose, lactose). The prepared ISEs are applicable for determining GB in spiked serums, urines, and pharmaceutical preparations, using a standard addition and a direct potentiometric method. The fast response time (<10 s), long lifetime (1-5 weeks), reversibility and stability of the measured signals facilitate the application of these sensors for routine analysis of the real samples. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chiniforoshan, Hossein; Ensafi, Ali A.; Heydari-Bafrooei, Esmaeil; Khalesi, Sara Bahmanpour; Tabrizi, Leila
2015-08-01
In this research, new polymer of 4,4‧-dicyanamidobiphenyl (bpH2)-Cu(II) complex, [Cu(bp)(H2O)2]n, has been synthesized and characterized by FT-IR, UV-vis spectroscopy and elemental analysis. The spherical morphology of Cu nanoparticles was confirmed by scanning electron microscopy (SEM) image and the transmission electron microscopy (TEM) image showed that the particle size dimensions of Cu nanoparticles were about 80 nm. Thermal gravimetric analysis (TGA) results indicated that this polymer was thermally stable. Hence, the prepared polymer was used as a modifier for the electrochemical determination of dopamine (DA) and ascorbic acid (AA). Compared to the bare carbon paste electrode (CPE) and multiwall carbon paste electrode (CNTPE), bpCu modified CPE (bpCu-CPE) exhibits much higher electrocatalytic activities toward the oxidation of dopamine and ascorbic acid with an increase in peak currents and a decrease in oxidation overpotentials. The effects of scan rate, concentration and pH were also studied. Differential pulse voltammetry results show that DA and AA could be detected selectively and sensitively at bpCu-CPE with peak-to-peak separation of 200 mV. Relative standard deviations for AA and DA determinations were less than 2.5%, and the linear response ranges of the electrode were 0.05-30.0 μmol L-1 for AA and DA, respectively. The calculated detection limits were 0.02 and 0.04 μmol L-1 (S/N = 3) for AA and DA, respectively. In addition, the presented method was successfully applied for the simultaneous determination of DA and AA in urine and blood samples with reliable recovery.
Kalambate, Pramod K; Rawool, Chaitali R; Karna, Shashi P; Srivastava, Ashwini K
2016-12-01
A highly sensitive and selective voltammetric method for determination of Methylergometrine maleate (MM) in pharmaceutical formulations, urine and blood serum samples has been developed based on enhanced electrochemical response of MM at carbon nanofibers and silver nanoparticles modified carbon paste electrode (CNF-AgNP-CPE). The electrode material was characterized by various techniques viz., X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy. The electrocatalytic response of MM at CNF-AgNP-CPE was studied by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). Under optimized conditions, the proposed sensor exhibits excellent electrochemical response towards MM. The DPV study shows greatly enhanced electrochemical signal for MM at CNF-AgNP-CPE lending high sensitivity to the proposed sensor for MM detection. The peak (Ip) current for MM is found to be rectilinear in the range 4.0×10(-8)-2.0×10(-5)M with a detection limit of 7.1×10(-9)M using DPV. The feasibility of the proposed sensor in analytical applications was investigated by conducting experiments on commercial pharmaceutical formulations, human urine and blood serum samples, which yielded satisfactory recoveries of MM. The proposed electrochemical sensor offers high sensitivity, selectivity, reproducibility and practical utility. We recommend it as an authentic and productive electrochemical sensor for successful determination of MM. Copyright © 2016. Published by Elsevier B.V.
Electrochemical detection of dopamine based on pre-concentration by graphene nanosheets.
Bagherzadeh, Mojtaba; Heydari, Maryam
2013-10-21
Herein, graphene nanosheets (GNS) were synthesized, by a green and facile method based on reduction by glucose, and characterized. Afterwards, a carbon paste electrode (CPE) was modified with GNS by casting and drying GNS on top of the CPE (CPE/GNS). The behavior of the CPE/GNS towards dopamine (DA) and ascorbic acid (AA) was investigated by electrochemical methods and the obtained results showed that the CPE/GNS had adsorbed only DA. Based on this behavior, the DA molecules were pre-concentrated on top of the CPE/GNS, followed by stripping in DA free solution. Subsequent to experimental and instrumental optimization, a calibration curve from 2.0 × 10(-6) to 1.0 × 10(-3) M DA, r(2) = 0.99 (±0.01), with detection limit (DL) = 8.5 × 10(-7) M DA, sensitivity = 15.4 (±0.94) μA, and RSD = 6.1 was observed in the presence of 1.0 × 10(-3) M AA. Finally, the performance of the CPE/GNS was successfully tested in a pharmaceutical sample. This work provides a promising strategy for DA detection in the presence of biological interferences, e.g. AA, with high sensitivity and simple characteristics.
NASA Astrophysics Data System (ADS)
Lima, Dhésmon; Calaça, Giselle Nathaly; Viana, Adriano Gonçalves; Pessôa, Christiana Andrade
2018-01-01
The application of carbon paste electrodes modified with porphyran-capped gold nanoparticles (CPE/AuNps-PFR) to detect an important anticancer drug, 5-fluorouracil (5-FU), is described. Gold nanoparticles (AuNps) were synthesized through a green one-pot route, by using porphyran (PFR) (a sulfated polysaccharide extracted from red seaweed) as reducing and stabilizing agent. The reaction temperature and the concentrations of AuCl4- and PFR for AuNps-PFR synthesis were optimized by using a 23 full factorial design with central point assayed in triplicate. The smallest particle size (128.7 nm, obtained by DLS) was achieved by employing a temperature of 70 °C and AuCl4- and PFR concentrations equal to 2.5 mmol L-1 and 0.25 mg mL-1, respectively. The AuNps-PFR nanocomposite was characterized by UV-vis spectroscopy, FTIR, DLS, TEM, XRD and zeta potential, which proved that PFR was effective at reducing and capping the AuNps. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) experiments showed that the nanocomposite could enhance the electrochemical performance of the electrodes, as a consequence of the high conductivity and large surface area presented by the AuNps. The CPE/AuNps-PFR was able to electrocatalyze the oxidation of 5-FU by CV and differential pulse voltammetry (DPV). A linear relationship between the DPV peak currents and 5-FU concentration was verified in the range from 29.9 to 234 μmol L-1 in 0.04 mol L-1 BR buffer solution pH 8.0. Detection and quantification limits were found to be 0.66 and 2.22 μmol L-1, respectively. Besides the good sensitivity, CPE/AuNps-PFR showed reproducibility and did not suffer significant interference from potentially electroative biological compounds. The good analytical performance of the modified electrode was confirmed for determining 5-FU in pharmaceutical formulations, with good percent recoveries (ranging from 96.6 to 101.4%) and an acceptable relative standard deviation (RSD = 2.80%).
Trnkova, Libuse; Krizkova, Sona; Adam, Vojtech; Hubalek, Jaromir; Kizek, Rene
2011-01-15
In this paper, heavy metal biosensor based on immobilization of metallothionein (MT) to the surface of carbon paste electrode (CPE) via anti-MT-antibodies is reported. First, the evaluation of MT electroactivity was done. The attention was focused on the capturing of MT to the CPE surface. Antibodies incorporated and mixed into carbon paste were stable; even after two weeks the observed changes in signal height were lower than 5%. Further, the interaction of MT with polyclonal chicken antibodies incorporated in carbon paste electrode was determined by square-wave voltammetry. In the voltammogram, two signals--labelled as cys(MT) and W(a)--were observed. The cys(MT) corresponded to -SH moieties of MT and W(a) corresponded to tryptophan residues of chicken antibodies. Time of interaction (300 s) and MT concentration (125 μg/ml) were optimized to suggest a silver(I) ions biosensor. Biosensor (CPE modified with anti-MT antibody) prepared under the optimized conditions was then used for silver(I) ions detection. The detection limit (3 S/N) for silver(I) ions was estimated as 0.5 nM. The proposed biosensor was tested by detection spiking of silver(I) ions in various water samples (from very pure distilled water to rainwater). Recoveries varied from 74 to 104%. Copyright © 2010 Elsevier B.V. All rights reserved.
Frag, Eman Y Z; Mohamed, Gehad G; Khalil, Mohamed M; Hwehy, Mohammad M A
2011-01-01
This study compares between unmodified carbon paste (CPE; the paste has no ion pair) and polyvinyl chloride (PVC) membrane selective electrodes that were used in potentiometric determination of ketotifen fumarate (KTF), where sodium tetraphenylborate (NaTPB) was used as titrant. The performance characteristics of these sensors were evaluated according to IUPAC recommendations which reveal a fast, stable, and linear response for KTF over the concentration range of 10(-7) to 10(-2) mol L(-1). The electrodes show Nernstian slope value of 52.51 ± 0.20 and 51.51 ± 0.25 mV decade(-1) for CPE and PVC membrane electrodes at 30°C, respectively. The potential is nearly stable over the pH range 3.0-6.0 and 2.0-7.0 for CPE and PVC membrane electrodes, respectively. Selectivity coefficient values towards different inorganic cations, sugars, and amino acids reflect high selectivity of the prepared electrodes. The electrodes responses at different temperatures were also studied, and long operational lifetime of 12 and 5 weeks for CPE and PVC membrane electrodes, respectively, were found. These are used for determination of ketotifen fumarate using potentiometric titration, calibration, and standard addition methods in pure samples, its pharmaceutical preparations (Zaditen tablets), and biological fluid (urine). The direct potentiometric determination of KTF using the proposed sensors gave recoveries % of 98.97 ± 0.53 and 98.62 ± 0.74 with RSD 1.42 and 0.63% for CPE and PVC membrane selective electrodes, respectively. Validation of the method shows suitability of the proposed sensors for use in quality control assessment of KTF. The obtained results were in a good agreement with those obtained using the reported spectrophotometric method.
Frag, Eman Y. Z.; Mohamed, Gehad G.; Khalil, Mohamed M.; Hwehy, Mohammad M. A.
2011-01-01
This study compares between unmodified carbon paste (CPE; the paste has no ion pair) and polyvinyl chloride (PVC) membrane selective electrodes that were used in potentiometric determination of ketotifen fumarate (KTF), where sodium tetraphenylborate (NaTPB) was used as titrant. The performance characteristics of these sensors were evaluated according to IUPAC recommendations which reveal a fast, stable, and linear response for KTF over the concentration range of 10−7 to 10−2 mol L−1. The electrodes show Nernstian slope value of 52.51 ± 0.20 and 51.51 ± 0.25 mV decade−1 for CPE and PVC membrane electrodes at 30°C, respectively. The potential is nearly stable over the pH range 3.0–6.0 and 2.0–7.0 for CPE and PVC membrane electrodes, respectively. Selectivity coefficient values towards different inorganic cations, sugars, and amino acids reflect high selectivity of the prepared electrodes. The electrodes responses at different temperatures were also studied, and long operational lifetime of 12 and 5 weeks for CPE and PVC membrane electrodes, respectively, were found. These are used for determination of ketotifen fumarate using potentiometric titration, calibration, and standard addition methods in pure samples, its pharmaceutical preparations (Zaditen tablets), and biological fluid (urine). The direct potentiometric determination of KTF using the proposed sensors gave recoveries % of 98.97 ± 0.53 and 98.62 ± 0.74 with RSD 1.42 and 0.63% for CPE and PVC membrane selective electrodes, respectively. Validation of the method shows suitability of the proposed sensors for use in quality control assessment of KTF. The obtained results were in a good agreement with those obtained using the reported spectrophotometric method. PMID:22013443
Garazhian, Elahe; Shishehbore, M. Reza
2015-01-01
A new sensitive sensor was fabricated for simultaneous determination of codeine and acetaminophen based on 4-hydroxy-2-(triphenylphosphonio)phenolate (HTP) and multiwall carbon nanotubes paste electrode at trace levels. The sensitivity of codeine determination was deeply affected by spiking multiwall carbon nanotubes and a modifier in carbon paste. Electron transfer coefficient, α, catalytic electron rate constant, k, and the exchange current density, j 0, for oxidation of codeine at the HTP-MWCNT-CPE were calculated using cyclic voltammetry. The calibration curve was linear over the range 0.2–844.7 μM with two linear segments, and the detection limit of 0.063 μM of codeine was obtained using differential pulse voltammetry. The modified electrode was separated codeine and acetaminophen signals by differential pulse voltammetry. The modified electrode was applied for the determination of codeine and acetaminophen in biological and pharmaceutical samples with satisfactory results. PMID:25945094
NASA Astrophysics Data System (ADS)
Kumar, Mohan; Swamy, B. E. Kumara; Asif, M. H. Mohammed; Viswanath, C. C.
2017-03-01
Herein, established the synthesis of graphene oxide (GO) by Hummers Method with addition of KMnO4 followed by thermal heating at 80 °C. The obtained GO was further functionalized by alanine and tyrosine. The prepared GO, alanine functionalized GO nanoflakes (AGONF) and tyrosine functionalized GO nanoflakes (TGONF) were characterized by spectroscopic technique using energy-dispersive spectroscopy (EDS), quantitatively by scanning electron microscopy (SEM) and structural studies along with interlayer distance verified through X-ray diffraction technique. Afterwards, the prepared AGONF and TGONF were used as the modifier for the carbon paste electrode (CPE). The electrochemical behavior of the AGONF and TGONF modified carbon paste electrodes (MCPEs) towards dopamine (DA) in phosphate buffer solution (PBS) were examined by cyclic voltammetric (CV) technique and the obtained consequences showed good electrocatalytic activity of MCPEs by increasing the redox peak current with a lower potential difference compared to the bare CPE (BCPE). The AGONF and TGONF MCPEs were further used for the optimization studies. From the pH studies, it was found that the equal number of proton and electron transfer reaction involved in both the modified electrodes. The scan rate studies demonstrate the adsorption controlled electrode process at AGONF MCPE and diffusion controlled at TGONF MCPE. The oxidation peak current increased linearly with two concentration interval of DA at a range of 2-7 μM and 10-30 μM in presence of PBS (pH 7.4) at MCPEs and the limit of detection (LOD) were found to be 0.84 μM and 0.96 μM for first interval DA concentration range (2-7 μM) at AGONF and TGONF MCPE. The stability, repeatability and reproducibility of functionalized GO nanoflakes MCPEs at DA were studied and established excellent characteristics. The newly developed functionalized GO nanoflake electrodes were successfully tested in DA injection sample. Furthermore the functionalized GO and surfactant (Sodium Alpha Olefin Sulphonate (SAOS)) immobilized functionalized GO MCPEs were examined for simultaneous determination of DA and ascorbic acid (AA) by differential pulse voltammetric technique.
Frag, Eman Y Z; Mohamed, Gehad G; El-Dien, F A Nour; Mohamed, Marwa E
2011-01-21
This paper describes the development of screen-printed (SPE) and carbon paste (CPE) sensors for the rapid and sensitive quantification of naphazoline hydrochloride (NPZ) in pharmaceutical formulations. This work compares the electroactivity of conventional carbon paste and screen-printed carbon paste electrodes towards potentiometric titration of NPZ. The repeatability and accuracy of measurements performed in the analysis of these pharmaceutical matrices using new screen printed sensors were evaluated. The influence of the electrode composition, conditioning time of the electrode and pH of the test solution, on the electrode performance were investigated. The drug electrode showed Nernstain responses in the concentration range from 1 × 10(-6) to 1 × 10(-2) mol L(-1) with slopes of 57.5 ± 1.3 and 55.9 ± 1.6 mV per decade for SPE and CPE, respectively, and was found to be very precise and usable within the pH range 3-8. These sensors exhibited a fast response time (about 3 s for both SPE and CPE, respectively), a low detection limit (3.5 × 10(-6) and 1.5 × 10(-6) M for SPE and CPE, respectively), a long lifetime (3 and 2 months for SPE and CPE, respectively) and good stability. The selectivity of the electrode toward a large number of inorganic cations, sugars and amino acids was tested. It was applied to potentiometric determination of NPZ in pure state and pharmaceutical preparation under batch conditions. The percentage recovery values for the assay of NPZ in tablets (relative standard deviations ≤0.3% for n = 4) were compared well with those obtained by the official method.
NASA Astrophysics Data System (ADS)
Taei, M.; Hasanpour, F.; Hajhashemi, V.; Movahedi, M.; Baghlani, H.
2016-02-01
The SnO2-Zn2SnO4 nanocomposite was successfully prepared via a simple solid state method. Then, a chemically modified electrode based on incorporating SnO2-Zn2SnO4 into multi-walled carbon nanotube paste matrix (MWCNTs/SnO2-Zn2SnO4/CPE) was prepared for the simultaneous determination of morphine(MO) and codeine (CO). The measurements were carried out by application of differential pulse voltammetry (DPV), cyclic voltammetry, and chronoamperometry. The MWCNTs/SnO2-Zn2SnO4/CPE showed an efficient electrocatalytic activity for the oxidation of MO and CO. The separation of the oxidation peak potential for MO-CO was about 550 mV. The calibration curves obtained for MO and CO were in the ranges of 0.1-310 μmol L-1 and 0.1-600.0 μmol L-1, respectively. The detection limits (S/N = 3) were 0.009 μmol L-1 for both drugs. The method also successfully employed as a selective, simple, and precise method for the determination of MO and CO in pharmaceutical and biological samples.
Karimi-Maleh, Hassan; Salehi, Mehdi; Faghani, Fatemeh
2017-10-01
The electrooxidation of N-acetylcysteine (N-AC) was studied by a novel Ni(II) complex modified ZrO 2 nanoparticle carbon paste electrode [Ni(II)/ZrO 2 /NPs/CPE] using voltammetric methods. The results showed that Ni(II)/ZrO 2 /NPs/CPE had high electrocatalytic activity for the electrooxidation of N-AC in aqueous buffer solution (pH = 7.0). The electrocatalytic oxidation peak currents increase linearly with N-AC concentrations over the concentration ranges of 0.05-600μM using square wave voltammetric methods. The detection limit for N-AC was equal to 0.009μM. The catalytic reaction rate constant, k h , was calculated (7.01 × 10 2 M -1 s -1 ) using the chronoamperometry method. Finally, Ni(II)/ZrO 2 /NPs/CPE was also examined as an ultrasensitive electrochemical sensor for the determination of N-AC in real samples such as tablet and urine. Copyright © 2017. Published by Elsevier B.V.
Frag, Eman Y Z; Mohamed, Gehad G; El-Sayed, Wael G
2011-10-01
The performance characteristic of sensitive screen-printed (SPE) and carbon paste (CPE) electrodes was investigated for the determination of diphenhydramine hydrochloride (DPH) drug in pure, pharmaceutical preparations and biological fluids. Different experimental conditions namely types of materials used to prepare the working electrode (plasticizer), titrant, pH, temperature and life time were studied. Under these conditions, the SPE shows the best performance than CPE with respect to total potential change and potential break at the end point. The SPE and CPE exhibit suitable response to DPH in a concentration range of 1.0.10(-2) to 1.0.10(-6) mol/L with a limit of detection 9.70.10(-7) and 9.80.10(-7) mol/L, respectively. The slope of the system was 55.2±1.0 and 54.7±1.0 mV/decade over pH range 3.0-8.0 and 3-7 for SPE and CPE, respectively. Selectivity coefficients for DPH relative to a numbers of potential interfering substances were investigated. The SPE and CPE show a fast response time of 10 and 16s and were used over a period of 2 months with a good reproducibility. The sensors were applied successfully to determine DPH in pharmaceutical preparations and biological fluids. The results are compared with the official method. Copyright © 2011 Elsevier B.V. All rights reserved.
Wang, Hailong; Hu, Quanqin; Meng, Yuan; Jin, Zier; Fang, Zilin; Fu, Qinrui; Gao, Wenhua; Xu, Liang; Song, Yibing; Lu, Fushen
2018-02-19
Reduced graphite oxide (rGO) was incorporated into a metal organic framework (MOF) MIL-101(Cr) for the modification of carbon paste electrode. Taking advantages of the large surface area of MOF and the electrical conductivity of rGO, the resulted electrodes exhibited high sensitivity and reliability in the simultaneous electrochemical identification and quantification of catechol (CC) and hydroquinone (HQ). Specifically, in the mixture solution of catechol and hydroquinone (constant concentration of an analyte), the linear response ranges for catechol and hydroquinone were 10-1400 μM and 4-1000 μM, and detection limits were 4 μM and 0.66 μM (S/N = 3) for individual catechol and hydroquinone, respectively. Therefore, the relatively easy fabrication of modified CPE and its fascinating reliability towards HQ and CC detection may simulate more research interest in the applications of MIL-101(Cr)-rGO composites for electrochemical sensors. Copyright © 2018 Elsevier B.V. All rights reserved.
Palaska, P; Aritzoglou, E; Girousi, S
2007-05-15
The interaction of cyclophosphamide (CP) with calf thymus double-stranded DNA (dsDNA) and thermally denatured single-stranded DNA (ssDNA) immobilized at the carbon paste (CPE) and pencil graphite electrodes (PGE), was studied electrochemically based on oxidation signals of guanine and adenine using differential pulse voltammetry (DPV). As a result of the interaction of CP with DNA, the voltammetric signals of guanine and adenine increased in the case of dsDNA while a slight increase was observed in ssDNA. The effect of experimental parameters such as the interaction time between CP and DNA forms and the concentration of CP, were studied using DPV with CPE and PGE. Additionally, reproducibility and detection limits were determined using both electrodes. A comparison of the analytical performance between CPE and PGE was done. Our results showed that these two different DNA biosensors could be used for the sensitive, rapid and cost effective detection of CP itself as well as of CP-DNA interaction. Furthermore, the interaction of CP with dsDNA and ssDNA was studied in solution and at the electrode surface by means of alternating current voltammetry (ACV) in 0.3M NaCl and 50mM sodium phosphate buffer (pH 8.5) supporting electrolyte, using a hanging mercury drop electrode (HMDE) as working electrode. The conclusions of this study were mainly based on tensammetric peaks I (at -1.183V) and II (-1.419V) of DNA. This study involved the interaction of CP with surface-confined and solution phase DNA where experimental parameters, such as the concentration of CP and the interaction time, were studied. By increasing the concentration of CP, an increase of peak II was observed in both ds and ssDNA, while an increase of peak I was observed only in the case of dsDNA. An overall conclusion of the study using HMDE was that the interaction of CP with surface-confined DNA significantly differed from that with solution phase DNA. The increase of peaks I and II was lower in the case of interaction of CP with surface-confined DNA, probably due to steric positioning of DNA at the electrode surface.
MWCNT-ruthenium oxide composite paste electrode as non-enzymatic glucose sensor.
Tehrani, Ramin M A; Ab Ghani, Sulaiman
2012-01-01
A non-enzymatic glucose sensor of multi-walled carbon nanotube-ruthenium oxide/composite paste electrode (MWCNT-RuO(2)/CPE) was developed. The electrode was characterized by using XRD, SEM, TEM and EIS. Meanwhile, cyclic voltammetry and amperometry were used to check on the performances of the MWCNT-RuO(2)/CPE towards glucose. The proposed electrode has displayed a synergistic effect of RuO(2) and MWCNT on the electrocatalytic oxidation of glucose in 3M NaOH. This was possible via the formation of transitions of two redox pairs, viz. Ru(VI)/Ru(IV) and Ru(VII)/Ru(VI). A linear range of 0.5-50mM glucose and a limit of detection of 33 μM glucose (S/N=3) were observed. There was no significant interference observable from the traditional interferences, viz. ascorbic acid and uric acid. Indeed, results so obtained have indicated that the developed MWCNT-RuO(2)/CPE would pave the way for a better future to glucose sensor development as its fabrication was without the use of any enzyme. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cheraghi, Somaye; Taher, Mohammad Ali; Karimi-Maleh, Hassan
2017-10-01
In this work, we suggested a carbon paste electrode improved with 1-methyl-3-octylimidazolium tetrafluoroborate (1-M-3-OITFB) and ZnO/CNTs nanocomposite (1-M-3-OITFB/ZnO/CNTs/CPE) for electrochemical determination of raloxifene (RXF) as a non-steroidal selective estrogen receptor regulator. The cyclic and differential pulse voltammetric methods were apply for investigation of RXF electrochemical response at a surface of 1-M-3-OITFB/ZnO/CNTs/CPE. Under the best experimental conditions, the 1-M-3-OITFB/ZnO/CNTs/CPE showed a wide linear dynamic range of 0.08 - 400.0 μM. We detected a detection limit of 0.04 μM for RXF analysis using differential pulse voltammetric method (DPV). The 1-M-3-OITFB/ZnO/CNTs/CPE showed high performance ability to RXF analysis in trace amounts on pharmaceutical and clinical preparations.
El-Maali, N A
2000-04-28
The electrochemical behavior of ceftazidime (CFZ) at four different kinds of electrodes viz. static mercury drop electrode (SMDE), controlled growth mercury electrode (CGME), glassy carbon electrode (GCE) and carbon paste electrode (CPE) has been presented. Optimal operational parameters have been selected for the drug preconcentration and determination in aqueous medium. Down to 2x10(-10) M CFZ is achieved as detection limit at the CGME. Modification of the CPE with polyvinyl alcohol (PVA) enhances both the sensitivity and selectivity for the drug accumulation and, therefore, its determination at very low levels. Application of the proposed method for CFZ analysis in spiked urine samples or those taken after metabolism has been easily assessed. Down to 1x10(-9) M CFZ (0.695 ng ml(-1)) could be easily achieved in such samples.
Non-enzymatic glucose sensor based on electrodeposited copper on carbon paste electrode (Cu/CPE)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nurani, Dita Arifa, E-mail: d.arifa@sci.ui.ac.id; Wibowo, Rahmat; Fajri, Iqbal Farhan El
The development of non-enzymatic glucose sensor has much attention due to their applications in glucose monitoring. In this research, copper oxide is used as a non-enzymatic glucose sensor by oxidizing glucose to gluconolactone. Copper was electrodeposited on Carbon paste electrode (CPE) at constant potential. The experimental condition was varied in electrodeposition of Cu with the following parameters: Electrodeposition time 60 s, 120 s and 180 s and potential reduction -0.166 V, -0.266 V and -0.366 V. The effective performance of these working electrodes in sensing glucose was investigated. The Cu/CPE which used -0.366 V potential reduction and 120 s electrodeposition time shows the bestmore » performance. The amperometric response current in concentration range 1.6-62.5 mM of glucose gives the good linearity R{sup 2} = 0.9988, low detection limit 0.6728 mM and high sensitivity 1183.59 µA mM{sup −1}cm{sup −2}. Furthermore this sensor exhibited a good repeatability with %RSD = 1.31% (n=10) and high stability with %RSD = 1.51% (n=5 days). The homogeneity of Cu particles on CPE was investigated by Scanning Electron Microscope (SEM).« less
Alizadeh, Taher; Azizi, Sorour
2016-07-15
Molecularly imprinted polymer (MIP) nanoparticles including highly selective recognition sites for fluoxetine were synthesized, utilizing precipitation polymerization. Methacrylic acid and vinyl benzene were used as functional monomers. Ethylene glycol dimethacrylate was used as cross-linker agent. The obtained polymeric nanoparticles were incorporated with carbon paste electrode (CPE) in order to construct a fluoxetine selective sensor. The response of the MIP-CP electrode to fluoxetine was remarkably higher than the electrode, modified with the non-imprinted polymer, indicating the excellent efficiency of the MIP sites for target molecule recognition. It was found that the addition of a little amount of graphene, synthesized via modified hummer's method, to the MIP-CP resulted in considerable enhancement in the sensitivity of the electrode to fluoxetine. Also, the style of electrode components mixing, before carbon paste preparation, was demonstrated to be influential factor in the electrode response. Some parameters, affecting sensor response, were optimized and then a calibration curve was plotted. A dynamic linear range of 6×10(-9)-1.0×10(-7)molL(-1) was obtained. The detection limit of the sensor was calculated equal to 2.8×10(-9)molL(-1) (3Sb/m). This sensor was used successfully for fluoxetine determination in the spiked plasma samples as well as fluoxetine capsules. Copyright © 2016 Elsevier B.V. All rights reserved.
Núñez, Claudia; Arancibia, Verónica; Triviño, Juan José
2018-09-01
An adsorptive stripping voltammetric method for the determination of As(III) and As total in water samples using a carrageenan modified carbon paste electrode is presented for the first time (CAR-CPE). The modified electrode was prepared in different ways: by adding CAR in solid form or as a hydrogel together with graphite and paraffin, as well as adsorbing CAR by applying a potential on an unmodified carbon paste electrode. The best results were obtained when CAR was incorporated as hydrogel (HCAR-CPE). The selection of the ratio amounts for electrode preparation was carried out applying a multivariate experimental design. Variables like amount of graphite (U 1 ), HCAR (U 2 ) and paraffin (U 3 ) were optimized using a (2 K +2K+C) model. The results showed that the amount of HCAR was the most significant factor, and the adequate U 1 :U 2 :U 3 ratio to prepare the electrode was: 493 mg of graphite, 214 μL of paraffin and 134 μL of carrageenan as gel. The optimum parameters for the determination of As(III) were pH = 3.25 (0.01 mol L -1 H 3 PO 4 /H 2 PO 4 - solution); E acc = -0.50 V and t acc = 30 s. The electrode presents good linear behavior concentration range from 0.50 to 6.70 μg L -1 , with a limit of detection of 0.22 μg L -1 . The relative standard deviation was 5.0% at the 1.5 μg L -1 As(III) level (n = 16). The method was validated by quantifying As(III) in spiked tap water from laboratory (RE: 3.0%), and it was applied for the determination of As total in water samples from the Loa River (North of Chile) prior reduction of As(V) with Na 2 S 2 O 3 solution, obtaining 814.00 ± 0.03 μg L -1 . The results of the proposed method were compared with those obtained by adsorptive stripping voltammetry with HMDE and by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) techniques. Copyright © 2018 Elsevier B.V. All rights reserved.
Cloud Point Extraction for Electroanalysis: Anodic Stripping Voltammetry of Cadmium.
Rusinek, Cory A; Bange, Adam; Papautsky, Ian; Heineman, William R
2015-06-16
Cloud point extraction (CPE) is a well-established technique for the preconcentration of hydrophobic species from water without the use of organic solvents. Subsequent analysis is then typically performed via atomic absorption spectroscopy (AAS), UV-vis spectroscopy, or high performance liquid chromatography (HPLC). However, the suitability of CPE for electroanalytical methods such as stripping voltammetry has not been reported. We demonstrate the use of CPE for electroanalysis using the determination of cadmium (Cd(2+)) by anodic stripping voltammetry (ASV). Rather than using the chelating agents which are commonly used in CPE to form a hydrophobic, extractable metal complex, we used iodide and sulfuric acid to neutralize the charge on Cd(2+) to form an extractable ion pair. This offers good selectivity for Cd(2+) as no interferences were observed from other heavy metal ions. Triton X-114 was chosen as the surfactant for the extraction because its cloud point temperature is near room temperature (22-25 °C). Bare glassy carbon (GC), bismuth-coated glassy carbon (Bi-GC), and mercury-coated glassy carbon (Hg-GC) electrodes were compared for the CPE-ASV. A detection limit for Cd(2+) of 1.7 nM (0.2 ppb) was obtained with the Hg-GC electrode. ASV with CPE gave a 20x decrease (4.0 ppb) in the detection limit compared to ASV without CPE. The suitability of this procedure for the analysis of tap and river water samples was demonstrated. This simple, versatile, environmentally friendly, and cost-effective extraction method is potentially applicable to a wide variety of transition metals and organic compounds that are amenable to detection by electroanalytical methods.
Mohamed, Mona A; Hasan, Menna M; Abdullah, Ibrahim H; Abdellah, Ahmed M; Yehia, Ali M; Ahmed, Nashaat; Abbas, Walaa; Allam, Nageh K
2018-08-01
A strategy for trace-level carbon-based electrochemical sensors is investigated via exploring the interesting properties of BaNb 2 O 6 nanofibers (NFs). Utilizing adsorptive stripping square wave voltammetry (ASSWV), an electrochemical sensing platform was developed based on BaNb 2 O 6 nanofibers-modified carbon paste electrode (CPE) for the sensitive detection of lornoxicam (LOR). Different techniques were used to characterize the fabricated BaNb 2 O 6 perovskite NFs. The obtained data show the feasibility to electro-oxidize LOR and paracetamol (PAR) on the surface of the fabricated sensor. The amount of nanofiber and testing conditions were optimized using response surface methodology and ASSWV technique. The optimized BaNb 2 O 6 /CPE sensor exhibits low detection limit of 6.39 × 10 -10 mol L -1 , even in the presence of the co-formulated drug paracetamol (PAR). The sensor was successfully applied for biological applications. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mersal, Gaber A. M.; Mostafa, Nasser Y.; Omar, Abd-Elkader H.
2017-08-01
Hydrogen titanate nanotubes (HTNT) were prepared via acid washing of hydrothermally synthesized sodium titantate nanotube. HTNTs with diameters in the range 7-9 nm and length of several hundred nanometers were annealed at different temperatures and used to modify carbon paste electrode (CPE). Cyclic and square wave voltammetric techniques were used to investigate the behavior of nicotine at HTNT modified carbon paste electrode (HTNTCPE). The nicotine-oxidation reaction over HTNTCPE was irreversible and adsorption process is the rate determining step. HTNTs annealed at 500 °C showed the best response to nicotine. The nicotine concentration was determined at the ideal conditions by square wave voltammetry (SWV). The calibration was linear from 0.1 to 500.0 µmol l-1 with a correlation coefficient of 0.995. The detection limits were found to be 0.005 µmol l-1. The present HTNTCPE was used to the determination of nicotine in two cigarette brands and it showed outstanding performance with respect to detection limit and sensitivity.
Cloud Point Extraction for Electroanalysis: Anodic Stripping Voltammetry of Cadmium
Rusinek, Cory A.; Bange, Adam; Papautsky, Ian; Heineman, William R.
2016-01-01
Cloud point extraction (CPE) is a well-established technique for the pre-concentration of hydrophobic species from water without the use of organic solvents. Subsequent analysis is then typically performed via atomic absorption spectroscopy (AAS), UV-Vis spectroscopy, or high performance liquid chromatography (HPLC). However, the suitability of CPE for electroanalytical methods such as stripping voltammetry has not been reported. We demonstrate the use of CPE for electroanalysis using the determination of cadmium (Cd2+) by anodic stripping voltammetry (ASV) as a representative example. Rather than using the chelating agents which are commonly used in CPE to form a hydrophobic, extractable metal complex, we used iodide and sulfuric acid to neutralize the charge on Cd2+ to form an extractable ion pair. Triton X-114 was chosen as the surfactant for the extraction because its cloud point temperature is near room temperature (22–25° C). Bare glassy carbon (GC), bismuth-coated glassy carbon (Bi-GC), and mercury-coated glassy carbon (Hg-GC) electrodes were compared for the CPE-ASV. A detection limit for Cd2+ of 1.7 nM (0.2 ppb) was obtained with the Hg-GC electrode. Comparison of ASV analysis without CPE was also investigated and a 20x decrease (4.0 ppb) in the detection limit was observed. The suitability of this procedure for the analysis of tap and river water samples was also demonstrated. This simple, versatile, environmentally friendly and cost-effective extraction method is potentially applicable to a wide variety of transition metals and organic compounds that are amenable to detection by electroanalytical methods. PMID:25996561
Wang, Jer-Chyi; Karmakar, Rajat Subhra; Lu, Yu-Jen; Huang, Chiung-Yin; Wei, Kuo-Chen
2015-01-01
The piezoresistive characteristics of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) pressure sensors with inter-digitated (IDE) and cross-point electrode (CPE) structures have been investigated. A small variation of the resistance of the pressure sensors with IDE without bottom indium-tin-oxide (b-ITO) film and with CPE structures was observed owing to the single carrier-conducting pathway. For the IDE pressure sensors with b-ITO, the piezoresistive characteristics at low and high pressure were similar to those of the pressure sensors with IDE without b-ITO and with CPE structures, respectively, leading to increased piezoresistive pressure sensitivity as the PEDOT:PSS film thickness decreased. A maximum sensitivity of more than 42 kΩ/Pa was achieved. When the normal pressure was applied, the increased number of conducting points or the reduced distance between the PEDOT oligomers within the PEDOT:PSS film resulted in a decrease of the resistance. The piezoresistive pressure sensors with a single carrier-conducting pathway, i.e., IDE without b-ITO and CPE structures, exhibited a small relaxation time and a superior reversible operation, which can be advantageous for fast piezoresistive response applications. PMID:25569756
Wang, Jer-Chyi; Karmakar, Rajat Subhra; Lu, Yu-Jen; Huang, Chiung-Yin; Wei, Kuo-Chen
2015-01-05
The piezoresistive characteristics of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) pressure sensors with inter-digitated (IDE) and cross-point electrode (CPE) structures have been investigated. A small variation of the resistance of the pressure sensors with IDE without bottom indium-tin-oxide (b-ITO) film and with CPE structures was observed owing to the single carrier-conducting pathway. For the IDE pressure sensors with b-ITO, the piezoresistive characteristics at low and high pressure were similar to those of the pressure sensors with IDE without b-ITO and with CPE structures, respectively, leading to increased piezoresistive pressure sensitivity as the PEDOT:PSS film thickness decreased. A maximum sensitivity of more than 42 kΩ/Pa was achieved. When the normal pressure was applied, the increased number of conducting points or the reduced distance between the PEDOT oligomers within the PEDOT:PSS film resulted in a decrease of the resistance. The piezoresistive pressure sensors with a single carrier-conducting pathway, i.e., IDE without b-ITO and CPE structures, exhibited a small relaxation time and a superior reversible operation, which can be advantageous for fast piezoresistive response applications.
Protein-Modified-Paramagnetic-Particles as a Tool for Detection of Silver(I) Ions
NASA Astrophysics Data System (ADS)
Kizek, R.; Krizkova, S.; Adam, V.; Huska, D.; Hubalek, J.; Trnkova, L.
2009-04-01
In a number of published articles the toxic effect of silver(I) ions on aquatic organisms is described. Silver(I) ions in aquatic environment are stable in a wide range of pH. Under alkali pH AgOH and Ag(OH)2- can be formed. However, in water environment there are many compounds to interact with silver(I) ions. The most important ones are chloride anions, which forms insoluble precipitate with silver(I) ions (AgCl). The insoluble silver containing compounds do not pose any threat to aquatic organisms. Toxicity of silver ions is probably caused by their very good affinity to nucleic acids and also proteins. The binding into active enzyme site leads to the expressive enzyme reaction inhibition. Silver(I) ions are into living environment introduced thanks to anthropogenic activities. They easily contaminate atmosphere as well as aquatic environment or soils. Several authors described using of carbon electrode as working electrode for determination of silver. Recently, we have suggested heavy metal biosensor based on interaction of metal ions with low molecular mass protein called metallothionein (MT), which was adsorbed on the surface of hanging mercury drop electrode (HMDE). The biosensor was successfully used for detection of cadmium(II) and zinc(II) ions, cisplatin, cisplatin-DNA adducts and palladium(II) ions. Due to the convincing results with MT as biological component we report on suggesting of heavy metal biosensor based on immobilization of metallothionein (MT) on the surface of carbon paste electrode (CPE) via MT-antibodies. Primarily we studied of basic electrochemical behaviour of MT at surface of carbon paste electrode by using of square wave voltammetry (SWV). Detection limit (3 S/N) for MT was evaluated as 0.1 μg/ml. After that we have evaluated the electroactivity of MT at surface of SWV, we aimed our attention on the way of capturing of MT on the surface of CPE. We choose antibody against MT obtained from chicken eggs for these purposes. Antibodies incorporated mixed with carbon paste were stable. Even after 14 days we did not determine change in the peak height higher than 5 %. Further linkage of MT with polyclonal chicken antibodies incorporated in carbon paste electrode was determined by SWV. Two signals were observed in voltammograms, cysMT corresponding to -SH moieties of MT and Wa corresponding to tryptophan residues of chicken antibodies. We optimized time of interaction (300 s) and concentration of MT (125 µg/ml) to suggest silver(I) ions biosensor. Biosensor (MT-antibody-modified CPE) prepared under the optimized conditions was utilized for silver(I) ions detection. The detection limit (3 S/N) for silver(I) ions were estimated as 100 nM. The proposed biosensor was tested by detection of silver(I) ions spiked in various water samples (from very pure distilled water to rainwater). Recoveries varied from 74 to 104 %. MT, low molecular mass proteins rich cysteine, play important role in the processes of heavy metals ions metabolism. Due to their unique physico-chemical properties they are able to bind heavy metals with high affinity. We used this feature to suggest simple biosensor based on immobilization of MT on the surface of carbon paste electrode via chicken antibodies against MT. The suggested biosensor was further successfully employed to detect silver(I) ions. The main advantage of the biosensor is that it can be easily miniaturized, whereas carbon nanostructures with immobilized MT should be used as working electrodes. Acknowledgements Financial support from INCHEMBIOL MSMT 0021622412 and GA CR 526/07/0674 is highly acknowledged.
2007-08-01
In recent years, however, anode supported electrode conformations with thin film electrolytes have been heavily explored because they are capable ...further clarify relationship between interlayer morphology and cell performance will be a subject of a future study. Figure 2. SEM Images of SOFC...CPE B1B CPE B2B RB4B CPE B3B R1 R2 10 and R3, which also exhibited a constant slope over the test range, averaged 0.1 +/- 0.02 and 0.9 +/- 0.01
A simple and rapid assay using HPLC with a tyrosinase-containing carbon paste electrode (Tyr-CPE) detector is demonstrated for the detection of phenol, p-cresol, p-methoxyphenol, and p-chlorophenol in environmental matrices. These compounds were measured in contaminated aqueous...
The systematic study of the effect of binder viscosity on the sensitivity of a tyrosinase-based carbon paste electrode (CPE) biosensor for phenol and catechol is reported. Silicon oil binders with similar (polydimethylsiloxane) chemical composition were used to represent a wid...
Anodic stripping voltammetry with carbon paste electrodes for rapid Ag(I) and Cu(II) determinations.
Labar, C; Lamberts, L
1997-05-01
The simultaneous determination of silver(I) and copper(II) is realized for the routine analysis of trace levels of these elements by anodic stripping voltammetry (ASV) at the carbon paste electrode (CPE). The electrochemical response is studied in 14 different supporting electrolytes, ranging from acidic solutions (pH 0.1) to neutral and basic (pH 9.7) media, and the parameters governing electrodeposition and stripping steps are characterized for each medium by the use of pseudo-voltammograms. Comparison between different modes of matter transport mechanisms is also given. The dynamic range of the method is 0.05 to 150 mug 1(-1) Ag(I) in the majority of the media studied and can be extended to 400 mug l(-1) in selected media, with a general reproducibility in the +/- 2% range for five replicate measurements. The total analysis time lies between approximately 30 s and 10 min. Activation of the CPE surface has been studied, but this pretreatment is demonstrated to be unfavourable and is replaced by a simpler unique 'cleaning' procedure of dipping the CPE in diluted nitric acid.
Motaharian, Ali; Motaharian, Fatemeh; Abnous, Khalil; Hosseini, Mohammad Reza Milani; Hassanzadeh-Khayyat, Mohammad
2016-09-01
In this research, an electrochemical sensor based on molecularly imprinted polymer (MIP) nanoparticles for selective and sensitive determination of diazinon (DZN) pesticides was developed. The nanoparticles of diazinon imprinted polymer were synthesized by suspension polymerization and then used for modification of carbon paste electrode (CPE) composition in order to prepare the sensor. Cyclic voltammetry (CV) and square wave voltammetry (SWV) methods were applied for electrochemical measurements. The obtained results showed that the carbon paste electrode modified by MIP nanoparticles (nano-MIP-CP) has much higher adsorption ability for diazinon than the CPE based non-imprinted polymer nanoparticles (nano-NIP-CP). Under optimized extraction and analysis conditions, the proposed sensor exhibited excellent sensitivity (95.08 μA L μmol(-1)) for diazinon with two linear ranges of 2.5 × 10(-9) to 1.0 × 10(-7) mol L(-1) (R (2) = 0.9971) and 1.0 × 10(-7) to 2.0 × 10(-6) mol L(-1) (R (2) = 0.9832) and also a detection limit of 7.9 × 10(-10) mol.L(-1). The sensor was successfully applied for determination of diaznon in well water and apple fruit samples with recovery values in the range of 92.53-100.86 %. Graphical abstract Procedure for preparation of electrochemical sensor based on MIP nanoparticles for determination of diazinon.
Hamidi-Asl, Ezat; Raoof, Jahan Bakhsh; Naghizadeh, Nahid; Akhavan-Niaki, Haleh; Ojani, Reza; Banihashemi, Ali
2016-10-01
The main roles of DNA in the cells are to maintain and properly express genetic information. It is important to have analytical methods capable of fast and sensitive detection of DNA damage. DNA hybridization sensors are well suited for diagnostics and other purposes, including determination of bacteria and viruses. Beta thalassemias (βth) are due to mutations in the β-globin gene. In this study, an electrochemical biosensor which detects the sequences related to the β-globin gene issued from real samples amplified by polymerase chain reaction (PCR) is described for the first time. The biosensor relies on the immobilization of 20-mer single stranded oligonucleotide (probe) related to βth sequence on the carbon paste electrode (CPE) modified by 15% silver (Ag) and platinum (Pt) nanoparticles to prepare the bimetallic nanocomposite electrode and hybridization of this oligonucleotide with its complementary sequence (target). The extent of hybridization between the probe and target sequences was shown by using linear sweep voltammetry (LSV) with methylene blue (MB) as hybridization indicator. The selectivity of sensor was investigated using PCR samples containing non-complementary oligonucleotides. The detection limit of biosensor was calculated about 470.0pg/μL. Copyright © 2016 Elsevier B.V. All rights reserved.
Farahi, Abdelfettah; Achak, Mounia; El Gaini, Laila; El Mhammedi, Moulay Abderrahim; Bakasse, Mina
2015-09-01
Carbon paste electrodes (CPEs) modified with silver particles present an interesting tool in the determination of paraquat (PQ) using square wave voltammetry. Metallic silver particle deposits have been obtained via electrochemical deposition in acidic media using cyclic voltammetry. Scanning electron microscopy and X-ray diffraction measurements show that the silver particles are deposited onto carbon surfaces in aggregate form. The response of PQ with modified electrode (Ag-CPE) related to Ag/CP loading, preconcentration time, and measuring solution pH was investigated. The result shows that the increase in the two cathodic peak currents (Peak 1 and Peak 2), under optimized conditions, was linear with the increase in PQ concentration in the range 1.0 × 10 -7 mol/L to 1.0 × 10 -3 mol/L. The detection limit and quantification limit were 2.01 × 10 -8 mol/L and 6.073 × 10 -8 mol/L, respectively for Peak 1. The precision expressed as relative standard deviation for the concentration level 1.0 × 10 -5 mol/L (n = 8) was found to be 1.45%. The methodology was satisfactorily applied for the determination of PQ in citric fruit cultures. Copyright © 2015. Published by Elsevier B.V.
Voltammetric Determination of Anethole on La2O3/CPE and BDDE
Dziubaniuk, Małgorzata
2018-01-01
In this work, DPV determination of anethole was presented using various carbon, two-diameter (1.5 and 3 mm) electrodes, that is, BDD, GC, CP, and CP doped by La2O3 and CeO2 nanoparticles. La2O3/CPE to our best knowledge was proposed first time. Cyclic voltammograms confirmed totally irreversible electrode electrooxidation process, controlled by diffusion, in which two electrons take part. The most satisfactory sensitivity 0.885 ± 0.016 µA/mg L−1 in 0.1 mol L−1 acetate buffer was obtained for La2O3/CPE with the correlation coefficient r of 0.9993, while for BDDE it was 0.135 ± 0.003 µA/mg L−1 with r of 0.9990. The lowest detection limit of 0.004 mg L−1 was reached on La2O3/CPE (3 mm), what may be compared with the most sensitive conjugate methods, but in the proposed approach, no sample preparation and analyte separation was needed. Anethole was successfully determined in specially prepared ethanol extracts of herbal mixtures of various compositions, which imitated real products. The proposed procedure was verified in analysis of commercial products, that is, anise essential oil, which contains a large concentration of anethole, and in alcohol drinks like Metaxa, Ouzo, and Rakija, in which the considered analyte occurs on trace levels. Structure and properties of the considered nanopowders and graphite pastes were investigated by EDX, SEM, and EIS. PMID:29675284
Impedance dispersion analysis of drug-membrane interactions
NASA Astrophysics Data System (ADS)
Tacheva, Bilyana; Paarvanova, Boyana; Ivanov, Ivan T.; Karabaliev, Miroslav
2017-11-01
Thin lipid films modified glassy carbon electrodes (GCE) were used in this work as model system for studying the interactions between two antipsychotic phenothiazine drugs, chlorpromazine and thioridazine, and the lipid fraction of the biomembranes. The lipid films on the electrode surface were obtained through the thinning of film-forming lipid solution deposited between an electrolyte phase and the working GC electrode. The effects of the drugs on the lipid film structure were investigated by electrochemical impedance spectroscopy (EIS). To characterize the electric properties of the lipid film the impedance of the working GCE is modeled with an equivalent circuit consisting of parallel capacitance Cp and resistance Rp. These capacitance and resistance are not frequency independent but could be calculated as equivalent Cp and Rp for each measured frequency of the impedance spectrum and presented as functions of the frequency f, Cp = Cp(f) and Rp= Rp(f). For the lipid films used in this work, it is demonstrated that both Cp(f) and Rp(f) are well approximated with power-law functions. This behavior implies that the impedance Z of the films could be analysed in terms of the well-known constant-phase angle element (CPE), which is often used to describe the interfacial impedance of solid working electrodes.
Đorđević, Jelena; Papp, Zsigmond; Guzsvány, Valéria; Švancara, Ivan; Trtić-Petrović, Tatjana; Purenović, Milovan; Vytřas, Karel
2012-01-01
This paper summarises the results of voltammetric studies on the herbicide 3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea (Linuron), using a carbon paste electrode containing tricresyl phosphate (TCP-CPE) as liquid binder. The principal experimental conditions, such as the pH effect, investigated in Britton-Robinson buffer solutions (pH 2.0–7.0), the peak characteristics for the analyte of interest, or instrumental parameters for the differential pulse voltammetric mode were optimized for the method. As found out, the best electroanalytical performance of the TCP-CPE was achieved at pH 2.0, whereby the oxidation peak of Linuron appeared at ca. +1.3 V vs. SCE. The analytical procedure developed offers good linearity in the concentration range of 1.25–44.20 μg mL−1 (1.77 × 10−4–5.05 × 10−6 mol L−1), showing—for the first time—the applicability of the TCP-CPE for anodic oxidations in direct voltammetry (without accumulation). The method was then verified by determining Linuron in a spiked river water sample and a commercial formulation and the results obtained agreed well with those obtained by the reference HPLC/UV determination. PMID:22368461
Chrysin and its phosphate ester inhibit cell proliferation and induce apoptosis in Hela cells.
Zhang, Ting; Chen, Xiaolan; Qu, Lingbo; Wu, Jinglan; Cui, Ran; Zhao, Yufen
2004-12-01
To improve the biological activities of chrysin (CR), we synthesize Diethyl Chysin-7-yl phosphate (CPE: C(19)H(19)O(7)P) and tetraethyl bis-phosphoric ester of chrysin (CP: C(23)H(28)O(10)P(2)) through a simplified Atheron-Todd reaction. The interactions of the CR and CPE with lysozyme were explored by electrospray ionization mass spectrometry (ESI) and fluorescence spectrometry method. Experimental results indicate that CPE could form the noncovalent compound with lysozyme, while the interaction of the CR with lysozyme was not detected. In addition, whether and how the compounds CPE and CP affect proliferation and apoptosis in human cervical cancer Hela cells were investigated. Moreover, the effects of CPE and CP in Hela cells were compared with that of the nonmodified CR compound. The Hela cells were co-cultured with CR, CP, and CPE as experimental groups, respectively, and corresponding control groups treated without CR, CP, and CPE. The proliferation and apoptosis were detected using MTT assay, HCl denatured-methyl green-pyronin staining, PCNA immunohistochemistry and TUNEL techniques. The cell growth IC(50), relative absorbance (RA), proliferating index (PI), PCNA-IR (immunoreactivity IR) integration value (IV), and apoptosis index (AI) were calculated and their correlation was analyzed in each group. The results show that all CR, CP, and CPE could inhibit proliferation and induce apoptosis in Hela cells. Moreover, the effects of CP and CPE were more potent than that of CR. The CP and CPE were proved to be a kind of stronger apoptosis inducers than nonphosphated CR. There was a negative correlation between proliferation and apoptosis. In conclusion, the CR, CP, and CPE could effectively inhibit growth by down-regulated expression of PCNA, and induce apoptosis in Hela cells. The efficiency of the modified CP and CPE preceded nonmodified CR compounds. The CP and CPE may be a new potential anti-cancer drug for therapy of human cervical carcinoma.
Yamamoto, Norihisa; Kawahara, Ryuji; Akeda, Yukihiro; Shanmugakani, Rathina Kumar; Yoshida, Hisao; Hagiya, Hideharu; Hara, Naohiro; Nishi, Isao; Yukawa, Satomi; Asada, Rumiko; Sasaki, Yumi; Maeda, Kazuhiro; Sakamoto, Noriko; Hamada, Shigeyuki; Tomono, Kazunori
2017-03-24
Identification of carbapenemase-producing Enterobacteriaceae (CPE) in faecal specimens is challenging. This fact is particularly critical because low-level carbapenem-resistant organisms such as IMP-producing CPE are most prevalent in Japan. We developed a modified selective medium more suitable for IMP-type CPE. Fifteen reference CPE strains producing different types of β-lactamases were used to evaluate the commercially available CHROMagar KPC and chromID CARBA as well as the newly prepared MC-ECC medium (CHROMagar ECC supplemented with meropenem, cloxacillin, and ZnSO 4 ) and M-ECC medium (CHROMagar ECC supplemented with meropenem and ZnSO 4 ). A total of 1035 clinical samples were then examined to detect CPE using chromID CARBA and M-ECC medium. All tested strains producing NDM-, KPC-, and OXA-48-carbapenemases were successfully cultured in the media employed. Although most of the IMP-positive strains did not grow in CHROMagar KPC, chromID CARBA, or MC-ECC, all tested strains grew on M-ECC. When faecal samples were applied to the media, M-ECC medium allowed the best growth of IMP-type CPE with a significantly higher sensitivity (99.3%) than that of chromID CARBA (13.9%). M-ECC medium was determined as the most favourable selective medium for the detection of IMP-type CPE as well as other types of CPE.
Gautam, Vineeta; Singh, Karan P; Yadav, Vijay L
2018-03-01
Nanocomposite materials are potentially revolutionizing many technologies, including sensors. In this paper, we described the application of "PANI/MWCNTs/Starch" modified carbon paste electrode (PCS-CPE) as a simple and highly sensitive cholesterol sensor. This novel nano-composite material has integrated nano-morphology, where polyaniline could interact effectively with the additives; pi-pi stacking "MWCNTs," and covalently bonded with starch. Specific binding sites (sugar chains), better electro-catalytic properties and fast electron transfer facilitated the oxidation of cholesterol. Fourier transform infrared spectra confirmed the interaction of cholesterol with the composite material. The sensing response of PCS was measured by cyclic voltammetry and chronoamperometry (0.1 M PBS-5 used as supporting electrolyte). As the amount of cholesterol increased in the test solution, cyclic voltammograms showed a rise of peak current (cathodic and anodic). Under the normal experimental conditions, the developed sensor exhibited wide linear dynamic range (0.032 to 5 mM) (upper limit is due to lack of solubility of cholesterol), high sensitivity (800 μAmM -1 cm -2 ), low detection limit (0.01 mM) and shorter response time (within 4-6 s). Analytical specificity, selectivity, and sensitivity during cholesterol estimation were compared with the response of some other analytes (ascorbic acid, glucose, l-dopa, urea and lactic acid). This novel sensor was successfully applied to estimate cholesterol in cow milk (used as a model real sample). The sensing platform is highly sensitive and shows a linear response towards cholesterol without using any additional redox mediator or enzyme, thus this material is extremely promising for the realization of a low-cost integrated cholesterol sensor device. Graphical abstract Cyclic voltammetric response of cholesterol of composite modified carbon paste capillary electrode.
Zhu, Zhiqiang; Hong, Meiling; Guo, Dongsheng; Shi, Jifu; Tao, Zhanliang; Chen, Jun
2014-11-26
The cathode capacity of common lithium ion batteries (LIBs) using inorganic electrodes and liquid electrolytes must be further improved. Alternatively, all-solid-state lithium batteries comprising the electrode of organic compounds can offer much higher capacity. Herein, we successfully fabricated an all-solid-state lithium battery based on organic pillar[5]quinone (C35H20O10) cathode and composite polymer electrolyte (CPE). The poly(methacrylate) (PMA)/poly(ethylene glycol) (PEG)-LiClO4-3 wt % SiO2 CPE has an optimum ionic conductivity of 0.26 mS cm(-1) at room temperature. Furthermore, pillar[5]quinine cathode in all-solid-state battery rendered an average operation voltage of ∼2.6 V and a high initial capacity of 418 mAh g(-1) with a stable cyclability (94.7% capacity retention after 50 cycles at 0.2C rate) through the reversible redox reactions of enolate/quinonid carbonyl groups, showing favorable prospect for the device application with high capacity.
NASA Astrophysics Data System (ADS)
Fekry, A. M.; Azab, S. M.; Shehata, M.; Ameer, M. A.
A promising electrochemical sensor for the determination of nicotine (NIC) was developed by electrodeposition of Ce-Nanoparticles on a carbon paste electrode (CPE). The interaction of nicotine was studied using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), Scanning electron microscope (SEM) and Energy Dispersive X-Ray Analysis (EDX) techniques, in both aqueous and micellar media. The NIC Measurements were carried out in Britton-Robinson (B-R) buffer solution of pH range (2.0-8.0) containing (1.0 mM) sodium dodecylsulfate (SDS). The linear response range of the sensor was between 8 × 10-6 and 10-4 M with a detection limit of 9.43 × 10-8 M. Satisfactory results were achieved for the detection of NIC in real samples as urine and different brands of commercial cigarettes.
Parsaee, Zohreh; Karachi, Nima; Abrishamifar, Seyyed Milad; Kahkha, Mohammad Reza Rezaei; Razavi, Razieh
2018-07-01
In this study, silver nanoparticles modified choline chloride functionalized graphene oxide (AgNPs-ChCl-GO) was synthesized using sonochemical method and utilized as a bioelectrochemical sensor for detection of celecoxib (CEL). The characterization studies were ultimately performed in order to acheive a more complete understanding of the morphological and structural features of the AgNPs-ChCl-GO using different techniques including FT-IR, AFM, FE-SEM, EDX, and XRD. AgNPs-ChCl-GO demonstrated a significant improvement in the reduction activity of CEL due to the enhancement in the current response compared to the bare carbon paste electrode (CPE). The optimum experimental conditions, were optimized using central composite design (CCD) methodology. The differential pulse voltammetry (DPVs) showed an expanded linear dynamic ranges of 9.6 × 10 -9 -7.4 × 10 -7 M for celecoxib in Britton-Robinson buffer in pH 5.0 with. LOD (S/N = 3) and LOQ (S/N = 10) were obtained 2.51 × 10 -9 M and 6.58 × 10 -9 M respectively. AgNPs-ChCl-GO-carbon paste electrode exhibited suitable properties and high accuracy determination of celecoxib in the human plasma sample. Copyright © 2018 Elsevier B.V. All rights reserved.
Yildiz, Gulcemal; Aydogmus, Zeynep; Cinar, M Emin; Senkal, Filiz; Ozturk, Turan
2017-10-01
Electrochemical properties of eugenol were investigated on a graphene modified carbon paste electrode (CPE) by using voltammetric methods, which exhibited a well-defined irreversible peak at about 0.7V vs Ag/AgCl, NaCl (3M) in Britton-Robinson buffer at pH 2.0. Mechanism of the electrochemical reaction of eugenol was studied by performing density functional theory (DFT) computations and mass spectroscopic analysis. (CPCM:water)-wB97XD/aug-cc-PVTZ//(CPCM:water)-wB97XD/6-31G(d) level calculations predicted that the formation of product P2, possessing a para-quinoid structure, is preferred rather than the product P1, suggested in the literature, having an ortho-quinoid system. Determination of eugenol in a pharmaceutical sample was realized in the light of the electrochemical findings, and a validated voltammetric method for quantitative analysis of eugenol in a pharmaceutical formulation was proposed. The differential pulse voltammogram (DPV) peak currents were found to be linear in the concentration range of 1.0 × 10 -7 to 1.7 × 10 -5 M. The limit of detection (LOD) and the limit of quantification (LOQ) were obtained to be 7.0 × 10 -9 and 2.3 × 10 -8 , respectively. Copyright © 2017 Elsevier B.V. All rights reserved.
The coupling analysis between stock market indices based on permutation measures
NASA Astrophysics Data System (ADS)
Shi, Wenbin; Shang, Pengjian; Xia, Jianan; Yeh, Chien-Hung
2016-04-01
Many information-theoretic methods have been proposed for analyzing the coupling dependence between time series. And it is significant to quantify the correlation relationship between financial sequences since the financial market is a complex evolved dynamic system. Recently, we developed a new permutation-based entropy, called cross-permutation entropy (CPE), to detect the coupling structures between two synchronous time series. In this paper, we extend the CPE method to weighted cross-permutation entropy (WCPE), to address some of CPE's limitations, mainly its inability to differentiate between distinct patterns of a certain motif and the sensitivity of patterns close to the noise floor. It shows more stable and reliable results than CPE does when applied it to spiky data and AR(1) processes. Besides, we adapt the CPE method to infer the complexity of short-length time series by freely changing the time delay, and test it with Gaussian random series and random walks. The modified method shows the advantages in reducing deviations of entropy estimation compared with the conventional one. Finally, the weighted cross-permutation entropy of eight important stock indices from the world financial markets is investigated, and some useful and interesting empirical results are obtained.
Afkhami, Abbas; Khoshsafar, Hosein; Bagheri, Hasan; Madrakian, Tayyebeh
2014-02-01
A simple, highly sensitive and selective carbon nanocomposite electrode has been developed for the electrochemical trace determination of cadmium. This sensor was designed by incorporation of multi-walled carbon nanotubes (MWCNTs) and a new synthesized Schiff base into the carbon paste ionic liquid electrode (CPE(IL)) which provides remarkably improved sensitivity and selectivity for the electrochemical stripping assay of Cd(II). The detection limit of the method was found to be 0.08 μg L(-1) (S/N=3) that is lower than the maximum contaminant level of Cd(II) allowed by the Environmental Protection Agency (EPA) in standard drinking waters. The proposed electrode exhibits good applicability for monitoring Cd(II) in various real samples. © 2013.
NASA Technical Reports Server (NTRS)
Jandebeur, T. S.
1980-01-01
The effect of sample concentration on throughput and resolution in a modified continuous particle electrophoresis (CPE) system with flow in an upward direction is investigated. Maximum resolution is achieved at concentrations ranging from 2 x 10 to the 8th power cells/ml to 8 x 10 to the 8th power cells/ml. The widest peak separation is at 2 x 10 to the 8th power cells/ml; however, the sharpest peaks and least overlap between cell populations is at 8 x 10 to the 8th power cells/ml. Apparently as a result of improved electrophoresis cell performance due to coasting the chamber with bovine serum albumin, changing the electrode membranes and rinse, and lowering buffer temperatures, sedimentation effects attending to higher concentrations are diminished. Throughput as measured by recovery of fixed cells is diminished at the concentrations judged most likely to yield satisfactory resolution. The tradeoff appears to be improved recovery/throughput at the expense of resolution.
2010-01-01
Three types of carbon paste electrodes (CPEs) with different liquid binders were fabricated, and their electrochemical behavior was characterized via a potassium hexacyanoferrate(II) probe. 1-Octyl-3-methylimidazolium hexafluorophosphate ionic liquid (IL) as a hydrophobic conductive pasting binder showed better electrochemical performance compared with the commonly employed binder. The IL-contained CPEs demonstrated excellent electroactivity for oxidation of hydroquinone. A diffusion control mechanism was confirmed and the diffusion coefficient (D) of 5.05 × 10-4 cm2 s-1 was obtained. The hydrophobic IL-CPE is promising for the determination of hydroquinone in terms of high sensitivity, easy operation, and good durability. PMID:20977733
Freedman, John C; Hendricks, Matthew R; McClane, Bruce A
2017-01-01
Clostridium perfringens enterotoxin (CPE) causes the diarrhea associated with a common bacterial food poisoning and many antibiotic-associated diarrhea cases. The severity of some CPE-mediated disease cases warrants the development of potential therapeutics. A previous study showed that the presence of mepacrine inhibited CPE-induced electrophysiology effects in artificial lipid bilayers lacking CPE receptors. However, that study did not assess whether mepacrine inactivates CPE or, instead, inhibits a step in CPE action. Furthermore, CPE action in host cells is complex, involving the toxin binding to receptors, receptor-bound CPE oligomerizing into a prepore on the membrane surface, and β-hairpins in the CPE prepore inserting into the membrane to form a pore that induces cell death. Therefore, the current study evaluated the ability of mepacrine to protect cells from CPE. This drug was found to reduce CPE-induced cytotoxicity in Caco-2 cells. This protection did not involve mepacrine inactivation of CPE, indicating that mepacrine affects one or more steps in CPE action. Western blotting then demonstrated that mepacrine decreases CPE pore levels in Caco-2 cells. This mepacrine-induced reduction in CPE pore levels did not involve CPE binding inhibition but rather an increase in CPE monomer dissociation due to mepacrine interactions with Caco-2 membranes. In addition, mepacrine was also shown to inhibit CPE pores when already present in Caco-2 cells. These in vitro studies, which identified two mepacrine-sensitive steps in CPE-induced cytotoxicity, add support to further testing of the therapeutic potential of mepacrine against CPE-mediated disease. IMPORTANCE Clostridium perfringens enterotoxin (CPE) causes the gastrointestinal (GI) symptoms of a common bacterial food poisoning and several nonfoodborne human GI diseases. A previous study showed that, via an undetermined mechanism, the presence of mepacrine blocks CPE-induced electrophysiologic activity in artificial membranes. The current study now demonstrates that mepacrine also inhibits CPE-induced cytotoxicity in human enterocyte-like Caco-2 cells and that mepacrine does not directly inactivate CPE. Instead, this drug reduces both CPE pore formation and CPE pore activity in Caco-2 cells. These results suggest mepacrine as a therapeutic candidate for treating CPE-mediated GI diseases.
Shehata, M; Azab, S M; Fekry, A M; Ameer, M A
2016-05-15
A newly competitive electrochemical sensor for nicotine (NIC) detection was successfully achieved. Nano-TiO2 with a carbon paste electrode (CPE) were used for the sensor construction, where Nano-TiO2 was considered as one of the richest and highly variable class of materials. The sensor showed electrocatalytic activity in both aqueous and micellar media toward the oxidation of NIC at Britton-Robinson (B-R) buffer solution (4×10(-2)M) of pH range (2.0-8.0) containing (1.0mM) sodium dodecylsulfate (SDS) using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. Scanning electron microscope (SEM) and Energy Dispersive X-Ray Analysis (EDX) techniques were also used. The linear range of detection for NIC using the new Nano-TiO2 Modified Carbon Paste sensor (NTMCP) was detected using diffrential pulse voltammetry (DPV) technique and it was found between 2×10(-6)M and 5.4×10(-4)M with a detection limit of 1.34×10(-8)M. The obtained results clarified the simplicity, high sensitivity and selectivity of the new NTMCPE for nicotine determination in real cigarettes and urine samples. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Buenaventura, Angelo Gabriel E.; Yago, Allan Christopher C.
2018-05-01
A facile electrochemical pretreatment via anodization was done on Carbon Paste Electrodes (CPEs) composed of Multiwalled Carbon Nanotubes (MWCNTs) and Polydimethylsiloxane (PDMS) binder to produce `anodized' CPEs (ACPE). Cyclic Voltammetry (CV) technique was used to anodize the CPEs. The anodization step, performed in various solutions (0.2 M NaOH(aq), 0.06 M BR Buffer at pH 7.0, and 0.2 M HNO3(aq)), were found to enhance the electrochemical properties of the ACPEs compared to non-anodized CPE. Electrochemical Impedance Spectroscopy (EIS) measurements revealed a significantly lower charge transfer resistance (Rct) for the ACPEs (4.01-6.25 kΩ) as compared to CPE (25.9 kΩ). Comparison of the reversibility analysis for Fe(CN)63-/4- redox couple showed that the ACPEs have peak current ratio (Ia/Ic) at range of 0.97-1.10 while 1.92 for the CPE; this result indicated better electrochemical reversible behaviors for Fe(CN)63-/4- redox couple using the ACPEs. CV Anodization process was further optimized by varying solution and CV parameters (i.e. pH, composition, number of cycles, and potential range), and the resulting optimized ACPE was used for enhanced detection of Dopamine (DA) and Uric Acid (UA) in the presence of excess Ascorbic Acid (AA). Employing Differential Pulse Voltammetry technique, enhanced voltammetric signal for DA and significant peak separation between DA and UA was obtained. The anodic peak currents for the oxidation of DA and UA appeared at 0.263V and 0.414 V, respectively, and it was observed to be linearly increasing with increasing concentrations of biomolecules (25-100 µM). The detection limit was determined to be 3.86 µM for DA and 5.61 µM for UA. This study showed a quick and cost-effective pretreatment for CPEs based on MWCNT-PDMS composite which lead to significant enhancement on its electrochemical properties.
Agustini, Deonir; Mangrich, Antonio Salvio; Bergamini, Márcio F; Marcolino-Junior, Luiz Humberto
2015-09-01
A simple and sensitive electroanalytical method was developed for determination of nanomolar levels of Pb(II) based on the voltammetric stripping response at a carbon paste electrode modified with biochar (a special charcoal) and bismuth nanostructures (nBi-BchCPE). The proposed methodology was based on spontaneous interactions between the highly functionalized biochar surface and Pb(II) ions followed by reduction of these ions into bismuth nanodots which promote an improvement on the stripping anodic current. The experimental procedure could be summarized in three steps: including an open circuit pre-concentration, reduction of accumulated lead ions at the electrode surface and stripping step under differential pulse voltammetric conditions (DPAdSV). SEM images revealed dimensions of bismuth nanodots ranging from 20 nm to 70 nm. The effects of main parameters related to biochar, bismuth and operational parameters were examined in detail. Under the optimal conditions, the proposed sensor has exhibited linear range from 5.0 to 1000 nmol L(-1) and detection limit of 1.41 nmol L(-1) for Pb(II). The optimized method was successfully applied for determination of Pb(II) released from overglaze-decorated ceramic dishes. Results obtained were compared with those given by inductively coupled plasma optical emission spectroscopy (ICP-OES) and they are in agreement at 99% of confidence level. Copyright © 2015. Published by Elsevier B.V.
Mariappan, Shanthi; Sekar, Uma; Kamalanathan, Arunagiri
2017-01-01
Background: Carbapenemase-producing Enterobacteriaceae (CPE) have increased in recent years leading to limitations of treatment options. The present study was undertaken to detect CPE, risk factors for acquiring them and their impact on clinical outcomes. Methods: This retrospective observational study included 111 clinically significant Enterobacteriaceae resistant to cephalosporins subclass III and exhibiting a positive modified Hodge test. Screening for carbapenemase production was done by phenotypic methods, and polymerase chain reaction was performed to detect genes encoding them. Retrospectively, the medical records of the patients were perused to assess risk factors for infections with CPE and their impact. The data collected were duration of hospital stay, Intensive Care Unit (ICU) stay, use of invasive devices, mechanical ventilation, the presence of comorbidities, and antimicrobial therapy. The outcome was followed up. Univariate and multivariate analysis of the data were performed using SPSS software. Results: Carbapenemase-encoding genes were detected in 67 isolates. The genes detected were New Delhi metallo-β-lactamase, Verona integron-encoded metallo-β-lactamase, and oxacillinase-181.Although univariate analysis identified risk factors associated with acquiring CPE infections as ICU stay (P = 0.021), mechanical ventilation (P = 0.013), indwelling device (P = 0.011), diabetes mellitus (P = 0.036), usage of multiple antimicrobial agents (P = 0.007), administration of carbapenems (P = 0.042), presence of focal infection or sepsis (P = 0.013), and surgical interventions (P = 0.016), multivariate analysis revealed that all these factors were insignificant. Mortality rate was 56.7% in patients with CPE infections. By both univariate and multivariate analysis of impact of the variables on mortality in these patients, the significant factors were mechanical ventilation (odds ratio [OR]: 0.141, 95% confidence interval [CI]: 0.024–0.812) and presence of indwelling invasive device (OR: 8.034; 95% CI: 2.060–31.335). Conclusion: In this study, no specific factor was identified as an independent risk for acquisition of CPE infection. However, as it is evident by multivariate analysis, there is an increased risk of mortality in patients with CPE infections when they are ventilated and are supported by indwelling devices. PMID:28251105
Pruneanu, Stela; Biris, Alexandru R; Pogacean, Florina; Lazar, Diana Mihaela; Ardelean, Stefania; Watanabe, Fumyia; Dervishi, Enkeleda; Biris, Alexandru S
2012-11-12
This work is the first presentation of the synthesis of few-layer graphene decorated with gold and silver nanoparticles (Gr-Au-Ag) by chemical vapor deposition over a catalytic system formed of bimetallic Au-Ag nanoclusters supported on MgO and with methane used as the source of carbon. The sheetlike morphology of the graphene nanostructures, with mean sizes in the range of hundreds of nanometers, was observed by high-resolution electron microscopy. The distinctive feature found in all the samples was the regular rectangular or square shapes. This multi-component organic-inorganic nanomaterial was used to modify a platinum substrate and subsequently employed for the detection of carbamazepine, an anti-convulsion drug. UV/Vis spectroscopy revealed that a strong hypochromism occurred over time, after mixing solutions of graphene-Au-Ag with carbamazepine. This can be attributed to π-π stacking between the aromatic groups of the two compounds. Linear sweep voltammetry (LCV) provided evidence that the modified platinum substrate presented a significant electrocatalytic reaction toward the oxidation of carbamazepine. The intensity of the current was found to increase by up to 2.5 times, and the oxidation potential shifted from +1.5 to +1.35 V(Ag/AgCl) in comparison with the unmodified electrode. Electrochemical impedance spectroscopy (EIS) was further used to thoroughly assess the activity of the platinum electrode that was modified by the deposition of the Gr-Au-Ag composites in the presence of various concentrations of carbamazepine. The experimental EIS records were used for the generation of an equivalent electrical circuit, based on the charge-transfer resistance (R(ct)), Warburg impedance (Z(D)), solution resistance (R(s)), and a constant phase element (CPE) that characterizes the non-ideal interface capacitive responses. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Zinc Oxide Nanoflower-Based Electrochemical Sensor for Trace Detection of Sunset Yellow
Ya, Yu; Jiang, Cuiwen; Li, Tao; Liao, Jie; Fan, Yegeng; Wei, Yuning; Yan, Feiyan; Xie, Liping
2017-01-01
Zinc oxide nanoflower (ZnONF) was synthesized by a simple process and was used to construct a highly sensitive electrochemical sensor for the detection of sunset yellow (SY). Due to the large surface area and high accumulation efficiency of ZnONF, the ZnONF-modified carbon paste electrode (ZnONF/CPE) showed a strong enhancement effect on the electrochemical oxidation of SY. The electrochemical behaviors of SY were investigated using voltammetry with the ZnONF-based sensor. The optimized parameters included the amount of ZnONF, the accumulation time, and the pH value. Under optimal conditions, the oxidation peak current was linearly proportional to SY concentration in the range of 0.50–10 μg/L and 10–70 μg/L, while the detection limit was 0.10 μg/L (signal-to-noise ratio = 3). The proposed method was used to determine the amount of SY in soft drinks with recoveries of 97.5%–103%, and the results were in good agreement with the results obtained by high-performance liquid chromatography. PMID:28282900
NASA Astrophysics Data System (ADS)
He, Junnan; Shang, Hongzhou; Zhang, Xing; Sun, Xiaoran
2018-01-01
A novel nickel ion imprinted polymers (IIPs) based on multi-walled carbon nanotubes (MWCNTs) were synthesized inverse emulsion system, using chitosan(CS) and acrylic acid as the functional monomers, Ni (II) as the template, and N' N-methylene bis-acrylamide as the cross-linker. The chemical structure and morphological feature of the IIPs were characterized by scanning electron microscopy (SEM), Thermogravimetry (TG), X-ray diffraction (XRD), and Fourier transform infrared spectrometer (FTIR). The studies indicated that the gel layer was well grafted on the surface of MWCNTs. Studies on the adsorption ability of the IIPs, by atomic absorption spectrophotometry, demonstrated that IIPs possessed excellent adsorption and selective ability towards Ni (II), fitting to pseudo second-order kinetic isotherms and with a maximum capacity of 19.86 mg/g, and selectivity factor of 13.09 and 4.42. The electrochemical performance of ion imprinting carbon paste electrode (CPE/IIPs) was characterized by Cyclic voltammetry (CV). Studies have shown that CPE/IIPs showed excellent electrochemical performance.
Lahti, Päivi; Heikinheimo, Annamari; Johansson, Tuula; Korkeala, Hannu
2008-01-01
The prevalences of various genotypes of enterotoxin gene-carrying (cpe-positive) Clostridium perfringens type A in 24 different food poisoning outbreaks were 75% (chromosomal IS1470-cpe), 21% (plasmid-borne IS1470-like-cpe), and 4% (plasmid-borne IS1151-cpe). These results show that C. perfringens type A carrying the plasmid-borne cpe is a common cause of food poisoning. PMID:18003798
Gijón, Desirèe; Curiao, Tânia; Baquero, Fernando; Coque, Teresa M.
2012-01-01
Fecal carriage of carbapenemase-producing Enterobacteriaceae (CPE) has not been extensively investigated, except in the cases of selected patients at risk, mostly during outbreaks. A total of 1,100 fecal samples randomly collected in our institution in two different periods in 2006 (n = 600) and 2009–2010 (n = 500) from hospitalized (26.8%) and nonhospitalized (73.2%) patients were screened for CPE. The first period coincided with an outbreak of VIM-1-producing Enterobacteriaceae, and the second one coincided with the emergence of KPC enzymes in our hospital. Diluted samples in saline were cultured in Luria-Bertani broth with 1 μg/ml imipenem and subcultured in MacConkey agar plates with 4 μg/ml ceftazidime. Growing colonies were screened for CPE (modified Hodge test and EDTA and boronic acid synergy tests). Carbapenemase genes, plasmids in which they are located, and clonal relatedness were determined. Individuals who exhibited fecal carriage of CPE (11/1,043, 1.1%; 95% confidence interval [CI], 0.53 to 1.88) included 8 hospitalized (carriage rate, 2.9%; 95% CI, 1.24 to 5.55) and 3 nonhospitalized patients (carriage rate, 0.4%; 95% CI, 0.08 to 1.14), the latter being identified in 2009. Eighty-two percent of colonized patients were not infected with CPE. Isolates harboring blaVIM-1 with or without blaSHV-12 were identified as Klebsiella pneumoniae (n = 8; ST39, ST688, ST253, and ST163), Enterobacter cloacae (n = 3; two pulsed-field gel electrophoresis [PFGE] types), Escherichia coli (n = 2; ST155 and ST2441), and Citrobacter freundii (n = 1). Some of these lineages had previously been detected in our institution. The blaVIM-1 gene was a member of the class 1 integrons In110 (blaVIM-1-aacA4-aadA1) and In113 (blaVIM-1-aacA4-dhfrII) located on plasmids IncN (n = 11; 30 to 50 kb) and IncHI2 (n = 3; 300 kb), respectively. Dissemination of blaVIM-1 class-1 integrons within highly transferable plasmids in a polyclonal population has potentially contributed to the maintenance and spread of CPE. PMID:22403422
Yasugi, Mayo; Sugahara, Yuki; Hoshi, Hidenobu; Kondo, Kaori; Talukdar, Prabhat K; Sarker, Mahfuzur R; Yamamoto, Shigeki; Kamata, Yoichi; Miyake, Masami
2015-08-01
Clostridium perfringens type A is a common source of food poisoning (FP) and non-food-borne (NFB) gastrointestinal diseases in humans. In the intestinal tract, the vegetative cells sporulate and produce a major pathogenic factor, C. perfringens enterotoxin (CPE). Most type A FP isolates carry a chromosomal cpe gene, whereas NFB type A isolates typically carry a plasmid-encoded cpe. In vitro, the purified CPE protein binds to a receptor and forms pores, exerting a cytotoxic activity in epithelial cells. However, it remains unclear if CPE is indispensable for C. perfringens cytotoxicity. In this study, we examined the cytotoxicity of cpe-harboring C. perfringens isolates co-cultured with human intestinal epithelial Caco-2 cells. The FP strains showed severe cytotoxicity during sporulation and CPE production, but not during vegetative cell growth. While Caco-2 cells were intact during co-culturing with cpe-null mutant derivative of strain SM101 (a FP strain carrying a chromosomal cpe gene), the wild-type level cytotoxicity was observed with cpe-complemented strain. In contrast, both wild-type and cpe-null mutant derivative of the NFB strain F4969 induced Caco-2 cell death during both vegetative and sporulation growth. Collectively, the Caco-2 cell cytotoxicity caused by C. perfringens strain SM101 is considered to be exclusively dependent on CPE production, whereas some additional toxins should be involved in F4969-mediated in vitro cytotoxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Functional characterization of enzymes catalyzing ceramide phosphoethanolamine biosynthesis in mice.
Bickert, Andreas; Ginkel, Christina; Kol, Matthijs; vom Dorp, Katharina; Jastrow, Holger; Degen, Joachim; Jacobs, René L; Vance, Dennis E; Winterhager, Elke; Jiang, Xian-Cheng; Dörmann, Peter; Somerharju, Pentti; Holthuis, Joost C M; Willecke, Klaus
2015-04-01
Besides bulk amounts of SM, mammalian cells produce small quantities of the SM analog ceramide phosphoethanolamine (CPE). Little is known about the biological role of CPE or enzymes responsible for CPE production. Heterologous expression studies revealed that SM synthase (SMS)2 is a bifunctional enzyme producing both SM and CPE, whereas SMS-related protein (SMSr) serves as monofunctional CPE synthase. Acute disruption of SMSr catalytic activity in cultured cells causes a rise in endoplasmic reticulum (ER) ceramides, fragmentation of ER exit sites, and induction of mitochondrial apoptosis. To address the relevance of CPE biosynthesis in vivo, we analyzed the tissue-specific distribution of CPE in mice and generated mouse lines lacking SMSr and SMS2 catalytic activity. We found that CPE levels were >300-fold lower than SM in all tissues examined. Unexpectedly, combined inactivation of SMSr and SMS2 significantly reduced, but did not eliminate, tissue-specific CPE pools and had no obvious impact on mouse development or fertility. While SMSr is widely expressed and serves as the principal CPE synthase in the brain, blocking its catalytic activity did not affect ceramide levels or secretory pathway integrity in the brain or any other tissue. Our data provide a first inventory of CPE species and CPE-biosynthetic enzymes in mammals. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.
Flexible Li-CO2 Batteries with Liquid-Free Electrolyte.
Hu, Xiaofei; Li, Zifan; Chen, Jun
2017-05-15
Developing flexible Li-CO 2 batteries is a promising approach to reuse CO 2 and simultaneously supply energy to wearable electronics. However, all reported Li-CO 2 batteries use liquid electrolyte and lack robust electrolyte/electrodes structure, not providing the safety and flexibility required. Herein we demonstrate flexible liquid-free Li-CO 2 batteries based on poly(methacrylate)/poly(ethylene glycol)-LiClO 4 -3 wt %SiO 2 composite polymer electrolyte (CPE) and multiwall carbon nanotubes (CNTs) cathodes. The CPE (7.14×10 -2 mS cm -1 ) incorporates with porous CNTs cathodes, displaying stable structure and small interface resistance. The batteries run for 100 cycles with controlled capacity of 1000 mAh g -1 . Moreover, pouch-type flexible batteries exhibit large reversible capacity of 993.3 mAh, high energy density of 521 Wh kg -1 , and long operation time of 220 h at different degrees of bending (0-360°) at 55 °C. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Black, Jonathan D.; Lopez, Salvatore; Cocco, Emiliano; Schwab, Carlton L.; English, Diana P.; Santin, Alessandro D.
2015-01-01
Clostridium perfringens enterotoxin (CPE) is a three-domain polypeptide, which binds to Claudin-3 and Claudin-4 with high affinity. Because these receptors are highly differentially expressed in many human tumors, claudin-3 and claudin-4 may provide an efficient molecular tool to specifically identify and target biologically aggressive human cancer cells for CPE-specific binding and cytolysis. In this review we will discuss these surface proteins as targets for the detection and treatment of chemotherapy-resistant gynecologic malignancies overexpressing claudin-3 and -4 using CPE-based theranostic agents. We will also discuss the use of fluorescent c-CPE peptide in the operative setting for real time detection of micro-metastatic tumors during surgery and review the potential role of CPE in other medical applications. PMID:25835384
Gabig, Theodore G; Waltzer, Wayne C; Whyard, Terry; Romanov, Victor
2016-09-16
The current intravesical treatment of bladder cancer (BC) is limited to a few chemotherapeutics that show imperfect effectiveness and are associated with some serious complications. Thus, there is an urgent need for alternative therapies, especially for patients with high-risk non-muscle invasive (NMIBC). Clostridium perfringens enterotoxin (CPE), cytolytic protein binds to its receptors: claudin 3 and 4 that are expressed in epithelial cells. This binding is followed by rapid cell death. Claudin 4 is present in several epithelial tissue including bladder urothelium and its expression is elevated in some forms of BC. In addition to directly targeting BC cells, binding of CPE to claudins increases urothelium permeability that creates conditions for better accession of the tumor. Therefore, we evaluated CPE as a candidate for intravesical treatment of BC using a cellular model. We examined cytotoxicity of CPE against BC cells lines and 3D cultures of cells derived from surgical samples. To better elucidate cellular mechanisms, activated by CPE and to consider the use of CPE non-toxic fragment (C-CPE) for combination treatment with other drugs we synthesized C-CPE, compared its cytotoxic activity with CPE and examined claudin 4 expression and intracellular localization after C-CPE treatment. CPE induced cell death after 1 h in low aggressive RT4 cells, in moderately aggressive 5637 cells and in the primary 3D cultures of BC cells derived from NMIBC. Conversely, non-transformed urothelial cells and cells derived from highly aggressive tumor (T24) survived this treatment. The reason for this resistance to CPE might be the lower expression of CLDNs or their inaccessibility for CPE in these cells. C-CPE treatment for 48 h did not affect cell viability in tested cells, but declined expression of CLDN4 in RT4 cells. C-CPE increased sensitivity of RT4 cells to Mitommycin C and Dasatinib. To better understand mechanisms of this effect we examined expression and phosphorylation status of EphA2 and Src after C-CPE treatment and found changes in expression and phosphorylated status of these regulatory molecules. These observations show that after additional preclinical studies CPE and C-CPE in combinations with other drugs can be considered as a potential modalities for intravesical treatment of BC because of its ability to effectively destroy BC cells expressing claudin 4 and low toxicity against normal urothelium. Copyright © 2016 Elsevier Inc. All rights reserved.
Coope, C M; Verlander, N Q; Schneider, A; Hopkins, S; Welfare, W; Johnson, A P; Patel, B; Oliver, I
2018-03-09
Following hospital outbreaks of carbapenemase-producing Enterobacteriaceae (CPE), Public Health England published a toolkit in December 2013 to promote the early detection, management, and control of CPE colonization and infection in acute hospital settings. To examine awareness, uptake, implementation and usefulness of the CPE toolkit and identify potential barriers and facilitators to its adoption in order to inform future guidance. A cross-sectional survey of National Health Service (NHS) acute trusts was conducted in May 2016. Descriptive analysis and multivariable regression models were conducted, and narrative responses were analysed thematically and informed using behaviour change theory. Most (92%) acute trusts had a written CPE plan. Fewer (75%) reported consistent compliance with screening and isolation of CPE risk patients. Lower prioritization and weaker senior management support for CPE prevention were associated with poorer compliance. Awareness of the CPE toolkit was high and all trusts with patients infected or colonized with CPE had used the toolkit either as provided (32%), or to inform (65%) their own local CPE plan. Despite this, many respondents (80%) did not believe that the CPE toolkit guidance offered an effective means to prevent CPE or was practical to follow. CPE prevention and control requires robust IPC measures. Successful implementation can be hindered by a complex set of factors related to their practical execution, insufficient resources and a lack of confidence in the effectiveness of the guidance. Future CPE guidance would benefit from substantive user involvement, processes for ongoing feedback, and regular guidance updates. Copyright © 2018 The Healthcare Infection Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Yanzhou; Luo, Jie; Zhang, Yanting; Zhao, Junwei; Chen, Lijuan; Ma, Pengtao; Niu, Jingyang
2013-09-01
An inorganic-organic hybrid hexa-copper-substituted germanotungstate Na2[Cu(dap)2]2[Cu(dap)2] {[Cu6(H2O)2(dap)2][B-α-GeW9O34]2}·4H2O (1) (dap=1,2-diaminopropane) has been hydrothermally prepared and characterized by elemental analyses, inductively coupled plasma atomic emission spectrometry (ICP-AES) analyses, IR spectra, powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA) and single-crystal X-ray diffraction. 1 displays the six-connected 3D network with the long topological (O'Keefe) vertex symbol is 4·4·64·4·4·4·4·64·4·4·4·64·4·4·4 and the short vertex (Schläfli) symbol of 41263. Magnetic measurements indicate that there are the overall ferromagnetic exchange interactions in the belt-like hexa-CuII cluster in 1. Furthermore, the electrochemical behavior and electrocatalysis of 1 modified carbon paste electrode (1-CPE) have been studied. The reductions of nitrite, bromate and hydrogen peroxide are principally mediated by the WVI-based wave.
Alnoman, Maryam; Udompijitkul, Pathima; Banawas, Saeed; Sarker, Mahfuzur R
2018-02-01
Clostridium perfringens type A isolates carrying a chromosomal enterotoxin (cpe) gene (C-cpe) are generally linked to food poisoning, while isolates carrying cpe on a plasmid (P-cpe) are associated with non-food-borne gastrointestinal diseases. Both C-cpe and P-cpe isolates can form metabolically dormant spores, which through germination process return to actively growing cells to cause diseases. In our previous study, we showed that only 3 out of 20 amino acids (aa) in phosphate buffer (pH 7.0) triggered germination of spores of P-cpe isolates (P-cpe spores). We now found that 14 out of 20 individual aa tested induced germination of P-cpe spores in the presence of bicarbonate buffer (pH 7.0). However, no significant spore germination was observed with bicarbonate (pH 7.0) alone, indicating that aa and bicarbonate are co-germinants for P-cpe spores. P-cpe strain F4969 gerKC spores did not germinate, and gerAA spores germinated extremely poorly as compared to wild-type and gerKA spores with aa-bicarbonate (pH 7.0) co-germinants. The germination defects in gerKC and gerAA spores were partially restored by complementing gerKC or gerAA spores with wild-type gerKC or gerAA, respectively. Collectively, this study identified aa-bicarbonate as a novel nutrient germinant for P-cpe spores and provided evidence that GerKC and GerAA play major roles in aa-bicarbonate induced germination. Copyright © 2017 Elsevier Ltd. All rights reserved.
Reduction of Aspergillus niger Virulence in Apple Fruits by Deletion of the Catalase Gene cpeB.
Zhang, Meng-Ke; Tang, Jun; Huang, Zhong-Qin; Hu, Kang-Di; Li, Yan-Hong; Han, Zhuo; Chen, Xiao-Yan; Hu, Lan-Ying; Yao, Gai-Fang; Zhang, Hua
2018-05-30
Aspergillus niger, a common saprophytic fungus, causes rot in many fruits. We studied the role of a putative catalase-peroxidase-encoding gene, cpeB, in oxidative stress and virulence in fruit. The cpeB gene was deleted in A. niger by homologous recombination, and the Δ cpeB mutant showed decreased CAT activity compared with that of the wild type. The cpeB gene deletion caused increased sensitivity to H 2 O 2 stress, and spore germination was significantly reduced; in addition, the reactive-oxygen-species (ROS) metabolites superoxide anions (·O 2 - ), hydrogen peroxide (H 2 O 2 ), and malondialdehyde (MDA) accumulated in the Δ cpeB mutant during H 2 O 2 stress. Furthermore, ROS metabolism in A. niger infected apples was determined, and our results showed that the Δ cpeB mutant induced an attenuated response in apple fruit during the fruit-pathogen interaction; the cpeB gene deletion significantly reduced the development of lesions, suggesting that the cpeB gene in A. niger is essential for full virulence in apples.
Structure property relationships in various filled polymers
NASA Astrophysics Data System (ADS)
Yu, Jiong
The toughness of impact modified poly(vinyl chloride) (PVC) compounds was examined using a modified Charpy test. Increasing impact speed resulted in a quasi-brittle to ductile transition in all PVC compounds. In the quasi-brittle region, a PVC of 56,000 Mw fractured through a craze-like damage zone that could be described by a modified Dugdale model. Furthermore, the same molecular weight PVC modified with either 10 pph chlorinated polyethylene (CPE) or 10 pph methylmethacrylate-butadiene-styrene (MBS) impact modifier also conformed to the Dugdale model with the craze-like damage zone. It was found that CPE effectively improved the impact performance of PVC by shifting the quasi-brittle to ductile transition to a higher loading rate. Compared to CPE, MBS was found to be a better impact modifier and resulted in a higher quasi-brittle to ductile transition loading rate in the same PVC matrix. Fracture initiation toughness of all the materials was described by the Hayes-Williams modification of the Dugdale model. The intrinsic brittle fracture energy obtained by extrapolation to zero craze length was determined only by the PVC matrix and was independent of the impact modifier. However, the kinetics of craze growth, and hence the response to rapid loading, depended on the impact modifier. Increasing molecular weight of the PVC resin resulted in a more complex damage zone that was not amendable to the Dugdale analysis. A new in-situ infusion method was used to incorporate small amounts (ca. 1wt%) of metal and metal oxide particles into a polymer matrix. Nano-sized particles were observed by both transmission electron microscopy (TEM) and atomic force microscopy (AFM). Oxygen (O2) and carbon dioxide (CO2) transport properties of the infused materials were investigated using a dynamic diffusion approach in which both testing and purge gases can be controlled. It was discovered that trace amounts (ca. 2%) of hydrogen (H2) in the purge gas was sufficient to considerably reduce the O2 flux of FEP films infused with Palladium (Pd) nano-particles, up to two hundred fold decrease. In contrast, H2 has essentially no effect on the transport of CO2. The generality of the remarkable reduction in oxygen flux was also demonstrated with films of PP, LLDPE, PET, Nylon 6,6 infused with Pd nano-particles. This oxygen scavenging effect became more pronounced at lower oxygen concentrations. The catalytic role of Pd in the reaction of O2 and H2, and the enormous surface area provided by the dispersed nano-particles were responsible for this highly efficient oxygen scavenging effect. (Abstract shortened by UMI.)
Alberta CancerBridges development of a care plan evaluation measure
Giese-Davis, J.; Sisler, J.; Zhong, L.; Brandelli, Y.; McCormick, J.L.; Railton, C.; Shirt, L.; Lau, H.; Hao, D.; Chobanuk, J.; Walley, B.; Joy, A.A.; Taylor, A.; Carlson, L.
2018-01-01
Background No standardized measures specifically assess cancer survivors’ and healthcare providers’ experience of Survivor Care Plans (scps). We sought to develop two care plan evaluation (cpe) measures, one for survivors (cpe-s) and one for healthcare providers (cpe-p), examine initial psychometric qualities in Alberta, and assess generalizability in Manitoba, Canada. Methods We developed the initial measures using convenience samples of breast (n = 35) and head and neck (n = 18) survivors who received scps at the end of active cancer-centre treatment. After assessing Alberta’s scp concordance with Institute of Medicine (iom) recommendations using a published coding scheme, we examined psychometric qualities for the cpe-s and cpe-p. We examined generalizability in Manitoba, Canada, with colorectal survivors discharged to primary care providers for follow-up (n = 75). Results We demonstrated acceptable internal consistency for the cpe-s and cpe-p subscales and total score after eliminating one item per subscale for cpe-s, two for cpe-p, resulting in revised scales with four 7-item and 6-item subscales, respectively. Subscale scores correlated highly indicating that for each measure the total score may be the most reliable and valid. We provide initial cpe-s discriminant, convergent, and predictive validity using the total score. Using the Manitoba sample, initial psychometrics similarly indicated good generalizability across differences in tumour groups, scp, and location. Conclusions We recommend the revised cpe-s and cpe-p for further use and development. Studies documenting the creation and standardization of scp evaluations are few, and we recommend further development of patient experience measures to improve both clinical practice and the specificity of research questions. PMID:29507497
Fabbiani, Massimiliano; Grima, Pierfrancesco; Milanini, Benedetta; Mondi, Annalisa; Baldonero, Eleonora; Ciccarelli, Nicoletta; Cauda, Roberto; Silveri, Maria C; De Luca, Andrea; Di Giambenedetto, Simona
2015-01-01
The aim of the study was to explore how viral resistance and antiretroviral central nervous system (CNS) penetration could impact on cognitive performance of HIV-infected patients. We performed a multicentre cross-sectional study enrolling HIV-infected patients undergoing neuropsychological testing, with a previous genotypic resistance test on plasma samples. CNS penetration-effectiveness (CPE) scores and genotypic susceptibility scores (GSS) were calculated for each regimen. A composite score (CPE-GSS) was then constructed. Factors associated with cognitive impairment were investigated by logistic regression analysis. A total of 215 patients were included. Mean CPE was 7.1 (95% CI 6.9, 7.3) with 206 (95.8%) patients showing a CPE≥6. GSS correction decreased the CPE value in 21.4% (mean 6.5, 95% CI 6.3, 6.7), 26.5% (mean 6.4, 95% CI 6.1, 6.6) and 24.2% (mean 6.4, 95% CI 6.2, 6.6) of subjects using ANRS, HIVDB and REGA rules, respectively. Overall, 66 (30.7%) patients were considered cognitively impaired. No significant association could be demonstrated between CPE and cognitive impairment. However, higher GSS-CPE was associated with a lower risk of cognitive impairment (CPE-GSSANRS odds ratio 0.75, P=0.022; CPE-GSSHIVDB odds ratio 0.77, P=0.038; CPE-GSSREGA odds ratio 0.78, P=0.038). Overall, a cutoff of CPE-GSS≥5 seemed the most discriminatory according to each different interpretation system. GSS-corrected CPE score showed a better correlation with neurocognitive performance than the standard CPE score. These results suggest that antiretroviral drug susceptibility, besides drug CNS penetration, can play a role in the control of HIV-associated neurocognitive disorders.
NASA Astrophysics Data System (ADS)
Dey, Nibedita; Devasena, T.; Sivalingam, Tamilarasu
2018-02-01
This work reports a comparative study on the development of a sensitive voltammetric method for the assay of diferuloylmethane which is fabricated using cost-effective sensing material graphene oxide (GO modified electrode) and reduced graphene oxide (rGO modified electrode) modified on glassy carbon electrode respectively. The prepared materials were characterized using SEM, XRD, FTIR, and Raman techniques to understand the formation. Between the both modified electrodes, rGO modified electrode demonstrated a lower limit detection of 0.9 pM and good signal quality. But, the better linear dynamic range for detection was found to be 1 nm to 100 nM for GO and 0.1 nM to 10 nM for rGO modified electrodes respectively. The repeatability is checked for seven cycles and interference studies were also performed for checking the sensors’ selectivity to curcumin. rGO modified electrode and GO modified electrode both shows specific signals for Diferuloylmethane under conditions similar to physiology. But, with better properties over GO modified electrode, rGO modified electrode is suggested a better candidate for real-time usability in sensing. The detection limit reported is the lowest till date for the given plant drug using any sensing assay.
Mandatory continuing professional education in pharmacy: the Singapore experience.
Ang, Hui-Gek; Pua, Yong-Hao; Subari, Nur Azah
2013-08-01
Mandatory Continuing Professional Education (CPE) for the renewal of pharmacists' practising certificate was implemented in Singapore in 2008 OBJECTIVE: To study pharmacists' perceptions and attitudes about the impact of mandatory CPE in Singapore. Singapore. Internet-based questionnaire survey, conducted between May and June 2011. Pharmacists' perceptions and attitudes toward mandatory CPE and the perceived difficulty in fulfilling the CPE requirements. The overall survey response rate was 52 % (840/1,609). Of the respondents, 32 % were non-practising, 49 % were practising in patient care areas, and 19 % were practising in non-patient care areas. More than half the pharmacists agreed that mandatory CPE (1) enhanced or increased their knowledge base and skills (70 %; 95 % CI 67-73 %), (2) motivated them to continually learn (64 %; 95 % CI, 60-67 %), and (3) motivated them to reflect on their professional practice or work (58 %; 95 % CI, 54-61 %). Mandatory CPE was not perceived to enhance or increase employability. Non-practising pharmacists appeared to have the greatest difficulty meeting the CPE requirements. In general, pharmacists value mandatory CPE more for positive professional reasons than for employability reasons. The survey results may serve as useful baseline data for future studies of pharmacists' perceptions and attitudes toward CPE in Singapore.
Clostridium perfringens Enterotoxin: Action, Genetics, and Translational Applications
Freedman, John C.; Shrestha, Archana; McClane, Bruce A.
2016-01-01
Clostridium perfringens enterotoxin (CPE) is responsible for causing the gastrointestinal symptoms of several C. perfringens food- and nonfood-borne human gastrointestinal diseases. The enterotoxin gene (cpe) is located on either the chromosome (for most C. perfringens type A food poisoning strains) or large conjugative plasmids (for the remaining type A food poisoning and most, if not all, other CPE-producing strains). In all CPE-positive strains, the cpe gene is strongly associated with insertion sequences that may help to assist its mobilization and spread. During disease, CPE is produced when C. perfringens sporulates in the intestines, a process involving several sporulation-specific alternative sigma factors. The action of CPE starts with its binding to claudin receptors to form a small complex; those small complexes then oligomerize to create a hexameric prepore on the membrane surface. Beta hairpin loops from the CPE molecules in the prepore assemble into a beta barrel that inserts into the membrane to form an active pore that enhances calcium influx, causing cell death. This cell death results in intestinal damage that causes fluid and electrolyte loss. CPE is now being explored for translational applications including cancer therapy/diagnosis, drug delivery, and vaccination. PMID:26999202
ERIC Educational Resources Information Center
Gozzi, Christel; Arnoux, Marie-Jose´; Breuzard, Jere´my; Marchal, Claire; Nikitine, Clémence; Renaudat, Alice; Toulgoat, Fabien
2016-01-01
Literature searches are essential for scientists. Thus, courses on how to do a good literature search have been integrated in studies at CPE Lyon for many years. Recently, we modified our pedagogical approach in order to initiate students progressively in the search for chemical information. In addition, this new teaching organization is now based…
Javadi, Mohammadreza; Kargar, Alireza; Gholami, Kheirollah; Hadjibabaie, Molouk; Rashidian, Arash; Torkamandi, Hassan; Sarayani, Amir
2015-09-01
Pharmacists are routinely providing reproductive health counseling in community pharmacies, but studies have revealed significant deficits in their competencies. Therefore, continuing pharmacy education (CPE) could be utilized as a valuable modality to upgrade pharmacists' capabilities. A randomized controlled trial was designed to compare the efficacy of CPE meetings (lecture based vs. workshop based) on contraception and male sexual dysfunctions. Sixty pharmacists were recruited for each CPE meeting. Small group training using simulated patients was employed in the workshop-based CPE. Study outcomes were declarative/procedural knowledge, attitudes, and satisfaction of the participants. Data were collected pre-CPE, post-CPE, and 2 months afterward and were analyzed using repeated measure analysis of variance and Mann-Whitney U test. Results showed that lecture-based CPE was more successful in improving pharmacists' knowledge post-CPE (p < .001). In contrast, a significant decrease was observed in the lecture-based group at follow-up (p = .002), whereas the workshop-based group maintained their knowledge over time (p = 1.00). Knowledge scores of both groups were significantly higher at follow-up in comparison with pre-CPE (p < .01). No significant differences were observed regarding satisfaction and attitudes scores between groups. In conclusion, an interactive workshop might not be superior to lecture-based training for improving pharmacists' knowledge and attitudes in a 1-day CPE meeting. © The Author(s) 2013.
Jans, B; D Huang, T-D; Bauraing, C; Berhin, C; Bogaerts, P; Deplano, A; Denis, O; Catry, B; Glupczynski, Y
2015-06-01
Carbapenemase-producing Enterobacteriaceae (CPE) are emerging worldwide, representing a major threat for public health. Early CPE detection is crucial in order to prevent infections and the development of reservoirs/outbreaks in hospitals. In 2008, most of the CPE strains reported in Belgium were imported from patients repatriated from abroad. Actually, this is no longer the case. A surveillance was set up in Belgian hospitals (2012) in order to explore the epidemiology and determinants of CPE, including the link with international travel/hospitalization. The present article describes travel-related CPE reported in Belgium. Different other potential sources for importation of CPE are discussed. Only 12% of all CPE cases reported in Belgium (2012-2013) were travel related (with/without hospitalization). This is undoubtedly an underestimation (missing travel data: 36%), considering the increasing tourism, the immigration from endemic countries, the growing number of foreign patients using scheduled medical care in Belgium, and the medical repatriations from foreign hospitals. The free movement of persons and services (European Union) contributes to an increase in foreign healthcare workers (HCW) in Belgian hospitals. Residents from nursing homes located at the country borders can be another potential source of dissemination of CPE between countries. Moreover, the high population density in Belgium can increase the risk for CPE-dissemination. Urban areas in Belgium may cumulate these potential risk factors for import/dissemination of CPE. Ideally, travel history data should be obtained from hospital hygiene teams, not from the microbiological laboratory. Patients who received medical care abroad (whatever the country) should be screened for CPE at admission.
Nillni, Eduardo A; Xie, Weihua; Mulcahy, Lawrence; Sanchez, Vanesa C; Wetsel, William C
2002-12-13
Cpe(fat/fat) mice are obese, diabetic, and infertile. They have a mutation in carboxypeptidase E (CPE), an enzyme that converts prohormone intermediates to bioactive peptides. The Cpe(fat) mutation leads to rapid degradation of the enzyme. To test whether pro-thyrotropin-releasing hormone (TRH) conversion to TRH involves CPE, processing was examined in the Cpe(fat/fat) mouse. Hypothalamic TRH is depressed by at least 75% compared with wild-type controls. Concentrations of pro-TRH forms are increased in homozygotes. TRH-[Gly(4)-Lys(5)-Arg(6)] and TRH-[Gly(4)-Lys(5)] represent approximately 45% of the total TRH-like immunoreactivity in Cpe(fat/fat) mice; they constitute approximately 1% in controls. Levels of TRH-[Gly(4)] were depressed in homozygotes. Because the hypothalamus contains some TRH, another carboxypeptidase must be responsible for processing. Immunocytochemical studies indicate that TRH neurons contain CPE- and carboxypeptidase D-like immunoreactivity. Recombinant CPE or carboxypeptidase D can convert synthetic TRH-[Gly(4)-Lys(5)] and TRH-[Gly(4)-Lys(5)-Arg(6)] to TRH-[Gly(4)]. When Cpe(fat/fat) mice are exposed to cold, they cannot maintain their body temperatures, and this loss is associated with hypothalamic TRH depletion and reduction in thyroid hormone. These findings demonstrate that the Cpe(fat) mutation can affect not only carboxypeptidase activity but also endoproteolysis. Because Cpe(fat/fat) mice cannot sustain a cold challenge, and because alterations in the hypothalamic-pituitary-thyroid axis can affect metabolism, deficits in pro-TRH processing may contribute to the obese and diabetic phenotype in these mice.
On charged particle equilibrium violation in external photon fields.
Bouchard, Hugo; Seuntjens, Jan; Palmans, Hugo
2012-03-01
In a recent paper by Bouchard et al. [Med. Phys. 36(10), 4654-4663 (2009)], a theoretical model of quality correction factors for idealistic so-called plan-class specific reference (PCSR) fields was proposed. The reasoning was founded on the definition of PCSR fields made earlier by Alfonso et al. [Med. Phys. 35(11), 5179-5186 (2008)], requiring the beam to achieve charged particle equilibrium (CPE), in a time-averaged sense, in the reference medium. The relation obtained by Bouchard et al. was derived using Fano's theorem (1954) which states that if CPE is established in a given medium, the dose is independent of point-to-point density variations. A potential misconception on the achievability of the condition required by Fano (1954) might be responsible for false practical conclusions, both in the definition of PCSR fields as well as the theoretical model of quality correction factor. In this paper, the practical achievability of CPE in external beams is treated in detail. The fact that this condition is not achievable in single or composite deliveries is illustrated by an intuitive method and is also formally demonstrated. Fano's theorem is not applicable in external beam radiation dosimetry without (virtually) removing attenuation effects, and therefore, the relation conditionally defined by Bouchard et al. (2009) cannot be valid in practice. A definition of PCSR fields in the recent formalism for nonstandard beams proposed by Alfonso et al. (2008) should be modified, revising the criterion of CPE condition. The authors propose reconsidering the terminology used to describe standard and nonstandard beams. The authors argue that quality correction factors of intensity modulated radiation therapy PCSR fields (i.e., k(Q(pcsr),Q) (f(pcsr),f(ref) )) could be unity under ideal conditions, but it is concluded that further investigation is necessary to confirm that hypothesis.
Yasugi, Mayo; Otsuka, Keisuke; Miyake, Masami
2016-10-01
Clostridium perfringens type A is a common source of food-borne illness in humans. Ingested vegetative cells sporulate in the small intestinal tract and in the process produce C. perfringens enterotoxin (CPE). Although sporulation plays a critical role in the pathogenesis of food-borne illness, the molecules triggering/inhibiting sporulation are still largely unknown. It has previously been reported by our group that sporulation is induced in C. perfringens strain NCTC8239 co-cultured with Caco-2 cells in Dulbecco's Modified Eagle Medium (DMEM). In contrast, an equivalent amount of spores was not observed when bacteria were co-cultured in Roswell Park Memorial Institute-1640 medium (RPMI). In the present study it was found that, when these two media are mixed, RPMI inhibits sporulation and CPE production induced in DMEM. When a component of RPMI was added to DMEM, it was found that calcium nitrate (Ca[NO 3 ] 2 ) significantly inhibits sporulation and CPE production. The number of spores increased when Ca(NO 3 ) 2 -deficient RPMI was used. The other nitrate salts significantly suppressed sporulation, whereas the calcium salts used did not. qPCR revealed that nitrate salts increased expression of bacterial nitrate/nitrite reductase. Furthermore, it was found that nitrite and nitric oxide suppress sporulation. In the sporulation stages, Ca(NO 3 ) 2 down-regulated the genes controlled by Spo0A, a master regulator of sporulation, but not spo0A itself. Collectively, these results indicate that nitrate salts suppress sporulation and CPE production by down-regulating Spo0A-regulated genes in C. perfringens strain NCTC8239. Nitrate reduction may be associated with inhibition of sporulation. © 2016 The Societies and John Wiley & Sons Australia, Ltd.
Brain Tissue Oxygen: In Vivo Monitoring with Carbon Paste Electrodes
Bolger, Fiachra B.; Lowry, John P.
2005-01-01
In this communication we review selected experiments involving the use of carbon paste electrodes (CPEs) to monitor and measure brain tissue O2 levels in awake freely-moving animals. Simultaneous measurements of rCBF were performed using the H2 clearance technique. Voltammetric techniques used include both differential pulse (O2) and constant potential amperometry (rCBF). Mild hypoxia and hyperoxia produced rapid changes (decrease and increase respectively) in the in vivo O2 signal. Neuronal activation (tail pinch and stimulated grooming) produced similar increases in both O2and rCBF indicating that CPE O2currents provide an index of increases in rCBF when such increases exceed O2 utilization. Saline injection produced a transient increase in the O2 signal while chloral hydrate produced slower more long-lasting changes that accompanied the behavioral changes associated with anaesthesia. Acetazolamide increased O2 levels through an increase in rCBF.
Mataseje, Laura F.; Abdesselam, Kahina; Vachon, Julie; Mitchel, Robyn; Bryce, Elizabeth; Roscoe, Diane; Boyd, David A.; Embree, Joanne; Katz, Kevin; Kibsey, Pamela; Simor, Andrew E.; Taylor, Geoffrey; Turgeon, Nathalie; Langley, Joanne; Gravel, Denise; Amaratunga, Kanchana
2016-01-01
Carbapenemase-producing Enterobacteriaceae (CPE) are increasing globally; here we report on the investigation of CPE in Canada over a 5-year period. Participating acute care facilities across Canada submitted carbapenem-nonsusceptible Enterobacteriaceae from 1 January 2010 to 31 December 2014 to the National Microbiology Laboratory. All CPE were characterized by antimicrobial susceptibilities, pulsed-field gel electrophoresis, multilocus sequence typing, and plasmid restriction fragment length polymorphism analysis and had patient data collected using a standard questionnaire. The 5-year incidence rate of CPE was 0.09 per 10,000 patient days and 0.07 per 1,000 admissions. There were a total of 261 CPE isolated from 238 patients in 58 hospitals during the study period. blaKPC-3 (64.8%) and blaNDM-1 (17.6%) represented the highest proportion of carbapenemase genes detected in Canadian isolates. Patients who had a history of medical attention during international travel accounted for 21% of CPE cases. The hospital 30-day all-cause mortality rate for the 5-year surveillance period was 17.1 per 100 CPE cases. No significant increase in the occurrence of CPE was observed from 2010 to 2014. Nosocomial transmission of CPE, as well as international health care, is driving its persistence within Canada. PMID:27600052
Mataseje, Laura F; Abdesselam, Kahina; Vachon, Julie; Mitchel, Robyn; Bryce, Elizabeth; Roscoe, Diane; Boyd, David A; Embree, Joanne; Katz, Kevin; Kibsey, Pamela; Simor, Andrew E; Taylor, Geoffrey; Turgeon, Nathalie; Langley, Joanne; Gravel, Denise; Amaratunga, Kanchana; Mulvey, Michael R
2016-11-01
Carbapenemase-producing Enterobacteriaceae (CPE) are increasing globally; here we report on the investigation of CPE in Canada over a 5-year period. Participating acute care facilities across Canada submitted carbapenem-nonsusceptible Enterobacteriaceae from 1 January 2010 to 31 December 2014 to the National Microbiology Laboratory. All CPE were characterized by antimicrobial susceptibilities, pulsed-field gel electrophoresis, multilocus sequence typing, and plasmid restriction fragment length polymorphism analysis and had patient data collected using a standard questionnaire. The 5-year incidence rate of CPE was 0.09 per 10,000 patient days and 0.07 per 1,000 admissions. There were a total of 261 CPE isolated from 238 patients in 58 hospitals during the study period. bla KPC-3 (64.8%) and bla NDM-1 (17.6%) represented the highest proportion of carbapenemase genes detected in Canadian isolates. Patients who had a history of medical attention during international travel accounted for 21% of CPE cases. The hospital 30-day all-cause mortality rate for the 5-year surveillance period was 17.1 per 100 CPE cases. No significant increase in the occurrence of CPE was observed from 2010 to 2014. Nosocomial transmission of CPE, as well as international health care, is driving its persistence within Canada. © Crown copyright 2016.
Ratnayake, Lasantha; Harris, Amy; Ko, Doreen; Hawtin, Linda
2017-11-01
Incidence of carbapenemase-producing enterobacteriaceae (CPE) in the UK is increasing. In 2013, Public Health England (PHE) published a toolkit to control spread of CPE within healthcare settings. To assess compliance to hospital CPE policy (adapted from PHE) in the identification, isolation and screening of suspected CPE patients. Admission booklets of 150 patients were evaluated to see whether the relevant section had been completed to identify high-risk CPE patients. Where necessary, patients were interviewed or their GPs were contacted to assess their CPE risk. Additionally, 28 patients screened for CPE were audited to assess compliance to screening and isolation. Only 23 patients out of 147 (15.6%) were risk assessed on admission. Risk status of 27 (18.4%) patients could not be assessed due to lack of data. Fifteen patients out of 28 (54%) screened for CPE were identified and isolated on admission. Ten out of 19 patients (53%) had three screens 48 h apart. This audit highlights difficulties in screening based on individual risk factors as the majority of patients were not screened on admission and documentation on isolation and screening was poor. More needs to be done to raise awareness of the requirements for routine assessment, isolation and screening.
Poole, K; George, R; Decraene, V; Shankar, K; Cawthorne, J; Savage, N; Welfare, W; Dodgson, A
2016-10-01
Over the past decade, the prevalence of carbapenemase-producing Enterobacteriaceae (CPE) has increased. Whilst basic infection prevention and control practices reduce the risk of transmission, cases of unrecognized carriage pose a potential risk of transmission. To estimate the prevalence of CPE and explore risk factors associated with colonization within a large teaching hospital with an established CPE outbreak. All inpatients that had not previously tested positive for CPE were offered testing. Demographic and hospital episode data were also collected, together with antibiotic and proton pump inhibitor (PPI) use in the preceding 24h. This study identified 70 CPE-positive cases (26 newly identified and 44 previously known) and 592 CPE-negative cases, giving a combined prevalence of 11% [95% confidence interval (CI) 8-13]. Medication (antibiotic and PPI use), previous admission, ethnicity and length of stay were assessed as risk factors for colonization, and none were found to be independently associated with CPE colonization. Using logistic regression, age [odds ratio (OR) 1.03, 95% CI 1.01-1.07] and antibiotic use (OR 2.55, 95% CI 1.08-6.03) were the only risk factors significantly associated with CPE colonization. This study has added to the evidence base by estimating the prevalence of CPE among inpatients in an acute hospital with an established CPE outbreak. A case-finding exercise was feasible and identified a number of new cases. Despite a small sample size, increasing age and prescription of an antibiotic on the day of testing were significantly associated with CPE colonization. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
O'Connor, C; Kiernan, M G; Finnegan, C; O'Hara, M; Power, L; O'Connell, N H; Dunne, C P
2017-05-04
Rapid detection of patients with carbapenemase-producing Enterobacteriaceae (CPE) is essential for the prevention of nosocomial cross-transmission, allocation of isolation facilities and to protect patient safety. Here, we aimed to design a new laboratory work-flow, utilizing existing laboratory resources, in order to reduce time-to-diagnosis of CPE. A review of the current CPE testing processes and of the literature was performed to identify a real-time commercial polymerase chain reaction (PCR) assay that could facilitate batch testing of CPE clinical specimens, with adequate CPE gene coverage. Stool specimens (210) were collected; CPE-positive inpatients (n = 10) and anonymized community stool specimens (n = 200). Rectal swabs (eSwab™) were inoculated from collected stool specimens and a manual DNA extraction method (QIAamp® DNA Stool Mini Kit) was employed. Extracted DNA was then processed on the Check-Direct CPE® assay. The three step process of making the eSwab™, extracting DNA manually and running the Check-Direct CPE® assay, took <5 min, 1 h 30 min and 1 h 50 min, respectively. It was time efficient with a result available in under 4 h, comparing favourably with the existing method of CPE screening; average time-to-diagnosis of 48/72 h. Utilizing this CPE work-flow would allow a 'same-day' result. Antimicrobial susceptibility testing results, as is current practice, would remain a 'next-day' result. In conclusion, the Check-Direct CPE® assay was easily integrated into a local laboratory work-flow and could facilitate a large volume of CPE screening specimens in a single batch, making it cost-effective and convenient for daily CPE testing.
Billova, S; Galanopoulou, A S; Seidah, N G; Qiu, X; Kumar, U
2007-06-29
The processing of many peptides for their maturation in target tissue depends upon the presence of sorting receptor. Several previous studies have predicted that carboxypeptidase-E (CPE), prohormone convertase 1 (PC1) and prohormone convertase 2 (PC2) may function as sorting elements for somatostatin (SST) for its maturation and processing to appropriate targets. However, nothing is currently known about whether brain, neuronal culture or even endocrine cells express SST, CPE, PC1 and PC2 and exhibit colocalization. Accordingly, in the present study using peroxidase immunohistochemistry, double-labeled indirect immunofluorescence immunohistochemistry and Western blot analysis, we mapped the distributional pattern of SST, CPE, PC1 and PC2 in different rat brain regions. Additionally, we also determined the colocalization of SST with CPE, PC1 and PC2 as well as colocalization of CPE with PC1 and PC2. The localization of SST, CPE, PC1 and PC2 reveals a distinct and region specific distribution pattern in the rat brain. Using an indirect double-label immunofluorescence method we observed selective neuron specific colocalization in a region specific manner in cortex, striatum and hippocampus. These studies provide the first evidence for colocalization between SST, CPE, PC1 and PC2 as well as CPE with PC1 and PC2. SST in cerebral cortex colocalized in pyramidal and non-pyramidal neurons with CPE, PC1 and PC2. Most importantly, in striatum and hippocampus colocalization was mostly observed selectively and preferentially in interneurons. CPE is also colocalized with PC1 and PC2 in a region specific manner. The data presented here provide a new insight into the distribution and colocalization of SST, CPE, PC1 and PC2 in rat brain. Taken together, our data anticipate the possibility that CPE, PC1 and PC2 might be potential target for the maturation of SST.
Efficacy of cocoa pod extract as antiwrinkle gel on human skin surface.
Abdul Karim, Azila; Azlan, Azrina; Ismail, Amin; Hashim, Puziah; Abd Gani, Siti Salwa; Zainudin, Badrul Hisyam; Abdullah, Nur Azilah
2016-09-01
Cocoa pods are abundant waste materials of cocoa plantation, which are usually discarded onto plantation floors. However, due to poor plantation management, the discarded cocoa pods can create suitable breeding ground for Phytophthora palmivora, which is regarded as the causal agent of the black pod disease. On the other hand, cocoa pods potentially contain antioxidant compounds. Antioxidant compounds are related to the protection of skin from wrinkles and can be used as functional cosmetic ingredients. Therefore, in this study, cocoa pods were extracted and to be used as active ingredients for antiwrinkles. The active compounds in cocoa pod extracts (CPE) were screened using liquid chromatography-mass spectrometry (LC-MS). Fibroblast cells were used to determine the effective concentration of CPE to maintain the viability for at least 50% of the cells (EC50 ). The gel was tested by 12 panelists to determine the efficacy of CPE in gel form using Visioscan to reduce skin wrinkles and improve skin condition. CPE was detected to contain malic acid, procyanidin B1, rosmarinic acid, procyanidin C1, apigenin, and ellagic acid, all of which may contribute to functional cosmetic properties of CPE. The EC50 value of cocoa pod extracts was used to calculate the amount of CPE to be incorporated into gel so that the formulated product could reach an effective concentration of extract while being nonintoxicant to the skin cell. The results showed that CPE is potential ingredient to reduce wrinkles. Skin wrinkles reduced at 6.38 ± 1.23% with the application of the CPE gel within 3 weeks and significantly improved further (12.39 ± 1.59%) after 5 weeks. The skin hydration increased (3.181 ± 1.06%) after 3 weeks of the CPE gel application. Flavonoid compounds in CPE contributed to the functional cosmetic properties of CPE. The CPE which is nontoxic to skin cells help to reduce wrinkles on skin after 3 weeks of application. CPE can be used as the active ingredients in antiwrinkle products, and prolonged application may result in significant visual changes to the naked eyes. © 2016 Wiley Periodicals, Inc.
Wonsawat, Wanida; Dungchai, Wijitar; Motomizu, Shoji; Chuanuwatanakul, Suchada; Chailapakul, Orawon
2012-01-01
A low-cost thin-layer electrochemical flow-through cell based on a carbon paste electrode (CPE), was constructed for the highly sensitive determination of cadmium(II) (Cd(2+)) and lead(II) (Pb(2+)) ions. The sensitivity of the proposed cell for Cd(2+) and Pb(2+) ion detection was improved by using the smallest channel height without the need for any complicated electrode modification. Under the optimum conditions, the detection limits of Cd(2+) and Pb(2+) ions (0.08 and 0.07 µg dm(-3), respectively) were 13.8- and 11.4-fold lower than that of a commercial flow cell (1.1 and 0.8 µg dm(-3), respectively). Moreover, the percentage recoveries of Cd(2+) and Pb(2+) for the in-house designed thin-layer flow cell were higher than those for the commercially available cell in all tested water samples, and within the acceptable range. The proposed flow cell is promising as an inexpensive and alternative one for the highly sensitive monitoring of heavy metal ions. 2012 © The Japan Society for Analytical Chemistry
van Hattem, Jarne M; Arcilla, Maris S; Bootsma, Martin Cj; van Genderen, Perry J; Goorhuis, Abraham; Grobusch, Martin P; Molhoek, Nicky; Oude Lashof, Astrid Ml; Schultsz, Constance; Stobberingh, Ellen E; Verbrugh, Henri A; de Jong, Menno D; Melles, Damian C; Penders, John
2016-07-01
The aim was to study acquisition and persistence of carbapenemase-producing Enterobacteriaceae (CPE) among travelers. Stools from 2001 travelers and 215 nontraveling household members, collected before and immediately post-travel as well as 1, 3, 6 and 12 months upon return, were screened for CPE. Five travelers, all visiting Asia outside the Indian subcontinent, acquired CPE. One traveler persistently carried the same OXA-244 CPE up to 6 months post-travel. Three months after travel, her co-traveling spouse also became positive for this OXA-244 CPE strain, suggesting clonal transmission within this household. Acquisition of CPE is not restricted to travelers to the Indian subcontinent and/or to travelers seeking healthcare during travel and can persist up to at least 6 months post-travel.
Prabakar, S J Richard; Narayanan, S Sriman
2006-12-01
A cobalt hexacyanoferrate (CoHCF)-modified graphite paraffin wax composite electrode was prepared by a new approach. An amine-functionalised graphite powder was used for the fabrication of the electrode. A functionalised graphite paraffin wax composite electrode was prepared and the surface of the electrode was modified with a thin film of CoHCF. Various parameters that influence the electrochemical behaviour of the modified electrode were studied by varying the background electrolytes, scan rates and pH. The modified electrode showed good electrocatalytic activity towards the oxidation of butylated hydroxyanisole (BHA) under optimal conditions and showed a linear response over the range from 7.9 x 10(-7) to 1.9 x 10(-4) M of BHA with a correlation coefficient of 0.9988. The limit of detection was 1.9 x 10(-7) M. Electrocatalytic oxidation of BHA was effective at the modified electrode at a significantly reduced potential and at a broader pH range. The utility of the modified electrode as an amperometric sensor for the determination of BHA in flow systems was evaluated by carrying out hydrodynamic and chronoamperometric experiments. The modified electrode showed very good stability and a longer shelf life. The modified electrode was applied for the determination of BHA in spiked samples of chewing gum and edible sunflower oil. The advantage of this method is the ease of electrode fabrication, good stability, longer shelf life, low cost and its diverse application for BHA determination.
Systemic Vulnerabilities in Customer-Premises Equipment (CPE) Routers
2017-07-01
equipment (CPE),1 specifically small office/home office (SOHO) routers, has become ubiquitous. CPE routers are notorious for their web interface...and enabling remote management, although all settings controllable over the web -management interface can be manipulated. • 85% (11 of 13) of...specifically small office/home office (SOHO) routers— has become ubiquitous. CPE routers are notorious for their web interface vulnerabilities, old ver- sions
Stanić, Z; Girousi, S
2008-06-30
The interaction of copper(I) with double-stranded (ds) calf thymus DNA was studied in solution and at the electrode surface by means of transfer voltammetry using a carbon paste electrode (CPE) as working electrode in 0.2 M acetate buffer solution (pH 5.0). As a result of the interaction of Cu(I) between the base pairs of the dsDNA, the characteristic peaks of dsDNA, due to the oxidation of guanine and adenine, increased and after a certain concentration of Cu(I) a new peak at +1.37 V appeared, probably due to the formation of a purine-Cu(I) complex (dsDNA-Cu(I) complex). Accordingly, the interaction of copper(I) with calf thymus dsDNA was studied in solution as well as at the electrode surface using hanging mercury drop electrode (HMDE) by means of alternating current voltammetry (AC voltammetry) in 0.3 M NaCl and 50 mM sodium phosphate buffer (pH 8.5) as supporting electrolyte. Its interaction with DNA is shown to be time dependent. Significant changes in the characteristic peaks of dsDNA were observed after addition of higher concentration of Cu(I) to a solution containing dsDNA, as a result of the interaction between Cu(I) and dsDNA. All the experimental results indicate that Cu(I) can bind to DNA by electrostatic binding and form an association complex.
Ramazani Saadat Abadi, Ahmad
2014-01-01
Nitroglycerin (TNG) transdermal drug delivery systems (TDDSs) with different acrylic pressure-sensitive adhesives (PSAs) and chemical permeation enhancers (CPEs) were prepared. The effects of PSAs and CPEs types and concentrations on skin permeation and in vitro drug release from devices were evaluated using the dissolution method as well as the modified-jacketed Franz diffusion cells fitted with excised rat abdominal skin. It was demonstrated that the permeation rate or steady state flux (J ss) of the drug through the excised rat skin was dependent on the viscosity and type of acrylic PSA as well as the type of CPE. Among different acrylic PSAs, Duro-Tak 2516 and Duro-Tak 2054 showed the highest and Duro-Tak 2051 showed the lowest J ss. Among the various CPEs, propylene glycol and cetyl alcohol showed the highest and the lowest enhancement of the skin permeation of TNG, respectively. The adhesion properties of devices such as 180° peel strength and probe tack values were obtained. It was shown that increasing the concentration of CPE led to reduction in the adhesion property of PSA. Moreover, after optimization of the formulation, it was found that the use of 10% PG as a CPE and 25% nitroglycerin loading in Duro-Tak 2054 is an effective monolithic DIAP for the development of a transdermal therapeutic system for nitroglycerin. PMID:24511396
Zhang, Jingjing; Ni, Chen; Yang, Zhenguo; Piontek, Anna; Chen, Huapu; Wang, Sijie; Fan, Yiming; Qin, Zhihai; Piontek, Joerg
2015-08-01
Claudins (Cldn) are the major components of tight junctions (TJs) sealing the paracellular cleft in tissue barriers of various organs. Zebrafish Cldnb, the homolog of mammalian Cldn4, is expressed at epithelial cell-cell contacts and is important for regulating epidermal permeability. The bacterial toxin Clostridium perfringens enterotoxin (CPE) has been shown to bind to a subset of mammalian Cldns. In this study, we used the Cldn-binding C-terminal domain of CPE (194-319 amino acids, cCPE 194-319 ) to investigate its functional role in modulating zebrafish larval epidermal barriers. In vitro analyses show that cCPE 194-319 removed Cldn4 from epithelial cells and disrupted the monolayer tightness, which could be rescued by the removal of cCPE 194-319. Incubation of zebrafish larvae with cCPE 194-319 removed Cldnb specifically from the epidermal cell membrane. Dye diffusion analysis with 4-kDa fluorescent dextran indicated that the permeability of the epidermal barrier increased due to cCPE 194-319 incubation. Electron microscopic investigation revealed reversible loss of TJ integrity by Cldnb removal. Collectively, these results suggest that cCPE 194-319 could be used as a Cldnb modulator to transiently open the epidermal barrier in zebrafish. In addition, zebrafish might be used as an in vivo system to investigate the capability of cCPE to enhance drug delivery across tissue barriers. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Duangjai, Acharaporn; Suphrom, Nungruthai; Wungrath, Jukkrit; Ontawong, Atcharaporn; Nuengchamnong, Nitra; Yosboonruang, Atchariya
2016-12-01
This study explored the bioactivities and nutrient compositions of coffee ( Coffea Arabica L.) pulp which was prepared in three different ways [Coffee Pulp Extracts (CPE) 1-3]. The coffee pulp was prepared in three different ways by distinct selecting and freezing processes. The nutritional values, polyphenol contents, antioxidant activity, and antibacterial properties of the coffee pulp as well as the characterization of the active ingredients by liquid chromatography-electrospray ionization-quadrupole-time-of-flight mass spectrometry (LC-ESI-Q-TOF-MS) were evaluated. The chemical profiles of three aqueous extracts were compared and characterized using LC-ESI-QTOF-MS. They showed slightly different nutrient compositions. The total phenolic content was highest in CPE1, and decreased in the following order: CPE1 > CPE2 > CPE3. Among the CPEs tested, CPE1 showed the most potent antioxidant activity with IC 50 18 μg/mL and 82 μg/mL by 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) and 1,1-diphenyl-2-picryl-hydrazyl assay, respectively. Chlorogenic acid and caffeine were the most prominent in CPE1 and it contained more compounds than the others. Moreover, CPE1 demonstrated antibacterial activity against both gram-positive ( Staphylococcus aureus and Staphylococcus epidermidis ) and gram-negative bacteria ( Pseudomonas aeruginosa and Escherichia coli ). These findings indicated that CPE1 has powerful nutrients with antioxidant and antibacterial properties-the potency of which is impacted by the preparation process.
What influences malaysian nurses to participate in continuing professional education activities?
Chong, Mei Chan; Sellick, Kenneth; Francis, Karen; Abdullah, Khatijah Lim
2011-03-01
A cross sectional descriptive study, which involved government hospitals and health clinics from Peninsular Malaysia sought to identify the continuing professional education (CPE) needs and their readiness for E-learning. This paper focuses on the first phase of that study that aimed to determine the factors that influence nurses' participation in CPE. Multistage cluster sampling was used to recruit 1,000 nurses randomly from 12 hospitals and 24 health clinics from four states in Peninsular Malaysia who agreed to be involved. The respondent rate was 792 (79.2%), of which 562 (80%) had participated in CPE in the last 12 months. Findings suggested that updating knowledge and providing quality care are the most important factors that motivate participation in CPE, with respective means of 4.34 and 4.39. All the mean scores for educational opportunity were less than 3.0. Chi-square tests were used to test the association of demographic data and CPE participation. All demographical data were significantly associated with CPE participation, except marital status. Implementation of mandatory CPE is considered an important measure to increase nurse's participation in CPE. However, effective planning that takes into consideration the learning needs of nurses is recommended. Copyright © 2011 Korean Society of Nursing Science. Published by Elsevier B.V. All rights reserved.
Gao, Le; Tuo, Decai; Shen, Wentao; Yan, Pu; Li, Xiaoying; Zhou, Peng
2015-02-01
The interaction of papaya eukaryotic translation initiation factor 3 subunit G (CpeIF3G) with Papaya ringspot virus (PRSV) NIa-Pro was validated using a bimolecular fluorescence complementation assay in papaya protoplasts based on the previous yeast two-hybrid assay results. The C-terminal (residues 133-239) fragment of PRSV NIa-Pro and the central domain (residues 59-167) of CpeIF3G were required for effective interaction between NIa-Pro and CpeIF3G as shown by a Sos recruitment yeast two-hybrid system with several deletion mutants of NIa-Pro and CpeIF3G. The central domain of CpeIF3G, which contains a C2HC-type zinc finger motif, is required to bind to other eIFs of the translational machinery. In addition, quantitative real-time reverse transcription PCR assay confirmed that PRSV infection leads to a 2- to 4.5-fold up-regulation of CpeIF3G mRNA in papaya. Plant eIF3G is involved in various stress response by enhancing the translation of resistance-related proteins. It is proposed that the NIa-Pro-CpeIF3G interaction may impair translation preinitiation complex assembly of defense proteins and interfere with host defense.
Clostridium perfringens Enterotoxin Interacts with Claudins via Electrostatic Attraction*
Kimura, Jun; Abe, Hiroyuki; Kamitani, Shigeki; Toshima, Hirono; Fukui, Aya; Miyake, Masami; Kamata, Yoichi; Sugita-Konishi, Yoshiko; Yamamoto, Shigeki; Horiguchi, Yasuhiko
2010-01-01
Clostridium perfringens enterotoxin (CPE), a causative agent of food poisoning, is a pore-forming toxin disrupting the selective permeability of the plasma membrane of target cells, resulting in cell death. We previously identified claudin as the cell surface receptor for CPE. Claudin, a component of tight junctions, is a tetratransmembrane protein and constitutes a large family of more than 20 members, not all of which serve as the receptor for CPE. The mechanism by which the toxin distinguishes the sensitive claudins is unknown. In this study, we localized the region of claudin responsible for interaction with CPE to the C-terminal part of the second extracellular loop and found that the isoelectric point of this region in sensitive claudins was higher than insensitive claudins. Amino acid substitutions to lower the pI resulted in reduced sensitivity to CPE among sensitive claudins, whereas substitutions to raise the pI endowed CPE-insensitive claudins with sensitivity. The steric structure of the claudin-binding domain of CPE reveals an acidic cleft surrounded by Tyr306, Tyr310, Tyr312, and Leu315, which were reported to be essential for interaction with the sensitive claudins. These results imply that an electrostatic attraction between the basic claudin region and the acidic CPE cleft is involved in their interaction. PMID:19903817
Foster, Christopher W.; Pillay, Jeseelan; Metters, Jonathan P.; Banks, Craig E.
2014-01-01
Cobalt phthalocyanine (CoPC) compounds have been reported to provide electrocatalytic performances towards a substantial number of analytes. In these configurations, electrodes are typically constructed via drop casting the CoPC onto a supporting electrode substrate, while in other cases the CoPC complex is incorporated within the ink of a screen-printed sensor, providing a one-shot economical and disposable electrode configuration. In this paper we critically compare CoPC modified electrodes prepared by drop casting CoPC nanoparticles (nano-CoPC) onto a range of carbon based electrode substrates with that of CoPC bulk modified screen-printed electrodes in the sensing of the model analytes l-ascorbic acid, oxygen and hydrazine. It is found that no “electrocatalysis” is observed towards l-ascorbic acid using either of these CoPC modified electrode configurations and that the bare underlying carbon electrode is the origin of the obtained voltammetric signal, which gives rise to useful electroanalytical signatures, providing new insights into literature reports where “electrocatalysis” has been reported with no clear control experiments undertaken. On the other hand true electrocatalysis is observed towards hydrazine, where no such voltammetric features are witnessed on the bare underlying electrode substrate. PMID:25414969
The interaction of Clostridium perfringens enterotoxin with receptor claudins
Shrestha, Archana; Uzal, Francisco A.; McClane, Bruce A.
2016-01-01
Clostridium perfringens enterotoxin (CPE) has significant medical importance due to its involvement in several common human gastrointestinal diseases. This 35 kDa single polypeptide toxin consists of two domains: a C-terminal domain involved in receptor binding and an N-terminal domain involved in oligomerization, membrane insertion and pore formation. The action of CPE starts with its binding to receptors, which include certain members of the claudin tight junction protein family; bound CPE then forms a series of complexes, one of which is a pore that causes the calcium influx responsible for host cell death. Recent studies have revealed that CPE binding to claudin receptors involves interactions between the C-terminal CPE domain and both the 1st and 2nd extracellular loops (ECL-1 and ECL-2) of claudin receptors. Of particular importance for this binding is the docking of ECL-2 into a pocket present in the C-terminal domain of the toxin. This increased understanding of CPE interactions with claudin receptors is now fostering the development of receptor decoy therapeutics for CPE-mediated gastrointestinal disease, reagents for cancer therapy/diagnoses and enhancers of drug delivery. PMID:27090847
Antiretroviral therapy CNS penetration and HIV-1-associated CNS disease.
Garvey, L; Winston, A; Walsh, J; Post, F; Porter, K; Gazzard, B; Fisher, M; Leen, C; Pillay, D; Hill, T; Johnson, M; Gilson, R; Anderson, J; Easterbrook, P; Bansi, L; Orkin, C; Ainsworth, J; Palfreeman, A; Gompels, M; Phillips, A N; Sabin, C A
2011-02-22
The impact of different antiretroviral agents on the risk of developing or surviving CNS disease remains unknown. The aim of this study was to investigate whether using antiretroviral regimens with higher CNS penetration effectiveness (CPE) scores was associated with reduced incidence of CNS disease and improved survival in the UK Collaborative HIV Cohort (CHIC) Study. Adults without previous CNS disease, who commenced combination antiretroviral therapy (cART) between 1996 and 2008, were included (n = 22,356). Initial and most recent cART CPE scores were calculated. CNS diseases were HIV encephalopathy (HIVe), progressive multifocal leukoencephalopathy (PML), cerebral toxoplasmosis (TOXO), and cryptococcal meningitis (CRYPTO). Incidence rates and overall survival were stratified by CPE score. A multivariable Poisson regression model was used to identify independent associations. The median (interquartile range) CPE score for initial cART regimen increased from 7 (5-8) in 1996-1997 to 9 (8-10) in 2000-2001 and subsequently declined to 6 (7-8) in 2006-2008. Differences in gender, HIV acquisition risk group, and ethnicity existed between CPE score strata. A total of 251 subjects were diagnosed with a CNS disease (HIVe 80; TOXO 59; CRYPTO 56; PML 54). CNS diseases occurred more frequently in subjects prescribed regimens with CPE scores ≤ 4, and less frequently in those with scores ≥ 10; however, these differences were nonsignificant. Initial and most recent cART CPE scores ≤ 4 were independently associated with increased risk of death. Clinical status at time of commencing cART influences antiretroviral selection and CPE score. This information should be considered when utilizing CPE scores for retrospective analyses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, Yuichi, E-mail: yuichi.watanabe@aist.go.jp; Suemori, Kouji; Hoshino, Satoshi
2016-06-15
An indium tin oxide (ITO) nanoparticle-based porous electrode sintered at low temperatures was investigated as a transparent electrode for electrochromic displays (ECDs). The electrochromic (EC) response of the dye-modified ITO porous electrode sintered at 150 °C, which exhibited a generally low resistivity, was markedly superior to that of a conventional dye-modified TiO{sub 2} porous electrode sintered at the same temperature. Moreover, the EC characteristics of the dye-modified ITO porous electrode sintered at 150 °C were better than those of the high-temperature (450 °C) sintered conventional dye-modified TiO{sub 2} porous electrode. These improvements in the EC characteristics of the dye-modified ITO porous electrode aremore » attributed to its lower resistivity than that of the TiO{sub 2} porous electrodes. In addition to its sufficiently low resistivity attained under the sintering conditions required for flexible ECD applications, the ITO porous film had superior visible-light transparency and dye adsorption capabilities. We conclude that the process temperature, resistivity, optical transmittance, and dye adsorption capability of the ITO porous electrode make it a promising transparent porous electrode for flexible ECD applications.« less
NASA Astrophysics Data System (ADS)
Shao, Xintian; Zhang, Jing; Li, Donghui; Yue, Jingli; Chen, Zhenhua
2016-04-01
A novel modified ion selective electrode based on Fe2O3-clorprenaline/tetraphenylborate nanospheres (Fe2O3-CLPT NSs) as electroactive materials for the determination of clorprenaline hydrochloride (CLP) is described. The α-Fe2O3 nanoparticles (NPs) were prepared by hydrothermal synthesis, then self-assembled on CLP/tetraphenylborate (TPB) to form Fe2O3-CLPT NSs, which were used as a potentiometric electrode for analyte determination innovatively. The Fe2O3-CLPT NSs modified electrode exhibited a wider concentration range from 1.0 × 10-7 to 1.0 × 10-1 mol/L and a lower detection limit of 3.7 × 10-8 mol/L compared with unmodified electrodes. The selectivity of the modified electrode was evaluated by fixed interference method. The good performance of the modified electrode such as wide pH range (2.4-6.7), fast response time (15 s), and adequate lifetime (14 weeks) indicate the utility of the modified electrode for evaluation of CLP content in various real samples. Finally, the modified electrode was successfully employed to detect CLP in pork samples with satisfactory results. These results demonstrated the Fe2O3-CLPT NSs modified electrode to be a functional and convenient method to the field of potentiometry determination of CLP in real samples.
Understanding interaction of curcumin and metal ions on electrode surfaces using EDXRF
NASA Astrophysics Data System (ADS)
Joseph, Daisy; Kumar, K. Krishna; Narayanan, S. Sriman
2018-04-01
A chemically modified electrode was developed for determination of metal ions (Cd, Pb, Zn, Co, Hg). The modifier used for the study was Curcumin. Curcumin acts as a complexing agent at the surface of the electrode for preconcentration of metal ions from electrolyte to electrode surface and stripped back to electrolyte during analysis. EDXRF was used to analyze these electrodes and it was concluded that the PCR modified electrode favored effective chelation for lead and mercury.
Yu, Yanyan; Chen, Zuanguang; Zhang, Beibei; Li, Xinchun; Pan, Jianbin
2013-08-15
In this work, a facile electrochemical sensor based on poly(diallyldimethylammonium chloride) (PDDA) functionalized graphene (PDDA-G) and graphite was fabricated. The composite electrode exhibited excellent selectivity and sensitivity towards uric acid (UA), owing to the electrocatalytic effect of graphene nanosheets and the electrostatic attractions between PDDA-G and UA. The anodic peak current of UA obtained by cyclic voltammetry (CV) increased over 10-fold compared with bare carbon paste electrode (CPE). And the reversibility of the oxidation process was improved significantly. Differential pulse voltammetry (DPV) was used to determine UA in the presence of ascorbic acid (AA) and dopamine (DA). It was found that all of oxidation peaks of three species could be well resolved, and the peak current of UA was much stronger than the other two components. More importantly, considerable-amount of AA and DA showed negligible interference to UA assay. The calibration curve for UA ranged from 0.5 to 20 μmol L(-1) with a correlation coefficient of 0.9934. The constructed sensor has been employed to quantitatively determine UA in urine samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Borghol, N; Mora, L; Sakly, N; Lejeune, P; Jouenne, T; Jaffrézic-Renault, N; Othmane, A
2011-01-10
The electrochemical impedance spectroscopy (EIS) technique has been used as a sensitive method to explore the effect of antibacterial molecules on immobilized bacteria and biofilm formation. In this work, we describe the electrochemical spectroscopy as a powerful method to monitor the effect of chlorhexidine digluconate (CHX-Dg) on polyelectrolyte immobilized Escherichia coli K12 MG1655 and the kinetics of cell adhesion on gold electrodes. The experimental impedance data were modeled with a Zview program to find the best equivalent electrical circuit and analyse its parameter's properties. Polyelectrolyte multilayer formation on the electrode surface and bacteria immobilization greatly increased the electron-transfer resistance (R(et)) and reduced the constant phase element (CPE(dl)). The effect of CHX-Dg was studied in a 0.5 x 10⁻⁴ mmol l⁻¹ to 0.5 mmol l⁻¹ range. The relation between the evolution of R(et) and CHX-Dg concentration was found to be negatively correlated. When CHX-Dg was added, the electrochemical monitoring of the bacterial kinetic adhesion showed that the electrode's capacity (C(P)) variation remained stable, demonstrating that the addition of CHX-Dg in the broth inhibited bacterial adhesion. © 2010 Elsevier B.V. All rights reserved.
Antiretroviral therapy CNS penetration and HIV-1–associated CNS disease
Winston, A.; Walsh, J.; Post, F.; Porter, K.; Gazzard, B.; Fisher, M.; Leen, C.; Pillay, D.; Hill, T.; Johnson, M.; Gilson, R.; Anderson, J.; Easterbrook, P.; Bansi, L.; Orkin, C.; Ainsworth, J.; Palfreeman, A.; Gompels, M.; Phillips, A.N.; Sabin, C.A.
2011-01-01
Objective: The impact of different antiretroviral agents on the risk of developing or surviving CNS disease remains unknown. The aim of this study was to investigate whether using antiretroviral regimens with higher CNS penetration effectiveness (CPE) scores was associated with reduced incidence of CNS disease and improved survival in the UK Collaborative HIV Cohort (CHIC) Study. Methods: Adults without previous CNS disease, who commenced combination antiretroviral therapy (cART) between 1996 and 2008, were included (n = 22,356). Initial and most recent cART CPE scores were calculated. CNS diseases were HIV encephalopathy (HIVe), progressive multifocal leukoencephalopathy (PML), cerebral toxoplasmosis (TOXO), and cryptococcal meningitis (CRYPTO). Incidence rates and overall survival were stratified by CPE score. A multivariable Poisson regression model was used to identify independent associations. Results: The median (interquartile range) CPE score for initial cART regimen increased from 7 (5–8) in 1996–1997 to 9 (8–10) in 2000–2001 and subsequently declined to 6 (7–8) in 2006–2008. Differences in gender, HIV acquisition risk group, and ethnicity existed between CPE score strata. A total of 251 subjects were diagnosed with a CNS disease (HIVe 80; TOXO 59; CRYPTO 56; PML 54). CNS diseases occurred more frequently in subjects prescribed regimens with CPE scores ≤4, and less frequently in those with scores ≥10; however, these differences were nonsignificant. Initial and most recent cART CPE scores ≤4 were independently associated with increased risk of death. Conclusion: Clinical status at time of commencing cART influences antiretroviral selection and CPE score. This information should be considered when utilizing CPE scores for retrospective analyses. PMID:21339496
Emergence of anxiety-like behaviours in depressive-like Cpe(fat/fat) mice.
Rodriguiz, Ramona M; Wilkins, John J; Creson, Thomas K; Biswas, Reeta; Berezniuk, Iryna; Fricker, Arun D; Fricker, Lloyd D; Wetsel, William C
2013-08-01
Cpe(fat/fat) mice have a point mutation in carboxypeptidase E (Cpe), an exopeptidase that removes C-terminal basic amino acids from intermediates to produce bioactive peptides. The mutation renders the enzyme inactive and unstable. The absence of Cpe activity in these mutants leads to abnormal processing of many peptides, with elevated levels of intermediates and greatly reduced levels of the mature peptides. Cpe(fat/fat) mice develop obesity, diabetes and infertility in adulthood. We examined whether anxiety- and/or depressive-like behaviours are also present. Anxiety-like responses are not evident in young Cpe(fat/fat) mice (∼60 d), but appear in older animals (>90 d). These behaviours are reversed by acute treatment with diazepam or fluoxetine. In contrast, increased immobilities in forced swim and tail suspension are evident in all age groups examined. These behaviours are reversed by acute administration of reboxetine. In comparison acute treatments with fluoxetine or bupropion are ineffective; however, immobility times are normalized with 2 wk treatment. These data demonstrate that Cpe(fat/fat) mice display depressive-like responses aged ∼60 d, whereas anxiety-like behaviours emerge ∼1 month later. In tail suspension, the reboxetine findings show that noradrenergic actions of antidepressants are intact in Cpe(fat/fat) mice. The ability of acute fluoxetine treatment to rescue anxiety-like while leaving depressive-like responses unaffected suggests that serotonin mechanisms underlying these behaviours are different. Since depressive-like responses in the Cpe(fat/fat) mice are rescued by 2 wk, but not acute, treatment with fluoxetine or bupropion, these mice may serve as a useful model that resembles human depression.
Huang, Te Din; Bogaerts, Pierre; Berhin, Catherine; Hoebeke, Martin; Bauraing, Caroline; Glupczynski, Youri
2017-05-11
Carbapenemase-producing Enterobacteriaceae (CPE) strains have been increasingly reported in Belgium. We aimed to determine the proportion of CPE among Enterobacteriaceae isolated from hospitalised patients and community outpatients in Belgium in 2015. For the hospitalised patients, the results were compared to a previous similar survey performed in the same hospitals in 2012. Twenty-four hospital-based and 10 private laboratories collected prospectively 200 non-duplicated Enterobacteriaceae isolates from clinical specimens. All isolates were screened locally by carbapenem disk diffusion using European Committee on Antimicrobial Susceptibility Testing methodology. Putative CPE strains with inhibition zone diameters below the screening breakpoints were referred centrally for confirmation of carbapenemase production. From September to November 2015, we found a proportion of clinical CPE of 0.55% (26/4,705) and of 0.60% (12/1,991) among hospitalised patients and among ambulatory outpatients respectively. Klebsiella pneumoniae (26/38) and OXA-48-like carbapenemase (28/38) were the predominant species and enzyme among CPE. One OXA-48-producing Escherichia coli isolated from a hospital was found carrying plasmid-mediated MCR-1 colistin resistance. Compared with the 2012 survey, we found a significant increased proportion of clinical CPE (0.55% in 2015 vs 0.25% in 2012; p = 0.02) and an increased proportion of hospitals (13/24 in 2015 vs 8/24 in 2012) with at least one CPE detected. The study results confirmed the concerning spread of CPE including a colistin-resistant MCR-1 producer in hospitals and the establishment of CPE in the community in Belgium. This article is copyright of The Authors, 2017.
NASA Astrophysics Data System (ADS)
Mao, Zepeng; Zhang, Jun
2018-06-01
The phase morphology of two elastomers (i.e., chlorinated polyethylene (CPE) and polybutadiene rubber (BR)) were devised to be a core-shell structure in acrylonitrile-styrene-acrylate (ASA) resin matrix, via the interfacial tension differences of polymer pairs. Selective extraction test and scanning electron microscopy (SEM) were utilized to verify this special phase morphology. The results demonstrated that the core-shell structure, BR core and CPE shell, significantly contributed to improve the low temperature toughness of ASA/CPE/BR ternary blends, which may be because the nonpolar BR core was segregated from polar ASA by the CPE shell. The CPE shell served dual functions: Not only did it play compatibilizing effect in the interface between BR and ASA matrix, but it also toughened the blends at 25 and 0 °C. The blends of ASA/CPE/BR (100/27/3, w/w/w) and ASA/CPE/BR (100/22/8, w/w/w) showed the peak impact strengths at about 28 and 9 kJ/m2 at 0 and -30 °C, respectively, which were higher than both that of ASA/CPE/BR (100/30/0, w/w/w) and ASA/CPE/BR (100/0/30, w/w/w). Moreover, the impact strength of ternary blends at room temperature kept at 40 kJ/m2 when BR content was lower than 10 phr. Other characterizations including contact angle measurement, dynamic mechanical thermal analysis (DMTA), morphology of impact-fractured surfaces, tensile properties, flexural properties, and Fourier transform infrared spectroscopy (FTIR) were measured as well.
Applications of Graphene-Modified Electrodes in Microbial Fuel Cells
Yu, Fei; Wang, Chengxian; Ma, Jie
2016-01-01
Graphene-modified materials have captured increasing attention for energy applications due to their superior physical and chemical properties, which can significantly enhance the electricity generation performance of microbial fuel cells (MFC). In this review, several typical synthesis methods of graphene-modified electrodes, such as graphite oxide reduction methods, self-assembly methods, and chemical vapor deposition, are summarized. According to the different functions of the graphene-modified materials in the MFC anode and cathode chambers, a series of design concepts for MFC electrodes are assembled, e.g., enhancing the biocompatibility and improving the extracellular electron transfer efficiency for anode electrodes and increasing the active sites and strengthening the reduction pathway for cathode electrodes. In spite of the challenges of MFC electrodes, graphene-modified electrodes are promising for MFC development to address the reduction in efficiency brought about by organic waste by converting it into electrical energy. PMID:28773929
Jun, Hieng Kiat; Careem, Mohamed Abdul; Arof, Abdul Kariem
2014-02-10
Different counter electrode (CE) materials based on carbon and Cu2S were prepared for the application in CdS and CdSe quantum dot-sensitized solar cells (QDSSCs). The CEs were prepared using low-cost and facile methods. Platinum was used as the reference CE material to compare the performances of the other materials. While carbon-based materials produced the best solar cell performance in CdS QDSSCs, platinum and Cu2S were superior in CdSe QDSSCs. Different CE materials have different performance in the two types of QDSSCs employed due to the different type of sensitizers and composition of polysulfide electrolytes used. The poor performance of QDSSCs with some CE materials is largely due to the lower photocurrent density and open-circuit voltage. The electrochemical impedance spectroscopy performed on the cells showed that the poor-performing QDSSCs had higher charge-transfer resistances and CPE values at their CE/electrolyte interfaces.
New Roles of Carboxypeptidase E in Endocrine and Neural Function and Cancer
Cawley, Niamh X.; Wetsel, William C.; Murthy, Saravana R. K.; Park, Joshua J.; Pacak, Karel
2012-01-01
Carboxypeptidase E (CPE) or carboxypeptidase H was first discovered in 1982 as an enkephalin-convertase that cleaved a C-terminal basic residue from enkephalin precursors to generate enkephalin. Since then, CPE has been shown to be a multifunctional protein that subserves many essential nonenzymatic roles in the endocrine and nervous systems. Here, we review the phylogeny, structure, and function of CPE in hormone and neuropeptide sorting and vesicle transport for secretion, alternative splicing of the CPE transcript, and single nucleotide polymorphisms in humans. With this and the analysis of mutant and knockout mice, the data collectively support important roles for CPE in the modulation of metabolic and glucose homeostasis, bone remodeling, obesity, fertility, neuroprotection, stress, sexual behavior, mood and emotional responses, learning, and memory. Recently, a splice variant form of CPE has been found to be an inducer of tumor growth and metastasis and a prognostic biomarker for metastasis in endocrine and nonendocrine tumors. PMID:22402194
Busch, K; Suchodolski, J S; Kühner, K A; Minamoto, Y; Steiner, J M; Mueller, R S; Hartmann, K; Unterer, S
2015-03-07
Although an association between clostridial pathogens and canine idiopathic acute haemorrhagic diarrhoea syndrome (AHDS) has been described, the relevance of those bacteria and their toxins remains unclear. The aim of this study was to evaluate the association between severity of clinical signs and presence of Clostridium perfringens enterotoxin (CPE) and Clostridium difficile toxin A/B (CDT A/B) in faeces of dogs with AHDS. Faecal samples of 54 dogs with idiopathic AHDS were tested by qualitative CPE and CDT A/B ELISA, and PCR was performed to detect enterotoxin genes of C. perfringens (cpe) and toxin B genes of C. difficile (cdt b). Prevalence of cdt b and CDT A/B in dogs with AHDS was 10/54 and 2/54 versus 3/23 and 0/23 in control dogs. Prevalence of cpe was 35/54 in affected versus 9/23 in control dogs. Prevalence of CPE in dogs with AHDS (13/54) was higher compared with control dogs (0/23). No significant difference was detected between CPE-positive and -negative and between cpe-positive and -negative dogs in severity of clinical signs, duration of hospitalisation, mortality rate and selected laboratory parameters. This study suggests that CPE and CDT A/B do not play a role in idiopathic AHDS, are not associated with clinical parameters in affected dogs and cannot be used to predict disease outcome. British Veterinary Association.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castro, P.; Maldonado, L.; Saguees, A.A.
1996-08-01
Small bars of Ti activated with mixed-metal oxide (commercially produced for permanent impressed-current anodes in cathodic protection) were used as embedded reference electrodes (RE) in concrete. Their electrochemical behavior was evaluated through measurements and analyses of potential, electrochemical impedance spectroscopy (EIS), cyclic polarization (CP), and galvanostatic tests in buffer solutions of pH 4, 7, and 10, saturated calcium hydroxide, simulated concrete pore solution (SPS) with pH = 13.5, and various concrete mixes with and without pozzolanic additions as cement replacement. Effects of deaeration and sodium chloride additions were evaluated. The potential of the activated Ti rod (ATR) electrodes resembled themore » expected dependence for the system Ir{sub 2}O{sub 3} + H{sub 2}O = 2IrO{sub 2} + 2H{sup +} + 2e{sup {minus}} in aqueous solutions. The ATR electrode presented generally good stability with time in concrete for up to 900 days. Anomalous behavior was found in two concrete mixes with the highest pozzolanic content. Results from EIS tests revealed a constant phase element (CPE) behavior, which agreed with results of CP tests that showed a very large apparent interfacial capacitance. The apparent capacitance was on the order of 10{sup {minus}2} F/cm{sup 2}, resulting in very low impedance, which is advantageous when using ATR electrodes to conduct EIS or polarization resistance tests. Galvanostatic application of 0.075 {mu}A/cm{sup 2} caused little variation of potential with time, indicating the presence of a finite polarization resistance. Little short-term susceptibility of the ATR electrode potential to NaCl additions was found. The ATR electrode potential also showed little short-term sensitivity to variations in oxygen partial pressure.« less
NASA Astrophysics Data System (ADS)
Parigi, Fabio
Electrochemical capacitors or ultracapacitors (UCs) that are commercially available today overcome battery limitations in terms of charging time (from tens of minutes to seconds) and limited lifetime (from a few thousand cycles up to more than one million) but still lack specific energy and energy density (2-5% of a lithium ion battery). The latest innovations in carbon nanomaterials, such as carbon nanotubes as an active electrode material for UCs, can provide up to five times as much energy and deliver up to seven times more power than today's activated carbon electrodes. Further improvements in UC power density have been achieved by using state-of-the-art carbon nano-onions (CNOs) for ultracapacitor electrodes. CNO UCs could exhibit up to five times the power density of single-wall CNT UCs and could substantially contribute to reducing the size of an energy storage system as well as the volume and weight, thus improving device performance. This dissertation describes the fabrication of CNO electrodes as part of an UC device, the measurement and analysis of the new electrode's performance as an energy storage component, and development of a new circuit model that accurately describes the CNO UC electrical behavior. The novel model is based on the impedance spectra of CNO UCs and cyclic voltammetry measurements. Further, the model was validated using experimental data and simulation. My original contributions are the fabrication process for reliable and repeatable electrode fabrication and the modeling of a carbon nano-onion ultracapacitor. The carbon nano-onion ultracapacitor model, composed of a resistor, an inductor, a capacitor (RLC), and a constant phase element (CPE), was developed along with a parameter extraction procedure for the benefit of other users. The new model developed, proved to be more accurate than previously reported UC models.
Moghaddam, Hadi Mahmoudi; Beitollahi, Hadi; Tajik, Somayeh; Malakootian, Mohammad; Maleh, Hassan Karimi
2014-11-01
The electrochemical oxidation of hydroxylamine on the surface of a carbon paste electrode modified with carbon nanotubes and 2,7-bis(ferrocenyl ethyl)fluoren-9-one is studied. The electrochemical response characteristics of the modified electrode toward hydroxylamine and phenol were investigated. The results showed an efficient catalytic activity of the electrode for the electro-oxidation of hydroxylamine, which leads to lowering its overpotential. The modified electrode exhibits an efficient electron-mediating behavior together with well-separated oxidation peaks for hydroxylamine and phenol. Also, the modified electrode was used for determination of hydroxylamine and phenol in some real samples.
Chemically modified graphite for electrochemical cells
Greinke, R.A.; Lewis, I.C.
1998-05-26
This invention relates to chemically modified graphite particles: (a) that are useful in alkali metal-containing electrode of a electrochemical cell comprising: (1) the electrode, (2) a non-aqueous electrolytic solution comprising an organic aprotic solvent which solvent tends to decompose when the electrochemical cell is in use, and an electrically conductive salt of an alkali metal, and (3) a counter electrode; and (b) that are chemically modified with fluorine, chlorine, iodine or phosphorus to reduce such decomposition. This invention also relates to electrodes comprising such chemically modified graphite and a binder and to electrochemical cells containing such electrodes. 3 figs.
Feng, Wei; Xu, Jinxia; Jiang, Linhua; Song, Yingbin; Cao, Yalong; Tan, Qiping
2018-01-01
To improve the repair effect of electrochemical chloride extraction, a modified electrode configuration is applied in this investigation. In this configuration, two auxiliary electrodes placed in the anodic and cathodic electrolytes were used as the anode and cathode, respectively. Besides this, the steel in the mortar was grounded to protect it from corrosion. By a comparative experiment, the potential evolution, various ions concentrations (Cl−, OH−, Na+, and K+) in different mortar depths, the corrosion potential, and the current density of the steel were measured. The results indicate that compared to electrochemical chloride extraction with the traditional electrode configuration, this electrochemical chloride extraction method with a modified electrode configuration has a similar chloride removal ratio. Besides this, potential of steel is just about 800 mV for a saturated calomel electrode (SCE) during the treatment, which did not reach the hydrogen evolution potential. The phenomenon of the accumulation of OH−, Na+, and K+ did not occur when the modified electrode configuration is applied. Additionally, higher corrosion potentials and lower corrosion current rates were measured after performing electrochemical chloride extraction with the modified electrode configuration. Additionally, it is a short period of time for the steel to go from activation to passivation. On this basis, the modified electrode configuration may overcome the drawbacks of electrochemical chloride extraction. PMID:29389855
Welch, Christine M; Nekrassova, Olga; Dai, Xuan; Hyde, Michael E; Compton, Richard G
2004-09-20
The tabrication, characterisation, and electroanalytical application of gold and gold amalgam nanoparticles on glassy carbon electrodes is examined. Once the deposition parameters for gold nanoparticle electrodes were optimised, the analytical utility of the electrodes was examined in CrIII electroanalysis. It was found that gold nanoparticle modified (Au-NM) electrodes possess higher sensitivity than gold macroelectrodes. In addition, gold amalgam nanoparticle modified (AuHg-NM) electrodes were fabricated and characterised. The response of those electrodes was recorded in the presence of important environmental analytes (heavy metal cations). It was found AuHg-NM electrodes demonstrate a unique voltammetric behaviour and can be applied for electroanalysis when enhanced sensitivity is crucial.
CHROMIUM ELECTROANALYSIS AT SCREEN PRINTED ELECTRODE MODIFIED BY THIN FILMS OF NICKEL
A rapid and potentially cost-effective electrochemical method is reported for analysis of chromium (VI) and Chromium(III) using a nickel modified screen printed carbon ink electrode. Electrochemical characteristics of nickel modified electrode as well voltammetric behavior f...
Rojas-Bedolla, Edgar Isaac; Gutiérrez-Pérez, Jorge Luis; Arenas-López, Mario Iván; González-Chávez, Marco Martin; Zapata-Morales, Juan Ramón; Mendoza-Macías, Claudia Leticia; Carranza-Álvarez, Candy; Maldonado-Miranda, Juan José; Deveze-Álvarez, Martha Alicia; Alonso-Castro, Angel Josabad
2018-06-12
Celtis pallida Torr (Cannabaceae) is employed as a folk medicine for the treatment of inflammation, pain, skin infections, and diarrhea, among other diseases. The purpose of this work was to assess the chemical composition, the in vitro and in vivo toxicity, the antimicrobial, anti-inflammatory, antidiarrheal, antinociceptive, locomotor, and sedative effects of an ethanolic extract obtained from Celtis pallida aerial parts (CPE). The composition of CPE was carried out by GC-MS. The in vitro and in vivo toxic activity of CPE was estimated with the comet assay (10-1000 µg/ml) for 5 h in peripheral blood mononuclear cells, and the acute toxicity test (500-5000 mg/kg p.o.), for 14 days, respectively. The antimicrobial effect of CPE was evaluated using the minimum inhibitory concentration (MIC) assay, whereas the antidiarrheal activity (10-200 mg/kg p.o.) was calculated using the castor oil test. The antinociceptive effects of CPE (50-200 mg/kg p.o.) were estimated with the acetic acid and formalin tests, as well as the hot plate test. The sedative and locomotor activities of CPE (50-200 mg/kg p.o.) were assessed with the pentobarbital-induced sleeping time test and the rotarod test, respectively. The main compound found in CPE was the triterpene ursolic acid (22% of the extract). CPE at concentrations of 100 µg/ml or higher induced genotoxicity in vitro and showed low in vivo toxicity (LD 50 > 5000 mg/kg p.o.). Additionally, CPE lacked (MIC > 400 µg/ml) antimicrobial activity but exerts antinociceptive (ED 50 = 12.5 ± 1.5 mg/kg) and antidiarrheal effects (ED 50 = 2.8 mg/kg), without inducing sedative effects or altering the locomotor activity. The antinociceptive activity of CPE suggests the participation of adrenoceptors, as well as the nitric oxide/cyclic guanosine monophosphate (cGMP) pathway. C. pallida exerts its antinociceptive effects probably mediated by the nitric oxide/cyclic guanosine monophosphate (cGMP) pathway. Copyright © 2018 Elsevier B.V. All rights reserved.
Kim, Yang-Rae; Bong, Sungyool; Kang, Yeon-Joo; Yang, Yongtak; Mahajan, Rakesh Kumar; Kim, Jong Seung; Kim, Hasuck
2010-06-15
Dopamine plays a significant role in the function of human metabolism. It is important to develop sensitive sensor for the determination of dopamine without the interference by ascorbic acid. This paper reports the synthesis of graphene using a modified Hummer's method and its application for the electrochemical detection of dopamine. Electrochemical measurements were performed at glassy carbon electrode modified with graphene via drop-casting method. Cyclic voltammogram of ferri/ferrocyanide redox couple at graphene modified electrode showed an increased current intensity compared with glassy carbon electrode and graphite modified electrode. The decrease of charge transfer resistance was also analyzed by electrochemical impedance spectroscopy. The capacity of graphene modified electrode for selective detection of dopamine was confirmed in a sufficient amount of ascorbic acid (1 mM). The observed linear range for the determination of dopamine concentration was from 4 microM to 100 microM. The detection limit was estimated to be 2.64 microM. Copyright 2010 Elsevier B.V. All rights reserved.
A Palladium-Tin Modified Microband Electrode Array for Nitrate Determination
Fu, Yexiang; Bian, Chao; Kuang, Jian; Wang, Jinfen; Tong, Jianhua; Xia, Shanhong
2015-01-01
A microband electrode array modified with palladium-tin bimetallic composite has been developed for nitrate determination. The microband electrode array was fabricated by Micro Electro-Mechanical System (MEMS) technique. Palladium and tin were electrodeposited successively on the electrode, forming a double-layer structure. The effect of the Pd-Sn composite was investigated and its enhancement of catalytic activity and lifetime was revealed. The Pd-Sn modified electrode showed good linearity (R2 = 0.998) from 1 mg/L to 20 mg/L for nitrate determination with a sensitivity of 398 μA/(mg∙L−1∙cm2). The electrode exhibited a satisfying analytical performance after 60 days of storage, indicating a long lifetime. Good repeatability was also displayed by the Pd-Sn modified electrodes. The results provided an option for nitrate determination in water. PMID:26389904
Stabilization of electrogenerated copper species on electrodes modified with quantum dots.
Martín-Yerga, Daniel; Costa-García, Agustín
2017-02-15
Quantum dots (QDs) have special optical, surface, and electronic properties that make them useful for electrochemical applications. In this work, the electrochemical behavior of copper in ammonia medium is described using bare screen-printed carbon electrodes and the same modified with CdSe/ZnS QDs. At the bare electrodes, the electrogenerated Cu(i) and Cu(0) species are oxidized by dissolved oxygen in a fast coupled chemical reaction, while at the QDs-modified electrode, the re-oxidation of Cu(i) and Cu(0) species can be observed, which indicates that they are stabilized by the nanocrystals present on the electrode surface. A weak adsorption is proposed as the main cause for this stabilization. The electrodeposition on electrodes modified with QDs allows the generation of random nanostructures with copper nanoparticles, avoiding the preferential nucleation onto the most active electrode areas.
Market segmentation and positioning: matching creativity with fiscal responsibility.
Kiener, M E
1989-01-01
This paper describes an approach to continuing professional education (CPE) program development in nursing within a university environment that utilizes the concepts of market segmentation and positioning. Use of these strategies enables the academic CPE enterprise to move beyond traditional needs assessment practices to create more successful and better-managed CPE programs.
Conjugated polyelectrolyte based real-time fluorescence assay for phospholipase C.
Liu, Yan; Ogawa, Katsu; Schanze, Kirk S
2008-01-01
A fluorescence turnoff assay for phospholipase C (PLC) from Clostridium perfringens is developed based on the reversible interaction between the natural substrate, phosphatidylcholine, and a fluorescent, water-soluble conjugated polyelectrolyte (CPE). The fluorescence intensity of the CPE in water is increased substantially by the addition of the phospholipid due to the formation of a CPE-lipid complex. Incubation of the CPE-lipid complex with the enzyme PLC causes the fluorescence intensity to decrease (turnoff sensor); the response arises due to PLC-catalyzed hydrolysis of the phosphatidylcholine, which effectively disrupts the CPE-lipid complex. The PLC assay operates with phospholipid substrate concentrations in the micromolar range, and the analytical detection limit for PLC is <1 nM. The optimized assay provides a convenient, rapid, and real-time sensor for PLC activity. The real-time fluorescence intensity from the CPE can be converted to substrate concentration by using an ex situ calibration curve, allowing PLC-catalyzed reaction rates and kinetic parameters to be determined. PLC activation by Ca2+ and inhibition by EDTA and fluoride ion are demonstrated using the optimized sensor.
NASA Astrophysics Data System (ADS)
Gordon, Geoffrey; Lo, Chun-Min
2007-03-01
Both in vitro and animal studies in breast, prostate, and ovarian cancers have shown that clostridium perfringens enterotoxin (CPE), which binds to CLDN4, may have an important therapeutic benefit, as it is rapidly cytotoxic in tissues overexpressing CLDN4. This study sought to evaluate the ability of C-terminal clostridium perfringens enterotoxin (C-CPE), a CLDN4-targetting molecule, to disrupt tight junction barrier function. Electric cell-substrate impedance sensing (ECIS) was used to measure both junctional resistance and average cell-substrate separation of ovarian cancer cell lines after exposure to C-CPE. A total of 14 ovarian cancer cell lines were used, and included cell lines derived from serous, mucinous, and clear cells. Our results showed that junctional resistance increases as CLDN4 expression increases. In addition, C-CPE is non-cytotoxic in ovarian cancer cells expressing CLDN4. However, exposure to C-CPE results in a significant (p<0.05) dose- and CLDN4-dependent decrease in junctional resistance and an increase in cell-substrate separation. Treatment of ovarian cancer cell lines with C-CPE disrupts tight junction barrier function.
Glacier discharge and climate variations
NASA Astrophysics Data System (ADS)
Dominguez, M. Carmen; Rodriguez-Puebla, Concepcion; Encinas, Ascension H.; Visus, Isabel; Eraso, Adolfo
2010-05-01
Different studies account for the warming in the polar regions that consequently would affect Glacier Discharge (GD). Since changes in GD may cause large changes in sensible and latent heat fluxes, we ask about the relationships between GD and climate anomalies, which have not been quantified yet. In this study we apply different statistical methods such as correlation, Singular Spectral Analysis and Wavelet to compare the behaviour of GD data in two Experimental Pilot Catchments (CPE), one (CPE-KG-62°S) in the Antarctica and the other (CPE-KVIA-64°N) in the Arctic regions. Both CPE's are measuring sub- and endo-glacier drainage for recording of glacier melt water run-off. The CPE-KG-62°S is providing hourly GD time series since January 2002 in Collins glacier of the Maxwell Bay in King George Island (62°S, 58°W). The second one, CPE-KVIA-64°N, is providing hourly GD time series since September 2003 in the Kviarjökull glacier of the Vatnajökull ice cap in Iceland (64°N, 16°W). The soundings for these measurements are pressure sensors installed in the river of the selected catchments for the ice cap (CPE-KG-62°S) and in the river of the glacier for (CPE-KVIA-64°N). In each CPE, the calibration function between level and discharge has been adjusted, getting a very high correlation coefficient (0.99 for the first one and 0.95 for the second one), which let us devise a precise discharge law for the glacier. We obtained relationships between GD with atmospheric variables such as radiation, temperature, relative humidity, atmospheric pressure and precipitation. We also found a negative response of GD to El Niño teleconnection index. The results are of great interest due to the GD impact on the climate system and in particular for sea level rise.
Cordero-Herrera, Isabel; Martín, María Angeles; Goya, Luis; Ramos, Sonia
2015-04-01
Oxidative stress plays a main role in the pathogenesis of type 2 diabetes mellitus. Cocoa and (-)-epicatechin (EC), a main cocoa flavanol, have been suggested to exert beneficial effects in type 2 diabetes mellitus because of their protective effects against oxidative stress and insulin-like properties. In this study, the protective effect of EC and a cocoa phenolic extract (CPE) against oxidative stress induced by a high-glucose challenge, which causes insulin resistance, was investigated on hepatic HepG2 cells. Oxidative status, phosphorylated mitogen-activated protein kinases (MAPKs), nuclear factor E2 related factor 2 (Nrf2) and p-(Ser)-IRS-1 expression, and glucose uptake were evaluated. EC and CPE regulated antioxidant enzymes and activated extracellular-regulated kinase and Nrf2. EC and CPE pre-treatment prevented high-glucose-induced antioxidant defences and p-MAPKs, and maintained Nrf2 stimulation. The presence of selective MAPK inhibitors induced changes in redox status, glucose uptake, p-(Ser)- and total IRS-1 levels that were observed in CPE-mediated protection. EC and CPE recovered redox status of insulin-resistant HepG2 cells, suggesting that the functionality in EC- and CPE-treated cells was protected against high-glucose-induced oxidative insult. CPE beneficial effects on redox balance and insulin resistance were mediated by targeting MAPKs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen, Wei; Niu, Xueliang; Li, Xiaoyan; Li, Xiaobao; Li, Guangjiu; He, Bolin; Li, Qiutong; Sun, Wei
2017-11-01
Palladium-graphene (Pd-GR) nanocomposite was acted as modifier for construction of the modified electrode with direct electrochemistry of hemoglobin (Hb) realized. By using Nafion as the immobilization film, Hb was fixed tightly on Pd-GR nanocomposite modified carbon ionic liquid electrode. Electrochemical behaviors of Hb modified electrode were checked by cyclic voltammetry and a pair of redox peaks originated from direct electron transfer of Hb was appeared. The Hb modified electrode had excellent electrocatalytic activity to the reduction of trichloroacetic acid and sodium nitrite in the concentration range from 0.6 to 13.0mmol·L -1 and from 0.04 to 0.5 mmol·L -1 . Therefore Pd-GR nanocomposite was proven to be a good candidate for the fabrication of third-generation electrochemical biosensor. Copyright © 2017 Elsevier B.V. All rights reserved.
Preparation of hemoglobin-modified boron-doped diamond for acrylamide biosensors
NASA Astrophysics Data System (ADS)
Umam, K.; Saepudin, E.; Ivandini, T. A.
2017-04-01
Boron-doped diamond (BDD) electrode was modified with haemoglobin to develop electrochemical biosensors of acrylamide. Prior to modify with haemoglobin, the BDD was modified by gold nanoparticles to increase the affinity of BDD against haemoglobin. The electrochemical behaviour of the electrode in the presence of acrylamide was studied in comparison to haemoglobin-modified gold electrodes. Cyclic voltammetry indicated the optimum responses in 0.1 M sodium acetate buffer at pH 5. The responses were linear to the acrylamide concentration range of 5-50 μM with an estimated detection limit of 5.14 μM, suggesting that the electrode was promising for acrylamide biosensors.
ERIC Educational Resources Information Center
Ladymon, Laura Beth
2017-01-01
The purpose of this phenomenological study was to describe select Tennessee pharmacists' experiences, motivation, and preferences in the context of continuing pharmacy education (CPE). The pharmacists' experiences, motivation, and preferences related to CPE were generally defined as participating in CPE programming in a manner that meets the needs…
ERIC Educational Resources Information Center
Phillips, Virginia B.
2011-01-01
Many adults attend and rely on continuing professional education (CPE) throughout their careers, and CPE is big business for associations. One way associations deliver CPE is through educational conferences. While adult education theories and frameworks offer developmental and operational guidance and advice, there is little practice data to…
Electrochemiluminescence of luminol at the titanate nanotubes modified glassy carbon electrode.
Xu, Guifang; Zeng, Xiaoxue; Lu, Shuangyan; Dai, Hong; Gong, Lingshan; Lin, Yanyu; Wang, Qingping; Tong, Yuejin; Chen, Guonan
2013-01-01
A new strategy for the construction of a sensitive and stable electrochemiluminescent platform based on titanate nanotubes (TNTs) and Nafion composite modified electrode for luminol is described, TNTs contained composite modified electrodes that showed some photocatalytic activity toward luminol electrochemiluminescence emission, and thus could dramatically enhance luminol light emission. This extremely sensitive and stable platform allowed a decrease of the experiment electrochemiluminescence luminol reagent. In addition, in luminol solution at low concentrations, we compared the capabilities of a bare glassy carbon electrode with the TNT composite modified electrode for hydrogen peroxide detection. The results indicated that compared with glassy carbon electrode this platform was extraordinarily sensitive to hydrogen peroxide. Therefore, by combining with an appropriate enzymatic reaction, this platform would be a sensitive matrix for many biomolecules.
Imprinted zeolite modified carbon paste electrode as a potentiometric sensor for uric acid
NASA Astrophysics Data System (ADS)
Khasanah, Miratul; Widati, Alfa Akustia; Fitri, Sarita Aulia
2016-03-01
Imprinted zeolite modified carbon paste electrode (carbon paste-IZ) has been developed and applied to determine uric acid by potentiometry. The imprinted zeolite (IZ) was synthesized by the mole ratio of uric acid/Si of 0.0306. The modified electrode was manufactured by mass ratio of carbon, IZ and solid paraffin was 40:25:35. The modified electrode had shown the measurement range of 10-5 M to 10-2 M with Nernst factor of 28.6 mV/decade, the detection limit of 5.86 × 10-6 M and the accuracy of 95.3 - 105.0%. Response time of the electrode for uric acid 10-5 M - 10-2 M was 25 - 44 s. The developed electrode showed the high selectivity toward uric acid in the urea matrix. Life time of the carbon paste-IZ electrode was 10 weeks.
Chauhan, Nidhi; Singh, Anamika; Narang, Jagriti; Dahiya, Swati; Pundir, C S
2012-11-07
The construction of two amperometric l-lysine biosensors is described in this study. The construction comprises the covalent immobilization of lysine oxidase (LOx) onto nanocomposite composed of gold nanoparticles (AuNPs) and carboxylated multiwalled carbon nanotubes (c-MWCNT), decorated on (i) polyaniline (PANI) and (ii) poly 1,2 diaminobenzene (DAB), electrodeposited on Au electrodes. The biosensors were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) and electrochemical impedance spectroscopy (EIS) studies. The optimum response (current) was observed within 2 s at pH 7.0 and 25 °C for LOx/AuNPs/c-MWCNT/PANI/Au, and 4 s at pH 7.0 and 30 °C for LOx/AuNPs/c-MWCNT/DAB/Au electrodes. There was a linear relationship between current and lysine concentration ranging from 5.0 to 600 μM for LOx/AuNPs/c-MWCNT/PANI/Au with a detection limit of 5.0 μM, and 20 to 600 μM for the LOx/AuNPs/c-MWCNT/DAB/Au electrode with a detection limit of 20 μM. The PANI modified electrode was in good agreement with the standard HPLC method, with a better correlation (r = 0.992) compared to the DAB modified electrode (r = 0.986). These observations revealed that the PANI modified Au electrode was better than the DAB modified electrode, and hence it was employed for the determination of lysine in milk, pharmaceutical tablets and sera. The PANI modified electrode showed a half life of 120 days, compared to that of 90 days for the DAB modified electrode, after their 100 uses, when stored at 4 °C.
Karim, Azila Abdul; Azlan, Azrina; Ismail, Amin; Hashim, Puziah; Abd Gani, Siti Salwa; Zainudin, Badrul Hisyam; Abdullah, Nur Azilah
2014-10-07
Cocoa pod is an outer part of cocoa fruits being discarded during cocoa bean processing. Authors found out that data on its usage in literature as cosmetic materials was not recorded in vast. In this study, cocoa pod extract was investigated for its potential as a cosmetic ingredient. Cocoa pod extract (CPE) composition was accomplished using UHPLC. The antioxidant capacity were measured using scavenging assay of 1,2-diphenyl-2-picrylhydrazyl (DPPH), β-carotene bleaching assay (BCB) and ferric reducing antioxidant power (FRAP). Inhibiting effect on skin degradation enzymes was carried out using elastase and collagenase assays. The skin whitening effect of CPE was determined based on mushroom tyrosinase assay and sun screening effect (UV-absorbance at 200-400 nm wavelength). LC-MS/MS data showed the presence of carboxylic acid, phenolic acid, fatty acid, flavonoids (flavonol and flavones), stilbenoids and terpenoids in CPE. Results for antioxidant activity exhibited that CPE possessed good antioxidant activity, based on the mechanism of the assays compared with ascorbic acid (AA) and standardized pine bark extract (PBE); DPPH: AA > CPE > PBE; FRAP: PBE > CPE > AA; and BCB: BHT > CPE > PBE. Cocoa pod extract showed better action against elastase and collagenase enzymes in comparison with PBE and AA. Higher inhibition towards tyrosinase enzyme was exhibited by CPE than kojic acid and AA, although lower than PBE. CPE induced proliferation when tested on human fibroblast cell at low concentration. CPE also exhibited a potential as UVB sunscreen despite its low performance as a UVA sunscreen agent. Therefore, the CPE has high potential as a cosmetic ingredient due to its anti-wrinkle, skin whitening, and sunscreen effects.
Hansen, Michael J.; Schorfhaar, Richard G.; Peck, James W.; Selgeby, James H.; Taylor, William W.
1995-01-01
Self-sustaining populations of lake trout Salvelinus namaycush have returned to most areas in Lake Superior, but progress toward achieving historic commercial yields has been difficult to measure because of unrecorded losses to predation by sea lamprey Petromyzon marinus and to fisheries. Consequently, we developed restoration targets (catch per effort, CPE; geometric mean number per kilometer of 114-mm stretch-meaure gill net during 1929-1943, when historic yields were sustained) from linear relationships between CPE in commercial and assessment fisheries in Michigan. Target CPEs for lake trout restoration were higher and less variable than the modern CPEs in all areas. Modern CPEs generally increased during the 1970s and early 1980s but declined during the late 1980s and early 1990s. Modern CPEs were highest in western Michigan from the Keweenaw Peninsula to Marquette (71 to 81% of target CPEs), but coefficients of variation (CV,SD/mean) of mean CPEs were 1.4 to 2.4 times greater than target CVs. Around Munising, the modern CPE was lower (41% of the target CPE), whereas the CV was 1.9 times greater than the target CV. Around Grand Marais, the modern CPE was lowest among all areas (17% of the target CPE), but the CV was nearly the same (1.1 times the target CV). In Whitefish Bay, the modern CPE was only 28% of the target CPE and the CV was 9.0 times greater, though the modern period was based on only the years 1979-1982 and 1984-1985. Further progress in restoration in most areas can be achieved only if fishery managers adequately protect existing stocks of wild fish from sea lamprey predation and fishery exploitation.
Lasserre, Camille; De Saint Martin, Luc; Cuzon, Gaelle; Bogaerts, Pierre; Lamar, Estelle; Glupczynski, Youri; Naas, Thierry; Tandé, Didier
2015-07-01
The recognition of carbapenemase-producing Enterobacteriaceae (CPE) isolates is a major laboratory challenge, and their inappropriate or delayed detection may have negative impacts on patient management and on the implementation of infection control measures. We describe here a matrix-assisted laser desorption ionization-time of flight (MALDI-TOF)-based method to detect carbapenemase activity in Enterobacteriaceae. After a 20-min incubation of the isolate with 0.5 mg/ml imipenem at 37°C, supernatants were analyzed by MALDI-TOF in order to identify peaks corresponding to imipenem (300 Da) and an imipenem metabolite (254 Da). A total of 223 strains, 77 CPE (OXA-48 variants, KPC, NDM, VIM, IMI, IMP, and NMC-A) and 146 non-CPE (cephalosporinases, extended-spectrum β-lactamases [ESBLs], and porin defects), were tested and used to calculate a ratio of imipenem hydrolysis: mass spectrometry [MS] ratio = metabolite/(imipenem + metabolite). An MS ratio cutoff was statistically determined to classify strains as carbapenemase producers (MS ratio of ≥0.82). We validated this method first by testing 30 of our 223 isolates (15 CPE and 15 non-CPE) 10 times to calculate an intraclass correlation coefficient (ICC of 0.98), showing the excellent repeatability of the method. Second, 43 strains (25 CPE and 18 non-CPE) different from the 223 strains used to calculate the ratio cutoff were used as external controls and blind tested. They yielded sensitivity and specificity of 100%. The total cost per test is <0.10 U.S. dollars (USD). This easy-to-perform assay is time-saving, cost-efficient, and highly reliable and might be used in any routine laboratory, given the availability of mass spectrometry, to detect CPE. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Detection of enterotoxigenic Clostridium perfringens in meat samples by using molecular methods.
Kaneko, Ikuko; Miyamoto, Kazuaki; Mimura, Kanako; Yumine, Natsuko; Utsunomiya, Hirotoshi; Akimoto, Shigeru; McClane, Bruce A
2011-11-01
To prevent food-borne bacterial diseases and to trace bacterial contamination events to foods, microbial source tracking (MST) methods provide important epidemiological information. To apply molecular methods to MST, it is necessary not only to amplify bacterial cells to detection limit levels but also to prepare DNA with reduced inhibitory compounds and contamination. Isolates carrying the Clostridium perfringens enterotoxin gene (cpe) on the chromosome or a plasmid rank among the most important food-borne pathogens. Previous surveys indicated that cpe-positive C. perfringens isolates are present in only ∼5% of nonoutbreak food samples and then only at low numbers, usually less than 3 cells/g. In this study, four molecular assays for the detection of cpe-positive C. perfringens isolates, i.e., ordinary PCR, nested PCR, real-time PCR, and loop-mediated isothermal amplification (LAMP), were developed and evaluated for their reliability using purified DNA. For use in the artificial contamination of meat samples, DNA templates were prepared by three different commercial DNA preparation kits. The four molecular assays always detected cpe when >10³ cells/g of cpe-positive C. perfringens were present, using any kit. Of three tested commercial DNA preparation kits, the InstaGene matrix kit appeared to be most suitable for the testing of a large number of samples. By using the InstaGene matrix kit, the four molecular assays efficiently detected cpe using DNA prepared from enrichment culture specimens of meat samples contaminated with low numbers of cpe-positive C. perfringens vegetative cells or spores. Overall, the current study developed molecular assay protocols for MST to detect the contamination of foods with low numbers of cells, and at a low frequency, of cpe-positive C. perfringens isolates.
ATS-6 - Preliminary results from the 13/18-GHz COMSAT Propagation Experiment
NASA Technical Reports Server (NTRS)
Hyde, G.
1975-01-01
The 13/18-GHz COMSAT Propagation Experiment (CPE) is reviewed, the data acquisition and processing are discussed, and samples of preliminary results are presented. The need for measurements of both hydrometeor-induced attenuation statistics and diversity effectiveness is brought out. The facilitation of the experiment - CPE dual frequency and diversity site location, the CPE ground transmit terminals, the CPE transponder on Applications Technology Satellite-6 (ATS-6), and the CPE receive and data acquisition system - is briefly examined. The on-line preprocessing of the received signal is reviewed, followed by a discussion of the off-line processing of this database to remove signal fluctuations not due to hydrometeors. Finally, samples of the results of first-level analysis of the resultant data for the 18-GHz diversity site near Boston, Mass., and for the dual frequency 13/18-GHz site near Detroit, Mich., are presented and discussed.
Fitchett, George; Altenbaumer, Mary L; Atta, Osofo Kwesi; Stowman, Sheryl Lyndes; Vlach, Kyle
2014-12-01
Revisions to the processes for training and certifying supervisors continue to be debated within the Association for Clinical Pastoral Education (ACPE). In 2012 Ragsdale and colleagues published, "Mutually engaged supervisory processes," a qualitative research study utilizing grounded theory based on interviews with 19 recently certified Associate CPE Supervisors, of nine components that facilitate the development of CPE supervisory education students. In this article we critically engage this theory and the research upon which it is based. We also reflect on three issues highlighted by the theory: personal transformation in CPE supervisory education, how CPE supervisory education students develop theoretical foundations for their work, and engaging multicultural issues in supervisory education. We conclude that this theory offers ACPE the possibility of using research to guide future modifications to its practice of Supervisory education. © 2014 Journal of Pastoral Care Publications Inc.
Shi, Fan; Xi, Jingwen; Hou, Fei; Han, Lin; Li, Guangjiu; Gong, Shixing; Chen, Chanxing; Sun, Wei
2016-01-01
In this paper a three-dimensional (3D) reduced graphene oxide (RGO) and gold (Au) composite was synthesized by electrodeposition and used for the electrode modification with carbon ionic liquid electrode (CILE) as the substrate electrode. Myoglobin (Mb) was further immobilized on the surface of 3D RGO-Au/CILE to obtain an electrochemical sensing platform. Direct electrochemistry of Mb on the modified electrode was investigated with a pair of well-defined redox waves appeared on cyclic voltammogram, indicating the realization of direct electron transfer of Mb with the modified electrode. The results can be ascribed to the presence of highly conductive 3D RGO-Au composite on the electrode surface that accelerate the electron transfer rate between the electroactive center of Mb and the electrode. The Mb modified electrode showed excellent electrocatalytic activity to the reduction of trichloroacetic acid in the concentration range from 0.2 to 36.0 mmol/L with the detection limit of 0.06 mmol/L (3σ). Copyright © 2015 Elsevier B.V. All rights reserved.
Molaakbari, Elahe; Mostafavi, Ali; Beitollahi, Hadi; Alizadeh, Reza
2014-09-07
A novel carbon paste electrode modified with ZnO nanorods and 5-(4'-amino-3'-hydroxy-biphenyl-4-yl)-acrylic acid (3,4'-AAZCPE) was fabricated. The electrochemical study of the modified electrode, as well as its efficiency for the electrocatalytic oxidation of levodopa, is described. The electrode was employed to study the electrocatalytic oxidation of levodopa, using cyclic voltammetry (CV), chronoamperometry (CHA), and square-wave voltammetry (SWV) as diagnostic techniques. It has been found that the oxidation of levodopa at the surface of the modified electrode occurs at a potential of about 370 mV less positive than that of an unmodified carbon paste electrode. The SWV results exhibit a linear dynamic range from 1.0 × 10(-7) M to 7.0 × 10(-5) M and a detection limit of 3.5 × 10(-8) M for levodopa. In addition, this modified electrode was used for the simultaneous determination of levodopa and carbidopa. Finally, the modified electrode was used for the determination of levodopa and carbidopa in some real samples.
Machini, Wesley B S; David-Parra, Diego N; Teixeira, Marcos F S
2015-12-01
The preparation and electrochemical characterization of a nickel hydroxide modified nickel electrode as well as its behavior as electrocatalyst toward the oxidation of hydrochlorothiazide (HCTZ) were investigated. The electrochemical behavior of the modified electrode and the electrooxidation of HCTZ were explored using cyclic voltammetry. The voltammetric response of the modified electrode in the detection of HCTZ is based on the electrochemical oxidation of the Ni(II)/Ni(III) and a chemical redox process. The analytical parameters for the electrooxidation of HCTZ by the nickel hydroxide modified nickel electrode were obtained in NaOH solution, in which the linear voltammetric response was in the concentration range from 1.39×10(-5) to 1.67×10(-4)mol L(-1) with a limit of detection of 7.92×10(-6)mol L(-1) and a sensitivity of 0.138 μA Lmmol(-1). Tafel analysis was used to elucidate the kinetics and mechanism of HCTZ oxidation by the modified electrode. Copyright © 2015 Elsevier B.V. All rights reserved.
Lee, Chang-Seuk; Yu, Su Hwan; Kim, Tae Hyun
2017-01-01
Here, we introduce the preparation of the hybrid nanocomposite-modified electrode consisting of reduced graphene oxide (RGO) and gold nanoparticles (AuNPs) using the one-step electrochemical method, allowing for the simultaneous and individual detection of dopamine (DA), ascorbic acid (AA), and uric acid (UA). RGO/AuNPs nanocomposite was formed on a glassy carbon electrode by the co-reduction of GO and Au3+ using the potentiodynamic method. The RGO/AuNPs nanocomposite-modified electrode was produced by subjecting a mixed solution of GO and Au3+ to cyclic sweeping from −1.5 V to 0.8 V (vs. Ag/AgCl) at a scan rate 10 mV/s for 3 cycles. The modified electrode was characterized by scanning electron microscopy, Raman spectroscopy, contact angle measurement, electrochemical impedance spectroscopy, and cyclic voltammetry. Voltammetry results confirm that the RGO/AuNPs nanocomposite-modified electrode has high catalytic activity and good resolution for the detection of DA, AA, and UA. The RGO/AuNPs nanocomposite-modified electrode exhibits stable amperometric responses for DA, AA, and UA, respectively, and its detection limits were estimated to be 0.14, 9.5, and 25 μM. The modified electrode shows high selectivity towards the determination of DA, AA, or UA in the presence of potentially active bioelements. In addition, the resulting sensor exhibits many advantages such as fast amperometric response, excellent operational stability, and appropriate practicality. PMID:29301209
ERIC Educational Resources Information Center
Fahnestock, Annetta Bethene
2012-01-01
Little is known about the deterrents to licensed nurses' participation in continuing professional education (CPE) in Oklahoma, the licensed nurses' preferred method for obtaining CPE, and the ways in which employers support participation in CPE. A random sample of 78 licensed nurses in Oklahoma completed a 20 item questionnaire and a 40 item…
Extended polarization in 3rd order SCC-DFTB from chemical potential equilization
Kaminski, Steve; Giese, Timothy J.; Gaus, Michael; York, Darrin M.; Elstner, Marcus
2012-01-01
In this work we augment the approximate density functional method SCC-DFTB (DFTB3) with the chemical potential equilization (CPE) approach in order to improve the performance for molecular electronic polarizabilities. The CPE method, originally implemented for NDDO type methods by Giese and York, has been shown to emend minimal basis methods wrt response properties significantly, and has been applied to SCC-DFTB recently. CPE allows to overcome this inherent limitation of minimal basis methods by supplying an additional response density. The systematic underestimation is thereby corrected quantitatively without the need to extend the atomic orbital basis, i.e. without increasing the overall computational cost significantly. Especially the dependency of polarizability as a function of molecular charge state was significantly improved from the CPE extension of DFTB3. The empirical parameters introduced by the CPE approach were optimized for 172 organic molecules in order to match the results from density functional methods (DFT) methods using large basis sets. However, the first order derivatives of molecular polarizabilities, as e.g. required to compute Raman activities, are not improved by the current CPE implementation, i.e. Raman spectra are not improved. PMID:22894819
Yonogi, Shinya; Kanki, Masashi; Ohnishi, Takahiro; Shiono, Masami; Iida, Tetsuya; Kumeda, Yuko
2016-08-01
Clostridium perfringens causes food-borne gastroenteritis following the consumption of contaminated food by producing C. perfringens enterotoxin (CPE) in the intestines. Recently, we reported a novel enterotoxin, binary enterotoxin of C. perfringens (BEC) in C. perfringens isolates, which caused two disease outbreaks in Japan. Consequently, in the event of food poisoning outbreaks caused by C. perfringens, it is now necessary to screen for both the cpe and becAB genes by diagnostic PCR. Here, we present a simple multiplex PCR method for simultaneous detection of cpe, becAB and a C. perfringens control locus, phospholipase C (plc). Applying this method, we investigated the prevalence of cpe- or becAB-carrying C. perfringens strains in human stool and bovine rectum swab samples. Using a total of 169 isolates, we found that the percentage of becAB-carrying strains was very small (0.59%), one-tenth that of cpe-carrying strains. The simple method presented in this study with high specificity and sensitivity to C. perfringens will be a useful tool to survey the global prevalence of becAB-carrying C. perfringens strains. Copyright © 2016 Elsevier B.V. All rights reserved.
Current Continuing Professional Education Practice among Malaysian Nurses
Chong, Mei Chan; Francis, Karen; Cooper, Simon; Abdullah, Khatijah Lim
2014-01-01
Nurses need to participate in CPE to update their knowledge and increase their competencies. This research was carried out to explore their current practice and the future general needs for CPE. This cross-sectional descriptive study involved registered nurses from government hospitals and health clinics from Peninsular Malaysia. Multistage cluster sampling was used to recruit 1000 nurses from four states of Malaysia. Self-explanatory questionnaires were used to collect the data, which were analyzed using SPSS version 16. Seven hundred and ninety-two nurses participated in this survey. Only 80% (562) of the nurses had engaged in CPE activities during the past 12 months. All attendance for the various activities was below 50%. Workshops were the most popular CPE activity (345, 43.6%) and tertiary education was the most unpopular activity (10, 1.3%). The respondents did perceive the importance of future CPE activities for career development. Mandatory continuing professional education (MCPE) is a key measure to ensure that nurses upgrade their knowledge and skills; however, it is recommended that policy makers and nurse leaders in the continuing professional development unit of health service facilities plan CPE activities to meet registered nurses' (RNs) needs and not simply organizational requirements. PMID:24523961
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Tao; Zhu, Xiaoguang; Tu, Guoli, E-mail: tgl@hust.edu.cn
Efficient inverted polymer solar cells (PSCs) were constructed by utilizing a conjugated polyelectrolyte PF{sub EO}SO{sub 3}Na and zinc oxide to modify the indium tin oxide (ITO) electrode. The ITO electrode modified by PF{sub EO}SO{sub 3}Na and zinc oxide possesses high transparency, increased electron mobility, smoothened surface, and lower work function. PTB7:PC{sub 71}BM inverted PSCs containing the modified ITO electrode achieved a high power conversion efficiency (PCE) of 8.49%, exceeding that of the control device containing a ZnO modified ITO electrode (7.48%). Especially, PCE-10:PC{sub 71}BM inverted polymer solar cells achieved a high PCE up to 9.4%. These results demonstrate a usefulmore » approach to improve the performance of inverted polymer solar cells.« less
Sun, Wei; Dong, Lifeng; Deng, Ying; Yu, Jianhua; Wang, Wencheng; Zhu, Qianqian
2014-06-01
Nitrogen-doped graphene (NG) was synthesized and used for the investigation on direct electrochemistry of hemoglobin (Hb) with a carbon ionic liquid electrode as the substrate electrode. Due to specific characteristics of NG such as excellent electrocatalytic property and large surface area, direct electron transfer of Hb was realized with enhanced electrochemical responses appearing. Electrochemical behaviors of Hb on the NG modified electrode were carefully investigated with the electrochemical parameters calculated. The Hb modified electrode exhibited excellent electrocatalytic reduction activity toward different substrates, such as trichloroacetic acid and H2O2, with wider dynamic range and lower detection limit. These findings show that NG can be used for the preparation of chemically modified electrodes with improved performance and has potential applications in electrochemical sensing. Copyright © 2014 Elsevier B.V. All rights reserved.
Chemically modified graphite for electrochemical cells
Greinke, Ronald Alfred; Lewis, Irwin Charles
1998-01-01
This invention relates to chemically modified graphite particles: (a) that are useful in alkali metal-containing electrode of a electrochemical cell comprising: (i) the electrode, (ii) a non-aqueous electrolytic solution comprising an organic aprotic solvent which solvent tends to decompose when the electrochemical cell is in use, and an electrically conductive salt of an alkali metal, and (iii) a counterelectrode; and (b) that are chemically modified with fluorine, chlorine, iodine or phosphorus to reduce such decomposition. This invention also relates to electrodes comprising such chemically modified graphite and a binder and to electrochemical cells containing such electrodes.
Inter-hospital outbreak of Klebsiella pneumoniae producing KPC-2 carbapenemase in Ireland.
Morris, Dearbháile; Boyle, Fiona; Morris, Carol; Condon, Iris; Delannoy-Vieillard, Anne-Sophie; Power, Lorraine; Khan, Aliya; Morris-Downes, Margaret; Finnegan, Cathriona; Powell, James; Monahan, Regina; Burns, Karen; O'Connell, Nuala; Boyle, Liz; O'Gorman, Alan; Humphreys, Hilary; Brisse, Sylvain; Turton, Jane; Woodford, Neil; Cormican, Martin
2012-10-01
To describe an outbreak of KPC-2-producing Klebsiella pneumoniae with inter-hospital spread and measures taken to control transmission. Between January and March 2011, 13 K. pneumoniae isolates were collected from nine patients at hospital A and two patients at hospital B. Meropenem, imipenem and ertapenem MICs were determined by Etest, carbapenemase production was confirmed by the modified Hodge method and by a disc synergy test, and confirmed carbapenemase producers were tested for the presence of carbapenemase-encoding genes by PCR. PFGE, plasmid analysis, multilocus variable-number tandem-repeat analysis (MLVA) and multilocus sequence typing (MLST) analysis were performed on all or a subset of isolates. Meropenem, imipenem and ertapenem MICs were 4 to >32, 8-32 and >16 mg/L, respectively. PCR and sequencing confirmed the presence of bla(KPC-2). PFGE identified four distinguishable (≥88%) pulsed-field profiles (PFPs). Isolates distinguishable by PFGE had identical MLVA profiles, and MLST analysis indicated all isolates belonged to the ST258 clone. Stringent infection prevention and control measures were implemented. Over a period of almost 8 months no further carbapenemase-producing Enterobacteriaceae (CPE) were isolated. However, KPC-2-producing K. pneumoniae was detected in two further patients in hospital A in August (PFP indistinguishable from previous isolates) and October 2011 (PFP similar to but distinguishable from previous isolates). Stringent infection prevention and control measures help contain CPE in the healthcare setting; however, in the case of hospital A, where CPE appears to be established in the population served, it may be virtually impossible to achieve eradication or avoid reintroduction into the hospital.
Litkouhi, Babak; Kwong, Joseph; Lo, Chun-Min; Smedley, James G; McClane, Bruce A; Aponte, Margarita; Gao, Zhijian; Sarno, Jennifer L; Hinners, Jennifer; Welch, William R; Berkowitz, Ross S; Mok, Samuel C; Garner, Elizabeth I O
2007-01-01
Background Claudin-4, a tight junction (TJ) protein and receptor for the C-terminal fragment of Clostridium perfringens enterotoxin (C-CPE), is overexpressed in epithelial ovarian cancer (EOC). Previous research suggests DNA methylation is a mechanism for claudin-4 overexpression in cancer and that C-CPE acts as an absorption-enhancing agent in claudin-4-expressing cells. We sought to correlate claudin-4 overexpression in EOC with clinical outcomes and TJ barrier function, investigate DNA methylation as a mechanism for overexpression, and evaluate the effect of C-CPE on the TJ. Methods Claudin-4 expression in EOC was quantified and correlated with clinical outcomes. Claudin-4 methylation status was determined, and claudin-4-negative cell lines were treated with a demethylating agent. Electric cell-substrate impedance sensing was used to calculate junctional (paracellular) resistance (Rb) in EOC cells after claudin-4 silencing and after C-CPE treatment. Results Claudin-4 overexpression in EOC does not correlate with survival or other clinical endpoints and is associated with hypomethylation. Claudin-4 overexpression correlates with Rb and C-CPE treatment of EOC cells significantly decreased Rb in a dose- and claudin-4-dependent noncytotoxic manner. Conclusions C-CPE treatment of EOC cells leads to altered TJ function. Further research is needed to determine the potential clinical applications of C-CPE in EOC drug delivery strategies. PMID:17460774
Lu, Yan; Xi, Wanpeng; Ding, Xiaobo; Fan, Shengjie; Zhang, Yu; Jiang, Dong; Li, Yiming; Huang, Cheng; Zhou, Zhiqin
2013-12-05
Obesity is becoming one of the global epidemics of the 21st century. In this study, the effects of citrange (Citrus sinensis × Poncirus trifoliata) fruit extracts in high-fat (HF) diet-induced obesity mice were studied. Female C57BL/6 mice were fed respectively a chow diet (control), an HF diet, HF diet supplemented with 1% w/w citrange peel extract (CPE) or 1% w/w citrange flesh and seed extract (CFSE) for 8 weeks. Our results showed that both CPE and CFSE regulated the glucose metabolic disorders of obese mice. In CPE and CFSE-treated groups, the body weight gain, blood glucose, serum total cholesterol (TC) and low density lipoprotein cholesterol (LDL-c) levels were significantly (p<0.05) reduced relative to those in the HF group. To explore the mechanisms of action of CPE and CFSE on the metabolism of glucose and lipid, related genes' expressions in liver were assayed. In liver tissue, the expression level of peroxisome proliferator-activated receptor γ (PPARγ) and its target genes were down-regulated by CPE and CFSE supplementation as revealed by qPCR tests. In addition, both CPE and CFSE decreased the expression level of liver X receptor (LXR) α and β, which are involved in lipid and glucose metabolism. Taken together, these results suggest that CPE and CFSE administration could ameliorate obesity and related metabolic disorders in HF diet-induced obesity mice probably through the inhibition of PPARγ and LXRs gene expressions.
Biboum, Rosa N.; Keita, Bineta; Franger, Sylvain; Njiki, Charles P. Nanseu; Zhang, Guangjin; Zhang, Jie; Liu, Tianbo; Mbomekalle, Israel-Martyr; Nadjo, Louis
2010-01-01
Green-chemistry type procedures were used to synthesize Pd0 nanostructures encapsulated by a vanadium-substituted Wells-Dawson-type polyoxometalate (Pd0@POM). The cyclic voltammogram run with the Pd0@POM-modified glassy carbon electrode shows well-defined waves, associated with Pd0 nanostructures and the VV/VIV redox couple. The Pd0@POM-modified electrode displayed remarkably reproducible cyclic voltammetry patterns. The hydrogen evolution reaction (HER) was selected as an illustrative example to test the electrocatalytic behavior of the electrode. The kinetic parameters of the HER show the high efficiency of the Pd0@POM-modified electrode. This is the first example of electrochemical characterization of a modified electrode based on a vanado-tungstic POM and Pd0 nanostructures.
NASA Astrophysics Data System (ADS)
Gu, Yuan; Ying, Kang; Shen, Dongsheng; Huang, Lijie; Ying, Xianbin; Huang, Haoqian; Cheng, Kun; Chen, Jiazheng; Zhou, Yuyang; Chen, Ting; Feng, Huajun
2017-12-01
Titanium is under consideration as a potential stable bio-anode because of its high conductivity, suitable mechanical properties, and electrochemical inertness in the operating potential window of bio-electrochemical systems; however, its application is limited by its poor electron-transfer capacity with electroactive bacteria and weak ability to form biofilms on its hydrophobic surface. This study reports an effective and low-cost way to convert a hydrophobic titanium alloy surface into a hydrophilic surface that can be used as a bio-electrode with higher electron-transfer rates. Pyrolytic gas of sewage sludge is used to modify the titanium alloy. The current generation, anodic biofilm formation surface, and hydrophobicity are systematically investigated by comparing bare electrodes with three modified electrodes. Maximum current density (15.80 A/m2), achieved using a modified electrode, is 316-fold higher than that of the bare titanium alloy electrode (0.05 A/m2) and that achieved by titanium alloy electrodes modified by other methods (12.70 A/m2). The pyrolytic gas-modified titanium alloy electrode can be used as a high-performance and scalable bio-anode for bio-electrochemical systems because of its high electron-transfer rates, hydrophilic nature, and ability to achieve high current density.
Educating CPE supervisors: a grounded theory study.
Ragsdale, Judith R; Holloway, Elizabeth L; Ivy, Steven S
2009-01-01
This qualitative study was designed to cull the wisdom of CPE supervisors doing especially competent supervisory education and to develop a theory of CPE supervisory education. Grounded theory methodology included interviewing 11 supervisors and coding the data to identify themes. Four primary dimensions emerged along with a reciprocal core dimension, Supervisory Wisdom, which refers to work the supervisors do in terms of their continuing growth and development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohebbi, Sajjad, E-mail: smohebbi@uok.ac.ir; Eslami, Saadat
2015-06-15
Highlights: • High electocatalytic efficiency and stability of modified hybrid electrode GC/MWCNTs/MnSaloph. • Direct reflection of catalytic activity of manganese complexes on electrocatalytic oxidation of 2-ME. • Decreasing overpotential and increasing catalytic peak current toward oxidation of 2-ME. • Deposition of range of novel substituted N{sub 2}O{sub 2} Saloph complexes of manganese(II) on GCE/MWCNT. • Enhancement of electrocatalytic oxidation activity upon electron donating substitutions on the Saloph. - Abstract: The performance of modified hybrid glassy carbon electrode with composite of carbon nanotubes and manganese complexes for the electrocatalytic oxidation of 2-mercaptoethanol is developed. GC electrode was modified using MWCNT andmore » new N{sub 2}O{sub 2} unsymmetrical tetradentate Schiff base complexes of manganese namely Manganese Saloph complexes 1-5, with general formula Mn[(5-x-4-y-Sal)(5-x′-4-y′-Sal) Ph], where x, x′ = H, Br, NO{sub 2} and y, y′ = H, MeO. Direct immobilization of CNT on the surface of GCE is performed by abrasive immobilization, and then modified by manganese(II) complexes via direct deposition method. These novel modified electrodes clearly demonstrate the necessity of modifying bare carbon electrodes to endow them with the desired behavior and were identified by HRTEM. Also complexes were characterized by elemental analyses, MS, UV–vis and IR spectroscopy. Modified hybrid GC/MWCNT/MnSaloph electrode exhibits strong and stable electrocatalytic activity towards the electrooxidation of 2-mercaptoethanol molecules in comparison with bare glassy carbon electrode with advantages of very low over potential and high catalytic current. Such ability promotes the thiol’s electron transfer reaction. Also, electron withdrawing substituent on the Saloph was enhanced electrocatalytic oxidation activity.« less
Hong, Xiao-ping; Zhu, Yan; Zhang, Yan-zhen
2012-01-01
A highly sensitive amperometric sulfadiazine sensor fabricated by electrochemical deposition of poly(cobalt tetraaminophthalocyanine) (poly(CoIITAPc)) on the surface of a multi-walled carbon nanotubes-Nafion (MWCNTs-Nafion) modified electrode is described. This electrode showed a very attractive performance by combining the advantages of CoIITAPc, MWCNTs, and Nafion. Compared with the bare glassy carbon electrode (GCE) and the MWCNTs-Nafion modified electrode, the electrocatalytic activity of poly(CoIITAPc)-coated MWCNTs-Nafion GCE generated greatly improved electrochemical detections toward sulfadiazine including low oxidation potential, high current responses, and good anti-fouling performance. The oxidation peak currents of sulfadiazine obtained on the new modified electrode increased linearly while increasing the concentration of sulfadiazine from 0.5 to 43.5 μmol/L with the detection limit of 0.17 μmol/L. PMID:22661213
Harris, Alexander R; Molino, Paul J; Kapsa, Robert M I; Clark, Graeme M; Paolini, Antonio G; Wallace, Gordon G
2015-05-07
Electrode impedance is used to assess the thermal noise and signal-to-noise ratio for brain-machine interfaces. An intermediate frequency of 1 kHz is typically measured, although other frequencies may be better predictors of device performance. PEDOT-PSS, PEDOT-DBSA and PEDOT-pTs conducting polymer modified electrodes have reduced impedance at 1 kHz compared to bare metal electrodes, but have no correlation with the effective electrode area. Analytical solutions to impedance indicate that all low-intermediate frequencies can be used to compare the electrode area at a series RC circuit, typical of an ideal metal electrode in a conductive solution. More complex equivalent circuits can be used for the modified electrodes, with a simplified Randles circuit applied to PEDOT-PSS and PEDOT-pTs and a Randles circuit including a Warburg impedance element for PEDOT-DBSA at 0 V. The impedance and phase angle at low frequencies using both equivalent circuit models is dependent on the electrode area. Low frequencies may therefore provide better predictions of the thermal noise and signal-to-noise ratio at modified electrodes. The coefficient of variation of the PEDOT-pTs impedance at low frequencies was lower than the other conducting polymers, consistent with linear and steady-state electroactive area measurements. There are poor correlations between the impedance and the charge density as they are not ideal metal electrodes.
Mizutani, F; Yabuki, S; Sato, Y
1997-01-01
A voltammetric urea-sensing electrode was prepared by combining a lipid-attached urease layer with a 2,5-dihydroxythiophenol-modified gold electrode. A self-assembled monolayer of dihydroxythiophenol was prepared on the gold surface by soaking the electrode into an ethanolic solution containing the modifier. A layer of the lipid-attached enzyme and that of acetyl cellulose overcoat were successively made on the dihydroxythiophenol-modified electrode by applying a dip-coating procedure. The addition of urea in a test solution (10 mM phosphate buffer, pH 7.0) brought about an increase of pH near the urease layer. The pH shift accompanied a negative shift of the anodic peak, which corresponded to the electro-oxidation of dihydroxyphenol moiety to form quinone, on the linear sweep voltammograms for the urease/dihydroxythiophenol electrode. The concentration of urea (0.2-5 mM) could be determined by measuring the electrode current at -0.05 V versus Ag/AgCl from the voltammogram. The electrode was applied to the determination of urea in human urine; the measurement of electrode current at such a low potential provided the urea determination without any electrochemical interference from L-ascorbic acid and uric acid.
Chekin, Fereshteh; Gorton, Lo; Tapsobea, Issa
2015-01-01
This study compares the behaviour of direct and mediated electrochemistry of horseradish peroxidase (HRP) immobilised on screen-printed carbon electrodes (SPCEs), screen-printed carbon electrodes modified with carboxyl-functionalised multi-wall carbon nanotubes (MWCNT-SPCEs) and screen-printed carbon electrodes modified with carboxyl-functionalised single-wall carbon nanotubes (SWCNT-SPCEs). The techniques of cyclic voltammetry and amperometry in the flow mode were used to characterise the properties of the HRP immobilised on screen-printed electrodes. From measurements of the mediated and mediatorless currents of hydrogen peroxide reduction at the HRP-modified electrodes, it was concluded that the fraction of enzyme molecules in direct electron transfer (DET) contact with the electrode varies substantially for the different electrodes. It was observed that the screen-printed carbon electrodes modified with carbon nanotubes (MWCNT-SPCEs and SWCNT-SPCEs) demonstrated a substantially higher percentage (≈100 %) of HRP molecules in DET contact than the screen-printed carbon electrodes (≈60 %). The HRP-modified electrodes were used for determination of hydrogen peroxide in mediatorless mode. The SWCNT-SPCE gave the lowest detection limit (0.40 ± 0.09 μM) followed by MWCNT-SPCE (0.48 ± 0.07 μM) and SPCE (0.98 ± 0.2 μM). These modified electrodes were additionally developed for amperometric determination of phenolic compounds. It was found that the SWCNT-SPCE gave a detection limit for catechol of 110.2 ± 3.6 nM, dopamine of 640.2 ± 9.2 nM, octopamine of 3341 ± 15 nM, pyrogallol of 50.10 ± 2.9 nM and 3,4-dihydroxy-L-phenylalanine of 980.7 ± 8.7 nM using 50 μM H2O2 in the flow carrier.
Kawakami, Toru; Yoshikawa, Ryo; Fujiyoshi, Yuki; Mishima, Yuichi; Hojo, Hironobu; Tajima, Shoji; Suetake, Isao
2015-11-01
The post-translational modification of histones plays an important role in gene expression. We report herein on a method for synthesizing such modified histones by ligating chemically prepared N-terminal peptides and C-terminal recombinant peptide building blocks. Based on their chemical synthesis, core histones can be categorized as two types; histones H2A, H2B and H4 which contain no Cys residues, and histone H3 which contains a Cys residue(s) in the C-terminal region. A combination of native chemical ligation and desulphurization can be simply used to prepare histones without Cys residues. For the synthesis of histone H3, the endogenous Cys residue(s) must be selectively protected, while keeping the N-terminal Cys residue of the C-terminal building block that is introduced for purposes of chemical ligation unprotected. To this end, a phenacyl group was successfully utilized to protect endogenous Cys residue(s), and the recombinant peptide was ligated with a peptide containing a Cys-Pro ester (CPE) sequence as a thioester precursor. Using this approach it was possible to prepare all of the core histones H2A, H2B, H3 and H4 with any modifications. The resulting proteins could then be used to prepare a core histone library of proteins that have been post-translationally modified. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.
David, Dahlgren; Carl, Roos; Pernilla, Johansson; Christer, Tannergren; Anders, Lundqvist; Peter, Langguth; Markus, Sjöblom; Erik, Sjögren; Hans, Lennernäs
2018-05-11
Pharmaceutical excipients that may affect gastrointestinal (GI) drug absorption are called critical pharmaceutical excipients (CPEs), or absorption-modifying excipients (AMEs) if they act by altering the integrity of the intestinal epithelial cell membrane. Some of these excipients increase intestinal permeability, and subsequently the absorption and bioavailability of the drug. This could have implications for both the assessment of bioequivalence and the efficacy of the absorption-enhancing drug delivery system. The absorption-enhancing effects of AMEs/CPEs with different mechanisms (chitosan, sodium caprate, sodium dodecyl sulfate (SDS)) have previously been evaluated in the rat single-pass intestinal perfusion (SPIP) model. However, it remains unclear whether these SPIP data are predictive in a more in vivo like model. The same excipients were in this study evaluated in rat and dog intraintestinal bolus models. SDS and chitosan did exert an absorption-enhancing effect in both bolus models, but the effect was substantially lower than those observed in the rat SPIP model. This illustrates the complexity of the AME/CPE effects, and indicates that additional GI physiological factors need to be considered in their evaluation. We therefore recommend that AME/CPE evaluations obtained in transit-independent, preclinical permeability models (e.g. Ussing, SPIP) should be verified in animal models better able to predict in vivo relevant GI effects, at multiple excipient concentrations. Copyright © 2018. Published by Elsevier B.V.
Razmi, Habib; Azadbakht, Azadeh; Sadr, Moayad Hossaini
2005-11-01
A palladium hexacyanoferrate (PdHCF) film as an electrocatalytic material was obtained at an aluminum (Al) electrode by a simple electroless dipping method. The modified Al electrode demonstrated a well-behaved redox couple due to the redox reaction of the PdHCF film. The PdHCF film showed an excellent electrocatalytic activity toward the oxidation of hydrazine. The electrocatalytic oxidation of hydrazine was studied by cyclic voltammetry and rotating disk electrode voltammetry techniques. A calibration graph obtained for the hydrazine consisted of two segments (localized at concentration ranges 0.39-10 and 20-75 mM). The rate constant k and transfer coefficient alpha for the catalytic reaction and the diffusion coefficient of hydrazine in the solution D, were found to be 3.11 x 10(3) M(-1) s(-1), 0.52 and 8.03 x 10(-6) cm2 s(-1) respectively. The modified electrode was used to amperometric determination of hydrazine in photographic developer. The interference of ascorbic acid and thiosulfate were investigated and greatly reduced using a thin film of Nafion on the modified electrode. The modified electrode indicated reproducible behavior and a high level of stability during electrochemical experiments, making it particularly suitable for analytical purposes.
Zhu, Wencai; Chen, Ting; Ma, Xuemei; Ma, Houyi; Chen, Shenhao
2013-11-01
Highly dispersed hollow gold-graphene (HAu-G) nanocomposites were synthesized by a two-step method. The immobilization of hollow gold nanoparticles (HAu NPs) onto the surface of graphene sheets was achieved by mixing an aqueous solution of HAu NPs with a poly(N-vinylpyrrolidone)-functionalized graphene dispersion at room temperature. A glassy carbon electrode (GCE) was modified with the nanocomposites, and the as-prepared modified electrode displayed high electrocatalytic activity and extraordinary electronic transport properties. Amperometric detection of dopamine (DA) performed with the HAu-G modified electrode exhibits a good linearity between 0.08 and 600 μM with a low detection limit of 0.05 μM (S/N=3) and also possesses good reproducibility and operational stability. The interference of ascorbic acid (AA) and uric acid (UA) can be excluded when using differential pulse voltammetric technique. In addition, this type of modified electrode can also be applied to the determination of DA content in dopamine hydrochloride injection. It is obvious that the HAu-G modified electrode provides a new way to detect dopamine sensitively and selectively. Copyright © 2013 Elsevier B.V. All rights reserved.
Velmurugan, Murugan; Thirumalraj, Balamurugan; Chen, Shen-Ming; Al-Hemaid, Fahad M A; Ajmal Ali, M; Elshikh, Mohamed S
2017-01-01
To date, the development of different modified electrodes have received much attention in electrochemistry. The modified electrodes have some drawbacks such as high cost, difficult to handle and not eco friendly. Hence, we report an electrochemical sensor for the determination of palladium ions (Pd 2+ ) using an un-modified screen printed carbon electrode has been developed for the first time, which are characterized and studied via scanning electron microscope and cyclic voltammetry. Prior to determination of Pd 2+ ions, the operational conditions of un-modified SPCE was optimized using cyclic voltammetry and showed excellent electro-analytical behavior towards the determination of Pd 2+ ions. Electrochemical determination of Pd 2+ ions reveal that the un-modified electrode showed lower detection limit of 1.32μM with a linear ranging from 3 to 133.35μM towards the Pd 2+ ions concentration via differential pulse voltammetry. The developed sensor also applied to the successfully determination of trace level Pd 2+ ions in spiked water samples. In addition, the advantage of this type of electrode is simple, disposable and cost effective in electrochemical sensors. Copyright © 2016 Elsevier Inc. All rights reserved.
Park, Hye-Ryung; Park, Su Beom; Hong, Hee-Do; Suh, Hyung Joo; Shin, Kwang-Soon
2017-01-01
The aim of this study was to characterize a polysaccharide found in citrus peels with an anti-metastatic property. CPE-II was purified by the pectinase digestion of citrus peels. During in vivo lung metastasis of Colon26-M3.1, administration of 10μg of CPE-II per mouse showed 81.3% inhibition of metastasis. CPE-II consists of 15 different monosaccharides and 22 different glycosyl linkages, characteristic of rhamnogalacturonan II (RG-II). The primary structure was elucidated based on sugar composition, methylation analysis, oligosaccharide analysis, and sequencing using GC, GC-MS, LC-MS, and ESI-MS/MS analyses. Sequential degradation using partial acid hydrolysis indicated that CPE-II contained Rhap-(1→5)-Kdo, Araf-(1→5)-Dha, an AceA-containing nonasaccharide, and an uronic acid-rich oligosaccharide in addition to an α-(1→4)-galacturono-oligosaccharide main chain. The molecular weight of CPE-II was observed to decrease from 9 to 5kDa at a pH value of <2.0, as observed by HPSEC. Thus, we propose that the anti-metastatic CPE-II is primarily present as an RG-II dimer. Copyright © 2016 Elsevier B.V. All rights reserved.
Ali, Tamer Awad; Mohamed, Gehad Genidy; Yahya, Ghada A.
2017-01-01
This article is focused on the determination of lidocaine hydrochloride as a local anaesthetic drug. A potentiometric method based on modified screen-printed and modified carbon paste ion-selective electrodes was described for the determination of lidocaine hydrochloride in different pharmaceutical preparations and biological fluids (urine and serum). It was based on potentiometric titration of lidocaine hydrochloride using modified screen-printed and carbon paste electrodes as end point indicator sensors. The influences of the paste composition, different conditioning parameters and foreign ions on the electrodes performance were investigated and response times of the electrodes were studied. The electrodes showed Nernstian response of 58.9 and 57.5 mV decade-1 in the concentration range of 1×10-7–1×10-2 and 6.2×10-7–1×10-2 mol L-1 for modified screen-printed and carbon paste electrodes, respectively. The electrodes were found to be usable within the pH range of 2.0–8.0 and 2.0-7.5, exhibited a fast response time (about 6 and 4) low detection limit (1×10-7 and 6.2×10-7 mol L-1), long lifetime (6 and 4 months) and good stability for modified screen-printed (Electrode VII) and carbon paste electrodes (Electrode III), respectively. The electrodes were successfully applied for the determination of lidocaine hydrochloride in pure solutions, pharmaceutical preparation and biological fluids (urine and serum) samples. The results obtained applying these potentiometric electrodes were comparable with British pharmacopeia. The method validation parameters were optimized and the method can be applied for routine analysis of lidocaine hydrochloride drug. PMID:28979305
Ali, Tamer Awad; Mohamed, Gehad Genidy; Yahya, Ghada A
2017-01-01
This article is focused on the determination of lidocaine hydrochloride as a local anaesthetic drug. A potentiometric method based on modified screen-printed and modified carbon paste ion-selective electrodes was described for the determination of lidocaine hydrochloride in different pharmaceutical preparations and biological fluids (urine and serum). It was based on potentiometric titration of lidocaine hydrochloride using modified screen-printed and carbon paste electrodes as end point indicator sensors. The influences of the paste composition, different conditioning parameters and foreign ions on the electrodes performance were investigated and response times of the electrodes were studied. The electrodes showed Nernstian response of 58.9 and 57.5 mV decade -1 in the concentration range of 1×10 -7 -1×10 -2 and 6.2×10 -7 -1×10 -2 mol L -1 for modified screen-printed and carbon paste electrodes, respectively. The electrodes were found to be usable within the pH range of 2.0-8.0 and 2.0-7.5, exhibited a fast response time (about 6 and 4) low detection limit (1×10 -7 and 6.2×10 -7 mol L -1 ), long lifetime (6 and 4 months) and good stability for modified screen-printed (Electrode VII) and carbon paste electrodes (Electrode III), respectively. The electrodes were successfully applied for the determination of lidocaine hydrochloride in pure solutions, pharmaceutical preparation and biological fluids (urine and serum) samples. The results obtained applying these potentiometric electrodes were comparable with British pharmacopeia. The method validation parameters were optimized and the method can be applied for routine analysis of lidocaine hydrochloride drug.
Duester, Lars; Fabricius, Anne-Lena; Jakobtorweihen, Sven; Philippe, Allan; Weigl, Florian; Wimmer, Andreas; Schuster, Michael; Nazar, Muhammad Faizan
2016-11-01
Coacervate-based techniques are intensively used in environmental analytical chemistry to enrich and extract different kinds of analytes. Most methods focus on the total content or the speciation of inorganic and organic substances. Size fractionation is less commonly addressed. Within coacervate-based techniques, cloud point extraction (CPE) is characterized by a phase separation of non-ionic surfactants dispersed in an aqueous solution when the respective cloud point temperature is exceeded. In this context, the feature article raises the following question: May CPE in future studies serve as a key tool (i) to enrich and extract nanoparticles (NPs) from complex environmental matrices prior to analyses and (ii) to preserve the colloidal status of unstable environmental samples? With respect to engineered NPs, a significant gap between environmental concentrations and size- and element-specific analytical capabilities is still visible. CPE may support efforts to overcome this "concentration gap" via the analyte enrichment. In addition, most environmental colloidal systems are known to be unstable, dynamic, and sensitive to changes of the environmental conditions during sampling and sample preparation. This delivers a so far unsolved "sample preparation dilemma" in the analytical process. The authors are of the opinion that CPE-based methods have the potential to preserve the colloidal status of these instable samples. Focusing on NPs, this feature article aims to support the discussion on the creation of a convention called the "CPE extractable fraction" by connecting current knowledge on CPE mechanisms and on available applications, via the uncertainties visible and modeling approaches available, with potential future benefits from CPE protocols.
Lu, Yan; Xi, Wanpeng; Ding, Xiaobo; Fan, Shengjie; Zhang, Yu; Jiang, Dong; Li, Yiming; Huang, Cheng; Zhou, Zhiqin
2013-01-01
Obesity is becoming one of the global epidemics of the 21st century. In this study, the effects of citrange (Citrus sinensis × Poncirus trifoliata) fruit extracts in high-fat (HF) diet-induced obesity mice were studied. Female C57BL/6 mice were fed respectively a chow diet (control), an HF diet, HF diet supplemented with 1% w/w citrange peel extract (CPE) or 1% w/w citrange flesh and seed extract (CFSE) for 8 weeks. Our results showed that both CPE and CFSE regulated the glucose metabolic disorders of obese mice. In CPE and CFSE-treated groups, the body weight gain, blood glucose, serum total cholesterol (TC) and low density lipoprotein cholesterol (LDL-c) levels were significantly (p < 0.05) reduced relative to those in the HF group. To explore the mechanisms of action of CPE and CFSE on the metabolism of glucose and lipid, related genes’ expressions in liver were assayed. In liver tissue, the expression level of peroxisome proliferator-activated receptor γ (PPARγ) and its target genes were down-regulated by CPE and CFSE supplementation as revealed by qPCR tests. In addition, both CPE and CFSE decreased the expression level of liver X receptor (LXR) α and β, which are involved in lipid and glucose metabolism. Taken together, these results suggest that CPE and CFSE administration could ameliorate obesity and related metabolic disorders in HF diet-induced obesity mice probably through the inhibition of PPARγ and LXRs gene expressions. PMID:24317433
Bunnell, David B.; Hale, R. Scott; Vanni, Michael J.; Stein, Roy A.
2006-01-01
Stock-recruit models typically use only spawning stock size as a predictor of recruitment to a fishery. In this paper, however, we used spawning stock size as well as larval density and key environmental variables to predict recruitment of white crappies Pomoxis annularis and black crappies P. nigromaculatus, a genus notorious for variable recruitment. We sampled adults and recruits from 11 Ohio reservoirs and larvae from 9 reservoirs during 1998-2001. We sampled chlorophyll as an index of reservoir productivity and obtained daily estimates of water elevation to determine the impact of hydrology on recruitment. Akaike's information criterion (AIC) revealed that Ricker and Beverton-Holt stock-recruit models that included chlorophyll best explained the variation in larval density and age-2 recruits. Specifically, spawning stock catch per effort (CPE) and chlorophyll explained 63-64% of the variation in larval density. In turn, larval density and chlorophyll explained 43-49% of the variation in age-2 recruit CPE. Finally, spawning stock CPE and chlorophyll were the best predictors of recruit CPE (i.e., 74-86%). Although larval density and recruitment increased with chlorophyll, neither was related to seasonal water elevation. Also, the AIC generally did not distinguish between Ricker and Beverton-Holt models. From these relationships, we concluded that crappie recruitment can be limited by spawning stock CPE and larval production when spawning stock sizes are low (i.e., CPE , 5 crappies/net-night). At higher levels of spawning stock sizes, spawning stock CPE and recruitment were less clearly related. To predict recruitment in Ohio reservoirs, managers should assess spawning stock CPE with trap nets and estimate chlorophyll concentrations. To increase crappie recruitment in reservoirs where recruitment is consistently poor, managers should use regulations to increase spawning stock size, which, in turn, should increase larval production and recruits to the fishery.
Baiges, I; Arola, L
2016-01-01
BACKGROUND: Saccharomyces cerevisiae is a model organism with conserved aging pathways. Yeast chronological lifespan experiments mimic the processes involved in human non-dividing tissues, such as the nervous system or skeletal muscle, and can speed up the search for biomolecules with potential anti-aging effects before proceeding to animal studies. OBJECTIVE: To test the effectiveness of a cocoa polyphenol-rich extract (CPE) in expanding the S. cerevisiae chronological lifespan in two conditions: in the stationary phase reached after glucose depletion and under severe caloric restriction. MEASUREMENTS: Using a high-throughput method, wild-type S. cerevisiae and its mitochondrial manganese-dependent superoxide dismutase null mutant (sod2Δ) were cultured in synthetic complete dextrose medium. After 2 days, 0, 5 and 20 mg/ml of CPE were added, and viability was measured throughout the stationary phase. The effects of the major components of CPE were also evaluated. To determine yeast lifespan under severe caloric restriction conditions, cultures were washed with water 24 h after the addition of 0 and 20 mg/ml of CPE, and viability was followed over time. RESULTS : CPE increased the chronological lifespan of S. cerevisiae during the stationary phase in a dose-dependent manner. A similar increase was also observed in (sod2Δ). None of the major CPE components (theobromine, caffeine, maltodextrin, (-)-epicatechin, (+)-catechin and procyanidin B2) was able to increase the yeast lifespan. CPE further increased the yeast lifespan under severe caloric restriction. CONCLUSION: CPE increases the chronological lifespan of S. cerevisiae through a SOD2-independent mechanism. The extract also extends yeast lifespan under severe caloric restriction conditions. The high-throughput assay used makes it possible to simply and rapidly test the efficacy of a large number of compounds on yeast aging, requiring only small amounts, and is thus a convenient screening assay to accelerate the search for biomolecules with potential anti-aging effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu Na; Chen Shuo; Wang Hongtao
2008-10-15
A tetracycline hydrochloride (TC) molecularly imprinted polymer (MIP) modified TiO{sub 2} nanotube array electrode was prepared via surface molecular imprinting. Its surface was structured with surface voids and the nanotubes were open at top end with an average diameter of approximately 50 nm. The MIP-modified TiO{sub 2} nanotube array with anatase phase was identified by XRD and a distinguishable red shift in the absorption spectrum was observed. The MIP-modified electrode also exhibited a high adsorption capacity for TC due to its high surface area providing imprinted sites. Photocurrent was generated on the MIP-modified photoanode using the simulated solar spectrum andmore » increased with the increase of positive bias potential. Under simulated solar light irradiation, the MIP-modified TiO{sub 2} nanotube array electrode exhibited enhanced photoelectrocatalytic (PEC) activity with the apparent first-order rate constant being 1.2-fold of that with TiO{sub 2} nanotube array electrode. The effect of the thickness of the MIP layer on the PEC activity was also evaluated. - Graphical abstract: A tetracycline hydrochloride molecularly imprinted polymer modified TiO{sub 2} nanotube array electrode was prepared via surface molecular imprinting. It showed improved response to simulated solar light and higher adsorption capability for tetracycline hydrochloride, thereby exhibiting increased PEC activity under simulated solar light irradiation. The apparent first-order rate constant was 1.2-fold of that on TiO{sub 2} nanotube array electrode.« less
NASA Technical Reports Server (NTRS)
Polotzky, Anthony S.; Wieseman, Carol; Hoadley, Sherwood Tiffany; Mukhopadhyay, Vivek
1990-01-01
The development of a controller performance evaluation (CPE) methodology for multiinput/multioutput digital control systems is described. The equations used to obtain the open-loop plant, controller transfer matrices, and return-difference matrices are given. Results of applying the CPE methodology to evaluate MIMO digital flutter suppression systems being tested on an active flexible wing wind-tunnel model are presented to demonstrate the CPE capability.
Fritea, Luminţa; Tertiş, Mihaela; Cristea, Cecilia; Săndulescu, Robert
2013-01-01
The electrochemical behavior of ascorbic acid and uric acid on glassy carbon bare electrodes and ones modified with β-cyclodextrin entrapped in polyethyleneimine film has been investigated using square wave voltammetry. The electrode modification was achieved in order to separate the voltammetric peaks of ascorbic acid and uric acid when present in the same solution. On the modified electrodes the potential of the oxidation peak of the ascorbic acid was shifted to more negative values by over 0.3 V, while in the case of uric acid, the negative potential shift was about 0.15 V compared to the bare glassy carbon electrode. When the two compounds were found together in the solution, on the bare electrode only a single broad signal was observed, while on the modified electrode the peak potentials of these two compounds were separated by 0.4 V. When the uric acid concentration remained constant, the peak intensity of the ascorbic acid is increased linearly with the concentration (r2 = 0.996) and when the ascorbic acid concentration remains constant, the peak intensity of the uric acid increased linearly with the concentration (r2 = 0.992). FTIR measurements supported the formation of inclusion complexes. In order to characterize the modification of the electrodes microscopic studies were performed. The modified electrodes were successfully employed for the determination of ascorbic acid in pharmaceutical formulations with a detection limit of 0.22 μM. PMID:24287544
Zhou, Wei; Ding, Yani; Gao, Jihui; Kou, Kaikai; Wang, Yan; Meng, Xiaoxiao; Wu, Shaohua; Qin, Yukun
2018-02-01
The performance of cathode on H 2 O 2 electrogeneration is a critical factor that limits the practical application of electro-Fenton (EF) process. Herein, we report a simple but effective electrochemical modification of reticulated vitreous carbon foam (RVC foam) electrode for enhanced H 2 O 2 electrogeneration. Cyclic voltammetry, chronoamperometry, and X-ray photoelectron spectrum were used to characterize the modified electrode. Oxygen-containing groups (72.5-184.0 μmol/g) were introduced to RVC foam surface, thus resulting in a 59.8-258.2% higher H 2 O 2 yield. The modified electrodes showed much higher electrocatalytic activity toward O 2 reduction and good stability. Moreover, aimed at weakening the extent of electroreduction of H 2 O 2 in porous RVC foam, the strategy of pulsed current was proposed. H 2 O 2 concentration was 582.3 and 114.0% higher than the unmodified and modified electrodes, respectively. To test the feasibility of modification, as well as pulsed current, EF process was operated for removal of Reactive Blue 19 (RB19). The fluorescence intensity of hydroxybenzoic acid in EF with modified electrode is 3.2 times higher than EF with unmodified electrode, illustrating more hydroxyl radicals were generated. The removal efficiency of RB 19 in EF with unmodified electrode, modified electrode, and unmodified electrode assisted by pulsed current was 53.9, 68.9, and 81.1%, respectively, demonstrating that the green modification approach, as well as pulsed current, is applicable in EF system for pollutant removal. Graphical abstract ᅟ.
Fabrication and surface-modification of implantable microprobes for neuroscience studies
NASA Astrophysics Data System (ADS)
Cao, H.; Nguyen, C. M.; Chiao, J. C.
2012-06-01
In this work implantable micro-probes for central nervous system (CNS) studies were developed on silicon and polyimide substrates. The probes which contained micro-electrode arrays with different surface modifications were designed for implantation in the CNS. The electrode surfaces were modified with nano-scale structures that could greatly increase the active surface area in order to enhance the electrochemical current outputs while maintaining micro-scale dimensions of the electrodes and probes. The electrodes were made of gold or platinum, and designed with different sizes. The silicon probes were modified by silicon nanowires fabricated with the vapor-liquid-solid mechanism at high temperatures. With polyimide substrates, the nanostructure modification was carried out by applying concentrated gold or silver colloid solutions onto the micro-electrodes at room temperature. The surfaces of electrodes before and after modification were observed by scanning electron microscopy. The silicon nanowire-modified surface was characterized by cyclic voltammetry. Experiments were carried out to investigate the improvement in sensing performance. The modified electrodes were tested with H2O2, electrochemical L-glutamate and dopamine. Comparisons between electrodes with and without nanostructure modification were conducted showing that the modifications have enhanced the signal outputs of the electrochemical neurotransmitter sensors.
Yang, Lite; Yang, Juan; Xu, Bingjie; Zhao, Faqiong; Zeng, Baizhao
2016-12-01
In this paper, a novel molecularly imprinted composite film modified electrode was presented for rutin (RT) detection. The modified electrode was fabricated by electropolymerization of pyrrole on a graphene-multiwalled carbon nanotubes composite (G-MWCNTs) coated glassy carbon electrode in the presence of RT. The netlike G-MWCNTs composite, prepared by in situ hydrothermal process, had high conductivity and electrocatalytic activity. At the resulting MIP/G-MWCNTs/GCE electrode RT could produce a sensitive anodic peak in pH 1.87 Britton-Robinson buffer solution. The factors affecting the electrochemical behavior and response of RT on the modified electrode were carefully investigated and optimized. Under the selected conditions, the linear response range of RT was 0.01-1.0μmolL -1 and the detection limit (S/N=3) was 5.0nmolL -1 . The electrode was successfully applied to the determination of RT in buckwheat tea and orange juice samples, and the recoveries for standards added were 93.4-105%. Copyright © 2016 Elsevier B.V. All rights reserved.
ELECTROCHEMICAL DETERMINATION OF HYDROGEN SULFIDE AT CARBON NANOTUBE MODIFIED ELECTRODES. (R830900)
Carbon nanotube (CNT) modified glassy carbon electrodes exhibiting a strong and stable electrocatalytic response towards sulfide are described. A substantial (400 mV) decrease in the overvoltage of the sulfide oxidation reaction (compared to ordinary carbon electrodes) is...
Mittal, Gajanand; Gaind, Rajni; Kumar, Deepak; Kaushik, Gaurav; Gupta, Kunj Bihari; Verma, P K; Deb, Monorama
2016-07-08
Resistance amongst the commensal flora is a serious threat because a very highly populated ecosystem like the gut, may at a later stage, be a source of extra intestinal infections, resistant strains may spread to other host or transfer genetic resistance element to other members of micro-biota including pathogens. This study was carried out to assess fecal colonization by carbapenemase producing Enterobacteriaceae (CPE) and associated risk factors among 100 patients admitted to intensive care unit (ICU). The phenotypic and molecular characterizations of CPE were also included. Colonization with CPE was observed in 6.6 % (8/122) controls. Among ICU patients, fecal carriage of CPE was significantly higher on day 4 (D4) (22 %) as compared to day 1 (D1) (11 %) (p value 0.002). The carbapenemase genes detected included OXA- 48, 181, KPC and NDM-1 with NDM-1 being the predominant carbapenemase in both ICU D1 and D4. Among the 50 CPE isolates, 8 (16 %) were susceptible to meropenem and imipenem (Minimum inhibitory concentration; MIC ≤ 1 mg/L) and all were susceptible to colistin (MIC range 0.125 - 1 mg/L) and tigecycline (MIC range 0.06- 1.5 mg/L). The risk factors associated with CPE carriage were duration of ICU stay, use of ventilator and aminoglycosides. Prior colonization with CPE could result in their influx and spread in ICU, challenging infection control measures. Exposure to ICU further increases risk of colonization with diverse carbapenemase-producing Enterobacteriaceae. Gut colonization with these strains may be a source of endogenous infection and horizontal transfer of these genes in future.
Samuelsen, Ørjan; Overballe-Petersen, Søren; Bjørnholt, Jørgen Vildershøj; Brisse, Sylvain; Doumith, Michel; Woodford, Neil; Hopkins, Katie L; Aasnæs, Bettina; Haldorsen, Bjørg; Sundsfjord, Arnfinn
2017-01-01
The prevalence of carbapenemase-producing Enterobacteriaceae (CPE) is increasing worldwide. Here we present associated patient data and molecular, epidemiological and phenotypic characteristics of all CPE isolates in Norway from 2007 to 2014 confirmed at the Norwegian National Advisory Unit on Detection of Antimicrobial Resistance. All confirmed CPE isolates were characterized pheno- and genotypically, including by whole genome sequencing (WGS). Patient data were reviewed retrospectively. In total 59 CPE isolates were identified from 53 patients. Urine was the dominant clinical sample source (37%) and only 15% of the isolates were obtained from faecal screening. The majority of cases (62%) were directly associated with travel or hospitalization abroad, but both intra-hospital transmission and one inter-hospital outbreak were observed. The number of CPE cases/year was low (2-14 cases/year), but an increasing trend was observed. Klebsiella spp. (n = 38) and E. coli (n = 14) were the dominant species and blaKPC (n = 20), blaNDM (n = 19), blaOXA-48-like (n = 12) and blaVIM (n = 7) were the dominant carbapenemase gene families. The CPE isolates were genetically diverse except for K. pneumoniae where clonal group 258 associated with blaKPC dominated. All isolates were multidrug-resistant and a significant proportion (21%) were resistant to colistin. Interestingly, all blaOXA-48-like, and a large proportion of blaNDM-positive Klebsiella spp. (89%) and E. coli (83%) isolates were susceptible in vitro to mecillinam. Thus, mecillinam could have a role in the treatment of uncomplicated urinary tract infections caused by OXA-48- or NDM-producing E. coli or K. pneumoniae. In conclusion, the impact of CPE in Norway is still limited and mainly associated with travel abroad, reflected in the diversity of clones and carbapenemase genes.
NASA Astrophysics Data System (ADS)
Watanabe, Toshio; Yamada, Yohei; Motonaka, Junko; Yabutani, Tomoki; Sakuraba, Haruhiko; Yasuzawa, Mikito
In this study, electrodeposition of thermostable enzyme Bacillus subtilis CotA, which is a laccase and has a bilirubin oxidase (BOD) activity, was investigated. The electrodeposition was operated in a mixture of Bacillus subtilis CotA in the PBS (pH 8.0) and TritonX-100 under applying potential (1100 mV vs. Ag/AgCl for 5 min.). The current response was measured by linear sweep voltammetry technique (LSV). The thermostable enzyme Bacillus subtilis CotA electrodeposited electrode was compared with a mesophile BOD electrodeposited electrode. As a result, the Bacillus subtilis CotA modified electrode showed better sensitivity and long-term stability than the mesophile BOD modified electrode.
Lu, Yi-Yu; Ao, Zong-Hua; Lu, Zhen-Ming; Xu, Hong-Yu; Zhang, Xiao-Mei; Dou, Wen-Fang; Xu, Zheng-Hong
2008-12-08
The objectives of this study were to investigate the analgesic and anti-inflammatory effects of the dry matter of culture broth (DMCB) of Termitomyces albuminosus in submerged culture and its crude saponin extract (CSE) and crude polysaccharide extract (CPE). The analgesic effects of DMCB, CSE and CPE were evaluated with models of acetic acid-induced writhing response and formalin test in mouse. The anti-inflammatory effects of DMCB, CSE and CPE were evaluated by using models of xylene-induced mouse ear swelling and carrageen-induced mouse paw edema. The DMCB, CSE and CPE significantly decreased the acetic acid-induced writhing response and the licking time on the late phase in the formalin test. Treatment of DMCB (1000mg/kg), CSE (200mg/kg) or CPE (200mg/kg) inhibited the mouse ear swelling by 61.8%, 79.0% and 81.6%, respectively. In the carrageen-induced mouse paw edema test, the group treated with indomethacin showed the strongest inhibition of edema formation by 77.8% in the third hour after carrageenan administration, while DMCB (1000mg/kg), CSE (200mg/kg) and CPE (200mg/kg) showed 48.4%, 55.6% and 40.5%, respectively. The results suggested that DMCB of Termitomyces albuminosus possessed the analgesic and anti-inflammatory activities. Saponins and polysaccharides were proposed to be the major active constituents of Termitomyces albuminosus in submerged culture.
A cCPE-based xenon biosensor for magnetic resonance imaging of claudin-expressing cells.
Piontek, Anna; Witte, Christopher; May Rose, Honor; Eichner, Miriam; Protze, Jonas; Krause, Gerd; Piontek, Jörg; Schröder, Leif
2017-06-01
The majority of malignant tumors originate from epithelial cells, and many of them are characterized by an overexpression of claudins (Cldns) and their mislocalization out of tight junctions. We utilized the C-terminal claudin-binding domain of Clostridium perfringens enterotoxin (cCPE), with its high affinity to specific members of the claudin family, as the targeting unit for a claudin-sensitive cancer biosensor. To overcome the poor sensitivity of conventional relaxivity-based magnetic resonance imaging (MRI) contrast agents, we utilized the superior sensitivity of xenon Hyper-CEST biosensors. We labeled cCPE for both xenon MRI and fluorescence detection. As one readout module, we employed a cryptophane (CrA) monoacid and, as the second, a fluorescein molecule. Both were conjugated separately to a biotin molecule via a polyethyleneglycol chemical spacer and later via avidin linked to GST-cCPE. Nontransfected HEK293 cells and HEK293 cells stably expressing Cldn4-FLAG were incubated with the cCPE-based biosensor. Fluorescence-based flow cytometry and xenon MRI demonstrated binding of the biosensor specifically to Cldn4-expressing cells. This study provides proof of concept for the use of cCPE as a carrier for diagnostic contrast agents, a novel approach for potential detection of Cldn3/-4-overexpressing tumors for noninvasive early cancer detection. © 2017 New York Academy of Sciences.
Petit, B M; Almeida, F C; Uchiyama, T R; Lopes, F O C; Tino, K H; Chewins, J
2017-10-01
An evaluation was made of the efficacy of 35% hydrogen peroxide vapour (HPV) against foot-and-mouth disease virus (FMDV) in a biosafety facility. Biological indicators (BIs) were produced using three serotypes of FMDV, all with a titre of ≥10 6 TCID 50 per ml. Fifteen BIs of each serotype were distributed across five locations, throughout a 30-m 3 airlock chamber, producing a total of 45 BIs. Thirty-five percent HPV was generated and applied using a Bioquell vaporization module located in the centre of the chamber. After a dwell period of 40 min, the HPV was removed via the enclosures air handling system and the BIs were collected. The surfaces of the BIs were recovered into Glasgow's modified Eagle's medium (GMEM), cultivated in BHK21 Cl13 cell culture and analysed for evidence of cytopathic effect (CPE). No CPE was detected in any BI sample. Positive controls showed CPE. The experimentation shows that FMDV is susceptible to HPV decontamination and presents a potential alternative to formaldehyde. Foot-and-mouth disease virus (FMDV) is an important pathogen in terms of biosafety due to its infectious nature and wide range of host animals, such as cattle, sheep, goats and pigs. Outbreaks of FMDV can have a severe impact on livestock production, causing morbidity, mortality, reduced yields and trade embargoes. Laboratories studying FMDV must possess BSL4 robust bio-decontamination methods to prevent inadvertent release. Formaldehyde has been the primary agent for environmental decontamination, but its designation as a human carcinogen has led to a search for alternatives. This study shows 35% hydrogen peroxide vapour has the potential to be a rapid, effective, residue-free alternative. © 2017 The Society for Applied Microbiology.
Hartmann, Georg; Baumgartner, Tanja; Schuster, Michael
2014-01-07
For the quantification of silver nanoparticles (Ag-NPs) in environmental samples using cloud point extraction (CPE) for selective enrichment, surface modification of the Ag-NPs and matrix effects can play a key role. In this work we validate CPE with respect to the influence of different coatings and naturally occurring matrix components. The Ag-NPs tested were functionalized with inorganic and organic compounds as well as with biomolecules. Commercially available NPs and NPs synthesized according to methods published in the literature were used. We found that CPE can extract almost all Ag-NPs tested with very good efficiencies (82-105%). Only Ag-NPs functionalized with BSA (bovine serum albumin), which is a protein with the function to keep colloids in solution, cannot be extracted. No or little effect of environmentally relevant salts, organic matter, and inorganic colloids on the CPE of AgNPs was found. Additionally we used CPE to observe the in situ formation of Ag-NPs produced by the reduction of Ag(+) with natural organic matter (NOM).
Impact of Pharmacists’ Participation in a Pharmacotherapy Follow-Up Program
Dualde, Elena; Santonja, Francisco J.; Faus, Maria J.
2012-01-01
Objective. To evaluate the impact of a continuing pharmacy education (CPE) course on Spanish community pharmacists’ participation in a pharmacotherapy follow-up program. Design. Participation in a CPE course offered 4 times over a 4-year period via satellite teleconferencing was monitored and the data analyzed to determine the course’s impact on community pharmacists’ participation in a pharmacotherapy follow-up program. Assessment. Community pharmacists’ participation in the pharmaceutical care CPE course had a slightly positive impact on their participation in the pharmacotherapy follow-up program. In the best profiles, there was a probability of 7.3% that participants would participate in the pharmacotherapy follow-up program. Conclusions. Completion of pharmaceutical care CPE courses did not have a significant impact on pharmacists’ participation in a pharmacotherapy follow-up program. PMID:22438606
Kannan, Ayyadurai; Sevvel, Ranganathan
2017-09-01
This paper demonstrates the fabrication of novel gold nanoparticles incorporated poly (4-amino-6-hydroxy-2-mercaptopyrimidine) (Nano-Au/Poly-AHMP) film modified glassy carbon electrode and it is employed for highly sensitive detection of l-cysteine (CYS). The modified electrode was characterized by scanning electron microscope (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). SEM images of modified electrode revealed the homogeneous distribution of gold nanoparticles on poly (4-amino-6-hydroxy-2-mercaptopyrimidine) thin film modified glassy carbon electrode. The modified electrode was successfully utilized for highly selective and sensitive determination of l-cysteine at physiological pH7.0. The present electrochemical sensor successfully resolved the voltammetric signals of ascorbic acid (AA) and l-cysteine with peak separation of 0.510V. To the best of our knowledge, this is the first report of larger peak separation between AA and CYS. Wide linear concentration ranges (2μM-500μM), low detection limit (0.020μM), an excellent reproducibility and stability are achieved for cysteine sensing with this Nano-Au/Poly-AHMP/GCE. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ganesh, V.; Muthurasu, A.
2012-04-01
In this paper, we propose various strategies for an enzyme immobilization on electrodes (both metal and semiconductor electrodes). In general, the proposed methodology involves two critical steps viz., (1) chemical modification of substrates using functional monolayers [Langmuir - Blodgett (LB) films and/or self-assembled monolayers (SAMs)] and (2) anchoring of a target enzyme using specific chemical and physical interactions by attacking the terminal functionality of the modified films. Basically there are three ways to immobilize an enzyme on chemically modified electrodes. First method consists of an electrostatic interaction between the enzyme and terminal functional groups present within the chemically modified films. Second and third methods involve the introduction of nanomaterials followed by an enzyme immobilization using both the physical and chemical adsorption processes. As a proof of principle, in this work we demonstrate the sensing and catalytic activity of horseradish peroxidase (HRP) anchored onto SAM modified indium tin oxide (ITO) electrodes towards hydrogen peroxide (H2O2). Structural characterization of such modified electrodes is performed using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angle measurements. The binding events and the enzymatic reactions are monitored using electrochemical techniques mainly cyclic voltammetry (CV).
Bozorgzadeh, Somayyeh; Hamidi, Hassan; Ortiz, Roberto; Ludwig, Roland; Gorton, Lo
2015-10-07
In the present work, platinum and palladium nanoparticles (PtNPs and PdNPs) were decorated on the surface of multi-walled carbon nanotubes (MWCNTs) by a simple thermal decomposition method. The prepared nanohybrids, PtNPs-MWCNTs and PdNPs-MWCNTs, were cast on the surface of spectrographic graphite electrodes and then Phanerochaete chrysosporium cellobiose dehydrogenase (PcCDH) was adsorbed on the modified layer. Direct electron transfer between PcCDH and the nanostructured modified electrodes was studied using flow injection amperometry and cyclic voltammetry. The maximum current responses (Imax) and the apparent Michaelis-Menten constants (K) for the different PcCDH modified electrodes were calculated by fitting the data to the Michaelis-Menten equation and compared. The sensitivity towards lactose was 3.07 and 3.28 μA mM(-1) at the PcCDH/PtNPs-MWCNTs/SPGE and PcCDH/PdNPs-MWCNTs/SPGE electrodes, respectively, which were higher than those measured at the PcCDH/MWCNTs/SPGE (2.60 μA mM(-1)) and PcCDH/SPGE (0.92 μA mM(-1)). The modified electrodes were additionally tested as bioanodes for biofuel cell applications.
Modified Electrodes Used for Electrochemical Detection of Metal Ions in Environmental Analysis
March, Gregory; Nguyen, Tuan Dung; Piro, Benoit
2015-01-01
Heavy metal pollution is one of the most serious environmental problems, and regulations are becoming stricter. Many efforts have been made to develop sensors for monitoring heavy metals in the environment. This review aims at presenting the different label-free strategies used to develop electrochemical sensors for the detection of heavy metals such as lead, cadmium, mercury, arsenic etc. The first part of this review will be dedicated to stripping voltammetry techniques, on unmodified electrodes (mercury, bismuth or noble metals in the bulk form), or electrodes modified at their surface by nanoparticles, nanostructures (CNT, graphene) or other innovative materials such as boron-doped diamond. The second part will be dedicated to chemically modified electrodes especially those with conducting polymers. The last part of this review will focus on bio-modified electrodes. Special attention will be paid to strategies using biomolecules (DNA, peptide or proteins), enzymes or whole cells. PMID:25938789
Layer-by-Layer Assembly of Glucose Oxidase on Carbon Nanotube Modified Electrodes.
Suroviec, Alice H
2017-01-01
The use of enzymatically modified electrodes for the detection of glucose or other non-electrochemically active analytes is becoming increasingly common. Direct heterogeneous electron transfer to glucose oxidase has been shown to be kinetically difficult, which is why electron transfer mediators or indirect detection is usually used for monitoring glucose with electrochemical sensors. It has been found, however, that electrodes modified with single or multi-walled carbon nanotubes (CNTs) demonstrate fast heterogeneous electron transfer kinetics as compared to that found for traditional electrodes. Incorporating CNTs into the assembly of electrochemical glucose sensors, therefore, affords the possibility of facile electron transfer to glucose oxidase, and a more direct determination of glucose. This chapter describes the methods used to use CNTs in a layer-by-layer structure along with glucose oxidase to produce an enzymatically modified electrode with high turnover rates, increased stability and shelf-life.
Carbon materials modified by plasma treatment as electrodes for supercapacitors
NASA Astrophysics Data System (ADS)
Lota, Grzegorz; Tyczkowski, Jacek; Kapica, Ryszard; Lota, Katarzyna; Frackowiak, Elzbieta
The carbon material was modified by RF plasma with various reactive gases: O 2, Ar and CO 2. Physicochemical properties of the final carbon products were characterized using different techniques such as gas adsorption method and XPS. Plasma modified materials enriched in oxygen functionalities were investigated as electrodes for supercapacitors in acidic medium. The electrochemical measurements have been carried out using cyclic voltammetry, galvanostatic charge/discharge and impedance spectroscopy. The electrochemical measurements have confirmed that capacity characteristics are closely connected with a type of plasma exposition. Modification processes have an influence on the kind and amount of surface functional groups in the carbon matrix. The moderate increase of capacity of carbon materials modified by plasma has been observed using symmetric two-electrode systems. Whereas investigations made in three-electrode system proved that the suitable selection of plasma modification parameters allows to obtain promising negative and positive electrode materials for supercapacitor application.
Yang, Jichun; Wang, Qiong; Zhang, Minhui; Zhang, Shuming; Zhang, Lei
2015-11-15
In this study, a simple, rapid, sensitive and environmentally friendly electroanalytical detection method for pyrimethanil (PMT) was developed, which was based on multi-walled carbon nanotubes (MWCNTs) and ionic liquids (IL) 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) modified glassy carbon electrode (GCE). MWCNTs-IL modified electrode significantly enhanced the oxidation peak current of PMT by combining the excellent electrochemical properties of MWCNTs and IL, suggesting that the modified electrode can remarkably improve the sensitivity of PMT detection. Under the optimum conditions, this electrochemical sensor exhibited a linear concentration range for PMT of 1.0 × 10(-7)-1.0 × 10(-4) mol L(-1) and the detection limit was 1.6 × 10(-8) mol L(-1) (S/N = 3). The fabricated electrode showed good reproducibility, stability and anti-interference, and also it was successfully employed to detect PMT in real samples. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kim, Sun-Il; Lee, Jae-Wook; Roh, Sung-Hee
2011-02-01
The performance of carbon nanotubes composite-modified carbon cloth electrodes in two-chambered microbial fuel cell (MFC) was investigated. The electrode modified with polyacrylonitrile-carbon nanotubes (PAN-CNTs) composite showed better electrochemical performance than that of plain carbon cloth. The MFC with the composite-modified anode containing 5 mg/cm2 PAN-CNTs exhibited a maximum power density of 480 mW/m2.
Sensitive detection of hydroxylamine at a simple baicalin carbon nanotubes modified electrode.
Zhang, Hongfang; Zheng, Jianbin
2012-05-15
A baicalin multi-wall carbon nanotubes (BaMWCNT) modified glassy carbon electrode (GCE) for the sensitive determination of hydroxylamine was described. The BaMWCNT/GCE with dramatic stability was firstly fabricated with a simple adsorption method. And it showed excellent catalytic activity toward the electrooxidation of hydroxylamine. The amperometric response at the BaMWCNT/GCE modified electrode increased linearly to hydroxylamine concentrations in the range of 0.5 μM to 0.4mM with a detection limit of 0.1 μM. The modified electrode was applied to detection hydroxylamine in the tap water, and the average recovery for the standards added was 96.0%. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hosseini, Sayed Reza; Ghasemi, Shahram; Kamali-Rousta, Mina
2017-03-01
In present work, polyvinyl alcohol/copper acetate-nickel acetate composite nanofibers (PVA/Cu(OAc)2-Ni(OAc)2 NFs) with various weight percentages of Cu(OAc)2:Ni(OAc)2 such as 25:75, 50:50 and 75:25 are fabricated by electrospinning method. After this, the CuO/NiO composite NFs are produced after thermal treatment. A calcination temperature at about 600 °C is determined by thermal gravimetric analysis. Field-emission scanning electron microscopy (FE-SEM) for morphology characterization indicates that large quantities of the prepared PVA/Cu(OAc)2-Ni(OAc)2 composite fibers have smooth and bead-free surfaces. Fourier transform infrared spectroscopy, FE-SEM and energy dispersive X-ray spectroscopy are used to characterize the CuO/NiO composites. According to FE-SEM results, with increasing of Cu(OAc)2 content in polymeric solution, the fibers don't remain as continuous structures after calcination and accumulate in the form of nanoparticles. Also, a carbon paste electrode (CPE) bulky modified with CuO/NiO composites is used for investigation of the electro-catalytic oxidation of hydrazine hydrate in NaOH solution. The catalytic activities of the synthesized catalysts are studied through cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. The obtained results demonstrate that the most appropriate proportion of Cu(OAc)2:Ni(OAc)2 in electrospinning solution to enhance the electro-catalytic ability is 25:75.
Ye, Ting; Yue, Yan; Fan, Xiangmei; Dong, Chunsheng; Xu, Wei; Xiong, Sidong
2014-07-31
Efficient delivery of antigen to mucosal associated lymphoid tissue is a first and critical step for successful induction of mucosal immunity by vaccines. Considering its potential transcytotic capability, M cell has become a more and more attractive target for mucosal vaccines. In this research, we designed an M cell-targeting strategy by which mucosal delivery system chitosan (CS) was endowed with M cell-targeting ability via conjugating with a CPE30 peptide, C terminal 30 amino acids of clostridium perfringens enterotoxin (CPE), and then evaluated its immune-enhancing ability in the context of coxsackievirus B3 (CVB3)-specific mucosal vaccine consisting of CS and a plasmid encoding CVB3 predominant antigen VP1. It had shown that similar to CS-pVP1, M cell-targeting CPE30-CS-pVP1 vaccine appeared a uniform spherical shape with about 300 nm diameter and +22 mV zeta potential, and could efficiently protect DNA from DNase I digestion. Mice were orally immunized with 4 doses of CPE30-CS-pVP1 containing 50 μg pVP1 at 2-week intervals and challenged with CVB3 4 weeks after the last immunization. Compared with CS-pVP1 vaccine, CPE30-CS-pVP1 vaccine had no obvious impact on CVB3-specific serum IgG level and splenic T cell immune responses, but significantly increased specific fecal SIgA level and augmented mucosal T cell immune responses. Consequently, much milder myocarditis and lower viral load were witnessed in CPE30-CS-pVP1 immunized group. The enhanced immunogenicity and immunoprotection were associated with the M cell-targeting ability of CPE30-CS-pVP1 which improved its mucosal uptake and transcytosis. Our findings indicated that CPE30-CS-pVP1 may represent a novel prophylactic vaccine against CVB3-induced myocarditis, and this M cell-targeting strategy indeed could be applied as a promising and universal platform for mucosal vaccine development. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Palisoc, Shirley T.; Uy, Donald Jans S.; Natividad, Michelle T.; Lopez, Toni Beth G.
2017-11-01
Tris (2,2‧-bipyridyl)ruthenium(II)/graphene/Nafion® modified glassy carbon electrodes (GCEs) were fabricated using the drop coating method. The modified electrode was used as the working electrode in differential pulse voltammetry (DPV) for the determination of lead, cadmium, and copper in mussel and oyster samples. The concentration of Tris (2,2‧-bipyridyl) ruthenium (II) and graphene were varied while those of Nafion®, methanol, and ethanol were held constant in the coating solution. The morphology and elemental composition of the fabricated electrodes were analyzed by scanning electron microscopy and energy-dispersive x-ray spectroscopy. Cyclic voltammetry (CV) was done to investigate the reversibility and stability of the modified electrodes. The modified electrode with the best figures of merit was utilized for the detection of copper (Cu2+), lead (Pb2+) and cadmium (Cd2+) via DPV. This was the electrode modified with 4 mg [Ru (bpy)3]2+ and 3 mg graphene. The anodic current and metal concentration showed linear relationship in the range of 48 ppb-745 ppb for Pb2+, 49 ppb-613 ppb for Cd2+, and 28 ppb-472 ppb for Cu2+. The limits of detection for lead, cadmium, and copper were 48 ppb, 49 ppb, and 28 ppb, respectively. Results from atomic absorption spectrometry (AAS) were compared with those measured with DPV. Lead, cadmium, and copper were in mussels, oysters, and sea water. In addition, DPV was able to detect other metals such as zinc, iron, tin and mercury in sea water samples and some samples of oysters.
NASA Astrophysics Data System (ADS)
Oliveira, Rafaela D.; Santos, Cleverson S.; Ferreira, Rodolfo T.; Marciniuk, Gustavo; Marchesi, Luís F.; Garcia, Jarem R.; Vidotti, Marcio; Pessoa, Christiana A.
2017-12-01
In this manuscript, we describe the synthesis and electrochemical characterization of polyaniline-gum arabic nanocomposites and graphene oxide (PANI-GA/GO) modified electrodes with a detailed study concerning their supercapacitive properties. The electrode modification was carried out by using the Layer-by-Layer technique (LbL), where the PANI-GA nanocomposite dispersion was used as polycation and the GO colloidal dispersion as polyanion. The bilayer growth was followed by both UV-vis spectroscopy and cyclic voltammetry, and an increase in the characteristic PANI absorption and in the electrochemical signal was verified, confirming the electrode build up. Galvanostatic charge-discharge curves (GCDC) were performed to evaluate the supercapacitive properties of the modified electrodes, these results showed the dependence of the specific capacitance with the number of bilayers, where values of CS around 15 mF cm-2 (i = 0.1 mA cm-2) were found. Electrochemical impedance spectroscopy confirmed the pseudocapacitive properties of the modified electrodes, showing an increase in the low-frequency capacitance with the number of bilayers. Hereby the (PANI-GA/GO)-LbL electrodes were shown to be good candidates for active materials in supercapacitors.
Sadowska, K; Stolarczyk, K; Biernat, J F; Roberts, K P; Rogalski, J; Bilewicz, R
2010-11-01
Single-walled carbon nanotubes (SWCNTs) were covalently modified with a redox mediator derived from 2,2'-azino-bis-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS), and implemented in the construction of electrodes for biocatalytic oxygen reduction. The procedure is based on: covalent bonding of mediator to nanotubes, placing the nanotubes directly on the carbon electrode surface and covering the nanostructured electrode with a Nafion film containing laccase as the biocatalyst. The modified electrode is stable and the problem of mediator (ABTS) leaking from the film is eliminated by binding it covalently to the nanotubes. Three different synthetic approaches were used to obtain ABTS-modified carbon nanotubes. Nanotubes were modified at ends/defect sites or on the nanotube sidewalls and characterized by Raman spectroscopy, TGA and electrochemistry. The accessibility of differently located ABTS units by the laccase active center and mediation of electron transfer were studied by cyclic voltammetry. The surface concentrations of ABTS groups electrically connected with the electrode were compared for each of the electrodes based on the charges of the voltammetric peaks recorded in the deaerated solution. The nanotube modification procedure giving the best parameters of the catalytic process was selected. Copyright © 2010 Elsevier B.V. All rights reserved.
Liu, Jieshu; Zhou, Dazhai; Liu, Xiaopeng; Wu, Kangbing; Wan, Chidan
2009-04-01
Based on non-covalent interactions such as pi-pi stacking, van der Waals interactions and strong adsorption, alizarin red S (ARS) interacts with multi-walled carbon nanotubes (MWNT), improving the solubility of MWNT in water and resulting in a stable MWNT/ARS solution. By successive cyclic sweeps between 0.0 and 2.2V in the MWNT/ARS solution, a MWNT/ARS composite film was fabricated on an electrode surface. The electrochemical behaviors of kojic acid at the bare electrode, the ARS film-modified electrode and the MWNT/ARS film-modified electrode were investigated. It was found that the oxidation signal of kojic acid significantly increased at the MWNT/ARS film-modified electrode, which was attributed to the unique properties of MWNT such as large surface area, strong adsorptive ability and subtle electronic character. The effects of pH and cyclic number of electropolymerization were examined. A rapid, sensitive and simple electrochemical method was then developed for the determination of kojic acid. This method exhibits good linearity over the range from 4.0 x 10(-7) to 6.0 x 10(-5)mol L(-1), and the limit of detection is as low as 1.0 x 10(-7)mol L(-1). In order to validate feasibility, the MWNT/ARS film-modified electrode was used for quantitative analysis of kojic acid in food samples.
Yang, Jiawei; Cheng, Shaoan; Sun, Yi; Li, Chaochao
2017-10-01
To increase the power generation of microbial fuel cells (MFCs), anode modification with carbon materials (activated carbon, carbon nanotubes, and carbon nanohorns) was investigated. Maximum power densities of a stainless-steel anode MFC with a non-modified electrode (SS-MFC), an activated carbon-modified electrode (AC-MFC), a carbon nanotube-modified electrode (CNT-MFC) and a carbon nanohorn-modified electrode (CNH-MFC) were 72, 244, 261 and 327 mW m -2 , respectively. The total polarization resistance measured by electrochemical impedance spectroscopy were 3610 Ω for SS-MFC, 283 Ω for AC-MFC, 231 Ω for CNTs-MFC, and 136 Ω for CNHs-MFC, consistent with the anode resistances obtained by fitting the anode polarization curves. Single-wall carbon nanohorns are better than activated carbon and carbon nanotubes as a new anode modification material for improving anode performance.
Han, Xinyi; Wang, Dawei; Liu, Dong; Huang, Jianshe; You, Tianyan
2012-02-01
Gold/Platinum (Au/Pt) bimetallic nanodendrites were successfully synthesized through seeded growth method using preformed Au nanodendrites as seeds and ascorbic acid as reductant. Cyclic voltammograms (CVs) of a series of Au/Pt nanodendrites modified electrodes in 1M KOH solution containing 1M ethanol showed that the electrocatalyst with a molar ratio (Au:Pt) of 3 exhibited the highest peak current density and the lowest onset potential. The peak current density of ethanol electro-oxidation on the Au(3)Pt(1) nanodendrites modified glassy carbon electrode (Au(3)Pt(1) electrode) is about 16, 12.5, and 4.5 times higher than those on the polycrystalline Pt electrode, polycrystalline Au electrode, and Au nanodendrites modified glassy carbon electrode (Au dendrites electrode), respectively. The oxidation peak potential of ethanol electro-oxidation on the Au(3)Pt(1) electrode is about 299 and 276 mV lower than those on the polycrystalline Au electrode and Au dendrites electrode, respectively. These results demonstrated that the Au/Pt bimetallic nanodendrites may find potential application in alkaline direct ethanol fuel cells (ADEFCs). Copyright © 2011 Elsevier Inc. All rights reserved.
Mattos, D P B G; Verícimo, M A; Lopes, L M S; São Clemente, S C
2015-03-01
The aim of this study was to verify the immunogenicity of Pterobothrium heteracanthum (Cestoda: Trypanorhyncha) crude protein extract (PH-CPE) in BALB/c mice. The parasites were obtained from Micropogonias furnieri (Osteichthyes: Sciaenidae). Groups of six mice were each immunized with 10, 50 or 100 μg of PH-CPE, on days 0 and 35. Both specific IgG and IgE responses were developed after immunization. The immunoblot assay revealed that specific IgG recognizes PH-CPE proteins with two molecular weight ranges, 60-75 and 30-40 kDa, and that IgE recognizes larger proteins over 120 kDa. This appears to be the first report on the immunogenicity of metacestodes within the Pterobothriidae and that PH-CPE is a potential inducer of a specific IgE response.
Giebułtowicz, Joanna; Kojro, Grzegorz; Piotrowski, Roman; Kułakowski, Piotr; Wroczyński, Piotr
2016-09-05
Cloud-point extraction (CPE) is attracting increasing interest in a number of analytical fields, including bioanalysis, as it provides a simple, safe and environmentally-friendly sample preparation technique. However, there are only few reports on the application of this extraction technique in liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis. In this study, CPE was used for the isolation of antazoline from human plasma. To date, only one method of antazoline isolation from plasma exists-liquid-liquid extraction (LLE). The aim of this study was to prove the compatibility of CPE and LC-ESI-MS/MS and the applicability of CPE to the determination of antazoline in spiked human plasma and clinical samples. Antazoline was isolated from human plasma using Triton X-114 as a surfactant. Xylometazoline was used as an internal standard. NaOH concentration, temperature and Triton X-114 concentration were optimized. The absolute matrix effect was carefully investigated. All validation experiments met international acceptance criteria and no significant relative matrix effect was observed. The compatibility of CPE and LC-ESI-MS/MS was confirmed using clinical plasma samples. The determination of antazoline concentration in human plasma in the range 10-2500ngmL(-1) by the CPE method led to results which are equivalent to those obtained by the widely used liquid-liquid extraction method. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Noyes, Ben F.; Mokaberi, Babak; Oh, Jong Hun; Kim, Hyun Sik; Sung, Jun Ha; Kea, Marc
2016-03-01
One of the keys to successful mass production of sub-20nm nodes in the semiconductor industry is the development of an overlay correction strategy that can meet specifications, reduce the number of layers that require dedicated chuck overlay, and minimize measurement time. Three important aspects of this strategy are: correction per exposure (CPE), integrated metrology (IM), and the prioritization of automated correction over manual subrecipes. The first and third aspects are accomplished through an APC system that uses measurements from production lots to generate CPE corrections that are dynamically applied to future lots. The drawback of this method is that production overlay sampling must be extremely high in order to provide the system with enough data to generate CPE. That drawback makes IM particularly difficult because of the throughput impact that can be created on expensive bottleneck photolithography process tools. The goal is to realize the cycle time and feedback benefits of IM coupled with the enhanced overlay correction capability of automated CPE without impacting process tool throughput. This paper will discuss the development of a system that sends measured data with reduced sampling via an optimized layout to the exposure tool's computational modelling platform to predict and create "upsampled" overlay data in a customizable output layout that is compatible with the fab user CPE APC system. The result is dynamic CPE without the burden of extensive measurement time, which leads to increased utilization of IM.
Xiao, Yinghua; Wagendorp, Arjen; Moezelaar, Roy; Abee, Tjakko
2012-01-01
Of 98 suspected food-borne Clostridium perfringens isolates obtained from a nationwide survey by the Food and Consumer Product Safety Authority in The Netherlands, 59 strains were identified as C. perfringens type A. Using PCR-based techniques, the cpe gene encoding enterotoxin was detected in eight isolates, showing a chromosomal location for seven isolates and a plasmid location for one isolate. Further characterization of these strains by using (GTG)5 fingerprint repetitive sequence-based PCR analysis distinguished C. perfringens from other sulfite-reducing clostridia but did not allow for differentiation between various types of C. perfringens strains. To characterize the C. perfringens strains further, multilocus sequence typing (MLST) analysis was performed on eight housekeeping genes of both enterotoxic and non-cpe isolates, and the data were combined with a previous global survey covering strains associated with food poisoning, gas gangrene, and isolates from food or healthy individuals. This revealed that the chromosomal cpe strains (food strains and isolates from food poisoning cases) belong to a distinct cluster that is significantly distant from all the other cpe plasmid-carrying and cpe-negative strains. These results suggest that different groups of C. perfringens have undergone niche specialization and that a distinct group of food isolates has specific core genome sequences. Such findings have epidemiological and evolutionary significance. Better understanding of the origin and reservoir of enterotoxic C. perfringens may allow for improved control of this organism in foods. PMID:22865060
Le Faivre, Julien; Duhamel, Alain; Khung, Suonita; Faivre, Jean-Baptiste; Lamblin, Nicolas; Remy, Jacques; Remy-Jardin, Martine
2016-11-01
To evaluate the impact of CT perfusion imaging on the detection of peripheral chronic pulmonary embolisms (CPE). 62 patients underwent a dual-energy chest CT angiographic examination with (a) reconstruction of diagnostic and perfusion images; (b) enabling depiction of vascular features of peripheral CPE on diagnostic images and perfusion defects (20 segments/patient; total: 1240 segments examined). The interpretation of diagnostic images was of two types: (a) standard (i.e., based on cross-sectional images alone) or (b) detailed (i.e., based on cross-sectional images and MIPs). The segment-based analysis showed (a) 1179 segments analyzable on both imaging modalities and 61 segments rated as nonanalyzable on perfusion images; (b) the percentage of diseased segments was increased by 7.2 % when perfusion imaging was compared to the detailed reading of diagnostic images, and by 26.6 % when compared to the standard reading of images. At a patient level, the extent of peripheral CPE was higher on perfusion imaging, with a greater impact when compared to the standard reading of diagnostic images (number of patients with a greater number of diseased segments: n = 45; 72.6 % of the study population). Perfusion imaging allows recognition of a greater extent of peripheral CPE compared to diagnostic imaging. • Dual-energy computed tomography generates standard diagnostic imaging and lung perfusion analysis. • Depiction of CPE on central arteries relies on standard diagnostic imaging. • Detection of peripheral CPE is improved by perfusion imaging.
Qiu, Bin; Lin, Zhenyu; Wang, Jian; Chen, Zhihuang; Chen, Jinhua; Chen, Guonan
2009-04-15
A poly(nickel(II) tetrasulfophthalocyanine)/multi-walled carbon nanotubes composite modified electrode (polyNiTSPc/MWNTs) was fabricated by electropolymerization of NiTSPc on MWNTs-modified glassy carbon electrode (GCE). The modified electrode was found to be able to greatly improve the emission of luminol electrochemiluminescence (ECL) in a solution containing hydrogen peroxide. Glucose oxidase (GOD) was immobilized on the surface of polyNiTSPc/MWNTs modified GC electrode by Nafion to establish an ECL glucose sensor. Under the optimum conditions, the linear response range of glucose was 1.0x10(-6) to 1.0x10(-4) mol L(-1) with a detection limit of 8.0x10(-8) mol L(-1) (defined as the concentration that could be detected at the signal-to-noise ratio of 3). The ECL sensor showed an outstanding well reproducibility and long-term stability. The established method has been applied to determine the glucose concentrations in real serum samples with satisfactory results.
NASA Astrophysics Data System (ADS)
Taheri, M.; Ahour, F.; Keshipour, S.
2018-06-01
A novel electrochemical sensor based on D-penicillamine anchored nano-cellulose (DPA-NC) modified pencil graphite electrode was fabricated and used for highly selective and sensitive determination of copper (II) ions in the picomolar concentration by square wave adsorptive stripping voltammetric (SWV) method. The modified electrode showed better and increased SWV response compared to the bare and NC modified electrodes which may be related to the porous structure of modifier along with formation of complex between Cu2+ ions and nitrogen or oxygen containing groups in DPA-NC. Optimization of various experimental parameters influence the performance of the sensor, were investigated. Under optimized condition, DPA-NC modified electrode was used for the analysis of Cu2+ in the concentration range from 0.2 to 50 pM, and a lower detection limit of 0.048 pM with good stability, repeatability, and selectivity. Finally, the practical applicability of DPA-NC-PGE was confirmed via measuring trace amount of Cu (II) in tap and river water samples.
Ag Nanoparticles-Modified 3D Graphene Foam for Binder-Free Electrodes of Electrochemical Sensors.
Han, Tao; Jin, Jianli; Wang, Congxu; Sun, Youyi; Zhang, Yinghe; Liu, Yaqing
2017-02-16
Ag nanoparticles-modified 3D graphene foam was synthesized through a one-step in-situ approach and then directly applied as the electrode of an electrochemical sensor. The composite foam electrode exhibited electrocatalytic activity towards Hg(II) oxidation with high limit of detection and sensitivity of 0.11 μM and 8.0 μA/μM, respectively. Moreover, the composite foam electrode for the sensor exhibited high cycling stability, long-term durability and reproducibility. These results were attributed to the unique porous structure of the composite foam electrode, which enabled the surface of Ag nanoparticles modified reduced graphene oxide (Ag NPs modified rGO) foam to become highly accessible to the metal ion and provided more void volume for the reaction with metal ion. This work not only proved that the composite foam has great potential application in heavy metal ions sensors, but also provided a facile method of gram scale synthesis 3D electrode materials based on rGO foam and other electrical active materials for various applications.
Ag Nanoparticles-Modified 3D Graphene Foam for Binder-Free Electrodes of Electrochemical Sensors
Han, Tao; Jin, Jianli; Wang, Congxu; Sun, Youyi; Zhang, Yinghe; Liu, Yaqing
2017-01-01
Ag nanoparticles-modified 3D graphene foam was synthesized through a one-step in-situ approach and then directly applied as the electrode of an electrochemical sensor. The composite foam electrode exhibited electrocatalytic activity towards Hg(II) oxidation with high limit of detection and sensitivity of 0.11 µM and 8.0 µA/µM, respectively. Moreover, the composite foam electrode for the sensor exhibited high cycling stability, long-term durability and reproducibility. These results were attributed to the unique porous structure of the composite foam electrode, which enabled the surface of Ag nanoparticles modified reduced graphene oxide (Ag NPs modified rGO) foam to become highly accessible to the metal ion and provided more void volume for the reaction with metal ion. This work not only proved that the composite foam has great potential application in heavy metal ions sensors, but also provided a facile method of gram scale synthesis 3D electrode materials based on rGO foam and other electrical active materials for various applications. PMID:28336878
Komori, Kikuo; Terse-Thakoor, Trupti; Mulchandani, Ashok
2016-10-01
Horseradish peroxidase (HRP) was immobilized through sodium dodecyl sulfate (SDS) on the surface of a seamless three-dimensional hybrid of carbon nanotubes grown at the graphene surface (HRP-SDS/CNTs/G) and its electrochemical properties were investigated. Compared with graphene alone electrode modified with HRP via SDS (HRP-SDS/G electrode), the surface coverage of electroactive HRP at the CNTs/G electrode surface was approximately 2-fold greater because of CNTs grown at the graphene surface. Based on the increase in the surface coverage of electroactive HRP, the sensitivity to H2O2 at the HRP-SDS/CNTs/G electrode was higher than that at the HRP-SDS/G electrode. The kinetics of the direct electron transfer from the CNTs/G electrode to compound I and II of modified HRP was also analyzed. Copyright © 2016 Elsevier B.V. All rights reserved.
Vacaru, Ana M.; van den Dikkenberg, Joep; Ternes, Philipp; Holthuis, Joost C. M.
2013-01-01
Sphingomyelin (SM) is a vital component of mammalian membranes, providing mechanical stability and a structural framework for plasma membrane organization. Its production involves the transfer of phosphocholine from phosphatidylcholine onto ceramide, a reaction catalyzed by SM synthase in the Golgi lumen. Drosophila lacks SM and instead synthesizes the SM analogue ceramide phosphoethanolamine (CPE) as the principal membrane sphingolipid. The corresponding CPE synthase shares mechanistic features with enzymes mediating phospholipid biosynthesis via the Kennedy pathway. Using a functional cloning strategy, we here identified a CDP-ethanolamine:ceramide ethanolamine phosphotransferase as the enzyme responsible for CPE production in Drosophila. CPE synthase constitutes a new branch within the CDP-alcohol phosphotransferase superfamily with homologues in Arthropoda (insects, spiders, mites, scorpions), Cnidaria (Hydra, sea anemones), and Mollusca (oysters) but not in most other animal phyla. The enzyme resides in the Golgi complex with its active site facing the lumen, contrary to the membrane topology of other CDP-alcohol phosphotransferases. Our findings open up an important new avenue to address the biological role of CPE, an enigmatic membrane constituent of a wide variety of invertebrate and marine organisms. PMID:23449981
NASA Astrophysics Data System (ADS)
Yang, Qing; Liu, Mengna; Sima, Wenxia; Jin, Yang
2017-11-01
The combined effect mechanism of electrode materials and Al2O3 nanoparticles on the insulating characteristics of transformer oil was investigated. Impulse breakdown tests of pure transformer oil and Al2O3 nano-modified transformer oil of varying concentrations with different electrode materials (brass, aluminum and stainless steel) showed that the breakdown voltage of Al2O3 nano-modified transformer oil is higher than that of pure transformer oil and there is a there is an optimum concentration for Al2O3 nanoparticles when the breakdown voltage reaches the maximum. In addition, the breakdown voltage was highest with the brass electrode, followed by that with stainless steel and then aluminum, irrespective of the concentration of nanoparticles in the transformer oil. This is explained by the charge injection patterns from different electrode materials according to the results of space charge measurements in pure and nano-modified transformer oil using the Kerr electro-optic system. The test results indicate that there are electrode-dependent differences in the charge injection patterns and quantities and then the electric field distortion, which leads to the difference breakdown strength in result. As for the nano-modified transformer oil, due to the Al2O3 nanoparticle’s ability of shielding space charges of different polarities and the charge injection patterns of different electrodes, these two factors have different effects on the electric field distribution and breakdown process of transformer oil between different electrode materials. This paper provides a feasible approach to exploring the mechanism of the effect of the electrode material and nanoparticles on the breakdown strength of liquid dielectrics and analyzing the breakdown process using the space charge distribution.
2011-01-01
One of the challenges in the field of biosensors and biofuel cells is to establish a highly efficient electron transfer rate between the active site of redox enzymes and electrodes to fully access the catalytic potential of the biocatalyst and achieve high current densities. We report on very efficient direct electron transfer (DET) between cellobiose dehydrogenase (CDH) from Phanerochaete sordida (PsCDH) and surface modified single walled carbon nanotubes (SWCNT). Sonicated SWCNTs were adsorbed on the top of glassy carbon electrodes and modified with aryl diazonium salts generated in situ from p-aminobenzoic acid and p-phenylenediamine, thus featuring at acidic pH (3.5 and 4.5) negative or positive surface charges. After adsorption of PsCDH, both electrode types showed excellent long-term stability and very efficient DET. The modified electrode presenting p-aminophenyl groups produced a DET current density of 500 μA cm−2 at 200 mV vs normal hydrogen reference electrode (NHE) in a 5 mM lactose solution buffered at pH 3.5. This is the highest reported DET value so far using a CDH modified electrode and comes close to electrodes using mediated electron transfer. Moreover, the onset of the electrocatalytic current for lactose oxidation started at 70 mV vs NHE, a potential which is 50 mV lower compared to when unmodified SWCNTs were used. This effect potentially reduces the interference by oxidizable matrix components in biosensors and increases the open circuit potential in biofuel cells. The stability of the electrode was greatly increased compared with unmodified but cross-linked SWCNTs electrodes and lost only 15% of the initial current after 50 h of constant potential scanning. PMID:21417322
Tasca, Federico; Harreither, Wolfgang; Ludwig, Roland; Gooding, John Justin; Gorton, Lo
2011-04-15
One of the challenges in the field of biosensors and biofuel cells is to establish a highly efficient electron transfer rate between the active site of redox enzymes and electrodes to fully access the catalytic potential of the biocatalyst and achieve high current densities. We report on very efficient direct electron transfer (DET) between cellobiose dehydrogenase (CDH) from Phanerochaete sordida (PsCDH) and surface modified single walled carbon nanotubes (SWCNT). Sonicated SWCNTs were adsorbed on the top of glassy carbon electrodes and modified with aryl diazonium salts generated in situ from p-aminobenzoic acid and p-phenylenediamine, thus featuring at acidic pH (3.5 and 4.5) negative or positive surface charges. After adsorption of PsCDH, both electrode types showed excellent long-term stability and very efficient DET. The modified electrode presenting p-aminophenyl groups produced a DET current density of 500 μA cm(-2) at 200 mV vs normal hydrogen reference electrode (NHE) in a 5 mM lactose solution buffered at pH 3.5. This is the highest reported DET value so far using a CDH modified electrode and comes close to electrodes using mediated electron transfer. Moreover, the onset of the electrocatalytic current for lactose oxidation started at 70 mV vs NHE, a potential which is 50 mV lower compared to when unmodified SWCNTs were used. This effect potentially reduces the interference by oxidizable matrix components in biosensors and increases the open circuit potential in biofuel cells. The stability of the electrode was greatly increased compared with unmodified but cross-linked SWCNTs electrodes and lost only 15% of the initial current after 50 h of constant potential scanning. © 2011 American Chemical Society
Sadeghi, Susan; Motaharian, Ali
2013-12-01
A new sensitive voltammetric sensor for determination of sulfadiazine is described. The developed sensor is based on carbon paste electrode modified with sulfadiazine imprinted polymer (MIP) as a recognition element. For comparison, a non-imprinted polymer (NIP) modified carbon paste electrode was prepared. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods were performed to study the binding event and electrochemical behavior of sulfadiazine at the modified carbon paste electrodes. The determination of sulfadiazine after its extraction onto the electrode surface was carried out by DPV at 0.92 V vs. Ag/AgCl owing to oxidation of sulfadiazine. Under the optimized operational conditions, the peak current obtained at the MIP modified carbon paste electrode was proportional to the sulfadiazine concentration within the range of 2.0×10(-7)-1.0×10(-4) mol L(-1) with a detection limit and sensitivity of 1.4×10(-7) mol L(-1) and 4.2×10(5) μA L mol(-1), respectively. The reproducibility of the developed sensor in terms of relative standard deviation was 2.6%. The sensor was successfully applied for determination of sulfadiazine in spiked cow milk and human serum samples with recovery values in the range of 96.7-100.9%. © 2013.
Preparation of glucose sensors using gold nanoparticles modified diamond electrode
NASA Astrophysics Data System (ADS)
Fachrurrazie; Ivandini, T. A.; Wibowo, W.
2017-04-01
A glucose sensor was successfully developed by immobilizing glucose oxidase (GOx) at boron-doped diamond (BDD) electrodes. Prior to GOx immobilization, the BDD was modified with gold nanoparticles (AuNPs). To immobilize AuNPs, the gold surface was modified to nitrogen termination. The characterization of the electrode surface was performed using an X-ray photoelectron spectroscopy and a scanning electron microscope, while the electrochemical properties of the enzyme electrode were characterized using cyclic voltammetry. Cyclic voltammograms of the prepared electrode for D-glucose in phosphate buffer solution pH 7 showed a new reduction peak at +0.16 V. The currents of the peak were linear in the concentration range of 0.1 M to 0.9 M, indicated that the GOx-AuNP-BDD can be applied for electrochemical glucose detection.
Non-hard sphere thermodynamic perturbation theory.
Zhou, Shiqi
2011-08-21
A non-hard sphere (HS) perturbation scheme, recently advanced by the present author, is elaborated for several technical matters, which are key mathematical details for implementation of the non-HS perturbation scheme in a coupling parameter expansion (CPE) thermodynamic perturbation framework. NVT-Monte Carlo simulation is carried out for a generalized Lennard-Jones (LJ) 2n-n potential to obtain routine thermodynamic quantities such as excess internal energy, pressure, excess chemical potential, excess Helmholtz free energy, and excess constant volume heat capacity. Then, these new simulation data, and available simulation data in literatures about a hard core attractive Yukawa fluid and a Sutherland fluid, are used to test the non-HS CPE 3rd-order thermodynamic perturbation theory (TPT) and give a comparison between the non-HS CPE 3rd-order TPT and other theoretical approaches. It is indicated that the non-HS CPE 3rd-order TPT is superior to other traditional TPT such as van der Waals/HS (vdW/HS), perturbation theory 2 (PT2)/HS, and vdW/Yukawa (vdW/Y) theory or analytical equation of state such as mean spherical approximation (MSA)-equation of state and is at least comparable to several currently the most accurate Ornstein-Zernike integral equation theories. It is discovered that three technical issues, i.e., opening up new bridge function approximation for the reference potential, choosing proper reference potential, and/or using proper thermodynamic route for calculation of f(ex-ref), chiefly decide the quality of the non-HS CPE TPT. Considering that the non-HS perturbation scheme applies for a wide variety of model fluids, and its implementation in the CPE thermodynamic perturbation framework is amenable to high-order truncation, the non-HS CPE 3rd-order or higher order TPT will be more promising once the above-mentioned three technological advances are established. © 2011 American Institute of Physics
Townell, Nicola; Nimmo, Graeme R.; George, Narelle M.; Robson, Jennifer; Vohra, Renu; Davis, Louise; Heney, Claire; Paterson, David L.
2015-01-01
The prevalence of carbapenemase-producing Enterobacteriaceae (CPE) has been increasing worldwide. blaIMP has been reported to be the predominant carbapenemase-encoding gene within Enterobacteriaceae in Australia. However, there are limited data currently available on CPE from Queensland, Australia. A total of 58 CPE isolates were isolated between July 2009 and March 2014 from Queensland hospitals. The clonality of isolates was determined by Diversilab repetitive sequence-based PCR. The isolates were investigated for the resistance mechanisms carbapenemase, extended-spectrum β-lactamase, and AmpC β-lactamase and for aminoglycoside resistance and plasmid-mediated quinolone resistance genes by PCR. The plasmid types associated with carbapenemase-encoding genes were characterized. The majority of the CPE were Enterobacter cloacae (n = 29). The majority of Queensland CPE isolates were IMP producers and comprised 11 species (n = 48). Nine NDM-producing Enterobacteriaceae were identified. One NDM-producing Klebsiella pneumoniae isolate coproduced OXA-48. One K. pneumoniae isolate was an OXA-181 producer. The incidence of IMP producers increased significantly in 2013. blaIMP-4 was found in all IMP-producing isolates. blaTEM, qnrB, and aacA4 were common among IMP-4 producers. The HI2 (67%) and L/M (21%) replicons were associated with blaIMP-4. All HI2 plasmids were of sequence type 1 (ST1). All but one of the NDM producers possessed blaCTX-M-15. The 16S rRNA methylase genes found among NDM producers were armA, rmtB, rmtC, and rmtF. The substantial increase in the prevalence of CPE in Queensland has been associated mainly with the emergence E. cloacae strains possessing HI2 plasmids carrying blaIMP-4 over the past 2 years. The importation of NDM producers and/or OXA-48-like producers in patients also contributed to the increased emergence of CPE. PMID:25918153
Kudr, Jiri; Richtera, Lukas; Nejdl, Lukas; Xhaxhiu, Kledi; Vitek, Petr; Rutkay-Nedecky, Branislav; Hynek, David; Kopel, Pavel; Adam, Vojtech; Kizek, Rene
2016-01-01
Increasing urbanization and industrialization lead to the release of metals into the biosphere, which has become a serious issue for public health. In this paper, the direct electrochemical reduction of zinc ions is studied using electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode (GCE). The graphene oxide (GO) was fabricated using modified Hummers method and was electrochemically reduced on the surface of GCE by performing cyclic voltammograms from 0 to −1.5 V. The modification was optimized and properties of electrodes were determined using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The determination of Zn(II) was performed using differential pulse voltammetry technique, platinum wire as a counter electrode, and Ag/AgCl/3 M KCl reference electrode. Compared to the bare GCE the modified GCE/ERGO shows three times better electrocatalytic activity towards zinc ions, with an increase of reduction current along with a negative shift of reduction potential. Using GCE/ERGO detection limit 5 ng·mL−1 was obtained. PMID:28787832
Chen, Hong-Jun; Zhang, Zhao-Hui; Cai, Rong; Chen, Xing; Liu, Yu-Nan; Rao, Wei; Yao, Shou-Zhuo
2013-10-15
In this work, an imprinted electrochemical sensor based on electrochemical reduced graphene covalently modified carbon electrode was developed for the determination of 4-nonylphenol (NP). An amine-terminated functional graphene oxide was covalently modified onto the electrode surface with diazonium salt reactions to improve the stability and reproducibility of the imprinted sensor. The electrochemical properties of each modified electrodes were investigated with differential pulse voltammetry (DPV). The electrochemical characteristic of the imprinted sensor was also investigated using electrochemical impedance spectroscopy (EIS) in detail. The response currents of the imprinted electrode exhibited a linear relationship toward 4-nonylphenol concentration ranging from 1.0 × 10(-11) to 1.0 × 10(-8) gm L(-1) with the detection limit of 3.5 × 10(-12) gm L(-1) (S/N=3). The fabricated electrochemical imprinted sensor was successfully applied to the detection of 4-nonylphenol in rain and lake water samples. Crown Copyright © 2013 Published by Elsevier B.V. All rights reserved.
An evaluative case study of online learning for healthcare professionals.
Pullen, Darren L
2006-01-01
This evaluation study assessed the pedagogical and instructional design (e-pedagogy) effectiveness of online continuing professional education (CPE) courses offered by a large Australian CPE provider. A naturalistic theory approach and a multilevel evaluation were used to examine the impact of web-based learning on more than 300 healthcare professionals. Participant satisfaction, learning achievement, self-reported practice performance change, and e-pedagogical courseware characteristics were assessed by various qualitative and quantitative data collection methods. Findings revealed that learning online was an effective means for increasing CPE knowledge (p < .05) and improving self-reported practice performance change (p < .05). Courses containing a clinical tool resulted in an increased self-reported practice performance change over courses that did not (Zobs = 3.757). Online CPE offers a convenient format for healthcare professionals from educationally and geographically diverse populations to update their knowledge and view best practice.
Abbona, Cinthia Carolina; Stagnitta, Patricia Virginia
2016-06-01
Clostridium perfringens isolates associated with food poisoning carries a chromosomal cpe gene, while non-foodborne human gastrointestinal disease isolates carry a plasmid cpe gene. The enterotoxigenic strains tested produced vegetative cells and spores with significantly higher resistance than non-enterotoxigenic strains. These results suggest that the vegetative cells and spores have a competitive advantage over non-enterotoxigenic strains. However, no explanation has been provided for the significant associations between chromosomal cpe genotypes with the high resistance, which could explain the strong relationship between chromosomal cpe isolates and C. perfringens type A food poisoning. Here, we analyse the action of physical and chemical agent on non-enterotoxigenic and enterotoxigenic regional strains. And this study tested the relationship between the sensitivities of spores and their levels SASPs (small acid soluble proteins) production in the same strains examined. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cumba, Loanda R; Smith, Jamie P; Brownson, Dale A C; Iniesta, Jesús; Metters, Jonathan P; do Carmo, Devaney R; Banks, Craig E
2015-03-07
Recent work has reported the first electroanalytical detection of pindolol using reduced graphene oxide (RGO) modified glassy carbon electrodes [S. Smarzewska and W. Ciesielski, Anal. Methods, 2014, 6, 5038] where it was reported that the use of RGO provided significant improvements in the electroanalytical signal in comparison to a bare (unmodified) glassy carbon electrode. We demonstrate, for the first time, that the electroanalytical quantification of pindolol is actually possible using bare (unmodified) screen-printed graphite electrodes (SPEs). This paper addresses the electroanalytical determination of pindolol utilising RGO modified SPEs. Surprisingly, it is found that bare (unmodified) SPEs provide superior electrochemical signatures over that of RGO modified SPEs. Consequently the electroanalytical sensing of pindolol is explored at bare unmodified SPEs where a linear range between 0.1 μM-10.0 μM is found to be possible whilst offering a limit of detection (3σ) corresponding to 0.097 μM. This provides a convenient yet analytically sensitive method for sensing pindolol. The optimised electroanalytical protocol using the unmodified SPEs, which requires no pre-treatment (electrode polishing) or electrode modification step (such as with the use of RGO), was then further applied to the determination of pindolol in urine samples. This work demonstrates that the use of RGO modified SPEs have no significant benefits when compared to the bare (unmodified) alternative and that the RGO free electrode surface can provide electro-analytically useful performances.
Shahrokhian, Saeed; Rastgar, Shokoufeh
2012-06-07
Mixtures of gold-platinum nanoparticles (Au-PtNPs) are fabricated consecutively on a multi-walled carbon nanotubes (MWNT) coated glassy carbon electrode (GCE) by the electrodeposition method. The surface morphology and nature of the hybrid film (Au-PtNPs/MWCNT) deposited on glassy carbon electrodes is characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques. The modified electrode is used as a new and sensitive electrochemical sensor for the voltammetric determination of cefotaxime (CFX). The electrochemical behavior of CFX is investigated on the surface of the modified electrode using linear sweep voltammetry (LSV). The results of voltammetric studies exhibited a considerable improvement in the oxidation peak current of CFX compared to glassy carbon electrodes individually coated with MWCNT or Au-PtNPs. Under the optimized conditions, the modified electrode showed a wide linear dynamic range of 0.004-10.0 μM with a detection limit of 1.0 nM for the voltammetric determination of CFX. The modified electrode was successfully applied for the accurate determination of trace amounts of CFX in pharmaceutical and clinical preparations.
Jin, Joon-Hyung; Cho, Eunae; Jung, Seunho
2010-03-01
Microbial carbohydrate-doped multiwall carbon nanotube (MWNT)-modified electrodes were prepared for the purpose of determining if 4-(2-aminoethyl)benzene-1,2-diol (3,4-dihydroxyphenylalanine; dopamine) exists in the presence of 0.5 mM ascorbic acid, a representative interfering agent in neurotransmitter detection. The microbial carbohydrate dopants were alpha-cyclosophorohexadecaose (alpha-C16) from Xanthomonas oryzae and cyclic-(1 --> 2)-beta-d-glucan (Cys) from Rhizobium meliloti. The cyclic voltammetric responses showed that the highest sensitivity (5.8 x 10(-3) mA cm(-2) microM(-1)) is attained with the Cys-doped MWNT-modified ultra-trace carbon electrode, and that the alpha-C16-doped MWNT-modified glassy carbon electrode displays the best selectivity to dopamine (the approximate peak potential separation is 310 mV).
Bär, Florian; Föh, Bandik; Pagel, René; Schröder, Torsten; Schlichting, Heidi; Hirose, Misa; Lemcke, Susanne; Klinger, Antje; König, Peter; Karsten, Christian M; Büning, Jürgen; Lehnert, Hendrik; Fellermann, Klaus; Ibrahim, Saleh M; Sina, Christian
2014-01-01
Enteroendocrine cells (EEC) produce neuropeptides, which are crucially involved in the maintenance of the intestinal barrier. Hence, EEC dysfunction is suggested to be involved in the complex pathophysiology of inflammatory bowel disease (IBD), which is characterized by decreased intestinal barrier function. However, the underlying mechanisms for EEC dysfunction are not clear and suitable models for a better understanding are lacking. Here, we demonstrate that Carboxypeptidase E (CPE) is specifically expressed in EEC of the murine colon and ileum and that its deficiency is associated with reduced intestinal levels of Neuropeptide Y (NPY) and Peptide YY (PYY), which are both produced by EEC. Moreover, cpe-/- mice exhibit an aggravated course of DSS-induced chronic colitis compared to wildtype littermates. In addition, we observed elevated mucosal IL-6 and KC transcript levels already at baseline conditions in cpe-/- mice. Moreover, supernatants obtained from isolated intestinal crypts of cpe-/- mice lead to increased IL-6 and KC expression in MODE-K cells in the presence of LPS. This effect was reversible by co-administration of recombinant NPY, suggesting a CPE mediated immunosuppressive effect in the intestines by influencing the processing of specific neuropeptides. In this context, the chemotaxis of bone marrow derived macrophages towards respective supernatants was enhanced. In conclusion, our data point to an anti-inflammatory role of CPE in the intestine by influencing local cytokine levels and thus regulating the migration of myeloid immune cells into the mucosa. These findings highlight the importance of EEC for intestinal homeostasis and propose EEC as potential therapeutic targets in IBD.
Shreya, Das; Uppalapati, Siva R; Kingston, Joseph J; Sripathy, Murali H; Batra, Harsh V
2015-05-01
Clostridium perfringens type A, an anaerobic pathogen is the most potent cause of soft tissue infections like gas gangrene and enteric diseases like food poisoning and enteritis. The disease manifestations are mediated via two important exotoxins, viz. myonecrotic alpha toxin (αC) and enterotoxin (CPE). In the present study, we synthesized a bivalent chimeric protein r-Cpae comprising C-terminal binding regions of αC and CPE using structural vaccinology rationale and assessed its protective efficacy against both alpha toxin (αC) and enterotoxin (CPE) respectively, in murine model. Active immunization of mice with r-Cpae generated high circulating serum IgG (systemic), significantly increased intestinal mucosal s-IgA antibody titres and resulted in substantial protection to the immunized animals (100% and 75% survival) with reduced tissue morbidity when administered with 5×LD(100) doses of αC (intramuscular) and CPE (intra-gastric gavage) respectively. Mouse RBCs and Caco-2 cells incubated with a mixture of anti-r-Cpae antibodies and αC and CPE respectively, illustrated significantly higher protection against the respective toxins. Passive immunization of mice with a similar mixture resulted in 91-100% survival at the end of the 15 days observation period while mice immunized with a concoction of sham sera and respective toxins died within 2-3 days. This work demonstrates the efficacy of the rationally designed r-Cpae chimeric protein as a potential sub unit vaccine candidate against αC and CPE of C. perfringens type A toxemia. Copyright © 2015 Elsevier Ltd. All rights reserved.
Holman, A M; Allyn, J; Miltgen, G; Lugagne, N; Traversier, N; Picot, S; Lignereux, A; Oudin, C; Belmonte, O; Allou, N
2017-09-01
The aim of this study was to trace the emergence of carbapenemase-producing Enterobacteriaceae (CPE) on Reunion Island, a French overseas territory well suited for the surveillance of CPE emergence in patients from the entire Indian Ocean Region. This retrospective multicenter study was conducted on Reunion Island between 2010 and 2015. A total of 43 CPEs were isolated during the course of the study, in 36 patients (50% in the last year alone). Among these patients, 21 had a link with a foreign country (58%), mainly Mauritius (47.6%). Over the same period, CPEs were isolated from 13 of 1735 (0.7%) repatriated patients to Reunion Island from another country of the Indian Ocean Region. The incidence of isolation of CPEs in the repatriated patients treated in Mauritius was higher (9.2%) than in patients treated in Madagascar or the Comoros Islands (<1%, P<0.001). The most commonly isolated microorganism was Klebsiella pneumoniae (39.5%). The most frequently identified carbapenemase was NDM-1 (81.4%); 100% and 56% of the NDM-1 strains were susceptible to tigecycline and colistin, respectively. In-hospital mortality rate was higher in patients presenting with CPE infection than in patients without CPE infection (75% vs. 25%, P=0.04). As elsewhere in the world, the number of CPE cases on Reunion Island is on the rise. Most cases involve patients from Mauritius, which justifies screening and isolating CPE in patients from that country. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Duning, Thomas; Kellinghaus, Christoph; Mohammadi, Siawoosh; Schiffbauer, Hagen; Keller, Simon; Ringelstein, E Bernd; Knecht, Stefan; Deppe, Michael
2010-02-01
Conventional structural MRI fails to identify a cerebral lesion in 25% of patients with cryptogenic partial epilepsy (CPE). Diffusion tensor imaging is an MRI technique sensitive to microstructural abnormalities of cerebral white matter (WM) by quantification of fractional anisotropy (FA). The objectives of the present study were to identify focal FA abnormalities in patients with CPE who were deemed MRI negative during routine presurgical evaluation. Diffusion tensor imaging at 3 T was performed in 12 patients with CPE and normal conventional MRI and in 67 age matched healthy volunteers. WM integrity was compared between groups on the basis of automated voxel-wise statistics of FA maps using an analysis of covariance. Volumetric measurements from high resolution T1-weighted images were also performed. Significant FA reductions in WM regions encompassing diffuse areas of the brain were observed when all patients as a group were compared with controls. On an individual basis, voxel based analyses revealed widespread symmetrical FA reduction in CPE patients. Furthermore, asymmetrical temporal lobe FA reduction was consistently ipsilateral to the electroclinical focus. No significant correlations were found between FA alterations and clinical data. There were no differences in brain volumes of CPE patients compared with controls. Despite normal conventional MRI, WM integrity abnormalities in CPE patients extend far beyond the epileptogenic zone. Given that unilateral temporal lobe FA abnormalities were consistently observed ipsilateral to the seizure focus, analysis of temporal FA may provide an informative in vivo investigation into the localisation of the epileptogenic zone in MRI negative patients.
NASA Astrophysics Data System (ADS)
Xiao, Wei; Wang, Zhiyan; Zhang, Yan; Fang, Rui; Yuan, Zun; Miao, Chang; Yan, Xuemin; Jiang, Yu
2018-04-01
To improve the ionic conductivity as well as enhance the mechanical strength of the gel polymer electrolyte, poly(vinylidene fluoride-hexafluoroprolene) (P(VDF-HFP))-based composite polymer electrolyte (CPE) membranes doped with the organic-inorganic hybrid particles poly(methyl methacrylate) -ZrO2 (PMMA-ZrO2) are prepared by phase inversion method, in which PMMA is successfully grafted onto the surface of the homemade nano-ZrO2 particles via in situ polymerization confirmed by FT-IR. XRD and DSC patterns show adding PMMA-ZrO2 particles into P(VDF-HFP) can significantly decrease the crystallinity of the CPE membrane. The CPE membrane doped with 5 wt % PMMA-ZrO2 particles can not only present a homogeneous surface with abundant interconnected micro-pores, but maintain its initial shape after thermal exposure at 160 °C for 1 h, in which the ionic conductivity and lithium ion transference number at room temperature can reach to 3.59 × 10-3 S cm-1 and 0.41, respectively. The fitting results of the EIS plots indicate the doped PMMA-ZrO2 particles can significantly lower the interface resistance and promote lithium ions diffusion rate. The Li/CPE-sPZ/LiCoO2 and Li/CPE-sPZ/Graphite coin cells can deliver excellent rate and cycling performance. Those results suggest the P(VDF-HFP)-based CPE doped with 5 wt % PMMA-ZrO2 particles can become an exciting potential candidate as polymer electrolyte for the lithium ion battery.
NASA Astrophysics Data System (ADS)
Li, Zhou; Hua, Xin; Pei, Hongying; Shen, Yuan; Shen, Guijun
2017-12-01
A glass carbon electrode was prepared that coated with a composite film containing grapheme and multi-walled carbon nanotubes. It was used to study the electrochemical response of terbutaline sulfate. Under the optimized conditions, the oxidation peak current was found to be proportional to its concentration in the range of 0.2-5 μmol·L-1 and 5-40 μmol·L-1).Compared with the bare GC electrode, the GN-MWNTs-modified GC (GN-MWNTs/GC) had many advantages such as relatively high sensitivity, good stability and long life time. The modified electrode was used to determine the TES tablets with satisfactory results.
Determination of caffeic acid in wine using PEDOT film modified electrode.
Bianchini, C; Curulli, A; Pasquali, M; Zane, D
2014-08-01
A novel method using PEDOT (poly(3,4-ethylenedioxy) thiophene) modified electrode was developed for the determination of caffeic acid (CA) in wine. Cyclic voltammetry (CV) with the additions standard method was used to quantify the analyte at PEDOT modified electrodes. PEDOT films were electrodeposited on Platinum electrode (Pt) in aqueous medium by galvanostatic method using sodium poly(styrene-4-sulfonate) (PSS) as electrolyte and surfactant. CV allows detecting the analyte over a wide concentration range (10.0nmoll(-1)-6.5mmoll(-1)). The electrochemical method proposed showed good statistical and analytical parameters as linearity range, LOD, LOQ and sensitivity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Electrochemical behavior of adrenaline at the carbon atom wire modified electrode
NASA Astrophysics Data System (ADS)
Xue, Kuan-Hong; Liu, Jia-Mei; Wei, Ri-Bing; Chen, Shao-Peng
2006-09-01
Electrochemical behavior of adrenaline at an electrode modified by carbon atom wires (CAWs), a new material, was investigated by cyclic voltammetry combined with UV-vis spectrometry, and forced convection method. As to the electrochemical response of redox of adrenaline/adrenalinequinone couple in 0.50 M H 2SO 4, at a nitric acid treated CAW modified electrode, the anodic and cathodic peak potentials Epa and Epc shifted by 87 mV negatively and 139 mV in the positive direction, respectively, and standard heterogeneous rate constant k0 increased by 16 times compared to the corresponding bare electrode, indicating the extraordinary activity of CAWs in electrocatalysis for the process.
The influence of different modified graphene on property of DSSCs
NASA Astrophysics Data System (ADS)
Xu, Kai; Shen, Yue; Zhang, Zongkun; Cao, Meng; Gu, Feng; Wang, Linjun
2016-01-01
Two kinds of modified reduced graphene oxide (rGO) power with different hydrophilic property were synthesized in NH3/hydrazine hydrate (N-rGO) and KOH/hydrazine hydrate (K-rGO) reduction systems, respectively, and be used as counter electrode materials. The as-prepared rGO counter electrodes were confirmed as substitution for Pt counter electrode in dye-sensitized solar cells (DSSCs). The efficiency (η) of DSSCs based on N-rGO counter electrodes achieved 4.72% while that of K-rGO counter electrode was just 3.38%. The electrochemical impedance spectroscopy (EIS) measurements revealed that the hydrophilic K-rGO counter electrode has a low charge transfer resistance (Rct) and the hydrophobic N-rGO counter electrode has a low series resistance (Rs).
Afkhami, Abbas; Bahiraei, Atousa; Madrakian, Tayyebeh
2017-06-01
In the present study, a simple and highly sensitive sensor for the determination of omeprazole based on nickel-zinc ferrite/graphene modified glassy carbon electrode is reported. The morphology and electro analytical performance of the fabricated sensor were characterized with X-ray diffraction spectrometry, Fourier transform infrared spectrometry, scanning electron microscopy, electrochemical impedance spectroscopy, cyclic voltammetry, differential pulse voltammetry and operation of the sensor. Results were compared with those achieved at the graphene modified glassy carbon electrode and bare glassy carbon electrode. Under the optimized experimental conditions, linear response was over the range of 0.03-100.0µmolL -1 . The lower detection limit was found to be 0.015µmolL -1 . The effect of different interferences on the anodic current response of OMZ was investigated. By measuring the concentrations of omeprazole in plasma and pharmaceutical samples, the practical application of the modified electrode was evaluated. This revealed that the nickel-zinc ferrite/graphene modified glassy carbon electrode shows excellent analytical performance for the determination of omeprazole with a very low detection limit, high sensitivity, and very good accuracy. Copyright © 2017 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Ito, Takashi; Perera, D. M. Neluni T.; Nagasaka, Shinobu
2008-01-01
This article describes an undergraduate electrochemistry laboratory experiment in which the students measure the L-ascorbic acid content of a real sample. Gold electrodes modified with self-assembled monolayers (SAMs) of thioctic acid and cysteamine are prepared to study the effects of surface modification on the electrode reaction of L-ascorbic…
Lara Carrillo, John Alejandro; Fierro Medina, Ricardo; Manríquez Rocha, Juan; Bustos Bustos, Erika; Insuasty Cepeda, Diego Sebastián; García Castañeda, Javier Eduardo; Rivera Monroy, Zuly Jenny
2017-11-14
In order to obtain gold electrode surfaces modified with Human Papillomavirus L1 protein (HPV L1)-derived peptides, two sequences, SPINNTKPHEAR and YIK, were chosen. Both have been recognized by means of sera from patients infected with HPV. The molecules, Fc-Ahx-SPINNTKPHEAR, Ac-C- Ahx -(Fc)KSPINNTKPHEAR, Ac-C- Ahx -SPINNTKPHEAR(Fc)K, C- Ahx -SPINNTKPHEAR, and (YIK)₂- Ahx -C, were designed, synthesized, and characterized. Our results suggest that peptides derived from the SPINNTKPHEAR sequence, containing ferrocene and cysteine residues, are not stable and not adequate for electrode surface modification. The surface of polycrystalline gold electrodes was modified with the peptides C-Ahx-SPINNTKPHEAR or (YIK)₂-Ahx-C through self-assembly. The modified polycrystalline gold electrodes were characterized via infrared spectroscopy and electrochemical measurements. The thermodynamic parameters, surface coverage factor, and medium pH effect were determined for these surfaces. The results indicate that surface modification depends on the peptide sequence (length, amino acid composition, polyvalence, etc.). The influence of antipeptide antibodies on the voltammetric response of the modified electrode was evaluated by comparing results obtained with pre-immune and post-immune serum samples.
NASA Astrophysics Data System (ADS)
Tsuneyasu, Shota; Jin, Lu; Nakamura, Kazuki; Kobayashi, Norihisa
2016-04-01
We demonstrate a novel electrochemical dual-mode displaying (DMD) device, which enables control of both coloration and light emission using an electrochemical reaction. The coloration control of the DMD device was based on an electrochromic (EC) reaction, whereas the light emission of the device was caused by an electrochemiluminescence (ECL) mechanism. This novel DMD device consisted of a pair of facing conductive polymer-modified electrodes: comb-shaped interdigitated Au electrodes modified with poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) layers and poly(2,3-dihydrothieno-1,4-dioxin)-poly(styrene sulfonate) (PEDOT/PSS) film-modified indium tin oxide (ITO) electrodes. When a bias voltage was applied between the PEDOT/PSS film-modified ITO electrode and the comb-shaped electrodes, a color change of the device was observed by the EC reaction of the MEH-PPV and PEDOT/PSS. On the other hand, an emission was obtained when the bias voltage was applied between two comb-shaped interdigitated electrodes. The orange emission was ascribed to the ECL reaction of the MEH-PPV layer, which resulted from the formation of a p-i-n junction in this layer.
Zhang, Yujie; Chen, Junhong; Fan, Huili; Chou, Kuo-Chih; Hou, Xinmei
2015-12-14
In this research, we demonstrate a simple route for preparing SiC@SiO2 core-shell nanocables and furthermore obtain SiC@SiO2 nanocables/MnO2 as hybrid electrodes for supercapacitors using various modified methods. The modified procedure consists of mild modifications using sodium hydroxide as well as UV light irradiation and deposition of MnO2. The morphology and microstructural characteristics of the composites are investigated using XRD, XPS, FE-SEM with EDS and TEM. The results indicate that the surfaces of modified SiC@SiO2 nanocables are uniformly coated with a MnO2 thin layer. The electrochemical behaviors of the hybrid electrodes are systematically measured in a three-electrode system using cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy. The resultant electrode presents a superb charge storage characteristic with a large specific capacitance of 276.3 F g(-1) at the current density of 0.2 A g(-1). Moreover, the hybrid electrode also displays a long cycle life with a good capacitance retention (∼92.0%) after 1000 CV cycles, exhibiting a promising potential for supercapacitors.
Emmanuel, R; Karuppiah, Chelladurai; Chen, Shen-Ming; Palanisamy, Selvakumar; Padmavathy, S; Prakash, P
2014-08-30
The present study involves a green synthesis of gold nanoparticles (Au-NPs) using Acacia nilotica twig bark extract at room temperature and trace level detection of one of the hazardous materials, viz. nitrobenzene (NB) that causes Methemoglobinaemia. The synthesis protocol demonstrates that the bioreduction of chloroauric acid leads to the formation of Au-NPs within 10min, suggesting a higher reaction rate than any other chemical methods involved. The obtained Au-NPs have been characterized by UV-vis spectroscopy, X-ray diffraction, transmission electron microscopy, Energy-Dispersive X-ray Spectroscopy and Fourier Transform Infrared Spectroscopy. The electrochemical detection of NB has been investigated at the green synthesized Au-NPs modified glassy carbon electrode by using differential pulse voltammetry (DPV). The Au-NPs modified electrode exhibits excellent reduction ability toward NB compared to unmodified electrode. The developed NB sensor at Au-NPs modified electrode displays a wide linear response from 0.1 to 600μM with high sensitivity of 1.01μAμM(-1)cm(-2) and low limit of detection of 0.016μM. The modified electrode shows exceptional selectivity in the presence of ions, phenolic and biologically coactive compounds. In addition, the Au-NPs modified electrode exhibits an outstanding recovery results toward NB in various real water samples. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Blegur, Ernes Josias; Endarko
2017-01-01
Carbon electrodes prepared with crosslink method for desalination purpose has been synthesized and characterized. The carbon electrodes were synthesized with activated carbon (700 - 1400 m2/g) and polyvinyl alcohol (PVA) as a binder using crosslink method with temperature crosslink at 120°C. Electrochemical properties of carbon electrodes were examined using electrical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The proposed study was to measure the salt-removal percentage of 330 µS/cm NaCl using a capacitive deionization (CDI) unit cell prepared with two pairs of carbon electrodes. The applied potential of 2.0 V and a flow rate of 25 mL/min were used to desalination tests. The result showed that the greatest value of the percentage of salt-removal was achieved at 36.1% for the carbon electrodes with Active Carbon Modified (ACM) while the salt-removal percentage for the Active Carbon (AC) electrodes only at 22%. The fact indicates that the active carbon modified using HNO3 can improve the efficiency of CDI about 14%.
Wu, Wenguo; Xie, Ronggang; Bai, Linling; Tang, Zuming; Gu, Zhongze
2012-05-01
Microbial Fuel Cells (MFCs) are robust devices capable of taping biological energy, converting pollutants into electricity through renewable biomass. The fabrication of nanostructured electrodes with good bio- and electrochemical activity, play a profound role in promoting power generation of MFCs. Au nanoparticles (AuNPs)-modified Boron-Doped Diamond (BDD) electrodes are fabricated by layer-by-layer (LBL) self-assembly technique and used for the direct electrochemistry of Shewanella loihica PV-4 in an electrochemical cell. Experimental results show that the peak current densities generated on the Au/PAH multilayer-modified BDD electrodes increased from 1.25 to 2.93 microA/cm(-2) as the layer increased from 0 to 6. Different cell morphologies of S. loihica PV-4 were also observed on the electrodes and the highest density of cells was attached on the (Au/PAH)6/BDD electrode with well-formed three-dimensional nanostructure. The electrochemistry of S. loihica PV-4 was enhanced on the (Au/PAH)4/BDD electrode due to the appropriate amount of AuNPsand thickness of PAH layer.
Sameenoi, Yupaporn; Mensack, Meghan M; Boonsong, Kanokporn; Ewing, Rebecca; Dungchai, Wijitar; Chailapakul, Orawan; Cropek, Donald M; Henry, Charles S
2011-08-07
Recently, the development of electrochemical biosensors as part of microfluidic devices has garnered a great deal of attention because of the small instrument size and portability afforded by the integration of electrochemistry in microfluidic systems. Electrode fabrication, however, has proven to be a major obstacle in the field. Here, an alternative method to create integrated, low cost, robust, patternable carbon paste electrodes (CPEs) for microfluidic devices is presented. The new CPEs are composed of graphite powder and a binder consisting of a mixture of poly(dimethylsiloxane) (PDMS) and mineral oil. The electrodes are made by filling channels molded in previously cross-linked PDMS using a method analogous to screen printing. The optimal binder composition was investigated to obtain electrodes that were physically robust and performed well electrochemically. After studying the basic electrochemistry, the PDMS-oil CPEs were modified with multi-walled carbon nanotubes (MWCNT) and cobalt phthalocyanine (CoPC) for the detection of catecholamines and thiols, respectively, to demonstrate the ease of electrode chemical modification. Significant improvement of analyte signal detection was observed from both types of modified CPEs. A nearly 2-fold improvement in the electrochemical signal for 100 μM dithiothreitol (DTT) was observed when using a CoPC modified electrode (4.0 ± 0.2 nA (n = 3) versus 2.5 ± 0.2 nA (n = 3)). The improvement in signal was even more pronounced when looking at catecholamines, namely dopamine, using MWCNT modified CPEs. In this case, an order of magnitude improvement in limit of detection was observed for dopamine when using the MWCNT modified CPEs (50 nM versus 500 nM). CoPC modified CPEs were successfully used to detect thiols in red blood cell lysate while MWCNT modified CPEs were used to monitor temporal changes in catecholamine release from PC12 cells following stimulation with potassium.
Ku, Shuhao; Palanisamy, Selvakumar; Chen, Shen-Ming
2013-12-01
Herein, we report a highly selective dopamine electrochemical sensor based on electrochemically pretreated graphite/nafion composite modified screen printed carbon (SPC) electrode. Electrochemically activated graphite/nafion composite was prepared by using a simple electrochemical method. Scanning electron microscope (SEM) used to characterize the surface morphology of the fabricated composite electrode. The SEM result clearly indicates that the graphitic basal planes were totally disturbed and leads to the formation of graphite nanosheets. The composite modified electrode showed an enhanced electrocatalytic activity toward the oxidation of DA when compared with either electrochemical pretreated graphite or nafion SPC electrodes. The fabricated composite electrode exhibits a good electrocatalytic oxidation toward DA in the linear response range from 0.5 to 70 μM with the detection limit of 0.023 μM. The proposed sensor also exhibits very good selectivity and stability, with the appreciable sensitivity. In addition, the proposed sensor showed satisfactory recovery results toward the commercial pharmaceutical DA samples. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Rong, Yaoguang; Han, Hongwei
2013-01-01
A monolithic quasi-solid-state dye-sensitized solar cell (DSSC) based on graphene-modified mesoscopic carbon-counter electrode is developed. A TiO2-working electrode layer, ZrO2 spacer layer, and carbon counter electrode layer were constructed on a single conducting glass substrate by screen printing. The quasi-solid-state polymer gel electrolyte employed a polymer composite as the gelator, and effectively infiltrated the porous layers. Fabricated with normal carbon-counter electrode (NC-CE) containing graphite and carbon black, the DSSC had a power conversion efficiency (PCE) of 5.09% with the fill factor of 0.63 at 100 mW cm-2 AM1.5 illumination. When the NC-CE was modified with graphene sheets, the PCE and fill factor were enhanced to 6.27% and 0.71, respectively. This improvement indicates excellent conductivity and high electrocatalytic activity of the graphene sheets, which have been considered as a promising platinum-free electrode material for DSSCs.
Alshahrani, Lina Abdullah; Li, Xi; Luo, Hui; Yang, Linlin; Wang, Mengmeng; Yan, Songling; Liu, Peng; Yang, Yuqin; Li, Quanhua
2014-01-01
A glassy carbon electrode was modified with a copper(II) complex [Cu(Sal-β-Ala) (3,5-DMPz)2] (Sal = salicylaldehyde, β-Ala = β-alanine, 3,5-DMPz = 3,5-dimethylpyrazole) and single-walled carbon nanotubes (SWCNTs). The modified electrode was used to detect catechol (CT) and hydroquinone (HQ) and exhibited good electrocatalytic activities toward the oxidation of CT and HQ. The peak currents were linear with the CT and HQ concentrations over the range of 5–215 μmol·L−1 and 5–370 μmol·L−1 with corresponding detection limits of 3.5 μmol·L−1 and 1.46 μmol·L−1 (S/N = 3) respectively. Moreover, the modified electrode exhibited good sensitivity, stability and reproducibility for the determination of CT and HQ, indicating the promising applications of the modified electrode in real sample analysis. PMID:25429411
Hua, Xin; Zhao, Li-Jun; Long, Yi-Tao
2018-06-04
Analysis of nicotinamide adenine dinucleotide (NAD + /NADH)-modified electrodes is important for in vitro monitoring of key biological processes. In this work, time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to analyze NAD + /NADH-modified gold electrodes. Interestingly, no obvious characteristic peaks of nicotinamide fragment could be observed in the mass spectra of NAD + /NADH in their neutral sodium pyrophosphate form. However, after acidification, the characteristic peaks for both NAD + and NADH were detected. This was due to the suppression effect of inner pyrophosphoric salts in both neutral molecules. Besides, it was proved that the suppression by inner salt was intramolecular. No obvious suppression was found between neighboring molecules. These results demonstrated the suppression effect of inner salts in ToF-SIMS analysis, providing useful evidence for the study of ToF-SIMS ionization mechanism of organic molecule-modified electrodes. Graphical Abstract ᅟ.
Matsuda, Naoki; Okabe, Hirotaka; Omura, Ayako; Nakano, Miki; Miyake, Koji
2017-01-01
To immobilize cytochrome c (cyt.c) on an ITO electrode while keeping its direct electron transfer (DET) functionality, the ITO electrode surface was modified with 11-{2-[2-(2-methoxyethoxy)ethoxy]ethoxy}undecylphosphonic acid (CH 3 O (CH 2 CH 2 O) 3 C 11 H 22 PO(OH) 2 , M-EG 3 -UPA) self-assembled monolayer (SAM) film. After a 100-times washing process to exchange a phosphate buffer saline solution surrounding cyt.c and ITO electrode to a fresh one, an in situ observation of visible absorption spectral change with slab optical waveguide (SOWG) spectroscopy showed that 87.7% of the cyt.c adsorbed on the M-EG 3 -UPA modified ITO electrode remained on the ITO electrode. The SOWG absorption spectra corresponding to oxidized and reduced cyt.c were observed with setting the ITO electrode potential at 0.3 and -0.3 V vs. Ag/AgCl, respectively, while probing the DET reaction between cyt.c and ITO electrode occurred. The amount of cyt.c was evaluated to be about 19.4% of a monolayer coverage based on the coulomb amount in oxidation and reduction peaks on cyclic voltammetry (CV) data. The CV peak current maintained to be 83.4% compared with the initial value for a M-EG 3 -UPA modified ITO electrode after 60 min continuous scan with 0.1 V/s between 0.3 and -0.3 V vs. Ag/AgCl.
Zeng, Ting; Leimkühler, Silke; Koetz, Joachim; Wollenberger, Ulla
2015-09-30
The bioelectrocatalytic sulfite oxidation by human sulfite oxidase (hSO) on indium tin oxide (ITO) is reported, which is facilitated by functionalizing of the electrode surface with polyethylenimine (PEI)-entrapped CdS nanoparticles and enzyme. hSO was assembled onto the electrode with a high surface loading of electroactive enzyme. In the presence of sulfite but without additional mediators, a high bioelectrocatalytic current was generated. Reference experiments with only PEI showed direct electron transfer and catalytic activity of hSO, but these were less pronounced. The application of the polyelectrolyte-entrapped quantum dots (QDs) on ITO electrodes provides a compatible surface for enzyme binding with promotion of electron transfer. Variations of the buffer solution conditions, e.g., ionic strength, pH, viscosity, and the effect of oxygen, were studied in order to understand intramolecular and heterogeneous electron transfer from hSO to the electrode. The results are consistent with a model derived for the enzyme by using flash photolysis in solution and spectroelectrochemistry and molecular dynamic simulations of hSO on monolayer-modified gold electrodes. Moreover, for the first time a photoelectrochemical electrode involving immobilized hSO is demonstrated where photoexcitation of the CdS/hSO-modified electrode lead to an enhanced generation of bioelectrocatalytic currents upon sulfite addition. Oxidation starts already at the redox potential of the electron transfer domain of hSO and is greatly increased by application of a small overpotential to the CdS/hSO-modified ITO.
NASA Astrophysics Data System (ADS)
Karthick Kannan, Padmanathan; Hu, Chunxiao; Morgan, Hywel; Moshkalev, Stanislav A.; Sekhar Rout, Chandra
2016-09-01
An electrochemical sensor has been developed for the detection of Bisphenol-A (BPA) using photolithographically patterned platinum electrodes modified with multilayer graphene nanobelts (GNB). Compared to bare electrodes, the GNB modified electrode exhibited enhanced BPA oxidation current, due to the high effective surface area and high adsorption capacity of the GNB. The sensor showed a linear response over the concentration range from 0.5 μM-9 μM with a very low limit of detection = 37.33 nM. In addition, the sensor showed very good stability and reproducibility with good specificity, demonstrating that GNB is potentially a new material for the development of a practical BPA electrochemical sensor with application in both industrial and plastic industries.
Ma, Menglin; Li, Jihong; McClane, Bruce A
2012-12-01
Clostridium perfringens type C strains are the only non-type-A isolates that cause human disease. They are responsible for enteritis necroticans, which was termed Darmbrand when occurring in post-World War II Germany. Darmbrand strains were initially classified as type F because of their exceptional heat resistance but later identified as type C strains. Since only limited information exists regarding Darmbrand strains, this study genetically and phenotypically characterized seven 1940s era Darmbrand-associated strains. Results obtained indicated the following. (i) Five of these Darmbrand isolates belong to type C, carry beta-toxin (cpb) and enterotoxin (cpe) genes on large plasmids, and express both beta-toxin and enterotoxin. The other two isolates are cpe-negative type A. (ii) All seven isolates produce highly heat-resistant spores with D(100) values (the time that a culture must be kept at 100°C to reduce its viability by 90%) of 7 to 40 min. (iii) All of the isolates surveyed produce the same variant small acid-soluble protein 4 (Ssp4) made by type A food poisoning isolates with a chromosomal cpe gene that also produce extremely heat-resistant spores. (iv) The Darmbrand isolates share a genetic background with type A chromosomal-cpe-bearing isolates. Finally, it was shown that both the cpe and cpb genes can be mobilized in Darmbrand isolates. These results suggest that C. perfringens type A and C strains that cause human food-borne illness share a spore heat resistance mechanism that likely favors their survival in temperature-abused food. They also suggest possible evolutionary relationships between Darmbrand strains and type A strains carrying a chromosomal cpe gene.
Shahjehan, Khurram; Li, Guangxi; Dhokarh, Rajanigandha; Kashyap, Rahul; Janish, Christopher; Alsara, Anas; Jaffe, Allan S.; Hubmayr, Rolf D.; Gajic, Ognjen
2012-01-01
Background: At the onset of acute hypoxic respiratory failure, critically ill patients with acute lung injury (ALI) may be difficult to distinguish from those with cardiogenic pulmonary edema (CPE). No single clinical parameter provides satisfying prediction. We hypothesized that a combination of those will facilitate early differential diagnosis. Methods: In a population-based retrospective development cohort, validated electronic surveillance identified critically ill adult patients with acute pulmonary edema. Recursive partitioning and logistic regression were used to develop a decision support tool based on routine clinical information to differentiate ALI from CPE. Performance of the score was validated in an independent cohort of referral patients. Blinded post hoc expert review served as gold standard. Results: Of 332 patients in a development cohort, expert reviewers (κ, 0.86) classified 156 as having ALI and 176 as having CPE. The validation cohort had 161 patients (ALI = 113, CPE = 48). The score was based on risk factors for ALI and CPE, age, alcohol abuse, chemotherapy, and peripheral oxygen saturation/Fio2 ratio. It demonstrated good discrimination (area under curve [AUC] = 0.81; 95% CI, 0.77-0.86) and calibration (Hosmer-Lemeshow [HL] P = .16). Similar performance was obtained in the validation cohort (AUC = 0.80; 95% CI, 0.72-0.88; HL P = .13). Conclusions: A simple decision support tool accurately classifies acute pulmonary edema, reserving advanced testing for a subset of patients in whom satisfying prediction cannot be made. This novel tool may facilitate early inclusion of patients with ALI and CPE into research studies as well as improve and rationalize clinical management and resource use. PMID:22030803
Robert, Jérôme; Pantel, Alix; Merens, Audrey; Meiller, Elodie; Lavigne, Jean-Philippe; Nicolas-Chanoine, Marie-Hélène
2017-01-17
Carbapenemase-producing Enterobacteriaceae (CPE) are difficult to identify among carbapenem non-susceptible Enterobacteriaceae (NSE). We designed phenotypic strategies giving priority to high sensitivity for screening putative CPE before further testing. Presence of carbapenemase-encoding genes in ertapenem NSE (MIC > 0.5 mg/l) consecutively isolated in 80 French laboratories between November 2011 and April 2012 was determined by the Check-MDR-CT103 array method. Using the Mueller-Hinton (MH) disk diffusion method, clinical diameter breakpoints of carbapenems other than ertapenem, piperazicillin+tazobactam, ticarcillin+clavulanate and cefepime as well as diameter cut-offs for these antibiotics and temocillin were evaluated alone or combined to determine their performances (sensitivity, specificity, positive and negative likelihood ratios) for identifying putative CPE among these ertapenem-NSE isolates. To increase the screening specificity, these antibiotics were also tested on cloxacillin-containing MH when carbapenem NSE isolates belonged to species producing chromosomal cephalosporinase (AmpC) but Escherichia coli. Out of the 349 ertapenem NSE, 52 (14.9%) were CPE, including 39 producing OXA-48 group carbapenemase, eight KPC and five MBL. A screening strategy based on the following diameter cut offs, ticarcillin+clavulanate <15 mm, temocillin <15 mm, meropenem or imipenem <22 mm, and cefepime <26 mm, showed 100% sensitivity and 68.1% specificity with the better likelihood ratios combination. The specificity increased when a diameter cut-off <32 mm for imipenem (76.1%) or meropenem (78.8%) further tested on cloxacillin-containing MH was added to the previous strategy for AmpC-producing isolates. The proposed strategies that allowed for increasing the likelihood of CPE among ertapenem-NSE isolates should be considered as a surrogate for carbapenemase production before further CPE confirmatory testing.
Jeong, Seok Hoon; Kim, Han Sung; Kim, Jae Seok; Shin, Dong Hoon; Kim, Hyun Soo; Park, Min Jeong; Shin, Saeam; Hong, Jun Sung; Lee, Seung Soon; Song, Wonkeun
2016-11-01
The emergence of carbapenemase-producing Enterobacteriaceae (CPE) represents a major clinical problem because these bacteria are resistant to most antibiotics. CPE remain relatively uncommon in Korea. We report the prevalence, clinical characteristics, and molecular epidemiology of CPE isolates collected from five university hospitals in Korea. Between January and December 2015, 393 non-duplicated isolates that were nonsusceptible to ertapenem were analyzed. Production of carbapenemase, extended-spectrum β-lactamase, and AmpC β-lactamase was determined by genotypic tests. Antimicrobial susceptibility profiles were determined by using an Etest. Clonality of Klebsiella pneumoniae carbapenemase (KPC)-2-producing and oxacillinase (OXA)-232-producing Klebsiella pneumoniae isolates was determined by pulsed-field gel electrophoresis (PFGE). Of the 393 isolates tested, 79 (20.1%) were CPE. Of these 79 isolates, 47 (59.5%) harbored the bla(OXA-232) gene while the remaining isolates carried genes bla(KPC-2) (n=27), bla(IMP-1) (n=4), and bla(NDM-1) (n=1). Among the 24 KPC-2 K. pneumoniae isolates from hospital B, 100% were resistant to carbapenems, 8% to colistin, and 0% to tigecycline. Among the 45 OXA-232 K. pneumoniae at hospital C, 95% were resistant to ertapenem, 68% to imipenem, 95% to meropenem, 10% to colistin, and 24% to tigecycline. PFGE analysis revealed a unique pattern for KPC-2 K. pneumoniae and identified 30 isolates belonging to the dominant pulsotypes (PT)1 and PT2 among 41 OXA-232 K. pneumoniae isolates. CPE strains are present in Korea, with the majority of K. pneumoniae isolates producing OXA-232 and KPC-2. The prevalence and predominant genotypes of CPE show hospital-specific differences.
Wang, Wen-Cheng; Yan, Li-Jun; Shi, Fan; Niu, Xue-Liang; Huang, Guo-Lei; Zheng, Cai-Juan; Sun, Wei
2015-01-01
By using the hydrothermal method, carbon microspheres (CMS) were fabricated and used for electrode modification. The characteristics of CMS were investigated using various techniques. The biocompatible sensing platform was built by immobilizing hemoglobin (Hb) on the micrometer-sized CMS-modified electrode with a layer of chitosan membrane. On the cyclic voltammogram, a couple of quasi-reversible cathodic and anodic peaks appeared, showing that direct electrochemistry of Hb with the working electrode was achieved. The catalytic reduction peak currents of the bioelectrode to trichloroacetic acid was established in the linear range of 2.0~70.0 mmol·L−1 accompanied by a detection limit of 0.30 mmol·L−1 (3σ). The modified electrode displayed favorable sensitivity, good reproducibility and stability, which suggests that CMS is promising for fabricating third-generation bioelectrochemical sensors. PMID:26703621
Yu, Zhimin; Wei, Xiuhua; Yan, Jilin; Tu, Yifeng
2012-04-21
With TiO(2) nanoparticles as carrier, a supported nano-material of Au atomic cluster/TiO(2) nano-hybrid was synthesized. It was then modified onto the surface of indium tin oxide (ITO) by Nafion to act as a working electrode for exciting the electrochemiluminescence (ECL) of luminol. The properties of the nano-hybrid and the modified electrode were characterized by XRD, XPS, electronic microscopy, electrochemistry and spectroscopy. The experimental results demonstrated that the modification of this nano-hybrid onto the ITO electrode efficiently intensified the ECL of luminol. It was also revealed that the ECL intensity of luminol on this modified electrode showed very sensitive responses to oxygen and hydrogen peroxide. The detection limits for dissolved oxygen and hydrogen peroxide were 2 μg L(-1) and 5.5 × 10(-12) M, respectively. Besides the discussion of the intensifying mechanism of this nano-hybrid for ECL of luminol, the developed method was also applied for monitoring dissolved oxygen and evaluating the scavenging efficiency of reactive oxygen species of the Ganoderma lucidum spore.
NASA Astrophysics Data System (ADS)
Zhao, Zhiwei; Mu, Shuai; Zheng, Jie; Gu, Lingyan; Shen, Guijun; Shen, Yuan
2017-07-01
The preparation and application of Cetyl Trimethyl Ammonium Bromide/Nano-ZnO and Multi-walled Carbon Nanotubes (CTAB/ZnO-MWNTs) Modified Electrodes was studied, establishing a new electrochemical method for determination of carteolol hydrochloride in urine. After its pre-enrichment by adsorption and extraction on modified electrodes, electrochemical behaviors of carteolol hydrochloride on the modified electrodes were studied by CV and DPV. The response is linear at the range of 1×10-3 ∼ 2×10-1 g/L, with a detection limit of 2×10-4 g/L. Under appropriate conditions, the content of carteolol hydrochloride in urine can be determined directly by the method, which had strong anti-interference ability and the recovery is 96.5% - 110.5%. In addition, extraction and adsorption behaviors of the modified electrodes for carteolol hydrochloride were studied by chronocoulumetry, and the results showed that extraction during the enrichment process played a major role at low concentrations, and contribution of surface adsorption became greater with the increase of concentrations.
NASA Astrophysics Data System (ADS)
Anaraki Firooz, Azam; Hosseini Nia, Bahram; Beheshtian, Javad; Ghalkhani, Masoumeh
2017-10-01
In this study, undoped and 1 wt.% Fe-doped with ZnO, and TiO2 nanostructures were synthesized by a simple hydrothermal method without using templates. The influence of the Fe dopant on structural, optical and electrochemical response was studied by x-ray diffraction, scanning electron microscopy, UV-Vis spectra, photoluminescence spectra and electrochemical characterization system. The electrochemical response of the carbon paste electrode modified with synthesized nanostructures (undoped ZnO and TiO2 as well as doped with Fe ions) toward levodopa (L-Dopa) was studied. Cyclic voltammetry using provided modified electrodes showed electro-catalytic properties for electro-oxidation of L-Dopa and a significant reduction was observed in the anodic overvoltage compared to the bare electrode. The results indicated the presence of the sufficient dopants. The best response was obtained in terms of the current enhancement, overvoltage reduction, and reversibility improvement of the L-Dopa oxidation reaction under experimental conditions by the modified electrode with TiO2 nanoparticles doped with Fe ions.
Lo, Momath; Diaw, Abdou K D; Gningue-Sall, Diariatou; Aaron, Jean-Jacques; Oturan, Mehmet A; Chehimi, Mohamed M
2018-05-09
Adhesively bonded polypyrrole thin films doped with benzene sulfonic acid (BSA) were electrodeposited on aminobenzenediazonium-modified flexible ITO electrodes and further employed for the detection of Pb 2+ , Cu 2+ , and Cd 2+ metal ions in aqueous medium. The aminophenyl (AP) adhesive layer was grafted to ITO by electroreduction of the in situ generated parent diazonium compound. Polypyrrole (PPy) thin films exhibited remarkable adhesion to aminophenyl (ITO-AP). The strongly adherent polypyrrole films exhibited excellent electroactivity in the doped state with BSA which itself served to chelate the metal ions in aqueous medium. The surface of the resulting, modified flexible electrode was characterized by XPS, SEM, and electrochemical methods. The ITO-AP-PPy electrodes were then used for the simultaneous detection of Cu 2+ , Cd 2+ , and Pb 2+ by differential pulse voltammetry (DPV). The detection limits were 11.1, 8.95, and 0.99 nM for Cu 2+ , Cd 2+ , and Pb 2+ , respectively. In addition, the modified electrodes displayed a good reproducibility, making them suitable for the determination of heavy metals in real wastewater samples.
NASA Astrophysics Data System (ADS)
Jiang, H. R.; Shyy, W.; Wu, M. C.; Wei, L.; Zhao, T. S.
2017-10-01
The potential of B4C as a metal-free catalyst for vanadium redox reactions is investigated by first-principles calculations. Results show that the central carbon atom of B4C can act as a highly active reaction site for redox reactions, due primarily to the abundant unpaired electrons around it. The catalytic effect is then verified experimentally by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) tests, both of which demonstrate that B4C nanoparticles can enhance the kinetics for both V2+/V3+ and VO2+/VO2+ redox reactions, indicating a bi-functional effect. The B4C-nanoparticle-modified graphite felt electrodes are finally prepared and tested in vanadium redox flow batteries (VRFBs). It is shown that the batteries with the prepared electrodes exhibit energy efficiencies of 88.9% and 80.0% at the current densities of 80 and 160 mA cm-2, which are 16.6% and 18.8% higher than those with the original graphite felt electrodes. With a further increase in current densities to 240 and 320 mA cm-2, the batteries can still maintain energy efficiencies of 72.0% and 63.8%, respectively. All these results show that the B4C-nanoparticle-modified graphite felt electrode outperforms existing metal-free catalyst modified electrodes, and thus can be promising electrodes for VRFBs.
Li, Xueliang; Geng, Tianwen; Ma, Shuang; Li, Yatian; Gao, Shijie; Wu, Zhiyong
2017-06-01
The performance of coherent free-space optical (CFSO) communication with phase modulation is limited by both phase fluctuations and intensity scintillations induced by atmospheric turbulence. To improve the system performance, one effective way is to use digital phase estimation. In this paper, a CFSO communication system with quadrature phase-shift keying modulation is studied. With consideration of the effects of log-normal amplitude fluctuations and Gauss phase fluctuations, a two-stage Mth power carrier phase estimation (CPE) scheme is proposed. The simulation results show that the phase noise can be suppressed greatly by this scheme, and the system symbol error rate performance with the two-stage Mth power CPE can be three orders lower than that of the single-stage Mth power CPE. Therefore, the two-stage CPE we proposed can contribute to the performance improvements of the CFSO communication system and has determinate guidance sense to its actual application.
Razmi, H; Heidari, H
2009-05-01
This work describes the electrochemical and electrocatalytic properties of carbon ceramic electrode (CCE) modified with lead nitroprusside (PbNP) nanoparticles as a new electrocatalyst material. The structure of deposited film on the CCE was characterized by energy dispersive X-ray (EDX), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM). The cyclic voltammogram (CV) of the PbNP modified CCE showed two well-defined redox couples due to [Fe(CN)5NO](3-)/[Fe(CN)5NO](2-) and Pb(IV)/Pb(II) redox reactions. The modified electrode showed electrocatalytic activity toward the oxidation of L-cysteine and was used as an amperometric sensor. Also, to reduce the fouling effect of L-cysteine and its oxidation products on the modified electrode, a thin film of Nafion was coated on the electrode surface. The sensor response was linearly changed with L-cysteine concentration in the range of 1 x 10(-6) to 6.72 x 10(-5)mol L(-1) with a detection limit (signal/noise ratio [S/N]=3) of 0.46 microM. The sensor sensitivity was 0.17 microA (microM)(-1), and some important advantages such as simple preparation, fast response, good stability, interference-free signals, antifouling properties, and reproducibility of the sensor for amperometric determination of L-cysteine were achieved.
Ghavami, Raouf; Salimi, Abdollah; Navaee, Aso
2011-05-15
For the first time a novel and simple electrochemical method was used for simultaneous detection of DNA bases (guanine, adenine, thymine and cytosine) without any pretreatment or separation process. Glassy carbon electrode modified with silicon carbide nanoparticles (SiCNP/GC), have been used for electrocatalytic oxidation of purine (guanine and adenine) and pyrimidine bases (thymine and cytosine) nucleotides. Field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) techniques were used to examine the structure of the SiCNP/GC modified electrode. The modified electrode shows excellent electrocatalytic activity toward guanine, adenine, thymine and cytosine. Differential pulse voltammetry (DPV) was proposed for simultaneous determination of four DNA bases. The effects of different parameters such as the thickness of SiC layer, pulse amplitude, scan rate, supporting electrolyte composition and pH were optimized to obtain the best peak potential separation and higher sensitivity. Detection limit, sensitivity and linear concentration range of the modified electrode toward proposed analytes were calculated for, guanine, adenine, thymine and cytosine, respectively. As shown this sensor can be used for nanomolar or micromolar detection of different DNA bases simultaneously or individually. This sensor also exhibits good stability, reproducibility and long lifetime. Copyright © 2011 Elsevier B.V. All rights reserved.
Calışkan, Necla; Sögüt, Eda; Saka, Cafer; Yardım, Yavuz; Sentürk, Zuhre
2010-09-01
This paper is the first report describing the characterization of local diatomite of Caldiran-Van region (Eastern Anatolia, Turkey). Special attention was paid to the ability of its electroanalytical performance at modified electrodes and to the potential application of diatomite-modified electrode. For this purpose, the determination of Naratriptan which is a novel oral triptan (5-hydroxytryptamine receptor agonist) in migraine treatment, by means of a carbon paste electrode modified with 10% (w/w) of diatomite was studied using cyclic and square-wave voltammetry. The experimental conditions that affect the electrode reaction process were studied in terms of pH of the supporting electrolyte, scan rate, accumulation variables, modifier composition and square-wave parameters. Using square-wave stripping mode, the drug yielded a well-defined voltammetric response in Britton-Robinson buffer, pH 4.0 at 0.84 V (vs. Ag/AgCl) (a pre-concentration step being carried out with an open circuit at 120 s). The process could be used to determine Naratriptan concentrations in the range 5x10(-7)-9x10(-7) M, with a detection limit of 1.25x10(-7) M (46.5 mug L(-1)). The applicability of the method to spiked human urine samples was illustrated.
Hossain, Md Faruk; Park, Jae Y.
2017-01-01
A highly sensitive amperometric glucose sensor was developed by immobilization of glucose oxidase (GOx) onto multi-layer reduced graphene oxide (MRGO) sheets decorated with platinum and gold flower-like nanoparticles (PtAuNPs) modified Au substrate electrode. The fabricated MRGO/PtAuNPs modified hybrid electrode demonstrated high electrocatalytic activities toward oxidation of H2O2, to which it had a wide linear response that ranged from 0.5 to 8 mM (R2 = 0.997), and high sensitivity of 506.25 μA/mMcm2. Furthermore, glucose oxidase-chitosan composite and cationic polydiallyldimethylammonium chloride (PDDA) were assembled by a casting method on the surface of MRGO/PtAuNPs modified electrode. This as-fabricated hybrid biosensor electrode exhibited high electrocatalytic activity for the detection of glucose in PBS. It demonstrated good analytical properties in terms of a low detection limit of 1 μM (signal-to-noise ratio of 3), short response time (3 s), high sensitivity (17.85 μA/mMcm2), and a wide linear range (0.01–8 mM) for glucose sensing. These results reveal that the newly developed sensing electrode offers great promise for new type enzymatic biosensor applications. PMID:28333943
Dong, Sheying; Zhang, Dandan; Suo, Gaochao; Wei, Wenbo; Huang, Tinglin
2016-08-31
A novel multi-function Metal-Organic Framework composite Ag@Zn-TSA (zinc thiosalicylate, Zn(C7H4O2S), Zn-TSA) was synthesized as highly efficient immobilization matrixes of myoglobin (Mb)/glucose oxidase (GOx) for electrochemical biosensing. The electrochemical biosensors based on Ag@Zn-TSA composite and ionic liquid (IL) modified carbon paste electrode (CPE) were fabricated successfully. Furthermore, the properties of the sensors were discussed by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and amperometric current-time curve, respectively. The results showed the proposed biosensors had wide linear response to hydrogen peroxide (H2O2) in the range of 0.3-20,000 μM, to nitrite (NO2(-)) for 1.3 μM-1660 μM and 2262 μM-1,33,000 μM, to glucose for 2.0-1022 μM, with a low detection limit of 0.08 μM for H2O2, 0.5 μM for NO2(-), 0.8 μM for glucose. The values of the apparent heterogeneous electron transfer rate constant (ks) for Mb and GOx were estimated as 2.05 s(-1) and 2.45 s(-1), respectively. Thus, Ag@Zn-TSA was a kind of ideal material as highly efficient immobilization matrixes for sensitive electrochemical biosensing. In addition, this work indicated that MOF nanocomposite had a great potential for constructing wide range of sensing interface. Copyright © 2016 Elsevier B.V. All rights reserved.
Atomically-thin molecular layers for electrode modification of organic transistors
NASA Astrophysics Data System (ADS)
Gim, Yuseong; Kang, Boseok; Kim, Bongsoo; Kim, Sun-Guk; Lee, Joong-Hee; Cho, Kilwon; Ku, Bon-Cheol; Cho, Jeong Ho
2015-08-01
Atomically-thin molecular layers of aryl-functionalized graphene oxides (GOs) were used to modify the surface characteristics of source-drain electrodes to improve the performances of organic field-effect transistor (OFET) devices. The GOs were functionalized with various aryl diazonium salts, including 4-nitroaniline, 4-fluoroaniline, or 4-methoxyaniline, to produce several types of GOs with different surface functional groups (NO2-Ph-GO, F-Ph-GO, or CH3O-Ph-GO, respectively). The deposition of aryl-functionalized GOs or their reduced derivatives onto metal electrode surfaces dramatically enhanced the electrical performances of both p-type and n-type OFETs relative to the performances of OFETs prepared without the GO modification layer. Among the functionalized rGOs, CH3O-Ph-rGO yielded the highest hole mobility of 0.55 cm2 V-1 s-1 and electron mobility of 0.17 cm2 V-1 s-1 in p-type and n-type FETs, respectively. Two governing factors: (1) the work function of the modified electrodes and (2) the crystalline microstructures of the benchmark semiconductors grown on the modified electrode surface were systematically investigated to reveal the origin of the performance improvements. Our simple, inexpensive, and scalable electrode modification technique provides a significant step toward optimizing the device performance by engineering the semiconductor-electrode interfaces in OFETs.Atomically-thin molecular layers of aryl-functionalized graphene oxides (GOs) were used to modify the surface characteristics of source-drain electrodes to improve the performances of organic field-effect transistor (OFET) devices. The GOs were functionalized with various aryl diazonium salts, including 4-nitroaniline, 4-fluoroaniline, or 4-methoxyaniline, to produce several types of GOs with different surface functional groups (NO2-Ph-GO, F-Ph-GO, or CH3O-Ph-GO, respectively). The deposition of aryl-functionalized GOs or their reduced derivatives onto metal electrode surfaces dramatically enhanced the electrical performances of both p-type and n-type OFETs relative to the performances of OFETs prepared without the GO modification layer. Among the functionalized rGOs, CH3O-Ph-rGO yielded the highest hole mobility of 0.55 cm2 V-1 s-1 and electron mobility of 0.17 cm2 V-1 s-1 in p-type and n-type FETs, respectively. Two governing factors: (1) the work function of the modified electrodes and (2) the crystalline microstructures of the benchmark semiconductors grown on the modified electrode surface were systematically investigated to reveal the origin of the performance improvements. Our simple, inexpensive, and scalable electrode modification technique provides a significant step toward optimizing the device performance by engineering the semiconductor-electrode interfaces in OFETs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03307a
Online Continuing Professional Education: An Evaluative Case Study
ERIC Educational Resources Information Center
Pullen, Darren L.
2005-01-01
An evaluation study, assessing the pedagogical and instructional design (e-pedagogy) effectiveness of online continuing professional education (CPE) courses offered by a large Australasian CPE provider to health care professionals (HCPs). The study used a naturalistic theory approach in conjunction with a multilevel evaluation to examine the…
Quality Assurance in Continuing Professional Education. An Analysis.
ERIC Educational Resources Information Center
Tovey, Philip
Based on research conducted in and around universities in the United Kingdom, this book analyzes quality assurance in continuing professional education (CPE). An introduction provides a close look at the terms "quality,""quality assurance," and "CPE." Part I deals with context. Chapter 1 looks at theoretical…
Compact CPE: a full unit of clinical pastoral education in 27 days.
Beverly, U H
1990-01-01
Details a four-week Basic Clinical Pastoral Education Unit. Gives a rationale for the abbreviated unit. Notes positive factors as well as limitations of such an educational experience and urges other CPE supervisors to try the compact approach. Critical responses follow the article.
Hansen, Majken N; Farjami, Elaheh; Kristiansen, Martin; Clima, Lilia; Pedersen, Steen Uttrup; Daasbjerg, Kim; Ferapontova, Elena E; Gothelf, Kurt V
2010-04-16
A new DNA modifier containing triazene, ferrocene, and activated ester functionalities was synthesized and applied for electrochemical grafting and characterization of DNA at glassy carbon (GC) and gold electrodes. The modifier was synthesized from ferrocenecarboxylic acid by attaching a phenyltriazene derivative to one of the ferrocene Cp rings, while the other Cp ring containing the carboxylic acid was converted to an activated ester. The modifier was conjugated to an amine-modified DNA sequence. For immobilization of the conjugate at Au or GC electrodes, the triazene was activated by dimethyl sulfate for release of the diazonium salt. The salt was reductively converted to the aryl radical which was readily immobilized at the surface. DNA grafted onto electrodes exhibited remarkable hybridization properties, as detected through a reversible shift in the redox potential of the Fc redox label upon repeated hybridization/denaturation procedures with a complementary target DNA sequence. By using a methylene blue (MB) labeled target DNA sequence the hybridization could also be followed through the MB redox potential. Electrochemical studies demonstrated that grafting through the triazene modifier can successfully compete with existing protocols for DNA immobilization through the commonly used alkanethiol linkers and diazonium salts. Furthermore, the triazene modifier provides a practical one-step immobilization procedure.
Ramanathan, Giriprasath; Muthukumar, Thangavelu; Tirichurapalli Sivagnanam, Uma
2017-11-05
Exploring the importance of nanofibrous scaffold with traditionally important medicine as a wound dressing material prevents infection and aids in faster healing of wounds. In the present study, the Collagen (COL) from the marine fish skin was extracted and employed for coating the Poly(3-hydroxybutyric acid) (P)-Gelatin (G) nanofibrous scaffold with a bioactive Coccinia grandis extract (CPE) fabricated through electrospinning. Further, the fabricated collagen coated nanofibrous scaffold (PG-CPE-COL) applied to the experimental wound of rats and the wound healing was analyzed with by physiochemical and biological techniques. The increased level of hydroxyproline, hexosamine and uronic acid was observed in PG-CPE-COL treated than the other groups. The CPE and collagen in the nanofibrous scaffold accelerates the wound healing and thereby reduced the inflammation caused by the cyclooxygenase-2 (COX-2) and inducible nitric oxide synthases (iNOS) in wound healing. The nanofibrous scaffold has influenced the expression of various growth factors such as vascular endothelial growth factor (VEGF), epidermal growth factor (EGF) and transforming growth factor (TGF-β). In addition, the PG-CPE-COL nanofibrous scaffold increases the deposition of collagen synthesis and accelerates reepithelialization. Thus, the results suggest that the collagen coated nanofibrous scaffold with bioactive traditional medicine enhanced the faster healing of wound. Copyright © 2017 Elsevier B.V. All rights reserved.
Blane, Beth; Coll, Francesc; Naydenova, Plamena; Hunt, Martin; Tracey, Alan; Hopkins, Katie L.; Brown, Nicholas M.; Woodford, Neil; Parkhill, Julian
2017-01-01
Dissemination of carbapenem resistance among pathogenic Gram-negative bacteria is a looming medical emergency. Efficient spread of resistance within and between bacterial species is facilitated by mobile genetic elements. We hypothesized that wastewater contributes to the dissemination of carbapenemase-producing Enterobacteriaceae (CPE), and studied this through a cross-sectional observational study of wastewater in the East of England. We isolated clinically relevant species of CPE in untreated and treated wastewater, confirming that waste treatment does not prevent release of CPE into the environment. We observed that CPE-positive plants were restricted to those in direct receipt of hospital waste, suggesting that hospital effluent may play a role in disseminating carbapenem resistance. We postulated that plasmids carrying carbapenemase genes were exchanged between bacterial hosts in sewage, and used short-read (Illumina) and long-read (MinION) technologies to characterize plasmids encoding resistance to antimicrobials and heavy metals. We demonstrated that different CPE species (Enterobacter kobei and Raoultella ornithinolytica) isolated from wastewater from the same treatment plant shared two plasmids of 63 and 280 kb. The former plasmid conferred resistance to carbapenems (blaOXA-48), and the latter to numerous drug classes and heavy metals. We also report the complete genome sequence for Enterobacter kobei. Small, portable sequencing instruments such as the MinION have the potential to improve the quality of information gathered on antimicrobial resistance in the environment. PMID:29026655
Raymond, K.L.; Vondracek, B.
2011-01-01
Cattle grazing in riparian areas can reduce water quality, alter stream channel characteristics, and alter fish and macroinvertebrate assemblage structure. The U.S. Department of Agriculture, Natural Resources Conservation Services has recommended Rotational Grazing (RG) as an alternative management method on livestock and dairy operations to protect riparian areas and water quality. We evaluated 13 stream channel characteristics, benthic macroinvertebrate larvae (BML), and chironomid pupal exuviae (CPE) from 18 sites in the Upper Midwest of the United States in relation to RG and conventional grazing (CG). A Biotic Composite Score comprised of several macroinvertebrate metrics was developed for both the BML assemblage and the CPE assemblage. Multi-Response Permutation Procedures (MRPP) indicated a significant difference in stream channel characteristics between RG and CG. Nonmetric Multidimensional Scaling indicated that RG sites were associated with more stable stream banks, higher quality aquatic habitat, lower soil compaction, and larger particles in the streambed. However, neither MRPP nor Mann-Whitney U tests demonstrated a difference in Biotic Composite Scores for BML or CPE along RG and CG sites. The BML and CPE metrics were significantly correlated, indicating that they were likely responding to similar variables among the study sites. Although stream channel characteristics appeared to respond to grazing management, BML and CPE may have responded to land use throughout the watershed, as well as local land use. ?? 2011 Springer Science+Business Media B.V. (outside the USA).
NASA Astrophysics Data System (ADS)
Arain, Salma Aslam; Kazi, Tasneem G.; Afridi, Hassan Imran; Abbasi, Abdul Rasool; Panhwar, Abdul Haleem; Naeemullah; Shanker, Bhawani; Arain, Mohammad Balal
2014-12-01
An efficient, innovative preconcentration method, dual-cloud point extraction (d-CPE) has been developed for the extraction and preconcentration of copper (Cu2+) in serum samples of different viral hepatitis patients prior to couple with flame atomic absorption spectrometry (FAAS). The d-CPE procedure was based on forming complexes of elemental ions with complexing reagent 1-(2-pyridylazo)-2-naphthol (PAN), and subsequent entrapping the complexes in nonionic surfactant (Triton X-114). Then the surfactant rich phase containing the metal complexes was treated with aqueous nitric acid solution, and metal ions were back extracted into the aqueous phase, as second cloud point extraction stage, and finally determined by flame atomic absorption spectrometry using conventional nebulization. The multivariate strategy was applied to estimate the optimum values of experimental variables for the recovery of Cu2+ using d-CPE. In optimum experimental conditions, the limit of detection and the enrichment factor were 0.046 μg L-1 and 78, respectively. The validity and accuracy of proposed method were checked by analysis of Cu2+ in certified sample of serum (CRM) by d-CPE and conventional CPE procedure on same CRM. The proposed method was successfully applied to the determination of Cu2+ in serum samples of different viral hepatitis patients and healthy controls.
Henkel, Paul Jacob
2018-01-01
Continuing professional education (CPE) plays an important role in continuing professional development of pharmacists for providing quality pharmaceutical care but also to maintain professional and organizational vitality and meet changing community/population needs. The study objective was to describe and understand factors of importance in selection of CPE credit hours among Upper Midwest pharmacists. A cross-sectional study of licensed pharmacists (n = 1239) in Iowa, Minnesota, Nebraska, North Dakota, and South Dakota included completion of a questionnaire on demographics and CPE decision-making. Factor analysis, t-test, and multivariate analyses were performed using Stata 10.1. Pharmacists placed greatest importance on maintaining licensure (mean = 2.72/3.00), personal interest (mean = 2.57), and self-improvement (mean = 2.42). Community/population need (mean = 1.83) was rated as slightly more important (p < 0.01) by retail/community pharmacists, females, and those with a Doctor of Pharmacy degree or pharmacy residency while business growth/development (mean = 1.33) was rated slightly more important (p < 0.01) by retail/community pharmacists. Despite findings that neither community/population need nor business development were among the most important factors in pharmacists’ CPE selection, there exists significant potential for pharmacists to utilize CPE to maintain professional and organizational vitality in the labor market, but more importantly to ensure continued provision of quality pharmaceutical care and patient education. PMID:29389850
Henkel, Paul Jacob; Marvanova, Marketa
2018-02-01
Continuing professional education (CPE) plays an important role in continuing professional development of pharmacists for providing quality pharmaceutical care but also to maintain professional and organizational vitality and meet changing community/population needs. The study objective was to describe and understand factors of importance in selection of CPE credit hours among Upper Midwest pharmacists. A cross-sectional study of licensed pharmacists ( n = 1239) in Iowa, Minnesota, Nebraska, North Dakota, and South Dakota included completion of a questionnaire on demographics and CPE decision-making. Factor analysis, t -test, and multivariate analyses were performed using Stata 10.1. Pharmacists placed greatest importance on maintaining licensure (mean = 2.72/3.00), personal interest (mean = 2.57), and self-improvement (mean = 2.42). Community/population need (mean = 1.83) was rated as slightly more important ( p < 0.01) by retail/community pharmacists, females, and those with a Doctor of Pharmacy degree or pharmacy residency while business growth/development (mean = 1.33) was rated slightly more important ( p < 0.01) by retail/community pharmacists. Despite findings that neither community/population need nor business development were among the most important factors in pharmacists' CPE selection, there exists significant potential for pharmacists to utilize CPE to maintain professional and organizational vitality in the labor market, but more importantly to ensure continued provision of quality pharmaceutical care and patient education.
André, Gaelle; Haudecoeur, Elise; Courtois, Emmanuelle; Monot, Marc; Dupuy, Bruno; Rodionov, Dmitry A; Martin-Verstraete, Isabelle
2017-05-01
Cpe1786 of Clostridium perfringens is an Rrf2-type regulator containing the three-cysteine residues coordinating a Fe-S in IscR, the repressor controlling Fe-S homeostasis in enterobacteria. The cpe1786 gene formed an operon with iscSU involved in Fe-S biogenesis and tmrU. This operon was transcribed from a σ A -dependent promoter. We showed that in the heterologous host Bacillus subtilis, Cpe1786, renamed IscR Cp , negatively controlled its own transcription. We constructed an iscR mutant in C. perfringens. We then compared the expression profile of strain 13 and of the iscR mutant. IscR Cp controlled expression of genes involved in Fe-S biogenesis, in amino acid or sugar metabolisms, in fermentation pathways and in host compound utilization. We then demonstrated, using a ChIP-PCR experiment, that IscR Cp interacted with its promoter region in vivo in C. perfringens and with the promoter of cpe2093 encoding an amino acid ABC transporter. We utilized a comparative genomic approach to infer a candidate IscR binding motif and reconstruct IscR regulons in clostridia. We showed that point mutations in the conserved motif of 29 bp identified upstream of iscR decreased the cysteine-dependent repression of iscR mediated by IscR Cp . Copyright © 2016 Institut Pasteur. All rights reserved.
Wang, Xiaofeng; You, Zheng; Sha, Hailiang; Cheng, Yong; Zhu, Huanhuan; Sun, Wei
2014-10-01
A DNA and graphene (GR) bi-layer modified carbon ionic liquid electrode (CILE) was fabricated by an electrodeposition method. GR nanosheets were electrodeposited on the surface of CILE at the potential of -1.3 V and then DNA was further deposited at the potential of +0.5 V on GR modified CILE. Electrochemical performances of the fabricated DNA/GR/CILE were carefully investigated. Then electrochemical behaviors of dopamine (DA) on the modified electrode were studied with the calculated electrochemical parameters. Under the optimized conditions, a linear relationship between the oxidation peak current and the concentration of DA was obtained in the range from 0.1 μmol/L to 1.0 mmol/L with a detection limit of 0.027 μmol/L (3σ). The modified electrode exhibited excellent reproducibility, repeatability, stability, validation and robustness for the electrochemical detection of DA. The proposed method was further applied to the DA injection solution and human urine samples determination with satisfactory results. Copyright © 2014 Elsevier B.V. All rights reserved.
Characterization of OXA-48-like-producing Enterobacteriaceae isolated from river water in Algeria.
Tafoukt, Rima; Touati, Abdelaziz; Leangapichart, Thongpan; Bakour, Sofiane; Rolain, Jean-Marc
2017-09-01
The spread of carbapenemase-producing Enterobacteriaceae (CPE) is a significant problem for healthcare worldwide. The prevalence of carbapenem-resistant Enterobacteriaceae (CPE) in water environments in Algeria are unknown. The aim of this study was to screen for the presence of CPE isolates in the Soummam River in Bejaia, Algeria. Isolates of Enterobacteriaceae recovered from twelve samples of river water and showing reduced susceptibility to carbapenems were included in this study. The isolates were identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Isolates were subjected to antimicrobial susceptibility testing and the modified Carba NP test. Carbapenemase and extended-spectrum β-lactamase (ESBL) determinants were studied by PCR amplification and sequencing. The clonal relatedness between isolates was studied by Multilocus Sequence Typing (MLST) method. A total of 20 carbapenem-resistant Enterobacteriaceae strains were included in this study, identified as Escherichia coli (n = 12), Klebsiella pneumoniae (n = 3), Raoultella ornithinolytica (n = 3), Citrobacter freundii (n = 1) and Citrobacter braakii (n = 1). Carbapenemase genes identified in this study included bla OXA-48 , observed in 17 isolates (9 E. coli, 3 K. pneumoniae, 3 R. ornithinolytica, 1 C. freundii and 1 C. braakii), and bla OXA-244 , a variant of bla OXA-48 , was found in three E. coli isolates. MLST showed that 12 E. coli strains belonged to six different sequence types (ST559, ST38, ST212, ST3541, 1972 and ST2142), and we identified three different STs in K. pneumoniae isolates, including ST133, ST2055, and a new sequence type: ST2192. This study showed the presence of OXA-48-like-producing Enterobacteriaceae in water environments and highlighted the potential role of aquatic environments as reservoirs of clinically relevant antimicrobial-resistant bacteria, with the potential to spread throughout the community. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yang, Gongjun; Wang, Cunxiao; Zhang, Rui; Wang, Chenying; Qu, Qishu; Hu, Xiaoya
2008-06-01
Amidosulfonic acid was electropolymerized by cyclic voltammetry onto the surface of glassy carbon electrode (GCE) to fabricate the chemically modified electrode, which showed high stability, good selectivity and reproducibility for determination of isoniazid. The modified electrode showed an excellent electrocatalytical effect on the oxidation of isoniazid. Under the optimum conditions, there was a good linear relationship between anodic peak current and isoniazid concentration in the range of 5.0 x 10(-8)- 1.0 x 10(-5) M, and a detection limit of 1.0 x 10(-8) M (S/N = 3) was obtained after 120 s at the accumulation potential of - 0.2 V (vs. SCE). This developed method had been applied to the direct determination of isoniazid in injection and tablet samples with satisfactory results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Y.Z., E-mail: singyuanzhi@sina.com; Zhou, J.F.; Song, Y., E-mail: songyang@mail.buct.edu.cn
Graphical abstract: Electrochemical deposition of netlike gold nanoparticles (GNPs) on the surface of glassy carbon electrode and preparation of netlike GNPs in aqueous solution using ampicillin as a stabilizing reagent were proposed. The catalytic properties of netlike gold nanoparticles on the glassy carbon electrode for dopamine were demonstrated. The results indicate that the netlike gold nanoparticle modified electrode has an excellent repeatability and reproducibility. Display Omitted Highlights: ► Synthesis of netlike gold nanoparticles using ampicillin as a stabilizing reagent. ► Excellent repeatability and reproducibility of netlike gold nanoparticle modified glassy carbon electrode. ► The catalytic properties of netlike gold nanoparticlemore » for dopamine. -- Abstract: Electrochemical deposition of netlike gold nanoparticles on the surface of glassy carbon electrode and preparation of netlike GNPs in aqueous solution using ampicillin as a stabilizing reagent were proposed. The netlike gold nanoparticles were characterized by scanning electron microscope, transmission electron microscope, infrared spectrometer, UV spectrophotometer, powder X-ray diffractometer and electrochemical analyzer. The catalysis of the netlike gold nanoparticles on the glassy carbon electrode for dopamine was demonstrated. The results indicate that the gold nanoparticle modified electrode has an excellent repeatability and reproducibility.« less
ERIC Educational Resources Information Center
Toombs, William; Lindsay, Carl A.
Issues related to the institutionalization of continuing professional education (CPE) within the university are considered. The components of marginality, the possible obstacles and incentives to institutionalization, and some of the support necessities are addressed, along with insights gained by a Pennsylvania State University effort to link the…
Student Perceptions of a Conceptual Physical Education Activity Course
ERIC Educational Resources Information Center
Jenkins, Jayne M.; Jenkins, Patience; Collums, Ashley; Werhonig, Gary
2006-01-01
Conceptual physical education (CPE) courses are typically included in university course work to provide students knowledge and skills to engage in physical activity for life. The purpose of this study was to identify CPE course characteristics that contributed to positive and negative student perceptions. Participants included 157 undergraduates…
The O2 reduction at the IFC modified O2 fuel cell electrode
NASA Technical Reports Server (NTRS)
Fielder, William L.; Singer, Joseph; Baldwin, Richard S.; Johnson, Richard E.
1992-01-01
The International Fuel Corporation (IFC) state of the art (SOA) O2 electrode (Au-10 percent Pt electrocatalyst by weight) is currently being used in the alkaline H2-O2 fuel cell in the NASA Space Shuttle. Recently, IFC modified O2 electrode, as a possible replacement for the SOA electrode. In the present study, O2 reduction data were obtained for the modified electrode at temperatures between 23.3 and 91.7 C. BET measurements gave an electrode BET surface area of about 2070 sq. cm/sq. cm of geometric surface area. The Tafel data could be fitted to two straight line regions. The slope for the lower region, designated as the 0.04 V/decade region, was temperature dependent, and the transfer coefficient was about 1.5. The 'apparent' energy of activation for this region was about 19 kcal/mol. An O2 reduction mechanism for this 0.04 region is presented. In the upper region, designated as the 0.08 V/decade region, diffusion may be the controlling process. Tafel data are presented to illustrate the increase in performance with increasing temperature.
NASA Astrophysics Data System (ADS)
Rong, Yaoguang; Li, Xiong; Liu, Guanghui; Wang, Heng; Ku, Zhiliang; Xu, Mi; Liu, Linfeng; Hu, Min; Yang, Ying; Han, Hongwei
2013-03-01
We have developed a monolithic quasi-solid-state dye-sensitized solar cell (DSSC) based on graphene modified mesoscopic carbon counter electrode (GC-CE), which offers a promising prospect for commercial applications. Based on the design of a triple layer structure, the TiO2 working electrode layer, ZrO2 spacer layer and carbon counter electrode (CE) layer are constructed on a single conducting glass substrate by screen-printing. The quasi-solid-state polymer gel electrolyte employs a polymer composite as the gelator and could effectively infiltrate into the porous layers. Fabricated with normal carbon counter electrode (NC-CE) containing graphite and carbon black, the device shows a power conversion efficiency (PCE) of 5.09% with the fill factor (FF) of 0.63 at 100 mW cm-2 AM1.5 illumination. When the NC-CE is modified with graphene sheets, the PCE and FF could be enhanced to 6.27% and 0.71, respectively. This improvement indicates excellent conductivity and high electrocatalytic activity of the graphene sheets, which have been considered as a promising platinum-free electrode material for DSSCs.
Improving Single-Carbon-Nanotube-Electrode Contacts Using Molecular Electronics.
Krittayavathananon, Atiweena; Ngamchuea, Kamonwad; Li, Xiuting; Batchelor-McAuley, Christopher; Kätelhön, Enno; Chaisiwamongkhol, Korbua; Sawangphruk, Montree; Compton, Richard G
2017-08-17
We report the use of an electroactive species, acetaminophen, to modify the electrical connection between a carbon nanotube (CNT) and an electrode. By applying a potential across two electrodes, some of the CNTs in solution occasionally contact the electrified interface and bridge between two electrodes. By observing a single CNT contact between two microbands of an interdigitated Au electrode in the presence and absence of acetaminophen, the role of the molecular species at the electronic junction is revealed. As compared with the pure CNT, the current magnitude of the acetaminophen-modified CNTs significantly increases with the applied potentials, indicating that the molecule species improves the junction properties probably via redox shuttling.
Graphene-bimetallic nanoparticle composites with enhanced electro-catalytic detection of bisphenol A
NASA Astrophysics Data System (ADS)
Pogacean, Florina; Biris, Alexandru R.; Socaci, Crina; Coros, Maria; Magerusan, Lidia; Rosu, Marcela-Corina; Lazar, Mihaela D.; Borodi, Gheorghe; Pruneanu, Stela
2016-12-01
This study brings for the first time novel knowledge about the synthesis by catalytic chemical vapor deposition with induction heating of graphene-bimetallic nanoparticle composites (Gr-AuCu and Gr-AgCu) and their morphological and structural characterization by transmission electron microscopy, Raman spectroscopy, and x-ray powder diffraction. Gold electrodes modified with the obtained materials exhibit an enhanced electro-catalytic effect towards one of the most encountered estrogenic disruptive chemicals, bisphenol A (BPA). The BPA behavior in varying pH solutions was investigated using the electrochemical quartz crystal microbalance, which allowed the accurate determination of the number of molecules involved in the oxidation process. The modified electrodes promote the oxidation of BPA at significantly lower potentials (0.66 V) compared to bare gold (0.78 V). In addition, the peak current density recorded with such electrodes greatly exceeded that obtained with bare gold (e.g. one order of magnitude larger, for a Au/Gr-AgCu electrode). The two modified electrodes have low detection limits, of 1.31 × 10-6 M and 1.91 × 10-6 M for Au/Gr-AgCu and Au/Gr-AuCu, respectively. The bare gold electrode has a higher detection limit of 5.1 × 10-6 M. The effect of interfering species (e.g. catechol and 3-nitrophenol) was also investigated. Their presence influenced not only the BPA peak potential, but also the peak current. With both modified electrodes, no peak currents were recorded below 3 × 10-5 M BPA.
Shin, Jae-Wook; Kim, Kyeong-Jun; Yoon, Jinho; Jo, Jinhee; El-Said, Waleed Ahmed; Choi, Jeong-Woo
2017-01-01
Several neurological disorders such as Alzheimer’s disease and Parkinson’s disease have become a serious impediment to aging people nowadays. One of the efficient methods used to monitor these neurological disorders is the detection of neurotransmitters such as dopamine. Metal materials, such as gold and platinum, are widely used in this electrochemical detection method; however, low sensitivity and linearity at low dopamine concentrations limit the use of these materials. To overcome these limitations, a silver nanoparticle (SNP) modified electrode covered by graphene oxide for the detection of dopamine was newly developed in this study. For the first time, the surface of an indium tin oxide (ITO) electrode was modified using SNPs and graphene oxide sequentially through the electrochemical deposition method. The developed biosensor provided electrochemical signal enhancement at low dopamine concentrations in comparison with previous biosensors. Therefore, our newly developed SNP modified electrode covered by graphene oxide can be used to monitor neurological diseases through electrochemical signal enhancement at low dopamine concentrations. PMID:29186040
Shin, Jae-Wook; Kim, Kyeong-Jun; Yoon, Jinho; Jo, Jinhee; El-Said, Waleed Ahmed; Choi, Jeong-Woo
2017-11-29
Several neurological disorders such as Alzheimer's disease and Parkinson's disease have become a serious impediment to aging people nowadays. One of the efficient methods used to monitor these neurological disorders is the detection of neurotransmitters such as dopamine. Metal materials, such as gold and platinum, are widely used in this electrochemical detection method; however, low sensitivity and linearity at low dopamine concentrations limit the use of these materials. To overcome these limitations, a silver nanoparticle (SNP) modified electrode covered by graphene oxide for the detection of dopamine was newly developed in this study. For the first time, the surface of an indium tin oxide (ITO) electrode was modified using SNPs and graphene oxide sequentially through the electrochemical deposition method. The developed biosensor provided electrochemical signal enhancement at low dopamine concentrations in comparison with previous biosensors. Therefore, our newly developed SNP modified electrode covered by graphene oxide can be used to monitor neurological diseases through electrochemical signal enhancement at low dopamine concentrations.
Palanisamy, Selvakumar; Thangavelu, Kokulnathan; Chen, Shen-Ming; Gnanaprakasam, P; Velusamy, Vijayalakshmi; Liu, Xiao-Heng
2016-10-20
The accurate detection of dopamine (DA) levels in biological samples such as human serum and urine are essential indicators in medical diagnostics. In this work, we describe the preparation of chitosan (CS) biopolymer grafted graphite (GR) composite for the sensitive and lower potential detection of DA in its sub micromolar levels. The composite modified electrode has been used for the detection of DA in biological samples such as human serum and urine. The GR-CS composite modified electrode shows an enhanced oxidation peak current response and low oxidation potential for the detection of DA than that of electrodes modified with bare, GR and CS discretely. Under optimum conditions, the fabricated GR-CS composite modified electrode shows the DPV response of DA in the linear response ranging from 0.03 to 20.06μM. The detection limit and sensitivity of the sensor were estimated as 0.0045μM and 6.06μA μM(-1)cm(-2), respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
Biosensing applications of titanium dioxide coated graphene modified disposable electrodes.
Kuralay, Filiz; Tunç, Selma; Bozduman, Ferhat; Oksuz, Lutfi; Oksuz, Aysegul Uygun
2016-11-01
In the present work, preparation of titanium dioxide coated graphene (TiO2/graphene) and the use of this nanocomposite modified electrode for electrochemical biosensing applications were detailed. The nanocomposite was prepared with radio frequency (rf) rotating plasma method which serves homogeneous distribution of TiO2 onto graphene. TiO2/graphene was characterized with scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) analysis. Then, this nanocomposite was dissolved in phosphate buffer solution (pH 7.4) and modified onto disposable pencil graphite electrode (PGE) by dip coating for the investigation of the biosensing properties of the prepared electrode. TiO2/graphene modified PGE was characterized with SEM, EDS and cyclic voltammetry (CV). The sensor properties of the obtained surface were examined for DNA and DNA-drug interaction. The detection limit was calculated as 1.25mgL(-1) (n=3) for double-stranded DNA (dsDNA). RSD% was calculated as 2.4% for three successive determinations at 5mgL(-1) dsDNA concentration. Enhanced results were obtained compared to the ones obtained with graphene and unmodified (bare) electrodes. Copyright © 2016 Elsevier B.V. All rights reserved.
Raymundo-Pereira, Paulo A; Teixeira, Marcos F S; Fatibello-Filho, Orlando; Dockal, Edward R; Bonifácio, Viviane Gomes; Marcolino, Luiz H
2013-10-01
The preparation and electrochemical characterization of a carbon paste electrode modified with the N,N-ethylene-bis(salicyllideneiminato)oxovanadium (IV) complex ([VO(salen)]) as well as its application for ranitidine determination are described. The electrochemical behavior of the modified electrode for the electroreduction of ranitidine was investigated using cyclic voltammetry, and analytical curves were obtained for ranitidine using linear sweep voltammetry (LSV) under optimized conditions. The best voltammetric response was obtained for an electrode composition of 20% (m/m) [VO(salen)] in the paste, 0.10 mol L(-1) of KCl solution (pH 5.5 adjusted with HCl) as supporting electrolyte and scan rate of 25 mV s(-1). A sensitive linear voltammetric response for ranitidine was obtained in the concentration range from 9.9×10(-5) to 1.0×10(-3) mol L(-1), with a detection limit of 6.6×10(-5) mol L(-1) using linear sweep voltammetry. These results demonstrated the viability of this modified electrode as a sensor for determination, quality control and routine analysis of ranitidine in pharmaceutical formulations. Copyright © 2013. Published by Elsevier B.V.
Preparation of boron doped diamond modified by iridium for electroreduction of carbon dioxide (CO2)
NASA Astrophysics Data System (ADS)
Ichzan, A. M.; Gunlazuardi, J.; Ivandini, T. A.
2017-04-01
Electroreduction of carbon dioxide (CO2) at iridium oxide-modified boron-doped diamond (IrOx-BDD) electrodes in aqueous electrolytes was studied by voltammetric method. The aim of this study was to find out the catalytic effect of IrOx to produce fine chemicals contained of two or more carbon atoms (for example acetic acid) in high percentage. Characterization using FE-SEM and XPS indicated that IrO2 can be deposited at BDD electrode, whereas characterization using cyclic voltammetry indicated that the electrode was applicable to be used as working electrode for CO2 electroreduction.
Comparison of Two Phenotypic Algorithms To Detect Carbapenemase-Producing Enterobacteriaceae
Dortet, Laurent; Bernabeu, Sandrine; Gonzalez, Camille
2017-01-01
ABSTRACT A novel algorithm designed for the screening of carbapenemase-producing Enterobacteriaceae (CPE), based on faropenem and temocillin disks, was compared to that of the Committee of the Antibiogram of the French Society of Microbiology (CA-SFM), which is based on ticarcillin-clavulanate, imipenem, and temocillin disks. The two algorithms presented comparable negative predictive values (98.6% versus 97.5%) for CPE screening among carbapenem-nonsusceptible Enterobacteriaceae. However, since 46.2% (n = 49) of the CPE were correctly identified as OXA-48-like producers by the faropenem/temocillin-based algorithm, it significantly decreased the number of complementary tests needed (42.2% versus 62.6% with the CA-SFM algorithm). PMID:28607010
Gao, Jingyao; Yuan, Qilong; Ye, Chen; Guo, Pei; Du, Shiyu; Lai, Guosong; Yu, Aimin; Jiang, Nan; Fu, Li; Lin, Cheng-Te; Chee, Kuan W A
2018-03-25
Graphene is an excellent modifier for the surface modification of electrochemical electrodes due to its exceptional physical properties and, for the development of graphene-based chemical and biosensors, is usually coated on glassy carbon electrodes (GCEs) via drop casting. However, the ease of aggregation and high defect content of reduced graphene oxides degrade the electrical properties. Here, we fabricated low-defect graphene electrodes by catalytically thermal treatment of HPHT diamond substrate, followed by the electrodeposition of Au nanoparticles (AuNPs) with an average size of ≈60 nm on the electrode surface using cyclic voltammetry. The Au nanoparticle-decorated graphene electrodes show a wide linear response range to vanillin from 0.2 to 40 µM with a low limit of detection of 10 nM. This work demonstrates the potential applications of graphene-based hybrid electrodes for highly sensitive chemical detection.
NASA Astrophysics Data System (ADS)
Pham, Thao Thi-Hien; Sim, Sang Jun
2010-01-01
An electrochemical impedance immunosensor was developed for detecting the immunological interaction between human immunoglobulin (IgG) and protein A from Staphylococcus aureus based on the immobilization of human IgG on the surface of modified gold-coated magnetic nanoparticles. The nanoparticles with an Au shell and Fe oxide cores were functionalized by a self-assembled monolayer of 11-mercaptoundecanoic acid. The electrochemical analysis was conducted on the modified magnetic carbon paste electrodes with the nanoparticles. The magnetic nanoparticles were attached to the surface of the magnetic carbon paste electrodes via magnetic force. The cyclic voltammetry technique and electrochemical impedance spectroscopy measurements of the magnetic carbon paste electrodes coated with magnetic nanoparticles-human IgG complex showed changes in its alternating current (AC) response both after the modification of the surface of the electrode and the addition of protein A. The immunological interaction between human IgG on the surface of the modified magnetic carbon paste electrodes and protein A in the solution could be successfully monitored.
Narang, Jagriti; Chauhan, Nidhi; Pundir, C S
2011-11-07
We describe the construction of a polyaniline (PANI), multiwalled carbon nanotubes (MWCNTs) and gold nanoparticles (AuNPs) modified Au electrode for determination of hydrogen peroxide without using peroxidase (HRP). The AuNPs/MWCNT/PANI composite film deposited on Au electrode was characterized by Scanning Electron Microscopy (SEM) and electrochemical methods. Cyclic voltammetric (CV) studies of the electrode at different stages of construction demonstrated that the modified electrode had enhanced electrochemical oxidation of H(2)O(2), which offers a number of attractive features to develop amperometric sensors based on split of H(2)O(2). The amperometric response to H(2)O(2) showed a linear relationship in the range from 3.0 μM to 600.0 μM with a detection limit of 0.3 μM (S/N = 3) and with high sensitivity of 3.3 mA μM(-1). The sensor gave accurate and satisfactory results, when employed for determination of H(2)O(2) in milk and urine.
Supercapacitors based on modified graphene electrodes with poly(ionic liquid)
NASA Astrophysics Data System (ADS)
Trigueiro, João Paulo C.; Lavall, Rodrigo L.; Silva, Glaura G.
2014-06-01
The improved accessibility of the electrolyte to the surface of carbon nanomaterials is a challenge to be overcome in supercapacitors based on ionic liquid electrolytes. In this study, we report the preparation of supercapacitors based on reduced graphene oxide (RGO) electrodes and ionic liquid as the electrolyte (specifically, 1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide or [MPPy][TFSI]). Two types of electrodes were compared: the RGO-based electrode and a poly(ionic liquid)-modified RGO electrode (PIL:RGO). The supercapacitor produced with the PIL:RGO electrode and [MPPy][TFSI] showed an electrochemical stability of 3 V and provided a capacitance of 71.5 F g-1 at room temperature; this capacitance is 130% higher with respect to the RGO-based supercapacitor. The decrease of the specific capacitance after 2000 cycles is only 10% for the PIL:RGO-based device. The results revealed the potential of the PIL:RGO material as an electrode for supercapacitors. This composite electrode increases the compatibility with the ionic liquid electrolyte compared to an RGO electrode, promoting an increase in the effective surface area of the electrode accessible to the electrolyte ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Weiying; Du, Dan; Gunaratne, Don
Phosphomolybdate functionalized graphene nanocomposite (PMo 12-GS) has been successfully formed on a glassy carbon electrode (GCE) for the detection of ascorbic acid (AA). The obtained PMo 12-GS modified GCE, was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy and compared with GCE, GS modified GCE, and PMo 12 modified GCE. It shows an increased current and a decrease in over-potential of ~210 mV. The amperometric signals are linearly proportional to the AA concentration in a wide concentration range from 1×10 -6 M to 8×10 -3 M, with a detection limit ofmore » 0.5×10 -6 M. Finally, the PMo 12-GS modified electrode was employed for the determination of the AA level in vitamin C tablets, with recoveries between 96.3 and 100.8 %.« less
Li, Di; Yang, Xiao-Lu; Xiao, Bao-Lin; Geng, Fang-Yong; Hong, Jun; Sheibani, Nader; Moosavi-Movahedi, Ali Akbar
2017-01-01
A new electrochemical sensor based on a Nafion, aminated reduced graphene oxide and chitosan functional membrane-modified glassy carbon electrode was proposed for the simultaneous detection of adenine and guanine. Fourier transform-infrared spectrometry (FTIR), transmission electron microscopy (TEM), and electrochemical methods were utilized for the additional characterization of the membrane materials. The prepared electrode was utilized for the detection of guanine (G) and adenine (A). The anodic peak currents to G and A were linear in the concentrations ranging from 0.1 to 120 μM and 0.2 to 110 μM, respectively. The detection limits were found to be 0.1 μM and 0.2 μM, respectively. Moreover, the modified electrode could also be used to determine G and A in calf thymus DNA. PMID:28718793
Hooshmand, Sara; Es'haghi, Zarrin
2017-11-30
A number of four amino acids have been simultaneously determined at CdSe quantum dot-modified/multi-walled carbon nanotube hollow fiber pencil graphite electrode in different bodybuilding supplements. CdSe quantum dots were synthesized and applied to construct a modified carbon nanotube hollow fiber pencil graphite electrode. FT-IR, TEM, XRD and EDAX methods were applied for characterization of the synthesized CdSe QDs. The electro-oxidation of arginine (Arg), alanine (Ala), methionine (Met) and cysteine (Cys) at the surface of the modified electrode was studied. Then the Taguchi's method was applied using MINITAB 17 software to find out the optimum conditions for the amino acids determination. Under the optimized conditions, the differential pulse (DP) voltammetric peak currents of Arg, Ala, Met and Cys increased linearly with their concentrations in the ranges of 0.287-33670μM and detection limits of 0.081, 0.158, 0.094 and 0.116μM were obtained for them, respectively. Satisfactory results were achieved for calibration and validation sets. The prepared modified electrode represents a very good resolution between the voltammetric peaks of the four amino acids which makes it suitable for the detection of each in presence of others in real samples. Copyright © 2017. Published by Elsevier B.V.
Conceptual Physical Education Course and College Freshmen's Physical Activity Patterns
ERIC Educational Resources Information Center
Shangguan, Rulan; Keating, Xiaofen Deng; Liu, Jingwen; Zhou, Ke; Clark, Langston; Leitner, Jessica
2017-01-01
Conceptual physical education (CPE) courses play a critical role in promoting physical activity (PA) among students in American higher education settings. To date, however, very limited knowledge is available about the effectiveness of such courses. Aims: The primary purpose of the study was to examine effects of a CPE course on altering freshmen…
Khamlichi, Redouan El; Bouchta, Dounia; Anouar, El Hassane; Atia, Mounia Ben; Attar, Aisha; Choukairi, Mohamed; Tazi, Saloua; Ihssane, Raissouni; Faiza, Chaoukat; Khalid, Draoui; Khalid, Riffi Temsamani
2017-02-01
Neuroblastoma is a pediatric neuroblastic tumor arising in the sympathetic nervous crest cells. A high grade of Neuroblastoma is characterized by a high urinary excretion of homovanillic acid and dopamine. In this work l-leucine modified Sol-Gel-Carbon electrode was used for a sensitive voltammetric determination of homovanillic acid and dopamine in urine. The electrochemical response characteristics were investigated by cyclic and differential pulse voltammetry; the modified electrode has shown an increase in the effective area of up to 40%, a well-separated oxidation peaks and an excellent electrocatalytic activity. High sensitivity and selectivity in the linear range of 0,4-100μML -1 of homovanillic acid and 10-120μML -1 of dopamine were also obtained. Moreover, a sub-micromolar limit of detection of 0.1μM for homovanillic acid and 1.0μM for the dopamine was achieved. Indeed, high reproducibility with simple preparation and regeneration of the electrode surface made this electrode very suitable for the determination of homovanillic acid and dopamine in pharmaceutical and clinical preparations. The mechanism of homovanillic acid and the electrochemical oxidation at l-leucine modified Sol-Gel-Carbon electrode is described out the B3P86/6-31+G(d,p) level of theory as implemented in Gaussian software. Copyright © 2016 Elsevier B.V. All rights reserved.
Arain, Salma Aslam; Kazi, Tasneem G; Afridi, Hassan Imran; Abbasi, Abdul Rasool; Panhwar, Abdul Haleem; Naeemullah; Shanker, Bhawani; Arain, Mohammad Balal
2014-12-10
An efficient, innovative preconcentration method, dual-cloud point extraction (d-CPE) has been developed for the extraction and preconcentration of copper (Cu(2+)) in serum samples of different viral hepatitis patients prior to couple with flame atomic absorption spectrometry (FAAS). The d-CPE procedure was based on forming complexes of elemental ions with complexing reagent 1-(2-pyridylazo)-2-naphthol (PAN), and subsequent entrapping the complexes in nonionic surfactant (Triton X-114). Then the surfactant rich phase containing the metal complexes was treated with aqueous nitric acid solution, and metal ions were back extracted into the aqueous phase, as second cloud point extraction stage, and finally determined by flame atomic absorption spectrometry using conventional nebulization. The multivariate strategy was applied to estimate the optimum values of experimental variables for the recovery of Cu(2+) using d-CPE. In optimum experimental conditions, the limit of detection and the enrichment factor were 0.046μgL(-1) and 78, respectively. The validity and accuracy of proposed method were checked by analysis of Cu(2+) in certified sample of serum (CRM) by d-CPE and conventional CPE procedure on same CRM. The proposed method was successfully applied to the determination of Cu(2+) in serum samples of different viral hepatitis patients and healthy controls. Copyright © 2014 Elsevier B.V. All rights reserved.
Improvement of the cloud point extraction of uranyl ions by the addition of ionic liquids.
Gao, Song; Sun, Taoxiang; Chen, Qingde; Shen, Xinghai
2013-12-15
The cloud point extraction (CPE) of uranyl ions by different kinds of extractants in Triton X-114 (TX-114) micellar solution was investigated upon the addition of ionic liquids (ILs) with various anions, i.e., bromide (Br(-)), tetrafluoroborate (BF4(-)), hexafluorophosphate (PF6(-)) and bis[(trifluoromethyl)sulfonyl]imide (NTf2(-)). A significant increase of the extraction efficiency was found on the addition of NTf2(-) based ILs when using neutral extractant tri-octylphosphine oxide (TOPO), and the extraction efficiency kept high at both nearly neutral and high acidity. However, the CPE with acidic extractants, e.g., bis(2-ethylhexyl) phosphoric acid (HDEHP) and 8-hydroxyquinoline (8-HQ) which are only effective at nearly neutral condition, was not improved by ILs. The results of zeta potential and (19)F NMR measurements indicated that the anion NTf2(-) penetrated into the TX-114 micelles and was enriched in the surfactant-rich phase during the CPE process. Meanwhile, NTf2(-) may act as a counterion in the CPE of UO2(2+) by TOPO. Furthermore, the addition of IL increased the separation factor of UO2(2+) and La(3+), which implied that in the micelle TOPO, NTf2(-) and NO3(-) established a soft template for UO2(2+). Therefore, the combination of CPE and IL provided a supramolecular recognition to concentrate UO2(2+) efficiently and selectively. Copyright © 2013 Elsevier B.V. All rights reserved.
Suzuki, Hidehiko; Nagatake, Takahiro; Nasu, Ayaka; Lan, Huangwenxian; Ikegami, Koji; Setou, Mitsutoshi; Hamazaki, Yoko; Kiyono, Hiroshi; Yagi, Kiyohito; Kondoh, Masuo; Kunisawa, Jun
2018-02-13
Vaccine delivery is an essential element for the development of mucosal vaccine, but it remains to be investigated how physical barriers such as mucus and cilia affect vaccine delivery efficacy. Previously, we reported that C-terminal fragment of Clostridium perfringens enterotoxin (C-CPE) targeted claudin-4, which is expressed by the epithelium associated with nasopharynx-associated lymphoid tissue (NALT), and could be effective as a nasal vaccine delivery. Mice lacking tubulin tyrosine ligase-like family, member 1 (Ttll1-KO mice) showed mucus accumulation in nasal cavity due to the impaired motility of respiratory cilia. Ttll1-KO mice nasally immunized with C-CPE fused to pneumococcal surface protein A (PspA-C-CPE) showed reduced PspA-specific nasal IgA responses, impaired germinal center formation, and decreased germinal center B-cells and follicular helper T cells in the NALT. Although there was no change in the expression of claudin-4 in the NALT epithelium in Ttll1-KO mice, the epithelium was covered by a dense mucus that prevented the binding of PspA-C-CPE to NALT. However, administration of expectorant N-acetylcysteine removed the mucus and rescued the PspA-specific nasal IgA response. These results show that the accumulation of mucus caused by impaired respiratory cilia function is an interfering factor in the C-CPE-based claudin-4-targeting nasal vaccine.
Manjunatha, Revanasiddappa; Shivappa Suresh, Gurukar; Melo, Jose Savio; D'Souza, Stanislaus F; Venkatesha, Thimmappa Venkatarangaiah
2012-09-15
Cholesterol oxidase (ChOx) and cholesterol esterase (ChEt) have been covalently immobilized onto functionalized graphene (FG) modified graphite electrode. Enzymes modified electrodes were characterized using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). FG accelerates the electron transfer from electrode surface to the immobilized ChOx, achieving the direct electrochemistry of ChOx. A well defined redox peak was observed, corresponding to the direct electron transfer of the FAD/FADH(2) of ChOx. The electron transfer coefficient (α) and electron transfer rate constant (K(s)) were calculated and their values are found to be 0.31 and 0.78 s(-1), respectively. For the free cholesterol determination, ChOx-FG/Gr electrode exhibits a sensitive response from 50 to 350 μM (R=-0.9972) with a detection limit of 5 μM. For total cholesterol determination, co-immobilization of ChEt and ChOx on modified electrode, i.e. (ChEt/ChOx)-FG/Gr electrode showed linear range from 50 to 300 μM (R=-0.9982) with a detection limit of 15 μM. Some common interferents like glucose, ascorbic acid and uric acid did not cause any interference, due to the use of a low operating potential. The FG/Gr electrode exhibits good electrocatalytic activity towards hydrogen peroxide (H(2)O(2)). A wide linear response to H(2)O(2) ranging from 0.5 to 7 mM (R=-0.9967) with a sensitivity of 443.25 μA mM(-1) cm(-2) has been obtained. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Manping; Wu, Kai; Yang, Zhanping; Ding, Man; Liu, Xin; Cheng, Yonghong
2014-09-01
In electrical devices poured by epoxy resin, there are a lot of interfaces between epoxy resin and other solid dielectrics, i.e. solid-solid interfaces. Experiments were carried out to study the flashover characteristics of two typical solid-solid interfaces (epoxy-ceramic and epoxy-PMMA) under steep high-voltage impulse for different electrode systems (coaxial electrodes and finger electrodes) and different types of epoxy resin (neat epoxy resin, polyether modified epoxy resin and polyurethane modified epoxy resin). Results showed that, the flashover of solid-solid interface is similar to the breakdown of solid dielectric, and there are unrecoverable carbonated tracks after flashover. Under the same distance of electrodes, the electric stress of coaxial electrodes is lower than that of finger electrodes; and after the flashover, there are more severe breakdown and larger enhanced surface conductivity at interface for coaxial electrodes, as compared with the case of finger electrode. The dielectric properties are also discussed.
Ortega, Adriana; Bartolomé, Rosa; Bou, Germán; Conejo, Carmen; Fernández-Martínez, Marta; González-López, Juan José; Martínez-García, Laura; Martínez-Martínez, Luis; Merino, María; Miró, Elisenda; Mora, Marta; Oliver, Antonio; Pascual, Álvaro; Rodríguez-Baño, Jesús; Ruiz-Carrascoso, Guillermo; Ruiz-Garbajosa, Patricia; Zamorano, Laura; Bautista, Verónica; Pérez-Vázquez, María; Campos, José
2015-01-01
The aim of this study was to determine the impact of carbapenemase-producing Enterobacteriaceae (CPE) in Spain in 2013 by describing the prevalence, dissemination, and geographic distribution of CPE clones, and their population structure and antibiotic susceptibility. From February 2013 to May 2013, 83 hospitals (about 40,000 hospital beds) prospectively collected nonduplicate Enterobacteriaceae using the screening cutoff recommended by EUCAST. Carbapenemase characterization was performed by phenotypic methods and confirmed by PCR and sequencing. Multilocus sequencing types (MLST) were determined for Klebsiella pneumoniae and Escherichia coli. A total of 702 Enterobacteriaceae isolates met the inclusion criteria; 379 (54%) were CPE. OXA-48 (71.5%) and VIM-1 (25.3%) were the most frequent carbapenemases, and K. pneumoniae (74.4%), Enterobacter cloacae (10.3%), and E. coli (8.4%) were the species most affected. Susceptibility to colistin, amikacin, and meropenem was 95.5%, 81.3%, and 74.7%, respectively. The most prevalent sequence types (STs) were ST11 and ST405 for K. pneumoniae and ST131 for E. coli. Forty-five (54.1%) of the hospitals had at least one CPE case. For K. pneumoniae, ST11/OXA-48, ST15/OXA-48, ST405/OXA-48, and ST11/VIM-1 were detected in two or more Spanish provinces. ST11 isolates carried four carbapenemases (VIM-1, OXA-48, KPC-2, and OXA-245), but ST405 isolates carried OXA-48 only. A wide interregional spread of CPE in Spain was observed, mainly due to a few successful clones of OXA-48-producing K. pneumoniae (e.g., ST11 and ST405). The dissemination of OXA-48-producing E. coli is a new finding of public health concern. According to the susceptibilities determined in vitro, most of the CPE (94.5%) had three or more options for antibiotic treatment. PMID:25824224
Bagherpour, Ghasem; Ghasemi, Hosnie; Zand, Bahare; Zarei, Najmeh; Roohvand, Farzin; Ardakani, Esmat M.; Azizi, Mohammad; Khalaj, Vahid
2018-01-01
Saccharomyces boulardii, a subspecies of Saccharomyces cerevisiae, is a well-known eukaryotic probiotic with many benefits for human health. In the present study, a recombinant strain of S. boulardii was prepared to use as a potential oral vaccine delivery vehicle. In this sense, a ura3 auxotroph strain of S. boulardii CNCM I-745 (known as S. cerevisiae HANSEN CBS 5926, Yomogi®) was generated using CRISPR/Cas9 methodology. Then a gene construct encoding a highly immunogenic protein, ovalbumin (OVA), was prepared and transformed into the ura3- S. boulardii. To facilitate the transport of the recombinant immunogen across the intestinal barrier, a claudin-targeting sequence from Clostridium perfringens enterotoxin (CPE) was added to the C-terminus of the expression cassette. The recombinant S. boulardii strain expressing the OVA-CPE fusion protein was then administered orally to a group of mice, and serum IgG and fecal IgA levels were evaluated by ELISA. Our results demonstrated that anti-OVA IgG in serum significantly increased in test group (P < 0.001) compared to control groups (receiving wild type S. boulardii or PBS), and the fecal IgA titer was significantly higher in test group (P < 0.05) than control groups. In parallel, a recombinant S. boulardii strain expressing the similar construct lacking C-terminal CPE was also administered orally. The result showed an increased level of serum IgG in group receiving yeasts expressing the CPE negative construct compared to control groups; however, the fecal IgA levels did not increase significantly. In conclusion, our findings indicated that the yeast S. boulardii, as a delivery vehicle with possible immunomodulatory effects, and c-CPE, as a targeting tag, synergistically assist to stimulate systemic and local immunity. This proposed recombinant S. boulardii system might be useful in the expression of other antigenic peptides, making it as a promising tool for oral delivery of vaccines or therapeutic proteins. PMID:29706942
Bagherpour, Ghasem; Ghasemi, Hosnie; Zand, Bahare; Zarei, Najmeh; Roohvand, Farzin; Ardakani, Esmat M; Azizi, Mohammad; Khalaj, Vahid
2018-01-01
Saccharomyces boulardii , a subspecies of Saccharomyces cerevisiae , is a well-known eukaryotic probiotic with many benefits for human health. In the present study, a recombinant strain of S. boulardii was prepared to use as a potential oral vaccine delivery vehicle. In this sense, a ura3 auxotroph strain of S. boulardii CNCM I-745 (known as S. cerevisiae HANSEN CBS 5926, Yomogi ® ) was generated using CRISPR/Cas9 methodology. Then a gene construct encoding a highly immunogenic protein, ovalbumin (OVA), was prepared and transformed into the ura3 - S. boulardii . To facilitate the transport of the recombinant immunogen across the intestinal barrier, a claudin-targeting sequence from Clostridium perfringens enterotoxin (CPE) was added to the C-terminus of the expression cassette. The recombinant S. boulardii strain expressing the OVA-CPE fusion protein was then administered orally to a group of mice, and serum IgG and fecal IgA levels were evaluated by ELISA. Our results demonstrated that anti-OVA IgG in serum significantly increased in test group ( P < 0.001) compared to control groups (receiving wild type S. boulardii or PBS), and the fecal IgA titer was significantly higher in test group ( P < 0.05) than control groups. In parallel, a recombinant S. boulardii strain expressing the similar construct lacking C-terminal CPE was also administered orally. The result showed an increased level of serum IgG in group receiving yeasts expressing the CPE negative construct compared to control groups; however, the fecal IgA levels did not increase significantly. In conclusion, our findings indicated that the yeast S. boulardii , as a delivery vehicle with possible immunomodulatory effects, and c-CPE, as a targeting tag, synergistically assist to stimulate systemic and local immunity. This proposed recombinant S. boulardii system might be useful in the expression of other antigenic peptides, making it as a promising tool for oral delivery of vaccines or therapeutic proteins.
Raurell-Torredà, Marta; Olivet-Pujol, Josep; Romero-Collado, Àngel; Malagon-Aguilera, Maria Carmen; Patiño-Masó, Josefina; Baltasar-Bagué, Alícia
2015-01-01
To compare skills acquired by undergraduate nursing students enrolled in a medical-surgical course. To compare skills demonstrated by students with no previous clinical practice (undergraduates) and nurses with clinical experience enrolled in continuing professional education (CPE). In a nonrandomized clinical trial, 101 undergraduates enrolled in the "Adult Patients 1" course were assigned to the traditional lecture and discussion (n = 66) or lecture and discussion plus case-based learning (n = 35) arm of the study; 59 CPE nurses constituted a comparison group to assess the effects of previous clinical experience on learning outcomes. Scores on an objective structured clinical examination (OSCE), using a human patient simulator and cases validated by the National League for Nursing, were compared for the undergraduate control and intervention groups, and for CPE nurses (Student's t test). Controls scored lower than the intervention group on patient assessment (6.3 ± 2.3 vs 7.5 ± 1.4, p = .04, mean difference, -1.2 [95% confidence interval (CI) -2.4 to -0.03]) but the intervention group did not differ from CPE nurses (7.5 ± 1.4 vs 8.8 ± 1.5, p = .06, mean difference, -1.3 [95% CI -2.6 to 0.04]). The CPE nurses committed more "rules-based errors" than did undergraduates, specifically patient identifications (77.2% vs 55%, p = .7) and checking allergies before administering medication (68.2% vs 60%, p = .1). The intervention group developed better patient assessment skills than the control group. Case-based learning helps to standardize the process, which can contribute to quality and consistency in practice: It is essential to correctly identify a problem in order to treat it. Clinical experience of CPE nurses was not associated with better adherence to safety protocols. Case-based learning improves the patient assessment skills of undergraduate nursing students, thereby preparing them for clinical practice. © 2014 Sigma Theta Tau International.
Photoactive films of photosystem I on transparent reduced graphene oxide electrodes.
Darby, Emily; LeBlanc, Gabriel; Gizzie, Evan A; Winter, Kevin M; Jennings, G Kane; Cliffel, David E
2014-07-29
Photosystem I (PSI) is a photoactive electron-transport protein found in plants that participates in the process of photosynthesis. Because of PSI's abundance in nature and its efficiency with charge transfer and separation, there is a great interest in applying the protein in photoactive electrodes. Here, we developed a completely organic, transparent, conductive electrode using reduced graphene oxide (RGO) on which a multilayer of PSI could be deposited. The resulting photoactive electrode demonstrated current densities comparable to that of a gold electrode modified with a multilayer film of PSI and significantly higher than that of a graphene electrode modified with a monolayer film of PSI. The relatively large photocurrents produced by integrating PSI with RGO and using an opaque, organic mediator can be applied to the facile production of more economic solar energy conversion devices.
Pérez-Gómez, Bertha; Mendoza-Hernández, Guillermo; Cabellos-Avelar, Tecilli; Leyva-Castillo, Lourdes Elizabeth; Gutiérrez-Cirlos, Emma Berta; Gómez-Lojero, Carlos
2012-10-01
Tolypothrix PCC 7601 and Fremyella diplosiphon UTEX B590 can produce two alternative phycobilisome (PBS) rods. PE-PBSs with one phycocyanin (PC) disk and multiple phycoerythrin (PE) disks are found in cells grown under green light (GL). PC-PBSs with only PC disks are obtained from cells grown under red light (RL). In this manuscript, we show the localization of the linker proteins and ferredoxin-NADP(+) oxidoreductase (FNR) in the PC-PBS and of PE-PBS rods using visible spectroscopy and mass spectrometry. PE-PBSs with different [PE]/[PC] ratios and PC-PBSs with different [PC]/[AP] (AP, allophycocyanin) ratios were isolated. CpeC was the primary rod linker protein found in the PBSs with a [PE]/[PC] ratio of 1.1, which indicates that this is the rod linker at the interphase PC-PE. CpeC and CpeD were identified in the PBSs with a [PE]/[PC] ratio of 1.6, which indicates that CpcD is the linker between the first and the second PE hexamers. Finally, CpeC, CpeD, and CpeE were found in the PBSs with a [PE]/[PC] ratio of 2.9, indicating the position of CpeE between the second and third PE moieties. CpcI2 was identified in the two PC-PBSs obtained from cells grown under RL, which indicates that CpcI2 is the linker between the first and second PC hexamers. CpcH2 was identified only in the PC-PBSs from Tolypothrix with a high [PC]/[AP] ratio of 1.92, which indicates that CpcH2 is the linker between the second and third PC hexamers. The PC-PBSs contained the rod cap protein L(R)(10) (CpcD), but this protein was absent in the PE-PBSs. PE-PBSs (lacking L(R)(10)) incorporated exogenous rFNR in a stoichiometry of up to five FNRs per PBS. A maximum of two FNRs per PBS were found in PC-PBSs (with L(R)(10)). These observations support the hypothesis that FNR binds at the distal ends of the PBS rods in the vacant site of CpcD L(R)(10). Finally, the molecular mass of the core membrane linker (L(CM)) was determined to be 102 kDa from a mass spectrometry analysis.
Ensafi, Ali A; Arashpour, B; Rezaei, B; Allafchian, Ali R
2014-06-01
Voltammetric behavior of dopamine was studied on a glassy carbon electrode (GCE) modified-NiFe(2)O(4) magnetic nanoparticles decorated with multiwall carbon nanotubes. Impedance spectroscopy and cyclic voltammetry were used to characterize the behavior of dopamine at the surface of modified-GCE. The modified electrode showed a synergic effect toward the oxidation of dopamine. The oxidation peak current is increased linearly with the dopamine concentration (at pH7.0) in wide dynamic ranges of 0.05-6.0 and 6.0-100μmolL(-1) with a detection limit of 0.02μmolL(-1), using differential pulse voltammetry. The selectivity of the method was studied and the results showed that the modified electrode is free from interference of organic compounds especially ascorbic acid, uric acid, cysteine and urea. Its applicability in the determination of dopamine in pharmaceutical, urine samples and human blood serum was also evaluated. The proposed electrochemical sensor has appropriate properties such as high selectivity, low detection limit and wide linear dynamic range when compared with that of the previous reported papers for dopamine detection. Copyright © 2014 Elsevier B.V. All rights reserved.
Palakollu, Venkata Narayana; Thapliyal, Neeta; Chiwunze, Tirivashe E; Karpoormath, Rajshekhar; Karunanidhi, Sivanandhan; Cherukupalli, Srinivasulu
2017-08-01
A facile preparation strategy based on electrochemical technique for the fabrication of glycine (Poly-Gly) and electrochemically reduced graphene oxide (ERGO) composite modified electrode was developed. The morphology of the developed composite (ERGO/Poly-Gly) was investigated using field emission scanning electron microscope (FE-SEM). The composite modified glassy carbon electrode (GCE) was characterized using fourier transform-infrared (FT-IR) spectroscopy, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The electrochemical characterization results revealed that ERGO/Poly-Gly modified GCE has excellent electrocatalytic activity. Further, it was employed for sensing of l-dopa in pH5.5. Differential pulse voltammetry (DPV) was used for the quantification of l-dopa as well as for the simultaneous resolution of l-dopa and uric acid (UA). The LOD (S/N=3) was found to be 0.15μM at the proposed composite modified electrode. Determination of l-dopa could also be achieved in the presence of potentially interfering substances. The sensor showed high sensitivity and selectivity with appreciable reliability and precision. The proposed sensor was also successfully applied for real sample analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Dan; Dou, Wenchao; Zhao, Guangying; Chen, Yan
2014-11-01
In order to increase the reproducibility and stability of electrochemical immunosensor, which is a key issue for its application and popularization, an accurate and stable immunosensor for rapid detection of Salmonella pullorum (S. pullorum) was proposed in this study. The immunosensor was fabricated by modifying Screen-printed Carbon Electrode (SPCE) with electrodeposited gold nanoparticles (AuNPs), HRP-labeled anti-S. pullorum and ionic liquids (ILs) (AuNP/HRP/IL). AuNPs are electrodeposited on the working electrode surface to increase the amount of antibodies that bind to the electrode and then modified with ILs to protect the antibodies from being inactivated in the test environment and maintain their biological activity and the stability of the detection electrode. The electrochemical characteristics of the stepwise modified electrodes and the detection of S. pullorum were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). As shown in the results of the experiments, AuNPs with unique electrochemical properties as well as biocompatibility characteristics have been proven to be able to strengthen the antibody combination effectively and to increase the electrochemical response signal. In addition, a crucial assessment regarding implementation of stability and reproducibility analysis of a range of immunosensors is provided. We found that application of AuNPs/ILs in the immune modified electrodes showed obvious improvement when compared with other groups. Given their high levels of reproducibility, stability, target specificity and sensitivity, AuNPs and ILs were considered to be excellent elements for electrode modification. Copyright © 2014 Elsevier B.V. All rights reserved.
2013-09-03
Electrochemical Acidification Cell Part IV: Electrode Compartments of Cell Modified and Tested in Scaled-Up Mobile Unit September 3, 2013 Approved for public...OF ABSTRACT Extraction of Carbon Dioxide and Hydrogen from Seawater by an Electrochemical Acidification Cell Part IV: Electrode Compartments of Cell...Electrochemical acidification cell Carbon dioxide Hydrogen Polarity reversal An electrochemical acidification cell was scaled-up and integrated into a
Activity Report: Peace Education in Liberia
ERIC Educational Resources Information Center
Vonhm Benda, Ebenezer Mainlehwon
2010-01-01
In March of 2009, the author decided to establish the Center for Peace Education (CPE) in Liberia solely dedicated to promoting a non-violent culture by imbuing students with the skills, knowledge, and attitude needed to peacefully coexist. To begin the process of building a culture of peace, in April of 2009, CPE conducted a baseline survey in 14…
ERIC Educational Resources Information Center
Mobelini, Deronda Collier
2012-01-01
The Kentucky Council on Postsecondary Education's (CPE) "Stronger by Degrees" 2011-2015 Strategic Agenda points to additional causes for concern in the slower than projected increase in the rate of transfer from KCTCS colleges to four-year institutions (CPE, 2010). Therefore, it is important for KCTCS to develop a better understanding of…
ERIC Educational Resources Information Center
Walawalkar, Rajesh
2015-01-01
This study is about the perceptions of Company Secretaries about effectiveness of their formal and mandatory Continuing Professional Education (CPE) programme run by the Institute of Company Secretaries of India. The objectives were to ascertain: (1) to what extent do Company Secretaries perceive their CPE as effective, (2) what are the various…
A Conceptual Physical Education Course and College Freshmen's Health-Related Fitness
ERIC Educational Resources Information Center
Liu, Jingwen; Shangguan, Rulan; Keating, Xiaofen D.; Leitner, Jessica; Wu, Yigang
2017-01-01
Purpose: Conceptual physical education (CPE) classes have been widely offered to promote a healthy lifestyle in higher education settings. The purpose of this paper is to examine the effects of a CPE course on health-related fitness (HRF) levels among college freshmen. Design/methodology/approach: A pre- and post-test research design was used. In…
ERIC Educational Resources Information Center
Sattem, Linda Lee
A study analyzed the continuing professional education (CPE) requirements, practices, policies, evaluation measures, and perception of impact on practice and participants in the counseling profession. Research was conducted in 22 states with at least 5 years experience with their counselor licensing legislation requiring CPE. Other states were…
ERIC Educational Resources Information Center
Sarlos, Beatrice E.
Continuing professional education (CPE), defined as educational services offered to professionals (those who possess initial degrees required for practice) without the restrictions of traditional scheduling, credits, tuition, or instruction methods, is discussed. The importance of a uniform terminology to distinguish the specific area of CPE is…
ERIC Educational Resources Information Center
Williams, Suzanne Ellen; Greene, Leon; Satinsky, Sonya; Neuberger, John
2016-01-01
Purpose: The purposes of this study were to explore PE in higher education through the offering of traditional activity- and skills-based physical education (ASPE) and conceptually-based physical education (CPE) courses, and to conduct an exploratory content analysis on the CPE available to students in randomized colleges and universities in the…
NASA Technical Reports Server (NTRS)
Pototzky, Anthony; Wieseman, Carol; Hoadley, Sherwood Tiffany; Mukhopadhyay, Vivek
1991-01-01
Described here is the development and implementation of on-line, near real time controller performance evaluation (CPE) methods capability. Briefly discussed are the structure of data flow, the signal processing methods used to process the data, and the software developed to generate the transfer functions. This methodology is generic in nature and can be used in any type of multi-input/multi-output (MIMO) digital controller application, including digital flight control systems, digitally controlled spacecraft structures, and actively controlled wind tunnel models. Results of applying the CPE methodology to evaluate (in near real time) MIMO digital flutter suppression systems being tested on the Rockwell Active Flexible Wing (AFW) wind tunnel model are presented to demonstrate the CPE capability.
Zhao, Jun; Zhang, Yu; Wu, Kangbing; Chen, Jianwei; Zhou, Yikai
2011-09-15
A novel electrochemical method using multi-wall carbon nanotube (MWNT) film-modified electrode was developed for the detection of quinoline yellow. In pH 8 phosphate buffer, an irreversible oxidation peak at 0.71V was observed for quinoline yellow. Compared with the unmodified electrode, the MWNT film-modified electrode greatly increases the oxidation peak current of quinoline yellow, showing notable enhancement effect. The effects of pH value, amount of MWNT, accumulation potential and time were studied on the oxidation peak current of quinoline yellow. The linear range is from 0.75 to 20mgL(-1), and the limit of detection is 0.5mgL(-1). It was applied to the detection of quinoline yellow in commercial soft drinks, and the results consisted with the value that obtained by high-performance liquid chromatography. Copyright © 2011 Elsevier Ltd. All rights reserved.
Electrosorption of a modified electrode in the vicinity of phase transition: A Monte Carlo study
NASA Astrophysics Data System (ADS)
Gavilán Arriazu, E. M.; Pinto, O. A.
2018-03-01
We present a Monte Carlo study for the electrosorption of an electroactive species on a modified electrode. The surface of the electrode is modified by the irreversible adsorption of a non-electroactive species which is able to block a percentage of the adsorption sites. This generates an electrode with variable connectivity sites. A second species, electroactive in this case, is adsorbed in surface vacancies and can interact repulsively with itself. In particular, we are interested in the analysis of the effect of the non-electroactive species near of critical regime, where the c(2 × 2) structure is formed. Lattice-gas models and Monte Carlo simulations in the Gran Canonical Ensemble are used. The analysis conducted is based on the study of voltammograms, order parameters, isotherms, configurational entropy per site, at several values of energies and coverage degrees of the non-electroactive species.
ITO Modification for Efficient Inverted Organic Solar Cells.
Susarova, Diana K; Akkuratov, Alexander V; Kukharenko, Andrey I; Cholakh, Seif O; Kurmaev, Ernst Z; Troshin, Pavel A
2017-10-03
We demonstrate a facile approach to designing transparent electron-collecting electrodes by depositing thin layers of medium and low work function metals on top of transparent conductive metal oxides (TCOs) such as ITO and FTO. The modified electrodes were fairly stable for months under ambient conditions and maintained their electrical characteristics. XPS spectroscopy data strongly suggested integration of the deposited metal in the TCO structure resulting in additional doping of the conducting oxide at the interface. Kelvin probe microscopy measurements revealed a significant decrease in the ITO work function after modification. Organic solar cells based on three different conjugated polymers have demonstrated state of the art performances in inverted device geometry using Mg- or Yb-modified ITO as electron collecting electrode. The simplicity of the proposed approach and the excellent ambient stability of the modified ITO electrodes allows one to expect their wide utilization in research laboratories and electronic industry.
Han, Ping; Xu, Shimei; Feng, Shun; Hao, Yanjun; Wang, Jide
2016-05-01
In this work, the direct determination of creatinine was achieved using a poly(ethyleneimine)/phosphotungstic acid multilayer modified electrode with the assistance of Copper(II) ions by cyclic voltammetry. The quantity of creatinine were determined by measuring the redox peak current of Cu(II)-creatinine complex/Cu(I)-creatinine complex. Factors affecting the response current of creatinine at the modified electrode were optimized. A linear relationship between the response current and the concentration of creatinine ranging from 0.125 to 62.5μM was obtained with a detection limit of 0.06μM. The proposed method was applied to determine creatinine in human urine, and satisfied results were gotten which was validated in accordance with high performance liquid chromatography. The proposed electrode provided a promising alternative in routine sensing for creatinine without enzymatic assistance. Copyright © 2016 Elsevier B.V. All rights reserved.
Habibi, Esmaeil; Omidinia, Eskandar; Heidari, Hassan; Fazli, Maryam
2016-02-15
Cobalt hydroxide nanoparticles were prepared onto a carbon ceramic electrode (CHN|CCE) using the cyclic voltammetry (CV) technique. The modified electrode was characterized by X-ray diffraction and scanning electron microscopy. The results showed that CHN with a single-layer structure was uniformly electrodeposited on the surface of CCE. The electrocatalytic activity of the modified electrode toward the oxidation of insulin was studied by CV. CHN|CCE was also used in a homemade flow injection analysis system for insulin determination. The limit of detection (signal/noise [S/N] = 3) and sensitivity were found to be 0.11 nM and 11.8 nA/nM, respectively. Moreover, the sensor was used for detection of insulin in human serum samples. This sensor showed attractive properties such as high stability, reproducibility, and high selectivity. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Limin; Dong, Jinbo; Wang, Yulong; Cheng, Qi; Yang, Mingming; Cai, Jia; Liu, Fengquan
2016-03-01
A novel signal-amplified electrochemical assay for the determination of fenitrothion was developed, based on the redox behaviour of organophosphorus pesticides on a glassy carbon working electrode. The electrode was modified using graphene oxide dispersion. The electrochemical response of fenitrothion at the modified electrode was investigated using cyclic voltammetry, current-time curves, and square-wave voltammetry. Experimental parameters, namely the accumulation conditions, pH value, and volume of dispersed material, were optimised. Under the optimum conditions, a good linear relationship was obtained between the oxidation peak current and the fenitrothion concentration. The linear range was 1-400 ng·mL-1, with a detection limit of 0.1 ng·mL-1 (signal-to-nose ratio = 3). The high sensitivity of the sensor was demonstrated by determining fenitrothion in pakchoi samples.
A potentiometric enzyme electrode for the direct measurement of organophosphate (OP)
nerve agents was developed. The basic element of this enzyme electrode was a pH electrode
modified with an immobilized organophosphorus hydrolase (OPH) layer formed by cross-linking
OPH ...
Chemically modified graphene based supercapacitors for flexible and miniature devices
NASA Astrophysics Data System (ADS)
Ghosh, Debasis; Kim, Sang Ouk
2015-09-01
Rapid progress in the portable and flexible electronic devises has stimulated supercapacitor research towards the design and fabrication of high performance flexible devices. Recent research efforts for flexible supercapacitor electrode materials are highly focusing on graphene and chemically modified graphene owing to the unique properties, including large surface area, high electrical and thermal conductivity, excellent mechanical flexibility, and outstanding chemical stability. This invited review article highlights current status of the flexible electrode material research based on chemically modified graphene for supercapacitor application. A variety of electrode architectures prepared from chemically modified graphene are summarized in terms of their structural dimensions. Novel prototypes for the supercapacitor aiming at flexible miniature devices, i.e. microsupercapacitor with high energy and power density are highlighted. Future challenges relevant to graphene-based flexible supercapacitors are also suggested. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Zhang, Xiaojuan; He, Mingqian; He, Ping; Liu, Hongtao; Bai, Hongmei; Chen, Jingchao; He, Shaoying; Zhang, Xingquan; Dong, Faqing; Chen, Yang
2017-12-01
By a simple and cost effective chemical precipitation-hydrothermal method, novel hierarchical structured Sm2O3 modified CuO nanoflowers are prepared and investigated as electrode materials for supercapacitors. The physical properties of prepared materials are characterized by XRD, FE-SEM, EDX and FTIR techniques. Furthermore, electrochemical performances of prepared materials are investigated by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectrum in 1.0 M KOH electrolyte. The resulting Sm2O3 modified CuO based electrodes exhibit obviously enhanced capacitive properties owing to the unique nanostructures and strong synergistic effects. It is worth noting that the optimized SC-3 based electrode exhibits the best electrochemical performances in all prepared electrodes, including higher specific capacitance (383.4 F g-1 at 0.5 A g-1) and good rate capability (393.2 F g-1 and 246.3 F g-1 at 0.3 A g-1 and 3.0 A g-1, respectively), as well as excellent cycling stability (84.6% capacitance retention after 2000 cycles at 1.0 A g-1). The present results show that Sm2O3 is used as a promising modifier to change the morphology and improve electrochemical performances of CuO materials.
He, Ping; Wang, Wei; Du, Licheng; Dong, Faqin; Deng, Yuequan; Zhang, Tinghong
2012-08-20
A novel Cu-zeolite A/graphene modified glassy carbon electrode for the simultaneous electrochemical determination of dopamine (DA) and ascorbic acid (AA) has been described. The Cu-zeolite A/graphene composites were prepared using Cu(2+) functionalized zeolite A and graphene oxide as the precursor, and subsequently reduced by chemical agents. The composites were characterized by X-ray diffraction, Fourier transform infrared spectra and scanning electron microscopy. Based on the Cu-zeolite A/graphene-modified electrode, the potential difference between the oxidation peaks of DA and AA was over 200mV, which was adequate for the simultaneous electrochemical determination of DA and AA. Also the proposed Cu-zeolite/graphene-modified electrode showed higher electrocatalytic performance than zeolite/graphene electrode or graphene-modified electrode. The electrocatalytic oxidation currents of DA and AA were linearly related to the corresponding concentration in the range of 1.0×10(-7)-1.9×10(-5)M for DA and 2.0×10(-5)-2.0×10(-4)M for AA. Detection limits (S/N=3) were estimated to be 4.1×10(-8)M for DA and 1.1×10(-5)M for AA, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.
Gao, Yun-Fei; Yang, Tian; Yang, Xiao-Lu; Zhang, Yu-Shuai; Xiao, Bao-Lin; Hong, Jun; Sheibani, Nader; Ghourchian, Hedayatollah; Hong, Tao; Moosavi-Movahedi, Ali Akbar
2014-10-15
Direct electrochemistry of glucose oxidase (GOD) was achieved when GOD-hydroxyl fullerenes (HFs) nano-complex was immobilized on a glassy carbon (GC) electrode and protected with a chitosan (Chit) membrane. The ultraviolet-visible absorption spectrometry (UV-vis), transmission electron microscopy (TEM), and circular dichroism spectropolarimeter (CD) methods were utilized for additional characterization of the GOD, GOD-HFs and Chit/GOD-HFs. Chit/HFs may preserve the secondary structure and catalytic properties of GOD. The cyclic voltammograms (CVs) of the modified GC electrode showed a pair of well-defined quasi-reversible redox peaks with the formal potential (E°') of 353 ± 2 mV versus Ag/AgCl at a scan rate of 0.05 V/s. The heterogeneous electron transfer constant (ks) was calculated to be 2.7 ± 0.2s(-1). The modified electrode response to glucose was linear in the concentrations ranging from 0.05 to 1.0mM, with a detection limit of 5 ± 1 μM. The apparent Michaelis-Menten constant (Km(app)) was 694 ± 8 μM. Thus, the modified electrode could be applied as a third generation biosensor for glucose with high sensitivity, selectivity and low detection limit. Copyright © 2014 Elsevier B.V. All rights reserved.
The impact of pyrene on the electrochemical response of the ferricyanide probe using Self Assembled Monolayer (SAM)-modified gold electrodes was investigated using Cyclic Voltammetry (CV) and Square Wave Voltammetry (SWV). These results suggest the feasibility of using SAMs, par...
Double-Polymer-Modified Pencil Lead for Stripping Voltammetry of Perchlorate in Drinking Water
ERIC Educational Resources Information Center
Izadyar, Anahita; Kim, Yushin; Ward, Michelle M.; Amemiya, Shigeru
2012-01-01
The inexpensive and disposable electrode based on a double-polymer-modified pencil lead is proposed for upper-division undergraduate instrumental laboratories to enable the highly sensitive detection of perchlorate. Students fabricate and utilize their own electrodes in the 3-4 h laboratory session to learn important concepts and methods of…
NASA Astrophysics Data System (ADS)
Palanisamy, Selvakumar; Thirumalraj, Balamurugan; Chen, Shen-Ming; Wang, Yi-Ting; Velusamy, Vijayalakshmi; Ramaraj, Sayee Kannan
2016-09-01
We report a novel and sensitive amperometric sensor for chlorpromazine (CPZ) based on reduced graphene oxide (RGO) and polydopamine (PDA) composite modified glassy carbon electrode. The RGO@PDA composite was prepared by electrochemical reduction of graphene oxide (GO) with PDA. The RGO@PDA composite modified electrode shows an excellent electro-oxidation behavior to CPZ when compared with other modified electrodes such as GO, RGO and GO@PDA. Amperometric i-t method was used for the determination of CPZ. Amperometry result shows that the RGO@PDA composite detects CPZ in a linear range from 0.03 to 967.6 μM. The sensor exhibits a low detection limit of 0.0018 μM with the analytical sensitivity of 3.63 ± 0.3 μAμM-1 cm-2. The RGO@PDA composite shows its high selectivity towards CPZ in the presence of potentially interfering drugs such as metronidazole, phenobarbital, chlorpheniramine maleate, pyridoxine and riboflavin. In addition, the fabricated RGO@PDA modified electrode showed an appropriate recovery towards CPZ in the pharmaceutical tablets.
Jin, Xinfang; White, Ralph E.; Huang, Kevin
2016-10-04
With the assumption that the Fermi level (electrochemical potential of electrons) is uniform across the thickness of a mixed ionic and electronic conducting (MIEC) electrode, the charge-transport model in the electrode domain can be reduced to the modified Fick’s first law, which includes a thermodynamic factor A. A transient numerical solution of the Nernst-Planck theory was obtained for a symmetric cell with MIEC electrodes to illustrate the validity of the assumption of a uniform Fermi level. Subsequently, an impedance numerical solution based on the modified Fick’s first law is compared with that from the Nernst-Planck theory. The results show thatmore » Nernst-Planck charge-transport model is essentially the same as the modified Fick’s first law model as long as the MIEC electrodes have a predominant electronic conductivity. However, because of the invalidity of the uniform Fermi level assumption for aMIEC electrolyte with a predominant ionic conductivity, Nernst-Planck theory is needed to describe the charge transport behaviors.« less
EDTA assisted synthesis of hydroxyapatite nanoparticles for electrochemical sensing of uric acid.
Kanchana, P; Sekar, C
2014-09-01
Hydroxyapatite nanoparticles have been synthesized using EDTA as organic modifier by a simple microwave irradiation method and its application for the selective determination of uric acid (UA) has been demonstrated. Electrochemical behavior of uric acid at HA nanoparticle modified glassy carbon electrode (E-HA/GCE) has been investigated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), linear sweep voltammetry (LSV) and amperometry. The E-HA modified electrode exhibits efficient electrochemical activity towards uric acid sensing without requiring enzyme or electron mediator. Amperometry studies revealed that the fabricated electrode has excellent sensitivity for uric acid with the lowest detection limit of 142 nM over a wide concentration range from 1 × 10(-7) to 3 × 10(-5)M. Moreover, the studied E-HA modified GC electrode exhibits a good reproducibility and long-term stability and an admirable selectivity towards the determination of UA even in the presence of potential interferents. The analytical performance of this sensor was evaluated for the detection of uric acid in human urine and blood serum samples. Copyright © 2014. Published by Elsevier B.V.
Zhu, Wencai; Huang, Hui; Gao, Xiaochun; Ma, Houyi
2014-12-01
Poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite film modified glassy carbon electrodes (4-ABA/ERGO/GCEs) were fabricated by a two-step electrochemical method. The electrochemical behavior of acetaminophen at the modified electrode was investigated by means of cyclic voltammetry. The results indicated that 4-ABA/ERGO composite films possessed excellent electrocatalytic activity towards the oxidation of acetaminophen. The electrochemical reaction of acetaminophen at 4-ABA/ERGO/GCE is proved to be a surface-controlled process involving the same number of protons and electrons. The voltammetric determination of acetaminophen performed with the 4-ABA/ERGO modified electrode presents a good linearity in the range of 0.1-65 μM with a low detection limit of 0.01 μM (S/N=3). In the case of using the 4-ABA/ERGO/GCE, acetaminophen and dopamine can be simultaneously determined without mutual interference. Furthermore, the 4-ABA/ERGO/GCE has good reproducibility and stability, and can be used to determine acetaminophen in tablets. Copyright © 2014 Elsevier B.V. All rights reserved.
Kachangoon, Rawikan; Vichapong, Jitlada; Burakham, Rodjana; Santaladchaiyakit, Yanawath; Srijaranai, Supalax
2018-05-12
An effective pre-concentration method, namely amended-cloud point extraction (CPE), has been developed for the extraction and pre-concentration of neonicotinoid insecticide residues. The studied analytes including clothianidin, imidacloprid, acetamiprid, thiamethoxam and thiacloprid were chosen as a model compound. The amended-CPE procedure included two cloud point processes. Triton™ X-114 was used to extract neonicotinoid residues into the surfactant-rich phase and then the analytes were transferred into an alkaline solution with the help of ultrasound energy. The extracts were then analyzed by high-performance liquid chromatography (HPLC) coupled with a monolithic column. Several factors influencing the extraction efficiency were studied such as kind and concentration of surfactant, type and content of salts, kind and concentration of back extraction agent, and incubation temperature and time. Enrichment factors (EFs) were found in the range of 20⁻333 folds. The limits of detection of the studied neonicotinoids were in the range of 0.0003⁻0.002 µg mL −1 which are below the maximum residue limits (MRLs) established by the European Union (EU). Good repeatability was obtained with relative standard deviations lower than 1.92% and 4.54% for retention time ( t R ) and peak area, respectively. The developed extraction method was successfully applied for the analysis of water samples. No detectable residues of neonicotinoids in the studied samples were found.
Redox electrodes comprised of polymer-modified carbon nanomaterials
NASA Astrophysics Data System (ADS)
Roberts, Mark; Emmett, Robert; Karakaya, Mehmet; Podila, Ramakrishna; Rao, Apparao; Clemson Physics Team; Clemson Chemical Engineering Team
2013-03-01
A shift in how we generate and use electricity requires new energy storage materials and systems compatible with hybrid electric transportation and the integration of renewable energy sources. Supercapacitors provide a solution to these needs by combining the high power, rapid switching, and exceptional cycle life of a capacitor with the high energy density of a battery. Our research brings together nanotechnology and materials chemistry to address the limitations of electrode materials. Paper electrodes fabricated with various forms of carbon nanomaterials, such as nanotubes, are modified with redox-polymers to increase the electrode's energy density while maintaining rapid discharge rates. In these systems, the carbon nanomaterials provide the high surface area, electrical conductivity, nanoscale and porosity, while the redox polymers provide a mechanism for charge storage through Faradaic charge transfer. The design of redox polymers and their incorporation into nanomaterial electrodes will be discussed with a focus on enabling high power and high energy density electrodes.
Surface-modified Mg{sub 2}Ni-type negative electrode materials for Ni-MH battery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, N.; Luan, B.; Bradhurst, D.
1997-12-01
In order to further improve the electrode performance of Mg{sub 1.9}Y{sub 0.1}Ni{sub 0.9}Al{sub 0.1} alloy at ambient temperature, its surface was modified by an ultrasound pretreatment in the alkaline solution and microencapsulation with Ni-P coating. The effects of various surface modifications on the microstructure and electrochemical performance of the alloy electrodes were investigated and compared in this paper. It was found that the modification with ultrasound pretreatment significantly improved the electrocatalytic activity of the negative electrode and then reduced the overpotential of charging/discharging, resulting in a remarkable increase of electrode capacity and high-rate discharge capability but having little influence onmore » the cycle life. However, the electrode fabricated from the microencapsulated alloy powder showed a higher discharge capacity, better high-rate discharge capability and longer cycle life as well.« less
Sun, Wei; Cao, Lili; Deng, Ying; Gong, Shixing; Shi, Fan; Li, Gaonan; Sun, Zhenfan
2013-06-05
A graphene (GR) and multi-walled carbon nanotubes (MWCNT) hybrid was prepared and modified on a 1-hexylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE). Hemoglobin (Hb) was immobilized on GR-MWCNT/CILE surface with Nafion as the film forming material and the modified electrode was denoted as Nafion/Hb-GR-MWCNT/CILE. Spectroscopic results revealed that Hb molecules retained its native structure in the GR-MWCNT hybird. Electrochemical behaviors of Hb were carefully investigated by cyclic voltammetry with a pair of well-defined redox peaks obtained, which indicated that direct electron transfer of Hb was realized in the hybrid modified electrode. The result could be attributed to the synergistic effects of GR-MWCNT hybrid with enlarged surface area and improved conductivity through the formation of a three-dimensional network. Electrochemical parameters of the immobilized Hb on the electrode surface were further calculated with the results of the electron transfer number (n) as 1.03, the charge transfer coefficient (a) as 0.58 and the electron-transfer rate constant (ks) as 0.97 s(-1). The Hb modified electrode showed good electrocatalytic ability toward the reduction of different substrates such as trichloroacetic acid in the concentration range from 0.05 to 38.0 mmol L(-1) with a detection limit of 0.0153 mmol L(-1) (3σ), H2O2 in the concentration range from 0.1 to 516.0 mmol L(-1) with a detection limit of 34.9 nmol/L (3σ) and NaNO2 in the concentration range from 0.5 to 650.0 mmol L(-1) with a detection limit of 0.282 μmol L(-1) (3σ). So the proposed electrode had the potential application in the third-generation electrochemical biosensors without mediator. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Furutaka, Hajime; Nemoto, Kentaro; Inoue, Yuki; Hidaka, Hiroki; Muguruma, Hitoshi; Inoue, Hitoshi; Ohsawa, Tatsuya
2016-05-01
An amperometric biosensor based on a glassy carbon electrode modified with long-length multiwalled carbon nanotubes (MWCNTs) and enzyme nicotinamide-adenine-dinucleotide-dependent glucose dehydrogenase (GDH) is presented. We demonstrate the effect of the MWCNT length on the amperometric response of the enzyme biosensor. The long length of MWCNT is 200 µm (average), whereas the normal length of MWCNT is 1 µm (average). The response of the long MWCNT-GDH electrode is 2 times more sensitive than that of the normal-length MWCNT-GDH electrode in the concentration range from 0.25-35 mM. The result of electrochemical impedance spectroscopy measurements suggest that the long-length MWCNT-GDH electrode formed a better electron transfer network than the normal-length one.
High-performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes.
Kim, Tae Young; Lee, Hyun Wook; Stoller, Meryl; Dreyer, Daniel R; Bielawski, Christopher W; Ruoff, Rodney S; Suh, Kwang S
2011-01-25
We report a high-performance supercapacitor incorporating a poly(ionic liquid)-modified reduced graphene oxide (PIL:RG-O) electrode and an ionic liquid (IL) electrolyte (specifically, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide or EMIM-NTf(2)). PIL:RG-O provides enhanced compatibility with the IL electrolyte, thereby increasing the effective electrode surface area accessible to electrolyte ions. The supercapacitor assembled with PIL:RG-O electrode and EMIM-NTf(2) electrolyte showed a stable electrochemical response up to 3.5 V operating voltage and was capable of yielding a maximum energy density of 6.5 W·h/kg with a power density of 2.4 kW/kg. These results demonstrate the potential of the PIL:RG-O material as an electrode in high-performance supercapacitors.
Yang, Xin-An; Lu, Xiao-Ping; Liu, Lin; Chi, Miao-Bin; Hu, Hui-Hui; Zhang, Wang-Bing
2016-10-01
This work describes a novel non-chromatographic approach for the accurate and selective determining As species by modified graphite electrode-based electrolytic hydride generation (EHG) for sample introduction coupled with atomic fluorescence spectrometry (AFS) detection. Two kinds of sulfydryl-containing modifiers, l-cysteine (Cys) and glutathione (GSH), are used to modify cathode. The EHG performance of As has been changed greatly at the modified cathode, which has never been reported. Arsenite [As(III)] on the GSH modified graphite electrode (GSH/GE)-based EHG can be selectively and quantitatively converted to AsH3 at applied current of 0.4A. As(III) and arsenate [As(V)] on the Cys modified graphite electrode (Cys/GE) EHG can be selectively and efficiently converted to arsine at applied current of 0.6A, whereas monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) do not form any or only less volatile hydrides under this condition. By changing the analytical conditions, we also have achieved the analysis of total As (tAs) and DMA. Under the optimal condition, the detection limits (3s) of As(III), iAs and tAs in aqueous solutions are 0.25μgL(-1), 0.22μgL(-1) and 0.10μgL(-1), respectively. The accuracy of the method is verified through the analysis of standard reference materials (SRM 1568a). Copyright © 2016 Elsevier B.V. All rights reserved.
Graphene-loaded nanofiber-modified electrodes for the ultrasensitive determination of dopamine.
Rodthongkum, Nadnudda; Ruecha, Nipapan; Rangkupan, Ratthapol; Vachet, Richard W; Chailapakul, Orawon
2013-12-04
A novel and highly sensitive electrochemical system based on electrospun graphene/polyaniline/polystyrene (G/PANI/PS) nanofiber-modified screen-printed carbon electrodes has been developed for dopamine (DA) determination. A dramatic increase (9 times) in the current signal for the redox reaction of a standard, ferri/ferrocyanide [Fe(CN)6](3-/4-) couple was found when compared to an unmodified electrode. This modified electrode also exhibited favorable electron transfer kinetics and excellent electrocatalytic activity toward the oxidation of DA. When used together with square wave voltammetry (SWV), DA can be selectively determined in the presence of the common interferents (i.e. ascorbic acid and uric acid). Under optimal conditions, a very low limit of detection (0.05 nM) and limit of quantification (0.30 nM) were achieved for DA. In addition, a wide dynamic range of 0.1 nM to 100 μM was found for this electrode system. Finally, the system can be successfully applied to determine DA in complex biological environment (e.g. human serum, urine) with excellent reproducibility. Copyright © 2013 Elsevier B.V. All rights reserved.
Surface Analysis of 4-Aminothiophenol Adsorption at Polycrystalline Platinum Electrodes
NASA Technical Reports Server (NTRS)
Rosario-Castro, Belinda I.; Fachini, Estevao R.; Contes, Enid J.; Perez-Davis, Marla E.; Cabrera, Carlos R.
2008-01-01
Formation of self-assembled monolayer (SAM) of 4-aminothiophenol (4-ATP) on polycrystalline platinum electrodes has been studied by surface analysis and electrochemistry techniques. The 4-ATP monolayer was characterized by cyclic voltammetry (CV), Raman spectroscopy, reflection absorption infrared (RAIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Cyclic voltammetry (CV) experiments give an idea about the packing quality of the monolayer. RAIR and Raman spectra for 4-ATP modified platinum electrodes showed the characteristic adsorption bands for neat 4-ATP indicating the adsorption of 4-ATP molecules on platinum surface. The adsorption on platinum was also evidenced by the presence of sulfur and nitrogen peaks by XPS survey spectra of the modified platinum electrodes. High resolution XPS studies and RAIR spectrum for platinum electrodes modified with 4-ATP indicate that molecules are sulfur-bonded to the platinum surface. The formation of S-Pt bond suggests that ATP adsorption gives up an amino terminated SAM. Thickness of the monolayer was evaluated via angle-resolved XPS (AR-XPS) analyses. Derivatization of 4-ATP SAM was performed using 16-Br hexadecanoic acid.
The electrochemical performance of graphene modified electrodes: an analytical perspective.
Brownson, Dale A C; Foster, Christopher W; Banks, Craig E
2012-04-21
We explore the use of graphene modified electrodes towards the electroanalytical sensing of various analytes, namely dopamine hydrochloride, uric acid, acetaminophen and p-benzoquinone via cyclic voltammetry. In line with literature methodologies and to investigate the full-implications of employing graphene in this electrochemical context, we modify electrode substrates that exhibit either fast or slow electron transfer kinetics (edge- or basal- plane pyrolytic graphite electrodes respectively) with well characterised commercially available graphene that has not been chemically treated, is free from surfactants and as a result of its fabrication has an extremely low oxygen content, allowing the true electroanalytical applicability of graphene to be properly de-convoluted and determined. In comparison to the unmodified underlying electrode substrates (constructed from graphite), we find that graphene exhibits a reduced analytical performance in terms of sensitivity, linearity and observed detection limits towards each of the various analytes studied within. Owing to graphene's structural composition, low proportion of edge plane sites and consequent slow heterogeneous electron transfer rates, there appears to be no advantages, for the analytes studied here, of employing graphene in this electroanalytical context.
Pencil Graphite Electrodes: A Versatile Tool in Electroanalysis
2017-01-01
Due to their electrochemical and economical characteristics, pencil graphite electrodes (PGEs) gained in recent years a large applicability to the analysis of various types of inorganic and organic compounds from very different matrices. The electrode material of this type of working electrodes is constituted by the well-known and easy commercially available graphite pencil leads. Thus, PGEs are cheap and user-friendly and can be employed as disposable electrodes avoiding the time-consuming step of solid electrodes surface cleaning between measurements. When compared to other working electrodes PGEs present lower background currents, higher sensitivity, good reproducibility, and an adjustable electroactive surface area, permitting the analysis of low concentrations and small sample volumes without any deposition/preconcentration step. Therefore, this paper presents a detailed overview of the PGEs characteristics, designs and applications of bare, and electrochemically pretreated and chemically modified PGEs along with the corresponding performance characteristics like linear range and detection limit. Techniques used for bare or modified PGEs surface characterization are also reviewed. PMID:28255500
NASA Astrophysics Data System (ADS)
Li, Meixia; Zhu, Jun E.; Zhang, Lili; Chen, Xu; Zhang, Huimin; Zhang, Fazhi; Xu, Sailong; Evans, David G.
2011-10-01
Layered double hydroxides (LDHs), also known as hydrotalcite-like anionic clays, have been investigated widely as promising electrochemical active materials. Due to the inherently weak conductivity, the electrochemical properties of LDHs were improved typically by utilization of either functional molecules intercalated between LDH interlayer galleries, or proteins confined between exfoliated LDH nanosheets. Here, we report a facile protocol to prepare NiAl-LDH/graphene (NiAl-LDH/G) nanocomposites using a conventional coprecipitation process under low-temperature conditions and subsequent reduction of the supporting graphene oxide. Electrochemical tests showed that the NiAl-LDH/G modified electrode exhibited highly enhanced electrochemical performance of dopamine electrooxidation in comparison with the pristine NiAl-LDH modified electrode. Results of high-resolution transmission electron microscopy and Raman spectra provide convincing information on the nanostructure and composition underlying the enhancement. Our results of the NiAl-LDH/G modified electrodes with the enhanced electrochemical performance may allow designing a variety of promising hybrid sensors via a simple and feasible approach.Layered double hydroxides (LDHs), also known as hydrotalcite-like anionic clays, have been investigated widely as promising electrochemical active materials. Due to the inherently weak conductivity, the electrochemical properties of LDHs were improved typically by utilization of either functional molecules intercalated between LDH interlayer galleries, or proteins confined between exfoliated LDH nanosheets. Here, we report a facile protocol to prepare NiAl-LDH/graphene (NiAl-LDH/G) nanocomposites using a conventional coprecipitation process under low-temperature conditions and subsequent reduction of the supporting graphene oxide. Electrochemical tests showed that the NiAl-LDH/G modified electrode exhibited highly enhanced electrochemical performance of dopamine electrooxidation in comparison with the pristine NiAl-LDH modified electrode. Results of high-resolution transmission electron microscopy and Raman spectra provide convincing information on the nanostructure and composition underlying the enhancement. Our results of the NiAl-LDH/G modified electrodes with the enhanced electrochemical performance may allow designing a variety of promising hybrid sensors via a simple and feasible approach. Electronic supplementary information (ESI) available: Fig. S1 showing 2D fast Fourier transform (FFT) image of NiAl-LDH phase in NiAl-LDH/G composites, and Fig. S2 showing CV curve of the pristine G modified electrode. See DOI: 10.1039/c1nr10592b.
Li, W; Zhang, Z; Saxon, A; Zhang, K
2012-05-01
Treatment options for food allergy remain limited. Development of novel approaches for the prevention and/or treatment of severe peanut allergy and other food allergies is urgently needed. The objective of this study was to test whether skin application of food allergen can be used as a prophylactic and/or therapeutic intervention for food allergy. Balb/C mice were given 5 weekly cutaneous application of complete peanut extract (CPE) or ovalbumin (OVA) ranging from 10 to 1000 μg on the shaved back skin, followed by 5 weekly treatments with oral CPE or OVA plus cholera toxin to induce allergic reactivity to the food. At various time points, the immunologic responses and allergic clinical manifestations to allergens were examined. Skin application of a 10-1000 μg dose of CPE or OVA to structurally intact skin did not lead to allergic sensitization to peanut or OVA. Rather, cutaneous allergen application blocked, in a dose-dependent fashion, the subsequent induction of the oral sensitization including inhibiting oral sensitization-induced CPE-specific IgE, IgG1, and IgG2a production, suppressing the peanut anaphylaxis, and modulating the oral sensitization-promoted cytokine production. The cutaneous OVA application also resulted in similar results as seen with CPE application. Cutaneous application of intact skin with peanut or OVA can block the development of orally induced corresponding food allergies, suggesting that allergic tolerance to peanuts and OVA might be achieved via allergen cutaneous application. © 2012 John Wiley & Sons A/S.
Minamoto, Yasushi; Dhanani, Naila; Markel, Melissa E; Steiner, Jörg M; Suchodolski, Jan S
2014-12-05
Clostridium perfringens has been suspected as an enteropathogen in dogs. However, its exact role in gastrointestinal (GI) disorders in dogs remains unknown. Recent studies suggest the importance of an altered intestinal microbiota in the activation of virulence factors of enteropathogens. The aim of this study was to evaluate the relationship between diarrhea, dysbiosis, and the presence of C. perfringens and its enterotoxin (CPE). Fecal samples were collected prospectively from 95 healthy control dogs and 104 dogs with GI disease and assessed for bacterial abundances and the presence of CPE using quantitative PCR and ELISA, respectively. C. perfringens was detected in all dogs. Potentially enterotoxigenic C. perfringens were detected in 33.7% (32/95) of healthy control dogs and 48.1% (50/104) diseased dogs, respectively. CPE was detected by ELISA in 1.0% (1/95) of control dogs and 16.3% (17/104) of diseased dogs. Abundances of Fusobacteria, Ruminococcaceae, Blautia, and Faecalibacterium were significantly decreased in diseased dogs, while abundances of Bifidobacterium, Lactobacillus, and Escherichia coli were significantly increased compared to control dogs. The microbial dysbiosis was independent of the presence of the enterotoxigenic C. perfringens or CPE. In conclusion, the presence of CPE as well as fecal dysbiosis was associated with GI disease. However, the presence of C. perfringens was not indicative of GI disease in all cases of diarrhea, and the observed increased abundance of enterotoxigenic C. perfringens may be part of intestinal dysbiosis occurring in GI disease. The significance of an intestinal dysbiosis in dogs with GI disease deserves further attention. Published by Elsevier B.V.
Letendre, Scott; Marquie-Beck, Jennifer; Capparelli, Edmund; Best, Brookie; Clifford, David; Collier, Ann C.; Gelman, Benjamin B.; McArthur, Justin C.; McCutchan, J. Allen; Morgello, Susan; Simpson, David; Grant, Igor; Ellis, Ronald J.
2009-01-01
Objective To evaluate whether penetration of a combination regimen into the central nervous system (CNS), as estimated by the CNS Penetration-Effectiveness (CPE) rank, is associated with lower cerebrospinal fluid (CSF) viral load. Design Data were analyzed from 467 participants who were human immunodeficiency virus (HIV) seropositive and who reported antiretroviral (ARV) drug use. Individual ARV drugs were assigned a penetration rank of 0 (low), 0.5 (intermediate), or 1 (high) based on their chemical properties, concentrations in CSF, and/or effectiveness in the CNS in clinical studies. The CPE rank was calculated by summing the individual penetration ranks for each ARV in the regimen. Results The median CPE rank was 1.5 (interquartile range, 1–2). Lower CPE ranks correlated with higher CSF viral loads. Ranks less than 2 were associated with an 88% increase in the odds of detectable CSF viral load. In multivariate regression, lower CPE ranks were associated with detectable CSF viral loads even after adjusting for total number of ARV drugs, ARV drug adherence, plasma viral load, duration and type of the current regimen, and CD4 count. Conclusions Poorer penetration of ARV drugs into the CNS appears to allow continued HIV replication in the CNS as indicated by higher CSF HIV viral loads. Because inhibition of HIV replication in the CNS is probably critical in treating patients who have HIV-associated neurocognitive disorders, ARV treatment strategies that account for CNS penetration should be considered in consensus treatment guidelines and validated in clinical studies. PMID:18195140
Combating WMD Journal. Issue 2
2008-03-01
can be conducted utilizing passive detectors such as thermoluminescent dosime- ters (TLDs) or optically stimulated luminescent ( OSL ) dosimeters ...reasonable estimate of the dose. The challenge in high-energy bremsstrahlung fields is that current (standard) dosimeters do not provide for CPE...above a few MeV. CPE can be obtained by placing tissue- equivalent material (such as a build- up cap) around the dosimeter . This Dosimetry Needs
Central Park East and Its Graduates: "Learning by Heart." The Series on School Reform.
ERIC Educational Resources Information Center
Bensman, David
This book describes New York City's Central Park East (CPE) Elementary School, which provides inner city children with the highest quality educators and pedagogy and is considered one of the most academically enriching U.S. schools. The book gives voice to young adults who emerged from poverty as a result of powerful experiences within CPE.…
Some components of the ``cocktail-party effect,'' as revealed when it fails
NASA Astrophysics Data System (ADS)
Divenyi, Pierre L.; Gygi, Brian
2003-04-01
The precise way listeners cope with cocktail-party situations, i.e., understand speech in the midst of other, simultaneously ongoing conversations, has by-and-large remained a puzzle, despite research committed to studying the problem over the past half century. In contrast, it is widely acknowledged that the cocktail-party effect (CPE) deteriorates in aging. Our investigations during the last decade have assessed the deterioration of the CPE in elderly listeners and attempted to uncover specific auditory tasks, on which the performance of the same listeners will also exhibit a deficit. Correlated performance on CPE and such auditory tasks arguably signify that the tasks in question are necessary for perceptual segregation of the target speech and the background babble. We will present results on three tasks correlated with CPE performance. All three tasks require temporal processing-based perceptual segregation of specific non-speech stimuli (amplitude- and/or frequency-modulated sinusoidal complexes): discrimination of formant transition patterns, segregation of streams with different syllabic rhythms, and selective attention to AM or FM features in the designated stream. [Work supported by a grant from the National Institute on Aging and by the V.A. Medical Research.
Leiter, E H; Kintner, J; Flurkey, K; Beamer, W G; Naggert, J K
1999-02-01
The fat gene in mice represents a recessive mutation at the carboxypeptidase E (Cpe) locus. The mutant allele (Cpe(fat)) encodes a highly unstable enzyme and produces an obesity phenotype characterized by attenuated processing of prohormones such as proinsulin that require this exopeptidase for full maturation. This article presents a preliminary physiologic and endocrinologic characterization of the stock of C57BLKS/LtJ-Cpe(fat)/Cpe(fat) mice at the backcross generation (N10) currently distributed by The Jackson Laboratory. Although previously reported not to be diabetogenic at N5, an additional five backcrosses to the C57BLKS/J background resulted in a male-biased development of both obesity and diabetes. Major differences distinguishing this mutant stock from the phenotypes produced by either the diabetes (Lepr(db)) or obese (Lep(ob)) mutations on the same inbred strain background are lack of hyperphagia and hypercorticism, sensitivity of diabetic males to exogenous insulin, and a milder and male-biased diabetes syndrome that is not associated with widespread beta-cell necrosis and islet atrophy, and that often remits with age.
NASA Astrophysics Data System (ADS)
Le Barny, Pierre; Servet, Bernard; Campidelli, Stéphane; Bondavalli, Paolo; Galindo, Christophe
2013-09-01
The use of carbon-based materials in electrochemical double-layer supercapacitors (EDLC) is currently being the focus of much research. Even though activated carbon (AC) is the state of the art electrode material, AC suffers from some drawbacks including its limited electrical conductivity, the need for a binder to ensure the expected electrode cohesion and its limited accessibility of its pores to solvated ions of the electrolyte. Owing to their unique physical properties, carbon nanotubes (CNTs) or graphene could overcome these drawbacks. It has been demonstrated that high specific capacitance could be obtained when the carbon accessible surface area of the electrode was finely tailored by using graphene combined with other carbonaceous nanoparticles such as CNTs12.In this work, to further increase the specific capacitance of the electrode, we have covalently grafted onto the surface of single-walled carbon nanotubes (SWCNTs), exfoliated graphite or graphene oxide (GO), anthraquinone (AQ) derivatives which are electrochemically active materials. The modified SWCNTs and graphene-like materials have been characterized by Raman spectroscopy, X-ray photoemission and cyclic voltammetry . Then suspensions based on mixtures of modified SWCNTs and modified graphene-like materials have been prepared and transformed into electrodes either by spray coating or by filtration. These electrodes have been characterized by SEM and by cyclic voltammetry in 0.1M H2S04 electrolyte.
Li, Jianlin; Han, Tao; Wei, Nannan; Du, Jiangyan; Zhao, Xiangwei
2009-12-15
Gold nanoparticles have been introduced into the wall framework of titanium dioxide photonic crystals by the colloidal crystal template technique. The three-dimensionally ordered macroporous gold-nanoparticle-doped titanium dioxide (3DOM GTD) film was modified on the indium-tin oxide (ITO) electrode surface and used for the hydrogen peroxide biosensor. The direct electron transfer and electrocatalysis of horseradish peroxidase (HRP) immobilized on this film have been investigated. The 3DOM GTD film could provide a good microenvironment for retaining the biological bioactivity, large internal area, and superior conductivity. The HRP/3DOM GTD/ITO electrode exhibited two couples of redox peaks corresponding to the HRP intercalated in the mesopores and adsorbed on the external surface of the film with the formal potential of -0.19 and -0.52V in 0.1M PBS (pH 7.4), respectively. The HRP intercalated in the mesopores showed a surface-controlled process with a single proton transfer. The direct electron transfer between the adsorbed HRP and the electrode is achieved without the aid of an electron mediator. The H(2)O(2) biosensor displayed a rapid eletrocatalytic response (less than 3s), a wide linear range from 0.5 microM to 1.4mM with a detection limit of 0.2 microM, high sensitivity (179.9 microAmM(-1)), good stability and reproducibility. Compared with the free-Au doped titanium dioxide photonic crystals modified electrode, the GTD modified electrode could greatly enhance the response current signal, linear detection range and higher sensitivity. The 3DOM GTD provided a new matrix for protein immobilization and direct transfer study and opened a way for low conductivity electrode biosensor.
Role of Au(NPs) in the enhanced response of Au(NPs)-decorated MWCNT electrochemical biosensor
Mehmood, Shahid; Ciancio, Regina; Carlino, Elvio; Bhatti, Arshad S
2018-01-01
Background The combination of Au-metallic-NPs and CNTs are a new class of hybrid nanomaterials for the development of electrochemical biosensor. Concentration of Au(nanoparticles [NPs]) in the electrochemical biosensor is crucial for the efficient charge transfer between the Au-NPs-MWCNTs modified electrode and electrolytic solution. Methods In this work, the charge transfer kinetics in the glassy carbon electrode (GCE) modified with Au(NPs)–multiwalled carbon nanotube (MWCNT) nanohybrid with varied concentrations of Au(NPs) in the range 40–100 nM was studied using electrochemical impedance spectroscopy (EIS). Field emission scanning electron microscopy and transmission electron microscopy confirmed the attachment of Au(NPs) on the surface of MWCNTs. Results The cyclic voltammetry and EIS results showed that the charge transfer mechanism was diffusion controlled and the rate of charge transfer was dependent on the concentration of Au(NPs) in the nanohybrid. The formation of spherical diffusion zone, which was dependent on the concentration of Au(NPs) in nanohybrids, was attributed to result in 3 times the increase in the charge transfer rate ks, 5 times increase in mass transfer, and 5% (9%) increase in Ipa (Ipc) observed in cyclic voltammetry in 80 nM Au(NP) nanohybrid-modified GCE from MWCNT-modified GCE. The work was extended to probe the effect of charge transfer rates at various concentrations of Au(NPs) in the nanohybrid-modified electrodes in the presence of Escherichia coli. The cyclic voltammetry results clearly showed the best results for 80 nM Au(NPs) in nanohybrid electrode. Conclusion The present study suggested that the formation of spherical diffusion zone in nanohybrid-modified electrodes is critical for the enhanced electrochemical biosensing applications. PMID:29713161
A modified ion-selective electrode method for measurement of chloride in sweat.
Finley, P R; Dye, J A; Lichti, D A; Byers, J M; Williams, R J
1978-06-01
A modified method of analysis of sweat chloride concentration with an ion-selective electrode is presented. The original method of sweat chloride analysis proposed by the Orion Research Corporation (Cambridge, Massachusetts 02139) is inadequate because it produces erratic and misleading results. The modified method was compared with the reference quantitative method of Gibson and Cooke. In the modified method, individual electrode pads are cut and placed in the electrodes rather than using the pads supplied by the company; pilocarpine nitrate (2,000 mg/l) is used in place of pilocarpine HCl (640 mg/l); sodium bicarbonate as the weak electrolyte is used instead of K2SO4. A 10-minute period for sweat accumulation is employed rather than a zero-time collection as in the original Orion method. The modification has been studied for reproducibility in individuals, reproducibility between right and left arm in individuals; it has been compared extensively with the quantitative method of Gibson and Cooke, both in normal individuals and in patients with cystic fibrosis. There is excellent agreement between the modified method and the quantitative reference method. There appears to be a slight bias toward higher concentrations of chloride from the right arm compared with the left arm, but this difference is not medically significant.
Sato, Ko; Watanabe, Oshi; Ohmiya, Suguru; Chiba, Fumiko; Hayashi, Masahiro; Suzuki, Tamio; Kawakami, Kazuyoshi; Nishimura, Hidekazu
2016-11-01
Isolation of human parainfluenza virus (HPIV) serotypes 1 and 3 from clinical specimens is not very efficient because of the lack of a cell culture system capable of inducing CPE. In this study, the utility of a melanoma cell line, MNT-1, that allows HPIV growth and displays CPE was demonstrated. In particularly, the efficiency of isolating HPIV1 and HPIV3 using MNT-1 was greater than for cell lines conventionally used for HPIV isolation. Our demonstrated efficacy of HPIV1 and HPIV3 isolation with apparent CPE using the MNT-1 cell culture system has the potential to improve virus isolation from clinical specimens. © 2016 The Societies and John Wiley & Sons Australia, Ltd.
ERIC Educational Resources Information Center
Lunsford, Suzanne K.; Speelman, Nicole; Stinson, Jelynn; Yeary, Amber; Choi, Hyeok; Widera, Justyna; Dionysiou, Dionysios D.
2008-01-01
This article describes an undergraduate laboratory for an instrumental analysis course that integrates electroanalytical chemistry and infrared spectroscopy. Modified electrode surfaces are prepared by constant potentiometric electrolysis over the potential range of 1.5-1.8 V and analyzed by cyclic voltammetry and infrared spectroscopy. The…
Esfandiari Baghbamidi, Sakineh; Beitollahi, Hadi; Karimi-Maleh, Hassan; Soltani-Nejad, Somayeh; Soltani-Nejad, Vahhab; Roodsaz, Sara
2012-01-01
A simple and convenient method is described for voltammetric determination of carbidopa (CD), based on its electrochemical oxidation at a modified multiwall carbon nanotube paste electrode. Under optimized conditions, the proposed method exhibited acceptable analytical performances in terms of linearity (over the concentration range from 0.1 to 700.0 μM), detection limit (65.0 nM), and reproducibility (RSD = 2.5%) for a solution containing CD. Also, square wave voltammetry (SWV) was used for simultaneous determination of CD, folic acid (FA), and tryptophan (TRP) at the modified electrode. To further validate its possible application, the method was used for the quantification of CD, FA, and TRP in urine samples. PMID:22666634
Cinti, Stefano; Santella, Francesco; Moscone, Danila; Arduini, Fabiana
2016-05-01
A miniaturized screen-printed electrode (SPE) modified with a carbon black-gold nanoparticle (CBNP-AuNP) nanocomposite has been developed as an electrochemical sensor for the detection of inorganic mercury ions (Hg(2+)). The working electrode surface has been modified with nanocomposite constituted of CBNPs and AuNPs by an easy drop casting procedure that makes this approach extendible to an automatable mass production of modified SPEs. Square wave anodic stripping voltammetry (SWASV) was adopted to perform Hg(2+) detection, revealing satisfactory sensitivity and detection limit, equal to 14 μA ppb(-1) cm(-2) and 3 ppb, respectively. The applicability of the CBNP-AuNP-SPE for the determination of inorganic mercury has been assessed in river water by a simple filtration and acidification of the sample as well as in soil by means of a facile acidic extraction procedure assisted by ultrasound.
Choi, Hyosung; Kim, Hak-Beom; Ko, Seo-Jin; Kim, Jin Young; Heeger, Alan J
2015-02-04
Modification of an ITO electrode with small-molecule organic surface modifier, 4-chloro-benzoic acid (CBA), via a simple spin-coating method produces a high-work-function electrode with high transparency and a hydrophobic surface. As an alternative to PEDOT:PSS, CBA modification achieves efficiency enhancement up to 8.5%, which is attributed to enhanced light absorption within the active layer and smooth hole transport from the active layer to the anode. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Liang, Yuxiang; Feng, Huajun; Shen, Dongsheng; Li, Na; Guo, Kun; Zhou, Yuyang; Xu, Jing; Chen, Wei; Jia, Yufeng; Huang, Bin
2017-02-01
In this paper, we first systematically investigate the current output performance of stainless steel electrodes (SS) modified by carbon coating (CC), polyaniline coating (PANI), neutral red grafting (NR), surface hydrophilization (SDBS), and heat treatment (HEAT). The maximum current density of 13.0 A m-2 is obtained on CC electrode (3.0 A m-2 of the untreated anode). Such high performance should be attributed to its large effective surface area, which is 2.3 times that of the unmodified electrode. Compared with SS electrode, about 3-fold increase in current output is achieved with PANI. Functionalization with hydrophilic group and electron medium result in the current output rising to 1.5-2 fold, through enhancing bioadhesive and electron transport rate, respectively. CC modification is the best choice of single modification for SS electrode in this study. However, this modification is not perfect because of its poor hydrophilicity. So CC electrode is modified by SDBS for further enhancing the current output to 16 A m-2. These results could provide guidance for the choice of suitable single modification on SS electrodes and a new method for the perfection of electrode performance through composite modification.
D'Eramo, Fabiana; Marioli, Juan M; Arévalo, Alejandro H; Sereno, Leonides E
2003-11-04
A modified electrode consisting of copper dispersed in a poly-1-naphthylamine (p-1-NAP/Cu) film on a glassy carbon electrode was used as an amperometric detector for the on-line analysis of various carbohydrates separated by high performance liquid chromatography. The results obtained with this new sensor were compared to those obtained with a modified electrode based on the same polymer but with copper ions incorporated at open circuit, as described in a previous paper. In this new modified electrode the copper microparticles were electrochemically deposited into the polymeric matrix by single potential step chronoamperometry. A nucleation and growth mechanism was proposed to explain the current transients of copper electrodeposition. The experimental results were fitted to the proposed mechanism by using a mathematical equation that considers three-dimensional growth and progressive nucleation, assuming a no overlap and no diffusion mechanism. Cyclic voltammetric experiments showed that the electrodeposited copper microparticles provided a catalytic surface suited for the oxidation of glucose and several carbohydrates. The sensitivity of the electrode was influenced by the amount of copper electrodeposited, which in turn depended on the applied overpotential used for the deposition of copper. Liquid chromatographic experiments were carried out to test the analytical performance of these electrodes for the determination of various carbohydrates.
Dervisevic, Muamer; Şenel, Mehmet; Sagir, Tugba; Isik, Sevim
2017-05-15
A comparative study is reported where folic acid (FA) and boronic acid (BA) based cytosensors and their analytical performances in cancer cell detection were analyzed by using electrochemical impedance spectroscopy (EIS) method. Cytosensors were fabricated using self-assembled monolayer principle by modifying Au electrode with cysteamine (Cys) and immobilization of ferrocene cored polyamidiamine dendrimers second generation (Fc-PAMAM (G2)), after which electrodes were modified with FA and BA. Au/Fc-PAMAM(G2)/FA and Au/Fc-PAMAM(G2)/BA based cytosensors showed extremely good analytical performances in cancer cell detection with linear range of 1×10 2 to 1×10 6 cellsml -1 , detection limit of 20cellsml -1 with incubation time of 20min for FA based electrode, and for BA based electrode detection limit was 28cellsml -1 with incubation time of 10min. Next to excellent analytical performances, cytosensors showed high selectivity towards cancer cells which was demonstrated in selectivity study using human embryonic kidney 293 cells (HEK 293) as normal cells and Au/Fc-PAMAM(G2)/FA electrode showed two times better selectivity than BA modified electrode. These cytosensors are promising for future applications in cancer cell diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Recent advances in graphite powder-based electrodes.
Bellido-Milla, Dolores; Cubillana-Aguilera, Laura Ma; El Kaoutit, Mohammed; Hernández-Artiga, Ma Purificación; Hidalgo-Hidalgo de Cisneros, José Luis; Naranjo-Rodríguez, Ignacio; Palacios-Santander, José Ma
2013-04-01
Graphite powder-based electrodes have the electrochemical performance of quasi-noble metal electrodes with intrinsic advantages related to the possibility of modification to enhance selectivity and their easily renewable surface, with no need for hazardous acids or bases for their cleaning. In contrast with commercial electrodes, for example screen-printed or sputtered-chip electrodes, graphite powder-based electrodes can also be fabricated in any laboratory with the form and characteristics desired. They are also readily modified with advanced materials, with relatively high reproducibility. All these characteristics make them a very interesting option for obtaining a large variety of electrodes to resolve different kinds of analytical problems. This review summarizes the state-of-the-art, advantages, and disadvantages of graphite powder-based electrodes in electrochemical analysis in the 21st century. It includes recent trends in carbon paste electrodes, devoting special attention to the use of emergent materials as new binders and to the development of other composite electrodes. The most recent advances in the use of graphite powder-modified sol-gel electrodes are also described. The development of sonogel-carbon electrodes and their use in electrochemical sensors and biosensors is included. These materials extend the possibilities of applications, especially for industrial technology-transfer purposes, and their development could affect not only electroanalytical green chemistry but other interesting areas also, for example catalysis and energy conversion and storage.
Landfill Liners and Covers: Properties and Application to Army Landfills.
1984-06-01
polymers, TPE can be seamed by heat techniques. Materials such as thermoplastic EPDM and nitrile rubber /PVC blends are still being tested to determine their...such as polyethylene (PE), polyvinyl chloride (PVC), butyl rubber , ethylene propylene diene monomer ( EPDM ), chlorinated polyethylene (CPE), and others...chlorosulfonated polyethy- lene (CSPE), chlorinated polyethylene (CPE), butyl rubber , ethylene propylene S rubber ( EPDM ), neoprene, high-density polyethylene
Ammunition Cost Research Study
1976-06-01
LIBRARY TECHNICAL REPORT Gerald W. Kalal Patrick J. Gannon COST ANALYSIS DIVISION (DRSAR-CPE) HEADQUARTERS, U.S. ARMY ARMAMENT COMMAND ROCK ISLAND... Kalal trick J. Gannon COST ANALYSIS DIVISION (DRSAR-CPE) HEADQUARTERS, U.S. ARMY ARMAMENT COMMAND ROCK ISLAND, ILLINOIS 61201 I UNCLASSIFIED...4. DESCRIPTIVE NOTES (Type ot report and Inclusive date») Technical Report 8- AU THOR(S> (flral name, middle Initial, laat name) Gerald W. Kalal
Gohari, Iman Mehdizadeh; Arroyo, Luis; MacInnes, Janet I.; Timoney, John F.; Parreira, Valeria R.; Prescott, John F.
2014-01-01
Up to 60% of cases of equine colitis have no known cause. To improve understanding of the causes of acute colitis in horses, we hypothesized that Clostridium perfringens producing enterotoxin (CPE) and/or beta2 toxin (CPB2) are common and important causes of severe colitis in horses and/or that C. perfringens producing an as-yet-undescribed cytotoxin may also cause colitis in horses. Fecal samples from 55 horses (43 adults, 12 foals) with clinical evidence of colitis were evaluated by culture for the presence of Clostridium difficile, C. perfringens, and Salmonella. Feces were also examined by enzyme-linked immunosorbent assay (ELISA) for C. difficile A/B toxins and C. perfringens alpha toxin (CPA), beta2 toxin (CPB2), and enterotoxin (CPE). Five C. perfringens isolates per sample were genotyped for the following genes: cpa, cpb, cpb2 consensus, cpb2 atypical, cpe (enterotoxin), etx (epsilon toxin), itx (iota toxin), netB (necrotic enteritis toxin B), and tpeL (large C. perfringens cytotoxin). The supernatants of these isolates were also evaluated for toxicity for an equine cell line. All fecal samples were negative for Salmonella. Clostridium perfringens and C. difficile were isolated from 40% and 5.4% of samples, respectively. All fecal samples were negative for CPE. Clostridium perfringens CPA and CPB2 toxins were detected in 14.5% and 7.2% of fecal samples, respectively, all of which were culture-positive for C. perfringens. No isolates were cpe, etx, netB, or tpeL gene-positive. Atypical cpb2 and consensus cpb2 genes were identified in 15 (13.6%) and 4 (3.6%) of 110 isolates, respectively. All equine C. perfringens isolates showed far milder cytotoxicity effects than a CPB-producing positive control, although cpb2-positive isolates were slightly but significantly more cytotoxic than negative isolates. Based on this studied population, we were unable to confirm our hypothesis that CPE and CPB2-producing C. perfringens are common in horses with colitis in Ontario and we failed to identify cytotoxic activity in vitro in the type A isolates recovered. PMID:24396174
Gohari, Iman Mehdizadeh; Arroyo, Luis; Macinnes, Janet I; Timoney, John F; Parreira, Valeria R; Prescott, John F
2014-01-01
Up to 60% of cases of equine colitis have no known cause. To improve understanding of the causes of acute colitis in horses, we hypothesized that Clostridium perfringens producing enterotoxin (CPE) and/or beta2 toxin (CPB2) are common and important causes of severe colitis in horses and/or that C. perfringens producing an as-yet-undescribed cytotoxin may also cause colitis in horses. Fecal samples from 55 horses (43 adults, 12 foals) with clinical evidence of colitis were evaluated by culture for the presence of Clostridium difficile, C. perfringens, and Salmonella. Feces were also examined by enzyme-linked immunosorbent assay (ELISA) for C. difficile A/B toxins and C. perfringens alpha toxin (CPA), beta2 toxin (CPB2), and enterotoxin (CPE). Five C. perfringens isolates per sample were genotyped for the following genes: cpa, cpb, cpb2 consensus, cpb2 atypical, cpe (enterotoxin), etx (epsilon toxin), itx (iota toxin), netB (necrotic enteritis toxin B), and tpeL (large C. perfringens cytotoxin). The supernatants of these isolates were also evaluated for toxicity for an equine cell line. All fecal samples were negative for Salmonella. Clostridium perfringens and C. difficile were isolated from 40% and 5.4% of samples, respectively. All fecal samples were negative for CPE. Clostridium perfringens CPA and CPB2 toxins were detected in 14.5% and 7.2% of fecal samples, respectively, all of which were culture-positive for C. perfringens. No isolates were cpe, etx, netB, or tpeL gene-positive. Atypical cpb2 and consensus cpb2 genes were identified in 15 (13.6%) and 4 (3.6%) of 110 isolates, respectively. All equine C. perfringens isolates showed far milder cytotoxicity effects than a CPB-producing positive control, although cpb2-positive isolates were slightly but significantly more cytotoxic than negative isolates. Based on this studied population, we were unable to confirm our hypothesis that CPE and CPB2-producing C. perfringens are common in horses with colitis in Ontario and we failed to identify cytotoxic activity in vitro in the type A isolates recovered.
Huang, Meng; Delacruz, Joannalyn B; Ruelas, John C; Rathore, Shailendra S; Lindau, Manfred
2018-01-01
Amperometry is a powerful method to record quantal release events from chromaffin cells and is widely used to assess how specific drugs modify quantal size, kinetics of release, and early fusion pore properties. Surface-modified CMOS-based electrochemical sensor arrays allow simultaneous recordings from multiple cells. A reliable, low-cost technique is presented here for efficient targeting of single cells specifically to the electrode sites. An SU-8 microwell structure is patterned on the chip surface to provide insulation for the circuitry as well as cell trapping at the electrode sites. A shifted electrode design is also incorporated to increase the flexibility of the dimension and shape of the microwells. The sensitivity of the electrodes is validated by a dopamine injection experiment. Microwells with dimensions slightly larger than the cells to be trapped ensure excellent single-cell targeting efficiency, increasing the reliability and efficiency for on-chip single-cell amperometry measurements. The surface-modified device was validated with parallel recordings of live chromaffin cells trapped in the microwells. Rapid amperometric spikes with no diffusional broadening were observed, indicating that the trapped and recorded cells were in very close contact with the electrodes. The live cell recording confirms in a single experiment that spike parameters vary significantly from cell to cell but the large number of cells recorded simultaneously provides the statistical significance.
Zhang, M-L; Cao, Z; He, J-L; Xue, L; Zhou, Y; Long, S; Deng, T; Zhang, L
2012-01-01
A simple gold plate electrode (GPE) based on a gadolinium-doped titanium dioxide (Gd/TiO₂) ultrathin film was successfully constructed by using a surface sol-gel technique, and used for the detection of trace amounts of nitrite in cured foods. The Gd/TiO₂ nanoparticles were synthesised and characterised via scanning electron microscopy (SEM) and X-ray diffraction (XRD), indicating that the Gd-doped TiO₂ formed an anatase phase through roasting at 450°C, generating actively interstitial oxygen at the interface of the surface of TiO₂ lattice surrounded by Gd³⁺. The electro-catalytic effect for oxidation of nitrite on the modified electrode was investigated by cyclic voltammetry in 0.10 mol l⁻¹ sulfuric acid media solution, showing that the modified electrode exhibited excellent response performance to nitrite with good reproducibility, selectivity and stability. The catalytic peak current was found to be linear with nitrite concentrations in the range of 8.0 × 10⁻⁷ to 4.0 × 10⁻⁴) mol l⁻¹, with a detection limit of 5.0 × 10⁻⁷ mol l⁻¹ (S/N = 3). The modified electrode could be used for the determination of nitrite in the cured sausage samples with a satisfactory recovery in the range of 95.5-104%, showing its promising application for food safety monitoring.
Kong, Dexian; Zhuang, Qizhao; Han, Yejian; Xu, Lanping; Wang, Zeming; Jiang, Lili; Su, Jinwei; Lu, Chun-Hua; Chi, Yuwu
2018-08-01
In the present study, procaterol hydrochloride (ProH) was successfully electropolymerized onto a glass carbon electrode (GCE) with simply cyclic voltammetry scans to construct a poly(procaterol hydrochloride) (p-ProH) membrane modified electrode. Compared with the bare GCE, much higher oxidation peak current responses and better peak potentials separation could be obtained for the simultaneous oxidation of dopamine (DA) and uric acid (UA), owning to the excellent electrocatalytic ability of the p-ProH membrane. And it's based on that a square wave voltammetry (SWV) method was developed to selective and simultaneous measurement of DA and UA. Under the optimum conditions, the linear dependence of oxidation peak current on analyte concentrations were found to be 1.0-100 μmol/L and 2-100 μmol/L, giving detection limits of 0.3 μmol/L and 0.5 μmol/L for DA and UA, separately. The as prepared modified electrode shows simplicity in construction with the merits of good reproducibility, high stability, passable selectivity and nice sensitivity. Finally, the proposed p-ProH membrane modified electrode was successfully devoted to the detection of DA and UA in biological fluids such as human serum and urine with acceptable results. Copyright © 2018 Elsevier B.V. All rights reserved.
Sethuraman, V; Muthuraja, P; Anandha Raj, J; Manisankar, P
2016-10-15
The fabrication, characterization and analytical performances were investigated for a catechol biosensor, based on the PEDOT-rGO-Fe2O3-PPO composite modified glassy carbon (GC) electrode. The graphene oxide (GO) doped conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT) was prepared through electrochemical polymerization by potential cycling. Reduction of PEDOT-GO was carried out by amperometric method. Fe2O3 nanoparticles were synthesized in ethanol by hydrothermal method. The mixture of Fe2O3, PPO and glutaraldehyde was casted on the PEDOT-rGO electrode. The surface morphology of the modified electrodes was studied by FE-SEM and AFM. Cyclic voltammetric studies of catechol on the enzyme modified electrode revealed higher reduction peak current. Determination of catechol was carried out successfully by Differential Pulse Voltammetry (DPV) technique. The fabricated biosensor investigated shows a maximum current response at pH 6.5. The catechol biosensor exhibited wide sensing linear range from 4×10(-8) to 6.20×10(-5)M, lower detection limit of 7×10(-9)M, current maxima (Imax) of 92.55µA and Michaelis-Menten (Km) constant of 30.48µM. The activation energy (Ea) of enzyme electrode is 35.93KJmol(-1) at 50°C. There is no interference from d-glucose and l-glutamic acid, ascorbic acid and o-nitrophenol. The PEDOT-rGO-Fe2O3-PPO biosensor was stable for at least 75 days when stored in a buffer at about 4°C. Copyright © 2015 Elsevier B.V. All rights reserved.
Cao, Xu-Ni; Lin, Li; Zhou, Yu-Yan; Shi, Guo-Yue; Zhang, Wen; Yamamoto, Katsunobu; Jin, Li-Tong
2003-07-27
In this paper, multi-wall carbon nanotubes functionalized with carboxylic groups modified electrode (MWNT-COOH CME) was fabricated. This chemically modified electrode (CME) can be used as the working electrode in the liquid chromatography for the determination of 6-mercaptopurine (6-MP). The results indicate that the CME exhibits efficiently electrocatalytic oxidation for 6-MP with relatively high sensitivity, stability and long-life. The peak currents of 6-MP are linear to its concentrations ranging from 4.0 x 10(-7) to 1.0 x 10(-4) mol l(-1) with the calculated detection limit (S/N=3) of 2.0 x 10(-7) mol l(-1). Coupled with microdialysis, the method has been successfully applied to the pharmacokinetic study of 6-MP in rabbit blood. This method provides a fast, sensible and simple technique for the pharmacokinetic study of 6-MP in vivo.
Economou, Anastasios
2018-01-01
This work reviews the field of screen-printed electrodes (SPEs) modified with “green” metals for electrochemical stripping analysis of toxic elements. Electrochemical stripping analysis has been established as a useful trace analysis technique offering many advantages compared to competing optical techniques. Although mercury has been the preferred electrode material for stripping analysis, the toxicity of mercury and the associated legal requirements in its use and disposal have prompted research towards the development of “green” metals as alternative electrode materials. When combined with the screen-printing technology, such environment-friendly metals can lead to disposable sensors for trace metal analysis with excellent operational characteristics. This review focuses on SPEs modified with Au, Bi, Sb, and Sn for stripping analysis of toxic elements. Different modification approaches (electroplating, bulk modification, use of metal precursors, microengineering techniques) are considered and representative applications are described. A developing related field, namely biosensing based on stripping analysis of metallic nanoprobe labels, is also briefly mentioned. PMID:29596391
Economou, Anastasios
2018-03-29
This work reviews the field of screen-printed electrodes (SPEs) modified with "green" metals for electrochemical stripping analysis of toxic elements. Electrochemical stripping analysis has been established as a useful trace analysis technique offering many advantages compared to competing optical techniques. Although mercury has been the preferred electrode material for stripping analysis, the toxicity of mercury and the associated legal requirements in its use and disposal have prompted research towards the development of "green" metals as alternative electrode materials. When combined with the screen-printing technology, such environment-friendly metals can lead to disposable sensors for trace metal analysis with excellent operational characteristics. This review focuses on SPEs modified with Au, Bi, Sb, and Sn for stripping analysis of toxic elements. Different modification approaches (electroplating, bulk modification, use of metal precursors, microengineering techniques) are considered and representative applications are described. A developing related field, namely biosensing based on stripping analysis of metallic nanoprobe labels, is also briefly mentioned.
Application of ionic liquids in electrochemical sensing systems.
Shiddiky, Muhammad J A; Torriero, Angel A J
2011-01-15
Since 1992, when the room temperature ionic liquids (ILs) based on the 1-alkyl-3-methylimidazolium cation were reported to provide an attractive combination of an electrochemical solvent and electrolyte, ILs have been widely used in electrodeposition, electrosynthesis, electrocatalysis, electrochemical capacitor, and lithium batteries. However, it has only been in the last few years that electrochemical biosensors based on carbon ionic liquid electrodes (CILEs) and IL-modified macrodisk electrodes have been reported. However, there are still a lot of challenges in achieving IL-based sensitive, selective, and reproducible biosensors for high speed analysis of biological and environmental compounds of interest. This review discusses the principles of operation of electrochemical biosensors based on CILEs and IL/composite-modified macrodisk electrodes. Subsequently, recent developments and major strategies for enhancing sensing performance are discussed. Key challenges and opportunities of IL-based biosensors to further development and use are considered. Emphasis is given to direct electron-transfer reaction and electrocatalysis of hemeproteins and enzyme-modified composite electrodes. Copyright © 2010 Elsevier B.V. All rights reserved.
Palanisamy, Selvakumar; Karuppiah, Chelladurai; Chen, Shen-Ming
2014-02-01
The direct electrochemistry of glucose oxidase (GOx) was successfully realized on electrochemically reduced graphene oxide and silver nanoparticles (RGO/Ag) nanocomposite modified electrode. The fabricated nanocomposite was characterized by field emission scanning electron microscope and energy dispersive spectroscopy. The GOx immobilized nanocomposite modified electrode showed a pair of well-defined redox peaks with a formal potential (E°) of -0.422 V, indicating that the bioactivity of GOx was retained. The heterogeneous electron transfer rate constant (Ks) of GOx at the nanocomposite was calculated to be 5.27 s(-1), revealing a fast direct electron transfer of GOx. The GOx immobilized RGO/Ag nanocomposite electrode exhibited a good electrocatalytic activity toward glucose over a linear concentration range from 0.5 to 12.5 mM with a detection limit of 0.16 mM. Besides, the fabricated biosensor showed an acceptable sensitivity and selectivity for glucose. Copyright © 2013 Elsevier B.V. All rights reserved.
Karikalan, Natarajan; Karthik, Raj; Chen, Shen-Ming; Chen, Hsi-An
2017-04-05
We reported an electrochemical determination of caffeic acid (CA) based on the nitrogen doped carbon (NDC). The described sensor material was prepared by the flame synthesis method, which gave an excellent platform for the synthesis of carbon nanomaterials with the hetero atom dopant. The synthesized material was confirmed by various physical characterizations and it was further characterized by different electrochemical experiments. The NDC modified glassy carbon electrode (NDC/GCE) shows the superior electrocatalytic performance towards the determination of CA with the wide linear concentration range from 0.01 to 350 μM. It achieves the lowest detection limit of 0.0024 μM and the limit of quantification of 0.004 μM. The NDC/GCE-CA sensor reveals the good selectivity, stability, sensitivity and reproducibility which endorsed that the NDC is promising electrode for the determination of CA. In addition, NDC modified electrode is applied to the determination of CA in red wines and acquired good results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Xinfang; White, Ralph E.; Huang, Kevin
With the assumption that the Fermi level (electrochemical potential of electrons) is uniform across the thickness of a mixed ionic and electronic conducting (MIEC) electrode, the charge-transport model in the electrode domain can be reduced to the modified Fick’s first law, which includes a thermodynamic factor A. A transient numerical solution of the Nernst-Planck theory was obtained for a symmetric cell with MIEC electrodes to illustrate the validity of the assumption of a uniform Fermi level. Subsequently, an impedance numerical solution based on the modified Fick’s first law is compared with that from the Nernst-Planck theory. The results show thatmore » Nernst-Planck charge-transport model is essentially the same as the modified Fick’s first law model as long as the MIEC electrodes have a predominant electronic conductivity. However, because of the invalidity of the uniform Fermi level assumption for aMIEC electrolyte with a predominant ionic conductivity, Nernst-Planck theory is needed to describe the charge transport behaviors.« less
Rowley-Neale, Samuel J; Brownson, Dale A C; Smith, Graham C; Sawtell, David A G; Kelly, Peter J; Banks, Craig E
2015-11-21
We explore the use of two-dimensional (2D) MoS2 nanosheets as an electrocatalyst for the Hydrogen Evolution Reaction (HER). Using four commonly employed commercially available carbon based electrode support materials, namely edge plane pyrolytic graphite (EPPG), glassy carbon (GC), boron-doped diamond (BDD) and screen-printed graphite electrodes (SPE), we critically evaluate the reported electrocatalytic performance of unmodified and MoS2 modified electrodes towards the HER. Surprisingly, current literature focuses almost exclusively on the use of GC as an underlying support electrode upon which HER materials are immobilised. 2D MoS2 nanosheet modified electrodes are found to exhibit a coverage dependant electrocatalytic effect towards the HER. Modification of the supporting electrode surface with an optimal mass of 2D MoS2 nanosheets results in a lowering of the HER onset potential by ca. 0.33, 0.57, 0.29 and 0.31 V at EPPG, GC, SPE and BDD electrodes compared to their unmodified counterparts respectively. The lowering of the HER onset potential is associated with each supporting electrode's individual electron transfer kinetics/properties and is thus distinct. The effect of MoS2 coverage is also explored. We reveal that its ability to catalyse the HER is dependent on the mass deposited until a critical mass of 2D MoS2 nanosheets is achieved, after which its electrocatalytic benefits and/or surface stability curtail. The active surface site density and turn over frequency for the 2D MoS2 nanosheets is determined, characterised and found to be dependent on both the coverage of 2D MoS2 nanosheets and the underlying/supporting substrate. This work is essential for those designing, fabricating and consequently electrochemically testing 2D nanosheet materials for the HER.
Shi, Fan; Gong, Shixing; Xu, Li; Zhu, Huanhuan; Sun, Zhenfan; Sun, Wei
2013-12-01
In this paper, a graphene (GR) ionic liquid (IL) 1-octyl-3-methylimidazolium hexafluorophosphate and chitosan composite-modified carbon molecular wire electrode (CMWE) was fabricated by a drop-casting method and further applied to the sensitive electrochemical detection of adenosine-5'-monophosphate (AMP). CMWE was prepared with diphenylacetylene (DPA) as the modifier and the binder. The properties of modified electrode were examined by scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. Electrochemical behaviors of AMP was carefully investigated with enhanced responses appeared, which was due to the presence of GR-IL composite on the electrode surface with excellent electrocatalytic ability. A well-defined oxidation peak of AMP appeared at 1.314 V and the electrochemical parameters were calculated by electrochemical methods. Under the selected conditions, the oxidation peak current of AMP was proportional to its concentration in the range from 0.01 μM to 80.0 μM with the detection limit as 3.42 nM (3σ) by differential pulse voltammetry. The proposed method exhibited good selectivity and was applied to the detection of vidarabine monophosphate injection samples with satisfactory results. © 2013.
NASA Astrophysics Data System (ADS)
Kaçar, Ceren; Dalkiran, Berna; Erden, Pınar Esra; Kiliç, Esma
2014-08-01
In this work a new type of hydrogen peroxide biosensor was fabricated based on the immobilization of horseradish peroxidase (HRP) by cross-linking on a glassy carbon electrode (GCE) modified with Co3O4 nanoparticles, multiwall carbon nanotubes (MWCNTs) and gelatin. The introduction of MWCNTs and Co3O4 nanoparticles not only enhanced the surface area of the modified electrode for enzyme immobilization but also facilitated the electron transfer rate, resulting in a high sensitivity of the biosensor. The fabrication process of the sensing surface was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Amperometric detection of hydrogen peroxide was investigated by holding the modified electrode at -0.30 V (vs. Ag/AgCl). The biosensor showed optimum response within 5 s at pH 7.0. The optimized biosensor showed linear response range of 7.4 × 10-7-1.9 × 10-5 M with a detection limit of 7.4 × 10-7. The applicability of the purposed biosensor was tested by detecting hydrogen peroxide in disinfector samples. The average recovery was calculated as 100.78 ± 0.89.
Palanisamy, Selvakumar; Thirumalraj, Balamurugan; Chen, Shen-Ming; Wang, Yi-Ting; Velusamy, Vijayalakshmi; Ramaraj, Sayee Kannan
2016-01-01
We report a novel and sensitive amperometric sensor for chlorpromazine (CPZ) based on reduced graphene oxide (RGO) and polydopamine (PDA) composite modified glassy carbon electrode. The RGO@PDA composite was prepared by electrochemical reduction of graphene oxide (GO) with PDA. The RGO@PDA composite modified electrode shows an excellent electro-oxidation behavior to CPZ when compared with other modified electrodes such as GO, RGO and GO@PDA. Amperometric i-t method was used for the determination of CPZ. Amperometry result shows that the RGO@PDA composite detects CPZ in a linear range from 0.03 to 967.6 μM. The sensor exhibits a low detection limit of 0.0018 μM with the analytical sensitivity of 3.63 ± 0.3 μAμM–1 cm–2. The RGO@PDA composite shows its high selectivity towards CPZ in the presence of potentially interfering drugs such as metronidazole, phenobarbital, chlorpheniramine maleate, pyridoxine and riboflavin. In addition, the fabricated RGO@PDA modified electrode showed an appropriate recovery towards CPZ in the pharmaceutical tablets. PMID:27650697
Kim, Yong Hee; Kim, Gook Hwa; Kim, Ah Young; Han, Young Hwan; Chung, Myung-Ae; Jung, Sang-Don
2015-12-01
Nanoporous gold (Au) structures can reduce the impedance and enhance the charge injection capability of multi-electrode arrays (MEAs) used for interfacing neuronal networks. Even though there are various nanoporous Au preparation techniques, fabrication of MEA based on low-cost electro-codeposition of Ag:Au has not been performed. In this work, we have modified a Au MEA via the electro-codeposition of Ag:Au alloy, followed by the chemical etching of Ag, and report on the in vitro extracellular recording and stimulation performance of the nanoporous Au-modified MEA. Ag:Au alloy was electro-codeposited on a bilayer lift-off resist sputter-deposition passivated Au MEA followed by chemical etching of Ag to form a porous Au structure. The porous Au structure was analyzed by scanning electron microscopy and tunneling electron microscopy and found to have an interconnected nanoporous Au structure. The impedance value of the nanoporous Au-modified MEA is 15.4 ± 0.55 kΩ at 1 kHz, accompanied by the base noise V rms of 2.4 ± 0.3 μV. The charge injection limit of the nanoporous Au-modified electrode estimated from voltage transient measurement is approximately 1 mC cm(-2), which is comparable to roughened platinum and carbon nanotube electrodes. The charge injection capability of the nanoporous Au-modified MEA was confirmed by observing stimulus-induced spikes at above 0.2 V. The nanoporous Au-modified MEA showed mechanical durability upon ultrasonic treatment for up to an hour. Electro-codeposition of Ag:Au alloy combined with chemical etching Ag is a low-cost process for fabricating nanoporous Au-modified MEA suitable for establishing the stimulus-response relationship of cultured neuronal networks.
NASA Astrophysics Data System (ADS)
Kim, Yong Hee; Kim, Gook Hwa; Kim, Ah Young; Han, Young Hwan; Chung, Myung-Ae; Jung, Sang-Don
2015-12-01
Objective. Nanoporous gold (Au) structures can reduce the impedance and enhance the charge injection capability of multi-electrode arrays (MEAs) used for interfacing neuronal networks. Even though there are various nanoporous Au preparation techniques, fabrication of MEA based on low-cost electro-codeposition of Ag:Au has not been performed. In this work, we have modified a Au MEA via the electro-codeposition of Ag:Au alloy, followed by the chemical etching of Ag, and report on the in vitro extracellular recording and stimulation performance of the nanoporous Au-modified MEA. Approach. Ag:Au alloy was electro-codeposited on a bilayer lift-off resist sputter-deposition passivated Au MEA followed by chemical etching of Ag to form a porous Au structure. Main results. The porous Au structure was analyzed by scanning electron microscopy and tunneling electron microscopy and found to have an interconnected nanoporous Au structure. The impedance value of the nanoporous Au-modified MEA is 15.4 ± 0.55 kΩ at 1 kHz, accompanied by the base noise V rms of 2.4 ± 0.3 μV. The charge injection limit of the nanoporous Au-modified electrode estimated from voltage transient measurement is approximately 1 mC cm-2, which is comparable to roughened platinum and carbon nanotube electrodes. The charge injection capability of the nanoporous Au-modified MEA was confirmed by observing stimulus-induced spikes at above 0.2 V. The nanoporous Au-modified MEA showed mechanical durability upon ultrasonic treatment for up to an hour. Significance. Electro-codeposition of Ag:Au alloy combined with chemical etching Ag is a low-cost process for fabricating nanoporous Au-modified MEA suitable for establishing the stimulus-response relationship of cultured neuronal networks.
Kelly, Shannan; Yamamoto, Hideki
2008-01-01
Purpose We previously reported the differential expression and translation of mRNA and protein in dark- and light-adapted octopus retinas, which may result from cytoplasmic polyadenylation element (CPE)–dependent mRNA masking and unmasking. Here we investigate the presence of CPEs in α-tubulin and S-crystallin mRNA and report the identification of cytoplasmic polyadenylation element binding protein (CPEB) in light- and dark-adapted octopus retinas. Methods 3’-RACE and sequencing were used to isolate and analyze the 3’-UTRs of α-tubulin and S-crystallin mRNA. Total retinal protein isolated from light- and dark-adapted octopus retinas was subjected to western blot analysis followed by CPEB antibody detection, PEP-171 inhibition of CPEB, and dephosphorylation of CPEB. Results The following CPE-like sequence was detected in the 3’-UTR of isolated long S-crystallin mRNA variants: UUUAACA. No CPE or CPE-like sequences were detected in the 3’-UTRs of α-tubulin mRNA or of the short S-crystallin mRNA variants. Western blot analysis detected CPEB as two putative bands migrating between 60-80 kDa, while a third band migrated below 30 kDa in dark- and light-adapted retinas. Conclusions The detection of CPEB and the identification of the putative CPE-like sequences in the S-crystallin 3’-UTR suggest that CPEB may be involved in the activation of masked S-crystallin mRNA, but not in the regulation of α-tubulin mRNA, resulting in increased S-crystallin protein synthesis in dark-adapted octopus retinas. PMID:18682811
Yunus, Sami; Massart, Marion; Huang, Te-Din; Glupczynski, Youri
2015-01-01
Accurate detection of carbapenemase-producing Enterobacteriaceae (CPE) constitutes a major laboratory diagnostic challenge. We evaluated an electrochemical technique (the BYG Carba test) which allows detection of CPE in less than 35 min. The BYG Carba test was first validated in triplicate against 57 collection isolates with previously characterized β-lactam resistance mechanisms (OXA-48, n = 12; KPC, n = 8; NDM, n = 8; VIM, n = 8; IMP, n = 3; GIM, n = 1; GES-6, n = 1; no carbapenemase, n = 16) and against a panel of 10 isolates obtained from the United Kingdom National External Quality Assessment Service (NEQAS). The test was then evaluated prospectively against 324 isolates referred to the national reference center for suspicion of CPE. The BYG Carba test results were compared with those obtained with the Carba NP test using multiplex PCR sequencing as the gold standard. Of the 57 collection and the 10 NEQAS isolates, all but one GES-6-producing isolate were correctly identified by the Carba BYG test. Among the 324 consecutive Enterobacteriaceae isolates tested prospectively, 146 were confirmed as noncarbapenemase producers by PCR while 178 harbored a carbapenemase gene (OXA-48, n = 117; KPC, n = 25; NDM, n = 23; and VIM, n = 13). Prospectively, in comparison with PCR results, the BYG Carba test displayed 95% sensitivity and 100% specificity versus 89% and 100%, respectively, for the Carba NP test. The BYG Carba test is a novel, rapid, and efficient assay based on an electro-active polymer biosensing technology discriminating between CPE and non-CPE. The precise electrochemical signal (electrochemical impedance variations) allows the establishment of real-time objective measurement and interpretation criteria which should facilitate the accreditation process of this technology. PMID:26637378
Huy, Tran Quang; Hien Thanh, Nguyen Thi; Thuy, Nguyen Thanh; Chung, Pham Van; Hung, Pham Ngoc; Le, Anh-Tuan; Hong Hanh, Nguyen Thi
2017-03-01
Silver nanoparticles (AgNPs) have been proven to have noticeable cytotoxicity in vitro and antiviral activity against some types of enveloped viruses. This paper presents the cytotoxicity and antiviral activity of pure AgNPs synthesized by the electrochemical method, towards cell culture and poliovirus (a non-enveloped virus). Prepared AgNPs were characterized by ultraviolet-visible spectroscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy. Before incubation with poliovirus, different concentrations of AgNPs were added to human rhabdomyosarcoma (RD) cell monolayers seeded in 96 well plates for testing their cytotoxicity. The in vitro cytotoxicity and anti-poliovirus activity of AgNPs were daily assessed for cytopathic effect (CPE) through inverted light microscopy. CPE in the tested wells was determined in comparison with those in wells of negative and positive control. Structure analysis showed that AgNPs were formed with a quasi-spherical shape with mean size about 7.1nm and high purity. No CPE of RD cells was seen in wells at the time point of 48h post-incubation with AgNPs at concentration up to 100ppm. The anti-poliovirus activity of AgNPs was determined at 3.13ppm corresponding to the viral concentration of 1TCID 50 (Tissue Culture Infective Dose) after 30min, and 10TCID 50 after 60min, the cell viability was found up to 98% at 48h post-infection, with no CPE found. Whereas, a strong CPE of RD cells was found at 48h post-infection with the mixture of AgNPs and poliovirus at concentration of 100TCID 50 , and in wells of positive controls. With mentioned advantages, electrochemical-synthesized AgNPs are promising candidate for advanced biomedical and disinfection applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Palacios-Baena, Zaira R; Oteo, Jesús; Conejo, Carmen; Larrosa, M Nieves; Bou, Germán; Fernández-Martínez, Marta; González-López, Juan José; Pintado, Vicente; Martínez-Martínez, Luis; Merino, María; Pomar, Virginia; Mora-Rillo, Marta; Rivera, María Alba; Oliver, Antonio; Ruiz-Carrascoso, Guillermo; Ruiz-Garbajosa, Patricia; Zamorano, Laura; Bautista, Verónica; Ortega, Adriana; Morales, Isabel; Pascual, Álvaro; Campos, José; Rodríguez-Baño, Jesús
2016-02-01
Most available information on carbapenemase-producing Enterobacteriaceae (CPE) is usually associated with specific types of infection or patient or with descriptions of outbreaks. The aim of this study was to comprehensively analyse the clinical epidemiology, clinical features and outcomes of colonisation and infections due to CPE in Spain. A multicentre prospective cohort study was carried out in 34 Spanish hospitals from February to May 2013. All new patients testing positive for CPE in clinical samples were included. Logistic regression was used to identify predictors of mortality. Overall, 245 cases were included. The most frequent organism was Klebsiella pneumoniae (74%) and the carbapenemases belonged to the OXA-48 (74%), metallo-β-lactamase (MBL) (24%) and KPC (2%) groups. Acquisition was nosocomial in 145 cases (60%) and healthcare-associated (HCA) in 91 (37%); 42% of the latter were nursing home residents, in whom OXA-48-producing K. pneumoniae ST405 predominated. MBLs and OXA-48 predominated in ICU and medical patients, respectively. Overall, 67% of patients had infections. The most frequent infections identified in this study were urinary tract (43%) and skin structure (21%) infections, and 10% of infections were bacteraemic. Crude mortality was 20%. Inappropriate antibiotic therapy was independently associated with an increased risk of death (OR = 3.30; 95% CI: 1.34-8.11). We found some differences in the epidemiology of CPE depending on the type of carbapenemase produced. Although a low proportion of CPE infections were bacteraemic, active antibiotic therapy was a protective factor for reducing mortality. Copyright © 2015 The British Infection Association. Published by Elsevier Ltd. All rights reserved.
French, C E; Coope, C; Conway, L; Higgins, J P T; McCulloch, J; Okoli, G; Patel, B C; Oliver, I
2017-01-01
In recent years, infections with carbapenemase-producing Enterobacteriaceae (CPE) have been increasing globally and present a major public health challenge. To review the international literature: (i) to describe CPE outbreaks in acute hospital settings globally; and (ii) to identify the control measures used during these outbreaks and report on their effectiveness. A systematic search of MEDLINE and EMBASE databases, abstract lists for key conferences and reference lists of key reviews was undertaken, and information on unpublished outbreaks was sought for 2000-2015. Where relevant, risk of bias was assessed using the Newcastle-Ottawa scale. A narrative synthesis of the evidence was conducted. Ninety-eight outbreaks were eligible. These occurred worldwide, with 53 reports from Europe. The number of cases (CPE infection or colonization) involved in outbreaks varied widely, from two to 803. In the vast majority of outbreaks, multi-component infection control measures were used, commonly including: patient screening; contact precautions (e.g. gowns, gloves); handwashing interventions; staff education or monitoring; enhanced environmental cleaning/decontamination; cohorting of patients and/or staff; and patient isolation. Seven studies were identified as providing the best-available evidence on the effectiveness of control measures. These demonstrated that CPE outbreaks can be controlled successfully using a range of appropriate, commonly used, infection control measures. However, risk of bias was considered relatively high for these studies. The findings indicate that CPE outbreaks can be controlled using combinations of existing measures. However, the quality of the evidence base is weak and further high-quality research is needed, particularly on the effectiveness of individual infection control measures. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Construction of a fusion protein carrying antigenic determinants of enteric clostridial toxins.
Belyi, Iouri F; Varfolomeeva, Nina A
2003-08-29
Clostridium difficile and Clostridium perfringens type A are infectious agents of enteric diseases. The main virulence factors of these microorganisms include toxins A and B of C. difficile (ToxA and ToxB) and enterotoxin of C. perfringens (Cpe). In this study genetic constructions have been created for the expression of ToxA, ToxB and Cpe fragments either as individual components or as a hybrid multidomain (ToxA-ToxB-Cpe) protein. Rabbit monospecific sera raised against individual peptides reacted with the chimeric product indicating that the corresponding antigenic determinants were correctly expressed on the hybrid molecule. Furthermore, mice immunized with the fusion protein produced antibodies specific to each of the three separate components. These data suggest that the constructed three-domain molecule could be used in future studies for development of a vaccine against enteric clostridial diseases.
Caselli, Desiree; Cesaro, Simone; Fagioli, Franca; Carraro, Francesca; Ziino, Ottavio; Zanazzo, Giulio; Meazza, Cristina; Colombini, Antonella; Castagnola, Elio
2016-02-01
Few data are available on the incidence of carbapenemase-producing Enterobacteriaceae (CPE) infection or colonization in children receiving anticancer chemotherapy. We performed a nationwide survey among centers participating in the pediatric hematology-oncology cooperative study group (Associazione Italiana Ematologia Oncologia Pediatrica, AIEOP). During a 2-year observation period, we observed a threefold increase in the colonization rate, and a fourfold increase of bloodstream infection episodes, caused by CPE, with a 90-day mortality of 14%. This first nationwide Italian pediatric survey shows that the circulation of CPE strains in the pediatric hematology-oncology environment is increasing. Given the mortality rate, which is higher than for other bacterial strains, specific monitoring should be applied and the results should have implications for health-care practice in pediatric hematology-oncology.
A graphene-based electrochemical sensor for sensitive detection of paracetamol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Xinhuang; Wang, Jun; Wu, Hong
2010-05-15
An electrochemical sensor based on the electrocatalytic activity of functionalized graphene for sensitive detection of paracetamol is presented. The electrochemical behaviors of paracetamol on graphene-modified glassy carbon electrodes (GCEs) were investigated by cyclic voltammetry and square-wave voltammetry. The results showed that the graphene-modified electrode exhibited excellent electrocatalytic activity to paracetamol. A quasi-reversible redox process of paracetamol at the modified electrode was obtained, and the over-potential of paracetamol decreased significantly compared with that at the bare GCE. Such electrocatalytic behavior of graphene is attributed to its unique physical and chemical properties, e.g., subtle electronic characteristics, attractive π–π interaction, and strong adsorptivemore » capability. The sensor shows great promise for simple, sensitive, and quantitative detection of paracetamol.« less
NASA Astrophysics Data System (ADS)
Grochowska, Katarzyna; Siuzdak, Katarzyna; Karczewski, Jakub; Śliwiński, Gerard
2015-12-01
The production and properties of the indium-tin-oxide (ITO) electrodes functionalized by Au nanoparticle (NP) arrays of a relatively large area formed by pulsed laser nanostructuring of thin gold films are reported and discussed. The SEM inspection of modified electrodes reveals the presence of the nearly spherical and disc-shaped particles of dimensions in the range of 40-120 nm. The NP-array geometry can be controlled by selection of the laser processing conditions. It is shown that particle size and packing density of the array are important factors which determine the electrode performance. In the case of NP-modified electrodes the peak current corresponding to the glucose direct oxidation process shows rise with increasing glucose concentration markedly higher comparing to the reference Au disc electrode. The detection limit reaches 12 μM and linear response of the sensor is observed from 0.1 to 47 mM that covers the normal physiological range of the blood sugar detection.
Recent advances in material science for developing enzyme electrodes.
Sarma, Anil Kumar; Vatsyayan, Preety; Goswami, Pranab; Minteer, Shelley D
2009-04-15
The enzyme-modified electrode is the fundamental component of amperometric biosensors and biofuel cells. The selection of appropriate combinations of materials, such as: enzyme, electron transport mediator, binding and encapsulation materials, conductive support matrix and solid support, for construction of enzyme-modified electrodes governs the efficiency of the electrodes in terms of electron transfer kinetics, mass transport, stability, and reproducibility. This review investigates the varieties of materials that can be used for these purposes. Recent innovation in conductive electro-active polymers, functionalized polymers, biocompatible composite materials, composites of transition metal-based complexes and organometallic compounds, sol-gel and hydro-gel materials, nanomaterials, other nano-metal composites, and nano-metal oxides are reviewed and discussed here. In addition, the critical issues related to the construction of enzyme electrodes and their application for biosensor and biofuel cell applications are also highlighted in this article. Effort has been made to cover the recent literature on the advancement of materials sciences to develop enzyme electrodes and their potential applications for the construction of biosensors and biofuel cells.
Direct on-chip DNA synthesis using electrochemically modified gold electrodes as solid support
NASA Astrophysics Data System (ADS)
Levrie, Karen; Jans, Karolien; Schepers, Guy; Vos, Rita; Van Dorpe, Pol; Lagae, Liesbet; Van Hoof, Chris; Van Aerschot, Arthur; Stakenborg, Tim
2018-04-01
DNA microarrays have propelled important advancements in the field of genomic research by enabling the monitoring of thousands of genes in parallel. The throughput can be increased even further by scaling down the microarray feature size. In this respect, microelectronics-based DNA arrays are promising as they can leverage semiconductor processing techniques with lithographic resolutions. We propose a method that enables the use of metal electrodes for de novo DNA synthesis without the need for an insulating support. By electrochemically functionalizing gold electrodes, these electrodes can act as solid support for phosphoramidite-based synthesis. The proposed method relies on the electrochemical reduction of diazonium salts, enabling site-specific incorporation of hydroxyl groups onto the metal electrodes. An automated DNA synthesizer was used to couple phosphoramidite moieties directly onto the OH-modified electrodes to obtain the desired oligonucleotide sequence. Characterization was done via cyclic voltammetry and fluorescence microscopy. Our results present a valuable proof-of-concept for the integration of solid-phase DNA synthesis with microelectronics.
Nanoband array electrode as a platform for high sensitivity enzyme-based glucose biosensing.
Falk, Magnus; Sultana, Reshma; Swann, Marcus J; Mount, Andrew R; Freeman, Neville J
2016-12-01
We describe a novel glucose biosensor based on a nanoband array electrode design, manufactured using standard semiconductor processing techniques, and bio-modified with glucose oxidase immobilized at the nanoband electrode surface. The nanoband array architecture allows for efficient diffusion of glucose and oxygen to the electrode, resulting in a thousand-fold improvement in sensitivity and wide linear range compared to a conventional electrode. The electrode constitutes a robust and manufacturable sensing platform. Copyright © 2016 Elsevier B.V. All rights reserved.
Xia, Lei; Song, Jian; Xu, Ru; Liu, Dali; Dong, Biao; Xu, Lin; Song, Hongwei
2014-09-15
The ZnO inverse opal photonic crystals (IOPCs) were synthesized by the sol-gel method using the polymethylmethacrylate (PMMA) as a template. For glucose detection, glucose oxidase (GOD) was further immobilized on the inwall and surface of the IOPCs. The biosensing properties toward glucose of the Nafion/GOD/ZnO IOPCs modified FTO electrodes were carefully studied and the results indicated that the sensitivity of ZnO IOPCs modified electrode was 18 times than reference electrode due to the large surface area and uniform porous structure of ZnO IOPCs. Moreover, photoelectrochemical detection for glucose using the electrode was realized and the sensitivity approached to 52.4 µA mM(-1) cm(-2), which was about four times to electrochemical detection (14.1 µA mM(-1) cm(-2)). It indicated that photoelectrochemical detection can highly improve the sensor performance than conventional electrochemical method. It also exhibited an excellent anti-interference property and a good stability at the same time. This work provides a promising approach for realizing excellent photoelectrochemical biosensor of similar semiconductor photoelectric material. Copyright © 2014 Elsevier B.V. All rights reserved.
Sun, Wei; Guo, Yaqing; Ju, Xiaomei; Zhang, Yuanyuan; Wang, Xiuzhen; Sun, Zhenfan
2013-04-15
A biocompatible sensing platform based on graphene (GR) and titanium dioxide (TiO₂) nanorods for the immobilization of hemoglobin (Hb) was adopted in this paper. The GR-TiO₂-Hb composite-modified carbon ionic liquid electrode was constructed through a simple casting method with Nafion as the film forming material. UV-Vis and FT-IR spectra confirmed that Hb retained its native structure in the composite film. Direct electron transfer of Hb incorporated into the composite was realized with a pair of quasi-reversible redox waves appeared, indicating that the presence of GR-TiO₂ nanocomposite on the electrode surface could facilitate the electron transfer rate between the electroactive center of Hb and the substrate electrode. Hb modified electrode showed excellent electrocatalytic activity to the reduction of trichloroacetic acid in the concentration range from 0.6 to 21.0 mmol L⁻¹. These results indicated that GR-TiO₂ nanocomposite could be a friendly biocompatible interface for immobilizing biomolecules and keeping their native structure. The fabricated biosensor displayed the advantages such as high sensitivity, good reproducibility and long-term stability. Copyright © 2012 Elsevier B.V. All rights reserved.
Ferrocene-Modified Linear Poly(ethylenimine) for Enzymatic Immobilization and Electron Mediation.
Hickey, David P
2017-01-01
Enzymatic glucose biosensors and biofuel cells make use of the electrochemical transduction between an oxidoreductase enzyme, such as glucose oxidase (GOx), and an electrode to either quantify the amount of glucose in a solution or generate electrical energy. However, many enzymes including GOx are not able to electrochemically interact with an electrode surface directly, but require an external electrochemical relay to shuttle electrons to the electrode. Ferrocene-modified linear poly(ethylenimine) (Fc-LPEI) redox polymers have been designed to simultaneously immobilize glucose oxidase (GOx) at an electrode and mediate electron transfer from their flavin adenine dinucleotide (FAD) active site to the electrode surface. Cross-linked films of Fc-LPEI create hydrogel networks that allow for rapid transport of glucose, while the covalently bound ferrocene moieties are able to facilitate rapid electron transfer due to the ability of ferrocene to exchange electrons between adjacent ferrocene residues. For these reasons, Fc-LPEI films have been widely used in the development of high current density bioanode materials. This chapter describes the synthesis of a commonly used dimethylferrocene-modified linear poly(ethylenimine), as well as the subsequent preparation and electrochemical characterization of a GOx bioanode film utilizing the synthesized polymer.
Kalimuthu, Palraj; Tkac, Jan; Kappler, Ulrike; Davis, Jason J; Bernhardt, Paul V
2010-09-01
This paper describes a highly sensitive electrochemical (voltammetric) determination of sulfite using a combination of Starkeya novella sulfite dehydrogenase (SDH), horse heart cytochrome c (cyt c), and a self-assembled monolayer of 11-mercaptoundecanol (MU) cast on a gold electrode. The biosensor was optimized in terms of pH and the ratio of cyt c/SDH. The electrocatalytic oxidation current of sulfite increased linearly from 1 to 6 microM at the enzyme-modified electrode with a correlation coefficient of 0.9995 and an apparent Michaelis constant (K(M,app)) of 43 microM. Using an amperometric method, the low detection limit for sulfite at the enzyme-modified electrode was 44 pM (signal-to-noise ratio = 3). The modified electrode retained a stable response for 3 days while losing only ca. 4% of its initial sensitivity during a 2 week storage period in 50 mM Tris buffer solution at 4 degrees C. The enzyme electrode was successfully used for the determination of sulfite in beer and white wine samples. The results of these electrochemical analyses agreed well with an independent spectrophotometric method using Ellman's reagent, but the detection limit was far superior using the electrochemical method.
Liu, Guozhen; Liu, Jingquan; Davis, Thomas P; Gooding, J Justin
2011-04-15
Electrodes modified with passivating organic layers have been shown to, here and previously, to exhibit good Faradaic electrochemistry upon attachment of gold nanoparticles (AuNP). Due to their low background capacitances these constructs have good potential in electrochemical sensing. Herein is reported the application of these electrode constructs for impedance based immunosensing. The immunosensor was constructed by modifying a gold electrode with 4-thiophenol (4-TP) passivating layers by diazonium salt chemistry. Subsequently, the attachment of AuNP and then a biotin derivative as a model epitope to detect anti-biotin IgG were carried out. The interfacial properties of the modified electrodes were evaluated in the presence of Fe(CN)(6)(4-/3-) redox couple as a probe by cyclic voltammetry and electrochemical impedance spectroscopy. The impedance change, due to the specific immuno-interaction at the immunosensor surface was utilized to detect anti-biotin IgG. The increase in charge-transfer resistance (R(ct)) was linearly proportional to the concentration of anti-biotin IgG in the range of 5-500 ng mL(-1), with a detection limit of 5 ng mL(-1). Copyright © 2011 Elsevier B.V. All rights reserved.
Wang, Ying; Qu, Jiuhui; Wu, Rongcheng; Lei, Pengju
2006-03-01
The Pd/Sn-modified activated carbon fiber (ACF) electrodes were successfully prepared by the impregnation of Pd2+ and Sn2+ ions onto ACF, and their electrocatalytic reduction capacity for nitrate ions in water was evaluated in a batch experiment. The electrode was characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), X-ray photoelectron spectrum (XPS) and temperature programmed reduction (TPR). The capacity for nitrate reduction depending on Sn content on the electrode and the pH of electrolyte was discussed at length. The results showed that at an applied current density of 1.11 mA cm(-2), nitrate ions in water (solution volume: 400 mL) were reduced from 110 to 3.4 mg L(-1) after 240 min with consecutive change of intermediate nitrite. Ammonium ions and nitrogen were formed as the main final products. The amount of other possible gaseous products (including NO and N2O) was trace. With the increase of Sn content on the Pd/Sn-modified ACF electrode, the activity for nitrate reduction went up to reach a maximum (at Pd/Sn = 4) and then decreased, while the selectivity to N2 was depressed. Higher pH value of electrolyte exhibited more suppression effect on the reduction of nitrite than that of nitrate. However, no significant influence on the final ammonia formation was observed. Additionally, Cu ion in water was found to cover the active sites of the electrode to make the electrode deactivated.
Zhu, Zhihong; Li, Xia; Zeng, Yan; Sun, Wei
2010-06-15
In this paper the direct electrochemistry of double-stranded DNA (dsDNA) was investigated on ordered mesoporous carbon (OMC) modified carbon ionic liquid electrode (CILE). CILE was prepared by mixing graphite powder with 1-ethyl-3-methylimidazolium ethylsulphate ([EMIM]EtOSO(3)) and liquid paraffin. A stable OMC film was formed on the surface of CILE with the help of Nafion to get a modified electrode denoted as Nafion-OMC/CILE. Due to the specific characteristics of OMC and IL present on the electrode surface, the fabricated electrode showed good electrochemical performances to different electroactive molecules. The electrochemical responses of dsDNA were carefully investigated on this electrode with two irreversible oxidation peak appeared at +1.250 V and +0.921 V (vs. SCE), which was corresponding to the oxidation of adenine and guanine residues in dsDNA structure. The electrochemical behaviors of dsDNA were carefully investigated on the Nafion-OMC/CILE. Experimental results indicated that the electron transfer rate was promoted with the increase of the oxidation peak current and the decrease of the oxidation peak potential, which was due to the electrocatalytic ability of OMC on the electrode surface. Under the optimal conditions the oxidation peak current increased with dsDNA concentration in the range of 10.0-600.0 microg mL(-1) by differential pulse voltammetry (DPV) with the detection limit of 1.2 microg mL(-1) (3sigma). Copyright 2010 Elsevier B.V. All rights reserved.
Selective in situ potential-assisted SAM formation on multi electrode arrays
NASA Astrophysics Data System (ADS)
Haag, Ann-Lauriene; Toader, Violeta; Lennox, R. Bruce; Grutter, Peter
2016-11-01
The selective modification of individual components in a biosensor array is challenging. To address this challenge, we present a generalizable approach to selectively modify and characterize individual gold surfaces in an array, in an in situ manner. This is achieved by taking advantage of the potential dependent adsorption/desorption of surface-modified organic molecules. Control of the applied potential of the individual sensors in an array where each acts as a working electrode provides differential derivatization of the sensor surfaces. To demonstrate this concept, two different self-assembled monolayer (SAM)-forming electrochemically addressable ω-ferrocenyl alkanethiols (C11) are chemisorbed onto independent but spatially adjacent gold electrodes. The ferrocene alkanethiol does not chemisorb onto the surface when the applied potential is cathodic relative to the adsorption potential and the electrode remains underivatized. However, applying potentials that are modestly positive relative to the adsorption potential leads to extensive coverage within 10 min. The resulting SAM remains in a stable state while held at potentials <200 mV above the adsorption potential. In this state, the chemisorbed SAM does not significantly desorb nor do new ferrocenylalkythiols adsorb. Using three set applied potentials provides for controlled submonolayer alkylthiol marker coverage of each independent gold electrode. These three applied potentials are dependent upon the specifics of the respective adsorbate. Characterization of the ferrocene-modified electrodes via cyclic voltammetry demonstrates that each specific ferrocene marker is exclusively adsorbed to the desired target electrode.
The effect of the carbon nanotube buffer layer on the performance of a Li metal battery
NASA Astrophysics Data System (ADS)
Zhang, Ding; Zhou, Yi; Liu, Changhong; Fan, Shoushan
2016-05-01
Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a smaller charge transfer resistance and larger Li ion diffusion coefficient during the deposition process on the Li electrode than the conventional Li metal batteries. Symmetric battery tests show that the interfacial behavior of the Li metal electrode with the buffer layer is more stable than the naked Li metal electrode. The morphological characterization of the CNT buffer layer and Li metal lamina reveals that the CNT buffer layer has restrained the growth of Li dendrites. The CNT buffer layer has great potential to solve the safety problem of the Li metal battery.Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a smaller charge transfer resistance and larger Li ion diffusion coefficient during the deposition process on the Li electrode than the conventional Li metal batteries. Symmetric battery tests show that the interfacial behavior of the Li metal electrode with the buffer layer is more stable than the naked Li metal electrode. The morphological characterization of the CNT buffer layer and Li metal lamina reveals that the CNT buffer layer has restrained the growth of Li dendrites. The CNT buffer layer has great potential to solve the safety problem of the Li metal battery. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00465b
Conjugated Polymer Zwitterions: Efficient Interlayer Materials in Organic Electronics.
Liu, Yao; Duzhko, Volodimyr V; Page, Zachariah A; Emrick, Todd; Russell, Thomas P
2016-11-15
Conjugated polymer zwitterions (CPZs) are neutral, hydrophilic, polymer semiconductors. The pendent zwitterions, viewed as side chain dipoles, impart solubility in polar solvents for solution processing, and open opportunities as interfacial components of optoelectronic devices, for example, between metal electrodes and organic semiconductor active layers. Such interlayers are crucial for defining the performance of organic electronic devices, e.g., field-effect transistors (OFETs), light-emitting diodes (OLEDs), and photovoltaics (OPVs), all of which consist of multilayer structures. The interlayers reduce the Schottky barrier height and thus improve charge injection in OFETs and OLEDs. In OPVs, the interlayers serve to increase the built-in electric potential difference (V bi ) across the active layer, ensuring efficient extraction of photogenerated charge carriers. In general, polar and even charged electronically active polymers have gained recognition for their ability to modify metal/semiconductor interfaces to the benefit of organic electronics. While conjugated polyelectrolytes (CPEs) as interlayer materials are well-documented, open questions remain about the role of mobile counterions in CPE-containing devices. CPZs possess the processing advantages of CPEs, but as neutral molecules lack any potential complications associated with counterions. The electronic implications of CPZs on metal electrodes stem from the orientation of the zwitterion dipole moment in close proximity to the metal surface, and the resultant surface-induced polarization. This generates an interfacial dipole (Δ) at the CPZ/metal interface, altering the work function of the electrode, as confirmed by ultraviolet photoelectron spectroscopy (UPS), and improving device performance. An ideal cathode interlayer would reduce electrode work function, have orthogonal processability to the active layer, exhibit good film forming properties (i.e., wettability/uniformity), prevent exciton quenching, possess optimal electron affinity that neither limits the work function reduction nor impedes the charge extraction, transport electrons selectively, and exhibit long-term stability. Our recent discoveries show that CPZs achieve many of these attributes, and are poised for further expansion and development in the interfacial science of organic electronics. This Account reviews a recent collaboration that began with the synthesis of CPZs and a study of their structural and electronic properties on metals, then extended to their application as interlayer materials for OPVs. We discuss CPZ structure-property relationships based on several material platforms, ranging from homopolymers to copolymers, and from materials with intrinsic p-type conjugated backbones to those with intrinsic n-type conjugated backbones. We discuss key components of such interlayers, including (i) the origin of work function reduction of CPZ interlayers on metals; (ii) the role of the frontier molecular orbital energy levels and their trade-offs in optimizing electronic and device properties; and (iii) the role of polymer conductivity type and the magnitude of charge carrier mobility. Our motivation is to present our prior use and current understanding of CPZs as interlayer materials in organic electronics, and describe outstanding issues and future potential directions.
Assessment of Alternatives for Upgrading Navy Solid Waste Disposal Sites. Volume 2.
1981-08-01
chloride (PVC), butyl rubber , Hypalon, ethylene propylene diene monomer ( EPDM ) , and chlorinated polyethylene (CPE). These materials have been used...September 1976): • Butyl rubber • Chlorinated polyethylene (CPE) • Chlorosulfonate polyethylene (hypalon) • Ethylene propylene rubber ( EPDM ...CLASSIFICATION OF THIS » AGE r*T>«n D«a Eni.r.a) V • 1 . i , ... »*l«. • • ,.,. • ’in EXECUTIVE SUMMARY ASSESSMENT OF
ERIC Educational Resources Information Center
Rawashdeh, Awni; Al-namlah, Lamia
2015-01-01
To examine the impact of the usage of fixed and mobile broadband on the progress of continuing professional education (CPE) from the perspective of chartered accountants in Saudi Arabia, an e-mail survey was conducted. A random sampling of chartered accountants in Saudi Arabia was investigated. This research was aimed to identify any correlation…
Self-association of plant wax components: a thermodynamic analysis.
Casado, C G; Heredia, A
2001-01-01
Excess specific heat, C(p)()(E), of binary mixtures of selected components of plant cuticular waxes has been determined. This thermodynamic parameter gives an explanation of the special molecular arrangement in crystalline and amorphous zones of plant waxes. C(p)()(E) values indicate that hydrogen bonding between chains results in the formation of amorphous zones. Conclusions on the self-asembly process of plant waxes have been also made.
USDA-ARS?s Scientific Manuscript database
Crude peanut extract (CPE) was analyzed for three major allergens (Ara h 1, h 2, and h 3) using a C12 and a C18 column at two wavelengths (280 and 220 nm) and under different solvent conditions. HPLC profiles were compared for retention time, resolution, and peak heights. CPE samples were spiked wit...
NASA Astrophysics Data System (ADS)
Tepanov, A. A.; Nechaeva, N. L.; Prokopkina, T. A.; Kudrinskiy, A. A.; Kurochkin, I. N.; Lisichkin, G. V.
2015-11-01
The detection of thiocholine is one of the most widespread techniques for estimation of the cholinesterase activity - acetylcholinesterase and butyrylcholinesterase. Both cholinesterases can be inhibited by organophosphates and carbamates and accordingly can be considered for estimation of these pollutants in the environment. In the current work, SERS spectroscopy was applied for the thiocholine detection. The Ag electrodes modified with silver nanoparticles stabilized by polyhexamethylene biguanide were for the first time suggested as SERS-substrates for that purpose. Such electrodes can be applicable for SERS detection of submicromolar concentrations of thiocholine.
Malik, Akhtar Hussain; Kalita, Anamika; Iyer, Parameswar Krishnan
2017-10-25
The development of highly efficient latent fingerprint (LFP) technology remains extremely vital for forensic and criminal investigations. In this contribution, a straightforward, rapid, and cost-effective method has been established for the quick development of well-preserved latent fingerprint on multiple substrates, including plastic, glass, aluminum foil, metallic surfaces, and so forth, without any additional treatment, based on aggregation-induced enhanced emission-active conjugated polyelectrolyte (CPE) 3,3'-((2-(4-(1,2-diphenyl-2-(p-tolyl)vinyl)phenyl)-7-(7-methylbenzo[c][1,2,5]thiadiazol-4-yl)-9H-fluorene-9,9-diyl)bis(hexane-6,1-diyl))bis(1-methyl-1H-imidazol-3-ium) bromide, revealing clearly the third-level details (ridges, bifurcations, and pores) with high selectivity, high contrast, and no background interference even by blood stains, confirming the ability of the proposed technique for LFP detection with high resolution. The LFP development process was accomplished simply by immersing fingerprint-loaded substrate into the CPE solution for ∼1 min, followed by shaking off the residual polymer solution and then air drying. The CPE was readily transferred to the LFPs because of the strong electrostatic and hydrophobic interaction between the CPE molecules and the fingerprint components revealing distinct fluorescent images on various smooth nonporous surfaces.
NASA Astrophysics Data System (ADS)
Mondal, Subhadip; Ghosh, Sabyasachi; Ganguly, Sayan; Das, Poushali; Ravindren, Revathy; Sit, Subhashis; Chakraborty, Goutam; Das, Narayan Ch
2017-10-01
Widespread usage and development of electrical/electronic devices can create severe problems for various other devices and in our everyday lives due to harmful exposure to electromagnetic (EM) radiation. Herein, we report on the electromagnetic interference (EMI)-shielding performance of highly flexible and conductive chlorinated polyethylene (CPE)/carbon nanofiber (CNF) nanocomposites fabricated by a probe-sonication-assisted simple solution-mixing process. The dispersion of CNF nanofillers inside the CPE matrix has been studied by electron micrographs. This dispersion is reflected in the formation of continuous conductive networks at a low percolation-threshold value of 2.87 wt% and promising EMI-shielding performance of 41.5 dB for 25 wt% CNF in the X-band frequency (8.2-12.4 GHz). Such an intriguing performance mainly depends on the unique filler-filler or filler-polymer networks in CPE nanocomposites. In addition, the composite material displays a superior EMI efficiency of 47.5 dB for 2.0 mm thickness at 8.2 GHz. However, we have been encouraged by the promotion of highly flexible and lightweight CPE/CNF nanocomposite as a superior EMI shield, which can protect electronic devices against harm caused by EM radiation and offers an adaptable solution in advanced EMI-shield applications.
Schall, Megan K.; Blazer, Vicki S.; Lorantas, Robert M.; Smith, Geoffrey; Mullican, John E.; Keplinger, Brandon J.; Wagner, Tyler
2018-01-01
Detecting temporal changes in fish abundance is an essential component of fisheries management. Because of the need to understand short‐term and nonlinear changes in fish abundance, traditional linear models may not provide adequate information for management decisions. This study highlights the utility of Bayesian dynamic linear models (DLMs) as a tool for quantifying temporal dynamics in fish abundance. To achieve this goal, we quantified temporal trends of Smallmouth Bass Micropterus dolomieu catch per effort (CPE) from rivers in the mid‐Atlantic states, and we calculated annual probabilities of decline from the posterior distributions of annual rates of change in CPE. We were interested in annual declines because of recent concerns about fish health in portions of the study area. In general, periods of decline were greatest within the Susquehanna River basin, Pennsylvania. The declines in CPE began in the late 1990s—prior to observations of fish health problems—and began to stabilize toward the end of the time series (2011). In contrast, many of the other rivers investigated did not have the same magnitude or duration of decline in CPE. Bayesian DLMs provide information about annual changes in abundance that can inform management and are easily communicated with managers and stakeholders.
Khan, Sumaira; Kazi, Tasneem G; Baig, Jameel A; Kolachi, Nida F; Afridi, Hassan I; Wadhwa, Sham Kumar; Shah, Abdul Q; Kandhro, Ghulam A; Shah, Faheem
2010-10-15
A cloud point extraction (CPE) method has been developed for the determination of trace quantity of vanadium ions in pharmaceutical formulations (PF), dialysate (DS) and parenteral solutions (PS). The CPE of vanadium (V) using 8-hydroxyquinoline (oxine) as complexing reagent and mediated by nonionic surfactant (Triton X-114) was investigated. The parameters that affect the extraction efficiency of CPE, such as pH of sample solution, concentration of oxine and Triton X-114, equilibration temperature and time period for shaking were investigated in detail. The validity of CPE of V was checked by standard addition method in real samples. The extracted surfactant-rich phase was diluted with nitric acid in ethanol, prior to subjecting electrothermal atomic absorption spectrometry. Under these conditions, the preconcentration of 50 mL sample solutions, allowed raising an enrichment factor of 125-fold. The lower limit of detection obtained under the optimal conditions was 42 ng/L. The proposed method has been successfully applied to the determination of trace quantity of V in various pharmaceutical preparations with satisfactory results. The concentration ranges of V in PF, DS and PS samples were found in the range of 10.5-15.2, 0.65-1.32 and 1.76-6.93 microg/L, respectively. 2010 Elsevier B.V. All rights reserved.
von Szentpály, László
2015-03-05
The strict Wigner-Witmer symmetry constraints on chemical bonding are shown to determine the accuracy of electronegativity equalization (ENE) to a high degree. Bonding models employing the electronic chemical potential, μ, as the negative of the ground-state electronegativity, χ(GS), frequently collide with the Wigner-Witmer laws in molecule formation. The violations are presented as the root of the substantially disturbing lack of chemical potential equalization (CPE) in diatomic molecules. For the operational chemical potential, μ(op), the relative deviations from CPE fall between -31% ≤ δμ(op) ≤ +70%. Conceptual density functional theory (cDFT) cannot claim to have operationally (not to mention, rigorously) proven and unified the CPE and ENE principles. The solution to this limitation of cDFT and the symmetry violations is found in substituting μ(op) (i) by Mulliken's valence-state electronegativity, χ(M), for atoms and (ii) its new generalization, the valence-pair-affinity, α(VP), for diatomic molecules. Mulliken's χ(M) is equalized into the α(VP) of the bond, and the accuracy of ENE is orders of magnitude better than that of CPE using μ(op). A paradigm shift replacing the dominance of ground states by emphasizing valence states seems to be in order for conceptual DFT.
Porous carbon derived from aniline-modified fungus for symmetrical supercapacitor electrodes
Wang, Keliang; Xu, Ming; Wang, Xiaomin; ...
2017-01-23
N incorporated carbon materials are proven to be efficient EDLCs electrode materials. In this work, aniline modified fungus served as a raw material, and N-doped porous activated carbon is prepared via an efficient KOH activation method. A porous network with a high specific surface area of 2339 m 2g -1 is displayed by the prepared carbon material, resulting in a high accessible surface area and low ion diffusion resistance which is desirable for EDLC electrode materials. In assembled EDLCs, the N–AC based electrode exhibits a specific capacitance of 218 F g -1 at a current density of 0.1 A gmore » -1. Besides, excellent stability is displayed after 5000 continuous cycles at different current densities ranging from 0.1 to 10 A g -1. Thus, the present work reveals a promising candidate for electrode materials of EDLCs.« less
Du, Pengcheng; Liu, Huckleberry C; Yi, Chao; Wang, Kai; Gong, Xiong
2015-11-04
In this study, we report polyaniline (PANI)-modified oriented graphene hydrogel (OGH) films as the free-standing electrode for flexible solid-state supercapacitors (SCs). The OGH films are prepared by a facile filtration method using chemically converted graphene sheets and then introduced to PANI on the surface of OGH films by in situ chemical polymerization. The PANI-modified OGH films possess high flexibility, high electrical conductivity, and mechanical robustness. The flexible solid-state SCs based on the PANI-modified OGH films exhibit a specific capacitance of 530 F/g, keeping 80% of its original value up to 10 000 charge-discharge cycles at the current density of 10 A/g. Remarkably, the flexible solid-state SCs maintain ∼100% capacitance retention bent at 180° for 250 cycles. Moreover, the flexible solid-state SCs are further demonstrated to be able to light up a red-light-emitting diode. These results indicate that the flexible solid-state SCs based on PANI-modified OGH films as the free-standing electrode have potential applications as energy-storage devices.
Tang, Xinhua; Li, Haoran; Du, Zhuwei; Ng, How Yong
2014-07-01
In this study, anthraquinone-2-sulfonic acid (AQS), an electron transfer mediator, was immobilized onto graphite felt surface via spontaneous reduction of the in situ generated AQS diazonium cations. Cyclic voltammetry (CV) and energy dispersive spectrometry (EDS) characterizations of AQS modified graphite demonstrated that AQS was covalently grafted onto the graphite surface. The modified graphite, with a surface AQS concentration of 5.37 ± 1.15 × 10(-9)mol/cm(2), exhibited good electrochemical activity and high stability. The midpoint potential of the modified graphite was about -0.248 V (vs. normal hydrogen electrode, NHE), indicating that electrons could be easily transferred from NADH in bacteria to the electrode. AQS modified anode in MFCs increased the maximum power density from 967 ± 33 mW/m(2) to 1872 ± 42 mW/m(2). These results demonstrated that covalently modified AQS functioned as an electron transfer mediator to facilitate extracellular electron transfer from bacteria to electrode and significantly enhanced the power production in MFCs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Spray-on electrodes enable EKG monitoring of physically active subjects
NASA Technical Reports Server (NTRS)
1966-01-01
Easily applied EKG electrodes monitor the heart signals of human subjects engaged in various physical exercises. The electrodes are formed from an air drying, electrically conductive cement mixture that can be applied to the skin by means of a modified commercially available spray gun.
NASA Astrophysics Data System (ADS)
Hakamada, Masataka; Abe, Tatsuhiko; Mabuchi, Mamoru
2016-09-01
A modified Watts bath coupled with pulsed current electroplating is used to uniformly deposit ultrafine nickel oxide particles (diameter < 4 nm) on multiwalled carbon nanotubes. The capacitance of the multiwalled carbon nanotubes/nickel oxide electrodes was as high as 2480 F g-1 (per mass of nickel oxide), which is close to the theoretical capacitance of NiO.
ERIC Educational Resources Information Center
Popa, Adriana; Abenojar, Eric C.; Vianna, Adam; Buenviaje, Czarina Y. A.; Yang, Jiahua; Pascual, Cherrie B.; Samia, Anna Cristina S.
2015-01-01
A laboratory experiment in which students synthesize Ag, Au, and Pt nanoparticles (NPs) and use them to modify screen printed carbon electrodes for the electroanalysis of the hydrogen peroxide content in commercially available teeth whitening strips is described. This experiment is designed for two 3-h laboratory periods and can be adapted for…
Cercado, Bibiana; Cházaro-Ruiz, Luis Felipe; Ruiz, Vianey; López-Prieto, Israel de Jesús; Buitrón, Germán; Razo-Flores, Elías
2013-12-15
Bioelectrochemical systems (BESs) are based on the catalytic activity of biofilm on electrodes, or the so-called bioelectrodes, to produce electricity and other valuable products. In order to increase bioanode performance, diverse electrode materials and modification methods have been implemented; however, the factors directly affecting performance are yet unclear. In this work carbon cloth electrodes were modified by thermal, chemical, and electrochemical oxidation to enhance oxygenated surface groups, to modify the electrode texture, and consequently the electron transfer rate and biofilm adhesion. The oxidized electrodes were physically, chemically, and electrochemically characterized, then bioanodes were formed at +0.1 V vs. Ag/AgCl using domestic wastewater amended with acetate. The bioanode performance was evaluated according to the current and charge generated. The efficacy of the treatments were in the order Thermal>Electrochemical>Untreated>Chemical oxidation. The maximum current observed with untreated electrode was 0.152±0.026 mA (380±92 mA m(-2)), and it was increased by 78% and 28% with thermal and electrochemical oxidized electrodes, respectively. Moreover, the volatile solids correlated significantly with the maximum current obtained, and the electrode texture was revealed as a critical factor for increasing the bioanode performance. Copyright © 2013 Elsevier B.V. All rights reserved.
Moreno, Mónica; Arribas, Alberto Sánchez; Bermejo, Esperanza; Zapardiel, Antonio; Chicharro, Manuel
2011-04-01
A method for the simultaneous detection of five polyphenols (caffeic, chlorogenic, ferulic and gallic acids and (+)-catechin) by CZE with electrochemical detection was developed. Separation of these polyphenols was performed in a 100 mM borate buffer (pH 9.2) within 15 min. Under optimized separation conditions, the performance of glassy carbon (GC) electrodes modified with multiwalled carbon nanotube layer obtained from different dispersions was examined. GC electrode modified with a dispersion of multi-walled carbon nanotubes (CNT) in polyethylenimine has proven to be the most suitable CNT-based electrode for its application as amperometric detector for the CZE separation of the studied compounds. The excellent electrochemical properties of this electrode allowed the detection of the selected polyphenols at +200 mV and improved the efficiency and the resolution of their CZE separation. Limits of detection below 3.1 μM were obtained with linear ranges covering the 10⁻⁵ to 10⁻⁴ M range. The proposed method has been successfully applied for the detection (ferulic, caffeic and gallic acids and (+)-catechin) and the quantification (gallic acid and (+)-catechin) of polyphenols in two different white wines without any preconcentration step. A remarkable signal stability was observed on the electrode performance despite the presence of potential fouling substances in wine. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Komori, Kikuo; Terse-Thakoor, Trupti; Mulchandani, Ashok
2015-02-18
A seamless three-dimensional hybrid film consisting of carbon nanotubes grown at the graphene surface (CNTs/G) is a promising material for the application to highly sensitive enzyme-based electrochemical biosensors. The CNTs/G film was used as a conductive nanoscaffold for enzymes. The heme peptide (HP) was immobilized on the surface of the CNTs/G film for amperometric sensing of H2O2. Compared with flat graphene electrodes modified with HP, the catalytic current for H2O2 reduction at the HP-modified CNTs/G electrode increased due to the increase in the surface coverage of HP. In addition, microvoids in the CNTs/G film contributed to diffusion of H2O2 to modified HP, resulting in the enhancement of the catalytic cathodic currents. The kinetics of the direct electron transfer from the CNTs/G electrode to compound I and II of modified HP was also analyzed.
Au-TiO2/Chit modified sensor for electrochemical detection of trace organophosphates insecticides.
Qu, Yunhe; Min, Hong; Wei, Yinyin; Xiao, Fei; Shi, Guoyue; Li, Xiaohua; Jin, Litong
2008-08-15
In this paper, Au-TiO2/Chit modified electrode was prepared with Au-TiO2 nanocomposite (Au-TiO2) and Chitosan (Chit) as a conjunct. The Au-TiO2 nanocomposite and the films were characterized by electrochemical and spectroscopy methods. A set of experimental conditions was also optimized for the film's fabrication. The electrochemical and electrocatalytic behaviors of Au-TiO2/Chit modified electrode to trace organophosphates (OPs) insecticides such as parathion were discussed in this work. By differential pulse voltammetry (DPV) measurement, the current responses of Au-TiO2/Chit modified electrode were linear with parathion concentration ranging from 1.0 ng/ml to 7.0 x 10(3)ng/ml with the detection limit of 0.5 ng/ml. In order to evaluate the performance of the detection system, we also examined the real samples successfully in this work. It exhibited a sensitive, rapid and easy-to-use method for the fast determination of trace OPs insecticides.
Vlachova, Jana; Tmejova, Katerina; Kopel, Pavel; Korabik, Maria; Zitka, Jan; Hynek, David; Kynicky, Jindrich; Adam, Vojtech; Kizek, Rene
2015-01-01
Modification of carbon materials, especially graphene-based materials, has wide applications in electrochemical detection such as electrochemical lab-on-chip devices. A glassy carbon electrode (GCE) modified with chemically alternated graphene oxide was used as a working electrode (glassy carbon modified by graphene oxide with sulphur containing compounds and Nafion) for detection of nucleobases in hydrolysed samples (HCl pH = 2.9, 100 °C, 1 h, neutralization by NaOH). It was found out that modification, especially with trithiocyanuric acid, increased the sensitivity of detection in comparison with pure GCE. All processes were finally implemented in a microfluidic chip formed with a 3D printer by fused deposition modelling technology. As a material for chip fabrication, acrylonitrile butadiene styrene was chosen because of its mechanical and chemical stability. The chip contained the one chamber for the hydrolysis of the nucleic acid and another for the electrochemical detection by the modified GCE. This chamber was fabricated to allow for replacement of the GCE. PMID:25621613
Vlachova, Jana; Tmejova, Katerina; Kopel, Pavel; Korabik, Maria; Zitka, Jan; Hynek, David; Kynicky, Jindrich; Adam, Vojtech; Kizek, Rene
2015-01-22
Modification of carbon materials, especially graphene-based materials, has wide applications in electrochemical detection such as electrochemical lab-on-chip devices. A glassy carbon electrode (GCE) modified with chemically alternated graphene oxide was used as a working electrode (glassy carbon modified by graphene oxide with sulphur containing compounds and Nafion) for detection of nucleobases in hydrolysed samples (HCl pH = 2.9, 100 °C, 1 h, neutralization by NaOH). It was found out that modification, especially with trithiocyanuric acid, increased the sensitivity of detection in comparison with pure GCE. All processes were finally implemented in a microfluidic chip formed with a 3D printer by fused deposition modelling technology. As a material for chip fabrication, acrylonitrile butadiene styrene was chosen because of its mechanical and chemical stability. The chip contained the one chamber for the hydrolysis of the nucleic acid and another for the electrochemical detection by the modified GCE. This chamber was fabricated to allow for replacement of the GCE.
Asadian, Elham; Iraji Zad, Azam; Shahrokhian, Saeed
2016-01-01
By using graphene nanosheets decorated with Ag nanoparticles (AgNPs-G) as an effective approach for the surface modification of pyrolytic graphite electrode (PGE), a sensing platform was fabricated for the sensitive voltammetric determination of Azathioprine (Aza). The prepared AgNPs-G nanosheets were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-vis and Raman spectroscopy techniques. The electrochemical behavior of Aza was investigated by means of cyclic voltammetry. Comparing to the bare PGE, a remarkable enhancement was observed in the response characteristics of Aza on the surface of the modified electrode (AgNPs-G/PGE) as well as a noticeable decrease in its reduction overpotential. These results can be attributed to the incredible enlargement in the microscopic surface area of the electrode due to the presence of graphene nanosheets together with strong adsorption of Aza on its surface. The effect of experimental parameters such as accumulation time, the amount of modifier suspension and pH of the supporting electrolyte were also optimized toward obtaining the maximum sensitivity. Under the optimum conditions, the calibration curve studies demonstrated that the peak current increased linearly with Aza concentrations in the range of 7 × 10(-7) to 1 × 10(-4)mol L(-1) with the detection limit of 68 nM. Further experiments revealed that the modified electrode can be successfully applied for the accurate determination of Aza in pharmaceutical preparations. Copyright © 2015 Elsevier B.V. All rights reserved.
Rodríguez, Marcela C; Rubianes, María D; Rivas, Gustavo A
2008-11-01
We report the highly selective and sensitive voltammetric dopamine quantification in the presence of ascorbic acid and serotonin by using glassy carbon electrodes modified with a dispersion of multi-wall carbon nanotubes (MWCNT) in polyethylenimine, PEI (GCE/MWCNT-PEI). The electrocatalytic activity of the MWCNT deposited on the glassy carbon electrode has allowed an important decrease in the overvoltages for the oxidation of ascorbic acid and dopamine, making possible a clear definition of dopamine, serotonin and ascorbic acid oxidation processes. The sensitivities for dopamine in the presence and absence of 1.0 mM ascorbic acid and serotonin were (2.18 +/- 0.03) x 10(5) microAM(-1) (r = 0.9998); and (2.10 +/- 0.07) x 10(5) miroAM(-1) (r=0.9985), respectively, demonstrating the excellent performance of the GCE/MWCNT-PEI. The detection limit for dopamine in the mixture was 9.2 x 10(-7) M. The R. S. D. for the determination of 50 microM dopamine using four different electrodes was 3.9% when modified with the same MWCNT/PEI dispersion, and 4.6% when using four different dispersions. The modified electrode has been successfully applied for recovery assays of dopamine in human blood serum. Therefore, the new sensor represents an interesting and promising alternative for the electrochemical quantification of neurotransmitters and other analytes of clinical interest.
Oxide modified air electrode surface for high temperature electrochemical cells
Singh, Prabhakar; Ruka, Roswell J.
1992-01-01
An electrochemical cell is made having a porous cermet electrode (16) and a porous lanthanum manganite electrode (14), with solid oxide electrolyte (15) between them, where the lanthanum manganite surface next to the electrolyte contains a thin discontinuous layer of high surface area cerium oxide and/or praseodymium oxide, preferably as discrete particles (30) in contact with the air electrode and electrolyte.
Planning in Dynamic and Uncertain Environments
1994-05-01
particular, General Electric’s (GE) Tachyon system [2]), and uses the communication software provided in the CPE (in particular, the Cronus and Knet...and gets back information about the world and replanning requests. "* We extended SIPE-2 to interact with GE’s Tachyon system in a loosely coupled...manner. Tachyon is able to process extended temporal constraints for SIPE-2 during planning. They communicate by using the Cronus system in the CPE
High cycle life secondary lithium battery
NASA Technical Reports Server (NTRS)
Yen, Shiao-Ping S. (Inventor); Shen, David H. (Inventor); Carter, Boyd J. (Inventor); Somoano, Robert B. (Inventor)
1985-01-01
A secondary battery (10) of high energy density and long cycle is achieved by coating the separator (18) with a film (21) of cationic polymer such as polyvinyl-imidazoline. The binder of the positive electrode (14) such as an ethylene-propylene elastomer binder (26) containing particles (28) of TiS.sub.2 chalcogenide can also be modified to contain sulfone functional groups by incorporating liquid or solid sulfone materials such as 0.1 to 5 percent by weight of sulfolane into the binder. The negative lithium electrode (14), separator (18) and positive electrode (16) are preferably spirally wound and disposed within a sealed casing (17) containing terminals (32, 34). The modified separator and positive electrode are more wettable by the electrolytes in which a salt is dissolved in a polar solvent such as sulfolane.
Peptide nanotube-modified electrodes for enzyme-biosensor applications.
Yemini, Miri; Reches, Meital; Gazit, Ehud; Rishpon, Judith
2005-08-15
The fabrication and notably improved performance of composite electrodes based on modified self-assembled diphenylalanine peptide nanotubes is described. Peptide nanotubes were attached to gold electrodes, and we studied the resulting electrochemical behavior using cyclic voltammetry and chronoamperometry. The peptide nanotube-based electrodes demonstrated a direct and unmediated response to hydrogen peroxide and NADH at a potential of +0.4 V (vs SCE). This biosensor enables a sensitive determination of glucose by monitoring the hydrogen peroxide produced by an enzymatic reaction between the glucose oxidase attached to the peptide nanotubes and glucose. In addition, the marked electrocatalytic activity toward NADH enabled a sensitive detection of ethanol using ethanol dehydrogenase and NAD+. The peptide nanotube-based amperometric biosensor provides a potential new tool for sensitive biosensors and biomolecular diagnostics.
English, Diana P.; Santin, Alessandro D.
2013-01-01
Claudins are a family of tight junction proteins regulating paracellular permeability and cell polarity with different patterns of expression in benign and malignant human tissues. There are approximately 27 members of the claudin family identified to date with varying cell and tissue-specific expression. Claudins-3, -4 and -7 represent the most highly differentially expressed claudins in ovarian cancer. While their exact role in ovarian tumors is still being elucidated, these proteins are thought to be critical for ovarian cancer cell invasion/dissemination and resistance to chemotherapy. Claudin-3 and claudin-4 are the natural receptors for the Clostridium perfringens enterotoxin (CPE), a potent cytolytic toxin. These surface proteins may therefore represent attractive targets for the detection and treatment of chemotherapy-resistant ovarian cancer and other aggressive solid tumors overexpressing claudin-3 and -4 using CPE-based theranostic agents. PMID:23685873
McLean, Gillian
2015-12-01
CPE is an experience-based approach to learning spiritual care which combines clinical care with qualified supervision, in-class education and group reflection (CASC--http://www.spiritualcare.ca/). Through didactic seminars, group presentations and personal reading there is opportunity for the student to acquire, apply and integrate relevant theoretical information into their practice. Written for my CPE Specialist application, this paper describes how, through the course of advanced CPE education, I learn to utilize and integrate theory into my clinical work. Beginning with three strands--authenticity, listening and storytelling--I then discuss how the behavioural sciences and theology inform my practice. Focusing on empathy, I speak of the application of disclosure, the use of counter-transference as a diagnostic tool, and the place of therapeutic termination. Group theory, family systems theory, theological reflection, liturgical ministry, and multi-faith practices are considered. © The Author(s) 2015.
Evaluation of Caesalpinia pulcherrima Linn. for anti-inflammatory and antiulcer activities
Sharma, Vivek; Rajani, G.P.
2011-01-01
Objective: To evaluate the ethanolic and aqueous extracts of aerial parts of Caesalpinia pulcherrima (Linn.) Sw. for anti-inflammatory and antiulcer activities. Materials and Methods: Anti-inflammatory action of the ethanolic and aqueous extracts of C. pulcherrima (100 and 200 mg/kg b.w.) (CPE and CPA) were evaluated by cotton pellet granuloma models. Pylorus ligation and aspirin induced ulcer models were employed for evaluating antiulcer activity for both the extracts. Ulcerogenic potential of CP was also evaluated. Result: The ethanolic and aqueous extracts of C. pulcherrima significantly decreased (P<0.01) the granuloma tissue development. CPE and CPA at both the doses exhibited significant (P<0.01) antiulcer activity by decreasing the ulcer score in both the ulcer models and it was not ulcerogenic. Conclusion: The ethanolic and aqueous extracts of aerial parts of C. pulcherrima (CPE and CPA) possess significant anti-inflammatory and antiulcer activities. PMID:21572651
Weinstein, Robert A.
2017-01-01
Abstract Carbapenem-resistant Enterobacteriaceae (CRE) are a serious public health threat. Infections due to these organisms are associated with significant morbidity and mortality. Mechanisms of drug resistance in gram-negative bacteria (GNB) are numerous; β-lactamase genes carried on mobile genetic elements are a key mechanism for the rapid spread of antibiotic-resistant GNB worldwide. Transmissible carbapenem-resistance in Enterobacteriaceae has been recognized for the last 2 decades, but global dissemination of carbapenemase-producing Enterobacteriaceae (CPE) is a more recent problem that, once initiated, has been occurring at an alarming pace. In this article, we discuss the evolution of CRE, with a focus on the epidemiology of the CPE pandemic; review risk factors for colonization and infection with the most common transmissible CPE worldwide, Klebsiella pneumoniae carbapenemase–producing K. pneumoniae; and present strategies used to halt the striking spread of these deadly pathogens. PMID:28375512
A survey of perceived problems in orthodontic education in 23 European countries.
Sieminska-Piekarczyk, B; Adamidis, J P; Eaton, K A; McDonald, J P; Seeholzer, H
2000-12-01
This paper reports on a survey of perceived problems in the provision of orthodontic education at the stages of undergraduate, postgraduate, and continuing professional education (CPE) in 23 European countries in 1997. A questionnaire, together with an explanatory letter, was mailed to all members of the EUROQUAL II BIOMED project. Answers were validated during a meeting of project participants and by further correspondence, when necessary. The topics covered in the questionnaire were adequacy of funding, numbers of orthodontic teachers, availability of equipment, regulations, training centres, numbers of orthodontists, availability of books, journals, and information technology. Completed questionnaires were returned by orthodontists from all 23 countries. Respondents from seven countries did not answer all questions. Respondents reported a perceived almost universal lack of adequate funding for postgraduate orthodontic training (from 18 out of 20 countries) and, to a lesser extent, at undergraduate (13 out of 20 countries) and CPE levels (17 out of 21 countries). Respondents from 12 of the 20 countries reported adequate numbers of qualified teachers at undergraduate level, but only seven out of 18 at postgraduate level and eight out of 19 for CPE. Lack of suitable equipment was reported as a more frequent problem by central and eastern European countries (six out of 20 countries at undergraduate level, eight out of 20 countries at postgraduate level, and 12 out of 19 at CPE level). Too few or too many regulations were only perceived to be a problem by the respondent from one country out of 19 at undergraduate level, by seven out of 19 at postgraduate level, and by eight out of 16 at CPE level). Lack of training centres was more frequently reported as a problem by respondents from central and eastern European countries, but was generally not perceived as a problem by respondents from west European countries. Respondents from seven countries reported a lack of training centres for CPE. Respondents from six countries reported that they perceived there to be too many orthodontists at postgraduate level, from seven countries that there were an appropriate number, and from seven that there were too few. A lack of books, journals, and information technology was reported to be a problem by respondents from four out of 19 countries at undergraduate level, eight out of 20 at postgraduate level, and 10 out of 20 at CPE level. At both undergraduate and postgraduate level, the majority of respondents from central and eastern European countries reported problems with books, journals, and information technology. The results of the survey confirmed many anecdotal impressions and provided an extremely useful background against which to formulate quality guidelines for orthodontic education in Europe.
NASA Astrophysics Data System (ADS)
Zou, Xiaojun; Shang, Fang; Wang, Sui
2017-02-01
In this paper, a novel electrochemiluminescence (ECL) sensor of sol-gel@graphene luminescent composite film modified electrode for hyperin determination was prepared using graphene (G) as solid-phase microextraction (SPME) material, based on selective preconcentration of target onto an electrode and followed by luminol ECL detection. Hyperin was firstly extracted from aqueous solution through the modified GCE. Hydrogel, electrogenerated chemiluminescence reagents, pH of working solution, extraction time and temperature and scan rate were discussed. Under the optimum conditions, the change of ECL intensity was in proportion to the concentration of hyperin in the range of 0.02-0.24 μg/mL with a detection limit of 0.01 μg/mL. This method showed good performance in stability, reproducibility and precision for the determination of hyperin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sophia, J.; Muralidharan, G., E-mail: muraligru@gmail.com
2015-10-15
In this paper, fabrication of glassy carbon electrode (GCE) modified with nano copper particles is discussed. The modified electrode has been tested for the non-enzymatic electrochemical detection of hydrogen peroxide (H{sub 2}O{sub 2}). The copper nanoparticles (Cu NPs) were prepared employing a simple chemical reduction method. The presence of Cu NPs was confirmed through UV–visible (UV–vis) absorption spectroscopy and X-ray diffraction (XRD) analysis. The size and morphology of the particles were investigated using transmission electron microscopy (TEM). The electrochemical properties of the fabricated sensor were studied via cyclic voltammetry (CV), chronoamperometry and electrochemical impedance spectroscopy (EIS). The electrochemical sensor displayedmore » excellent performance features towards H{sub 2}O{sub 2} detection exhibiting wide linear range, low detection limit, swift response time, good reproducibility and stability.« less
Rezaei, Behzad; Shams-Ghahfarokhi, Leila; Havakeshian, Elaheh; Ensafi, Ali A
2016-09-01
In this paper, an electrochemical biosensor based on gold and palladium nano particles-modified nanoporous stainless steel (Au-Pd/NPSS) electrode has been introduced for the simultaneous determination of levodopa (LD) and uric acid (UA). To prepare the electrode, the stainless steel was anodized to fabricate NPSS and then Cu was electrodeposited onto the nanoporous steel by applying the multiple step potential. Finally, the electrode was immersed into a gold and palladium precursor's solution by the atomic ratio of 9:1 to form Au-Pd/NPSS through the galvanic replacement reaction. Morphological aspects, structural properties and the electroanalytical behavior of the Au-Pd/NPSS electrode were studied using field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS) and voltammetric techniques. Also, differential pulse voltammetry (DPV) was used for the simultaneous determination of LD and UA. According to results, the surface of Au-Pd/NPSS electrode contained Au and Pd nanoparticles with an average diameter of 75nm. The electrode acted better than Au/NPSS and Pd/NPSS electrodes for the simultaneous determination of LD and UA, with the peak separation potential of about 220mV. Also, the calibration plot for LD was in two linear concentration ranges of 5.0-10.0 and 10.0-55.0μmolL(-1) and for UA, it was in the range of 100-1200μmolL(-1). The detection limit for LD and UA was 0.2 and 15μmolL(-1), respectively. The modified electrode had a good performance for LD and UA detection in urine, blood serum and levodopa C-Forte tablet. Copyright © 2016 Elsevier B.V. All rights reserved.
Kesavan, Srinivasan; John, S Abraham
2014-08-15
The spontaneous grafting of aminophenyl groups on gold nanoparticles (AuNPs) by reaction with in situ generated 4-aminophenyl diazonium cations (APD) in an aqueous medium was described. The spontaneous grafting was likely to proceed by transfer of electrons from AuNPs to the APD cations to form an aminophenyl radical and subsequent attachment with AuNPs. The aminophenyl (AP) functionalized gold nanoparticles (AP-AuNPs) were characterized by UV-visible spectroscopy, high resolution-transmission electron microscopy (HR-TEM), X-ray diffraction, FT-IR spectroscopy, X-ray photoelectron spectroscopy (XPS) and surface-enhanced Raman spectroscopy (SERS). The absence of characteristic vibrational bands corresponding to diazonium group in the FT-IR spectrum confirmed the reduction of the aminophenyl diazonium cations at the surface of AuNPs. The spontaneous attachment of AP on AuNPs was confirmed by XPS from the observed binding energy values for -NH2 at 399.4 eV and -N=N- at 400.2 eV. The SERS spectrum reveals the presence Au-C (437 cm(-1)) bond on AP-AuNPs. Further, the AP-AuNPs were self-assembled on GC/ITO electrode (AP-AuNPs modified electrode) with the aid of free amine groups present on the surface of AP-AuNPs via Michael's nucleophilic addition reaction. The AP-AuNPs modified electrode was characterized by cyclic voltammetry, impedance spectroscopy, UV-visible spectroscopy and scanning electron microscopy. Impedance studies show that the electron transfer reaction of [Fe(CN)6](3-/4-) was higher at the AP-AuNPs modified electrode (1.81×10(-4) cm s(-1)) than at bare (3.77×10(-5) cm s(-1)) GC electrode. Finally, the electrocatalytic activity of the AP-AuNPs modified electrode was demonstrated by studying the oxidation of dopamine (DA). Copyright © 2014 Elsevier Inc. All rights reserved.
Yi, Yinhui; Zhu, Gangbing; Wu, Xiangyang; Wang, Kun
2016-03-15
Owing to the similar characteristics and physiochemical property of 2-aminophenol (2-AP) and 4-aminophenol (4-AP), the highly sensitive simultaneous electrochemical determination of 2- and 4-AP is a great challenge. In this paper, by electropolymerizing β-cyclodextrin (β-CD) and l-arginine (l-Arg) on the surface of carbon nanotubes@graphene nanoribbons (CNTs@GNRs) core-shell heterostructure, a P-β-CD-l-Arg/CNTs@GNRs nanohybrid modified electrode was prepared successfully, and it could exhibit the synergetic effects of β-CD (high host-guest recognition and enrichment ability), l-Arg (excellent electrocatalytic activity) and CNTs@GNRs (prominent electrochemical properties and large surface area), the P-β-CD-l-Arg/CNTs@GNRs modified electrode was used in the electrochemical determination of 2- and 4-AP, the results demonstrated that the highly sensitive and simultaneous determination of 2- and 4-AP is successfully achieved and the modified electrode has a linear response range of 25.0-1300.0 nM for both 2- and 4-AP, and the detection limits of 2- and 4-AP obtained in this work are 6.2 and 3.5 nM, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, Tsui-Hsun; Liao, Shu-Chuan; Chen, Ying-Fang; Huang, Yi-You; Wei, Yi-Syuan; Tu, Shu-Ju; Chen, Ko-Shao
2013-06-01
In this study, plasma deposition methods were used to immobilize Au electrode of a quartz crystal microbalance (QCM) to create different microenvironments for mass measurement of various modified Au nanoparticles (AuNPs). AuNPs were modified by 11-mercaptoundecanoic acid (MUA) and 1-decanethiol (DCT) for potential applications to drug release, protective coatings, and immunosensors. We aimed to develop a highly sensitive and reliable method to quantify the mass of various modified AuNPs. The surface of AuNPs and Au electrode was coated with polymer films, as determined by Fourier transform infrared spectroscopy and atomic force microscopy. Measurements obtained for various AuNPs and the plasma-treated surface of the Au electrode were compared with those obtained for an untreated Au electrode. According to the resonant frequency shift of QCM, a linear relationship was observed that significantly differed for AuNPs, MUA-AuNPs, and DCT-AuNPs (R2 range, 0.94-0.965, 0.934-0.972, and 0.874-0.9514, respectively). Compared to inductively coupled plasma and micro-computerized tomography, the QCM method with plasma treatment has advantages of real-time monitoring, greater sensitivity, and lower cost. Our results demonstrate that surface modifications measured by a QCM system for various modified AuNPs were reliable.
Modified coaxial wire method for measurement of transfer impedance of beam position monitors
NASA Astrophysics Data System (ADS)
Kumar, Mukesh; Babbar, L. K.; Deo, R. K.; Puntambekar, T. A.; Senecha, V. K.
2018-05-01
The transfer impedance is a very important parameter of a beam position monitor (BPM) which relates its output signal with the beam current. The coaxial wire method is a standard technique to measure transfer impedance of the BPM. The conventional coaxial wire method requires impedance matching between coaxial wire and external circuits (vector network analyzer and associated cables). This paper presents a modified coaxial wire method for bench measurement of the transfer impedance of capacitive pickups like button electrodes and shoe box BPMs. Unlike the conventional coaxial wire method, in the modified coaxial wire method no impedance matching elements have been used between the device under test and the external circuit. The effect of impedance mismatch has been solved mathematically and a new expression of transfer impedance has been derived. The proposed method is verified through simulation of a button electrode BPM using cst studio suite. The new method is also applied to measure transfer impedance of a button electrode BPM developed for insertion devices of Indus-2 and the results are also compared with its simulations. Close agreement between measured and simulation results suggests that the modified coaxial wire setup can be exploited for the measurement of transfer impedance of capacitive BPMs like button electrodes and shoe box BPM.
Xu, Guangyuan; Jarjes, Zahraa A; Desprez, Valentin; Kilmartin, Paul A; Travas-Sejdic, Jadranka
2018-06-01
The fabrication of a novel, and highly selective electrochemical sensor based on a poly(3,4-ethylenedioxythiophene) (PEDOT) modified laser scribed graphene (LSG), and detection of dopamine (DA) in the presence of ascorbic acid (AA) and uric acid (UA) is described. LSG electrodes were produced with a 3-dimensional macro-porous network and large electrochemically-active surface area via direct laser writing on polyimide sheets. PEDOT was electrodeposited on the LSG electrode, and the physical properties of the obtained films were characterized by scanning electron microscopy (SEM) and energy dispersive X-ray diffraction microanalysis (EDAX). The modified electrodes were applied for the determination of DA in the presence of AA and UA using cyclic voltammetry (CV), and differential pulse voltammetry (DPV) techniques. The linear range for dopamine detection was found to be 1-150 µM with a sensitivity of 0.220 ± 0.011 µA μM -1 and a detection limit of 0.33 µM; superior values to those obtained without PEDOT. For the first time, PEDOT-modified LSG have been fabricated and assessed for high-performance dopamine sensing using cost-effective, disposable electrodes, with potential for development in further sensing applications. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canevari, Thiago C., E-mail: tccanevari@gmail.com; Prado, Thiago M.; Cincotto, Fernando H.
Highlights: • Hybrid material, SiO{sub 2}/MWCNTs containing ruthenium phthalocyanine (RuPc) synthesized in situ. • Silica containing multi-walled carbon nanotube partially oriented. • Determination of pesticide fenitrothion in orange juice. - Abstract: This paper reports on the determination of the pesticide fenitrothion using a glassy carbon electrode modified with silica-coated, multi-walled, partially oriented carbon nanotubes, SiO{sub 2}/MWCNTs, containing ruthenium phthalocyanine (RuPc) synthesized in situ. The hybrid SiO{sub 2}/MWCNTs/RuPc material was characterized by UV–vis absorption spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM) and differential pulse voltammetry. The modified electrode showed well-defined peaks in the presencemore » of fenitrothion in acetate buffer, pH 4.5, with a sensitivity of 0.0822 μA μM{sup −1} mm{sup −2} and a detection limit of 0.45 ppm. Notably, the modified SiO{sub 2}/MWCNTs/RuPc electrodes with did not suffer from significant influences in the presence of other organophosphorus pesticides during the determination of the fenitrothion pesticide. Moreover, this modified electrode showed excellent performance in the determination of fenitrothion in orange juice.« less