Sample records for electrode negative dans

  1. Design of interpenetrated network MWCNT/poly(1,5-DAN) on interdigital electrode: toward NO2 gas sensing.

    PubMed

    Nguyen, Dzung Tuan; Nguyen, My Thanh; Ho, Giang Truong; Nguyen, Toan Ngoc; Reisberg, S; Piro, B; Pham, M C

    2013-10-15

    In this paper, poly(1,5-diaminonaphthalene) was interpenetrated into the network made of multiwalled carbon nanotubes (MWCNT) on platinum interdigital electrode (IDE) by electro-polymerization of 1,5-diaminonaphthalene (1,5-DAN). The electro-polymerization process of 1,5-DAN on MWCNT was controlled by scanning the cyclic voltage at 50 mV s(-1) scan rate between -0.1 V and +0.95 V vs. saturated calomel electrode (SCE). The results of voltammetric responses and Raman spectroscopy represented that the films MWCNT/poly(1,5-DAN) were successfully created by this polymerization process. The films MWCNT/poly(1,5-DAN) were investigated for gas-sensing to NO2 at low concentration level. The gas-sensing results showed that the response-recovery times were long and strongly affected by thickness of the film MWCNT/poly(1,5-DAN). Nevertheless, these films represented auspicious results for gas sensors operating at room temperature. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Bipolar battery

    DOEpatents

    Kaun, Thomas D.

    1992-01-01

    A bipolar battery having a plurality of cells. The bipolar battery includes: a negative electrode; a positive electrode and a separator element disposed between the negative electrode and the positive electrode, the separator element electrically insulating the electrodes from one another; an electrolyte disposed within at least one of the negative electrode, the positive electrode and the separator element; and an electrode containment structure including a cup-like electrode holder.

  3. Electrochemical cell and negative electrode therefor

    DOEpatents

    Kaun, Thomas D.

    1982-01-01

    A secondary electrochemical cell with the positive and negative electrodes separated by a molten salt electrolyte with the negative electrode comprising a particulate mixture of lithium-aluminum alloy and electrolyte and an additive selected from graphitized carbon, Raney iron or mixtures thereof. The lithium-aluminum alloy is present in the range of from about 45 to about 80 percent by volume of the negative electrode, and the electrolyte is present in an amount not less than about 10 percent by volume of the negative electrode. The additive of graphitized carbon is present in the range of from about 1 to about 10 percent by volume of the negative electrode, and the Raney iron additive is present in the range of from about 3 to about 10 percent by volume of the negative electrode.

  4. Electrochemical cell

    DOEpatents

    Kaun, Thomas D.

    1984-01-01

    An improved secondary electrochemical cell is disclosed having a negative electrode of lithium aluminum, a positive electrode of iron sulfide, a molten electrolyte of lithium chloride and potassium chloride, and the combination that the fully charged theoretical capacity of the negative electrode is in the range of 0.5-1.0 that of the positive electrode. The cell thus is negative electrode limiting during discharge cycling. Preferably, the negative electrode contains therein, in the approximate range of 1-10 volume % of the electrode, an additive from the materials of graphitized carbon, aluminum-iron alloy, and/or magnesium oxide.

  5. Electrochemical cell

    DOEpatents

    Kaun, T.D.

    An improved secondary electrochemical cell is disclosed having a negative electrode of lithium aluminum, a positive electrode of iron sulfide, a molten electrolyte of lithium chloride and potassium chloride, and the combination that the fully charged theoretical capacity of the negative electrode is in the range of 0.5 to 1.0 that of the positive electrode. The cell thus is negative electrode limiting during discharge cycling. Preferably, the negative electrode contains therein, in the approximate range of 1 to 10 volume % of the electrode, an additive from the materials of graphitized carbon, aluminum-iron alloy, and/or magnesium oxide.

  6. Intermetallic negative electrodes for non-aqueous lithium cells and batteries

    DOEpatents

    Thackeray, Michael M.; Vaughey, John T.; Johnson, Christopher S.; Fransson, Linda M.; Edstrom, Ester Kristina; Henriksen, Gary

    2004-05-04

    A method of operating an electrochemical cell is disclosed. The cell has an intermetallic negative electrode of Cu.sub.6-x M.sub.x Sn.sub.5, wherein x is .ltoreq.3 and M is one or more metals including Si and a positive electrode containing Li in which Li is shuttled between the positive electrode and the negative electrode during charge and discharge to form a lithiated intermetallic negative electrode during charge. The voltage of the electrochemical cell is controlled during the charge portion of the charge-discharge cycles so that the potential of the lithiated intermetallic negative electrode in the fully charged electrochemical cell is less than 0.2 V but greater than 0 V versus metallic lithium.

  7. Negative electrode composition

    DOEpatents

    Kaun, Thomas D.; Chilenskas, Albert A.

    1982-01-01

    A secondary electrochemical cell and a negative electrode composition for use therewith comprising a positive electrode containing an active material of a chalcogen or a transiton metal chalcogenide, a negative electrode containing a lithium-aluminum alloy and an amount of a ternary alloy sufficient to provide at least about 5 percent overcharge capacity relative to a negative electrode solely of the lithium-aluminum alloy, the ternary alloy comprising lithium, aluminum, and iron or cobalt, and an electrolyte containing lithium ions in contact with both of the positive and the negative electrodes. The ternary alloy is present in the electrode in the range of from about 5 percent to about 50 percent by weight of the electrode composition and may include lithium-aluminum-nickel alloy in combination with either the ternary iron or cobalt alloys. A plurality of series connected cells having overcharge capacity can be equalized on the discharge side without expensive electrical equipment.

  8. Stepped electrophoresis for movement and concentration of DNA

    DOEpatents

    Miles, Robin R.; Wang, Amy Wei-Yun; Mariella, Jr., Raymond P.

    2005-03-15

    A fluidic channel patterned with a series of thin-film electrodes makes it possible to move and concentrate DNA in a fluid passing through the fluidic channel. The DNA has an inherent negative charge and by applying a voltage between adjacent electrodes the DNA is caused to move. By using a series of electrodes, when one electrode voltage or charge is made negative with respect to adjacent electrodes, the DNA is repelled away from this electrode and attached to a positive charged electrode of the series. By sequentially making the next electrode of the series negative, the DNA can be moved to and concentrated over the remaining positive electrodes.

  9. Lithium aluminum/iron sulfide battery having lithium aluminum and silicon as negative electrode

    DOEpatents

    Gilbert, Marian; Kaun, Thomas D.

    1984-01-01

    A method of making a negative electrode, the electrode made thereby and a secondary electrochemical cell using the electrode. Silicon powder is mixed with powdered electroactive material, such as the lithium-aluminum eutectic, to provide an improved electrode and cell.

  10. Electrochemical cell

    DOEpatents

    Redey, Laszlo I.; Myles, Kevin M.; Vissers, Donald R.; Prakash, Jai

    1996-01-01

    An electrochemical cell with a positive electrode having an electrochemically active layer of at least one transition metal chloride. A negative electrode of an alkali metal and a compatible electrolyte including an alkali metal salt molten at cell operating temperature is included in the cell. The electrolyte is present at least partially as a corrugated .beta." alumina tube surrounding the negative electrode interior to the positive electrode. The ratio of the volume of liquid electrolyte to the volume of the positive electrode is in the range of from about 0.1 to about 3. A plurality of stacked electrochemical cells is disclosed each having a positive electrode, a negative electrode of an alkali metal molten at cell operating temperature, and a compatible electrolyte. The electrolyte is at least partially present as a corrugated .beta." alumina sheet separating the negative electrode and interior to the positive electrodes. The alkali metal is retained in a porous electrically conductive ceramic, and seals for sealing the junctures of the electrolyte and the adjacent electrodes at the peripheries thereof.

  11. Mechanical Deformation of a Lithium-Metal Anode Due to a Very Stiff Separator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrese, A; Newman, J

    2014-05-21

    This work builds on the two-dimensional model presented by Ferrese et al. [J. Electrochem. Soc., 159, A1615 (2012)1, which captures the movement of lithium metal at the negative electrode during cycling in a Li-metal/LiCoO2 cell. In this paper, the separator is modeled as a dendrite-inhibiting polymer separator with an elastic modulus of 16 GPa. The separator resists the movement of lithium through the generation of stresses in the cell. These stresses affect the negative electrode through two mechanisms altering the thermodynamics of the negative electrode and deforming the negative electrode mechanically. From this analysis, we find that the dendrite-inhibiting separatormore » causes plastic and elastic deformation of the lithium at the negative electrode which flattens the electrode considerably when compared to the liquid-electrolyte case. This flattening of the negative electrode causes only very slight differences in the local state of charge in the positive electrode. When comparing the magnitude of the effects flattening the negative electrode, we find that the plastic deformation plays a much larger role than either the pressure-modified reaction kinetics or elastic deformation. This is due to the low yield strength of the lithium metal, which limits the stresses such that they have only a small effect on the reaction kinetics. (C) 2014 The Electrochemical Society. All rights reserved.« less

  12. Tungsten oxide@polypyrrole core-shell nanowire arrays as novel negative electrodes for asymmetric supercapacitors.

    PubMed

    Wang, Fengmei; Zhan, Xueying; Cheng, Zhongzhou; Wang, Zhenxing; Wang, Qisheng; Xu, Kai; Safdar, Muhammad; He, Jun

    2015-02-11

    Among active pseudocapacitive materials, polypyrrole (PPy) is a promising electrode material in electrochemical capacitors. PPy-based materials research has thus far focused on its electrochemical performance as a positive electrode rather than as a negative electrode for asymmetric supercapacitors (ASCs). Here high-performance electrochemical supercapacitors are designed with tungsten oxide@PPy (WO3 @PPy) core-shell nanowire arrays and Co(OH)2 nanowires grown on carbon fibers. The WO3 @PPy core-shell nanowire electrode exhibits a high capacitance (253 mF/cm2) in negative potentials (-1.0-0.0 V). The ASCs packaged with CF-Co(OH)2 as a positive electrode and CF-WO3 @PPy as a negative electrode display a high volumetric capacitance up to 2.865 F/cm3 based on volume of the device, an energy density of 1.02 mWh/cm3 , and very good stability performance. These findings promote the application of PPy-based nanostructures as advanced negative electrodes for ASCs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Electrochemical cell

    DOEpatents

    Redey, L.I.; Myles, K.M.; Vissers, D.R.; Prakash, J.

    1996-07-02

    An electrochemical cell is described with a positive electrode having an electrochemically active layer of at least one transition metal chloride. A negative electrode of an alkali metal and a compatible electrolyte including an alkali metal salt molten at cell operating temperature is included in the cell. The electrolyte is present at least partially as a corrugated {beta}{double_prime} alumina tube surrounding the negative electrode interior to the positive electrode. The ratio of the volume of liquid electrolyte to the volume of the positive electrode is in the range of from about 0.1 to about 3. A plurality of stacked electrochemical cells is disclosed each having a positive electrode, a negative electrode of an alkali metal molten at cell operating temperature, and a compatible electrolyte. The electrolyte is at least partially present as a corrugated {beta}{double_prime} alumina sheet separating the negative electrode and interior to the positive electrodes. The alkali metal is retained in a porous electrically conductive ceramic, and seals for sealing the junctures of the electrolyte and the adjacent electrodes at the peripheries thereof. 8 figs.

  14. Electrochemical cell assembled in discharged state

    DOEpatents

    Yao, Neng-Ping; Walsh, William J.

    1976-01-01

    A secondary, electrochemical cell is assembled in a completely discharged state within a sealed containment. As assembled, the cell includes a positive electrode separated from a negative electrode by a molten salt electrolyte. The positive electrode is contained within a porous structure, permitting passage of molten electrolyte, and includes one or more layers of a metallic mesh, e.g. iron, impregnated with an intimate mixture of lithium sulfide and the electrolyte. The negative electrode is a porous plaque of aluminum metal. Prior to using the cell, an electrical charge forms lithium-aluminum alloy within the negative electrode and metal sulfide within the positive electrode.

  15. High-capacity FeTiO3/C negative electrode for sodium-ion batteries with ultralong cycle life

    NASA Astrophysics Data System (ADS)

    Ding, Changsheng; Nohira, Toshiyuki; Hagiwara, Rika

    2018-06-01

    The development of electrode materials which improve both the energy density and cycle life is one of the most challenging issues facing the practical application of sodium-ion batteries today. In this work, FeTiO3/C nanoparticles are synthesized as negative electrode materials for sodium-ion batteries. The electrochemical performance and charge-discharge mechanism of the FeTiO3/C negative electrode are investigated in an ionic liquid electrolyte at 90 °C. The FeTiO3/C negative electrode delivers a high reversible capacity of 403 mAh g-1 at a current rate of 10 mA g-1, and exhibits high rate capability and excellent cycling stability for up to 2000 cycles. The results indicate that FeTiO3/C is a promising negative electrode material for sodium-ion batteries.

  16. Overcharge tolerant high-temperature cells and batteries

    DOEpatents

    Redey, Laszlo; Nelson, Paul A.

    1989-01-01

    In a lithium-alloy/metal sulfide high temperature electrochemical cell, cell damage caused by overcharging is avoided by providing excess lithium in a high-lithium solubility phase alloy in the negative electrode and a specified ratio maximum of the capacity of a matrix metal of the negative electrode in the working phase to the capacity of a transition metal of the positive electrode. In charging the cell, or a plurality of such cells in series and/or parallel, chemical transfer of elemental lithium from the negative electrode through the electrolyte to the positive electrode provides sufficient lithium to support an increased self-charge current to avoid anodic dissolution of the positive electrode components above a critical potential. The lithium is subsequently electrochemically transferred back to the negative electrode in an electrochemical/chemical cycle which maintains high self-discharge currents on the order of 3-15 mA/cm.sup.2 in the cell to prevent overcharging.

  17. Electrochemical energy storage devices comprising self-compensating polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Paul; Bautista-Martinez, Jose Antonio; Friesen, Cody

    The disclosed technology relates generally to devices comprising conductive polymers and more particularly to electrochemical devices comprising self-compensating conductive polymers. In one aspect, electrochemical energy storage device comprises a negative electrode comprising an active material including a redox-active polymer. The device additionally comprises a positive electrode comprising an active material including a redox-active polymer. The device further comprises an electrolyte material interposed between the negative electrode and positive electrode and configured to conduct mobile counterions therethrough between the negative electrode and positive electrode. At least one of the negative electrode redox-active polymer and the positive electrode redox-active polymer comprises amore » zwitterionic polymer unit configured to reversibly switch between a zwitterionic state in which the zwitterionic polymer unit has first and second charge centers having opposite charge states that compensate each other, and a non-zwitterionic state in which the zwitterionic polymer unit has one of the first and second charge centers whose charge state is compensated by mobile counterions.« less

  18. Asymmetric battery having a semi-solid cathode and high energy density anode

    DOEpatents

    Tan, Taison; Chiang, Yet-Ming; Ota, Naoki; Wilder, Throop; Duduta, Mihai

    2017-11-28

    Embodiments described herein relate generally to devices, systems and methods of producing high energy density batteries having a semi-solid cathode that is thicker than the anode. An electrochemical cell can include a positive electrode current collector, a negative electrode current collector and an ion-permeable membrane disposed between the positive electrode current collector and the negative electrode current collector. The ion-permeable membrane is spaced a first distance from the positive electrode current collector and at least partially defines a positive electroactive zone. The ion-permeable membrane is spaced a second distance from the negative electrode current collector and at least partially defines a negative electroactive zone. The second distance is less than the first distance. A semi-solid cathode that includes a suspension of an active material and a conductive material in a non-aqueous liquid electrolyte is disposed in the positive electroactive zone, and an anode is disposed in the negative electroactive zone.

  19. Asymmetric battery having a semi-solid cathode and high energy density anode

    DOEpatents

    Tan, Taison; Chiang, Yet-Ming; Ota, Naoki; Wilder, Throop; Duduta, Mihai

    2016-09-06

    Embodiments described herein relate generally to devices, systems and methods of producing high energy density batteries having a semi-solid cathode that is thicker than the anode. An electrochemical cell can include a positive electrode current collector, a negative electrode current collector and an ion-permeable membrane disposed between the positive electrode current collector and the negative electrode current collector. The ion-permeable membrane is spaced a first distance from the positive electrode current collector and at least partially defines a positive electroactive zone. The ion-permeable membrane is spaced a second distance from the negative electrode current collector and at least partially defines a negative electroactive zone. The second distance is less than the first distance. A semi-solid cathode that includes a suspension of an active material and a conductive material in a non-aqueous liquid electrolyte is disposed in the positive electroactive zone, and an anode is disposed in the negative electroactive zone.

  20. Negative electrodes for lithium cells and batteries

    DOEpatents

    Vaughey, John T.; Fransson, Linda M.; Thackeray, Michael M.

    2005-02-15

    A negative electrode is disclosed for a non-aqueous electrochemical cell. The electrode has an intermetallic compound as its basic structural unit with the formula M.sub.2 M' in which M and M' are selected from two or more metal elements including Si, and the M.sub.2 M' structure is a Cu.sub.2 Sb-type structure. Preferably M is Cu, Mn and/or Li, and M' is Sb. Also disclosed is a non-aqueous electrochemical cell having a negative electrode of the type described, an electrolyte and a positive electrode. A plurality of cells may be arranged to form a battery.

  1. Uncharged positive electrode composition

    DOEpatents

    Kaun, Thomas D.; Vissers, Donald R.; Shimotake, Hiroshi

    1977-03-08

    An uncharged positive-electrode composition contains particulate lithium sulfide, another alkali metal or alkaline earth metal compound other than sulfide, e.g., lithium carbide, and a transition metal powder. The composition along with a binder, such as electrolytic salt or a thermosetting resin is applied onto an electrically conductive substrate to form a plaque. The plaque is assembled as a positive electrode within an electrochemical cell opposite to a negative electrode containing a material such as aluminum or silicon for alloying with lithium. During charging, lithium alloy is formed within the negative electrode and transition metal sulfide such as iron sulfide is produced within the positive electrode. Excess negative electrode capacity over that from the transition metal sulfide is provided due to the electrochemical reaction of the other than sulfide alkali metal or alkaline earth metal compound.

  2. Nickel-hydrogen battery with oxygen and electrolyte management features

    DOEpatents

    Sindorf, John F.

    1991-10-22

    A nickel-hydrogen battery or cell having one or more pressure vessels containing hydrogen gas and a plurality of cell-modules therein. Each cell-module includes a configuration of cooperatively associated oxygen and electrolyte mangement and component alignment features. A cell-module having electrolyte includes a negative electrode, a positive electrode adapted to facilitate oxygen diffusion, a separator disposed between the positive and negative electrodes for separating them and holding electrolyte for ionic conductivity, an absorber engaging the surface of the positive electrode facing away from the separator for providing electrolyte to the positive electrode, and a pair of surface-channeled diffusion screens for enclosing the positive and negative electrodes, absorber, and separator and for maintaining proper alignment of these components. The screens, formed in the shape of a pocket by intermittently sealing the edges together along as many as three sides, permit hydrogen gas to diffuse therethrough to the negative electrodes, and prevent the edges of the separator from swelling. Electrolyte is contained in the cell-module, absorbhed by the electrodes, the separator and the absorber.

  3. Room temperature performance of 4 V aqueous hybrid supercapacitor using multi-layered lithium-doped carbon negative electrode

    NASA Astrophysics Data System (ADS)

    Makino, Sho; Yamamoto, Rie; Sugimoto, Shigeyuki; Sugimoto, Wataru

    2016-09-01

    Water-stable multi-layered lithium-doped carbon (LixC6) negative electrode using poly(ethylene oxide) (PEO)-lithium bis(trifluoromethansulfonyl)imide (LiTFSI) polymer electrolyte containing N-methyl-N-propylpiperidinium bis(trifluoromethansulfonyl)imide (PP13TFSI) ionic liquid was developed. Electrochemical properties at 60 °C of the aqueous hybrid supercapacitor using activated carbon positive electrode and a multi-layered LixC6 negative electrode (LixC6 | PEO-LiTFSI | LTAP) without PP13TFSI exhibited performance similar to that using Li anode (Li | PEO-LiTFSI | LTAP). A drastic decrease in ESR was achieved by the addition of PP13TFSI to PEO-LiTFSI, allowing room temperature operation. The ESR of the multi-layered LixC6 negative electrode with PEO-LiTFSI-PP13TFSI at 25 °C was 801 Ω cm2, which is 1/6 the value of the multi-layered Li negative electrode with PEO-LiTFSI (5014 Ω cm2). Charge/discharge test of the aqueous hybrid supercapacitor using multi-layered LixC6 negative electrode with PEO-LiTFSI-PP13TFSI at 25 °C afforded specific capacity of 20.6 mAh (g-activated carbon)-1 with a working voltage of 2.7-3.7 V, and good long-term capability up to 3000 cycles. Furthermore, an aqueous hybrid supercapacitor consisting of a high capacitance RuO2 nanosheet positive electrode and multi-layered LixC6 negative electrode with PEO-LiTFSI-PP13TFSI showed specific capacity of 196 mAh (g-RuO2)-1 and specific energy of 625 Wh (kg-RuO2)-1 in 2.0 M acetic acid-lithium acetate buffered solution at 25 °C.

  4. Modeling Lithium Movement over Multiple Cycles in a Lithium-Metal Battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrese, A; Newman, J

    This paper builds on the work by Ferrese et al. [J. Electrochem., 159, A1615 (2012)], where a model of a lithium-metal battery with a LiyCoO2 positive electrode was created in order to predict the movement of lithium in the negative electrode along the negative electrode/separator interface during cell cycling. In this paper, the model is expanded to study the movement of lithium along the lithium-metal anode over multiple cycles. From this model, it is found that when a low percentage of lithium at the negative electrode is utilized, the movement of lithium along the negative electrode/separator interface reaches a quasimore » steady state after multiple cycles. This steady state is affected by the slope of the open-circuit-potential function in the positive electrode, the rate of charge and discharge, the depth of discharge, and the length of the rest periods. However, when a high percent of the lithium at the negative electrode is utilized during cycling, the movement does not reach a steady state and pinching can occur, where the lithium nearest the negative tab becomes progressively thinner after cycling. This is another nonlinearity that leads to a progression of the movement of lithium over multiple cycles. (C) 2014 The Electrochemical Society.« less

  5. Lithium-titanium-oxide anodes for lithium batteries

    DOEpatents

    Vaughey, John T.; Thackeray, Michael M.; Kahaian, Arthur J.; Jansen, Andrew N.; Chen, Chun-hua

    2001-01-01

    A spinel-type structure with the general formula Li[Ti.sub.1.67 Li.sub.0.33-y M.sub.y ]O.sub.4, for 0

  6. Involvement of flocculin in negative potential-applied ITO electrode adhesion of yeast cells

    PubMed Central

    Koyama, Sumihiro; Tsubouchi, Taishi; Usui, Keiko; Uematsu, Katsuyuki; Tame, Akihiro; Nogi, Yuichi; Ohta, Yukari; Hatada, Yuji; Kato, Chiaki; Miwa, Tetsuya; Toyofuku, Takashi; Nagahama, Takehiko; Konishi, Masaaki; Nagano, Yuriko; Abe, Fumiyoshi

    2015-01-01

    The purpose of this study was to develop novel methods for attachment and cultivation of specifically positioned single yeast cells on a microelectrode surface with the application of a weak electrical potential. Saccharomyces cerevisiae diploid strains attached to an indium tin oxide/glass (ITO) electrode to which a negative potential between −0.2 and −0.4 V vs. Ag/AgCl was applied, while they did not adhere to a gallium-doped zinc oxide/glass electrode surface. The yeast cells attached to the negative potential-applied ITO electrodes showed normal cell proliferation. We found that the flocculin FLO10 gene-disrupted diploid BY4743 mutant strain (flo10Δ /flo10Δ) almost completely lost the ability to adhere to the negative potential-applied ITO electrode. Our results indicate that the mechanisms of diploid BY4743 S. cerevisiae adhesion involve interaction between the negative potential-applied ITO electrode and the Flo10 protein on the cell wall surface. A combination of micropatterning techniques of living single yeast cell on the ITO electrode and omics technologies holds potential of novel, highly parallelized, microchip-based single-cell analysis that will contribute to new screening concepts and applications. PMID:26187908

  7. HIGH VOLTAGE ELECTRODES

    DOEpatents

    Murray, J.J.

    1963-04-23

    S>This patent relates to electrode structure for creating an intense direct current electric field which may have a field strength of the order of two to three times that heretofore obtained, with automatic suppression of arcing. The positive electrode is a conventional conductive material such as copper while the negative electrode is made from a special material having a resistivity greater than that of good conductors and less than that of good insulators. When an incipient arc occurs, the moderate resistivity of the negative electrode causes a momentary, localized decrease in the electric field intensity, thus suppressing the flow of electrons and avoiding arcing. Heated glass may be utilized for the negative electrode, since it provides the desired combination of resistivity, capacity, dielectric strength, mechani-cal strength, and thermal stability. (AEC)

  8. Multilayer capacitor suitable for substrate integration and multimegahertz filtering

    DOEpatents

    Ngo, Khai D. T.

    1990-01-01

    A multilayer capacitor comprises stacked, spaced-apart electrodes of sheet form, dielectric layers between the electrodes, and first and second groups of spaced-apart conductive vias extending transversely of the sheet-form electrodes and through aligned holes in the dielectric layers. Alternate electrodes are instantaneously positive, and the remaining electrodes are instantaneously negative. Each via of the first group is electrically connected to the positive electrodes and passes insulatingly through the negative electrodes. Similarly, each via of the second group is electrically connected to the negative electrodes and passes insulatingly through the positive electrodes. Each via has, in the plane of the electrodes, a cross-sectional form in the shape of an elongated rib of greater length than width. The elongated ribs of the first group are disposed in a first plurality of rows with their lengths in spaced-apart, aligned relationship, and the ribs of the second group are disposed in a second plurality of rows with their lengths in spaced-apart, aligned relationship. The first plurality of rows is disposed substantially orthogonally with respect to the second plurality of rows.

  9. Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors.

    PubMed

    Lu, Xihong; Zeng, Yinxiang; Yu, Minghao; Zhai, Teng; Liang, Chaolun; Xie, Shilei; Balogun, Muhammad-Sadeeq; Tong, Yexiang

    2014-05-21

    Oxygen-deficient α-Fe2 O3 nanorods with outstanding capacitive performance are developed and demonstrated as novel negative electrodes for flexible asymmetric supercapacitors. The asymmetric-supercapacitor device based on the oxygen-deficient α-Fe2 O3 nanorod negative electrode and a MnO2 positive electrode achieves a maximum energy density of 0.41 mW·h/cm(3) ; it is also capable of charging a mobile phone and powering a light-emitting diode indicator. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Operating a redox flow battery with a negative electrolyte imbalance

    DOEpatents

    Pham, Quoc; Chang, On; Durairaj, Sumitha

    2015-03-31

    Loss of flow battery electrode catalyst layers during self-discharge or charge reversal may be prevented by establishing and maintaining a negative electrolyte imbalance during at least parts of a flow battery's operation. Negative imbalance may be established and/or maintained actively, passively or both. Actively establishing a negative imbalance may involve detecting an imbalance that is less negative than a desired threshold, and processing one or both electrolytes until the imbalance reaches a desired negative level. Negative imbalance may be effectively established and maintained passively within a cell by constructing a cell with a negative electrode chamber that is larger than the cell's positive electrode chamber, thereby providing a larger quantity of negative electrolyte for reaction with positive electrolyte.

  11. Mesoscopic modeling and parameter estimation of a lithium-ion battery based on LiFePO4/graphite

    NASA Astrophysics Data System (ADS)

    Jokar, Ali; Désilets, Martin; Lacroix, Marcel; Zaghib, Karim

    2018-03-01

    A novel numerical model for simulating the behavior of lithium-ion batteries based on LiFePO4(LFP)/graphite is presented. The model is based on the modified Single Particle Model (SPM) coupled to a mesoscopic approach for the LFP electrode. The model comprises one representative spherical particle as the graphite electrode, and N LFP units as the positive electrode. All the SPM equations are retained to model the negative electrode performance. The mesoscopic model rests on non-equilibrium thermodynamic conditions and uses a non-monotonic open circuit potential for each unit. A parameter estimation study is also carried out to identify all the parameters needed for the model. The unknown parameters are the solid diffusion coefficient of the negative electrode (Ds,n), reaction-rate constant of the negative electrode (Kn), negative and positive electrode porosity (εn&εn), initial State-Of-Charge of the negative electrode (SOCn,0), initial partial composition of the LFP units (yk,0), minimum and maximum resistance of the LFP units (Rmin&Rmax), and solution resistance (Rcell). The results show that the mesoscopic model can simulate successfully the electrochemical behavior of lithium-ion batteries at low and high charge/discharge rates. The model also describes adequately the lithiation/delithiation of the LFP particles, however, it is computationally expensive compared to macro-based models.

  12. NiCd battery electrodes

    NASA Technical Reports Server (NTRS)

    Holleck, G.; Turchan, M.; Hopkins, J.

    1972-01-01

    The objective of this research program was to develop and evaluate electrodes for a negative limited nickel-cadmium cell and to prove its feasibility. The program consisted of three phases: (1) the development of cadmium electrodes with high hydrogen overvoltage characteristics, (2) the testing of positive and negative plates, and (3) the fabrication and testing of complete negative limited NiCd cells. The following electrode structures were manufactured and their physical and electrochemical characteristics were evaluated: (1) silver sinter-based Cd electrodes, (2) Teflon-bonded Cd electrodes, (3) electrodeposited Cd sponge, and (4) Cd-sinter structures. All cadmium electrode structures showed a sharp increase in potential at the end of charge, with the advent of hydrogen evolution occurring at approximately -1.3 V versus Hg/HgO. The hydrogen advent potentials on pure cadmium structures were 50 to 70 mV more cathodic than those of their silver-containing counterparts.

  13. Lithium-aluminum-magnesium electrode composition

    DOEpatents

    Melendres, Carlos A.; Siegel, Stanley

    1978-01-01

    A negative electrode composition is presented for use in a secondary, high-temperature electrochemical cell. The cell also includes a molten salt electrolyte of alkali metal halides or alkaline earth metal halides and a positive electrode including a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent and a magnesium-aluminum alloy as a structural matrix. Various binary and ternary intermetallic phases of lithium, magnesium, and aluminum are formed but the electrode composition in both its charged and discharged state remains substantially free of the alpha lithium-aluminum phase and exhibits good structural integrity.

  14. MALDI-MS analysis and imaging of small molecule metabolites with 1,5-diaminonaphthalene (DAN).

    PubMed

    Korte, Andrew R; Lee, Young Jin

    2014-08-01

    1,5-Diaminonaphthalene (DAN) has previously been reported as an effective matrix for matrix-assisted laser desorption ionization-mass spectrometry of phospholipids. In the current work, we investigate the use of DAN as a matrix for small metabolite analysis in negative ion mode. DAN was found to provide superior ionization to the compared matrices for MW < ~400 Da; however, 9-aminoacridine (9-AA) was found to be superior for a uridine diphosphate standard (MW 566 Da). DAN was also found to provide a more representative profile of a natural phospholipid mixture than 9-AA. Finally, DAN and 9-AA were applied for imaging of metabolites directly from corn leaf sections. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  15. Coulometrische titration von hypochloriten und chloraten.

    PubMed

    Gründler, P; Holzapfel, H

    1970-03-01

    Hypochlorite was determined by direct coulometric titration with iron(II) in an acetate buffered solution. Chlorate was titrated with titanium(III) in 2M hydrochloric acid. Amperometric indication with one and two electrodes, respectively, was used. Mixtures of hypochlorites and chlorates, e.g., in industrial electrolytes, may be analysed. On a déterminé l'hypochlorite par titrage coulométrique direct avec le fer(II) dans une solution tamponnée à l'acétate. On a titré le chlorate avec le titane(III) en acide chlorhydrique 2M. On a utilisé l'indication ampérométrique une et deux électrodes respectivement. On peut analyser des mélanges d'hypochlorites et de chlorates, par exemple dans des électrolytes industriels.

  16. Effect of oxygen plasma treatment on the electrochemical performance of the rayon and polyacrylonitrile based carbon felt for the vanadium redox flow battery application

    NASA Astrophysics Data System (ADS)

    Dixon, D.; Babu, D. J.; Langner, J.; Bruns, M.; Pfaffmann, L.; Bhaskar, A.; Schneider, J. J.; Scheiba, F.; Ehrenberg, H.

    2016-11-01

    Oxygen plasma treatment was applied on commercially available graphite felt electrodes based on rayon (GFA) and polyacrylonitrile (GFD). The formation of functional groups on the surface of the felt was confirmed by X-ray photoelectron spectroscopy measurements. The BET studies of the plasma treated electrodes showed no significant increase in surface area for both the rayon as well as the PAN based felts. Both plasma treated electrodes showed significantly enhanced V3+/V2+ redox activity compared to the pristine electrodes. Since an increase of the surface area has been ruled out for plasma treated electrode the enhanced activity could be attributed to surface functional groups. Interestingly, plasma treated GFD felts showed less electrochemical activity towards V5+/V4+ compared to the pristine electrode. Nevertheless, an overall increase of the single cell performance was still observed as the negative electrode is known to be the performance limiting electrode. Thus, to a great extent the present work helps to preferentially understand the importance of functional groups on the electrochemical activity of negative and positive redox reaction. The study emphasizes the need of highly active electrodes especially at the negative electrode side as inactive electrodes can still facilitate hydrogen evolution and degrade the electrolyte in VRFBs.

  17. A Commercial Conducting Polymer as Both Binder and Conductive Additive for Silicon Nanoparticle-Based Lithium-Ion Battery Negative Electrodes.

    PubMed

    Higgins, Thomas M; Park, Sang-Hoon; King, Paul J; Zhang, Chuanfang John; McEvoy, Niall; Berner, Nina C; Daly, Dermot; Shmeliov, Aleksey; Khan, Umar; Duesberg, Georg; Nicolosi, Valeria; Coleman, Jonathan N

    2016-03-22

    This work describes silicon nanoparticle-based lithium-ion battery negative electrodes where multiple nonactive electrode additives (usually carbon black and an inert polymer binder) are replaced with a single conductive binder, in this case, the conducting polymer PSS. While enabling the production of well-mixed slurry-cast electrodes with high silicon content (up to 95 wt %), this combination eliminates the well-known occurrence of capacity losses due to physical separation of the silicon and traditional inorganic conductive additives during repeated lithiation/delithiation processes. Using an in situ secondary doping treatment of the PSS with small quantities of formic acid, electrodes containing 80 wt % SiNPs can be prepared with electrical conductivity as high as 4.2 S/cm. Even at the relatively high areal loading of 1 mg/cm(2), this system demonstrated a first cycle lithiation capacity of 3685 mA·h/g (based on the SiNP mass) and a first cycle efficiency of ∼78%. After 100 repeated cycles at 1 A/g this electrode was still able to store an impressive 1950 mA·h/g normalized to Si mass (∼75% capacity retention), corresponding to 1542 mA·h/g when the capacity is normalized by the total electrode mass. At the maximum electrode thickness studied (∼1.5 mg/cm(2)), a high areal capacity of 3 mA·h/cm(2) was achieved. Importantly, these electrodes are based on commercially available components and are produced by the standard slurry coating methods required for large-scale electrode production. Hence, the results presented here are highly relevant for the realization of commercial LiB negative electrodes that surpass the performance of current graphite-based negative electrode systems.

  18. Lithium disulfide battery

    DOEpatents

    Kaun, Thomas D.

    1988-01-01

    A negative electrode limited secondary electrochemical cell having dense FeS.sub.2 positive electrode operating exclusively on the upper plateau, a Li alloy negative electrode and a suitable lithium-containing electrolyte. The electrolyte preferably is 25 mole percent LiCl, 38 mole percent LiBr and 37 mole percent KBr. The cell may be operated isothermally.

  19. A solvated electron lithium electrode for secondary batteries

    NASA Astrophysics Data System (ADS)

    Sammells, A. F.; Semkow, K. W.

    1986-09-01

    Attention is given to a novel method for the achievement of high electro-chemical reversibility in Li-based nonaqueous cells, using a liquid negative electrode that consists of Li dissolved in liquid ammonia as a solvated electron Li electrode. The containment of this liquid negative active material from direct contact to a liquid nonaqueous electrolyte in the positive electrode compartment was realized through the use of a Li-intercalated, electronically conducting ceramic membrane.

  20. Electrochemical behavior of negative electrode of lead-acid cells based on reticulated vitreous carbon carrier

    NASA Astrophysics Data System (ADS)

    Czerwiński, A.; Obrębowski, S.; Kotowski, J.; Rogulski, Z.; Skowroński, J. M.; Krawczyk, P.; Rozmanowski, T.; Bajsert, M.; Przystałowski, M.; Buczkowska-Biniecka, M.; Jankowska, E.; Baraniak, M.

    Reticulated vitreous carbon (RVC ®) and RVC ® plated with lead were investigated as carriers for the negative electrode of lead-acid cell. The RVC ® and Pb/RVC ® carriers were pasted with active paste (received from JENOX Ltd., Polish producer of lead-acid batteries) and prepared to be used in lead-acid cell. Comparative study of electrodes based on RVC ® and Pb/RVC ® has been done using constant-current charging/discharging, constant-potential discharging and cycling voltammetry measurements. Scanning electron microscopy (SEM) was employed to determine the morphology of the lead layer deposited on the RVC surface. Hybrid flooded single lead-acid cells containing one negative electrode, based on new type of carrier (RVC ® or Pb/RVC ®), sandwiched between two positive electrodes, based on the Pb-Ca grids, were assembled and subjected to electrochemical tests. It has been found that both materials, RVC ® and Pb/RVC ®, can be used as carriers of negative electrode, but the latter seems to have better influence on the discharge performance.

  1. Self-discharge of electrochemical capacitors based on soluble or grafted quinone.

    PubMed

    Shul, Galyna; Bélanger, Daniel

    2016-07-28

    The self-discharge of hybrid electrochemical capacitors based on the redox activity of electrolyte additives or grafted species to the electrode material is investigated simultaneously for the cell and each individual electrode. Electrochemical capacitors using a redox-active electrolyte consisting in hydroquinone added to the electrolyte solution and a redox-active electrode based on anthraquinone-grafted carbon as a negative electrode are investigated. The results are analyzed by using Conway kinetic models and compared to those of a common electrochemical double layer capacitor. The self-discharge investigation is complemented by charge/discharge cycling and it is shown that processes affecting galvanostatic charge/discharge cycling and the self-discharge rate occurring at each electrode of an electrochemical capacitor are different but related to each other. The electrochemical capacitor containing hydroquinone in the electrolyte exhibits a much quicker self-discharge rate than that using a negative electrode based on grafted anthraquinone with a 50% decay of the cell voltage of the fully charged device in 0.6 and 6 h, respectively. The fast self-discharge of the former is due to the diffusion of benzoquinone molecules (formed at the positive electrode during charging) to the negative electrode, where they are reduced, causing a quick depolarization. The grafting of anthraquinone molecules on the carbon material of the negative electrode led to a much slower self-discharge, which nonetheless occurred, by the reaction of the reduced form of the grafted species with electrolyte species.

  2. Cycling behavior of NCM523/graphite lithium-ion cells in the 3–4.4 V range: Diagnostic studies of full cells and harvested electrodes

    DOE PAGES

    Gilbert, James A.; Bareño, Javier; Spila, Timothy; ...

    2016-09-22

    Energy density of full cells containing layered-oxide positive electrodes can be increased by raising the upper cutoff voltage above the current 4.2 V limit. In this article we examine aging behavior of cells, containing LiNi 0.5Co 0.2Mn 0.3O 2 (NCM523)-based positive and graphite-based negative electrodes, which underwent up to ~400 cycles in the 3-4.4 V range. Electrochemistry results from electrodes harvested from the cycled cells were obtained to identify causes of cell performance loss; these results were complemented with data from X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS) measurements. Our experiments indicate that the full cell capacitymore » fade increases linearly with cycle number and results from irreversible lithium loss in the negative electrode solid electrolyte interphase (SEI) layer. The accompanying electrode potential shift reduces utilization of active material in both electrodes and causes the positive electrode to cycle at higher states-of-charge. Here, full cell impedance rise on aging arises primarily at the positive electrode and results mainly from changes at the electrode-electrolyte interface; the small growth in negative electrode impedance reflects changes in the SEI layer. Our results indicate that cell performance loss could be mitigated by modifying the electrode-electrolyte interfaces through use of appropriate electrode coatings and/or electrolyte additives.« less

  3. Nanodisperse transition metal electrodes (NTME) for electrochemical cells

    DOEpatents

    Striebel, Kathryn A.; Wen, Shi-Jie

    2000-01-01

    Disclosed are transition metal electrodes for electrochemical cells using gel-state and solid-state polymers. The electrodes are suitable for use in primary and secondary cells. The electrodes (either negative electrode or positive electrode) are characterized by uniform dispersion of the transition metal at the nanoscale in the polymer. The transition metal moiety is structurally amorphous, so no capacity fade should occur due to lattice expansion/contraction mechanisms. The small grain size, amorphous structure and homogeneous distribution provide improved charge/discharge cycling performance, and a higher initial discharge rate capability. The cells can be cycled at high current densities, limited only by the electrolyte conductivity. A method of making the electrodes (positive and negative), and their usage in electrochemical cells are disclosed.

  4. Li-alloy electrode for Li-alloy/metal sulfide cells

    DOEpatents

    Kaun, Thomas D.

    1996-01-01

    A method of making a negative electrode, the electrode made thereby and a secondary electrochemical cell using the electrode. Lithium, silicon and nickel is alloyed in a prescribed proportion forming an electroactive material, to provide an improved electrode and cell.

  5. Electrochemical cell method

    DOEpatents

    Kaun, T.D.; Eshman, P.F.

    1980-05-09

    A secondary electrochemical cell is prepared by providing positive and negative electrodes having outer enclosures of rigid perforated electrically conductive material defining an internal compartment containing the electrode material in porous solid form. The electrodes are each immersed in molten electrolyte salt prior to cell assembly to incorporate the cell electrolyte. Following solidification of the electrolyte substantially throughout the porous volume of the electrode material, the electrodes are arranged in an alternating positive-negative array with interelectrode separators of porous frangible electrically insulative material. The completed array is assembled into the cell housing and sealed such that on heating the solidified electrolyte flows into the interelectrode separator.

  6. Tracking Ionic Rearrangements and Interpreting Dynamic Volumetric Changes in Two-Dimensional Metal Carbide Supercapacitors: A Molecular Dynamics Simulation Study.

    PubMed

    Xu, Kui; Lin, Zifeng; Merlet, Céline; Taberna, Pierre-Louis; Miao, Ling; Jiang, Jianjun; Simon, Patrice

    2017-12-06

    We present a molecular dynamics simulation study achieved on two-dimensional (2D) Ti 3 C 2 T x MXenes in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM] + [TFSI] - ) electrolyte. Our simulations reproduce the different patterns of volumetric change observed experimentally for both the negative and positive electrodes. The analysis of ionic fluxes and structure rearrangements in the 2D material provide an atomic scale insight into the charge and discharge processes in the layer pore and confirm the existence of two different charge-storage mechanisms at the negative and positive electrodes. The ionic number variation and the structure rearrangement contribute to the dynamic volumetric changes of both electrodes: negative electrode expansion and positive electrode contraction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Negative electrodes for Na-ion batteries.

    PubMed

    Dahbi, Mouad; Yabuuchi, Naoaki; Kubota, Kei; Tokiwa, Kazuyasu; Komaba, Shinichi

    2014-08-07

    Research interest in Na-ion batteries has increased rapidly because of the environmental friendliness of sodium compared to lithium. Throughout this Perspective paper, we report and review recent scientific advances in the field of negative electrode materials used for Na-ion batteries. This paper sheds light on negative electrode materials for Na-ion batteries: carbonaceous materials, oxides/phosphates (as sodium insertion materials), sodium alloy/compounds and so on. These electrode materials have different reaction mechanisms for electrochemical sodiation/desodiation processes. Moreover, not only sodiation-active materials but also binders, current collectors, electrolytes and electrode/electrolyte interphase and its stabilization are essential for long cycle life Na-ion batteries. This paper also addresses the prospect of Na-ion batteries as low-cost and long-life batteries with relatively high-energy density as their potential competitive edge over the commercialized Li-ion batteries.

  8. Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors

    PubMed Central

    Wang, Xianfen; Kajiyama, Satoshi; Iinuma, Hiroki; Hosono, Eiji; Oro, Shinji; Moriguchi, Isamu; Okubo, Masashi; Yamada, Atsuo

    2015-01-01

    High-power Na-ion batteries have tremendous potential in various large-scale applications. However, conventional charge storage through ion intercalation or double-layer formation cannot satisfy the requirements of such applications owing to the slow kinetics of ion intercalation and the small capacitance of the double layer. The present work demonstrates that the pseudocapacitance of the nanosheet compound MXene Ti2C achieves a higher specific capacity relative to double-layer capacitor electrodes and a higher rate capability relative to ion intercalation electrodes. By utilizing the pseudocapacitance as a negative electrode, the prototype Na-ion full cell consisting of an alluaudite Na2Fe2(SO4)3 positive electrode and an MXene Ti2C negative electrode operates at a relatively high voltage of 2.4 V and delivers 90 and 40 mAh g−1 at 1.0 and 5.0 A g−1 (based on the weight of the negative electrode), respectively, which are not attainable by conventional electrochemical energy storage systems. PMID:25832913

  9. Li-alloy electrode for Li-alloy/metal sulfide cells

    DOEpatents

    Kaun, T.D.

    1996-07-16

    A method of making a negative electrode is described, the electrode made thereby and a secondary electrochemical cell using the electrode. Lithium, silicon and nickel is alloyed in a prescribed proportion forming an electroactive material, to provide an improved electrode and cell. 7 figs.

  10. BMP inhibition by DAN in Hensen's node is a critical step for the establishment of left-right asymmetry in the chick embryo.

    PubMed

    Katsu, Kenjiro; Tokumori, Daisuke; Tatsumi, Norifumi; Suzuki, Atsushi; Yokouchi, Yuji

    2012-03-01

    During left-right (L-R) axis formation, Nodal is expressed in the node and has a central role in the transfer of L-R information in the vertebrate embryo. Bone morphogenetic protein (BMP) signaling also has an important role for maintenance of gene expression around the node. Several members of the Cerberus/Dan family act on L-R patterning by regulating activity of the transforming growth factor-β (TGF-β) family. We demonstrate here that chicken Dan plays a critical role in L-R axis formation. Chicken Dan is expressed in the left side of the node shortly after left-handed Shh expression and before the appearance of asymmetrically expressed genes in the lateral plate mesoderm (LPM). In vitro experiments revealed that DAN inhibited BMP signaling but not NODAL signaling. SHH had a positive regulatory effect on Dan expression while BMP4 had a negative effect. Using overexpression and RNA interference-mediated knockdown strategies, we demonstrate that Dan is indispensable for Nodal expression in the LPM and for Lefty-1 expression in the notochord. In the perinodal region, expression of Dan and Nodal was independent of each other. Nodal up-regulation by DAN required NODAL signaling, suggesting that DAN might act synergistically with NODAL. Our data indicate that Dan plays an essential role in the establishment of the L-R axis by inhibiting BMP signaling around the node. Copyright © 2012. Published by Elsevier Inc.

  11. Method for manufacturing an electrochemical cell

    DOEpatents

    Kaun, Thomas D.; Eshman, Paul F.

    1982-01-01

    A secondary electrochemical cell is prepared by providing positive and negative electrodes having outer enclosures of rigid perforated electrically conductive material defining an internal compartment containing the electrode material in porous solid form. The electrodes are each immersed in molten electrolyte salt prior to cell assembly to incorporate the cell electrolyte. Following solidification of the electrolyte substantially throughout the porous volume of the electrode material, the electrodes are arranged in an alternating positive-negative array with interelectrode separators of porous frangible electrically insulative material. The completed array is assembled into the cell housing and sealed such that on heating the solidified electrolyte flows into the interelectrode separator.

  12. Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells

    DOEpatents

    Doe, Robert Ellis; Downie, Craig Michael; Fischer, Christopher; Lane, George Hamilton; Morgan, Dane; Nevin, Josh; Ceder, Gerbrand; Persson, Kristin Aslaug; Eaglesham, David

    2015-10-27

    Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqeuous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negative electrode active material is described.

  13. METHOD OF OBTAINING AN IMPROVED WELD IN INERT ARC WELDING

    DOEpatents

    Correy, T.B.

    1962-12-11

    A method is reported for inert arc welding. An a-c welding current is applied to the workpiece and welding electrode such that the positive portion of each cycle thereof, with the electrode positive, has only sufficient energy to clean the surface of the workpiece and the negative portion of each cycle thereof, with the electrode negative, contains the energy required to weld. (AEC)

  14. MgO-templated carbon as a negative electrode material for Na-ion capacitors

    NASA Astrophysics Data System (ADS)

    Kado, Yuya; Soneda, Yasushi

    2016-12-01

    In this study, MgO-templated carbon with different pore structures was investigated as a negative electrode material for Na-ion capacitors. With increasing the Brunauer-Emmett-Teller surface area, the irreversible capacity increased, and the coulombic efficiency of the 1st cycle decreased because of the formation of solid electrolyte interface layers. MgO-templated carbon annealed at 1000 °C exhibited the highest capacity and best rate performance, suggesting that an appropriate balance between surface area and crystallinity is imperative for fast Na-ion storage, attributed to the storage mechanism: combination of non-faradaic electric double-layer capacitance and faradaic Na intercalation in the carbon layers. Finally, a Na-ion capacitor cell using MgO-templated carbon and activated carbon as the negative and positive electrodes, respectively, exhibited an energy density at high power density significantly greater than that exhibited by the cell using a commercial hard carbon negative electrode.

  15. Damage cost of the Dan River coal ash spill

    Treesearch

    A. Dennis Lemly

    2015-01-01

    The recent coal ash spill on the Dan River in North Carolina, USA has caused several negative effects on the environment and the public. In this analysis, I report a monetized value for these effects after the first 6 months following the spill. The combined cost of ecological damage, recreational impacts, effects on human health and consumptive use, and esthetic value...

  16. Electrode characteristics of nanocrystalline AB{sub 5} compounds prepared by mechanical alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Z.; Chen, Z.; Zhou, D.

    1998-10-01

    Nanocrystalline LaNi{sub 5} and LaNi{sub 4.5}Si{sub 0.5} synthesized by mechanical alloying were used as negative materials for Ni-MH batteries. It was found that the electrodes prepared with the nanocrystalline powders had similar discharge capacities, better activation behaviors, and longer cycle lifetimes, compared with the negative electrode prepared with polycrystalline coarse-grained LaNi{sub 5} alloy. The properties of the electrodes prepared with these nanocrystalline materials were attributed to the structural characteristics of the compounds caused by mechanical alloying.

  17. NiCd battery electrodes, C-150

    NASA Technical Reports Server (NTRS)

    Holleck, G.; Turchan, M.; Hopkins, J.

    1972-01-01

    Electrodes for a nongassing negative limited nickel-cadmium cell are discussed. The key element is the development of cadmium electrodes with high hydrogen overvoltage. For this, the following electrode structures were manufactured and their physical and electrochemical characteristics were evaluated: (1) silver-sinter-based Cd electrodes, (2) Teflon-bonded Cd electrodes, (3) electrodeposited Cd sponge, and (4) Cd-sinter structures.

  18. Second Plateau Voltage in Nickel-cadmium Cells

    NASA Technical Reports Server (NTRS)

    Vasanth, K. L.

    1984-01-01

    Sealed nickel cadmium cells having large number of cycles on them are discharged using Hg/HgO reference electrode. The negative electrode exhibits the second plateau. A SEM of negative plates of such cells show a number of large crystals of cadmium hydroxide. The large crystals on the negative plates disappear after continuous overcharging in flooded cells.

  19. Method of preparing a negative electrode including lithium alloy for use within a secondary electrochemical cell

    DOEpatents

    Tomczuk, Zygmunt; Olszanski, Theodore W.; Battles, James E.

    1977-03-08

    A negative electrode that includes a lithium alloy as active material is prepared by briefly submerging a porous, electrically conductive substrate within a melt of the alloy. Prior to solidification, excess melt can be removed by vibrating or otherwise manipulating the filled substrate to expose interstitial surfaces. Electrodes of such as solid lithium-aluminum filled within a substrate of metal foam are provided.

  20. Research on Lead Acid Battery Electrodes.

    DTIC Science & Technology

    1982-02-26

    electrode. Changes in electrode structure caused by the use of lignin derivatives have also been reported (12). The use of lignin derivatives and other... lignin derivative. R-2761d) 24 2. Description of Experimental Procedure The positive and negative plates used in this investiga- tion were...sisted of crystals in the 3-8 pm range, although many crystals 31 Fig. 11 - A negative plate immediately after for-f mation where a lignin derivative

  1. Lithium-aluminum-iron electrode composition

    DOEpatents

    Kaun, Thomas D.

    1979-01-01

    A negative electrode composition is presented for use in a secondary electrochemical cell. The cell also includes an electrolyte with lithium ions such as a molten salt of alkali metal halides or alkaline earth metal halides that can be used in high-temperature cells. The cell's positive electrode contains a a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent in an alloy of aluminum-iron. Various binary and ternary intermetallic phases of lithium, aluminum and iron are formed. The lithium within the intermetallic phase of Al.sub.5 Fe.sub.2 exhibits increased activity over that of lithium within a lithium-aluminum alloy to provide an increased cell potential of up to about 0.25 volt.

  2. Multi-component intermetallic electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M; Trahey, Lynn; Vaughey, John T

    2015-03-10

    Multi-component intermetallic negative electrodes prepared by electrochemical deposition for non-aqueous lithium cells and batteries are disclosed. More specifically, the invention relates to composite intermetallic electrodes comprising two or more compounds containing metallic or metaloid elements, at least one element of which can react with lithium to form binary, ternary, quaternary or higher order compounds, these compounds being in combination with one or more other metals that are essentially inactive toward lithium and act predominantly, but not necessarily exclusively, to the electronic conductivity of, and as current collection agent for, the electrode. The invention relates more specifically to negative electrode materials that provide an operating potential between 0.05 and 2.0 V vs. metallic lithium.

  3. The effect of asymmetrical electrode form after negative bias illuminated stress in amorphous IGZO thin film transistors

    NASA Astrophysics Data System (ADS)

    Su, Wan-Ching; Chang, Ting-Chang; Liao, Po-Yung; Chen, Yu-Jia; Chen, Bo-Wei; Hsieh, Tien-Yu; Yang, Chung-I.; Huang, Yen-Yu; Chang, Hsi-Ming; Chiang, Shin-Chuan; Chang, Kuan-Chang; Tsai, Tsung-Ming

    2017-03-01

    This paper investigates the degradation behavior of InGaZnO thin film transistors (TFTs) under negative bias illumination stress (NBIS). TFT devices with two different source and drain layouts were exanimated: one having a parallel format electrode and the other with UI format electrode. UI means that source/drain electrodes shapes is defined as a forked-shaped structure. The I-V curve of the parallel electrode exhibited a symmetric degradation under forward and reverse sweeping in the saturation region after 1000 s NBIS. In contrast, the I-V curve of the UI electrode structure under similar conditions was asymmetric. The UI electrode structure also shows a stretch-out phenomenon in its C-V measurement. Finally, this work utilizes the ISE-Technology Computer Aided Design (ISE-TCAD) system simulations, which simulate the electron field and IV curves, to analyze the mechanisms dominating the parallel and UI device degradation behaviors.

  4. Method of preparing a negative electrode including lithium alloy for use within a secondary electrochemical cell

    DOEpatents

    Tomczuk, Z.; Olszanski, W.; Battles, J.E.

    1975-12-09

    A negative electrode that includes a lithium alloy as active material is prepared by briefly submerging a porous, electrically conductive substrate within a melt of the alloy. Prior to solidification, excess melt can be removed by vibrating or otherwise manipulating the filled substrate to expose interstitial surfaces. Electrodes of such a solid lithium--aluminum filled within a substrate of metal foam are provided. 1 figure, 1 table.

  5. Hydrophilic Electrode For An Alkaline Electrochemical Cell, And Method Of Manufacture

    DOEpatents

    Senyarich, Stephane; Cocciantelli, Jean-Michel

    2000-03-07

    A negative electrode for an alkaline electrochemical cell. The electrode comprises an active material and a hydrophilic agent constituted by small cylindrical rods of polyolefin provided with hydrophilic groups. The mean length of the rods is less than 50 microns and the mean diameter thereof is less than 20 microns. A method of manufacturing a negative electrode in which hydrophilic rods are made by fragmenting long polyolefin fibers having a mean diameter of less than 20 microns by oxidizing them, with the rods being mixed with the active material and the mixture being applied to a current conductor.

  6. Nickel hydrogen bipolar battery electrode design

    NASA Technical Reports Server (NTRS)

    Puglisi, V. J.; Russell, P.; Verrier, D.; Hall, A.

    1985-01-01

    The preferred approach of the NASA development effort in nickel hydrogen battery design utilizes a bipolar plate stacking arrangement to obtain the required voltage-capacity configuration. In a bipolar stack, component designs must take into account not only the typical design considerations such as voltage, capacity and gas management, but also conductivity to the bipolar (i.e., intercell) plate. The nickel and hydrogen electrode development specifically relevant to bipolar cell operation is discussed. Nickel oxide electrodes, having variable type grids and in thicknesses up to .085 inch are being fabricated and characterized to provide a data base. A selection will be made based upon a system level tradeoff. Negative (hydrpogen) electrodes are being screened to select a high performance electrode which can function as a bipolar electrode. Present nickel hydrogen negative electrodes are not capable of conducting current through their cross-section. An electrode was tested which exhibits low charge and discharge polarization voltages and at the same time is conductive. Test data is presented.

  7. Negative ion formation and evolution in atmospheric pressure corona discharges between point-to-plane electrodes with arbitrary needle angle

    NASA Astrophysics Data System (ADS)

    Sekimoto, K.; Takayama, M.

    2010-12-01

    The change in the distribution pattern of negative ions HO-, NOx- and COx- observed on arbitrary point-to-plane electrode configuration has been investigated by varying the angle of needle to the plane electrode, under atmospheric pressure corona discharge conditions. The stationary inhomogeneous electric field distributions between the point-to-plane electrodes with arbitrary needle angle were calculated. The experimental and theoretical results obtained suggested that the negative ion evolutions progress along field lines established between the electrodes with arbitrary configurations and the resulting terminal ion formation on a given field line is attributable to the electric field strength on the needle tip surface where the field line arose. The NOx- and COx- ions were dominantly produced on the field lines arising from the needle tip apex region with the highest electric field strength, while the field lines emanating from the tip peripheral regions with lower field strength resulted in the formation of the HO- ion.

  8. Silver-silver sulfate reference electrodes for use in lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Ruetschi, Paul

    Electrochemical properties of silver-silver sulfate reference electrodes for lead-acid batteries are described, and the following possible applications discussed: Determination of individual capacities of positive and negative plates. Monitoring individual electrode behavior during deep discharge and cell reversal. Optimization charge or discharge parameters, by controlling the current such that pre-determined limits of positive or negative half-cell potential are respected. Observation of acid concentration differences, for example due to acid stratification, by measuring diffusion potentials (concentration-cell voltages). Detection of defective cells, and defective plate sets, in a string of cells, at the end of their service life. Silver-silver sulfate reference electrodes, permanently installed in lead-acid cells, may be a means to improve battery management, and therewith to improve reliability and service life. In vented batteries, reference electrodes may be used to limit positive plate polarization during charge, or float-charge. Limiting the positive half-cell potential to an upper, pre-set value would permit to keep anodic corrosion as low as possible. During cycling, discharge could be terminated when the half-cell potential of the positive electrode has dropped to a pre-set limit. This would prevent excessive discharge of the positive electrodes, which could result in an improvement of cycle life. In valve-regulated batteries, reference electrodes may be used to adjust float-charge conditions such as to assure sufficient cathodic polarization of the negative electrodes, in order to avoid sulfation. The use of such reference electrodes could be beneficial particularly in multi-cell batteries, with overall voltages above 12 V, operated in a partial-state-of-charge.

  9. Method of preparing an electrochemical cell in uncharged state

    DOEpatents

    Shimotake, Hiroshi; Bartholme, Louis G.; Arntzen, John D.

    1977-02-01

    A secondary electrochemical cell is assembled in an uncharged state for the preparation of a lithium alloy-transition metal sulfide cell. The negative electrode includes a material such as aluminum or silicon for alloying with lithium as the cell is charged. The positive electrode is prepared by blending particulate lithium sulfide, transition metal powder and electrolytic salt in solid phase. The mixture is simultaneously heated to a temperature in excess of the melting point of the electrolyte and pressed onto an electrically conductive substrate to form a plaque. The plaque is assembled as a positive electrode within the cell. During the first charge cycle lithium alloy is formed within the negative electrode and transition metal sulfide such as iron sulfide is produced within the positive electrode.

  10. Positive electrode current collector for liquid metal cells

    DOEpatents

    Shimotake, Hiroshi; Bartholme, Louis G.

    1984-01-01

    A current collector for the positive electrode of an electrochemical cell with a positive electrode including a sulfide. The cell also has a negative electrode and a molten salt electrolyte including halides of a metal selected from the alkali metals and the alkaline earth metals in contact with both the positive and negative electrodes. The current collector has a base metal of copper, silver, gold, aluminum or alloys thereof with a coating thereon of iron, nickel, chromium or alloys thereof. The current collector when subjected to cell voltage forms a sulfur-containing compound on the surface thereby substantially protecting the current collector from further attack by sulfur ions during cell operation. Both electroless and electrolytic processes may be used to deposit coatings.

  11. Method for producing a secondary lithium cell comprising a heat-sensitive protective mechanism

    DOEpatents

    Ullrich, Matthias; Bechtold, Dieter; Rabenstein, Heinrich; Brohm, Thomas

    2003-01-01

    A method for producing a secondary lithium cell which has at least one lithium-cycling negative electrode, at least one lithium-intercalating positive electrode, at least one separator disposed between the positive and the negative electrode, and a nonaqueous lithium ion-conducting electrolyte. The method is carried out by the electrodes and/or the separator being coated, by means of electrostatic powder coating, with wax particles which are insoluble in the electrolyte and have a melting temperature of from about 50 to about 150 .degree. C. and a mean particle size of from about 6 to about 20 .mu.m, the amount of wax being between about 0.5 and about 2.5 mg/cm.sup.2 of electrode area.

  12. Lignin as a Binder Material for Eco-Friendly Li-Ion Batteries

    PubMed Central

    Lu, Huiran; Cornell, Ann; Alvarado, Fernando; Behm, Mårten; Leijonmarck, Simon; Li, Jiebing; Tomani, Per; Lindbergh, Göran

    2016-01-01

    The industrial lignin used here is a byproduct from Kraft pulp mills, extracted from black liquor. Since lignin is inexpensive, abundant and renewable, its utilization has attracted more and more attention. In this work, lignin was used for the first time as binder material for LiFePO4 positive and graphite negative electrodes in Li-ion batteries. A procedure for pretreatment of lignin, where low-molecular fractions were removed by leaching, was necessary to obtain good battery performance. The lignin was analyzed for molecular mass distribution and thermal behavior prior to and after the pretreatment. Electrodes containing active material, conductive particles and lignin were cast on metal foils, acting as current collectors and characterized using scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge cycles. Good reversible capacities were obtained, 148 mAh·g−1 for the positive electrode and 305 mAh·g−1 for the negative electrode. Fairly good rate capabilities were found for both the positive electrode with 117 mAh·g−1 and the negative electrode with 160 mAh·g−1 at 1C. Low ohmic resistance also indicated good binder functionality. The results show that lignin is a promising candidate as binder material for electrodes in eco-friendly Li-ion batteries. PMID:28773252

  13. Lithium-ion capacitors using carbide-derived carbon as the positive electrode - A comparison of cells with graphite and Li4Ti5O12 as the negative electrode

    NASA Astrophysics Data System (ADS)

    Rauhala, Taina; Leis, Jaan; Kallio, Tanja; Vuorilehto, Kai

    2016-11-01

    The use of carbide-derived carbon (CDC) as the positive electrode material for lithium-ion capacitors (LICs) is investigated. CDC based LIC cells are studied utilizing two different negative electrode materials: graphite and lithium titanate Li4Ti5O12 (LTO). The graphite electrodes are prelithiated before assembling the LICs, and LTO containing cells are studied with and without prelithiation. The rate capability and cycle life stability during 1000 cycles are evaluated by galvanostatic cycling at current densities of 0.4-4 mA cm-2. The CDC shows a specific capacitance of 120 F g-1 in the organic lithium-containing electrolyte, and the LICs demonstrate a good stability over 1000 charge-discharge cycles. The choice of the negative electrode is found to have an effect on the utilization of the CDC positive electrode during cycling and on the specific energy of the device. The graphite/CDC cell delivers a maximum specific discharge energy of 90 Wh kg-1 based on the total mass of active material in the cell. Both the prelithiated and non-prelithiated LTO/CDC cells show a specific energy of around 30 Wh kg-1.

  14. Lithium electrode and an electrical energy storage device containing the same

    DOEpatents

    Lai, San-Cheng

    1976-07-13

    An improved lithium electrode structure comprises an alloy of lithium and silicon in specified proportions and a supporting current-collecting matrix in intimate contact with said alloy. The lithium electrode of the present invention is utilized as the negative electrode in a rechargeable electrochemical cell.

  15. Interactions between the default network and dorsal attention network vary across default subsystems, time, and cognitive states.

    PubMed

    Dixon, Matthew L; Andrews-Hanna, Jessica R; Spreng, R Nathan; Irving, Zachary C; Mills, Caitlin; Girn, Manesh; Christoff, Kalina

    2017-02-15

    Anticorrelation between the default network (DN) and dorsal attention network (DAN) is thought to be an intrinsic aspect of functional brain organization reflecting competing functions. However, the effect size of functional connectivity (FC) between the DN and DAN has yet to be established. Furthermore, the stability of anticorrelations across distinct DN subsystems, different contexts, and time, remains unexplored. In study 1 we summarize effect sizes of DN-DAN FC from 20 studies, and in study 2 we probe the variability of DN-DAN interactions across six different cognitive states in a new data set. We show that: (i) the DN and DAN have an independent rather than anticorrelated relationship when global signal regression is not used (median effect size across studies: r=-.06; 95% CI: -.15 to .08); (ii) the DAN exhibits weak negative FC with the DN Core subsystem but is uncorrelated with the dorsomedial prefrontal and medial temporal lobe subsystems; (iii) DN-DAN interactions vary significantly across different cognitive states; (iv) DN-DAN FC fluctuates across time between periods of anticorrelation and periods of positive correlation; and (v) changes across time in the strength of DN-DAN coupling are coordinated with interactions involving the frontoparietal control network (FPCN). Overall, the observed weak effect sizes related to DN-DAN anticorrelation suggest the need to re-conceptualize the nature of interactions between these networks. Furthermore, our findings demonstrate that DN-DAN interactions are not stable, but rather, exhibit substantial variability across time and context, and are coordinated with broader network dynamics involving the FPCN. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Surface-modified Mg{sub 2}Ni-type negative electrode materials for Ni-MH battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, N.; Luan, B.; Bradhurst, D.

    1997-12-01

    In order to further improve the electrode performance of Mg{sub 1.9}Y{sub 0.1}Ni{sub 0.9}Al{sub 0.1} alloy at ambient temperature, its surface was modified by an ultrasound pretreatment in the alkaline solution and microencapsulation with Ni-P coating. The effects of various surface modifications on the microstructure and electrochemical performance of the alloy electrodes were investigated and compared in this paper. It was found that the modification with ultrasound pretreatment significantly improved the electrocatalytic activity of the negative electrode and then reduced the overpotential of charging/discharging, resulting in a remarkable increase of electrode capacity and high-rate discharge capability but having little influence onmore » the cycle life. However, the electrode fabricated from the microencapsulated alloy powder showed a higher discharge capacity, better high-rate discharge capability and longer cycle life as well.« less

  17. Graphite felt modified with bismuth nanoparticles as negative electrode in a vanadium redox flow battery.

    PubMed

    Suárez, David J; González, Zoraida; Blanco, Clara; Granda, Marcos; Menéndez, Rosa; Santamaría, Ricardo

    2014-03-01

    A graphite felt decorated with bismuth nanoparticles was studied as negative electrode in a vanadium redox flow battery (VRFB). The results confirm the excellent electrochemical performance of the bismuth modified electrode in terms of the reversibility of the V(3+) /V(2+) redox reactions and its long-term cycling performance. Moreover a mechanism that explains the role that Bi nanoparticles play in the redox reactions in this negative half-cell is proposed. Bi nanoparticles favor the formation of BiHx , an intermediate that reduces V(3+) to V(2+) and, therefore, inhibits the competitive irreversible reaction of hydrogen formation (responsible for the commonly observed loss of Coulombic efficiency of VRFBs). Thus, the total charge consumed during the cathodic sweep in this electrode is used to reduce V(3+) to V(2+) , resulting in a highly reversible and efficient process. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Unusual Passivation Ability of Superconcentrated Electrolytes toward Hard Carbon Negative Electrodes in Sodium-Ion Batteries.

    PubMed

    Takada, Koji; Yamada, Yuki; Watanabe, Eriko; Wang, Jianhui; Sodeyama, Keitaro; Tateyama, Yoshitaka; Hirata, Kazuhisa; Kawase, Takeo; Yamada, Atsuo

    2017-10-04

    The passivation of negative electrodes is key to achieving prolonged charge-discharge cycling with Na-ion batteries. Here, we report the unusual passivation ability of superconcentrated Na-salt electrolytes. For example, a 50 mol % sodium bis(fluorosulfonyl)amide (NaFSA)/succinonitrile (SN) electrolyte enables highly reversible Na + insertion into a hard carbon negative electrode without any electrolyte additive, functional binder, or electrode pretreatment. Importantly, an anion-derived passivation film is formed via preferential reduction of the anion upon charging, which can effectively suppress further electrolyte reduction. As a structural characteristic of the electrolyte, most anions are coordinated to multiple Na + cations at high concentration, which shifts the lowest unoccupied molecular orbitals of the anions downward, resulting in preferential anion reduction. The present work provides a new understanding of the passivation mechanism with respect to the coordination state of the anion.

  19. Ozone production of hollow-needle-to-mesh negative corona discharge enhanced by dielectric tube on the needle electrode

    NASA Astrophysics Data System (ADS)

    Pekárek, Stanislav

    2014-12-01

    For the hollow-needle-to-mesh negative corona discharge in air, we studied the effect of placing the dielectric tube on the needle electrode and the effect of various positions of the end of this tube with respect to the tip of the needle electrode on the concentration of ozone produced by the discharge, the ozone production yield and the discharge V-A characteristics. We found that the placement of the dielectric tube on the needle electrode with a suitable position of this tube end with respect to the tip of the needle electrode for a particular discharge power led to a more than fourfold increase in the concentration of ozone produced by the discharge and also, for a constant airflow, the ozone production yield.

  20. Self-healing liquid/solid state battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, Paul J.; Chung, Brice H.V.; Phadke, Satyajit R.

    A battery system that exchanges energy with an external device is provided. The battery system includes a positive electrode having a first metal or alloy, a negative electrode having a second metal or alloy, and an electrolyte including a salt of the second metal or alloy. The positive electrode, the negative electrode, and the electrolyte are in a liquid phase at an operating temperature during at least one portion of operation. The positive electrode is entirely in a liquid phase in one charged state and includes a solid phase in another charged state. The solid phase of the positive electrodemore » includes a solid intermetallic formed by the first and the second metals or alloys. Methods of storing electrical energy from an external circuit using such a battery system are also provided.« less

  1. A Facile Strategy for the Preparation of MoS3 and its Application as a Negative Electrode for Supercapacitors.

    PubMed

    Zhang, Tong; Kong, Ling-Bin; Dai, Yan-Hua; Yan, Kun; Shi, Ming; Liu, Mao-Cheng; Luo, Yong-Chun; Kang, Long

    2016-09-06

    Owing to their graphene-like structure and available oxidation valence states, transition metal sulfides are promising candidates for supercapacitors. Herein, we report the application of MoS3 as a new negative electrode for supercapacitors. MoS3 was fabricated by the facile thermal decomposition of a (NH4 )2 MoS4 precursor. For comparison, samples of MoS3 &MoS2 and MoS2 were also synthesized by using the same method. Moreover, this is the first report of the application of MoS3 as a negative electrode for supercapacitors. MoS3 displayed a high specific capacitance of 455.6 F g(-1) at a current density of 0.5 A g(-1) . The capacitance retention of the MoS3 electrode was 92 % after 1500 cycles, and even 71 % after 5000 cycles. In addition, an asymmetric supercapacitor assembly of MoS3 as the negative electrode demonstrated a high energy density at a high potential of 2.0 V in aqueous electrolyte. These notable results show that MoS3 has significant potential in energy-storage devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Review on α-Fe2O3 based negative electrode for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Nithya, V. D.; Arul, N. Sabari

    2016-09-01

    Supercapacitor is an electrochemical energy storage device which has drawn attention of the researchers in recent years due to its high power density and long cycle life. Recently, an enormous effort has been imposed to improve the energy density of supercapacitor and might be attained through asymmetric cell configuration that offer wider potential window. Until now, a significant advancement has been achieved in the fabrication of positive electrodes for asymmetric cell. Nevertheless, the electrochemical performance of negative electrode materials is less explored, especially Hematite (α-Fe2O3). The α-Fe2O3 has been proved to be a promising negative electrode in supercapacitor application due to its wide operating potential, high redox activity, low cost, abundant availability and eco-friendliness. In this review, we have chosen α-Fe2O3 as the negative electrode and discussed its latest research progress with emphasis on various surface engineering synthesis strategies such as, carbon, polymer, metal-metal oxide, and ternary based α-Fe2O3 composites for supercapacitor. Besides, the importance of their synergistic effects over the supercapacitive performance in terms of specific capacitance, energy density, power density, cycling life and rate capability are highlighted. Also, an extensive analysis of the literature about its symmetric/asymmetric cell performance is explored.

  3. Ti-substituted tunnel-type Na 0.44MnO 2 oxide as a negative electrode for aqueous sodium-ion batteries

    DOE PAGES

    Wang, Yuesheng; Liu, Jue; Lee, Byungju; ...

    2015-03-25

    The aqueous sodium-ion battery system is a safe and low-cost solution for large-scale energy storage, due to the abundance of sodium and inexpensive aqueous electrolytes. Although several positive electrode materials, e.g., Na 0.44MnO 2, were proposed, few negative electrode materials, e.g., activated carbon and NaTi 2(PO 4) 3, are available. Here we show that Ti-substituted Na 0.44MnO 2 (Na 0.44[Mn 1-xTi x]O 2) with tunnel structure can be used as a negative electrode material for aqueous sodium-ion batteries. This material exhibits superior cyclability even without the special treatment of oxygen removal from the aqueous solution. Atomic-scale characterizations based on sphericalmore » aberration-corrected electron microscopy and ab initio calculations are utilized to accurately identify the Ti substitution sites and sodium storage mechanism. Ti substitution tunes the charge ordering property and reaction pathway, significantly smoothing the discharge/charge profiles and lowering the storage voltage. Both the fundamental understanding and practical demonstrations suggest that Na 0.44[Mn 1-xTi x]O 2 is a promising negative electrode material for aqueous sodium-ion batteries.« less

  4. Hybrid supercapacitor devices based on MnCo2O4 as the positive electrode and FeMn2O4 as the negative electrode

    NASA Astrophysics Data System (ADS)

    Nagamuthu, Sadayappan; Vijayakumar, Subbukalai; Lee, Seong-Hun; Ryu, Kwang-Sun

    2016-12-01

    MnCo2O4 nanosheets and FeMn2O4 nanospheres were synthesized using a hydrothermal method. Choline chloride was used as the capping agent during the preparation of the nanoparticles. XRD patterns confirmed the spinel structure of MnCo2O4 and FeMn2O4. XPS measurements were used to determine the oxidation state of the prepared spinel metal oxides. HRTEM images revealed the formation of hexagonal nanosheets of MnCo2O4 and nanospheres of FeMn2O4. Electrochemical measurements were made for both positive and negative electrodes using three electrode systems. MnCo2O4 Exhibits 282C g-1 and FeMn2O4 yields 110C g-1 at a specific current of 1 A g-1. Hybrid supercapacitor device was fabricated using MnCo2O4 as the positive and FeMn2O4 as the negative electrode material. The hybrid supercapacitor device was delivered a maximum power of 37.57 kW kg-1.

  5. A new type of high energy asymmetric capacitor with nanoporous carbon electrodes in aqueous electrolyte

    NASA Astrophysics Data System (ADS)

    Khomenko, V.; Raymundo-Piñero, E.; Béguin, F.

    A new type of low cost and high energy asymmetric capacitor based on only activated carbons for both electrodes has been developed in a safe and environment friendly aqueous electrolyte. In such electrolyte, the charges are stored in the electrical double-layer and through fast faradaic charge transfer processes. By taking profit of different redox reactions occurring in the positive and negative ranges of potential, it is possible to optimize the capacitor either by balancing the mass of the electrodes or by using different optimized carbons for the positive and negative electrodes. The best results are obtained in the latter case, by utilizing different pseudo-faradaic properties of carbons in order to increase the capacitance and to shift the potentials of water decomposition and destructive oxidation of activated carbon to more negative and positive values, respectively. After an additional adjustment of potentials by mass-balancing the two electrodes, the electrochemical capacitor can be reversibly charged/discharged at 1.6 V in aqueous medium, with energy densities close to the values obtained with electrical double-layer capacitors working in organic electrolytes, while avoiding their disadvantages.

  6. Enhanced performance of starter lighting ignition type lead-acid batteries with carbon nanotubes as an additive to the active mass

    NASA Astrophysics Data System (ADS)

    Marom, Rotem; Ziv, Baruch; Banerjee, Anjan; Cahana, Beni; Luski, Shalom; Aurbach, Doron

    2015-11-01

    Addition of various carbon materials into lead-acid battery electrodes was studied and examined in order to enhance the power density, improve cycle life and stability of both negative and positive electrodes in lead acid batteries. High electrical-conductivity, high-aspect ratio, good mechanical properties and chemical stability of multi-wall carbon nanotubes (MWCNT, unmodified and mofified with carboxylic groups) position them as viable additives to enhance the electrodes' electrical conductivity, to mitigate the well-known sulfation failure mechanism and improve the physical integration of the electrodes. In this study, we investigated the incorporation-effect of carbon nanotubes (CNT) to the positive and the negative active materials in lead-acid battery prototypes in a configuration of flooded cells, as well as gelled cells. The cells were tested at 25% and 30% depth-of-discharge (DOD). The positive effect of the carbon nanotubes (CNT) utilization as additives to both positive and negative electrodes of lead-acid batteries was clearly demonstrated and is explained herein based on microscopic studies.

  7. Process for treating ab5 nickel-metal hydride battery scrap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyman, J.W.; Palmer, G.R.

    1994-12-31

    A process for treating an AB5 Ni-MH battery to recover purified positive and negative electrode components of the battery is disclosed. An AB5 Ni-MH battery is placed in a mineral acid leach solution to cause the positive and negative electrode components of the battery to separate.

  8. Ultra-thin passivating film induced by vinylene carbonate on highly oriented pyrolytic graphite negative electrode in lithium-ion cell

    NASA Astrophysics Data System (ADS)

    Matsuoka, O.; Hiwara, A.; Omi, T.; Toriida, M.; Hayashi, T.; Tanaka, C.; Saito, Y.; Ishida, T.; Tan, H.; Ono, S. S.; Yamamoto, S.

    We investigated the influence of vinylene carbonate, as an additive molecule, on the decomposition phenomena of electrolyte solution [ethylene carbonate (EC)—ethyl methyl carbonate (EMC) (1:2 by volume) containing 1 M LiPF 6] on a highly oriented pyrolytic graphite (HOPG) negative electrode by using cyclic voltammetry (CV) and atomic force microscopy (AFM). Vinylene carbonate deactivated reactive sites (e.g. radicals and oxides at the defects and the edge of carbon layer) on the cleaved surface of the HOPG negative electrode, and prevented further decomposition of the other solvents there. Further, vinylene carbonate induced an ultra-thin film (less than 1.0 nm in thickness) on the terrace of the basal plane of the HOPG negative electrode, and this film suppressed the decomposition of electrolyte solution on the terraces of the basal plane. We consider that this ultra-thin passivating film is composed of a reduction product of vinylene carbonate (VC), and might have a polymer structure. These induced effects might explain how VC improves the life performance of lithium-ion cells.

  9. Development of electrodes for the NASA iron/chromium

    NASA Technical Reports Server (NTRS)

    Swette, L.; Jalan, V.

    1984-01-01

    This program was directed primarily to the development of the negative (Cr3+/Cr2+) electrode for the NASA chromous/ferric Redox battery. The investigation of the effects of substrate processing and gold/lead catalyzation parameters on electrochemical performance were continued. In addition, the effects of reactant cross-mixing, acidity level, and temperature were examined for both Redox couples. Finally, the performance of optimized electrodes was tested in system hardware (1/3 square foot single cell). The major findings are discussed: (1) The recommended processing temperature for the carbon felt, as a substrate for the negative electrode, is 1650 to 1750 C, (2) The recommended gold catalyzation procedure is essentially the published NASA procedure (NASA TM-82724, Nov. 1981) based on deposition from aqueous methanol solution, with the imposition of a few controls such as temperature (25 C) and precatalyzation pH of the felt (7), (3) Experimental observations of the gold catalyzation process and subsequent electron microscopy indicate that the gold is deposited from the colloidal state, induced by contact of the solution with the carbon felt, (4) Electrodeposited lead appears to be present as a thin uniform layer over the entire surface of the carbon fibers, rather than an discrete particles, and (5) Cross-mixing of reactants (Fe-2+ in negative electrode solution or Cr-3+ in the positive electrode solution) did not appear to produce significant interference at either electrode.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jansen, Andrew N.; Vaughey, John T.; Chen, Zonghai

    The present invention provides a non-aqueous redox flow battery comprising a negative electrode immersed in a non-aqueous liquid negative electrolyte, a positive electrode immersed in a non-aqueous liquid positive electrolyte, and a cation-permeable separator (e.g., a porous membrane, film, sheet, or panel) between the negative electrolyte from the positive electrolyte. During charging and discharging, the electrolytes are circulated over their respective electrodes. The electrolytes each comprise an electrolyte salt (e.g., a lithium or sodium salt), a transition-metal free redox reactant, and optionally an electrochemically stable organic solvent. Each redox reactant is selected from an organic compound comprising a conjugated unsaturatedmore » moiety, a boron cluster compound, and a combination thereof. The organic redox reactant of the positive electrolyte is selected to have a higher redox potential than the redox reactant of the negative electrolyte.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Jue-Fei; School of Electronics and Information Engineering, Suzhou Vocational University, Suzhou 215104; Zhou, Liping, E-mail: zhoulp@suda.edu.cn, E-mail: leigao@suda.edu.cn

    The electronic transport properties of benzene–porphyrin–benzene (BPB) molecules coupled to gold (Au) electrodes were investigated. By successively removing the front-end Au atoms, several BPB junctions with different molecule-electrode contact symmetries were constructed. The calculated current–voltage (I–V) curves depended strongly on the contact configurations between the BPB molecules and the Au electrodes. In particular, a significant low-voltage negative differential resistance effect appeared at −0.3 V in the junctions with pyramidal electrodes on both sides. Along with the breaking of this tip-contact symmetry, the low-bias negative differential resistance effect gradually disappeared. This tip-contact may be ideal for use in the design ofmore » future molecular devices because of its similarity with experimental processes.« less

  12. Electrochemical energy storage device based on carbon dioxide as electroactive species

    DOEpatents

    Nemeth, Karoly; van Veenendaal, Michel Antonius; Srajer, George

    2013-03-05

    An electrochemical energy storage device comprising a primary positive electrode, a negative electrode, and one or more ionic conductors. The ionic conductors ionically connect the primary positive electrode with the negative electrode. The primary positive electrode comprises carbon dioxide (CO.sub.2) and a means for electrochemically reducing the CO.sub.2. This means for electrochemically reducing the CO.sub.2 comprises a conductive primary current collector, contacting the CO.sub.2, whereby the CO.sub.2 is reduced upon the primary current collector during discharge. The primary current collector comprises a material to which CO.sub.2 and the ionic conductors are essentially non-corrosive. The electrochemical energy storage device uses CO.sub.2 as an electroactive species in that the CO.sub.2 is electrochemically reduced during discharge to enable the release of electrical energy from the device.

  13. Added clinical value of the inferior temporal EEG electrode chain.

    PubMed

    Bach Justesen, Anders; Eskelund Johansen, Ann Berit; Martinussen, Noomi Ida; Wasserman, Danielle; Terney, Daniella; Meritam, Pirgit; Gardella, Elena; Beniczky, Sándor

    2018-01-01

    To investigate the diagnostic added value of supplementing the 10-20 EEG array with six electrodes in the inferior temporal chain. EEGs were recorded with 25 electrodes: 19 positions of the 10-20 system, and six additional electrodes in the inferior temporal chain (F9/10, T9/10, P9/10). Five-hundred consecutive standard and sleep EEG recordings were reviewed using the 10-20 array and the extended array. We identified the recordings with EEG abnormalities that had peak negativities at the inferior temporal electrodes, and those that only were visible at the inferior temporal electrodes. From the 286 abnormal recordings, the peak negativity was at the inferior temporal electrodes in 81 cases (28.3%) and only visible at the inferior temporal electrodes in eight cases (2.8%). In the sub-group of patients with temporal abnormalities (n = 134), these represented 59% (peak in the inferior chain) and 6% (only seen at the inferior chain). Adding six electrodes in the inferior temporal electrode chain to the 10-20 array improves the localization and identification of EEG abnormalities, especially those located in the temporal region. Our results suggest that inferior temporal electrodes should be added to the EEG array, to increase the diagnostic yield of the recordings. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  14. Fundamental modeling the performance and degradation of HEV Lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Fang, Weifang

    Li-ion battery is now replacing nickel-metal hydride (NiMH) for hybrid electric vehicles (HEV). The advantages of Li-ion battery over NiMH are that it can provide longer life, higher cell voltage and higher energy density, etc. However, there are still some issues unsolved for Li-ion battery to fully satisfy the HEV requirement. At high temperature, thermal runaway may cause safety issues. At low temperature, however, its performance is dramatically reduced and also Li deposition may occur. Furthermore, degradation due to side reactions in the electrodes during cycling and storage results in capacity loss and impedance rise. An electrochemical-thermal coupled model is first used to predict performance of individual electrodes of Li-ion cells under HEV conditions that encompass a wide range of ambient temperatures. The model is validated against experimental data of not only the full cell but also individual electrodes and then used to study lithium deposition on the negative electrode during charging Li-ion battery at subzero temperature. The simulated property evolution, e.g. Li concentrations in electrode and electrolyte, shows that either low temperature or high charge rate may force Li insertion (into the negative carbon electrode) to occur in a narrow region near the separator. Therefore, Li deposition is mostly like to happen in this location. Modeling simulation shows that reduction of the negative electrode particle size can reduce Li deposition, which has same effect as improvement of the Li diffusion coefficient in the negative electrode. The model is also used to study charge protocols at subzero temperature. Model simulation shows that employing pulse current can improve cell temperature by the heat generated inside the cell, thus this designed charge protocol is able to reduce Li deposition and improve the charge efficiency as well. Individual aging mechanism is then implemented into each electrode to study Li-ion battery degradation during accelerated aging tests. The experimentally observed aging phenomena are interpreted using the degradation model. The simulated results show that the positive electrode active material loss is the main cause of capacity loss and impedance growth. And this is the key step for a model to well catch the experimentally observed aging phenomena in the two electrodes. In the future work, the degradation model will further help to prolong battery life through engineering and optimization in HEV applications.

  15. Effect of electrolyte composition on initial cycling and impedance characteristics of lithium-ion cells

    NASA Astrophysics Data System (ADS)

    Abraham, D. P.; Furczon, M. M.; Kang, S.-H.; Dees, D. W.; Jansen, A. N.

    Hybrid-electric vehicles require lithium-battery electrolytes that form stable, low impedance passivation layers to protect the electrodes, while allowing rapid lithium-ion transport under high current charge/discharge pulses. In this article, we describe data acquired on cells containing LiNi 0.8Co 0.15Al 0.05O 2-based positive electrodes, graphite-based negative electrodes, and electrolytes with lithium hexafluorophosphate (LiPF 6), lithium tetrafluoroborate (LiBF 4), lithium bis(oxalato)borate (LiBOB) and lithium difluoro(oxalato) borate (LiF 2OB) salts. The impedance data were collected in cells containing a Li-Sn reference electrode to determine effect of electrolyte composition and testing temperature on individual electrode impedance. The full cell impedance data showed the following trend: LiBOB > LiBF 4 > LiF 2OB > LiPF 6. The negative electrode impedance showed a trend similar to that of the full cell; this electrode was the main contributor to impedance in the LiBOB and LiBF 4 cells. The positive electrode impedance values for the LiBF 4, LiF 2OB, and LiPF 6 cells were comparable; the values were somewhat higher for the LiBOB cell. Cycling and impedance data were also obtained for cells containing additions of LiBF 4, LiBOB, LiF 2OB, and vinylene carbonate (VC) to the EC:EMC (3:7 by wt.) + 1.2 M LiPF 6 electrolyte. Our data indicate that the composition and morphology of the graphite SEI formed during the first lithiation cycle is an important determinant of the negative electrode impedance, and hence full cell impedance.

  16. Negative Electrode For An Alkaline Cell

    DOEpatents

    Coco, Isabelle; Cocciantelli, Jean-Michel; Villenave, Jean-Jacques

    1998-07-14

    The present invention concerns a negative electrode for an alkaline cell, comprising a current collector supporting a paste containing an electrochemically active material and a binder, characterized in that said binder is a polymer containing hydrophilic and hydrophobic groups, said polymer being selected from an acrylic homopolymer, copolymer and terpolymer, an unsaturated organic acid copolymer and an unsaturated acid anhydride copolymer.

  17. Spatiotemporal electrochemical measurements across an electric double layer capacitor electrode with application to aqueous sodium hybrid batteries

    NASA Astrophysics Data System (ADS)

    Tully, Katherine C.; Whitacre, Jay F.; Litster, Shawn

    2014-02-01

    This paper presents in-situ spatiotemporal measurements of the electrolyte phase potential within an electric double layer capacitor (EDLC) negative electrode as envisaged for use in an aqueous hybrid battery for grid-scale energy storage. The ultra-thick electrodes used in these batteries to reduce non-functional material costs require sufficiently fast through-plane mass and charge transport to attain suitable charging and discharging rates. To better evaluate the through-plane transport, we have developed an electrode scaffold (ES) for making in situ electrolyte potential distribution measurements at discrete known distances across the thickness of an uninterrupted EDLC negative electrode. Using finite difference methods, we calculate local current, volumetric charging current and charge storage distributions from the spatiotemporal electrolyte potential measurements. These potential distributions provide insight into complex phenomena that cannot be directly observed using other existing methods. Herein, we use the distributions to identify areas of the electrode that are underutilized, assess the effects of various parameters on the cumulative charge storage distribution, and evaluate an effectiveness factor for charge storage in EDLC electrodes.

  18. Single element of the matrix source of negative hydrogen ions: Measurements of the extracted currents combined with diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yordanov, D., E-mail: yordanov@phys.uni-sofia.bg; Lishev, St.; Shivarova, A.

    2016-02-15

    Combining measurements of the extracted currents with probe and laser-photodetachment diagnostics, the study is an extension of recent tests of factors and gas-discharge conditions stimulating the extraction of volume produced negative ions. The experiment is in a single element of a rf source with the design of a matrix of small-radius inductively driven discharges. The results are for the electron and negative-ion densities, for the plasma potential and for the electronegativity in the vicinity of the plasma electrode as well as for the currents of the extracted negative ions and electrons. The plasma-electrode bias and the rf power have beenmore » varied. Necessity of a high bias to the plasma electrode and stable linear increase of the extracted currents with the rf power are the main conclusions.« less

  19. Frangible electrochemical cell and sealing technique

    NASA Technical Reports Server (NTRS)

    Halpert, G.; Haynos, J.; Sherfey, J.

    1969-01-01

    Electrochemical cell assembly, which includes a positive electrode plate between two negative electrode plates, is both flexible and compact, and frangible under severe shock conditions. Leak-tight integrity of the housing is maintained by polymer-to-polymer fusion bonds through holes in the expanded metal electrode terminals.

  20. Catalyst surfaces for the chromous/chromic redox couple

    NASA Technical Reports Server (NTRS)

    Giner, J. D.; Cahill, K. J. (Inventor)

    1980-01-01

    An electricity producing cell of the reduction-oxidation (REDOX) type is described. The cell is divided into two compartments by a membrane, each compartment containing a solid inert electrode. A ferrous/ferric couple in a chloride solution serves as a cathode fluid which is circulated through one of the compartments to produce a positive electric potential disposed therein. A chromic/chromous couple in a chloride solution serves as an anode fluid which is circulated through the second compartment to produce a negative potential on an electrode disposed therein. The electrode is an electrically conductive, inert material plated with copper, silver or gold. A thin layer of lead plates onto the copper, silver or gold layer when the cell is being charged, the lead ions being available from lead chloride which was added to the anode fluid. If the REDOX cell is then discharged, the current flows between the electrodes causing the lead to deplate from the negative electrode and the metal coating on the electrode will act as a catalyst to cause increased current density.

  1. Theoretical Considerations for Improving the Pulse Power of a Battery through the Addition of a Second Electrochemically Active Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knehr, K. W.; West, Alan C.

    Here, porous electrode theory is used to conduct case studies for when the addition of a second electrochemically active material can improve the pulse-power performance of an electrode. Case studies are conducted for the positive electrode of a sodium metal-halide battery and the graphite negative electrode of a lithium “rocking chair” battery. The replacement of a fraction of the nickel chloride capacity with iron chloride in a sodium metal-halide electrode and the replacement of a fraction of the graphite capacity with carbon black in a lithium-ion negative electrode were both predicted to increase the maximum pulse power by up tomore » 40%. In general, whether or not a second electrochemically active material increases the pulse power depends on the relative importance of ohmic-to-charge transfer resistances within the porous structure, the capacity fraction of the second electrochemically active material, and the kinetic and thermodynamic parameters of the two active materials.« less

  2. Theoretical Considerations for Improving the Pulse Power of a Battery through the Addition of a Second Electrochemically Active Material

    DOE PAGES

    Knehr, K. W.; West, Alan C.

    2016-05-26

    Here, porous electrode theory is used to conduct case studies for when the addition of a second electrochemically active material can improve the pulse-power performance of an electrode. Case studies are conducted for the positive electrode of a sodium metal-halide battery and the graphite negative electrode of a lithium “rocking chair” battery. The replacement of a fraction of the nickel chloride capacity with iron chloride in a sodium metal-halide electrode and the replacement of a fraction of the graphite capacity with carbon black in a lithium-ion negative electrode were both predicted to increase the maximum pulse power by up tomore » 40%. In general, whether or not a second electrochemically active material increases the pulse power depends on the relative importance of ohmic-to-charge transfer resistances within the porous structure, the capacity fraction of the second electrochemically active material, and the kinetic and thermodynamic parameters of the two active materials.« less

  3. Spin-Filtering Rectifying and Negative Differential Resistance Behaviors in Co(dmit)2 Molecular Devices with Monatomic (C, Fe, Au) Electrodes

    NASA Astrophysics Data System (ADS)

    Yan, Shenlang; Long, Mengqiu; Zhang, Xiaojiao; He, Jun; Xu, Hui; Gao, Yongli

    2014-09-01

    Using nonequilibrium Green's functions (NEGFs) combined with the density functional theory (DFT), we study the electronic transport properties of a single molecule magnet Co(dmit)2, which is sandwiched between two monatomic chain electrodes, and the different electrode materials carbon, iron and gold, have been considered. The results show that the electrodes play a crucial role in the spin-dependent transport of the Co(dmit)2 molecular device, and some interesting phenomenon, such as perfect spin-filtering effect, rectifying and negative differential resistance (NDR) can be observed. We demonstrated that the magnetic Fe electrode can lead to high spin-flittering effect, and the different hybridization and alignment of energy levels between the molecule and the electrodes may be responsible for the rectification performance, and the distributions (delocalization or localization) of the frontier molecular orbitals under different bias result in the NDR behaviors. These characteristics could be used in the study of spin physics and the realization of nanospintronic devices.

  4. Aqueous based asymmetrical-bipolar electrochemical capacitor with a 2.4 V operating voltage

    NASA Astrophysics Data System (ADS)

    Wu, Haoran; Lian, Keryn

    2018-02-01

    A novel asymmetrical-bipolar electrochemical capacitor system leveraging the contributions of a Zn-CNT asymmetrical electrode and a KOH-H2SO4 dual-pH electrolyte was developed. The positive and negative electrodes operated in electrolytes with different pH, exploiting the maximum potential of both electrodes, which led to a cell voltage of 2.4 V. The potential tracking of both electrodes revealed that the Zn negative electrode could maintain a potential at -1.2 V, while the CNT positive electrode can be charged to +1.2 V without significant irreversible reactions. A bipolar ion exchange membrane has effectively separated the acid and alkaline from neutralization, which resulted in stable performance of the device with capacitance retention of 94% and coulombic efficiency of 99% over 10,000 cycles. This asymmetrical-bipolar design overcomes the thermodynamic limit of water decomposition, opening a new avenue towards high energy and high power density aqueous-based ECs.

  5. Enhancement of negative hydrogen ion production in an electron cyclotron resonance source

    NASA Astrophysics Data System (ADS)

    Dugar-Zhabon, V. D.; Murillo, M. T.; Karyaka, V. I.

    2013-07-01

    In this paper, we present a method for improving the negative hydrogen ion yield in the electron cyclotron resonance source with driven plasma rings where the negative ion production is realized in two stages. First, the hydrogen and deuterium molecules are excited in collisions with plasma electrons to high-laying Rydberg and high vibration levels in the plasma volume. The second stage leads to negative ion production through the process of repulsive attachment of low-energy electrons by the excited molecules. The low-energy electrons originate due to a bombardment of the plasma electrode surface by ions of a driven ring and the thermoelectrons produced by a rare earth ceramic electrode, which is appropriately installed in the source chamber. The experimental and calculation data on the negative hydrogen ion generation rate demonstrate that very low-energy thermoelectrons significantly enhance the negative-ion generation rate that occurs in the layer adjacent to the plasma electrode surface. It is found that heating of the tungsten filaments placed in the source chamber improves the discharge stability and extends the pressure operation range.

  6. Direct growth of vanadium nitride nanosheets on carbon nanotube fibers as novel negative electrodes for high-energy-density wearable fiber-shaped asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Guo, Jiabin; Zhang, Qichong; Sun, Juan; Li, Chaowei; Zhao, Jingxin; Zhou, Zhenyu; He, Bing; Wang, Xiaona; Man, Ping; Li, Qiulong; Zhang, Jun; Xie, Liyan; Li, Mingxing; Yao, Yagang

    2018-04-01

    Significant efforts have been recently devoted to constructing high-performance fiber-shaped asymmetric supercapacitors. However, it is still a paramount challenge to develop high-energy-density fiber-shaped asymmetric supercapacitors for practical applications in portable and wearable electronics. This work reports a simple and efficient method to directly grow vanadium nitride nanosheets on carbon nanotube fibers as advanced negative electrodes with a high specific capacitance of 188 F/cm3 (564 mF/cm2). Taking advantage of their attractive structure, we successfully fabricated a fiber-shaped asymmetric supercapacitor device with a maximum operating voltage of 1.6 V by assembling the vanadium nitride/carbon nanotube fiber negative electrode with the Zinc-Nickel-Cobalt ternary oxides nanowire arrays positive electrode. Due to the excellent synergistic effects between positive and negative electrodes, a remarkable specific capacitance of 50 F/cm3 (150 mF/cm2) and an outstanding energy density of 17.78 mWh/cm3 (53.33 μWh/cm2) for our fiber-shaped asymmetric supercapacitor can be achieved. Furthermore, the as-assembled fiber-shaped asymmetric supercapacitor device has excellent mechanical flexibility in that 91% of the capacitance retained after bending 90° for 3000 times. Thus, this work exploits a pathway to construct high-energy-density fiber-shaped asymmetric supercapacitor for next-generation portable and wearable electronics.

  7. All electrochemical process for synthesis of Si coating on TiO2 nanotubes as durable negative electrode material for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Nemaga, Abirdu Woreka; Mallet, Jeremy; Michel, Jean; Guery, Claude; Molinari, Michael; Morcrette, Mathieu

    2018-07-01

    The development of high energy density Li-ion batteries requires to look for electrode materials with high capacity while keeping their stability upon cycling. In this study, amorphous silicon (a-Si) thin film deposited on self-organized TiO2 nanotubes is investigated as negative electrode for Li-ion batteries. Nanostructured composite negative electrodes were fabricated by a two-step cost effective electrochemical process. Firstly, self-organized TiO2 nanotube arrays were synthesised by anodizing of Ti foil. Subsequently, thanks to the use of room temperature ionic liquid, conformal Si layer was electrodeposited on the TiO2 nanotubes to achieve the synthesis of nanostructured a-Si/TiO2 nanotube composite negative electrodes. The influence of the Si loading as well as the crystallinity of the TiO2 nanotubes have been studied in terms of capacity and cyclic stability. For an optimized a-Si loading, it is shown that the amorphous state for the TiO2 nanotubes enables to get stable lithiation and delithiation with a total areal charge capacity of about 0.32 mA h cm-2 with improved capacity retention of about 84% after 50 cycles, while a-Si on crystalline TiO2 nanotubes shows poor cyclic stability independently from the Si loading.

  8. Energy storage systems having an electrode comprising Li.sub.xS.sub.y

    DOEpatents

    Xiao, Jie; Zhang, Jiguang; Graff, Gordon L.; Liu, Jun; Wang, Wei; Zheng, Jianming; Xu, Wu; Shao, Yuyan; Yang, Zhenguo

    2016-08-02

    Improved lithium-sulfur energy storage systems can utilizes Li.sub.xS.sub.y as a component in an electrode of the system. For example, the energy storage system can include a first electrode current collector, a second electrode current collector, and an ion-permeable separator separating the first and second electrode current collectors. A second electrode is arranged between the second electrode current collector and the separator. A first electrode is arranged between the first electrode current collector and the separator and comprises a first condensed-phase fluid comprising Li.sub.xS.sub.y. The energy storage system can be arranged such that the first electrode functions as a positive or a negative electrode.

  9. Identification and screening of potent antimicrobial peptides in arthropod genomes.

    PubMed

    Duwadi, Deepesh; Shrestha, Anishma; Yilma, Binyam; Kozlovski, Itamar; Sa-Eed, Munaya; Dahal, Nikesh; Jukosky, James

    2018-05-01

    Using tBLASTn and BLASTp searches, we queried recently sequenced arthropod genomes and expressed sequence tags (ESTs) using a database of known arthropod cecropins, defensins, and attacins. We identified and synthesized 6 potential AMPs and screened them for antimicrobial activity. Using radial diffusion assays and microtiter antimicrobial assays, we assessed the in vitro antimicrobial effects of these peptides against several human pathogens including Gram-positive and Gram-negative bacteria and fungi. We also conducted hemolysis assays to examine the cytotoxicity of these peptides to mammalian cells. Four of the six peptides identified showed antimicrobial effects in these assays. We also created truncated versions of these four peptides to assay their antimicrobial activity. Two cecropins derived from the monarch butterfly genome (Danaus plexippus), DAN1 and DAN2, showed minimum inhibitory concentrations (MICs) in the range of 2-16 μg/ml when screened against Gram-negative bacteria. HOLO1 and LOUDEF1, two defensin-like peptides derived from red flour beetle (Tribolium castaneum) and human body louse (Pediculus humanus humanus), respectively, exhibited MICs in the range of 13-25 μg/ml against Gram-positive bacteria. Furthermore, HOLO1 showed an MIC less than 5 μg/ml against the fungal species Candida albicans. These peptides exhibited no hemolytic activity at concentrations up to 200 μg/ml. The truncated peptides derived from DAN2 and HOLO1 showed very little antimicrobial activity. Our experiments show that the peptides DAN1, DAN2, HOLO1, and LOUDEF1 showed potent antimicrobial activity in vitro against common human pathogens, did not lyse mammalian red blood cells, and indicates their potential as templates for novel therapeutic agents against microbial infection. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Regulated Breathing Effect of Silicon Negative Electrode for Dramatically Enhanced Performance of Li-Ion Battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Xingcheng; Zhou, Weidong; Kim, Youngnam

    Si is an attractive negative electrode material for lithium ion batteries due to its high specifi c capacity (≈3600 mAh g –1 ). However, the huge volume swelling and shrinking during cycling, which mimics a breathing effect at the material/electrode/cell level, leads to several coupled issues including fracture of Si particles, unstable solid electrolyte interphase, and low Coulombic effi ciency. In this work, the regulation of the breathing effect is reported by using Si–C yolk–shell nanocomposite which has been well-developed by other researchers. The focus is on understanding how the nanoscaled materials design impacts the mechanical and electrochemical response atmore » electrode level. For the fi rst time, it is possible to observe one order of magnitude of reduction on breathing effect at the electrode level during cycling: the electrode thickness variation reduced down to 10%, comparing with 100% in the electrode with Si nanoparticles as active materials. The Si–C yolk–shell nanocomposite electrode exhibits excellent capacity retention and high cycle effi ciency. In situ transmission electron microscopy and fi nite element simulations consistently reveals that the dramatically enhanced performance is associated with the regulated breathing of the Si in the new composite, therefore the suppression of the overall electrode expansion.« less

  11. High voltage holding in the negative ion sources with cesium deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belchenko, Yu.; Abdrashitov, G.; Ivanov, A.

    High voltage holding of the large surface-plasma negative ion source with cesium deposition was studied. It was found that heating of ion-optical system electrodes to temperature >100 °C facilitates the source conditioning by high voltage pulses in vacuum and by beam shots. The procedure of electrode conditioning and the data on high-voltage holding in the negative ion source with small cesium seed are described. The mechanism of high voltage holding improvement by depletion of cesium coverage is discussed.

  12. Nickel-Tin Electrode Materials for Nonaqueous Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Ehrlich, Grant M.; Durand, Christopher

    2005-01-01

    Experimental materials made from mixtures of nickel and tin powders have shown promise for use as the negative electrodes of rechargeable lithium-ion electrochemical power cells. During charging (or discharging) of a lithium-ion cell, lithium ions are absorbed into (or desorbed from, respectively) the negative electrode, typically through an intercalation or alloying process. The negative electrodes (for this purpose, designated as anodes) in state-of-the-art Li-ion cells are made of graphite, in which intercalation occurs. Alternatively, the anodes can be made from metals, in which alloying can occur. For reasons having to do with the electrochemical potential of intercalated lithium, metallic anode materials (especially materials containing tin) are regarded as safer than graphite ones; in addition, such metallic anode materials have been investigated in the hope of obtaining reversible charge/discharge capacities greater than those of graphite anodes. However, until now, each of the tin-containing metallic anode formulations tested has been found to be inadequate in some respect.

  13. Damage cost of the Dan River coal ash spill.

    PubMed

    Dennis Lemly, A

    2015-02-01

    The recent coal ash spill on the Dan River in North Carolina, USA has caused several negative effects on the environment and the public. In this analysis, I report a monetized value for these effects after the first 6 months following the spill. The combined cost of ecological damage, recreational impacts, effects on human health and consumptive use, and esthetic value losses totals $295,485,000. Because the environmental impact and associated economic costs of riverine coal ash spills can be long-term, on the order of years or even decades, this 6-month assessment should be viewed as a short-term preview. The total cumulative damage cost from the Dan River coal ash spill could go much higher. Published by Elsevier Ltd.

  14. Considerations for Estimating Electrode Performance in Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Bennett, William R.

    2012-01-01

    Advanced electrode materials with increased specific capacity and voltage performance are critical to the development of Li-ion batteries with increased specific energy and energy density. Although performance metrics for individual electrodes are critically important, a fundamental understanding of the interactions of electrodes in a full cell is essential to achieving the desired performance, and for establishing meaningful goals for electrode performance. This paper presents practical design considerations for matching positive and negative electrodes in a viable design. Methods for predicting cell-level discharge voltage, based on laboratory data for individual electrodes, are presented and discussed.

  15. Hydridable material for the negative electrode in a nickel-metal hydride storage battery

    DOEpatents

    Knosp, Bernard; Bouet, Jacques; Jordy, Christian; Mimoun, Michel; Gicquel, Daniel

    1997-01-01

    A monophase hydridable material for the negative electrode of a nickel-metal hydride storage battery with a "Lave's phase" structure of hexagonal C14 type (MgZn.sub.2) has the general formula: Zr.sub.1-x Ti.sub.x Ni.sub.a Mn.sub.b Al.sub.c Co.sub.d V.sub.e where ##EQU1##

  16. Chemical overcharge protection of lithium and lithium-ion secondary batteries

    DOEpatents

    Abraham, Kuzhikalail M.; Rohan, James F.; Foo, Conrad C.; Pasquariello, David M.

    1999-01-01

    This invention features the use of redox reagents, dissolved in non-aqueous electrolytes, to provide overcharge protection for cells having lithium metal or lithium-ion negative electrodes (anodes). In particular, the invention features the use of a class of compounds consisting of thianthrene and its derivatives as redox shuttle reagents to provide overcharge protection. Specific examples of this invention are thianthrene and 2,7-diacetyl thianthrene. One example of a rechargeable battery in which 2,7-diacetyl thianthrene is used has carbon negative electrode (anode) and spinet LiMn.sub.2 O.sub.4 positive electrode (cathode).

  17. Chemical overcharge protection of lithium and lithium-ion secondary batteries

    DOEpatents

    Abraham, K.M.; Rohan, J.F.; Foo, C.C.; Pasquariello, D.M.

    1999-01-12

    This invention features the use of redox reagents, dissolved in non-aqueous electrolytes, to provide overcharge protection for cells having lithium metal or lithium-ion negative electrodes (anodes). In particular, the invention features the use of a class of compounds consisting of thianthrene and its derivatives as redox shuttle reagents to provide overcharge protection. Specific examples of this invention are thianthrene and 2,7-diacetyl thianthrene. One example of a rechargeable battery in which 2,7-diacetyl thianthrene is used has carbon negative electrode (anode) and spinet LiMn{sub 2}O{sub 4} positive electrode (cathode). 8 figs.

  18. Optimization and fabrication of porous carbon electrodes for Fe/Cr redox flow cells

    NASA Technical Reports Server (NTRS)

    Jalan, V.; Morriseau, B.; Swette, L.

    1982-01-01

    Negative electrode development for the NASA chromous/ferric Redox battery is reported. The effects of substrate material, gold/lead catalyst composition and loading, and catalyzation procedures on the performance of the chromium electrode were investigated. Three alternative catalyst systems were also examined, and 1/3 square foot size electrodes were fabricated and delivered to NASA at the conclusion of the program.

  19. General method to predict voltage-dependent ionic conduction in a solid electrolyte coating on electrodes

    NASA Astrophysics Data System (ADS)

    Pan, Jie; Cheng, Yang-Tse; Qi, Yue

    2015-04-01

    Understanding the ionic conduction in solid electrolytes in contact with electrodes is vitally important to many applications, such as lithium ion batteries. The problem is complex because both the internal properties of the materials (e.g., electronic structure) and the characteristics of the externally contacting phases (e.g., voltage of the electrode) affect defect formation and transport. In this paper, we developed a method based on density functional theory to study the physics of defects in a solid electrolyte in equilibrium with an external environment. This method was then applied to predict the ionic conduction in lithium fluoride (LiF), in contact with different electrodes which serve as reservoirs with adjustable Li chemical potential (μLi) for defect formation. LiF was chosen because it is a major component in the solid electrolyte interphase (SEI) formed on lithium ion battery electrodes. Seventeen possible native defects with their relevant charge states in LiF were investigated to determine the dominant defect types on various electrodes. The diffusion barrier of dominant defects was calculated by the climbed nudged elastic band method. The ionic conductivity was then obtained from the concentration and mobility of defects using the Nernst-Einstein relationship. Three regions for defect formation were identified as a function of μLi: (1) intrinsic, (2) transitional, and (3) p -type region. In the intrinsic region (high μLi, typical for LiF on the negative electrode), the main defects are Schottky pairs and in the p -type region (low μLi, typical for LiF on the positive electrode) are Li ion vacancies. The ionic conductivity is calculated to be approximately 10-31Scm-1 when LiF is in contact with a negative electrode but it can increase to 10-12Scm-1 on a positive electrode. This insight suggests that divalent cation (e.g., Mg2+) doping is necessary to improve Li ion transport through the engineered LiF coating, especially for LiF on negative electrodes. Our results provide an understanding of the influence of the environment on defect formation and demonstrate a linkage between defect concentration in a solid electrolyte and the voltage of the electrode.

  20. Fabrication and testing of large size nickel-zinc cells

    NASA Technical Reports Server (NTRS)

    Klein, M.

    1977-01-01

    The design and construction of nickel zinc cells, containing sintered nickel electrodes and asbestos coated inorganic separator materials, were outlined. Negative electrodes were prepared by a dry pressing process while various inter-separators were utilized on the positive electrodes, consisting of non-woven nylon, non-woven polypropylene, and asbestos.

  1. The cadmium electrode: Review of the status of research

    NASA Technical Reports Server (NTRS)

    Gross, S.; Glockling, R. J.

    1976-01-01

    Investigations characterizing the negative cadmium electrode used in a nickel cadmium battery cell are summarized with citations to references where more detailed information is available. Emphasis is placed on data pertinent to aerospace applications. An evaluation of some of the published results of cadmium electrode research is included.

  2. Charging/discharging stability of a metal hydride battery electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, M.; Han, J.; Feng, F.

    1999-07-01

    The metal hydride (MH) alloy powder for the negative electrode of the Ni/MH battery was first pulverized and oxidized by electrochemically charging and discharging for a number of cycles. The plate of the negative electrode of an experimental cell in this study was made from a mixture of a multicomponent AB{sub 5}-based alloy powder, nickel powder, and polytetra fluoroethylene (PTFE). The characteristics of the negative electrode, including discharge capacity, exchange current density, and hydrogen diffusivity, were studied by means of the electrochemical experiments and analysis in an experimental cell. The exchange current density of a Mm{sub 0.95}Ti{sub 0.05}Ni{sub 3.85}Co{sub 0.45}Mn{submore » 0.35}Al{sub 0.35} alloy electrode increases with increasing number of charge/discharge cycles and then remains almost constant after 20 cycles. A microcracking activation, resulting from an increase in reaction surface area and an improvement in the electrode surface activation, increases the hydrogen exchange current densities. Measurement of hydrogen diffusivities for Mm{sub 0.95}Ti{sub 0.05}Ni{sub 3.85}Co{sub 0.45}Mn{sub 0.35}Al{sub 0.35} alloy powder shows that the ratio of D/a{sup 2} (D = hydrogen diffusivity; a = sphere radius) increases with increasing number of cycles but remains constant after 20 cycles.« less

  3. Electrode behavior RE-visited: Monitoring potential windows, capacity loss, and impedance changes in Li 1.03 (Ni 0.5Co 0.2Mn 0.3) 0.97O 2/silicon-graphite full cells

    DOE PAGES

    Klett, Matilda; Gilbert, James A.; Trask, Stephen E.; ...

    2016-03-04

    Here, the capacity and power performance of lithium-ion battery cells evolve over time. The mechanisms leading to these changes can often be identified through knowledge of electrode potentials, which contain information about electrochemical processes at the electrode-electrolyte interfaces. In this study we monitor electrode potentials within full cells containing a Li 1.03(Ni 0.5Co 0.2Mn 0.3) 0.97O 2–based (NCM523) positive electrode, a silicon-graphite negative electrode, and an LiPF6-bearing electrolyte, with and without fluoroethylene carbonate (FEC) or vinylene carbonate (VC) additives. The electrode potentials are monitored with a Li-metal reference electrode (RE) positioned besides the electrode stack; changes in these potentials aremore » used to examine electrode state-of-charge (SOC) shifts, material utilization, and loss of electrochemically active material. Electrode impedances are obtained with a Li xSn RE located within the stack; the data display the effect of cell voltage and electrode SOC changes on the measured values after formation cycling and after aging. Our measurements confirm the beneficial effect of FEC and VC electrolyte additives in reducing full cell capacity loss and impedance rise after cycling in a 3.0–4.2 V range. Comparisons with data from a full cell containing a graphite-based negative highlight the consequences of including silicon in the electrode. Our observations on electrode potentials, capacity, and impedance changes on cycling are crucial to designing long-lasting, silicon-bearing, lithium-ion cells.« less

  4. Electrode-active material for electrochemical batteries and method of preparation

    DOEpatents

    Varma, R.

    1983-11-07

    A battery electrode material comprises a non-stoichiometric electrode-active material which forms a redox pair with the battery electrolyte, an electrically conductive polymer present in the range of from about 2% by weight to about 5% by weight of the electrode-active material, and a binder. The conductive polymer provides improved proton or ion conductivity and is a ligand resulting in metal ion or negative ion vacancies of less than about 0.1 atom percent. Specific electrodes of nickel and lead are disclosed.

  5. Electrode-active material for electrochemical batteries and method of preparation

    DOEpatents

    Varma, Ravi

    1987-01-01

    A battery electrode material comprising a non-stoichiometric electrode-active material which forms a redox pair with the battery electrolyte, an electrically conductive polymer present in the range of from about 2% by weight to about 5% by weight of the electrode-active material, and a binder. The conductive polymer provides improved proton or ion conductivity and is a ligand resulting in metal ion or negative ion vacancies of less than about 0.1 atom percent. Specific electrodes of nickel and lead are disclosed.

  6. Electrochemical cell and method of assembly

    DOEpatents

    Shimotake, Hiroshi; Voss, Ernst C. H.; Bartholme, Louis G.

    1979-01-01

    A method of preparing an electrochemical cell is disclosed which permits the assembly to be accomplished in air. The cell includes a metal sulfide as the positive electrode reactant, lithium alloy as the negative electrode reactant and an alkali metal, molten salt electrolyte. Positive electrode reactant is introduced as Li.sub.2 FeS.sub.2, a single-phase compound produced by the reaction of Li.sub.2 S and FeS. The use of this compound permits introduction of lithium in an oxidized form. Additional lithium can be introduced in the negative electrode structure enclosed within an aluminum foil envelope between layers of porous aluminum. Molten salt electrolyte is added after assembly and evacuation of the cell by including an interelectrode separator that has been prewet with an organic solution of KCl.

  7. Caractérisation de l'augmentation des transferts thermiques dans une couche de liquide diélectrique soumise à une injection unipolaire de charges électriques

    NASA Astrophysics Data System (ADS)

    Traoré, Philippe; Koulova-Nenova, D.; Romat, H.; Perez, A.

    2009-03-01

    The electro-thermo-convective flow in a horizontal dielectric liquid layer placed between two electrodes and subjected to an injection of electric charges from one of the electrodes and at the same time to a thermal gradient is studied numerically. We consider the case of a strong charge injection in order to only take into account the Coulomb force disregarding the dielectric forces, from above and below the layer. The effect of the action of both electric and thermal fields on the dielectric liquid layer is analyzed and the behavior of the flow when these fields compete or cooperate is studied. It is demonstrated that the electrically induced convection enhances the heat transfer. To cite this article: Ph. Traoré et al., C. R. Mecanique 337 (2009).

  8. Double layer of platinum electrodes: Non-monotonic surface charging phenomena and negative double layer capacitance

    NASA Astrophysics Data System (ADS)

    Huang, Jun; Zhou, Tao; Zhang, Jianbo; Eikerling, Michael

    2018-01-01

    In this study, a refined double layer model of platinum electrodes accounting for chemisorbed oxygen species, oriented interfacial water molecules, and ion size effects in solution is presented. It results in a non-monotonic surface charging relation and a peculiar capacitance vs. potential curve with a maximum and possibly negative values in the potential regime of oxide-formation.

  9. Electrochemical cell having an alkali-metal-nitrate electrode

    DOEpatents

    Roche, M.F.; Preto, S.K.

    1982-06-04

    A power-producing secondary electrochemical cell includes a molten alkali metal as the negative-electrode material and a molten-nitrate salt as the positive-electrode material. The molten material in the respective electrodes are separated by a solid barrier of alkali-metal-ion conducting material. A typical cell includes active materials of molten sodium separated from molten sodium nitrate and other nitrates in mixture by a layer of sodium ..beta..'' alumina.

  10. The effect of electrode temperature on the sparking voltage of short spark gaps

    NASA Technical Reports Server (NTRS)

    Silsbee, F B

    1924-01-01

    This report presents the results of an investigation to determine what effect the temperature of spark plug electrodes might have on the voltage at which a spark occurred. A spark gap was set up so that one electrode could be heated to temperatures up to 700 degrees C., while the other electrode and the air in the gap were maintained at room temperature. The sparking voltages were measured both with direct voltage and with voltage impulse from ignition coil. It was found that the sparking voltage of the gap decreased materially with increase of temperature. This change was more marked when the hot electrode was of negative polarity. The phenomena observed can be explained by the ionic theory of gaseous conduction, and serve to account for certain hitherto unexplained actions in the operation of internal combustion engines. These results indicate that the ignition spark will pass more readily when the spark-plug design is such as to make the electrodes run hot. This possible gain is, however, very closely limited by the danger of producing preignition. These experiments also show that sparking is somewhat easier when the hot electrode (which is almost always the central electrode) is negative than when the polarity is reversed.

  11. Performance evaluation of thermally treated graphite felt electrodes for vanadium redox flow battery and their four-point single cell characterization

    NASA Astrophysics Data System (ADS)

    Mazúr, P.; Mrlík, J.; Beneš, J.; Pocedič, J.; Vrána, J.; Dundálek, J.; Kosek, J.

    2018-03-01

    In our contribution we study the electrocatalytic effect of oxygen functionalization of thermally treated graphite felt on kinetics of electrode reactions of vanadium redox flow battery. Chemical and morphological changes of the felts are analysed by standard physico-chemical characterization techniques. A complex method four-point method is developed and employed for characterization of the felts in a laboratory single-cell. The method is based on electrochemical impedance spectroscopy and load curves measurements of positive and negative half-cells using platinum wire pseudo-reference electrodes. The distribution of ohmic and faradaic losses within a single-cell is evaluated for both symmetric and asymmetric electrode set-up with respect to the treatment conditions. Positive effect of oxygen functionalization is observed only for negative electrode, whereas kinetics of positive electrode reaction is almost unaffected by the treatment. This is in a contradiction to the results of typically employed cyclovoltammetric characterization which indicate that both electrodes are enhanced by the treatment to a similar extent. The developed four-point characterization method can be further used e.g., for the component screening and in-situ durability studies on single-cell scale redox flow batteries of various chemistries.

  12. Apparatus for inspecting fuel elements

    DOEpatents

    Oakley, David J.; Groves, Oliver J.; Kaiser, Bruce J.

    1986-01-01

    Disclosed is an alpha monitor usable in an automated nuclear fuel pin loading and processing unit. Fuel pins or other elongated pins are fed laterally into the alpha monitor in a singular fashion and are translated by a first roller assembly into a weld flare machining and decontamination substation not forming a part of the invention. Pins return and are lifted upwardly and transferred across to a combined pin lifting and electrode operating means which lifts the pins upwardly into a clamshell electrode assembly which is spread open by a combined pin lifting and electrode operating means. Once inserted the clamshell type electrode arrangement closes around the fuel pins so that inspection can occur. Fuel pins are inspected by charging electrodes to a negative potential and measuring the change in charge occurring when positively charged alpha particles strike the negatively charged electrodes. After inspection, the fuel pins are lowered by the pin lifting and electrode operating means into a second roller assembly which longitudinally conveys approved pins from the airtight enclosure in which the alpha monitor is mounted. If the fuel pins are rejected then they are moved laterally by a second transfer means and onto another system for further processing.

  13. Apparatus for inspecting fuel elements

    DOEpatents

    Kaiser, B.J.; Oakley, D.J.; Groves, O.J.

    1984-12-21

    This disclosure describes an alpha monitor usable in an automated nuclear fuel pin loading and processing unit. Fuel pins or other elongated pins are fed laterally into the alpha monitor in a singular fashion and are translated by a first roller assembly into a weld flare machining and decontamination substation not forming a part of the invention. Pins return and are lifted upwardly and transferred across to a combined pin lifting and electrode operating means which lifts the pins upwardly into a clamshell electrode assembly which is spread open by a combined pin lifting and electrode operating means. Once inserted the clamshell type electrode arrangement closes around the fuel pins so that inspection can occur. Fuel pins are inspected by charging electrodes to a negative potential and measuring the change in charge occurring when positively charged alpha particles strike the negatively charged electrodes. After inspection, the fuel pins are lowered by the pin lifting and electrode operating means into a second roller assembly which longitudinally conveys approved pins from the airtight enclosure in which the alpha monitor is mounted. If the fuel pins are rejected then they are moved laterally by a second transfer means and onto another system for further processing.

  14. Characteristics of the high-rate discharge capability of a nickel/metal hydride battery electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, M.; Han, J.; Feng, F.

    1999-10-01

    The high rate discharge capability of the negative electrode in a Ni/MH battery is mainly determined by the charge transfer process at the interface between the metal hydride (MH) alloy powder and the electrolyte, and the mass transfer process in the bulk MH alloy powder. In this study, the anodic polarization curves of a MH electrode were measured and analyzed. An alloy of nominal composition Mm{sub 0.95}Ti{sub 0.05}Ni{sub 3.85}Co{sub 0.45}Mn{sub 0.35}Al{sub 0.35} was used as the negative electrode material. With increasing number of charge/discharge cycles, the MH alloy powders microcrack into particles several micrometers in diameter. The decrease in themore » MH alloy particle size results in an increase in both the activation surface area and the exchange current density of the MH alloy electrode. The electrode overpotentials of the MH electrode decreases with increasing number of cycles at a large value of anodic polarization current. The decrease in electrode overpotential leads to an increase in the high rate discharge capability of the MH electrode. By using the limiting current, the hydrogen diffusion coefficient in the MH alloy was estimated to be 1.2 x 10{sup {minus}11}cm{sup 2}s{sup {minus}1} assuming an average particle radius of 5 {micro}m.« less

  15. Systematic chemical profiling of a multicomponent Chinese herbal formula Huo Luo Xiao Ling Dan by ultra high performance liquid chromatography coupled with electrospray ionization quadrupoletime-of-flight mass spectrometry.

    PubMed

    Wang, Fenrong; Ai, Yu; Wu, Yun; Ma, Wen; Bian, Qiaoxia; Lee, David Y-W; Dai, Ronghua

    2015-03-01

    Huo Luo Xiao Ling Dan, a Chinese herbal formula consisting of 11 different herbs, has been used in folk medicine for the treatment of arthritis and other chronic inflammatory diseases. However, the chemical compositions of Huo Luo Xiao Ling Dan are not completely characterized. In the present study, an ultra high performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry method in positive and negative ion modes was employed to identify biochemical constitutes in Huo Luo Xiao Ling Dan. As a result, a total of 76 compounds including alkaloids, monoterpene glycosides, iridoids, phenolic acids, and tanshinones, coumarins, lactones, flavones, and their glycosides, triterpenes, and triterpene saponins were characterized by comparing the retention time and mass spectrometry data with reference standards within 5 ppm error or by reference to the reference literature. These results would provide the basis for a further in vivo study of Huo Luo Xiao Ling Dan and information for potential new drug candidates for treating arthritis and other chronic inflammatory diseases. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Method of making electrodes for electrochemical cell. [Li-Al alloy

    DOEpatents

    Kaun, T.D.; Kilsdonk, D.J.

    1981-07-29

    A method is described for making an electrode for an electrochemical cell in which particulate electrode-active material is mixed with a liquid organic carrier chemically inert with respect to the electrode-active material, mixing the liquid carrier to form an extrudable slurry. The liquid carrier is present in an amount of from about 10 to about 50% by volume of the slurry, and then the carrier is removed from the slurry leaving the electrode-active material. The method is particularly suited for making a lithium-aluminum alloy negative electrode for a high-temperature cell.

  17. Electronically conductive polymer binder for lithium-ion battery electrode

    DOEpatents

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe

    2017-05-16

    A family of carboxylic acid group containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  18. Electronically conductive polymer binder for lithium-ion battery electrode

    DOEpatents

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S; Zheng, Honghe

    2014-10-07

    A family of carboxylic acid group containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  19. Organic non-aqueous cation-based redox flow batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lu; Huang, Jinhua; Burrell, Anthony

    The present invention provides a non-aqueous redox flow battery comprising a negative electrode immersed in a non-aqueous liquid negative electrolyte, a positive electrode immersed in a non-aqueous liquid positive electrolyte, and a cation-permeable separator (e.g., a porous membrane, film, sheet, or panel) between the negative electrolyte from the positive electrolyte. During charging and discharging, the electrolytes are circulated over their respective electrodes. The electrolytes each comprise an electrolyte salt (e.g., a lithium or sodium salt), a transition-metal free redox reactant, and optionally an electrochemically stable organic solvent. Each redox reactant is selected from an organic compound comprising a conjugated unsaturatedmore » moiety, a boron cluster compound, and a combination thereof. The organic redox reactant of the positive electrolyte comprises a tetrafluorohydroquinone ether compound or a tetrafluorocatechol ether compound.« less

  20. Electrochemical cell with high conductivity glass electrolyte

    DOEpatents

    Nelson, P.A.; Bloom, I.D.; Roche, M.F.

    1986-04-17

    A secondary electrochemical cell with sodium-sulfur or other molten reactants is provided with an ionically conductive glass electrolyte. The cell is contained within an electrically conductive housing with a first portion at negative potential and a second portion insulated therefrom at positive electrode potential. The glass electrolyte is formed into a plurality of elongated tubes and placed lengthwise within the housing. The positive electrode material, for instance sulfur, is sealed into the glass electrolyte tubes and is provided with an elongated axial current collector. The glass electrolyte tubes are protected by shield tubes or sheets that also define narrow annuli for wicking of the molten negative electrode material.

  1. Electrochemical cell with high conductivity glass electrolyte

    DOEpatents

    Nelson, P.A.; Bloom, I.D.; Roche, M.F.

    1987-04-21

    A secondary electrochemical cell with sodium-sulfur or other molten reactants is provided with a ionically conductive glass electrolyte. The cell is contained within an electrically conductive housing with a first portion at negative potential and a second portion insulated therefrom at positive electrode potential. The glass electrolyte is formed into a plurality of elongated tubes and placed lengthwise within the housing. The positive electrode material, for instance sulfur, is sealed into the glass electrolyte tubes and is provided with an elongated axial current collector. The glass electrolyte tubes are protected by shield tubes or sheets that also define narrow annuli for wicking of the molten negative electrode material. 6 figs.

  2. Electrochemical cell with high conductivity glass electrolyte

    DOEpatents

    Nelson, Paul A.; Bloom, Ira D.; Roche, Michael F.

    1987-01-01

    A secondary electrochemical cell with sodium-sulfur or other molten reactants is provided with a ionically conductive glass electrolyte. The cell is contained within an electrically conductive housing with a first portion at negative potential and a second portion insulated therefrom at positive electrode potential. The glass electrolyte is formed into a plurality of elongated tubes and placed lengthwise within the housing. The positive electrode material, for instance sulfur, is sealed into the glass electrolyte tubes and is provided with an elongated axial current collector. The glass electrolyte tubes are protected by shield tubes or sheets that also define narrow annuli for wicking of the molten negative electrode material.

  3. Time-lag properties of corona streamer discharges between impulse sphere and dc needle electrodes under atmospheric air conditions.

    PubMed

    Okano, Daisuke

    2013-02-01

    In this study of corona streamer discharges from an impulse generator using a dc power supply, the relationship of the discharge time-lag with the dc bias voltage between the sphere-to-needle electrodes under atmospheric conditions is investigated. Devices utilizing corona discharges have been used to purify air or water, destroy bacteria, and to remove undesirable substances, and in order to achieve fast response times and high power efficiencies in such devices, it is important to minimize the time-lag of the corona discharge. Our experimental results show that (a) the discharge path of a negatively biased needle electrode will be straighter than that of a positively biased needle and (b) the discharge threshold voltage in both the positive and the negative needle electrodes is nearly equal to 33 kV. By expressing the discharge voltage as a power function of time-lag, the extent of corona generation can be quantitatively specified using the exponent of this power function. The observed behavior of a corona streamer discharge between the negative spherical and the positive needle electrodes indicates that the largest power exponent is associated with the shortest time-lag, owing to the reduction in the statistical time-lag in the absence of a formative time-lag.

  4. Time-lag properties of corona streamer discharges between impulse sphere and dc needle electrodes under atmospheric air conditions

    NASA Astrophysics Data System (ADS)

    Okano, Daisuke

    2013-02-01

    In this study of corona streamer discharges from an impulse generator using a dc power supply, the relationship of the discharge time-lag with the dc bias voltage between the sphere-to-needle electrodes under atmospheric conditions is investigated. Devices utilizing corona discharges have been used to purify air or water, destroy bacteria, and to remove undesirable substances, and in order to achieve fast response times and high power efficiencies in such devices, it is important to minimize the time-lag of the corona discharge. Our experimental results show that (a) the discharge path of a negatively biased needle electrode will be straighter than that of a positively biased needle and (b) the discharge threshold voltage in both the positive and the negative needle electrodes is nearly equal to 33 kV. By expressing the discharge voltage as a power function of time-lag, the extent of corona generation can be quantitatively specified using the exponent of this power function. The observed behavior of a corona streamer discharge between the negative spherical and the positive needle electrodes indicates that the largest power exponent is associated with the shortest time-lag, owing to the reduction in the statistical time-lag in the absence of a formative time-lag.

  5. Important parameters affecting the cell voltage of aqueous electrical double-layer capacitors

    NASA Astrophysics Data System (ADS)

    Wu, Tzu-Ho; Hsu, Chun-Tsung; Hu, Chi-Chang; Hardwick, Laurence J.

    2013-11-01

    This study discusses and demonstrates how the open-circuit potential and charges stored in the working potential window on positive and negative electrodes affect the cell voltage of carbon-based electrical double-layer capacitors (EDLCs) in aqueous electrolytes. An EDLC consisting of two activated carbon electrodes is employed as the model system for identifying these key parameters although the potential window of water decomposition can be simply determined by voltammetric methods. First, the capacitive performances of an EDLC with the same charge on positive and negative electrodes are evaluated by cyclic voltammetric, charge-discharge, electrochemical impedance spectroscopic (EIS) analyses, and inductance-capacitance-resistance meter (LCR meter). The principles for obtaining the highest acceptable cell voltage of such symmetric ECs with excellent reversibility and capacitor-like behaviour are proposed. Aqueous charge-balanced EDLCs can be operated as high as 2.0 V with high energy efficiency (about 90%) and only 4% capacitance loss after the 600-cycle stability checking. The necessity of charge balance (but not capacitance balance) for positive and negative electrodes is substantiated from the lower acceptable cell voltage of charge-unbalanced EDLCs.

  6. The synergistic effects of combining the high energy mechanical milling and wet milling on Si negative electrode materials for lithium ion battery

    NASA Astrophysics Data System (ADS)

    Hou, Shang-Chieh; Su, Yuh-Fan; Chang, Chia-Chin; Hu, Chih-Wei; Chen, Tsan-Yao; Yang, Shun-Min; Huang, Jow-Lay

    2017-05-01

    The submicro-sized and nanostructured Si aggregated powder is prepared by combinational routes of high energy mechanical milling (HEMM) and wet milling. Milled Si powder is investigated by particle size analyzer, SEM, TEM, XPS and XRD as well as the control ones. Its electrode is also investigated by in situ XRD and electrochemical performance. Morphology reveals that combining the high energy mechanical milling and wet milling not only fracture primary Si particles but also form submicro-sized Si aggregates constructed by amorphous and nanocrystalline phases. Moreover, XPS shows that wet milling in ethanol trigger Sisbnd Osbnd CH2CH3 bonding on Si surface might enhance the SEI formation. In situ XRD analysis shows negative electrode made of submicro-sized Si aggregated powder can effectively suppress formation of crystalline Li15Si4 during lithiation and delithiation due to amorphous and nanocrystalline construction. Thus, the submicro-sized Si powder with synergistic effects combining the high energy mechanical milling and wet milling in ethanol as negative electrode performs better capacity retention.

  7. Regulation of the discharge reservoir of negative electrodes in Ni-MH batteries by using Ni(OH) x (x = 2.10) and γ-CoOOH

    NASA Astrophysics Data System (ADS)

    Shangguan, Enbo; Chang, Zhaorong; Tang, Hongwei; Yuan, Xiao-Zi; Wang, Haijiang

    In this paper, a novel strategy to regulate the discharge reservoir of negative electrodes in Ni-MH batteries is introduced by using Ni(OH) x (x = 2.10) and γ-CoOOH. The electrochemical measurements of these batteries demonstrate that the use of Ni(OH) x (x = 2.10) and γ-CoOOH can not only successfully regulate the discharge reservoir of negative electrodes in Ni-MH batteries to an adequate quantity, but also effectively improve the electrochemical performance of the batteries. Compared with normal batteries, the in-house prepared batteries with a lower discharge reservoir exhibit an enhanced discharge capacity, improved high-rate discharge ability, higher discharge potential plateau and superior cycle stability. The effect of Ni(OH) x (x = 2.10) and γ-CoOOH on the electrochemical performance of nickel electrode is also investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results suggest that the new method is simple and effective for cost reduction of Ni-MH batteries with improved electrochemical performance.

  8. High-rate nano-crystalline Li 4Ti 5O 12 attached on carbon nano-fibers for hybrid supercapacitors

    NASA Astrophysics Data System (ADS)

    Naoi, Katsuhiko; Ishimoto, Shuichi; Isobe, Yusaku; Aoyagi, Shintaro

    A lithium titanate (Li 4Ti 5O 12)-based electrode which can operate at unusually high current density (300 C) was developed as negative electrode for hybrid capacitors. The high-rate Li 4Ti 5O 12 electrode has a unique nano-structure consisting of unusually small nano-crystalline Li 4Ti 5O 12 (ca. 5-20 nm) grafted onto carbon nano-fiber anchors (nc-Li 4Ti 5O 12/CNF). This nano-structured nc-Li 4Ti 5O 12/CNF composite are prepared by simple sol-gel method under ultra-centrifugal force (65,000 N) followed by instantaneous annealing at 900 °C for 3 min. A model hybrid capacitor cell consisting of a negative nc-Li 4Ti 5O 12/CNF composite electrode and a positive activated carbon electrode showed high energy density of 40 Wh L -1 and high power density of 7.5 kW L -1 comparable to conventional EDLCs.

  9. Numerical modelling of needle-grid electrodes for negative surface corona charging system

    NASA Astrophysics Data System (ADS)

    Zhuang, Y.; Chen, G.; Rotaru, M.

    2011-08-01

    Surface potential decay measurement is a simple and low cost tool to examine electrical properties of insulation materials. During the corona charging stage, a needle-grid electrodes system is often used to achieve uniform charge distribution on the surface of the sample. In this paper, a model using COMSOL Multiphysics has been developed to simulate the gas discharge. A well-known hydrodynamic drift-diffusion model was used. The model consists of a set of continuity equations accounting for the movement, generation and loss of charge carriers (electrons, positive and negative ions) coupled with Poisson's equation to take into account the effect of space and surface charges on the electric field. Four models with the grid electrode in different positions and several mesh sizes are compared with a model that only has the needle electrode. The results for impulse current and surface charge density on the sample clearly show the effect of the extra grid electrode with various positions.

  10. Adhesion signals of phospholipid vesicles at an electrified interface.

    PubMed

    DeNardis, Nadica Ivošević; Žutić, Vera; Svetličić, Vesna; Frkanec, Ruža

    2012-09-01

    General adhesion behavior of phospholipid vesicles was examined in a wide range of potentials at the mercury electrode by recording time-resolved adhesion signals. It was demonstrated that adhesion-based detection is sensitive to polar headgroups in phospholipid vesicles. We identified a narrow potential window around the point of zero charge of the electrode where the interaction of polar headgroups of phosphatidylcholine vesicles with the substrate is manifested in the form of bidirectional signals. The bidirectional signal is composed of the charge flow due to the nonspecific interaction of vesicle adhesion and spreading and of the charge flow due to a specific interaction of the negatively charged electrode and the most exposed positively charged choline headgroups. These signals are expected to appear only when the electrode surface charge density is less than the surface charge density of the choline groups at the contact interface. In comparison, for the negatively charged phosphatidylserine vesicles, we identified the potential window at the mercury electrode where charge compensation takes place, and bidirectional signals were not detected.

  11. Reversal of the asymmetry in a cylindrical coaxial capacitively coupled Ar/Cl 2 plasma

    DOE PAGES

    Upadhyay, Janardan; Im, Do; Popović, Svetozar; ...

    2015-10-08

    The reduction of the asymmetry in the plasma sheath voltages of a cylindrical coaxial capacitively coupled plasma is crucial for efficient surface modification of the inner surfaces of concave three-dimensional structures, including superconducting radio frequency cavities. One critical asymmetry effect is the negative dc self-bias, formed across the inner electrode plasma sheath due to its lower surface area compared to the outer electrode. The effect on the self-bias potential with the surface enhancement by geometric modification on the inner electrode structure is studied. The shapes of the inner electrodes are chosen as cylindrical tube, large and small pitch bellows, andmore » disc-loaded corrugated structure (DLCS). The dc self-bias measurements for all these shapes were taken at different process parameters in Ar/Cl 2 discharge. Lastly, the reversal of the negative dc self-bias potential to become positive for a DLCS inner electrode was observed and the best etch rate is achieved due to the reduction in plasma asymmetry.« less

  12. Influence of an electric field on the buoyancy-driven instabilities.

    PubMed

    Zadrazil, Ales; Sevcíková, Hana

    2005-11-01

    The influence of dc electric fields (EFs) on the development of buoyancy-driven instabilities of reaction fronts is investigated experimentally in a modified Hele-Shaw cell for the arsenous acid-iodate system. Assessment of effects of external EFs is made both visually and through dispersion curves. It is shown that density fingering, observed on ascending fronts, is suppressed by the EF if the front propagates towards the positive electrode and is enhanced when the front propagates towards the negative electrode. The stabilizing (destabilizing) effects include slower (faster) development of fingers and the decrease (increase) in their numbers. The descending front, stable under no EF conditions, remains stable when an EF is applied with the positive electrode facing the approaching front. When the descending front faces the negative electrode, the tiny fingerlike structure develops after quite a long time.

  13. Electrochemical detection of nanomolar dopamine in the presence of neurophysiological concentration of ascorbic acid and uric acid using charge-coated carbon nanotubes via facile and green preparation.

    PubMed

    Oh, Jeong-Wook; Yoon, Yeo Woon; Heo, Jihye; Yu, Joonhee; Kim, Hasuck; Kim, Tae Hyun

    2016-01-15

    Negatively charged multi-walled carbon nanotubes (MWCNTs) were prepared using simple sonication technique with non-toxic citric acid (CA) for the electrochemical detection of dopamine (DA). CA/MWCNTs were placed on glassy carbon (GC) electrodes by drop-casting method and then electrochemical determinations of DA were performed in the presence of highly concentrated ascorbic acid (AA). For the comparison of the charge effect on MWCNTs surface, positively charged polyethyleneimine (PEI)/MWCNT/GC electrode and pristine MWCNT/GC electrode were also prepared. Contrary to conventional GC electrode, all three types of MWCNT modified electrodes (CA/MWCNT/GC, PEI/MWCNT/GC, and pristine MWCNT/GC) can discriminate ~μM of DA from 1mM AA using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) due to the inherent electrocatalytic effect of MWCNTs. Compared to positively charged PEI/MWCNT/GC and pristine MWCNT/GC electrodes, negatively charged CA/MWCNT/GC electrode remarkably enhanced the electrochemical sensitivity and selectivity of DA, showing the linear relationship between DPV signal and DA concentration in the range of 10-1000nM even in the presence of ~10(5) times concentrated AA, which is attributed to the synergistic effect of the electrostatic interaction between cationic DA molecules and negatively charged MWCNTs and the inherent electrocatalytic property of MWCNT. As a result, the limit of detection (LOD) of DA for CA/MWCNT/GC electrode was 4.2nM, which is 5.2 and 16.5 times better than those for MWCNT/GC electrode and PEI/MWCNT/GC electrode even in the presence of 1mM AA. This LOD value for DA at CA/MWCNT/GC electrode is one of the lowest values compared to the previous reports and is low enough for the early diagnosis of neurological disorder in the presence of physiological AA concentration (~0.5mM). In addition, the high selectivity and sensitivity of DA at CA/MWCNT/GC electrode were well kept even in the presence of both 1mM AA and 10μM uric acid (UA) as similar as neurophysiological concentration. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Network rhythms influence the relationship between spike-triggered local field potential and functional connectivity

    PubMed Central

    Maunsell, John H.R.

    2012-01-01

    Characterizing the functional connectivity between neurons is key for understanding brain function. We recorded spikes and local field potentials (LFP) from multi-electrode arrays implanted in monkey visual cortex to test the hypotheses that spikes generated outward traveling LFP waves and the strength of functional connectivity depended on stimulus contrast, as described recently. These hypotheses were proposed based on the observation that the latency of the peak negativity of the spike-triggered LFP average (STA) increased with distance between the spike and LFP electrodes, and the magnitude of the STA negativity and the distance over which it was observed decreased with increasing stimulus contrast. Detailed analysis of the shape of the STA, however, revealed contributions from two distinct sources – a transient negativity in the LFP locked to the spike (∼0 ms) that attenuated rapidly with distance, and a low frequency rhythm with peak negativity ∼25 ms after the spike that attenuated slowly with distance. The overall negative peak of the LFP, which combined both these components, shifted from ∼0 to ∼25 ms going from electrodes near the spike to electrodes far from the spike, giving an impression of a traveling wave, although the shift was fully explained by changing contributions from the two fixed components. The low frequency rhythm was attenuated during stimulus presentations, decreasing the overall magnitude of the STA. These results highlight the importance of accounting for the network activity while using STAs to determine functional connectivity. PMID:21880928

  15. Binaural unmasking with multiple adjacent masking electrodes in bilateral cochlear implant users

    PubMed Central

    Lu, Thomas; Litovsky, Ruth; Zeng, Fan-Gang

    2011-01-01

    Bilateral cochlear implant (BiCI) users gain an advantage in noisy situations from a second implant, but their bilateral performance falls short of normal hearing listeners. Channel interactions due to overlapping electrical fields between electrodes can impair speech perception, but its role in limiting binaural hearing performance has not been well characterized. To address the issue, binaural masking level differences (BMLD) for a 125 Hz tone in narrowband noise were measured using a pair of pitch-matched electrodes while simultaneously presenting the same masking noise to adjacent electrodes, representing a more realistic stimulation condition compared to prior studies that used only a single electrode pair. For five subjects, BMLDs averaged 8.9 ± 1.0 dB (mean ± s.e.) in single electrode pairs but dropped to 2.1 ± 0.4 dB when presenting noise on adjacent masking electrodes, demonstrating a negative impact of the additional maskers. Removing the masking noise from only the pitch-matched electrode pair not only lowered thresholds but also resulted in smaller BMLDs. The degree of channel interaction estimated from auditory nerve evoked potentials in three subjects was significantly and negatively correlated with BMLD. The data suggest that if the amount of channel interactions can be reduced, BiCI users may experience some performance improvements related to binaural hearing. PMID:21682415

  16. New β-Cyclodextrin Entrapped in Polyethyleneimine Film-Modified Electrodes for Pharmaceutical Compounds Determination

    PubMed Central

    Fritea, Luminţa; Tertiş, Mihaela; Cristea, Cecilia; Săndulescu, Robert

    2013-01-01

    The electrochemical behavior of ascorbic acid and uric acid on glassy carbon bare electrodes and ones modified with β-cyclodextrin entrapped in polyethyleneimine film has been investigated using square wave voltammetry. The electrode modification was achieved in order to separate the voltammetric peaks of ascorbic acid and uric acid when present in the same solution. On the modified electrodes the potential of the oxidation peak of the ascorbic acid was shifted to more negative values by over 0.3 V, while in the case of uric acid, the negative potential shift was about 0.15 V compared to the bare glassy carbon electrode. When the two compounds were found together in the solution, on the bare electrode only a single broad signal was observed, while on the modified electrode the peak potentials of these two compounds were separated by 0.4 V. When the uric acid concentration remained constant, the peak intensity of the ascorbic acid is increased linearly with the concentration (r2 = 0.996) and when the ascorbic acid concentration remains constant, the peak intensity of the uric acid increased linearly with the concentration (r2 = 0.992). FTIR measurements supported the formation of inclusion complexes. In order to characterize the modification of the electrodes microscopic studies were performed. The modified electrodes were successfully employed for the determination of ascorbic acid in pharmaceutical formulations with a detection limit of 0.22 μM. PMID:24287544

  17. Transverse field focused system

    DOEpatents

    Anderson, Oscar A.

    1986-01-01

    A transverse field focused (TFF) system for transport or acceleration of an intense sheet beam of negative ions in which a serial arrangement of a plurality of pairs of concentric cylindrical-arc electrodes is provided. Acceleration of the sheet beam can be achieved by progressively increasing the mean electrode voltage of successive electrode pairs. Because the beam is curved by the electrodes, the system can be designed to transport the beam through a maze passage which is baffled to prevent line of sight therethrough. Edge containment of the beam can be achieved by shaping the side edges of the electrodes to produce an electric force vector directed inwardly from the electrode edges.

  18. Method for Predicting the Energy Characteristics of Li-Ion Cells Designed for High Specific Energy

    NASA Technical Reports Server (NTRS)

    Bennett, William, R.

    2012-01-01

    Novel electrode materials with increased specific capacity and voltage performance are critical to the NASA goals for developing Li-ion batteries with increased specific energy and energy density. Although performance metrics of the individual electrodes are critically important, a fundamental understanding of the interactions of electrodes in a full cell is essential to achieving the desired performance, and for establishing meaningful goals for electrode performance in the first place. This paper presents design considerations for matching positive and negative electrodes in a viable design. Methods for predicting cell-level performance, based on laboratory data for individual electrodes, are presented and discussed.

  19. Development of non-flammable lithium secondary battery with room-temperature ionic liquid electrolyte: Performance of electroplated Al film negative electrode

    NASA Astrophysics Data System (ADS)

    Ui, Koichi; Yamamoto, Keigo; Ishikawa, Kohei; Minami, Takuto; Takeuchi, Ken; Itagaki, Masayuki; Watanabe, Kunihiro; Koura, Nobuyuki

    The negative electrode performance of the electroplated Al film electrode in the LiCl saturated AlCl 3-1-ethyl-3-methylimizadolium chloride (EMIC) + SOCl 2 melt as the electrolyte for use in non-flammable lithium secondary batteries was evaluated. In the cyclic voltammogram of the electroplated Al film electrode in the melt, the oxidation and reduction waves corresponding to the electrochemical insertion/extraction reactions of the Li + ion were observed at 0-0.80 V vs. Li +/Li, which suggested that the electroplated Al film electrode operated well in the electrolyte. The almost flat potential profiles at about 0.40 V vs. Li +/Li on discharging were shown. The discharge capacity and charge-discharge efficiency was 236 mAh g -1 and 79.2% for the 1st cycle and it maintained 232 mAh g -1 and 77.9% after the 10th cycle. In addition, the initial charge-discharge efficiencies of the electroplated Al film electrode were higher than that of carbon electrodes. The main cathodic polarization reaction was the insertion of Li + ions, and side reactions hardly occurred due to the decomposition reaction of the melt because the Li content corresponding to the electricity was almost totally inserted into the film after charging.

  20. Original implementation of Electrochemical Impedance Spectroscopy (EIS) in symmetric cells: Evaluation of post-mortem protocols applied to characterize electrode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Gordon, Isabel Jiménez; Genies, Sylvie; Si Larbi, Gregory; Boulineau, Adrien; Daniel, Lise; Alias, Mélanie

    2016-03-01

    Understanding ageing mechanisms of Li-ion batteries is essential for further optimizations. To determine performance loss causes, post-mortem analyses are commonly applied. For each type of post-mortem test, different sample preparation protocols are adopted. However, reports on the reliability of these protocols are rare. Herein, Li-ion pouch cells with LiNi1/3Mn1/3Co1/3O2 - polyvinylidene fluoride positive electrode, graphite-carboxymethyl cellulose-styrene rubber negative electrode and LiPF6 - carbonate solvents mixture electrolyte, are opened and electrodes are recovered following a specified protocol. Negative and positive symmetric cells are assembled and their impedances are recorded. A signal analysis is applied to reconstruct the Li-ion pouch cell impedance from the symmetric cells, then comparison against the pouch cell true impedance allows the evaluation of the sample preparation protocols. The results are endorsed by Transmission Electronic Microscopy (TEM) and Gas Chromatography - Mass Spectrometry (GC-MS) analyses. Carbonate solvents used to remove the salt impacts slightly the surface properties of both electrodes. Drying electrodes under vacuum at 25 °C produces an impedance increase, particularly very marked for the positive electrode. Drying at 50 °C under vacuum or/and exposition to the anhydrous room atmosphere is very detrimental.

  1. Characterization of physio-chemical properties of polymeric and electrochemical materials for aerospace flight

    NASA Technical Reports Server (NTRS)

    Rock, M.; Kunigahalli, V.; Khan, S.; Mcnair, A.

    1984-01-01

    Sealed nickel cadmium cells having undergone a large number of cycles were discharged using the Hg/HgO reference electrode. The negative electrode exhibited the second plateau. SEM of negative plates of such cells show clusters of large crystals of cadmium hydroxide. These large crystals on the negative plates disappear after continuous overcharging in flooded cells. Atomic Absorption Spectroscopy and standard wet chemical methods are being used to determine the cell materials viz: nickel, cadmium, cobalt, potassum and carbonate. The anodes and cathodes are analyzed after careful examination and the condition of the separator material is evaluated.

  2. Surgical factors in pediatric cochlear implantation and their early effects on electrode activation and functional outcomes.

    PubMed

    Francis, Howard W; Buchman, Craig A; Visaya, Jiovani M; Wang, Nae-Yuh; Zwolan, Teresa A; Fink, Nancy E; Niparko, John K

    2008-06-01

    To assess the impact of surgical factors on electrode status and early communication outcomes in young children in the first 2 years of cochlear implantation. Prospective multicenter cohort study. Six tertiary referral centers. Children 5 years or younger before implantation with normal nonverbal intelligence. Cochlear implant operations in 209 ears of 188 children. Percent active channels, auditory behavior as measured by the Infant Toddler Meaningful Auditory Integration Scale/Meaningful Auditory Integration Scale and Reynell receptive language scores. Stable insertion of the full electrode array was accomplished in 96.2% of ears. At least 75% of electrode channels were active in 88% of ears. Electrode deactivation had a significant negative effect on Infant Toddler Meaningful Auditory Integration Scale/Meaningful Auditory Integration Scale scores at 24 months but no effect on receptive language scores. Significantly fewer active electrodes were associated with a history of meningitis. Surgical complications requiring additional hospitalization and/or revision surgery occurred in 6.7% of patients but had no measurable effect on the development of auditory behavior within the first 2 years. Negative, although insignificant, associations were observed between the need for perioperative revision of the device and 1) the percent of active electrodes and 2) the receptive language level at 2-year follow-up. Activation of the entire electrode array is associated with better early auditory outcomes. Decrements in the number of active electrodes and lower gains of receptive language after manipulation of the newly implanted device were not statistically significant but may be clinically relevant, underscoring the importance of surgical technique and the effective placement of the electrode array.

  3. Cell design for lithium alloy/metal sulfide battery

    DOEpatents

    Kaun, Thomas D.

    1985-01-01

    The disclosed lithium alloy/iron sulfide cell design provides loop-like positive and negative sheet metal current collectors electrically insulated from one another by separator means, the positive collector being located outwardly of the negative collector. The collectors are initially secured within an open-ended cell housing, which allows for collector pretesting for electrical shorts prior to adding any electrode materials and/or electrolyte to the cell. Separate chambers are defined outwardly of the positive collector and inwardly of the negative collector open respectively in opposite directions toward the open ends of the cell housing; and positive and negative electrode materials can be extruded into these respective chambers via the opposite open housing ends. The chambers and cell housing ends can then be sealed closed. A cross wall structurally reinforces the cell housing and also thereby defines two cavities, and paired positive and negative collectors are disposed in each cavity and electrically connected in parallel. The cell design provides for a high specific energy output and improved operating life in that any charge-discharge cycle swelling of the positive electrode material will be inwardly against only the positive collector to minimize shorts caused by the collectors shifting relative to one another.

  4. Improved cell design for lithium alloy/metal sulfide battery

    DOEpatents

    Kaun, T.D.

    1984-03-30

    The disclosed lithium alloy/iron sulfide cell design provides loop-like positive and negative sheet metal current collectors electrically insulated from one another by separator means, the positive collector being located outwardly of the negative collector. The collectors are initially secured within an open-ended cell housing, which allows for collector pretesting for electrical shorts prior to adding any electrode materials and/or electrolyte to the cell. Separate chambers are defined outwardly of the positive collector and inwardly of the negative collector open respectively in opposite directions toward the open ends of the cell housing; and positive and negative electrode materials can be extruded into these respective chambers via the opposite open housing ends. The chambers and cell housing ends can then be sealed closed. A cross wall structurally reinforces the cell housing and also thereby defines two cavities, and paired positive and negative collectors are disposed in each cavity and electrically connected in parallel. The cell design provides for a high specific energy output and improved operating life in that any charge-discharge cycle swelling of the positive electrode material will be inwardly against only the positive collector to minimize shorts caused by the collectors shifting relative to one another.

  5. Porous MoO2 nanowires as stable and high-rate negative electrodes for electrochemical capacitors.

    PubMed

    Zheng, Dezhou; Feng, Haobin; Zhang, Xiyue; He, Xinjun; Yu, Minghao; Lu, Xihong; Tong, Yexiang

    2017-04-04

    Free-standing porous MoO 2 nanowires with extraordinary capacitive performance are developed as high-performance electrodes for electrochemical capacitors. The as-obtained MoO 2 electrode exhibits a remarkable capacitance of 424.4 mF cm -2 with excellent electrochemical durability (no capacitance decay after 10 000 cycles at various scan rates).

  6. In operando quantitation of Li concentration for a commercial Li-ion rechargeable battery using high-energy X-ray Compton scattering.

    PubMed

    Suzuki, Kosuke; Suzuki, Ayahito; Ishikawa, Taiki; Itou, Masayoshi; Yamashige, Hisao; Orikasa, Yuki; Uchimoto, Yoshiharu; Sakurai, Yoshiharu; Sakurai, Hiroshi

    2017-09-01

    Compton scattering is one of the most promising probes for quantitating Li under in operando conditions, since high-energy X-rays, which have high penetration power, are used as the incident beam and the Compton-scattered energy spectrum has specific line-shapes for each element. An in operando quantitation method to determine the Li composition in electrodes has been developed by using line-shape (S-parameter) analysis of the Compton-scattered energy spectrum. In this study, S-parameter analysis has been applied to a commercial coin cell Li-ion rechargeable battery and the variation of the S-parameters during the charge/discharge cycle at the positive and negative electrodes has been obtained. By using calibration curves for Li composition in the electrodes, the change in Li composition of the positive and negative electrodes has been determined using the S-parameters simultaneously.

  7. Fuel cell system for transportation applications

    DOEpatents

    Kumar, Romesh; Ahmed, Shabbir; Krumpelt, Michael; Myles, Kevin M.

    1993-01-01

    A propulsion system for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell receives hydrogen-containing fuel from the fuel tank and water and air and for partially oxidizing and reforming the fuel with water and air in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor.

  8. Fuel cell system for transportation applications

    DOEpatents

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1993-09-28

    A propulsion system is described for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell and receives hydrogen-containing fuel from the fuel tank and uses water and air for partially oxidizing and reforming the fuel in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor. 3 figures.

  9. A p-nitroaniline redox-active solid-state electrolyte for battery-like electrochemical capacitive energy storage combined with an asymmetric supercapacitor based on metal oxide functionalized β-polytype porous silicon carbide electrodes.

    PubMed

    Kim, Myeongjin; Yoo, Jeeyoung; Kim, Jooheon

    2017-05-23

    A unique redox active flexible solid-state asymmetric supercapacitor with ultra-high capacitance and energy density was fabricated using a composite comprising MgCo 2 O 4 nanoneedles and micro and mesoporous silicon carbide flakes (SiCF) (SiCF/MgCo 2 O 4 ) as the positive electrode material. Due to the synergistic effect of the two materials, this hybrid electrode has a high specific capacitance of 516.7 F g -1 at a scan rate of 5 mV s -1 in a 1 M KOH aqueous electrolyte. To obtain a reasonable matching of positive and negative electrode pairs, a composite of Fe 3 O 4 nanoparticles and SiCF (SiCF/Fe 3 O 4 ) was synthesized for use as a negative electrode material, which shows a high capacitance of 423.2 F g -1 at a scan rate of 5 mV s -1 . Therefore, by pairing the SiCF/MgCo 2 O 4 positive electrode and the SiCF/Fe 3 O 4 negative electrode with a redox active quasi-solid-state PVA-KOH-p-nitroaniline (PVA-KOH-PNA) gel electrolyte, a novel solid-state asymmetric supercapacitor device was assembled. Because of the synergistic effect between the highly porous SiCF and the vigorous redox-reaction of metal oxides, the hybrid nanostructure electrodes exhibited outstanding charge storage and transport. In addition, the redox active PVA-KOH-PNA electrolyte adds additional pseudocapacitance, which arises from the nitro-reduction and oxidation and reduction process of the reduction product of p-phenylenediamine, resulting in an enhancement of the capacitance (a specific capacitance of 161.77 F g -1 at a scan rate of 5 mV s -1 ) and energy density (maximum energy density of 72.79 Wh kg -1 at a power density of 727.96 W kg -1 ).

  10. Drought Induced Changes in Growth, Osmolyte Accumulation and Antioxidant Metabolism of Three Maize Hybrids

    PubMed Central

    Anjum, Shakeel A.; Ashraf, Umair; Tanveer, Mohsin; Khan, Imran; Hussain, Saddam; Shahzad, Babar; Zohaib, Ali; Abbas, Farhat; Saleem, Muhammad F.; Ali, Iftikhar; Wang, Long C.

    2017-01-01

    Consequences of drought stress in crop production systems are perhaps more deleterious than other abiotic stresses under changing climatic scenarios. Regulations of physio-biochemical responses of plants under drought stress can be used as markers for drought stress tolerance in selection and breeding. The present study was conducted to appraise the performance of three different maize hybrids (Dong Dan 80, Wan Dan 13, and Run Nong 35) under well-watered, low, moderate and SD conditions maintained at 100, 80, 60, and 40% of field capacity, respectively. Compared with well-watered conditions, drought stress caused oxidative stress by excessive production of reactive oxygen species (ROS) which led to reduced growth and yield formation in all maize hybrids; nevertheless, negative effects of drought stress were more prominent in Run Nong 35. Drought-induced osmolyte accumulation and strong enzymatic and non-enzymatic defense systems prevented the severe damage in Dong Dan 80. Overall performance of all maize hybrids under drought stress was recorded as: Dong Dan 80 > Wan Dan 13 > Run Nong 35 with 6.39, 7.35, and 16.55% yield reductions. Consequently, these biochemical traits and differential physiological responses might be helpful to develop drought tolerance genotypes that can withstand water-deficit conditions with minimum yield losses. PMID:28220130

  11. Negative-Electrode Catalysts for Fe/Cr Redox Cells

    NASA Technical Reports Server (NTRS)

    Gahn, R. F.; Hagedorn, N.

    1987-01-01

    Electrodes perform more consistently and less expensive. Surfaces catalyzed by bismuth and bismuth/lead developed for application on chromium electrode in iron/chromium redox electrochemical energy storage system. NASA Fe/Cr storage system incorporates two soluble electrodes consisting of acidified solutions of iron chloride (FeC13 and FeC12) and chromium chloride (CrC13 and CrC12) oxidized and reduced in power-conversion unit to store and produce electricity. Electrolytes circulated with pumps and stored in external tanks.

  12. Electrocatalytic oxidation of dopamine based on non-covalent functionalization of manganese tetraphenylporphyrin/reduced graphene oxide nanocomposite.

    PubMed

    Sakthinathan, Subramanian; Lee, Hsin Fang; Chen, Shen-Ming; Tamizhdurai, P

    2016-04-15

    In the present work, a reduced graphene oxide (RGO) supported manganese tetraphenylporphyrin (Mn-TPP) nanocomposite was electrochemically synthesized and used for the highly selective and sensitive detection of dopamine (DA). The nuclear magnetic resonance, scanning electron microscopy and elemental analysis were confirmed the successful formation of RGO/Mn-TPP nanocomposite. The prepared RGO/Mn-TPP nanocomposite modified electrode exhibited an enhanced electrochemical response to DA with less oxidation potential and enhanced response current. The electrochemical studies revealed that the oxidation of the DA at the composite electrode is a surface controlled process. The cyclic voltammetry, differential pulse voltammetry and amperometry methods were enable to detect DA. The working linear range of the electrode was observed from 0.3 to 188.8 μM, limit of detection was 8 nM and the sensitivity was 2.606 μA μM(-1) cm(-2). Here, the positively charged DA and negatively charged porphyrin modified RGO can accelerate the electrocatalysis of DA via electrostatic attraction, while the negatively charged ascorbic acid (AA) repulsed by the negatively charged electrode surface which supported for good selectivity. The good recovery results obtained for the determination of DA present in DA injection samples and human pathological sample further revealed the good practicality of RGO/Mn-TPP nanocomposite film modified electrode. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Atomic Layer-Deposited Molybdenum Oxide/Carbon Nanotube Hybrid Electrodes: The Influence of Crystal Structure on Lithium-Ion Capacitor Performance.

    PubMed

    Fleischmann, Simon; Zeiger, Marco; Quade, Antje; Kruth, Angela; Presser, Volker

    2018-06-06

    Merging of supercapacitors and batteries promises the creation of electrochemical energy storage devices that combine high specific energy, power, and cycling stability. For that purpose, lithium-ion capacitors (LICs) that store energy by lithiation reactions at the negative electrode and double-layer formation at the positive electrode are currently investigated. In this study, we explore the suitability of molybdenum oxide as a negative electrode material in LICs for the first time. Molybdenum oxide-carbon nanotube hybrid materials were synthesized via atomic layer deposition, and different crystal structures and morphologies were obtained by post-deposition annealing. These model materials are first structurally characterized and electrochemically evaluated in half-cells. Benchmarking in LIC full-cells revealed the influences of crystal structure, half-cell capacity, and rate handling on the actual device level performance metrics. The energy efficiency, specific energy, and power are mainly influenced by the overpotential and kinetics of the lithiation reaction during charging. Optimized LIC cells show a maximum specific energy of about 70 W·h·kg -1 and a high specific power of 4 kW·kg -1 at 34 W·h·kg -1 . The longevity of the LIC cells is drastically increased without significantly reducing the energy by preventing a deep cell discharge, hindering the negative electrode from crossing its anodic potential limit.

  14. System for harvesting water wave energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhong Lin; Su, Yanjie; Zhu, Guang

    A generator for harvesting energy from water in motion includes a sheet of a hydrophobic material, having a first side and an opposite second side, that is triboelectrically more negative than water. A first electrode sheet is disposed on the second side of the sheet of a hydrophobic material. A second electrode sheet is disposed on the second side of the sheet of a hydrophobic material and is spaced apart from the first electrode sheet. Movement of the water across the first side induces an electrical potential imbalance between the first electrode sheet and the second electrode sheet.

  15. Low energy milling method, low crystallinity alloy, and negative electrode composition

    DOEpatents

    Le, Dihn B; Obrovac, Mark N; Kube, Robert Y; Landucci, James R

    2012-10-16

    A method of making nanostructured alloy particles includes milling a millbase in a pebble mill containing milling media. The millbase comprises: (i) silicon, and (ii) at least one of carbon or a transition metal, and wherein the nanostructured alloy particles are substantially free of crystalline domains greater than 50 nanometers in size. A method of making a negative electrode composition for a lithium ion battery including the nanostructured alloy particles is also disclosed.

  16. "One-for-All" Strategy in Fast Energy Storage: Production of Pillared MOF Nanorod-Templated Positive/Negative Electrodes for the Application of High-Performance Hybrid Supercapacitor.

    PubMed

    Qu, Chong; Liang, Zibin; Jiao, Yang; Zhao, Bote; Zhu, Bingjun; Dang, Dai; Dai, Shuge; Chen, Yu; Zou, Ruqiang; Liu, Meilin

    2018-06-01

    Currently, metal-organic frameworks (MOFs) are intensively studied as active materials for electrochemical energy storage applications due to their tunable structure and exceptional porosities. Among them, water stable pillared MOFs with dual ligands have been reported to exhibit high supercapacitor (SC) performance. Herein, the "One-for-All" strategy is applied to synthesize both positive and negative electrodes of a hybrid SC (HSC) from a single pillared MOF. Specifically, Ni-DMOF-TM ([Ni(TMBDC)(DABCO) 0.5 ], TMBDC: 2,3,5,6-tetramethyl-1,4-benzenedicarboxylic acid, DABCO: 1,4-diazabicyclo[2.2.2]-octane) nanorods are directly grown on carbon fiber paper (CFP) (denoted as CFP@TM-nanorods) with the help of triethylamine and function as the positive electrode of HSC under alkaline electrolyte. Meanwhile, calcinated N-doped hierarchical porous carbon nanorods (CFP@TM-NPCs) are produced and utilized as the negative counter-electrode from a one-step heat treatment of CFP@TM-nanorods. After assembling these two electrodes together to make a hybrid device, the TM-nanorods//TM-NPCs exhibit a wide voltage window of 1.5 V with a high sloping discharge plateau between 1-1.2 V, indicating its great potential for practical applications. This as-described "One-for-All" strategy is widely applicable and highly reproducible in producing MOF-based electrode materials for HSC applications, which shortens the gap between experimental synthesis and practical application of MOFs in fast energy storage. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Transition-Metal Carbodiimides as Molecular Negative Electrode Materials for Lithium- and Sodium-Ion Batteries with Excellent Cycling Properties

    DOE PAGES

    Sougrati, Moulay T.; Darwiche, Ali; Liu, Xiaohiu; ...

    2016-03-16

    Here we report evidence for the electrochemical activity of transition-metal carbodiimides versus lithium and sodium. In particular, iron carbodiimide, FeNCN, can be efficiently used as a negative electrode material for alkali-metal-ion batteries, similar to its oxide analogue FeO. Based on 57Fe M ssbauer and infrared spectroscopy (IR) data, the electrochemical reaction mechanism can be explained by the reversible transformation of the Fe NCN into Li/Na NCN bonds during discharge and charge. These new electrode materials exhibit higher capacity compared to well-established negative electrode references such as graphite or hard carbon. Contrary to its oxide analogue, iron carbodiimide does not requiremore » heavy treatments (nanoscale tailoring, sophisticated textures, coating etc.) to obtain long cycle life with density current as high as 9 A/g -1 for hundreds of charge/discharge cycles. Similar to the iron compound, several other transition-metal carbodiimides M x(NCN) y with M = Mn, Cr, Zn can cycle successfully versus lithium and sodium. Ultimately, their electrochemical activity and performances open the way to the design of a novel family of anode materials.« less

  18. Metal vapor arc ion plating

    DOEpatents

    Bertram, L.A.; Fisher, R.W.; Mattox, D.M.; Zanner, F.J.

    1986-09-09

    A method and apparatus for ion plating are described. The apparatus uses more negative than a first electrode voltage in a vacuum arc remelt system to attract low energy ions from the anode electrode to the article to be plated. 2 figs.

  19. Energize Electrochemical Double Layer Capacitor by Introducing an Ambipolar Organic Redox Radical in Electrolyte.

    PubMed

    Wang, Yonggang; Hu, Lintong; Zhang, Yue; Shi, Chao; Guo, Kai; Zhai, Tianyou; Li, Huiqiao

    2018-05-24

    Carbon based electrochemical double layer capacitors (EDLCs) generally exhibit high power and long life, but low energy density/capacitance. Pore/morphology optimization and pseudocapacitive materials modification of carbon materials have been used to improve electrode capacitance, but leading to the consumption of tap density, conductivity and stability. Introducing soluble redox mediators into electrolyte is a promising alternative to improve the capacitance of electrode. However, it is difficult to find one redox mediator that can provide additional capacitance for both positive and negative electrodes simultaneously. Here, an ambipolar organic radical, 2, 2, 6, 6-tetramethylpiperidinyloxyl (TEMPO) is first introduced to the electrolyte, which can substantially contribute additional pseudocapacitance by oxidation at the positive electrode and reduction at the negative electrode simultaneously. The EDLC with TEMPO mediator delivers an energy density as high as 51 Wh kg-1, 2.4 times of the capacitor without TEMPO, and a long cycle stability over 4000 cycles. The achieved results potentially point a new way to improve the energy density of EDLCs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Characteristics of a Pulse-Periodic Corona Discharge in Atmospheric Air

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.; Baksht, E. Kh.; Sosnin, E. A.; Burachenko, A. G.; Panarin, V. A.; Skakun, V. S.

    2018-05-01

    Pulse-periodic corona discharge in atmospheric air excited by applying a voltage pulse with a subnanosecond or microsecond rise time to a point electrode is studied experimentally. It is shown that, at a voltage rise rate of dU/ dt 1014 V/s, positive and negative ball-shaped streamers with a front velocity of ≥2 mm/ns form near the point electrode. As dU/ dt is reduced to 1010-1011 V/s, the streamer shape changes and becomes close to cylindrical. The propagation velocity of cylindrical streamers is found to be 0.1 mm/ns at dU/ dt 2 × 1010 V/s. It is shown that the propagation direction of a cylindrical streamer can be changed by tilting the point electrode, on the axis of which the electric field strength reaches its maximum value. It is established that, for the negative polarity of the point electrode and a microsecond rise time of the voltage pulse, a higher voltage is required to form a cylindrical streamer than for the positive polarity of the point electrode.

  1. Double-membrane triple-electrolyte redox flow battery design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yushan, Yan; Gu, Shuang; Gong, Ke

    A redox flow battery is provided having a double-membrane (one cation exchange membrane and one anion exchange membrane), triple-electrolyte (one electrolyte in contact with the negative electrode, one electrolyte in contact with the positive electrode, and one electrolyte positioned between and in contact with the two membranes). The cation exchange membrane is used to separate the negative or positive electrolyte and the middle electrolyte, and the anion exchange membrane is used to separate the middle electrolyte and the positive or negative electrolyte. This design physically isolates, but ionically connects, the negative electrolyte and positive electrolyte. The physical isolation offers greatmore » freedom in choosing redox pairs in the negative electrolyte and positive electrolyte, making high voltage of redox flow batteries possible. The ionic conduction drastically reduces the overall ionic crossover between negative electrolyte and positive one, leading to high columbic efficiency.« less

  2. Electronically conductive polymer binder for lithium-ion battery electrode

    DOEpatents

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe; Wu, Mingyan

    2015-07-07

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  3. Electronically conductive polymer binder for lithium-ion battery electrode

    DOEpatents

    Liu, Gao; Battaglia, Vincent S.; Park, Sang -Jae

    2015-10-06

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  4. Electronically conductive polymer binder for lithium-ion battery electrode

    DOEpatents

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe; Wu, Mingyan

    2017-08-01

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  5. High energy density redox flow device

    DOEpatents

    Chiang, Yet -Ming; Carter, W. Craig; Duduta, Mihai; Limthongkul, Pimpa

    2015-10-06

    Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % of the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.

  6. High energy density redox flow device

    DOEpatents

    Chiang, Yet-Ming; Carter, William Craig; Duduta, Mihai; Limthongkul, Pimpa

    2014-05-13

    Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % of the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.

  7. Interfacial Structures of Trihexyltetradecylphosphonium-bis(mandelato)borate Ionic Liquid Confined between Gold Electrodes.

    PubMed

    Wang, Yong-Lei; Golets, Mikhail; Li, Bin; Sarman, Sten; Laaksonen, Aatto

    2017-02-08

    Atomistic molecular dynamics simulations have been performed to study microscopic the interfacial ionic structures, molecular arrangements, and orientational preferences of trihexyltetradecylphosphonium-bis(mandelato)borate ([P 6,6,6,14 ][BMB]) ionic liquid confined between neutral and charged gold electrodes. It was found that both [P 6,6,6,14 ] cations and [BMB] anions are coabsorbed onto neutral electrodes at different temperatures. The hexyl and tetradecyl chains in [P 6,6,6,14 ] cations lie preferentially flat on neutral electrodes. The oxalato and phenyl rings in [BMB] anions are characterized by alternative parallel-perpendicular orientations in the mixed innermost ionic layer adjacent to neutral electrodes. An increase in temperature has a marginal effect on the interfacial ionic structures and molecular orientations of [P 6,6,6,14 ][BMB] ionic species in a confined environment. Electrifying gold electrodes leads to peculiar changes in the interfacial ionic structures and molecular orientational arrangements of [P 6,6,6,14 ] cations and [BMB] anions in negatively and positively charged gold electrodes, respectively. As surface charge density increases (but lower than 20 μC/cm 2 ), the layer thickness of the mixed innermost interfacial layer gradually increases due to a consecutive accumulation of [P 6,6,6,14 ] cations and [BMB] anions at negatively and positively charged electrodes, respectively, before the formation of distinct cationic and anionic innermost layers. Meanwhile, the molecular orientations of two oxalato rings in the same [BMB] anions change gradually from a parallel-perpendicular feature to being partially characterized by a tilted arrangement at an angle of 45° from the electrodes and finally to a dominant parallel coordination pattern along positively charged electrodes. Distinctive interfacial distribution patterns are also observed accordingly for phenyl rings that are directly connected to neighboring oxalato rings in [BMB] anions.

  8. Iron-sulfide redox flow batteries

    DOEpatents

    Xia, Guanguang; Yang, Zhenguo; Li, Liyu; Kim, Soowhan; Liu, Jun; Graff, Gordon L

    2016-06-14

    Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficiency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S.sup.2- and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.

  9. Iron-sulfide redox flow batteries

    DOEpatents

    Xia, Guan-Guang; Yang, Zhenguo; Li, Liyu; Kim, Soowhan; Liu, Jun; Graff, Gordon L

    2013-12-17

    Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficiency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S.sup.2- and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.

  10. Neutralization by a Corona Discharge Ionizer in Nitrogen Atmosphere

    NASA Astrophysics Data System (ADS)

    Ikeuchi, Toru; Takahashi, Kazunori; Ohkubo, Takahiro; Fujiwara, Tamiya

    An electrostatic neutralization of multilayer-loading silicon wafers is demonstrated using a corona discharge ionizer in nitrogen atmosphere, where ac and dc voltages are applied to two needle electrodes for generation of the negative- and positive-charged particles, respectively. We observe a surface potential of the silicon wafer decreases from ±1kV to ±20V within three seconds. Moreover, the density profiles of the charged particles generated by the electrodes are experimentally and theoretically investigated in nitrogen and air atmospheres. Our results show the possibility that the negative-charged particles contributing to the electrostatic neutralization are electrons and negative ions in nitrogen and air atmospheres, respectively.

  11. Ferromagnets as pure spin current generators and detectors

    DOEpatents

    Qu, Danru; Miao, Bingfeng; Chien, Chia -Ling; Huang, Ssu -Yen

    2015-09-08

    Provided is a spintronics device. The spintronics can include a ferromagnetic metal layer, a positive electrode disposed on a first surface portion of the ferromagnetic metal layer, and a negative electrode disposed on a second surface portion of the ferromagnetic metal.

  12. Control of wave propagation in a biological excitable medium by an external electric field.

    PubMed

    Sebestikova, Lenka; Slamova, Elena; Sevcikova, Hana

    2005-03-01

    We present an experimental evidence of effects of external electric fields (EFs) on the velocity of pulse waves propagating in a biological excitable medium. The excitable medium used is formed by a layer of starving cells of Dictyostelium discoideum through which the waves of increased concentration of cAMP propagate by reaction-diffusion mechanism. External dc EFs of low intensities (up to 5 V/cm) are shown to speed up the propagation of cAMP waves towards the positive electrode and slow it down towards the negative electrode. Electric fields were also found to support an emergence of new centers, emitting cAMP waves, in front of cAMP waves propagating towards the negative electrode.

  13. The influence of negative current collector size on a liquid metal positive electrode

    NASA Astrophysics Data System (ADS)

    Mohammad, Ibrahim; Ashour, Rakan; Kelley, Douglas

    2017-11-01

    Fluid mixing in the positive electrode of a liquid metal battery (LMB) governs some performance-related factors such as the rate of charge and discharge of the battery. The negative current collector (NCC) of a LMB is always smaller than the positive current collector, implying that current is convergent at the NCC. Also, different NCC sizes introduce different thermal, electromagnetic, and flow boundary conditions. In this talk, I will show how our lab studies the influence of NCC diameter on the flow in a liquid metal positive electrode driven by electrical current. I will present measurements of the flow velocity taken via Ultrasonic Doppler Velocimetry (UDV) over a range of different currents, at different NCC diameters.

  14. High energy supercapattery with an ionic liquid solution of LiClO4.

    PubMed

    Yu, Linpo; Chen, George Z

    2016-08-15

    A supercapattery combining an ideally polarized capacitor-like electrode and a battery-like electrode is demonstrated theoretically and practically using an ionic liquid electrolyte containing 1-butyl-1-methylpyrrolidinium tri(pentafluoroethyl)trifluorophosphate (BMPyrrFAP), gamma-butyrolactone (γ-GBL) and LiClO4. The electrochemical deposition and dissolution of lithium metal on a platinum and glass carbon electrode were investigated in this ionic liquid solution. The CVs showed that the fresh electrochemically deposited lithium metal was stable in the electrolyte, which encouraged the investigation of this ionic liquid solution in a supercapattery with a lithium battery negative electrode. The active material counted specific energy of the supercapattery based on a lithium negative electrode and an activated carbon (Act-C) positive electrode could reach 230 W h kg(-1) under a galvanostatic charge-discharge current density of 1 mA cm(-2). The positive electrode material (Act-C) was also investigated by CV, AC impedance, SEM and BET. The non-uniform particle size and micropores dominated porous structure of the Act-C enabled its electric double layer capacitor (EDLC) behavior in the ionic liquid solution. The measured specific capacitance of the Act-C in this ionic liquid solution is higher than the same Act-C in aqueous solution, which indicates the Act-C can also perform well in the ionic liquid electrolyte.

  15. Anodes for rechargeable lithium batteries

    DOEpatents

    Thackeray, Michael M.; Kepler, Keith D.; Vaughey, John T.

    2003-01-01

    A negative electrode (12) for a non-aqueous electrochemical cell (10) with an intermetallic host structure containing two or more elements selected from the metal elements and silicon, capable of accommodating lithium within its crystallographic host structure such that when the host structure is lithiated it transforms to a lithiated zinc-blende-type structure. Both active elements (alloying with lithium) and inactive elements (non-alloying with lithium) are disclosed. Electrochemical cells and batteries as well as methods of making the negative electrode are disclosed.

  16. Glucose endothelial cytotoxicity and protection by Dan Gua-Fang, a Chinese herb prescription in huVEC in hyperglycemia medium.

    PubMed

    Xian-pei, Heng; Ke-ji, Chen; Zheng-feng, Hong; Wei-dong, He; Ke-dan, Chu; Wen-lie, Chen; Xu-zheng, Chen; Hai-xia, Zheng; Ling, Chen; Liu-qing, Yang; Fang, Guo; Mao-long, Lin

    2009-01-01

    Low success rate of blood glucose in diabetes is an international problem. The endothelia cytotoxicity of hyperglycemia has been widely accepted. However, it has not been seen in reports of the value of concentration of high glucose beginning to produce cytotoxicity and the relationship between hyperglycemia and cytotoxicity as well as how to effectively prevent and control hyperglycemia cytotoxicity. Dan Gua prescription is an effective Chinese herb prescription for diabetic vascular complications. Dan Gua prescription was contained in Dan Gua liquor utilized in experiments. (1) The cytotoxicity experiment of Dan Gua was carried out with M199 medium whose glucose (Glu) was 5.55 mmol/l to seek for a suitable experimental concentration of Dan Gua. (2) The human vessel endotheliocyte was cultivated for 72 h with mediums containing glucose in different concentrations (Group G1 to Group G11, Glu: 5.5 to 99.9 mmol/l, respectively), and assayed an optical density (OD) value using the 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide method. (3) Experiment 2 was repeated. However, the medium of each group (Groups Y1 to Y11) contained Dan Gua liquor whose concentration was 1/300. There was a negative correlation between means of cell OD values and glucose concentrations (r=-.927, R(2)=.844), and it presented a notable linear correlation (y=0.681-0.002x). Based on the OD value of 5.5-mmol/l glucose concentration (group G1), when glucose concentration reached 22.2 mmol/l (G4), the difference in OD values has a statistical significance. OD values in Y1-Y11 were not less than that of G1. There is a notable linear correlation between the endothelial cytotoxicities of Glu and its concentrations. The spinodal point concentration of statistical significance of hyperglycemia cytotoxicity is 22.2 mmol/l; 1/300 Dan Gua can reverse the endothelia cytotoxicity in different concentrations of hyperglycemia.

  17. Method of preparing electrodes with porous current collector structures and solid reactants for secondary electrochemical cells

    DOEpatents

    Gay, Eddie C.; Martino, Fredric J.

    1976-01-01

    Particulate electrode reactants, for instance transition metal sulfides for the positive electrodes and lithium alloys for the negative electrodes, are vibratorily compacted into porous, electrically conductive structures. Structures of high porosity support sufficient reactant material to provide high cell capacity per unit weight while serving as an electrical current collector to improve the utilization of reactant materials. Pore sizes of the structure and particle sizes of the reactant material are selected to permit uniform vibratory loading of the substrate without settling of the reactant material during cycling.

  18. Redox polymer electrodes for advanced batteries

    DOEpatents

    Gregg, Brian A.; Taylor, A. Michael

    1998-01-01

    Advanced batteries having a long cycle lifetime are provided. More specifically, the present invention relates to electrodes made from redox polymer films and batteries in which either the positive electrode, the negative electrode, or both, comprise redox polymers. Suitable redox polymers for this purpose include pyridyl or polypyridyl complexes of transition metals like iron, ruthenium, osmium, chromium, tungsten and nickel; porphyrins (either free base or metallo derivatives); phthalocyanines (either free base or metallo derivatives); metal complexes of cyclams, such as tetraazacyclotetradecane; metal complexes of crown ethers and metallocenes such as ferrocene, cobaltocene and ruthenocene.

  19. Redox polymer electrodes for advanced batteries

    DOEpatents

    Gregg, B.A.; Taylor, A.M.

    1998-11-24

    Advanced batteries having a long cycle lifetime are provided. More specifically, the present invention relates to electrodes made from redox polymer films and batteries in which either the positive electrode, the negative electrode, or both, comprise redox polymers. Suitable redox polymers for this purpose include pyridyl or polypyridyl complexes of transition metals like iron, ruthenium, osmium, chromium, tungsten and nickel; porphyrins (either free base or metallo derivatives); phthalocyanines (either free base or metallo derivatives); metal complexes of cyclams, such as tetraazacyclotetradecane; metal complexes of crown ethers and metallocenes such as ferrocene, cobaltocene and ruthenocene. 2 figs.

  20. Cathode composition for electrochemical cell

    DOEpatents

    Steunenberg, Robert K.; Martin, Allan E.; Tomczuk, Zygmunt

    1976-01-01

    A high-temperature, secondary electrochemical cell includes a negative electrode containing an alkali metal such as lithium, an electrolyte of molten salt containing ions of that alkali metal and a positive electrode containing a mixture of metallic sulfides. The positive electrode composition is contained within a porous structure that permits permeation of molten electrolyte and includes a mixture of about 5% to 30% by weight Cu.sub.2 S in FeS.

  1. Molecular First Hyperpolarizabilities of a New Class of Asymmetric Squaraine Dyes

    NASA Technical Reports Server (NTRS)

    Chen, C. -T.; Marder, S. R.; Cheng, L. -T.

    1993-01-01

    The molecular first hyperpolarizabilities of a series of asymmetric squaraine dyes were measurd by electric-field-induced second harmonic generation; the dyes have negative -values whose magnitudes are comparable to 4-N,N-dimethylamino-4'-nitrostilbene (DANS).

  2. Reduced order modeling of mechanical degradation induced performance decay in lithium-ion battery porous electrodes

    DOE PAGES

    Barai, Pallab; Smith, Kandler; Chen, Chien -Fan; ...

    2015-06-17

    In this paper, a one-dimensional computational framework is developed that can solve for the evolution of voltage and current in a lithium-ion battery electrode under different operating conditions. A reduced order model is specifically constructed to predict the growth of mechanical degradation within the active particles of the carbon anode as a function of particle size and C-rate. Using an effective diffusivity relation, the impact of microcracks on the diffusivity of the active particles has been captured. Reduction in capacity due to formation of microcracks within the negative electrode under different operating conditions (constant current discharge and constant current constantmore » voltage charge) has been investigated. At the beginning of constant current discharge, mechanical damage to electrode particles predominantly occurs near the separator. As the reaction front shifts, mechanical damage spreads across the thickness of the negative electrode and becomes relatively uniform under multiple discharge/charge cycles. Mechanical degradation under different drive cycle conditions has been explored. It is observed that electrodes with larger particle sizes are prone to capacity fade due to microcrack formation. Finally, under drive cycle conditions, small particles close to the separator and large particles close to the current collector can help in reducing the capacity fade due to mechanical degradation.« less

  3. Comparative experimental study of gas evolution and gas consumption reactions in sealed Ni-Cd and Ni-MH cells

    NASA Astrophysics Data System (ADS)

    Cha, Chuansin; Yu, Jingxian; Zhang, Jixiao

    The behavior of the sealed Ni-Cd and Ni-MH systems are compared experimentally with regard to their ability to consume gaseous products generated during the overcharge stage of these systems. It was found that the Ni-Cd system could only consume oxygen, while the Ni-MH system possesses the additional ability to adsorb hydrogen and to catalyze the recombination reaction of hydrogen and oxygen. The internal pressure within both sealed Ni-Cd cells and sealed Ni-MH cells can be kept well under control during the charge/overcharge processes if the rate of overcharge is not too high and if there is sufficient surplus of charging capacity at the negative electrodes. However, the internal pressure can rise to dangerously high levels if the rate of overcharge is too high or there is a deficiency of the charging capacity at the negative electrodes. The various factors that may affect the surplus of charging capacity of the negative electrodes are also discussed.

  4. High energy density redox flow device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, W. Craig; Chiang, Yet-Ming; Duduta, Mihai

    2017-04-04

    Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % ofmore » the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.« less

  5. A polyoxovanadate as an advanced electrode material for supercapacitors.

    PubMed

    Chen, Han-Yi; Wee, Grace; Al-Oweini, Rami; Friedl, Jochen; Tan, Kim Soon; Wang, Yuxi; Wong, Chui Ling; Kortz, Ulrich; Stimming, Ulrich; Srinivasan, Madhavi

    2014-07-21

    Polyoxovanadate Na(6)V(10)O(28) is investigated for the first time as electrode material for supercapacitors (SCs). The electrochemical properties of Na(6)V(10)O(28) electrodes are studied in Li(+) -containing organic electrolyte (1 M LiClO(4) in propylene carbonate) by galvanostatic charge/discharge and cyclic voltammetry in a three-electrode configuration. Na(6)V(10)O(28) electrodes exhibit high specific capacitances of up to 354 F g(-1). An asymmetric SC with activated carbon as positive electrode and Na(6)V(10)O(28) as negative electrode is fabricated and exhibits a high energy density of 73 Wh kg(-1) with a power density of 312 W kg(-1), which successfully demonstrates that Na(6)V(10)O(28) is a promising electrode material for high-energy SC applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Multinary alloy electrodes for solid state batteries I. A phase diagram approach for the selection and storage properties determination of candidate electrode materials

    NASA Astrophysics Data System (ADS)

    Anani, A.; Huggins, R. A.

    The desire to produce high specific energy rechargeable batteries has led to the investigation of ternary alloy systems for use as negative electrode components in lithium-based cells. The addition of a third component to a binary alloy electrode could result in a significant change in the thermodynamic and/or kinetic behavior of the electrode material, depending on the relevant phase diagram and the crystal structures of the phases present. The influence of ternary phase diagram characteristics upon the thermodynamic properties and specific energies of multi-component electrodes is discussed with lithiumsilicon-based systems as an illustration. It is shown that the electrode potentials (and thus specific energies of the ensuing cell) as well as the theoretical lithium capacities of electrodes based on these ternary alloy modifications can be significantly increased with respect to their present day binary counterpart.

  7. Influence of the RF electrode cleanliness on plasma characteristics and dust-particle generation in methane dusty plasmas

    NASA Astrophysics Data System (ADS)

    Géraud-Grenier, I.; Desdions, W.; Faubert, F.; Mikikian, M.; Massereau-Guilbaud, V.

    2018-01-01

    The methane decomposition in a planar RF discharge (13.56 MHz) leads both to a dust-particle generation in the plasma bulk and to a coating growth on the electrodes. Growing dust-particles fall onto the grounded electrode when they are too heavy. Thus, at the end of the experiment, the grounded electrode is covered by a coating and by fallen dust-particles. During the dust-particle growth, the negative DC self-bias voltage (VDC) increases because fewer electrons reach the RF electrode, leading to a more resistive plasma and to changes in the plasma chemical composition. In this paper, the cleanliness influence of the RF electrode on the dust-particle growth, on the plasma characteristics and composition is investigated. A cleanliness electrode is an electrode without coating and dust-particles on its surface at the beginning of the experiment.

  8. Cell structure for electrochemical devices and method of making same

    DOEpatents

    Kaun, Thomas D.

    1993-01-01

    An electrochemical device comprises a plurality of cells, each cell including a laminate cell membrane, made up of a separator/electrolyte means interposed between alternating positive and negative electrodes, each type of electrode being respectively in common contact to a single current collector.

  9. Shielded capacitive electrode

    DOEpatents

    Kireeff Covo, Michel

    2013-07-09

    A device is described, which is sensitive to electric fields, but is insensitive to stray electrons/ions and unlike a bare, exposed conductor, it measures capacitively coupled current while rejecting currents due to charged particle collected or emitted. A charged particle beam establishes an electric field inside the beam pipe. A grounded metallic box with an aperture is placed in a drift region near the beam tube radius. The produced electric field that crosses the aperture generates a fringe field that terminates in the back surface of the front of the box and induces an image charge. An electrode is placed inside the grounded box and near the aperture, where the fringe fields terminate, in order to couple with the beam. The electrode is negatively biased to suppress collection of electrons and is protected behind the front of the box, so the beam halo cannot directly hit the electrode and produce electrons. The measured signal shows the net potential (positive ion beam plus negative electrons) variation with time, as it shall be observed from the beam pipe wall.

  10. In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors

    NASA Astrophysics Data System (ADS)

    Griffin, John M.; Forse, Alexander C.; Tsai, Wan-Yu; Taberna, Pierre-Louis; Simon, Patrice; Grey, Clare P.

    2015-08-01

    Supercapacitors store charge through the electrosorption of ions on microporous electrodes. Despite major efforts to understand this phenomenon, a molecular-level picture of the electrical double layer in working devices is still lacking as few techniques can selectively observe the ionic species at the electrode/electrolyte interface. Here, we use in situ NMR to directly quantify the populations of anionic and cationic species within a working microporous carbon supercapacitor electrode. Our results show that charge storage mechanisms are different for positively and negatively polarized electrodes for the electrolyte tetraethylphosphonium tetrafluoroborate in acetonitrile; for positive polarization charging proceeds by exchange of the cations for anions, whereas for negative polarization, cation adsorption dominates. In situ electrochemical quartz crystal microbalance measurements support the NMR results and indicate that adsorbed ions are only partially solvated. These results provide new molecular-level insight, with the methodology offering exciting possibilities for the study of pore/ion size, desolvation and other effects on charge storage in supercapacitors.

  11. Engineering Redox Potential of Lithium Clusters for Electrode Material in Lithium-Ion Batteries

    DOE PAGES

    Kushwaha, Anoop Kumar; Sahoo, Mihir Ranjan; Nanda, Jagjit; ...

    2017-07-01

    Low negative electrode potential and high reactivity makes lithium (Li) ideal candidate for obtaining highest possible energy density among other materials. Here, we show a novel route with which the overall electrode potential could significantly be enhanced through selection of cluster size. In using first principles density functional theory and continuum dielectric model, we studied free energy and redox potential as well as investigated relative stability of Li n (n ≤ 8) clusters in both gas phase and solution. We found that Li 3 has the lowest negative redox potential (thereby highest overall electrode potential) suggesting that cluster based approachmore » could provide a novel way of engineering the next generation battery technology. The microscopic origin of Li 3 cluster’s superior performance is related to two major factors: gas phase ionization and difference between solvation free energy for neutral and positive ion. Taken together, our study provides insight into the engineering of redox potential in battery and could stimulate further work in this direction.« less

  12. Engineering Redox Potential of Lithium Clusters for Electrode Material in Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kushwaha, Anoop Kumar; Sahoo, Mihir Ranjan; Nanda, Jagjit

    Low negative electrode potential and high reactivity makes lithium (Li) ideal candidate for obtaining highest possible energy density among other materials. Here, we show a novel route with which the overall electrode potential could significantly be enhanced through selection of cluster size. In using first principles density functional theory and continuum dielectric model, we studied free energy and redox potential as well as investigated relative stability of Li n (n ≤ 8) clusters in both gas phase and solution. We found that Li 3 has the lowest negative redox potential (thereby highest overall electrode potential) suggesting that cluster based approachmore » could provide a novel way of engineering the next generation battery technology. The microscopic origin of Li 3 cluster’s superior performance is related to two major factors: gas phase ionization and difference between solvation free energy for neutral and positive ion. Taken together, our study provides insight into the engineering of redox potential in battery and could stimulate further work in this direction.« less

  13. Characterization of physiochemical properties of polymeric and electrochemical materials for aerospace flight

    NASA Technical Reports Server (NTRS)

    Rock, M.; Kunigahalli, V.; Khan, S.; Mcnair, A.

    1984-01-01

    Nickel-cadmium rechargeable batteries are a vital and reliable energy storage source for aerospace applications. As the demand for longer life and more reliable space batteries increases, the understanding and solving of cell aging factors and mechanisms become essential. Over the years, many cell designs and manufacturing process changes have been developed and implemented. Cells fabricated with various design features were life cycled in a simulated low-Earth orbit regime. Following the test program, a comprehensive electrochemical analysis of cell components was undertaken to study cell degradation mechanisms. Discharge voltage degradation or voltage plateau has been observed during orbit cycling, but, its cause and explanation have been the subject of much discussion. A Hg/HgO reference electrode was used to monitor the reference versus each electrode potential during the discharge of a cycled cell. The results indicate that the negative electrode was responsible for the voltage plateau. Cell analysis revealed large crystals of cadmium hydroxide on the surface of the negative electrode and throughout the separator.

  14. The importance of ion size and electrode curvature on electrical double layers in ionic liquids.

    PubMed

    Feng, Guang; Qiao, Rui; Huang, Jingsong; Dai, Sheng; Sumpter, Bobby G; Meunier, Vincent

    2011-01-21

    Room-temperature ionic liquids (ILs) are an emerging class of electrolytes for supercapacitors. We investigate the effects of ion size and electrode curvature on the electrical double layers (EDLs) in two ILs 1-butyl-3-methylimidazolium chloride [BMIM][Cl] and 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF(6)], using a combination of molecular dynamics (MD) and quantum density functional theory (DFT) simulations. The sizes of the counter-ion and co-ion affect the ion distribution and orientational structure of EDLs. The EDL capacitances near both planar and cylindrical electrodes were found to follow the order: [BMIM][Cl] (near the positive electrode) > [BMIM][PF(6)] (near the positive electrode) ≈ [BMIM][Cl] (near the negative electrode) ≈ [BMIM][PF(6)] (near the negative electrode). The EDL capacitance was also found to increase as the electrode curvature increases. These capacitance data can be fit to the Helmholtz model and the recently proposed exohedral electrical double-cylinder capacitor (xEDCC) model when the EDL thickness is properly parameterized, even though key features of the EDLs in ILs are not accounted for in these models. To remedy the shortcomings of existing models, we propose a "Multiple Ion Layers with Overscreening" (MILO) model for the EDLs in ILs that takes into account two critical features of such EDLs, i.e., alternating layering of counter-ions and co-ions and charge overscreening. The capacitance computed from the MILO model agrees well with the MD prediction. Although some input parameters of the MILO model must be obtained from MD simulations, the MILO model may provide a new framework for understanding many important aspects of EDLs in ILs (e.g., the variation of EDL capacitance with the electrode potential) that are difficult to interpret using classical EDL models and experiments.

  15. Investigations of negative and positive cesium ion species

    NASA Technical Reports Server (NTRS)

    Chanin, L. M.

    1978-01-01

    A direct test is provided of the hypothesis of negative ion creation at the anode or collector of a diode operating under conditions simulating a cesium thermionic converter. The experimental technique involves using direct ion sampling through the collector electrode with mass analysis using a quadrupole mass analyzer. Similar measurements are undertaken on positive ions extracted through the emitter electrode. Measurements were made on a variety of gases including pure cesium, helium-cesium mixtures and cesium-hydrogen as well as cesium-xenon mixtures. The gas additive was used primarily to aid in understanding the negative ion formation processes. Measurements were conducted using emitter (cathode) temperatures up to about 1000 F. The major negative ion identified through the collector was Cs(-) with minor negative ion peaks tentatively identified as H(-), H2(-), H3(-), He(-) and a mass 66. Positive ions detected were believed to be Cs(+), Cs2(+) and Cs3(+).

  16. Electron energy recovery system for negative ion sources

    DOEpatents

    Dagenhart, William K.; Stirling, William L.

    1982-01-01

    An electron energy recovery system for negative ion sources is provided. The system, employs crossed electric and magnetic fields to separate the electrons from ions as they are extracted from a negative ion source plasma generator and before the ions are accelerated to their full kinetic energy. With the electric and magnetic fields oriented 90.degree. to each other, the electrons are separated from the plasma and remain at approximately the electrical potential of the generator in which they were generated. The electrons migrate from the ion beam path in a precessing motion out of the ion accelerating field region into an electron recovery region provided by a specially designed electron collector electrode. The electron collector electrode is uniformly spaced from a surface of the ion generator which is transverse to the direction of migration of the electrons and the two surfaces are contoured in a matching relationship which departs from a planar configuration to provide an electric field component in the recovery region which is parallel to the magnetic field thereby forcing the electrons to be directed into and collected by the electron collector electrode. The collector electrode is maintained at a potential slightly positive with respect to the ion generator so that the electrons are collected at a small fraction of the full accelerating supply voltage energy.

  17. Electrolyte effects in a model of proton discharge on charged electrodes

    NASA Astrophysics Data System (ADS)

    Wiebe, Johannes; Kravchenko, Kateryna; Spohr, Eckhard

    2015-01-01

    We report results on the influence of NaCl electrolyte dissolved in water on proton discharge reactions from aqueous solution to charged platinum electrodes. We have extended a recently developed combined proton transfer/proton discharge model on the basis of empirical valence bond theory to include NaCl solutions with several different concentrations of cations and anions, both stoichiometric (1:1) compositions and non-stoichiometric ones with an excess of cations. The latter solutions partially screen the electrostatic potential from the surface charge of the negatively charged electrode. 500-1000 trajectories of a discharging proton were integrated by molecular dynamics simulations until discharge occurred, or for at most 1.5 ns. The results show a strong dependence on ionic strength, but only a weak dependence on the screening behavior, when comparing stoichiometric and non-stoichiometric solutions. Overall, the Na+ cations exert a more dominant effect on the discharge reaction, which we argue is likely due to the very rigid arrangements of the cations on the negatively polarized electrode surface. Thus, our model predicts, for the given and very high negative surface charge densities, the fastest discharge reaction for pure water, but obviously cannot take into account the fact that such high charge densities are even more out of reach experimentally than for higher electrolyte concentrations.

  18. Influence of air humidity and the distance from the source on negative air ion concentration in indoor air.

    PubMed

    Wu, Chih Cheng; Lee, Grace W M; Yang, Shinhao; Yu, Kuo-Pin; Lou, Chia Ling

    2006-10-15

    Although negative air ionizer is commonly used for indoor air cleaning, few studies examine the concentration gradient of negative air ion (NAI) in indoor environments. This study investigated the concentration gradient of NAI at various relative humidities and distances form the source in indoor air. The NAI was generated by single-electrode negative electric discharge; the discharge was kept at dark discharge and 30.0 kV. The NAI concentrations were measured at various distances (10-900 cm) from the discharge electrode in order to identify the distribution of NAI in an indoor environment. The profile of NAI concentration was monitored at different relative humidities (38.1-73.6% RH) and room temperatures (25.2+/-1.4 degrees C). Experimental results indicate that the influence of relative humidity on the concentration gradient of NAI was complicated. There were four trends for the relationship between NAI concentration and relative humidity at different distances from the discharge electrode. The changes of NAI concentration with an increase in relative humidity at different distances were quite steady (10-30 cm), strongly declining (70-360 cm), approaching stability (420-450 cm) and moderately increasing (560-900 cm). Additionally, the regression analysis of NAI concentrations and distances from the discharge electrode indicated a logarithmic linear (log-linear) relationship; the distance of log-linear tendency (lambda) decreased with an increase in relative humidity such that the log-linear distance of 38.1% RH was 2.9 times that of 73.6% RH. Moreover, an empirical curve fit based on this study for the concentration gradient of NAI generated by negative electric discharge in indoor air was developed for estimating the NAI concentration at different relative humidities and distances from the source of electric discharge.

  19. Multiple-membrane multiple-electrolyte redox flow battery design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Yushan; Gu, Shuang; Gong, Ke

    A redox flow battery is provided. The redox flow battery involves multiple-membrane (at least one cation exchange membrane and at least one anion exchange membrane), multiple-electrolyte (one electrolyte in contact with the negative electrode, one electrolyte in contact with the positive electrode, and at least one electrolyte disposed between the two membranes) as the basic characteristic, such as a double-membrane, triple electrolyte (DMTE) configuration or a triple-membrane, quadruple electrolyte (TMQE) configuration. The cation exchange membrane is used to separate the negative or positive electrolyte and the middle electrolyte, and the anion exchange membrane is used to separate the middle electrolytemore » and the positive or negative electrolyte.« less

  20. Catalyst surfaces for the chromous/chromic redox couple

    NASA Technical Reports Server (NTRS)

    Giner, J. D.; Cahill, K. J. (Inventor)

    1981-01-01

    An electricity producing cell of the reduction-oxidation (REDOX) type divided into two compartments by a membrane is disclosed. A ferrous/ferric couple in a chloride solution serves as a cathode fluid to produce a positive electric potential. A chromic/chromous couple in a chloride solution serves as an anode fluid to produce a negative potential. The electrode is an electrically conductive, inert material plated with copper, silver or gold. A thin layer of lead plates onto the copper, silver or gold layer when the cell is being charged, the lead ions being available from lead chloride which has been added to the anode fluid. If the REDOX cell is then discharged, the lead deplates from the negative electrode and the metal coating on the electrode acts as a catalyst to increase current density.

  1. Vertically Aligned Carbon Nanotube Electrodes for Lithium-Ion Batteries

    DTIC Science & Technology

    2011-01-01

    wpafb.af.mil (M.F. Durstock). [11] nanowires, and iron oxide/copper [12] and tin/copper [13] nanorods. Carbon nanotubes ( CNTs ) have also been examined as...negative electrodes [14–17]. Although CNTs and other nega- tive electrode nanomaterials have been shown to exhibit similar or greater capacities...rate capability [18]. Studies suggest that aligned CNTs could allow for better contact with the current collector and increased ion diffu- sivity to

  2. Temporal and spatial evolution of EHD particle flow onset in air in a needle-to-plate negative DC corona discharge

    NASA Astrophysics Data System (ADS)

    Mizeraczyk, J.; Berendt, A.; Podlinski, J.

    2016-05-01

    In this paper we present images showing the temporal and spatial evolution of the electrohydrodynamic (EHD) flow of dust particles (cigarette smoke) suspended in still air in a needle-to-plate negative DC corona discharge arrangement just after the corona onset, i.e. in the first stage of development of the EHD particle flow. The experimental apparatus for our study of the EHD flow onset consisted of a needle-to-plate electrode arrangement, high voltage power supply and time-resolved EHD imaging system based on 2D time-resolved particle image velocimetry equipment. The time-resolved flow images clearly show the formation of a ball-like flow structure at the needle tip just after the corona discharge onset, and its evolution into a mushroom-like object moving to the collecting electrode. After a certain time, when the mushroom-like object is still present in the interelectrode gap a second mushroom-like object forms near the needle electrode and starts to move towards the collecting electrode. Before the first mushroom-like object reaches the collecting electrode several similar mushroom-like objects can be formed and presented simultaneously in the interelectrode gap. They look like a series of mushroom-like minijets shot from the needle electrode vicinity towards the collecting electrode. The simultaneous presence of mushroom-like minijets in the interelectrode gap in the corona discharge in particle-seeded air resembles the negative-ion-charged ‘clouds’ (induced by the Trichel pulses) traversing simultaneously the interelectrode gap of the corona discharge in air, predicted a long time ago by Loeb, and Lama and Gallo and recently by Dordizadeh et al. Analysing the time behaviours of the mushroom-like minijets and current waveform in the corona discharge in particle-seeded air, we found that the Trichel pulse trains, formed just after the corona onset initiates the mushroom-like minijets. The first stage of development of the EHD particle flow, the area of which is practically limited to the interelectrode duct, ends when the first mushroom-like minijet reaches the collecting electrode.

  3. Surface properties and graphitization of polyacrylonitrile based fiber electrodes affecting the negative half-cell reaction in vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Langner, J.; Bruns, M.; Dixon, D.; Nefedov, A.; Wöll, Ch.; Scheiba, F.; Ehrenberg, H.; Roth, C.; Melke, J.

    2016-07-01

    Carbon felt electrodes for vanadium redox flow batteries are obtained by the graphitization of polyacrylonitrile based felts at different temperatures. Subsequently, the surface of the felts is modified via thermal oxidation at various temperatures. A single-cell experiment shows that the voltage efficiency is increased by this treatment. Electrode potentials measured with reference electrode setup show that this voltage efficiency increase is caused mainly by a reduction of the overpotential of the negative half-cell reaction. Consequently, this reaction is investigated further by cyclic voltammetry and the electrode activity is correlated with structural and surface chemical properties of the carbon fibers. By Raman, X-ray photoelectron and near edge X-ray absorption fine structure spectroscopy the role of edge sites and oxygen containing functional groups (OCFs) for the electrochemical activity are elucidated. A significant activity increase is observed in correlation with these two characteristics. The amount of OCFs is correlated with structural defects (e.g. edge sites) of the carbon fibers and therefore decreases with an increasing graphitization degree. Thus, for the same thermal oxidation temperature carbon fibers graphitized at a lower temperature show higher activities than those graphitized at a higher temperature.

  4. Lateral fluid flow fractionation using dielectrophoresis (LFFF-DEP) for size-independent, label-free isolation of circulating tumor cells.

    PubMed

    Waheed, Waqas; Alazzam, Anas; Mathew, Bobby; Christoforou, Nicolas; Abu-Nada, Eiyad

    2018-06-15

    This short communication introduces a continuous-flow, dielectrophoresis-based lateral fluid flow fractionation microdevice for detection/isolation of circulating tumor cells in the presence of other haematological cells. The device utilizes two sets of planar interdigitated transducer electrodes micropatterned on top of a glass wafer using standard microfabrication techniques. A microchannel with a single inlet and two outlets, realized in polydimethylsiloxane, is bonded on the glass substrate. The two sets of electrodes slightly protrude into the microchannel. Both of the electrode sets are energized with signals at different frequencies and different operating voltages ensuring that the cancer cells experience positive dielectrophoretic force from one set of the electrodes and negative dielectrophoretic force from the other array. Normal cells experience unequal negative dielectrophoretic forces from opposing sets of electrodes. The resultant dielectrophoretic forces on cancer and normal cells push them to flow towards their designed outlets. Successful isolation of green fluorescent protein-labelled MDA-MB-231 breast cancer cells from regular blood cells, both suspended in a sucrose/dextrose medium, is reported in this work. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Improved electrochemical performance of boron-doped SiO negative electrode materials in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Woo, Jihoon; Baek, Seong-Ho; Park, Jung-Soo; Jeong, Young-Min; Kim, Jae Hyun

    2015-12-01

    We introduce a one-step process that consists of thermal disproportionation and impurity doping to enhance the reversible capacity and electrical conductivity of silicon monoxide (SiO)-based negative electrode materials in Li-ion batteries. Transmission electron microscope (TEM) results reveal that thermally treated SiO at 900 °C (H-SiO) consists of uniformly dispersed nano-crystalline Si (nc-Si) in an amorphous silicon oxide (SiOx) matrix. Compared to that of prinstine SiO, the electrochemical performance of H-SiO shows improved specific capacity, due mainly to the increased reversible capacity by nc-Si and to the reduced volume expansion by thermally disproportionated SiOx matrix. Further electrochemical improvements can be obtained by boron-doping on SiO (HB-SiO) using solution dopant during thermal disproportionation. HB-SiO electrode without carbon coating exhibits significantly enhanced specific capacity superior to that of undoped H-SiO electrode, having 947 mAh g-1 at 0.5C rate and excellent capacity retention of 93.3% over 100 cycles. Electrochemical impedance spectroscopy (EIS) measurement reveals that the internal resistance of the HB-SiO electrode is significantly reduced by boron doping.

  6. CAD/CAM-designed 3D-printed electroanalytical cell for the evaluation of nanostructured gas-diffusion electrodes.

    PubMed

    Chervin, Christopher N; Parker, Joseph F; Nelson, Eric S; Rolison, Debra R; Long, Jeffrey W

    2016-04-29

    The ability to effectively screen and validate gas-diffusion electrodes is critical to the development of next-generation metal-air batteries and regenerative fuel cells. The limiting electrode in a classic two-terminal device such as a battery or fuel cell is difficult to discern without an internal reference electrode, but the flooded electrolyte characteristic of three-electrode electroanalytical cells negates the prime function of an air electrode-a void volume freely accessible to gases. The nanostructured catalysts that drive the energy-conversion reactions (e.g., oxygen reduction and evolution in the air electrode of metal-air batteries) are best evaluated in the electrode structure as-used in the practical device. We have designed, 3D-printed, and characterized an air-breathing, thermodynamically referenced electroanalytical cell that allows us to mimic the Janus arrangement of the gas-diffusion electrode in a metal-air cell: one face freely exposed to gases, the other wetted by electrolyte.

  7. COMSAT's destructive physical analysis of aerospace nickel-cadmium cells for NASA/Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Robbins, Kathleen M. B.; Rao, Gopalakrishna M.; Yi, Thomas Y.

    1993-01-01

    Over the past 5 years, COMSAT has performed numerous destructive physical analyses (DPA's) on NASA-Goddard-supplied nickel-cadmium (Ni/Cd) cells. The samples included activated but uncycled cells, wet stored cells, cycled cells, and anomalous cells. The DPA's provided visual, morphological, and chemical analyses of the cell components. The DPA data for the analyzed cells are presented. For the cells investigated, the leading cause of poor performance, as determined by DPA, has been poor negative electrode utilization, which resulted in negative-electrode-limiting operation.

  8. Chalcogenide Nanoionic-based Radio Frequency Switch

    NASA Technical Reports Server (NTRS)

    Nessel, James (Inventor); Lee, Richard (Inventor)

    2013-01-01

    A nonvolatile nanoionic switch is disclosed. A thin layer of chalcogenide glass engages a substrate and a metal selected from the group of silver and copper photo-dissolved in the chalcogenide glass. A first oxidizable electrode and a second inert electrode engage the chalcogenide glass and are spaced apart from each other forming a gap therebetween. A direct current voltage source is applied with positive polarity applied to the oxidizable electrode and negative polarity applied to the inert electrode which electrodeposits silver or copper across the gap closing the switch. Reversing the polarity of the switch dissolves the electrodeposited metal and returns it to the oxidizable electrode. A capacitor arrangement may be formed with the same structure and process.

  9. Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doe, Robert E.; Downie, Craig M.; Fischer, Christopher

    2016-01-19

    Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqueous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negativemore » electrode active material is described.« less

  10. Chalcogenide Nanoionic-Based Radio Frequency Switch

    NASA Technical Reports Server (NTRS)

    Nessel, James (Inventor); Lee, Richard (Inventor)

    2011-01-01

    A nonvolatile nanoionic switch is disclosed. A thin layer of chalcogenide glass engages a substrate and a metal selected from the group of silver and copper photo-dissolved in the chalcogenide glass. A first oxidizable electrode and a second inert electrode engage the chalcogenide glass and are spaced apart from each other forming a gap there between. A direct current voltage source is applied with positive polarity applied to the oxidizable electrode and negative polarity applied to the inert electrode which electrodeposits silver or copper across the gap closing the switch. Reversing the polarity of the switch dissolves the electrodeposited metal and returns it to the oxidizable electrode. A capacitor arrangement may be formed with the same structure and process.

  11. Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doe, Robert Ellis; Downie, Craig Michael; Fischer, Christopher

    2016-07-26

    Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqueous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negativemore » electrode active material is described.« less

  12. ION ROCKET ENGINE

    DOEpatents

    Ehlers, K.W.; Voelker, F. III

    1961-12-19

    A thrust generating engine utilizing cesium vapor as the propellant fuel is designed. The cesium is vaporized by heat and is passed through a heated porous tungsten electrode whereby each cesium atom is fonized. Upon emergfng from the tungsten electrode, the ions are accelerated rearwardly from the rocket through an electric field between the tungsten electrode and an adjacent accelerating electrode grid structure. To avoid creating a large negative charge on the space craft as a result of the expulsion of the positive ions, a source of electrons is disposed adjacent the ion stream to neutralize the cesium atoms following acceleration thereof. (AEC)

  13. SABRE modification to a higher voltage high impedance inductive voltage adder (IVA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazarakis, M.G.; Smith, D.L.; Poukey, J.W.

    The SABRE accelerator was originally designed to operate as low impedance voltage adder with 40-ohm maximum output impedance in negative polarity operation and approximately 20 ohm in positive polarity. Because of the low impedance and higher than expected energy losses in the pulse forming network, the operating input cavity voltage is of the order of 800 kV which limits the total output voltage to {approximately} 8 MV for negative polarity and 5 to 6 MV for positive polarity. The modifications presented here aim to increase the output voltage in both polarities. A new high impedance central electrode was designed capablemore » of operating both in negative and positive polarities, and the number of pulse forming lines feeding the inductively isolated cavities was reduced to half. These modifications were recently tested in positive polarity. An increase in the total accelerating voltage from 5.5 MV to 9 MV was observed while stressing all components to the level required to achieve 12 MV in negative polarity. In these experiments only 65% of the usual operating intermediate store capacitor voltage was necessary (1.7 MV instead of 2.6 MV). Currently, the device is reconfigured for negative polarity tests. The cavities are rotated by 180{degree} and a 17-inch spool is added at the base of the cantilevered center electrode (cathode electrode). Positive and negative polarity results are presented and compared with simulations.« less

  14. Current-level triggered plasma-opening switch

    DOEpatents

    Mendel, C.W.

    1987-06-29

    An opening switch for very high power electrical pulses uses a slow magnetic field to confine a plasma across a gap between two electrodes. The plasma conducts the electric pulse across the gap while the switch is closed. A magnetic field generated by the pulse repels the slow magnetic field from the negative electrode to push the plasma from the electrode, opening the switch. A plurality of radial vanes may be used to enhance the slow magnetic field. 5 figs.

  15. Electrolyte composition for electrochemical cell

    DOEpatents

    Vissers, Donald R.; Tomczuk, Zygmunt; Anderson, Karl E.; Roche, Michael F.

    1979-01-01

    A high-temperature, secondary electrochemical cell that employs FeS as the positive electrode reactant and lithium or lithium alloy as the negative electrode reactant includes an improved electrolyte composition. The electrolyte comprises about 60-70 mole percent LiCl and 30-40 percent mole percent KCl which includes LiCl in excess of the eutectic composition. The use of this electrolyte suppresses formation of the J phase and thereby improves the utilization of positive electrode active material during cell cycling.

  16. Ion manipulation device to prevent loss of ions

    DOEpatents

    Tolmachev, Aleksey; Smith, Richard D; Ibrahim, Yehia M; Anderson, Gordon A; Baker, Erin M

    2015-03-03

    An ion manipulation method and device to prevent loss of ions is disclosed. The device includes a pair of surfaces. An inner array of electrodes is coupled to the surfaces. A RF voltage and a DC voltage are alternately applied to the inner array of electrodes. The applied RF voltage is alternately positive and negative so that immediately adjacent or nearest neighbor RF applied electrodes are supplied with RF signals that are approximately 180 degrees out of phase.

  17. Current-level triggered plasma-opening switch

    DOEpatents

    Mendel, Clifford W.

    1989-01-01

    An opening switch for very high power electrical pulses uses a slow magnetic field to confine a plasma across a gap between two electrodes. The plasma conducts the electric pulse across the gap while the switch is closed. A magnetic field generated by the pulse repels the slow magnetic field from the negative electrode to push the plasma from the electrode, opening the switch. A plurality of radial vanes may be used to enhance the slow magnetic field.

  18. High Energy Density Aqueous Electrochemical Capacitors with a KI-KOH Electrolyte.

    PubMed

    Wang, Xingfeng; Chandrabose, Raghu S; Chun, Sang-Eun; Zhang, Tianqi; Evanko, Brian; Jian, Zelang; Boettcher, Shannon W; Stucky, Galen D; Ji, Xiulei

    2015-09-16

    We report a new electrochemical capacitor with an aqueous KI-KOH electrolyte that exhibits a higher specific energy and power than the state-of-the-art nonaqueous electrochemical capacitors. In addition to electrical double layer capacitance, redox reactions in this device contribute to charge storage at both positive and negative electrodes via a catholyte of IOx-/I- couple and a redox couple of H2O/Had, respectively. Here, we, for the first time, report utilizing IOx-/I- redox couple for the positive electrode, which pins the positive electrode potential to be 0.4-0.5 V vs Ag/AgCl. With the positive electrode potential pinned, we can polarize the cell to 1.6 V without breaking down the aqueous electrolyte so that the negative electrode potential could reach -1.1 V vs Ag/AgCl in the basic electrolyte, greatly enhancing energy storage. Both mass spectroscopy and Raman spectrometry confirm the formation of IO3- ions (+5) from I- (-1) after charging. Based on the total mass of electrodes and electrolyte in a practically relevant cell configuration, the device exhibits a maximum specific energy of 7.1 Wh/kg, operates between -20 and 50 °C, provides a maximum specific power of 6222 W/kg, and has a stable cycling life with 93% retention of the peak specific energy after 14,000 cycles.

  19. In situ NMR spectroscopy of supercapacitors: insight into the charge storage mechanism.

    PubMed

    Wang, Hao; Forse, Alexander C; Griffin, John M; Trease, Nicole M; Trognko, Lorie; Taberna, Pierre-Louis; Simon, Patrice; Grey, Clare P

    2013-12-18

    Electrochemical capacitors, commonly known as supercapacitors, are important energy storage devices with high power capabilities and long cycle lives. Here we report the development and application of in situ nuclear magnetic resonance (NMR) methodologies to study changes at the electrode-electrolyte interface in working devices as they charge and discharge. For a supercapacitor comprising activated carbon electrodes and an organic electrolyte, NMR experiments carried out at different charge states allow quantification of the number of charge storing species and show that there are at least two distinct charge storage regimes. At cell voltages below 0.75 V, electrolyte anions are increasingly desorbed from the carbon micropores at the negative electrode, while at the positive electrode there is little change in the number of anions that are adsorbed as the voltage is increased. However, above a cell voltage of 0.75 V, dramatic increases in the amount of adsorbed anions in the positive electrode are observed while anions continue to be desorbed at the negative electrode. NMR experiments with simultaneous cyclic voltammetry show that supercapacitor charging causes marked changes to the local environments of charge storing species, with periodic changes of their chemical shift observed. NMR calculations on a model carbon fragment show that the addition and removal of electrons from a delocalized system should lead to considerable increases in the nucleus-independent chemical shift of nearby species, in agreement with our experimental observations.

  20. High Volumetric Energy Density Asymmetric Supercapacitors Based on Well-Balanced Graphene and Graphene-MnO2 Electrodes with Densely Stacked Architectures.

    PubMed

    Sheng, Lizhi; Jiang, Lili; Wei, Tong; Fan, Zhuangjun

    2016-10-01

    The well-matched electrochemical parameters of positive and negative electrodes, such as specific capacitance, rate performance, and cycling stability, are important for obtaining high-performance asymmetric supercapacitors. Herein, a facile and cost-effective strategy is demonstrated for the fabrication of 3D densely stacked graphene (DSG) and graphene-MnO 2 (G-MnO 2 ) architectures as the electrode materials for asymmetric supercapacitors (ASCs) by using MnO 2 -intercalated graphite oxide (GO-MnO 2 ) as the precursor. DSG has a stacked graphene structure with continuous ion transport network in-between the sheets, resulting in a high volumetric capacitance of 366 F cm -3 , almost 2.5 times than that of reduced graphene oxide, as well as long cycle life (93% capacitance retention after 10 000 cycles). More importantly, almost similar electrochemical properties, such as specific capacitance, rate performance, and cycling stability, are obtained for DSG as the negative electrode and G-MnO 2 as the positive electrode. As a result, the assembled ASC delivers both ultrahigh gravimetric and volumetric energy densities of 62.4 Wh kg -1 and 54.4 Wh L -1 (based on total volume of two electrodes) in 1 m Na 2 SO 4 aqueous electrolyte, respectively, much higher than most of previously reported ASCs in aqueous electrolytes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Non-equilibrium character of resistive switching and negative differential resistance in Ga-doped Cr2O3 system

    NASA Astrophysics Data System (ADS)

    Bhowmik, R. N.; Siva, K. Venkata

    2018-07-01

    The samples of Ga-doped Cr2O3 system in rhombohedral crystal structure with space group R 3 bar C were prepared by chemical co-precipitation route and annealing at 800 °C. The current-voltage (I-V) curves exhibited many unique non-linear properties, e.g., hysteresis loop, resistive switching, and negative differential resistance (NDR). In this work, we report non-equilibrium properties of resistive switching and NDR phenomena. The non-equilibrium I-V characteristics were confirmed by repetiting measurement and time relaxation of current. The charge conduction process was understood by analysing the I-V curves using electrode-limited and bulk-limited charge conduction mechanisms, which were proposed for metal electrode/metal oxide/metal electrode structure. The I-V curves in the NDR regime and at higher bias voltage regime in our samples did not obey Fowler-Nordheim equation, which was proposed for charge tunneling mechanism in many thin film junctions. The non-equilibrium I-V phenomena were explained by considering the competitions between the injection of charge carriers from metal electrode to metal oxide, the charge flow through bulk material mediated by trapping/de-trapping and recombination of charge carriers at the defect sites of ions, the space charge effects at the junctions of electrodes and metal oxides, and finally, the out flow of electrons from metal oxide to metal electrode.

  2. Method of preparing a positive electrode for an electrochemical cell

    DOEpatents

    Tomczuk, Zygmunt

    1979-01-01

    A method of preparing an electrochemical cell including a metal sulfide as the positive electrode reactant and lithium alloy as the negative electrochemical reactant with an alkali metal, molten salt electrolyte is disclosed which permits the assembly to be accomplished in air. The electrode reactants are introduced in the most part as a sulfide of lithium and the positive electrode metal in a single-phase compound. For instance, Li.sub.2 FeS.sub.2 is a single-phase compound that is produced by the reaction of Li.sub.2 S and FeS. This compound is an intermediate in the positive electrode cycle from FeS.sub.2 to Fe and Li.sub.2 S. Its use minimizes volumetric changes from the assembled to the charged and discharged conditions of the electrode and minimizes electrode material interaction with air and moisture during assembly.

  3. Effects of the guard electrode on the photoelectron distribution around an electric field sensor

    NASA Astrophysics Data System (ADS)

    Miyake, Y.; Usui, H.; Kojima, H.

    2011-05-01

    We have developed a numerical model of a double-probe electric field sensor equipped with a photoelectron guard electrode for the particle-in-cell simulation. The model includes typical elements of modern double-probe sensors on, e.g., BepiColombo/MMO, Cluster, and THEMIS spacecraft, such as a conducting boom and a preamplifier housing called a puck. The puck is also used for the guard electrode, and its potential is negatively biased by reference to the floating spacecraft potential. We apply the proposed model to an analysis of an equilibrium plasma environment around the sensor by assuming that the sun illuminates the spacecraft from the direction perpendicular to the sensor deployment axis. As a simulation result, it is confirmed that a substantial number of spacecraft-originating photoelectrons are once emitted sunward and then fall onto the puck and sensing element positions. In order to effectively repel such photoelectrons coming from the sun direction, a potential hump for electrons, i.e., a negative potential region, should be created in a plasma region around the sunlit side of the guard electrode surface. The simulation results reveal the significance of the guard electrode potential being not only lower than the spacecraft body but also lower than the background plasma potential of the region surrounding the puck and the sensing element. One solution for realizing such an operational condition is to bias the guard potential negatively by reference to the sensor potential because the sensor is usually operated nearly at the background plasma potential.

  4. High-performance batteries for stationary energy storage and electric-vehicle propulsion. Progress report, October--December 1976. [Li--Al/LiCl--KCl/FeS or FeS/sub 2/, operate at 400 to 450 C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, P.A.; Yao, N.P.; Steunenberg, R.K.

    1977-04-01

    These batteries are being developed for electric vehicle propulsion and for stationary energy storage applications. The present battery cells, which operate at 400 to 450/sup 0/C, are of a vertically oriented, prismatic design with a central positive electrode of FeS or FeS/sub 2/, two facing negative electrodes of lithium--aluminum alloy, and an electrolyte of molten LiCl--KCl. Testing and evaluation of industrially fabricated cells is continuing. During this period, Li--Al/FeS and Li--Al/FeS/sub 2/ cells from Eagle-Picher Industries were tested, and tests of Li--Al/FeS cells from Gould Inc. were initiated. The cells are tested individually and in parallel and series battery configurations.more » These tests provide information on the effects of cell design modifications and alternative materials. Improved electrode and cell designs are being developed and tested at ANL, and the more promising designs are incorporated in the industrially fabricated cells. Among the concepts receiving major attention are carbon-bonded positive electrodes, scaled-up stationary energy storage cell designs, additives to extend electrode lifetime, and alternative electrode separators. The materials development efforts include the development of a new lightweight electrical feedthrough; investigations of new separator materials (e.g.,Y/sub 2/O/sub 3/ powder, Y/sub 2/O/sub 3/ felt, and porous, rigid ceramics); corrosion tests of materials for cell components; and postoperative examinations of cells. The cell chemistry studies were directed to discharge mechanisms of FeS electrodes, emf measurements of the LiAl/FeS/sub 2/ couple at various states of discharge, and studies of other transition-metal sulfides as positive-electrode materials. The advanced battery effort mainly concerned the use of calcium alloys for negative electrode and transition metal sulfides or oxides for the positive electrode. 13 figures, 18 tables.« less

  5. Electrochemical supercapacitors

    DOEpatents

    Rudge, Andrew J.; Ferraris, John P.; Gottesfeld, Shimshon

    1996-01-01

    A new class of electrochemical capacitors provides in its charged state a positive electrode including an active material of a p-doped material and a negative electrode including an active material of an n-doped conducting polymer, where the p-doped and n-doped materials are separated by an electrolyte. In a preferred embodiment, the positive and negative electrode active materials are selected from conducting polymers consisting of polythiophene, polymers having an aryl group attached in the 3-position, polymers having aryl and alkyl groups independently attached in the 3- and 4-positions, and polymers synthesized from bridged dimers having polythiophene as the backbone. A preferred electrolyte is a tetraalykyl ammonium salt, such as tetramethylammonium trifluoromethane sulphonate (TMATFMS), that provides small ions that are mobile through the active material, is soluble in acetonitrile, and can be used in a variety of capacitor configurations.

  6. Crystal structure and electrochemical properties of rare earth non-stoichiometric AB5-type alloy as negative electrode material in Ni-MH battery

    NASA Astrophysics Data System (ADS)

    Zhang, Xinbo; Chai, Yujun; Yin, Wenya; Zhao, Minshou

    2004-07-01

    The La 0.85Mg xNi 4.5Co 0.35Al 0.15 (0.05⩽ x⩽0.35) system compounds have been prepared by arc melting method under Ar atmosphere. X-ray diffraction (XRD) analysis reveals that the as-prepared alloys have different lattice parameters and cell volumes. The electrochemical properties of these alloys have been studied through the charge-discharge recycle testing at different temperatures and discharge currents. It is found that the La 0.85Mg 0.25Ni 4.5Co 0.35Al 0.15 alloy electrode is capable of performing high-rate discharge. Moreover, it has very excellent electrochemical properties as negative electrode materials in Ni-MH battery at low temperature, even at -40°C.

  7. Predicting ion specific capacitances of supercapacitors due to quantum ionic interactions.

    PubMed

    Parsons, Drew F

    2014-08-01

    A new theoretical framework is now available to help explain ion specific (Hofmeister) effects. All measurements in physical chemistry show ion specificity, inexplicable by classical electrostatic theories. These ignore ionic dispersion forces that change ionic adsorption. We explored ion specificity in supercapacitors using a modified Poisson-Boltzmann approach that includes ionic dispersion energies. We have applied ab initio quantum chemical methods to determine required ion sizes and ion polarisabilities. Our model represents graphite electrodes through their optical dielectric spectra. The electrolyte was 1.2 M Li salt in propylene carbonate, using the common battery anions, PF6(-), BF4(-) and ClO4(-). We also investigated the perhalate series with BrO4(-) and IO4(-). The capacitance C=dσ/dψ was calculated from the predicted electrode surface charge σ of each electrode with potential ψ between electrodes. Compared to the purely electrostatic calculation, the capacitance of a positively charged graphite electrode was enhanced by more than 15%, with PF6(-) showing >50% increase in capacitance. IO4(-) provided minimal enhancement. The enhancement is due to adsorption of both anions and cations, driven by ionic dispersion forces. The Hofmeister series in the single-electrode capacitance was PF6(-)>BF4(-)>ClO4(-)>BrO4(-)>IO4(-) . When the graphite electrode was negatively charged, the perhalates provided almost no enhancement of capacitance, while PF6(-) and BF4(-) decreased capacitance by about 15%. Due to the asymmetric impact of nonelectrostatic ion interactions, the capacitances of positive and negative electrodes are not equal. The capacitance of a supercapacitor should therefore be reported as two values rather than one, similar to the matrix of mutual capacitances used in multielectrode devices. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Charge injection from gate electrode by simultaneous stress of optical and electrical biases in HfInZnO amorphous oxide thin film transistor

    NASA Astrophysics Data System (ADS)

    Kwon, Dae Woong; Kim, Jang Hyun; Chang, Ji Soo; Kim, Sang Wan; Sun, Min-Chul; Kim, Garam; Kim, Hyun Woo; Park, Jae Chul; Song, Ihun; Kim, Chang Jung; Jung, U. In; Park, Byung-Gook

    2010-11-01

    A comprehensive study is done regarding stabilities under simultaneous stress of light and dc-bias in amorphous hafnium-indium-zinc-oxide thin film transistors. The positive threshold voltage (Vth) shift is observed after negative gate bias and light stress, and it is completely different from widely accepted phenomenon which explains that negative-bias stress results in Vth shift in the left direction by bias-induced hole-trapping. Gate current measurement is performed to explain the unusual positive Vth shift under simultaneous application of light and negative gate bias. As a result, it is clearly found that the positive Vth shift is derived from electron injection from gate electrode to gate insulator.

  9. Assessment of trace element impacts on agricultural use of water from the Dan River following the Eden coal ash release.

    PubMed

    Hesterberg, Dean; Polizzotto, Matthew L; Crozier, Carl; Austin, Robert E

    2016-04-01

    Catastrophic events require rapid, scientifically sound decision making to mitigate impacts on human welfare and the environment. The objective of this study was to analyze potential impacts of coal ash-derived trace elements on agriculture following a 35,000-tonne release of coal ash into the Dan River at the Duke Energy Steam Station in Eden, North Carolina. We performed scenario calculations to assess the potential for excessive trace element loading to soils via irrigation and flooding with Dan River water, uptake of trace elements by crops, and livestock consumption of trace elements via drinking water. Concentrations of 13 trace elements measured in Dan River water samples within 4 km of the release site declined sharply after the release and were equivalent within 5 d to measurements taken upriver. Mass-balance calculations based on estimates of soil trace-element concentrations and the nominal river water concentrations indicated that irrigation or flooding with 25 cm of Dan River water would increase soil concentrations of all trace elements by less than 0.5%. Calculations of potential increases of trace elements in corn grain and silage, fescue, and tobacco leaves suggested that As, Cr, Se, Sr, and V were elements of most concern. Concentrations of trace elements measured in river water following the ash release never exceeded adopted standards for livestock drinking water. Based on our analyses, we present guidelines for safe usage of Dan River water to diminish negative impacts of trace elements on soils and crop production. In general, the approach we describe here may serve as a basis for rapid assessment of environmental and agricultural risks associated with any similar types of releases that arise in the future. © 2015 SETAC.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pezeshki, Alan M.; Sacci, Robert L.; Veith, Gabriel M.

    Here, we demonstrate a novel method to accelerate electrode degradation in redox flow batteries and apply this method to the all-vanadium chemistry. Electrode performance degradation occurred seven times faster than in a typical cycling experiment, enabling rapid evaluation of materials. This method also enables the steady-state study of electrodes. In this manner, it is possible to delineate whether specific operating conditions induce performance degradation; we found that both aggressively charging and discharging result in performance loss. Post-mortem x-ray photoelectron spectroscopy of the degraded electrodes was used to resolve the effects of state of charge (SoC) and current on the electrodemore » surface chemistry. For the electrode material tested in this work, we found evidence that a loss of oxygen content on the negative electrode cannot explain decreased cell performance. Furthermore, the effects of decreased electrode and membrane performance on capacity fade in a typical cycling battery were decoupled from crossover; electrode and membrane performance decay were responsible for a 22% fade in capacity, while crossover caused a 12% fade.« less

  11. CAD/CAM-designed 3D-printed electroanalytical cell for the evaluation of nanostructured gas-diffusion electrodes

    NASA Astrophysics Data System (ADS)

    Chervin, Christopher N.; Parker, Joseph F.; Nelson, Eric S.; Rolison, Debra R.; Long, Jeffrey W.

    2016-04-01

    The ability to effectively screen and validate gas-diffusion electrodes is critical to the development of next-generation metal-air batteries and regenerative fuel cells. The limiting electrode in a classic two-terminal device such as a battery or fuel cell is difficult to discern without an internal reference electrode, but the flooded electrolyte characteristic of three-electrode electroanalytical cells negates the prime function of an air electrode—a void volume freely accessible to gases. The nanostructured catalysts that drive the energy-conversion reactions (e.g., oxygen reduction and evolution in the air electrode of metal-air batteries) are best evaluated in the electrode structure as-used in the practical device. We have designed, 3D-printed, and characterized an air-breathing, thermodynamically referenced electroanalytical cell that allows us to mimic the Janus arrangement of the gas-diffusion electrode in a metal-air cell: one face freely exposed to gases, the other wetted by electrolyte.

  12. Method for uniformly distributing carbon flakes in a positive electrode, the electrode made thereby and compositions

    DOEpatents

    Mrazek, Franklin C.; Smaga, John A.; Battles, James E.

    1983-01-01

    A positive electrode for a secondary electrochemical cell wherein an electrically conductive current collector is in electrical contact with a particulate mixture of gray cast iron and an alkali metal sulfide and an electrolyte including alkali metal halides or alkaline earth metal halides. Also present may be a transition metal sulfide and graphite flakes from the conversion of gray cast iron to iron sulfide. Also disclosed is a method of distributing carbon flakes in a cell wherein there is formed an electrochemical cell of a positive electrode structure of the type described and a suitable electrolyte and a second electrode containing a material capable of alloying with alkali metal ions. The cell is connected to a source of electrical potential to electrochemically convert gray cast iron to an iron sulfide and uniformly to distribute carbon flakes formerly in the gray cast iron throughout the positive electrode while forming an alkali metal alloy in the negative electrode. Also disclosed are compositions useful in preparing positive electrodes.

  13. Full counting statistics in a serially coupled double quantum dot system with spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Xue, Hai-Bin; Xie, Hai-Qing

    2018-04-01

    We study the full counting statistics of electron transport through a serially coupled double quantum dot (QD) system with spin-orbit coupling (SOC) weakly coupled to two electrodes. We demonstrate that the spin polarizations of the source and drain electrodes determine whether the shot noise maintains super-Poissonian distribution, and whether the sign transitions of the skewness from positive to negative values and of the kurtosis from negative to positive values take place. In particular, the interplay between the spin polarizations of the source and drain electrodes and the magnitude of the external magnetic field, can give rise to a gate-voltage-tunable strong negative differential conductance (NDC) and the shot noise in this NDC region is significantly enhanced. Importantly, for a given SOC parameter, the obvious variation of the high-order current cumulants as a function of the energy-level detuning in a certain range, especially the dip position of the Fano factor of the skewness can be used to qualitatively extract the information about the magnitude of the SOC.

  14. Synthesis and properties of Li3VO4 - Carbon composite as negative electrode for lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Narumi, Kengo; Mori, Tomoya; Kumasaka, Rei; Tojo, Tomohiro; Inada, Ryoji; Sakurai, Yoji

    2017-07-01

    Lithium vanadate Li3VO4 (LVO) is known to be as one of the attractive candidates for negative electrode of lithium-ion battery (LIB) with high safety. Although theoretical capacity of LVO attains to 400 mAh g-1, the actual charge and discharge capacities are far below due to its low electrical and ionic conductivity. In this study, we synthesized carbon-coated LVO (C-LVO) via one-step solid state reaction method and examined its properties as a negative electrode for LIB. From XRD measurements and SEM observation, crystal structure of C-LVO was nearly identical with non-coated one but grain size of former was much smaller than latter with same annealing temperature, suggesting that introduction of carbon source in starting materials effectively helps to suppress LVO grain growth during annealing. TEM observation of C-LVO also shows that amorphous carbon layer with its thickness of several ten nm was formed on the surface of LVO grain. In electrochemical testing, C-LVO shows much higher charge and discharge capacities than non-coated LVO.

  15. Electrochemical synthesis of 1D core-shell Si/TiO2 nanotubes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Kowalski, Damian; Mallet, Jeremy; Thomas, Shibin; Nemaga, Abirdu Woreka; Michel, Jean; Guery, Claude; Molinari, Michael; Morcrette, Mathieu

    2017-09-01

    Silicon negative electrode for lithium ion battery was designed in the form of self-organized 1D core-shell nanotubes to overcome shortcomings linked to silicon volume expansion upon lithiation/delithiation typically occurring with Si nanoparticles. The negative electrode was formed on TiO2 nanotubes in two step electrochemical synthesis by means of anodizing of titanium and electrodeposition of silicon using ionic liquid electrolytes. Remarkably, it was found that the silicon grows perpendicularly to the z-axis of nanotube and therefore its thickness can be precisely controlled by the charge passed in the electrochemical protocol. Deposited silicon creates a continuous Si network on TiO2 nanotubes without grain boundaries and particle-particle interfaces, defining its electrochemical characteristics under battery testing. In the core-shell system the titania nanotube play a role of volume expansion stabilizer framework holding the nanostructured silicon upon lithiation/delithiation. The nature of Si shell and presence of titania core determine stable performance as negative electrode tested in half cell of CR2032 coin cell battery.

  16. Lightweight, durable lead-acid batteries

    DOEpatents

    Lara-Curzio, Edgar [Lenoir City, TN; An, Ke [Knoxville, TX; Kiggans, Jr., James O.; Dudney, Nancy J [Knoxville, TN; Contescu, Cristian I [Knoxville, TN; Baker, Frederick S [Oak Ridge, TN; Armstrong, Beth L [Clinton, TN

    2011-09-13

    A lightweight, durable lead-acid battery is disclosed. Alternative electrode materials and configurations are used to reduce weight, to increase material utilization and to extend service life. The electrode can include a current collector having a buffer layer in contact with the current collector and an electrochemically active material in contact with the buffer layer. In one form, the buffer layer includes a carbide, and the current collector includes carbon fibers having the buffer layer. The buffer layer can include a carbide and/or a noble metal selected from of gold, silver, tantalum, platinum, palladium and rhodium. When the electrode is to be used in a lead-acid battery, the electrochemically active material is selected from metallic lead (for a negative electrode) or lead peroxide (for a positive electrode).

  17. Lightweight, durable lead-acid batteries

    DOEpatents

    Lara-Curzio, Edgar; An, Ke; Kiggans, Jr., James O; Dudney, Nancy J; Contescu, Cristian I; Baker, Frederick S; Armstrong, Beth L

    2013-05-21

    A lightweight, durable lead-acid battery is disclosed. Alternative electrode materials and configurations are used to reduce weight, to increase material utilization and to extend service life. The electrode can include a current collector having a buffer layer in contact with the current collector and an electrochemically active material in contact with the buffer layer. In one form, the buffer layer includes a carbide, and the current collector includes carbon fibers having the buffer layer. The buffer layer can include a carbide and/or a noble metal selected from of gold, silver, tantalum, platinum, palladium and rhodium. When the electrode is to be used in a lead-acid battery, the electrochemically active material is selected from metallic lead (for a negative electrode) or lead peroxide (for a positive electrode).

  18. Controllable Fabrication of Amorphous Co-Ni Pyrophosphates for Tuning Electrochemical Performance in Supercapacitors.

    PubMed

    Chen, Chen; Zhang, Ning; He, Yulu; Liang, Bo; Ma, Renzhi; Liu, Xiaohe

    2016-09-07

    Incorporation of two transition metals offers an effective method to enhance the electrochemical performance in supercapacitors for transition metal compound based electrodes. However, such a configuration is seldom concerned in pyrophosphates. Here, amorphous phase Co-Ni pyrophosphates are fabricated as electrodes in supercapacitors. Through controllably adjusting the ratios of Co and Ni as well as the calcination temperature, the electrochemical performance can be tuned. An optimized amorphous Ni-Co pyrophosphate exhibits much higher specific capacitance than monometallic Ni and Co pyrophosphates and shows excellent cycling ability. When employing Ni-Co pyrophosphates as positive electrode and activated carbon as a negative electrode, the fabricated asymmetric supercapacitor cell exhibits favorable capacitance and cycling ability. This study provides facile methods to improve the transition metal pyrophosphate electrodes for efficient electrodes in electrochemical energy storage devices.

  19. Electrochemical cell

    DOEpatents

    Redey, L.I.; Vissers, D.R.; Prakash, J.

    1994-02-01

    An electrochemical cell is described having a bimodal positive electrode, a negative electrode of an alkali metal, and a compatible electrolyte including an alkali metal salt molten at the cell operating temperature. The positive electrode has an electrochemically active layer of at least one transition metal chloride at least partially present as a charging product, and additives of bromide and/or iodide and sulfur in the positive electrode or the electrolyte. Electrode volumetric capacity is in excess of 400 Ah/cm[sup 3]; the cell can be 90% recharged in three hours and can operate at temperatures below 160 C. There is also disclosed a method of reducing the operating temperature and improving the overall volumetric capacity of an electrochemical cell and for producing a positive electrode having a BET area greater than 6[times]10[sup 4] cm[sup 2]/g of Ni. 8 figures.

  20. Electrochemical cell

    DOEpatents

    Redey, Laszlo I.; Vissers, Donald R.; Prakash, Jai

    1994-01-01

    An electrochemical cell having a bimodal positive electrode, a negative electrode of an alkali metal, and a compatible electrolyte including an alkali metal salt molten at the cell operating temperature. The positive electrode has an electrochemically active layer of at least one transition metal chloride at least partially present as a charging product, and additives of bromide and/or iodide and sulfur in the positive electrode or the electrolyte. Electrode volumetric capacity is in excess of 400 Ah/cm.sup.3 ; the cell can be 90% recharged in three hours and can operate at temperatures below 160.degree. C. There is also disclosed a method of reducing the operating temperature and improving the overall volumetric capacity of an electrochemical cell and for producing a positive electrode having a BET area greater than 6.times.10.sup.4 cm.sup.2 /g of Ni.

  1. Electrochemical cell

    DOEpatents

    Redey, Laszlo I.; Vissers, Donald R.; Prakash, Jai

    1996-01-01

    An electrochemical cell having a bimodal positive electrode, a negative electrode of an alkali metal, and a compatible electrolyte including an alkali metal salt molten at the cell operating temperature. The positive electrode has an electrochemically active layer of at least one transition metal chloride at least partially present as a charging product, and additives of bromide and/or iodide and sulfur in the positive electrode or the electrolyte. Electrode volumetric capacity is in excess of 400 Ah/cm.sup.3 ; the cell can be 90% recharged in three hours and can operate at temperatures below 160.degree. C. There is also disclosed a method of reducing the operating temperature and improving the overall volumetric capacity of an electrochemical cell and for producing a positive electrode having a BET area greater than 6.times.10.sup.4 cm.sup.2 /g of Ni.

  2. Electrochemical cell

    DOEpatents

    Redey, L.I.; Vissers, D.R.; Prakash, J.

    1996-07-16

    An electrochemical cell is described having a bimodal positive electrode, a negative electrode of an alkali metal, and a compatible electrolyte including an alkali metal salt molten at the cell operating temperature. The positive electrode has an electrochemically active layer of at least one transition metal chloride at least partially present as a charging product, and additives of bromide and/or iodide and sulfur in the positive electrode or the electrolyte. Electrode volumetric capacity is in excess of 400 Ah/cm{sup 3}; the cell can be 90% recharged in three hours and can operate at temperatures below 160 C. There is also disclosed a method of reducing the operating temperature and improving the overall volumetric capacity of an electrochemical cell and for producing a positive electrode having a BET area greater than 6{times}10{sup 4}cm{sup 2}/g of Ni. 6 figs.

  3. The negative electrode development for a Ni-MH battery prototype

    NASA Astrophysics Data System (ADS)

    Cuscueta, D. J.; Ghilarducci, A. A.; Salva, H. R.; Milocco, R. H.; Castro, E. B.

    2009-10-01

    The negative electrode development for a nickel-metal hydride battery (Ni-MH) prototype was performed with the following procedure: (1) the Lm 0.95Ni 3.8Co 0.3Mn 0.3Al 0.4 (Lm=lanthanum rich mischmetal) intermetallic alloy was elaborated by melting the pure elements in an induction furnace inside a boron nitride crucible under an inert atmosphere, (2) the obtained alloy was crushed and sieved between 44 and 74 μm and mixed with teflonized carbon; (3) the compound was assembled together with a current collector and pressed in a cylindrical matrix. The obtained electrode presented a disc shape, with 11 mm diameter and approximately 1 mm thickness. The crystalline structure of the hydrogen storage alloy was examined using X-ray diffractometry. The measured hcp lattice volume was 1.78% larger than the precursor LaNi 5 intermetallic alloy, increasing the available space for hydrogen movement. Energy dispersive spectroscopy (EDS) and scanning electronic microscopy (SEM) measurements were used before and after hydriding in order to verify the alloy sample homogeneity. The negative electrode was electrochemically tested by using a laboratory cell. It activates almost totally in its first cycle, which is an excellent characteristic from the commercial point of view. The maximum discharge capacity reached was 314.2 mA h/g in the 10th cycle.

  4. Social Sciences Support to Military Personnel Engaged in Counter-Insurgency and Counter-Terrorism Operations (Soutien en sciences sociales apporte au personnel militaire engage dans des operations de contre-insurrection et de contre-terrorisme)

    DTIC Science & Technology

    2011-11-01

    much more negative about Muslims, became jumpy, felt the world is less safe, found it hard to sleep, found it hard to detach, becoming emotionally ...the impact of military posture and ways to minimize the negative impact of military operations, disengagement and deradicalization efforts, as well as...combat is difficult. After armed conflict, 70% of participants have a negative outlook toward military service and choose to resign. A key factor in this

  5. Bacterial-cellulose-derived carbon nanofiber@MnO₂ and nitrogen-doped carbon nanofiber electrode materials: an asymmetric supercapacitor with high energy and power density.

    PubMed

    Chen, Li-Feng; Huang, Zhi-Hong; Liang, Hai-Wei; Guan, Qing-Fang; Yu, Shu-Hong

    2013-09-14

    A new kind of high-performance asymmetric supercapacitor is designed with pyrolyzed bacterial cellulose (p-BC)-coated MnO₂ as a positive electrode material and nitrogen-doped p-BC as a negative electrode material via an easy, efficient, large-scale, and green fabrication approach. The optimal asymmetric device possesses an excellent supercapacitive behavior with quite high energy and power density. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. System-Level Biochip for Impedance Sensing and Programmable Manipulation of Bladder Cancer Cells

    PubMed Central

    Chuang, Cheng-Hsin; Huang, Yao-Wei; Wu, Yao-Tung

    2011-01-01

    This paper develops a dielectrophoretic (DEP) chip with multi-layer electrodes and a micro-cavity array for programmable manipulations of cells and impedance measurement. The DEP chip consists of an ITO top electrode, flow chamber, middle electrode on an SU-8 surface, micro-cavity arrays of SU-8 and distributed electrodes at the bottom of the micro-cavity. Impedance sensing of single cells could be performed as follows: firstly, cells were trapped in a micro-cavity array by negative DEP force provided by top and middle electrodes; then, the impedance measurement for discrimination of different stage of bladder cancer cells was accomplished by the middle and bottom electrodes. After impedance sensing, the individual releasing of trapped cells was achieved by negative DEP force using the top and bottom electrodes in order to collect the identified cells once more. Both cell manipulations and impedance measurement had been integrated within a system controlled by a PC-based LabVIEW program. In the experiments, two different stages of bladder cancer cell lines (grade III: T24 and grade II: TSGH8301) were utilized for the demonstration of programmable manipulation and impedance sensing; as the results show, the lower-grade bladder cancer cells (TSGH8301) possess higher impedance than the higher-grade ones (T24). In general, the multi-step manipulations of cells can be easily programmed by controlling the electrical signal in our design, which provides an excellent platform technology for lab-on-a-chip (LOC) or a micro-total-analysis-system (Micro TAS). PMID:22346685

  7. Negative surface streamers propagating on TiO2 and γ-Al2O3-supported Ag catalysts: ICCD imaging and modeling study

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Ha; Teramoto, Yoshiyuki; Ogata, Atsushi; Kang, Woo Seok; Hur, Min; Song, Young-Hoon

    2018-06-01

    Surface streamers propagating on the surface of titanium dioxide (TiO2) and alumina (γ-Al2O3) were studied in negative polarity using intensified charge coupled device (ICCD) imaging and numerical simulation. Detailed time-resolved ICCD images of cathode-directed streamers (CDSs) emanating from a ground electrode are first presented in this report. Instead of primary streamers in positive polarity, only a glow-like discharge appeared in the early stage at the cathode under negative polarity. After this discharge disappeared, a counter-propagating CDS initiated from the ground electrode (anode). Numerical simulation indicated that strong electric fields at the pellet-anode and the formation of positive ion rich local spots were the main reason for the CDS formation near the ground electrode. The maximum velocity was 750 km s‑1 for Ag-supported γ-Al2O3 and 550 km s‑1 for Ag-supported TiO2, respectively. In contrast to the CDS in the gas-phase with a positive polarity, the CDS in a catalyst packed-bed under negative polarity showed more branching and a larger number of streamers in the presence of oxygen than in pure N2.

  8. New Ti3C2 aerogel as promising negative electrode materials for asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Lu; Zhang, Mingyi; Zhang, Xitian; Zhang, Zhiguo

    2017-10-01

    Novel 3D Ti3C2 aerogel has been first synthesized by a simple EDA-assisted self-assembly process. Its inside are channels and pores structure. The interconnected aerogel structure could efficiently restrain restacking of Ti3C2 flakes. Thus, it exhibits a large specific surface area as high as 176.3 m2 g-1. The electrochemical performances have been measured. The Ti3C2 aerogel achieves a quite high areal capacitance of 1012.5 mF cm-2 for the mass loading of 15 mg at a scan rate of 2 mV s-1 in 1 M KOH electrolyte. An asymmetric supercapacitor (ASC) has been assembled by using the Ti3C2 aerogel electrode as the negative electrode and electrospinning carbon nanofiber film as the positive electrode. The device can deliver a high energy density of 120.0 μWh cm-2 and a maximum power density of 26123 μW cm-2. A lamp panel with nineteen red light-emitting diodes has been powered by two ASCs in series.

  9. Electrochemical cell having improved pressure vent

    DOEpatents

    Dean, Kevin; Holland, Arthur; Fillmore, Donn

    1993-01-01

    The electrochemical cell of the instant invention includes a case having a gas outlet, one or more positive electrodes positioned within the case, one or more negative electrodes positioned within the case electrode separators positioned between the positive and negative electrodes, electrolyte positioned within the case, and a pressure vent for releasing internal pressure occurring in the case to the surrounding atmosphere. The pressure vent is affixed to the case covering the gas outlet, the pressure vent includes a vent housing having a hollow interior area in gaseous communication with the surrounding atmosphere and the interior of the case via the gas outlet, a pressure release piston positioned within the hollow interior area, the pressure release piston sized to surround the gas outlet and having a seal groove configured to encapsulate all but one surface of a seal mounted within the seal groove, leaving the non-encapsulated surface of the seal exposed, and a compression spring positioned to urge the pressure release piston to compress the seal in the seal groove and block the gas outlet in the case.

  10. The cell-in-series method: A technique for accelerated electrode degradation in redox flow batteries

    DOE PAGES

    Pezeshki, Alan M.; Sacci, Robert L.; Veith, Gabriel M.; ...

    2015-11-21

    Here, we demonstrate a novel method to accelerate electrode degradation in redox flow batteries and apply this method to the all-vanadium chemistry. Electrode performance degradation occurred seven times faster than in a typical cycling experiment, enabling rapid evaluation of materials. This method also enables the steady-state study of electrodes. In this manner, it is possible to delineate whether specific operating conditions induce performance degradation; we found that both aggressively charging and discharging result in performance loss. Post-mortem x-ray photoelectron spectroscopy of the degraded electrodes was used to resolve the effects of state of charge (SoC) and current on the electrodemore » surface chemistry. For the electrode material tested in this work, we found evidence that a loss of oxygen content on the negative electrode cannot explain decreased cell performance. Furthermore, the effects of decreased electrode and membrane performance on capacity fade in a typical cycling battery were decoupled from crossover; electrode and membrane performance decay were responsible for a 22% fade in capacity, while crossover caused a 12% fade.« less

  11. Electrode for electrochemical cell

    DOEpatents

    Kaun, T.D.; Nelson, P.A.; Miller, W.E.

    1980-05-09

    An electrode structure for a secondary electrochemical cell includes an outer enclosure defining a compartment containing electrochemical active material. The enclosure includes a rigid electrically conductive metal sheet with perforated openings over major side surfaces. The enclosure can be assembled as first and second trays each with a rigid sheet of perforated electrically conductive metal at major side surfaces and normally extending flanges at parametric margins. The trays can be pressed together with moldable active material between the two to form an expandable electrode. A plurality of positive and negative electrodes thus formed are arranged in an alternating array with porous frangible interelectrode separators within the housing of the secondary electrochemical cell.

  12. Electrode for electrochemical cell

    DOEpatents

    Kaun, Thomas D.; Nelson, Paul A.; Miller, William E.

    1981-01-01

    An electrode structure for a secondary electrochemical cell includes an outer enclosure defining a compartment containing electrochemical active material. The enclosure includes a rigid electrically conductive metal sheet with perforated openings over major side surfaces. The enclosure can be assembled as first and second trays each with a rigid sheet of perforated electrically conductive metal at major side surfaces and normally extending flanges at parametric margins. The trays can be pressed together with moldable active material between the two to form an expandable electrode. A plurality of positive and negative electrodes thus formed are arranged in an alternating array with porous frangible interelectrode separators within the housing of the secondary electrochemical cell.

  13. A Spark Chamber With Thin Electrodes and a Study of the Position of the Alignment Point; KAMERA S TONKIMI ELEKTRODAMI IZUCHENIE POLOZHENIYA TOCHKI SPRYAMLENIYA ISKRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Legar, F.; Nikanorov, V.I.; Peter, G.

    1964-01-01

    A technique for making the foil electrodes with twosided working surface for spark chambers is described. Some characteristics of spark chambers with thin electrodes are given. The variation of the distance from the negative electrode to the alignment point of a spark with the energy of the detected particles and the angie of their passage through the charaber was studied. It is shown that with the increasing initial density of the gas ionization in the chamber the Townsend coefficient a becomes greater due to the charge interaction of avalanches. (auth)

  14. Corrosion resistant positive electrode for high-temperature, secondary electrochemical cell

    DOEpatents

    Otto, Neil C.; Warner, Barry T.; Smaga, John A.; Battles, James E.

    1983-01-01

    The corrosion rate of low carbon steel within a positive electrode of a high-temperature, secondary electrochemical cell that includes FeS as active material is substantially reduced by incorporating therein finely divided iron powder in stoichiometric excess to the amount required to form FeS in the fully charged electrode. The cell typically includes an alkali metal or alkaline earth metal as negative electrode active material and a molten metal halide salt as electrolyte. The excess iron permits use of inexpensive carbon steel alloys that are substantially free of the costly corrosion resistant elements chromium, nickel and molybdenum while avoiding shorten cell life resulting from high corrosion rates.

  15. Layered electrodes for lithium cells and batteries

    DOEpatents

    Johnson; Christopher S. , Thackeray; Michael M. , Vaughey; John T. , Kahaian; Arthur J. , Kim; Jeom-Soo

    2008-04-15

    Lithium metal oxide compounds of nominal formula Li.sub.2MO.sub.2, in which M represents two or more positively charged metal ions, selected predominantly and preferably from the first row of transition metals are disclosed herein. The Li.sub.2MO.sub.2 compounds have a layered-type structure, which can be used as positive electrodes for lithium electrochemical cells, or as a precursor for the in-situ electrochemical fabrication of LiMO.sub.2 electrodes. The Li.sub.2MO.sub.2 compounds of the invention may have additional functions in lithium cells, for example, as end-of-discharge indicators, or as negative electrodes for lithium cells.

  16. Corrosion resistant positive electrode for high-temperature, secondary electrochemical cell

    DOEpatents

    Otto, N.C.; Warner, B.T.; Smaga, J.A.; Battles, J.E.

    1982-07-07

    The corrosion rate of low carbon steel within a positive electrode of a high-temperature, secondary electrochemical cell that includes FeS as active material is substantially reduced by incorporating therein finely divided iron powder in stoichiometric excess to the amount required to form FeS in the fully charged electrode. The cell typically includes an alkali metal or alkaline earth metal as negative electrode active material and a molten metal halide salt as electrolyte. The excess iron permits use of inexpensive carbon steel alloys that are substantially free of the costly corrosion resistant elements chromium, nickel and molybdenum while avoiding shorten cell life resulting from high corrosion rates.

  17. Evaluation program for secondary spacecraft cells. Initial evaluation tests of General Electric Company standard and teflonated negative electrode 20.0 ampere-hour, nickel-cadmium spacecraft cells with auxiliary electrodes

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The standard plate cells exhibited higher average end-of-charge (EOC) voltages than the cells with teflonated negative plates; they also delivered a higher capacity output in ampere hours following these charges. All the cells reached a pressure of 20 psia before reaching the voltage limit of 1.550 volts during the pressure versus capacity test. The average ampere hours in and voltages at this pressure were 33.6 and 1.505 volts respectively for the teflonated negative plate cells and 35.5 and 1.523 volts for the standard plate cells. All cells exhibited pressure decay in the range of 1 to 7 psia during the last 30 minutes of the 1-hour open circuit stand. Average capacity out for the teflonated and standard negative plate cells was 29.4 and 29.9 ampere hours respectively.

  18. Phase Boundary Propagation in Li-Alloying Battery Electrodes Revealed by Liquid-Cell Transmission Electron Microscopy

    DOE PAGES

    Leenheer, Andrew J.; Jungjohann, Katherine L.; Zavadil, Kevin R.; ...

    2016-05-31

    Battery cycle life is directly influenced by the microstructural changes occurring in the electrodes during charge and discharge cycles. In this study, we image in situ the nanoscale phase evolution in negative electrode materials for Li-ion batteries using a fully enclosed liquid cell in a transmission electron microscope (TEM) to reveal early degradation that is not evident in the charge–discharge curves. To compare the electrochemical phase transformation behavior between three model materials, thin films of amorphous Si, crystalline Al, and crystalline Au were lithiated and delithiated at controlled rates while immersed in a commercial liquid electrolyte. This method allowed formore » the direct observation of lithiation mechanisms in nanoscale negative electrodes, revealing that a simplistic model of a surface-to-interior lithiation front is insufficient. For the crystalline films, a lithiation front spread laterally from a few initial nucleation points, with continued grain nucleation along the growing interface. The intermediate lithiated phases were identified using electron diffraction, and high-resolution postmortem imaging revealed the details of the final microstructure. Lastly, our results show that electrochemically induced solid–solid phase transformations can lead to highly concentrated stresses at the laterally propagating phase boundary which should be considered for future designs of nanostructured electrodes for Li-ion batteries.« less

  19. Large-scale coupling dynamics of instructed reversal learning.

    PubMed

    Mohr, Holger; Wolfensteller, Uta; Ruge, Hannes

    2018-02-15

    The ability to rapidly learn from others by instruction is an important characteristic of human cognition. A recent study found that the rapid transfer from initial instructions to fluid behavior is supported by changes of functional connectivity between and within several large-scale brain networks, and particularly by the coupling of the dorsal attention network (DAN) with the cingulo-opercular network (CON). In the present study, we extended this approach to investigate how these brain networks interact when stimulus-response mappings are altered by novel instructions. We hypothesized that residual stimulus-response associations from initial practice might negatively impact the ability to implement novel instructions. Using functional imaging and large-scale connectivity analysis, we found that functional coupling between the CON and DAN was generally at a higher level during initial than reversal learning. Examining the learning-related connectivity dynamics between the CON and DAN in more detail by means of multivariate patterns analyses, we identified a specific subset of connections which showed a particularly high increase in connectivity during initial learning compared to reversal learning. This finding suggests that the CON-DAN connections can be separated into two functionally dissociable yet spatially intertwined subsystems supporting different aspects of short-term task automatization. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Stability of Triggering of the Switch with Sharply Non-Uniform Electric Field at the Electrode with Negative Potential

    NASA Astrophysics Data System (ADS)

    Kovalchuk, B. M.; Zherlitsyn, A. A.; Kumpyak, E. V.

    2017-12-01

    Results of investigations into a two-electrode high-pressure gas switch with sharply non-uniform field at the electrode with negative potential operating in the self-breakdown regime with pulsed charging of a highvoltage capacitive energy storage for 100 μs to voltage exceeding 200 kV are presented. It is demonstrated that depending on the air pressure and the gap length, the corona-streamer discharge, whose current increases with voltage, arises in the switch at a voltage of 0.2-0.3 of the self-breakdown voltage. At the moment of switch self-breakdown, the corona-streamer discharge goes over to one or several spark channels. The standard deviation of the triggering moment can be within 1.5 μs, which corresponds to the standard deviation of the self-breakdown voltage less than 2 kV. The voltage stability can be better than 1.5%.

  1. A diffuse argon plume generated by a longitudinal slit jet equipped with a quadri-electrode barrier discharge

    NASA Astrophysics Data System (ADS)

    Li, Xuechen; Chu, Jingdi; Zhang, Qi; Zhang, Panpan; Jia, Pengying; Dong, Lifang

    2018-04-01

    A diffuse argon plume at atmospheric pressure is generated downstream of a longitudinal slit jet equipped with a dielectric barrier discharge in a quadri-electrode configuration. Results indicate that both the plume length and the spectral line intensities increase with the increase in the peak voltage. With fast photography it is found that there is a clear difference for discharges with different polarities. The positive discharge is composed of nonuniform branching filaments; however, it is fairly uniform for the negative discharge. Due to the charge overflow of the intra-electrode discharge, the streamer mechanism is involved in the plume discharge. In fact, the positive discharge and the negative one correspond to a cathode-directed streamer and an anode-directed streamer, respectively. The formation mechanisms of the branching filaments and the diffuse background are discussed at last.

  2. Low-bias negative differential conductance controlled by electrode separation

    NASA Astrophysics Data System (ADS)

    Yi, Xiao-Hua; Liu, Ran; Bi, Jun-Jie; Jiao, Yang; Wang, Chuan-Kui; Li, Zong-Liang

    2016-12-01

    The electronic transport properties of a single thiolated arylethynylene molecule with 9,10-dihydroanthracene core, denoted as TADHA, is studied by using non-equilibrium Green’s function formalism combined with ab initio calculations. The numerical results show that the TADHA molecule exhibits excellent negative differential conductance (NDC) behavior at lower bias regime as probed experimentally. The NDC behavior of TADHA molecule originates from the Stark effect of the applied bias voltage, by which the highest occupied molecular orbital (HOMO) and the HOMO-1 are pulled apart and become localized. The NDC behavior of TADHA molecular system is tunable by changing the electrode distance. Shortening the electrode separation can enhance the NDC effect which is attributed to the possible increase of coupling between the two branches of TADHA molecule. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374195 and 11405098) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2013FM006).

  3. Formation of ball streamers at a subnanosecond breakdown of gases at a high pressure in a nonuniform electric field

    NASA Astrophysics Data System (ADS)

    Beloplotov, D. V.; Tarasenko, V. F.; Sorokin, D. A.; Lomaev, M. I.

    2017-11-01

    The formation of a diffuse discharge plasma at a subnanosecond breakdown of a "cone-plane" gap filled with air, nitrogen, methane, hydrogen, argon, neon, and helium at various pressures has been studied. Nanosecond negative and positive voltage pulses have been applied to the conical electrode. The experimental data on the dynamics of plasma glow at the stage of formation and propagation of a streamer have been obtained with intensified charge-coupled device and streak cameras. It has been found that the formation of ball streamers is observed in all gases and at both polarities. A supershort avalanche electron beam has been detected behind the flat foil electrode in a wide range of pressures in the case of a negatively charged conical electrode. A mechanism of the formation of streamers at breakdown of various gases at high overvoltages has been discussed.

  4. Dependence of negative ion formation on inhomogeneous electric field strength in atmospheric pressure negative corona discharge

    NASA Astrophysics Data System (ADS)

    Sekimoto, K.; Takayama, M.

    2008-12-01

    The dependence of negative ion formation on the inhomogeneous electric field strength in atmospheric pressure negative corona discharge with point-to-plane electrodes has been described. The distribution of negative ions HO-, NOx - and COx - and their abundances on the plane electrode was obtained with a mass spectrometer. The ion distribution on the plane was divided into two regions, the center region on the needle axis and peripheral region occurring the dominant NOx - and COx - ions and HO- ion, respectively. The calculated electric field strength in inhomogeneous electric field established on the needle tip surface suggested that the abundant formation of NOx - and COx - ions and HO- ion is attributed to the high field strength at the tip apex region over 108 Vm-1 and the low field strength at the tip peripheral region of the order of 107 Vm-1, respectively. The formation of HO-, NOx - and COx - has been discussed from the standpoint of negative ion evolution based on the thermochemical reaction and the kinetic energy of electron emitted from the needle tip.

  5. Improved levitation and trapping of particles by negative dielectrophoresis by the addition of amphoteric molecules

    NASA Astrophysics Data System (ADS)

    Flores-Rodriguez, Neftali; Markx, Gerard H.

    2004-02-01

    Addition of amphoteres could be used to improve the levitation and trapping of particles by negative dielectrophoresis. Addition of amphoteric molecules to electromanipulation media increases not only the permittivity of the medium and its viscosity but also its density. To investigate the effect of addition of amphoteres on levitation and trapping by negative dielectrophoresis, the electrokinetic behaviour of latex beads and viable yeast cells (Saccharomyces cerevisiae) was investigated in concentrated solutions of the amphoteric molecules N-[2-hydroxyethyl] piperazine-N'-[2-ethanesulfonic acid] (HEPES) and egr -aminocaproic acid (EACA) using different frequencies and voltages of the applied electrical signal and microelectrodes of different sizes. When using interdigitated electrodes without castellations, latex beads levitated an average of 43% higher when 0.67 M EACA solutions were used and a 54% higher after adding 0.67 M HEPES compared with the levitation heights when no amphoteres were added. Under the same conditions, yeast levitated 78% and 86% higher, respectively. At low voltages and low HEPES/EACA concentrations, the latex particles accumulated in bands between or above the electrodes. However, at the highest voltages and HEPES/EACA concentrations used, the particles formed a network of pearl chains above the electrode arrays. When using electrodes of the interdigitated castellated type of characteristic size 30 µm, latex particles levitated 32% and 40% higher when 0.67 M EACA and HEPES solutions were used in comparison with when no amphoteres were added. At these concentrations, the flow rate needed to dislodge the latex particles from the traps formed by the electric field pattern between the castellations of the interdigitated castellated electrodes was increased by 46% compared with the flow rate needed to achieve this when no amphoteres were added.

  6. Molecular dynamics simulations of pyrrolidinium and imidazolium ionic liquids at graphene interfaces.

    PubMed

    Begić, Srđan; Jónsson, Erlendur; Chen, Fangfang; Forsyth, Maria

    2017-11-15

    Understanding the electrode-electrolyte interface is essential in the battery research as the ion transport and ion structures at the interface most likely affect the performance of a battery. Here we investigate interfacial structures of three ionic liquids: 1-ethyl-3-methylimidazolium dicyanamide ([C 2 mim][dca]), 1-butyl-3-methylimidazolium dicyanamide ([C 4 mim][dca]) and N-butyl-N-methylpyrrolidinium dicyanamide ([C 4 myr][dca]) at a charged and uncharged graphene interface using molecular dynamics simulations. We find that these ionic liquids (ILs) behave differently both in the bulk phase and near a graphene interface and we find that this difference is apparent in all types of analyses performed here. First, a partial density analysis in the direction perpendicular to the surface of the electrodes, which, in the cases near a negatively charged graphene, reveals that the pyrrolidinium system is generally more layered than the imidazolium systems. Second, a 2D topographic structure analysis of the IL species in the inner layer near a negatively charged graphene surface, which reveals that the pyrrolidinium system exhibits a quasi-hexagonal surface configuration of the cations, while the imidazolium systems show linearly arranged groups of cations. Third, a 3D orientation-preference analysis of cation rings near the negative graphene electrode, which shows that the pyrrolidinium rings prefer to lie parallel to the electrode surface while the imidazolium rings prefer to stand on the electrode surface at high tilt angles. Extending the imidazolium alkyl chain was found to reduce the number of imidazoliums that can link up into linearly arranged groups in the inner layer 2D structures. Our results support earlier experimental findings and indicate that the interfacial nanostructures may have a significant influence on the electrochemical performance of IL-based batteries.

  7. Density impact on performance of composite Si/graphite electrodes

    DOE PAGES

    Dufek, Eric J.; Picker, Michael; Petkovic, Lucia M.

    2016-01-27

    The ability of alkali-substituted binders for composite Si and graphite negative electrodes to minimize capacity fade for lithium ion batteries is investigated. Polymer films and electrodes are described and characterized by FTIR following immersion in electrolyte (1:2 EC:DMC) for 24 h. FTIR analysis following electrode formation displayed similar alkali-ion dependent shifts in peak location suggesting that changes in the vibrational structure of the binder are maintained after electrode formation. The Si and graphite composite electrodes prepared using the alkali-substituted polyacrylates were also exposed to electrochemical cycling and it has been found that the performance of the Na-substituted binder is superiormore » to a comparable density K-substituted system. However, in comparing performance across many different electrode densities attention needs to be placed on making comparisons at similar densities, as low density electrodes tend to exhibit lower capacity fade over cycling. This is highlighted by a 6% difference between a low density K-substituted electrode and a high density Na-substituted sample. As a result, this low variance between the two systems makes it difficult to quickly make a direct evaluation of binder performance unless electrode density is tightly controlled.« less

  8. Hierarchical Mesoporous Zinc-Nickel-Cobalt Ternary Oxide Nanowire Arrays on Nickel Foam as High-Performance Electrodes for Supercapacitors.

    PubMed

    Wu, Chun; Cai, Junjie; Zhang, Qiaobao; Zhou, Xiang; Zhu, Ying; Shen, Pei Kang; Zhang, Kaili

    2015-12-09

    Nickel foam supported hierarchical mesoporous Zn-Ni-Co ternary oxide (ZNCO) nanowire arrays are synthesized by a simple two-step approach including a hydrothermal method and subsequent calcination process and directly utilized for supercapacitive investigation for the first time. The nickel foam supported hierarchical mesoporous ZNCO nanowire arrays possess an ultrahigh specific capacitance value of 2481.8 F g(-1) at 1 A g(-1) and excellent rate capability of about 91.9% capacitance retention at 5 A g(-1). More importantly, an asymmetric supercapacitor with a high energy density (35.6 Wh kg(-1)) and remarkable cycle stability performance (94% capacitance retention over 3000 cycles) is assembled successfully by employing the ZNCO electrode as positive electrode and activated carbon as negative electrode. The remarkable electrochemical behaviors demonstrate that the nickel foam supported hierarchical mesoporous ZNCO nanowire array electrodes are highly desirable for application as advanced supercapacitor electrodes.

  9. Facile synthesis of ultrathin manganese dioxide nanosheets arrays on nickel foam as advanced binder-free supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Huang, Ming; Zhao, Xiao Li; Li, Fei; Zhang, Li Li; Zhang, Yu Xin

    2015-03-01

    Ultrathin MnO2 nanosheets arrays on Ni foam have been fabricated by a facile hydrothermal approach and further investigated as the binder-free electrode for high-performance supercapacitors. This unique well-designed binder-free electrode exhibits a high specific capacitance (595.2 F g-1 at a current density of 0.5 A g-1), good rate capability (64.1% retention), and excellent cycling stability (89% capacitance retention after 3000 cycles). Moreover, an asymmetric supercapacitor is constructed using the as-prepared MnO2 nanosheets arrays as the positive electrode and activated microwave exfoliated graphite oxide (MEGO) as the negative electrode. The optimized asymmetric supercapacitor displays excellent electrochemical performance with an energy density of 25.8 Wh kg-1 and a maximum power density of 223.2 kW kg-1. These impressive performances suggest that the MnO2 nanosheet array is a promising electrode material for supercapacitors.

  10. Negative differential resistance observation in complex convoluted fullerene junctions

    NASA Astrophysics Data System (ADS)

    Kaur, Milanpreet; Sawhney, Ravinder Singh; Engles, Derick

    2018-04-01

    In this work, we simulated the smallest fullerene molecule, C20 in a two-probe device model with gold electrodes. The gold electrodes comprised of (011) miller planes were carved to construct the novel geometry based four unique shapes, which were strung to fullerene molecules through mechanically controlled break junction techniques. The organized devices were later scrutinized using non-equilibrium Green's function based on the density functional theory to calculate their molecular orbitals, energy levels, charge transfers, and electrical parameters. After intense scrutiny, we concluded that five-edged and six-edged devices have the lowest and highest current-conductance values, which result from their electrode-dominating and electrode-subsidiary effects, respectively. However, an interesting observation was that the three-edged and four-edged electrodes functioned as semi-metallic in nature, allowing the C20 molecule to demonstrate its performance with the complementary effect of these electrodes in the electron conduction process of a two-probe device.

  11. The mixing mechanism during lithiation of Si negative electrode in Li-ion batteries: an ab initio molecular dynamics study.

    PubMed

    Johari, Priya; Qi, Yue; Shenoy, Vivek B

    2011-12-14

    In order to realize Si as a negative electrode material in commercial Li-ion batteries, it is important to understand the mixing mechanism of Li and Si, and stress evolution during lithiation in Si negative electrode of Li-ion batteries. Available experiments mainly provide the diffusivity of Li in Si as an averaged property, neglecting information regarding diffusivity of Si. However, if Si can diffuse as fast as Li, the stress generated during Li diffusion can be reduced. We, therefore, studied the diffusivity of Li as well as Si atoms in the Si-anode of Li-ion battery using an ab initio molecular dynamics-based methodology. The electrochemical insertion of Li into crystalline Si prompts a crystalline-to-amorphous phase transition. We considered this situation and thus examined the diffusion kinetics of Li and Si atoms in both crystalline and amorphous Si. We find that Li diffuses faster in amorphous Si as compared to crystalline Si, while Si remains relatively immobile in both cases and generates stresses during lithiation. To further understand the mixing mechanism and to relate the structure with electrochemical mixing, we analyzed the evolution of the structure during lithiation and studied the mechanism of breaking of Si-Si network by Li. We find that Li atoms break the Si rings and chains and create ephemeral structures such as stars and boomerangs, which eventually transform to Si-Si dumbbells and isolated Si atoms in the LiSi phase. Our results are found to be in agreement with the available experimental data and provide insights into the mixing mechanism of Li and Si in Si negative electrode of Li-ion batteries.

  12. Hybrid capacitor with activated carbon electrode, Ni(OH) 2 electrode and polymer hydrogel electrolyte

    NASA Astrophysics Data System (ADS)

    Nohara, Shinji; Asahina, Toshihide; Wada, Hajime; Furukawa, Naoji; Inoue, Hiroshi; Sugoh, Nozomu; Iwasaki, Hideharu; Iwakura, Chiaki

    A new hybrid capacitor (HC) cell was assembled using an activated carbon (AC) negative electrode, an Ni(OH) 2 positive electrode and a polymer hydrogel electrolyte prepared from crosslinked potassium poly(acrylate) (PAAK) and KOH aqueous solution. The HC cell was characterized compared with an electric double layer capacitor (EDLC) using two AC electrodes and the polymer hydrogel electrolyte. It was found that the HC cell successfully worked in the larger voltage range and exhibited ca. 2.4 times higher capacitance than the EDLC cell. High-rate dischargeability of the HC cell was also superior to that of the EDLC cell. These improved characteristics strongly suggest that the HC cell can be a promising system of capacitors with high energy and power densities.

  13. Induction of Electrode-Cellular Interfaces with ˜ 0.05 μm^2 Contact Areas

    NASA Astrophysics Data System (ADS)

    Flanders, Bret; Thapa, Prem

    2009-10-01

    Individual cells of the slime mold Dictyostelium discoideum attach themselves to negatively biased nanoelectrodes that are separated by 30 μm from grounded electrodes. There is a -43 mV voltage-threshold for cell-to-electrode attachment, with negligible probability across the 0 to -38 mV range but probability that approaches 0.7 across the -46 to -100 mV range. A cell initiates contact by extending a pseudopod to the electrode and maintains contact until the voltage is turned off. Scanning electron micrographs of these interfaces show the contact areas to be of the order of 0.05 μm^2. Insight into this straight-forward, reproducible process may lead to new electrode-cellular attachment strategies that complement established approaches, such as blind sampling and patch clamp.

  14. An Investigation of Ionic Flows in a Sphere-Plate Electrode Gap

    NASA Astrophysics Data System (ADS)

    Z. Alisoy, H.; Alagoz, S.; T. Alisoy, G.; B. Alagoz, B.

    2013-10-01

    This paper presents analyses of ion flow characteristics and ion discharge pulses in a sphere-ground plate electrode system. As a result of variation in electric field intensity in the electrode gap, the ion flows towards electrodes generate non-uniform discharging pulses. Inspection of these pulses provides useful information on ionic stream kinetics, the effective thickness of ion cover around electrodes, and the timing of ion clouds discharge pulse sequences. A finite difference time domain (FDTD) based space-charge motion simulation is used for the numerical analysis of the spatio-temporal development of ionic flows following the first Townsend avalanche, and the simulation results demonstrate expansion of the positive ion flow and compression of the negative ion flow, which results in non-uniform discharge pulse characteristics.

  15. Ruthenium Oxide-Based Microelectrochemical Devices: Electrochemical Behavior of the Oxide Formed by Reduction of RuO4(2-)

    DTIC Science & Technology

    1988-08-15

    the cyclic voltametry when all four electrodes are driven together is larger than for any individual electrode. At very slow scan rates ((10 mV/s...ID vs. VG curve looks more and more like a conventional cyclic voltammogram, exhibiting negative ID on the return sweep . Microelectrode arrays with

  16. Effects of Different Materials Used for Internal Floating Electrode on the Photovoltaic Properties of Tandem Type Organic Solar Cell

    NASA Astrophysics Data System (ADS)

    Triyana, Kuwat; Yasuda, Takeshi; Fujita, Katsuhiko; Tsutsui, Tetsuo

    2004-04-01

    Three thin heterojunctions sandwiched between indium tin oxide (ITO) and the top electrode as triple-heterojunction organic solar cells have been fabricated. Each heterojunction cell consists of CuPc as a donor layer and perilene tetracrboxylic-bis-benzimidazole (PTCBI) as an acceptor layer. Ultra thin (1 nm average thickness) layers of Ag or Au have been inserted between two heterojunctions as an internal electrode. Ag and Au were chosen as materials both for internal floating and top electrodes. Influences of different deposition sequences of the organic layer in each heterojunction cell and different electrode materials were also investigated. The optimum devices were obtained when the same material was used both as an internal electrode and a top electrode. When the deposition sequence of the heterojunction is PTCBI/CuPc, the most suitable electrode is Au and the ITO is negative relative to the top electrode. Meanwhile, Ag is suitable for an electrode when the deposition sequence is CuPc/PTCBI. In this second deposition sequence, the ITO is positive relative to the top electrode. The open circuit voltage (Voc) of both optimum devices is on the order of 1.35-1.5 V. These values are approximately three times higher than that in single-heterojunction organic solar cells.

  17. Facile Synthesis of Mixed Metal Organic Frameworks: Electrode Materials for Supercapacitor with Excellent Areal Capacitance and Operational Stability.

    PubMed

    Kazemi, Sayed Habib; Hosseinzadeh, Batoul; Kazemi, Hojjat; Kiani, Mohammad Ali; Hajati, Shaaker

    2018-06-08

    Electrode materials with high surface area, tailored pore size and efficient capability for ion insertion and enhanced transport of electrons and ions are needed for advanced supercapacitors. In the present study, a mixed metal organic framework (cobalt and manganese based MOF) was synthesized through a simple one pot solvothermal method and employed as the electrode material for supercapacitor. Notably, Co-Mn MOF electrode displayed a large surface area and excellent cycling stability (over 95% capacitance retention after 1500 cycles). Also, superior pseudocapacitive behavior was observed for Co-Mn MOF electrode in KOH electrolyte with an exceptional areal capacitance of 1.318 F cm-2. Moreover, an asymmetric supercapacitor was assembled using Co-Mn MOF and activated carbon electrode as positive and negative electrodes, respectively. The fabricated supercapacitor showed specific capacitances of 106.7 F g-1 at a scan rate of 10 mV s-1 and delivered maximum energy density of 30 Wh kg-1 at 2285.7 W kg-1. Our studies suggest the Co-Mn MOF as promising electrode materials for supercapacitor applications.

  18. Mapping the vestibular evoked myogenic potential (VEMP).

    PubMed

    Colebatch, James G

    2012-01-01

    Effects of different electrode placements and indifferent electrodes were investigated for the vestibular evoked myogenic potential (VEMP) recorded from the sternocleidomastoid muscle (SCM). In 5 normal volunteers, the motor point of the left SCM was identified and an electrode placed there. A grid of 7 additional electrodes was laid out, along and across the SCM, based upon the location of the motor point. One reference electrode was placed over the sternoclavicular joint and another over C7. There were clear morphological changes with differing recording sites and for the two reference electrodes, but the earliest and largest responses were recorded from the motor point. The C7 reference affected the level of rectified EMG and was associated with an initial negativity in some electrodes. The latencies of the p13 potentials increased with distance from the motor point but the n23 latencies did not. Thus the p13 potential behaved as a travelling wave whereas the n23 behaved as a standing wave. The C7 reference may be contaminated by other evoked myogenic activity. Ideally recordings should be made with an active electrode over the motor point.

  19. Effect of Fe2O3 and Binder on the Electrochemical Properties of Fe2O3/AB (Acetylene Black) Composite Electrodes

    NASA Astrophysics Data System (ADS)

    Anh, Trinh Tuan; Thuan, Vu Manh; Thang, Doan Ha; Hang, Bui Thi

    2017-06-01

    In an effort to find the best anode material for Fe/air batteries, a Fe2O3/AB (Acetylene Black) composite was prepared by dry-type ball milling using Fe2O3 nanoparticles and AB as the active and additive materials, respectively. The effects of various binders and Fe2O3 content on the electrochemical properties of Fe2O3/AB electrodes in alkaline solution were investigated. It was found that the content of Fe2O3 strongly affected the electrochemical behavior of Fe2O3/AB electrodes; with Fe2O3 nanopowder content reaching 70 wt.% for the electrode and showing improvement of the cyclability. When the electrode binder polytetrafluoroethylene (PTFE) was used, clear redox peaks were observed via cyclic voltammetry (CV), while polyvinylidene fluoride-containing electrodes provided CV curves with unobservable redox peaks. Increasing either binder content in the electrode showed a negative effect in terms of the cyclability of the Fe2O3/AB electrode.

  20. High surface area bio-waste based carbon as a superior electrode for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Maharjan, Makhan; Bhattarai, Arjun; Ulaganathan, Mani; Wai, Nyunt; Oo, Moe Ohnmar; Wang, Jing-Yuan; Lim, Tuti Mariana

    2017-09-01

    Activated carbon (AC) with high surface area (1901 m2 g-1) is synthesized from low cost bio-waste orange (Citrus sinensis) peel for vanadium redox flow battery (VRB). The composition, structure and electrochemical properties of orange peel derived AC (OP-AC) are characterized by elemental analyzer, field emission-scanning electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy. CV results show that OP-AC coated bipolar plate demonstrates improved electro-catalytic activity in both positive and negative side redox couples than the pristine bipolar plate electrode and this is ascribed to the high surface area of OP-AC which provides effective electrode area and better contact between the porous electrode and bipolar plate. Consequently, the performance of VRB in a static cell shows higher energy efficiency for OP-AC electrode than the pristine electrode at all current densities tested. The results suggest the OP-AC to be a promising electrode for VRB applications and can be incorporated into making conducting plastics electrode to lower the VRB cell stack weight and cost.

  1. Method for uniformly distributing carbon flakes in a positive electrode, the electrode made thereby and compositions. [Patent application

    DOEpatents

    Mrazek, F.C.; Smaga, J.A.; Battles, J.E.

    1981-01-19

    A positive electrode for a secondary electrochemical cell is described wherein an electrically conductive current collector is in electrical contact with a particulate mixture of gray cast iron and an alkali metal sulfide and an electrolyte including alkali metal halides or alkaline earth metal halides. Also present may be a transition metal sulfide and graphite flakes from the conversion of gray cast iron to iron sulfide. Also disclosed is a method of distributing carbon flakes in a cell wherein there is formed an electrochemical cell of a positive electrode structure of the type described and a suitable electrolyte and a second electrode containing a material capable of alloying with alkali metal ions. The cell is connected to a source of electrical potential to electrochemically convert gray cast iron to an iron sulfide and uniformly to distribute carbon flakes formerly in the gray cast iron throughout the positive electrode while forming an alkali metal alloy in the negative electrode. Also disclosed are compositions useful in preparing positive electrodes.

  2. Comparative study of electrical breakdown properties of deionized water and heavy water under pulsed power conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veda Prakash, G.; Kumar, R.; Saurabh, K.

    A comparative study of electrical breakdown properties of deionized water (H{sub 2}O) and heavy water (D{sub 2}O) is presented with two different electrode materials (stainless steel (SS) and brass) and polarity (positive and negative) combinations. The pulsed (∼a few tens of nanoseconds) discharges are conducted by applying high voltage (∼a few hundred kV) pulse between two hemisphere electrodes of the same material, spaced 3 mm apart, at room temperature (∼26-28 °C) with the help of Tesla based pulse generator. It is observed that breakdown occurred in heavy water at lesser voltage and in short duration compared to deionized water irrespective ofmore » the electrode material and applied voltage polarity chosen. SS electrodes are seen to perform better in terms of the voltage withstanding capacity of the liquid dielectric as compared to brass electrodes. Further, discharges with negative polarity are found to give slightly enhanced discharge breakdown voltage when compared with those with positive polarity. The observations corroborate well with conductivity measurements carried out on original and post-treated liquid samples. An interpretation of the observations is attempted using Fourier transform infrared measurements on original and post-treated liquids as well as in situ emission spectra studies. A yet another important observation from the emission spectra has been that even short (nanosecond) duration discharges result in the formation of a considerable amount of ions injected into the liquid from the electrodes in a similar manner as reported for long (microseconds) discharges. The experimental observations show that deionised water is better suited for high voltage applications and also offer a comparison of the discharge behaviour with different electrodes and polarities.« less

  3. Nanosecond plasma-mediated electrosurgery with elongated electrodes

    NASA Astrophysics Data System (ADS)

    Vankov, Alexander; Palanker, Daniel

    2007-06-01

    Progress in interventional medicine is associated with the development of more delicate and less invasive surgical procedures, which requires more precise and less traumatic, yet affordable, surgical instruments. Previously we reported on the development of the pulsed electron avalanche knife for dissection of soft tissue in liquid media using the 100 ns plasma-mediated electric discharges applied via a 25 μm disk microelectrode. Cavitation bubbles accompanying explosive vaporization of the liquid medium in front of such a pointed electrode produced a series of craters that did not always merge into a continuous cut. In addition, this approach of surface ablation provided a limited depth of cutting. Application of an elongated electrode capable of cutting with its edge rather than just with its pointed apex faces a problem of nonuniformity of the electric field on a nonspherical electrode. In this article we explore dynamics of the plasma-mediated nanosecond discharges in liquid medium in positive and negative polarities and describe the geometry of an electrode that provides a sufficiently uniform electric field along an extended edge of a surgical probe. A highly enhanced and uniform electric field was obtained on very sharp (2.5 μm) exposed edges of a planar electrode insulated on its flat sides. Uniform ionization and simultaneous vaporization was obtained along the whole edge of such a blade with 100 ns pulses at 4-6 kV. A continuous cutting rate of 1 mm/s in the retina and in soft membranes was achieved at a pulse repetition rate of 100 Hz. The collateral damage zone at the edges of incision did not exceed 80 μm. Negative polarity was found advantageous due to the lower rate of electrode erosion and due to better spatial confinement of the plasma-mediated discharge in liquid.

  4. Effect of the charge surface distribution on the flow field induced by a dielectric barrier discharge actuator

    NASA Astrophysics Data System (ADS)

    Cristofolini, Andrea; Neretti, Gabriele; Borghi, Carlo A.

    2013-08-01

    The Electro-Hydro-Dynamics (EHD) interaction induced by a surface dielectric barrier discharge in the aerodynamic boundary layer at one atmosphere still air has been investigated. Three different geometrical configurations of the actuator have been utilized. In the first configuration, an electrode pair separated by a 2 mm dielectric sheet has been used. The second and the third configurations have been obtained by adding a third electrode on the upper side of the dielectric surface. This electrode has been placed downstream of the upper electrode and has been connected to ground or has been left floating. Three different dielectric materials have been utilized. The high voltage upper electrode was fed by an a.c. electric tension. Measurements of the dielectric surface potential generated by the charge deposition have been done. The discharge has been switched off after positive and negative phases of the plasma current (the current phase was characterized by a positive or a negative value, respectively). The measurements have been carried out after both phases. The charge distribution strongly depended on the switching off phase and was heavily affected by the geometrical configuration. A remarkable decrease of the charge deposited on the dielectric surface has been detected when the third electrode was connected to ground. Velocity profiles were obtained by using a Pitot probe. They showed that the presence of the third electrode limits the fluid dynamics performance of the actuator. A relation between the charge surface distribution and the EHD interaction phenomenon has been found. Imaging of the plasma has been done to evaluate the discharge structure and the extension of the plasma in the configurations investigated.

  5. Characterization of the physico-chemical properties of polymeric materials for aerospace flight. [differential thermal and atomic absorption spectroscopic analysis of nickel cadmium batteries

    NASA Technical Reports Server (NTRS)

    Rock, M.

    1981-01-01

    Electrodes and electrolytes of nickel cadmium sealed batteries were analyzed. Different thermal analysis of negative and positive battery electrodes was conducted and the temperature ranges of occurrence of endotherms indicating decomposition of cadmium hydroxide and nickel hydroxide are identified. Atomic absorption spectroscopy was used to analyze electrodes and electrolytes for traces of nickel, cadmium, cobalt, and potassium. Calibration curves and data are given for each sample analyzed. Instrumentation and analytical procedures used for each method are described.

  6. Fast light-evoked potential from leaves.

    PubMed

    Ebrey, T G

    1967-03-24

    When a leaf is illuminated with an intense flash of light, an elec trical response with a time course in milliseconds can be recorded. This re sponse was obtained between two wick electrodes placed at different positions on top of the leaf, with the entire leaf uniformly illuminated by the flash. During the first millisecond or so, the electrode nearer the apex of the leaf always became negative with respect to an electrode at the base, which indi cates that the voltage-generating source is fixed longitudinally in the leaf.

  7. Method of forming components for a high-temperature secondary electrochemical cell

    DOEpatents

    Mrazek, Franklin C.; Battles, James E.

    1983-01-01

    A method of forming a component for a high-temperature secondary electrochemical cell having a positive electrode including a sulfide selected from the group consisting of iron sulfides, nickel sulfides, copper sulfides and cobalt sulfides, a negative electrode including an alloy of aluminum and an electrically insulating porous separator between said electrodes. The improvement comprises forming a slurry of solid particles dispersed in a liquid electrolyte such as the lithium chloride-potassium chloride eutetic, casting the slurry into a form having the shape of one of the components and smoothing the exposed surface of the slurry, cooling the cast slurry to form the solid component, and removing same. Electrodes and separators can be thus formed.

  8. Method of preparing an electrode material of lithium-aluminum alloy

    DOEpatents

    Settle, Jack L.; Myles, Kevin M.; Battles, James E.

    1976-01-01

    A solid compact having a uniform alloy composition of lithium and aluminum is prepared as a negative electrode for an electrochemical cell. Lithium losses during preparation are minimized by dissolving aluminum within a lithium-rich melt at temperatures near the liquidus temperatures. The desired alloy composition is then solidified and fragmented. The fragments are homogenized to a uniform composition by annealing at a temperature near the solidus temperature. After comminuting to fine particles, the alloy material can be blended with powdered electrolyte and pressed into a solid compact having the desired electrode shape. In the preparation of some electrodes, an electrically conductive metal mesh is embedded into the compact as a current collector.

  9. Electrochemical behavior of adrenaline at the carbon atom wire modified electrode

    NASA Astrophysics Data System (ADS)

    Xue, Kuan-Hong; Liu, Jia-Mei; Wei, Ri-Bing; Chen, Shao-Peng

    2006-09-01

    Electrochemical behavior of adrenaline at an electrode modified by carbon atom wires (CAWs), a new material, was investigated by cyclic voltammetry combined with UV-vis spectrometry, and forced convection method. As to the electrochemical response of redox of adrenaline/adrenalinequinone couple in 0.50 M H 2SO 4, at a nitric acid treated CAW modified electrode, the anodic and cathodic peak potentials Epa and Epc shifted by 87 mV negatively and 139 mV in the positive direction, respectively, and standard heterogeneous rate constant k0 increased by 16 times compared to the corresponding bare electrode, indicating the extraordinary activity of CAWs in electrocatalysis for the process.

  10. Dielectrophoretic manipulation and separation of microparticles using microarray dot electrodes.

    PubMed

    Yafouz, Bashar; Kadri, Nahrizul Adib; Ibrahim, Fatimah

    2014-04-03

    This paper introduces a dielectrophoretic system for the manipulation and separation of microparticles. The system is composed of five layers and utilizes microarray dot electrodes. We validated our system by conducting size-dependent manipulation and separation experiments on 1, 5 and 15 μm polystyrene particles. Our findings confirm the capability of the proposed device to rapidly and efficiently manipulate and separate microparticles of various dimensions, utilizing positive and negative dielectrophoresis (DEP) effects. Larger size particles were repelled and concentrated in the center of the dot by negative DEP, while the smaller sizes were attracted and collected by the edge of the dot by positive DEP.

  11. Generalization of the Child-Langmuir law to the alternate extraction of positive and negative ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lafleur, T., E-mail: trevor.lafleur@lpp.polytechnique.fr; ONERA-The French Aerospace Lab, 91120 Palaiseau; Aanesland, A.

    Using a combined analytical and simulation approach, we investigate positive and negative ion extraction between two electrodes from an ion-ion plasma source. With a square voltage waveform applied to the electrodes, we obtain approximate analytical solutions for the time-averaged extracted current densities, which are given simply by: J{sub p}{sup ac}=[α−fL√((M{sub p})/(q{sub p}V{sub 0}) )]J{sub p}{sup dc}, and J{sub n}{sup ac}=[(1−α)−fL√((M{sub n})/(q{sub n}V{sub 0}) )]J{sub n}{sup dc}, where J{sup ac} is the time-averaged current density, α is the square waveform duty cycle, f is the frequency, L is the electrode gap length, M is the ion mass, q is the ionmore » charge, V{sub 0} is the applied voltage amplitude, J{sup dc} is the dc extracted current density, and the subscripts p and n refer to positive and negative ions, respectively. In particular, if J{sup dc} is the dc space-charge limited current density, then these equations describe the square waveform generalization of the Child-Langmuir law.« less

  12. Voltammetric enzyme sensor for urea using mercaptohydroquinone-modified gold electrode as the base transducer.

    PubMed

    Mizutani, F; Yabuki, S; Sato, Y

    1997-01-01

    A voltammetric urea-sensing electrode was prepared by combining a lipid-attached urease layer with a 2,5-dihydroxythiophenol-modified gold electrode. A self-assembled monolayer of dihydroxythiophenol was prepared on the gold surface by soaking the electrode into an ethanolic solution containing the modifier. A layer of the lipid-attached enzyme and that of acetyl cellulose overcoat were successively made on the dihydroxythiophenol-modified electrode by applying a dip-coating procedure. The addition of urea in a test solution (10 mM phosphate buffer, pH 7.0) brought about an increase of pH near the urease layer. The pH shift accompanied a negative shift of the anodic peak, which corresponded to the electro-oxidation of dihydroxyphenol moiety to form quinone, on the linear sweep voltammograms for the urease/dihydroxythiophenol electrode. The concentration of urea (0.2-5 mM) could be determined by measuring the electrode current at -0.05 V versus Ag/AgCl from the voltammogram. The electrode was applied to the determination of urea in human urine; the measurement of electrode current at such a low potential provided the urea determination without any electrochemical interference from L-ascorbic acid and uric acid.

  13. In Situ NMR Spectroscopy of Supercapacitors: Insight into the Charge Storage Mechanism

    PubMed Central

    2013-01-01

    Electrochemical capacitors, commonly known as supercapacitors, are important energy storage devices with high power capabilities and long cycle lives. Here we report the development and application of in situ nuclear magnetic resonance (NMR) methodologies to study changes at the electrode–electrolyte interface in working devices as they charge and discharge. For a supercapacitor comprising activated carbon electrodes and an organic electrolyte, NMR experiments carried out at different charge states allow quantification of the number of charge storing species and show that there are at least two distinct charge storage regimes. At cell voltages below 0.75 V, electrolyte anions are increasingly desorbed from the carbon micropores at the negative electrode, while at the positive electrode there is little change in the number of anions that are adsorbed as the voltage is increased. However, above a cell voltage of 0.75 V, dramatic increases in the amount of adsorbed anions in the positive electrode are observed while anions continue to be desorbed at the negative electrode. NMR experiments with simultaneous cyclic voltammetry show that supercapacitor charging causes marked changes to the local environments of charge storing species, with periodic changes of their chemical shift observed. NMR calculations on a model carbon fragment show that the addition and removal of electrons from a delocalized system should lead to considerable increases in the nucleus-independent chemical shift of nearby species, in agreement with our experimental observations. PMID:24274637

  14. Hydrogen /Hydride/-air secondary battery

    NASA Technical Reports Server (NTRS)

    Sarradin, J.; Bronoel, G.; Percheron-Guegan, A.; Achard, J. C.

    1979-01-01

    The use of metal hydrides as negative electrodes in a hydrogen-air secondary battery seems promising. However, in an unpressurized cell, more stable hydrides that LaNi5H6 must be selected. Partial substitutions of nickel by aluminium or manganese increase the stability of hydrides. Combined with an air reversible electrode, a specific energy close to 100 Wh/kg can be expected.

  15. Faradaic reactions in capacitive deionization (CDI) - problems and possibilities: A review.

    PubMed

    Zhang, Changyong; He, Di; Ma, Jinxing; Tang, Wangwang; Waite, T David

    2018-01-01

    Capacitive deionization (CDI) is considered to be one of the most promising technologies for the desalination of brackish water with low to medium salinity. In practical applications, Faradaic redox reactions occurring in CDI may have both negative and positive effects on CDI performance. In this review, we present an overview of the types and mechanisms of Faradaic reactions in CDI systems including anodic oxidation of carbon electrodes, cathodic reduction of oxygen and Faradaic ion storage and identify their apparent negative and positive effects on water desalination. A variety of strategies including development of novel electrode materials and use of alternative configurations and/or operational modes are proposed for the purpose of mitigation or elimination of the deterioration of electrodes and the formation of byproducts caused by undesired side Faradaic reactions. It is also recognized that Faradaic reactions facilitate a variety of exciting new applications including i) the incorporation of intercalation electrodes to enhance water desalination or to selectively separate certain ions through reversible Faradaic reactions and ii) the use of particular anodic oxidation and cathodic reduction reactions to realize functions such as water disinfection and contaminant removal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Optical reset modulation in the SiO2/Cu conductive-bridge resistive memory stack

    NASA Astrophysics Data System (ADS)

    Kawashima, T.; Zhou, Y.; Yew, K. S.; Ang, D. S.

    2017-09-01

    We show that the negative photoconductivity property of the nanoscale filamentary breakdown path in the SiO2 electrolyte of the SiO2/Cu conductive bridge resistive random access memory (CBRAM) stack is affected by the number of positive-voltage sweeps applied to the Cu electrode (with respect to a non-metal counter electrode). The path's photo-response to white light, of a given intensity, is suppressed with an increasing number of applied positive-voltage sweeps. When this occurs, the path may only be disrupted by the light of a higher intensity. It is further shown that the loss of the path's photosensitivity to the light of a given intensity can be recovered using a negative-voltage sweep (which eliminates the path), followed by the reformation of the path by a positive-voltage sweep. The above behavior is, however, not seen in the SiO2/Si stack (which involves a non-metal Si electrode), suggesting that the photo-response modulation effect is related to the Cu electrode. The demonstrated reversible electrical modulation of the path's photo-response may afford greater flexibility in the electro-optical control of the CBRAM device.

  17. From Si wafers to cheap and efficient Si electrodes for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Gauthier, Magali; Reyter, David; Mazouzi, Driss; Moreau, Philippe; Guyomard, Dominique; Lestriez, Bernard; Roué, Lionel

    2014-06-01

    High-energy ball milling is used to recycle Si wafers to produce Si powders for negative electrodes of Li-ion batteries. The resulting Si powder consists in micrometric Si agglomerates made of cold-welded submicrometric nanocrystalline Si particles. Silicon-based composite electrodes prepared with ball-milled Si wafer can achieve more than 900 cycles with a capacity of 1200 mAh g-1 of Si (880 mAh g-1 of electrode) and a coulombic efficiency higher than 99%. This excellent electrochemical performance lies in the use of nanostructured Si produced by ball milling, the electrode formulation in a pH 3 buffer solution with CMC as binder and the use of FEC/VC additives in the electrolyte. This work opens the way to an economically attractive recycling of Si wastes.

  18. Self-discharge performance of Ni-MH battery by using electrodes with hydrophilic/hydrophobic surface

    NASA Astrophysics Data System (ADS)

    Li, Xiaofeng; Wang, Xiaojie; Dong, Huichao; Xia, Tongchi; Wang, Lizhen; Song, Yanhua

    2013-12-01

    The polytetrafluoroethylene (PTFE) and carboxymethyl cellulose (CMC) film is separately coated on the surface of the metal hydride (MH) and Ni(OH)2 electrodes to obtain the electrodes with hydrophobic or hydrophilic surface. The effects of the surface treatment on the oxygen and hydrogen evolution from the electrodes are studied by using cyclic voltammetry tests. Although the positive and negative active materials of the Ni-MH batteries show a lower self-decomposition rate after the CMC treatment, the self-discharge rate of the batteries show little change. On the contrary, the self-discharge rate of the batteries decreases from 35.9% to 27.1% by using the PTFE-treated Ni(OH)2 electrodes, which might be related to the suppression of the reaction between NiOOH and H2 by the hydrophobic film.

  19. Reconstruction de la surface de Fermi dans l'etat normal d'un supraconducteur a haute Tc: Une etude du transport electrique en champ magnetique intense

    NASA Astrophysics Data System (ADS)

    Le Boeuf, David

    Des mesures de resistance longitudinale et de resistance de Hall en champ magnetique intense transverse (perpendiculaire aux plans CuO2) ont ete effectuees au sein de monocristaux de YBa2Cu3Oy (YBCO) demacles, ordonnes et de grande purete, afin d'etudier l'etat fondamental des supraconducteurs a haute Tc dans le regime sous-dope. Cette etude a ete realisee en fonction du dopage et de l'orientation du courant d'excitation J par rapport a l'axe orthorhombique b de la structure cristalline. Les mesures en champ magnetique intense revelent par suppression de la supraconductivite des oscillations magnetiques des resistances longitudinale et de Hall dans YBa2Cu 3O6.51 et YBa2Cu4O8. La conformite du comportement de ces oscillations quantiques au formalisme de Lifshitz-Kosevich, apporte la preuve de l'existence d'une surface de Fermi fermee a caractere quasi-2D, abritant des quasiparticules coherentes respectant la statistique de Fermi-Dirac, dans la phase pseudogap d'YBCO. La faible frequence des oscillations quantiques, combinee avec l'etude de la partie monotone de la resistance de Hall en fonction de la temperature indique que la surface de Fermi d'YBCO sous-dope comprend une petite poche de Fermi occupee par des porteurs de charge negative. Cette particularite de la surface de Fermi dans le regime sous-dope incompatible avec les calculs de structure de bande est en fort contraste avec la structure electronique presente dans le regime surdope. Cette observation implique ainsi l'existence d'un point critique quantique dans le diagramme de phase d'YBCO, au voisinage duquel la surface de Fermi doit subir une reconstruction induite par l'etablissement d'une brisure de la symetrie de translation du reseau cristallin sous-jacent. Enfin, l'etude en fonction du dopage de la resistance de Hall et de la resistance longitudinale en champ magnetique intense suggere qu'un ordre du type onde de densite (DW) est responsable de la reconstruction de la surface de Fermi. L'analogie de la phenomenologie entourant le comportement des resistances longitudinale et de Hall dans YBa2Cu3Oy, avec des systemes dans lesquels l'existence d'un ordre du type DW est etablie, notamment des cuprates a structure tetragonale a basse temperature ("Low Temperature Tetragonal", LTT), indique que l'ordre causant la reconstruction de la surface de Fermi est stabilise au voisinage du dopage p = 1/8, et est en competition directe avec la supraconductivite.

  20. Functional Connectivity of the Dorsal Attention Network Predicts Selective Attention in 4-7 year-old Girls.

    PubMed

    Rohr, Christiane S; Vinette, Sarah A; Parsons, Kari A L; Cho, Ivy Y K; Dimond, Dennis; Benischek, Alina; Lebel, Catherine; Dewey, Deborah; Bray, Signe

    2017-09-01

    Early childhood is a period of profound neural development and remodeling during which attention skills undergo rapid maturation. Attention networks have been extensively studied in the adult brain, yet relatively little is known about changes in early childhood, and their relation to cognitive development. We investigated the association between age and functional connectivity (FC) within the dorsal attention network (DAN) and the association between FC and attention skills in early childhood. Functional magnetic resonance imaging data was collected during passive viewing in 44 typically developing female children between 4 and 7 years whose sustained, selective, and executive attention skills were assessed. FC of the intraparietal sulcus (IPS) and the frontal eye fields (FEF) was computed across the entire brain and regressed against age. Age was positively associated with FC between core nodes of the DAN, the IPS and the FEF, and negatively associated with FC between the DAN and regions of the default-mode network. Further, controlling for age, FC between the IPS and FEF was significantly associated with selective attention. These findings add to our understanding of early childhood development of attention networks and suggest that greater FC within the DAN is associated with better selective attention skills. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Method of forming components for a high-temperature secondary electrochemical cell

    DOEpatents

    Mrazek, F.C.; Battles, J.E.

    1981-05-22

    A method of forming a component for a high-temperature secondary electrochemical cell having a positive electrode including a sulfide selected from the group consisting of iron sulfides, nickel sulfides, copper sulfides and cobalt sulfides, a negative electrode including an alloy of aluminum and an electrically insulating porous separator between said electrodes is described. The improvement comprises forming a slurry of solid particles dispersed in a liquid electrolyte such as the lithium chloride-potassium chloride eutectic, casting the slurry into a form having the shape of one of the components and smoothing the exposed surface of the slurry, cooling the cast slurry to form the solid component, and removing same. Electrodes and separators can be thus formed.

  2. Synthesis of hollow NiCo2O4 nanospheres with large specific surface area for asymmetric supercapacitors.

    PubMed

    Xu, Kaibing; Yang, Jianmao; Hu, Junqing

    2018-02-01

    Hollow micro-/nanostructured electrode materials with high active surface area are highly desirable for achieving outstanding electrochemical properties. Herein, we report the successful synthesis of hierarchical hollow NiCo 2 O 4 nanospheres with high surface area as electrode materials for supercapacitors. Electrochemical measurements prove that such electrode materials exhibit excellent electrochemical behavior with a specific capacitance reaching 1229 F/g at 1 A/g, remarkable rate performance (∼83.6% retention from 1 to 25 A/g) and good cycling performance (86.3% after 3000 cycles). Furthermore, the asymmetric supercapacitor is fabricated with hollow NiCo 2 O 4 nanospheres electrode and activated carbon (AC) electrode as the positive and negative, respectively. This device exhibits a maximum energy density of 21.5 W h/kg, excellent cycling performance and coulombic efficiency. The results show that hollow NiCo 2 O 4 nanosphere electrode is a promising electrode material for the future application in high performance supercapacitors. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Study of EHD flow generator's efficiencies utilizing pin to single ring and multi-concentric rings electrodes

    NASA Astrophysics Data System (ADS)

    Sumariyah; Kusminart; Hermanto, A.; Nuswantoro, P.

    2016-11-01

    EHD flow or ionic wind yield corona discharge is a stream coming from the ionized gas. EHD is generated by a strong electric field and its direction follows the electric field lines. In this study, the efficiency of the EHD flow generators utilizing pin-multi concentric rings electrodes (P-MRE) and the EHD pin-single ring electrode (P-SRE) have been measured. The comparison of efficiencies two types of the generator has been done. EHD flow was generated by using a high-voltage DC 0-10 KV on the electrode pin with a positive polarity and electrode ring/ multi-concentric rings of negative polarity. The efficiency was calculated by comparison between the mechanical power of flow to the electrical power that consumed. We obtained that the maximum efficiency of EHD flow generator utilizing pin-multi concentric rings electrodes was 0.54% and the maximum efficiency of EHD flow generator utilizing a pin-single ring electrode was 0.23%. Efficiency of EHD with P-MRE 2.34 times Efficiency of EHD with P-SRE

  4. Vertical distribution of overpotentials and irreversible charge losses in lithium ion battery electrodes.

    PubMed

    Klink, Stefan; Schuhmann, Wolfgang; La Mantia, Fabio

    2014-08-01

    Porous lithium ion battery electrodes are characterized using a vertical distribution of cross-currents. In an appropriate simplification, this distribution can be described by a transmission line model (TLM) consisting of infinitely thin electrode layers. To investigate the vertical distribution of currents, overpotentials, and irreversible charge losses in a porous graphite electrode in situ, a multi-layered working electrode (MWE) was developed as the experimental analogue of a TLM. In this MWE, each layer is in ionic contact but electrically insulated from the other layers by a porous separator. It was found that the negative graphite electrodes get lithiated and delithiated stage-by-stage and layer-by-layer. Several mass-transport- as well as non-mass-transport-limited processes could be identified. Local current densities can reach double the average, especially on the outermost layer at the beginning of each intercalation stage. Furthermore, graphite particles close to the counter electrode act as "electrochemical sieve" reducing the impurities present in the electrolyte such as water. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Graphene-passivated cobalt as a spin-polarized electrode: growth and application to organic spintronics

    NASA Astrophysics Data System (ADS)

    Zhou, Guoqing; Tang, Guoqiang; Li, Tian; Pan, Guoxing; Deng, Zanhong; Zhang, Fapei

    2017-03-01

    The ferromagnetic electrode on which a clean high-quality electrode/interlayer interface is formed, is critical to achieve efficient injection of spin-dependent electrons in spintronic devices. In this work, we report on the preparation of graphene-passivated cobalt electrodes for application in vertical spin valves (SVs). In this strategy, high-quality monolayer and bi-layer graphene sheets have been grown directly on the crystal Co film substrates in a controllable process by chemical vapor deposition. The electrode is oxidation resistant and ensures a clean crystalline graphene/Co interface. The AlO x -based magnetic junction devices using such bottom electrodes, exhibit a negative tunnel magneto-resistance (TMR) of ca. 1.0% in the range of 5 K-300 K. Furthermore, we have also fabricated organic-based SVs employing a thin layer of fullerene C60 or an N-type polymeric semiconductor as the interlayer. The devices of both materials show a tunneling behavior of spin-polarized electron transport as well as appreciable TMR effect, demonstrating the high potential of such graphene-coated Co electrodes for organic-based spintronics.

  6. Minimizing analyte electrolysis in electrospray ionization mass spectrometry using a redox buffer coated emitter electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peintler-Krivan, Emese; Van Berkel, Gary J; Kertesz, Vilmos

    2010-01-01

    An emitter electrode with an electroactive poly(pyrrole) (PPy) polymer film coating was constructed for use in electrospray ionization mass spectrometry (ESI-MS). The PPy film acted as a surface-attached redox buffer limiting the interfacial potential of the emitter electrode. While extensive oxidation of selected analytes (reserpine and amodiaquine) was observed in positive ion mode ESI using a bare metal (gold) emitter electrode, the oxidation was suppressed for these same analytes when using the PPy-coated electrode. A semi-quantitative relationship between the rate of oxidation observed and the interfacial potential of the emitter electrode was shown. The redox buffer capacity, and therefore themore » lifetime of the redox buffering effect, correlated with the oxidation potential of the analyte and with the magnitude of the film charge capacity. Online reduction of the PPy polymer layer using negative ion mode ESI between analyte injections was shown to successfully restore the redox buffering capacity of the polymer film to its initial state.« less

  7. Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt.

    PubMed

    Jeżowski, P; Crosnier, O; Deunf, E; Poizot, P; Béguin, F; Brousse, T

    2018-02-01

    Lithium-ion capacitors (LICs) shrewdly combine a lithium-ion battery negative electrode capable of reversibly intercalating lithium cations, namely graphite, together with an electrical double-layer positive electrode, namely activated carbon. However, the beauty of this concept is marred by the lack of a lithium-cation source in the device, thus requiring a specific preliminary charging step. The strategies devised thus far in an attempt to rectify this issue all present drawbacks. Our research uncovers a unique approach based on the use of a lithiated organic material, namely 3,4-dihydroxybenzonitrile dilithium salt. This compound can irreversibly provide lithium cations to the graphite electrode during an initial operando charging step without any negative effects with respect to further operation of the LIC. This method not only restores the low CO 2 footprint of LICs, but also possesses far-reaching potential with respect to designing a wide range of greener hybrid devices based on other chemistries, comprising entirely recyclable components.

  8. Negative differential resistance in oxidized zigzag graphene nanoribbons.

    PubMed

    Wang, Min; Li, Chang Ming

    2011-01-28

    A theoretical study of zigzag graphene nanoribbons (ZGNRs) with an epoxy-pair chain (ZGO) is performed. The electronic transport properties are mainly evaluated by non-equilibrium Green's functions using the TRANSIESTA package. The results indicate that the graphene oxide can have a negative differential resistance (NDR) phenomenon, supported by bias-dependent transmission curves of different spin orientations. Applying non-zero bias voltages makes the density of states (DOS) of the right electrodes shift down. Due to an energy gap between the LUMO and LUMO+1 in ZGOs, with a certain bias, the conduction band of the right electrode cannot match the LUMO of the scattering region, then NDR occurs. With a larger bias, NDR ends when the second conduction band of the right electrode's DOS covers the LUMO of the scattering region. Since most of proposed ZGO systems possess such a gap between the LUMO and LUMO+1, NDR can be widely observed and this discovery may provide great potential applications in NDR-based nanoelectronics by using modified graphene materials.

  9. Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt

    NASA Astrophysics Data System (ADS)

    Jeżowski, P.; Crosnier, O.; Deunf, E.; Poizot, P.; Béguin, F.; Brousse, T.

    2018-02-01

    Lithium-ion capacitors (LICs) shrewdly combine a lithium-ion battery negative electrode capable of reversibly intercalating lithium cations, namely graphite, together with an electrical double-layer positive electrode, namely activated carbon. However, the beauty of this concept is marred by the lack of a lithium-cation source in the device, thus requiring a specific preliminary charging step. The strategies devised thus far in an attempt to rectify this issue all present drawbacks. Our research uncovers a unique approach based on the use of a lithiated organic material, namely 3,4-dihydroxybenzonitrile dilithium salt. This compound can irreversibly provide lithium cations to the graphite electrode during an initial operando charging step without any negative effects with respect to further operation of the LIC. This method not only restores the low CO2 footprint of LICs, but also possesses far-reaching potential with respect to designing a wide range of greener hybrid devices based on other chemistries, comprising entirely recyclable components.

  10. Rail-type gas switch with preionization by an additional corona discharge

    NASA Astrophysics Data System (ADS)

    Belozerov, O. S.; Krastelev, E. G.

    2017-05-01

    Results of an experimental research of a rail-type gas switch with preionization by an additional negative corona discharge are presented. The most of measurements were performed for an air insulated two-electrode switch assembled of cylindrical electrodes of 22 mm diameter and 100 mm length, arranged parallel to each other, with a spark gap between them varying from 6 to 15 mm. A set of 1 to 5 needles connected to a negative cylindrical electrode and located aside of them were used for corona discharges. The needle positions, allowing an effecient stabilization of the pulsed breakdown voltage and preventing the a transition of the corona discharge in a spark form, were found. It was shown that the gas preionization by the UV-radiation of the parallel corona discharge provides a stable operation of the switch with low variations of the pulsed breakdown voltage, not exceeding 1% for a given voltage rise-time tested within the range from 40 ns to 5 µs.

  11. Process for removal of hydrogen halides or halogens from incinerator gas

    DOEpatents

    Huang, Hann S.; Sather, Norman F.

    1988-01-01

    A process for reducing the amount of halogens and halogen acids in high temperature combustion gases and through their removal, the formation of halogenated organics at lower temperatures, with the reduction being carried out electrochemically by contacting the combustion gas with the negative electrode of an electrochemical cell and with the halogen and/or halogen acid being recovered at the positive electrode.

  12. Process for removal of hydrogen halides or halogens from incinerator gas

    DOEpatents

    Huang, H.S.; Sather, N.F.

    1987-08-21

    A process for reducing the amount of halogens and halogen acids in high temperature combustion gas and through their removal, the formation of halogenated organics at lower temperatures, with the reduction being carried out electrochemically by contacting the combustion gas with the negative electrode of an electrochemical cell and with the halogen and/or halogen acid being recovered at the positive electrode.

  13. Electrochemical lithiation performance and characterization of silicon-graphite composites with lithium, sodium, potassium, and ammonium polyacrylate binders.

    PubMed

    Han, Zhen-Ji; Yamagiwa, Kiyofumi; Yabuuchi, Naoaki; Son, Jin-Young; Cui, Yi-Tao; Oji, Hiroshi; Kogure, Akinori; Harada, Takahiro; Ishikawa, Sumihisa; Aoki, Yasuhito; Komaba, Shinichi

    2015-02-07

    Poly(acrylic acid) (PAH), which is a water soluble polycarboxylic acid, is neutralized by adding different amounts of LiOH, NaOH, KOH, and ammonia (NH4OH) aqueous solutions to fix neutralization degrees. The differently neutralized polyacid, alkali and ammonium polyacrylates are examined as polymeric binders for the preparation of Si-graphite composite electrodes as negative electrodes for Li-ion batteries. The electrode performance of the Si-graphite composite depends on the alkali chemicals and neutralization degree. It is found that 80% NaOH-neutralized polyacrylate binder (a pH value of the resultant aqueous solution is ca. 6.7) is the most efficient binder to enhance the electrochemical lithiation and de-lithiation performance of the Si-graphite composite electrode compared to that of conventional PVdF and the other binders used in this study. The optimum polyacrylate binder highly improves the dispersion of active material in the composite electrode. The binder also provides the strong adhesion, suitable porosity, and hardness for the composite electrode with 10% (m/m) binder content, resulting in better electrochemical reversibility. From these results, the factors of alkali-neutralized polyacrylate binders affecting the electrode performance of Si-graphite composite electrodes are discussed.

  14. Selecting electrode configurations for image-guided cochlear implant programming using template matching.

    PubMed

    Zhang, Dongqing; Zhao, Yiyuan; Noble, Jack H; Dawant, Benoit M

    2018-04-01

    Cochlear implants (CIs) are neural prostheses that restore hearing using an electrode array implanted in the cochlea. After implantation, the CI processor is programmed by an audiologist. One factor that negatively impacts outcomes and can be addressed by programming is cross-electrode neural stimulation overlap (NSO). We have proposed a system to assist the audiologist in programming the CI that we call image-guided CI programming (IGCIP). IGCIP permits using CT images to detect NSO and recommend deactivation of a subset of electrodes to avoid NSO. We have shown that IGCIP significantly improves hearing outcomes. Most of the IGCIP steps are robustly automated but electrode configuration selection still sometimes requires manual intervention. With expertise, distance-versus-frequency curves, which are a way to visualize the spatial relationship learned from CT between the electrodes and the nerves they stimulate, can be used to select the electrode configuration. We propose an automated technique for electrode configuration selection. A comparison between this approach and one we have previously proposed shows that our method produces results that are as good as those obtained with our previous method while being generic and requiring fewer parameters.

  15. Fabrication of hollow nanorod electrodes based on RuO2//Fe2O3 for an asymmetric supercapacitor.

    PubMed

    Wang, Qiufan; Liang, Xiao; Ma, Yun; Zhang, Daohong

    2018-06-12

    In this work, hollow RuO2 nanotube arrays were successfully grown on carbon cloth by using a facile two-step method to fabricate a binder-free electrode. The well-aligned electrode displays excellent electrochemical performance. By using RuO2 hollow nanotube arrays as the positive electrode and Fe2O3 as the negative electrode, a flexible solid-state asymmetric supercapacitor (ASC) has been fabricated which exhibited excellent electrochemical performance, such as a high capacitance of 4.9 F cm-3, a high energy density of 1.5 mW h cm-3 and a high power density of 9.1 mW cm-3. In addition, the two-electrode SC shows high cycling stability with 97% capacitance retention after 5000 charge-discharge cycles. These excellent electrochemical performances are ascribed to the unique hollow structural design of electrodes, which can shorten the ion diffusion length, provide a fast ion transport channel, and offer a large electrode/electrolyte interface for the charge-transfer reaction. The structural design and the synthesis approach are general and can be extended to synthesizing a broad range of materials systems.

  16. Optimization of the Negative Electrode in Organic Photovoltaic Devices

    NASA Astrophysics Data System (ADS)

    Reese, Matthew; White, Matthew; Rumbles, Garry; Ginley, David; Shaheen, Sean

    2007-03-01

    A blend of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) is used as the active layer in a series of bulk heterojunction organic solar cells. This polymer blend serves as a test-bed to explore the significant effects on device performance of using low work function metals and/or alkali metal halides as the top, negative electrode. Work function values reported in the literature are compared with those measured for our thin films. A series of contact materials are investigated including Al, Ca/Al, Ba/Al, LiF/Al; many devices are prepared with each contact type to validate the statistical significance of the results.

  17. Negative differential conductance and super-Poissonian shot noise in single-molecule magnet junctions

    PubMed Central

    Xue, Hai-Bin; Liang, Jiu-Qing; Liu, Wu-Ming

    2015-01-01

    Molecular spintroinic device based on a single-molecule magnet is one of the ultimate goals of semiconductor nanofabrication technologies. It is thus necessary to understand the electron transport properties of a single-molecule magnet junction. Here we study the negative differential conductance and super-Poissonian shot noise properties of electron transport through a single-molecule magnet weakly coupled to two electrodes with either one or both of them being ferromagnetic. We predict that the negative differential conductance and super-Poissonian shot noise, which can be tuned by a gate voltage, depend sensitively on the spin polarization of the source and drain electrodes. In particular, the shot noise in the negative differential conductance region can be enhanced or decreased originating from the different formation mechanisms of negative differential conductance. The effective competition between fast and slow transport channels is responsible for the observed negative differential conductance and super-Poissonian shot noise. In addition, we further discuss the skewness and kurtosis properties of transport current in the super-Poissonian shot noise regions. Our findings suggest a tunable negative differential conductance molecular device, and the predicted properties of high-order current cumulants are very interesting for a better understanding of electron transport through single-molecule magnet junctions. PMID:25736094

  18. Negative differential conductance and super-Poissonian shot noise in single-molecule magnet junctions.

    PubMed

    Xue, Hai-Bin; Liang, Jiu-Qing; Liu, Wu-Ming

    2015-03-04

    Molecular spintroinic device based on a single-molecule magnet is one of the ultimate goals of semiconductor nanofabrication technologies. It is thus necessary to understand the electron transport properties of a single-molecule magnet junction. Here we study the negative differential conductance and super-Poissonian shot noise properties of electron transport through a single-molecule magnet weakly coupled to two electrodes with either one or both of them being ferromagnetic. We predict that the negative differential conductance and super-Poissonian shot noise, which can be tuned by a gate voltage, depend sensitively on the spin polarization of the source and drain electrodes. In particular, the shot noise in the negative differential conductance region can be enhanced or decreased originating from the different formation mechanisms of negative differential conductance. The effective competition between fast and slow transport channels is responsible for the observed negative differential conductance and super-Poissonian shot noise. In addition, we further discuss the skewness and kurtosis properties of transport current in the super-Poissonian shot noise regions. Our findings suggest a tunable negative differential conductance molecular device, and the predicted properties of high-order current cumulants are very interesting for a better understanding of electron transport through single-molecule magnet junctions.

  19. Three-dimensional cotton-like nickel nanowire@Ni-Co hydroxide nanosheet arrays as binder-free electrode for high-performance asymmetric supercapacitor

    NASA Astrophysics Data System (ADS)

    Wan, Houzhao; Li, Lang; Xu, Yang; Tan, Qiuyang; Liu, Xiang; Zhang, Jun; Wang, Hanbin; Wang, Hao

    2018-05-01

    Three-dimensional (3D) cotton-like Ni-Co layered double hydroxide nanosheet arrays/nickel nanowires (3D Ni-Co LDH/NiNw) were successfully fabricated through a facile chemical bath deposition method. The 3D nickel nanowires are used as a conductive substrate with robust adhesion for high-pseudocapacitance Ni-Co LDH. The 3D Ni-Co LDH/NiNw electrode shows a high areal specific capacitance of 14 F cm-2 at 5 mA cm-2 and quality specific capacitance of 466.6 F g-1 at 0.125 A g-1 with respect to the whole quality of the electrode. The fabricated asymmetric supercapacitor exhibits a remarkable energy density of 0.387 mWh cm-2 using Ni-Co LDH/NiNw as the negative electrode. This high-performance composite electrode presents a new and affordable general approach for supercapacitors.

  20. Mesoporous Li4Ti5O12 nanoclusters anchored on super-aligned carbon nanotubes as high performance electrodes for lithium ion batteries.

    PubMed

    Sun, Li; Kong, Weibang; Wu, Hengcai; Wu, Yang; Wang, Datao; Zhao, Fei; Jiang, Kaili; Li, Qunqing; Wang, Jiaping; Fan, Shoushan

    2016-01-07

    Mesoporous lithium titanate (LTO) nanoclusters are in situ synthesized in a network of super aligned carbon nanotubes (SACNTs) via a solution-based method followed by heat treatment in air. In the LTO-CNT composite, SACNTs not only serve as the skeleton to support a binder-free electrode, but also render the composite with high conductivity, flexibility, and mechanical strength. The homogeneously dispersed LTO nanoclusters among the SACNTs allow each LTO grain to effectively access the electrolyte and the conductive network, benefiting both ion and electron transport. By the incorporation of LTO into the CNT network, mechanical reinforcement is also achieved. When serving as a negative electrode for lithium ion batteries, such a robust composite-network architecture provides the electrodes with effective charge transport and structural integrity, leading to high-performance flexible electrodes with high capacity, high rate capability, and excellent cycling stability.

  1. Carbon materials modified by plasma treatment as electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Lota, Grzegorz; Tyczkowski, Jacek; Kapica, Ryszard; Lota, Katarzyna; Frackowiak, Elzbieta

    The carbon material was modified by RF plasma with various reactive gases: O 2, Ar and CO 2. Physicochemical properties of the final carbon products were characterized using different techniques such as gas adsorption method and XPS. Plasma modified materials enriched in oxygen functionalities were investigated as electrodes for supercapacitors in acidic medium. The electrochemical measurements have been carried out using cyclic voltammetry, galvanostatic charge/discharge and impedance spectroscopy. The electrochemical measurements have confirmed that capacity characteristics are closely connected with a type of plasma exposition. Modification processes have an influence on the kind and amount of surface functional groups in the carbon matrix. The moderate increase of capacity of carbon materials modified by plasma has been observed using symmetric two-electrode systems. Whereas investigations made in three-electrode system proved that the suitable selection of plasma modification parameters allows to obtain promising negative and positive electrode materials for supercapacitor application.

  2. Perylene-Based All-Organic Redox Battery with Excellent Cycling Stability.

    PubMed

    Iordache, Adriana; Delhorbe, Virginie; Bardet, Michel; Dubois, Lionel; Gutel, Thibaut; Picard, Lionel

    2016-09-07

    Organic materials derived from biomass can constitute a viable option as replacements for inorganic materials in lithium-ion battery electrodes owing to their low production costs, recyclability, and structural diversity. Among them, conjugated carbonyls have become the most promising type of organic electrode material as they present high theoretical capacity, fast reaction kinetics, and quasi-infinite structural diversity. In this letter, we report a new perylene-based all-organic redox battery comprising two aromatic conjugated carbonyl electrode materials, the prelithiated tetra-lithium perylene-3,4,9,10-tetracarboxylate (PTCLi6) as negative electrode material and the poly(N-n-hexyl-3,4,9,10-perylene tetracarboxylic)imide (PTCI) as positive electrode material. The resulting battery shows promising long-term cycling stability up to 200 cycles. In view of the enhanced cycling performances, the two organic materials studied herein are proposed as suitable candidates for the development of new all-organic lithium-ion batteries.

  3. Three-dimensional cotton-like nickel nanowire@Ni-Co hydroxide nanosheet arrays as binder-free electrode for high-performance asymmetric supercapacitor.

    PubMed

    Wan, Houzhao; Li, Lang; Xu, Yang; Tan, Qiuyang; Liu, Xiang; Zhang, Jun; Wang, Hanbin; Wang, Hao

    2018-05-11

    Three-dimensional (3D) cotton-like Ni-Co layered double hydroxide nanosheet arrays/nickel nanowires (3D Ni-Co LDH/NiNw) were successfully fabricated through a facile chemical bath deposition method. The 3D nickel nanowires are used as a conductive substrate with robust adhesion for high-pseudocapacitance Ni-Co LDH. The 3D Ni-Co LDH/NiNw electrode shows a high areal specific capacitance of 14 F cm -2 at 5 mA cm -2 and quality specific capacitance of 466.6 F g -1 at 0.125 A g -1 with respect to the whole quality of the electrode. The fabricated asymmetric supercapacitor exhibits a remarkable energy density of 0.387 mWh cm -2 using Ni-Co LDH/NiNw as the negative electrode. This high-performance composite electrode presents a new and affordable general approach for supercapacitors.

  4. Current status of environmental, health, and safety issues of lithium ion electric vehicle batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vimmerstedt, L.J.; Ring, S.; Hammel, C.J.

    The lithium ion system considered in this report uses lithium intercalation compounds as both positive and negative electrodes and has an organic liquid electrolyte. Oxides of nickel, cobalt, and manganese are used in the positive electrode, and carbon is used in the negative electrode. This report presents health and safety issues, environmental issues, and shipping requirements for lithium ion electric vehicle (EV) batteries. A lithium-based electrochemical system can, in theory, achieve higher energy density than systems using other elements. The lithium ion system is less reactive and more reliable than present lithium metal systems and has possible performance advantages overmore » some lithium solid polymer electrolyte batteries. However, the possibility of electrolyte spills could be a disadvantage of a liquid electrolyte system compared to a solid electrolyte. The lithium ion system is a developing technology, so there is some uncertainty regarding which materials will be used in an EV-sized battery. This report reviews the materials presented in the open literature within the context of health and safety issues, considering intrinsic material hazards, mitigation of material hazards, and safety testing. Some possible lithium ion battery materials are toxic, carcinogenic, or could undergo chemical reactions that produce hazardous heat or gases. Toxic materials include lithium compounds, nickel compounds, arsenic compounds, and dimethoxyethane. Carcinogenic materials include nickel compounds, arsenic compounds, and (possibly) cobalt compounds, copper, and polypropylene. Lithiated negative electrode materials could be reactive. However, because information about the exact compounds that will be used in future batteries is proprietary, ongoing research will determine which specific hazards will apply.« less

  5. Fluorination effect of activated carbons on performance of asymmetric capacitive deionization

    NASA Astrophysics Data System (ADS)

    Jo, Hanjoo; Kim, Kyung Hoon; Jung, Min-Jung; Park, Jae Hyun; Lee, Young-Seak

    2017-07-01

    Activated carbons (ACs) were fluorinated and fabricated into electrodes to investigate the effect of fluorination on asymmetric capacitive deionization (CDI). Fluorine functional groups were introduced on the AC surfaces via fluorination. The specific capacitance of the fluorinated AC (Fsbnd AC) electrode increased drastically from 261 to 337 F/g compared with the untreated AC (Rsbnd AC) electrode at a scan rate of 5 mV/s, despite a decrease in the specific surface area and total pore volume after fluorination. The desalination behavior of asymmetric CDI cells assembled with an Rsbnd AC electrode as the counter electrode and an Fsbnd AC electrode as the cathode (R || F-) or anode (R || F +) was studied. For R || F-, the salt adsorption capacity and charge efficiency increased from 10.6 mg/g and 0.58-12.4 mg/g and 0.75, respectively, compared with the CDI cell assembled with identical Rsbnd AC electrodes at 1 V. This CDI cell exhibited consistently better salt adsorption capacity and charge efficiency at different applied voltages because Fsbnd AC electrodes have a cation attractive effect originating from the partially negatively charged fluorine functional groups on the AC surface. Therefore, co-ion expulsion in the Fsbnd AC electrode as the cathode is effectively diminished, leading to enhanced CDI performance.

  6. The standardized EEG electrode array of the IFCN.

    PubMed

    Seeck, Margitta; Koessler, Laurent; Bast, Thomas; Leijten, Frans; Michel, Christoph; Baumgartner, Christoph; He, Bin; Beniczky, Sándor

    2017-10-01

    Standardized EEG electrode positions are essential for both clinical applications and research. The aim of this guideline is to update and expand the unifying nomenclature and standardized positioning for EEG scalp electrodes. Electrode positions were based on 20% and 10% of standardized measurements from anatomical landmarks on the skull. However, standard recordings do not cover the anterior and basal temporal lobes, which is the most frequent source of epileptogenic activity. Here, we propose a basic array of 25 electrodes including the inferior temporal chain, which should be used for all standard clinical recordings. The nomenclature in the basic array is consistent with the 10-10-system. High-density scalp EEG arrays (64-256 electrodes) allow source imaging with even sub-lobar precision. This supplementary exam should be requested whenever necessary, e.g. search for epileptogenic activity in negative standard EEG or for presurgical evaluation. In the near future, nomenclature for high density electrodes arrays beyond the 10-10 system needs to be defined, to allow comparison and standardized recordings across centers. Contrary to the established belief that smaller heads needs less electrodes, in young children at least as many electrodes as in adults should be applied due to smaller skull thickness and the risk of spatial aliasing. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  7. Stability of the Mézard-Parisi Solution for Random Manifolds

    NASA Astrophysics Data System (ADS)

    Carlucci, D. M.; de Dominicis, C.; Temesvari, T.

    1996-08-01

    The eigenvalues of the Hessian associated with random manifolds are constructed for the general case of R steps of replica symmetry breaking. For the Parisi limit Rrightarrow infty (continuum replica symmetry breaking) which is relevant for the manifold dimension D<2, they are shown to be non negative. Les valeurs propres de la hessienne, associée avec une variété aléatoire, sont construites dans le cas général de R étapes de brisure de la symétrie des répliques. Dans la limite de Parisi, Rrightarrow infty (brisure continue de la symétrie des répliques) qui est pertinente pour la dimension de la variété D<2, on montre qu'elles sont non négatives.

  8. Proton transfer to charged platinum electrodes. A molecular dynamics trajectory study.

    PubMed

    Wilhelm, Florian; Schmickler, Wolfgang; Spohr, Eckhard

    2010-05-05

    A recently developed empirical valence bond (EVB) model for proton transfer on Pt(111) electrodes (Wilhelm et al 2008 J. Phys. Chem. C 112 10814) has been applied in molecular dynamics (MD) simulations of a water film in contact with a charged Pt surface. A total of seven negative surface charge densities σ between -7.5 and -18.9 µC cm(-2) were investigated. For each value of σ, between 30 and 84 initial conditions of a solvated proton within a water slab were sampled, and the trajectories were integrated until discharge of a proton occurred on the charged surfaces. We have calculated the mean rates for discharge and for adsorption of solvated protons within the adsorbed water layer in contact with the metal electrode as a function of surface charge density. For the less negative values of σ we observe a Tafel-like exponential increase of discharge rate with decreasing σ. At the more negative values this exponential increase levels off and the discharge process is apparently transport limited. Mechanistically, the Tafel regime corresponds to a stepwise proton transfer: first, a proton is transferred from the bulk into the contact water layer, which is followed by transfer of a proton to the charged surface and concomitant discharge. At the more negative surface charge densities the proton transfer into the contact water layer and the transfer of another proton to the surface and its discharge occur almost simultaneously.

  9. High-Performance Asymmetric Supercapacitors of MnCo2O4 Nanofibers and N-Doped Reduced Graphene Oxide Aerogel.

    PubMed

    Pettong, Tanut; Iamprasertkun, Pawin; Krittayavathananon, Atiweena; Sukha, Phansiri; Sirisinudomkit, Pichamon; Seubsai, Anusorn; Chareonpanich, Metta; Kongkachuichay, Paisan; Limtrakul, Jumras; Sawangphruk, Montree

    2016-12-14

    The working potential of symmetric supercapacitors is not so wide because one type of material used for the supercapacitor electrodes prefers either positive or negative charge to both charges. To address this problem, a novel asymmetrical supercapacitor (ASC) of battery-type MnCo 2 O 4 nanofibers (NFs)//N-doped reduced graphene oxide aerogel (N-rGO AE ) was fabricated in this work. The MnCo 2 O 4 NFs at the positive electrode store the negative charges, i.e., solvated OH - , while the N-rGO AE at the negative electrode stores the positive charges, i.e., solvated K + . An as-fabricated aqueous-based MnCo 2 O 4 //N-rGO AE ASC device can provide a wide operating potential of 1.8 V and high energy density and power density at 54 W h kg -1 and 9851 W kg -1 , respectively, with 85.2% capacity retention over 3000 cycles. To understand the charge storage reaction mechanism of the MnCo 2 O 4 , the synchrotron-based X-ray absorption spectroscopy (XAS) technique was also used to determine the oxidation states of Co and Mn at the MnCo 2 O 4 electrode after being electrochemically tested. The oxidation number of Co is oxidized from +2.76 to +2.85 after charging and reduced back to +2.75 after discharging. On the other hand, the oxidation state of Mn is reduced from +3.62 to +3.44 after charging and oxidized to +3.58 after discharging. Understanding in the oxidation states of Co and Mn at the MnCo 2 O 4 electrode here leads to the awareness of the uncertain charge storage mechanism of the spinel-type oxide materials. High-performance ASC here in this work may be practically used in high-power applications.

  10. Structural tuning of nanogaps using electromigration induced by field emission current with bipolar biasing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yagi, Mamiko; Ito, Mitsuki; Shirakashi, Jun-ichi, E-mail: shrakash@cc.tuat.ac.jp

    We report a new method for fabrication of Ni nanogaps based on electromigration induced by a field emission current. This method is called “activation” and is demonstrated here using a current source with alternately reversing polarities. The activation procedure with alternating current bias, in which the current source polarity alternates between positive and negative bias conditions, is performed with planar Ni nanogaps defined on SiO{sub 2}/Si substrates at room temperature. During negative biasing, a Fowler-Nordheim field emission current flows from the source (cathode) to the drain (anode) electrode. The Ni atoms at the tip of the drain electrode are thusmore » activated and then migrate across the gap from the drain to the source electrode. In contrast, in the positive bias case, the field emission current moves the activated atoms from the source to the drain electrode. These two procedures are repeated until the tunnel resistance of the nanogaps is successively reduced from 100 TΩ to 48 kΩ. Scanning electron microscopy and atomic force microscopy studies showed that the gap separation narrowed from approximately 95 nm to less than 10 nm because of the Ni atoms that accumulated at the tips of both the source and drain electrodes. These results show that the alternately biased activation process, which is a newly proposed atom transfer technique, can successfully control the tunnel resistance of the Ni nanogaps and is a suitable method for formation of ultrasmall nanogap structures.« less

  11. An Asymmetric Supercapacitor with Mesoporous NiCo2O4 Nanorod/Graphene Composite and N-Doped Graphene Electrodes

    NASA Astrophysics Data System (ADS)

    Mao, J. W.; He, C. H.; Qi, J. Q.; Zhang, A. B.; Sui, Y. W.; He, Y. Z.; Meng, Q. K.; Wei, F. X.

    2018-01-01

    In the present work, mesoporous NiCo2O4 nanorod/graphene oxide (NiCo2O4/GO) composite was prepared by a facile and cost-effective hydrothermal method and meanwhile, N-doped graphene (N-G) was fabricated also by a hydrothermal synthesis process. NiCo2O4/GO composite and N-G were used as positive and negative electrodes for the supercapacitor, respectively, which all displayed excellent electrochemical performances. The NiCo2O4/GO composite electrode exhibited a high specific capacitance of 709.7 F g-1 at a current density of 1 A g-1 and excellent rate capability as well as good cycling performance with 84.7% capacitance retention at 6 A g-1 after 3000 cycles. A high-voltage asymmetric supercapacitor (ASC) was successfully fabricated using NiCo2O4/GO composite and N-G as the positive and negative electrodes, respectively, in 1 M KOH aqueous electrolyte. The ASC delivered a high energy density of 34.4 Wh kg-1 at a power density of 800 W kg-1 and still maintained 28 Wh kg-1 at a power density of 8000 W kg-1. Furthermore, this ASC showed excellent cycling stability with 94.3% specific capacitance retained at 5 A g-1 after 5000 cycles. The impressive results can be ascribed to the positive synergistic effects of the two electrodes. Evidently, our work provides useful information for assembling high-performance supercapacitor devices.

  12. Time-dependent deformation of polymer network in polymer-stabilized cholesteric liquid crystals (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lee, Kyung Min; Tondiglia, Vincent P.; Bunning, Timothy J.; White, Timothy J.

    2017-02-01

    Recently, we reported direct current (DC) field controllable electro-optic (EO) responses of negative dielectric anisotropy polymer stabilized cholesteric liquid crystals (PSCLCs). A potential mechanism is: Ions in the liquid crystal mixtures are trapped in/on the polymer network during the fast photopolymerization process, and the movement of ions by the application of the DC field distorts polymer network toward the negative electrode, inducing pitch variation through the cell thickness, i.e., pitch compression on the negative electrode side and pitch expansion on positive electrode side. As the DC voltage is directly applied to a target voltage, charged polymer network is deformed and the reflection band is tuned. Interestingly, the polymer network deforms further (red shift of reflection band) with time when constantly applied DC voltage, illustrating DC field induced time dependent deformation of polymer network (creep-like behavior). This time dependent reflection band changes in PSCLCs are investigated by varying the several factors, such as type and concentration of photoinitiators, liquid crystal monomer content, and curing condition (UV intensity and curing time). In addition, simple linear viscoelastic spring-dashpot models, such as 2-parameter Kelvin and 3-parameter linear models, are used to investigate the time-dependent viscoelastic behaviors of polymer networks in PSCLC.

  13. Life duration of Ni-MH cells for high power applications

    NASA Astrophysics Data System (ADS)

    Le Guenne, Laure; Bernard, Patrick

    Intensive research and development carried out at SAFT Research [1,2] has shown that limitation of Ni-MH battery life duration can be directly linked to AB 5 alloy corrosion in the negative electrode. A mathematical model taking into account these results has been developed in order to predict battery life as a function of the conditions of utilisation: cycle and calendar life [3]. However, the degradation of the negative electrode is the consequence of two phenomena: surface corrosion of the active alloy and decrepitation of alloy particles during cycling. Up to now, only the kinetic law controlling the evolution of the thickness of the corrosion layer could have been quantified [3]. On the other hand, the kinetic law of decrepitation could not be directly measured, but is only fitted by determining the total amount of corrosion. Thus, an in situ method suitable to quantify the electrochemical surface of the alloy has been developed. Therefore, electrochemical impedance spectroscopy (EIS) has been used to follow the degradation of the negative electrode, as a function of depth of discharge (DOD) during cycling. Alloy corrosion measurements and scanning electron microscope (SEM) analyses have been performed to confirm the validity of the method. It has been found that decrepitation is nearly zero for low levels of low DOD (5%).

  14. Hierarchical Fe₃O₄@Fe₂O₃ Core-Shell Nanorod Arrays as High-Performance Anodes for Asymmetric Supercapacitors.

    PubMed

    Tang, Xiao; Jia, Ruyue; Zhai, Teng; Xia, Hui

    2015-12-16

    Anode materials with relatively low capacitance remain a great challenge for asymmetric supercapacitors (ASCs) to pursue high energy density. Hematite (α-Fe2O3) has attracted intensive attention as anode material for ASCs, because of its suitable reversible redox reactions in a negative potential window (from 0 V to -1 V vs Ag/AgCl), high theoretical capacitance, rich abundance, and nontoxic features. Nevertheless, the Fe2O3 electrode cannot deliver large volumetric capacitance at a high rate, because of its poor electrical conductivity (∼10(-14) S/cm), resulting in low power density and low energy density. In this work, a hierarchical heterostructure comprising Fe3O4@Fe2O3 core-shell nanorod arrays (NRAs) is presented and investigated as the negative electrode for ASCs. Consequently, the Fe3O4@Fe2O3 electrode exhibits superior supercapacitive performance, compared to the bare Fe2O3 and Fe3O4 NRAs electrodes, demonstrating large volumetric capacitance (up to 1206 F/cm(3) with a mass loading of 1.25 mg/cm(2)), as well as good rate capability and cycling stability. The hybrid electrode design is also adopted to prepare Fe3O4@MnO2 core-shell NRAs as the positive electrode for ASCs. Significantly, the as-assembled 2 V ASC device delivered a high energy density of 0.83 mWh/cm(3) at a power density of 15.6 mW/cm(3). This work constitutes the first demonstration of Fe3O4 as the conductive supports for Fe2O3 to address the concerns about its poor electronic and ionic transport.

  15. Microfluidic device for the assembly and transport of microparticles

    DOEpatents

    James, Conrad D [Albuquerque, NM; Kumar, Anil [Framingham, MA; Khusid, Boris [New Providence, NJ; Acrivos, Andreas [Stanford, CA

    2010-06-29

    A microfluidic device comprising independently addressable arrays of interdigitated electrodes can be used to assembly and transport large-scale microparticle structures. The device and method uses collective phenomena in a negatively polarized suspension exposed to a high-gradient strong ac electric field to assemble the particles into predetermined locations and then transport them collectively to a work area for final assembly by sequentially energizing the electrode arrays.

  16. Electrostatic-Interaction-Assisted Construction of 3D Networks of Manganese Dioxide Nanosheets for Flexible High-Performance Solid-State Asymmetric Supercapacitors.

    PubMed

    Liu, Na; Su, Yanli; Wang, Zhiqiang; Wang, Zhen; Xia, Jinsong; Chen, Yong; Zhao, Zhigang; Li, Qingwen; Geng, Fengxia

    2017-08-22

    A three-dimensional (3D) macroscopic network of manganese oxide (MnO 2 ) sheets was synthesized by an easily scalable solution approach, grafting the negatively charged surfaces of the MnO 2 sheets with an aniline monomer by electrostatic interactions followed by a quick chemical oxidizing polymerization reaction. The obtained structure possessed MnO 2 sheets interconnected with polyaniline chains, producing a 3D monolith rich in mesopores. The MnO 2 sheets had almost all their reactive centers exposed on the electrode surface, and combined with the electron transport highways provided by polyaniline and the shortened diffusion paths provided by the porous structure, the deliberately designed electrode achieved an excellent capacitance of 762 F g -1 at a current of 1 A g -1 and cycling performance with a capacity retention of 90% over 8000 cycles. Furthermore, a flexible asymmetric supercapacitor based on the constructed electrode and activated carbon serving as the positive and negative electrodes, respectively, was successfully fabricated, delivering a maximum energy density of 40.2 Wh kg -1 (0.113 Wh cm -2 ) and power density of 6227.0 W kg -1 (17.44 W cm -2 ) in a potential window of 0-1.7 V in a PVA/Na 2 SO 4 gel electrolyte.

  17. Effects of ion insertion on cycling performance of miniaturized electrochemical capacitor of carbon nanotubes array.

    PubMed

    Tsai, Dah-Shyang; Chang, Chuan-hua; Chiang, Wei-Wen; Lee, Kuei-Yi; Huang, Ying-Sheng

    2014-10-24

    Capacity degradation and ion insertion of a miniaturized electrochemical capacitor are studied using ionic liquid [EMI] [TFSI] as the electrolyte. This capacitor is featured with two comb-like electrodes of vertical carbon nanotubes, ∼70 μm in height and 20 μm in interelectrode gap. We quantify the levels of ion insertion damage with Raman spectroscopy after the electrode experiences 120 consecutive voltammetric cycles to various potential limits. Distinct structural damage emerges due to [EMI] when the negative potential reaches -1.7 V, and those due to [TFSI] arise when the positive potential reaches 1.7 V vs. RHE. Judging from the peak broadenings, [EMI] is more detrimental than [TFSI]. When the voltage window ΔU is set as less than or equal to 2.8 V, both electrode potentials are within the two intercalation limits, little or no decay is observed in 10(4) charge/discharge cycles. When ΔU is 3.4 V, the positive potential exceeds the upper limit, but the negative potential stays within the lower limit, the cell capacitance decreases moderately. When ΔU increases to 3.8 V, both electrodes suffer from damages because of exceeding the intercalation limits. And the cell capacitance decreases substantially, even leading to a premature failure.

  18. Template-free fabrication of hollow N-doped carbon sphere (h-NCS) to synthesize h-NCS@PANI positive material for MoO3//h-NCS@PANI asymmetric supercapacitor

    NASA Astrophysics Data System (ADS)

    Li, Xiaoqin; Xiang, Xinxin; Liu, Yunhua; Xiao, Dan

    2018-06-01

    Asymmetric supercapacitors (ASCs) based on pseudocapacitor electrode materials are vital to improve the electrochemical properties of devices in aqueous electrolytes. This study fabricates hollow N-doped carbon sphere (h-NCS) to produce h-NCS@PANI nanocomposite as positive electrode and α-MoO3 as negative electrode to assemble ASC device. In particular, a facile template-free synthesis method, catalyzed by Cu2+, is used to prepare hollow PANI nanosphere precursor to build h-NCS. The mechanism of the precursor formation is illustrated in detail. After polymerization of PANI on the surface of h-NCS, the capacitance increases to 327 F g-1 at 1 A g-1. Furthermore, a hydrothermal reaction is carried out to produce α-MoO3 negative electrode material. The maximum specific capacitance of 720 F g-1 is achieved at 1 A g-1. The obtained h-NCS@PANI and α-MoO3 are utilized to construct an ASC device. The electrochemical properties of this device are investigated comprehensively. The maximum energy density of 34.1 W h kg-1 and power density of 9350.6 W kg-1 are observed, which provide an insight into the development of ASCs.

  19. Modeling of the cranking and charging processes of conventional valve regulated lead acid (VRLA) batteries in micro-hybrid applications

    NASA Astrophysics Data System (ADS)

    Gou, Jun; Lee, Anson; Pyko, Jan

    2014-10-01

    The cranking and charging processes of a VRLA battery during stop-start cycling in micro-hybrid applications were simulated by one dimensional mathematical modeling, to study the formation and distribution of lead sulfate across the cell and analyze the resulting effect on battery aging. The battery focused on in this study represents a conventional VRLA battery without any carbon additives in the electrodes or carbon-based electrodes. The modeling results were validated against experimental data and used to analyze the "sulfation" of negative electrodes - the common failure mode of lead acid batteries under high-rate partial state of charge (HRPSoC) cycling. The analyses were based on two aging mechanisms proposed in previous studies and the predictions showed consistency with the previous teardown observations that the sulfate formed at the negative interface is more difficult to be converted back than anywhere else in the electrodes. The impact of cranking pulses during stop-start cycling on current density and the corresponding sulfate layer production was estimated. The effects of some critical design parameters on sulfate formation, distribution and aging over cycling were investigated, which provided guidelines for developing models and designing of VRLA batteries in micro-hybrid applications.

  20. Atmospheric negative corona discharge using a Taylor cone as liquid electrode

    NASA Astrophysics Data System (ADS)

    Sekine, Ryuto; Shirai, Naoki; Uchida, Satoshi; Tochikubo, Fumiyoshi

    2012-10-01

    We examined characteristics of atmospheric negative corona discharge using liquid needle cathode. As a liquid needle cathode, we adopted Taylor cone with conical shape. A nozzle with inner diameter of 10 mm is filled with liquid, and a plate electrode is placed at 10 mm above the nozzle. By applying a dc voltage between electrodes, Taylor cone is formed. To change the liquid property, we added sodium dodecyl sulfate to reduce the surface tension, sodium sulfate to increase the conductivity, and polyvinyl alcohol to increase the viscosity, in distilled water. The liquid, with high surface tension such as pure water could not form a Taylor cone. When we reduced surface tension, a Taylor cone was formed and the stable corona discharge was observed at the tip of the cone. When we increased viscosity, a liquid filament protruded from the solution surface was formed and corona discharge was observed along the filament at position 0.7-1.0 mm above from the tip of the cone. Increasing the conductivity resulted in the higher light intensity of corona and the lower corona onset voltage. When we use the metal needle electrode, the corona discharge depends on the voltage and the gap length. Using Taylor cone, different types of discharges were observed by changing the property of the liquid.

  1. Observation of electrostatically released DNA from gold electrodes with controlled threshold voltages.

    PubMed

    Takeishi, Shunsaku; Rant, Ulrich; Fujiwara, Tsuyoshi; Buchholz, Karin; Usuki, Tatsuya; Arinaga, Kenji; Takemoto, Kazuya; Yamaguchi, Yoshitaka; Tornow, Marc; Fujita, Shozo; Abstreiter, Gerhard; Yokoyama, Naoki

    2004-03-22

    DNA oligo-nucleotides, localized at Au metal electrodes in aqueous solution, are found to be released when applying a negative bias voltage to the electrode. The release was confirmed by monitoring the intensity of the fluorescence of cyanine dyes (Cy3) linked to the 5' end of the DNA. The threshold voltage of the release changes depending on the kind of linker added to the DNA 3'-terminal. The amount of released DNA depends on the duration of the voltage pulse. Using this technique, we can retain DNA at Au electrodes or Au needles, and release the desired amount of DNA at a precise location in a target. The results suggest that DNA injection into living cells is possible with this method. (c) 2004 American Institute of Physics

  2. High cycle life secondary lithium battery

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Shen, David H. (Inventor); Carter, Boyd J. (Inventor); Somoano, Robert B. (Inventor)

    1985-01-01

    A secondary battery (10) of high energy density and long cycle is achieved by coating the separator (18) with a film (21) of cationic polymer such as polyvinyl-imidazoline. The binder of the positive electrode (14) such as an ethylene-propylene elastomer binder (26) containing particles (28) of TiS.sub.2 chalcogenide can also be modified to contain sulfone functional groups by incorporating liquid or solid sulfone materials such as 0.1 to 5 percent by weight of sulfolane into the binder. The negative lithium electrode (14), separator (18) and positive electrode (16) are preferably spirally wound and disposed within a sealed casing (17) containing terminals (32, 34). The modified separator and positive electrode are more wettable by the electrolytes in which a salt is dissolved in a polar solvent such as sulfolane.

  3. Synthesis and characterization of lithium intercalation electrodes based on iron oxide thin films

    NASA Astrophysics Data System (ADS)

    Sarradin, J.; Guessous, A.; Ribes, M.

    Sputter-deposited iron oxide thin films are investigated as a possible negative electrode for rocking-chair microbatteries. Experimental conditions related to the manufacturing of amorphous thin films suitable to a large number of available intercalation sites are described. Structural and physical properties of the thin layer films are presented. The conductivities of the amorphous thin films were found to be very high compared with those of the respective crystalline forms. Regarding the electrochemical behaviour, Fe 2O 3-based thin films electrodes are able to store and reversibly exchange lithium ions. At a C/2 charge/discharge rate with 100% depth-of-discharge (DOD), the specific capacity of these amorphous thin film electrodes remains almost constant and close to 330 Ah/kg after more than 120 charge/discharge cycles.

  4. Studies of Low-Current Back-Discharge in Point-Plane Geometry with Dielectric Layer

    NASA Astrophysics Data System (ADS)

    Jaworek, Anatol; Rajch, Eryk; Krupa, Andrzej; Czech, Tadeusz; Lackowski, Marcin

    2006-01-01

    The paper presents results of spectroscopic investigations of back-discharges generated in the point-plane electrode geometry in ambient air at atmospheric pressure, with the plane electrode covered with a dielectric layer. Fly ash from an electrostatic precipitator of a coal-fired power plant was used as the dielectric layer in these investigations. The discharges for positive and negative polarities of the needle electrode were studied by measuring optical emission spectra at two regions of the discharge: near the needle electrode and dielectric layer surface. The visual forms of the discharge were recorded and correlated with the current-voltage characteristics and optical emission spectra. The back-arc discharge was of particular interest in these studies due to its detrimental effects it causes in electrostatic precipitators.

  5. Cell structure for electrochemical devices and method of making same

    DOEpatents

    Kaun, Thomas D.

    2007-03-27

    An electrochemical device comprising alternating layers of positive and negative electrodes separated from each other by separator layers. The electrode layers extend beyond the periphery of the separator layers providing superior contact between the electrodes and battery terminals, eliminating the need for welding the electrode to the terminal. Electrical resistance within the battery is decreased and thermal conductivity of the cell is increased allowing for superior heat removal from the battery and increased efficiency. Increased internal pressure within the battery can be alleviated without damaging or removing the battery from service while keeping the contents of the battery sealed off from the atmosphere by a pressure release system. Nonoperative cells within a battery assembly can also be removed from service by shorting the nonoperative cell thus decreasing battery life.

  6. Ni/metal hydride secondary element

    DOEpatents

    Bauerlein, Peter

    2005-04-19

    A Ni/metal hydride secondary element having a positive nickel hydroxide electrode, a negative electrode having a hydrogen storage alloy, and an alkaline electrolyte, the positive electrode, provided with a three-dimensional metallic conductive structure, also contains an aluminum compound which is soluble in the electrolyte, in addition to nickel hydroxide and cobalt oxide. The aluminum compound is aluminum hydroxide and/or aluminum oxide, and the mass of the aluminum compound which is present in the positive bulk material mixture is 0.1 to 2% by weight relative to the mass of the nickel hydroxide which is present. In combination with aluminum hydroxide or aluminum oxide, the positive electrode further contains lanthanoid oxidic compounds Y.sub.2 O.sub.3, La.sub.2 O.sub.3 and Ca(OH).sub.2, as well as mixtures of these compounds.

  7. Effect of Strong Acid Functional Groups on Electrode Rise Potential in Capacitive Mixing by Double Layer Expansion

    DOE PAGES

    Hatzell, Marta C.; Raju, Muralikrishna; Watson, Valerie J.; ...

    2014-11-03

    We report that the amount of salinity-gradient energy that can be obtained through capacitive mixing based on double layer expansion depends on the extent the electric double layer (EDL) is altered in a low salt concentration (LC) electrolyte (e.g., river water). We show that the electrode-rise potential, which is a measure of the EDL perturbation process, was significantly (P = 10 –5) correlated to the concentration of strong acid surface functional groups using five types of activated carbon. Electrodes with the lowest concentration of strong acids (0.05 mmol g –1) had a positive rise potential of 59 ± 4 mVmore » in the LC solution, whereas the carbon with the highest concentration (0.36 mmol g –1) had a negative rise potential (₋31 ± 5 mV). Chemical oxidation of a carbon (YP50) using nitric acid decreased the electrode rise potential from 46 ± 2 mV (unaltered) to ₋6 ± 0.5 mV (oxidized), producing a whole cell potential (53 ± 1.7 mV) that was 4.4 times larger than that obtained with identical electrode materials (from 12 ± 1 mV). Changes in the EDL were linked to the behavior of specific ions in a LC solution using molecular dynamics and metadynamics simulations. The EDL expanded in the LC solution when a carbon surface (pristine graphene) lacked strong acid functional groups, producing a positive-rise potential at the electrode. In contrast, the EDL was compressed for an oxidized surface (graphene oxide), producing a negative-rise electrode potential. In conclusion, these results established the linkage between rise potentials and specific surface functional groups (strong acids) and demonstrated on a molecular scale changes in the EDL using oxidized or pristine carbons.« less

  8. Modeling of Schottky Barrier Modulation due to Oxidation at Metallic Electrode and Semiconducting Carbon Nanotube Junction

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige; Biegel, Bryan (Technical Monitor)

    2003-01-01

    A model is proposed for the previously reported lower Schottky barrier for holes PHI (sub bH) in air than in vacuum at a metallic electrode - semiconducting carbon nanotube (CNT) junction. We assume that there is a transition region between the electrode and the CNT, and an appreciable potential can drop there. The role of the oxidation is to increase this potential drop with negatively charged oxygen molecules on the CNT, leading to lower PHI(sub Bh) after oxidation. The mechanism prevails in both p- and n-CNTs, and the model consistently explains the key experimental findings.

  9. Continuous field-flow separation of particle populations in a dielectrophoretic chip with three dimensional electrodes

    NASA Astrophysics Data System (ADS)

    Iliescu, Ciprian; Tresset, Guillaume; Xu, Guolin

    2007-06-01

    This letter presents a dielectrophoretic (DEP) separation method of particles under continuous flow. The method consists of flowing two particle populations through a microfluidic channel, in which the vertical walls are the electrodes of the DEP device. The irregular shape of the electrodes generates both electric field and fluid velocity gradients. As a result, the particles that exhibit negative DEP can be trapped in the fluidic dead zones, while the particles that experience positive DEP are concentrated in the regions with high velocity and collected at the outlet. The device was tested with dead and living yeast cells.

  10. Spherical neutron generator

    DOEpatents

    Leung, Ka-Ngo

    2006-11-21

    A spherical neutron generator is formed with a small spherical target and a spherical shell RF-driven plasma ion source surrounding the target. A deuterium (or deuterium and tritium) ion plasma is produced by RF excitation in the plasma ion source using an RF antenna. The plasma generation region is a spherical shell between an outer chamber and an inner extraction electrode. A spherical neutron generating target is at the center of the chamber and is biased negatively with respect to the extraction electrode which contains many holes. Ions passing through the holes in the extraction electrode are focused onto the target which produces neutrons by D-D or D-T reactions.

  11. Facile Synthesis of Pre-Doping Lithium-Ion Into Nitrogen-Doped Graphite Negative Electrode for Lithium-Ion Capacitor.

    PubMed

    Lee, Seul-Yi; Kim, Ji-Il; Rhee, Kyong Yop; Park, Soo-Jin

    2015-09-01

    Nitrogen-doped graphite, prepared via the thermal decomposition of melamine into a carbon matrix for use as the negative electrode in lithium-ion capacitors (LICs), was evaluated by electrochemical measurements. Furthermore, in order to study the performance of pre-doped lithium components as a function of nitrogen-doped material, the pre-doped lithium graphite was allowed to react with a lithium salt solution. The results showed that the nitrogen functional groups in the graphite largely influenced the pre-doped lithium components, thereby contributing to the discharge capacity and cycling performance. We confirmed that the large initial irreversible capacity could be significantly decreased by using pre-doped lithium components obtained through the nitrogen-doping method.

  12. Efficient spin-filtering, magnetoresistance and negative differential resistance effects of a one-dimensional single-molecule magnet Mn(dmit)2-based device with graphene nanoribbon electrodes

    NASA Astrophysics Data System (ADS)

    Liu, N.; Liu, J. B.; Yao, K. L.

    2017-12-01

    We present first-principle spin-dependent quantum transport calculations in a molecular device constructed by one single-molecule magnet Mn(dmit)2 and two graphene nanoribbon electrodes. Our results show that the device could generate perfect spin-filtering performance in a certain bias range both in the parallel configuration (PC) and the antiparallel configuration (APC). At the same time, a magnetoresistance effect, up to a high value of 103%, can be realized. Moreover, visible negative differential resistance phenomenon is obtained for the spin-up current of the PC. These results suggest that our one-dimensional molecular device is a promising candidate for multi-functional spintronics devices.

  13. Nanostructure selenium compounds as pseudocapacitive electrodes for high-performance asymmetric supercapacitor.

    PubMed

    Ma, Guofu; Hua, Fengting; Sun, Kanjun; Fenga, Enke; Peng, Hui; Zhang, Zhiguo; Lei, Ziqiang

    2018-01-01

    The electrochemical performance of an energy conversion and storage device like the supercapacitor mainly depends on the microstructure and morphology of the electrodes. In this paper, to improve the capacitance performance of the supercapacitor, the all-pseudocapacitive electrodes of lamella-like Bi 18 SeO 29 /BiSe as the negative electrode and flower-like Co 0.85 Se nanosheets as the positive electrode are synthesized by using a facile low-temperature one-step hydrothermal method. The microstructures and morphology of the electrode materials are carefully characterized, and the capacitance performances are also tested. The Bi 18 SeO 29 /BiSe and Co 0.85 Se have high specific capacitance (471.3 F g -1 and 255 F g -1 at 0.5 A g -1 ), high conductivity, outstanding cycling stability, as well as good rate capability. The assembled asymmetric supercapacitor completely based on the pseudocapacitive electrodes exhibits outstanding cycling stability (about 93% capacitance retention after 5000 cycles). Moreover, the devices exhibit high energy density of 24.2 Wh kg -1 at a power density of 871.2 W kg -1 in the voltage window of 0-1.6 V with 2 M KOH solution.

  14. Focused intracochlear electric stimulation with phased array channels.

    PubMed

    van den Honert, Chris; Kelsall, David C

    2007-06-01

    A method is described for producing focused intracochlear electric stimulation using an array of N electrodes. For each electrode site, N weights are computed that define the ratios of positive and negative electrode currents required to produce cancellation of the voltage within scala tympani at all of the N-1 other sites. Multiple sites can be stimulated simultaneously by superposition of their respective current vectors. The method allows N independent stimulus waveforms to be delivered to each of the N electrode sites without spatial overlap. Channel interaction from current spread associated with monopolar stimulation is substantially eliminated. The method operates by inverting the spread functions of individual monopoles as measured with the other electrodes. The method was implemented and validated with data from three human subjects implanted with 22-electrode perimodiolar arrays. Results indicate that (1) focusing is realizable with realistic precision; (2) focusing comes at the cost of increased total stimulation current; (3) uncanceled voltages that arise beyond the ends of the array are weak except when stimulating the two end channels; and (4) close perimodiolar positioning of the electrodes may be important for minimizing stimulation current and sensitivity to measurement errors.

  15. Non-gassing nickel-cadmium battery electrodes and cells

    NASA Technical Reports Server (NTRS)

    Luksha, E.; Gordy, D. J.

    1972-01-01

    The concept of a negative limited nongassing nickel-cadmium battery was demonstrated by constructing and testing practical size experimental cells of approximately 25 Ah capacity. These batteries operated in a gas-free manner and had measured energy densities of 10-11 Wh/lb. Thirty cells were constructed for extensive testing. Some small cells were tested for over 200 cycles at 100% depth. For example, a small cell with an electrodeposited cadmium active mass on a silver screen still had 55% of its theoretical capacity (initial efficiency was 85%). There was no evidence of deterioration of gassing properties with cycling of the nickel electrodes. The charge temperature was observed to be the most critical variable governing nickel electrode gassing. This variable was shown to be age dependent. Four types of cadmium electrodes were tested: an electrodeposited cadmium active mass on a cadmium or silver substrate, a porous sintered silver substrate based electrode, and a Teflon bonded pressed cadmium electrode. The electrodeposited cadmium mass on a silver screen was found to be the best all-around electrode from a performance point of view and from the point of view of manufacturing them in a size required for a 25 Ah size battery.

  16. High-Performance Flexible Asymmetric Supercapacitor Based on CoAl-LDH and rGO Electrodes

    NASA Astrophysics Data System (ADS)

    Li, Shuoshuo; Cheng, Pengpeng; Luo, Jiaxian; Zhou, Dan; Xu, Weiming; Li, Jingwei; Li, Ruchun; Yuan, Dingsheng

    2017-07-01

    A flexible asymmetric supercapacitor (ASC) based on a CoAl-layered double hydroxide (CoAl-LDH) electrode and a reduced graphene oxide (rGO) electrode was successfully fabricated. The CoAl-LDH electrode as a positive electrode was synthesized by directly growing CoAl-LDH nanosheet arrays on a carbon cloth (CC) through a facile hydrothermal method, and it delivered a specific capacitance of 616.9 F g-1 at a current density of 1 A g-1. The rGO electrode as a negative electrode was synthesized by coating rGO on the CC via a simple dip-coating method and revealed a specific capacitance of 110.0 F g-1 at a current density of 2 A g-1. Ultimately, the advanced ASC offered a broad voltage window (1.7 V) and exhibited a high superficial capacitance of 1.77 F cm-2 at 2 mA cm-2 and a high energy density of 0.71 mWh cm-2 at a power density of 17.05 mW cm-2, along with an excellent cycle stability (92.9% capacitance retention over 8000 charge-discharge cycles).

  17. Electro-optical phenomena based on ionic liquids in an optofluidic waveguide.

    PubMed

    He, Xiaodong; Shao, Qunfeng; Cao, Pengfei; Kong, Weijie; Sun, Jiqian; Zhang, Xiaoping; Deng, Youquan

    2015-03-07

    An optofluidic waveguide with a simple two-terminal electrode geometry, when filled with an ionic liquid (IL), forms a lateral electric double-layer capacitor under a direct current (DC) electric field, which allows the realization of an extremely high carrier density in the vicinity of the electrode surface and terminals to modulate optical transmission at room temperature under low voltage operation (0 to 4 V). The unique electro-optical phenomenon of ILs was investigated at three wavelengths (663, 1330 and 1530 nm) using two waveguide geometries. Strong electro-optical modulations with different efficiencies were observed at the two near-infrared (NIR) wavelengths, while no detectable modulation was observed at 663 nm. The first waveguide geometry was used to investigate the position-dependent modulation along the waveguide; the strongest modulation was observed in the vicinity of the electrode terminal. The modulation phase is associated with the applied voltage polarity, which increases in the vicinity of the negative electrode and decreases at the positive electrode. The second waveguide geometry was used to improve the modulation efficiency. Meanwhile, the electro-optical modulations of seven ILs were compared at an applied voltage ranging from ±2 V to ±3.5 V. The results reveal that the modulation amplitude and response speed increase with increasing applied voltage, as well as the electrical conductivity of ILs. Despite the fact that the response speed isn't fast due to the high ionic density of ILs, the modulation amplitude can reach up to 6.0 dB when a higher voltage (U = ±3.5 V) is applied for the IL [Emim][BF4]. Finally, the physical explanation of the phenomenon was discussed. The effect of the change in IL structure on the electro-optical phenomena was investigated in another new experiment. The results reveal that the electro-optical phenomenon is probably caused mainly by the change in carrier concentration (ion redistribution near charged electrodes), which induces the enhancement and suppression of NIR optical absorption (contributed by C-H and N-H groups) in the vicinity of the negative electrode and positive electrode, respectively.

  18. The potential of mangrove Avicennia marina and A. Alba from Nguling district, Pasuruan, East Java as an antioxidant

    NASA Astrophysics Data System (ADS)

    Iranawati, F.; Muhammad, F.; Fajri, H.; Kasitowati, R. D.; Arifin, S.

    2018-04-01

    Free radicals are highly reactive molecules due to unpaired electron in their outer orbital. Excess of free radicals inside human body as consequences of environmental exposure such cigarette smoke may lead to degenerative diseases such as diabetic, cancer etc. This negative effect can be limited by the utilization of natural antioxidant substances, especially produced from plant. Avicennia alba dan A. marina are mangrove species that widely distributed in Indonesia and are expected potential as antioxidant. The objective of this study is to evaluated Avicennia alba dan A. marina potency as antioxidant performed with DPPD (1,1-diphenyl-β-picryl hydrazyl) method. Leaf and bark of Avicennia alba dan A. marina were collected from Nguling District, Pasuruan, East Java. Results shows that based on 50% inhibition Concentration (IC50), Avicennia alba leaf were categorized had a very high antioxidant potential (IC50 14,85 ppm) whereas the bark were categorized had a weak antioxidant potential IC50 167,17 ppm). For A. marina, the leaf were categorized had a moderate antioxidant (IC50 123,23 ppm) whereas the bark were categorized had a weak antioxidant potential (IC50 198,15 ppm).

  19. A Porphyrin Complex as a Self-Conditioned Electrode Material for High-Performance Energy Storage.

    PubMed

    Gao, Ping; Chen, Zhi; Zhao-Karger, Zhirong; Mueller, Jonathan E; Jung, Christoph; Klyatskaya, Svetlana; Diemant, Thomas; Fuhr, Olaf; Jacob, Timo; Behm, R Jürgen; Ruben, Mario; Fichtner, Maximilian

    2017-08-21

    The novel functionalized porphyrin [5,15-bis(ethynyl)-10,20-diphenylporphinato]copper(II) (CuDEPP) was used as electrodes for rechargeable energy-storage systems with an extraordinary combination of storage capacity, rate capability, and cycling stability. The ability of CuDEPP to serve as an electron donor or acceptor supports various energy-storage applications. Combined with a lithium negative electrode, the CuDEPP electrode exhibited a long cycle life of several thousand cycles and fast charge-discharge rates up to 53 C and a specific energy density of 345 Wh kg -1 at a specific power density of 29 kW kg -1 . Coupled with a graphite cathode, the CuDEPP anode delivered a specific power density of 14 kW kg -1 . Whereas the capacity is in the range of that of ordinary lithium-ion batteries, the CuDEPP electrode has a power density in the range of that of supercapacitors, thus opening a pathway toward new organic electrodes with excellent rate capability and cyclic stability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Degradation diagnosis of aged Li4Ti5O12/LiFePO4 batteries

    NASA Astrophysics Data System (ADS)

    Castaing, Rémi; Reynier, Yvan; Dupré, Nicolas; Schleich, Donald; Jouanneau Si Larbi, Séverine; Guyomard, Dominique; Moreau, Philippe

    2014-12-01

    Li4Ti5O12/LiFePO4 cells are cycled under 4 different conditions of discharge profile (galvanostatic or driving-based) and cycling rates (C/8 or 1C) during 4-5 months. All the cells exhibit capacity fade whose extent is not correlated with the aging condition. In order to understand aging phenomena, cells are disassembled at the end of cycle life and the recovered electrodes are analyzed using electrochemistry, electron microscopy, XRD and MAS-NMR. Positive and negative electrodes show no loss in active material and no change in electrochemical activity, active material structure and composite electrode structure. This rules out any irreversible electrode degradation. Lithium stoichiometry estimated by both XRD and electrochemistry is unexpectedly low in the positive electrode when the aging is stopped at full discharge. That indicates a loss of cyclable lithium or electrons leading to cell balancing evolution. That loss may have been caused by parasitic reactions occurring at both electrodes, in accordance with their rich surface chemistry as evidenced by MAS-NMR.

  1. Controllable synthesis of CuS hollow microflowers hierarchical structures for asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Yanxia; Zhou, Zhaoxiao; Zhang, Shengping; Luo, Wenhao; Zhang, Guofeng

    2018-06-01

    One of the major challenges of high-performance asymmetric supercapacitors is engineering electrode materials with high capacitance and good cycling stability. Hence, we have successfully prepared different CuS hierarchical structures including CuS tubular structures (T-CuS), CuS hollow microspheres (S-CuS) and CuS hollow microflowers (H-CuS) by adjusting the solvents, all of which are investigated as electrode materials for supercapacitors. Among them, the H-CuS electrode exhibits the best electrochemical performance involving a high capacitance of 536.7 F g-1 at a current density of 8 A g-1 and excellent cycling stability with 83.6% capacitance retention for 20,000 continuous cycles at a current density of 5 A g-1. In addition, an asymmetric supercapacitor has assembled with H-CuS as positive electrode and activated carbon (AC) as negative electrode, which exhibits a desirable energy density of 15.97 W h kg-1 when the power density is 185.4 W kg-1. These desirable electrochemical performances powerfully demonstrate that the H-CuS electrode has promising potential for applications in energy storage fields.

  2. Effect of electrode manufacturing defects on electrochemical performance of lithium-ion batteries: Cognizance of the battery failure sources

    DOE PAGES

    Mohanty, D.; Hockaday, E.; Li, J.; ...

    2016-02-21

    During LIB electrode manufacturing, it is difficult to avoid the certain defects that diminish LIB performance and shorten the life span of the batteries. This study provides a systematic investigation correlating the different plausible defects (agglomeration/blisters, pinholes/divots, metal particle contamination, and non-uniform coating) in a LiNi 0.5Mn 0.3Co 0.2O 2 positive electrode with its electrochemical performance. Additionally, an infrared thermography technique was demonstrated as a nondestructive tool to detect these defects. The findings show that cathode agglomerates aggravated cycle efficiency, and resulted in faster capacity fading at high current density. Electrode pinholes showed substantially lower discharge capacities at higher currentmore » densities than baseline NMC 532 electrodes. Metal particle contaminants have an extremely negative effect on performance, at higher C-rates. The electrodes with more coated and uncoated interfaces (non-uniform coatings) showed poor cycle life compared with electrodes with fewer coated and uncoated interfaces. Further, microstructural investigation provided evidence of presence of carbon-rich region in the agglomerated region and uneven electrode coating thickness in the coated and uncoated interfacial regions that may lead to the inferior electrochemical performance. In conclusion, this study provides the importance of monitoring and early detection of the electrode defects during LIB manufacturing processes to minimize the cell rejection rate after fabrication and testing.« less

  3. Multilayer core-shell structured composite paper electrode consisting of copper, cuprous oxide and graphite assembled on cellulose fibers for asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Wan, Caichao; Jiao, Yue; Li, Jian

    2017-09-01

    An easily-operated and inexpensive strategy (pencil-drawing-electrodeposition-electro-oxidation) is proposed to synthesize a novel class of multilayer core-shell structured composite paper electrode, which consists of copper, cuprous oxide and graphite assembled on cellulose fibers. This interesting electrode structure plays a pivotal role in providing more active sites for electrochemical reactions, facilitating ion and electron transport and shorting their diffusion pathways. This electrode demonstrates excellent electrochemical properties with a high specific capacitance of 601 F g-1 at 2 A g-1 and retains 83% of this capacitance when operated at an ultrahigh current density of 100 A g-1. In addition, a high energy density of 13.4 W h kg-1 at the power density of 0.40 kW kg-1 and a favorable cycling stability (95.3%, 8000 cycles) were achieved for this electrode. When this electrode was assembled into an asymmetric supercapacitor with carbon paper as negative electrode, the device displays remarkable electrochemical performances with a large areal capacitances (122 mF cm-2 at 1 mA cm-2), high areal energy density (10.8 μW h cm-2 at 402.5 μW cm-2) and outstanding cycling stability (91.5%, 5000 cycles). These results unveil the potential of this composite electrode as a high-performance electrode material for supercapacitors.

  4. Potential-dependent recombination kinetics of photogenerated electrons in n- and p-type GaN photoelectrodes studied by time-resolved IR absorption spectroscopy.

    PubMed

    Yamakata, Akira; Yoshida, Masaaki; Kubota, Jun; Osawa, Masatoshi; Domen, Kazunari

    2011-07-27

    Recombination kinetics of photogenerated electrons in n-type and p-type GaN photoelectrodes active for H(2) and O(2) evolution, respectively, from water was examined by time-resolved IR absorption (TR-IR) spectroscopy. Illumination of a GaN film with UV pulse (355 nm and 6 ns in duration) gives transient interference spectra in both transmittance and reflection modes. Simulation shows that the interference spectra are caused by photogenerated electrons. We observed that recombination in the microsecond region is greatly affected by the applied potentials, the lifetime becoming longer at negative and positive potentials for n- and p-type GaN electrodes, respectively. There is a good correlation between potential dependence of the steady-state reaction efficiency and that of the number of surviving electrons in the millisecond region. We also performed potential jump measurement to examine the shift in Fermi level by photogenerated charge carriers. In the case of n-type GaN, the electrode potential jumps to the negative side by accumulation of electrons in the bulk. However, in the case of p-type GaN, the electrode potential first jumps to the negative side within 20 μs and gradually shifts to the positive side in a few milliseconds, while the number of charge carriers is constant at >0.2 ms. This two-step process is ascribed to electron transport from the bulk to the surface of GaN, because the electrode potential is sensitive to the number of electrons in the bulk. The results confirm that TR-IR combined with potential jump measurement provides useful information for understanding the behavior of charge carriers in photoelectrochemical systems.

  5. Ion counting in supercapacitor electrodes using NMR spectroscopy.

    PubMed

    Griffin, John M; Forse, Alexander C; Wang, Hao; Trease, Nicole M; Taberna, Pierre-Louis; Simon, Patrice; Grey, Clare P

    2014-01-01

    (19)F NMR spectroscopy has been used to study the local environments of anions in supercapacitor electrodes and to quantify changes in the populations of adsorbed species during charging. In the absence of an applied potential, anionic species adsorbed within carbon micropores (in-pore) are distinguished from those in large mesopores and spaces between particles (ex-pore) by a characteristic nucleus-independent chemical shift (NICS). Adsorption experiments and two-dimensional exchange experiments confirm that anions are in dynamic equilibrium between the in- and ex-pore environments with an exchange rate in the order of tens of Hz. (19)F in situ NMR spectra recorded at different charge states reveal changes in the intensity and NICS of the in-pore resonances, which are interpreted in term of changes in the population and local environments of the adsorbed anions that arise due to the charge-storage process. A comparison of the results obtained for a range of electrolytes reveals that several factors influence the charging mechanism. For a tetraethylammonium tetrafluoroborate electrolyte, positive polarisation of the electrode is found to proceed by anion adsorption at a low concentration, whereas increased ion exchange plays a more important role for a high concentration electrolyte. In contrast, negative polarization of the electrode proceeds by cation adsorption for both concentrations. For a tetrabutylammonium tetrafluoroborate electrolyte, anion expulsion is observed in the negative charging regime; this is attributed to the reduced mobility and/or access of the larger cations inside the pores, which forces the expulsion of anions in order to build up ionic charge. Significant anion expulsion is also observed in the negative charging regime for alkali metal bis(trifluoromethane)sulfonimide electrolytes, suggesting that more subtle factors also affect the charging mechanism.

  6. Constant voltage electro-slag remelting control

    DOEpatents

    Schlienger, M.E.

    1996-10-22

    A system for controlling electrode gap in an electro-slag remelt furnace has a constant regulated voltage and an electrode which is fed into the slag pool at a constant rate. The impedance of the circuit through the slag pool is directly proportional to the gap distance. Because of the constant voltage, the system current changes are inversely proportional to changes in gap. This negative feedback causes the gap to remain stable. 1 fig.

  7. Calcium alloy as active material in secondary electrochemical cell

    DOEpatents

    Roche, Michael F.; Preto, Sandra K.; Martin, Allan E.

    1976-01-01

    Calcium alloys such as calcium-aluminum and calcium-silicon, are employed as active material within a rechargeable negative electrode of an electrochemical cell. Such cells can use a molten salt electrolyte including calcium ions and a positive electrode having sulfur, sulfides, or oxides as active material. The calcium alloy is selected to prevent formation of molten calcium alloys resulting from reaction with the selected molten electrolytic salt at the cell operating temperatures.

  8. Report to Congress on the Activities of the DoD Office of Technology Transition

    DTIC Science & Technology

    2004-03-01

    carbon aerogel paper as both the positive and negative electrodes. A microporous separator is placed between the two electrodes, creating a sandwich ...sized to occupy minimal pallet space on a cargo aircraft , and offers reduced water requirements and equipment weight. D-13 Advanced Composites Carry... Aircraft , National Center for Manufacturing Sciences (NCMS/CTMA) and the U.S. DoD partnership Conference National Aeronautical Systems and Technology

  9. Multi-layered, chemically bonded lithium-ion and lithium/air batteries

    DOEpatents

    Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R

    2014-05-13

    Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.

  10. Electrochemical cell

    DOEpatents

    Redey, Laszlo I.; Vissers, Donald R.; Prakash, Jai

    1994-01-01

    An electrochemical cell having an alkali metal negative electrode such as sodium and a positive electrode including Ni or transition metals, separated by a .beta." alumina electrolyte and NaAlCl.sub.4 or other compatible material. Various concentrations of a bromine, iodine and/or sulfur containing additive and pore formers are disclosed, which enhance cell capacity and power. The pore formers may be the ammonium salts of carbonic acid or a weak organic acid or oxamide or methylcellulose.

  11. Electrodeposited Porous Mn1.5Co1.5O₄/Ni Composite Electrodes for High-Voltage Asymmetric Supercapacitors.

    PubMed

    Pan, Guan-Ting; Chong, Siewhui; Yang, Thomas C-K; Huang, Chao-Ming

    2017-03-31

    Mesoporous Mn 1.5 Co 1.5 O₄ (MCO) spinel films were prepared directly on a conductive nickel (Ni) foam substrate via electrodeposition and an annealing treatment as supercapacitor electrodes. The electrodeposition time markedly influenced the surface morphological, textural, and supercapacitive properties of MCO/Ni electrodes. The (MCO/Ni)-15 min electrode (electrodeposition time: 15 min) exhibited the highest capacitance among three electrodes (electrodeposition times of 7.5, 15, and 30 min, respectively). Further, an asymmetric supercapacitor that utilizes (MCO/Ni)-15 min as a positive electrode, a plasma-treated activated carbon (PAC)/Ni electrode as a negative electrode, and carboxymethyl cellulose-lithium nitrate (LiNO₃) gel electrolyte (denoted as (PAC/Ni)//(MCO/Ni)-15 min) was fabricated. In a stable operation window of 2.0 V, the device exhibited an energy density of 27.6 Wh·kg -1 and a power density of 1.01 kW·kg -1 at 1 A·g -1 . After 5000 cycles, the specific energy density retention and power density retention were 96% and 92%, respectively, demonstrating exceptional cycling stability. The good supercapacitive performance and excellent stability of the (PAC/Ni)//(MCO/Ni)-15 min device can be ascribed to the hierarchical structure and high surface area of the (MCO/Ni)-15 min electrode, which facilitate lithium ion intercalation and deintercalation at the electrode/electrolyte interface and mitigate volume change during long-term charge/discharge cycling.

  12. Electrodeposited Porous Mn1.5Co1.5O4/Ni Composite Electrodes for High-Voltage Asymmetric Supercapacitors

    PubMed Central

    Pan, Guan-Ting; Chong, Siewhui; Yang, Thomas C.-K.; Huang, Chao-Ming

    2017-01-01

    Mesoporous Mn1.5Co1.5O4 (MCO) spinel films were prepared directly on a conductive nickel (Ni) foam substrate via electrodeposition and an annealing treatment as supercapacitor electrodes. The electrodeposition time markedly influenced the surface morphological, textural, and supercapacitive properties of MCO/Ni electrodes. The (MCO/Ni)-15 min electrode (electrodeposition time: 15 min) exhibited the highest capacitance among three electrodes (electrodeposition times of 7.5, 15, and 30 min, respectively). Further, an asymmetric supercapacitor that utilizes (MCO/Ni)-15 min as a positive electrode, a plasma-treated activated carbon (PAC)/Ni electrode as a negative electrode, and carboxymethyl cellulose-lithium nitrate (LiNO3) gel electrolyte (denoted as (PAC/Ni)//(MCO/Ni)-15 min) was fabricated. In a stable operation window of 2.0 V, the device exhibited an energy density of 27.6 Wh·kg−1 and a power density of 1.01 kW·kg−1 at 1 A·g−1. After 5000 cycles, the specific energy density retention and power density retention were 96% and 92%, respectively, demonstrating exceptional cycling stability. The good supercapacitive performance and excellent stability of the (PAC/Ni)//(MCO/Ni)-15 min device can be ascribed to the hierarchical structure and high surface area of the (MCO/Ni)-15 min electrode, which facilitate lithium ion intercalation and deintercalation at the electrode/electrolyte interface and mitigate volume change during long-term charge/discharge cycling. PMID:28772727

  13. Radiologic and functional evaluation of electrode dislocation from the scala tympani to the scala vestibuli in patients with cochlear implants.

    PubMed

    Fischer, N; Pinggera, L; Weichbold, V; Dejaco, D; Schmutzhard, J; Widmann, G

    2015-02-01

    Localization of the electrode after cochlear implantation seems to have an impact on auditory outcome, and conebeam CT has emerged as a reliable method for visualizing the electrode array position within the cochlea. The aim of this retrospective study was to evaluate the frequency and clinical impact of scalar dislocation of various electrodes and surgical approaches and to evaluate its influence on auditory outcome. This retrospective single-center study analyzed a consecutive series of 63 cochlear implantations with various straight electrodes. The placement of the electrode array was evaluated by using multiplanar reconstructed conebeam CT images. For the auditory outcome, we compared the aided hearing thresholds and the charge units of maximum comfortable loudness level at weeks 6, 12, and 24 after implantation. In 7.9% of the cases, the electrode array showed scalar dislocation. In all cases, the electrode array penetrated the basal membrane within 45° of the electrode insertion. All 3 cases of cochleostomy were dislocated in the first 45° segment. No hearing differences were noted, but the charge units of maximum comfortable loudness level seemed to increase with time in patients with dislocations. The intracochlear dislocation rate of various straight electrodes detected by conebeam CT images is relatively low. Scalar dislocation may not negatively influence the hearing threshold but may require an increase of the necessary stimulus charge and should be reported by the radiologist. © 2015 by American Journal of Neuroradiology.

  14. A new biosensor for noninvasive determination of fetal RHD status in maternal blood of RhD negative pregnant women.

    PubMed

    Dündar Yenilmez, Ebru; Kökbaş, Umut; Kartlaşmış, Kezban; Kayrın, Levent; Tuli, Abdullah

    2018-01-01

    Prenatal detection of the fetal RHD status can be useful in the management of RhD incompatibility to identify fetuses at risk of hemolytic disease. Hemolytic disease causes morbidity and mortality of the fetus in the neonatal period. The routine use of antenatal and postnatal anti-D prophylaxis has reduced the incidence of hemolytic disease of the fetus and newborn. This study describe the detection of fetal RhD antigens in blood of RhD negative pregnant women using a nanopolymer coated electrochemical biosensor for medical diagnosis. Cell free fetal DNA in maternal plasma was also used to genotyping fetal RHD status using multiplex real-time PCR. Twenty-six RhD negative pregnant women in different gestational ages were included in the study. RhD positive fetal antibodies detected with a developed biosensor in maternal blood of RhD negative mothers. The electrochemical measurements were performed on a PalmSens potentiostat, and corundum ceramic based screen printed gold electrode combined with the reference Ag/AgCl electrode, and the auxiliary Au/Pd (98/2%) electrode. Fetal RHD genotyping performed using fluorescence-based multiplex real-time PCR exons 5 and 7 of the RHD gene. The fetal RHD status of 26 RhD negative cases were detected 21 as RhD positive and 5 as RhD negative with electrochemical biosensor. Fetal RHD status confirmed with extracted fetal DNA in maternal plasma using multiplex real-time PCR RHD genotyping and by serological test after delivery. The new method for fetal RhD detection in early pregnancy is useful and can be carry out rapidly in clinical diagnosis. Using automated biosensors are reproducible, quick and results can be generated within a few minutes compared to noninvasive fetal RHD genotyping from maternal plasma with real-time PCR-based techniques. We suggest the biosensor techniques could become an alternative part of fetal RHD genotyping from maternal plasma as a prenatal screening in the management of RhD incompatibility.

  15. Electrodes including a polyphosphazene cyclomatrix, methods of forming the electrodes, and related electrochemical cells

    DOEpatents

    Gering, Kevin L; Stewart, Frederick F; Wilson, Aaron D; Stone, Mark L

    2014-10-28

    An electrode comprising a polyphosphazene cyclomatrix and particles within pores of the polyphosphazene cyclomatrix. The polyphosphazene cyclomatrix comprises a plurality of phosphazene compounds and a plurality of cross-linkages. Each phosphazene compound of the plurality of phosphazene compounds comprises a plurality of phosphorus-nitrogen units, and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. Each phosphorus-nitrogen unit is bonded to an adjacent phosphorus-nitrogen unit. Each cross-linkage of the plurality of cross-linkages bonds at least one pendant group of one phosphazene compound of the plurality of phosphazene compounds with the at least one pendant group of another phosphazene compound of the plurality of phosphazene compounds. A method of forming a negative electrode and an electrochemical cell are also described.

  16. Electrochemically Reduced Graphene Oxide Multilayer Films as Efficient Counter Electrode for Dye-Sensitized Solar Cells

    PubMed Central

    Xu, Xiaobao; Huang, Dekang; Cao, Kun; Wang, Mingkui; Zakeeruddin, Shaik M.; Grätzel, Michael

    2013-01-01

    We report on a new counter electrode for dye-sensitized solar cells (DSCs), which is prepared using layer-by-layer assembly of negatively charged graphene oxide and positively charged poly (diallyldimethylammonium chloride) followed by an electrochemical reduction procedure. The DSC devises using the heteroleptic Ru complex C106TBA as sensitizer and this new counter electrode reach power conversion efficiencies of 9.5% and 7.6% in conjunction with low volatility and solvent free ionic liquid electrolytes, respectively. The new counter electrode exhibits good durability (60°C for 1000 h in a solar simulator, 100 mW cm−2) during the accelerated tests when used in combination with an ionic liquid electrolyte. This work identifies a new class of electro-catalysts with potential for low cost photovoltaic devices. PMID:23508212

  17. Capacity Fading Mechanisms of Silicon Nanoparticle Negative Electrodes for Lithium Ion Batteries

    DOE PAGES

    Yoon, Taeho; Nguyen, Cao Cuong; Seo, Daniel M.; ...

    2015-09-16

    A thorough analysis of the evolution of the voltage profiles of silicon nanoparticle electrodes upon cycling has been conducted. The largest changes to the voltage profiles occur at the earlier stages (> 0.16 V vs Li/Li +) of lithiation of the silicon nanoparticles. The changes in the voltage profiles suggest that the predominant failure mechanism of the silicon electrode is related to incomplete delithiation of the silicon electrode during cycling. The incomplete delithiation is attributed to resistance increases during delithiation, which are predominantly contact and solid electrolyte interface (SEI) resistance. The capacity retention can be significantly improved by lowering delithiationmore » cutoff voltage or by introducing electrolyte additives, which generate a superior SEI. The improved capacity retention is attributed to the reduction of the contact and SEI resistance.« less

  18. Theoretical interpretation of Warburg's impedance in unsupported electrolytic cells.

    PubMed

    Barbero, G

    2017-12-13

    We discuss the origin of Warburg's impedance in unsupported electrolytic cells containing only one group of positive and one group of negative ions. Our analysis is based on the Poisson-Nernst-Planck model, where the generation-recombination phenomenon is neglected. We show that to observe Warburg-like impedance the diffusion coefficient of the positive ions has to differ from that of the negative ones, and furthermore the electrodes have to be not blocking. We assume that the non-blocking properties of the electrodes can be described by means of an Ohmic model, where the charge exchange between the cell and the external circuit is described by means of an electrode conductivity. For simplicity we consider a symmetric cell. However, our analysis can be easily generalized to more complicated situations, where the cell is not symmetric and the charge exchange is described by the Chang-Jaffe model, or by a linearized version of the Butler-Volmer equation. Our analysis allows justification of the expression for Warburg's impedance proposed previously by several groups, based on wrong assumptions.

  19. Lithium alloy negative electrodes

    NASA Astrophysics Data System (ADS)

    Huggins, Robert A.

    The 1996 announcement by Fuji Photo Film of the development of lithium batteries containing convertible metal oxides has caused a great deal of renewed interest in lithium alloys as alternative materials for use in the negative electrode of rechargeable lithium cells. The earlier work on lithium alloys, both at elevated and ambient temperatures is briefly reviewed. Basic principles relating thermodynamics, phase diagrams and electrochemical properties under near-equilibrium conditions are discussed, with the Li-Sn system as an example. Second-phase nucleation, and its hindrance under dynamic conditions plays an important role in determining deviations from equilibrium behavior. Two general types of composite microstructure electrodes, those with a mixed-conducting matrix, and those with a solid electrolyte matrix, are discussed. The Li-Sn-Si system at elevated temperatures, and the Li-Sn-Cd at ambient temperatures are shown to be examples of mixed-conducting matrix microstructures. The convertible oxides are an example of the solid electrolyte matrix type. Although the reversible capacity can be very large in this case, the first cycle irreversible capacity required to convert the oxides to alloys may be a significant handicap.

  20. Combination of cathodic reduction with adsorption for accelerated removal of Cr(VI) through reticulated vitreous carbon electrodes modified with sulfuric acid-glycine co-doped polyaniline.

    PubMed

    Mo, Xi; Yang, Zhao-hui; Xu, Hai-yin; Zeng, Guang-ming; Huang, Jing; Yang, Xia; Song, Pei-pei; Wang, Li-ke

    2015-04-09

    Improving the reduction kinetics is crucial in the electroreduction process of Cr(VI). In this study, we developed a novel adsorption-electroreduction system for accelerated removal of Cr(VI) by employing reticulated vitreous carbon electrode modified with sulfuric acid-glycine co-doped polyaniline (RVC/PANI-SA-GLY). Firstly, response surface methodology confirmed the optimum polymerization condition of co-doped polyaniline for modifying electrodes (Aniline, sulfuric acid and glycine, respectively, of 0.2 mol/L, 0.85 mol/L, 0.93 mol/L) when untraditional dopant glycine was added. Subsequently, RVC/PANI-SA-GLY showed higher Cr(VI) removal percentages in electroreduction experiments over RVC electrode modified with sulfuric acid doped polyaniline (RVC/PANI-SA) and bare RVC electrode. In contrast to RVC/PANI-SA, the improvement by RVC/PANI-SA-GLY was more significant and especially obvious at more negative potential, lower initial Cr(VI) concentration, relatively less acidic solution and higher current densities, best achieving 7.84% higher removal efficiency with entire Cr(VI) eliminated after 900 s. Current efficiencies were likewise enhanced by RVC/PANI-SA-GLY under quite negative potentials. Fourier transform infrared (FTIR) and energy dispersive spectrometer (EDS) analysis revealed a possible adsorption-reduction mechanism of RVC/PANI-SA-GLY, which greatly contributed to the faster reduction kinetics and was probably relative to the absorption between protonated amine groups of glycine and HCrO4(-). Eventually, the stability of RVC/PANI-SA-GLY was proven relatively satisfactory. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Asymmetric Supercapacitors Based on Reduced Graphene Oxide with Different Polyoxometalates as Positive and Negative Electrodes.

    PubMed

    Dubal, Deepak P; Chodankar, Nilesh R; Vinu, Ajayan; Kim, Do-Heyoung; Gomez-Romero, Pedro

    2017-07-10

    Nanofabrication using a "bottom-up" approach of hybrid electrode materials into a well-defined architecture is essential for next-generation miniaturized energy storage devices. This paper describes the design and fabrication of reduced graphene oxide (rGO)/polyoxometalate (POM)-based hybrid electrode materials and their successful exploitation for asymmetric supercapacitors. First, redox active nanoclusters of POMs [phosphomolybdic acid (PMo 12 ) and phosphotungstic acid (PW 12 )] were uniformly decorated on the surface of rGO nanosheets to take full advantage of both charge-storing mechanisms (faradaic from POMs and electric double layer from rGO). The as-synthesized rGO-PMo 12 and rGO-PW 12 hybrid electrodes exhibited impressive electrochemical performances with specific capacitances of 299 (269 mF cm -2 ) and 370 F g -1 (369 mF cm -2 ) in 1 m H 2 SO 4 as electrolyte at 5 mA cm -2 . An asymmetric supercapacitor was then fabricated using rGO-PMo 12 as the positive and rGO-PW 12 as the negative electrode. This rGO-PMo 12 ∥rGO-PW 12 asymmetric cell could be successfully cycled in a wide voltage window up to 1.6 V and hence exhibited an excellent energy density of 39 Wh kg -1 (1.3 mWh cm -3 ) at a power density of 658 W kg -1 (23 mW cm -3 ). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Li Storage of Calcium Niobates for Lithium Ion Batteries.

    PubMed

    Yim, Haena; Yu, Seung-Ho; Yoo, So Yeon; Sung, Yung-Eun; Choi, Ji-Won

    2015-10-01

    New types of niobates negative electrode were studied for using in lithium-ion batteries in order to alternate metallic lithium anodes. The potassium intercalated compound KCa2Nb3O10 and proton intercalated compound HCa2Nb3O10 were studied, and the electrochemical results showed a reversible cyclic voltammetry profile with acceptable discharge capacity. The as-prepared KCa2Nb3O10 negative electrode had a low discharge capacity caused by high overpotential, but the reversible intercalation and deintercalation reaction of lithium ions was activated after exchanging H+ ions for intercalated K+ ions. The initial discharge capacity of HCa2Nb3O10 was 54.2 mAh/g with 92.1% of coulombic efficiency, compared with 10.4 mAh/g with 70.2% of coulombic efficiency for KCa2Nb3O10 at 1 C rate. The improved electrochemical performance of the HCa2Nb3O10 was related to the lower bonding energy between proton cation and perovskite layer, which facilitate Li+ ions intercalating into the cation site, unlike potassium cation and perovskite layer. Also, this negative material can be easily exfoliated to Ca2Nb3O10 layer by using cation exchange process. Then, obtained two-dimensional nanosheets layer, which recently expected to be an advanced electrode material because of its flexibility, chemical stable, and thin film fabricable, can allow Li+ ions to diffuse between the each perovskite layer. Therefore, this new type layered perovskite niobates can be used not only bulk-type lithium ion batteries but also thin film batteries as a negative material.

  3. 3D Interconnected Binder-Free Electrospun MnO@C Nanofibers for Supercapacitor Devices.

    PubMed

    Ramadan, Mohamed; Abdellah, Ahmed M; Mohamed, Saad G; Allam, Nageh K

    2018-05-22

    Rational design of binder-free materials with high cyclic stability and high conductivity is a great need for high performance supercapacitors. We demonstrate a facile one-step synthesis method of binder-free MnO@C nanofibers as electrodes for supercapacitor applications. The topology of the fabricated nanofibers was investigated using FESEM and HRTEM. The X-ray photoelectron spectroscopy (XPS) and the X-ray diffraction (XRD) analyses confirm the formation of the MnO structure. The electrospun MnO@C electrodes achieve high specific capacitance of 578 F/g at 1 A/g with an outstanding cycling performance. The electrodes also show 127% capacity increasing after 3000 cycles. An asymmetric supercapacitor composed of activated carbon as the negative electrode and MnO@C as the positive electrode shows an ultrahigh energy density of 35.5 Wh/kg with a power density of 1000 W/kg. The device shows a superior columbic efficiency, cycle life, and capacity retention.

  4. Improved Electrochemical Detection of Zinc Ions Using Electrode Modified with Electrochemically Reduced Graphene Oxide

    PubMed Central

    Kudr, Jiri; Richtera, Lukas; Nejdl, Lukas; Xhaxhiu, Kledi; Vitek, Petr; Rutkay-Nedecky, Branislav; Hynek, David; Kopel, Pavel; Adam, Vojtech; Kizek, Rene

    2016-01-01

    Increasing urbanization and industrialization lead to the release of metals into the biosphere, which has become a serious issue for public health. In this paper, the direct electrochemical reduction of zinc ions is studied using electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode (GCE). The graphene oxide (GO) was fabricated using modified Hummers method and was electrochemically reduced on the surface of GCE by performing cyclic voltammograms from 0 to −1.5 V. The modification was optimized and properties of electrodes were determined using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The determination of Zn(II) was performed using differential pulse voltammetry technique, platinum wire as a counter electrode, and Ag/AgCl/3 M KCl reference electrode. Compared to the bare GCE the modified GCE/ERGO shows three times better electrocatalytic activity towards zinc ions, with an increase of reduction current along with a negative shift of reduction potential. Using GCE/ERGO detection limit 5 ng·mL−1 was obtained. PMID:28787832

  5. Kerr electro-optic field mapping study of the effect of charge injection on the impulse breakdown strength of transformer oil

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zahn, M.

    2013-10-01

    The smart use of charge injection to improve breakdown strength in transformer oil is demonstrated in this paper. Hypothetically, bipolar homo-charge injection with reduced electric field at both electrodes may allow higher voltage operation without insulation failure, since electrical breakdown usually initiates at the electrode-dielectric interfaces. To find experimental evidence, the applicability and limitation of the hypothesis is first analyzed. Impulse breakdown tests and Kerr electro-optic field mapping measurements are then conducted with different combinations of parallel-plate aluminum and brass electrodes stressed by millisecond duration impulse. It is found that the breakdown voltage of brass anode and aluminum cathode is ˜50% higher than that of aluminum anode and brass cathode. This can be explained by charge injection patterns from Kerr measurements under a lower voltage, where aluminum and brass electrodes inject negative and positive charges, respectively. This work provides a feasible approach to investigating the effect of electrode material on breakdown strength.

  6. Assessing the Electrode-Neuron Interface with the Electrically Evoked Compound Action Potential, Electrode Position, and Behavioral Thresholds.

    PubMed

    DeVries, Lindsay; Scheperle, Rachel; Bierer, Julie Arenberg

    2016-06-01

    Variability in speech perception scores among cochlear implant listeners may largely reflect the variable efficacy of implant electrodes to convey stimulus information to the auditory nerve. In the present study, three metrics were applied to assess the quality of the electrode-neuron interface of individual cochlear implant channels: the electrically evoked compound action potential (ECAP), the estimation of electrode position using computerized tomography (CT), and behavioral thresholds using focused stimulation. The primary motivation of this approach is to evaluate the ECAP as a site-specific measure of the electrode-neuron interface in the context of two peripheral factors that likely contribute to degraded perception: large electrode-to-modiolus distance and reduced neural density. Ten unilaterally implanted adults with Advanced Bionics HiRes90k devices participated. ECAPs were elicited with monopolar stimulation within a forward-masking paradigm to construct channel interaction functions (CIF), behavioral thresholds were obtained with quadrupolar (sQP) stimulation, and data from imaging provided estimates of electrode-to-modiolus distance and scalar location (scala tympani (ST), intermediate, or scala vestibuli (SV)) for each electrode. The width of the ECAP CIF was positively correlated with electrode-to-modiolus distance; both of these measures were also influenced by scalar position. The ECAP peak amplitude was negatively correlated with behavioral thresholds. Moreover, subjects with low behavioral thresholds and large ECAP amplitudes, averaged across electrodes, tended to have higher speech perception scores. These results suggest a potential clinical role for the ECAP in the objective assessment of individual cochlear implant channels, with the potential to improve speech perception outcomes.

  7. Fabrication and characterization of a nanometer-sized optical fiber electrode based on selective chemical etching for scanning electrochemical/optical microscopy.

    PubMed

    Maruyama, Kenichi; Ohkawa, Hiroyuki; Ogawa, Sho; Ueda, Akio; Niwa, Osamu; Suzuki, Koji

    2006-03-15

    We have already reported a method for fabricating ultramicroelectrodes (Suzuki, K. JP Patent, 2004-45394, 2004). This method is based on the selective chemical etching of optical fibers. In this work, we undertake a detailed investigation involving a combination of etched optical fibers with various types of tapered tip (protruding-shape, double- (or pencil-) shape and triple-tapered electrode) and insulation with electrophoretic paint. Our goal is to establish a method for fabricating nanometer-sized optical fiber electrodes with high reproducibility. As a result, we realized pencil-shaped and triple-tapered electrodes that had radii in the nanometer range with high reproducibility. These nanometer-sized electrodes showed well-defined sigmoidal curves and stable diffusion-limited responses with cyclic voltammetry. The pencil-shaped optical fiber, which has a conical tip with a cone angle of 20 degrees , was effective for controlling the electrode radius. The pencil-shaped electrodes had higher reproducibility and smaller electrode radii (r(app) < 1.0 nm) than those of other etched optical fiber electrodes. By using a pencil-shaped electrode with a 105-nm radius as a probe, we obtained simultaneous electrochemical and optical images of an implantable interdigitated array electrode. We achieved nanometer-scale resolution with a combination of scanning electrochemical microscopy SECM and optical microscopy. The resolution of the electrochemical and optical images indicated sizes of 300 and 930 nm, respectively. The neurites of living PC12 cells were also successfully imaged on a 1.6-microm scale by using the negative feedback mode of an SECM.

  8. Le Rapport langue-culture dans les organisations internationales: Pour Une Sociologie des organisations internationales (The Relationship between Language and Culture in International Organizations: Toward a Sociology of International Organizations).

    ERIC Educational Resources Information Center

    Jastrab de Saint Robert, de Marie-Josee

    1988-01-01

    Understanding the work of international organizations requires an understanding of the relationship between language and culture, a relationship evident in the activities of the international organizations. This relationship is partly responsible for the negative image of such organizations. Research in the sociology of international organizations…

  9. Human sex differences in emotional processing of own-race and other-race faces.

    PubMed

    Ran, Guangming; Chen, Xu; Pan, Yangu

    2014-06-18

    There is evidence that women and men show differences in the perception of affective facial expressions. However, none of the previous studies directly investigated sex differences in emotional processing of own-race and other-race faces. The current study addressed this issue using high time resolution event-related potential techniques. In total, data from 25 participants (13 women and 12 men) were analyzed. It was found that women showed increased N170 amplitudes to negative White faces compared with negative Chinese faces over the right hemisphere electrodes. This result suggests that women show enhanced sensitivity to other-race faces showing negative emotions (fear or disgust), which may contribute toward evolution. However, the current data showed that men had increased N170 amplitudes to happy Chinese versus happy White faces over the left hemisphere electrodes, indicating that men show enhanced sensitivity to own-race faces showing positive emotions (happiness). In this respect, men might use past pleasant emotional experiences to boost recognition of own-race faces.

  10. Electrochemical cell

    DOEpatents

    Redey, L.I.; Vissers, D.R.; Prakash, J.

    1994-08-23

    An electrochemical cell is described having an alkali metal negative electrode such as sodium and a positive electrode including Ni or transition metals, separated by a [beta] alumina electrolyte and NaAlCl[sub 4] or other compatible material. Various concentrations of a bromine, iodine and/or sulfur containing additive and pore formers are disclosed, which enhance cell capacity and power. The pore formers may be the ammonium salts of carbonic acid or a weak organic acid or oxamide or methylcellulose. 6 figs.

  11. Improved 2-D resistivity imaging of features in covered karst terrain with arrays of implanted electrodes

    NASA Astrophysics Data System (ADS)

    Kiflu, H. G.; Kruse, S. E.; Harro, D.; Loke, M. H.; Wilkinson, P. B.

    2013-12-01

    Electrical resistivity tomography is commonly used to identify geologic features associated with sinkhole formation. In covered karst terrain, however, it can be difficult to resolve the depth to top of limestone with this method. This is due to the fact that array lengths, and hence depth of resolution, are often limited by residential or commercial lot dimensions in urban environments. Furthermore, the sediments mantling the limestone are often clay-rich and highly conductive. The resistivity method has limited sensitivity to resistive zones beneath conductive zones. This sensitivity can be improved significantly with electrodes implanted at depth in the cover sediments near the top of limestone. An array of deep electrodes is installed with direct push technology in the karst cover. When combined with a surface array in which each surface electrode is underlain by a deep electrode, the array geometry is similar to a borehole array turned on its side. This method, called the Multi-Electrode Resistivity Implant Technique (MERIT), offers the promise of significantly improved resolution of epikarst and cover collapse development zones in the overlying sediment, the limestone or at the sediment-bedrock interface in heterogeneous karst environments. With a non-traditional array design, the question of optimal array geometries arises. Optimizing array geometries is complicated by the fact that many plausible 4-electrode readings will produce negative apparent resistivity values, even in homogeneous terrain. Negative apparent resistivities cannot be used in inversions based on the logarithm of the apparent resistivity. New algorithms for seeking optimal array geometries have been developed by modifying the 'Compare R' method of Wilkinson and Loke. The optimized arrays show significantly improved resolution over basic arrays adapted from traditional 2D surface geometries. Several MERIT case study surveys have been conducted in covered karst in west-central Florida, with 28-electrode arrays with electrodes 2-5 meters apart, and the deep arrays buried at 4-8 meters depth. Ground penetrating radar surveys, SPT borings and coring data provide selected 'ground truthing'. The case studies show that inclusion of the deep electrode array permits karst features such as undulations at the top of limestone and raveling zones within surficial sediments to be imaged. These features are not accessible from surface arrays with equivalent surface footprints. The method also has better resolution at depth at the ends of the lines, where surface arrays are typically plotted with a trapezoidal truncation due to poor resolution at the lower corners of the profile.

  12. Hybrid MnO2/carbon nanotube-VN/carbon nanotube supercapacitors

    NASA Astrophysics Data System (ADS)

    Su, Y.; Zhitomirsky, I.

    2014-12-01

    Composite materials, containing fibrous VN nanoparticles and multiwalled carbon nanotubes (MWCNT) are prepared by a chemical method for application in electrochemical supercapacitors. We demonstrate for the first time that VN-MWCNT electrodes exhibit good capacitive behavior in 0.5 M Na2SO4 electrolyte in a negative voltage window of 0.9 V. Quartz crystal microbalance studies provide an insight into the mechanism of charge storage. Composite VN-MWCNT materials show significant improvement in capacitance, compared to individual VN and MWCNT materials. Testing results indicate that VN-MWCNT electrodes exhibit high specific capacitance at high mass loadings in the range of 10-30 mg cm-2, good capacitance retention at scan rates in the range of 2-200 mV s-1 and good cycling stability. The highest specific capacitance of 160 F g-1 is achieved at a scan rate of 2 mV s-1. The new findings open a new and promising strategy in the fabrication of hybrid devices based on VN. The proof-of-principle is demonstrated by the fabrication of hybrid supercapacitor devices based on VN-MWCNT negative electrodes and MnO2 -MWCNT positive electrodes with voltage window of 1.8 V in aqueous 0.5 M Na2SO4 electrolyte. The hybrid VN-MWCNT/MnO2-MWCNT supercapacitor cells show promising capacitive and power-energy characteristics.

  13. Dual gas-diffusion membrane- and mediatorless dihydrogen/air-breathing biofuel cell operating at room temperature

    NASA Astrophysics Data System (ADS)

    Xia, Hong-qi; So, Keisei; Kitazumi, Yuki; Shirai, Osamu; Nishikawa, Koji; Higuchi, Yoshiki; Kano, Kenji

    2016-12-01

    A membraneless direct electron transfer (DET)-type dihydrogen (H2)/air-breathing biofuel cell without any mediator was constructed wherein bilirubin oxidase from Myrothecium verrucaria (BOD) and membrane-bound [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F (MBH) were used as biocatalysts for the cathode and the anode, respectively, and Ketjen black-modified water proof carbon paper (KB/WPCC) was used as an electrode material. The KB/WPCC surface was modified with 2-aminobenzoic acid and p-phenylenediamine, respectively, to face the positively charged electron-accepting site of BOD and the negatively charged electron-donating site of MBH to the electrode surface. A gas-diffusion system was employed for the electrodes to realize high-speed substrate supply. As result, great improvement in the current density of O2 reduction with BOD and H2 reduction with MBH were realized at negatively and postively charged surfaces, respectively. Gas diffusion system also suppressed the oxidative inactivation of MBH at high electrode potentials. Finally, based on the improved bioanode and biocathode, a dual gas-diffusion membrane- and mediatorless H2/air-breathing biofuel cell was constructed. The maximum power density reached 6.1 mW cm-2 (at 0.72 V), and the open circuit voltage was 1.12 V using 1 atm of H2 gas as a fuel at room temperature and under passive and quiescent conditions.

  14. Nonenzymatic Wearable Sensor for Electrochemical Analysis of Perspiration Glucose.

    PubMed

    Zhu, Xiaofei; Ju, Yinhui; Chen, Jian; Liu, Deye; Liu, Hong

    2018-05-25

    We report a nonenzymatic wearable sensor for electrochemical analysis of perspiration glucose. Multipotential steps are applied on a Au electrode, including a high negative pretreatment potential step for proton reduction which produces a localized alkaline condition, a moderate potential step for electrocatalytic oxidation of glucose under the alkaline condition, and a positive potential step to clean and reactivate the electrode surface for the next detection. Fluorocarbon-based materials were coated on the Au electrode for improving the selectivity and robustness of the sensor. A fully integrated wristband is developed for continuous real-time monitoring of perspiration glucose during physical activities, and uploading the test result to a smartphone app via Bluetooth.

  15. Porous carbonaceous electrode structure and method for secondary electrochemical cell

    DOEpatents

    Kaun, Thomas D.

    1977-03-08

    Positive and negative electrodes are provided as rigid, porous carbonaceous matrices with particulate active material fixedly embedded. Active material such as metal chalcogenides, solid alloys of alkali metal or alkaline earth metals along with other metals and their oxides in particulate form are blended with a thermosetting resin and a solid volatile to form a paste mixture. Various electrically conductive powders or current collector structures can be blended or embedded into the paste mixture which can be molded to the desired electrode shape. The molded paste is heated to a temperature at which the volatile transforms into vapor to impart porosity as the resin begins to cure into a rigid solid structure.

  16. Surface/interface effects on high-performance thin-film all-solid-state Li-ion batteries

    DOE PAGES

    Gong, Chen; Ruzmetov, Dmitry; Pearse, Alexander; ...

    2015-10-05

    The further development of all-solid-state batteries is still limited by the understanding/engineering of the interfaces formed upon cycling. Here, we correlate the morphological, chemical, and electrical changes of the surface of thin-film devices with Al negative electrodes. The stable Al–Li–O alloy formed at the stress-free surface of the electrode causes rapid capacity fade, from 48.0 to 41.5 μAh/cm 2 in two cycles. Surprisingly, the addition of a Cu capping layer is insufficient to prevent the device degradation. Furthermore, Si electrodes present extremely stable cycling, maintaining >92% of its capacity after 100 cycles, with average Coulombic efficiency of 98%.

  17. An all-solid-state lithium/polyaniline rechargeable cell

    NASA Astrophysics Data System (ADS)

    Li, Changzhi; Peng, Xinsheng; Zhang, Borong; Wang, Baochen

    1992-07-01

    The performance of an all-solid-state cell having a lithium negative electrode, a modified polyethylene oxide (PEO)-epoxy resin (ER) electrolyte, and a polyaniline (PAn) positive electrode has been studied using cyclic voltammetry, charge/discharge cycling, and polarization curves at various temperatures. The redox reaction of the PAn electrode at the PAn/modified PEO-ER interface exhibits good reversibility. At 50-80 C, the Li/PEO-ER-LiClO4/PAn cell shows more than 40 charge/discharge cycles, 90 percent charge/discharge efficiency, and 54 W h kg discharge energy density (on PAn weight basis) at 50 micro-A between 2 and 4 V. The polarization performance of the battery improves steadily with increase in temperature.

  18. Electrophoretic deposition of ligand-free platinum nanoparticles on neural electrodes affects their impedance in vitro and in vivo with no negative effect on reactive gliosis.

    PubMed

    Angelov, Svilen D; Koenen, Sven; Jakobi, Jurij; Heissler, Hans E; Alam, Mesbah; Schwabe, Kerstin; Barcikowski, Stephan; Krauss, Joachim K

    2016-01-12

    Electrodes for neural stimulation and recording are used for the treatment of neurological disorders. Their features critically depend on impedance and interaction with brain tissue. The effect of surface modification on electrode impedance was examined in vitro and in vivo after intracranial implantation in rats. Electrodes coated by electrophoretic deposition with platinum nanoparticles (NP; <10 and 50 nm) as well as uncoated references were implanted into the rat's subthalamic nucleus. After postoperative recovery, rats were electrostimulated for 3 weeks. Impedance was measured before implantation, after recovery and then weekly during stimulation. Finally, local field potential was recorded and tissue-to-implant reaction was immunohistochemically studied. Coating with NP significantly increased electrode's impedance in vitro. Postoperatively, the impedance of all electrodes was temporarily further increased. This effect was lowest for the electrodes coated with particles <10 nm, which also showed the most stable impedance dynamics during stimulation for 3 weeks and the lowest total power of local field potential during neuronal activity recording. Histological analysis revealed that NP-coating did not affect glial reactions or neural cell-count. Coating with NP <10 nm may improve electrode's impedance stability without affecting biocompatibility. Increased impedance after NP-coating may improve neural recording due to better signal-to-noise ratio.

  19. Junction Potentials Bias Measurements of Ion Exchange Membrane Permselectivity.

    PubMed

    Kingsbury, Ryan S; Flotron, Sophie; Zhu, Shan; Call, Douglas F; Coronell, Orlando

    2018-04-17

    Ion exchange membranes (IEMs) are versatile materials relevant to a variety of water and waste treatment, energy production, and industrial separation processes. The defining characteristic of IEMs is their ability to selectively allow positive or negative ions to permeate, which is referred to as permselectivity. Measured values of permselectivity that equal unity (corresponding to a perfectly selective membrane) or exceed unity (theoretically impossible) have been reported for cation exchange membranes (CEMs). Such nonphysical results call into question our ability to correctly measure this crucial membrane property. Because weighing errors, temperature, and measurement uncertainty have been shown to not explain these anomalous permselectivity results, we hypothesized that a possible explanation are junction potentials that occur at the tips of reference electrodes. In this work, we tested this hypothesis by comparing permselectivity values obtained from bare Ag/AgCl wire electrodes (which have no junction) to values obtained from single-junction reference electrodes containing two different electrolytes. We show that permselectivity values obtained using reference electrodes with junctions were greater than unity for CEMs. In contrast, electrodes without junctions always produced permselectivities lower than unity. Electrodes with junctions also resulted in artificially low permselectivity values for AEMs compared to electrodes without junctions. Thus, we conclude that junctions in reference electrodes introduce two biases into results in the IEM literature: (i) permselectivity values larger than unity for CEMs and (ii) lower permselectivity values for AEMs compared to those for CEMs. These biases can be avoided by using electrodes without a junction.

  20. Selecting electrode configurations for image-guided cochlear implant programming using template matching

    NASA Astrophysics Data System (ADS)

    Zhang, Dongqing; Zhao, Yiyuan; Noble, Jack H.; Dawant, Benoit M.

    2017-03-01

    Cochlear implants (CIs) are used to treat patients with severe-to-profound hearing loss. In surgery, an electrode array is implanted in the cochlea. After implantation, the CI processor is programmed by an audiologist. One factor that negatively impacts outcomes and can be addressed by programming is cross-electrode neural stimulation overlap (NSO). In the recent past, we have proposed a system to assist the audiologist in programming the CI that we call Image-Guided CI Programming (IGCIP). IGCIP permits using CT images to detect NSO and recommend which subset of electrodes should be active to avoid NSO. In an ongoing clinical study, we have shown that IGCIP leads to significant improvement in hearing outcomes. Most of the IGCIP steps are robustly automated but electrode configuration selection still sometimes requires expert intervention. With expertise, Distance-Vs-Frequency (DVF) curves, which are a way to visualize the spatial relationship learned from CT between the electrodes and the nerves they stimulate, can be used to select the electrode configuration. In this work, we propose an automated technique for electrode configuration selection. It relies on matching new patients' DVF curves to a library of DVF curves for which electrode configurations are known. We compare this approach to one we have previously proposed. We show that, generally, our new method produces results that are as good as those obtained with our previous one while being generic and requiring fewer parameters.

  1. Artificially-built solid electrolyte interphase via surface-bonded vinylene carbonate derivative on graphite by molecular layer deposition

    NASA Astrophysics Data System (ADS)

    Chae, Seulki; Lee, Jeong Beom; Lee, Jae Gil; Lee, Tae-jin; Soon, Jiyong; Ryu, Ji Heon; Lee, Jin Seok; Oh, Seung M.

    2017-12-01

    Vinylene carbonate (VC) is attached in a ring-opened form on a graphite surface by molecular layer deposition (MLD) method, and its role as a solid electrolyte interphase (SEI) former is studied. When VC is added into the electrolyte solution of a graphite/LiNi0.5Mn1.5O4 (LNMO) full-cell, it is reductively decomposed to form an effective SEI on the graphite electrode. However, VC in the electrolyte solution has serious adverse effects due to its poor stability against electrochemical oxidation on the LNMO positive electrode. A excessive acid generation as a result of VC oxidation is observed, causing metal dissolution from the LNMO electrode. The dissolved metal ions are plated on the graphite electrode to destroy the SEI layer, eventually causing serious capacity fading and poor Coulombic efficiency. The VC derivative on the graphite surface also forms an effective SEI layer on the graphite negative electrode via reductive decomposition. The detrimental effects on the LNMO positive electrode, however, can be avoided because the bonded VC derivative on the graphite surface cannot move to the LNMO electrode. Consequently, the graphite/LNMO full-cell fabricated with the VC-attached graphite outperforms the cells without VC or with VC in the electrolyte, in terms of Coulombic efficiency and capacity retention.

  2. Insights into the effects of solvent properties in graphene based electric double-layer capacitors with organic electrolytes

    NASA Astrophysics Data System (ADS)

    Zhang, Shuo; Bo, Zheng; Yang, Huachao; Yang, Jinyuan; Duan, Liangping; Yan, Jianhua; Cen, Kefa

    2016-12-01

    Organic electrolytes are widely used in electric double-layer capacitors (EDLCs). In this work, the microstructure of planar graphene-based EDLCs with different organic solvents are investigated with molecular dynamics simulations. Results show that an increase of solvent polarity could weaken the accumulation of counter-ions nearby the electrode surface, due to the screen of electrode charges and relatively lower ionic desolvation. It thus suggests that solvents with low polarity could be preferable to yield high EDL capacitance. Meanwhile, the significant effects of the size and structure of solvent molecules are reflected by non-electrostatic molecule-electrode interactions, further influencing the adsorption of solvent molecules on electrode surface. Compared with dimethyl carbonate, γ-butyrolactone, and propylene carbonate, acetonitrile with relatively small-size and linear structure owns weak non-electrostatic interactions, which favors the easy re-orientation of solvent molecules. Moreover, the shift of solvent orientation in surface layer, from parallel orientation to perpendicular orientation relative to the electrode surface, deciphers the solvent twin-peak behavior near negative electrode. The as-obtained insights into the roles of solvent properties on the interplays among particles and electrodes elucidate the solvent influences on the microstructure and capacitive behavior of EDLCs using organic electrolytes.

  3. Nanostructure selenium compounds as pseudocapacitive electrodes for high-performance asymmetric supercapacitor

    PubMed Central

    Hua, Fengting; Sun, Kanjun; Fenga, Enke; Peng, Hui; Zhang, Zhiguo; Lei, Ziqiang

    2018-01-01

    The electrochemical performance of an energy conversion and storage device like the supercapacitor mainly depends on the microstructure and morphology of the electrodes. In this paper, to improve the capacitance performance of the supercapacitor, the all-pseudocapacitive electrodes of lamella-like Bi18SeO29/BiSe as the negative electrode and flower-like Co0.85Se nanosheets as the positive electrode are synthesized by using a facile low-temperature one-step hydrothermal method. The microstructures and morphology of the electrode materials are carefully characterized, and the capacitance performances are also tested. The Bi18SeO29/BiSe and Co0.85Se have high specific capacitance (471.3 F g–1 and 255 F g–1 at 0.5 A g–1), high conductivity, outstanding cycling stability, as well as good rate capability. The assembled asymmetric supercapacitor completely based on the pseudocapacitive electrodes exhibits outstanding cycling stability (about 93% capacitance retention after 5000 cycles). Moreover, the devices exhibit high energy density of 24.2 Wh kg–1 at a power density of 871.2 W kg–1 in the voltage window of 0–1.6 V with 2 M KOH solution. PMID:29410830

  4. Surgical implications of perimodiolar cochlear implant electrode design: avoiding intracochlear damage and scala vestibuli insertion.

    PubMed

    Briggs, R J; Tykocinski, M; Saunders, E; Hellier, W; Dahm, M; Pyman, B; Clark, G M

    2001-09-01

    To review the mechanisms and nature of intracochlear damage associated with cochlear implant electrode array insertion, in particular, the various perimodiolar electrode designs. Make recommendations regarding surgical techniques for the Nucleus Contour electrode to ensure correct position and minimal insertion trauma. The potential advantages of increased modiolar proximity of intracochlear multichannel electrode arrays are a reduction in stimulation thresholds, an increase in dynamic range and more localized neural excitation. This may improve speech perception and reduce power consumption. These advantages may be negated if increased intracochlear damage results from the method used to position the electrodes close to the modiolus. A review of the University of Melbourne Department of Otolaryngology experience with temporal bone safety studies using the Nucleus standard straight electrode array and a variety of perimodiolar electrode array designs; comparison with temporal bone insertion studies from other centres and postmortem histopathology studies reported in the literature. Review of our initial clinical experience using the Nucleus Contour electrode array. The nature of intracochlear damage resulting from electrode insertion trauma ranges from minor, localized, spiral ligament tear to diffuse organ of Corti disruption and osseous spiral lamina fracture. The type of damage depends on the mechanical characteristics of the electrode array, the stiffness, curvature and size of the electrode in relation to the scala, and the surgical technique. The narrow, flexible, straight arrays are the least traumatic. Pre-curved or stiffer arrays are associated with an incidence of basilar membrane perforation. The cochleostomy must be correctly sited in relation to the round window to ensure scala tympani insertion. A cochleostomy anterior to the round window rather than inferior may lead to scala media or scala vestibuli insertion. Proximity of electrodes to the modiolus can be achieved without intracochlear damage provided the electrode array is a free fit within the scala, of appropriate size and shape, and accurate scala tympani insertion is performed.

  5. Hierarchical Co3O4/PANI hollow nanocages: Synthesis and application for electrode materials of supercapacitors

    NASA Astrophysics Data System (ADS)

    Ren, Xiaohu; Fan, Huiqing; Ma, Jiangwei; Wang, Chao; Zhang, Mingchang; Zhao, Nan

    2018-05-01

    Hierarchically hollow Co3O4/polyaniline nanocages (Co3O4/PANI NCs) with enhanced specific capacitance and cycle performance for electrode material of supercapacitors are fabricated by combining self-sacrificing template and in situ polymerization route. Benefiting from the good conductivity of PANI improving an electron transport rate as well as high specific surface area from such a hollow structure, the electrode made of Co3O4/PANI NCs exhibits a large specific capacitance of 1301 F/g at the current density of 1 A/g, a much enhancement is obtained as compared with the pristine Co3O4 NCs electrode. The contact resistance (Re), charge-transfer (Rct) and Warburg resistance of Co3O4/PANI NCs electrode is significantly lower than that of the pristine Co3O4 NCs electrode, indicating the enhanced electrical conductivity. In addition, the Co3O4/PANI NCs electrode also displays superior cycling stability with 90 % capacitance retention after 2000 cycles. Moreover, an aqueous asymmetric supercapacitor was successfully assembled using Co3O4/PANI NCs as the positive electrode and activated carbon (AC) as the negative electrode, the assembled device exhibits a superior energy density of 41.5 Wh/kg at 0.8 kW/kg, outstanding power density of 15.9 kW/kg at 18.4 Wh/kg, which significantly transcending those of most previously reported. These results demonstrate that the hierarchically hollow Co3O4/PANI NCs composites have a potential for fabricating electrode of supercapacitors.

  6. Bismuth nanoparticle decorating graphite felt as a high-performance electrode for an all-vanadium redox flow battery.

    PubMed

    Li, Bin; Gu, Meng; Nie, Zimin; Shao, Yuyan; Luo, Qingtao; Wei, Xiaoliang; Li, Xiaolin; Xiao, Jie; Wang, Chongmin; Sprenkle, Vincent; Wang, Wei

    2013-03-13

    Employing electrolytes containing Bi(3+), bismuth nanoparticles are synchronously electrodeposited onto the surface of a graphite felt electrode during operation of an all-vanadium redox flow battery (VRFB). The influence of the Bi nanoparticles on the electrochemical performance of the VRFB is thoroughly investigated. It is confirmed that Bi is only present at the negative electrode and facilitates the redox reaction between V(II) and V(III). However, the Bi nanoparticles significantly improve the electrochemical performance of VRFB cells by enhancing the kinetics of the sluggish V(II)/V(III) redox reaction, especially under high power operation. The energy efficiency is increased by 11% at high current density (150 mA·cm(-2)) owing to faster charge transfer as compared with one without Bi. The results suggest that using Bi nanoparticles in place of noble metals offers great promise as high-performance electrodes for VRFB application.

  7. Development of a dielectrophoresis-assisted surface plasmon resonance fluorescence biosensor for detection of bacteria

    NASA Astrophysics Data System (ADS)

    Kuroda, Chiaki; Iizuka, Ryota; Ohki, Yoshimichi; Fujimaki, Makoto

    2018-05-01

    To detect biological substances such as bacteria speedily and accurately, a dielectrophoresis-assisted surface plasmon resonance (SPR) fluorescence biosensor is being developed. Using Escherichia coli as a target organism, an appropriate voltage frequency to collect E. coli cells on indium tin oxide quadrupole electrodes by dielectrophoresis is analyzed. Then, E. coli is stained with 4‧,6-diamidino-2-phenylindole (DAPI). To clearly detect fluorescence signals from DAPI-stained E. coli cells, the sensor is optimized so that we can excite SPR on Al electrodes by illuminating 405 nm photons. As a result, the number of fluorescence signals is increased on the electrodes by the application of a low-frequency voltage. This indicates that E. coli cells with a lower permittivity than the surrounding water are collected by negative dielectrophoresis onto the electrodes where the electric field strength is lowest.

  8. High performance current and spin diode of atomic carbon chain between transversely symmetric ribbon electrodes.

    PubMed

    Dong, Yao-Jun; Wang, Xue-Feng; Yang, Shuo-Wang; Wu, Xue-Mei

    2014-08-21

    We demonstrate that giant current and high spin rectification ratios can be achieved in atomic carbon chain devices connected between two symmetric ferromagnetic zigzag-graphene-nanoribbon electrodes. The spin dependent transport simulation is carried out by density functional theory combined with the non-equilibrium Green's function method. It is found that the transverse symmetries of the electronic wave functions in the nanoribbons and the carbon chain are critical to the spin transport modes. In the parallel magnetization configuration of two electrodes, pure spin current is observed in both linear and nonlinear regions. However, in the antiparallel configuration, the spin-up (down) current is prohibited under the positive (negative) voltage bias, which results in a spin rectification ratio of order 10(4). When edge carbon atoms are substituted with boron atoms to suppress the edge magnetization in one of the electrodes, we obtain a diode with current rectification ratio over 10(6).

  9. High performance current and spin diode of atomic carbon chain between transversely symmetric ribbon electrodes

    PubMed Central

    Dong, Yao-Jun; Wang, Xue-Feng; Yang, Shuo-Wang; Wu, Xue-Mei

    2014-01-01

    We demonstrate that giant current and high spin rectification ratios can be achieved in atomic carbon chain devices connected between two symmetric ferromagnetic zigzag-graphene-nanoribbon electrodes. The spin dependent transport simulation is carried out by density functional theory combined with the non-equilibrium Green's function method. It is found that the transverse symmetries of the electronic wave functions in the nanoribbons and the carbon chain are critical to the spin transport modes. In the parallel magnetization configuration of two electrodes, pure spin current is observed in both linear and nonlinear regions. However, in the antiparallel configuration, the spin-up (down) current is prohibited under the positive (negative) voltage bias, which results in a spin rectification ratio of order 104. When edge carbon atoms are substituted with boron atoms to suppress the edge magnetization in one of the electrodes, we obtain a diode with current rectification ratio over 106. PMID:25142376

  10. All-solid electrodes with mixed conductor matrix

    DOEpatents

    Huggins, Robert A.; Boukamp, Bernard A.

    1984-01-01

    Alkali metal based electrochemical cells offer a great deal of promise for applications in many areas such as electric vehicles and load leveling purposes in stationary power plants. Lithium is an attractive candidate as the electroactive species in such cells since lithium is very electropositive, abundant and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and normally is operated at elevated temperatures. The subject invention provides an electrochemical cell in one embodiment of which lithium is the electroactive species. The cell comprises an electrolyte, a positive electrode, and a negative electrode, either or both of which is an all-solid, composite microstructural electrode containing both a reactant phase and a mixed ionic-electronic conducting phase. The cells of the subject invention exhibit improved kinetic features, current and power densities. Repeated charging and discharging of these cells can be accomplished without appreciable loss of capacity.

  11. Improvement of electrochemical properties and oxidation/reduction behavior of cobalt in positive electrode of Ni-metal hydride battery

    NASA Astrophysics Data System (ADS)

    Morimoto, Katsuya; Nagashima, Ikuo; Matsui, Masaki; Maki, Hideshi; Mizuhata, Minoru

    2018-06-01

    The deterioration mechanisms of a Ni-metal hydride (Ni-MH) battery system during operation is investigated. A decrease of the discharge voltage is observed at the early stage of the cycle, which indicates the possible occurrence of an unexpected system shutdown of the battery at low state of charge. Cyclic voltammetry and surface examination are used to investigate the causes of this phenomenon. The elution of elements such as Al and Mn from the metal hydride negative electrodes is shown to affect the oxidation/reduction behavior of Co, the conductive material of the positive electrode. Furthermore, the possible methods to strengthen the conductive network of Co, including pretreatment of the positive electrode, addition of conductive material, and precipitation of the elution elements as insoluble compounds to reduce their effect are also investigated. By combining these strategies, deterioration of the conductive network can be prevented in the early stage.

  12. Internal-short-mitigating current collector for lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Le, Anh V.; Noelle, Daniel J.; Shi, Yang; Meng, Y. Shirley; Qiao, Yu

    2017-05-01

    Mechanical abuse often causes thermal runaway of lithium-ion battery (LIB). When a LIB cell is impacted, radial cracks can be formed in the current collector, separating the electrode into petals. As separator ruptures, the petals on positive and negative electrodes may contact each other, forming internal short circuit (ISC). In this study, we conducted an experimental investigation on LIB coin cells with current collectors modified by surface notches. Our testing results showed that as the current collector contained appropriate surface notches, the cracking mode of electrode in a damaged LIB cell could be adjusted. Particularly, if a complete circumferential crack was generated, the petals would be cut off, which drastically reduced the area of electrode involved in ISC and the associated heat generation rate. A parameterized study was performed to analysis various surface-notch configurations. We identified an efficient surface-notch design that consistently led to trivial temperature increase of ISC.

  13. Simulations of nanosecond-pulsed dielectric barrier discharges in atmospheric pressure air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soo Bak, Moon; Cappelli, Mark A.

    2013-03-21

    This paper describes simulations of nanosecond pulse plasma formation between planer electrodes covered by dielectric barriers in air at atmospheric pressure and 340 K. The plasma formation process starts as electrons detach from negative ions of molecular oxygen that are produced from the previous discharge pulse. An ionization front is found to form close to the positively biased electrode and then strengthens and propagates towards the grounded electrode with increasing gap voltage. Charge accumulation and secondary emission from the grounded electrode eventually lead to sheath collapse. One interesting feature is a predicted reversal in gap potential due to the accumulatedmore » charge, even when there is no reversal in applied potential. The simulation results are compared to recent measurement of mid-gap electric field under the same discharge conditions [Ito et al., Phys. Rev. Lett. 107, 065002 (2011)].« less

  14. Computational analysis of species transport and electrochemical characteristics of a MOLB-type SOFC

    NASA Astrophysics Data System (ADS)

    Hwang, J. J.; Chen, C. K.; Lai, D. Y.

    A multi-physics model coupling electrochemical kinetics with fluid dynamics has been developed to simulate the transport phenomena in mono-block-layer built (MOLB) solid oxide fuel cells (SOFC). A typical MOLB module is composed of trapezoidal flow channels, corrugated positive electrode-electrolyte-negative electrode (PEN) plates, and planar inter-connecters. The control volume-based finite difference method is employed for calculation, which is based on the conservation of mass, momentum, energy, species, and electric charge. In the porous electrodes, the flow momentum is governed by a Darcy model with constant porosity and permeability. The diffusion of reactants follows the Bruggman model. The chemistry within the plates is described via surface reactions with a fixed surface-to-volume ratio, tortuosity and average pore size. Species transports as well as the local variations of electrochemical characteristics, such as overpotential and current density distributions in the electrodes of an MOLB SOFC, are discussed in detail.

  15. Facile fabrication of cobalt oxalate nanostructures with superior specific capacitance and super-long cycling stability

    NASA Astrophysics Data System (ADS)

    Cheng, Guanhua; Si, Conghui; Zhang, Jie; Wang, Ying; Yang, Wanfeng; Dong, Chaoqun; Zhang, Zhonghua

    2016-04-01

    Transition metal oxalate materials have shown huge competitive advantages for applications in supercapacitors. Herein, nanostructured cobalt oxalate supported on cobalt foils has been facilely fabricated by anodization, and could directly serve as additive/binder-free electrodes for supercapacitors. The as-prepared cobalt oxalate electrodes present superior specific capacitance of 1269 F g-1 at the current density of 6 A g-1 in the galvanostatic charge/discharge test. Moreover, the retained capacitance is as high as 87.2% as the current density increases from 6 A g-1 to 30 A g-1. More importantly, the specific capacitance of cobalt oxalate retains 91.9% even after super-long cycling of 100,000 cycles. In addition, an asymmetric supercapacitor assembled with cobalt oxalate (positive electrode) and activated carbon (negative electrode) demonstrates excellent capacitive performance with high energy density and power density.

  16. Functional Connectivity of Cognitive Brain Networks in Schizophrenia during a Working Memory Task

    PubMed Central

    Godwin, Douglass; Ji, Andrew; Kandala, Sridhar; Mamah, Daniel

    2017-01-01

    Task-based connectivity studies facilitate the understanding of how the brain functions during cognition, which is commonly impaired in schizophrenia (SZ). Our aim was to investigate functional connectivity during a working memory task in SZ. We hypothesized that the task-negative (default mode) network and the cognitive control (frontoparietal) network would show dysconnectivity. Twenty-five SZ patient and 31 healthy control scans were collected using the customized 3T Siemens Skyra MRI scanner, previously used to collect data for the Human Connectome Project. Blood oxygen level dependent signal during the 0-back and 2-back conditions were extracted within a network-based parcelation scheme. Average functional connectivity was assessed within five brain networks: frontoparietal (FPN), default mode (DMN), cingulo-opercular (CON), dorsal attention (DAN), and ventral attention network; as well as between the DMN or FPN and other networks. For within-FPN connectivity, there was a significant interaction between n-back condition and group (p = 0.015), with decreased connectivity at 0-back in SZ subjects compared to controls. FPN-to-DMN connectivity also showed a significant condition × group effect (p = 0.003), with decreased connectivity at 0-back in SZ. Across groups, connectivity within the CON and DAN were increased during the 2-back condition, while DMN connectivity with either CON or DAN were decreased during the 2-back condition. Our findings support the role of the FPN, CON, and DAN in working memory and indicate that the pattern of FPN functional connectivity differs between SZ patients and control subjects during the course of a working memory task. PMID:29312020

  17. Functional Connectivity of Cognitive Brain Networks in Schizophrenia during a Working Memory Task.

    PubMed

    Godwin, Douglass; Ji, Andrew; Kandala, Sridhar; Mamah, Daniel

    2017-01-01

    Task-based connectivity studies facilitate the understanding of how the brain functions during cognition, which is commonly impaired in schizophrenia (SZ). Our aim was to investigate functional connectivity during a working memory task in SZ. We hypothesized that the task-negative (default mode) network and the cognitive control (frontoparietal) network would show dysconnectivity. Twenty-five SZ patient and 31 healthy control scans were collected using the customized 3T Siemens Skyra MRI scanner, previously used to collect data for the Human Connectome Project. Blood oxygen level dependent signal during the 0-back and 2-back conditions were extracted within a network-based parcelation scheme. Average functional connectivity was assessed within five brain networks: frontoparietal (FPN), default mode (DMN), cingulo-opercular (CON), dorsal attention (DAN), and ventral attention network; as well as between the DMN or FPN and other networks. For within-FPN connectivity, there was a significant interaction between n -back condition and group ( p  = 0.015), with decreased connectivity at 0-back in SZ subjects compared to controls. FPN-to-DMN connectivity also showed a significant condition × group effect ( p  = 0.003), with decreased connectivity at 0-back in SZ. Across groups, connectivity within the CON and DAN were increased during the 2-back condition, while DMN connectivity with either CON or DAN were decreased during the 2-back condition. Our findings support the role of the FPN, CON, and DAN in working memory and indicate that the pattern of FPN functional connectivity differs between SZ patients and control subjects during the course of a working memory task.

  18. Co(OH)2/RGO/NiO sandwich-structured nanotube arrays with special surface and synergistic effects as high-performance positive electrodes for asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Xu, Han; Zhang, Chi; Zhou, Wen; Li, Gao-Ren

    2015-10-01

    High power density, high energy density and excellent cycling stability are the main requirements for high-performance supercapacitors (SCs) that will be widely used for portable consumer electronics and hybrid electric vehicles. Here we investigate novel types of hybrid Co(OH)2/reduced graphene oxide (RGO)/NiO sandwich-structured nanotube arrays (SNTAs) as positive electrodes for asymmetric supercapacitors (ASCs). The synthesized Co(OH)2/RGO/NiO SNTAs exhibit a significantly improved specific capacity (~1470 F g-1 at 5 mV s-1) and excellent cycling stability with ~98% Csp retention after 10 000 cycles because of the fast transport and short diffusion paths for electroactive species, the high utilization rate of electrode materials, and special synergistic effects among Co(OH)2, RGO, and NiO. The high-performance ASCs are assembled using Co(OH)2/RGO/NiO SNTAs as positive electrodes and active carbon (AC) as negative electrodes, and they exhibit a high energy density (115 Wh kg-1), a high power density (27.5 kW kg-1) and an excellent cycling stability (less 5% Csp loss after 10 000 cycles). This study shows an important breakthrough in the design and fabrication of multi-walled hybrid nanotube arrays as positive electrodes for ASCs.High power density, high energy density and excellent cycling stability are the main requirements for high-performance supercapacitors (SCs) that will be widely used for portable consumer electronics and hybrid electric vehicles. Here we investigate novel types of hybrid Co(OH)2/reduced graphene oxide (RGO)/NiO sandwich-structured nanotube arrays (SNTAs) as positive electrodes for asymmetric supercapacitors (ASCs). The synthesized Co(OH)2/RGO/NiO SNTAs exhibit a significantly improved specific capacity (~1470 F g-1 at 5 mV s-1) and excellent cycling stability with ~98% Csp retention after 10 000 cycles because of the fast transport and short diffusion paths for electroactive species, the high utilization rate of electrode materials, and special synergistic effects among Co(OH)2, RGO, and NiO. The high-performance ASCs are assembled using Co(OH)2/RGO/NiO SNTAs as positive electrodes and active carbon (AC) as negative electrodes, and they exhibit a high energy density (115 Wh kg-1), a high power density (27.5 kW kg-1) and an excellent cycling stability (less 5% Csp loss after 10 000 cycles). This study shows an important breakthrough in the design and fabrication of multi-walled hybrid nanotube arrays as positive electrodes for ASCs. Electronic supplementary information (ESI) available: SEM images, XPS spectra, equivalent circuit, and CVs. See DOI: 10.1039/c5nr04449a

  19. Polymorphous Supercapacitors Constructed from Flexible Three-Dimensional Carbon Network/Polyaniline/MnO2 Composite Textiles.

    PubMed

    Wang, Jinjie; Dong, Liubing; Xu, Chengjun; Ren, Danyang; Ma, Xinpei; Kang, Feiyu

    2018-04-04

    Polymorphous supercapacitors were constructed from flexible three-dimensional carbon network/polyaniline (PANI)/MnO 2 composite textile electrodes. The flexible textile electrodes were fabricated through a layer-by-layer construction strategy: PANI, carbon nanotubes (CNTs), and MnO 2 were deposited on activated carbon fiber cloth (ACFC) in turn through an electropolymerization process, "dipping and drying" method, and in situ chemical reaction, respectively. In the fabricated ACFC/PANI/CNTs/MnO 2 textile electrodes, the ACFC/CNT hybrid framework serves as a porous and electrically conductive 3D network for the rapid transmission of electrons and electrolyte ions, where ACFC, PANI, and MnO 2 are high-performance supercapacitor electrode materials. In the electrolyte of H 2 SO 4 solution, the textile electrode-based symmetric supercapacitor delivers superior areal capacitance, energy density, and power density of 4615 mF cm -2 (for single electrode), 157 μW h cm -2 , and 10372 μW cm -2 , respectively, whereas asymmetric supercapacitor assembled with the prepared composite textile as the positive electrode and ACFC as the negative electrode exhibits an improved energy density of 413 μW h cm -2 and a power density of 16120 μW cm -2 . On the basis of the ACFC/PANI/CNTs/MnO 2 textile electrodes, symmetric and asymmetric solid-state textile supercapacitors with a PVA/H 2 SO 4 gel electrolyte were also produced. These solid-state textile supercapacitors exhibit good electrochemical performance and high flexibility. Furthermore, flexible solid-state fiber-like supercapacitors were prepared with fiber bundle electrodes dismantled from the above composite textiles. Overall, this work makes a meaningful exploration of the versatile applications of textile electrodes to produce polymorphous supercapacitors.

  20. Effect of Transcutaneous Electrode Temperature on Accuracy and Precision of Carbon Dioxide and Oxygen Measurements in the Preterm Infants.

    PubMed

    Jakubowicz, Jessica F; Bai, Shasha; Matlock, David N; Jones, Michelle L; Hu, Zhuopei; Proffitt, Betty; Courtney, Sherry E

    2018-05-01

    High electrode temperature during transcutaneous monitoring is associated with skin burns in extremely premature infants. We evaluated the accuracy and precision of CO 2 and O 2 measurements using lower transcutaneous electrode temperatures below 42°C. We enrolled 20 neonates. Two transcutaneous monitors were placed simultaneously on each neonate, with one electrode maintained at 42°C and the other randomized to temperatures of 38, 39, 40, 41, and 42°C. Arterial blood was collected twice at each temperature. At the time of arterial blood sampling, values for transcutaneously measured partial pressure of CO 2 (P tcCO 2 ) were not significantly different among test temperatures. There was no evidence of skin burning at any temperature. For P tcCO 2 , Bland-Altman analyses of all test temperatures versus 42°C showed good precision and low bias. Transcutaneously measured partial pressure of O 2 (P tcO 2 ) values trended arterial values but had large negative bias. Transcutaneous electrode temperatures as low as 38°C allow an assessment of P tcCO 2 as accurate as that with electrodes at 42°C. Copyright © 2018 by Daedalus Enterprises.

  1. Design, synthesis and evaluation of three-dimensional Co3O4/Co3(VO4)2 hybrid nanorods on nickel foam as self-supported electrodes for asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Wei-Bin; Kong, Ling-Bin; Ma, Xue-Jing; Luo, Yong-Chun; Kang, Long

    2014-12-01

    A novel self-supported electrode of three-dimensional Co3O4/Co3(VO4)2 hybrid nanorods on the conductive substrate of nickel foam have been designed and synthesized by the combination of hydrothermal synthesis and subsequent annealing treatment. Based on the morphology, a possible mechanism is proposed. The unique nanostructure has been served as an "ion reservoir" to infiltrate between the electrode surface area and the electrolyte, which can ensure the ion/electron transfer. And the powerful distribution of electric field on nanorods makes the surface in response the electrode reaction as completely as possible. The electrode manifests satisfying capacitance of 847.2 F g-1, outstanding rate capability and excellent cycling stability. Also, an asymmetric supercapacitor has been assembled, where Co3O4/Co3(VO4)2 and activated carbon acted as the positive and negative electrodes respectively, and the maximum specific capacitance of 105 F g-1 and the specific energy of 38 Wh kg-1 are demonstrated at a cell voltage between 0 and 1.6 V, exhibiting a high energy density and stable power characteristic.

  2. The Role of Electrode-Catalyst Interactions in Enabling Efficient CO2 Reduction with Mo(bpy)(CO)4 As Revealed by Vibrational Sum-Frequency Generation Spectroscopy.

    PubMed

    Neri, Gaia; Donaldson, Paul M; Cowan, Alexander J

    2017-10-04

    Group 6 metal carbonyl complexes ([M(bpy)(CO) 4 ], M = Cr, Mo, W) are potentially promising CO 2 reduction electrocatalysts. However, catalytic activity onsets at prohibitively negative potentials and is highly dependent on the nature of the working electrode. Here we report in situ vibrational SFG (VSFG) measurements of the electrocatalyst [Mo(bpy)(CO) 4 ] at platinum and gold electrodes. The greatly improved onset potential for electrocatalytic CO 2 reduction at gold electrodes is due to the formation of the catalytically active species [Mo(bpy)(CO) 3 ] 2- via a second pathway at more positive potentials, likely avoiding the need for the generation of [Mo(bpy)(CO) 4 ] 2- . VSFG studies demonstrate that the strength of the interaction between initially generated [Mo(bpy)(CO) 4 ] •- and the electrode is critical in enabling the formation of the active catalyst via the low energy pathway. By careful control of electrode material, solvent and electrolyte salt, it should therefore be possible to attain levels of activity with group 6 complexes equivalent to their much more widely studied group 7 analogues.

  3. Electrochemical Oscillations of Nickel Electrodissolution in an Epoxy-Based Microchip Flow Cell

    PubMed Central

    Cioffi, Alexander G.; Martin, R. Scott; Kiss, István Z.

    2011-01-01

    We investigate the nonlinear dynamics of transpassive electrodissolution of nickel in sulfuric acid in an epoxy-based microchip flow cell. We observed bistability, smooth, relaxation, and period-2 waveform current oscillations with external resistance attached to the electrode in the microfabricated electrochemical cell with 0.05 mm diameter Ni wire under potentiostatic control. Experiments with 1mm × 0.1 mm Ni electrode show spontaneous oscillations without attached external resistance; similar surface area electrode in macrocell does not exhibit spontaneous oscillations. Combined experimental and numerical studies show that spontaneous oscillation with the on-chip fabricated electrochemical cell occurs because of the unusually large ohmic potential drop due to the constrained current in the narrow flow channel. This large IR potential drop is expected to have an important role in destabilizing negative differential resistance electrochemical (e.g., metal dissolution and electrocatalytic) systems in on-chip integrated microfludic flow cells. The proposed experimental setup can be extendend to multi-electrode configurations; the epoxy-based substrate procedure thus holds promise in electroanalytical applications that require collector-generator multi-electrodes wires with various electrode sizes, compositions, and spacings as well as controlled flow conditions. PMID:21822407

  4. Electrochemical Oscillations of Nickel Electrodissolution in an Epoxy-Based Microchip Flow Cell.

    PubMed

    Cioffi, Alexander G; Martin, R Scott; Kiss, István Z

    2011-08-01

    We investigate the nonlinear dynamics of transpassive electrodissolution of nickel in sulfuric acid in an epoxy-based microchip flow cell. We observed bistability, smooth, relaxation, and period-2 waveform current oscillations with external resistance attached to the electrode in the microfabricated electrochemical cell with 0.05 mm diameter Ni wire under potentiostatic control. Experiments with 1mm × 0.1 mm Ni electrode show spontaneous oscillations without attached external resistance; similar surface area electrode in macrocell does not exhibit spontaneous oscillations. Combined experimental and numerical studies show that spontaneous oscillation with the on-chip fabricated electrochemical cell occurs because of the unusually large ohmic potential drop due to the constrained current in the narrow flow channel. This large IR potential drop is expected to have an important role in destabilizing negative differential resistance electrochemical (e.g., metal dissolution and electrocatalytic) systems in on-chip integrated microfludic flow cells. The proposed experimental setup can be extendend to multi-electrode configurations; the epoxy-based substrate procedure thus holds promise in electroanalytical applications that require collector-generator multi-electrodes wires with various electrode sizes, compositions, and spacings as well as controlled flow conditions.

  5. Enabling high-rate electrochemical flow capacitors based on mesoporous carbon microspheres suspension electrodes

    NASA Astrophysics Data System (ADS)

    Tian, Meng; Sun, Yueqing; Zhang, Chuanfang (John); Wang, Jitong; Qiao, Wenming; Ling, Licheng; Long, Donghui

    2017-10-01

    Electrochemical flow capacitor (EFC) is a promising technology for grid energy storage, which combines the fast charging/discharging capability of supercapacitors with the scalable energy capacity of flow batteries. In this study, we report a high-power-density EFC using mesoporous carbon microspheres (MCMs) as suspension electrodes. By using a simple yet effective spray-drying technique, monodispersed MCMs with average particle size of 5 μm, high BET surface area of 1150-1267 m2 g-1, large pore volume of 2-4 cm3 g-1 and controllable mesopore size of 7-30 nm have been successfully prepared. The resultant MCMs suspension electrode shows excellent stability and considerable high capacitance of 100 F g-1 and good cycling ability (86% of initial capacitance after 10000 cycles). Specially, the suspension electrode exhibits excellent rate performance with 75% capacitance retention from 2 to 100 mV s-1, significantly higher than that of microporous carbon electrodes (20∼30%), due to the developed mesoporous channels facilitating for rapid ion diffusion. In addition, the electrochemical responses on both negative and positive suspension electrodes are studied, based on which an optimal capacitance matching between them is suggested for large-scale EFC unit.

  6. Hybrid Reduced Graphene Oxide Nanosheet Supported Mn-Ni-Co Ternary Oxides for Aqueous Asymmetric Supercapacitors.

    PubMed

    Wu, Chun; Cai, Junjie; Zhu, Ying; Zhang, Kaili

    2017-06-07

    Hybrid reduced graphene oxide (RGO) nanosheet supported Mn-Ni-Co ternary oxides (MNCO) are prepared through a facile coprecipitation reaction with a subsequent calcination process as electrodes for supercapacitors. Electrochemical measurements prove that RGO can significantly improve the supercapacitive behaviors, compared with the pure MNCO electrode. A high specific capacity of 646.1 C g -1 at 1 A g -1 can be achieved and about 89.6% of the capacity can be remained at 30 A g -1 relative to that of the low-current capacity, indicating attractive rate capability of the RGO-MNCO electrode. Moreover, an asymmetric supercapacitor (ASC) device is fabricated with nitrogen-enriched RGO as the negative electrode and the synthesized RGO-MNCO as the positive electrode. Electrochemical performances investigated at different potential range reveal that the ASC device presents excellent capacitive behavior and reversibility. A maximum energy density of 35.6 Wh kg -1 at power density of 699.9 W kg -1 can be delivered. Furthermore, stable cycle capability with 100% Coulombic efficiency and 77.2% the capacitance retention is also achieved after 10000 cycles. The achieved outstanding electrochemical properties indicate that the obtained RGO-MNCO electrode materials are fairly ideal for progressive supercapacitors.

  7. Effect of the Cerium Oxide (CeO2) on the Structural and Electrochemical Properties of the LaNi5Ce Metal Hydride Anode

    NASA Astrophysics Data System (ADS)

    Utami Hapsari, Ade; Zulfia, Anne; Raharjo, Jarot; Agustanhakri

    2017-07-01

    One of negative electrode, AB5-type alloy electrodes, have been extensively studied and applied in rechargeable Ni-MH batteries due to their excellent electrochemical characteristics. Some researchers have found that addition of rare earth oxides (La, Ce, Pr, Er, Tm, Yb) to AB5-type alloy (MH) electrode improves battery performance significantly. Cerium Oxide (CeO2) is a light rare earth oxide is widely obtained from the processing of tailings in mining activities. During this time, there is still little data for research applications of cerium oxide for electrode materials. In this paper, the effects of adding CeO2 on the performance metal hydride electrode were investigated. In order to study the effects of CeO2 on the performance of anode material, 1%, 2%, and 3% of weight ratio CeO2 was mixed to LaNi5 as an negative electrode. The powder mixtures were mechanically milled at a speed of rpm 240 for 2 hours using ball mill. The powder mixtures were characterized by X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM). Electrochemical characteristics were measured using electrochemical impedance spectroscopy (EIS). The powder mixing showed the presence of Ce atom substitution into LaNi5 structures that affect the electrochemical properties of the material. The addition of cerium oxide at LaNi5 increase of the value of impedance. However, the addition of the value of impedance at 1% CeO2 is not significant when compared with the addition of 2% and 3% CeO2 that actually make the electrochemical properties of LaNi5 worst. Although the addition of 1% CeO2 also slightly increases the impedance value of LaNi5, but the addition of 1% CeO2 showed increase the corrosion resistance than without the addition of CeO2 and the addition of 2% and 3% CeO2.

  8. Statistical data of X-ray emission from laboratory sparks

    NASA Astrophysics Data System (ADS)

    Kochkin, P.; Deursen, D. V.

    2011-12-01

    In this study we present a summary of the data of 1331 long laboratory sparks in atmospheric pressure intended for a statistical analysis. A 2 MV, 17kJ Marx generator were used to generate 1.2/52μs shape pulses positive and negative polarity. The generator was connected to a spark gap with cone-shaped electrodes. The distance between high-voltage and grounded electrodes was 1.08 meters. Breakdown voltage between electrodes was about 1MV. X-rays have been detected during the development of the discharge channel. The currents through the grounded electrode and through the high-voltage electrode were recorded separately and simultaneously with the voltage and the X-ray signal. X-rays were registered by two LaBr3(Ce+) scintillation detectors in different positions with respect to the forming discharge channel. Detector D1 was placed immediately under the grounded electrode at 15cm distance. Detector D2 was placed at horizontal distances of 143cm and 210cm, at mid-gap height. We also used lead shields of 1.5, 3, and 4 mm thickness for radiation attenuation measurements. For detector collimation we used shields up to 2 cm thickness. Also no metallic objects with pointed surfaces were present within 2 m from the spark gap. Typical plot of positive discharge presented in Figure 1a. Table 1 shows the summary of the X-ray registrations. Signal detection occurred significantly more for positive polarity discharges than for negative. This dependence was observed for both detectors. For detector D2 the probability of X-ray registration decreased proportional to 1/d2 with increasing the distance d to the breakdown gap from 1m43 to 2m10. Detailed energy spectra and time distribution of X-ray emission were obtained; see for example Fig. 1b. For both polarities of the high voltage, the X-rays only occurred when there was a current at the cathode.

  9. Electrode-Modified Zeolites - Electrode Microstructures Contained in and on a Heterogeneous Catalyst

    DTIC Science & Technology

    1988-07-15

    zeolite Type Y and Pt supported on gamma-alumina. The electrolytic response of zeolite-supported Pt in the absence of added electrolyte salt for water or...character of metals at sizes where’ bulk metallic properties may not be exhibited. Furthermore, electrolyses are now allowed using loadings of catalysts which...in water until the filtrate tested negatively for Cl with AgNO 3; PtY was then dried a- 135 C. Equilibrium exchnge occurs at these low weight

  10. Controlled functionalization of carbonaceous fibers for asymmetric solid-state micro-supercapacitors with high volumetric energy density.

    PubMed

    Yu, Dingshan; Goh, Kunli; Zhang, Qiang; Wei, Li; Wang, Hong; Jiang, Wenchao; Chen, Yuan

    2014-10-22

    A 1.8 V asymmetric solid-state flexible micro-supercapacitor is designed with one MnO2 -coated reduced graphene oxide/single-walled carbon nanotube (rGO/SWCNT) composite fiber as positive electrode and one nitrogen-doped rGO/SWCNT fiber as negative electrode, which demonstrates ultrahigh volumetric energy density, comparable to some thin-film lithium batteries, along with high power density, long cycle life, and good flexibility. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Evaluation of antiviral efficacy of Chinese traditional medicine Babao Dan in rabbits infected with hepatitis E virus.

    PubMed

    Gong, Wanyun; Liu, Lin; Li, Manyu; Wang, Lin; Zhang, Mingyu; Luo, Zhengxin; Sridhar, Siddharth; Woo, Patrick C Y; Wang, Ling

    2018-06-20

    Hepatitis E virus (HEV) is a major cause of acute viral hepatitis. Patients with chronic hepatitis B superinfected with HEV may progress to liver failure. Babao Dan (BD) is a traditional Chinese medicine widely used as an auxiliary option for the treatment of chronic hepatitis and liver cancer in China. This study aimed to evaluate the effect of BD on the management of HEV infection in a rabbit model. Sixty-two specific-pathogen-free (SPF) rabbits were divided randomly into five groups and treated with BD or placebo for 2 weeks. All rabbits were inoculated intravenously with rabbit HEV after initial administration. Then, rabbits were administered BD or ribavirin or placebo at 2 weeks post-inoculation (wpi) until faecal virus shedding showed negative. The duration of faecal virus shedding and levels of HEV RNA in faeces were reduced, and anti-HEV antibodies were detected in all rabbits in groups treated with BD before or after inoculation. Ribavirin treatment rapidly cleared HEV infection in SPF rabbits, but anti-HEV antibodies remained negative in 50 % of rabbits treated with ribavirin. These results indicate that ribavirin treatment was more effective in clearing HEV infection, while administration of BD before or after inoculation was effective in clearing HEV infection. Further clinical studies are warranted.

  12. Three-dimensional modeling of a negative ion source with a magnetic filter: impact of biasing the plasma electrode on the plasma asymmetry

    NASA Astrophysics Data System (ADS)

    Fubiani, G.; Boeuf, J. P.

    2015-10-01

    The effect on the plasma characteristics of biasing positively the plasma electrode (PE) in negative ion sources with a magnetic filter is analysed using a 3D particle-in-cell model with Monte-Carlo collisions (PIC-MCC). We specialize to the one driver (i.e. one inductively coupled radio-frequency discharge) BATMAN negative ion source and the 4-drivers (large volume) ELISE device. Both are ITER prototype high power tandem-type negative ion sources developed for the neutral beam injector (NBI) system. The plasma is generated in the driver and diffuses inside the second chamber which is magnetized. Asymmetric plasma profiles originate from the formation of an electric field transverse to the electron current flowing through the magnetic filter (Hall effect). The model shows that the importance of the asymmetry increases with the PE bias potential, i.e. with the electron flow from the driver to the extraction region and depends on the shape of the magnetic filter field. We find that although the plasma density and potential profiles may be more or less asymmetric depending on the filter field configuration, the electron current to the plasma grid is always strongly asymmetric.

  13. Review—Multifunctional Materials for Enhanced Li-Ion Batteries Durability: A Brief Review of Practical Options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Anjan; Shilina, Yuliya; Ziv, Baruch

    Transition metal (TM) ions dissolution from positive electrodes, migration to and deposition on negative electrodes, followed by Mn-catalyzed reactions of solvents and anions, with loss of Li+ ions, is a major degradation (DMDCR) mechanism in Li-ion batteries (LIBs) with spinel positive electrode materials. While the details of the DMDCR mechanism are still under debate, it is clear that HF and other acid species’ attack is the main cause in solutions with LiPF6 electrolyte. We first review the work on various mitigation measures for the DMDCR mechanism, now spanning more than two decades. We then discuss recent progress on our understandingmore » of Mn species in electrolyte solutions and the extension of a mitigation measure first proposed by Tarascon and coworkers in 1999, namely chelation of TM cations, to Mn cation trapping, HF scavenging, and alkali metal ions dispensing multi-functional materials. We focus on practicable, drop-in technical solutions, based on placing such materials in the inter-electrode space, with significant benefits for LIBs performance: increased capacity retention during operation at room and above-ambient temperatures as well as robust (both maximally ionically conducting and electronically insulating) solid-electrolyte interfaces, having reduced charge transfer and film resistances at both negative and positive electrodes. We illustrate the multifunctional materials approach with both new and previously published data. We also discuss and offer our evaluation regarding the merits and drawbacks of the various mitigation measures, with an eye for practically relevant technical solutions capable to meet both the performance requirements and cost constraints for commercial LIBs, and end with recommendations for future work.« less

  14. Na1.25Ni1.25Fe1.75(PO4)3 nanoparticles as a janus electrode material for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Karegeya, Claude; Mahmoud, Abdelfattah; Hatert, Frédéric; Vertruyen, Bénédicte; Cloots, Rudi; Lippens, Pierre-Emmanuel; Boschini, Frédéric

    2018-06-01

    A solvothermal method was used to prepare Na1.25Ni1.25Fe1.75(PO4)3 nanoparticles, a new promising electrode material for lithium-ion batteries. The composition and the crystal structure were determined by 57Fe Mössbauer spectroscopy and powder X-ray diffraction Rietveld refinements and confirmed by magnetic measurements. The structural formula □0.75Na1.25Ni1.25Fe1.75(PO4)3 was obtained showing a significant amount of Na vacancies, which enhances Li diffusion. Na1.25Ni1.25Fe1.75(PO4)3 was used as negative and positive electrode material and shows excellent electrochemical performances. As negative electrode in the voltage range 0.03-3.5 V vs. Li+/Li, the first discharge at current density of 40 mA g-1 delivers a specific capacity of 1186 mAh g-1, which is almost three times its theoretical capacity (428 mAh g-1). Then, reversible capacity of 550 mAh g-1 was obtained at 50 mA g-1 with high rate capability (150 mAh g-1 at 500 mA g-1) and capacity retention of 350 cycles. As positive electrode material, specific capacities of about 145 and 99 mAh g-1 were delivered at current densities of 5 and 50 mA g-1, respectively, in the voltage range of 1.5-4.5 V vs. Li+/Li. In addition, we show that the use of solvothermal synthesis contributes to the synthesis of small sized particles leading to good electrochemical performances.

  15. Introduction to investigations of the negative corona and EHD flow in gaseous two-phase fluids

    NASA Astrophysics Data System (ADS)

    Jerzy, MIZERACZYK; Artur, BERENDT

    2018-05-01

    Research interests have recently been directed towards electrical discharges in multi-phase environments. Natural electrical discharges, such as lightning and coronas, occur in the Earth’s atmosphere, which is actually a mixture of gaseous phase (air) and suspended solid and liquid particulate matters (PMs). An example of an anthropogenic gaseous multi-phase environment is the flow of flue gas through electrostatic precipitators (ESPs), which are generally regarded as a mixture of a post-combustion gas with solid PM and microdroplets suspended in it. Electrical discharges in multi-phase environments, the knowledge of which is scarce, are becoming an attractive research subject, offering a wide variety of possible discharges and multi-phase environments to be studied. This paper is an introduction to electrical discharges in multi-phase environments. It is focused on DC negative coronas and accompanying electrohydrodynamic (EHD) flows in a gaseous two-phase fluid formed by air (a gaseous phase) and solid PM (a solid phase), run under laboratory conditions. The introduction is based on a review of the relevant literature. Two cases will be considered: the first case is of a gaseous two-phase fluid, initially motionless in a closed chamber before being subjected to a negative corona (with the needle-to-plate electrode arrangement), which afterwards induces an EHD flow in the chamber, and the second, of a gaseous two-phase fluid flowing transversely with respect to the needle-to-plate electrode axis along a chamber with a corona discharge running between the electrodes. This review-based introductory paper should be of interest to theoretical researchers and modellers in the field of negative corona discharges in single- or two-phase fluids, and for engineers who work on designing EHD devices (such as ESPs, EHD pumps, and smoke detectors).

  16. Tau Deficiency Down-Regulated Transcription Factor Orthodenticle Homeobox 2 Expression in the Dopaminergic Neurons in Ventral Tegmental Area and Caused No Obvious Motor Deficits in Mice

    PubMed Central

    Tang, Xiaolu; Jiao, Luyan; Zheng, Meige; Yan, Yan; Nie, Qi; Wu, Ting; Wan, Xiaomei; Zhang, Guofeng; Li, Yonglin; Wu, Song; Jiang, Bin; Cai, Huaibin; Xu, Pingyi; Duan, Jinhai; Lin, Xian

    2018-01-01

    Tau protein participates in microtubule stabilization, axonal transport, and protein trafficking. Loss of normal tau function will exert a negative effect. However, current knowledge on the impact of tau deficiency on the motor behavior and related neurobiological changes is controversial. In this study, we examined motor functions and analyzed several proteins implicated in the maintenance of midbrain dopaminergic (DA) neurons (mDANs) function of adult and aged tau+/+, tau+/−, tau−/− mice. We found tau deficiency could not induce significant motor disorders. However, we discovered lower expression levels of transcription factors Orthodenticle homeobox 2 (OTX2) of mDANs in older aged mice. Compared with age-matched tau+/+ mice, there were 54.1% lower (p = 0.0192) OTX2 protein (OTX2-fluorescence intensity) in VTA DA neurons of tau+/−mice and 43.6% lower (p = 0.0249) OTX2 protein in VTA DA neurons of tau−/−mice at 18 months old. Combined with the relevant reports, our results suggested that tau deficiency alone might not be enough to mimic the pathology of Parkinson’s disease. However, OTX2 down-regulation indicates that mDANs of tau-deficient mice will be more sensitive to toxic damage from MPTP. PMID:29337233

  17. Particle-in-cell simulation of an electronegative plasma under direct current bias studied in a large range of electronegativity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oudini, N.; Laboratoire des plasmas de Decharges, Centre de Developement des Technologies Avancees, Cite du 20 Aout BP 17 Baba Hassen, 16081 Algiers; Raimbault, J.-L.

    2013-04-15

    A one-dimensional electronegative plasma situated between two symmetrical parallel electrodes under DC bias is studied by Particle-In-Cell simulation with Monte Carlo Collisions. By varying the electronegativity {alpha}{identical_to}n{sub -}/n{sub e} from the limit of electron-ion plasmas (negative ion free) to ion-ion plasmas (electron free), the sheaths formation, the negative ion flux flowing towards the electrodes, and the particle velocities at the sheath edges are investigated. Depending on {alpha}, it is shown that the electronegative plasma behavior can be described by four regimes. In the lowest regime of {alpha}, i.e., {alpha} < 50, negative ions are confined by two positive sheaths withinmore » the plasma, while in the higher regimes of {alpha}, a negative sheath is formed and the negative ion flux can be extracted from the bulk plasma. In the two intermediate regimes of {alpha}, i.e., 50 < {alpha} < 10{sup 5}, both the electron and the negative ion fluxes are involved in the neutralization of the positive ions flux that leaves the plasma. In particular, we show that the velocity of the negative ions entering the negative sheath is affected by the presence of the electrons, and is not given by the modified Bohm velocity generally accepted for electronegative plasmas. For extremely high electronegativity, i.e., {alpha} > 10{sup 5}, the presence of electrons in the plasma is marginal and the electronegative plasma can be considered as an ion-ion plasma (electron free).« less

  18. Simultaneous control of thermoelectric properties in p- and n-type materials by electric double-layer gating: New design for thermoelectric device

    NASA Astrophysics Data System (ADS)

    Takayanagi, Ryohei; Fujii, Takenori; Asamitsu, Atsushi

    2015-05-01

    We report a novel design of a thermoelectric device that can control the thermoelectric properties of p- and n-type materials simultaneously by electric double-layer gating. Here, p-type Cu2O and n-type ZnO were used as the positive and negative electrodes of the electric double-layer capacitor structure. When a gate voltage was applied between the two electrodes, holes and electrons accumulated on the surfaces of Cu2O and ZnO, respectively. The thermopower was measured by applying a thermal gradient along the accumulated layer on the electrodes. We demonstrate here that the accumulated layers worked as a p-n pair of the thermoelectric device.

  19. Current collapse in tunneling transport through benzene.

    PubMed

    Hettler, M H; Wenzel, W; Wegewijs, M R; Schoeller, H

    2003-02-21

    We investigate the electrical transport through a system of benzene coupled to metal electrodes by electron tunneling. Using electronic structure calculations, a semiquantitative model for the pi electrons of the benzene is derived that includes general two-body interactions. After exact diagonalization of the benzene model the transport is computed using perturbation theory for weak electrode-benzene coupling (golden rule approximation). We include the effect of an applied electric field on the molecular states, as well as radiative relaxation. We predict a current collapse and strong negative differential conductance due to a "blocking" state when the electrode is coupled to the para-position of benzene. In contrast, for coupling to the meta-position, a series of steps in the I-V curve is found.

  20. An all-solid-state lithium/polyaniline rechargeable cell

    NASA Astrophysics Data System (ADS)

    Changzhi, Li; Xinsheng, Peng; Borong, Zhang; Baochen, Wang

    The performance of an all-solid-state cell having a lithium negative electrode, a modified polyethylene oxide (PEO)—epoxy resin (ER) electrolyte, and a polyaniline (PAn) positive electrode has been studied using cyclic voltammetry, charge/discharge cycling, and polarization curves at various temperatures. The redox reaction of the PAn electrode at the PAn/modifed PEOER interface exhibits good reversibility. At 50-80 °C, the Li/PEOERLiClO 4/PAn cell shows more than 40 charge/discharge cycles, 90% charge/discharge efficiency, and 54 W h kg -1 discharge energy density (on PAn weight basis) at 50 μA between 2 and 4 V. The polarization performance of the battery improves steadily with increase in temperature.

  1. A lithium ion battery using an aqueous electrolyte solution

    PubMed Central

    Chang, Zheng; Li, Chunyang; Wang, Yanfang; Chen, Bingwei; Fu, Lijun; Zhu, Yusong; Zhang, Lixin; Wu, Yuping; Huang, Wei

    2016-01-01

    Energy and environmental pollution have become the two major problems in today’s society. The development of green energy storage devices with good safety, high reliability, high energy density and low cost are urgently demanded. Here we report on a lithium ion battery using an aqueous electrolyte solution. It is built up by using graphite coated with gel polymer membrane and LISICON as the negative electrode, and LiFePO4 in aqueous solution as the positive electrode. Its average discharge voltage is up to 3.1 V and energy density based on the two electrode materials is 258 Wh kg−1. It will be a promising energy storage system with good safety and efficient cooling effects. PMID:27328707

  2. Synthesis of NiMn-LDH Nanosheet@Ni3S2 Nanorod Hybrid Structures for Supercapacitor Electrode Materials with Ultrahigh Specific Capacitance.

    PubMed

    Yu, Shuai; Zhang, Yingxi; Lou, Gaobo; Wu, Yatao; Zhu, Xinqiang; Chen, Hao; Shen, Zhehong; Fu, Shenyuan; Bao, Binfu; Wu, Limin

    2018-03-27

    One of the key challenges for pseudocapacitive electrode materials with highly effective capacitance output and future practical applications is how to rationally construct hierarchical and ordered hybrid nanoarchitecture through the simple process. Herein, we design and synthesize a novel NiMn-layered double hydroxide nanosheet@Ni 3 S 2 nanorod hybrid array supported on porous nickel foam via a one-pot hydrothermal method. Benefited from the ultrathin and rough nature, the well-defined porous structure of the hybrid array, as well as the synergetic effect between NiMn-layered double hydroxide nanosheets and Ni 3 S 2 nanorods, the as-fabricated hybrid array-based electrode exhibits an ultrahigh specific capacitance of 2703 F g -1 at 3 A g -1 . Moreover, the asymmetric supercapacitor with this hybrid array as a positive electrode and wood-derived activated carbon as a negative electrode demonstrates high energy density (57 Wh Kg -1 at 738 W Kg -1 ) and very good electrochemical cycling stability.

  3. Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries.

    PubMed

    Li, M M; Yang, C C; Wang, C C; Wen, Z; Zhu, Y F; Zhao, M; Li, J C; Zheng, W T; Lian, J S; Jiang, Q

    2016-06-07

    Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world's dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials-hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g(-1), which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles.

  4. A new activation process for a Zr-based alloy as a negative electrode for Ni/MH electric vehicle batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, J.S.; Lee, H.; Lee, S.M.

    1999-12-01

    The effects of a combination hot-immersion and slow-charging method on the activation of a Zr-based alloy were investigated. A Zr{sub 0.7}Ti{sub 0.3}Cr{sub 0.3}Mn{sub 0.3}V{sub 0.4}Ni{sub 1.0} alloy electrode was treated with two steps: alloy electrodes were immersed at 80 C for 12 h in a KOH solution and then charged at a low current density for one cycle. It was found that the alloy electrode activation was greatly improved after this hot-immersion and slow-charging treatment, and furthermore the treated electrodes were fully activated at the first normal cycle. The effects of this treatment are discussed on the basis of resultsmore » obtained by scanning electron microscopy, Auger electron spectroscopy, and inductively coupled plasma spectroscopy. The hot-immersion and slow-charging method was successfully applied to the formation process of 80 Ah Ni/MH cells using this Zr-based alloy.« less

  5. Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries

    PubMed Central

    Li, M. M.; Yang, C. C.; Wang, C. C.; Wen, Z.; Zhu, Y. F.; Zhao, M.; Li, J. C.; Zheng, W. T.; Lian, J. S.; Jiang, Q.

    2016-01-01

    Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world’s dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials—hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g−1, which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles. PMID:27270184

  6. Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries

    NASA Astrophysics Data System (ADS)

    Li, M. M.; Yang, C. C.; Wang, C. C.; Wen, Z.; Zhu, Y. F.; Zhao, M.; Li, J. C.; Zheng, W. T.; Lian, J. S.; Jiang, Q.

    2016-06-01

    Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world’s dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials—hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g-1, which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles.

  7. Hydrometallurgical treatment of nickel-metal hydride battery electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyman, J.W.; Palmer, G.R.

    1995-12-31

    Nickel-metal hydride (Ni-MH) battery electrodes have been developed as a substitute for cadmium-containing negative electrodes. Use of NI-MH electrodes offers enhanced electrochemical properties in many instances as well as reduced environmental toxicity. Rechargeable batteries using NI-MH electrodes are also strong candidates for electric vehicles. During the production and secondary reclamation of these battery types, recycling procedures will be needed to prevent environmental impact caused by these wastes as well as to recover the value inherent in the scrap. The US Bureau of Mines (USBM) is investigating hydrometallurgical technology that separates and recovers purified metallic components from Ni-MH battery scrap ofmore » two types, AB{sub 2} and AB{sub 5}. An investigation of acid dissolution and metal recovery techniques has determined several processing alternatives that may be used to promote the successful recycling of much of the battery fabrication scrap and eventual secondary scrap. The metals recovered are Ni, Co, and rare earth metals. Although recovery techniques have been identified in principal, their applicability to mixed battery waste stream and economic attractiveness remain to be demonstrated.« less

  8. Study of the Charge Transfer Process of LaNi5 Type Electrodes in Ni-MH Batteries

    NASA Astrophysics Data System (ADS)

    Le, Xuan Que; Nguyen, Phu Thuy

    2002-12-01

    As a result of the charge process of LaNi5 type electrode, hydrogen is reversibly absorbed on the electrode surface. The process consists two principal steps. During the both processes, the first reaction step occurs in the interface solid/liquid, negatively charged, with high static electric field, where the double layer structure became more compact. The transfer of charge under high electric field depends on many factors, principally on compositions of the electrode materials. Effects on that of Co, Fe, Mn substitutes, with different concentrations, have been comparatively studied using electrochemical technique. The analyse of interface C -.V study results has been realised, respecting Mott-Schottky relation. Optimal contents of some additives have been discussed. Some advantages of the applied electrochemical methods have been confirmed. The mechanism of the charges transfer and of the hydrogen reversible storage in the crystal structure in the batteries has been discussed. With the proposed mechanism, one can more explicitly understand the difference of the magnetic effect of the electrode materials before and after charge-discharge process can be explained.

  9. Merging of Kirkendall Growth and Ostwald Ripening: CuO@MnO2 Core-shell Architectures for Asymmetric Supercapacitors

    PubMed Central

    Huang, Ming; Zhang, Yuxin; Li, Fei; Wang, Zhongchang; Alamusi; Hu, Ning; Wen, Zhiyu; Liu, Qing

    2014-01-01

    Fabricating hierarchical core-shell nanostructures is currently the subject of intensive research in the electrochemical field owing to the hopes it raises for making efficient electrodes for high-performance supercapacitors. Here, we develop a simple and cost-effective approach to prepare CuO@MnO2 core-shell nanostructures without any surfactants and report their applications as electrodes for supercapacitors. An asymmetric supercapacitor with CuO@MnO2 core-shell nanostructure as the positive electrode and activated microwave exfoliated graphite oxide (MEGO) as the negative electrode yields an energy density of 22.1 Wh kg−1 and a maximum power density of 85.6 kW kg−1; the device shows a long-term cycling stability which retains 101.5% of its initial capacitance even after 10000 cycles. Such a facile strategy to fabricate the hierarchical CuO@MnO2 core-shell nanostructure with significantly improved functionalities opens up a novel avenue to design electrode materials on demand for high-performance supercapacitor applications. PMID:24682149

  10. In situ study of LaY2Ni9 compound as Ni MH negative-electrode material

    NASA Astrophysics Data System (ADS)

    Latroche, M.; Isnard, O.

    2008-03-01

    The behavior of a Ni-MH (metal hydride) negative composite electrode made of LaY2Ni9 active material has been studied dynamically using in situ neutron diffraction during a complete charge-discharge electrochemical cycle. From the analysis of the collected diffraction patterns, the phase identity, phase amount variations and cell volume evolutions have been determined as a function of the electrochemical state of (dis)charge. The active material shows a typical two-phase behavior with equilibrium between a hydrogen-poor α phase and a hydrogen-rich β one. The lower electrochemical reversible capacity as compared to solid-gas properties has been interpreted in terms of hydrogen gas evolving during charge and kinetic limitation due to slow β to α transformation during discharge, which hinders high discharge rates.

  11. Characterization of the physico-chemical properties of polymeric materials for aerospace flight. [nickel cadmium batteries

    NASA Technical Reports Server (NTRS)

    Rock, M.; Khan, S. Z.

    1980-01-01

    Factors contributing to the final failure of Ni-Cd batteries are listed. A differential thermal analyzer was used to study several positive and negative battery electrodes. The negative plates show a very large peak (endotherm) between 245 C and 250C. The second endotherm occurs at 300C indicating the decomposition of Cd(OH)2. In positive plates, a first weak endotherm occurs at 100C, which indicates loss of H2O from Ni(OH)2(H2O)n molecules. A second large endotherm occurs in the range of 290C to 300C, indicating the decomposition of Ni(OH2) to NiO and H2O. Atomic absorption spectroscopy was used to determine nickel, cobalt, cadmium, and potassium content in battery electrolytes and electrodes. Results are presented in tables.

  12. Preparation of electrochemically active silicon nanotubes in highly ordered arrays

    PubMed Central

    Grünzel, Tobias; Lee, Young Joo; Kuepper, Karsten

    2013-01-01

    Summary Silicon as the negative electrode material of lithium ion batteries has a very large capacity, the exploitation of which is impeded by the volume changes taking place upon electrochemical cycling. A Si electrode displaying a controlled porosity could circumvent the difficulty. In this perspective, we present a preparative method that yields ordered arrays of electrochemically competent silicon nanotubes. The method is based on the atomic layer deposition of silicon dioxide onto the pore walls of an anodic alumina template, followed by a thermal reduction with lithium vapor. This thermal reduction is quantitative, homogeneous over macroscopic samples, and it yields amorphous silicon and lithium oxide, at the exclusion of any lithium silicides. The reaction is characterized by spectroscopic ellipsometry for thin silica films, and by nuclear magnetic resonance and X-ray photoelectron spectroscopy for nanoporous samples. After removal of the lithium oxide byproduct, the silicon nanotubes can be contacted electrically. In a lithium ion electrolyte, they then display the electrochemical waves also observed for other bulk or nanostructured silicon systems. The method established here paves the way for systematic investigations of how the electrochemical properties (capacity, charge/discharge rates, cyclability) of nanoporous silicon negative lithium ion battery electrode materials depend on the geometry. PMID:24205460

  13. Scalable integration of Li5FeO4 towards robust, high-performance lithium-ion hybrid capacitors.

    PubMed

    Park, Min-Sik; Lim, Young-Geun; Hwang, Soo Min; Kim, Jung Ho; Kim, Jeom-Soo; Dou, Shi Xue; Cho, Jaephil; Kim, Young-Jun

    2014-11-01

    Lithium-ion hybrid capacitors have attracted great interest due to their high specific energy relative to conventional electrical double-layer capacitors. Nevertheless, the safety issue still remains a drawback for lithium-ion capacitors in practical operational environments because of the use of metallic lithium. Herein, single-phase Li5FeO4 with an antifluorite structure that acts as an alternative lithium source (instead of metallic lithium) is employed and its potential use for lithium-ion capacitors is verified. Abundant Li(+) amounts can be extracted from Li5FeO4 incorporated in the positive electrode and efficiently doped into the negative electrode during the first electrochemical charging. After the first Li(+) extraction, Li(+) does not return to the Li5FeO4 host structure and is steadily involved in the electrochemical reactions of the negative electrode during subsequent cycling. Various electrochemical and structural analyses support its superior characteristics for use as a promising lithium source. This versatile approach can yield a sufficient Li(+)-doping efficiency of >90% and improved safety as a result of the removal of metallic lithium from the cell. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Hydrate-melt electrolytes for high-energy-density aqueous batteries

    NASA Astrophysics Data System (ADS)

    Yamada, Yuki; Usui, Kenji; Sodeyama, Keitaro; Ko, Seongjae; Tateyama, Yoshitaka; Yamada, Atsuo

    2016-10-01

    Aqueous Li-ion batteries are attracting increasing attention because they are potentially low in cost, safe and environmentally friendly. However, their low energy density (<100 Wh kg-1 based on total electrode weight), which results from the narrow operating potential window of water and the limited selection of suitable negative electrodes, is problematic for their future widespread application. Here, we explore optimized eutectic systems of several organic Li salts and show that a room-temperature hydrate melt of Li salts can be used as a stable aqueous electrolyte in which all water molecules participate in Li+ hydration shells while retaining fluidity. This hydrate-melt electrolyte enables a reversible reaction at a commercial Li4Ti5O12 negative electrode with a low reaction potential (1.55 V versus Li+/Li) and a high capacity (175 mAh g-1). The resultant aqueous Li-ion batteries with high energy density (>130 Wh kg-1) and high voltage (˜2.3-3.1 V) represent significant progress towards performance comparable to that of commercial non-aqueous batteries (with energy densities of ˜150-400 Wh kg-1 and voltages of ˜2.4-3.8 V).

  15. Glucose-responsive hydrogel electrode for biocompatible glucose transistor

    NASA Astrophysics Data System (ADS)

    Kajisa, Taira; Sakata, Toshiya

    2017-12-01

    In this paper, we propose a highly sensitive and biocompatible glucose sensor using a semiconductor-based field effect transistor (FET) with a functionalized hydrogel. The principle of the FET device contributes to the easy detection of ionic charges with high sensitivity, and the hydrogel coated on the electrode enables the specific detection of glucose with biocompatibility. The copolymerized hydrogel on the Au gate electrode of the FET device is optimized by controlling the mixture ratio of biocompatible 2-hydroxyethylmethacrylate (HEMA) as the main monomer and vinylphenylboronic acid (VPBA) as a glucose-responsive monomer. The gate surface potential of the hydrogel FETs shifts in the negative direction with increasing glucose concentration from 10 μM to 40 mM, which results from the increase in the negative charges on the basis of the diol-binding of PBA derivatives with glucose molecules in the hydrogel. Moreover, the hydrogel coated on the gate suppresses the signal noise caused by the nonspecific adsorption of proteins such as albumin. The hydrogel FET can serve as a highly sensitive and biocompatible glucose sensor in in vivo or ex vivo applications such as eye contact lenses and sheets adhering to the skin.

  16. Influence of composition on phase occurrence during charge process of AB 5+x Ni-MH negative electrode materials

    NASA Astrophysics Data System (ADS)

    Vivet, S.; Latroche, M.; Chabre, Y.; Joubert, J.-M.; Knosp, B.; Percheron-Guégan, A.

    2005-05-01

    Multi-substituted LaNi 5-type alloys (AB 5+x) are widely used as negative electrode materials in commercial Ni-MH batteries. Cobalt substitution on Ni sites allows to enhance battery cycle life by reducing alloy pulverization induced by hydrogen cycling. This improvement is attributed to the occurrence of a three-phase process (α, β and γ) during electrochemical hydrogen loading. In order to better understand the effect of the composition on the phase occurrence and to reduce the rate of costly cobalt, an in situ neutron diffraction study has been performed at room temperature during electrochemical charge of two different electrode materials MmNi 4.07Mn 0.63Al 0.2M 0.4 with M=Fe and Mn and B/A=5.3. These cobalt free compounds show cycle life comparable to that of commercial materials. The results show that three phases are also observed for these samples. The γ-phase content depends on M and is higher for M=Fe than for M=Mn. These results are related to the improved cycle lives and to the alloy pulverization process.

  17. Cellulose Derived Graphenic Fibers for Capacitive Desalination of Brackish Water.

    PubMed

    Pugazhenthiran, Nalenthiran; Sen Gupta, Soujit; Prabhath, Anupama; Manikandan, Muthu; Swathy, Jakka Ravindran; Raman, V Kalyan; Pradeep, Thalappil

    2015-09-16

    We describe a simple and inexpensive cellulose-derived and layer-by-layer stacked carbon fiber network electrode for capacitive deionization (CDI) of brackish water. The microstructure and chemical composition were characterized using spectroscopic and microscopic techniques; electrochemical/electrical performance was evaluated by cyclic voltammetry and 4-probe electrical conductivity and surface area by Brunauer-Emmett-Teller analysis, respectively. The desalination performance was investigated using a laboratory batch model CDI unit, under fixed applied voltage and varying salt concentrations. Electro-adsorption of NaCl on the graphite reinforced-cellulose (GrC) electrode reached equilibrium quickly (within 90 min) and the adsorbed salts were released swiftly (in 40 min) back into the solution, during reversal of applied potential. X-ray photoelectron spectroscopic studies clearly illustrate that sodium and chloride ions were physisorbed on the negative and positive electrodes, respectively during electro-adsorption. This GrC electrode showed an electro-adsorption capacity of 13.1 mg/g of the electrode at a cell potential of 1.2 V, with excellent recyclability and complete regeneration. The electrode has a high tendency for removal of specific anions, such as fluoride, nitrate, chloride, and sulfate from water in the following order: Cl->NO3->F->SO4(2-). GrC electrodes also showed resistance to biofouling with negligible biofilm formation even after 5 days of incubation in Pseudomonas putida bacterial culture. Our unique cost-effective methodology of layer-by-layer stacking of carbon nanofibers and concurrent reinforcement using graphite provides uniform conductivity throughout the electrode with fast electro-adsorption, rapid desorption, and extended reuse, making the electrode affordable for capacitive desalination of brackish water.

  18. [Contact dermatitis from polyacrylate in TENS electrode].

    PubMed

    Weber-Muller, F; Reichert-Penetrat, S; Schmutz, J-L; Barbaud, A

    2004-05-01

    Transcutaneous electric nerve stimulation (TENS) is useful for many chronic pains. It induces few serious side effects, but skin reactions are not rare. We report on two cases of contact dermatitis due to TENS electrodes by sensitization to the acrylate in TENS conductive gel. A 50 year-old man suffered from post-traumatic lumbar pair. He developed eczematous lesions on the sites where the TENS electrodes were applied. Patch tests were positive with the TENS gel, with ethylene glycol dimethylacrylate (2 p. 100 petrolatum) and ethyl-acrylate (2 p. 100 petrolatum) on day 2 and 4 readings. A 54 Year-old man had a paralysis of the foot elevator following rupture of an aneurysm. After 2 months, he had an eczema on the sites where the TENS electrodes were applied. Patch tests were negative with the TENS electrodes but positive with 2-hydroxyethyl acrylate (0.1 p. 100 petrolatum), triethyleneglycol diacrylate (0.1 p. 100 petrolatum), 2-hydroxyethyl methacrylate (2 p. 100 petrolatum) and 2-hydroxypropyl methacrylate (2 p. 100 petrolatum) on day 2 and 4 readings. TENS transmits small electrical currents through the skin that induce the depolarization of the affected sensory nerve endings. They have few serious side effects but skin reactions such as irritation, burns or allergy to propylene glycol in the electrode gel, to the rubber of the electrodes (mercaptobenzothiazole) or to the metallic part of the electrodes, i.e. nickel, are not uncommon. To our knowledge, only one case of an allergy to the polyacrylates of TENS electrode gel has been previously reported in the literature. We emphasize that acrylate could be the main sensitizer in the more recently commercialized TENS electrodes and will propose alternative ways of treating patients sensitized to acrylate and who require treatment with TENS.

  19. Graphene-based supercapacitors in the parallel-plate electrode configuration: ionic liquids versus organic electrolytes.

    PubMed

    Shim, Youngseon; Kim, Hyung J; Jung, Younjoon

    2012-01-01

    Supercapacitors with two single-sheet graphene electrodes in the parallel plate geometry are studied via molecular dynamics (MD) computer simulations. Pure 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI+BF4-) and a 1.1 M solution of EMI+BF4- in acetonitrile are considered as prototypes of room-temperature ionic liquids (RTILs) and organic electrolytes. Electrolyte structure, charge density and associated electric potential are investigated by varying the charges and separation of the two electrodes. Multiple charge layers formed in the electrolytes in the vicinity of the electrodes are found to screen the electrode surface charge almost completely. As a result, the supercapacitors show nearly an ideal electric double layer behavior, i.e., the electric potential exhibits essentially a plateau behavior in the entire electrolyte region except for sharp changes in screening zones very close to the electrodes. Due to its small size and large charge separation, BF4- is considerably more efficient in shielding electrode charges than EMI+. In the case of the acetonitrile solution, acetonitrile also plays an important role by aligning its dipoles near the electrodes; however, the overall screening mainly arises from ions. Because of the disparity of shielding efficiency between cations and anions, the capacitance of the positively-charged anode is significantly larger than that of the negatively-charged cathode. Therefore, the total cell capacitance in the parallel plate configuration is primarily governed by the cathode. Ion conductivity obtained via the Green-Kubo (GK) method is found to be largely independent of the electrode surface charge. Interestingly, EMI+BF4- shows higher GK ion conductivity than the 1.1 M acetonitrile solution between two parallel plate electrodes.

  20. Bulk-Type All-Solid-State Lithium-Ion Batteries: Remarkable Performances of a Carbon Nanofiber-Supported MgH2 Composite Electrode.

    PubMed

    Zeng, Liang; Ichikawa, Takayuki; Kawahito, Koji; Miyaoka, Hiroki; Kojima, Yoshitsugu

    2017-01-25

    Magnesium hydride, MgH 2 , a recently developed compound for lithium-ion batteries, is considered to be a promising conversion-type negative electrode material due to its high theoretical lithium storage capacity of over 2000 mA h g -1 , suitable working potential, and relatively small volume expansion. Nevertheless, it suffers from unsatisfactory cyclability, poor reversibility, and slow kinetics in conventional nonaqueous electrolyte systems, which greatly limit the practical application of MgH 2 . In this work, a vapor-grown carbon nanofiber was used to enhance the electrical conductivity of MgH 2 using LiBH 4 as the solid-state electrolyte. It shows that a reversible capacity of over 1200 mA h g -1 with an average voltage of 0.5 V (vs Li/Li + ) can be obtained after 50 cycles at a current density of 1000 mA g -1 . In addition, the capacity of MgH 2 retains over 1100 mA h g -1 at a high current density of 8000 mA g -1 , which indicates the possibility of using MgH 2 as a negative electrode material for high power and high capacity lithium-ion batteries in future practical applications. Moreover, the widely studied sulfide-based solid electrolyte was also used to assemble battery cells with MgH 2 electrode in the same system, and the electrochemical performance was as good as that using LiBH 4 electrolyte.

  1. LONG-TERM PERFORMANCE OF SOLID OXIDE STACKS WITH ELECTRODE-SUPPORTED CELLS OPERATING IN THE STEAM ELECTROLYSIS MODE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. E. O'Brien; R. C. O'Brien; X. Zhang

    2011-11-01

    Performance characterization and durability testing have been completed on two five-cell high-temperature electrolysis stacks constructed with advanced cell and stack technologies. The solid oxide cells incorporate a negative-electrode-supported multi-layer design with nickel-zirconia cermet negative electrodes, thin-film yttria-stabilized zirconia electrolytes, and multi-layer lanthanum ferrite-based positive electrodes. The per-cell active area is 100 cm2. The stack is internally manifolded with compliant mica-glass seals. Treated metallic interconnects with integral flow channels separate the cells. Stack compression is accomplished by means of a custom spring-loaded test fixture. Initial stack performance characterization was determined through a series of DC potential sweeps in both fuel cellmore » and electrolysis modes of operation. Results of these sweeps indicated very good initial performance, with area-specific resistance values less than 0.5 ?.cm2. Long-term durability testing was performed with A test duration of 1000 hours. Overall performance degradation was less than 10% over the 1000-hour period. Final stack performance characterization was again determined by a series of DC potential sweeps at the same flow conditions as the initial sweeps in both electrolysis and fuel cell modes of operation. A final sweep in the fuel cell mode indicated a power density of 0.356 W/cm2, with average per-cell voltage of 0.71 V at a current of 50 A.« less

  2. An Effective Electrodeposition Mode for Porous MnO₂/Ni Foam Composite for Asymmetric Supercapacitors.

    PubMed

    Tsai, Yi-Chiun; Yang, Wein-Duo; Lee, Kuan-Ching; Huang, Chao-Ming

    2016-03-30

    Three kinds of MnO₂/Ni foam composite electrode with hierarchical meso-macroporous structures were prepared using potentiodynamic (PD), potentiostatic (PS), and a combination of PS and PD(PS + PD) modes of electrodeposition. The electrodeposition mode markedly influenced the surface morphological, textural, and supercapacitive properties of the MnO₂/Ni electrodes. The supercapacitive performance of the MnO₂/Ni electrode obtained via PS + PD(PS + PD(MnO₂/Ni)) was found to be superior to those of MnO₂/Ni electrodes obtained via PD and PS, respectively. Moreover, an asymmetric supercapacitor device, activated carbon (AC)/PS + PD(MnO₂/Ni), utilizing PS + PD(MnO₂/Ni) as a positive electrode and AC as a negative electrode, was fabricated. The device exhibited an energy density of 7.7 Wh·kg -1 at a power density of 600 W·kg -1 and superior cycling stability, retaining 98% of its initial capacity after 10,000 cycles. The good supercapacitive performance and excellent stability of the AC/PS + PD(MnO₂/Ni) device can be ascribed to its high surface area, hierarchical structure, and interconnected three-dimensional reticular configuration of the nickel metal support, which facilitates electrolyte ion intercalation and deintercalation at the electrode/electrolyte interface and mitigates volume change during repeated charge/discharge cycling. These results demonstrate the great potential of the combination of PS and PD modes for MnO₂ electrodeposition for the development of high-performance electrodes for supercapacitors.

  3. Bulk and interfacial structures of reline deep eutectic solvent: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Kaur, Supreet; Sharma, Shobha; Kashyap, Hemant K.

    2017-11-01

    We apply all-atom molecular dynamics simulations to describe the bulk morphology and interfacial structure of reline, a deep eutectic solvent comprising choline chloride and urea in 1:2 molar ratio, near neutral and charged graphene electrodes. For the bulk phase structural investigation, we analyze the simulated real-space radial distribution functions, X-ray/neutron scattering structure functions, and their partial components. Our study shows that both hydrogen-bonding and long-range correlations between different constituents of reline play a crucial role to lay out the bulk structure of reline. Further, we examine the variation of number density profiles, orientational order parameters, and electrostatic potentials near the neutral and charged graphene electrodes with varying electrode charge density. The present study reveals the presence of profound structural layering of not only the ionic components of reline but also urea near the electrodes. In addition, depending on the electrode charge density, the choline ions and urea molecules render different orientations near the electrodes. The simulated number density and electrostatic potential profiles for reline clearly show the presence of multilayer structures up to a distance of 1.2 nm from the respective electrodes. The observation of positive values of the surface potential at zero charge indicates the presence of significant nonelectrostatic attraction between the choline cation and graphene electrode. The computed differential capacitance (Cd) for reline exhibits an asymmetric bell-shaped curve, signifying different variation of Cd with positive and negative surface potentials.

  4. Bulk and interfacial structures of reline deep eutectic solvent: A molecular dynamics study.

    PubMed

    Kaur, Supreet; Sharma, Shobha; Kashyap, Hemant K

    2017-11-21

    We apply all-atom molecular dynamics simulations to describe the bulk morphology and interfacial structure of reline, a deep eutectic solvent comprising choline chloride and urea in 1:2 molar ratio, near neutral and charged graphene electrodes. For the bulk phase structural investigation, we analyze the simulated real-space radial distribution functions, X-ray/neutron scattering structure functions, and their partial components. Our study shows that both hydrogen-bonding and long-range correlations between different constituents of reline play a crucial role to lay out the bulk structure of reline. Further, we examine the variation of number density profiles, orientational order parameters, and electrostatic potentials near the neutral and charged graphene electrodes with varying electrode charge density. The present study reveals the presence of profound structural layering of not only the ionic components of reline but also urea near the electrodes. In addition, depending on the electrode charge density, the choline ions and urea molecules render different orientations near the electrodes. The simulated number density and electrostatic potential profiles for reline clearly show the presence of multilayer structures up to a distance of 1.2 nm from the respective electrodes. The observation of positive values of the surface potential at zero charge indicates the presence of significant nonelectrostatic attraction between the choline cation and graphene electrode. The computed differential capacitance (C d ) for reline exhibits an asymmetric bell-shaped curve, signifying different variation of C d with positive and negative surface potentials.

  5. Photoelectrochemical behaviour of anatase nanoporous films: effect of the nanoparticle organization

    NASA Astrophysics Data System (ADS)

    Lana-Villarreal, Teresa; Mao, Yuanbing; Wong, Stanislaus S.; Gómez, Roberto

    2010-09-01

    The photoelectrochemical behaviour of anatase thin films with different nanoarchitectures and the same active surface area (or thickness) has been studied in acidic media in the absence and in the presence of formic acid. The electrodes were composed of either wire-like nanocrystal aggregates or commercial TiO2 nanoparticles. Cyclic voltammetry in the dark reveals a larger trap concentration in the band gap for the nanoparticulate (NP) electrodes, which can be ascribed to a larger number of intergrain boundaries. Also under illumination, the behaviour for both types of anatase structures significantly differs: water photooxidation arises at more negative potentials for the nanocolumnar (NC) electrodes. In the presence of an efficient hole acceptor such as HCOOH, significantly larger photocurrents were noted for the NC films as compared with those for the NP electrodes, with the photocurrent onset also shifted towards more positive potentials for the latter. These results point to a diminished electron recombination, which can be related with a smaller concentration of intergrain boundaries, together with a more efficient HCOOH hole transfer for the wire-like nanocrystal aggregate architecture. In addition, the oxygen reduction reaction is also favoured in the case of NC electrodes.The photoelectrochemical behaviour of anatase thin films with different nanoarchitectures and the same active surface area (or thickness) has been studied in acidic media in the absence and in the presence of formic acid. The electrodes were composed of either wire-like nanocrystal aggregates or commercial TiO2 nanoparticles. Cyclic voltammetry in the dark reveals a larger trap concentration in the band gap for the nanoparticulate (NP) electrodes, which can be ascribed to a larger number of intergrain boundaries. Also under illumination, the behaviour for both types of anatase structures significantly differs: water photooxidation arises at more negative potentials for the nanocolumnar (NC) electrodes. In the presence of an efficient hole acceptor such as HCOOH, significantly larger photocurrents were noted for the NC films as compared with those for the NP electrodes, with the photocurrent onset also shifted towards more positive potentials for the latter. These results point to a diminished electron recombination, which can be related with a smaller concentration of intergrain boundaries, together with a more efficient HCOOH hole transfer for the wire-like nanocrystal aggregate architecture. In addition, the oxygen reduction reaction is also favoured in the case of NC electrodes. Electronic supplementary information (ESI) available: Typical spectral irradiance of a 150 W Xe arc lamp, TEM images, Raman spectra, XRD patterns, cyclic voltammograms, modified Kubelka-Munk function and Incident Photon to Current Efficiency versus wavelength. See DOI: 10.1039/c0nr00140f

  6. Relationship between early and late stages of information processing: an event-related potential study

    PubMed Central

    Portella, Claudio; Machado, Sergio; Arias-Carrión, Oscar; Sack, Alexander T.; Silva, Julio Guilherme; Orsini, Marco; Leite, Marco Antonio Araujo; Silva, Adriana Cardoso; Nardi, Antonio E.; Cagy, Mauricio; Piedade, Roberto; Ribeiro, Pedro

    2012-01-01

    The brain is capable of elaborating and executing different stages of information processing. However, exactly how these stages are processed in the brain remains largely unknown. This study aimed to analyze the possible correlation between early and late stages of information processing by assessing the latency to, and amplitude of, early and late event-related potential (ERP) components, including P200, N200, premotor potential (PMP) and P300, in healthy participants in the context of a visual oddball paradigm. We found a moderate positive correlation among the latency of P200 (electrode O2), N200 (electrode O2), PMP (electrode C3), P300 (electrode PZ) and the reaction time (RT). In addition, moderate negative correlation between the amplitude of P200 and the latencies of N200 (electrode O2), PMP (electrode C3), P300 (electrode PZ) was found. Therefore, we propose that if the secondary processing of visual input (P200 latency) occurs faster, the following will also happen sooner: discrimination and classification process of this input (N200 latency), motor response processing (PMP latency), reorganization of attention and working memory update (P300 latency), and RT. N200, PMP, and P300 latencies are also anticipated when higher activation level of occipital areas involved in the secondary processing of visual input rise (P200 amplitude). PMID:23355929

  7. Electrochemical and impedance investigation of the effect of lithium malonate on the performance of natural graphite electrodes in lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiao-Guang; Dai, Sheng

    2010-01-01

    Lithium malonate (LM) was coated on the surface of a natural graphite (NG) electrode, which was then tested as the negative electrode in the electrolytes of 0.9 M LiPF6/EC-PC-DMC (1/1/3, by weight) and 1.0 M LiBF4/EC-PC-DMC (1/1/3, by weight) under a current density of 0.075 mA cm-2. LM was also used as an additive to the electrolyte of 1.0 M LiPF6/EC-DMC-DEC (1/1/1, by volume) and tested on a bare graphite electrode. It was found that both the surface coating and the additive approach were effective in improving first charge discharge capacity and coulomb efficiency. Electrochemical impedance spectra showed that themore » decreased interfacial impedance was coupled with improved coulomb efficiency of the cells using coated graphite electrodes. Cyclic voltammograms (CVs) on fresh bare and coated natural graphite electrodes confirmed that all the improvement in the half-cell performance was due to the suppression of the solvent decomposition through the surface modification with LM. The CV data also showed that the carbonate electrolyte with LM as the additive was not stable against oxidation, which resulted in lower capacity of the full cell with commercial graphite and LiCoO2 electrodes.« less

  8. Metal hydrides as negative electrode materials for Ni- MH batteries

    NASA Astrophysics Data System (ADS)

    Yartys, V.; Noreus, D.; Latroche, M.

    2016-01-01

    Structural, thermodynamical and electrochemical properties of metallic hydrides belonging to the pseudo-binary family A-Mg-Ni ( A: rare earths) are reviewed and compared. Technology aspects of bipolar cells are also discussed.

  9. Molten salt electrolyte battery cell with overcharge tolerance

    DOEpatents

    Kaun, Thomas D.; Nelson, Paul A.

    1989-01-01

    A molten salt electrolyte battery having an increased overcharge tolerance employs a negative electrode with two lithium alloy phases of different electrochemical potential, one of which allows self-discharge rates which permits battery cell equalization.

  10. Synthese, etude structurale et electrochimique des materiaux d'electrode positive d'oxydes mixtes lithium cobalt nickel oxide (0 /= 1) pour les batteries rechargeables au lithium

    NASA Astrophysics Data System (ADS)

    Grincourt, Yves

    Depuis une dizaine d'annees, on observe un interet grandissant pour les batteries rechargeables au lithium de tension superieure a 4 volts. La commercialisation de ces batteries pour l'electronique grand marche tend de plus en plus a supplanter celle des accumulateurs Ni-Cd et Ni-MH, de tension nominate 1,2 V. Ces batteries au lithium font appel a des materiaux d'electrode positive (cathode a la decharge) du type oxydes mixtes de metaux de transition LiMnO 2, LiMn2O4, LiNiO2 ou LiCoO2. Si le compose LiCoO2 est relativement aise a synthetiser, il n'en demeure pas moins que le cobalt reste un metal plus couteux compare au nickel et au manganese. La synthese de LiNiO2, quart a elle, demeure un probleme du point de vue stoechiometrique. Un defaut de lithium (5 a 10% molaire) conduira a des proprietes electrochimiques mediocres de la batterie. Dans cette etude nous nous proposons donc de preparer par voie humide et par voie seche les materiaux d'electrode positive de la famille LiCoyNi1-yO2 aver (0 ≤ y ≤ 1) et d'etudier en detail l'influence du pourcentage de nickel et de cobalt sur les proprietes electrochimiques des oxydes mixtes Li-Ni-Co. Une des caracteristiques est la morphologie plus fine des poudres de materiaux, observes par microscopie electronique a balayage (MEB). Un traitement thermique a plus basse temperature (750°C) que pour LiCoO2 (850°C) ainsi qu'un leger exces de lithium dans la preparation, ont permis d'aboutir a un materiau de stoechiometrie quasi parfaite. Neanmoins, le role de pilfer joue par 2 a 4% de moles de Ni2+ presents sur les sites lithium, permet de conserver intacte la structure hexagonale de la maille entre deux cycles consecutifs. Afin de mieux comprendre l'influence du vieillissement dune demi-pile Li/LiMeO2 (Me = Ni, Co) a temperature ambiante, des etudes electrochimiques et d'impedance spectroscopique ont ete menees en parallele. Le vieillissement de la cellule s'accompagne seulement dune chute de son potentiel due a son auto-decharge. Neanmoins, il est encore possible de la relancer en cyclage par la suite. Une baisse de la valeur de la resistance totale interfaciale et des frequences au sonnet semble indiquer une modification chimique et/ou structurale des films de passivations, pent-etre due a une transformation de ces films lors du cyclage ou a leur degradation. (Abstract shortened by UMI.)

  11. Negative differential mobility for negative carriers as revealed by space charge measurements on crosslinked polyethylene insulated model cables

    NASA Astrophysics Data System (ADS)

    Teyssedre, G.; Vu, T. T. N.; Laurent, C.

    2015-12-01

    Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are model of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30-60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10-14-10-13 m2 V-1 s-1 for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets.

  12. A new technique based on current measurement for nanoscale ferroelectricity assessment: Nano-positive up negative down

    NASA Astrophysics Data System (ADS)

    Martin, Simon; Baboux, Nicolas; Albertini, David; Gautier, Brice

    2017-02-01

    In this paper, we propose a new procedure which aims at measuring the polarisation switching current at the nanoscale on ferroelectric thin films with the atomic force microscope tip used as a top electrode. Our technique is an adaptation of the so-called positive up negative down method commonly operated on large electrodes. The main obstacle that must be overcome to implement such measurement is the enhancement of the signal to noise ratio, in a context where the stray capacitance of the sample/tip/lever/lever holder system generates a dielectric displacement current several orders of magnitude higher than the current to be measured. This problem is solved by the subtraction of the displacement current through a reference capacitance. For the first time, we show an example of nanoscale positive up negative down measurement of the polarisation charge on a PbZrTiO3 thin film and compare the measured value with paraelectric samples. From the comparison with macroscopic measurement, we deduce the effective area of contact between the tip and the sample.

  13. Decoding Network Structure in On-Chip Integrated Flow Cells with Synchronization of Electrochemical Oscillators

    NASA Astrophysics Data System (ADS)

    Jia, Yanxin; Kiss, István Z.

    2017-04-01

    The analysis of network interactions among dynamical units and the impact of the coupling on self-organized structures is a challenging task with implications in many biological and engineered systems. We explore the coupling topology that arises through the potential drops in a flow channel in a lab-on-chip device that accommodates chemical reactions on electrode arrays. The networks are revealed by analysis of the synchronization patterns with the use of an oscillatory chemical reaction (nickel electrodissolution) and are further confirmed by direct decoding using phase model analysis. In dual electrode configuration, a variety coupling schemes, (uni- or bidirectional positive or negative) were identified depending on the relative placement of the reference and counter electrodes (e.g., placed at the same or the opposite ends of the flow channel). With three electrodes, the network consists of a superposition of a localized (upstream) and global (all-to-all) coupling. With six electrodes, the unique, position dependent coupling topology resulted spatially organized partial synchronization such that there was a synchrony gradient along the quasi-one-dimensional spatial coordinate. The networked, electrode potential (current) spike generating electrochemical reactions hold potential for construction of an in-situ information processing unit to be used in electrochemical devices in sensors and batteries.

  14. A dual-plate ITO-ITO generator-collector microtrench sensor: surface activation, spatial separation and suppression of irreversible oxygen and ascorbate interference.

    PubMed

    Hasnat, Mohammad A; Gross, Andrew J; Dale, Sara E C; Barnes, Edward O; Compton, Richard G; Marken, Frank

    2014-02-07

    Generator-collector electrode systems are based on two independent working electrodes with overlapping diffusion fields where chemically reversible redox processes (oxidation and reduction) are coupled to give amplified current signals. A generator-collector trench electrode system prepared from two tin-doped indium oxide (ITO) electrodes placed vis-à-vis with a 22 μm inter-electrode gap is employed here as a sensor in aqueous media. The reversible 2-electron anthraquinone-2-sulfonate redox system is demonstrated to give well-defined collector responses even in the presence of oxygen due to the irreversible nature of the oxygen reduction. For the oxidation of dopamine on ITO, novel "Piranha-activation" effects are observed and chemically reversible generator-collector feedback conditions are achieved at pH 7, by selecting a more negative collector potential, again eliminating possible oxygen interference. Finally, dopamine oxidation in the presence of ascorbate is demonstrated with the irreversible oxidation of ascorbate at the "mouth" of the trench electrode and chemically reversible oxidation of dopamine in the trench "interior". This spatial separation of chemically reversible and irreversible processes within and outside the trench is discussed as a potential in situ microscale sensing and separation tool.

  15. Nanofoaming to Boost the Electrochemical Performance of Ni@Ni(OH)2 Nanowires for Ultrahigh Volumetric Supercapacitors.

    PubMed

    Xu, Shusheng; Li, Xiaolin; Yang, Zhi; Wang, Tao; Jiang, Wenkai; Yang, Chao; Wang, Shuai; Hu, Nantao; Wei, Hao; Zhang, Yafei

    2016-10-10

    Three-dimensional free-standing film electrodes have aroused great interest for energy storage devices. However, small volumetric capacity and low operating voltage limit their practical application for large energy storage applications. Herein, a facile and novel nanofoaming process was demonstrated to boost the volumetric electrochemical capacitance of the devices via activation of Ni nanowires to form ultrathin nanosheets and porous nanostructures. The as-designed free-standing Ni@Ni(OH) 2 film electrodes display a significantly enhanced volumetric capacity (462 C/cm 3 at 0.5 A/cm 3 ) and excellent cycle stability. Moreover, the as-developed hybrid supercapacitor employed Ni@Ni(OH) 2 film as positive electrode and graphene-carbon nanotube film as negative electrode exhibits a high volumetric capacitance of 95 F/cm 3 (at 0.25 A/cm 3 ) and excellent cycle performance (only 14% capacitance reduction for 4500 cycles). Furthermore, the volumetric energy density can reach 33.9 mWh/cm 3 , which is much higher than that of most thin film lithium batteries (1-10 mWh/cm 3 ). This work gives an insight for designing high-volume three-dimensional electrodes and paves a new way to construct binder-free film electrode for high-performance hybrid supercapacitor applications.

  16. A study on electrode gels for skin conductance measurements.

    PubMed

    Tronstad, Christian; Johnsen, Gorm Krogh; Grimnes, Sverre; Martinsen, Ørjan G

    2010-10-01

    Low-frequency skin conductance is used within several clinical applications and is mainly sensitive to sweating and the moisture content of the stratum corneum, but also how electrodes introduce changes in the electrical properties. Four electrode gels were investigated with regard to sorption characteristics and electrical properties. Skin conductance time series were collected from 18 test subjects during relaxation, exercise and recovery, wearing different pairs of electrodes contralaterally on the hypothenar and the T9 dermatome. Pressure test was applied on the T9 electrodes. Impedance frequency sweeps were taken on the T9 electrodes the same day and the next, parameterized to the Cole model. ANOVA on the initial skin conductance level change, exercise response amplitude, recovery offset and pressure-induced changes revealed significant differences among gel types. The wetter gels caused a higher positive level change, a greater response amplitude, larger recovery offset and greater pressure-induced artifacts compared to the solid gels. Sweating on the T9 site led to negative skin conductance responses for the wetter gels. Correlations were found between the desorption measurements and the initial skin conductance level change (hypothenar: R = 0.988 T9: R = 0.901) RM-ANOVA on the Cole parameters revealed a significant decrease in R(s) of the most resistive gel. Clinical implications are discussed.

  17. One-step hydrothermal synthesis of sandwich-type NiCo2S4@reduced graphene oxide composite as active electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Wang, Fangping; Li, Guifang; Zhou, Qianqian; Zheng, Jinfeng; Yang, Caixia; Wang, Qizhao

    2017-12-01

    A facile one step hydrothermal process is developed for the synthesis of NiCo2S4@reduced graphene oxide (NiCo2S4@RGO) composite as electrode for electrochemical supercapacitors. This NiCo2S4@RGO electrode exhibits an ultrahigh specific capacitance of 2003 F g-1 at 1 A g-1 and 1726 F g-1 at 20 A g-1 (86.0% capacitance retention from 1 A g-1 to 20 A g-1), excellent cycling stabilities (86.0% retention after 3500 cycles). Moreover, an asymmetric supercapacitor is successfully assembled by using NiCo2S4@RGO nanoparticle as the positive electrode and active carbon(AC) as the negative electrode in 2 M KOH electrolyte. The fabricated NiCo2S4@RGO//AC asymmetric supercapacitor exhibits a high energy density of 21.9 Wh kg-1 at a power density of 417.1 W kg-1 and still remains an impressive energy density of 13.5 Wh kg-1 at a large power density of 2700 W kg-1. The results demonstrate that the NiCo2S4@RGO composite is a promising electrode material as supercapacitors in energy storage.

  18. Design of a porous cobalt sulfide nanosheet array on Ni foam from zeolitic imidazolate frameworks as an advanced electrode for supercapacitors.

    PubMed

    Han, Xue; Tao, Kai; Wang, Ding; Han, Lei

    2018-02-08

    Porous nanosheet-structured electrode materials are very attractive for the high efficiency storage of electrochemical energy. Herein, a porous cobalt sulfide nanosheet array on Ni foam (Co 9 S 8 -NSA/NF) is successfully fabricated by a facile method, which involves the uniform growth of 2D Co-based leaf-like zeolitic imidazole frameworks (Co-ZIF-L) on Ni foam followed by subsequent sulfurization with thioacetamide (TAA). Benefiting from the unique porous nanosheet array architecture and conductive substrate, the Co 9 S 8 -NSA/NF exhibits excellent electrochemical performance with a high capacitance (1098.8 F g -1 at 0.5 A g -1 ), good rate capacity (54.6% retention at 10 A g -1 ) and long-term stability (87.4% retention over 1000 cycles), when acted as a binder-free electrode for supercapacitors. Furthermore, an assembled asymmetric supercapacitor device using the as-fabricated Co 9 S 8 -NSA as the positive electrode and activated carbon (AC) as the negative electrode also exhibits a high energy density of 20.0 W h kg -1 at a high power density of 828.5 W kg -1 . The method developed here can be extended to the construction of other structured metal (mono or mixed) sulfide electrode materials for more efficient energy storage.

  19. From coin cells to 400 mAh pouch cells: Enhancing performance of high-capacity lithium-ion cells via modifications in electrode constitution and fabrication

    NASA Astrophysics Data System (ADS)

    Trask, Stephen E.; Li, Yan; Kubal, Joseph J.; Bettge, Martin; Polzin, Bryant J.; Zhu, Ye; Jansen, Andrew N.; Abraham, Daniel P.

    2014-08-01

    In this article we describe efforts to improve performance and cycle life of cells containing Li1.2Ni0.15Mn0.55Co0.1O2-based positive and graphite-based negative electrodes. Initial work to identify high-performing materials, compositions, fabrication variables, and cycling conditions is conducted in coin cells. The resulting information is then used for the preparation of double-sided electrodes, assembly of pouch cells, and electrochemical testing. We report the cycling performance of cells with electrodes prepared under various conditions. Our data indicate that cells with positive electrodes containing 92 wt.% Li1.2Ni0.15Mn0.55Co0.1O2, 4 wt.% carbons (no graphite), and 4 wt.% PVdF (92-4-4) show ∼20% capacity fade after 1000 cycles in the 2.5-4.4 V range, significantly better than our baseline cells that show the same fade after only 450 cycles. Our analyses indicate that the major contributors to cell energy fade are capacity loss and impedance rise. Therefore incorporating approaches that minimize capacity fade and impedance rise, such as electrode coatings and electrolyte additives, can significantly enhance calendar and cycle life of this promising cell chemistry.

  20. Holey nickel-cobalt layered double hydroxide thin sheets with ultrahigh areal capacitance

    NASA Astrophysics Data System (ADS)

    Zhi, Lei; Zhang, Wenliang; Dang, Liqin; Sun, Jie; Shi, Feng; Xu, Hua; Liu, Zonghuai; Lei, Zhibin

    2018-05-01

    Strong coupling of electroactive components on conductive carbonaceous matrix to fabricate flexible hybrid electrodes represents a promising approach towards high performance supercapacitors. This work reports the fabrication of holey nickel cobalt layered double hydroxide (NiCo-LDH) nanosheets that are vertically grown on the cotton cloth-derived activated textile carbon (aTC). The abundant nanoholes on the thin-sheet NiCo-LDH not only enhance the electrode efficiency for efficient Faradaic redox reactions but also facilitate access of electrolyte to the electrode surface, thus giving rise to 70% capacitance arising from their outer surface. As a result, the aTC-NiCo hybrid electrode is capable of simultaneously achieving extremely high areal capacitance (6.37 F cm-2), mass capacitance (525 F g-1) and volumetric capacitance (249 F cm-3) at a practical level of mass loading (6.72 mg cm-2). Moreover, a solid-state asymmetric capacitor built with aTC-NiCo as positive electrode and active carbon-coated on aTC as negative electrode can deliver a volumetric energy density of 7.4 mWh cm-3 at a power density of 103 mW cm-3, while preserving a superior power performance, satisfying cycling stability and good mechanical flexibility.

Top